
1 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MS-RDPEAR]:

Remote Desktop Protocol Authentication Redirection
Virtual Channel

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the

associated patents, visit the Patent Map.
 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit

www.microsoft.com/trademarks.
 Fictitious Names. The example companies, organizations, products, domain names, email

addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other

than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Revision Summary

Date
Revision
History

Revision
Class Comments

7/14/2016 1.0 New Released new document.

3/16/2017 2.0 Major Significantly changed the technical content.

6/1/2017 2.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 3.0 Major Significantly changed the technical content.

12/1/2017 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/12/2018 4.0 Major Significantly changed the technical content.

10/1/2020 5.0 Major Significantly changed the technical content.

4/7/2021 6.0 Major Significantly changed the technical content.

6/25/2021 7.0 Major Significantly changed the technical content.

9/20/2023 8.0 Major Significantly changed the technical content.

3/25/2024 9.0 Major Significantly changed the technical content.

4/23/2024 10.0 Major Significantly changed the technical content.

3 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 8

1.3 Overview .. 9
1.4 Relationship to Other Protocols .. 9
1.5 Prerequisites/Preconditions ... 9
1.6 Applicability Statement ... 10
1.7 Versioning and Capability Negotiation ... 10
1.8 Vendor-Extensible Fields ... 10
1.9 Standards Assignments ... 10

2 Messages ... 11
2.1 Transport .. 11
2.2 Message Syntax ... 11

2.2.1 Common Data Structures .. 12
2.2.1.1 RemoteGuardCallId Enumeration .. 12
2.2.1.2 Kerberos Data Structures ... 13

2.2.1.2.1 KERB_ASN1_DATA .. 13
2.2.1.2.2 KERB_RPC_OCTET_STRING .. 14
2.2.1.2.3 KERB_RPC_INTERNAL_NAME .. 14
2.2.1.2.4 KERB_RPC_PA_DATA ... 14
2.2.1.2.5 KERB_RPC_CRYPTO_API_BLOB ... 14
2.2.1.2.6 SECPKG_SUPPLEMENTAL_CRED .. 15
2.2.1.2.7 SECPKG_SUPPLEMENTAL_CRED_ARRAY ... 15
2.2.1.2.8 KERB_RPC_ENCRYPTION_KEY ... 15
2.2.1.2.9 KerbCredIsoRemoteInput ... 16
2.2.1.2.10 KerbCredIsoRemoteOutput ... 20

2.2.1.3 NTLM Data Structures .. 23
2.2.1.3.1 NT_CHALLENGE .. 23
2.2.1.3.2 NT_RESPONSE .. 23
2.2.1.3.3 MSV1_0_LM3_RESPONSE ... 23
2.2.1.3.4 USER_SESSION_KEY ... 23
2.2.1.3.5 MSV1_0_CREDENTIAL_KEY .. 24
2.2.1.3.6 MSV1_0_REMOTE_ENCRYPTED_SECRETS ... 24
2.2.1.3.7 NtlmCredIsoRemoteInput ... 25
2.2.1.3.8 NtlmCredIsoRemoteOutput ... 26

2.2.2 Package-Specific Messages .. 27
2.2.2.1 Kerberos Messages ... 27

2.2.2.1.1 NegotiateVersion ... 28
2.2.2.1.2 BuildAsReqAuthenticator .. 28
2.2.2.1.3 VerifyServiceTicket .. 29
2.2.2.1.4 CreateApReqAuthenticator .. 30
2.2.2.1.5 DecryptApReply .. 31
2.2.2.1.6 UnpackKdcReplyBody ... 31
2.2.2.1.7 ComputeTgsChecksum ... 32
2.2.2.1.8 BuildEncryptedAuthData ... 33
2.2.2.1.9 PackApReply ... 34
2.2.2.1.10 HashS4UPreauth ... 34
2.2.2.1.11 SignS4UPreauthData.. 35
2.2.2.1.12 VerifyChecksum .. 36
2.2.2.1.13 DecryptPacCredentials ... 37
2.2.2.1.14 CreateECDHKeyAgreement ... 38
2.2.2.1.15 CreateDHKeyAgreement ... 38

4 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.2.1.16 DestroyKeyAgreement ... 39
2.2.2.1.17 KeyAgreementGenerateNonce ... 40
2.2.2.1.18 FinalizeKeyAgreement .. 40

2.2.2.2 NTLM Messages .. 41
2.2.2.2.1 NegotiateVersion ... 41
2.2.2.2.2 Lm20GetNtlm3ChallengeResponse ... 42
2.2.2.2.3 CalculateNtResponse.. 43
2.2.2.2.4 CalculateUserSessionKeyNt ... 43
2.2.2.2.5 CompareCredentials... 44

3 Protocol Details ... 46
3.1 Common Details .. 46

3.1.1 Abstract Data Model .. 46
3.1.2 Timers .. 46
3.1.3 Initialization ... 46
3.1.4 Higher-Layer Triggered Events ... 46
3.1.5 Message Processing Events and Sequencing Rules .. 46

3.1.5.1 RemoteCallKerbNegotiateVersion .. 46
3.1.5.2 RemoteCallKerbBuildAsReqAuthenticator.. 46
3.1.5.3 RemoteCallKerbVerifyServiceTicket ... 47
3.1.5.4 RemoteCallKerbCreateApReqAuthenticator ... 47
3.1.5.5 RemoteCallKerbDecryptApReply .. 47
3.1.5.6 RemoteCallKerbUnpackKdcReplyBody .. 47
3.1.5.7 RemoteCallKerbComputeTgsChecksum .. 48
3.1.5.8 RemoteCallKerbBuildEncryptedAuthData .. 48
3.1.5.9 RemoteCallKerbPackApReply .. 48
3.1.5.10 RemoteCallKerbHashS4UPreauth .. 48
3.1.5.11 RemoteCallKerbSignS4UPreauthData ... 49
3.1.5.12 RemoteCallKerbVerifyChecksum ... 49
3.1.5.13 RemoteCallKerbDecryptPacCredentials ... 49
3.1.5.14 RemoteCallKerbCreateECDHKeyAgreement .. 50
3.1.5.15 RemoteCallKerbCreateDHKeyAgreement .. 50
3.1.5.16 RemoteCallKerbDestroyKeyAgreement ... 50
3.1.5.17 RemoteCallKerbKeyAgreementGenerateNonce .. 51
3.1.5.18 RemoteCallKerbFinalizeKeyAgreement ... 51
3.1.5.19 RemoteCallNtlmNegotiateVersion .. 51
3.1.5.20 RemoteCallNtlmLm20GetNtlm3ChallengeResponse 51
3.1.5.21 RemoteCallNtlmCalculateNtResponse ... 52
3.1.5.22 RemoteCallNtlmCalculateUserSessionKeyNt .. 52
3.1.5.23 RemoteCallNtlmCompareCredentials .. 52

3.1.6 Timer Events .. 53
3.1.7 Other Local Events .. 53

4 Protocol Examples ... 54
4.1 Requesting a Service Ticket ... 54

5 Security ... 56
5.1 Security Considerations for Implementers ... 56
5.2 Index of Security Parameters .. 56

6 Appendix A: Full IDL .. 57
6.1 Appendix A.1: RemoteGuardCallIds.H ... 57
6.2 Appendix A.2: Kerberos.IDL .. 57
6.3 Appendix A.3: NTLM.IDL ... 63

7 Appendix B: Product Behavior ... 66

8 Change Tracking .. 68

9 Index ... 69

5 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

6 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1 Introduction

Remote Desktop Protocol Authentication Redirection Virtual Channel is an extension to the Credential
Security Support Provider [MS-CSSP] protocol which allows credentials to be used on a Remote
Desktop server without passing the raw credentials directly to the server. This enhances security, as
this protocol allows for RDP sessions to be set up without revealing plaintext credentials to malware
which may be on the target server.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

Abstract Syntax Notation One (ASN.1): A notation to define complex data types to carry a

message, without concern for their binary representation, across a network. ASN.1 defines an
encoding to specify the data types with a notation that does not necessarily determine the
representation of each value. ASN.1 encoding rules are sets of rules used to transform data that
is specified in the ASN.1 language into a standard format that can be decoded on any system
that has a decoder based on the same set of rules. ASN.1 and its encoding rules were once part

of the same standard. They have since been separated, but it is still common for the terms
ASN.1 and Basic Encoding Rules (BER) to be used to mean the same thing, though this is not
the case. Different encoding rules can be applied to a given ASN.1 definition. The choice of
encoding rules used is an option of the protocol designer. ASN.1 is described in the following
specifications: [ITUX660] for general procedures; [ITUX680] for syntax specification; [ITUX690]
for the Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished
Encoding Rules (DER) encoding rules; and [ITUX691] for the Packed Encoding Rules (PER).

Further background information on ASN.1 is also available in [DUBUISSON].

big-endian: Multiple-byte values that are byte-ordered with the most significant byte stored in the
memory location with the lowest address.

CredSSP client: Any application that executes the role of the client to authenticate the identity of
a user at the network layer to the server by using the CredSSP Protocol.

CredSSP Protocol: The Credential Security Support Provider (CredSSP) Protocol enables an

application to delegate the user's credentials from the client, utilizing a client side security
support provider (SSP), to the target server that is utilizing a server side SSP. First CredSSP
sets up an encrypted Transport Layer Security (TLS) protocol tunnel, and then negotiates
Kerberos or NT LAN Manager (NTLM) Authentication Protocol for authentication as
described in [MS-CSSP].

CredSSP server: Any application that executes the role of the server to authenticate the identity
of a user at the network layer to the server by using the CredSSP Protocol.

Cryptographic Application Programming Interface (CAPI) or CryptoAPI: The Microsoft
cryptographic application programming interface (API). An API that enables application

developers to add authentication, encoding, and encryption to Windows-based applications.

Distinguished Encoding Rules (DER): A method for encoding a data object based on Basic
Encoding Rules (BER) encoding but with additional constraints. DER is used to encode X.509
certificates that need to be digitally signed or to have their signatures verified.

elliptic curve cryptography (ECC): A public-key cryptosystem that is based on high-order elliptic

curves over finite fields. For more information, see [IEEE1363].

%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30
https://go.microsoft.com/fwlink/?LinkId=89922
https://go.microsoft.com/fwlink/?LinkId=89923
https://go.microsoft.com/fwlink/?LinkId=89924
https://go.microsoft.com/fwlink/?LinkId=192078
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30
https://go.microsoft.com/fwlink/?LinkId=89899

7 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Hash-based Message Authentication Code (HMAC): A mechanism for message authentication
using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash

function (for example, MD5 and SHA-1) in combination with a secret shared key. The
cryptographic strength of HMAC depends on the properties of the underlying hash function.

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

Kerberos: An authentication system that enables two parties to exchange private information
across an otherwise open network by assigning a unique key (called a ticket) to each user that
logs on to the network and then embedding these tickets into messages sent by the users. For
more information, see [MS-KILE].

Key Distribution Center (KDC): The Kerberos service that implements the authentication and
ticket granting services specified in the Kerberos protocol. The service runs on computers
selected by the administrator of the realm or domain; it is not present on every machine on the
network. It has to have access to an account database for the realm that it serves. KDCs are

integrated into the domain controller role. It is a network service that supplies tickets to clients
for use in authenticating to services.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

LMOWF: In the context of NTLM authentication, a NT LAN Manager (LM) one-way function (OWF)
is used to create a hash based on the user's password to generate a principal's secret key. The
LAN Manager (LM) hash was superseded by the NTLM (NT) hash.

NT LAN Manager (NTLM) Authentication Protocol: A protocol using a challenge-response
mechanism for authentication in which clients are able to verify their identities without sending a

password to the server. It consists of three messages, commonly referred to as Type 1
(negotiation), Type 2 (challenge) and Type 3 (authentication).

NTOWF: In the context of an NTLM authentication, a NT LAN Manager (NT) one-way function

(OWF) used to create a hash based on the user's password to generate a principal's secret key.
The NTLM hash superseded the LAN Manager (LM) hash.

privilege attribute certificate (PAC): A Microsoft-specific authorization data present in the
authorization data field of a ticket. The PAC contains several logical components, including

group membership data for authorization, alternate credentials for non-Kerberos authentication
protocols, and policy control information for supporting interactive logon.

protocol data unit (PDU): Information that is delivered as a unit among peer entities of a
network and that can contain control information, address information, or data. For more
information on remote procedure call (RPC)-specific PDUs, see [C706] section 12.

Remote Desktop: See Remote Desktop Protocol (RDP).

Remote Desktop Protocol (RDP): A multi-channel protocol that allows a user to connect to a
computer running Microsoft Terminal Services (TS). RDP enables the exchange of client and

server settings and also enables negotiation of common settings to use for the duration of the
connection, so that input, graphics, and other data can be exchanged and processed between
client and server.

Remote Desktop Protocol (RDP) client: The client that initiated a remote desktop connection.

Remote Desktop Protocol (RDP) server: The server to which a client initiated a remote desktop

connection.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9

8 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime

environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the

single message from an RPC exchange (the RPC message). For more information, see [C706].

Rivest-Shamir-Adleman (RSA): A system for public key cryptography. RSA is specified in
[RFC8017].

service ticket: A ticket for any service other than the ticket-granting service (TGS). A service
ticket serves only to classify a ticket as not a ticket-granting ticket (TGT) or cross-realm
TGT, as specified in [RFC4120].

SHAOWF: A Secure Hash Algorithm (SHA) one-way function (OWF) used to create a hash based

on the user's password to generate a principal's secret key. SHA hash superseded NTLM hash.

ticket-granting ticket (TGT): A special type of ticket that can be used to obtain other tickets.
The TGT is obtained after the initial authentication in the Authentication Service (AS) exchange;

thereafter, users do not need to present their credentials, but can use the TGT to obtain
subsequent tickets.

virtual channel: A communication channel available in a TS server session between applications

running at the server and applications running on the TS client.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[ITUX680] ITU-T, "Abstract Syntax Notation One (ASN.1): Specification of Basic Notation",
Recommendation X.680, July 2002, http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-
0207.pdf

[KERB-PARAM] Internet Assigned Numbers Authority (IANA), "Kerberos Parameters",
https://www.iana.org/assignments/kerberos-parameters/kerberos-parameters.xhtml

[MIDLINF] Microsoft Corporation, "MIDL Language Reference", https://learn.microsoft.com/en-

us/windows/desktop/Midl/midl-language-reference

[MS-CSSP] Microsoft Corporation, "Credential Security Support Provider (CredSSP) Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

https://go.microsoft.com/fwlink/?linkid=2164409
https://go.microsoft.com/fwlink/?LinkId=90458
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=89923
https://go.microsoft.com/fwlink/?LinkId=89923
https://go.microsoft.com/fwlink/?LinkId=808077
https://go.microsoft.com/fwlink/?LinkId=89938
https://go.microsoft.com/fwlink/?LinkId=89938
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

9 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS-PAC] Microsoft Corporation, "Privilege Attribute Certificate Data Structure".

[MS-RDPEDYC] Microsoft Corporation, "Remote Desktop Protocol: Dynamic Channel Virtual Channel
Extension".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc-editor.org/info/rfc2119

[RFC3280] Housley, R., Polk, W., Ford, W., and Solo, D., "Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile", RFC 3280, April 2002, http://www.rfc-
editor.org/info/rfc3280

[RFC3961] Raeburn, K., "Encryption and Checksum Specifications for Kerberos 5", RFC 3961,

February 2005, https://www.rfc-editor.org/info/rfc3961

[RFC3962] Raeburn, K., "Advanced Encryption Standard (AES) Encryption for Kerberos 5", RFC 3962,
February 2005, https://www.rfc-editor.org/info/rfc3962

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network Authentication
Service (V5)", RFC 4120, July 2005, https://www.rfc-editor.org/rfc/rfc4120

[RFC4556] Zhu, L., and Tung, B., "Public Key Cryptography for Initial Authentication in Kerberos", RFC

4556, June 2006, https://www.rfc-editor.org/info/rfc4556

[RFC5349] Zhu, L., Jaganathan, K., and Lauter, K., "Elliptic Curve Cryptography (ECC) Support for
Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)", RFC 5349, September 2008,
https://www.rfc-editor.org/info/rfc5349

[RFC6113] Hartman, S., and Zhu, L., "A Generalized Framework for Kerberos Pre-Authentication", RFC

6113, April 2011, https://www.rfc-editor.org/info/rfc6113

[RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and Rusch, A., "PKCS #1: RSA Cryptography

Specifications Version 2.2", November 2016, https://www.rfc-editor.org/info/rfc8017

[X690] ITU-T, "Information Technology - ASN.1 Encoding Rules: Specification of Basic Encoding Rules
(BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)", Recommendation
X.690, July 2002, http://www.itu.int/rec/T-REC-X.690/en

1.2.2 Informative References

[DUBUISSON] Dubuisson, O., "ASN.1 Communication between Heterogeneous Systems", Morgan
Kaufmann, October 2000, ISBN: 0126333610.

[KERB-TICKET-LOGON] Microsoft Corporation, "KERB_TICKET_LOGON structure",
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378143(v=vs.85).aspx

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MSDN-TSVC] Microsoft Corporation, "Using Terminal Services Virtual Channels",
http://msdn.microsoft.com/en-us/library/aa383546.aspx

%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-PAC%5d.pdf#Section_166d8064c86341e19c23edaaa5f36962
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90414
https://go.microsoft.com/fwlink/?LinkId=90414
https://go.microsoft.com/fwlink/?LinkId=90450
https://go.microsoft.com/fwlink/?LinkId=90451
https://go.microsoft.com/fwlink/?LinkId=90458
https://go.microsoft.com/fwlink/?LinkId=90482
https://go.microsoft.com/fwlink/?LinkId=129652
https://go.microsoft.com/fwlink/?LinkId=226316
https://go.microsoft.com/fwlink/?linkid=2164409
https://go.microsoft.com/fwlink/?LinkId=90593
https://go.microsoft.com/fwlink/?LinkId=808713
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
https://go.microsoft.com/fwlink/?LinkId=90149

10 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MSDOCS-CGP] Microsoft Corporation, "What's new in Credential Protection",
https://learn.microsoft.com/en-us/windows-server/security/credentials-protection-and-

management/whats-new-in-credential-protection

1.3 Overview

The Remote Desktop Protocol: Authentication Redirection Virtual Channel (RDPEAR) Protocol allows
the use of credentials over a Remote Desktop Protocol (RDP) connection without revealing those
credentials to the remote system. Prior to this protocol, the authentication protocol under remote

desktop, Credential Security Support Provider (CredSSP) Protocol [MS-CSSP], passed full credentials
to the remote system. This is required because the remote system logs the user on to present the full
interactive session.

RDPEAR Protocol is used to perform authentication over a Remote Desktop connection by establishing
a virtual channel between the source and the target devices to relay authentication requests
received by the target device to the source device. All authentication requests for Kerberos and
NTLM are forwarded to the source over the new virtual channel, and responses to those requests are

sent back to the target device to relay out to the resource server.

This protocol improves upon the CredSSP Protocol by allowing the remoting behavior without
sending plaintext credentials over the wire. Instead, opaque credentials are sent to the CredSSP
server. Any time the server needs to use credentials, a request message is sent to the CredSSP
client that processes the request and provides the opaque credentials. Upon completion of the
request, the client sends an output reply message containing the results of the operation back to the
server.

Credential Guard, also called Remote Guard, will use RDPEAR Protocol to provide a safer mechanism
to Remote Desktop into different machines. The feature is dependent on redirecting authentication
requests over a virtual channel and using network logon to log the user into the target machine. This
is a remote desktop protocol extension, where remote desktop client can remote into on-prem servers
by enabling Remote Credential Guard.

1.4 Relationship to Other Protocols

The primary target transport for this protocol is the Remote Desktop Protocol: Dynamic Virtual
Channel Extension [MS-RDPEDYC].

Other protocols relevant to the use and implementation of the RDPEAR Protocol are:

 Credential Security Support Provider (CredSSP) Protocol [MS-CSSP]. RDPEAR relies on CredSSP as

a transport mechanism to send an initial authentication buffer over the wire to establish remote use
of credentials.

 Kerberos Protocol Extensions [MS-KILE]. The RDPEAR Protocol supports Kerberos authentication on
a CredSSP server by performing Kerberos credential proof operations on the CredSSP client.

 NT LAN Manager (NTLM) Authentication Protocol [MS-NLMP]. The RDPEAR Protocol supports NTLM
authentication on a CredSSP server by performing NTLM credential proof operations on the

CredSSP client.

1.5 Prerequisites/Preconditions

 The RDPEAR Protocol does not define any transport mechanism. It is assumed that an
authenticated, secure channel is used for the underlying transport, for example, a Remote

Desktop Virtual Channel [MS-RDPEDYC].

https://go.microsoft.com/fwlink/?linkid=2146426
https://go.microsoft.com/fwlink/?linkid=2146426
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06

11 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Kerberos authentication via the RDPEAR Protocol requires that the server be either in a trusting
domain or the same domain as the client. This is a prerequisite for the client to be able to request a

ticket-granting ticket (TGT) on behalf of the server.

1.6 Applicability Statement

The RDPEAR Protocol is intended to be applicable under any circumstance in which CredSSP [MS-
CSSP] is used to establish a connection.

This protocol allows a CredSSP server to authenticate a user without plaintext credentials. This

provides an advantage under circumstances when the security status of the server is not known. If an
attacker has breached the system, the RDPEAR Protocol allows the user to use that system without
exposing plaintext credentials to the attacker.

1.7 Versioning and Capability Negotiation

Each security package supporting this protocol implements versioning independently and negotiates

version and capabilities as part of initialization. For Kerberos and NTLM, it is required that the
CredSSP server send a RemoteCallKerbNegotateVersion message (sections 2.2.2.1.1 and
3.1.5.1) or a RemoteCallNtlmNegotiateVersion message (sections 2.2.2.2.1 and 3.1.5.19),
respectively, with the maximum protocol version it supports. The CredSSP client responds with a
matching message containing the protocol version that will be used for future communications. As the
protocol currently has only one version; this maximum version is required to be zero.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30

12 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2 Messages

2.1 Transport

All messages are transported over an RDP dynamic virtual channel, as specified in [MS-RDPEDYC],

with the name Microsoft::Windows::RDS::AuthRedirection. The CredSSP server MUST send all
requests over this channel using the formats specified in this specification, and the CredSSP client
MUST listen for incoming connections on this channel, accept them, process incoming messages, and
send responses on the same channel.

2.2 Message Syntax

Multiple underlying authentication protocols are supported by the RDPEAR Protocol. All messages
share a standard format, regardless of protocol. There are two layers in each message:

 The RDPEAR Outer Layer, which is processed by CredSSP [MS-CSSP]

 The Security Package Inner Layer, which is processed by an individual security package, such as
NTLM ([MS-NLMP]) or Kerberos ([MS-KILE]).

The RDPEAR Outer Layer is made up of the following unencrypted data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolMagic

Length

Version

Reserved

TsPkgContext

...

payload (variable)

...

...

ProtocolMagic (4 bytes): A 32-bit integer that MUST be equal to the value 0x4EACC3C8.

Length (4 bytes): A 32-bit unsigned integer value that contains the overall length of the message.

Version (4 bytes): A 32-bit unsigned integer value describing the RDPEAR Protocol version. This
MUST be 0x00000000.

Reserved (4 bytes): Reserved for future use.

%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9

13 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

TsPkgContext (8 bytes): Used by the RDPEAR virtual channel ([MSDN-TSVC]) to maintain internal
consistency across messages. This field MUST be zero in all network messages.

payload (variable): The encrypted portion of the RDPEAR Outer Layer. The plain text data consists
of an Abstract Syntax Notation One (ASN.1) structure, as specified in [ITUX680], and is

encoded using Distinguished Encoding Rules (DER), as specified in [X690] section 10. The
plaintext data is encrypted using the negotiated security context between the client and server as
part of [MS-CSSP].

The payload structure is defined by the ASN.1:

 TSRemoteGuardVersion ::= ENUMERATED {

 tsremoteguardv1 (0)

 }

 TSRemoteGuardInnerPacket ::= SEQUENCE {

 version [0] TSRemoteGuardVersion DEFAULT tsremoteguardv1,

 packageName [1] OCTET STRING,

 buffer [2] OCTET STRING,

 extension [3] ANY OPTIONAL, -- X.680 open type for future

extension point

 ...

 }

version: The encrypted data version. This MUST be 0.

packageName: The name of the security package to which the buffer is targeted. The CredSSP
client uses packageName in order to route the buffer appropriately.

buffer: The opaque (at this layer) security package call buffer. This buffer is to be processed by
the security package described by the packageName field. The buffer has a 16-byte header
with the first 2 bytes set to 0x1 (unsigned). The other 14 bytes are set to 0.

extension: An optional extension point for future versions. This is currently unused, and MAY be

omitted.

2.2.1 Common Data Structures

2.2.1.1 RemoteGuardCallId Enumeration

The RemoteGuardCallId enumeration defines all possible input/output message pairs for all security
packages with the value stored in the CallId field in the following structures:

 KerbCredIsoRemoteInput section 2.2.1.2.9.

 KerbCredIsoRemoteOutput section 2.2.1.2.10.

 NtlmCredIsoRemoteInput section 2.2.1.3.7.

 NtlmCredIsoRemoteOutput section 2.2.1.3.8.

 typedef enum _RemoteGuardCallId
 {
 RemoteCallMinimum = 0,

 // start generic calls - not tied to a specific SSP
 RemoteCallGenericMinimum = 0,
 RemoteCallGenericReserved = 0,
 RemoteCallGenericMaximum = 0xff,
 // end general calls

https://go.microsoft.com/fwlink/?LinkId=90149
https://go.microsoft.com/fwlink/?LinkId=89923
https://go.microsoft.com/fwlink/?LinkId=90593

14 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 // Start Kerberos remote calls
 RemoteCallKerbMinimum = 0x100,
 RemoteCallKerbNegotiateVersion = 0x100,
 RemoteCallKerbBuildAsReqAuthenticator,
 RemoteCallKerbVerifyServiceTicket,
 RemoteCallKerbCreateApReqAuthenticator,
 RemoteCallKerbDecryptApReply,
 RemoteCallKerbUnpackKdcReplyBody,
 RemoteCallKerbComputeTgsChecksum,
 RemoteCallKerbBuildEncryptedAuthData,
 RemoteCallKerbPackApReply,
 RemoteCallKerbHashS4UPreauth,
 RemoteCallKerbSignS4UPreauthData,
 RemoteCallKerbVerifyChecksum,
 Reserved1,
 Reserved2,
 Reserved3,
 Reserved4,
 Reserved5,
 Reserved6,
 Reserved7,
 RemoteCallKerbDecryptPacCredentials,
 RemoteCallKerbCreateECDHKeyAgreement,
 RemoteCallKerbCreateDHKeyAgreement,
 RemoteCallKerbDestroyKeyAgreement,
 RemoteCallKerbKeyAgreementGenerateNonce,
 RemoteCallKerbFinalizeKeyAgreement,
 RemoteCallKerbMaximum = 0x1ff,
 // End Kerberos remote calls

 // Start NTLM remote calls
 RemoteCallNtlmMinimum = 0x200,
 RemoteCallNtlmNegotiateVersion = 0x200,
 RemoteCallNtlmLm20GetNtlm3ChallengeResponse,
 RemoteCallNtlmCalculateNtResponse,
 RemoteCallNtlmCalculateUserSessionKeyNt,
 RemoteCallNtlmCompareCredentials,

 RemoteCallNtlmMaximum = 0x2ff,
 // End NTLM remote calls

 RemoteCallMaximum = 0x2ff,

 RemoteCallInvalid = 0xffff // This enumeration MUST fit in 16 bits
 } RemoteGuardCallId;

2.2.1.2 Kerberos Data Structures

2.2.1.2.1 KERB_ASN1_DATA

The KERB_ASN1_DATA structure is used to pack standards-compliant, predefined Kerberos
structures, avoiding additional overhead incurred by a custom data type in the Kerberos Interface
Definition Languages (IDLs) file.

 typedef struct _KERB_ASN1_DATA {
 ULONG Pdu;
 ULONG32 Length;
 [size_is(Length)] PUCHAR Asn1Buffer;
 } KERB_ASN1_DATA;

Pdu: A ULONG ([MS-DTYP] section 2.2.51) that contains the protocol data unit (PDU) that is used
to decode the data. MUST be zero and SHOULD be ignored.<1>

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

15 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Length: A ULONG32 ([MS-DTYP] section 2.2.53) that indicates the length of the Asn1Buffer field.

Asn1Buffer: A pointer to a UCHAR ([MS-DTYP] section 2.2.45) that is an array of characters that
contains the encoded data.

2.2.1.2.2 KERB_RPC_OCTET_STRING

A KERB_RPC_OCTET_STRING structure is used to contain a padata-value. See [RFC4120] section
5.2.7 for the PA-DATA sequence definition that contains a padata-type and a padata-value. This
structure format follows the definition for octet string in [MS-DTYP] section 2.4.4.17.5. See also
definition for octet in [MS-DTYP] section 2.1.5.

 typedef struct _KERB_RPC_OCTET_STRING {
 ULONG length;
 [size_is(length)] PUCHAR value;
 } KERB_RPC_OCTET_STRING;

length: A ULONG ([MS-DTYP] section 2.2.51) that contains the length of the value array field.

value: A pointer to a UCHAR ([MS-DTYP] section 2.2.45), an array of 8-bit data items.

2.2.1.2.3 KERB_RPC_INTERNAL_NAME

The KERB_RPC_INTERNAL_NAME structure is used to specify the ClientName field in the
CreateApReqAuthenticator message (section 2.2.2.1.4).

 typedef struct _KERB_RPC_INTERNAL_NAME {
 SHORT NameType;
 USHORT NameCount;
 [size_is(NameCount)] RPC_UNICODE_STRING* Names;
 } KERB_RPC_INTERNAL_NAME;

NameType: A SHORT ([MS-DTYP] section 2.2.42) that indicates the type of names in the Names
field, as specified in [RFC4120] section 6.2.

NameCount: A USHORT type ([MS-DTYP] section 2.2.58) that indicates the number of names in the
Names array field.

Names: A pointer to an RPC_UNICODE_STRING ([MS-DTYP] section 2.3.10) that contains the client

names.

2.2.1.2.4 KERB_RPC_PA_DATA

The KERB_RPC_PA_DATA structure is used to contain the pre-authorization data.

 typedef struct _KERB_RPC_PA_DATA{
 INT32 preauth_data_type;
 KERB_RPC_OCTET_STRING preauth_data;
 } KERB_RPC_PA_DATA;

preauth_data_type: An INT32 ([MS-DTYP] section 2.2.22) that indicates the type of pre-
authorization data in the preauth_data field.

preauth_data: A KERB_RPC_OCTET_STRING structure (section 2.2.1.2.2) that contains the pre-
authorization data.

2.2.1.2.5 KERB_RPC_CRYPTO_API_BLOB

https://go.microsoft.com/fwlink/?LinkId=90458
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=90458
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

16 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The KERB_RPC_CRYPTO_API_BLOB structure is used to compute the public key in the
CreateDHKeyAgreement message (section 2.2.2.1.15).

 typedef struct _KERB_RPC_CRYPTO_API_BLOB{
 DWORD cbData;
 [size_is(cbData)] PBYTE pbData;
 } KERB_RPC_CRYPTO_API_BLOB;

cbData: A DWORD ([MS-DTYP] section 2.2.9) that indicates the size of the pbData field.

pbData: A pointer to a BYTE ([MS-DTYP] section 2.2.6) array that contains the data used in the
computation of the public key.

2.2.1.2.6 SECPKG_SUPPLEMENTAL_CRED

The SECPKG_SUPPLEMENTAL_CRED structure is used in the
SECPKG_SUPPLEMENTAL_CRED_ARRAY structure (section 2.2.1.2.7).

 typedef struct _SECPKG_SUPPLEMENTAL_CRED {
 RPC_UNICODE_STRING PackageName;
 ULONG CredentialSize;
 [size_is(CredentialSize)] PUCHAR Credentials;
 } SECPKG_SUPPLEMENTAL_CRED, *PSECPKG_SUPPLEMENTAL_CRED;

PackageName: An RPC_UNICODE_STRING structure ([MS-DTYP] section 2.3.10) that contains the
name of the package.

CredentialSize: A ULONG ([MS-DTYP] section 2.2.51) that contains the size of the Credentials array
field.

Credentials: A pointer to a UCHAR ([MS-DTYP] section 2.2.45), an array that contains the
credentials.

2.2.1.2.7 SECPKG_SUPPLEMENTAL_CRED_ARRAY

The SECPKG_SUPPLEMENTAL_CRED_ARRAY structure is used in the DecryptPacCredentials
message (section 2.2.2.1.13) to contain the decoded array of credentials.

 typedef struct _SECPKG_SUPPLEMENTAL_CRED_ARRAY {
 ULONG CredentialCount;
 [size_is(CredentialCount)] SECPKG_SUPPLEMENTAL_CRED Credentials[*];
 } SECPKG_SUPPLEMENTAL_CRED_ARRAY, *PSECPKG_SUPPLEMENTAL_CRED_ARRAY;

CredentialCount: A ULONG ([MS-DTYP] section 2.2.51) that contains the count of
SECPKG_SUPPLEMENTAL_CRED structures (section 2.2.1.2.6) in the Credentials array field.

Credentials: An array of SECPKG_SUPPLEMENTAL_CRED structures (section 2.2.1.2.6) that

contains the decoded credentials.

2.2.1.2.8 KERB_RPC_ENCRYPTION_KEY

The KERB_RPC_ENCRYPTION_KEY structure is the opaque representation of any Kerberos

EncryptionKey [RFC4120] section 5.2.9. This data structure is understood and consumed only by the
CredSSP client; therefore, contents can be unique to each implementation and implementation
version. The CredSSP server SHOULD treat this as an opaque blob and return what is provided by
the client without assumptions of structure or size. Each implementation of CredSSP client SHOULD be
allowed to create a structure that makes sense for their Kerberos implementation.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=90458

17 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 typedef struct _KERB_RPC_ENCRYPTION_KEY {
 void* reserved1;
 long reserved2;
 KERB_RPC_OCTET_STRING reserved3;
 } KERB_RPC_ENCRYPTION_KEY, *PKERB_RPC_ENCRYPTION_KEY;

reserved1: A void pointer to any type of data (requires a typecast to use) points to unique
implementation-specific data.

reserved2: A long ([MS-DTYP] section 2.2.27) that contains the encryption type.

reserved3: A KERB_RPC_OCTET_STRING structure (section 2.2.1.2.2) that contains the key value.

2.2.1.2.9 KerbCredIsoRemoteInput

The KerbCredIsoRemoteInput structure is used for a Kerberos call message. It is paired with a

KerbCredIsoRemoteOutput structure (section 2.2.1.2.10) Kerberos reply message. The CallId field

determines which of the following union members is associated with the current message. Note that
input and output each use different parts of the same message structure.

 typedef struct _KerbCredIsoRemoteInput
 {
 // CallId determines the call being sent over the wire.
 RemoteGuardCallId CallId;

 // Input paramters are held in a union so that each call can be sent
 // over the wire in the same type of KerbCredIsoRemoteInput structure.
 [switch_type(RemoteGuardCallId), switch_is(CallId)] union
 {
 // Used to negotiate the protocol version that will be used.
 // Server sends the maximum version it supports; client
 // replies with the version that will actually be used.
 [case(RemoteCallKerbNegotiateVersion)] struct
 {
 ULONG MaxSupportedVersion;
 } NegotiateVersion;

 // Create an AS_REQ message authenticator.
 [case(RemoteCallKerbBuildAsReqAuthenticator)] struct
 {
 KERB_RPC_ENCRYPTION_KEY* EncryptionKey;
 KERB_RPC_ENCRYPTION_KEY* ArmorKey; // optional
 PLARGE_INTEGER TimeSkew;
 } BuildAsReqAuthenticator;

 // Verify that the given service ticket is valid within the given skew.
 // The encrypted part of the reply data is decrypted for the caller.
 [case(RemoteCallKerbVerifyServiceTicket)] struct
 {
 KERB_ASN1_DATA* PackedTicket;
 KERB_RPC_ENCRYPTION_KEY* ServiceKey;
 PLARGE_INTEGER TimeSkew; // optional
 } VerifyServiceTicket;

 // Create an authenticator for an KRB_AP_REQ message.
 [case(RemoteCallKerbCreateApReqAuthenticator)] struct
 {
 KERB_RPC_ENCRYPTION_KEY* EncryptionKey;
 ULONG SequenceNumber;
 KERB_RPC_INTERNAL_NAME* ClientName;
 PRPC_UNICODE_STRING ClientRealm;
 PLARGE_INTEGER SkewTime;
 KERB_RPC_ENCRYPTION_KEY* SubKey; // optional
 KERB_ASN1_DATA* AuthData; // optional
 KERB_ASN1_DATA* GssChecksum; // optional

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

18 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 ULONG KeyUsage;
 } CreateApReqAuthenticator;

 // Decrypt the encrypted part of an AP_REP.
 [case(RemoteCallKerbDecryptApReply)] struct
 {
 KERB_ASN1_DATA* EncryptedReply;
 KERB_RPC_ENCRYPTION_KEY* Key;
 } DecryptApReply;

 // Decrypt the encrypted part of a KRB_KDC_REP from the KDC. The type
 // of reply is indicated by the PDU - either encrypted AS_REPLY PDU or
 // encrypted TGS_REPLY PDU. Key usage allows the caller to specify either the
 // TGS or AS REP key derivation types. This is done to allow back-compatibility
 // with a previous server release which returned the wrong PDU for an AS_REP.
 [case(RemoteCallKerbUnpackKdcReplyBody)] struct
 {
 KERB_ASN1_DATA* EncryptedData;
 KERB_RPC_ENCRYPTION_KEY* Key;
 KERB_RPC_ENCRYPTION_KEY* StrengthenKey;
 ULONG Pdu;
 ULONG KeyUsage;
 } UnpackKdcReplyBody;

 // Calculate the MAC for a KRB_TGS_REQ. In RFC4120 it is referred
 // to as a "Checksum"and thus the terminology is maintained.
 [case(RemoteCallKerbComputeTgsChecksum)] struct
 {
 KERB_ASN1_DATA* RequestBody;
 KERB_RPC_ENCRYPTION_KEY* Key;
 ULONG ChecksumType;
 } ComputeTgsChecksum;

 // Encrypt the given authorization data which is to be included
 // within the request body of a message to be sent to the KDC.
 [case(RemoteCallKerbBuildEncryptedAuthData)] struct
 {
 ULONG KeyUsage;
 KERB_RPC_ENCRYPTION_KEY* Key;
 KERB_ASN1_DATA* PlainAuthData;
 } BuildEncryptedAuthData;

 // Pack up and encrypt a KRB_AP_REP message using the given session key.
 [case(RemoteCallKerbPackApReply)] struct
 {
 KERB_ASN1_DATA* Reply;
 KERB_ASN1_DATA* ReplyBody;
 KERB_RPC_ENCRYPTION_KEY* SessionKey;
 } PackApReply;

 // Create a MAC for S4U pre-authentication data to be include in a KRB_TGS_REQ
 // when requesting an S4U service ticket for another principal.
 [case(RemoteCallKerbHashS4UPreauth)] struct
 {
 KERB_ASN1_DATA* S4UPreauth;
 KERB_RPC_ENCRYPTION_KEY* Key;
 LONG ChecksumType;
 } HashS4UPreauth;

 // Create a MAC for S4U pre-authentication data that is for
 // certificate-based users. This pa-data is added to KRB_TGS_REQ
 // when requesting an S4U service ticket.
 [case(RemoteCallKerbSignS4UPreauthData)] struct
 {
 KERB_RPC_ENCRYPTION_KEY* Key;
 BOOL IsRequest;
 KERB_ASN1_DATA* UserId;
 PLONG ChecksumType;
 } SignS4UPreauthData;

19 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 // Calculate a MAC from the given data and compare it to the given expected
 // value. Used to detect mismatches which may indicate tampering with the
 // PAC which is sent by the KDC to the client inside a KRB_KDC_REP.
 [case(RemoteCallKerbVerifyChecksum)] struct
 {
 KERB_RPC_ENCRYPTION_KEY* Key;
 ULONG ChecksumType;
 ULONG ExpectedChecksumSize;
 [size_is(ExpectedChecksumSize)] const UCHAR* ExpectedChecksum;
 ULONG DataToCheckSize;
 [size_is(DataToCheckSize)] const UCHAR* DataToCheck;
 } VerifyChecksum;

 // Decrypt the supplemental credentials which are contained
 // with the PAC sent back by the KDC in a KRB_KDC_REP.
 [case(RemoteCallKerbDecryptPacCredentials)] struct
 {
 KERB_RPC_ENCRYPTION_KEY* Key;
 ULONG Version;
 ULONG EncryptionType;
 ULONG DataSize;
 [size_is(DataSize)] UCHAR* Data;
 } DecryptPacCredentials;

 // Create a new ECDH key agreement handle with the given ECC key bit length
 [case(RemoteCallKerbCreateECDHKeyAgreement)] struct
 {
 ULONG KeyBitLen;
 } CreateECDHKeyAgreement;

 [case(RemoteCallKerbCreateDHKeyAgreement)] struct
 {
 // This [case(RemoteCallKerb)] struct has no input parameters, but for
 // simplicity and consistency with the other parameters, let's define
 // this as a [case(RemoteCallKerb)] struct with a single ignored value.
 UCHAR Ignored;
 } CreateDHKeyAgreement;

 // Destroy a key agreement handle which was previously constructed
 // with either CreateECDHKeyAgreement or CreateDHKeyAgreement.
 [case(RemoteCallKerbDestroyKeyAgreement)] struct
 {
 KEY_AGREEMENT_HANDLE KeyAgreementHandle;
 } DestroyKeyAgreement;

 // Generate a nonce for use with the given key agreement. This nonce is part
 // of the Diffie-Hellman agreement that is part of Kerberos PKINIT (RFC 4556)
 [case(RemoteCallKerbKeyAgreementGenerateNonce)] struct
 {
 KEY_AGREEMENT_HANDLE KeyAgreementHandle;
 } KeyAgreementGenerateNonce;

 // Finish a Kerberos PKINIT (RFC 4556) key agreement.
 [case(RemoteCallKerbFinalizeKeyAgreement)] struct
 {
 KEY_AGREEMENT_HANDLE* KeyAgreementHandle;
 ULONG KerbEType;
 ULONG RemoteNonceLen;
 [size_is(RemoteNonceLen)] PBYTE RemoteNonce;
 ULONG X509PublicKeyLen;
 [size_is(X509PublicKeyLen)] PBYTE X509PublicKey;
 } FinalizeKeyAgreement;
 };
 } KerbCredIsoRemoteInput, *PKerbCredIsoRemoteInput;

20 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

CallId: An ID from the RemoteGuardCallId enumeration (section 2.2.1.1) that determines which of
the following union members is associated with the current message.

NegotiateVersion: A structure (section 2.2.2.1.1) that contains the maximum version agreed
between the server and the client. Used to negotiate the protocol version that will be used. Server

sends the maximum version it supports; client replies with the version that will be used.

BuildAsReqAuthenticator: A structure (section 2.2.2.1.2) used to create an AS_REQ message
authenticator.

VerifyServiceTicket: A structure (section 2.2.2.1.3) used to verify that the given service ticket is
valid within the given skew.

CreateApReqAuthenticator: A structure (section 2.2.2.1.4) used to create an authenticator for an
KRB_AP_REQ message.

DecryptApReply: A structure (section 2.2.2.1.5) used to decrypt the encrypted part of an AP_REP
reply message.

UnpackKdcReplyBody: A structure (section 2.2.2.1.6) used to decrypt the encrypted part of a
KRB_KDC_REP from the KDC. The type of reply is indicated by the PDU.

ComputeTgsChecksum: A structure (section 2.2.2.1.7) used to calculate the MAC for a
KRB_TGS_REQ, specified as Checksum in [RFC4120].

BuildEncryptedAuthData: A structure (section 2.2.2.1.8) used to encrypt the given authorization
data which is to be included within the request body of a message to be sent to the KDC.

PackApReply: A structure (section 2.2.2.1.9) used to pack up and encrypt a KRB_AP_REP message
using the given session key.

HashS4UPreauth: A structure (section 2.2.2.1.10) used to create a MAC for S4U pre-authentication
data to be include in a KRB_TGS_REQ when requesting a S4U service ticket for another principal.

SignS4UPreauthData: A structure (section 2.2.2.1.11) used to create a MAC for S4U pre-

authentication data that is for certificate-based users. This pa-data is added to KRB_TGS_REQ
when requesting an S4U service ticket.

VerifyChecksum: A structure (section 2.2.2.1.12) used to calculate a MAC from the given data and
compare it to the given expected value to detect mismatches which may indicate tampering with
the PAC that is sent by the KDC to the client inside a KRB_KDC_REP reply message ([RFC4120]
section 5.4.2).

DecryptPacCredentials: A structure (section 2.2.2.1.13) used to decrypt the supplemental

credentials which are contained with the PAC sent back by the KDC in a KRB_KDC_REP reply
message.

CreateECDHKeyAgreement: A structure (section 2.2.2.1.14) used to create a new ECDH key
agreement handle with the given ECC key bit length.

CreateDHKeyAgreement: A structure (section 2.2.2.1.15) that contains an Ignored field as a
UCHAR single character value that can be set to any value.

DestroyKeyAgreement: A structure (section 2.2.2.1.16) used to destroy a key agreement handle
which was previously constructed with either CreateECDHKeyAgreement structure or
CreateDHKeyAgreement structure.

KeyAgreementGenerateNonce: A structure (section 2.2.2.1.17) used to generate a nonce for use
with the given key agreement. This nonce is part of the Diffie-Hellman agreement that is part of
Kerberos PKINIT ([RFC4556]). Contains the key agreement handle.

https://go.microsoft.com/fwlink/?LinkId=90458
https://go.microsoft.com/fwlink/?LinkId=90482

21 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

FinalizeKeyAgreement: A structure (section 2.2.2.1.18) used to finish a Kerberos PKINIT
([RFC4556]) key agreement with an X509 server public key ([RFC3280]).

2.2.1.2.10 KerbCredIsoRemoteOutput

The KerbCredIsoRemoteOutput structure is used for a Kerberos reply message. It is paired with a
KerbCredIsoRemoteInput structure (section 2.2.1.2.9) Kerberos call message. The CallId field
determines which of the following union members is associated with the current message. Note that
input and output each use different parts of the same message structure.

 typedef struct _KerbCredIsoRemoteOutput
 {
 RemoteGuardCallId CallId;
 NTSTATUS Status;
 [switch_type(RemoteGuardCallId), switch_is(CallId)] union
 {
 [case(RemoteCallKerbNegotiateVersion)] struct
 {
 ULONG VersionToUse;
 } NegotiateVersion;

 [case(RemoteCallKerbBuildAsReqAuthenticator)] struct
 {
 LONG PreauthDataType;
 KERB_RPC_OCTET_STRING PreauthData;
 } BuildAsReqAuthenticator;

 [case(RemoteCallKerbVerifyServiceTicket)] struct
 {
 KERB_ASN1_DATA DecryptedTicket;
 LONG KerbProtocolError;
 } VerifyServiceTicket;

 [case(RemoteCallKerbCreateApReqAuthenticator)] struct
 {
 LARGE_INTEGER AuthenticatorTime;
 KERB_ASN1_DATA Authenticator;
 LONG KerbProtocolError;
 } CreateApReqAuthenticator;

 [case(RemoteCallKerbDecryptApReply)] struct
 {
 KERB_ASN1_DATA ApReply;
 } DecryptApReply;

 [case(RemoteCallKerbUnpackKdcReplyBody)] struct
 {
 LONG KerbProtocolError;
 KERB_ASN1_DATA ReplyBody;
 } UnpackKdcReplyBody;

 [case(RemoteCallKerbComputeTgsChecksum)] struct
 {
 KERB_ASN1_DATA Checksum;
 } ComputeTgsChecksum;

 [case(RemoteCallKerbBuildEncryptedAuthData)] struct
 {
 KERB_ASN1_DATA EncryptedAuthData;
 } BuildEncryptedAuthData;

 [case(RemoteCallKerbPackApReply)] struct
 {
 ULONG PackedReplySize;
 [size_is(PackedReplySize)] PUCHAR PackedReply;
 } PackApReply;

https://go.microsoft.com/fwlink/?LinkId=90414

22 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [case(RemoteCallKerbHashS4UPreauth)] struct
 {
 PULONG ChecksumSize;
 [size_is(, *ChecksumSize)] PUCHAR* ChecksumValue;
 } HashS4UPreauth;

 [case(RemoteCallKerbSignS4UPreauthData)] struct
 {
 PLONG ChecksumType;
 PULONG ChecksumSize;
 [size_is(, *ChecksumSize)] PUCHAR* ChecksumValue;
 } SignS4UPreauthData;

 [case(RemoteCallKerbVerifyChecksum)] struct
 {
 BOOL IsValid;
 } VerifyChecksum;

 [case(RemoteCallKerbDecryptPacCredentials)] struct
 {
 PSECPKG_SUPPLEMENTAL_CRED_ARRAY Credentials;
 } DecryptPacCredentials;

 [case(RemoteCallKerbCreateECDHKeyAgreement)] struct
 {
 KEY_AGREEMENT_HANDLE* KeyAgreementHandle;
 KERBERR* KerbErr;
 PULONG EncodedPubKeyLen;
 [size_is(, *EncodedPubKeyLen)] PBYTE* EncodedPubKey;
 } CreateECDHKeyAgreement;

 [case(RemoteCallKerbCreateDHKeyAgreement)] struct
 {
 KERB_RPC_CRYPTO_API_BLOB* ModulusP;
 KERB_RPC_CRYPTO_API_BLOB* GeneratorG;
 KERB_RPC_CRYPTO_API_BLOB* FactorQ;
 KEY_AGREEMENT_HANDLE* KeyAgreementHandle;
 KERBERR* KerbErr;
 PULONG LittleEndianPublicKeyLen;
 [size_is(, *LittleEndianPublicKeyLen)] PBYTE* LittleEndianPublicKey;
 } CreateDHKeyAgreement;

 [case(RemoteCallKerbDestroyKeyAgreement)] struct
 {
 // This [case(RemoteCallKerb)] struct has no output, but for
 // simplicity and consistency define as a
 // [case(RemoteCallKerb)] struct with a single ignored value.
 UCHAR Ignored;
 } DestroyKeyAgreement;

 [case(RemoteCallKerbKeyAgreementGenerateNonce)] struct
 {
 PULONG NonceLen;
 [size_is(, *NonceLen)] PBYTE* Nonce;
 } KeyAgreementGenerateNonce;

 [case(RemoteCallKerbFinalizeKeyAgreement)] struct
 {
 KERB_RPC_ENCRYPTION_KEY* SharedKey;
 } FinalizeKeyAgreement;
 };
 } KerbCredIsoRemoteOutput, *PKerbCredIsoRemoteOutput;

CallId: An ID from the RemoteGuardCallId enumeration (section 2.2.1.1) that determines which of
the following union members is associated with the current message.

23 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

NegotiateVersion: A structure (section 2.2.2.1.1) that contains the VersionToUse agreed between
the server and the client. Used to negotiate the protocol version that will be used. Server sends

the maximum version it supports; client replies with the version that will be used for future
exchanges.

BuildAsReqAuthenticator: A structure (section 2.2.2.1.2) that contains the padata-type of the
PreauthData field and the padata-value to be included in the KRB_AS_REQ message [RFC4120]
section 5.2.7.

VerifyServiceTicket: A structure (section 2.2.2.1.3) that contains the decrypted EncTicketPart of the
input Kerberos ticket and the validation result, as expressed by one of the error codes specified in
[RFC4120] section 7.5.9.

CreateApReqAuthenticator: A structure (section 2.2.2.1.4) used to contain an authenticator for an

KRB_AP_REQ message. Includes the timestamp, a DER-encoded Kerberos EncryptedData
structure containing an authenticator to be included in a KRB_AP_REQ message, and protocol-
level errors specified in [RFC4120] section 7.5.9.

DecryptApReply: A structure (section 2.2.2.1.5) that contains the decrypted EncAPRepPart
([RFC4120] section 5.5.2) in DER-encoded form.

UnpackKdcReplyBody: A structure (section 2.2.2.1.6) that contains the decrypted reply body and

any protocol-level errors that have occurred.

ComputeTgsChecksum: A structure (section 2.2.2.1.7) that contains the Checksum ([RFC4120]) a
calculated MAC for a KRB_TGS_REQ request message.

BuildEncryptedAuthData: A structure (section 2.2.2.1.8) that contains the encrypted authorization
data as a DER-encoded Kerberos EncryptedData structure containing the encrypted PA-DATA
([RFC4120] section 5.5.1).

PackApReply: A structure (section 2.2.2.1.9) that contains the DER-encoded KRB_AP_REP, which

contains the encrypted EncAPRepPart from the PackApReply input and the size in bytes of the
encoded reply ([RFC4120] section 5.5.2).

HashS4UPreauth: A structure (section 2.2.2.1.10) that contains the hash size and the resulting hash
of the input pre-authentication data.

SignS4UPreauthData: A structure (section 2.2.2.1.11) that contains the checksum type, the
checksum size, and the checksum value of the resulting hash of the input pre-authentication data.

VerifyChecksum: A structure (section 2.2.2.1.12) that contains a BOOL IsValid field that indicates

whether the calculated checksum matches or not.

DecryptPacCredentials: A structure (section 2.2.2.1.13) that contains the decoded array of
credentials supplied by the KDC.

CreateECDHKeyAgreement: A structure (section 2.2.2.1.14) used to create a new ECDH key
agreement handle. Contains a key agreement handle for use with future message exchanges, any
Kerberos errors, the length of the EncodedPubKey field, and the EncodedPubKey that is the

encoded subjectPublicKey value, suitable for populating a SubjectPublicKeyInfo structure
([RFC3280]).

CreateDHKeyAgreement: A structure (section 2.2.2.1.15) used to create the little endian
representation of the RSA public key value. Suitable for use with the CryptoAPI as a public key
blob. Contains three KERB_RPC_CRYPTO_API_BLOB pointers, the key agreement handle, any
Kerberos errors, the length of the public key and the public key in little-endian format.

DestroyKeyAgreement: A structure (section 2.2.2.1.16) that contains an Ignored field as a UCHAR

single character value.

https://go.microsoft.com/fwlink/?LinkId=90458
https://go.microsoft.com/fwlink/?LinkId=90414

24 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

KeyAgreementGenerateNonce: A structure (section 2.2.2.1.17) used to generate a nonce for use
with the given key agreement. This nonce is part of the Diffie-Hellman agreement that is part of

Kerberos PKINIT ([RFC4556]). Contains the nonce length and the Nonce for use in a key
agreement operation.

FinalizeKeyAgreement: A structure (section 2.2.2.1.18) used to finish a Kerberos PKINIT
([RFC4556]) key agreement. Contains the SharedKey that is the resulting key from the
agreement.

2.2.1.3 NTLM Data Structures

2.2.1.3.1 NT_CHALLENGE

The NT_CHALLENGE structure is used in the NtChallenge field in the CalculateNtResponse message
(section 2.2.2.2.3).

 typedef struct _NT_CHALLENGE{
 UCHAR Data[MSV1_0_CHALLENGE_LENGTH];
 } NT_CHALLENGE, *PNT_CHALLENGE;

Data: A UCHAR ([MS-DTYP] section 2.2.45) that is an array of 8-bit data items with a length specified
by MSV1_0_CHALLENGE_LENGTH (8) that specifies the number bytes in the string.

2.2.1.3.2 NT_RESPONSE

The NT_RESPONSE structure is used in the NtResponse field in the CalculateNtResponse message

(section 2.2.2.2.3) and in the CalculateUserSessionKeyNt message (section 2.2.2.2.4).

 typedef struct _NT_RESPONSE{
 UCHAR Data[MSV1_0_RESPONSE_LENGTH];
 } NT_RESPONSE, *PNT_RESPONSE;

Data: A UCHAR ([MS-DTYP] section 2.2.45) that is an array of 8-bit data items with a length specified
by MSV1_0_RESPONSE_LENGTH (24) that specifies the number bytes in the string.

2.2.1.3.3 MSV1_0_LM3_RESPONSE

The MSV1_0_LM3_RESPONSE structure is used in the Lm3Response field in the
Lm20GetNtlm3ChallengeResponse message (section 2.2.2.2.2).

 typedef struct {
 UCHAR Response[MSV1_0_NTLM3_RESPONSE_LENGTH];
 UCHAR ChallengeFromClient[MSV1_0_CHALLENGE_LENGTH];
 } MSV1_0_LM3_RESPONSE, *PMSV1_0_LM3_RESPONSE;

Response: A UCHAR ([MS-DTYP] section 2.2.45) that is an array of 8-bit data items with a length
specified by MSV1_0_NTLM3_RESPONSE_LENGTH (16) that specifies the number bytes in the

string.

ChallengeFromClient: A UCHAR type that is an array of 8-bit data items with a length specified by
MSV1_0_CHALLENGE_LENGTH (8) that specifies the number bytes in the string.

2.2.1.3.4 USER_SESSION_KEY

https://go.microsoft.com/fwlink/?LinkId=90482
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

25 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The USER_SESSION_KEY structure is used in the UserSessionKey field in the
Lm20GetNtlm3ChallengeResponse message (section 2.2.2.2.3) and the CalculateUserSessionKeyNt

message (section 2.2.2.2.4).

 typedef struct {
 UCHAR Data[MSV1_0_USER_SESSION_KEY_LENGTH];
 } USER_SESSION_KEY, *PUSER_SESSION_KEY;

Data: A UCHAR type ([MS-DTYP] section 2.2.45) that is an array of 8-bit data items with a length
specified by MSV1_0_USER_SESSION_KEY_LENGTH (16) that specifies the number bytes in
the string.

2.2.1.3.5 MSV1_0_CREDENTIAL_KEY

The MSV1_0_CREDENTIAL_KEY structure is used in the
MSV1_0_REMOTE_ENCRYPTED_SECRETS structure (section 2.2.1.3.10).

 typedef struct _MSV1_0_CREDENTIAL_KEY {
 UCHAR Data[MSV1_0_CREDENTIAL_KEY_LENGTH];
 } MSV1_0_CREDENTIAL_KEY, *PMSV1_0_CREDENTIAL_KEY;

Data: A UCHAR ([MS-DTYP] section 2.2.45) that is an array of 8-bit data items with a length specified
by MSV1_0_CREDENTIAL_KEY_LENGTH (20) that specifies the number bytes in the string.

2.2.1.3.6 MSV1_0_REMOTE_ENCRYPTED_SECRETS

The MSV1_0_REMOTE_ENCRYPTED_SECRETS structure is the opaque representation of NLTM
secrets.<2> This data structure is understood and consumed only by the CredSSP client; therefore,
contents can be unique to each implementation and implementation version. The CredSSP server

SHOULD treat this as an opaque blob and return what is provided by the client without assumptions of
structure or size. Each implementation of CredSSP client SHOULD be allowed to create a structure that

makes sense for their NTLM implementation.

 typedef struct _MSV1_0_REMOTE_ENCRYPTED_SECRETS
 {
 BOOLEAN reserved1;
 BOOLEAN reserved2;
 BOOLEAN reserved3;
 MSV1_0_CREDENTIAL_KEY_TYPE reserved4;
 MSV1_0_CREDENTIAL_KEY reserved5;
 ULONG reservedSize;
 [size_is(reservedSize)] UCHAR* reserved6;
 } MSV1_0_REMOTE_ENCRYPTED_SECRETS, *PMSV1_0_REMOTE_ENCRYPTED_SECRETS;

reserved1: A BOOLEAN ([MS-DTYP] section 2.2.4) reserved for implementation-specific use.

reserved2: A BOOLEAN reserved for implementation-specific use.

reserved3: A BOOLEAN reserved for implementation-specific use.

reserved4: An MSV1_0_CREDENTIAL_KEY_TYPE enumerated value that indicates the type of

credential key that is used. Values are reserved or for internal use only.

 typedef enum _MSV1_0_CREDENTIAL_KEY_TYPE{
 InvalidCredKey, // reserved
 IUMCredKey, // reserved
 DomainUserCredKey,

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

26 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 LocalUserCredKey, // For internal use only - should never be present in
 // MSV1_0_REMOTE_ENCRYPTED_SECRETS
 ExternallySuppliedCredKey // reserved
 } MSV1_0_CREDENTIAL_KEY_TYPE;

reserved5: An MSV1_0_CREDENTIAL_KEY structure (section 2.2.1.3.5) that contains the
credential key.

reservedSize: A ULONG ([MS-DTYP] section 2.2.51) that indicates the size of the reserved6 field.

reserved6: A pointer to a UCHAR ([MS-DTYP] section 2.2.45), an array of characters that contains
the credential.

2.2.1.3.7 NtlmCredIsoRemoteInput

The NtlmCredIsoRemoteInput structure is used for an NTLM call message. It is paired with an
NtlmCredIsoRemoteOutput structure (section 2.2.1.3.8) NTLM reply message. The CallId

determines which of the following union members is associated with the current message. Note that

input and output each use different parts of the same message structure.

Note: The word "server" refers to the LSA server which is providing access to credentials and "client"
refers to the LSA client which is using the credentials provided by the server. This is the opposite of
the RDP view.

 typedef struct _NtlmCredIsoRemoteInput

 {

 RemoteGuardCallId CallId;

 [switch_type(RemoteGuardCallId), switch_is(CallId)] union

 {

 // Used to negotiate the protocol version that will be used.

 // Server sends the maximum version it supports; client replies

 // with the version that will actually be used.

 [case(RemoteCallNtlmNegotiateVersion)] struct

 {

 ULONG MaxSupportedVersion;

 } NegotiateVersion;

 // Use the provided credential and challenge to generate the

 // NT and LM response for the NTLM v2 authentication protocol.

 [case(RemoteCallNtlmLm20GetNtlm3ChallengeResponse)] struct

 {

 PMSV1_0_REMOTE_ENCRYPTED_SECRETS Credential;

 PRPC_UNICODE_STRING UserName;

 PRPC_UNICODE_STRING LogonDomainName;

 PRPC_UNICODE_STRING ServerName;

 UCHAR ChallengeToClient[MSV1_0_CHALLENGE_LENGTH];

 } Lm20GetNtlm3ChallengeResponse;

 // Use the provided credential to calculate a response

 // to this challenge according to the NTLM v1 protocol.

 [case(RemoteCallNtlmCalculateNtResponse)] struct

 {

 PNT_CHALLENGE NtChallenge;

 PMSV1_0_REMOTE_ENCRYPTED_SECRETS Credential;

 } CalculateNtResponse;

 // Use the provided credential and response to calculate

 // a session key according to the NTLM v1 protocol.

 [case(RemoteCallNtlmCalculateUserSessionKeyNt)] struct

 {

 PNT_RESPONSE NtResponse;

 PMSV1_0_REMOTE_ENCRYPTED_SECRETS Credential;

 } CalculateUserSessionKeyNt;

27 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 // Compare the provided credentials to determine whether

 // they're identical.

 [case(RemoteCallNtlmCompareCredentials)] struct

 {

 PMSV1_0_REMOTE_ENCRYPTED_SECRETS LhsCredential;

 PMSV1_0_REMOTE_ENCRYPTED_SECRETS RhsCredential;

 } CompareCredentials;

 };

 } NtlmCredIsoRemoteInput, *PNtlmCredIsoRemoteInput;

CallId: An ID from the RemoteGuardCallId enumeration (section 2.2.1.1) that determines which of
the following union members is associated with the current message.

NegotiateVersion: A structure (section 2.2.2.2.1) that contains the maximum version agreed
between the server and the client. Used to negotiate the protocol version that will be used. Server
sends the maximum version it supports; client replies with the version that will be used.

Lm20GetNtlm3ChallengeResponse: A structure (section 2.2.2.2.2) that contains the user

credentials from which to generate an NTLM v2 response and session keys.

CalculateNtResponse: A structure (section 2.2.2.2.3) that contains the challenge sent by the server
and the NTLM credentials from which to generate a response.

CalculateUserSessionKeyNt: A structure (section 2.2.2.2.4) that contains the response sent during
NTLM v1 authentication and the NTLM credentials used to generate the response.

CompareCredentials: A structure (section 2.2.2.2.5) that contains the first and the second
credential to be compared.

2.2.1.3.8 NtlmCredIsoRemoteOutput

The NtlmCredIsoRemoteOutput structure is used for an NTLM reply message. It is paired with an
NtlmCredIsoRemoteInput structure (section 2.2.1.3.7) NTLM call message. The CallId determines

which of the following union members is associated with the current message. Note that input and
output each use different parts of the same message structure.

 typedef struct _NtlmCredIsoRemoteOutput

 {

 RemoteGuardCallId CallId;

 NTSTATUS Status;

 [switch_type(RemoteGuardCallId), switch_is(CallId)] union

 {

 [case(RemoteCallNtlmNegotiateVersion)] struct

 {

 ULONG VersionToUse;

 } NegotiateVersion;

 [case(RemoteCallNtlmLm20GetNtlm3ChallengeResponse)] struct

 {

 USHORT Ntlm3ResponseLength;

 [size_is(Ntlm3ResponseLength)] BYTE *Ntlm3Response;

 MSV1_0_LM3_RESPONSE Lm3Response;

 USER_SESSION_KEY UserSessionKey;

 LM_SESSION_KEY LmSessionKey;

 } Lm20GetNtlm3ChallengeResponse;

 [case(RemoteCallNtlmCalculateNtResponse)] struct

 {

 NT_RESPONSE NtResponse;

 } CalculateNtResponse;

 [case(RemoteCallNtlmCalculateUserSessionKeyNt)] struct

 {

28 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 USER_SESSION_KEY UserSessionKey;

 } CalculateUserSessionKeyNt;

 [case(RemoteCallNtlmCompareCredentials)] struct

 {

 BOOL AreNtOwfsEqual;

 BOOL AreLmOwfsEqual;

 BOOL AreShaOwfsEqual;

 } CompareCredentials;

 };

 } NtlmCredIsoRemoteOutput, *PNtlmCredIsoRemoteOutput;

CallId: An ID from the RemoteGuardCallId enumeration (section 2.2.1.1) that determines which of
the following union members is associated with the current message.

NegotiateVersion: A structure (section 2.2.2.2.1) that contains the VersionToUse agreed between
the server and the client. Used to negotiate the protocol version that will be used. Server sends
the maximum version it supports; client replies with the version that will be used for future

exchanges.

Lm20GetNtlm3ChallengeResponse: A structure (section 2.2.2.2.2) that contains the generated
response to the provided challenge.

CalculateNtResponse: A structure (section 2.2.2.2.3) that contains the generated NTLMv1 response,
as specified in [MS-NLMP] section 3.3.1.

CalculateUserSessionKeyNt: A structure (section 2.2.2.2.4) that contains the calculated user
session key.

CompareCredentials: A structure (section 2.2.2.2.5) that contains three BOOL values that indicate
whether the values in the credentials matched.

2.2.2 Package-Specific Messages

All package-specific messages are formatted by using the Distributed Computing Environment (DCE)

data representation as specified in [C706], and as exposed by the type marshaling support in Remote
Procedure Call (RPC), as specified in Type Serialization Version 1, [MS-RPCE] section 2.2.6. This
requires that an Interface Definition Language (IDL) file for the types be created and that this IDL
be used for marshaling the data into a single message. See also the MIDL Language Reference
[MIDLINF].

All packages use messages in a call-and-response manner. For each call (input) message initiated by a
CredSSP server, there is a corresponding response (output) that is returned by the CredSSP client.

The RemoteGuardCallId enumeration (section 2.2.1.1) defines all possible message pairs for all
security packages.

A single structure defines all possible inputs, and another structure defines all possible outputs. The
individual data for each input/output pair is contained within a union. The value from the

RemoteGuardCallId enumeration that is held within the outer structure determines which union
member is associated with the current message. In this way, the message encoding is known in

advance by both ends of the connection, simplifying message processing.

2.2.2.1 Kerberos Messages

Kerberos calls are formatted as KerbCredIsoRemoteInput objects (section 2.2.1.3.7), and
responses are formatted as KerbCredIsoRemoteOutput objects (section 2.2.1.2.10). The

structures, as defined in the IDL, are made primarily of unions. In this way, the single

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89938

29 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

KerbCredIsoRemoteInput and KerbCredIsoRemoteOutput structure types can represent multiple
Input and Output message pairs as documented in the following sections.

Some Kerberos messages make use of Abstract Syntax Notation One (ASN.1) structures, as
specified in [ITUX680], and are encoded using Distinguished Encoding Rules (DER), as specified in

[X690] section 10. The definitions of these structures are contained in [RFC4120] and [RFC6113].
When such structure packing is used, the data type of the message field is KERB_ASN1_DATA
(section 2.2.1.2.1). These fields are used in order to pack standards-compliant, predefined Kerberos
structures, avoiding additional overhead incurred by a custom data type in the Kerberos Interface
Definition Language (IDL) file.

2.2.2.1.1 NegotiateVersion

The NegotiateVersion structure is used to negotiate the protocol version that the Kerberos packages
on the CredSSP server and CredSSP client will use to communicate. The server sends the
maximum version it supports. The client replies with the version that will be used. As the protocol
currently has only one version, this maximum MUST be zero.

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallKerbNegotiateVersion.

 struct
 {
 ULONG MaxSupportedVersion;
 } NegotiateVersion;

MaxSupportedVersion: A ULONG type that contains the highest protocol version that the CredSSP
server supports. Note that this currently MUST be zero.

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbNegotiateVersion.

 struct
 {
 ULONG VersionToUse;
 } NegotiateVersion;

VersionToUse: A ULONG type that contains the protocol version that will be used for future
exchanges. Note that this currently MUST be zero.

2.2.2.1.2 BuildAsReqAuthenticator

The BuildAsReqAuthenticator structure is used to create an AS_REQ message authenticator for
inclusion in a KRB_AS_REQ message to the KDC [RFC4120].

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallKerbBuildAsReqAuthenticator.

 struct
 {
 KERB_RPC_ENCRYPTION_KEY* EncryptionKey;
 KERB_RPC_ENCRYPTION_KEY* ArmorKey; // optional
 PLARGE_INTEGER TimeSkew;
 } BuildAsReqAuthenticator;

EncryptionKey: A KERB_RPC_ENCRYPTION_KEY structure (section 2.2.1.2.8) that contains the
Kerberos key used to protect the Key Distribution Center (KDC) reply.

https://go.microsoft.com/fwlink/?LinkId=89923
https://go.microsoft.com/fwlink/?LinkId=90593
https://go.microsoft.com/fwlink/?LinkId=90458
https://go.microsoft.com/fwlink/?LinkId=226316
https://go.microsoft.com/fwlink/?LinkId=90458

30 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

ArmorKey: Optional. A KERB_RPC_ENCRYPTION_KEY structure (section 2.2.1.2.8) that contains
the FAST armor key. Specify only when an EncryptedChallenge padata-value ([RFC4120]) is

needed in the request. When specified, the ArmorKey is combined with the EncryptionKey to
derive a FAST challenge key. See [RFC6113] section 5.4.6.

TimeSkew: A LARGE_INTEGER ([MS-DTYP] section 2.3.5) that contains the adjustment to be applied
to local system time. This is used to bring the encrypted authenticator in sync with the KDC time.

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbBuildAsReqAuthenticator.

 struct
 {
 LONG PreauthDataType;
 KERB_RPC_OCTET_STRING PreauthData;
 } BuildAsReqAuthenticator;

PreauthDataType: A LONG ([MS-DTYP] section 2.2.27) that contains the padata-type of the
PreauthData. See [RFC4120], section 5.2.7.

PreauthData: A KERB_RPC_OCTET_STRING structure (section 2.2.1.2.2) that contains the
padata-value to be included in the KRB_AS_REQ message ([RFC4120]).

2.2.2.1.3 VerifyServiceTicket

The VerifyServiceTicket structure is used to decrypt and validate a service ticket reply from the KDC
([RFC4120] section 5.3). It is used to verify that the given service ticket is valid within the given
skew. The encrypted part of the reply data is decrypted for the caller.

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallKerbVerifyServiceTicket.

 struct
 {
 KERB_ASN1_DATA* PackedTicket;
 KERB_RPC_ENCRYPTION_KEY* ServiceKey;
 PLARGE_INTEGER TimeSkew; // optional
 } VerifyServiceTicket;

PackedTicket: A pointer to a KERB_ASN1_DATA structure (section 2.2.1.2.1) that contains the
DER-encoded Kerberos ticket to be verified and decrypted.

ServiceKey: A pointer to a KERB_RPC_ENCRYPTION_KEY structure (section 2.2.1.2.8) that
contains the key required to decrypt the ticket.

TimeSkew: Optional. A pointer to a LARGE_INTEGER that contains the allowed time drift between a
client and the KDC. This is utilized for ticket validity checks based on the system time and ticket
start and expiration times.

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbVerifyServiceTicket.

 struct
 {
 KERB_ASN1_DATA DecryptedTicket;
 LONG KerbProtocolError;
 } VerifyServiceTicket;

https://go.microsoft.com/fwlink/?LinkId=226316
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=90458

31 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

DecryptedTicket: A KERB_ASN1_DATA structure that contains the decrypted EncTicketPart of the
input Kerberos ticket.

KerbProtocolError: A LONG type that contains the validation result, as expressed by one of the error
codes defined by [RFC4120] section 7.5.9.

2.2.2.1.4 CreateApReqAuthenticator

The CreateApReqAuthenticator structure is used to create an authenticator for inclusion in a
KRB_AP_REQ message ([RFC4120] section 5.5.1).

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallKerbCreateApReqAuthenticator.

 struct
 {
 KERB_RPC_ENCRYPTION_KEY* EncryptionKey;
 ULONG SequenceNumber;
 KERB_RPC_INTERNAL_NAME* ClientName;
 PRPC_UNICODE_STRING ClientRealm;
 PLARGE_INTEGER SkewTime;
 KERB_RPC_ENCRYPTION_KEY* SubKey; // optional
 KERB_ASN1_DATA* AuthData; // optional
 KERB_ASN1_DATA* GssChecksum; // optional
 ULONG KeyUsage;
 } CreateApReqAuthenticator;

EncryptionKey: A pointer to a KERB_RPC_ENCRYPTION_KEY structure (section 2.2.1.2.8) that is
the opaque structure associated with the key that the CredSSP server uses to build the
authenticator. The exact format of this structure is CredSSP client dependent. The key comes
from a previous UnpackKdcReplyBody output message (section 2.2.2.1.6).

SequenceNumber: A ULONG type that contains the replay detection sequence number.

ClientName: A pointer to a KERB_RPC_INTERNAL_NAME structure (section 2.2.1.2.3) that

contains the name of the initiating principal.

ClientRealm: A pointer to an RPC_UNICODE_STRING structure ([MS-DTYP] section 2.3.10) that
contains the realm/domain of the initiating principal.

SkewTime: A pointer to a LARGE_INTEGER that contains the time adjustment, if any, to account for
clock drift from KDC.

SubKey: Optional. A pointer to a KERB_RPC_ENCRYPTION_KEY structure (section 2.2.1.2.8) that

contains the sub-session key negotiated with KDC as defined in [RFC4120] section 1.7.

AuthData: Optional. A pointer to a KERB_ASN1_DATA structure (section 2.2.1.2.1) that contains
additional authentication data.

GssChecksum: Optional. A pointer to a KERB_ASN1_DATA structure that contains the checksum of

application data associated with a request.

KeyUsage: A ULONG number used to alter the encryption key. MUST be one of the following values
from [RFC4120] section 7.5.1.

Value Meaning

3 KRB_AS_REP key usage number.

8 KRB_TGS_REP key usage number.

https://go.microsoft.com/fwlink/?LinkId=90458
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

32 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbCreateApReqAuthenticator.

 struct
 {
 LARGE_INTEGER AuthenticatorTime;
 KERB_ASN1_DATA Authenticator;
 LONG KerbProtocolError;
 } CreateApReqAuthenticator;

AuthenticatorTime: A LARGE_INTEGER that contains the timestamp used in the authenticator.

Authenticator: A KERB_ASN1_DATA structure that is the DER-encoded Kerberos EncryptedData
structure containing an authenticator to be included in a KRB_AP_REQ message ([RFC4120]
section 5.5.1).

KerbProtocolError: A LONG that contains any protocol-level errors that occur while building the

authenticator, as expressed by one of the error codes defined in [RFC4120] section 7.5.9

2.2.2.1.5 DecryptApReply

The DecryptApReply structure is used to decrypt the encrypted part of a KRB_AP_REP message
([RFC4120] section 5.5.2).

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallKerbDecryptApReply.

 struct
 {
 KERB_ASN1_DATA* EncryptedReply;
 KERB_RPC_ENCRYPTION_KEY* Key;
 } DecryptApReply;

EncryptedReply: A pointer to a KERB_ASN1_DATA structure (section 2.2.1.2.1) that contains the
DER-encoded enc-part of a KRB_AP_REP message to be decrypted.

Key: A pointer to a KERB_RPC_ENCRYPTION_KEY structure (section 2.2.1.2.8) that is the opaque
structure associated with the key that the CredSSP server uses to decrypt EncryptedReply. The
exact format of this structure is CredSSP client dependent. The key comes from a previous

UnpackKdcReplyBody output message (section 2.2.2.1.6).

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbDecryptApReply.

 struct
 {
 KERB_ASN1_DATA ApReply;
 } DecryptApReply;

ApReply: A KERB_ASN1_DATA structure that contains the decrypted EncAPRepPart ([RFC4120]
section 5.5.2) in DER-encoded form.

2.2.2.1.6 UnpackKdcReplyBody

The UnpackKdcReplyBody structure is used to decrypt the encrypted part of a KRB_KDC_REP
message ([RFC4120] section 5.4.2) from the KDC. The type of reply is indicated by the PDU, either

https://go.microsoft.com/fwlink/?LinkId=90458
https://go.microsoft.com/fwlink/?LinkId=90458

33 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

encrypted AS_REP PDU or encrypted TGS_REP PDU. The KeyUsage field allows the caller to specify
either the TGS or AS key derivation types.<3>

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallKerbUnpackKdcReplyBody.

 struct
 {
 KERB_ASN1_DATA* EncryptedData;
 KERB_RPC_ENCRYPTION_KEY* Key;
 KERB_RPC_ENCRYPTION_KEY* StrengthenKey;
 ULONG Pdu;
 ULONG KeyUsage;
 } UnpackKdcReplyBody;

EncryptedData: A pointer to a KERB_ASN1_DATA structure (section 2.2.1.2.1) that contains the
DER-encoded, encrypted reply data to be decrypted.

Key: A pointer to a KERB_RPC_ENCRYPTION_KEY structure (section 2.2.1.2.8) that is the opaque
structure associated with the decryption key that the CredSSP server uses. The exact format of
this structure is CredSSP client dependent. The key comes from a previous

UnpackKdcReplyBody output message (section 2.2.2.1.6) or the CredSSP client.

StrengthenKey: A pointer to a KERB_RPC_ENCRYPTION_KEY structure that contains the reply
strengthening key, if any, supplied by the KDC for increasing the strength of encryption on the
reply.

Pdu: A ULONG that contains the PDU used to decode the data. MUST be zero and SHOULD be
ignored.<4>

KeyUsage: A ULONG that contains the key usage flags for decryption. MUST be one of the following

values from [RFC4120] section 7.5.1:

Value Meaning

3 KRB_AS_REP key usage number.

8 KRB_TS_REP key usage number.

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbUnpackKdcReplyBody.

 struct
 {
 LONG KerbProtocolError;
 KERB_ASN1_DATA ReplyBody;
 } UnpackKdcReplyBody;

KerbProtocolError: A LONG that contains any protocol-level errors that have occurred.

ReplyBody: A KERB_ASN1_DATA structure that contains the decrypted reply.

2.2.2.1.7 ComputeTgsChecksum

The ComputeTgsChecksum structure is used to calculate the MAC and create a keyed checksum

over a KRB_KDC_REQ message, which is required for proving authenticity of client requests for a
service ticket ([RFC4120]).

https://go.microsoft.com/fwlink/?LinkId=90458

34 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallKerbComputeTgsChecksum.

 struct
 {
 KERB_ASN1_DATA* RequestBody;
 KERB_RPC_ENCRYPTION_KEY* Key;
 ULONG ChecksumType;
 } ComputeTgsChecksum;

RequestBody: A pointer to a KERB_ASN1_DATA structure that contains the DER-encoded KDC-

REQ-BODY to be checksummed.

Key: A pointer to a KERB_RPC_ENCRYPTION_KEY structure that contains the key used to
authenticate the checksum.

ChecksumType: A ULONG that contains a valid Kerberos checksum type ID, as defined in [RFC3961]

or [RFC3962].

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbComputeTgsChecksum.

 struct
 {
 KERB_ASN1_DATA Checksum;
 } ComputeTgsChecksum;

Checksum: A KERB_ASN1_DATA structure that contains the DER-encoded Kerberos Checksum
structure, as defined in [RFC4120] Appendix A.

2.2.2.1.8 BuildEncryptedAuthData

The BuildEncryptedAuthData structure is used to encrypt the given authorization PA-DATA
sequence, using a shared key, to be included within the request body of a message to be sent to the

KDC ([RFC4120] section 5.2.7).

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallKerbBuildEncryptedAuthData.

 struct
 {
 ULONG KeyUsage;
 KERB_RPC_ENCRYPTION_KEY* Key;
 KERB_ASN1_DATA* PlainAuthData;
 } BuildEncryptedAuthData;

KeyUsage: A ULONG number used to alter the encryption key. MUST be one of the following values

from [RFC4120] section 7.5.1.

Value Meaning

3 KRB_AS_REP key usage number.

8 KRB_TGS_REP key usage number.

Key: A pointer to a KERB_RPC_ENCRYPTION_KEY structure that contains the encryption key used
to build the encrypted output.

https://go.microsoft.com/fwlink/?LinkId=90450
https://go.microsoft.com/fwlink/?LinkId=90451
https://go.microsoft.com/fwlink/?LinkId=90458

35 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

PlainAuthData: A pointer to a KERB_ASN1_DATA structure that contains the DER-encoded PA-
DATA to be encrypted ([RFC4120] section 5.2.7).

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbBuildEncryptedAuthData.

 struct
 {
 KERB_ASN1_DATA EncryptedAuthData;
 } BuildEncryptedAuthData;

EncryptedAuthData: A KERB_ASN1_DATA structure that is the DER-encoded Kerberos
EncryptedData structure containing the encrypted PA-DATA ([RFC4120] section 5.5.1).

2.2.2.1.9 PackApReply

The PackApReply structure is used to pack up and encrypt a KRB_AP_REP message using the given

session key. The ReplyBody is encrypted using the SessionKey, then added to the KRB_AP_REP.

The resulting Kerberos AP reply is then DER-encoded and returned via an output message. For more
details see section 3.1.5.9.

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallKerbPackApReply.

 struct
 {
 KERB_ASN1_DATA* Reply;
 KERB_ASN1_DATA* ReplyBody;
 KERB_RPC_ENCRYPTION_KEY* SessionKey;
 } PackApReply;

Reply: A pointer to a KERB_ASN1_DATA structure that contains the DER-encoded KRB_AP_REP

([RFC4120] section 5.5.2) to marshal.

ReplyBody: A pointer to a KERB_ASN1_DATA structure that contains the DER-encoded
EncAPRepPart ([RFC4120] section 5.5.2) to marshal.

SessionKey: A pointer to a KERB_RPC_ENCRYPTION_KEY structure that contains the session key
to encrypt reply.

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbPackApReply.

 struct
 {
 ULONG PackedReplySize;
 [size_is(PackedReplySize)] PUCHAR PackedReply;
 } PackApReply;

PackedReplySize: A ULONG that indicates the size, in bytes, of the PackedReply CHAR array field
that contains the encoded reply.

PackedReply: A pointer to a CHAR array that contains the DER-encoded KRB_AP_REP, which

contains the encrypted EncAPRepPart ([RFC4120] section 5.5.2) from the PackApReply input
message.

2.2.2.1.10 HashS4UPreauth

https://go.microsoft.com/fwlink/?LinkId=90458

36 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The HashS4UPreauth structure is used to create a MAC for S4U pre-authentication data to be
included in a KRB_TGS_REQ when requesting a S4U service ticket for another principal. A keyed hash

of the S4U pre-authentication data of the type PA-FOR-USER ([KERB-PARAM]) is created to process
the result that is used for integrity checks on the ticket request by the KDC.

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallKerbHashS4UPreauth.

 struct
 {
 KERB_ASN1_DATA* S4UPreauth;
 KERB_RPC_ENCRYPTION_KEY* Key;
 LONG ChecksumType;
 } HashS4UPreauth;

S4UPreauth: A pointer to a KERB_ASN1_DATA structure that contains the DER-encoded padata-
value to be hashed [RFC4120] section 5.2.7.

Key: A pointer to a KERB_RPC_ENCRYPTION_KEY structure that contains the authentication key
used in the secure hash.

ChecksumType: A LONG that contains a valid Kerberos checksum type ID, as defined in [RFC3961]
or [RFC3962].

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbHashS4UPreauth.

 struct
 {
 PULONG ChecksumSize;
 [size_is(, *ChecksumSize)] PUCHAR* ChecksumValue;
 } HashS4UPreauth;

ChecksumSize: A pointer to a ULONG that contains the output hash size of the ChecksumValue
array field.

ChecksumValue: A pointer to a CHAR array that contains the resulting hash of the input pre-
authentication data.

2.2.2.1.11 SignS4UPreauthData

The SignS4UPreauthData structure is used to create a MAC for S4U pre-authentication data that is
for certificate-based users. This pa-data is added to KRB_TGS_REQ when requesting an S4U service
ticket. A keyed hash of the S4U pre-authentication data of the type PA-FOR-X509-USER ([KERB-
PARAM]) is created to process the result that is used for integrity checks on the ticket request by the
KDC.

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set

to RemoteCallKerbSignS4UPreauthData.

 struct
 {
 KERB_RPC_ENCRYPTION_KEY* Key;
 BOOL IsRequest;
 KERB_ASN1_DATA* UserId;
 PLONG ChecksumType;
 } SignS4UPreauthData;

https://go.microsoft.com/fwlink/?LinkId=808077
https://go.microsoft.com/fwlink/?LinkId=90458
https://go.microsoft.com/fwlink/?LinkId=90450
https://go.microsoft.com/fwlink/?LinkId=90451
https://go.microsoft.com/fwlink/?LinkId=808077
https://go.microsoft.com/fwlink/?LinkId=808077

37 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Key: A pointer to a KERB_RPC_ENCRYPTION_KEY structure that contains the authentication key
used in the secure hash.

IsRequest: A BOOL. If TRUE, then the operation is for a request. Else, the operation is for a reply.

UserId: A pointer to a KERB_ASN1_DATA structure that contains the X509 pre-authentication data

to be hashed.

ChecksumType: A pointer to a LONG that contains a valid Kerberos checksum type ID, as defined in
[RFC3961] or [RFC3962].

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbSignS4UPreauthData.

 struct
 {
 PLONG ChecksumType;
 PULONG ChecksumSize;
 [size_is(, *ChecksumSize)] PUCHAR* ChecksumValue;
 } SignS4UPreauthData;

ChecksumType: A pointer to a LONG that contains a valid Kerberos checksum type ID, as defined in

[RFC3961] or [RFC3962].

ChecksumSize: A pointer to a LONG that indicates the size of the output hash size.

ChecksumValue: A CHAR array that contains the resulting hash of the input pre-authentication data.

2.2.2.1.12 VerifyChecksum

The VerifyChecksum structure is used to calculate a MAC from the given data and compare it to the

given expected value. This structure is used to detect mismatches which may indicate tampering with
the PAC which is sent by the KDC to the client inside a KRB_KDC_REP. The checksum operation is

performed over the input data and key and compared with the expected value. The output message
indicates whether the checksum is a match or not.

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallKerbVerifyChecksum.

 struct
 {
 KERB_RPC_ENCRYPTION_KEY* Key;
 ULONG ChecksumType;
 ULONG ExpectedChecksumSize;
 [size_is(ExpectedChecksumSize)] const UCHAR* ExpectedChecksum;
 ULONG DataToCheckSize;
 [size_is(DataToCheckSize)] const UCHAR* DataToCheck;
 } VerifyChecksum;

Key: A pointer to a KERB_RPC_ENCRYPTION_KEY structure that contains the encryption key used
in the checksum operation.

ChecksumType: A ULONG that contains a valid Kerberos checksum type ID, as defined in [RFC3961]

or [RFC3962].

ExpectedChecksumSize: A ULONG that indicates the byte size of the ExpectedChecksum array
field that contains the expected checksum.

ExpectedChecksum: A CHAR array that contains the expected checksum data.

https://go.microsoft.com/fwlink/?LinkId=90450
https://go.microsoft.com/fwlink/?LinkId=90451
https://go.microsoft.com/fwlink/?LinkId=90450
https://go.microsoft.com/fwlink/?LinkId=90451

38 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

DataToCheckSize: A ULONG that indicates the size of the DataToCheck array field that contains the
input data to check.

DataToCheck: A CHAR array that contains the input data over which to perform the checksum.

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be

set to RemoteCallKerbVerifyChecksum.

 struct
 {
 BOOL IsValid;
 } VerifyChecksum;

IsValid: A BOOL. If TRUE, indicates that the calculated checksum matches.

2.2.2.1.13 DecryptPacCredentials

The DecryptPacCredentials structure is used to decrypt the supplemental credentials that are
returned in the PAC ([MS-PAC]) by the KDC in a reply message. For more details see section

3.1.5.13.

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallKerbDecryptPacCredentials.

 struct
 {
 KERB_RPC_ENCRYPTION_KEY* Key;
 ULONG Version;
 ULONG EncryptionType;
 ULONG DataSize;
 [size_is(DataSize)] UCHAR* Data;
 } DecryptPacCredentials;

Key: A pointer to a KERB_RPC_ENCRYPTION_KEY structure (section 2.2.1.2.8) that contains the
key needed to decrypt the credentials.

Version: A ULONG that indicates the version in the PAC_CREDENTIAL_INFO structure Version

field ([MS-PAC] section 2.6.1), as supplied in the Privilege Attribute Certificate (PAC).

EncryptionType: A ULONG that indicates the Kerberos etype used for encryption. Kerberos
parameters are documented in [KERB-PARAM].

DataSize: A ULONG that indicates the size of the credentials from a PAC_CREDENTIAL_INFO
structure.

Data: The credential data from a PAC_CREDENTIAL_INFO structure SerializedData field.

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbDecryptPacCredentials.

 struct
 {
 PSECPKG_SUPPLEMENTAL_CRED_ARRAY Credentials;
 } DecryptPacCredentials;

Credentials: A pointer to a SECPKG_SUPPLEMENTAL_CRED_ARRAY structure (section 2.2.1.2.7)
that contains the decoded array of credentials supplied by the KDC.

%5bMS-PAC%5d.pdf#Section_166d8064c86341e19c23edaaa5f36962
https://go.microsoft.com/fwlink/?LinkId=808077

39 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.2.1.14 CreateECDHKeyAgreement

The CreateECDHKeyAgreement structure is used to create a new ECDH key agreement handle with
the given ECC key bit length to be used in Kerberos PKINIT ([RFC4556]). The key agreement will use

elliptic curve cryptography as specified in ([RFC5349]).

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallKerbCreateECDHKeyAgreement.

 struct
 {
 ULONG KeyBitLen;
 } CreateECDHKeyAgreement;

KeyBitLen: A ULONG that indicates the desired length of the ECC key to use for an ECDH key
agreement. Valid values are:

KeyBitLen Description

256 Specifies a key handle for performing a NIST P-256 ECC signature with SHA256 hash.

384 Specifies a key handle for performing a NIST P-384 ECC signature with SHA384 hash.

521 Specifies a key handle for performing a NIST P-521 ECC signature with SHA512 hash.

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbCreateECDHKeyAgreement.

 struct
 {
 KEY_AGREEMENT_HANDLE* KeyAgreementHandle;
 KERBERR* KerbErr;
 PULONG EncodedPubKeyLen;
 [size_is(, *EncodedPubKeyLen)] PBYTE* EncodedPubKey;
 } CreateECDHKeyAgreement;

KeyAgreementHandle: A pointer to a KEY_AGREEMENT_HANDLE type that contains the key handle
for use with future message exchanges.

KerbErr: A pointer to a KERBERR type that contains any Kerberos protocol-specific errors that
occurred when processing the input message.

EncodedPubKeyLen: A pointer to a ULONG that contains the length of the EncodedPubKey buffer
field.

EncodedPubKey: A byte array that contains the encoded subjectPublicKey value, suitable for
populating a SubjectPublicKeyInfo structure [RFC3280].

2.2.2.1.15 CreateDHKeyAgreement

The CreateDHKeyAgreement structure is used to create a key handle to be used in Kerberos

PKINIT. The key agreement will use Diffie-Hellman, as specified in [RFC4556]. The outputs of this
message exchange are suitable for building a SubjectPublicKeyInfo structure [RFC3280] for
inclusion in a Kerberos PKINIT message exchange [RFC4556].

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallKerbCreateDHKeyAgreement.

https://go.microsoft.com/fwlink/?LinkId=90482
https://go.microsoft.com/fwlink/?LinkId=129652
https://go.microsoft.com/fwlink/?LinkId=90414
https://go.microsoft.com/fwlink/?LinkId=90482
https://go.microsoft.com/fwlink/?LinkId=90414

40 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 struct
 {
 // This [case(RemoteCallKerb)] struct has no input parameters, but for
 // simplicity and consistency with the other parameters, let's define
 // this as a [case(RemoteCallKerb)] struct with a single ignored value.
 UCHAR Ignored;
 } CreateDHKeyAgreement;

Ignored: A UCHAR that can be set to any value. This field is ignored.

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbCreateDHKeyAgreement.

 struct
 {
 KERB_RPC_CRYPTO_API_BLOB* ModulusP;
 KERB_RPC_CRYPTO_API_BLOB* GeneratorG;
 KERB_RPC_CRYPTO_API_BLOB* FactorQ;
 KEY_AGREEMENT_HANDLE* KeyAgreementHandle;
 KERBERR* KerbErr;
 PULONG LittleEndianPublicKeyLen;
 [size_is(, *LittleEndianPublicKeyLen)] PBYTE* LittleEndianPublicKey;
 } CreateDHKeyAgreement;

ModulusP: A pointer to a KERB_RPC_CRYPTO_API_BLOB structure that contains the RSA prime
modulus P [RFC8017].

GeneratorG: A pointer to a KERB_RPC_CRYPTO_API_BLOB structure that contains the RSA prime
generator G [RFC8017].

FactorQ: A pointer to a KERB_RPC_CRYPTO_API_BLOB structure that contains the RSA prime
factor Q [RFC8017].

KeyAgreementHandle: A pointer to a KEY_AGREEMENT_HANDLE type that indicates the key handle
for use with future message exchanges.

KerbErr: A pointer to a KERBERR type that contains any Kerberos protocol-specific errors that
occurred processing the input message ([RFC4120] section 7.5.9).

LittleEndianPublicKeyLen: A pointer to a ULONG that indicates the byte length of
LittleEndianPublicKey array field.

LittleEndianPublicKey: A byte array that contains the little-endian representation of the RSA public
key value suitable for use with the CryptoAPI as a public key blob.

2.2.2.1.16 DestroyKeyAgreement

The DestroyKeyAgreement structure is used to destroy a key agreement handle which was
previously constructed with either a CreateECDHKeyAgreement structure (section 2.2.2.1.14) or a

CreateDHKeyAgreement structure (section 2.2.2.1.15). A CredSSP server SHOULD perform a
RemoteCallKerbDestroyKeyAgreement message exchange to ensure that no resources are leaked. For
more details see section 3.1.5.16.

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set

to RemoteCallKerbDestroyKeyAgreement.

 struct
 {
 KEY_AGREEMENT_HANDLE KeyAgreementHandle;

https://go.microsoft.com/fwlink/?linkid=2164409
https://go.microsoft.com/fwlink/?LinkId=90458

41 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 } DestroyKeyAgreement;

KeyAgreementHandle: A KEY_AGREEMENT_HANDLE type that indicates the key agreement to be
destroyed.

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbDestroyKeyAgreement.

 struct
 {
 UCHAR Ignored;
 } DestroyKeyAgreement;

Ignored: A UCHAR. The value of this field is undefined. Implementers SHOULD ignore it.

2.2.2.1.17 KeyAgreementGenerateNonce

The KeyAgreementGenerateNonce structure is used to generates a nonce value for inclusion in the
DHNonce in a Kerberos PKINIT message exchange ([RFC4556] Section 3.2.1). This nonce is part of
the Diffie-Hellman agreement that is part of Kerberos PKINIT.

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallKerbKeyAgreementGenerateNonce.

 struct
 {
 KEY_AGREEMENT_HANDLE KeyAgreementHandle;
 } KeyAgreementGenerateNonce;

KeyAgreementHandle: A KEY_AGREEMENT_HANDLE type that contains the key agreement

associated with the nonce.

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbKeyAgreementGenerateNonce.

 struct
 {
 PULONG NonceLen;
 [size_is(, *NonceLen)] PBYTE* Nonce;
 } KeyAgreementGenerateNonce;

NonceLen: A pointer to a ULONG that indicates the byte length of the Nonce field.

Nonce: A byte array that contains the nonce for use in a key agreement operation.

2.2.2.1.18 FinalizeKeyAgreement

The FinalizeKeyAgreement structure is used to perform the final step in a Kerberos PKINIT
([RFC4556]) key agreement operation, resulting in a shared secret between the Kerberos client and

the KDC. Upon completion, the KeyAgreementHandle used in this message exchange is no longer
valid in any further message exchanges.

When populating this field of the KerbCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallKerbFinalizeKeyAgreement.

https://go.microsoft.com/fwlink/?LinkId=90482
https://go.microsoft.com/fwlink/?LinkId=90482

42 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 struct
 {
 KEY_AGREEMENT_HANDLE* KeyAgreementHandle;
 ULONG KerbEType;
 ULONG RemoteNonceLen;
 [size_is(RemoteNonceLen)] PBYTE RemoteNonce;
 ULONG X509PublicKeyLen;
 [size_is(X509PublicKeyLen)] PBYTE X509PublicKey;
 } FinalizeKeyAgreement;

KeyAgreementHandle: A pointer to a KEY_AGREEMENT_HANDLE type that contains the key
agreement to be finished.

KerbEType: A ULONG that indicates the Kerberos encryption type used for encryption. Kerberos
parameters are documented in [KERB-PARAM].

RemoteNonceLen: A ULONG that indicates the byte length of RemoteNonce array field.

RemoteNonce: A byte array that contains the nonce provided by the remote end of the key

agreement.

X509PublicKeyLen: A ULONG that indicates the byte length of X509PublicKey array field.

X509PublicKey: A byte array that contains the big-endian server public key.

When populating this field of the KerbCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallKerbFinalizeKeyAgreement.

 struct
 {
 KERB_RPC_ENCRYPTION_KEY* SharedKey;
 } FinalizeKeyAgreement;

SharedKey: A pointer to a KERB_RPC_ENCRYPTION_KEY structure that contains the resulting key

from the agreement.

2.2.2.2 NTLM Messages

NTLM calls are formatted as NtlmCredIsoRemoteInput objects, and responses are formatted as
NtlmCredIsoRemoteOutput objects (section 2.2.1.3.8). The structures, as defined in the IDL, are

made primarily of unions. In this way, the single NtlmCredIsoRemoteInput and
NtlmCredIsoRemoteOutput structure types represent multiple Input and Output message pairs as
documented in the following sections.

2.2.2.2.1 NegotiateVersion

The NegotiateVersion structure is used to negotiate the protocol version that the NTLM packages on

the CredSSP server and CredSSP client will use to communicate. The server sends the maximum

version it supports. The client replies with the version that will actually be used. It SHOULD be called
before any other calls are made. As the protocol currently has only one version, this maximum MUST
be zero.

When populating this field of the NtlmCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallNtlmNegotiateVersion.

 struct
 {
 ULONG MaxSupportedVersion;

https://go.microsoft.com/fwlink/?LinkId=808077

43 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 } NegotiateVersion;

MaxSupportedVersion: A ULONG that indicates the highest protocol version the CredSSP server
supports. Note that this currently MUST be zero.

When populating this field of the NtlmCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallNtlmNegotiateVersion.

 struct
 {
 ULONG VersionToUse;
 } NegotiateVersion;

VersionToUse: A ULONG that indicates the protocol version that will be used for future exchanges.
Note that this currently MUST be zero.

2.2.2.2.2 Lm20GetNtlm3ChallengeResponse

The Lm20GetNtlm3ChallengeResponse structure is used to calculate the responses and session
keys to generate the NT and LM response for use in the NTLM v2 protocol as specified in [MS-NLMP]
section 3.3.2.

When populating this field of the NtlmCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallNtlmLm20GetNtlm3ChallengeResponse.

 struct
 {
 PMSV1_0_REMOTE_ENCRYPTED_SECRETS Credential;
 PRPC_UNICODE_STRING UserName;
 PRPC_UNICODE_STRING LogonDomainName;
 PRPC_UNICODE_STRING ServerName;
 UCHAR ChallengeToClient[MSV1_0_CHALLENGE_LENGTH];
 } Lm20GetNtlm3ChallengeResponse;

Credential: A pointer to an MSV1_0_REMOTE_ENCRYPTED_SECRETS structure (section
2.2.1.3.6) that contains the credential from which to generate an NTLM v2 response and session
keys.

UserName: A pointer to an RPC_UNICODE_STRING structure that contains the user name
corresponding to the specified credential.

LogonDomainName: A pointer to an RPC_UNICODE_STRING structure that contains the domain

name for the specified credential.

ServerName: A pointer to an RPC_UNICODE_STRING structure that contains the host name of the
server from which this challenge originated.

ChallengeToClient: A UCHAR array of MSV1_0_CHALLENGE_LENGTH (8) size that contains the
server-generated NTLM challenge data sent to the client.

When populating this field of the NtlmCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallNtlmLm20GetNtlm3ChallengeResponse.

 struct
 {
 USHORT Ntlm3ResponseLength;
 [size_is(Ntlm3ResponseLength)] BYTE *Ntlm3Response;
 MSV1_0_LM3_RESPONSE Lm3Response;

%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4

44 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 USER_SESSION_KEY UserSessionKey;
 LM_SESSION_KEY LmSessionKey;
 } Lm20GetNtlm3ChallengeResponse;

Ntlm3ResponseLength: A USHORT that indicates the length of the Ntlm3Response buffer field.

Ntlm3Response: A BYTE buffer containing the generated response to the provided challenge, as
specified by [MS-NLMP].

Lm3Response: An MSV1_0_LM3_RESPONSE structure (section 2.2.1.3.3) that contains the
generated LMv2 response.

UserSessionKey: A USER_SESSION_KEY structure (section 2.2.1.3.4) that contains the generated
NTv2 session key.

LmSessionKey: An LM_SESSION_KEY type that indicates the generated LMv2 session key.

2.2.2.2.3 CalculateNtResponse

The CalculateNtResponse structure is used to calculate the NT Response to this challenge using the
provided challenge and credentials for use in the NTLM v1 protocol as specified in [MS-NLMP] section
3.3.1.

When populating this field of the NtlmCredIsoRemoteInput structure, the CallId field MUST be set

to RemoteCallNtlmCalculateNtResponse.

 struct
 {
 PNT_CHALLENGE NtChallenge;
 PMSV1_0_REMOTE_ENCRYPTED_SECRETS Credential;
 } CalculateNtResponse;

NtChallenge: A pointer to an NT_CHALLENGE structure (section 2.2.1.3.1) that contains the

challenge sent by the server.

Credential: A pointer to an MSV1_0_REMOTE_ENCRYPTED_SECRETS structure (section
2.2.1.3.6) that contains the NTLM credentials from which to generate a response.

When populating this field of the NtlmCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallNtlmCalculateNtResponse.

 struct
 {
 NT_RESPONSE NtResponse;
 } CalculateNtResponse;

NtResponse: An NT_RESPONSE structure that contains The NTLMv1 response, generated as

specified in [MS-NLMP] section 3.3.1.

2.2.2.2.4 CalculateUserSessionKeyNt

The CalculateUserSessionKeyNt structure is used to calculate a session key using the provided
response and credentials for use in the NTLM v1 protocol as specified in [MS-NLMP] section 3.3.1.

When populating this field of the NtlmCredIsoRemoteInput structure, the CallId field MUST be set
to RemoteCallNtlmCalculateUserSessionKeyNt.

%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4

45 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 struct
 {
 PNT_RESPONSE NtResponse;
 PMSV1_0_REMOTE_ENCRYPTED_SECRETS Credential;
 } CalculateUserSessionKeyNt;

NtResponse: A pointer to an NT_RESPONSE structure that contains the response sent during NTLM
v1 authentication.

Credential: A pointer to an MSV1_0_REMOTE_ENCRYPTED_SECRETS structure (section
2.2.1.3.6) that contains the NTLM credentials used to generate the response.

When populating this field of the NtlmCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallNtlmCalculateUserSessionKeyNt.

 struct
 {
 USER_SESSION_KEY UserSessionKey;
 } CalculateUserSessionKeyNt;

UserSessionKey: A USER_SESSION_KEY structure that contains the session key, calculated as
specified in [MS-NLMP] section 3.3.1.

2.2.2.2.5 CompareCredentials

The CompareCredentials structure is used to decrypt and compare the provided credentials to
determine which fields match and if the credentials are identical.

When populating this field of the NtlmCredIsoRemoteInput structure, the CallId field MUST be set

to RemoteCallNtlmCompareCredentials.

 struct
 {
 PMSV1_0_REMOTE_ENCRYPTED_SECRETS LhsCredential;
 PMSV1_0_REMOTE_ENCRYPTED_SECRETS RhsCredential;
 } CompareCredentials;

LhsCredential: A pointer to an MSV1_0_REMOTE_ENCRYPTED_SECRETS structure that contains

the first credential to be compared.

RhsCredential: A pointer to an MSV1_0_REMOTE_ENCRYPTED_SECRETS structure that contains
the second credential to be compared.

When populating this field of the NtlmCredIsoRemoteOutput structure, the CallId field MUST be
set to RemoteCallNtlmCompareCredentials.

 struct
 {
 BOOL AreNtOwfsEqual;
 BOOL AreLmOwfsEqual;
 BOOL AreShaOwfsEqual;
 } CompareCredentials;

AreNtOwfsEqual: A BOOL. If TRUE, indicates that the NTOWF values in the credentials matched.

AreLmOwfsEqual: A BOOL. If TRUE, indicates that the LMOWF values in the credentials matched.

46 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

AreShaOwfsEqual: A BOOL. If TRUE, indicates that the SHAOWF values in the credentials matched.

47 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

None.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 RemoteCallKerbNegotiateVersion

The RemoteCallKerbNegotiateVersion call uses the Kerberos NegotiateVersion message (section
2.2.2.1.1) to negotiate the protocol version that the Kerberos packages on the CredSSP server and
CredSSP client will use to communicate. It SHOULD be called before any other calls are made. As the
protocol currently has only one version, this maximum MUST be zero.

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput
object to the CredSSP client. The CallId field MUST be set to RemoteCallKerbNegotiateVersion, and

the MaxSupportedVersion member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
KerbCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallKerbNegotiateVersion, and the VersionToUse member of the union MUST be populated.

3.1.5.2 RemoteCallKerbBuildAsReqAuthenticator

The RemoteCallKerbBuildAsReqAuthenticator call uses the Kerberos BuildAsReqAuthenticator
message (section 2.2.2.1.2) to create an authenticator for inclusion in a KRB_AS_REQ message to the
KDC.

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput

object to the CredSSP client. The CallId field MUST be set to

RemoteCallKerbBuildAsReqAuthenticator, and the BuildAsReqAuthenticator member of the union
MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
KerbCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallKerbBuildAsReqAuthenticator, and the BuildAsReqAuthenticator member of the
union MUST be populated.

48 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.5.3 RemoteCallKerbVerifyServiceTicket

The RemoteCallKerbVerifyServiceTicket call uses the Kerberos VerifyServiceTicket message
(section 2.2.2.1.3) to decrypt and validate a service ticket reply from the KDC. See [RFC4120] section

5.3

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput
object to the CredSSP client. The CallId field MUST be set to RemoteCallKerbVerifyServiceTicket,
and the VerifyServiceTicket member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
KerbCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallKerbVerifyServiceTicket, and the VerifyServiceTicket member of the union MUST be

populated.

3.1.5.4 RemoteCallKerbCreateApReqAuthenticator

The RemoteCallKerbCreateApReqAuthenticator call uses the Kerberos CreateApReqAuthenticator

message (section 2.2.2.1.4) to process a message exchange that creates an authenticator for
inclusion in a KRB_AP_REQ message ([RFC4120] section 5.5.1).

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput
object to the CredSSP client. The CallId field MUST be set to
RemoteCallKerbCreateApReqAuthenticator, and the CreateApReqAuthenticator member of the
union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a

KerbCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallKerbCreateApReqAuthenticator, and the CreateApReqAuthenticator member of the
union MUST be populated.

3.1.5.5 RemoteCallKerbDecryptApReply

The RemoteCallKerbDecryptApReply call uses the Kerberos DecryptApReply message (section
2.2.2.1.5) to decrypt the encrypted part of a KRB_AP_REP message ([RFC4120] section 5.5.2).

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput
object to the CredSSP client. The CallId field MUST be set to RemoteCallKerbDecryptApReply, and
the DecryptApReply member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a

KerbCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallKerbDecryptApReply, and the DecryptApReply member of the union MUST be populated.

3.1.5.6 RemoteCallKerbUnpackKdcReplyBody

The RemoteCallKerbUnpackKdcReplyBody call uses the Kerberos UnpackKdcReplyBody message

(section 2.2.2.1.6) to decrypt the encrypted part of a KRB_KDC_REP message ([RFC4120] section

5.4.2). The type of reply indicated by the PDU MUST be zero. The KeyUsage field allows the caller to
specify either the AS_REP (3) or TGS_REP (8) key derivation types.<5>

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput
object to the CredSSP client. The CallId field MUST be set to RemoteCallKerbUnpackKdcReplyBody,
and the UnpackKdcReplyBody member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
KerbCredIsoRemoteOutput object. The CallId field MUST be set to

https://go.microsoft.com/fwlink/?LinkId=90458
https://go.microsoft.com/fwlink/?LinkId=90458
https://go.microsoft.com/fwlink/?LinkId=90458
https://go.microsoft.com/fwlink/?LinkId=90458

49 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

RemoteCallKerbUnpackKdcReplyBody, and the UnpackKdcReplyBody member of the union MUST be
populated.

3.1.5.7 RemoteCallKerbComputeTgsChecksum

The RemoteCallKerbComputeTgsChecksum call uses the Kerberos ComputeTgsChecksum message
(section 2.2.2.1.7) to create a keyed checksum over a KRB_KDC_REQ message, which is required for
proving authenticity of client requests for a service ticket.

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput

object to the CredSSP client. The CallId field MUST be set to RemoteCallKerbComputeTgsChecksum,
and the ComputeTgsChecksum member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
KerbCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallKerbComputeTgsChecksum, and the ComputeTgsChecksum member of the union MUST
be populated.

3.1.5.8 RemoteCallKerbBuildEncryptedAuthData

The RemoteCallKerbBuildEncryptedAuthData call uses the Kerberos BuildEncryptedAuthData
message (section 2.2.2.1.8) to take a PA-DATA sequence ([RFC4120] section 5.2.7) and encrypt it
using a shared key.

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput

object to the CredSSP client. The CallId field MUST be set to
RemoteCallKerbBuildEncryptedAuthData, and the BuildEncryptedAuthData member of the union
MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
KerbCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallKerbBuildEncryptedAuthData, and the BuildEncryptedAuthData member of the union

MUST be populated.

3.1.5.9 RemoteCallKerbPackApReply

The RemoteCallKerbPackApReply call uses the Kerberos PackApReply message (section 2.2.2.1.9)
to take a KRB_AP_REP, EncAPRepPart, and key. The EncAPRepPart is encrypted using the key, then

added to the KRB_AP_REP. The resulting Kerberos AP reply is then DER-encoded and returned via an
output message. [RFC4120] section 3.2 defines the client/server authentication exchange.

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput
object to the CredSSP client. The CallId field MUST be set to RemoteCallKerbPackApReply, and the
PackApReply member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
KerbCredIsoRemoteOutput object. The CallId field MUST be set to RemoteCallKerbPackApReply,

and the PackApReply member of the union MUST be populated.

3.1.5.10 RemoteCallKerbHashS4UPreauth

The RemoteCallKerbHashS4UPreauth call uses the Kerberos HashS4UPreauth message (section

2.2.2.1.10) to perform a keyed hash of the S4U pre-authentication data of the type PA-FOR_USER
([KERB-PARAM]). The result is used for integrity checks on the ticket request by the KDC.

https://go.microsoft.com/fwlink/?LinkId=90458
https://go.microsoft.com/fwlink/?LinkId=90458
https://go.microsoft.com/fwlink/?LinkId=808077

50 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput
object to the CredSSP client. The CallId field MUST be set to RemoteCallKerbHashS4UPreauth, and

the HashS4UPreauth member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a

KerbCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallKerbHashS4UPreauth, and the HashS4UPreauth member of the union MUST be
populated.

3.1.5.11 RemoteCallKerbSignS4UPreauthData

The RemoteCallKerbSignS4UPreauthData call uses the Kerberos SignS4UPreauthData message
(section 2.2.2.1.11) to perform a keyed hash of the S4U pre-authentication data of the type PA-FOR-
X509-USER ([KERB-PARAM]). The result is used for integrity checks on the ticket request by the KDC.

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput
object to the CredSSP client. The CallId field MUST be set to RemoteCallKerbSignS4UPreauthData,

and the SignS4UPreauthData member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
KerbCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallKerbSignS4UPreauthData, and the SignS4UPreauthData member of the union MUST be
populated.

3.1.5.12 RemoteCallKerbVerifyChecksum

The RemoteCallKerbVerifyChecksum call uses the Kerberos VerifyChecksum message (section
2.2.2.1.12) to take input data, a key, and an expected checksum as inputs. The checksum operation is
then performed over the input data and key, and compared with the expected value. The output
message indicates whether the checksum is a match or not.

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput

object to the CredSSP client. The CallId field MUST be set to RemoteCallKerbVerifyChecksum, and
the VerifyChecksum member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
KerbCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallKerbVerifyChecksum, and the VerifyChecksum member of the union MUST be populated.

3.1.5.13 RemoteCallKerbDecryptPacCredentials

The RemoteCallKerbDecryptPacCredentials call uses the Kerberos DecryptPacCredentials message
(section 2.2.2.1.13) to decrypt the supplemental credentials that are returned in the PAC [MS-PAC] by
the KDC. The credentials are then re-encrypted with a connection-specific key, making them usable
only with the same CredSSP client that decrypted them. This guards against attackers on the
CredSSP server who may be scanning memory for such credentials.

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput

object to the CredSSP client. The CallId field MUST be set to RemoteCallKerbDecryptPacCredentials,
and the DecryptPacCredentials member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
KerbCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallKerbDecryptPacCredentials, and the DecryptPacCredentials member of the union MUST

be populated.

https://go.microsoft.com/fwlink/?LinkId=808077
%5bMS-PAC%5d.pdf#Section_166d8064c86341e19c23edaaa5f36962

51 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.5.14 RemoteCallKerbCreateECDHKeyAgreement

The RemoteCallKerbCreateECDHKeyAgreement call uses the Kerberos CreateECDHKeyAgreement
message (section 2.2.2.1.14) to create a key handle to be used in Kerberos PKINIT [RFC4556]. The

key agreement will use elliptic curve cryptography as defined in [RFC5349].

The output KeyAgreementHandle is connection-specific, and is only valid for use with the same
CredSSP client that created the handle. This ensures that the key agreement will only be used by the
CredSSP server that requested the handle, and only for a single negotiated session [MS-CSSP].

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput
object to the CredSSP client. The CallId field MUST be set to
RemoteCallKerbCreateECDHKeyAgreement, and the CreateECDHKeyAgreement member of the

union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
KerbCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallKerbCreateECDHKeyAgreement, and the CreateECDHKeyAgreement member of the

union MUST be populated.

3.1.5.15 RemoteCallKerbCreateDHKeyAgreement

The RemoteCallKerbCreateDHKeyAgreement call uses the Kerberos CreateDHKeyAgreement
message (section 2.2.2.1.15) to create a key handle to be used in Kerberos PKINIT. The key
agreement will use Diffie-Hellman, as defined in [RFC4556].

The outputs of this message exchange are suitable for building a SubjectPublicKeyInfo structure

([RFC3280]) for inclusion in a Kerberos PKINIT message exchange ([RFC4556]).

The output KeyAgreementHandle is connection-specific and is only valid for use with the same
CredSSP client which created the handle. This ensures that the key agreement will be used only by
the CredSSP server that requested the handle, and only for a single negotiated session [MS-CSSP].

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput
object to the CredSSP client. The CallId field MUST be set to RemoteCallKerbCreateDHKeyAgreement,
and the CreateDHKeyAgreement member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
KerbCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallKerbCreateDHKeyAgreement, and the CreateDHKeyAgreement member of the union
MUST be populated.

3.1.5.16 RemoteCallKerbDestroyKeyAgreement

The RemoteCallKerbDestroyKeyAgreement call uses the Kerberos DestroyKeyAgreement message
(section 2.2.2.1.16) to clean up system resources associated with a previously created DH key
agreement. CredSSP servers that use either RemoteCallKerbCreateDHKeyAgreement or
RemoteCallKerbCreateECDHKeyAgreement SHOULD perform a

RemoteCallKerbDestroyKeyAgreement message exchange to ensure no resources are leaked.

Otherwise, the key agreement resources will be leaked on CredSSP client until the connection is
broken.

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput
object to the CredSSP client. The CallId field MUST be set to RemoteCallKerbDestroyKeyAgreement,
and the DestroyKeyAgreement member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
KerbCredIsoRemoteOutput object. The CallId field MUST be set to

https://go.microsoft.com/fwlink/?LinkId=90482
https://go.microsoft.com/fwlink/?LinkId=129652
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30
https://go.microsoft.com/fwlink/?LinkId=90482
https://go.microsoft.com/fwlink/?LinkId=90414
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30

52 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

RemoteCallKerbDestroyKeyAgreement, and the DestroyKeyAgreement member of the union MUST
be populated.

3.1.5.17 RemoteCallKerbKeyAgreementGenerateNonce

The RemoteCallKerbKeyAgreementGenerateNonce call uses the Kerberos
KeyAgreementGenerateNonce message (section 2.2.2.1.17) to generate a nonce value for inclusion in
the DHNonce in a Kerberos PKINIT message exchange ([RFC4556] Section 3.2.1).

To perform this message exchange, the CredSSP server MUST send a KerbCredIsoRemoteInput

object to the CredSSP client. The CallId field MUST be set to
RemoteCallKerbKeyAgreementGenerateNonce, and the KeyAgreementGenerateNonce member of
the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
KerbCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallKerbKeyAgreementGenerateNonce, and the KeyAgreementGenerateNonce member of

the union MUST be populated.

3.1.5.18 RemoteCallKerbFinalizeKeyAgreement

The RemoteCallKerbFinalizeKeyAgreement call uses the Kerberos FinalizeKeyAgreement message
(section 2.2.2.1.18) to perform the final step in a key agreement operation, resulting in a shared
secret between the Kerberos client and the KDC. Upon completion, the KeyAgreementHandle used in

this message exchange is no longer valid in any further message exchanges.

The resulting SharedKey from this exchange is only valid for use with same CredSSP session [MS-
CSSP] connection over which the key was created.

To perform this message exchange, the CredSSP server must send a KerbCredIsoRemoteInput
object to the CredSSP client. The CallId field MUST be set to RemoteCallKerbFinalizeKeyAgreement,
and the FinalizeKeyAgreement member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
KerbCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallKerbFinalizeKeyAgreement, and the FinalizeKeyAgreement member of the union MUST
be populated.

3.1.5.19 RemoteCallNtlmNegotiateVersion

The RemoteCallNtlmNegotiateVersion call uses the NTLM NegotiateVersion message (section
2.2.2.2.1) to negotiate the protocol version that the NTLM packages on the CredSSP server and
CredSSP client will use to communicate. It SHOULD be called before any other calls are made. As the
protocol currently has only one version, this maximum MUST be zero.

To perform this message exchange, the CredSSP server MUST send a NtlmCredIsoRemoteInput
object to the CredSSP client. The CallId field MUST be set to RemoteCallNtlmNegotiateVersion, and

the MaxSupportedVersion member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
NtlmCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallNtlmNegotiateVersion, and the VersionToUse member of the union MUST be populated.

3.1.5.20 RemoteCallNtlmLm20GetNtlm3ChallengeResponse

The RemoteCallNtlmLm20GetNtlm3ChallengeResponse call uses the NTLM
Lm20GetNtlm3ChallengeResponse message (section 2.2.2.2.2) to perform the NTLM v2 calculations as

https://go.microsoft.com/fwlink/?LinkId=90482
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30

53 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

defined in [MS-NLMP] section 3.3.2. It uses the provided credentials, challenge, and information about
the user and server involved to calculate the responses and session keys for use in the NTLM v2

protocol.

To perform this message exchange, the CredSSP server MUST send a NtlmCredIsoRemoteInput

object to the CredSSP client. The CallId field MUST be set to
RemoteCallNtlmLm20GetNtlm3ChallengeResponse, and the
NtlmLm20GetNtlm3ChallengeResponse member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
NtlmCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallNtlmLm20GetNtlm3ChallengeResponse, and the
NtlmLm20GetNtlm3ChallengeResponse member of the union MUST be populated.

3.1.5.21 RemoteCallNtlmCalculateNtResponse

The RemoteCallNtlmCalculateNtResponse call uses the NTLM CalculateNtResponse message

(section 2.2.2.2.3) to calculate the NT Response for use in the NTLM v1 protocol as defined in [MS-

NLMP] section 3.3.1 using the provided challenge and credentials.

To perform this message exchange, the CredSSP server MUST send a NtlmCredIsoRemoteInput
object to the CredSSP client. The CallId field MUST be set to RemoteCallNtlmCalculateNtResponse,
and the NtlmCalculateNtResponse member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a
NtlmCredIsoRemoteOutput object. The CallId MUST be set to
RemoteCallNtlmCalculateNtResponse, and the NtlmCalculateNtResponse member of the union

MUST be populated.

3.1.5.22 RemoteCallNtlmCalculateUserSessionKeyNt

The RemoteCallNtlmCalculateUserSessionKeyNt call uses the NTLM CalculateUserSessionKeyNt

message (section 2.2.2.2.4) to calculate the session key for use in the NTLM v1 protocol as defined in
[MS-NLMP] section 3.3.1 using the provided response and credentials.

To perform this message exchange, the CredSSP server MUST send a NtlmCredIsoRemoteInput
object to the CredSSP client. The CallId field MUST be set to
RemoteCallNtlmCalculateUserSessionKeyNt, and the NtlmCalculateUserSessionKeyNt member of
the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a

NtlmCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallNtlmCalculateUserSessionKeyNt, and the NtlmCalculateUserSessionKeyNt member of
the union MUST be populated.

3.1.5.23 RemoteCallNtlmCompareCredentials

The RemoteCallNtlmCompareCredentials call uses the NTLM CompareCredentials message

(section 2.2.2.2.5) to decrypt and compare the provided credentials to determine which fields match.

To perform this message exchange, the CredSSP server MUST send a NtlmCredIsoRemoteInput
object to the CredSSP client. The CallId field MUST be set to RemoteCallNtlmCompareCredentials,
and the NtlmCompareCredentials member of the union MUST be populated.

To reply to the preceding input message, the CredSSP client MUST respond with a

NtlmCredIsoRemoteOutput object. The CallId field MUST be set to
RemoteCallNtlmCompareCredentials, and the NtlmCompareCredentials member of the union MUST
be populated.

%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4

54 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

55 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4 Protocol Examples

4.1 Requesting a Service Ticket

The following diagram demonstrates use of the RDPEAR protocol in requesting a service ticket over

RDP.

Figure 1: Sequence diagram for requesting a service ticket over RDP using RDPEAR

Message Group Description References

Establish
RDP Session

Establish the initial RDP connection using
CredSSP. The TGT and its associated encrypted
session key are transmitted in a
KERB_TICKET_LOGON structure.

[MS-RDPBCGR]

[MS-CSSP]

[KERB-TICKET-LOGON]

Prepare TGS_REQ Prepare a service ticket request for processing
by the domain controller.

[MS-KILE]

[MS-RDPEAR] section 3.1.5.8

[MS-RDPEAR] section 3.1.5.7

[MS-RDPEAR] section 3.1.5.4

TSG_REQ Exchange Request the service ticket from the KDC. [MS-KILE]

Decrypt & validate
service ticket

Decrypt the service ticket reply from the KDC
using the encrypted session key that was
initially sent to the RDP server in message (2).

[MS-RDPEAR] section 3.1.5.6

The following steps describe how this protocol is used in requesting a service ticket:

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30
https://go.microsoft.com/fwlink/?LinkId=808713
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9

56 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1. A CredSSP client connects to a RDP server.

2. The TGT for the authenticated user is sent to the server along with an encrypted TGT session
key, inside of a KERB_TICKET_LOGON structure [MS-CSSP].

3. The RDP session is established and the TGT sent in step 2 is ready for use.

4. The RDP server requests authentication data for the target service.

5. The RDP client replies with the requested authentication data.

6. The RDP server requests that the client calculate an HMAC over the TGS_REQ [RFC4120],
which will be sent to the domain controller.

7. The RDP client replies with the requested HMAC value.

8. The RDP server requests an authenticator to insert into the TGS_REQ padata [RFC4120].

9. The RDP client replies with the requested authenticator value.

10. The RDP server requests a service ticket from the KDC.

11. The KDC replies with the service ticket. This reply is partially encrypted.

12. The RDP server requests that the TGS_REP be decrypted and validated.

13. The RDP client replies with the decrypted data, including the session key.

https://go.microsoft.com/fwlink/?LinkId=90458

57 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

58 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

6 Appendix A: Full IDL

6.1 Appendix A.1: RemoteGuardCallIds.H

The header file containing the RemoteGuardCallId enumeration is as follows:

 typedef enum _RemoteGuardCallId
 {
 RemoteCallMinimum = 0,

 // start generic calls - not tied to a specific SSP
 RemoteCallGenericMinimum = 0,
 RemoteCallGenericReserved = 0,
 RemoteCallGenericMaximum = 0xff,
 // end general calls

 // Start Kerberos remote calls
 RemoteCallKerbMinimum = 0x100,
 RemoteCallKerbNegotiateVersion = 0x100,
 RemoteCallKerbBuildAsReqAuthenticator,
 RemoteCallKerbVerifyServiceTicket,
 RemoteCallKerbCreateApReqAuthenticator,
 RemoteCallKerbDecryptApReply,
 RemoteCallKerbUnpackKdcReplyBody,
 RemoteCallKerbComputeTgsChecksum,
 RemoteCallKerbBuildEncryptedAuthData,
 RemoteCallKerbPackApReply,
 RemoteCallKerbHashS4UPreauth,
 RemoteCallKerbSignS4UPreauthData,
 RemoteCallKerbVerifyChecksum,
 Reserved1,
 Reserved2,
 Reserved3,
 Reserved4,
 Reserved5,
 Reserved6,
 Reserved7,
 RemoteCallKerbDecryptPacCredentials,
 RemoteCallKerbCreateECDHKeyAgreement,
 RemoteCallKerbCreateDHKeyAgreement,
 RemoteCallKerbDestroyKeyAgreement,
 RemoteCallKerbKeyAgreementGenerateNonce,
 RemoteCallKerbFinalizeKeyAgreement,
 RemoteCallKerbMaximum = 0x1ff,
 // End Kerberos remote calls

 // Start NTLM remote calls
 RemoteCallNtlmMinimum = 0x200,
 RemoteCallNtlmNegotiateVersion = 0x200,
 RemoteCallNtlmLm20GetNtlm3ChallengeResponse,
 RemoteCallNtlmCalculateNtResponse,
 RemoteCallNtlmCalculateUserSessionKeyNt,
 RemoteCallNtlmCompareCredentials,

 RemoteCallNtlmMaximum = 0x2ff,
 // End NTLM remote calls

 RemoteCallMaximum = 0x2ff,

 RemoteCallInvalid = 0xffff // This enumeration MUST fit in 16 bits
 } RemoteGuardCallId;

59 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

6.2 Appendix A.2: Kerberos.IDL

The full syntax of the Kerberos message types IDL is as follows:

 import "ms-dtyp.idl";

 #include "ms-rdpear_remoteguardcallids.h"

 // Various types used by the Input/Output structs futher down below
 typedef LONG64 KEY_AGREEMENT_HANDLE;

 typedef LONG KERBERR, *PKERBERR; // [RFC4120], section 7.5.9

 static const KEY_AGREEMENT_HANDLE KEY_AGREEMENT_HANDLE_INVALID = -1;

 typedef struct _KERB_ASN1_DATA {
 ULONG Pdu;
 ULONG32 Length;
 [size_is(Length)] PUCHAR Asn1Buffer;
 } KERB_ASN1_DATA;

 typedef struct _KERB_RPC_OCTET_STRING {
 ULONG length;
 [size_is(length)] PUCHAR value;
 } KERB_RPC_OCTET_STRING;

 typedef struct _KERB_RPC_INTERNAL_NAME {
 SHORT NameType;
 USHORT NameCount;
 [size_is(NameCount)] RPC_UNICODE_STRING* Names;
 } KERB_RPC_INTERNAL_NAME;

 typedef struct _KERB_RPC_PA_DATA
 {
 INT32 preauth_data_type;
 KERB_RPC_OCTET_STRING preauth_data;
 } KERB_RPC_PA_DATA;

 typedef struct _KERB_RPC_CRYPTO_API_BLOB
 {
 DWORD cbData;
 [size_is(cbData)] PBYTE pbData;
 } KERB_RPC_CRYPTO_API_BLOB;

 typedef struct _SECPKG_SUPPLEMENTAL_CRED {
 RPC_UNICODE_STRING PackageName;
 ULONG CredentialSize;
 [size_is(CredentialSize)] PUCHAR Credentials;
 } SECPKG_SUPPLEMENTAL_CRED, *PSECPKG_SUPPLEMENTAL_CRED;

 typedef struct _SECPKG_SUPPLEMENTAL_CRED_ARRAY {
 ULONG CredentialCount;
 [size_is(CredentialCount)] SECPKG_SUPPLEMENTAL_CRED Credentials[*];
 } SECPKG_SUPPLEMENTAL_CRED_ARRAY, *PSECPKG_SUPPLEMENTAL_CRED_ARRAY;

 typedef struct _KERB_RPC_ENCRYPTION_KEY {
 void* reserved1;
 long reserved2;
 KERB_RPC_OCTET_STRING reserved3;
 } KERB_RPC_ENCRYPTION_KEY, *PKERB_RPC_ENCRYPTION_KEY;

 // Objects of this type encapsulate input parameters for a remote Kerberos
 // credential isolation server. Optional values, which may be null, are indicated
 // with a trailing “optional” comment.
 typedef struct _KerbCredIsoRemoteInput
 {
 // CallId determines the call being sent over the wire.
 RemoteGuardCallId CallId;

60 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 // Input paramters are held in a union so that each call can be sent
 // over the wire in the same type of KerbCredIsoRemoteInput structure.
 [switch_type(RemoteGuardCallId), switch_is(CallId)] union
 {
 [case(RemoteCallKerbNegotiateVersion)] struct
 {
 ULONG MaxSupportedVersion;
 } NegotiateVersion;

 // Create an AS_REQ message authenticator.
 [case(RemoteCallKerbBuildAsReqAuthenticator)] struct
 {
 KERB_RPC_ENCRYPTION_KEY* EncryptionKey;
 KERB_RPC_ENCRYPTION_KEY* ArmorKey; // optional
 PLARGE_INTEGER TimeSkew;
 } BuildAsReqAuthenticator;

 // Verify that the given service ticket is valid within the given skew.
 // The encrypted part of the reply data is decrypted for the caller.
 [case(RemoteCallKerbVerifyServiceTicket)] struct
 {
 KERB_ASN1_DATA* PackedTicket;
 KERB_RPC_ENCRYPTION_KEY* ServiceKey;
 PLARGE_INTEGER TimeSkew; // optional
 } VerifyServiceTicket;

 // Create an authenticator for an KRB_AP_REQ message.
 [case(RemoteCallKerbCreateApReqAuthenticator)] struct
 {
 KERB_RPC_ENCRYPTION_KEY* EncryptionKey;
 ULONG SequenceNumber;
 KERB_RPC_INTERNAL_NAME* ClientName;
 PRPC_UNICODE_STRING ClientRealm;
 PLARGE_INTEGER SkewTime;
 KERB_RPC_ENCRYPTION_KEY* SubKey; // optional
 KERB_ASN1_DATA* AuthData; // optional
 KERB_ASN1_DATA* GssChecksum; // optional
 ULONG KeyUsage;
 } CreateApReqAuthenticator;

 // Decrypt the encrypted part of an AP_REP.
 [case(RemoteCallKerbDecryptApReply)] struct
 {
 KERB_ASN1_DATA* EncryptedReply;
 KERB_RPC_ENCRYPTION_KEY* Key;
 } DecryptApReply;

 // Decrypt the encrypted part of a KRB_KDC_REP from the KDC. The type
 // of reply is indicated by the PDU – either encrypted AS_REPLY PDU or
 // encrypted TGS_REPLY PDU. Key usage allows the caller to specify either the
 // TGS or AS REP key derivation types. This is done to allow back-compatibility
 // with a previous server release which returned the wrong PDU for an AS_REP.
 [case(RemoteCallKerbUnpackKdcReplyBody)] struct
 {
 KERB_ASN1_DATA* EncryptedData;
 KERB_RPC_ENCRYPTION_KEY* Key;
 KERB_RPC_ENCRYPTION_KEY* StrengthenKey;
 ULONG Pdu;
 ULONG KeyUsage;
 } UnpackKdcReplyBody;

 // Calculate the MAC for a KRB_TGS_REQ. In RFC 4120 it is referred
 // to as a "Checksum" and thus the terminology is maintained.
 [case(RemoteCallKerbComputeTgsChecksum)] struct
 {
 KERB_ASN1_DATA* RequestBody;
 KERB_RPC_ENCRYPTION_KEY* Key;
 ULONG ChecksumType;
 } ComputeTgsChecksum;

61 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 // Encrypt the given authorization data which is to be included
 // within the request body of a message to be sent to the KDC.
 [case(RemoteCallKerbBuildEncryptedAuthData)] struct
 {
 ULONG KeyUsage;
 KERB_RPC_ENCRYPTION_KEY* Key;
 KERB_ASN1_DATA* PlainAuthData;
 } BuildEncryptedAuthData;

 // Pack up and encrypt a KRB_AP_REP message using the given session key.
 [case(RemoteCallKerbPackApReply)] struct
 {
 KERB_ASN1_DATA* Reply;
 KERB_ASN1_DATA* ReplyBody;
 KERB_RPC_ENCRYPTION_KEY* SessionKey;
 } PackApReply;

 // Create a MAC for S4U pre-authentication data to be include in a KRB_TGS_REQ
 // when requesting an S4U service ticket for another principal.
 [case(RemoteCallKerbHashS4UPreauth)] struct
 {
 KERB_ASN1_DATA* S4UPreauth;
 KERB_RPC_ENCRYPTION_KEY* Key;
 LONG ChecksumType;
 } HashS4UPreauth;

 // Create a MAC for S4U pre-authentication data that is for
 // certificate-based users. This pa-data is added to KRB_TGS_REQ
 // when requesting anS4U service ticket.
 [case(RemoteCallKerbSignS4UPreauthData)] struct
 {
 KERB_RPC_ENCRYPTION_KEY* Key;
 BOOL IsRequest;
 KERB_ASN1_DATA* UserId;
 PLONG ChecksumType;
 } SignS4UPreauthData;

 // Calculate a MAC from the given data and compare it to the given expected
 // value. Used to detect mismatches which may indicate tampering with
 // the PAC which is sent by the KDC to the client inside a KRB_KDC_REP.
 [case(RemoteCallKerbVerifyChecksum)] struct
 {
 KERB_RPC_ENCRYPTION_KEY* Key;
 ULONG ChecksumType;
 ULONG ExpectedChecksumSize;
 [size_is(ExpectedChecksumSize)] const UCHAR* ExpectedChecksum;
 ULONG DataToCheckSize;
 [size_is(DataToCheckSize)] const UCHAR* DataToCheck;
 } VerifyChecksum;

 // Decrypt the supplemental credentials which are contained
 // with the PAC sent back by the KDC in a KRB_KDC_REP.
 [case(RemoteCallKerbDecryptPacCredentials)] struct
 {
 KERB_RPC_ENCRYPTION_KEY* Key;
 ULONG Version;
 ULONG EncryptionType;
 ULONG DataSize;
 [size_is(DataSize)] UCHAR* Data;
 } DecryptPacCredentials;

 // Create a new ECDH key agreement handle with the given ECC key bit length
 [case(RemoteCallKerbCreateECDHKeyAgreement)] struct
 {
 ULONG KeyBitLen;
 } CreateECDHKeyAgreement;

 [case(RemoteCallKerbCreateDHKeyAgreement)] struct

62 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 {
 // This [case(RemoteCallKerb)] struct has no input parameters, but for
 // simplicity and consistency with the other parameters, let's define
 // this as a [case(RemoteCallKerb)] struct with a single ignored value.
 UCHAR Ignored;
 } CreateDHKeyAgreement;

 // Destroy a key agreement handle which was previously constructed
 // with either CreateECDHKeyAgreement or CreateDHKeyAgreement.
 [case(RemoteCallKerbDestroyKeyAgreement)] struct
 {
 KEY_AGREEMENT_HANDLE KeyAgreementHandle;
 } DestroyKeyAgreement;

 // Generate a nonce for use with the given key agreement. This nonce is part
 // of the Diffie-Hellman agreement that is part of Kerberos PKINIT (RFC 4556)
 [case(RemoteCallKerbKeyAgreementGenerateNonce)] struct
 {
 KEY_AGREEMENT_HANDLE KeyAgreementHandle;
 } KeyAgreementGenerateNonce;

 // Finish a Kerberos PKINIT (RFC 4556) key agreement.
 [case(RemoteCallKerbFinalizeKeyAgreement)] struct
 {
 KEY_AGREEMENT_HANDLE* KeyAgreementHandle;
 ULONG KerbEType;
 ULONG RemoteNonceLen;
 [size_is(RemoteNonceLen)] PBYTE RemoteNonce;
 ULONG X509PublicKeyLen;
 [size_is(X509PublicKeyLen)] PBYTE X509PublicKey;
 } FinalizeKeyAgreement;
 };
 } KerbCredIsoRemoteInput, *PKerbCredIsoRemoteInput;

 // Objects of this type contain the output which corresponds to one of the
 // inputs from the above KerbCredIsoRemoteInput structure. Please see the
 // input type in the above union for an explanation of the call.
 typedef struct _KerbCredIsoRemoteOutput
 {
 RemoteGuardCallId CallId;
 NTSTATUS Status;
 [switch_type(RemoteGuardCallId), switch_is(CallId)] union
 {
 [case(RemoteCallKerbNegotiateVersion)] struct
 {
 ULONG VersionToUse;
 } NegotiateVersion;

 [case(RemoteCallKerbBuildAsReqAuthenticator)] struct
 {
 LONG PreauthDataType;
 KERB_RPC_OCTET_STRING PreauthData;
 } BuildAsReqAuthenticator;

 [case(RemoteCallKerbVerifyServiceTicket)] struct
 {
 KERB_ASN1_DATA DecryptedTicket;
 LONG KerbProtocolError;
 } VerifyServiceTicket;

 [case(RemoteCallKerbCreateApReqAuthenticator)] struct
 {
 LARGE_INTEGER AuthenticatorTime;
 KERB_ASN1_DATA Authenticator;
 LONG KerbProtocolError;
 } CreateApReqAuthenticator;

 [case(RemoteCallKerbDecryptApReply)] struct
 {

63 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 KERB_ASN1_DATA ApReply;
 } DecryptApReply;

 [case(RemoteCallKerbUnpackKdcReplyBody)] struct
 {
 LONG KerbProtocolError;
 KERB_ASN1_DATA ReplyBody;
 } UnpackKdcReplyBody;

 [case(RemoteCallKerbComputeTgsChecksum)] struct
 {
 KERB_ASN1_DATA Checksum;
 } ComputeTgsChecksum;

 [case(RemoteCallKerbBuildEncryptedAuthData)] struct
 {
 KERB_ASN1_DATA EncryptedAuthData;
 } BuildEncryptedAuthData;

 [case(RemoteCallKerbPackApReply)] struct
 {
 ULONG PackedReplySize;
 [size_is(PackedReplySize)] PUCHAR PackedReply;
 } PackApReply;

 [case(RemoteCallKerbHashS4UPreauth)] struct
 {
 PULONG ChecksumSize;
 [size_is(, *ChecksumSize)] PUCHAR* ChecksumValue;
 } HashS4UPreauth;

 [case(RemoteCallKerbSignS4UPreauthData)] struct
 {
 PLONG ChecksumType;
 PULONG ChecksumSize;
 [size_is(, *ChecksumSize)] PUCHAR* ChecksumValue;
 } SignS4UPreauthData;

 [case(RemoteCallKerbVerifyChecksum)] struct
 {
 BOOL IsValid;
 } VerifyChecksum;

 [case(RemoteCallKerbDecryptPacCredentials)] struct
 {
 PSECPKG_SUPPLEMENTAL_CRED_ARRAY Credentials;
 } DecryptPacCredentials;

 [case(RemoteCallKerbCreateECDHKeyAgreement)] struct
 {
 KEY_AGREEMENT_HANDLE* KeyAgreementHandle;
 KERBERR* KerbErr;
 PULONG EncodedPubKeyLen;
 [size_is(, *EncodedPubKeyLen)] PBYTE* EncodedPubKey;
 } CreateECDHKeyAgreement;

 [case(RemoteCallKerbCreateDHKeyAgreement)] struct
 {
 KERB_RPC_CRYPTO_API_BLOB* ModulusP;
 KERB_RPC_CRYPTO_API_BLOB* GeneratorG;
 KERB_RPC_CRYPTO_API_BLOB* FactorQ;
 KEY_AGREEMENT_HANDLE* KeyAgreementHandle;
 KERBERR* KerbErr;
 PULONG LittleEndianPublicKeyLen;
 [size_is(, *LittleEndianPublicKeyLen)] PBYTE* LittleEndianPublicKey;
 } CreateDHKeyAgreement;

 [case(RemoteCallKerbDestroyKeyAgreement)] struct
 {

64 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 // This [case(RemoteCallKerb)] struct has no output, but for
 // simplicity and consistency define as a
 // [case(RemoteCallKerb)] struct with a single ignored value.
 UCHAR Ignored;
 } DestroyKeyAgreement;

 [case(RemoteCallKerbKeyAgreementGenerateNonce)] struct
 {
 PULONG NonceLen;
 [size_is(, *NonceLen)] PBYTE* Nonce;
 } KeyAgreementGenerateNonce;

 [case(RemoteCallKerbFinalizeKeyAgreement)] struct
 {
 KERB_RPC_ENCRYPTION_KEY* SharedKey;
 } FinalizeKeyAgreement;
 };
 } KerbCredIsoRemoteOutput, *PKerbCredIsoRemoteOutput;

6.3 Appendix A.3: NTLM.IDL

The full syntax of the NTLM message types IDL is as follows:

 import "ms-dtyp.idl";

 #include "ms-rdpear_remoteguardcallids.h"

 #define MSV1_0_CREDENTIAL_KEY_LENGTH 20
 #define MSV1_0_CHALLENGE_LENGTH 8
 #define MSV1_0_RESPONSE_LENGTH 24
 #define MSV1_0_NTLM3_RESPONSE_LENGTH 16
 #define MSV1_0_USER_SESSION_KEY_LENGTH 16

 typedef struct _NT_CHALLENGE{
 UCHAR Data[MSV1_0_CHALLENGE_LENGTH];
 } NT_CHALLENGE, *PNT_CHALLENGE;

 typedef struct _NT_RESPONSE{
 UCHAR Data[MSV1_0_RESPONSE_LENGTH];
 } NT_RESPONSE, *PNT_RESPONSE;

 typedef struct {
 UCHAR Response[MSV1_0_NTLM3_RESPONSE_LENGTH];
 UCHAR ChallengeFromClient[MSV1_0_CHALLENGE_LENGTH];
 } MSV1_0_LM3_RESPONSE, *PMSV1_0_LM3_RESPONSE;

 typedef struct {
 UCHAR Data[MSV1_0_USER_SESSION_KEY_LENGTH];
 } USER_SESSION_KEY, *PUSER_SESSION_KEY;

 typedef NT_CHALLENGE LM_SESSION_KEY;

 typedef enum _MSV1_0_CREDENTIAL_KEY_TYPE{
 InvalidCredKey, // reserved
 IUMCredKey, // reserved
 DomainUserCredKey,
 LocalUserCredKey, // For internal use only - should never be present in
 // MSV1_0_REMOTE_ENCRYPTED_SECRETS
 ExternallySuppliedCredKey // reserved
 } MSV1_0_CREDENTIAL_KEY_TYPE;

 typedef struct _MSV1_0_CREDENTIAL_KEY {
 UCHAR Data[MSV1_0_CREDENTIAL_KEY_LENGTH];
 } MSV1_0_CREDENTIAL_KEY, *PMSV1_0_CREDENTIAL_KEY;

 typedef struct _MSV1_0_REMOTE_ENCRYPTED_SECRETS{

65 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 BOOLEAN reserved1;
 BOOLEAN reserved2;
 BOOLEAN reserved3;
 MSV1_0_CREDENTIAL_KEY_TYPE reserved4;
 MSV1_0_CREDENTIAL_KEY reserved5;
 ULONG reservedSize;
 [size_is(reservedSize)] UCHAR* reserved6;
} MSV1_0_REMOTE_ENCRYPTED_SECRETS, *PMSV1_0_REMOTE_ENCRYPTED_SECRETS;

 // Note: in this documentation, "server" refers to the LSA server
 // (which is providing access to credentials) and "client" refers to
 // the LSA client (which is using the credentials provided by the server).
 // This is the opposite of the RDP view.
 typedef struct _NtlmCredIsoRemoteInput
 {
 RemoteGuardCallId CallId;
 [switch_type(RemoteGuardCallId), switch_is(CallId)] union
 {
 // Used to negotiate the protocol version that will be used.
 // Client sends that maximum version it supports; server replies
 // with the version that will actually be used.
 [case(RemoteCallNtlmNegotiateVersion)] struct
 {
 ULONG MaxSupportedVersion;
 } NegotiateVersion;

 // Use the provided credential and challenge to generate the
 // NT and LM response for the NTLM v2 authentication protocol.
 [case(RemoteCallNtlmLm20GetNtlm3ChallengeResponse)] struct
 {
 PMSV1_0_REMOTE_ENCRYPTED_SECRETS Credential;
 PRPC_UNICODE_STRING UserName;
 PRPC_UNICODE_STRING LogonDomainName;
 PRPC_UNICODE_STRING ServerName;
 UCHAR ChallengeToClient[MSV1_0_CHALLENGE_LENGTH];
 } Lm20GetNtlm3ChallengeResponse;

 // Use the provided credential to calculate a response
 // to this challenge according to the NTLM v1 protocol.
 [case(RemoteCallNtlmCalculateNtResponse)] struct
 {
 PNT_CHALLENGE NtChallenge;
 PMSV1_0_REMOTE_ENCRYPTED_SECRETS Credential;
 } CalculateNtResponse;

 // Use the provided credential and response to calculate
 // a session key according to the NTLM v1 protocol.
 [case(RemoteCallNtlmCalculateUserSessionKeyNt)] struct
 {
 PNT_RESPONSE NtResponse;
 PMSV1_0_REMOTE_ENCRYPTED_SECRETS Credential;
 } CalculateUserSessionKeyNt;

 // Compare the provided credentials to determine whether
 // they're identical.
 [case(RemoteCallNtlmCompareCredentials)] struct
 {
 PMSV1_0_REMOTE_ENCRYPTED_SECRETS LhsCredential;
 PMSV1_0_REMOTE_ENCRYPTED_SECRETS RhsCredential;
 } CompareCredentials;
 };
 } NtlmCredIsoRemoteInput, *PNtlmCredIsoRemoteInput;

 typedef struct _NtlmCredIsoRemoteOutput
 {
 RemoteGuardCallId CallId;
 NTSTATUS Status;
 [switch_type(RemoteGuardCallId), switch_is(CallId)] union
 {

66 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [case(RemoteCallNtlmNegotiateVersion)] struct
 {
 ULONG VersionToUse;
 } NegotiateVersion;

 [case(RemoteCallNtlmLm20GetNtlm3ChallengeResponse)] struct
 {
 USHORT Ntlm3ResponseLength;
 [size_is(Ntlm3ResponseLength)] BYTE *Ntlm3Response;
 MSV1_0_LM3_RESPONSE Lm3Response;
 USER_SESSION_KEY UserSessionKey;
 LM_SESSION_KEY LmSessionKey;
 } Lm20GetNtlm3ChallengeResponse;

 [case(RemoteCallNtlmCalculateNtResponse)] struct
 {
 NT_RESPONSE NtResponse;
 } CalculateNtResponse;

 [case(RemoteCallNtlmCalculateUserSessionKeyNt)] struct
 {
 USER_SESSION_KEY UserSessionKey;
 } CalculateUserSessionKeyNt;

 [case(RemoteCallNtlmCompareCredentials)] struct
 {
 BOOL AreNtOwfsEqual;
 BOOL AreLmOwfsEqual;
 BOOL AreShaOwfsEqual;
 } CompareCredentials;
 };
 } NtlmCredIsoRemoteOutput, *PNtlmCredIsoRemoteOutput;

67 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Windows 10 operating system

 Windows Server 2016 operating system

 Windows Server operating system

 Windows Server 2019 operating system

 Windows Server 2022 operating system

 Windows 11 operating system

 Windows Server 2025 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior

also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.2.1.2.1: The PDU values for KRB_AS_REP and for KRB_TGS_REP messages have been

changed to zero (0) and backported to every product in the applicability list for the April 9, 2024
service release. Previous values for each product are in the following table.

Operating systems KRB_AS_REP PDUs KRB_TGS_REP PDUs

Windows 11, version 23H2
operating system

Windows Server 2022, 23H2
operating system

70 71

Windows 10 v1809 operating
system Windows Server

Windows Server 2019

62 63

Windows 10 v1607 operating
system

Windows Server 2016

69 70

<2> Section 2.2.1.3.6: For more information on Kerberos and NTLM secrets see [MSDOCS-CGP].

<3> Section 2.2.2.1.6: This is done to allow back-compatibility with applicable Windows Server
releases which returned the wrong PDU for an AS_REP message.

<4> Section 2.2.2.1.6: The PDU values for KRB_AS_REP and for KRB_TGS_REP messages have been
changed to zero (0) and backported to every product in the applicability list for the April 9, 2024

service release. Previous values for each product are in the following table.

https://go.microsoft.com/fwlink/?linkid=2146426

68 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Operating system KRB_AS_REP PDUs KRB_TGS_REP PDUs

Windows 11, version 23H2

Windows Server 2022, 23H2

70 71

Windows 10 v1809 Windows
Server

Windows Server 2019

62 63

Windows 10 v1607

Windows Server 2016

69 70

<5> Section 3.1.5.6: This is done to allow back-compatibility with applicable Windows Server
releases which returned the wrong PDU for an AS_REP message.

69 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

7 Appendix B: Product
Behavior

Updated applicability list for this version of Windows
Server.

Major

mailto:dochelp@microsoft.com

70 / 70

[MS-RDPEAR] - v20240423
Remote Desktop Protocol Authentication Redirection Virtual Channel
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

9 Index

A

Applicability 10

C

Capability negotiation 10
Change tracking 68

F

Fields - vendor-extensible 10

G

Glossary 5

I

Implementer - security considerations 56
Index of security parameters 56
Informative references 8
Introduction 5

M

Messages
 Package-Specific Messages 27
 transport 11

N

Normative references 7

O

Overview (synopsis) 9

P

Package-Specific Messages message 27
Parameters - security index 56
Preconditions 9
Prerequisites 9
Product behavior 66

R

References 7
 informative 8
 normative 7
Relationship to other protocols 9

S

Security

 implementer considerations 56
 parameter index 56
Standards assignments 10

T

Tracking changes 68
Transport 11

V

Vendor-extensible fields 10
Versioning 10

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Common Data Structures
	2.2.1.1 RemoteGuardCallId Enumeration
	2.2.1.2 Kerberos Data Structures
	2.2.1.2.1 KERB_ASN1_DATA
	2.2.1.2.2 KERB_RPC_OCTET_STRING
	2.2.1.2.3 KERB_RPC_INTERNAL_NAME
	2.2.1.2.4 KERB_RPC_PA_DATA
	2.2.1.2.5 KERB_RPC_CRYPTO_API_BLOB
	2.2.1.2.6 SECPKG_SUPPLEMENTAL_CRED
	2.2.1.2.7 SECPKG_SUPPLEMENTAL_CRED_ARRAY
	2.2.1.2.8 KERB_RPC_ENCRYPTION_KEY
	2.2.1.2.9 KerbCredIsoRemoteInput
	2.2.1.2.10 KerbCredIsoRemoteOutput

	2.2.1.3 NTLM Data Structures
	2.2.1.3.1 NT_CHALLENGE
	2.2.1.3.2 NT_RESPONSE
	2.2.1.3.3 MSV1_0_LM3_RESPONSE
	2.2.1.3.4 USER_SESSION_KEY
	2.2.1.3.5 MSV1_0_CREDENTIAL_KEY
	2.2.1.3.6 MSV1_0_REMOTE_ENCRYPTED_SECRETS
	2.2.1.3.7 NtlmCredIsoRemoteInput
	2.2.1.3.8 NtlmCredIsoRemoteOutput

	2.2.2 Package-Specific Messages
	2.2.2.1 Kerberos Messages
	2.2.2.1.1 NegotiateVersion
	2.2.2.1.2 BuildAsReqAuthenticator
	2.2.2.1.3 VerifyServiceTicket
	2.2.2.1.4 CreateApReqAuthenticator
	2.2.2.1.5 DecryptApReply
	2.2.2.1.6 UnpackKdcReplyBody
	2.2.2.1.7 ComputeTgsChecksum
	2.2.2.1.8 BuildEncryptedAuthData
	2.2.2.1.9 PackApReply
	2.2.2.1.10 HashS4UPreauth
	2.2.2.1.11 SignS4UPreauthData
	2.2.2.1.12 VerifyChecksum
	2.2.2.1.13 DecryptPacCredentials
	2.2.2.1.14 CreateECDHKeyAgreement
	2.2.2.1.15 CreateDHKeyAgreement
	2.2.2.1.16 DestroyKeyAgreement
	2.2.2.1.17 KeyAgreementGenerateNonce
	2.2.2.1.18 FinalizeKeyAgreement

	2.2.2.2 NTLM Messages
	2.2.2.2.1 NegotiateVersion
	2.2.2.2.2 Lm20GetNtlm3ChallengeResponse
	2.2.2.2.3 CalculateNtResponse
	2.2.2.2.4 CalculateUserSessionKeyNt
	2.2.2.2.5 CompareCredentials

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 RemoteCallKerbNegotiateVersion
	3.1.5.2 RemoteCallKerbBuildAsReqAuthenticator
	3.1.5.3 RemoteCallKerbVerifyServiceTicket
	3.1.5.4 RemoteCallKerbCreateApReqAuthenticator
	3.1.5.5 RemoteCallKerbDecryptApReply
	3.1.5.6 RemoteCallKerbUnpackKdcReplyBody
	3.1.5.7 RemoteCallKerbComputeTgsChecksum
	3.1.5.8 RemoteCallKerbBuildEncryptedAuthData
	3.1.5.9 RemoteCallKerbPackApReply
	3.1.5.10 RemoteCallKerbHashS4UPreauth
	3.1.5.11 RemoteCallKerbSignS4UPreauthData
	3.1.5.12 RemoteCallKerbVerifyChecksum
	3.1.5.13 RemoteCallKerbDecryptPacCredentials
	3.1.5.14 RemoteCallKerbCreateECDHKeyAgreement
	3.1.5.15 RemoteCallKerbCreateDHKeyAgreement
	3.1.5.16 RemoteCallKerbDestroyKeyAgreement
	3.1.5.17 RemoteCallKerbKeyAgreementGenerateNonce
	3.1.5.18 RemoteCallKerbFinalizeKeyAgreement
	3.1.5.19 RemoteCallNtlmNegotiateVersion
	3.1.5.20 RemoteCallNtlmLm20GetNtlm3ChallengeResponse
	3.1.5.21 RemoteCallNtlmCalculateNtResponse
	3.1.5.22 RemoteCallNtlmCalculateUserSessionKeyNt
	3.1.5.23 RemoteCallNtlmCompareCredentials

	3.1.6 Timer Events
	3.1.7 Other Local Events

	4 Protocol Examples
	4.1 Requesting a Service Ticket

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	6.1 Appendix A.1: RemoteGuardCallIds.H
	6.2 Appendix A.2: Kerberos.IDL
	6.3 Appendix A.3: NTLM.IDL

	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

