[MS-RDPBCGR]:

Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting

Intellectual Property Rights Notice for Open Specifications Documentation

* Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

* Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

* No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

* Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

* License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

* Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

* Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

1/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

Revision Summary

Date Revision History | Revision Class | Comments

2/22/2007 0.01 New Version 0.01 release

6/1/2007 1.0 Major Updated and revised the technical content.

7/3/2007 1.1 Minor Minor technical content changes.

7/20/2007 1.2 Minor Made technical and editorial changes based on feedback.
8/10/2007 1.3 Minor Updated content based on feedback.

9/28/2007 1.4 Minor Made technical and editorial changes based on feedback.
10/23/2007 | 1.4.1 Editorial Changed language and formatting in the technical content.
11/30/2007 | 1.5 Minor Made technical and editorial changes based on feedback.
1/25/2008 2.0 Major Updated and revised the technical content.

3/14/2008 3.0 Major Updated and revised the technical content.

5/16/2008 3.0.1 Editorial Changed language and formatting in the technical content.
6/20/2008 4.0 Major Updated and revised the technical content.

7/25/2008 4.1 Minor Clarified the meaning of the technical content.
8/29/2008 5.0 Major Updated and revised the technical content.

10/24/2008 | 6.0 Major Updated and revised the technical content.

12/5/2008 7.0 Major Updated and revised the technical content.

1/16/2009 8.0 Major Updated and revised the technical content.

2/27/2009 9.0 Major Updated and revised the technical content.

4/10/2009 9.0.1 Editorial Changed language and formatting in the technical content.
5/22/2009 10.0 Major Updated and revised the technical content.

7/2/2009 11.0 Major Updated and revised the technical content.

8/14/2009 12.0 Major Updated and revised the technical content.

9/25/2009 13.0 Major Updated and revised the technical content.

11/6/2009 14.0 Major Updated and revised the technical content.

12/18/2009 | 15.0 Major Updated and revised the technical content.

1/29/2010 16.0 Major Updated and revised the technical content.

3/12/2010 17.0 Major Updated and revised the technical content.

4/23/2010 18.0 Major Updated and revised the technical content.

6/4/2010 19.0 Major Updated and revised the technical content.

7/16/2010 20.0 Major Updated and revised the technical content.

8/27/2010 21.0 Major Updated and revised the technical content.

2/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Date

Revision History

Revision Class

Comments

10/8/2010 22.0 Major Updated and revised the technical content.
11/19/2010 | 23.0 Major Updated and revised the technical content.
1/7/2011 24.0 Major Updated and revised the technical content.
2/11/2011 25.0 Major Updated and revised the technical content.
3/25/2011 26.0 Major Updated and revised the technical content.
5/6/2011 27.0 Major Updated and revised the technical content.
6/17/2011 28.0 Major Updated and revised the technical content.
9/23/2011 29.0 Major Updated and revised the technical content.
12/16/2011 | 30.0 Major Updated and revised the technical content.
3/30/2012 31.0 Major Updated and revised the technical content.
7/12/2012 32.0 Major Updated and revised the technical content.
10/25/2012 | 33.0 Major Updated and revised the technical content.
1/31/2013 34.0 Major Updated and revised the technical content.
8/8/2013 35.0 Major Updated and revised the technical content.
11/14/2013 | 36.0 Major Updated and revised the technical content.
2/13/2014 37.0 Major Updated and revised the technical content.
5/15/2014 38.0 Major Updated and revised the technical content.
6/30/2015 39.0 Major Significantly changed the technical content.
10/16/2015 | 40.0 Major Significantly changed the technical content.
3/2/2016 41.0 Major Significantly changed the technical content.
7/14/2016 42.0 Major Significantly changed the technical content.
10/13/2016 | 43.0 Major Significantly changed the technical content.
3/16/2017 44.0 Major Significantly changed the technical content.
6/1/2017 45.0 Major Significantly changed the technical content.
9/15/2017 46.0 Major Significantly changed the technical content.
12/1/2017 47.0 Major Significantly changed the technical content.
3/16/2018 48.0 Major Significantly changed the technical content.
9/12/2018 49.0 Major Significantly changed the technical content.
3/13/2019 50.0 Major Significantly changed the technical content.
9/23/2019 51.0 Major Significantly changed the technical content.
3/4/2020 52.0 Major Significantly changed the technical content.
8/26/2020 53.0 Major Significantly changed the technical content.

[MS-RDPBCGR] - v20230920
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

3/ 444

Date Revision History | Revision Class | Comments

4/7/2021 54.0 Major Significantly changed the technical content.
6/25/2021 55.0 Major Significantly changed the technical content.
4/29/2022 56.0 Major Significantly changed the technical content.
9/3/2022 57.0 Major Significantly changed the technical content.
9/20/2023 58.0 Major Significantly changed the technical content.

[MS-RDPBCGR] - v20230920
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

4/ 444

Table of Contents

B N 15 o T L1 T ot f ' 1 4 S 17
1.1 (C [0 T1== 1 PPN 17
1.2] =T =] g Lol PP 19

1.2.1 NOrMative RefEIENCES . oviiiii i e r e e e eaes 19
1.2.2 INfOrmative REFEIENCES .. vttt e e e aans 21
1.3 L Y] YT 23
1.3.1 MESSAGE FlOWS ettt e ettt 23
1.3.1.1 (@0eT] g =Tt u[o] I ST =Ta [U1 o ol P 23
1.3.1.2 Security-Enhanced Connection SEQUENCEiviiiiiiiiiiiiii i 28
1.3.1.3 Deactivation-Reactivation SeqUENCEccvviiiiiiiiii e 28
1.3.1.4 [DI[{ole]] l=Totu o] g ISY=To [UT=T o ol == PN 28
1.3.1.4.1 User-Initiated on Clientccoieiiii i e e 28
1.3.1.4.2 User-Initiated 0N SerVer .. .ciiii i e 29
1.3.1.4.3 Administrator-Initiated on Server ... 29
1.3.1.5 Automatic RECONNECHION. .. e e e e aneens 29
1.3.2 Server Error Reporting and Status Updates.........coooviiiiiiiiiiiiiiiii e 30
1.3.3 Static Virtual Channels ... e 30
1.3.4 D) ot= [@e] g aY o] £=T=1=] (o] o H R PP 31
1.3.5 Keyboard and Mouse INPUL ..o e e 31
1.3.6 BasiC Server QUEPUL ... 31
1.3.7 Controlling Server Graphics OULPUL . ..oviiiiiii e ea 31
1.3.8 Y= V=l =T 11 =Tt o o PP 32
1.3.8.1 LB S I T PP 33
1.3.9 Connect-Time and Continuous Network Characteristics Detection 33
1.3.10 Connection Health Monitoring....cciiiiiiiiii e 34
1.4 Relationship to Other ProtoCoISo.viuiiiii e 34
1.5 Prerequisites/PreCconditionscoviiiiiiiiii e 36
1.6 Applicability Statement ... s 36
1.7 Versioning and Capability Negotiation ..o 36
1.8 Vendor-EXtensible Fields ..ot e e 37
1.9 StanNdards ASSIGNMENTS.t 37

2 M eSS AQES . uuuiumrumrn e NN R RN A RSN MR EEEEEEE RN RN EEEMEEEEEEEEEEEEEEEEEEEE 38
2.1 L= 101 1 o 38
2.2 LTSS T LI Y o = b PP 38

2.2.1 (0]] gT=To o] g IS Y=o [U 1= o o= PPN 38
2.2.1.1 Client X.224 Connection Request PDU........cccoiiiiiiiiiiiiiie e 38
2.2.1.1.1 RDP Negotiation Request (RDP_NEG_REQ) ...cvivviviiiiiiiiiiieiiiiiiienee e 39
2.2.1.1.2 RDP Correlation Info (RDP_NEG_CORRELATION_INFO)ccvvvvvininennnnnnn. 40
2.2.1.2 Server X.224 Connection Confirm PDU.......ccciiiiiiiiiiiiii i nee e 41
2.2.1.2.1 RDP Negotiation Response (RDP_NEG_RSP)ccccivviiiiiiiiiiiiiiiieneeen 41
2.2.1.2.2 RDP Negotiation Failure (RDP_NEG_FAILURE)ccvviiiiiiiiiiiiiieiienee e 43
2.2.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request 44
2.2.1.3.1 User Data Header (TS_UD_HEADER)......ccceiiiiiiiiiiii e 46
2.2.1.3.2 Client Core Data (TS_UD_CS_CORE)....ictitiitiiiiiiniieieiiinenennsnrnaseneeenes 47
2.2.1.3.3 Client Security Data (TS_UD_CS_SEC) ...ciiiiiiiiiiiiiiiiiiiiii e ees 54
2.2.1.3.4 Client Network Data (TS_UD_CS_NET) ..ciiiiiiiiiiiiiiiieiieneeieneeenaeenes 55
2.2.1.3.4.1 Channel Definition Structure (CHANNEL_DEF)cccovviiiiiiiiiiiinnes 55
2.2.1.3.5 Client Cluster Data (TS_UD_CS_CLUSTER) ..ciiiiiiiiiiiiiiii e 56
2.2.1.3.6 Client Monitor Data (TS_UD_CS_MONITOR)cctiriiiiiiiiiiiieiiiienaneneeenn 57
2.2.1.3.6.1 Monitor Definition (TS_MONITOR_DEF)......cciciiiiiiiiiiiii e 58
2.2.1.3.7 Client Message Channel Data (TS_UD_CS_MCS_MSGCHANNEL)............ 59
2.2.1.3.8 Client Multitransport Channel Data (TS_UD_CS_MULTITRANSPORT) 59
2.2.1.3.9 Client Unusedl Data (TS_UD_CS_UNUSED1) ...ccoiiiiiiiiiiieiiiineeeneeen 60
2.2.1.3.10 Client Monitor Extended Data (TS_UD_CS_MONITOR_EX) ...cocvvvvvvnnnnne. 60
5/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

2.2.1.3.10.1 Monitor Attributes (TS_MONITOR_ATTRIBUTES)cvvvviiiiinenenans 61
2.2.1.4 Server MCS Connect Response PDU with GCC Conference Create Response . 62
2.2.1.4.1 User Data Header (TS_UD_HEADER)......cccciiiiiiiiiiiii e 63
2.2.1.4.2 Server Core Data (TS_UD_SC_CORE) ...uiiiiiiiiiiiii it naenie e 63
2.2.1.4.3 Server Security Data (TS_UD_SC_SECL) ...iciiiiiiiiiiiiiiiiinieie s e 65
2.2.1.4.3.1 Server Certificate (SERVER_CERTIFICATE) ...cviviiiiiiiiieieiiineiienenenn 67

2.2.1.4.3.1.1 Server Proprietary Certificate (PROPRIETARYSERVERCERTIFICATE)

67

2.2.1.4.3.1.1.1 RSA Public Key (RSA_PUBLIC_KEY)...iivitiiiieieneiiiiennenennenns 68
2.2.1.4.4 Server Network Data (TS_UD_SC_NET) +icviiriiiiiiiie i iierneeneennennennens 69
2.2.1.4.5 Server Message Channel Data (TS_UD_SC_MCS_MSGCHANNEL)........... 70
2.2.1.4.6 Server Multitransport Channel Data (TS_UD_SC_MULTITRANSPORT)..... 70
2.2.1.5 Client MCS Erect Domain Request PDUccoviiiiiiiniiiiiiiiiie e e 71
2.2.1.6 Client MCS Attach User Request PDUcoiiiiiiiiiiiiiiici i 71
2.2.1.7 Server MCS Attach User Confirm PDUciviiiiiiieiiiii e ee e 72
2.2.1.8 Client MCS Channel Join Request PDUcoiiiiiiiiiiiiiiii e 72
2.2.1.9 Server MCS Channel Join Confirm PDUociiiiiiiiiii e 73
2.2.1.10 Client Security EXChange PDU........c.coiiiiiiiiiiiiiiiiiii s e 73
2.2.1.10.1 Security Exchange PDU Data (TS_SECURITY_PACKET) ..c.ccvvviiiininenninnnsn 74
2.2.1.11 CHENt INTO PDU c.iiuiitiiiiiiii st et e e e et e e e et a e e e e aaae e 74
2.2.1.11.1 Client Info PDU Data (CLIENT_INFO_PDU)...ccciiiiiiiiiiiiiiiieiiiiinieneeens 75
2.2.1.11.1.1 Info Packet (TS_INFO_PACKET) .iiiititiiiiiiiiiiiiiiieieieenievaenenaaenans 76
2.2.1.11.1.1.1 Extended Info Packet (TS_EXTENDED_INFO_PACKET) 79
2.2.1.11.1.1.1.1 Time Zone Information (TS_TIME_ZONE_INFORMATION) 83
2.2.1.11.1.1.1.1.1 System Time (TS_SYSTEMTIME)cccivvviiiiiiiiiiiieineenen 84

2.2.1.12 Server License Error PDU - Valid Client......ccocviiiiiiiiiiiiiiei e e 86
2.2.1.12.1 Valid Client License Data (LICENSE_VALID_CLIENT_DATA)......ccvevvvrnene. 87
2.2.1.12.1.1 Licensing Preamble (LICENSE_PREAMBLE)coccvviiiiiiiiiiiiinnnennns 87
2.2.1.12.1.2 Licensing Binary Blob (LICENSE_BINARY_BLOB)c.ccvvviiviiiiininennns 88
2.2.1.12.1.3 Licensing Error Message (LICENSE_ERROR_MESSAGE)................... 89
2.2.1.13 Mandatory Capability EXChangec.coooiiiiiiiii e 91
2.2.1.13.1 Server Demand ACtiVe PDU......oiiiieiii i e ne e e nne e nnens 91
2.2.1.13.1.1 Demand Active PDU Data (TS_DEMAND_ACTIVE_PDU)........cccvvuvnenn 92
2.2.1.13.1.1.1 Capability Set (TS_CAPS_SET) ...iiiiiiiiiiiiiiiiiiin i 93
2.2.1.13.2 Client Confirm ACEIVE PDUciviiiiiiiiiiiii i e e 95
2.2.1.13.2.1 Confirm Active PDU Data (TS_CONFIRM_ACTIVE_PDU) 95
2.2.1.14 Client SYNChronize PDU.....ciciiiiiiiiiiii it e aeas 96
2.2.1.14.1 Synchronize PDU Data (TS_SYNCHRONIZE_PDU)c.ccvvviviiiiiininenennnsn 97
2.2.1.15 Client Control PDU - COOPErate.......cciuiiiiiiiiiiiiiiiiiei et eaaeae e 98
2.2.1.15.1 Control PDU Data (TS_CONTROL_PDU) ..icviiiiiiiiiiiiiiiiiiiieneeieneae e e 99
2.2.1.16 Client Control PDU - Request CONtrol.........ccvviiiiiiiiiiiieine e 100
2.2.1.17 Client Persistent Key LiSt PDUc.cciiiiiiiiiiiiiiiiic i e e ea s 101

2.2.1.17.1 Persistent Key List PDU Data (TS_BITMAPCACHE_PERSISTENT_LIST_PDU)
.. 102
2.2.1.17.1.1 Persistent List Entry (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY)104
2.2.1.18 Client FONE LISt PDU...uciiiiiiiiiii et see e e ee s e s aes s nne e e reanennanes 104
2.2.1.18.1 Font List PDU Data (TS_FONT_LIST_PDU) ..citiiiiiiiiiiiiiiieieieeaienaeaens 105
2.2.1.19 Server Synchronize PDUcciuiiiiiiiiiiii ittt e e e 106
2.2.1.20 Server Control PDU - COOPErate......cociuiuiiiiiiiiiiiii it e e eaenaans 107
2.2.1.21 Server Control PDU - Granted Control.......c.ccoviiiiiiiiiiiiciie e 108
2.2.1.22 Server FONt Map PDUiuiiiiiiiiiii s e 109
2.2.1.22.1 Font Map PDU Data (TS_FONT_MAP_PDU) ...ciiiiiiiieiiiiiiiiieieeienaaens 110
2.2.2 DiscONNECtiON SEQUENCES. ...ttt e eeas 111
2.2.2.1 Client Shutdown Request PDUoiiiiiiiiiiii e e e e 111
2.2.2.1.1 Shutdown Request PDU Data (TS_SHUTDOWN_REQ_PDU)ccvvuuens 112
2.2.2.2 Server Shutdown Request Denied PDUccoeieiiiiiiiiiiiiiiiiine e 113
2.2.2.2.1 Shutdown Request Denied PDU Data (TS_SHUTDOWN_DENIED_PDU) ..114
2.2.2.3 MCS Disconnect Provider Ultimatum PDUccociiiiiiiiiiiici e 114

6/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

2.2.3 Deactivation-Reactivation SEqUENCE........iiviiiiiiiii s 114
2.2.3.1 Server Deactivate All PDU ... e r e e e e 114
2.2.3.1.1 Deactivate All PDU Data (TS_DEACTIVATE_ALL_PDU)ccovvvvviieininnnn. 115
2.2.4 FAYU) o B al=Tolo]] g =T WY <Ta [U L= o Lo = PP 116
2.2.4.1 Server Auto-Reconnect Status PDUccvvviiiiiiiiiiiiii e 116
2.2.4.1.1 Auto-Reconnect Status PDU Data (TS_AUTORECONNECT_STATUS_PDU)117
2.2.4.2 Server Auto-Reconnect Packet (ARC_SC_PRIVATE_PACKET) ...ccvovvivviiinnnnn. 118
2.2.4.3 Client Auto-Reconnect Packet (ARC_CS_PRIVATE_PACKET)ocvvivvivinnrnnnne. 118
2.2.5 Server Error Reporting and Status Updates........ccooiiiiiiiiiiiiiiiiiciic e 119
2.2.5.1 Server Set Error INfO PDU .ouiuiiiiiiii et e e e e aaens 119
2.2.5.1.1 Set Error Info PDU Data (TS_SET_ERROR_INFO_PDU)cocvvvivvieinnnns 120
2.2.5.2 Server Status INFO PDU ... e e r e e e e 130
2.2.6 Static Virtual Channels ..o e e 131
2.2.6.1 Virtual Channel PDUviiiiiiii et e e e e e e 131
2.2.6.1.1 Channel PDU Header (CHANNEL_PDU_HEADER)ccoviiiiiiiiiiieinanens 133
2.2.7 Capability SEES vttt 134
2.2.7.1 Mandatory Capability Sets.......cviiiiiiii 134
2.2.7.1.1 General Capability Set (TS_GENERAL_CAPABILITYSET)cevvviivviiinnnens 134
2.2.7.1.2 Bitmap Capability Set (TS_BITMAP_CAPABILITYSET) .c.ovvvviviiiiieinenenn, 137
2.2.7.1.3 Order Capability Set (TS_ORDER_CAPABILITYSET) ..oviviiiiiiiiiiiiiiiiinenens 139
2.2.7.1.4 Bitmap Cache Capability Set.....ccoviiiiiiii e 143
2.2.7.1.4.1 Revision 1 (TS_BITMAPCACHE_CAPABILITYSET) cecvvviiiiiiiiiiieiienenn, 143
2.2.7.1.4.2 Revision 2 (TS_BITMAPCACHE_CAPABILITYSET_REV2)........ccvvvuene. 144
2.2.7.1.4.2.1 Bitmap Cache Cell Info (TS_BITMAPCACHE_CELL_CACHE_INFO)146
2.2.7.1.5 Pointer Capability Set (TS_POINTER_CAPABILITYSET) ..cccvvvvviniieinenenn. 146
2.2.7.1.6 Input Capability Set (TS_INPUT_CAPABILITYSET)..cciiiiiiriiiiniiiiniieinnnens 147
2.2.7.1.7 Brush Capability Set (TS_BRUSH_CAPABILITYSET) ...cvvvvviiiiiiiiiieiienenn, 149
2.2.7.1.8 Glyph Cache Capability Set (TS_GLYPHCACHE_CAPABILITYSET) 150
2.2.7.1.8.1 Cache Definition (TS_CACHE_DEFINITION) ..c.ioviviiiiiiiiiiiiiieiaenens 151
2.2.7.1.9 Offscreen Bitmap Cache Capability Set (TS_OFFSCREEN_CAPABILITYSET)
.. 151
2.2.7.1.10 Virtual Channel Capability Set (TS_VIRTUALCHANNEL_CAPABILITYSET) 152
2.2.7.1.11 Sound Capability Set (TS_SOUND_CAPABILITYSET)....ccvtvieiriiinninernnnnns 153
2.2.7.2 Optional Capability Sets.......ooiiiiiii 153
2.2.7.2.1 Bitmap Cache Host Support Capability Set
(TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET) ..ovvviviiiiiniieiienenn, 153
2.2.7.2.2 Control Capability Set (TS_CONTROL_CAPABILITYSET) ...vcvvviiiiiiiinanens 154
2.2.7.2.3 Window Activation Capability Set
(TS_WINDOWACTIVATION_CAPABILITYSET) .iviviiiiiiiiiiiieeeie e eieenn, 154
2.2.7.2.4 Share Capability Set (TS_SHARE_CAPABILITYSET) ..ovvvvviiiiiiiiiiiieinenens 155
2.2.7.2.5 Font Capability Set (TS_FONT_CAPABILITYSET) .cocvvvviiiiiiiiiiiieiecieen, 155
2.2.7.2.6 Multifragment Update Capability Set
(TS_MULTIFRAGMENTUPDATE_CAPABILITYSET) ..cciiiiiiiiiiiiiieieeieen, 156
2.2.7.2.7 Large Pointer Capability Set (TS_LARGE_POINTER_CAPABILITYSET)..... 156
2.2.7.2.8 Desktop Composition Capability Set (TS_COMPDESK_CAPABILITYSET) .157
2.2.7.2.9 Surface Commands Capability Set (TS_SURFCMDS_CAPABILITYSET)....157
2.2.7.2.10 Bitmap Codecs Capability Set (TS_BITMAPCODECS_CAPABILITYSET) ...158
2.2.7.2.10.1 Bitmap Codecs (TS_BITMAPCODECS)coviiiiiiiiiiicei e 159
2.2.7.2.10.1.1 Bitmap Codec (TS_BITMAPCODEQC)ccititieiiiniiiiiiiieieneaeeaans 159
2.2.7.2.10.1.1.1 Globally Unique Identifier (GUID).......ccovviiiriiiiiiiiiiienninnnn, 160
2.2.8 Keyboard and MouSe INPULeeiiiiiiii e 161
2.2.8.1 INput PDU Packagingcucueeieieieii et e e e e 161
2.2.8.1.1 Slow-Path (T.128) FOrmats....coviiiiiiiiii e 161
2.2.8.1.1.1 Share HEaderS. .ot 161
2.2.8.1.1.1.1 Share Control Header (TS_SHARECONTROLHEADER)............... 161
2.2.8.1.1.1.2 Share Data Header (TS_SHAREDATAHEADER)c.cocvuvnenene. 162
2.2.8.1.1.2 SecUrity HEAAEIS ..o 165
2.2.8.1.1.2.1 Basic (TS_SECURITY_HEADER) ..cciiiiiiiiiiiiiiicii s eaeeas 165
7/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

2.2.8.1.1.2.2 Non-FIPS (TS_SECURITY_HEADERL) ..iciiiiiiiiiiiiieieeie e 167
2.2.8.1.1.2.3 FIPS (TS_SECURITY_HEADER2) ..viiiiiiiiiiii i 167
2.2.8.1.1.3 Client Input Event PDU (TS_INPUT_PDU) ..ccciiiiiiiiiiiii i eaeens 168
2.2.8.1.1.3.1 Client Input Event PDU Data (TS_INPUT_PDU_DATA) 169
2.2.8.1.1.3.1.1 Slow-Path Input Event (TS_INPUT_EVENT)ccvviviiiiinnnens 169
2.2.8.1.1.3.1.1.1 Keyboard Event (TS_KEYBOARD_EVENT)cccvcvvvivinenn. 170
2.2.8.1.1.3.1.1.2 Unicode Keyboard Event (TS_UNICODE_KEYBOARD_EVENT)
... 171
2.2.8.1.1.3.1.1.3 Mouse Event (TS_POINTER_EVENT) ..covvviiiiiiiiiieininenn, 171
2.2.8.1.1.3.1.1.4 Extended Mouse Event (TS_POINTERX_EVENT) 173
2.2.8.1.1.3.1.1.5 Synchronize Event (TS_SYNC_EVENT)ccccvvvviiiiiinnnnn. 173
2.2.8.1.1.3.1.1.6 Unused Event (TS_UNUSED_EVENT) ...ccovvvviiiieinnnnnn. 174
2.2.8.1.1.3.1.1.7 Relative Mouse Event (TS_RELPOINTER_EVENT) 174
2.2.8.1.2 Client Fast-Path Input Event PDU (TS_FP_INPUT_PDU)cocvvvivviiinnnens 175
2.2.8.1.2.1 Fast-Path FIPS Information (TS_FP_FIPS_INFO)ccccvvvviiniieininnnn. 177
2.2.8.1.2.2 Fast-Path Input Event (TS_FP_INPUT_EVENT) ...ccoviiiviiiniiieienens, 177
2.2.8.1.2.2.1 Fast-Path Keyboard Event (TS_FP_KEYBOARD_EVENT) 178
2.2.8.1.2.2.2 Fast-Path Unicode Keyboard Event
(TS_FP_UNICODE_KEYBOARD_EVENT) ..evviiiiiiieiiiiiieienennnenes 179
2.2.8.1.2.2.3 Fast-Path Mouse Event (TS_FP_POINTER_EVENT)ccvvvvnen. 180
2.2.8.1.2.2.4 Fast-Path Extended Mouse Event (TS_FP_POINTERX_EVENT) ...180
2.2.8.1.2.2.5 Fast-Path Synchronize Event (TS_FP_SYNC_EVENT) 181
2.2.8.1.2.2.6 Fast-Path Quality of Experience (QoE) Timestamp Event
(TS_FP_QOETIMESTAMP_EVENT) tviuiiiiiiiiiiiiiine e nienaeenaaaes 181
2.2.8.1.2.2.7 Fast-Path Relative Mouse Event (TS_FP_RELPOINTER_EVENT)..182
2.2.8.2 Keyboard Status PDUSc.iiiii i e e 182
2.2.8.2.1 Server Set Keyboard Indicators PDUcciiiiiiiiiiiiiiieieeeens 182
2.2.8.2.1.1 Set Keyboard Indicators PDU Data
(TS_SET_KEYBOARD_INDICATORS_PDU) ..civiiiiiiiiiiiiiei e e 183
2.2.8.2.2 Server Set Keyboard IME Status PDU......ccoviiiiiiiiiiiiiccii e 184
2.2.8.2.2.1 Set Keyboard IME Status PDU Data
(TS_SET_KEYBOARD_IME_STATUS_PDU) ..ciiiiiiiiiiiiciei e 185
2.2.9 BasiC DU PUL Lot e 187
2.29.1 Output PDU PacKagingcouvueiiiiiiiiiiiii ettt e e aeaeas 187
2.2.9.1.1 Slow-Path (T.128) FOrmat ..coouiiiiiiii i e 187
2.2.9.1.1.1 1) 1= L (=T [L= ol P 187
2.2.9.1.1.2 SeCUrity HEAAEIS vt 187
2.2.9.1.1.3 Server Graphics Update PDU (TS_GRAPHICS_PDU)cccvvvvvinnnn. 187
2.2.9.1.1.3.1 Slow-Path Graphics Update (TS_GRAPHICS_UPDATE).............. 188
2.2.9.1.1.3.1.1 Palette Update (TS_UPDATE_PALETTE)....cccocvvviiiiiiiieinannnn, 189
2.2.9.1.1.3.1.1.1 Palette Update Data (TS_UPDATE_PALETTE_DATA) 189
2.2.9.1.1.3.1.1.2 RGB Palette Entry (TS_PALETTE_ENTRY)....cocvvvvvinnenn. 190
2.2.9.1.1.3.1.2 Bitmap Update (TS_UPDATE_BITMAP)cccvviiiiiiiiiiiieenn, 190
2.2.9.1.1.3.1.2.1 Bitmap Update Data (TS_UPDATE_BITMAP_DATA) 191
2.2.9.1.1.3.1.2.2 Bitmap Data (TS_BITMAP_DATA) .c.iiiiiiiiiieiiieieeeen, 191
2.2.9.1.1.3.1.2.3 Compressed Data Header (TS_CD_HEADER)................ 192
2.2.9.1.1.3.1.2.4 RLE Compressed Bitmap Stream (RLE_BITMAP_STREAM)
... 193
2.2.9.1.1.3.1.3 Synchronize Update (TS_UPDATE_SYNC).....ccccvvvvieinininnnnn. 196
2.2.9.1.1.4 Server Pointer Update PDU (TS_POINTER_PDU) ...ccoovviviviiiiiniinnnns 197
2.2.9.1.1.4.1 POINE (TS_POINTL6) .. ueitiiitiiieiieereieieeie et aeraeneaaaeraanens 199
2.2.9.1.1.4.2 Pointer Position Update (TS_POINTERPOSATTRIBUTE) 199
2.2.9.1.1.4.3 System Pointer Update (TS_SYSTEMPOINTERATTRIBUTE) 199
2.2.9.1.1.4.4 Color Pointer Update (TS_COLORPOINTERATTRIBUTE)............. 200
2.2.9.1.1.4.5 New Pointer Update (TS_POINTERATTRIBUTE)cccvvvvvvuiinnnens 201
2.2.9.1.1.4.6 Cached Pointer Update (TS_CACHEDPOINTERATTRIBUTE)........ 201
2.2.9.1.1.5 Server Play Sound PDUcouiiiiiii i e 201
2.2.9.1.1.5.1 Play Sound PDU Data (TS_PLAY_SOUND_PDU_DATA) 202
8/ 444

2.2.9.1.2 Server Fast-Path Update PDU (TS_FP_UPDATE_PDU)cccvvvinininenene. 203
2.2.9.1.2.1 Fast-Path Update (TS_FP_UPDATE)ccciiiiiiiiiiiei e e ee 205
2.29.1.2.1.1 Fast-Path Palette Update (TS_FP_UPDATE_PALETTE)s 207
2.2.9.1.2.1.2 Fast-Path Bitmap Update (TS_FP_UPDATE_BITMAP) 207
2.2.9.1.2.1.3 Fast-Path Synchronize Update (TS_FP_UPDATE_SYNCHRONIZE)208
2.2.9.1.2.1.4 Fast-Path Pointer Position Update (TS_FP_POINTERPOSATTRIBUTE)
208
2.2.9.1.2.1.5 Fast-Path System Pointer Hidden Update
(TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE)c.ocvivieieininenns 208
2.2.9.1.2.1.6 Fast-Path System Pointer Default Update
(TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE)ovvvivveininenns 209
2.2.9.1.2.1.7 Fast-Path Color Pointer Update (TS_FP_COLORPOINTERATTRIBUTE)
209
2.2.9.1.2.1.8 Fast-Path New Pointer Update (TS_FP_POINTERATTRIBUTE)..... 210
2.2.9.1.2.1.9 Fast-Path Cached Pointer Update
(TS_FP_CACHEDPOINTERATTRIBUTE)civiiiiiiieiiiiiieseneeeeanes 210
2.2.9.1.2.1.10 Fast-Path Surface Commands Update (TS_FP_SURFCMDS)....... 211
2.2.9.1.2.1.10.1 Surface Command (TS_SURFCMD)......cccccvieieieinrninrninanannn. 211
2.2.9.1.2.1.11 Fast-Path Large Pointer Update (TS_FP_LARGEPOINTERATTRIBUTE)
212
2.2.9.2 1 U1 r=Tol <IN @(e] g 0] 0 1= (o [PPSR 213
2.2.9.2.1 Set Surface Bits Command (TS_SURFCMD_SET_SURF_BITS)............... 213
2.2.9.2.1.1 Extended Bitmap Data (TS_BITMAP_DATA_EX) .ceviiiiiiiiiiiiiiieinenenn, 214
2.2.9.2.1.1.1 Extended Compressed Bitmap Header
(TS_COMPRESSED_BITMAP_HEADER_EX) ...ivviiiiiiiiiiieiiiianen 215
2.2.9.2.2 Stream Surface Bits Command (TS_SURFCMD_STREAM_SURF_BITS)...216
2.2.9.2.3 Frame Marker Command (TS_FRAME_MARKER)cccciiiiiiiiiiiiiiiinnn, 216
2.2.10 Logon and Authorization NotificationS.......cccviiviiiiiiii s 217
2.2.10.1 Server Save Session INFO PDUcouiiiiiiiiiiiiii it ae e e 217
2.2.10.1.1 Save Session Info PDU Data (TS_SAVE_SESSION_INFO_PDU_DATA) ...218
2.2.10.1.1.1 Logon Info Version 1 (TS_LOGON_INFO)ccoviiiiieererninnnnnaeneenenes 219
2.2.10.1.1.2 Logon Info Version 2 (TS_LOGON_INFO_VERSION_2)cccvvevvnenn. 219
2.2.10.1.1.3 Plain Notify (TS_PLAIN_NOTIFY) ..ttt eeneaneees 220
2.2.10.1.1.4 Logon Info Extended (TS_LOGON_INFO_EXTENDED)cccvvuene. 221
2.2.10.1.1.4.1 Logon Info Field (TS_LOGON_INFO_FIELD)cccvvviiiiiiniennnnns 222
2.2.10.1.1.4.1.1 Logon Errors Info (TS_LOGON_ERRORS_INFO) 222
2.2.10.2 Early User Authorization Result PDUc.cciiiiiiiiiiiciciin e 223
2.2.11 Controlling Server Graphics OUEPULoviiiiiiiii i e eas 224
2.2.11.1 Inclusive Rectangle (TS_RECTANGLELG)coviiiiiiiiiiiiiiiieiere e 224
2.2.11.2 Client Refresh ReCt PDUiuiiiiiiiiiiiii e e ae e e 224
2.2.11.2.1 Refresh Rect PDU Data (TS_REFRESH_RECT_PDU)ccvvviiiiiiininennnnns 225
2.2.11.3 Client Suppress OULPUL PDUcoiiiiiiiii e e 226
2.2.11.3.1 Suppress Output PDU Data (TS_SUPPRESS_OUTPUT_PDU).........c.uv..... 227
2.2.12 Display Update Notifications.......ccuiiiiiiiiii i e e 228
2.2.12.1 N [oY T oY ol = A7 YUl =] I 1 U P 228
2.2.13 Server RedirCliON .. v 229
2.2.13.1 Server Redirection Packet (RDP_SERVER_REDIRECTION_PACKET)............. 229
2.2.13.1.1 Target Net Addresses (TARGET_NET_ADDRESSES)........cccvviiiiiieinnnnns 233
2.2.13.1.1.1 Target Net Address (TARGET_NET_ADDRESS)cccocvivininininenene. 233
2.2.13.1.2 Target Certificate Container (TARGET_CERTIFICATE_CONTAINER) 234
2.2.13.1.2.1 Certificate Meta Element (CERTIFICATE_META_ELEMENT).............. 234
2.2.13.2 Standard RDP SECUNMLYoviuieiiiiiiii e aas 235
2.2.13.2.1 Standard Security Server Redirection PDU
(TS_STANDARD_SECURITY_SERVER_REDIRECTION)....ccccvvvivinineinanenn. 235
2.2.13.3 Enhanced RDP SeCUIILYciuiiiiiiiii ittt ae e e 236
2.2.13.3.1 Enhanced Security Server Redirection PDU
(TS_ENHANCED_SECURITY_SERVER_REDIRECTION)......ccvvvivviieininenn. 236
2.2.14 Network Characteristics DeteCtion.....ccuiviiiiiiiiii i e e 237
9/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

2.2.14.1 Server-to-Client Request MEeSSagesc.iviviiiniiiiiiii i eeeeaans 237
2.2.14.1.1 RTT Measure Request (RDP_RTT_REQUEST)covviiiiiiiiiiiiiiiienieneeaens 237
2.2.14.1.2 Bandwidth Measure Start (RDP_BW_START)ccvviiiiiiiiiiiiiiiiinieiaeaens 238
2.2.14.1.3 Bandwidth Measure Payload (RDP_BW_PAYLOAD)ccccivviiiiiiiiinnnnnnn. 238
2.2.14.1.4 Bandwidth Measure Stop (RDP_BW_STOP)cicviiiiiiiiiiiiiii i ce 239
2.2.14.1.5 Network Characteristics Result (RDP_NETCHAR_RESULTS)ccvevvunns 240
2.2.14.2 Client-to-Server RESPONSE MESSAGES ..uuiiuiiiriiiiiie it iieiitraeiae e 241
2.2.14.2.1 RTT Measure Response (RDP_RTT_RESPONSE)c.cocvvviiiiiiiinniiinnnns 241
2.2.14.2.2 Bandwidth Measure Results (RDP_BW_RESULTS)ccccoviiiiiiiiiiiiiiinnns 241
2.2.14.2.3 Network Characteristics Sync (RDP_NETCHAR_SYNC)ccvoviiiniiinnnnns 242
2.2.14.3 Server Auto-Detect Request PDUc.ciiiiiiiiiiii i i sir s n e 243
2.2.14.4 Client Auto-Detect ReSponse PDUcuiiiiiiiiiiiiiii i e ee e 244
2.2.15 Multitransport BoOtStrappingocovuiiiiiiiiii 245
2.2.15.1 Server Initiate Multitransport Request PDU........cccciiiiiiiiiiiiiiici e 245
2.2.15.2 Client Initiate Multitransport Response PDU........c.ccivviiiiiiiiiiiiienee, 247
2.2.16 Connection Health Monitoring.....c.oiiiiii i e e 248
2.2.16.1 Server Heartbeat PDUcciiiiiiiii i s e e e e e e 248
2.2.17 RDSTLS PDUS. . ittt et e ettt e e e et e et e e e e et e e r e reeaen e e e e e ena e e ananns 250
2.2.17.1 RDSTLS Capabilities PDUi.civiiiiiiiiiiiiieisiisa et saneraenesenerasneanenees 250
2.2.17.2 RDSTLS Authentication Request PDU with Password Credentials 250
2.2.17.3 RDSTLS Authentication Request PDU with Auto-Reconnect Cookie.............. 251
2.2.17.4 RDSTLS Authentication Response PDUcocoiiiiiiiiiiiiiiiiirene e 252
2.2.18 RDS AAD AUEN PDUS .titiitiiiiiiiiit it sttt s s s e s e e a e e s e ra s r e e e naanens 253
2.2.18.1 Server NONCE PDU .. .cuiiiiiiiiiii e s e e e e e s e s e an e n e e annenanes 253
2.2.18.2 Authentication Request PDUc.iiiiiiiiiiiiiii e 253
2.2.18.2.1 I =T o o o 254
2.2.18.3 Authentication RESUIL PDU......cciiiiiiiiiiiiiiiiieee v rre s nee s e e e eeenes 254
3 Protocol Detailsc.ciciiiiiiiiieieirre s r s 256
3.1 ComMMON DELAIlS «uvieiii i e 256
3.1.1 AbSEract Data Model.....oviiiiii i e 256
3.1.2 LT 1= P 256
3.1.3 | T = | 2= [o P 256
3.1.4 Higher-Layer Triggered EVENEScviiiiiiii i e e aa e 256

3.1.5 Message Processing Events and Sequencing Rulesc.cooiiiiiiiiiiiiiiiiiens 256

3.1.5.1 (DY[Yolo]a] pl=Totu o] g ISY =Ta [UT=T o Lo =T PR 256
3.1.5.1.1 Sending of MCS Disconnect Provider Ultimatum PDU...........ccocvvivvnennnn. 256
3.1.5.1.2 Processing of MCS Disconnect Provider Ultimatum PDUc....e.e. 256

3.1.5.2 Static Virtual Channels ..o e 257
3.1.5.2.1 Sending of Virtual Channel PDU........cocoiiiiiiiiiii e 257
3.1.5.2.2 Processing of Virtual Channel PDUcccoiiiiiiiiiiiii e e 258

3.1.5.2.2.1 Reassembly of Chunked Virtual Channel Data...........cccoeivviiiininnnnn. 259

3.1.6 LI L 8 =2 == Lo P 259

3.1.7 Other LoCal EVENES ..ttt e e e e s 259

3.1.8 MPPC-Based Bulk Data CompPreSSIiON ..o.uii it ee e e s ee e 260

3.1.8.1 Abstract Data Modelcooiiiiiiiii 260

3.1.8.2 ComPressSing Data......cciuiiiiiii i 260
3.1.8.2.1 Setting the Compression FIagsovviiiiiiiii e 261
3.1.8.2.2 Operation of the Bulk COmMPressor .. .coviiiiiiiii e 262
3.1.8.2.3 Data Compression EXample ... 263

3.1.8.3 Decompressing Dataovvviiiiiiiiiiiiiii e 266

3.1.8.4 COMPIESSION TYPES 1 vttt s e e raeaeas 267
3.1.8.4.1 RDP 4.0 ettt e 267

3.1.8.4.1.1 Literal ENCOAING ..uvivieiiiiei e e 267

3.1.8.4.1.2 Copy-Tuple ENCOAING ...cuviiieieieiiiii e e e 267

3.1.8.4.1.2.1 Copy-Offset ENCOAING. .. .civiiiiiiiiiiiie e 267

3.1.8.4.1.2.2 Length-of-Match Encodingccovuiiiiiiiii e 267

3.1.8.4.2 B] TP 268
10/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

3.1.8.4.2.1 L= g I =g oo o 1o o 268

3.1.8.4.2.2 Copy-Tuple ENCOAING .. uiiuiiiiiiii i ea s 268
3.1.8.4.2.2.1 Copy-Offset ENCOAING .. uunieiiiieieae e e e e e 268
3.1.8.4.2.2.2 Length-of-Match Encodingccvviiiiiiiiiiiiicci e 269

3.1.9 Interleaved RLE-Based Bitmap CompresSionovviviiiiiiiiieiiecccie e aiee e 269
3.2 ClieNt DeLAIIS . .u et 284
3.2.1 Abstract Data Model......ouiuiiiiiii 284
3.2.1.1 Received Server Data ..o 284
3.2.1.2 Static Virtual Channel IDSvvviiiiiiii 284
3.2.1.3 I/O Channel ID v e e e e 284
3.2.1.4 Message Channel IDcciiiiiii i e e ae e 284
3.2.1.5 User Channel IDouiviiiiiiiiiinn e e 284
3.2.1.6 Server Channel ID... ... 284
3.2.1.7 Server Capabilities ..o 284
3.2.1.8 1] 1= L I 1 2 PP 285
3.2.1.9 Automatic Reconnection COoOKI€cccvviviiiiiiiiiiiiii e 285
3.2.1.10 Server Licensing Encryption ADbility.......ccooviiiiiii 285
3.2.1.11 Pointer IMage Cacheoiiiiiiiii e 285
3.2.1.12 SESSION KOY S ottt ittt i ittt a e as 285
3.2.1.13 Bitmap Caches. ..o e 285
3.2.1.14 Persistent Bitmap Caches....cciiiiiiiiiii i 285
3.2.1.15 Persisted Bitmap Keyscoouiiiiiiiiii e 285
3.2.1.16 Connection Start TiMeviuiiiiiiiiii e 286
3.2.1.17 Network Characteristics Byte CouNt........cccviiiuiiiiiiii e 286
3.2.1.18 Network Characteristics Sequence NUMber.......c.cooiiiiiiiiiiii e 286
3.2.2 01T 286
3.2.2.1 Connection Sequence TiMeEOUL TiMer.....cciiiiiiiiiiir e 286
3.2.2.2 Network Characteristics TIMerv i 286
3.2.3 INItialiZatioN co e e 286
3.2.4 Higher-Layer Triggered EVENES ...iviiiiiiiii i e aaeas 286
3.2.5 Message Processing Events and Sequencing Rulescocoviiiiiiiiiiiiiiiienns 286
3.2.5.1 Constructing a Client-to-Server Slow-Path PDU.........ccoccviiiiiiiii e aeea 286
3.2.5.2 Processing a Server-to-Client Slow-Path PDU...........ccooiiiiiiiiiiiieeen, 287
3.2.5.3 (@fo]] aT=Toiu (o] d WST=Ta [B1] o ol =PI 288
3.2.5.3.1 Sending X.224 Connection Request PDU........ccccviiiiiiiiiiiiiiiiceieaeens 288
3.2.5.3.2 Processing X.224 Connection Confirm PDUccooiiiiiiiiiiiiiiiineen, 288
3.2.5.3.3 Sending MCS Connect Initial PDU with GCC Conference Create Request 289
3.2.5.3.4 Processing MCS Connect Response PDU with GCC Conference Create
RESPDONSE L uiuiiiiiti i e 291
3.2.5.3.5 Sending MCS Erect Domain Request PDUccccvviiiiiiiiiiiiiiieiiienneaens 292
3.2.5.3.6 Sending MCS Attach User Request PDUcocoiiiiiiiiiiiiiiiceieeeeens 292
3.2.5.3.7 Processing MCS Attach User Confirm PDU.......ccviviiiiiiiiiiiiieiiieieeeen, 292
3.2.5.3.8 Sending MCS Channel Join Request PDU(S).....covuviiiniiiiiiiiiiiiieieiaenens 293
3.2.5.3.9 Processing MCS Channel Join Confirm PDU(S) ...ocvvviiiiiiiiiieiiiiieceen, 293
3.2.5.3.10 Sending Security EXchange PDUcccviiiiiiiiiiiiii i 294
3.2.5.3.11 Sending Client INfO PDUouiiiiiiiiii i e 295
3.2.5.3.12 Processing License Error PDU - Valid Client.........c.coviiiiiiiiiiiiiiiiieens 295
3.2.5.3.13 Mandatory Capability EXchange........cccoviiiiiiiiiie s 296
3.2.5.3.13.1 Processing Demand Active PDUcocoiiiiiiiiiiiiine e 296
3.2.5.3.13.2 Sending Confirm Active PDU.......ccooiiiiiiiiii e 296
3.2.5.3.14 Sending Synchronize PDU.........ou oottt e e 297
3.2.5.3.15 Sending Control PDU - COOPErateccoiiiiiiiieiiiiiieeeiene e e 297
3.2.5.3.16 Sending Control PDU - Request CoNtrol.........cccoviiiiiiiiiiiiiieeieieeens 297
3.2.5.3.17 Sending Persistent Key LiSt PDU(S) ...uiuiiiiiiiieiiiiiieenene e e 298
3.2.5.3.18 Sending FONt LISt PDU......oiviiiiiiiiii et ee e 298
3.2.5.3.19 Processing Synchronize PDUccciiiiiiiiiiiii e e e 298
3.2.5.3.20 Processing Control PDU - Cooperate.......c.cocevuiiiiiiiiiiiiiiiiieieenenaenens 298
3.2.5.3.21 Processing Control PDU - Granted Controlcccvieviiiiiiiiiii s 298
11/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

3.2.5.3.22 Processing FONt Map PDUccouiiiiiiiiiiiiiniinse e 298
3.2.5.4 [DYEYolo] al pl=Totu o] g IY =Ta [U L= o Lo == P 298
3.2.5.4.1 Sending Shutdown Request PDUcocoiiiiiiiiiiiiiiiii e 298
3.2.5.4.2 Processing Shutdown Request Denied PDUccooviiiiiiiiiiiiiiiiiienians 298
3.2.5.5 Deactivation-Reconnection SeqUENCEccviiiiiiiiii i e e 299
3.2.5.5.1 Processing Deactivate All PDUc.ociiiiiiiiiiii e 299
3.2.5.6 AUtO-ReCONNECt SEQUENCE. ... ittt eaneas 299
3.2.5.6.1 Processing Auto-Reconnect Status PDUccooviiiiiiiiiiiiiiiii v rieeieeeens 299
3.2.5.7 Server Error Reporting and Status Updatesc.ccoviiiiiiiiiiiciicicicce e 299
3.2.5.7.1 Processing Set Error INfOo PDUcvviiiiiiiiieieiie e e eee e 299
3.2.5.7.2 Processing Status INfO PDU......ccciiiiiiiiiiiii s e s 299
3.2.5.8 Keyboard and Mouse INPUE....ccciiiiiiiii i e 299
3.2.5.8.1 Input Event NOtIfiCationsovieiiiii e 299
3.2.5.8.1.1 Sending INput EVENE PDU....ciiiiiiici i e 300
3.2.5.8.1.2 Sending Fast-Path Input Event PDUcocoiiiiiiiiiiieens 300
3.2.5.8.2 Keyboard Status PDUSc.iiiiiiiiii i e e nea e 301
3.2.5.8.2.1 Processing Set Keyboard Indicators PDU...........ccvviiiiiiiiiiiiiinne, 301
3.2.5.8.2.2 Processing Set Keyboard IME Status PDU..........ccocviviiiiiniiiinnennne, 301
3.2.5.9 Basic OUEPUL .o e 301
3.2.5.9.1 Processing Slow-Path Graphics Update PDUcocovviiiiiiiiiiiinienenn, 301
3.2.5.9.2 Processing Slow-Path Pointer Update PDUcocoviviiiiiiiiiiiiiieeen, 302
3.2.5.9.3 Processing Fast-Path Update PDUcocoiviiiiiiiiiii e 302
3.2.5.9.3.1 Processing Fast-Path Update Fragmentsccvviiiiiiiiiiiiennn, 303
3.2.5.9.4 1570 8 o Vo 304
3.2.5.9.4.1 Processing Play Sound PDUccoiiiiiiiiiiiiiii e 304
3.2.5.10 Logon and Authorization Notifications..........ccccoiiiiiiiiiiiiiii 304
3.2.5.10.1 Processing Save Session INfO PDUccoiiiiiiieiiiiiiiiieieieneie e reeeeeenenen 304
3.2.5.10.2 Processing Early User Authorization Result PDU...........cccocviiiiiiiiinnnnns 304
3.2.5.11 Controlling Server Graphics OUtPULcoiiiiiiiiii e 305
3.2.5.11.1 Sending Refresh ReCt PDUciiiiiiiiiiiiii i e 305
3.2.5.11.2 Sending Suppress OULPUL PDUcoiviiiiiiiiiiiiiii e e 305
3.2.5.12 Display Update NoOtifiCationscccieiiieieiiiii e eeens 305
3.2.5.12.1 Processing Monitor Layout PDUccciiiiiiiiiiiiiiiiiine e e ee s 305
3.2.5.13 Server Redir@CliON ..o e 305
3.2.5.13.1 Processing of the Server Redirection PDUS........cccociiiiiiiiiiiiiiiiiiaeens 305
3.2.5.14 Network Characteristics DetecCtionccoviiiiiiiii e 305
3.2.5.15 Multitransport Bootstrappingocveviiieiiiiiiii e 307
3.2.5.15.1 Processing the Initiate Multitransport Request PDU...........cococviviiiinnnns 307
3.2.5.15.2 Sending the Initiate Multitransport Response PDUccooviiiiiiinnnns 308
3.2.6 LI L L= =2 =T L 308
3.2.6.1 Client-Side Connection Sequence TimeouUt........ccooviiiiiiiiiiiiic s 308
3.2.7 (0 T=T ol W Tor= Y I V=T o | PR 308
3.2.7.1 Disconnection Due to NetWork Errorouivvieiiiiiiii e 308
3.3 =] a V=Tl D= = 1 = PP 308
3.3.1 AbSEract Data Model.....oviiiiii e 308
3.3.1.1 Received CHENt Datac.ocvvieiiiiii e e e ae e e 308
3.3.1.2 USer Channel ID .iuviuiiiiiiiiii it e e e e e e e e e e neees 309
3.3.1.3 |74 I @1 o= o o <! I 5 PP 309
3.3.1.4 Message Channel ID e e e 309
3.3.1.5 Server Channel ID e ae s 309
3.3.1.6 Client Licensing Encryption Abilitycccoiiiiiiiii e, 309
3.3.1.7 Client Capabilities ... 309
3.3.1.8 Cached BitmMap KeYS ...t e e aeens 309
3.3.1.9 Pointer Image Cache ... 309
3.3.1.10 SESSION KBYS ottt 309
3.3.1.11 Automatic Reconnection COOKIEcciviiiiiiiiiiiii e e e 310
3.3.1.12 Connection Start TimMe ...cieiieiiiiii e 310
3.3.1.13 RTT Measure Request Dataccvcvviiiiiiiiiiiii e 310
12 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

3.3.1.14 Multitransport Request Data........ccocieiuiiiiiiiiiiiiiii e aaas 310
3.3.2 I 2= 5 310
3.3.2.1 Connection Sequence TiMeOUL TiMer....c.ccvviiiiiiiiiii s 310
3.3.3 INitialiZatiON c e e 310
3.3.4 Higher-Layer Triggered EVENTSiiviiiiiiiii i e e e 310
3.3.5 Message Processing Events and Sequencing Rulesccooviiiiiiiiiiiiiiiiiiinens 310
3.3.5.1 Constructing a Server-to-Client Slow-Path PDU.........ccccoiiiiiiiiiiiciciecea, 310
3.3.5.2 Processing a Client-to-Server Slow-Path PDUcciiiiiiiiiii i 311
3.3.5.3 (o]] aT=Toiu[o] g ISY=To 181 o ol = P 312
3.3.5.3.1 Processing X.224 Connection Request PDUcccviiiiiiiiiiiiiiinieen, 312
3.3.5.3.2 Sending X.224 Connection Confirm PDUccooiiiiiiiiiii e 313
3.3.5.3.3 Processing MCS Connect Initial PDU with GCC Conference Create Request

.. 313

3.3.5.3.3.1 Handling Errors in the GCC Conference Create Request Data.......... 316
3.3.5.3.4 Sending MCS Connect Response PDU with GCC Conference Create Response
.. 317

3.3.5.3.5 Processing MCS Erect Domain Request PDUc.ccvvviiiiiiiiiiiiiinienen, 317
3.3.5.3.6 Processing MCS Attach User Request PDUccoovviiiiiiiiiiiinniinenenen, 318
3.3.5.3.7 Sending MCS Attach User Confirm PDUcociiiiiiiiiiiiiiiii e 318
3.3.5.3.8 Processing MCS Channel Join Request PDU(S)vvvivviiiiiiiiiiiineienen, 318
3.3.5.3.9 Sending MCS Channel Join Confirm PDU(S) ...cvvviiiiiiiiiiiiiiiini e 319
3.3.5.3.10 Processing Security EXchange PDUccciiiiiiiiiiiiiiiiii e 319
3.3.5.3.11 Processing Client INfo PDU.....civiiiiiiiiiiiiiii e en s e naaaens 320
3.3.5.3.12 Sending License Error PDU - Valid Clientccoiviiiiiiiiiiieens 321
3.3.5.3.13 Mandatory Capability EXChange........c.cooiiiiiiiiii s 321
3.3.5.3.13.1 Sending Demand Active PDUccciiiiiiiiiiiiiiii e 321
3.3.5.3.13.2 Processing Confirm ACtiVe PDUciiiiiiiiiiiinner e eeens 322
3.3.5.3.14 Processing Synchronize PDUcciiiiiiiiiiiiiiiiiii s senaaens 322
3.3.5.3.15 Processing Control PDU - Cooperate.........coccvuiiiiiiiiiiiiiiiiiennie s 323
3.3.5.3.16 Processing Control PDU - Request Controlcccvveiiiiiiiiiiiiiinnieinnnens 323
3.3.5.3.17 Processing Persistent Key LiSt PDU(S) ..icvvviiiiiiiiiiieiiiiiiiieiiieeneneeaens 323
3.3.5.3.18 Processing FONt LISt PDUc.oiuiiiiiiiiiiiii e e e en e e 323
3.3.5.3.19 Sending Synchronize PDU........coiiiiiiiiiiii i e 323
3.3.5.3.20 Sending Control PDU - COoOperatec.civiiuiiiiiiiiiiiiiiiieeie e e e 323
3.3.5.3.21 Sending Control PDU - Granted Control.........cocoviiiiiiiiiiiiiiieiinaenens 324
3.3.5.3.22 Sending FONt Map PDUccuiuiiiiiiiii e e 324
3.3.5.4 (DY[Yolo]a] pl=Totu o] g ISY =Ta [UT=T o Lo =T PR 324
3.3.5.4.1 Processing Shutdown Request PDUocivviiiiiiiiiiiieiiii e eeen 324
3.3.5.4.2 Sending Shutdown Request Denied PDU.........cccciiiiiiiiiiiiiineieieeens 324
3.3.5.5 Deactivation-Reconnection SeqUEeNCEeccviiiiiiii i e 324
3.3.5.5.1 Sending Deactivate All PDUoooiiiiiiiiiiie e 324
3.3.5.6 AULO-RECONNECE SEQUENCE. ...ttt e e e e aeas 325
3.3.5.6.1 Sending Auto-Reconnect Status PDU.......ccvviiiiiiiiiiiiiei e e e 325
3.3.5.7 Server Error Reporting and Status Updatescocviiiiiiiiiiiiiiiiiicieeens 325
3.3.5.7.1 Sending Set Error INfo PDU ...civiiiiiiiii it e e 325
3.3.5.7.1.1 User Authorization Failures..........coviiiiiiiii e 325
3.3.5.7.2 Sending Status INfo PDU ..oviiieiiiiiii i e a e e e 325
3.3.5.8 Keyboard and Mouse INPUL.......coiviiiiiiii e 325
3.3.5.8.1 Input Event NOtIfiCationsouvviiiiiii e 325
3.3.5.8.1.1 Processing Input Event PDUocoviiiiiiiiiiiiiin e 325
3.3.5.8.1.2 Processing Fast-Path Input Event PDUccoovviiiiiiiiiiiiieeeene 326
3.3.5.8.2 Keyboard Status PDUSooiiiiiiiieiiii e e e e e 327
3.3.5.8.2.1 Sending Set Keyboard Indicators PDUcccvveiiiiiiiiiiniiiniiieenens 327
3.3.5.8.2.2 Sending Set Keyboard IME Status PDUcccooiiiiiiiiiiiiiieeenen, 327
3.3.5.9 BasSiC OUEPUL «.viiiiiii e 327
3.3.5.9.1 Sending Slow-Path Graphics Update PDU...........cccoviiiiiiiiiiiiiiiieeene 327
3.3.5.9.2 Sending Slow-Path Pointer Update PDU........c.cccoiiiiiiiiiiiiiieieeeeens 327
3.3.5.9.3 Sending Fast-Path Update PDUc.cooiiiiiiiiiii s 328

13 /444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

3.3.5.94 101U [PP P TR 329
3.3.5.9.4.1 Sending Play SouNd PDU......ccoiiiiiiiiiiiieie e 329
3.3.5.10 Logon and Authorization Notificationscccoiiiiii s 329
3.3.5.10.1 Sending Save Session INfO PDU......cciiiiiiiiiiii i e 329
3.3.5.10.2 Sending Early User Authorization Result PDUcccoviiviiiiiiiiiienennn, 330
3.3.5.11 Controlling Server Graphics OUtpULoiiiiiiiiii e 330
3.3.5.11.1 Processing Refresh ReCt PDUcciiiiiiiiiiiiii i 330
3.3.5.11.2 Processing Suppress OUtPpUt PDU........cooiiiiiiiiiiiiii e 330
3.3.5.12 Display Update Notificationsccciiiiiiiiiii e 330
3.3.5.12.1 Sending Monitor Layout PDUccociiiiiiiiiiiiiii e e 330
3.3.5.13 Server Redir@ChiON ...iuiieiiiiii i e 330
3.3.5.13.1 Sending of the Server Redirection PDUScicoviiiiiiiiiiiiii i ce 330
3.3.5.14 Network Characteristics Detection.......c.ccvvviiiiii i e 331
3.3.5.15 Multitransport BootStrappingooeiiiiiiiii i 331
3.3.5.15.1 Sending the Initiate Multitransport Request PDUcccocevvviiiniiiinnnnns 331
3.3.5.15.2 Processing the Initiate Multitransport Response PDU.........cccvcvviviieinnnns 332
3.3.6 LT =T 2=] =P 332
3.3.6.1 Server-Side Connection Sequence TIMEOULcvcviiiiiiiiiiiiiiiiii s 332
3.3.6.2 Auto-Reconnect Cookie Update.....ccviiiiiiiiiiiiiiiiii i e e 332
3.3.7 (O a1 il W Tr= 1 B =T o | = 332
4 Protocol EXamples ...cciciiiiiiiiiiii i rs s s sssra s na s s s rasranra s nanrananannnrnnnRnnEa 333
4.1 Annotated ConNection SEQUENCEcieiiiii i e e 333
4.1.1 Client X.224 Connection Request PDUc.cciiiiiiiiiiiii i 333
4.1.2 Server X.224 Connection Confirm PDUi.iiiiiiiiiii i e 333
4.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request............... 333
4.1.4 Server MCS Connect Response PDU with GCC Conference Create Response....... 338
4.1.5 Client MCS Erect Domain Request PDUccoiiiiiiiiiiii e 342
4.1.6 Client MCS Attach User Request PDU.......cciiiiiiiiiiiiiii i e e s ea e 343
4.1.7 Server MCS Attach-User Confirm PDUoiiiiiiiiiiiiiici s 343
4.1.8 MCS Channel Join Request and Confirm PDUSccociiiiiiiiiiiiiiiiiicci i 344
4.1.8.1 (01 T=T o T 1= I 00 7 344
4.1.8.1.1 Client Join Request PDU for Channel 1007 (User Channel) 344
4.1.8.1.2 Server Join Confirm PDU for Channel 1007 (User Channel) 345
4.1.8.2 (@1 1= T o T 1= I 001 346
4.1.8.2.1 Client Join Request PDU for Channel 1003 (I/O Channel).........c.ccoue.eee. 346
4.1.8.2.2 Server Join Confirm PDU for Channel 1003 (I/O Channel).................... 347
4.1.8.3 Channel 1004 ...t 347
4.1.8.3.1 Client Join Request PDU for Channel 1004 (rdpdr Channel).................. 347
4.1.8.3.2 Server Join Confirm PDU for Channel 1004 (rdpdr Channel)................. 347
4.1.8.4 Channel 1005 ...t 347
4.1.8.4.1 Client Join Request PDU for Channel 1005 (cliprdr Channel)................. 347
4.1.8.4.2 Server Join Confirm PDU for Channel 1005 (cliprdr Channel)................ 347
4.1.8.5 (@1 T=T o T 1= I 0L 348
4.1.8.5.1 Client Join Request PDU for Channel 1006 (rdpsnd Channel)................ 348
4.1.8.5.2 Server Join Confirm PDU for Channel 1006 (rdpsnd Channel)............... 348
4.1.9 Client Security EXChange PDU ..ottt e 348
L I O I [1T oL ol N 1 o T = B 1 O PP 350
4.1.11 Server License Error PDU - Valid Client.......ccoiiiiiiiiiiii i e nee e 353
4.1.12 Server Demand ACLIVE PDUiiriiieiiiiii it r e e e e e e aanes 354
4.1.13 Client Confirm ACEIVE PDUciiiiiiiiii it s ae s 360
4.1.14 Client SYNChronize PDUouiuiiiiiiieie et e e e e 368
4.1.15 Client Control PDU - COOPEIrate....c.ciiiieieiiiiii e e e e e e ae s 369
4.1.16 Client Control PDU - Request CONtrol.......ccvuiiiiiiiiiiiiiiiinie e e e 370
4.1.17 Client Persistent Key LiSt PDUcociiiiiiiiiiiiiin e e e 370
4.1.18 Client FONE LISt PDU .iuuiuiiiiiiiiiiii it sttt s s e e a e n e e e e aes 373
4.1.19 Server SYyNChronize PDUoiiiiiii e e e e e e e 374
4.1.20 Server Control PDU - COOPErateouiiiiiiiiiiiiiiiei e e e eeenes 374
14 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

4.1.21 Server Control PDU - Granted Controlcccooiiiiiiiiiiiii e 375
4.1.22 Server FONE Map PDU ...viviiiiiiiiiii s 376
4.2 Annotated User-Initiated (on Client) Disconnection Sequence............coovvvviiiinnnenn. 377
4.2.1 Client Shutdown ReqUESE PDUuiiiiiiiiiiii i ea s 377
4.2.2 Server Shutdown Request Denied PDUcciiiiiiiiiiii i e 378
4.2.3 MCS Disconnect Provider Ultimatum PDU........cccoiiiiiiiiiiiiiinn e 378
4.3 Annotated Save Session INfO PDU ...i.iieiiiiiiiiiiii it ese e e e s e e e 379
4.3.1 [oTeToT o I [o} {0 AV /=1 =] o] o 1 379
4.3.2 [=1L T Ao] Y PP 382
4.3.3 Logon INFfO EXEeNAEduieiieie e e 385
4.4 Annotated Server-to-Client Virtual Channel PDUccoiiiiiiiiiiiiiciee e 388
4.5 Annotated Standard Security Server Redirection PDUccccviiiiiiiiiiiici e 389
4.6 Annotated Enhanced Security Server Redirection PDUcociiiiiiiiiiiiiiiinieen, 392
4.7 Annotated Fast-Path Input EVENE PDU.....ccuiiiiiiiiiii e 394
4.8 Java Code to Encrypt and Decrypt a Sample Client Randomcocvviiiiiiiiiiiinnene. 395
4.9 Java Code to Sign a Sample Proprietary Certificate Hash.........ccoooiiiiiiiiiiciicinnn, 399
4.10 Specifying the Active Keyboard Layout and Languagecccveveveieininiiiiieieaeaaaannns 403
4.11 RDS AAD AuUth @nd CIOUAAP ... e e e e e e e e e e e e neans 404
4.11.1 Generating @ Server NONCEuiiuiiiii i e e e aeaaes 406
4.11.2 Validating an Authentication ReqUeStooiiiiiiiiiii e 406
4.11.3 AcqQUIring @N AAD NONCE .ottt it it a e e e ae e areaeean 406
4.11.4 Acquiring an RDP ACCESS TOKENuiiuiiiiiiiii i e e 407
L = o 1 3 2 409
5.1 Security Considerations for IMpIemMENtErscoevvieiiiiiiiiiir e eeans 409
5.2 Index Of SECUritY ParameEters .. .ovivieieiiiieeie e e e e e e e e e e e e e eeeaennanns 409
5.3 Standard RD P SECUIEY .ttt et 409
5.3.1 ENCryplion LEVEIS ...t 409
5.3.2 Negotiating the Cryptographic Configurationccoiviiiiiiiiiiiiii s 409
5.3.2.1 Cryptographic Negotiation Failuresccoviiiiiiiii e 410
5.3.3 Server CertifiCates vt 410
5.3.3.1 Proprietary CertifiCatescoivieieii i 410
5.3.3.1.1 Terminal Services Signing Keyoviiiiiiiiiiii e 410
5.3.3.1.2 Signing a Proprietary Certificatec.oooviiiiiiiic 411
5.3.3.1.3 Validating a Proprietary Certificate........cocooiiiiiiiiiiic e, 413
5.3.3.2 X.509 Certificate Chains....ciiuiiie i e e 413
5.3.4 Client and Server Random Valuesooeieiiiiiiiiiiii e 414
5.34.1 Encrypting Client RaNAOmM ...uviiiiii e e e e 414
5.3.4.2 Decrypting Client RANAOM . .cu i e e e e 415
5.3.5 Initial Session Key Generationovviiiiiiiiiii e e 415
5.3.5.1 NON-FIPS e 415
5.3.5.2 F I P S ettt 417
5.3.6 Encrypting and Decrypting the I/O Data Streamcoccviiiiiiiiiiiiiiieiieens 419
5.3.6.1 [N\ o T PP 419
5.3.6.1.1 Salted MAC GENEIAtION .iuviriieiiiii i re e raaaens 420
5.3.6.2 F IS et e 420
5.3.7 SesSIioN KeY UpPdates....ouiuiieiiiiiiiiii e 421
5.3.7.1 NON-FIPS e 421
5.3.7.2 F I P S ettt 422
5.3.8 Packet Layout in the I/O Data Streamcocveieiiiiiiiiiii e 422
5.4 Enhanced RDP SeCUNIEY . uiueiiieiiiii e et et e e e e ne e e 423
5.4.1 ENCryption LEVEIS ..uieiiii e e 424
5.4.2 Security-Enhanced ConnNection SEQUENCE..........vuieiiiiiiiieie i eeeeeaeeaans 424
5.4.2.1 Negotiation-Based ApPProach........coceviiiiiiiiiii e 424
5.4.2.2 Dir€Ct APPIrO@CKH .t 425
5.4.2.3 Changes to the Security Commencement Phase........coccviiiiiiiiiiiiiiiiinenens 426
5.4.2.4 Disabling Forced Encryption of Licensing Packetsccceieiiiiiiiiiiininnnnn. 426
5.4.3 Encrypting and Decrypting the I/O Data Streamccciiiiiiiiiiiiciiiieens 427
15/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

5.4.4 Packet Layout in the I/O Data Streamcocoeieiiieiiiii e 427
5.4.5 External Security Protocols Used By RDPccciiiiiiiiiii e e ea 427
5.4.5.1 Transport Layer Security (TLS) .iuvvuiiieiiiiiiiine e e 427
5.4.5.2 CrEASSP i 427
5.4.5.2.1 User Authorization Failuresooiiiiiiiiiiic e 428
5.4.5.2.2 QI R =Y = | 1T o P 428
5.4.5.3 RDSTLS SECUITY . euetitititiiiiii et 428
5.4.5.3.1 RDSTLS CONNECLiON SEQUENCE. ... ittt a e aeaeas 429
5.4.5.4 RDS AAD AU SECUMEY . uvitiiiriii e 430
5.4.54.1 RDS AAD Auth Connection SEqUENCEcccviviiiiiiiiiiiii e 430
5.5 AUutomMatiCc RECONNECEION ... vt e e e 432
6 Appendix A: Product Behavior ...ciciiiiiisisieieisrr s s ssss s snsssnssasasasasasass 434
7 Change TracCKiNg...cicueiresrmsimrasrsssa s sassa s s s s s s s s s s sas st nsnsasansansnsnsnnsunnnss 439
N 1 1T (= 441
16 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

1 Introduction

The Remote Desktop Protocol: Basic Connectivity and Graphics Remoting facilitates user interaction
with a remote computer system by transferring graphics display data from the remote computer to the
user and transporting input commands from the user to the remote computer, where the input
commands are replayed on the remote computer. RDP also provides an extensible transport
mechanism which allows specialized communication to take place between components on the user
computer and components running on the remote computer.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary
This document uses the following terms:
ANSI character: An 8-bit Windows-1252 character set unit.

ASN.1: Abstract Syntax Notation One. ASN.1 is used to describe Kerberos datagrams as a
sequence of components, sent in messages. ASN.1 is described in the following specifications:

ITUX660] for general procedures; [ITUX680] for syntax specification, and [ITUX690] for the
Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules

(DER) encoding rules.

Azure Active Directory (Azure AD): The identity service in Microsoft Azure that provides identity
management and access control capabilities through a REST-based API, an Azure portal, or a
PowerShell command window.

Basic Encoding Rules (BER): A set of encoding rules for ASN.1 notation. These encoding
schemes allow the identification, extraction, and decoding of data structures. These encoding
rules are defined in [ITUX690].

binary large object (BLOB): A collection of binary data stored as a single entity in a database.

certification authority (CA): A third party that issues public key certificates. Certificates serve to
bind public keys to a user identity. Each user and certification authority (CA) can decide whether
to trust another user or CA for a specific purpose, and whether this trust should be transitive.
For more information, see [RFC3280].

Client Data Block: A collection of related client settings that are encapsulated within the user data
of a Generic Conference Control (GCC) Conference Create Request. Only four Client Data Blocks
exist: Core Data, Security Data, Network Data, and Cluster Data. The set of Client Data Blocks is
designed to remain static.

Cloud Authentication Provider (CloudAP): A Windows Authentication Package enabling users to
sign in to Windows using their Azure Active Directory or Microsoft Account.

Connection Broker: A service that allows users to reconnect to their existing sessions, enables
the even distribution of session loads among servers, and provides access to virtual desktops
and remote programs. Further background information about Connection Broker is available in
[Anderson].

desktop scale factor: The scale factor (as a percentage) applied to Windows Desktop
Applications.

device scale factor: The scale factor (as a percentage) applied to Windows Store Apps running on
Windows 8.1. This value must be calculated such that the effective maximum height of a
Windows Store App is always greater than 768 pixels, otherwise the app will not start.

17/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=89922
https://go.microsoft.com/fwlink/?LinkId=89923
https://go.microsoft.com/fwlink/?LinkId=89924
https://go.microsoft.com/fwlink/?LinkId=90414

domain name: A domain name or a NetBIOS name that identifies a domain.

Dynamic DST: Dynamic daylight saving time (DST) provides support for time zones whose
boundaries for daylight saving time change from year to year.

Extended Client Data Block: A collection of related client settings that are encapsulated within
the user data of a Generic Conference Control (GCC) Conference Create Request. In contrast to
the static set of Client Data Blocks, the set of Extended Client Data Blocks is designed to be
expanded over time.

Input Method Editor (IME): An application that is used to enter characters in written Asian
languages by using a standard 101-key keyboard. An IME consists of both an engine that
converts keystrokes into phonetic and ideographic characters and a dictionary of commonly used
ideographic words.

JavaScript Object Notation (JSON): A text-based, data interchange format that is used to
transmit structured data, typically in Asynchronous JavaScript + XML (AJAX) web applications,
as described in [RFC7159]. The JSON format is based on the structure of ECMAScript (Jscript,
JavaScript) objects.

JSON Object Signing and Encryption (JOSE): The set of JSON Object Signing and Encryption
(JOSE) technologies: JSON Web Signature (JWS), JSON Web Encryption (JWE), JSON Web
Key (JWK), and JSON Web Algorithms (JWA) that can be used collectively to encrypt and/or
sign content.

JSON Web Key (JWK): A JavaScript Object Notation (JSON) data structure that represents a
cryptographic key. The specification also defines a JWK Set JSON data structure that represents
a set of JWKs.

JSON web signature (JWS): A mechanism that uses JavaScript Object Notation (JSON) data
structures to represent signed content.

JSON Web Token (JWT): A string representing a set of claims as a JSON object that is encoded
in a JWS or JWE, enabling the claims to be digitally signed or integrity protected with a Message
Authentication Code (MAC) and/or encrypted. For more information, see [RFC7519].

MD5 hash: A hashing algorithm, as described in [REC1321], that was developed by RSA Data
Security, Inc. An MD5 hash is used by the File Replication Service (FRS) to verify that a file on
each replica member is identical.

Message Authentication Code (MAC): A message authenticator computed through the use of a
symmetric key. A MAC algorithm accepts a secret key and a data buffer, and outputs a MAC.
The data and MAC can then be sent to another party, which can verify the integrity and
authenticity of the data by using the same secret key and the same MAC algorithm.

Multipoint Communication Service (MCS): A data transmission protocol and set of services
defined by the ITU T.120 standard, specifically [T122] and [T125].

Network Level Authentication (NLA): Refers to the usage of CredSSP (as described in [MS-
CSSP]) within the context of an RDP connection to authenticate the identity of a user at the
network layer before the initiation of the RDP handshake. The use of NLA ensures that server
resources are only committed to authenticated users.

OAuth 2.0: An authorization framework that enables a third-party application to obtain limited
access to an HTTP service.

Packed Encoding Rules (PER): A set of encoding rules for ASN.1 notation, specified in
ITUX691]. These rules enable the identification, extraction, and decoding of data structures.

18/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?linkid=842522
https://go.microsoft.com/fwlink/?LinkId=824833
https://go.microsoft.com/fwlink/?LinkId=90275
https://go.microsoft.com/fwlink/?LinkId=94993
https://go.microsoft.com/fwlink/?LinkId=90543
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30
https://go.microsoft.com/fwlink/?LinkId=192078

protocol data unit (PDU): Information that is delivered as a unit among peer entities of a
network and that may contain control information, address information, or data. For more
information on remote procedure call (RPC)-specific PDUs, see [C706] section 12.

Quality of Experience (QOE): A subjective measure of a user's experiences with a media service.

RC4: A variable key-length symmetric encryption algorithm. For more information, see

SCHNEIER] section 17.1.
Remote Desktop: See Remote Desktop Protocol (RDP).

Remote Desktop Protocol (RDP): A multi-channel protocol that allows a user to connect to a
computer running Microsoft Terminal Services (TS). RDP enables the exchange of client and
server settings and also enables negotiation of common settings to use for the duration of the
connection, so that input, graphics, and other data can be exchanged and processed between
client and server.

Rivest-Shamir-Adleman (RSA): A system for public key cryptography. RSA is specified in
RFC8017].

server authentication: The act of proving the identity of a server to a client, while providing key
material that binds the identity to subsequent communications.

Server Data Block: A collection of related server settings that are encapsulated within the user
data of a Generic Conference Control (GCC) Conference Create Response. Three Server Data
Blocks exist: Core Data, Security Data, and Network Data.

SHA-1 hash: A hashing algorithm as specified in [FIPS180-2] that was developed by the National
Institute of Standards and Technology (NIST) and the National Security Agency (NSA).

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping
track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

Transport Layer Security (TLS): A security protocol that supports confidentiality and integrity of
messages in client and server applications communicating over open networks. TLS supports
server and, optionally, client authentication by using X.509 certificates (as specified in [X509]).
TLS is standardized in the IETF TLS working group.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODES5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

Unicode character: Unless otherwise specified, a 16-bit UTF-16 code unit.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

19/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=817338
https://go.microsoft.com/fwlink/?linkid=2164409
https://go.microsoft.com/fwlink/?LinkId=89868
https://go.microsoft.com/fwlink/?LinkId=90590
https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[IETFDRAFT-OAUTH2PROOF] Bradley, J., Hunt, P., Jones, M., et al., "OAuth 2.0 Proof-of-Possession:
Authorization Server to Client Key", https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-
distribution-07

[International] Dr. International, "Developing International Software (2nd Edition)", Microsoft Press,
2003, ISBN: 0735615837.

[ITUX691] ITU-T, "ASN.1 Encoding Rules: Specification of Packed Encoding Rules (PER)",
Recommendation X.691, July 2002, https://www.itu.int/rec/T-REC-X.691-200207-S

[MS-CSSP] Microsoft Corporation, "Credential Security Support Provider (CredSSP) Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RDPEA] Microsoft Corporation, "Remote Desktop Protocol: Audio Output Virtual Channel
Extension".

[MS-RDPEGDI] Microsoft Corporation, "Remote Desktop Protocol: Graphics Device Interface (GDI)
Acceleration Extensions".

[MS-RDPELE] Microsoft Corporation, "Remote Desktop Protocol: Licensing Extension".

[MS-RDPEMT] Microsoft Corporation, "Remote Desktop Protocol: Multitransport Extension".

[MS-RDPERP] Microsoft Corporation, "Remote Desktop Protocol: Remote Programs Virtual Channel
Extension".

[MS-RDPEUDP] Microsoft Corporation, "Remote Desktop Protocol: UDP Transport Extension".

[MS-RDPNSC] Microsoft Corporation, "Remote Desktop Protocol: NSCodec Extension".

[MS-RDPRFX] Microsoft Corporation, "Remote Desktop Protocol: RemoteFX Codec Extension".

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed-Hashing for Message
Authentication", RFC 2104, February 1997, http://www.ietf.org/rfc/rfc2104.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc-editor.org/info/rfc2119

[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,
https://www.rfc-editor.org/info/rfc2246

[RFC3447] Jonsson, J. and Kaliski, B., "Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1", RFC 3447, February 2003,
http://www.ietf.org/rfc/rfc3447.txt

[RFC4346] Dierks, T., and Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.1",
RFC 4346, April 2006, http://www.ietf.org/rfc/rfc4346.txt

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data Encodings", RFC 4648, October
2006, http://www.rfc-editor.org/rfc/rfc4648.txt

20/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?linkid=2205256
https://go.microsoft.com/fwlink/?linkid=2205256
https://go.microsoft.com/fwlink/?LinkId=192078
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RDPEA%5d.pdf#Section_bea2d5cfe3b9441992e50e074ff9bc5b
%5bMS-RDPEA%5d.pdf#Section_bea2d5cfe3b9441992e50e074ff9bc5b
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409
%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c
%5bMS-RDPERP%5d.pdf#Section_832759572d0e4c5288d11b4c998c6bec
%5bMS-RDPERP%5d.pdf#Section_832759572d0e4c5288d11b4c998c6bec
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1
%5bMS-RDPNSC%5d.pdf#Section_543fd1f18074412289441017261810ca
%5bMS-RDPRFX%5d.pdf#Section_62495a4aa49546eab4595cde04c44549
https://go.microsoft.com/fwlink/?LinkId=90314
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90324
https://go.microsoft.com/fwlink/?LinkId=90422
https://go.microsoft.com/fwlink/?LinkId=90474
https://go.microsoft.com/fwlink/?LinkId=90487

[RFC5246] Dierks, T., and Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.2",
RFC 5246, August 2008, https://www.rfc-editor.org/info/rfc5246

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, October 2012,
http://www.rfc-editor.org/rfc/rfc6749.txt

[RFC7515] Jones, M., Bradley, J., and Sakimura, N., "JSON Web Signature (JWS)", RFC 7515, May
2015, https://www.rfc-editor.org/info/rfc7515

[RFC7517] Jones, M., "JISON Web Key (JWK)", RFC 7517, May 2015, https://www.rfc-
editor.org/info/rfc7517

[RFC7518] Jones, M., "JISON Web Algorithms (JWA)", https://www.rfc-editor.org/rfc/rfc7518

[RFC7519] Internet Engineering Task Force, "JSON Web Token (JWT)", https://www.rfc-
editor.org/info/rfc7519

[RFC7638] Jones, M., Sakimura, N., "JSON Web Key (JWK) Thumbprint", September 2015,
https://www.rfc-editor.org/info/rfc7638

[RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", RFC
8259, December 2017, https://www.rfc-editor.org/rfc/rfc8259.txt

[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, August
2018, https://www.rfc-editor.org/info/rfc8446

[SCHNEIER] Schneier, B., "Applied Cryptography, Second Edition", John Wiley and Sons, 1996, ISBN:
0471117099, http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471117099.html

[SSL3] Netscape, "SSL 3.0 Specification", November 1996, https://tools.ietf.org/html/draft-ietf-tls-ssl-
version3-00

[T122] ITU-T, "Multipoint communication service - Service definition", Recommendation T.122,
February 1998, http://www.itu.int/rec/T-REC-T.122/en

Note There is a charge to download the specification.

[T123] ITU-T, "Network-Specific Data Protocol Stacks for Multimedia Conferencing", Recommendation
T.123, May 1999, http://www.itu.int/rec/T-REC-T.123/en

Note There is a charge to download the specification.

[T124] ITU-T, "Generic Conference Control", Recommendation T.124, February 1998,
http://www.itu.int/rec/T-REC-T.124/en

Note There is a charge to download the specification.

[T125] ITU-T, "Multipoint Communication Service Protocol Specification", Recommendation T.125,
February 1998, http://www.itu.int/rec/T-REC-T.125-199802-1/en

Note There is a charge to download the specification.

[T128] ITU-T, "Multipoint Application Sharing", Recommendation T.128, February 1998,
http://www.itu.int/rec/T-REC-T.128-199802-S/en

Note There is a charge to download the specification.

[X224] ITU-T, "Information technology - Open Systems Interconnection - Protocol for Providing the
Connection-Mode Transport Service", Recommendation X.224, November 1995,
http://www.itu.int/rec/T-REC-X.224-199511-1/en

21/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=129803
https://go.microsoft.com/fwlink/?LinkId=301486
https://go.microsoft.com/fwlink/?LinkId=691168
https://go.microsoft.com/fwlink/?linkid=2111028
https://go.microsoft.com/fwlink/?linkid=2111028
https://go.microsoft.com/fwlink/?linkid=2206215
https://go.microsoft.com/fwlink/?LinkId=824833
https://go.microsoft.com/fwlink/?LinkId=824833
https://go.microsoft.com/fwlink/?linkid=2206536
https://go.microsoft.com/fwlink/?linkid=867803
https://go.microsoft.com/fwlink/?linkid=2147431
https://go.microsoft.com/fwlink/?LinkId=817338
https://go.microsoft.com/fwlink/?LinkId=90534
https://go.microsoft.com/fwlink/?LinkId=90534
https://go.microsoft.com/fwlink/?LinkId=94993
https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90542
https://go.microsoft.com/fwlink/?LinkId=90543
https://go.microsoft.com/fwlink/?LinkId=90544
https://go.microsoft.com/fwlink/?LinkId=90588

Note There is a charge to download the specification.

1.2.2 Informative References

[MS-RDPCR2] Microsoft Corporation, "Remote Desktop Protocol: Composited Remoting V2".

[MS-RDPEAI] Microsoft Corporation, "Remote Desktop Protocol: Audio Input Redirection Virtual
Channel Extension".

[MS-RDPECLIP] Microsoft Corporation, "Remote Desktop Protocol: Clipboard Virtual Channel
Extension".

[MS-RDPEDC] Microsoft Corporation, "Remote Desktop Protocol: Desktop Composition Virtual Channel
Extension".

[MS-RDPEDISP] Microsoft Corporation, "Remote Desktop Protocol: Display Update Virtual Channel
Extension".

[MS-RDPEDYC] Microsoft Corporation, "Remote Desktop Protocol: Dynamic Channel Virtual Channel
Extension".

[MS-RDPEECO] Microsoft Corporation, "Remote Desktop Protocol: Virtual Channel Echo Extension".

[MS-RDPEFS] Microsoft Corporation, "Remote Desktop Protocol: File System Virtual Channel
Extension".

[MS-RDPEGFX] Microsoft Corporation, "Remote Desktop Protocol: Graphics Pipeline Extension".

[MS-RDPEGT] Microsoft Corporation, "Remote Desktop Protocol: Geometry Tracking Virtual Channel
Protocol Extension".

[MS-RDPEI] Microsoft Corporation, "Remote Desktop Protocol: Input Virtual Channel Extension".

[MS-RDPEMC] Microsoft Corporation, "Remote Desktop Protocol: Multiparty Virtual Channel
Extension".

[MS-RDPEPC] Microsoft Corporation, "Remote Desktop Protocol: Print Virtual Channel Extension".

[MS-RDPEPNP] Microsoft Corporation, "Remote Desktop Protocol: Plug and Play Devices Virtual
Channel Extension".

[MS-RDPEPS] Microsoft Corporation, "Remote Desktop Protocol: Session Selection Extension".

[MS-RDPESC] Microsoft Corporation, "Remote Desktop Protocol: Smart Card Virtual Channel
Extension".

[MS-RDPESP] Microsoft Corporation, "Remote Desktop Protocol: Serial and Parallel Port Virtual
Channel Extension".

[MS-RDPEUSB] Microsoft Corporation, "Remote Desktop Protocol: USB Devices Virtual Channel
Extension".

[MS-RDPEVOR] Microsoft Corporation, "Remote Desktop Protocol: Video Optimized Remoting Virtual
Channel Extension".

[MS-RDPEV] Microsoft Corporation, "Remote Desktop Protocol: Video Redirection Virtual Channel
Extension".

22/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPCR2%5d.pdf#Section_04c2c5e73e234a7fb319835f7d049822
%5bMS-RDPEAI%5d.pdf#Section_d04ffa425a0f4f80abb1cc26f71c9452
%5bMS-RDPEAI%5d.pdf#Section_d04ffa425a0f4f80abb1cc26f71c9452
%5bMS-RDPECLIP%5d.pdf#Section_fb9b7e0b6db441c2b83cf889c1ee7688
%5bMS-RDPECLIP%5d.pdf#Section_fb9b7e0b6db441c2b83cf889c1ee7688
%5bMS-RDPEDC%5d.pdf#Section_869980fb29ba426d8361f7b6d287d2ea
%5bMS-RDPEDC%5d.pdf#Section_869980fb29ba426d8361f7b6d287d2ea
%5bMS-RDPEDISP%5d.pdf#Section_d2954508f48748bc873139743e0854a9
%5bMS-RDPEDISP%5d.pdf#Section_d2954508f48748bc873139743e0854a9
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-RDPEECO%5d.pdf#Section_dd36d1eb2e974b24b4a30ca68d500521
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5
%5bMS-RDPEGFX%5d.pdf#Section_da5c75f9cd99450c98c4014a496942b0
%5bMS-RDPEGT%5d.pdf#Section_64dd47427a1c47a7ad23d1f696d8781d
%5bMS-RDPEGT%5d.pdf#Section_64dd47427a1c47a7ad23d1f696d8781d
%5bMS-RDPEI%5d.pdf#Section_72a8cb657f6c407ca21a3d970721fed0
%5bMS-RDPEMC%5d.pdf#Section_1c867b2b40b8459a9af6906b6e0096fc
%5bMS-RDPEMC%5d.pdf#Section_1c867b2b40b8459a9af6906b6e0096fc
%5bMS-RDPEPC%5d.pdf#Section_f36d96c2c0f7418696b116c8e2e1e47c
%5bMS-RDPEPNP%5d.pdf#Section_7463a339d9c04dd1ac3e04ffa73f6932
%5bMS-RDPEPNP%5d.pdf#Section_7463a339d9c04dd1ac3e04ffa73f6932
%5bMS-RDPEPS%5d.pdf#Section_83aeefd1c4a1480780722a597c8cf19b
%5bMS-RDPESC%5d.pdf#Section_0428ca28b4dc46a397c301887fa44a90
%5bMS-RDPESC%5d.pdf#Section_0428ca28b4dc46a397c301887fa44a90
%5bMS-RDPESP%5d.pdf#Section_04ae8f6ba2fe4989931409bff11fa086
%5bMS-RDPESP%5d.pdf#Section_04ae8f6ba2fe4989931409bff11fa086
%5bMS-RDPEUSB%5d.pdf#Section_a1004d0e99e94968894b0b924ef2f125
%5bMS-RDPEUSB%5d.pdf#Section_a1004d0e99e94968894b0b924ef2f125
%5bMS-RDPEVOR%5d.pdf#Section_a9947d5594084cf8b113555b436bd3ce
%5bMS-RDPEVOR%5d.pdf#Section_a9947d5594084cf8b113555b436bd3ce
%5bMS-RDPEV%5d.pdf#Section_ff2a9f63cbcc4615849f03752a2b440b
%5bMS-RDPEV%5d.pdf#Section_ff2a9f63cbcc4615849f03752a2b440b

[MS-RDPEXPS] Microsoft Corporation, "Remote Desktop Protocol: XML Paper Specification (XPS) Print
Virtual Channel Extension".

[MS-TSGU] Microsoft Corporation, "Terminal Services Gateway Server Protocol".

[MSDN-CP] Microsoft Corporation, "Code Page Identifiers", https://learn.microsoft.com/en-
us/windows/desktop/Intl/code-page-identifiers

[MSDN-MUI] Microsoft Corporation, "Language Identifier Constants and Strings",
https://learn.microsoft.com/en-us/windows/win32/intl/language-identifier-constants-and-strings

[MSDN-SCHANNEL] Microsoft Corporation, "Creating a Secure Connection Using Schannel",
http://msdn.microsoft.com/en-us/library/aa374782.aspx

[MSFT-DIL] Microsoft Corporation, "Default Input Locales", https://learn.microsoft.com/en-
us/previous-versions/windows/it-pro/windows-vista/cc766503(v=ws.10)

[MSFT-SDLBTS] Microsoft Corporation, "Session Directory and Load Balancing Using Terminal Server",
September 2002, http://download.microsoft.com/download/8/6/2/8624174c-8587-4a37-8722-
00139613a5bc/TS Session Directory.doc

[MSKB-5017380] Microsoft Corporation, "September 2022 - KB5017380", September 2022,
https://www.catalog.update.microsoft.com/Search.aspx?q=KB5017381

[MSKB-5017381] Microsoft Corporation, "September 2022 - KB5017381", September 2022,
https://support.microsoft.com/en-au/topic/september-20-2022-kb5017381-0s-build-20348-1070-
preview-dc843fea-bccd-4550-9891-a021ae5088f0

[MSKB-5017383] Microsoft Corporation, "September 2022 - KB5017383", September 2022,
https://www.catalog.update.microsoft.com/Search.aspx?q=KB5017383

[RFC2118] Pall, G., "Microsoft Point-To-Point Compression (MPPC) Protocol", RFC 2118, March 1997,
http://www.ietf.org/rfc/rfc2118.txt

1.3 Overview

This protocol is designed to facilitate user interaction with a remote computer system by transferring
graphics display information from the remote computer to the user and transporting input commands
from the user to the remote computer, where the input commands are replayed on the remote
computer. This protocol also provides an extensible transport mechanism which allows specialized
communication to take place between components on the user computer and components running on
the remote computer.

The following subsections present overviews of the protocol operation as well as sequencing
information.

1.3.1 Message Flows

1.3.1.1 Connection Sequence

The goal of the RDP Connection Sequence is to exchange client and server settings and to specify
common settings to use for the duration of the connection so that input, graphics, and other data can
be exchanged and processed between client and server. The RDP Connection Sequence is described in
following figure. All of the message exchanges in this diagram are strictly sequential, except where
noted in the text that follows.

23/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEXPS%5d.pdf#Section_0231eff1ec784371b19c6f81e1cc55ee
%5bMS-RDPEXPS%5d.pdf#Section_0231eff1ec784371b19c6f81e1cc55ee
%5bMS-TSGU%5d.pdf#Section_0007d661a86d4e8f89f77f77f8824188
https://go.microsoft.com/fwlink/?LinkId=89981
https://go.microsoft.com/fwlink/?LinkId=89981
https://go.microsoft.com/fwlink/?LinkId=90048
https://go.microsoft.com/fwlink/?LinkId=90121
https://go.microsoft.com/fwlink/?LinkId=202824
https://go.microsoft.com/fwlink/?LinkId=202824
https://go.microsoft.com/fwlink/?LinkId=90204
https://go.microsoft.com/fwlink/?LinkId=90204
https://go.microsoft.com/fwlink/?linkid=2205486
https://go.microsoft.com/fwlink/?linkid=2205487
https://go.microsoft.com/fwlink/?linkid=2205487
https://go.microsoft.com/fwlink/?linkid=2205488
https://go.microsoft.com/fwlink/?LinkId=90316

Client Server

X.224 Connection Request PDU b— . o
Connection Initiation

- X.224 Connection Confirm PDU

——————MCS Connect Initial PDU with GCC Conference Create Request—b-
Basic Settings Exchange

-—MCS Connect Response PDU with GCC Conference Create Response

MCS Erect Domain Request PDU D‘

MCS Attach User Request PDU b»
- MCS Attach User Confirm PDU : \ Channel Connection
MCS Channel Join Request PDU(s) b
- MCS Channel Join Confirm PDU(s)

Security Exchange PDU b-:} RDP Security Commencement
Client Info PDU h-:} Secure Settings Exchange

| Auto-Detect Request PDU(s) :} Optional Connect-Time

Auto-Detect Response PDU(s) p | Auto-Detection
& | License Error PDU - Valid Client :} Licensing

-——Initiate Multitransport Request PDU Optlonal Multitransport
Initiate Multitransport Response PDU—b— Bootstrapping

Demand Active PDU

-
-t} Monitor Layout PDU Capabilities Exchange
Confirm Active PDU

Synchronize PDU

Control PDU - Cooperate

Control PDU - Request Control

Persistent Key List PDU(s)

yyvvyvy

Font List PDU > Connection Finalization

Synchronize PDU

Control PDU - Cooperate

Control PDU - Granted Control

A A A

Font Map PDU _J

Figure 1: Remote Desktop Protocol (RDP) connection sequence
The connection sequence can be broken up into ten distinct phases:

1. Connection Initiation: The client initiates the connection by sending the server a Class 0 X.224
Connection Request PDU (section 2.2.1.1). The server responds with a Class 0 X.224 Connection
Confirm PDU (section 2.2.1.2).

From this point, all subsequent data sent between client and server is wrapped in an X.224 Data
Protocol Data Unit (PDU) (1).

2. Basic Settings Exchange: Basic settings are exchanged between the client and server by using the
MCS Connect Initial PDU (section 2.2.1.3) and MCS Connect Response PDU (section 2.2.1.4). The

24 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Connect Initial PDU contains a Generic Conference Control (GCC) Conference Create Request,

while the Connect Response PDU contains a GCC Conference Create Response.

These two GCC packets contain concatenated blocks of settings data (such as core data, security
data, and network data) which are read by client and server.

Connect Initial
Fields

GCC Conference Create Request

Client Data Block 1

Client Data Block 2

Client Data Block N

_\

Conference Create
Request Fields

Conference Create
> Request
User Data

>

Connect Initial User
Data

Figure 2: MCS Connect Initial PDU

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

25/ 444

Connect Response
Fields

GCC Conference Create Response)

Conference Create
Response Fields

~

Server Data Block 1

\ Connect Response

Server Data Block 2 User Data

Conference Create
> Response
User Data

Server Data Block N

Figure 3: MCS Connect Response PDU

3. Channel Connection: The client sends an MCS Erect Domain Request PDU (section 2.2.1.5),
followed by an MCS Attach User Request PDU (section 2.2.1.6) to attach the primary user identity
to the MCS domain. The server responds with an MCS Attach User Confirm PDU (section 2.2.1.7)
containing the User Channel ID. The client then proceeds to join the user channel, the
input/output (I/0) channel, and all of the static virtual channels (the I/O and static virtual channel
IDs are obtained from the data embedded in the GCC packets) by using multiple MCS Channel Join
Request PDUs (section 2.2.1.8). The server confirms each channel with an MCS Channel Join
Confirm PDU (section 2.2.1.9). (RDP 4.0, 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, 10.2, 10.3, 10.4,
and 10.5 clients send a Channel Join Request to the server only after the Channel Join Confirm for
a previously sent request has been received. RDP 8.1, 10.0, and 10.1 clients send all of the
Channel Join Requests to the server in a single batch to minimize the overall connection sequence
time.)

From this point, all subsequent data sent from the client to the server is wrapped in an MCS Send
Data Request PDU, while data sent from the server to the client is wrapped in an MCS Send Data
Indication PDU. This is in addition to the data being wrapped by an X.224 Data PDU.

4. RDP Security Commencement: If Standard RDP Security mechanisms (section 5.3) are being
employed and encryption is in force (this is determined by examining the data embedded in the
GCC Conference Create Response packet) then the client sends a Security Exchange PDU (section
2.2.1.10) containing an encrypted 32-byte random number to the server. This random number is
encrypted with the public key of the server as described in section 5.3.4.1 (the server's public key,
as well as a 32-byte server-generated random number, are both obtained from the data
embedded in the GCC Conference Create Response packet). The client and server then utilize the
two 32-byte random numbers to generate session keys which are used to encrypt and validate the
integrity of subsequent RDP traffic.

From this point, all subsequent RDP traffic can be encrypted and a security header is included with
the data if encryption is in force. (The Client Info PDU (section 2.2.1.11) and licensing PDUs ([MS-

26 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409

10.

RDPELE] section 2.2.2) are an exception in that they always have a security header). The Security
Header follows the X.224 and MCS Headers and indicates whether the attached data is encrypted.
Even if encryption is in force, server-to-client traffic cannot always be encrypted, while client-to-
server traffic will always be encrypted (encryption of licensing PDUs is optional, however).

Secure Settings Exchange: Secure client data (such as the username, password, and auto-
reconnect cookie) is sent to the server by using the Client Info PDU (section 2.2.1.11).

Optional Connect-Time Auto-Detection: During the Optional Connect-Time Auto-Detection phase,
the goal is to determine characteristics of the network, such as the round-trip latency time and the
bandwidth of the link between the server and client. This is accomplished by exchanging a
collection of PDUs (specified in section 2.2.14) over a predetermined period of time with enough
data to ensure that the results are statistically relevant.

Licensing: The goal of the licensing exchange is to transfer a license from the server to the client.
The client stores this license and on subsequent connections sends the license to the server for
validation. However, in some situations the client cannot be issued a license to store. In effect, the
packets exchanged during this phase of the protocol depend on the licensing mechanisms
employed by the server. Within the context of this document, it is assumed that the client will not
be issued a license to store. For details regarding more advanced licensing scenarios that take
place during the Licensing phase, see [MS-RDPELE] section 1.3.

Optional Multitransport Bootstrapping: After the connection has been secured and the Licensing
phase has run to completion, the server can choose to initiate multitransport connections ([MS-
RDPEMT] section 1.3). The Initiate Multitransport Request PDU (section 2.2.15.1) is sent by the
server to the client and results in the out-of-band creation of a multitransport connection using
messages from the RDP-UDP, TLS, DTLS, and multitransport protocols ([MS-RDPEMT] section
1.3.1). The client sends the Multitransport Response PDU (section 2.2.15.2) to the server if the
multitransport connection could not be established or if the server indicated support for Soft-Sync
in the Server Multitransport Channel Data (section 2.2.1.4.6)

Capabilities Exchange: The server sends the set of capabilities it supports to the client in a
Demand Active PDU (section 2.2.1.13.1). The optional Monitor Layout PDU (section 2.2.12.1) is
sent by the server after the Demand Active PDU. The client responds to the Demand Active PDU
with its capabilities by sending a Confirm Active PDU (section 2.2.1.13.2).

Connection Finalization: The client and server exchange PDUs to finalize the connection details.
The client-to-server PDUs sent during this phase have no dependencies on any of the server-to-
client PDUs; they can be sent as a single batch, provided that sequencing is maintained.

= The Client Synchronize PDU (section 2.2.1.14) is sent after transmitting the Confirm Active
PDU.

= The Client Control (Cooperate) PDU (section 2.2.1.15) is sent after transmitting the Client
Synchronize PDU.

= The Client Control (Request Control) PDU (section 2.2.1.16) is sent after transmitting the
Client Control (Cooperate) PDU.

= The optional Persistent Key List PDUs (section 2.2.1.17) are sent after transmitting the Client
Control (Request Control) PDU.

= The Font List PDU (section 2.2.1.18) is sent after transmitting the Persistent Key List PDUs or,
if the Persistent Key List PDUs were not sent, it is sent after transmitting the Client Control
(Request Control) PDU (section 2.2.1.16).

The server-to-client PDUs sent during the Connection Finalization phase have dependencies on
the client-to-server PDUs.

= The Server Synchronize PDU (section 2.2.1.19) is sent in response to the Confirm Active PDU.

27/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409
%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c
%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c

= The Server Control (Cooperate) PDU (section 2.2.1.20) is sent after transmitting the Server
Synchronize PDU.

= The Server Control (Granted Control) PDU (section 2.2.1.21) is sent in response to the Client
Control (Request Control) PDU.

= The Font Map PDU (section 2.2.1.22) is sent in response to the Font List PDU.

Once the client has sent the Confirm Active PDU, it can start sending mouse and keyboard input to
the server, and upon receipt of the Font List PDU the server can start sending graphics output to
the client.

Besides input and graphics data, other data that can be exchanged between client and server after the
connection has been finalized includes connection management information and virtual channel
messages (exchanged between client-side plug-ins and server-side applications).

1.3.1.2 Security-Enhanced Connection Sequence

The RDP Connection Sequence does not provide any mechanisms which ensure that the identity of the
server is authenticated, and as a result it is vulnerable to man-in-the-middle attacks (these attacks
can compromise the confidentiality of the data sent between client and server).

The goal of the Security-Enhanced Connection Sequence is to provide an extensible mechanism within
RDP so that well-known and proven security protocols (such as Secure Socket Layer (SSL) or
Kerberos) can be used to fulfill security objectives and to wrap RDP traffic. There are two variations of
the Security-Enhanced Connection Sequence. The negotiation-based approach aims to provide
backward-compatibility with previous RDP implementations, while the Direct Approach favors more
rigorous security over interoperability.

Negotiation-Based Approach: The client advertises the security packages which it supports (by
appending a negotiation request structure to the X.224 Connection Request PDU) and the server
selects the package to use (by appending a negotiation response structure to the X.224 Connection
Confirm PDU). After the client receives the X.224 Connection Confirm PDU the handshake messages
defined by the negotiated security package are exchanged and then all subsequent RDP traffic is
secured by using the cryptographic techniques specified by the negotiated security package.

Direct Approach: Instead of negotiating a security package, the client and server immediately execute
a predetermined security protocol (for example, the CredSSP Protocol [MS-CSSP]) prior to any RDP
traffic being exchanged on the wire. This approach results in all RDP traffic being secured using the
hard-coded security package. However, it has the disadvantage of not working with servers that
expect the connection sequence to be initiated by an X.224 Connection Request PDU.

For more details about Enhanced RDP Security, see section 5.4.

1.3.1.3 Deactivation-Reactivation Sequence

After the connection sequence has run to completion, the server can determine that the client has to
be connected to an existing session. To accomplish this task the server signals the client with a
Deactivate All PDU. A Deactivate All PDU implies that the connection will be dropped or that a
capability re-exchange will occur. If a capability re-exchange is required, then the Capability Exchange
and Connection Finalization phases of the connection sequence (section 1.3.1.1) are re-executed.

The sending and processing of the Deactivate All PDU is described in sections 3.3.5.5.1 and 3.2.5.5.1
respectively.

1.3.1.4 Disconnection Sequences

1.3.1.4.1 User-Initiated on Client

28/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30

The user can initiate a client-side disconnect by closing the RDP client application. To implement this
type of disconnection the client can initiate an immediate disconnect by sending the MCS Disconnect
Provider Ultimatum PDU (with the reason code set to "user requested") and then closing the
connection. Alternatively, the client can first notify the server of the intent to disconnect by sending
the Shutdown Request PDU and then waiting for a response. The server response to this PDU is
determined by whether the session is associated with a logged-on user account.

= If a logged-on user account is associated with the session, the server always denies the shutdown
request and sends the client a Shutdown Request Denied PDU. At this point the client behavior is
implementation-dependent (the client can, for example, choose to display a dialog box specifying
that the session will be disconnected). If the decision is made to proceed with the disconnection,
the client sends the server an MCS Disconnect Provider Ultimatum PDU (with the reason code set
to "user requested") and closes the connection.

= If a logged-on user account is not associated with the session, the server closes the connection
immediately after receiving the Shutdown Request PDU.

The sending and processing of the Shutdown Request PDU is described in sections 3.2.5.4.1 and
3.3.5.4.1 respectively. The sending and processing of the Shutdown Request Denied PDU is described
in sections 3.3.5.4.2 and 3.2.5.4.2 respectively.

1.3.1.4.2 User-Initiated on Server

The user can initiate a server-side disconnect by ending the session hosted on the server. To
implement this type of disconnection, the server sends the client the following sequence of PDUs:

= An optional Set Error Info PDU (containing a detailed reason for the pending disconnection)

= An optional Deactivate All PDU

= An optional MCS Disconnect Provider Ultimatum PDU (with the reason code set to "user
requested")

The connection is then closed by the server.

The sending of the Deactivate All and MCS Disconnect Provider Ultimatum PDUs is specified in section
3.3.5.5.1, while the sending of the Set Error Info PDU is specified in section 3.3.5.7.1.

1.3.1.4.3 Administrator-Initiated on Server

The administrator of a server can force a user to be logged off from a session or disconnect sessions
outside of the user's control. To implement this type of disconnection, the server sends the client the
following sequence of PDUs:

= An optional Set Error Info PDU (containing a detailed reason for the pending disconnection)

= An optional Deactivate All PDU

= An optional MCS Disconnect Provider Ultimatum PDU (with the reason code set to "provider
initiated")

The connection is then closed by the server.

The sending of the Deactivate All and MCS Disconnect Provider Ultimatum PDUs is specified in section
3.3.5.5.1, while the sending of the Set Error Info PDU is specified in section 3.3.5.7.1.

1.3.1.5 Automatic Reconnection

The Automatic Reconnection feature allows a client to reconnect to an existing session (after a short-
term network failure has occurred) without having to resend the user's credentials to the server.

29 /444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

After a successful log on, the server sends the client an "auto-reconnect cookie" in the Save Session
Info PDU. This cookie is bound to the current user's session and is stored by the client. In the case of
a disconnection due to a network error, the client can try to automatically reconnect to the server. If it
can connect, it sends a cryptographically modified version of the cookie to the server in the Client Info
PDU (the Secure Settings Exchange phase of the connection sequence, as specified in section 1.3.1.1).
The server uses the modified cookie to confirm that the client requesting auto-reconnection is the last
client that was connected to the session. If this check passes, then the client is automatically
connected to the desired session upon completion of the connection sequence.

The auto-reconnect cookie associated with a given session is flushed and regenerated whenever a
client connects to the session or the session is reset. This ensures that if a different client connects to
the session, then any previous clients that were connected can no longer use the auto-reconnect
mechanism to connect. Furthermore, the server invalidates and updates the cookie at hourly intervals,
sending the new cookie to the client in the Save Session Info PDU.

1.3.2 Server Error Reporting and Status Updates

A server can send detailed error codes to a client by using the Set Error Info PDU (the client indicates
during the Basic Settings Exchange phase of the connection sequence, as specified in section 1.3.1.1,
that it supports this PDU). This PDU can be sent when a phase in the connection sequence fails or
when the client is about to be disconnected. Error codes allow the client to give much clearer failure
explanations to the user. If a server chooses not to send error codes to a client that supports receiving
these codes, then the client will be unable to report a clear diagnosable reason for any server-side
initiated disconnections.

Status updates can be sent to a client by using the Status Info PDU (the client indicates during the
Basic Settings Exchange phase of the connection sequence, as specified in section 1.3.1.1, that it
supports this PDU). This PDU can be sent by the server to allow the client to give feedback to a user
when the server is performing processing that can take some time to complete.

The sending and processing of the Set Error Info PDU is described in sections 3.3.5.7.1 and 3.2.5.7.1
respectively, while the sending and processing of the Status Info PDU is described in sections
3.3.5.7.2 and 3.2.5.7.2 respectively.

1.3.3 Static Virtual Channels

Static Virtual Channels allow lossless communication between client and server components over the
main RDP data connection. Virtual channel data is application-specific and opaque to RDP. A maximum
of 31 static virtual channels can be created at connection time.

The list of desired virtual channels is requested and confirmed during the Basic Settings Exchange
phase of the connection sequence (as specified in section 1.3.1.1) and the endpoints are joined during
the Channel Connection phase (as specified in section 1.3.1.1). Once joined, the client and server
endpoints do not exchange data until the connection sequence has completed.

Static Virtual Channel data is broken up into chunks before being transmitted. The maximum size of
an individual chunk is determined by the settings exchanged in the Virtual Channel Capability Set
described in section 2.2.7.1.10 (the chunk size does not include RDP headers). Each virtual channel
acts as an independent data stream. The client and server examine the data received on each virtual
channel and route the data stream to the appropriate endpoint for further processing. A particular
client or server implementation can decide whether to pass on individual chunks of data as they are
received, or to assemble the separate chunks of data into a complete block before passing it on to the
endpoint.

30/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

1.3.4 Data Compression

RDP uses a bulk compressor to compress virtual channel data and some data in PDUs sent from
server to client. Capability advertising for various versions of the bulk compressor occurs in the Client
Info PDU (the Secure Settings Exchange phase of the connection sequence, as specified in section
1.3.1.1).

One version of the bulk compressor (the RDP 4.0 bulk compressor) is based on the Microsoft Point-To-
Point Compression (MPPC) Protocol, as described in [RFC2118], and uses an 8 kilobyte history buffer.
A more advanced version of the compressor (the RDP 5.0 bulk compressor) is derived from the RDP
4.0 bulk compressor, but uses a 64 kilobyte history buffer and modified Huffman-style encoding rules.

Besides employing bulk compression for generic data, RDP also uses variations of run length encoding
(RLE) rules to implement compression of bitmap data sent from server to client. All clients have to be
capable of decompressing compressed bitmap data; this capability is not negotiable.

1.3.5 Keyboard and Mouse Input

The client sends mouse and keyboard input PDUs in two types: slow-path and fast-path. Slow-path is
similar to T.128 input formats for input PDUs, with some modifications for RDP input requirements.
Fast-path was introduced to take advantage of the fact that in RDP there are no extended Multipoint
Communication Services (MCS) topologies, just one top-level node and one leaf-node per socket.
Fast-path also uses reduced or removed headers and alternate bytestream-orientated encoding
formats to reduce bandwidth and CPU cycles for encode and decode.

Client-to-server Input Event PDUs convey keyboard and mouse data to the server so that it can inject
input as needed. The client can also periodically synchronize the state of the toggle keys (for example,
NUM LOCK and CAPS LOCK) using the Synchronize Event PDU. This is necessary when the client loses
input focus and then later gets the focus back (possibly with new toggle key states). In a similar vein,
the server can also force an update of the local keyboard toggle keys or the local input method
editor (IME) being used to ensure that synchronization with the session is maintained.

1.3.6 Basic Server Output

In a similar style to input-related PDUs (as specified in section 1.3.5), server output-related PDUs
come in two types: slow-path and fast-path. Slow-path output is similar to T.128 output and is not
optimized in any way. Fast-path output uses reduced or removed headers to save bandwidth and
reduce encoding and decoding latency by reducing the required CPU cycles.

The most fundamental output that a server can send to a connected client is bitmap images of the
user's session using Bitmap Updates. This allows the client to render the working space and enables a
user to interact with the session running on the server. The global palette information for a session is
sent to the client using Palette Updates.

The client can choose to render the mouse cursor locally (if it is not included in the graphics updates
sent by the server). In this case, the server sends updates of the current cursor image to ensure that
it can be drawn with the correct shape (the Pointer Update PDUs are used to accomplish this task).
Furthermore, if the mouse is programmatically moved in the user's session, the server informs the
client of the new position using the Pointer Position PDU.

Other basic output which a server sends to a connected client includes the Play Sound PDU, which
instructs a client to play rudimentary sounds (by specifying a frequency and its duration) and
Connection Management PDUs, as specified in section 2.2.10.

1.3.7 Controlling Server Graphics Output

A client connected to a server and displaying graphics data might need to request that the server
resend the graphics data for a collection of rectangular regions of the session screen area, or stop

31/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90316

sending graphics data for a period of time (perhaps when the client is minimized). These two tasks are
accomplished by having the client send the Refresh Rect PDU and Suppress Output PDUs,
respectively.

1.3.8 Server Redirection

A client connection can be redirected to a specific session on another server by using the Server
Redirection PDU (section 2.2.13). This enables basic load-balancing scenarios, as shown in the

following figure.

Connection
Broker

Client P
c -

Figure 4: Basic server redirection

Assume that User A has an existing session on Server S1 (Session #3). Both Server S1 and Server S2
are able to communicate with a Connection Broker.

1.
2.

w

»

User A uses Client C to connect to Server S2 and authenticate.

Server S2 communicates with the Connection Broker and is informed that User A has an existing
session on Server S1 (Session #3).

Server S2 sends a Redirection PDU to Client C, which contains:
= The name of the target server (S1).

= The target Session ID (Session #3).

= The login credentials to use for Server S1 (if necessary).

Client C closes the connection to Server S2 and initiates a connection to Server S1. As part of the
connection initialization data sent to Server S1, Client C sends the login credentials and requests a
connection to Session #3.

32/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

5. Server S1 validates the login credentials, and, if they are correct, connects Client C to Session #3.

If Client C cannot connect directly to Server S1, the Redirection PDU has to contain a variable-length
routing token that contains the information required by Server S2 to redirect the client connection
appropriately. The client places this token into the X.224 Connection Request PDU (section 2.2.1.1) of
the RDP Connection Sequence and then reconnects it back to Server S2. Server S2 reads the
routing token and then redirects the X.224 Connection Request and all future traffic from Client C to
Server S1.

For more information about load balancing of Remote Desktop sessions and the routing token
format, see [MSFT-SDLBTS] sections "Load-Balanced Configurations", "Revectoring Clients", and
"Routing Token Format".

1.3.8.1 RDSTLS

The RDSTLS Security Protocol (section 5.4.5.3) is primarily used in the context of server redirection
scenarios. When the Redirection PDU is sent to the client (step 3 in section 1.3.8), RDSTLS should be
used for the subsequent reconnection and authentication phase (steps 4 and 5 of section 1.3.8) if it
contains two key data items:

= The authentication certificate of the target server.

= An encrypted password for user authentication.

These two items are used in the context of RDSTLS to facilitate mutual authentication when
reconnecting to the target server.

1.3.9 Connect-Time and Continuous Network Characteristics Detection

Connect-Time Auto-Detection occurs once during the RDP Connection Sequence (section 1.3.1.1), and
is accomplished by sending request and response messages over the main RDP connection during the
Optional Connect-Time Auto-Detection phase.

The following messages are encapsulated in the server-to-client Auto-Detect Request PDU (section
2.2.14.3) and flow over the main RDP connection, implementing Connect-Time Auto-Detection:

= RTT Message Request (section 2.2.14.1.1)

= Bandwidth Measure Start (section 2.2.14.1.2)

= Bandwidth Measure Payload (section 2.2.14.1.3)

= Bandwidth Measure Stop (section 2.2.14.1.4)

= Network Characteristics Result (section 2.2.14.1.5)

The following messages are encapsulated in the client-to-server Auto-Detect Response PDU (section
2.2.14.2) and flow over the main RDP connection as part of Connect-Time Auto-Detection:

= RTT Measure Response (section 2.2.14.2.1)
= Bandwidth Measure Results (section 2.2.14.2.2)
= Network Characteristics Sync (section 2.2.14.2.3)

Continuous Auto-Detection occurs on a constant basis after the RDP Connection Sequence has
completed, and is implemented by sending request and response messages over the main RDP
connection and any created sideband channels ([MS-RDPEMT] section 1.3.2).

33/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90204
%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c

The following messages are encapsulated in the server-to-client Auto-Detect Request PDU and flow
over the main RDP connection, implementing Continuous Auto-Detection:

= RTT Message Request (section 2.2.14.1.1)
= Bandwidth Measure Start (section 2.2.14.1.2)
= Bandwidth Measure Stop (section 2.2.14.1.4)

The following messages are encapsulated in the client-to-server Auto-Detect Response PDU and flow
over the main RDP connection as part of Continuous Auto-Detection:

= RTT Measure Response (section 2.2.14.2.1)
= Bandwidth Measure Results (section 2.2.14.2.2)

The following messages are encapsulated in the RDP_TUNNEL_SUBHEADER ([MS-RDPEMT] section
2.2.1.1.1) structure and are used to implement Continuous Auto-Detection over the sideband channels
that are in active use:

= Bandwidth Measure Start (section 2.2.14.1.2)
= Bandwidth Measure Stop (section 2.2.14.1.4)
» Network Characteristics Result (section 2.2.14.1.5)

= Bandwidth Measure Results (section 2.2.14.2.2)

1.3.10 Connection Health Monitoring

The Heartbeat PDU (section 2.2.16.1) allows a client to monitor the state of the connection to the
server in real time. If the client and server both support connection health monitoring, then the server
will send Heartbeat PDUs to the client at a regular cadence when no other data is sent. If no data has
been received over a predetermined number of heartbeat intervals by the client, then the server might
be down or the network link might be in a disconnected state. If this is the case, the client can
respond by displaying a warning or initiating a reconnection attempt.

1.4 Relationship to Other Protocols

[MS-RDPBCGR] is based on the ITU (International Telecommunication Union) T.120 series of
protocols. The T.120 standard is composed of a suite of communication and application-layer protocols
that enable implementers to create compatible products and services for real-time, multipoint data
connections and conferencing.

= Protocol for Providing the Connection-Mode Transport Service [X224]

= Multipoint communication service - Service definition [T122]

= Network-Specific Data Protocol Stacks for Multimedia Conferencing [T123]

= Generic Conference Control [T124]

= Multipoint Communication Service Protocol Specification [T125]

= Multipoint Application Sharing [T128]

The following protocols are tunneled within an [MS-RDPBCGR] static virtual channel:
»= Multiparty Virtual Channel Extension [MS-RDPEMC

= Clipboard Virtual Channel Extension [MS-RDPECLIP

34 /444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=94993
https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90542
https://go.microsoft.com/fwlink/?LinkId=90543
https://go.microsoft.com/fwlink/?LinkId=90544
%5bMS-RDPEMC%5d.pdf#Section_1c867b2b40b8459a9af6906b6e0096fc
%5bMS-RDPECLIP%5d.pdf#Section_fb9b7e0b6db441c2b83cf889c1ee7688

*= Audio Output Virtual Channel Extension [MS-RDPEA

= Remote Programs Virtual Channel Extension [MS-RDPERP

= Dynamic Channel Virtual Channel Extension [MS-RDPEDYC

= File System Virtual Channel Extension [MS-RDPEFS

= Serial Port Virtual Channel Extension [MS-RDPESP

» Print Virtual Channel Extension [MS-RDPEPC

= Smart Card Virtual Channel Extension [MS-RDPESC

[MS-RDPEDYC] tunnels the following protocols:

= XPS Printing Virtual Channel Extension [MS-RDPEXPS

= Plug and Play Devices Virtual Channel Extension [MS-RDPEPNP

* Video Virtual Channel Extension [MS-RDPEV

= Audio Input Virtual Channel Extension [MS-RDPEAI

» Composited Remoting V2 Extension [MS-RDPCR2

= USB Devices Virtual Channel Extension [MS-RDPEUSB

» Graphics Pipeline Extension [MS-RDPEGFX

= Input Virtual Channel Extension [MS-RDPEI

= Video Optimized Remoting Virtual Channel Extension [MS-RDPEVOR
= Virtual Channel Echo Extension [MS-RDPEECO

= Geometry Tracking Virtual Channel Protocol Extension [MS-RDPEGT

= Display Control Virtual Channel Extension [MS-RDPEDISP]

The following protocols extend [MS-RDPBCGR]:

= Licensing Extension [MS-RDPELE

= Session Selection Extension [MS-RDPEPS

= Graphics Device Interface (GDI) Acceleration Extensions [MS-RDPEGDI
= Desktop Composition Extension [MS-RDPEDC

= Remote Programs Virtual Channel Extension [MS-RDPERP]
= NSCodec Extension [MS-RDPNSC

= RemoteFX Codec Extension [MS-RDPRFX

The following protocol tunnels [MS-RDPEDYC]:

= Multitransport Extension [MS-RDPEMT

The following protocol tunnels [MS-RDPEMT]:

= UDP Transport Extension [MS-RDPEUDP

35/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEA%5d.pdf#Section_bea2d5cfe3b9441992e50e074ff9bc5b
%5bMS-RDPERP%5d.pdf#Section_832759572d0e4c5288d11b4c998c6bec
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5
%5bMS-RDPESP%5d.pdf#Section_04ae8f6ba2fe4989931409bff11fa086
%5bMS-RDPEPC%5d.pdf#Section_f36d96c2c0f7418696b116c8e2e1e47c
%5bMS-RDPESC%5d.pdf#Section_0428ca28b4dc46a397c301887fa44a90
%5bMS-RDPEXPS%5d.pdf#Section_0231eff1ec784371b19c6f81e1cc55ee
%5bMS-RDPEPNP%5d.pdf#Section_7463a339d9c04dd1ac3e04ffa73f6932
%5bMS-RDPEV%5d.pdf#Section_ff2a9f63cbcc4615849f03752a2b440b
%5bMS-RDPEAI%5d.pdf#Section_d04ffa425a0f4f80abb1cc26f71c9452
%5bMS-RDPCR2%5d.pdf#Section_04c2c5e73e234a7fb319835f7d049822
%5bMS-RDPEUSB%5d.pdf#Section_a1004d0e99e94968894b0b924ef2f125
%5bMS-RDPEGFX%5d.pdf#Section_da5c75f9cd99450c98c4014a496942b0
%5bMS-RDPEI%5d.pdf#Section_72a8cb657f6c407ca21a3d970721fed0
%5bMS-RDPEVOR%5d.pdf#Section_a9947d5594084cf8b113555b436bd3ce
%5bMS-RDPEECO%5d.pdf#Section_dd36d1eb2e974b24b4a30ca68d500521
%5bMS-RDPEGT%5d.pdf#Section_64dd47427a1c47a7ad23d1f696d8781d
%5bMS-RDPEDISP%5d.pdf#Section_d2954508f48748bc873139743e0854a9
%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409
%5bMS-RDPEPS%5d.pdf#Section_83aeefd1c4a1480780722a597c8cf19b
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
%5bMS-RDPEDC%5d.pdf#Section_869980fb29ba426d8361f7b6d287d2ea
%5bMS-RDPNSC%5d.pdf#Section_543fd1f18074412289441017261810ca
%5bMS-RDPRFX%5d.pdf#Section_62495a4aa49546eab4595cde04c44549
%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1

The following protocol tunnels [MS-RDPBCGR]:

= Gateway Server Protocol [MS-TSGU

1.5 Prerequisites/Preconditions

This protocol assumes that the client and server systems both have an IP address and are able to
communicate over a computer network. It also assumes that the initiator (or "client") has already
obtained the IP address of the server, that the server has registered a port, and that the server is
actively listening for client connections on that port.<1>

1.6 Applicability Statement

This protocol is applicable in scenarios where interactions with a session or application hosted on a
remote server are required. In this context, the graphical user interface of a session or application
running on a remote machine is transmitted to the client machine. The client, in turn, sends keyboard
and mouse input to be processed by the server allowing the client to interact with the session or
application on the server.

In scenarios in which more specialized communication between client and server components is
needed, Virtual Channels (section 1.3.3) provide an extensible transport mechanism. Examples of
more specialized communication include redirection of client-side devices (for example, printers,
drives, smart card readers, or Plug and Play devices) and synchronization of the local and remote
clipboards.

1.7 Versioning and Capability Negotiation

Capability negotiation for RDP is essentially the same as for T.128. The server advertises its
capabilities in a Demand Active PDU sent to the client, and the client advertises its capabilities in the
follow-up Confirm Active PDU (see the Capability Exchange phase in section 1.3.1.1). Capability sets
are packaged in a combined capability set structure. This structure contains a count of the number of
capability sets, followed by the contents of the individual capability sets.

Mumber of
capability sets
which
follow = N

Capability Set 1 Capabllity Set 2 e Capability Set N

Figure 5: Combined Capability Set structure

Information exchanged in the capability sets includes data such as supported PDUs and drawing
orders, desktop dimensions, and allowed color depths, input device support, cache structures and
feature support. The client and server do not violate any peer capabilities when sending data on the
wire. This ensures that all RDP traffic on the wire is consistent with expectations and can be processed
by each party.

Early capability information (in the form of a bitmask) is advertised by the client as part of the data
which it sends to the server during the Basic Settings Exchange phase. This information is intended for
capabilities that need to be advertised prior to the actual Capability Exchange phase. For example,
support for the Set Error Info PDU is established before the Licensing phase of the connection
sequence, which occurs before the Capability Exchange phase (section 1.3.1.1). This is necessary
because the server has to be aware of how errors can be communicated back to the client.

36 /444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-TSGU%5d.pdf#Section_0007d661a86d4e8f89f77f77f8824188

The client and server data exchanged during the Basic Settings Exchange phase in the RDP
Connection Sequence (section 1.3.1.1) includes an RDP version number (consisting of a major and
minor field). However, this version information does not accurately reflect the version of RDP being
used by RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, and 8.1 clients because they all advertise a minor
version of "4").

The build number of the client is also available as part of the data the client sends to the server during

the Basic Settings Exchange phase. However, this value is implementation-dependent and is not
necessarily consistent across the spectrum of RDP clients manufactured by different vendors.

1.8 Vendor-Extensible Fields
This protocol uses NTSTATUS values as defined in [MS-ERREF] section 2.3. Vendors are free to choose

their own values for this field, as long as the C bit (0x20000000) is set, indicating it is a customer
code.

1.9 Standards Assignments

None.

37/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

2 Messages

2.1 Transport

The [MS-RDPBCGR] packets are encapsulated in the Transmission Control Protocol (TCP). The
TCP packets MUST be encapsulated in version 4 or 6 of the IP protocol.

There is no officially assigned TCP port for [MS-RDPBCGR], but protocol servers listen by default on
TCP port 3389 for client requests.

2.2 Message Syntax

All multiple-byte fields within a message MUST be marshaled in little-endian byte order, unless
otherwise specified. This protocol references commonly used data types as defined in [MS-DTYP].

Version 2 MCS Encoding Rules (defined in [T125] section 9) are used when encoding MCS structures
defined in [T125]. The MCS Send Data Request ([T125] section 11.32) and MCS Send Data Indication
([T125] section 11.33) structures MUST be restricted to 16,383 or fewer bytes in length to avoid
implementing ASN.1 Packed Encoding Rules (PER) extended size determinant encoding
([ITUX691] section 10.9.3, excluding 10.9.3.8).

2.2.1 Connection Sequence

2.2.1.1 Client X.224 Connection Request PDU

The X.224 Connection Request PDU is an RDP Connection Sequence PDU sent from client to server
during the Connection Initiation phase of the RDP Connection Sequence (section 1.3.1.1 for an
overview of the RDP Connection Sequence phases).

—
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

tpktHeader

x224Crq

routingToken (variable)

cookie (variable)

rdpNegReq (optional)

rdpCorrelationInfo (36 bytes, optional)

38/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=90543
https://go.microsoft.com/fwlink/?LinkId=192078

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Crq (7 bytes): An X.224 Class 0 Connection Request transport protocol data unit (TPDU), as
specified in [X224] section 13.3.

routingToken (variable): An optional and variable-length routing token (used for load balancing)
terminated by a OXODOA two-byte sequence. For more information about the routing token
format, see [MSFT-SDLBTS] "Routing Token Format". The length of the routing token and CR+LF
sequence is included in the X.224 Connection Request Length Indicator field. If this field is
present, then the cookie field MUST NOT be present.

cookie (variable): An optional and variable-length ANSI character string terminated by a 0xODOA
two-byte sequence. This text string MUST be "Cookie: mstshash=IDENTIFIER", where IDENTIFIER
is an ANSI character string (an example cookie string is shown in section 4.1.1). The length of the
entire cookie string and CR+LF sequence is included in the X.224 Connection Request Length
Indicator field. This field MUST NOT be present if the routingToken field is present.

rdpNegReq (8 bytes): An optional RDP Negotiation Request (section 2.2.1.1.1) structure. The
length of this field is included in the X.224 Connection Request Length Indicator field.

rdpCorrelationInfo (36 bytes): An optional Correlation Info (section 2.2.1.1.2) structure. The
length of this field is included in the X.224 Connection Request Length Indicator field. This
field MUST be present if the CORRELATION_INFO_PRESENT (0x08) flag is set in the flags field of
the RDP Negotiation Request structure, encapsulated within the optional rdpNegReq field. If
the CORRELATION_INFO_PRESENT (0x08) flag is not set, then this field MUST NOT be present.

2.2.1.1.1 RDP Negotiation Request (RDP_NEG_REQ)

The RDP Negotiation Request structure is used by a client to advertise the security protocols which it
supports.

-
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]|1

type flags length

requestedProtocols

type (1 byte): An 8-bit, unsigned integer that indicates the packet type. This field MUST be set to
0x01 (TYPE_RDP_NEG_REQ).

flags (1 byte): An 8-bit, unsigned integer that contains protocol flags.

Flag Meaning
RESTRICTED_ADMIN_MODE_REQUIRED Indicates that the client requires credential-less
0x01 logon over CredSSP (also known as "restricted

admin mode"). If the server supports this mode then
it is acceptable for the client to send empty
credentials in the TSPasswordCreds structure
defined in [MS-CSSP] section 2.2.1.2.1.<2>

REDIRECTED_AUTHENTICATION_MODE_REQUIRED | Indicates that the client requires credential-less
0x02 logon over CredSSP with redirected authentication
over CredSSP (also known as "Remote Credential
Guard"). If the server supports this mode, the client

39/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90204
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30

Flag Meaning

can send a redirected logon buffer in the
TSRemoteGuardCreds structure defined in [MS-
CSSP] section 2.2.1.2.3.

CORRELATION_INFO_PRESENT The optional rdpCorrelationInfo field of the 224
0x08 Connection Request PDU (section 2.2.1.1) is
present.

length (2 bytes): A 16-bit, unsigned integer that specifies the packet size. This field MUST be set to
0x0008 (8 bytes).

requestedProtocols (4 bytes): A 32-bit, unsigned integer that contains flags indicating the
supported security protocols.

Flag Meaning

PROTOCOL_RDP Standard RDP Security (section 5.3).

0x00000000

PROTOCOL_SSL TLS 1.0, 1.1, or 1.2 (section 5.4.5.1).

0x00000001

PROTOCOL_HYBRID Credential Security Support Provider protocol (CredSSP) (section 5.4.5.2). If

0x00000002 this flag is set, then the PROTOCOL_SSL (0x00000001) flag SHOULD also be set
because Transport Layer Security (TLS) is a subset of CredSSP.

PROTOCOL_RDSTLS RDSTLS protocol (section 5.4.5.3).

0x00000004

PROTOCOL_HYBRID_EX | Credential Security Support Provider protocol (CredSSP) (section 5.4.5.2)
0x00000008 coupled with the Early User Authorization Result PDU (section 2.2.10.2). If this
flag is set, then the PROTOCOL_HYBRID (0x00000002) flag SHOULD also be
set. For more information on the sequencing of the CredSSP messages and the
Early User Authorization Result PDU, see sections 5.4.2.1 and 5.4.2.2.

PROTOCOL_RDSAAD RDS-AAD-Auth Security (section 5.4.5.4).
0x00000010

2.2.1.1.2 RDP Correlation Info (RDP_NEG_CORRELATION_INFO)

The RDP Correlation Info structure is used by a client to propagate connection correlation information
to the server. This information allows diagnostic tools on the server to track and monitor a specific
connection as it is handled by Terminal Services components.

-
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

type flags length

correlationld (16 bytes)

40 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

reserved (16 bytes)

type (1 byte): An 8-bit, unsigned integer that indicates the packet type. This field MUST be set to
0x06 (TYPE_RDP_CORRELATION_INFO).

flags (1 byte): An 8-bit, unsigned integer that contains protocol flags. There are currently no defined
flags, so this field MUST be set to 0x00.

length (2 bytes): A 16-bit, unsigned integer that specifies the packet size. This field MUST be set to
0x0024 (36 bytes).

correlationId (16 bytes): An array of sixteen 8-bit, unsigned integers that specifies a unique
identifier to associate with the connection. The first byte in the array SHOULD NOT have a value of
0x00 or 0xF4 and the value 0xOD SHOULD NOT be contained in any of the bytes.

reserved (16 bytes): An array of sixteen 8-bit, unsigned integers reserved for future use. All sixteen
integers within this array MUST be set to zero.

2.2.1.2 Server X.224 Connection Confirm PDU

The X.224 Connection Confirm PDU is an RDP Connection Sequence PDU sent from server to client
during the Connection Initiation phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent as a response to the X.224 Connection
Request PDU (section 2.2.1.1).

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Ccf

rdpNegData (optional)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Ccf (7 bytes): An X.224 Class 0 Connection Confirm TPDU, as specified in [X224] section 13.4.
rdpNegData (8 bytes): An optional RDP Negotiation Response (section 2.2.1.2.1) structure or an

optional RDP Negotiation Failure (section 2.2.1.2.2) structure. The length of this field is
included in the X.224 Connection Confirm Length Indicator field.

2.2.1.2.1 RDP Negotiation Response (RDP_NEG_RSP)

The RDP Negotiation Response structure is used by a server to inform the client of the security
protocol which it has selected to use for the connection.

41 /444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588

type flags

length

selectedProtocol

0x02 (TYPE_RDP_NEG_RSP).

type (1 byte): An 8-bit, unsigned integer that indicates the packet type. This field MUST be set to

flags (1 byte): An 8-bit, unsigned integer that contains protocol flags.

Flag

Meaning

EXTENDED_CLIENT_DATA_SUPPORTED
0x01

The server supports Extended Client Data
Blocks in the GCC Conference Create Request user
data (section 2.2.1.3).

DYNVC_GFX_PROTOCOL_SUPPORTED
0x02

The server supports the Graphics Pipeline
Extension Protocol described in [MS-RDPEGFX
sections 1, 2, and 3.

NEGRSP_FLAG_RESERVED
0x04

An unused flag that is reserved for future use. This
flag SHOULD be ignored by the client.

RESTRICTED_ADMIN_MODE_SUPPORTED
0x08

Indicates that the server supports credential-less
logon over CredSSP (also known as "restricted
admin mode") and it is acceptable for the client to
send empty credentials in the TSPasswordCreds
structure defined in [MS-CSSP] section
2.2.1.2.1.<3>

REDIRECTED_AUTHENTICATION_MODE_SUPPORTED
0x10

Indicates that the server supports credential-less
logon over CredSSP with credential redirection
(also known as "Remote Credential Guard"). The
client can send a redirected logon buffer in the
TSRemoteGuardCreds structure defined in [MS-
CSSP] section 2.2.1.2.3.

0x0008 (8 bytes).

length (2 bytes): A 16-bit, unsigned integer that specifies the packet size. This field MUST be set to

selectedProtocol (4 bytes): A 32-bit, unsigned integer that specifies the selected security protocol.

Value Meaning

PROTOCOL_RDP
0x00000000

Standard RDP Security (section 5.3).

PROTOCOL_SSL
0x00000001

TLS 1.0, 1.1 or 1.2 (section 5.4.5.1).

PROTOCOL_HYBRID
0x00000002

CredSSP (section 5.4.5.2).

PROTOCOL_RDSTLS
0x00000004

RDSTLS protocol (section 5.4.5.3).

PROTOCOL_HYBRID_EX

Credential Security Support Provider protocol (CredSSP) (section 5.4.5.2)

[MS-RDPBCGR] - v20230920
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

42 / 444

%5bMS-RDPEGFX%5d.pdf#Section_da5c75f9cd99450c98c4014a496942b0
%5bMS-CSSP%5d.pdf#Section_85f5782140bb46aabfcbba9590b8fc30

Value Meaning

0x00000008

coupled with the Early User Authorization Result PDU (section 2.2.10.2).

PROTOCOL_RDSAAD
0x00000010

RDS-AAD-Auth Security (section 5.4.5.4).

2.2.1.2.2 RDP Negotiation Failure (RDP_NEG_FAILURE)

The RDP Negotiation Failure structure is used by a server to inform the client of a failure that has
occurred while preparing security for the connection.

=

N
w

type flags

length

failureCode

type (1 byte): An 8-bit, unsigned integer that indicates the packet type. This field MUST be set to

0x03 (TYPE_RDP_NEG_FAILURE).

flags (1 byte): An 8-bit, unsigned integer that contains protocol flags. There are currently no defined

flags, so the field MUST be set to 0x00.

length (2 bytes): A 16-bit, unsigned integer that specifies the packet size. This field MUST be set to

0x0008 (8 bytes).

failureCode (4 bytes): A 32-bit, unsigned integer that specifies the failure code.

Value

Meaning

SSL_REQUIRED_BY_SERVER
0x00000001

The server requires that the client support Enhanced
RDP Security (section 5.4) with either TLS 1.0, 1.1 or
1.2 (section 5.4.5.1) or CredSSP (section 5.4.5.2). If
only CredSSP was requested then the server only
supports TLS.

SSL_NOT_ALLOWED_BY_SERVER
0x00000002

The server is configured to only use Standard RDP
Security mechanisms (section 5.3) and does not
support any External Security Protocols (section 5.4.5).

SSL_CERT_NOT_ON_SERVER
0x00000003

The server does not possess a valid authentication
certificate and cannot initialize the External Security
Protocol Provider (section 5.4.5).

INCONSISTENT_FLAGS
0x00000004

The list of requested security protocols is not
consistent with the current security protocol in effect.
This error is only possible when the Direct Approach
(sections 5.4.2.2 and 1.3.1.2) is used and an External
Security Protocol (section 5.4.5) is already being used.

HYBRID_REQUIRED_BY_SERVER
0x00000005

The server requires that the client support Enhanced
RDP Security (section 5.4) with CredSSP (section
5.4.5.2).

SSL_WITH_USER_AUTH_REQUIRED_BY_SERVER
0x00000006

The server requires that the client support Enhanced
RDP Security (section 5.4) with TLS 1.0, 1.1 or 1.2
(section 5.4.5.1) and certificate-based client

[MS-RDPBCGR] - v20230920

43/ 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

Value Meaning

authentication.<4>

2.2.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request

The MCS Connect Initial PDU is an RDP Connection Sequence PDU sent from client to server during the
Basic Settings Exchange phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview
of the RDP Connection Sequence phases). It is sent after receiving the X.224 Connection Confirm PDU
(section 2.2.1.2). The MCS Connect Initial PDU encapsulates a GCC Conference Create Request, which
encapsulates concatenated blocks of settings data. A basic high-level overview of the nested structure
for the Client MCS Connect Initial PDU is illustrated in section 1.3.1.1, in the figure specifying the MCS
Connect Initial PDU. Note that the order of the settings data blocks is allowed to vary from that shown
in the previously mentioned figure and the message syntax layout that follows. This is possible
because each data block is identified by a User Data Header structure (section 2.2.1.3.1).

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Data mcsCi (variable)

gccCCrq (variable)

clientCoreData (variable)

clientSecurityData

clientNetworkData (variable)

clientClusterData (optional)

clientMonitorData (variable)

44 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

clientMessageChannelData (optional)

clientMultitransportChannelData (optional)

clientMonitorExtendedData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsCi (variable): Variable-length Basic Encoding Rules encoded (BER-encoded) MCS Connect
Initial structure (using definite-length encoding) as described in [T125] section 11.1 (the ASN.1
structure definition is detailed in [T125] section 7, part 2). The userData field of the MCS Connect
Initial encapsulates the GCC Conference Create Request data (contained in the gccCCrq and
subsequent fields). If the server did not advertise support for extended client data (section
2.2.1.2.1), then the maximum allowed size of the userData field is 1024 bytes, and the combined
size of the gccCCrq and subsequent fields MUST be less than 1024 bytes. However, if the server
did advertise support for extended client data, then the maximum allowed size of the userData
field is 4096 bytes and the gccCCrq and subsequent fields MUST be less than 4096 bytes.

gccCCrq (variable): Variable-length Packed Encoding Rules encoded (PER-encoded) GCC Connect
Data structure, which encapsulates a Connect GCC PDU that contains a GCC Conference Create
Request structure as described in [T124] (the ASN.1 structure definitions are detailed in [T124]
section 8.7) appended as user data to the MCS Connect Initial (using the format described in
[T124] sections 9.5 and 9.6). The userData field of the GCC Conference Create Request contains
one user data set consisting of concatenated Client Data Blocks.

clientCoreData (variable): Variable-length Client Core Data structure (section 2.2.1.3.2).

clientSecurityData (12 bytes): Client Security Data structure (section 2.2.1.3.3).

clientNetworkData (variable): Variable-length Client Network Data structure (section 2.2.1.3.4).

clientClusterData (12 bytes): Optional Client Cluster Data structure (section 2.2.1.3.5).

clientMonitorData (variable): Variable-length Client Monitor Data structure (section 2.2.1.3.6). This
field MUST NOT be included if the server did not advertise support for Extended Client Data
Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001) as described in
section 2.2.1.2.1.

clientMessageChannelData (8 bytes): Optional Client Message Channel Data structure (section
2.2.1.3.7). This field MUST NOT be included if the server did not advertise support for Extended
Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001) as
described in section 2.2.1.2.1.

clientMultitransportChannelData (8 bytes): Optional Client Multitransport Channel Data structure
(section 2.2.1.3.8). This field MUST NOT be included if the server did not advertise support for
Extended Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag
(0x00000001) as described in section 2.2.1.2.1.

45/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543
https://go.microsoft.com/fwlink/?LinkId=90542

clientMonitorExtendedData (variable): Variable-length Client Monitor Extended Data structure
(section 2.2.1.3.10). This field MUST NOT be included if the server did not advertise support for
Extended Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag
(0x00000001) as described in 2.2.1.2.1.

2.2.1.3.1 User Data Header (TS_UD_HEADER)

The TS_UD_HEADER precedes all data blocks in the client and server GCC user data.

=
N
w

0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

type length

type (2 bytes): A 16-bit, unsigned integer. The type of the data block that this header precedes.

Value Meaning

CS_CORE The data block that follows contains Client Core Data (section 2.2.1.3.2).
0xC001

CS_SECURITY The data block that follows contains Client Security Data (section 2.2.1.3.3).
0xC002

CS_NET The data block that follows contains Client Network Data (section 2.2.1.3.4).
0xC003

CS_CLUSTER The data block that follows contains Client Cluster Data (section 2.2.1.3.5).
0xC004

CS_MONITOR The data block that follows contains Client Monitor Data (section 2.2.1.3.6).
0xC005

CS_MCS_MSGCHANNEL | The data block that follows contains Client Message Channel Data (section
0xC006 2.2.1.3.7).

CS_MONITOR_EX The data block that follows contains Client Monitor Extended Data (section
0XC008 2.2.1.3.10).

CS_MULTITRANSPORT The data block that follows contains Client Multitransport Channel Data (section
OxCOOA 2.2.1.3.8).

CS_UNUSED1 The data block that follows contains Client Unused1 Data (section 2.2.1.3.9).
0xC00C

SC_CORE The data block that follows contains Server Core Data (section 2.2.1.4.2).
0x0C01

SC_SECURITY The data block that follows contains Server Security Data (section 2.2.1.4.3).
0x0C02

SC_NET The data block that follows contains Server Network Data (section 2.2.1.4.4).
0x0C03

SC_MCS_MSGCHANNEL | The data block that follows contains Server Message Channel Data (section
0x0C04 2.2.1.4.5).

SC_MULTITRANSPORT The data block that follows contains Server Multitransport Channel Data (section

46 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Value Meaning

0x0C08 2.2.1.4.6).

length (2 bytes): A 16-bit, unsigned integer. The size in bytes of the data block, including this

header.

2.2.1.3.2 Client Core Data (TS_UD_CS_CORE)

The TS_UD_CS_CORE data block contains core client connection-related information.

=

0[{1(2|3|4|5|6|7|8(9(0(1(2|3|4|5|6|7|8]|9

N
w

header
version
desktopWidth desktopHeight
colorDepth SASSequence
keyboardLayout
clientBuild

clientName (32 bytes)

keyboardType

keyboardSubType

keyboardFunctionKey

imeFileName (64 bytes)

postBeta2ColorDepth (optional)

clientProductId (optional)

serialNumber (optional)

highColorDepth (optional) sup

portedColorDepths (optional)

earlyCapabilityFlags (optional) clientDigProductld (64 bytes, optional)

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

47/ 444

connectionType (optional) padloctet (optional)

serverSelectedProtocol (optional)

desktopPhysicalWidth (optional)

desktopPhysicalHeight (optional)

desktopOrientation (optional)

desktopScaleFactor (optional)

deviceScaleFactor (optional)

header (4 bytes): A GCC user data block header, as specified in section 2.2.1.3.1. The User Data
Header type field MUST be set to CS_CORE (0xC001).

version (4 bytes): A 32-bit, unsigned integer. Client version number for the RDP. The major version
number is stored in the high 2 bytes, while the minor version number is stored in the low 2 bytes.

Value Meaning
0x00080001 RDP 4.0 clients
0x00080004 RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, and 8.1 clients
0x00080005 RDP 10.0 clients
0x00080006 RDP 10.1 clients
0x00080007 RDP 10.2 clients
0x00080008 RDP 10.3 clients
0x00080009 RDP 10.4 clients
0x0008000A RDP 10.5 clients
0x0008000B RDP 10.6 clients
0x0008000C RDP 10.7 clients
0x0008000D RDP 10.8 clients
0x0008000E RDP 10.9 clients
0x0008000F RDP 10.10 clients
0x00080010 RDP 10.11 clients
0x00080011 RDP 10.12 clients

desktopWidth (2 bytes): A 16-bit, unsigned integer. The requested desktop width in pixels
(validation of this field is described in section 3.3.5.3.3).

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

48 / 444

desktopHeight (2 bytes): A 16-bit, unsigned integer. The requested desktop height in pixels
(validation of this field is described in section 3.3.5.3.3).

colorDepth (2 bytes): A 16-bit, unsigned integer. The requested color depth. Values in this field
MUST be ignored if the postBeta2ColorDepth field is present.

Value Meaning
RNS_UD_COLOR_4BPP 4 bits-per-pixel (bpp)
0xCA00

RNS_UD_COLOR_8BPP 8 bpp

0xCAO01

SASSequence (2 bytes): A 16-bit, unsigned integer. Secure access sequence. This field SHOULD be
set to RNS_UD_SAS_DEL (0xAA03).

keyboardLayout (4 bytes): A 32-bit, unsigned integer. The active input locale identifier, also known
as the "HKL" (for example, 0x00010409 for a "United States-Dvorak" keyboard layout and
0x00020418 for a "Romanian (Programmers)" keyboard layout). For a list of input locale
identifiers, see [MSFT-DIL].<5> If the keyboardLayout field is set to zero, then the server
SHOULD use the default active input locale identifier and active language identifier (see the
CodePage field in section 2.2.1.11.1.1) associated with the user account.<6>

clientBuild (4 bytes): A 32-bit, unsigned integer. The build humber of the client.

clientName (32 bytes): Name of the client computer. This field contains up to 15 Unicode
characters plus a null terminator.

keyboardType (4 bytes): A 32-bit, unsigned integer. The keyboard type.

Value Meaning

0x00000001 IBM PC/XT or compatible (83-key) keyboard
0x00000002 Olivetti "ICO" (102-key) keyboard
0x00000003 IBM PC/AT (84-key) and similar keyboards
0x00000004 IBM enhanced (101-key or 102-key) keyboard
0x00000005 Nokia 1050 and similar keyboards
0x00000006 Nokia 9140 and similar keyboards
0x00000007 Japanese keyboard

0x00000008 Korean keyboard

keyboardSubType (4 bytes): A 32-bit, unsigned integer. The keyboard subtype (an original
equipment manufacturer-dependent value).

keyboardFunctionKey (4 bytes): A 32-bit, unsigned integer. The number of function keys on the
keyboard.

imeFileName (64 bytes): A 64-byte field. The input method editor (IME) file name associated
with the active input locale. This field contains up to 31 Unicode characters plus a null terminator.

postBeta2ColorDepth (2 bytes): A 16-bit, unsigned integer. The requested color depth. Values in
this field MUST be ignored if the highColorDepth field is present.

49 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=202824

Value Meaning

RNS_UD_COLOR_4BPP 4 bits-per-pixel (bpp)

0xCAO00

RNS_UD_COLOR_8BPP 8 bpp

0xCAO01

RNS_UD_COLOR_16BPP_555 15-bit 555 RGB mask (5 bits for red, 5 bits for green, and 5 bits for
0xCAO02 blue)

RNS_UD_COLOR_16BPP_565 16-bit 565 RGB mask (5 bits for red, 6 bits for green, and 5 bits for
0xCAO03 blue)

RNS_UD_COLOR_24BPP 24-bit RGB mask (8 bits for red, 8 bits for green, and 8 bits for blue)
0xCA04

If this field is not present, all of the subsequent fields MUST NOT be present.

clientProductId (2 bytes): A 16-bit, unsigned integer. The client product ID. This field SHOULD be
initialized to 1. If this field is present, then the postBeta2ColorDepth field MUST also be present.
If this field is not present, all of the subsequent fields MUST NOT be present.

serialNumber (4 bytes): A 32-bit, unsigned integer. Serial number. This field SHOULD be initialized
to zero. If this field is present, then the clientProductld field MUST also be present. If this field is
not present, all of the subsequent fields MUST NOT be present.

highColorDepth (2 bytes): A 16-bit, unsigned integer. The requested color depth.

Value Meaning

HIGH_COLOR_4BPP 4 bpp

0x0004

HIGH_COLOR_8BPP 8 bpp

0x0008

HIGH_COLOR_15BPP 15-bit 555 RGB mask (5 bits for red, 5 bits for green, and 5 bits for
0x000F blue)

HIGH_COLOR_16BPP 16-bit 565 RGB mask (5 bits for red, 6 bits for green, and 5 bits for
0x0010 blue)

HIGH_COLOR_24BPP 24-bit RGB mask (8 bits for red, 8 bits for green, and 8 bits for blue)
0x0018

If this field is present, then the serialNumber field MUST also be present. If this field is not
present, all of the subsequent fields MUST NOT be present.

supportedColorDepths (2 bytes): A 16-bit, unsigned integer. Specifies the high color depths that
the client is capable of supporting.

Flag Meaning

RNS_UD_24BPP_SUPPORT 24-bit RGB mask (8 bits for red, 8 bits for green, and 8 bits for blue)
0x0001

RNS_UD_16BPP_SUPPORT 16-bit 565 RGB mask (5 bits for red, 6 bits for green, and 5 bits for

50/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Flag
0x0002

Meaning
blue)

RNS_UD_15BPP_SUPPORT
0x0004

15-bit 555 RGB mask (5 bits for red, 5 bits for green, and 5 bits for
blue)

RNS_UD_32BPP_SUPPORT
0x0008

32-bit RGB mask (8 bits for the alpha channel, 8 bits for red, 8 bits
for green, and 8 bits for blue)

If this field is present, then the highColorDepth field MUST also be present. If this field is not
present, all of the subsequent fields MUST NOT be present.

earlyCapabilityFlags (2 bytes): A 16-bit, unsigned integer that specifies capabilities early in the
connection sequence.

Flag

Meaning

RNS_UD_CS_SUPPORT_ERRINFO_PDU
0x0001

Indicates that the client supports the Set Error Info
PDU (section 2.2.5.1).

RNS_UD_CS_WANT_32BPP_SESSION
0x0002

Indicates that the client is requesting a session color
depth of 32 bpp. This flag is necessary because the
highColorDepth field does not support a value of 32. If
this flag is set, the highColorDepth field SHOULD be
set to 24 to provide an acceptable fallback for the
scenario where the server does not support 32 bpp
color.

RNS_UD_CS_SUPPORT_STATUSINFO_PDU
0x0004

Indicates that the client supports the Server Status
Info PDU (section 2.2.5.2).

RNS_UD_CS_STRONG_ASYMMETRIC_KEYS
0x0008

Indicates that the client supports asymmetric keys
larger than 512 bits for use with the Server Certificate
(section 2.2.1.4.3.1) sent in the Server Security Data
block (section 2.2.1.4.3).

RNS_UD_CS_RELATIVE_MOUSE_INPUT
0x0010

This flag MUST be ignored by the server if the version
field is less than 0x00080011. If the version field is
greater than or equal to 0x0008001, then this flag
indicates that the client supports relative mouse mode
(section 2.2.8.1.1.3.1.1.7 and section 2.2.8.1.2.2.7).

RNS_UD_CS_VALID_CONNECTION_TYPE
0x0020

Indicates that the connectionType field contains valid
data.

RNS_UD_CS_SUPPORT_MONITOR_LAYOUT_PDU
0x0040

Indicates that the client supports the Monitor Layout
PDU (section 2.2.12.1).

RNS_UD_CS_SUPPORT_NETCHAR_AUTODETECT
0x0080

Indicates that the client supports network characteristics
detection using the structures and PDUs described in
section 2.2.14.

RNS_UD_CS_SUPPORT_DYNVC_GFX_PROTOCOL
0x0100

Indicates that the client supports the Graphics Pipeline
Extension Protocol described in [MS-RDPEGFX] sections
1, 2, and 3.

RNS_UD_CS_SUPPORT_DYNAMIC_TIME_ZONE
0x0200

Indicates that the client supports Dynamic DST.
Dynamic DST information is provided by the client in the
cbDynamicDSTTimeZoneKeyName,
dynamicDSTTimeZoneKeyName and
dynamicDaylightTimeDisabled fields of the

51/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEGFX%5d.pdf#Section_da5c75f9cd99450c98c4014a496942b0

Flag

Meaning

Extended Info Packet (section 2.2.1.11.1.1.1).

RNS_UD_CS_SUPPORT_HEARTBEAT_PDU

Indicates that the client supports the Heartbeat PDU
(section 2.2.16.1).

0x0400
RNS_UD_CS_SUPPORT_SKIP_CHANNELJOIN Indicates that the client supports skipping the MCS
0x0800 Channel Join Request PDUs (section 2.2.1.8) and MCS

Channel Join Confirm PDUs (section 2.2.1.9) in the
Channel Connection phase of the RDP Connection
Sequence (section 1.3.1.1).

If this flag is set, the client considers all MCS channels
as joined after the MCS Attach User Confirm PDU
(section 2.2.1.7) has been received (section 3.2.5.3.8).

If this field is present, then the supportedColorDepths field MUST also be present. If this field is
not present, all of the subsequent fields MUST NOT be present.

clientDigProductld (64 bytes): Contains a value that uniquely identifies the client. If this field is
present, then the earlyCapabilityFlags field MUST also be present. If this field is not present, all
of the subsequent fields MUST NOT be present.

connectionType (1 byte): An 8-bit, unsigned integer. Hints at the type of network connection being
used by the client. This field only contains valid data if the
RNS_UD_CS_VALID_CONNECTION_TYPE (0x0020) flag is present in the earlyCapabilityFlags

field.

Value

Meaning

CONNECTION_TYPE_MODEM
0x01

Modem (56 Kbps)

CONNECTION_TYPE_BROADBAND_LOW
0x02

Low-speed broadband (256 Kbps - 2 Mbps)

CONNECTION_TYPE_SATELLITE
0x03

Satellite (2 Mbps - 16 Mbps with high latency)

CONNECTION_TYPE_BROADBAND_HIGH
0x04

High-speed broadband (2 Mbps - 10 Mbps)

CONNECTION_TYPE_WAN
0x05

WAN (10 Mbps or higher with high latency)

CONNECTION_TYPE_LAN
0x06

LAN (10 Mbps or higher)

CONNECTION_TYPE_AUTODETECT
0x07

The server SHOULD attempt to detect the connection type. If the
connection type can be successfully determined then the
performance flags, sent by the client in the performanceFlags
field of the Extended Info Packet (section 2.2.1.11.1.1.1),
SHOULD be ignored and the server SHOULD determine the
appropriate set of performance flags to apply to the remote
session (based on the detected connection type). If the
RNS_UD_CS_SUPPORT_NETCHAR_AUTODETECT (0x0080) flag is
not set in the earlyCapabilityFlags field, then this value
SHOULD be ignored.

[MS-RDPBCGR] - v20230920

52 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

If this field is present, then the clientDigProductld field MUST also be present. If this field is not
present, all of the subsequent fields MUST NOT be present.

padloctet (1 byte): An 8-bit, unsigned integer. Padding to align the serverSelectedProtocol field
on the correct byte boundary. If this field is present, then the connectionType field MUST also be
present. If this field is not present, all of the subsequent fields MUST NOT be present.

serverSelectedProtocol (4 bytes): A 32-bit, unsigned integer that contains the value returned by
the server in the selectedProtocol field of the RDP Negotiation Response (section 2.2.1.2.1).
In the event that an RDP Negotiation Response was not received from the server, this field
MUST be initialized to PROTOCOL_RDP (0). This field MUST be present if an RDP Negotiation
Request (section 2.2.1.1.1) was sent to the server. If this field is present, then the pad1octet
field MUST also be present. If this field is not present, all of the subsequent fields MUST NOT be
present.

desktopPhysicalWidth (4 bytes): A 32-bit, unsigned integer. The requested physical width of the
desktop, in millimeters (mm). This value MUST be ignored if it is less than 10 mm or greater than
10,000 mm or desktopPhysicalHeight is less than 10 mm or greater than 10,000 mm. If this
field is present, then the serverSelectedProtocol and desktopPhysicalHeight fields MUST also
be present. If this field is not present, all of the subsequent fields MUST NOT be present. If the
desktopPhysicalHeight field is not present, this field MUST be ignored.

desktopPhysicalHeight (4 bytes): A 32-bit, unsigned integer. The requested physical height of the
desktop, in millimeters. This value MUST be ignored if it is less than 10 mm or greater than
10,000 mm or desktopPhysicalWidth is less than 10 mm or greater than 10,000 mm. If this
field is present, then the desktopPhysicalWidth field MUST also be present. If this field is not
present, all of the subsequent fields MUST NOT be present.

desktopOrientation (2 bytes): A 16-bit, unsigned integer. The requested orientation of the
desktop, in degrees.

Value Meaning

ORIENTATION_LANDSCAPE The desktop is not rotated.

0

ORIENTATION_PORTRAIT The desktop is rotated clockwise by 90 degrees.
90

ORIENTATION_LANDSCAPE_FLIPPED | The desktop is rotated clockwise by 180 degrees.
180

ORIENTATION_PORTRAIT_FLIPPED The desktop is rotated clockwise by 270 degrees.
270

This value MUST be ignored if it is invalid. If this field is present, then the
desktopPhysicalHeight field MUST also be present. If this field is not present, all of the
subsequent fields MUST NOT be present.

desktopScaleFactor (4 bytes): A 32-bit, unsigned integer. The requested desktop scale factor.
This value MUST be ignored if it is less than 100% or greater than 500% or deviceScaleFactor is
not 100%, 140%, or 180%. If this field is present, then the desktopOrientation and
deviceScaleFactor fields MUST also be present. If this field is not present, all of the subsequent
fields MUST NOT be present. If the deviceScaleFactor field is not present, this field MUST be
ignored.

deviceScaleFactor (4 bytes): A 32-bit, unsigned integer. The requested device scale factor. This
value MUST be ignored if it is not set to 100%, 140%, or 180% or desktopScaleFactor is less

53/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

than 100% or greater than 500%. If this field is present, then the desktopScaleFactor field
MUST also be present.<7>

2.2.1.3.3 Client Security Data (TS_UD_CS_SEC)

The TS_UD_CS_SEC data block contains security-related information used to advertise client
cryptographic support. This information is only relevant when Standard RDP Security mechanisms
(section 5.3) will be used. See sections 3 and 5.3.2 for a detailed discussion of how this information is
used.

=
N
w

0(1|/2|3(4|(5|6(7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

header

encryptionMethods

extEncryptionMethods

header (4 bytes): A GCC user data block header as described in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_SECURITY (0xC002).

encryptionMethods (4 bytes): A 32-bit, unsigned integer. Cryptographic encryption methods
supported by the client and used in conjunction with Standard RDP Security. The client MUST
specify at least one encryption method, and the server MUST select one of the methods specified
by the client.

Flag Meaning

40BIT_ENCRYPTION_FLAG 40-bit session keys MUST be used to encrypt data (with RC4) and
0x00000001 generate Message Authentication Codes (MAC).

128BIT_ENCRYPTION_FLAG | 128-bit session keys MUST be used to encrypt data (with RC4) and
0x00000002 generate MACs.

56BIT_ENCRYPTION_FLAG 56-bit session keys MUST be used to encrypt data (with RC4) and generate
0x00000008 MACs.

FIPS_ENCRYPTION_FLAG All encryption and Message Authentication Code generation routines MUST
0x00000010 be Federal Information Processing Standard (FIPS) 140-1 compliant.

Section 5.3.2 describes how the client and server negotiate the security parameters for a given
connection.

extEncryptionMethods (4 bytes): A 32-bit, unsigned integer. This field is used exclusively for the
French locale. In French locale clients, encryptionMethods MUST be set to zero and
extEncryptionMethods MUST be set to the value to which encryptionMethods would have
been set. For non-French locale clients, this field MUST be set to zero.

2.2.1.3.4 Client Network Data (TS_UD_CS_NET)

The TS_UD_CS_NET packet contains a list of requested virtual channels.

54/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

header

channelCount

channelDefArray (variable)

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_NET (0xC003).

channelCount (4 bytes): A 32-bit, unsigned integer. The number of requested static virtual
channels (the maximum allowed is 31).

channelDefArray (variable): A variable-length array containing the information for requested static
virtual channels encapsulated in CHANNEL DEF structures (section 2.2.1.3.4.1). The number of
CHANNEL_DEF structures which follows is given by the channelCount field.

2.2.1.3.4.1 Channel Definition Structure (CHANNEL_DEF)

The CHANNEL_DEF packet contains information for a particular static virtual channel.

—
N
w

name

options

name (8 bytes): An 8-byte array containing a null-terminated collection of seven ANSI characters
that uniquely identify the channel.

options (4 bytes): A 32-bit, unsigned integer. Channel option flags.

Flag Meaning

CHANNEL_OPTION_INITIALIZED This flag is unused and its value MUST be ignored by the server.
0x80000000

CHANNEL_OPTION_ENCRYPT_RDP This flag is unused and its value MUST be ignored by the server.
0x40000000

CHANNEL_OPTION_ENCRYPT_SC This flag is unused and its value MUST be ignored by the server.
0x20000000

CHANNEL_OPTION_ENCRYPT_CS This flag is unused and its value MUST be ignored by the server.
0x10000000

CHANNEL_OPTION_PRI_HIGH Channel data MUST be sent with high MCS priority.
0x08000000

55/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Flag

Meaning

CHANNEL_OPTION_PRI_MED
0x04000000

Channel data MUST be sent with medium MCS priority.

CHANNEL_OPTION_PRI_LOW
0x02000000

Channel data MUST be sent with low MCS priority.

CHANNEL_OPTION_COMPRESS_RDP
0x00800000

Virtual channel data MUST be compressed if RDP data is being
compressed.

CHANNEL_OPTION_COMPRESS
0x00400000

Virtual channel data MUST be compressed, regardless of RDP
compression settings.

CHANNEL_OPTION_SHOW_PROTOCOL
0x00200000

The value of this flag MUST be ignored by the server. The
visibility of the Channel PDU Header (section 2.2.6.1.1) is
determined by the CHANNEL_FLAG_SHOW_PROTOCOL
(0x00000010) flag as defined in the flags field (section
2.2.6.1.1).

REMOTE_CONTROL_PERSISTENT
0x00100000

Channel MUST be persistent across remote control transactions.

2.2.1.3.5 Client Cluster Data (TS_UD_CS_CLUSTER)

The TS_UD_CS_CLUSTER data block is sent by the client to the server either to advertise that it can
support the Server Redirection PDUs (sections 2.2.13.2 and 2.2.13.3) or to request a connection to a

given session identifier.

3{4|5|6|7|8|9|0(1(2(3(4[(5[(6|7|8|9|0]|1

header

Flags

RedirectedSessionID

header (4 bytes): A GCC user data block header, as specified in User Data Header (section

2.2.1.3.1). The User Data Header

type field MUST be set to CS_CLUSTER (0xC004).

Flags (4 bytes): A 32-bit, unsigned integer. Cluster information flags.

Flag

Meaning

REDIRECTION_SUPPORTED
0x00000001

The client can receive server session redirection packets. If this flag
is set, the ServerSessionRedirectionVersionMask MUST contain the
server session redirection version that the client supports.

ServerSessionRedirectionVersionMa
sk

0x0000003C

The server session redirection version that the client supports. See
the discussion which follows this table for more information.

REDIRECTED_SESSIONID_FIELD_V
ALID

The RedirectedSessionID field contains an ID that identifies a
session on the server to associate with the connection.

[MS-RDPBCGR] - v20230920

56 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

Flag Meaning
0x00000002

REDIRECTED_SMARTCARD The client logged on with a smart card.
0x00000040

The ServerSessionRedirectionVersionMask is a 4-bit enumerated value containing the server
session redirection version supported by the client. The following are possible version values.

Value Meaning

REDIRECTION_VERSION1 If REDIRECTION_SUPPORTED is set, server session redirection
0x00 version 1 is supported by the client.<8>
REDIRECTION_VERSION2 If REDIRECTION_SUPPORTED is set, server session redirection
0x01 version 2 is supported by the client.<9>
REDIRECTION_VERSION3 If REDIRECTION_SUPPORTED is set, server session redirection
0x02 version 3 is supported by the client.<10>
REDIRECTION_VERSION4 If REDIRECTION_SUPPORTED is set, server session redirection
0x03 version 4 is supported by the client.<11>
REDIRECTION_VERSIONS If REDIRECTION_SUPPORTED is set, server session redirection
0x04 version 5 is supported by the client.<12>
REDIRECTION_VERSION6 If REDIRECTION_SUPPORTED is set, server session redirection
0x05 version 6 is supported by the client.<13>

The version values cannot be combined; only one value MUST be specified if the
REDIRECTED_SESSIONID_FIELD_VALID (0x00000002) flag is present in the Flags field.

RedirectedSessionID (4 bytes): A 32-bit, unsigned integer. If the
REDIRECTED_SESSIONID_FIELD_VALID flag is set in the Flags field, then the
RedirectedSessionlID field contains a valid session identifier to which the client requests to
connect.

2.2.1.3.6 Client Monitor Data (TS_UD_CS_MONITOR)

The TS_UD_CS_MONITOR packet describes the client-side display monitor layout. This packet is an
Extended Client Data Block and MUST NOT be sent to a server which does not advertise support for
Extended Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001)
as described in section 2.2.1.2.1.

The maximum width of the virtual desktop resulting from the union of the monitors contained in the
monitorDefArray field MUST NOT exceed 32,766 pixels. Similarly, the maximum height of the virtual
desktop resulting from the union of the monitors contained in the monitorDefArray field MUST NOT
exceed 32,766 pixels. The minimum permitted size of the virtual desktop is 200 x 200 pixels.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

header

flags

57/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

monitorCount

monitorDefArray (variable)

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_MONITOR (0xC005).

flags (4 bytes): A 32-bit, unsigned integer. This field is unused and reserved for future use. It MUST
be set to zero.

monitorCount (4 bytes): A 32-bit, unsigned integer. The number of display monitor definitions in
the monitorDefArray field (the maximum allowed is 16).

monitorDefArray (variable): A variable-length array containing a series of TS_MONITOR_DEF
structures (section 2.2.1.3.6.1) which describe the display monitor layout of the client. The
number of TS_MONITOR_DEF structures is given by the monitorCount field.

2.2.1.3.6.1 Monitor Definition (TS_MONITOR_DEF)

The TS_MONITOR_DEF packet describes the configuration of a client-side display monitor. The x and y
coordinates used to describe the monitor position MUST be relative to the upper-left corner of the
monitor designated as the "primary display monitor" (the upper-left corner of the primary monitor is
always (0, 0)).

—
N
w

0(1|/2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

left

top

right

bottom

flags

left (4 bytes): A 32-bit, signed integer. Specifies the x-coordinate of the upper-left corner of the
display monitor.

top (4 bytes): A 32-bit, signed integer. Specifies the y-coordinate of the upper-left corner of the
display monitor.

right (4 bytes): A 32-bit, signed integer. Specifies the inclusive x-coordinate of the lower-right
corner of the display monitor.

bottom (4 bytes): A 32-bit, signed integer. Specifies the inclusive y-coordinate of the lower-right
corner of the display monitor.

flags (4 bytes): A 32-bit, unsigned integer. Monitor configuration flags.

58/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Flag Meaning

TS_MONITOR_PRIMARY | The top, left, right, and bottom fields describe the position of the primary
0x00000001 monitor.

2.2.1.3.7 Client Message Channel Data (TS_UD_CS_MCS_MSGCHANNEL)

The TS_UD_CS_MCS_MSGCHANNEL packet indicates support for the message channel which is used
to transport the Initiate Multitransport Request PDU (section 2.2.15.1). This packet is an Extended
Client Data Block and MUST NOT be sent to a server which does not advertise support for Extended
Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001) as
described in section 2.2.1.2.1.

=
N
w

0(1|/2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

header

flags

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_MCS_MSGCHANNEL (0xC006).

flags (4 bytes): A 32-bit, unsigned integer. This field is unused and reserved for future use. It MUST
be set to zero.

2.2.1.3.8 Client Multitransport Channel Data (TS_UD_CS_MULTITRANSPORT)

The TS_UD_CS_MULTITRANSPORT packet is used to indicate support for the RDP Multitransport Layer
([MS-RDPEMT] section 1.3) and to specify multitransport characteristics. This packet is an Extended
Client Data Block and MUST NOT be sent to a server which does not advertise support for Extended
Client Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001) as
described in section 2.2.1.2.1.

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]|1

header

flags

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_MULTITRANSPORT (0xCOO0A).

flags (4 bytes): A 32-bit, unsigned integer that specifies protocols supported by the client-side
multitransport layer.

Value Meaning

TRANSPORTTYPE_UDPFECR RDP-UDP Forward Error Correction (FEC) reliable transport ([MS-
0x01 RDPEUDP] sections 1 to 3).

TRANSPORTTYPE_UDPFECL RDP-UDP FEC lossy transport ([MS-RDPEUDP] sections 1 to 3).

59 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1

Value

Meaning

0x04

TRANSPORTTYPE_UDP_PREFERRED
0x100

Indicates that tunneling of static virtual channel traffic over UDP is
supported ([MS-RDPEDYC] section 3.1.5.4).

SOFTSYNC_TCP_TO_UDP
0x200

Indicates that switching dynamic virtual channels from the TCP to
UDP transport is supported ([MS-RDPEDYC] section 3.1.5.3).

2.2.1.3.9 Client Unused1 Data (TS_UD_CS_UNUSED1)

The TS_UD_CS_UNUSED1 packet SHOULD be ignored by the server if sent by the client.

=

header

pad20ctets

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_UNUSED1 (0xC00C).

pad2O0ctets (2 bytes): A 32-bit, unsigned integer. This field is for padding, and the values in this

field MUST be ignored.

2.2.1.3.10 Client Monitor Extended Data (TS_UD_CS_MONITOR_EX)

The TS_UD_CS_MONITOR_EX packet describes extended attributes of the client-side display monitor
layout defined by the Client Monitor Data block (section 2.2.1.3.6). This packet is an Extended Client
Data Block and MUST NOT be sent to a server which does not advertise support for Extended Client
Data Blocks by using the EXTENDED_CLIENT_DATA_SUPPORTED flag (0x00000001) as described in

section 2.2.1.2.1.

=

3/4|5(6(7|8|9(0|1](2(3|4|5[6|7|8|9|0]|1

header

flags

monitorAttributeSize

monitorCount

monitorAttributesArray (variable)

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_MONITOR_EX (0xC008).

[MS-RDPBCGR] - v20230920

60 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06

flags (4 bytes): A 32-bit, unsigned integer. This field is unused and reserved for future use. It MUST
be set to zero.

monitorAttributeSize (4 bytes): A 32-bit, unsigned integer. The size, in bytes, of a single element
in the monitorAttributesArray field. This field MUST be set to 20 bytes, which is the size of the
Monitor Attributes structure (section 2.2.1.3.10.1).

monitorCount (4 bytes): A 32-bit, unsigned integer. The number of elements in the
monitorAttributesArray field. This value MUST be the same as the monitorCount field specified
in the Client Monitor Data block.

monitorAttributesArray (variable): A variable-length array containing a series of Monitor Attribute
structures (section 2.2.1.3.10.1) which describe extended attributes of each display monitor
specified in the Client Monitor Data block. The number of Monitor Attribute structures is specified
by the monitorCount field.

2.2.1.3.10.1 Monitor Attributes (TS_MONITOR_ATTRIBUTES)

The TS_MONITOR_ATTRIBUTES packet describes extended attributes of a client-side display monitor.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]|9|0]|1

physicalWidth

physicalHeight

orientation

desktopScaleFactor

deviceScaleFactor

physicalWidth (4 bytes): A 32-bit, unsigned integer. The physical width of the monitor, in
millimeters (mm). This value MUST be ignored if it is less than 10 mm or greater than 10,000 mm
or physicalHeight is less than 10 mm or greater than 10,000 mm.

physicalHeight (4 bytes): A 32-bit, unsigned integer. The physical height of the monitor, in
millimeters. This value MUST be ignored if it is less than 10 mm or greater than 10,000 mm or
physicalWidth is less than 10 mm or greater than 10,000 mm.

orientation (4 bytes): A 32-bit, unsigned integer. The orientation of the monitor, in degrees. This
value MUST be ignored if it is invalid.

Value Meaning

ORIENTATION_LANDSCAPE The desktop is not rotated.

0

ORIENTATION_PORTRAIT The desktop is rotated clockwise by 90 degrees.
90

ORIENTATION_LANDSCAPE_FLIPPED | The desktop is rotated clockwise by 180 degrees.
180

ORIENTATION_PORTRAIT_FLIPPED The desktop is rotated clockwise by 270 degrees.
270

61/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

desktopScaleFactor (4 bytes): A 32-bit, unsigned integer. The desktop scale factor of the monitor.
This value MUST be ignored if it is less than 100% or greater than 500% or deviceScaleFactor is
not 100%, 140% or 180%.

deviceScaleFactor (4 bytes): A 32-bit, unsigned integer. The device scale factor of the monitor.
This value MUST be ignored if it is not set to 100%, 140%, or 180% or desktopScaleFactor is
less than 100% or greater than 500%.<14>

2.2.1.4 Server MCS Connect Response PDU with GCC Conference Create Response

The MCS Connect Response PDU is an RDP Connection Sequence PDU sent from server to client during
the Basic Settings Exchange phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent as a response to the MCS Connect Initial
PDU (section 2.2.1.3). The MCS Connect Response PDU encapsulates a GCC Conference Create
Response, which encapsulates concatenated blocks of settings data. A basic high-level overview of the
nested structure for the Server MCS Connect Response PDU is illustrated in section 1.3.1.1, in the
figure specifying MCS Connect Response PDU. Note that the order of the settings data blocks is
allowed to vary from that shown in the previously mentioned figure and the message syntax layout
that follows. This is possible because each data block is identified by a User Data Header structure
(section 2.2.1.4.1).

—
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

tpktHeader

x224Data mcsCrsp (variable)

gccCCrsp (variable)

serverCoreData (variable)

serverNetworkData (variable)

serverSecurityData (variable)

serverMessageChannelData (optional)

serverMultitransportChannelData (optional)

62 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsCrsp (variable): Variable-length BER-encoded MCS Connect Response structure (using definite-
length encoding) as described in [T125] section 11.2 (the ASN.1 structure definition is detailed in
[T125] section 7, part 2). The userData field of the MCS Connect Response encapsulates the GCC
Conference Create Response data (contained in the gccCCrsp and subsequent fields).

gccCCrsp (variable): Variable-length PER-encoded GCC Connect Data structure which encapsulates
a Connect GCC PDU that contains a GCC Conference Create Response structure as described in
T1247 (the ASN.1 structure definitions are specified in [T124] section 8.7) appended as user data
to the MCS Connect Response (using the format specified in [T124] sections 9.5 and 9.6). The
userData field of the GCC Conference Create Response contains one user data set consisting of
concatenated Server Data Blocks.

serverCoreData (variable): Variable-length Server Core Data structure (section 2.2.1.4.2).

serverNetworkData (variable): Variable-length Server Network Data structure (section 2.2.1.4.4).

serverSecurityData (variable): Variable-length Server Security Data structure (section 2.2.1.4.3).

serverMessageChannelData (6 bytes): Optional Server Message Channel Data structure (section
2.2.1.4.5). This field MUST NOT be included if the client did not populate the optional
clientMessageChannelData field in the MCS Connect Initial PDU (section 2.2.1.3).

serverMultitransportChannelData (8 bytes): Optional Server Multitransport Channel Data
structure (section 2.2.1.4.6). This field MUST NOT be included if the client did not populate the

optional clientMultitransportChannelData field in the MCS Connect Initial PDU (section
2.2.1.3).

2.2.1.4.1 User Data Header (TS_UD_HEADER)

See section 2.2.1.3.1 for a description of the User Data Header.

2.2.1.4.2 Server Core Data (TS_UD_SC_CORE)

The TS_UD_SC_CORE data block contains core server connection-related information.

—
N
w

0[{1(2|3|4|5|6|7|8|(9(0(1({2(3|4|5|6|7|8|9|0(1(2(3(4|5(6|7|8|9|0]|1

header

version

clientRequestedProtocols (optional)

earlyCapabilityFlags (optional)

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to SC_CORE (0x0C01).

version (4 bytes): A 32-bit, unsigned integer. The server version number for the RDP. The major
version number is stored in the high two bytes, while the minor version number is stored in the
low two bytes.

63/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543
https://go.microsoft.com/fwlink/?LinkId=90542

Value Meaning
0x00080001 RDP 4.0 servers
0x00080004 RDP 5.0, 5.1, 5.2,6.0,6.1, 7.0, 7.1, 8.0, and 8.1 servers
0x00080005 RDP 10.0 servers
0x00080006 RDP 10.1 servers
0x00080007 RDP 10.2 servers
0x00080008 RDP 10.3 servers
0x00080009 RDP 10.4 servers
0x0008000A RDP 10.5 servers
0x0008000B RDP 10.6 servers
0x0008000C RDP 10.7 servers
0x0008000D RDP 10.8 servers
0x0008000E RDP 10.9 servers
0x0008000F RDP 10.10 servers
0x00080010 RDP 10.11 servers
0x00080011 RDP 10.12 servers

If the server advertises a version humber greater than or equal to 0x00080004, it MUST support a
maximum length of 512 bytes for the UserName field in the Info Packet (section 2.2.1.11.1.1).

clientRequestedProtocols (4 bytes): A 32-bit, unsigned integer that contains the flags sent by the
client in the requestedProtocols field of the RDP Negotiation Request (section 2.2.1.1.1). In
the event that an RDP Negotiation Request was not received from the client, this field MUST be
initialized to PROTOCOL_RDP (0). If this field is not present, all of the subsequent fields MUST NOT
be present.

earlyCapabilityFlags (4 bytes): A 32-bit, unsigned integer that specifies capabilities early in the
connection sequence.

Value Meaning

RNS_UD_SC_EDGE_ACTIONS_SUPPORTED_V1 | Indicates that the following key combinations are
0x00000001 reserved by the server operating system:

. WIN + Z

. WIN + CTRL + TAB

. WIN + C

. WIN + .

. WIN + SHIFT + .

In addition, the monitor boundaries of the remote session

are employed by the server operating system to trigger
user interface elements via touch or mouse gestures.

64 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Value Meaning

RNS_UD_SC_DYNAMIC_DST_SUPPORTED Indicates that the server supports Dynamic DST.
0x00000002 Dynamic DST information is provided by the client in the
cbDynamicDSTTimeZoneKeyName,
dynamicDSTTimeZoneKeyName, and
dynamicDaylightTimeDisabled fields of the Extended
Info Packet (section 2.2.1.11.1.1.1).

RNS_UD_SC_EDGE_ACTIONS_SUPPORTED_V2 | Indicates that the following key combinations are
0x00000004 reserved by the server operating system:

. WIN + Z

. WIN + TAB

. WIN + A

In addition, the monitor boundaries of the remote session

are employed by the server operating system to trigger
user interface elements via touch.

RNS_UD_SC_SKIP_CHANNELIOIN_SUPPORTED | Indicates that the server supports skipping the MCS
0x00000008 Channel Join Request PDUs (section 2.2.1.8) and MCS
Channel Join Confirm PDUs (section 2.2.1.9) in the
Channel Connection phase of the RDP Connection
Sequence (section 1.3.1.1).

If this flag is set, the server considers all MCS channels as
joined after the MCS Attach User Confirm PDU (section
2.2.1.7) has been sent (section 3.3.5.3.8).

If this field is present, all of the preceding fields MUST also be present.

2.2.1.4.3 Server Security Data (TS_UD_SC_SEC1)

The TS_UD_SC_SEC1 data block returns negotiated security-related information to the client. See
section 5.3.2 for a detailed discussion of how this information is used.

0(1|/2|3(4|(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

header

encryptionMethod

encryptionLevel

serverRandomLen (optional)

serverCertLen (optional)

serverRandom (variable)

serverCertificate (variable)

65/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to SC_SECURITY (0x0C02).

encryptionMethod (4 bytes): A 32-bit, unsigned integer. The selected cryptographic method to use
for the session. When Enhanced RDP Security (section 5.4) is being used, this field MUST be set to
ENCRYPTION_METHOD_NONE (0).

Value Meaning

ENCRYPTION_METHOD_NONE No encryption or Message Authentication Codes (MACs) will be used.
0x00000000

ENCRYPTION_METHOD_40BIT 40-bit session keys will be used to encrypt data (with RC4) and generate
0x00000001 MACs.

ENCRYPTION_METHOD_128BIT | 128-bit session keys will be used to encrypt data (with RC4) and generate
0x00000002 MACs.

ENCRYPTION_METHOD_56BIT 56-bit session keys will be used to encrypt data (with RC4) and generate
0x00000008 MACs.

ENCRYPTION_METHOD_FIPS All encryption and Message Authentication Code generation routines will be
0x00000010 FIPS 140-1 compliant.

encryptionLevel (4 bytes): A 32-bit, unsigned integer that describes the encryption behavior to use
for the session. When Enhanced RDP Security (section 5.4) is being used, this field MUST be set to
ENCRYPTION_LEVEL_NONE (0).

Name Value
ENCRYPTION_LEVEL_NONE 0x00000000
ENCRYPTION_LEVEL_LOW 0x00000001

ENCRYPTION_LEVEL_CLIENT_COMPATIBLE | 0x00000002

ENCRYPTION_LEVEL_HIGH 0x00000003

ENCRYPTION_LEVEL_FIPS 0x00000004

See section 5.3.1 for a description of each of the low, client-compatible, high, and FIPS encryption
levels.

serverRandomLen (4 bytes): An optional 32-bit, unsigned integer that specifies the size in bytes of
the serverRandom field. If the encryptionMethod and encryptionLevel fields are both set to
zero, then this field MUST NOT be present and the length of the serverRandom field MUST be
zero. If either the encryptionMethod or encryptionLevel field is non-zero, this field MUST be
set to 0x00000020.

serverCertLen (4 bytes): An optional 32-bit, unsigned integer that specifies the size in bytes of the
serverCertificate field. If the encryptionMethod and encryptionLevel fields are both set to
zero, then this field MUST NOT be present and the length of the serverCertificate field MUST be
zero.

serverRandom (variable): The variable-length server random value used to derive session keys
(sections 5.3.4 and 5.3.5). The length in bytes is given by the serverRandomLen field. If the

66 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

encryptionMethod and encryptionLevel fields are both set to zero, then this field MUST NOT be
present.

serverCertificate (variable): The variable-length certificate containing the server's public key
information. The length in bytes is given by the serverCertLen field. If the encryptionMethod
and encryptionLevel fields are both set to zero, then this field MUST NOT be present.

2.2.1.4.3.1 Server Certificate (SERVER_CERTIFICATE)

The SERVER_CERTIFICATE structure describes the generic server certificate structure to which all
server certificates present in the Server Security Data (section 2.2.1.4.3) conform.

=
N
w

0(1|/2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

dwVersion

certData (variable)

dwVersion (4 bytes): A 32-bit, unsigned integer. The format of this field is described by the
following bitmask diagram.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6[7|8|9(0(1]|2|3|4|5|6[7|8|9|0(1

certChainVersion t

certChainVersion (31 bits): A 31-bit, unsigned integer that contains the certificate version.

Value (31 bits) Meaning

CERT_CHAIN_VERSION_1 | The certificate contained in the certData field is a Server Proprietary
0x00000001 Certificate (section 2.2.1.4.3.1.1).

CERT_CHAIN_VERSION_2 | The certificate contained in the certData field is an X.509 Certificate
0x00000002 (section 5.3.3.2).

t (1 bit): A 1-bit field that indicates whether the certificate contained in the certData field has
been permanently or temporarily issued to the server.

Value (1 bit) | Meaning

0 The certificate has been permanently issued to the server.

1 The certificate has been temporarily issued to the server.

certData (variable): Certificate data. The format of this certificate data is determined by the
dwVersion field.

2.2.1.4.3.1.1 Server Proprietary Certificate (PROPRIETARYSERVERCERTIFICATE)

The PROPRIETARYSERVERCERTIFICATE structure describes a signed certificate containing the server's
public key and conforming to the structure of a Server Certificate (section 2.2.1.4.3.1). For a detailed
description of Proprietary Certificates, see section 5.3.3.1.

67/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

dwVersion

dwSigAlgld

dwKeyAlgld

wPublicKeyBlobType wPublicKeyBlobLen

PublicKeyBlob (variable)

wSignatureBlobType wSignatureBlobLen

SignatureBlob (variable)

dwVersion (4 bytes): A 32-bit, unsigned integer. The certificate version number. This field MUST be
set to CERT_CHAIN_VERSION_1 (0x00000001).

dwSigAlgld (4 bytes): A 32-bit, unsigned integer. The signature algorithm identifier. This field MUST
be set to SIGNATURE_ALG_RSA (0x00000001).

dwKeyAlgld (4 bytes): A 32-bit, unsigned integer. The key algorithm identifier. This field MUST be
set to KEY_EXCHANGE_ALG_RSA (0x00000001).

wPublicKeyBlobType (2 bytes): A 16-bit, unsigned integer. The type of data in the PublicKeyBlob
field. This field MUST be set to BB_RSA_KEY_BLOB (0x0006).

wPublicKeyBlobLen (2 bytes): A 16-bit, unsigned integer. The size in bytes of the PublicKkeyBlob
field.

PublicKeyBlob (variable): Variable-length server public key bytes, formatted using the Rivest-
Shamir-Adleman (RSA) Public Key structure (section 2.2.1.4.3.1.1.1). The length in bytes is given
by the wPublicKeyBlobLen field.

wSignatureBlobType (2 bytes): A 16-bit, unsigned integer. The type of data in the SignatureBlob
field. This field is set to BB_RSA_SIGNATURE_BLOB (0x0008).

wSignatureBlobLen (2 bytes): A 16-bit, unsigned integer. The size in bytes of the SignatureBlob
field.

SignatureBlob (variable): Variable-length signature of the certificate created with the Terminal
Services Signing Key (sections 5.3.3.1.1 and 5.3.3.1.2). The length in bytes is given by the
wSignatureBlobLen field.

2.2.1.4.3.1.1.1 RSA Public Key (RSA_PUBLIC_KEY)

The structure used to describe a public key in a Proprietary Certificate (section 2.2.1.4.3.1.1).

68 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

magic

keylen

bitlen

datalen

pubExp

modulus (variable)

magic (4 bytes): A 32-bit, unsigned integer. The sentinel value. This field MUST be set to
0x31415352.

keylen (4 bytes): A 32-bit, unsigned integer. The size in bytes of the modulus field. This value is
directly related to the bitlen field and MUST be ((bitlen / 8) + 8) bytes.

bitlen (4 bytes): A 32-bit, unsigned integer. The number of bits in the public key modulus.

datalen (4 bytes): A 32-bit, unsigned integer. The maximum number of bytes that can be encoded
using the public key. This value is directly related to the bitlen field and MUST be ((bitlen / 8) - 1)
bytes.

pubExp (4 bytes): A 32-bit, unsigned integer. The public exponent of the public key.

modulus (variable): A variable-length array of bytes containing the public key modulus. The length
in bytes of this field is given by the keylen field. The modulus field contains all (bitlen / 8) bytes
of the public key modulus and 8 bytes of zero padding (which MUST follow after the modulus
bytes).

2.2.1.4.4 Server Network Data (TS_UD_SC_NET)

The TS_UD_SC_NET data block is a reply to the static virtual channel list presented in the Client
Network Data structure (section 2.2.1.3.4).

—
N
w

header

MCSChannelld channelCount

channelldArray (variable)

Pad (optional)

69 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

header (4 bytes): A GCC user data block header, as specified in section User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to SC_NET (0x0C03).

MCSChannelld (2 bytes): A 16-bit, unsigned integer. The MCS channel identifier of the I/O channel.

channelCount (2 bytes): A 16-bit, unsigned integer. The number of 16-bit, unsigned integer MCS
channel IDs in the channelldArray field.

channelldArray (variable): A variable-length array of MCS channel IDs (each channel ID is a 16-
bit, unsigned integer) which have been allocated (the number is given by the channelCount
field). Each MCS channel ID corresponds in position to the channels requested in the Client
Network Data structure.

Pad (2 bytes): A 16-bit, unsigned integer. Optional padding. Values in this field MUST be ignored.
The size in bytes of the Server Network Data structure MUST be a multiple of 4. If the
channelCount field contains an odd value, then the size of the channelldArray (and by
implication the entire Server Network Data structure) will not be a multiple of 4. In this scenario,
the Pad field MUST be present and it is used to add an additional 2 bytes to the size of the Server
Network Data structure. If the channelCount field contains an even value, then the Pad field is
not required and MUST NOT be present.

2.2.1.4.5 Server Message Channel Data (TS_UD_SC_MCS_MSGCHANNEL)

The TS_UD_SC_MCS_MSGCHANNEL packet is used to specify the ID of the MCS channel which
transports the Multitransport Bootstrapping PDUs (sections 2.2.15.1 and 2.2.15.2) and Network
Characteristics Detection PDUs (sections 2.2.14.3 and 2.2.14.4).

—
N
w

header

MCSChannellD

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.4.1). The User Data Header type field MUST be set to SC_MCS_MSGCHANNEL (0x0C04).

MCSChannellID (2 bytes): A 16-bit, unsigned integer that specifies the MCS channel identifier of the
MCS message channel. If this value is zero, then the channel MUST NOT be joined (section
3.2.5.3.8), and the PDUs which are transported on this channel cannot be transmitted.

2.2.1.4.6 Server Multitransport Channel Data (TS_UD_SC_MULTITRANSPORT)

The TS_UD_CS_MULTITRANSPORT packet is used to indicate support for the RDP Multitransport
Layer ([MS-RDPEMT] section 1.3) and to specify multitransport characteristics.

0[{1(2|3|4|5|6|7|8|(9(0(1({2|3|4|5|6|7|8|9|0|1(2(3(4|5(6|7|8|9|0]|1

header

flags

header (4 bytes): A GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to SC_MULTITRANSPORT (0x0CO08).

70 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEMT%5d.pdf#Section_d22b606c32c44647b35686f75e23a22c

flags (4 bytes): A 32-bit, unsigned integer that specifies protocols supported by the server-side
multitransport layer.

Value Meaning

TRANSPORTTYPE_UDPFECR RDP-UDP Forward Error Correction (FEC) reliable transport ([MS-
0x01 RDPEUDP] sections 1 to 3).

TRANSPORTTYPE_UDPFECL RDP-UDP FEC lossy transport ([MS-RDPEUDP] sections 1 to 3).<15>
0x04

TRANSPORTTYPE_UDP_PREFERRED | Indicates that tunneling of static virtual channel traffic over UDP is
0x100 supported ([MS-RDPEDYC] section 3.1.5.4).
SOFTSYNC_TCP_TO_UDP Indicates that switching dynamic virtual channels from the TCP to
0x200 UDP transport is supported ([MS-RDPEDYC] section 3.1.5.3).

If the server advertises the SOFTSYNC_TCP_TO_UDP flag, then the
server MUST support processing success responses in the Initiate
Multitransport Response PDU (section 2.2.15.2).

2.2.1.5 Client MCS Erect Domain Request PDU

The MCS Erect Domain Request PDU is an RDP Connection Sequence PDU sent from client to server
during the Channel Connection phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent after receiving the MCS Connect

Response PDU (section 2.2.1.4).

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]|9|0]|1

tpktHeader

x224Data mcsEDrq

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsEDrq (5 bytes): PER-encoded MCS Domain PDU which encapsulates an MCS Erect Domain
Request structure, as specified in [T125] section 11.8 (the ASN.1 structure definitions are given
in [T125] section 7, parts 3 and 10).

2.2.1.6 Client MCS Attach User Request PDU

The MCS Attach User Request PDU is an RDP Connection Sequence PDU sent from client to server
during the Channel Connection phase of the RDP Connection Sequence to request a User Channel ID
(see section 1.3.1.1 for an overview of the RDP Connection Sequence phases). It is sent after
transmitting the MCS Erect Domain Request PDU (section 2.2.1.5).

71/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1
%5bMS-RDPEUDP%5d.pdf#Section_2744a3ee04fb407ba9e3b3b2ded422b1
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsAUrq

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsAUrq (1 byte): PER-encoded MCS Domain PDU that encapsulates an MCS Attach User Request
structure, as specified in [T125] section 11.17 (the ASN.1 structure definitions are given in
[T125] section 7, parts 5 and 10).

2.2.1.7 Server MCS Attach User Confirm PDU

The MCS Attach User Confirm PDU is an RDP Connection Sequence PDU sent from server to client
during the Channel Connection phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent as a response to the MCS Attach User
Request PDU (section 2.2.1.6).

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

tpktHeader

x224Data mcsAUcf

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in section [X224] 13.7.

mcsAUcf (4 bytes): PER-encoded MCS Domain PDU which encapsulates an MCS Attach User Confirm
structure, as specified in [T125] sections 11.18 (the ASN.1 structure definitions are given in
[T125] section 7, parts 5 and 10).

2.2.1.8 Client MCS Channel Join Request PDU

The MCS Channel Join Request PDU is an RDP Connection Sequence PDU sent from client to server
during the Channel Connection phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent after receiving the MCS Attach User
Confirm PDU (section 2.2.1.7). The client uses the MCS Channel Join Request PDU to join the user
channel obtained from the Attach User Confirm PDU, the I/O channel (section 2.2.1.4.4), the message
channel (section 2.2.1.4.5), and all of the static virtual channels obtained from the Server Network
Data structure (section 2.2.1.4.4).

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

tpktHeader

72 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543
https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

x224Data mcsClrq

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsCJIrq (5 bytes): PER-encoded MCS Domain PDU which encapsulates an MCS Channel Join
Request structure as specified in [T125] section 11.21 (the ASN.1 structure definitions are given
in [T125] section 7, parts 6 and 10).

2.2.1.9 Server MCS Channel Join Confirm PDU

The MCS Channel Join Confirm PDU is an RDP Connection Sequence PDU sent from server to client
during the Channel Connection phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent as a response to the MCS Channel Join
Request PDU (section 2.2.1.8).

—
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

tpktHeader

x224Data mcsCJlcf

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsCIcf (8 bytes): PER-encoded MCS Domain PDU which encapsulates an MCS Channel Join Confirm
PDU structure, as specified in [T125] section 11.22 (the ASN.1 structure definitions are given in
[T125] section 7, parts 6 and 10).

2.2.1.10 Client Security Exchange PDU

The Security Exchange PDU is an optional RDP Connection Sequence PDU that is sent from client to
server during the RDP Security Commencement phase of the RDP Connection Sequence (see section
1.3.1.1 for an overview of the RDP Connection Sequence phases). It is sent after all of the requested
MCS Channel Join Confirm PDUs (section 2.2.1.9) have been received.

—
N
w

0(1|2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDrq (variable)

73/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543
https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

securityExchangePduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Exchange
PDU Data (section 2.2.1.10.1) structure.

securityExchangePduData (variable): The actual contents of the Security Exchange PDU, as
specified in section 2.2.1.10.1.

2.2.1.10.1 Security Exchange PDU Data (TS_SECURITY_PACKET)

The TS_SECURITY_PACKET structure contains the encrypted client random value which is used
together with the server random (section 2.2.1.4.3) to derive session keys to secure the connection
(sections 5.3.4 and 5.3.5).

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

basicSecurityHeader

length

encryptedClientRandom (variable)

basicSecurityHeader (4 bytes): A Basic Security Header (section 2.2.8.1.1.2.1). The flags field of
the security header MUST contain the SEC_EXCHANGE_PKT flag (0x0001).

length (4 bytes): A 32-bit, unsigned integer. The size in bytes of the buffer containing the encrypted
client random value, not including the header length.

encryptedClientRandom (variable): The client random value encrypted with the public key of the
server (section 5.3.4).

2.2.1.11 Client Info PDU

The Client Info PDU is an RDP Connection Sequence PDU sent from client to server during the Secure
Settings Exchange phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of the
RDP Connection Sequence phases). It is sent after transmitting a Security Exchange

PDU (section 2.2.1.10) or, if the Security Exchange PDU was not sent, it is transmitted after receiving
all requested MCS Channel Join Confirm PDUs (section 2.2.1.9).

—
N
w

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[7|8|9|0/(1

tpktHeader

74 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

x224Data mcsSDrq (variable)

clientInfoPduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Client Info PDU
Data (section 2.2.1.11.1) structure.

clientInfoPduData (variable): The contents of the Client Info PDU, as specified in section
2.2.1.11.1.

2.2.1.11.1 Client Info PDU Data (CLIENT_INFO_PDU)

The CLIENT_INFO_PDU structure serves as a wrapper for a Security Header (section 2.2.8.1.1.2) and
the actual client information contained in a TS _INFO PACKET structure (section 2.2.1.11.1.1).

—
N
w

0(1|/2|3(4(5|6(7|8|9|0(1|2|3(4|5|6(|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

securityHeader (variable)

infoPacket (variable)

securityHeader (variable): Security header. The format of the security header depends on the
Encryption Level and Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3).
This field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_NONE (0).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

The flags field of the security header MUST contain the SEC_INFO_PKT flag (section
2.2.8.1.1.2.1).

infoPacket (variable): Client information, as specified in TS_INFO_PACKET.

75 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

2.2.1.11.1.1 Info Packet (TS_INFO_PACKET)

The TS_INFO_PACKET structure contains extra information not passed to the server during the Basic
Settings Exchange phase (section 1.3.1.1) of the RDP Connection Sequence, primarily to ensure that it
gets encrypted (as auto-logon password data and other sensitive information is passed here).

0[{1(2|3|4|5|6|7|8(9(0(1({2|3|4|5|6|7|8|9|0(1(2(3(4|5(6|7|8|9|0]|1

CodePage
flags
cbDomain cbUserName
cbPassword cbAlternateShell
cbWorkingDir Domain (variable)

UserName (variable)

Password (variable)

AlternateShell (variable)

WorkingDir (variable)

extralnfo (variable)

CodePage (4 bytes): A 32-bit, unsigned integer. If the flags field does not contain the
INFO_UNICODE flag (0x00000010), then this field MUST contain the ANSI code page descriptor
being used by the client (for a list of code pages, see [MSDN-CP]) to encode the character fields in
the Info Packet and Extended Info Packet (section 2.2.1.11.1.1.1). However, if the flags field
contains the INFO_UNICODE flag, then the CodePage field MUST contain the active language
identifier in the low-word<16> (for a list of language identifiers, see [MSDN-MUI]); the contents
of the high-word MUST be ignored by the server. The active language identifier SHOULD be
ignored by the server if the keyboardLayout field of the Client Core Data structure (section
2.2.1.3.2) is set to zero.<17>

flags (4 bytes): A 32-bit, unsigned integer. Option flags.

76 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=89981
https://go.microsoft.com/fwlink/?LinkId=90048

Flag

Meaning

INFO_MOUSE
0x00000001

Indicates that the client machine has a mouse attached.

INFO_DISABLECTRLALTDEL
0x00000002

Indicates that the CTRL+ALT+DEL (or the equivalent) secure access
keyboard sequence is not required at the logon prompt.

INFO_AUTOLOGON
0x00000008

The client requests auto logon using the included user name,
password and domain.

INFO_UNICODE
0x00000010

Indicates that the character set for strings in the Info Packet and
Extended Info Packet (section 2.2.1.11.1.1.1) is Unicode. If this
flag is absent, then the ANSI character set that is specified by the
ANSI code page descriptor in the CodePage field is used for strings
in the Info Packet and Extended Info Packet.

INFO_MAXIMIZESHELL
0x00000020

Indicates that the alternate shell (specified in the AlternateShell
field of the Info Packet structure) MUST be started in a maximized
state.

INFO_LOGONNOTIFY
0x00000040

Indicates that the client wants to be informed of the user name and
domain used to log on to the server, as well as the ID of the session
to which the user connected. The Save Session Info PDU (section
2.2.10.1) is sent from the server to notify the client of this
information using a Logon Info Version 1 (section 2.2.10.1.1.1) or
Logon Info Version 2 (section 2.2.10.1.1.2) structure.

INFO_COMPRESSION
0x00000080

Indicates that the CompressionTypeMask is valid and contains the
highest compression package type supported by the client.

CompressionTypeMask
0x00001E00

Indicates the highest compression package type supported. See the
discussion which follows this table for more information.

INFO_ENABLEWINDOWSKEY
0x00000100

Indicates that the client uses the Windows key on Windows-
compatible keyboards.

INFO_REMOTECONSOLEAUDIO
0x00002000

Requests that audio played in a session hosted on a remote server be
played on the server.

INFO_FORCE_ENCRYPTED_CS_PDU
0x00004000

Indicates that all client-to-server traffic is encrypted when encryption
is in force. Setting this flag prevents the server from processing
unencrypted packets in man-in-the-middle attack scenarios. This flag
is not understood by RDP 4.0, 5.0, and 5.1 servers.

INFO_RAIL
0x00008000

Indicates that the remote connection being established is for the
purpose of launching remote programs using the protocol defined in
MS-RDPERP] sections 2 and 3. This flag is not understood by RDP

4.0, 5.0, 5.1, and 5.2 servers.

INFO_LOGONERRORS
0x00010000

Indicates a request for logon error notifications using the Save
Session Info PDU. This flag is not understood by RDP 4.0, 5.0, 5.1,
and 5.2 servers.

INFO_MOUSE_HAS_WHEEL
0x00020000

Indicates that the mouse which is connected to the client machine
has a scroll wheel. This flag is not understood by RDP 4.0, 5.0, 5.1,
and 5.2 servers.

INFO_PASSWORD_IS_SC_PIN
0x00040000

Indicates that the Password field in the Info Packet contains a smart
card personal identification number (PIN). This flag is not understood
by RDP 4.0, 5.0, 5.1, and 5.2 servers.

77/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPERP%5d.pdf#Section_832759572d0e4c5288d11b4c998c6bec

Flag

Meaning

INFO_NOAUDIOPLAYBACK
0x00080000

Indicates that audio redirection (using the protocol defined in [MS-
RDPEA] sections 2 and 3) MUST NOT take place. This flag is not
understood by RDP 4.0, 5.0, 5.1, and 5.2 servers. If the
INFO_NOAUDIOPLAYBACK flag is not set, then audio redirection
SHOULD take place if the INFO_REMOTECONSOLEAUDIO
(0x00002000) flag is also not set.

INFO_USING_SAVED_CREDS
0x00100000

Any user credentials sent on the wire during the RDP Connection
Sequence (sections 1.3.1.1 and 1.3.1.2) have been retrieved from a
credential store and were not obtained directly from the user. This
flag is not understood by RDP 4.0, 5.0, 5.1, 5.2, and 6.0 servers.

INFO_AUDIOCAPTURE
0x00200000

Indicates that the redirection of client-side audio input to a session
hosted on a remote server is supported using the protocol defined in
MS-RDPEAI] sections 2 and 3. This flag is not understood by RDP

4.0,5.0,5.1, 5.2, 6.0, and 6.1 servers.

INFO_VIDEO_DISABLE
0x00400000

Indicates that video redirection or playback (using the protocol
defined in [MS-RDPEV] sections 2 and 3) MUST NOT take place. This
flag is not understood by RDP 4.0, 5.0, 5.1, 5.2, 6.0, and 6.1 servers.

INFO_RESERVED1
0x00800000

An unused flag that is reserved for future use. This flag MUST NOT be
set.

INFO_RESERVED2
0x01000000

An unused flag that is reserved for future use. This flag MUST NOT be
set.

INFO_HIDEF_RAIL_SUPPORTED
0x02000000

Indicates that the client supports Enhanced RemoteApp ([MS-
RDPERP] section 1.3.3). The INFO_HIDEF_RAIL_SUPPORTED flag
MUST be ignored if the INFO_RAIL (0x00008000) flag is not specified.
Furthermore, a client that specifies the
INFO_HIDEF_RAIL_SUPPORTED flag MUST send the Remote
Programs Capability Set ([MS-RDPERP] section 2.2.1.1.1) to the
server. The INFO_HIDEF_RAIL_SUPPORTED flag is not understood by
RDP 4.0, 5.0, 5.1,5.2,6.0,6.1, 7.0, 7.1, and 8.0 servers.

The CompressionTypeMask is a 4-bit enumerated value containing the highest compression
package support available on the client. The packages codes are:

Value

Meaning

PACKET_COMPR_TYPE_8K
0x0

RDP 4.0 bulk compression (section 3.1.8.4.1).

PACKET_COMPR_TYPE_64K
Ox1

RDP 5.0 bulk compression (section 3.1.8.4.2).

PACKET_COMPR_TYPE_RDP6
0x2

RDP 6.0 bulk compression ([MS-RDPEGDI] section 3.1.8.1).

PACKET_COMPR_TYPE_RDP61
0x3

RDP 6.1 bulk compression ([MS-RDPEGDI] section 3.1.8.2).

If a client supports compression package n then it MUST support packages 0...(n - 1).

cbDomain (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the
Domain field. This size excludes the length of the mandatory null terminator.

[MS-RDPBCGR] - v20230920

78 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEA%5d.pdf#Section_bea2d5cfe3b9441992e50e074ff9bc5b
%5bMS-RDPEA%5d.pdf#Section_bea2d5cfe3b9441992e50e074ff9bc5b
%5bMS-RDPEAI%5d.pdf#Section_d04ffa425a0f4f80abb1cc26f71c9452
%5bMS-RDPEV%5d.pdf#Section_ff2a9f63cbcc4615849f03752a2b440b
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

cbUserName (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the
UserName field. This size excludes the length of the mandatory null terminator.

cbPassword (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the
Password field. This size excludes the length of the mandatory null terminator.

cbAlternateShell (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in
the AlternateShell field. This size excludes the length of the mandatory null terminator.

cbWorkingDir (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the
WorkingDir field. This size excludes the length of the mandatory null terminator.

Domain (variable): Variable-length logon domain of the user (the length in bytes is given by the
cbDomain field). The maximum length allowed by RDP 4.0 and RDP 5.0 servers is 52 bytes
(including the mandatory null terminator), while all other versions of RDP servers allow a
maximum length of 512 bytes (including the mandatory null terminator). The field MUST contain
at least a null terminator character in Windows-1252 or Unicode format (depending on the
presence of the INFO_UNICODE flag).

UserName (variable): Variable-length logon user name of the user (the length in bytes is given by
the cbUserName field). The maximum length allowed by RDP 4.0 servers is 44 bytes (including
the mandatory null terminator), while all other versions of RDP servers allow a maximum length of
512 bytes (including the mandatory null terminator). The field MUST contain at least a null
terminator character in Windows-1252 or Unicode format (depending on the presence of the
INFO_UNICODE flag). The contents of the UserName field SHOULD be ignored if the
INFO_PASSWORD_IS_SC_PIN (0x00040000) flag is specified in the flags field.

Password (variable): Variable-length logon password of the user (the length in bytes is given by the
cbPassword field). The maximum length allowed by RDP 4.0 and RDP 5.0 servers is 32 bytes
(including the mandatory null terminator), while all other versions of RDP servers allow a
maximum length of 512 bytes (including the mandatory null terminator). The field MUST contain
at least a null terminator character in Windows-1252 or Unicode format (depending on the
presence of the INFO_UNICODE flag).

AlternateShell (variable): Variable-length path to the executable file of an alternate shell, e.g.
"c:\dir\prog.exe" (the length in bytes is given by the cbAlternateShell field). The maximum
allowed length is 512 bytes (including the mandatory null terminator). This field MUST only be
initialized if the client is requesting a shell other than the default. The field MUST contain at least a
null terminator character in Windows-1252 or Unicode format (depending on the presence of the
INFO_UNICODE flag).

WorkingDir (variable): Variable-length directory that contains the executable file specified in the
AlternateShell field or any related files (the length in bytes is given by the cbWorkingDir field).
The maximum allowed length is 512 bytes (including the mandatory null terminator). This field
MAY be initialized if the client is requesting a shell other than the default. The field MUST contain
at least a null terminator character in Windows-1252 or Unicode format (depending on the
presence of the INFO_UNICODE flag).

extraInfo (variable): Optional and variable-length extended information used in all RDP versions,
except for RDP 4.0, and specified in section 2.2.1.11.1.1.1.

2.2.1.11.1.1.1 Extended Info Packet (TS_EXTENDED_INFO_PACKET)

The TS_EXTENDED_INFO_PACKET structure contains user information specific to all RDP versions,
except for RDP 4.0.

79 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

0(1|2|3(4|5|6[7|8|9]|0

3(4|5(6(7(8|9(0(1]|2|3(4|5|6[|7|8|9|0|1

clientAddressFamily

cbClientAddress

clientAddress (variable)

cbClientDir clientDir (variable)
clientTimeZone (172 bytes, optional)
clientSessionld (optional)
performanceFlags (optional)
cbAutoReconnectCookie (optional) autoReconnectCookie (28 bytes, optional)

reservedl (optional)

reserved2 (optional)

cbDynamicDSTTimeZoneKeyName (optional)

dynamicDSTTimeZoneKeyName (variable)

dynamicDaylightTimeDisabled (optional)

clientAddressFamily (2 bytes): A 16-bit, unsigned integer. The numeric socket descriptor for the

client address type.

Value Meaning

AF_INET The clientAddress field contains an IPv4 address.
0x00002

AF_INET6 The clientAddress field contains an IPv6 address.
0x0017

cbClientAddress (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the
clientAddress field. This size includes the length of the mandatory null terminator.

[MS-RDPBCGR] - v20230920

80 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

clientAddress (variable): Variable-length textual representation of the client IPv4 or IPv6 address.
The maximum allowed length (including the mandatory null terminator) is 64 bytes for RDP 5.0,
5.1, 5.2, and 6.0, and 80 bytes for all other RDP versions.

cbClientDir (2 bytes): A 16-bit, unsigned integer. The size in bytes of the character data in the
clientDir field. This size includes the length of the mandatory null terminator.

clientDir (variable): Variable-length directory that contains either (a) the folder path on the client
machine from which the client software is being run, or (b) the full path of the software module
implementing the client (see section 4.1.10 for an example). The maximum allowed length is 512
bytes (including the mandatory null terminator).

clientTimeZone (172 bytes): A TS_TIME_ZONE_INFORMATION structure (section
2.2.1.11.1.1.1.1) that contains time zone information for a client. This field is not read by RDP 5.0
and 5.1 servers. If this field is not present, then all of the subsequent fields MUST NOT be present.

clientSessionld (4 bytes): A 32-bit, unsigned integer. This field was added in RDP 5.1 and is
currently ignored by the server. It SHOULD be set to zero. If this field is present, then the
clientTimeZone field MUST also be present. If this field is not present, then all of the subsequent
fields MUST NOT be present.

performanceFlags (4 bytes): A 32-bit, unsigned integer. It specifies a list of server desktop shell
features to enable or disable in the session (with the goal of optimizing bandwidth usage). This
field is not read by RDP 5.0 servers. If this field is present, then the clientSessionlId field MUST
also be present. If this field is not present, then all of the subsequent fields MUST NOT be present.

Flag Meaning

PERF_DISABLE_WALLPAPER Disable desktop wallpaper.

0x00000001

PERF_DISABLE_FULLWINDOWDRAG Disable full-window drag (only the window outline is displayed

0x00000002 when the window is moved).

PERF_DISABLE_MENUANIMATIONS Disable menu animations.

0x00000004

PERF_DISABLE_THEMING Disable user interface themes.

0x00000008

PERF_RESERVED1 An unused flag that is reserved for future use. This flag SHOULD

0x00000010 be ignored by the server.

PERF_DISABLE_CURSOR_SHADOW Disable mouse cursor shadows.

0x00000020

PERF_DISABLE_CURSORSETTINGS Disable cursor blinking.

0x00000040

PERF_ENABLE_FONT_SMOOTHING Enable font smoothing.<18>

0x00000080

PERF_ENABLE_DESKTOP_COMPOSITION | Enable Desktop Composition ([MS-RDPEDC] sections 1, 2 and 3;

0x00000100 and [MS-RDPCR2] sections 1, 2 and 3). The usage of Desktop
Composition in a remote session requires that the color depth be
32 bits per pixel (bpp). (See the description of the
highColorDepth, supportedColorDepths and
earlyCapabilityFlags (specifically the
RNS_UD_CS_WANT_32BPP_SESSION (0x0002) flag) fields in
section 2.2.1.3.2 for background on setting the remote session

81 /444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEDC%5d.pdf#Section_869980fb29ba426d8361f7b6d287d2ea
%5bMS-RDPCR2%5d.pdf#Section_04c2c5e73e234a7fb319835f7d049822

Flag Meaning

color depth to 32 bpp.)<19>

PERF_RESERVED2 An unused flag that is reserved for future use. This flag SHOULD
0x80000000 be ignored by the server.

If the connectionType field of the Client Core Data (section 2.2.1.3.2) is set to
CONNECTION_TYPE_AUTODETECT (0x07), and the client indicates support for network
characteristics detection by specifying the RNS_UD_CS_SUPPORT_NETCHAR_AUTODETECT
(0x0080) flag in the earlyCapabilityFlags field of the Client Core Data, then the server SHOULD
ignore the contents of the performanceFlags field if the connection type can be determined
(using the PDUs specified in section 2.2.14) and SHOULD instead determine an appropriate set of
performance flags to apply to the remote session based on the detected connection type.

cbAutoReconnectCookie (2 bytes): A 16-bit, unsigned integer. The size in bytes of the cookie
specified by the autoReconnectCookie field. This field MUST be set to zero or 0x001C. The
cbAutoReconnectCookie field is not read by RDP 5.0 and 5.1 servers. If this field is present,
then the performanceFlags field MUST also be present. If this field is not present, then all of the
subsequent fields MUST NOT be present.

autoReconnectCookie (28 bytes): Buffer containing an ARC_CS_PRIVATE_PACKET structure
(section 2.2.4.3). This buffer is a unique cookie that allows a disconnected client to seamlessly
reconnect to a previously established session (see section 5.5 for more details). The

autoReconnectCookie field is not read by RDP 5.0 and 5.1 servers. This field MUST be present if
the cbAutoReconnectCookie field is nonzero.

reservedl (2 bytes): This field is reserved for future use and has no effect on RDP wire traffic. It
SHOULD<20> be set to zero. If this field is present, the cbAutoReconnectCookie and

reserved2 fields MUST also be present. If this field is not present, then all of the subsequent
fields MUST NOT be present.

reserved2 (2 bytes): This field is reserved for future use and has no effect on RDP wire traffic. It
MUST be set to zero. If this field is present, then the reserved1 field MUST also be present. If this
field is not present, then all of the subsequent fields MUST NOT be present.

cbDynamicDSTTimeZoneKeyName (2 bytes): A 16-bit, unsigned integer. The size, in bytes, of the
dynamicDSTTimeZoneKeyName field. This field is not read by RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0,
and 7.1 servers. If this field is present, then the reserved2 and dynamicDaylightTimeDisabled

fields MUST also be present. If this field is not present, then all of the subsequent fields MUST NOT
be present.<21>

dynamicDSTTimeZoneKeyName (variable): A variable-length array of Unicode characters with no
terminating null, containing the descriptive name of the Dynamic DST time zone on the client. This
field is not read by RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, and 7.1 servers. The maximum allowed length

is 254 bytes. This field MUST be present if the cbDynamicDSTTimeZoneKeyName field is
nonzero.<22>

dynamicDaylightTimeDisabled (2 bytes): A 16-bit, unsigned integer that specifies whether
Dynamic DST MUST be disabled in the remote session. This field is not read by RDP 5.0, 5.1, 5.2,
6.0, 6.1, 7.0, and 7.1 servers.

Value Meaning

FALSE Dynamic DST MUST be enabled in the remote session if the feature
0x0000 is supported.

TRUE Dynamic DST MUST be disabled in the remote session.

0x0001

82 /444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

If this field is present, then the cbDynamicDSTTimeZoneKeyName field MUST also be present.
If this field is not present, then all of the subsequent fields MUST NOT be present.<23>

2.2.1.11.1.1.1.1 Time Zone Information (TS_TIME_ZONE_INFORMATION)

The TS_TIME_ZONE_INFORMATION structure contains client time zone information.

=
N
w

0(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

Bias

StandardName (64 bytes)

StandardDate (16 bytes)

StandardBias

DaylightName (64 bytes)

DaylightDate (16 bytes)

DaylightBias

Bias (4 bytes): A 32-bit, unsigned integer that contains the current bias for local time translation on
the client. The bias is the difference, in minutes, between Coordinated Universal Time (UTC) and
local time. All translations between UTC and local time are based on the following formula:

UTC = local time + bias

StandardName (64 bytes): An array of 32 Unicode characters. The descriptive hame for standard
time on the client.

StandardDate (16 bytes): ATS SYSTEMTIME (section 2.2.1.11.1.1.1.1.1) structure that contains
the date and local time when the transition from daylight saving time to standard time occurs on
the client. If this field contains a valid date and time, then the DaylightDate field MUST also
contain a valid date and time. If the wYear, wMonth, wDayOfWeek, wDay, wHour, wMinute,

83/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

wSecond, and wMilliseconds fields are all set to zero, then the client does not support daylight
saving time.

StandardBias (4 bytes): A 32-bit, unsigned integer that contains the bias value to be used during
local time translations that occur during standard time. This value is added to the value of the
Bias field to form the bias used during standard time. This field MUST be ignored if a valid date
and time is not specified in the StandardDate field or the wYear, wMonth, wDayOfWeek,
wDay, wHour, wMinute, wSecond, and wMilliseconds fields of the StandardDate field are all
set to zero.

DaylightName (64 bytes): An array of 32 Unicode characters. The descriptive name for daylight
saving time on the client.

DaylightDate (16 bytes): A TS_SYSTEMTIME (section 2.2.1.11.1.1.1.1.1) structure that contains a
date and local time when the transition from standard time to daylight saving time occurs on the
client. If this field contains a valid date and time, then the StandardDate field MUST also contain
a valid date and time. If the wYear, wMonth, wDayOfWeek, wDay, wHour, wMinute,
wSecond, and wMilliseconds fields are all set to zero, then the client does not support daylight
saving time.

DaylightBias (4 bytes): A 32-bit, unsigned integer that contains the bias value to be used during
local time translations that occur during daylight saving time. This value is added to the value of
the Bias field to form the bias used during daylight saving time. This field MUST be ignored if a
valid date and time is not specified in the DaylightDate field or the wYear, wMonth,
wDayOfWeek, wDay, wHour, wMinute, wSecond, and wMilliseconds fields of the
DaylightDate field are all set to zero.

2.2.1.11.1.1.1.1.1 System Time (TS_SYSTEMTIME)

The TS_SYSTEMTIME structure contains a date and local time when the transition occurs between
daylight saving time to standard time occurs or standard time to daylight saving time.

0123456789(1)1234567893123456789(3)1
wYear wMonth
wDayOfWeek wDay
wHour wMinute
wSecond wMilliseconds

wYear (2 bytes): A 16-bit, unsigned integer. This field MUST be set to zero.

wMonth (2 bytes): A 16-bit, unsigned integer. The month when transition occurs.

Value | Meaning
1 January
2 February
3 March

4 April

5 May

84 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Value | Meaning
6 June

7 July

8 August

9 September
10 October

11 November
12 December

wDayOfWeek (2 bytes): A 16-bit, unsigned integer. The day of the week when transition occurs.

Value | Meaning

0 Sunday

1 Monday

2 Tuesday

3 Wednesday
4 Thursday

5 Friday

6 Saturday

wDay (2 bytes): A 16-bit, unsigned integer. The occurrence of wDayOfWeek within the month

when the transition takes place.

Value | Meaning

1 First occurrence of wDayOfWeek

2 Second occurrence of wDayOfWeek
3 Third occurrence of wDayOfWeek

4 Fourth occurrence of wDayOfWeek
5 Last occurrence of wDayOfWeek

wHour (2 bytes): A 16-bit, unsigned integer. The hour when transition occurs (0 to 23).
wMinute (2 bytes): A 16-bit, unsigned integer. The minute when transition occurs (0 to 59).
wSecond (2 bytes): A 16-bit, unsigned integer. The second when transition occurs (0 to 59).

wMilliseconds (2 bytes): A 16-bit, unsigned integer. The millisecond when transition occurs (0 to

999).

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

2.2.1.12 Server License Error PDU - Valid Client

The License Error (Valid Client) PDU is an RDP Connection Sequence PDU sent from server to client
during the Licensing phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). This licensing PDU indicates that the server will not issue the
client a license to store and that the Licensing Phase has ended successfully. This is one possible
licensing PDU that can be sent during the Licensing Phase (see [MS-RDPELE] section 2.2.2 for a list of
all permissible licensing PDUs).

=
N
w

0(1|/2|3(4|(5|6(7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

validClientLicenseData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Valid Client License Data (section 2.2.1.12.1) structure.

securityHeader (variable): Security header. The format of the security header depends on the
Encryption Level and Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3).
This field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_NONE (0) or ENCRYPTION_LEVEL_LOW (1) and the embedded flags field
does not contain the SEC_ENCRYPT (0x0008) flag.

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002) and the embedded flags
field contains the SEC_ENCRYPT (0x0008) flag.

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010) and the embedded flags field contains the
SEC_ENCRYPT (0x0008) flag.

If the Encryption Level is set to ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2),
ENCRYPTION_LEVEL_HIGH (3), or ENCRYPTION_LEVEL_FIPS (4) and the flags field of the security
header does not contain the SEC_ENCRYPT (0x0008) flag (the licensing PDU is not encrypted),
then the field MUST contain a Basic Security Header. This MUST be the case if

86 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409
https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

SEC_LICENSE_ENCRYPT_SC (0x0200) flag was not set on the Security Exchange
PDU (section 2.2.1.10).

The flags field of the security header MUST contain the SEC_LICENSE_PKT (0x0080) flag (section
2.2.8.1.1.2.1).

validClientLicenseData (variable): The actual contents of the License Error (Valid Client) PDU, as
specified in section 2.2.1.12.1.

2.2.1.12.1 Valid Client License Data (LICENSE_VALID_CLIENT_DATA)

The LICENSE_VALID CLIENT_DATA structure contains information which indicates that the server will
not issue the client a license to store and that the Licensing Phase has ended successfully.

=
N
w

0(1|2|3(4|(5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

preamble

validClientMessage (variable)

preamble (4 bytes): Licensing Preamble (section 2.2.1.12.1.1) structure containing header
information. The bMsgType field of the preamble structure MUST be set to ERROR_ALERT (OxFF).

validClientMessage (variable): A Licensing Error Message (section 2.2.1.12.1.3) structure. The
dwsStateTransition field MUST be set to ST_NO_TRANSITION (0x00000002). The bbErrorInfo
field MUST contain an empty binary large object (BLOB) of type BB_ERROR_BLOB (0x0004).

2.2.1.12.1.1 Licensing Preamble (LICENSE_PREAMBLE)

The LICENSE_PREAMBLE structure precedes every licensing packet sent on the wire.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3|4|5|6(7|8|9|0(1

bMsgType flags wMsgSize

bMsgType (1 byte): An 8-bit, unsigned integer. A type of the licensing packet. For more details
about the different licensing packets, see [MS-RDPELE] section 2.2.2.

Sent by server:

Value Meaning

LICENSE_REQUEST Indicates a License Request PDU ([MS-RDPELE] section 2.2.2.1).
0x01

PLATFORM_CHALLENGE Indicates a Platform Challenge PDU ([MS-RDPELE] section 2.2.2.4).
0x02

NEW_LICENSE Indicates a New License PDU ([MS-RDPELE] section 2.2.2.7).

0x03

UPGRADE_LICENSE Indicates an Upgrade License PDU ([MS-RDPELE] section 2.2.2.6).

87/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409

Value Meaning
0x04

Sent by client:
Value Meaning

LICENSE_INFO
0x12

Indicates a License Information PDU ([MS-RDPELE] section 2.2.2.3).

NEW_LICENSE_REQUEST
0x13

Indicates a New License Request PDU ([MS-RDPELE] section
2.2.2.2).

PLATFORM_CHALLENGE_RESPONSE
0x15

Indicates a Platform Challenge Response PDU ([MS-RDPELE] section
2.2.2.5).

Sent by either client or server:

Value

Meaning

ERROR_ALERT

Indicates a Licensing Error Message PDU (section 2.2.1.12.1.3).

OxFF

flags (1 byte): An 8-bit, unsigned integer. License preamble flags.

Value Meaning

LicenseProtocolVersionMask

The license protocol version. See the discussion which follows this
OXOF table for more information.

EXTENDED_ERROR_MSG_SUPPORTED | Indicates that extended error information using the Licensing
0x80 Error Message (section 2.2.1.12.1.3) is supported.

The LicenseProtocolVersionMask is a 4-bit value containing the supported license protocol version.

The following are possible version values.

Value Meaning

PREAMBLE_VERSION_2_0
0x2

RDP 4.0

PREAMBLE_VERSION_3_0
0x3 10.3, 10.4, and 10.5

RDP 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, 8.1, 10.0, 10.1, 10.2,

wMsgSize (2 bytes): An 16-bit, unsigned integer. The size in bytes of the licensing packet (including

the size of the preamble).

2.2.1.12.1.2 Licensing Binary Blob (LICENSE_BINARY_BLOB)

The LICENSE_BINARY_BLOB structure is used to encapsulate arbitrary length binary licensing data.

—
N

0({1|2|3(4|5|6|7|8|9|0(1|2|3[4|5|6|7|8|9]|0

2(3|4|5

w

wBlobType

wBlobLen

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

88/ 444

blobData (variable)

wBlobType (2 bytes): A 16-bit, unsigned integer. The data type of the binary information. If
wBlobLen is set to 0, then the contents of this field SHOULD be ignored.

Value Meaning

BB_DATA_BLOB Used by License Information PDU and Platform Challenge
0x0001 Response PDU ([MS-RDPELE] sections 2.2.2.3 and 2.2.2.5).
BB_RANDOM_BLOB Used by License Information PDU and New License Request PDU
0x0002 ([MS-RDPELE] sections 2.2.2.3 and 2.2.2.2).
BB_CERTIFICATE_BLOB Used by License Request PDU ([MS-RDPELE] section 2.2.2.1).
0x0003

BB_ERROR_BLOB Used by License Error PDU (section 2.2.1.12).

0x0004

BB_ENCRYPTED_DATA_BLOB Used by Platform Challenge Response PDU and Upgrade License
0x0009 PDU ([MS-RDPELE] sections 2.2.2.5 and 2.2.2.6).
BB_KEY_EXCHG_ALG_BLOB Used by License Request PDU ([MS-RDPELE] section 2.2.2.1).
0x000D

BB_SCOPE_BLOB Used by License Request PDU ([MS-RDPELE] section 2.2.2.1).
0x000E

BB_CLIENT_USER_NAME_BLOB Used by New License Request PDU ([MS-RDPELE] section
Ox000F 2.2.2.2).

BB_CLIENT_MACHINE_NAME_BLOB | Used by New License Request PDU ([MS-RDPELE] section
0x0010 2.2.2.2).

wBlobLen (2 bytes): A 16-bit, unsigned integer. The size in bytes of the binary information in the
blobData field. If wBlobLen is set to 0, then the blobData field is not included in the Licensing
Binary BLOB structure and the contents of the wBlobType field SHOULD be ignored.

blobData (variable): Variable-length binary data. The size of this data in bytes is given by the
wBloblLen field. If wBlobLen is set to 0, then this field is not included in the Licensing Binary
BLOB structure.

2.2.1.12.1.3 Licensing Error Message (LICENSE_ERROR_MESSAGE)

The LICENSE_ERROR_MESSAGE structure is used to indicate that an error occurred during the
licensing protocol. Alternatively, it is also used to notify the peer of important status information.

—
N
w

0(1|2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

dwErrorCode

dwStateTransition

89 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409

bbErrorInfo (variable)

dwErrorCode (4 bytes): A 32-bit, unsigned integer. The error or status code.

Sent by client:

Name Value

ERR_INVALID_SERVER_CERTIFICATE | 0x00000001

ERR_NO_LICENSE 0x00000002

Sent by server:

Name Value

ERR_INVALID_SCOPE 0x00000004

ERR_NO_LICENSE_SERVER 0x00000006

STATUS_VALID_CLIENT 0x00000007

ERR_INVALID_CLIENT 0x00000008

ERR_INVALID_PRODUCTID 0x0000000B

ERR_INVALID_MESSAGE_LEN | 0x0000000C

Sent by client and server:

Name Value

ERR_INVALID_MAC | 0x00000003

dwStateTransition (4 bytes): A 32-bit, unsigned integer. The licensing state to transition into upon
receipt of this message. For more details about how this field is used, see [MS-RDPELE] section
3.1.5.2.

Name Value
ST_TOTAL_ABORT 0x00000001
ST_NO_TRANSITION 0x00000002

ST_RESET_PHASE_TO_START | 0x00000003

ST_RESEND_LAST_MESSAGE | 0x00000004

bbErrorInfo (variable): A LICENSE BINARY BLOB (section 2.2.1.12.1.2) structure which MUST
contain a BLOB of type BB_ERROR_BLOB (0x0004) that includes information relevant to the error
code specified in dwErrorCode.

2.2.1.13 Mandatory Capability Exchange

2.2.1.13.1 Server Demand Active PDU

90 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409

The Demand Active PDU is an RDP Connection Sequence PDU sent from server to client during the
Capabilities Exchange phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent upon successful completion of the Licensing phase of
the RDP Connection Sequence.

-
N
w

0(1(2|3|4|5|6|7|8|9|0(1(2[3[|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

demandActivePduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Demand Active PDU Data (section 2.2.1.13.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

» Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

demandActivePduData (variable): The contents of the Demand Active PDU, as specified in section
2.2.1.13.1.1.

2.2.1.13.1.1 Demand Active PDU Data (TS_DEMAND_ACTIVE_PDU)

91 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

The TS_DEMAND_ACTIVE_PDU structure is a standard T.128 Demand Active PDU ([T128] section
8.4.1).

0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

shareControlHeader

sharelD

lengthSourceDescriptor

lengthCombinedCapabilities sourceDescriptor (variable)

numberCapabilities pad20ctets

capabilitySets (variable)

sessionld

shareControlHeader (6 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing information
about the packet. The type subfield of the pduType field of the Share Control Header MUST be
set to PDUTYPE_DEMANDACTIVEPDU (1), and the PDUVersion subfield MUST be set to
TS_PROTOCOL_VERSION (0x1).

sharelD (4 bytes): A 32-bit, unsigned integer. The share identifier for the packet ([T128] section
8.4.2 for more information regarding share IDs).

lengthSourceDescriptor (2 bytes): A 16-bit, unsigned integer. The size in bytes of the
sourceDescriptor field.

lengthCombinedCapabilities (2 bytes): A 16-bit, unsigned integer. The combined size in bytes of
the numberCapabilities, pad20ctets, and capabilitySets fields.

sourceDescriptor (variable): A variable-length array of bytes containing a source descriptor (see
[T128] section 8.4.1 for more information regarding source descriptors).

numberCapabilities (2 bytes): A 16-bit, unsigned integer. The number of capability sets included in
the Demand Active PDU.

pad20ctets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

capabilitySets (variable): An array of Capability Set (section 2.2.1.13.1.1.1) structures. The
number of capability sets is specified by the numberCapabilities field.

sessionId (4 bytes): A 32-bit, unsigned integer. The session identifier. This field is ignored by the
client.

2.2.1.13.1.1.1 Capability Set (TS_CAPS_SET)

The TS_CAPS_SET structure is used to describe the type and size of a capability set exchanged
between clients and servers. All capability sets conform to this basic structure (section 2.2.7).

92 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90544

0(1|2|3(4|5|/6[|7|8|9|0]|1

5|/6|7(8(9|0[1|2|3|4(5|6|7[8|9|0]|1

capabilitySetType

lengthCapability

capabilityData (variable)

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type identifier of the capability set.

Value

Meaning

CAPSTYPE_GENERAL
0x0001

General Capability Set (section 2.2.7.1.1)

CAPSTYPE_BITMAP
0x0002

Bitmap Capability Set (section 2.2.7.1.2)

CAPSTYPE_ORDER
0x0003

Order Capability Set (section 2.2.7.1.3)

CAPSTYPE_BITMAPCACHE
0x0004

Revision 1 Bitmap Cache Capability Set (section 2.2.7.1.4.1

CAPSTYPE_CONTROL
0x0005

Control Capability Set (section 2.2.7.2.2)

CAPSTYPE_ACTIVATION
0x0007

Window Activation Capability Set (section 2.2.7.2.3)

CAPSTYPE_POINTER
0x0008

Pointer Capability Set (section 2.2.7.1.5)

CAPSTYPE_SHARE
0x0009

Share Capability Set (section 2.2.7.2.4)

CAPSTYPE_COLORCACHE
0x000A

Color Table Cache Capability Set ([MS-RDPEGDI] section
2.2.1.1)

CAPSTYPE_SOUND
0x000C

Sound Capability Set (section 2.2.7.1.11)

CAPSTYPE_INPUT
0x000D

Input Capability Set (section 2.2.7.1.6)

CAPSTYPE_FONT
0x000E

Font Capability Set (section 2.2.7.2.5)

CAPSTYPE_BRUSH
0x000F

Brush Capability Set (section 2.2.7.1.7)

CAPSTYPE_GLYPHCACHE
0x0010

Glyph Cache Capability Set (section 2.2.7.1.8)

CAPSTYPE_OFFSCREENCACHE
0x0011

Offscreen Bitmap Cache Capability Set (section 2.2.7.1.9)

[MS-RDPBCGR] - v20230920

93 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

Value

Meaning

CAPSTYPE_BITMAPCACHE_HOSTSUPPORT
0x0012

Bitmap Cache Host Support Capability Set (section 2.2.7.2.1)

CAPSTYPE_BITMAPCACHE_REV2
0x0013

Revision 2 Bitmap Cache Capability Set (section 2.2.7.1.4.2)

CAPSTYPE_VIRTUALCHANNEL
0x0014

Virtual Channel Capability Set (section 2.2.7.1.10)

CAPSTYPE_DRAWNINEGRIDCACHE
0x0015

DrawNineGrid Cache Capability Set ([MS-RDPEGDI] section
2.2.1.2)

CAPSTYPE_DRAWGDIPLUS
0x0016

Draw GDI+ Cache Capability Set ([MS-RDPEGDI] section
2.2.1.3)

CAPSTYPE_RAIL
0x0017

Remote Programs Capability Set ([MS-RDPERP] section
2.2.1.1.1)

CAPSTYPE_WINDOW
0x0018

Window List Capability Set ([MS-RDPERP] section 2.2.1.1.2)

CAPSETTYPE_COMPDESK
0x0019

Desktop Composition Extension Capability
Set (section 2.2.7.2.8)

CAPSETTYPE_MULTIFRAGMENTUPDATE
0x001A

Multifragment Update Capability Set (section 2.2.7.2.6)

CAPSETTYPE_LARGE_POINTER
0x001B

Large Pointer Capability Set (section 2.2.7.2.7)

CAPSETTYPE_SURFACE_COMMANDS
0x001C

Surface Commands Capability Set (section 2.2.7.2.9)

CAPSETTYPE_BITMAP_CODECS
0x001D

Bitmap Codecs Capability Set (section 2.2.7.2.10)

CAPSSETTYPE_FRAME_ACKNOWLEDGE
0x001E

Frame Acknowledge Capability Set ([MS-RDPRFX] section
2.2.1.3)

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

capabilityData (variable): Capability set data which conforms to the structure of the type given by

the capabilitySetType field.

2.2.1.13.2 Client Confirm Active PDU

The Confirm Active PDU is an RDP Connection Sequence PDU sent from client to server during the
Capabilities Exchange phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent as a response to the Demand Active

PDU (section 2.2.1.13.1). Once the Confirm Active PDU has been sent, the client can start sending

input PDUs (section 2.2.8) to the server.

[MS-RDPBCGR] - v20230920

94 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

%5bMS-RDPERP%5d.pdf#Section_832759572d0e4c5288d11b4c998c6bec
%5bMS-RDPRFX%5d.pdf#Section_62495a4aa49546eab4595cde04c44549

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDrq (variable)

securityHeader (variable)

confirmActivePduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Confirm Active PDU Data (section 2.2.1.13.2) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

confirmActivePduData (variable): The contents of the Confirm Active PDU, as specified in section
2.2.1.13.2.1.

2.2.1.13.2.1 Confirm Active PDU Data (TS_CONFIRM_ACTIVE_PDU)

The TS_CONFIRM_ACTIVE_PDU structure is a standard T.128 Confirm Active PDU ([T128] section
8.4.1).

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

shareControlHeader

95 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543
https://go.microsoft.com/fwlink/?LinkId=90544

sharelD

originatorID

lengthSourceDescriptor lengthCombinedCapabilities

sourceDescriptor (variable)

numberCapabilities pad20ctets

capabilitySets (variable)

shareControlHeader (6 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing information
about the packet. The type subfield of the pduType field of the Share Control Header MUST be
set to PDUTYPE_CONFIRMACTIVEPDU (3), and the PDUVersion subfield MUST be set to
TS_PROTOCOL_VERSION (0x1).

sharelD (4 bytes): A 32-bit, unsigned integer. The share identifier for the packet (see [T128]
section 8.4.2 for more information regarding share IDs).

originatorID (2 bytes): A 16-bit, unsigned integer. The identifier of the packet originator. This field
MUST be set to the server channel ID (0x03EA).

lengthSourceDescriptor (2 bytes): A 16-bit, unsigned integer. The size in bytes of the
sourceDescriptor field.

lengthCombinedCapabilities (2 bytes): A 16-bit, unsigned integer. The combined size in bytes of
the numberCapabilities, pad20Octets and capabilitySets fields.

sourceDescriptor (variable): A variable-length array of bytes containing a source descriptor (see
[T128] section 8.4.1 for more information regarding source descriptors).

numberCapabilities (2 bytes): A 16-bit, unsigned integer. Number of capability sets included in the
Confirm Active PDU.

pad2O0ctets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

capabilitySets (variable): An array of Capability Set (section 2.2.1.13.1.1.1) structures. The
number of capability sets is specified by the numberCapabilities field.

2.2.1.14 Client Synchronize PDU

The Client Synchronize PDU is an RDP Connection Sequence PDU sent from client to server during the
Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent after transmitting the Confirm Active

PDU (section 2.2.1.13.2).

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

tpktHeader

96 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

x224Data mcsSDrq (variable)

securityHeader (variable)

synchronizePduData (22 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Synchronize PDU Data (section 2.2.1.14.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

synchronizePduData (22 bytes): The contents of the Synchronize PDU, as specified in section
2.2.1.14.1.

2.2.1.14.1 Synchronize PDU Data (TS_SYNCHRONIZE_PDU)

The TS_SYNCHRONIZE_PDU structure is a standard T.128 Synchronize PDU ([T128] section 8.6.1).

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

shareDataHeader (18 bytes)

97/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543
https://go.microsoft.com/fwlink/?LinkId=90544

messageType

targetUser

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Data Header MUST be set
to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_SYNCHRONIZE (31).

messageType (2 bytes): A 16-bit, unsigned integer. The message type. This field MUST be set to
SYNCMSGTYPE_SYNC (1).

targetUser (2 bytes): A 16-bit, unsigned integer. The MCS channel ID of the target user.

2.2.1.15 Client Control PDU - Cooperate

The Client Control (Cooperate) PDU is an RDP Connection Sequence PDU sent from client to server
during the Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent after transmitting the Client Synchronize
PDU (section 2.2.1.14).

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDrq (variable)

securityHeader (variable)

controlPduData (26 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,

98 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Control PDU Data (section 2.2.1.15.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

controlPduData (26 bytes): The actual contents of the Control PDU, as specified in section

2.2.1.15.1. The grantId and controlld fields of the Control PDU Data MUST both be set to zero,
while the action field MUST be set to CTRLACTION_COOPERATE (0x0004).

2.2.1.15.1 Control PDU Data (TS_CONTROL_PDU)

The TS_CONTROL_PDU structure is a standard T.128 Synchronize PDU ([T128] section 8.12).

—
N
w

0(1|/2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

shareDataHeader (18 bytes)

action

grantld controlld

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_CONTROL (20).

action (2 bytes): A 16-bit, unsigned integer. The action code.

Value Meaning

CTRLACTION_REQUEST_CONTROL | Request control
0x0001

CTRLACTION_GRANTED_CONTROL | Granted control

99 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90544

Value Meaning
0x0002

CTRLACTION_DETACH Detach
0x0003

CTRLACTION_COOPERATE Cooperate
0x0004

grantld (2 bytes): A 16-bit, unsigned integer. The grant identifier.

controlld (4 bytes): A 32-bit, unsigned integer. The control identifier.

2.2.1.16 Client Control PDU - Request Control

The Client Control (Request Control) PDU is an RDP Connection Sequence PDU sent from client to
server during the Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1
for an overview of the RDP Connection Sequence phases). It is sent after transmitting the Client
Control (Cooperate) PDU (section 2.2.1.15).

—
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

tpktHeader

x224Data mcsSDrq (variable)

securityHeader (variable)

controlPduData (26 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Control PDU Data (section 2.2.1.15.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than

100 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

controlPduData (26 bytes): The contents of the Control PDU, as specified in section 2.2.1.15.1. The
grantld and controlld fields of the Control PDU Data MUST both be set to zero, while the action
field MUST be set to CTRLACTION_REQUEST_CONTROL (0x0001).

2.2.1.17 Client Persistent Key List PDU

The Persistent Key List PDU is an RDP Connection Sequence PDU sent from client to server during the
Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). A single Persistent Key List PDU or a sequence of Persistent
Key List PDUs MUST be sent after transmitting the Client Control (Request Control)

PDU (section 2.2.1.16) if the client has bitmaps that were stored in a Persistent Bitmap

Cache (section 3.2.1.14), the server advertised support for the Bitmap Host Cache Support Capability
Set (section 2.2.7.2.1), and a Deactivation-Reactivation Sequence is not in progress (see section
1.3.1.3 for an overview of the Deactivation-Reactivation Sequence).

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Data mcsSDrq (variable)

securityHeader (variable)

persistentKeyListPduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU), which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Persistent Key List PDU Data (section 2.2.1.17.1) structure.

101 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

persistentKeyListPduData (variable): The contents of the Persistent Key List PDU, as specified in
section 2.2.1.17.1.

2.2.1.17.1 Persistent Key List PDU Data
(TS_BITMAPCACHE_PERSISTENT_LIST_PDU)

The TS_BITMAPCACHE_PERSISTENT_LIST_PDU structure contains a list of cached bitmap keys saved
from Cache Bitmap (Revision 2) Orders ([MS-RDPEGDI] section 2.2.2.2.1.2.3) that were sent in
previous sessions. By including a key in the Persistent Key List PDU Data the client indicates to the
server that it has a local copy of the bitmap associated with the key, which means that the server
does not need to retransmit the bitmap to the client (for more details about the Persistent Bitmap
Cache, see [MS-RDPEGDI] section 3.1.1.1.1). The bitmap keys can be sent in more than one
Persistent Key List PDU, with each PDU being marked using flags in the bBitMask field. The number
of bitmap keys encapsulated within the Persistent Key List PDU Data SHOULD be limited to 169.

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

shareDataHeader (18 bytes)

numEntriesCache0

numEntriesCachel numEntriesCache2

numEntriesCache3 numEntriesCache4

totalEntriesCache0 totalEntriesCachel

totalEntriesCache2 totalEntriesCache3
totalEntriesCache4 bBitMask Pad2

Pad3 entries (variable)

102 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_BITMAPCACHE_PERSISTENT_LIST (43).

numEntriesCache0 (2 bytes): A 16-bit, unsigned integer. The number of entries for Bitmap Cache 0
in the current Persistent Key List PDU.

numEntriesCachel (2 bytes): A 16-bit, unsigned integer. The number of entries for Bitmap Cache 1
in the current Persistent Key List PDU.

numEntriesCache2 (2 bytes): A 16-bit, unsigned integer. The number of entries for Bitmap Cache 2
in the current Persistent Key List PDU.

numEntriesCache3 (2 bytes): A 16-bit, unsigned integer. The number of entries for Bitmap Cache 3
in the current Persistent Key List PDU.

numEntriesCache4 (2 bytes): A 16-bit, unsigned integer. The number of entries for Bitmap Cache 4
in the current Persistent Key List PDU.

totalEntriesCacheO (2 bytes): A 16-bit, unsigned integer. The total number of entries for Bitmap
Cache 0 expected across the entire sequence of Persistent Key List PDUs. This value MUST remain
unchanged across the sequence. The sum of the totalEntriesCacheO, totalEntriesCachel,
totalEntriesCache2, totalEntriesCache3, and totalEntriesCache4 fields MUST NOT exceed
262,144,

totalEntriesCachel (2 bytes): A 16-bit, unsigned integer. The total number of entries for Bitmap
Cache 1 expected across the entire sequence of Persistent Key List PDUs. This value MUST remain
unchanged across the sequence. The sum of the totalEntriesCacheO, totalEntriesCachel,
totalEntriesCache2, totalEntriesCache3, and totalEntriesCache4 fields MUST NOT exceed
262,144,

totalEntriesCache2 (2 bytes): A 16-bit, unsigned integer. The total number of entries for Bitmap
Cache 2 expected across the entire sequence of Persistent Key List PDUs. This value MUST remain
unchanged across the sequence. The sum of the totalEntriesCacheO, totalEntriesCachel,
totalEntriesCache?2, totalEntriesCache3, and totalEntriesCache4 fields MUST NOT exceed
262,144,

totalEntriesCache3 (2 bytes): A 16-bit, unsigned integer. The total number of entries for Bitmap
Cache 3 expected across the entire sequence of Persistent Key List PDUs. This value MUST remain
unchanged across the sequence. The sum of the totalEntriesCacheO, totalEntriesCachel,
totalEntriesCache2, totalEntriesCache3, and totalEntriesCache4 fields MUST NOT exceed
262,144,

totalEntriesCache4 (2 bytes): A 16-bit, unsigned integer. The total number of entries for Bitmap
Cache 4 expected across the entire sequence of Persistent Key List PDUs. This value MUST remain
unchanged across the sequence.

bBitMask (1 byte): An 8-bit, unsigned integer. The sequencing flag.

Flag Meaning

PERSIST_PDU_FIRST | Indicates that the PDU is the first in a sequence of Persistent Key List PDUs.
0x01

PERSIST_PDU_LAST Indicates that the PDU is the last in a sequence of Persistent Key List PDUs.

103 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Flag Meaning
0x02

If neither PERSIST_FIRST_PDU (0x01) nor PERSIST_LAST_PDU (0x02) are set, then the current
PDU is an intermediate packet in a sequence of Persistent Key List PDUs.

Pad2 (1 byte): An 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.
Pad3 (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

entries (variable): An array of TS BITMAPCACHE PERSISTENT LIST ENTRY structures which
describe 64-bit bitmap keys. The keys MUST be arranged in order from low cache number to high
cache number. For instance, if a PDU contains one key for Bitmap Cache 0 and two keys for
Bitmap Cache 1, then numEntriesCacheO will be set to 1, numEntriesCachel will be set to 2,
and numEntriesCache2, numEntriesCache3, and numEntriesCache4 will all be set to zero.
The keys will be arranged in the following order: (Bitmap Cache 0, Key 1), (Bitmap Cache 1, Key
1), (Bitmap Cache 1, Key 2).

2.2.1.17.1.1 Persistent List Entry (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY)

The TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY structure contains a 64-bit bitmap key to be sent
back to the server.

—
N
w

0(1|/2|3(4(5|6|(7|8|9|0(1|2|3(4|5|6(|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

Keyl

Key?2

Key1l (4 bytes): Low 32 bits of the 64-bit persistent bitmap cache key.

Key2 (4 bytes): A 32-bit, unsigned integer. High 32 bits of the 64-bit persistent bitmap cache key.

2.2.1.18 Client Font List PDU

The Font List PDU is an RDP Connection Sequence PDU sent from client to server during the
Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent after transmitting the Persistent Key List

PDUs (section 2.2.1.17) or, if the Persistent Key List PDUs were not sent, it is sent after transmitting
the Client Control (Request Control) PDU (section 2.2.1.16).

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

tpktHeader

x224Data mcsSDrq (variable)

securityHeader (variable)

104 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

fontListPduData (26 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request PDU contains a Security
Header and a Font List PDU Data (section 2.2.1.18.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

fontListPduData (26 bytes): The contents of the Font List PDU, as specified in section 2.2.1.18.1.

2.2.1.18.1 Font List PDU Data (TS_FONT_LIST_PDU)

The TS_FONT_LIST_PDU structure contains the contents of the Font List PDU, which is a Share Data
Header (section 2.2.8.1.1.1.2) and four fields.

—
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

shareDataHeader (18 bytes)

numberFonts

totalNumFonts listFlags

105/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

entrySize

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_FONTLIST (39).

numberFonts (2 bytes): A 16-bit, unsigned integer. The number of fonts. This field SHOULD be set
to zero.

totalNumFonts (2 bytes): A 16-bit, unsigned integer. The total number of fonts. This field SHOULD
be set to zero.

listFlags (2 bytes): A 16-bit, unsigned integer. The sequence flags. This field SHOULD be set to
0x0003, which is the logical OR'd value of FONTLIST_FIRST (0x0001) and FONTLIST_LAST
(0x0002).

entrySize (2 bytes): A 16-bit, unsigned integer. The entry size. This field SHOULD be set to 0x0032
(50 bytes).

2.2.1.19 Server Synchronize PDU

The Server Synchronize PDU is an RDP Connection Sequence PDU sent from server to client during the
Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent after receiving the Confirm Active

PDU (section 2.2.1.13.2).

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]|9|0]|1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

synchronizePduData (22 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as

106 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588

specified in [T125] section 11.33 (the ASN.1 structure definitions are given in section 7, parts 7
and 10 of [T125]). The userData field of the MCS Send Data Indication contains a Security
Header and a Synchronize PDU Data (section 2.2.1.14.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

synchronizePduData (22 bytes): The contents of the Synchronize PDU as described in section
2.2.1.14.1.

2.2.1.20 Server Control PDU - Cooperate

The Server Control (Cooperate) PDU is an RDP Connection Sequence PDU sent from server to client
during the Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an
overview of the RDP Connection Sequence phases). It is sent after transmitting the Server
Synchronize PDU (section 2.2.1.19).

-
N
w

0(1|/2|3(4|(5|6|7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

controlPduData (26 bytes)

107 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90543

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Control PDU Data (section 2.2.1.15.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than

ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is

ENCRYPTION_LEVEL_LOW (1).

Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

controlPduData (26 bytes): The contents of the Control PDU as described in section 2.2.1.15.1. The
grantld and controlld fields of the Control PDU Data MUST both be set to zero, while the action
field MUST be set to CTRLACTION_COOPERATE (0x0004).

2.2.1.21 Server Control PDU - Granted Control

The Server Control (Granted Control) PDU is an RDP Connection Sequence PDU sent from server to
client during the Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1
for an overview of the RDP Connection Sequence phases). It is sent after receiving the Client Control
(Request Control) PDU (section 2.2.1.16).

—
N
w

3/4|/5(6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

controlPduData (26 bytes)

108 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Control PDU Data (section 2.2.1.15.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

controlPduData (26 bytes): The contents of the Control PDU as described in section 2.2.1.15.1. The
action field MUST be set to CTRLACTION_GRANTED_CONTROL (0x0002). The grantId field MUST
be set to the User Channel ID (sections 2.2.1.6 and 2.2.1.7), while the controlld field MUST be
set to the server channel ID (Ox03EA).

2.2.1.22 Server Font Map PDU

The Font Map PDU is an RDP Connection Sequence PDU sent from server to client during the
Connection Finalization phase of the RDP Connection Sequence (see section 1.3.1.1 for an overview of
the RDP Connection Sequence phases). It is sent after receiving the Font List PDU (section 2.2.1.18).
The Font Map PDU is the last PDU in the connection sequence.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

109 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

securityHeader (variable)

fontMapPduData (26 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Font Map PDU Data (section 2.2.1.22.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

fontMapPduData (26 bytes): The contents of the Font Map PDU, as specified in section 2.2.1.22.1.

2.2,1.22,1 Font Map PDU Data (TS_FONT_MAP_PDU)

The TS_FONT_MAP_PDU structure contains the contents of the Font Map PDU, which is a Share Data
Header (section 2.2.8.1.1.1.2) and four fields.

—
N
w

0(1|2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

shareDataHeader (18 bytes)

110/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

numberEntries

totalNumEntries

mapFlags

entrySize

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2). The type subfield of the
pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be set to

PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to

PDUTYPE2_FONTMAP (40).

numberEntries (2 bytes): A 16-bit, unsigned integer. The number of fonts. This field SHOULD be

set to zero.

totalNumEntries (2 bytes): A 16-bit, unsigned integer. The total number of fonts. This field

SHOULD be set to zero.

mapFlags (2 bytes): A 16-bit, unsigned integer. The sequence flags. This field SHOULD be set to
0x0003, which is the logical OR'ed value of FONTMAP_FIRST (0x0001) and FONTMAP_LAST

(0x0002).

entrySize (2 bytes): A 16-bit, unsigned integer. The entry size. This field SHOULD be set to 0x0004

(4 bytes).
2.2.2 Disconnection Sequences

2.2.2.1 Client Shutdown Request PDU

The Shutdown Request PDU is sent by the client as part of the User-Initiated on Client Disconnection

Sequence (see section 1.3.1.4.1 for an overview of the User-Initiated on Client Disconnection

Sequence).

-
N

0({1({2|3|4|5|6|7|8|9|0(1(2(3|4|5|6|7|8|9|0]|1

tpktHeader

x224Data

mcsSDrq (variable)

securityHeader (variable)

shutdownRequestPduData (18 bytes)

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

111 / 444

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Shutdown Request PDU Data (section 2.2.2.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

shutdownRequestPduData (18 bytes): The contents of the Shutdown Request PDU, as specified in
section 2.2.2.1.1.

2.2.2.1.1 Shutdown Request PDU Data (TS_SHUTDOWN_REQ_PDU)

The TS_SHUTDOWN_REQ_PDU structure contains the contents of the Shutdown Request PDU (section
2.2.2.1), which is a Share Data Header (section 2.2.8.1.1.1.2) with no PDU body.

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

shareDataHeader (18 bytes)

shareDataHeader (18 bytes): Share Data Header containing information about the packet. The
type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_SHUTDOWN_REQUEST (36).

112 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

2.2.2.2 Server Shutdown Request Denied PDU

The Shutdown Request Denied PDU is sent by the server as part of the User-Initiated on Client
Disconnection Sequence (see section 1.3.1.4.1 for an overview of the User-Initiated on Client
Disconnection Sequence).

=
N
w

0[(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

shutdownRequestDeniedPduData (18 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Shutdown Request Denied PDU Data (section 2.2.2.2.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

113/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

shutdownRequestDeniedPduData (18 bytes): The contents of the Shutdown Request Denied
PDU, as specified in section 2.2.2.2.1.

2.2.2.2.1 Shutdown Request Denied PDU Data (TS_SHUTDOWN_DENIED_PDU)

The TS_SHUTDOWN_DENIED_PDU structure contains the contents of the Shutdown Request Denied
PDU, which is a Share Data Header (section 2.2.8.1.1.1.2) with no PDU body.

-
N
w

0(1|/2|3(4|(5|6|(7|8|9|0(1|2|3(4|5|6(|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

shareDataHeader (18 bytes)

shareDataHeader (18 bytes): Share Data Header containing information about the packet. The
type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_SHUTDOWN_DENIED (37).

2.2.2.3 MCS Disconnect Provider Ultimatum PDU

The MCS Disconnect Provider Ultimatum PDU is an MCS PDU sent as part of the Disconnection
Sequences, described in section 1.3.1.4.

0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Data mcsDPum

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsDPum (8 bytes): PER-encoded MCS Disconnect Provider Ultimatum PDU, as specified in [T125
section 11.15 (the ASN.1 structure definition is given in [T125] section 7, part 4).

2.2.3 Deactivation-Reactivation Sequence

2.2.3.1 Server Deactivate All PDU

The Deactivate All PDU is sent from server to client to indicate that the connection will be dropped or
that a capability re-exchange using a Deactivation-Reactivation Sequence will occur (see section
1.3.1.3 for an overview of the Deactivation-Reactivation Sequence).

114 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

deactivateAllPduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Deactivate All PDU Data (section 2.2.3.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

deactivateAllPduData (variable): The contents of the Deactivate All PDU, as specified in section
2.2.3.1.1.

2.2.3.1.1 Deactivate All PDU Data (TS_DEACTIVATE_ALL_PDU)

The TS_DEACTIVATE_ALL_PDU structure is a standard T.128 Deactivate All PDU ([T128] section
8.4.1).

115/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543
https://go.microsoft.com/fwlink/?LinkId=90544

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

shareControlHeader

sharelD

lengthSourceDescriptor

sourceDescriptor (variable)

shareControlHeader (6 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing information
about the packet. The type subfield of the pduType field of the Share Control Header MUST be
set to PDUTYPE_DEACTIVATEALLPDU (6), and the PDUVersion subfield MUST be set to
TS_PROTOCOL_VERSION (0x1).

sharelD (4 bytes): A 32-bit, unsigned integer. The share identifier for the packet (see [T128]
section 8.4.2 for more information regarding share IDs).

lengthSourceDescriptor (2 bytes): A 16-bit, unsigned integer. The size in bytes of the
sourceDescriptor field.

sourceDescriptor (variable): Variable number of bytes. The source descriptor. This field SHOULD
be set to 0x00.

2.2.4 Auto-Reconnect Sequence

2.2.4.1 Server Auto-Reconnect Status PDU

The Auto-Reconnect Status PDU is sent by the server to the client to indicate that automatic
reconnection using the Client Auto-Reconnect Packet (section 2.2.4.3), sent as part of the extended
information of the Client Info PDU (section 2.2.1.11.1), has failed.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

arcStatusPduData (22 bytes)

116 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and an Auto-Reconnect Status PDU Data (section 2.2.4.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

arcStatusPduData (22 bytes): The contents of the Auto-Reconnect Status PDU, as specified in
section 2.2.4.1.1.

2.2.4.1.1 Auto-Reconnect Status PDU Data (TS_AUTORECONNECT_STATUS_PDU)

The TS_AUTORECONNECT_STATUS_PDU structure contains the contents of the Auto-Reconnect Status
PDU, which is a Share Data Header (section 2.2.8.1.1.1.2) with a status field.

-
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

shareDataHeader (18 bytes)

arcStatus

117 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

shareDataHeader (18 bytes): Share Data Header containing information about the packet. The
type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_ARC_STATUS_PDU (50), and the pduSource field MUST be set to zero.

arcStatus (4 bytes): A 32-bit, unsigned integer. This field MUST be set to zero.

2.2.4.2 Server Auto-Reconnect Packet (ARC_SC_PRIVATE_PACKET)

The ARC_SC_PRIVATE_PACKET structure contains server-supplied information used to seamlessly re-
establish a connection to a server after network interruption. It is sent as part of the Save Session
Info PDU logon information (section 2.2.10.1.1.4).

=
N
w

0[(1(2|3|4|5|6|7|8|9|(0(1|(2[3[4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

cbLen

Version

LogonId

ArcRandomBits (16 bytes)

cbLen (4 bytes): A 32-bit, unsigned integer. The length in bytes of the Server Auto-Reconnect
Packet. This field MUST be set to 0x0000001C (28 bytes).

Version (4 bytes): A 32-bit, unsigned integer. The value representing the auto-reconnect version.

Value Meaning

AUTO_RECONNECT_VERSION_1 | Version 1 of auto-reconnect.
0x00000001

Logonld (4 bytes): A 32-bit, unsigned integer. The session identifier for reconnection.

ArcRandomBits (16 bytes): Byte buffer containing a 16-byte, random number generated as a key
for secure reconnection (section 5.5).

2.2.4.3 Client Auto-Reconnect Packet (ARC_CS_PRIVATE_PACKET)

The ARC_CS_PRIVATE_PACKET structure contains the client response cookie used to seamlessly re-
establish a connection to a server after network interruption. It is sent as part of the extended
information of the Client Info PDU (section 2.2.1.11.1.1.1).

cbLen

118 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Version

LogonId

SecurityVerifier (16 bytes)

cbLen (4 bytes): A 32-bit, unsigned integer. The length in bytes of the Client Auto-Reconnect
Packet. This field MUST be set to 0x0000001C (28 bytes).

Version (4 bytes): A 32-bit, unsigned integer. The value representing the auto-reconnect version.

Value Meaning

AUTO_RECONNECT_VERSION_1 | Version 1 of auto-reconnect.
0x00000001

Logonld (4 bytes): A 32-bit, unsigned integer. The session identifier for reconnection.

SecurityVerifier (16 bytes): Byte buffer containing a 16-byte verifier value derived using
cryptographic methods (as specified in section 5.5) from the ArcRandomBits field of the Server
Auto-Reconnect Packet (section 2.2.4.2).

2.2.5 Server Error Reporting and Status Updates

2.2.5.1 Server Set Error Info PDU

The Set Error Info PDU is sent by the server when there is a connection or disconnection failure. This
PDU is only sent to clients which have indicated that they are capable of handling error reporting
using the RNS_UD_CS_SUPPORT_ERRINFO_PDU flag in the Client Core Data (section 2.2.1.3.2).

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]|1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

errorInfoPduData (22 bytes)

119 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Set Error Info PDU Data (section 2.2.5.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

errorInfoPduData (22 bytes): The contents of the Set Error Info PDU, as specified in section
2.2.5.1.1.

2.2.5.1.1 Set Error Info PDU Data (TS_SET_ERROR_INFO_PDU)

The TS_SET_ERROR_INFO_PDU structure contains the contents of the Set Error Info PDU
(section 2.2.5.1), which is a Share Data Header (section 2.2.8.1.1.1.2) with an error value field.

-
N
w

0(1|/2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

shareDataHeader (18 bytes)

errorInfo

shareDataHeader (18 bytes): Share Data Header containing information about the packet. The
type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be

120 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_SET_ERROR_INFO_PDU (47), and the pduSource field MUST be set to zero.

errorInfo (4 bytes): A 32-bit, unsigned integer. Error code.

Protocol-independent codes:

Value

Meaning

ERRINFO_NONE
0x00000000

No error has occurred. This code SHOULD be
ignored.

ERRINFO_RPC_INITIATED_DISCONNECT
0x00000001

The disconnection was initiated by an
administrative tool on the server in another
session.

ERRINFO_RPC_INITIATED_LOGOFF
0x00000002

The disconnection was due to a forced logoff
initiated by an administrative tool on the server in
another session.

ERRINFO_IDLE_TIMEOUT
0x00000003

The idle session limit timer on the server has
elapsed.

ERRINFO_LOGON_TIMEOUT
0x00000004

The active session limit timer on the server has
elapsed.

ERRINFO_DISCONNECTED_BY_OTHERCONNECTION
0x00000005

Another user connected to the server, forcing the
disconnection of the current connection.

ERRINFO_OUT_OF_MEMORY
0x00000006

The server ran out of available memory resources.

ERRINFO_SERVER_DENIED_CONNECTION
0x00000007

The server denied the connection.

ERRINFO_SERVER_INSUFFICIENT_PRIVILEGES
0x00000009

The user cannot connect to the server due to
insufficient access privileges.

ERRINFO_SERVER_FRESH_CREDENTIALS_REQUIRED
0x0000000A

The server does not accept saved user credentials
and requires that the user enter their credentials
for each connection.

ERRINFO_RPC_INITIATED_DISCONNECT_BYUSER
0x0000000B

The disconnection was initiated by an
administrative tool on the server running in the
user’s session.

ERRINFO_LOGOFF_BY_USER
0x0000000C

The disconnection was initiated by the user
logging off his or her session on the server.

ERRINFO_CLOSE_STACK_ON_DRIVER_NOT_READY
0x0000000F

The display driver in the remote session did not
report any status within the time allotted for
startup.

ERRINFO_SERVER_DWM_CRASH
0x00000010

The DWM process running in the remote session
terminated unexpectedly.

ERRINFO_CLOSE_STACK_ON_DRIVER_FAILURE
0x00000011

The display driver in the remote session was
unable to complete all the tasks required for
startup.

ERRINFO_CLOSE_STACK_ON_DRIVER_IFACE_FAILURE

The display driver in the remote session started
up successfully, but due to internal failures was

[MS-RDPBCGR] - v20230920

121 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

Value

Meaning

0x00000012

not usable by the remoting stack.

ERRINFO_SERVER_WINLOGON_CRASH
0x00000017

The Winlogon process running in the remote
session terminated unexpectedly.

ERRINFO_SERVER_CSRSS_CRASH
0x00000018

The CSRSS process running in the remote session
terminated unexpectedly.

ERRINFO_SERVER_SHUTDOWN
0x00000019

The remote server is busy shutting down.

ERRINFO_SERVER_REBOOT
0x0000001A

The remote server is busy rebooting.

Protocol-independent licensing codes:

Value

Meaning

ERRINFO_LICENSE_INTERNAL
0x00000100

An internal error has occurred in the Terminal
Services licensing component.

ERRINFO_LICENSE_NO_LICENSE_SERVER
0x00000101

A Remote Desktop License Server ([MS-RDPELE
section 1.1) could not be found to provide a
license.

ERRINFO_LICENSE_NO_LICENSE
0x00000102

There are no Client Access Licenses ([MS-RDPELE]
section 1.1) available for the target remote
computer.

ERRINFO_LICENSE_BAD_CLIENT_MSG
0x00000103

The remote computer received an invalid licensing
message from the client.

ERRINFO_LICENSE_HWID_DOESNT_MATCH_LICENSE
0x00000104

The Client Access License ([MS-RDPELE] section
1.1) stored by the client has been modified.

ERRINFO_LICENSE_BAD_CLIENT_LICENSE
0x00000105

The Client Access License ([MS-RDPELE] section
1.1) stored by the client is in an invalid format

ERRINFO_LICENSE_CANT_FINISH_PROTOCOL
0x00000106

Network problems have caused the licensing
protocol ([MS-RDPELE] section 1.3.3) to be
terminated.

ERRINFO_LICENSE_CLIENT_ENDED_PROTOCOL
0x00000107

The client prematurely ended the licensing protocol
(IMS-RDPELE] section 1.3.3).

ERRINFO_LICENSE_BAD_CLIENT_ENCRYPTION
0x00000108

A licensing message ([MS-RDPELE] sections 2.2
and 5.1) was incorrectly encrypted.

ERRINFO_LICENSE_CANT_UPGRADE_LICENSE
0x00000109

The Client Access License ([MS-RDPELE] section
1.1) stored by the client could not be upgraded or
renewed.

ERRINFO_LICENSE_NO_REMOTE_CONNECTIONS
0x0000010A

The remote computer is not licensed to accept
remote connections.

Protocol-independent codes generated by Connection Broker:

[MS-RDPBCGR] - v20230920

122 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

%5bMS-RDPELE%5d.pdf#Section_3d3f160a3ab34dfbba4e47c27cd79409

Value

Meaning

ERRINFO_CB_DESTINATION_NOT_FOUND
0x00000400

The target endpoint could not be found.

ERRINFO_CB_LOADING_DESTINATION
0x00000402

The target endpoint to which the client is being
redirected is disconnecting from the Connection
Broker.

ERRINFO_CB_REDIRECTING_TO_DESTINATION
0x00000404

An error occurred while the connection was
being redirected to the target endpoint.

ERRINFO_CB_SESSION_ONLINE_VM_WAKE
0x00000405

An error occurred while the target endpoint (a
virtual machine) was being awakened.

ERRINFO_CB_SESSION_ONLINE_VM_BOOT
0x00000406

An error occurred while the target endpoint (a
virtual machine) was being started.

ERRINFO_CB_SESSION_ONLINE_VM_NO_DNS
0x00000407

The IP address of the target endpoint (a virtual
machine) cannot be determined.

ERRINFO_CB_DESTINATION_POOL_NOT_FREE
0x00000408

There are no available endpoints in the pool
managed by the Connection Broker.

ERRINFO_CB_CONNECTION_CANCELLED
0x00000409

Processing of the connection has been canceled.

0x00000410

ERRINFO_CB_CONNECTION_ERROR_INVALID_SETTINGS | The settings contained in the routingToken

field of the X.224 Connection Request PDU
(section 2.2.1.1) cannot be validated.

0x00000411

ERRINFO_CB_SESSION_ONLINE_VM_BOOT_TIMEOUT

A time-out occurred while the target endpoint
(a virtual machine) was being started.

ERRINFO_CB_SESSION_ONLINE_VM_SESSMON_FAILED A session monitoring error occurred while the

target endpoint (a virtual machine) was being

0x00000412
started.
RDP specific codes:
Value Meaning

ERRINFO_UNKNOWNPDUTYPE2
0x000010C9

Unknown pduType2 field in a received Share Data
Header (section 2.2.8.1.1.1.2).

ERRINFO_UNKNOWNPDUTYPE
0x000010CA

Unknown pduType field in a received Share Control
Header (section 2.2.8.1.1.1.1).

ERRINFO_DATAPDUSEQUENCE
0x000010CB

An out-of-sequence Slow-Path Data PDU (section
2.2.8.1.1.1.1) has been received.

ERRINFO_CONTROLPDUSEQUENCE
0x000010CD

An out-of-sequence Demand Active PDU (section
2.2.1.13.1), Confirm Active PDU (section
2.2.1.13.2), Deactivate All PDU (section 2.2.3.1) or
Enhanced Security Server Redirection PDU (section
2.2.13.3.1) has been received.

ERRINFO_INVALIDCONTROLPDUACTION
0x000010CE

A Control PDU (sections 2.2.1.15 and 2.2.1.16) has
been received with an invalid action field.

[MS-RDPBCGR] - v20230920

123 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

Value

Meaning

ERRINFO_INVALIDINPUTPDUTYPE
0x000010CF

One of two possible errors:

= A Slow-Path Input Event (section
2.2.8.1.1.3.1.1) has been received with an
invalid messageType field.

= A Fast-Path Input Event (section 2.2.8.1.2.2)
has been received with an invalid eventCode
field.

ERRINFO_INVALIDINPUTPDUMOUSE
0x000010D0

One of two possible errors:

= A Slow-Path Mouse Event (section
2.2.8.1.1.3.1.1.3) or Extended Mouse Event
(section 2.2.8.1.1.3.1.1.4) has been received
with an invalid pointerFlags field.

= A Fast-Path Mouse Event (section 2.2.8.1.2.2.3)
or Fast-Path Extended Mouse Event (section
2.2.8.1.2.2.4) has been received with an invalid
pointerFlags field.

ERRINFO_INVALIDREFRESHRECTPDU
0x000010D1

An invalid Refresh Rect PDU (section 2.2.11.2) has
been received.

ERRINFO_CREATEUSERDATAFAILED
0x000010D2

The server failed to construct the GCC Conference
Create Response user data (section 2.2.1.4).

ERRINFO_CONNECTFAILED
0x000010D3

Processing during the Channel Connection phase of
the RDP Connection Sequence (see section 1.3.1.1
for an overview of the RDP Connection Sequence
phases) has failed.

ERRINFO_CONFIRMACTIVEWRONGSHAREID
0x000010D4

A Confirm Active PDU (section 2.2.1.13.2) was
received from the client with an invalid shareID
field.

ERRINFO_CONFIRMACTIVEWRONGORIGINATOR
0x000010D5

A Confirm Active PDU (section 2.2.1.13.2) was
received from the client with an invalid
originatorID field.

ERRINFO_PERSISTENTKEYPDUBADLENGTH
0x000010DA

There is not enough data to process a Persistent
Key List PDU (section 2.2.1.17).

ERRINFO_PERSISTENTKEYPDUILLEGALFIRST
0x000010DB

A Persistent Key List PDU (section 2.2.1.17) marked
as PERSIST_PDU_FIRST (0x01) was received after
the reception of a prior Persistent Key List PDU also
marked as PERSIST_PDU_FIRST.

ERRINFO_PERSISTENTKEYPDUTOOMANYTOTALKEYS
0x000010DC

A Persistent Key List PDU (section 2.2.1.17) was
received which specified a total number of bitmap
cache entries larger than 262144.

ERRINFO_PERSISTENTKEYPDUTOOMANYCACHEKEYS
0x000010DD

A Persistent Key List PDU (section 2.2.1.17) was
received which specified an invalid total number of
keys for a bitmap cache (the number of entries that
can be stored within each bitmap cache is specified
in the Revision 1 or 2 Bitmap Cache Capability Set
(section 2.2.7.1.4) that is sent from client to
server).

124 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Value

Meaning

ERRINFO_INPUTPDUBADLENGTH
0x000010DE

There is not enough data to process Input Event
PDU Data (section 2.2.8.1.1.3.1) or a Fast-Path
Input Event PDU (section 2.2.8.1.2).

ERRINFO_BITMAPCACHEERRORPDUBADLENGTH
0x000010DF

There is not enough data to process the
shareDataHeader, NumlInfoBlocks, Pad1, and
Pad2 fields of the Bitmap Cache Error PDU Data
(IMS-RDPEGDI] section 2.2.2.3.1.1).

ERRINFO_SECURITYDATATOOSHORT
0x000010EO0

One of two possible errors:

= The dataSignature field of the Fast-Path Input
Event PDU (section 2.2.8.1.2) does not contain
enough data.

= The fipsInformation and dataSignature
fields of the Fast-Path Input Event PDU (section
2.2.8.1.2) do not contain enough data.

ERRINFO_VCHANNELDATATOOSHORT
0x000010E1

One of two possible errors:

= There is not enough data in the Client Network
Data (section 2.2.1.3.4) to read the virtual
channel configuration data.

= There is not enough data to read a complete
Channel PDU Header (section 2.2.6.1.1).

ERRINFO_SHAREDATATOOSHORT
0x000010E2

One of four possible errors:

= There is not enough data to process Control
PDU Data (section 2.2.1.15.1).

= There is not enough data to read a complete
Share Control Header (section 2.2.8.1.1.1.1).

= There is not enough data to read a complete
Share Data Header (section 2.2.8.1.1.1.2) of a
Slow-Path Data PDU (section 2.2.8.1.1.1.1).

= There is not enough data to process Font List
PDU Data (section 2.2.1.18.1).

ERRINFO_BADSUPRESSOUTPUTPDU
0x000010E3

One of two possible errors:

= There is not enough data to process Suppress
Output PDU Data (section 2.2.11.3.1).

= The allowDisplayUpdates field of the
Suppress Output PDU Data (section 2.2.11.3.1)
is invalid.

ERRINFO_CONFIRMACTIVEPDUTOOSHORT
0x000010E5

One of two possible errors:

= There is not enough data to read the
shareControlHeader, sharelD,
originatorID, lengthSourceDescriptor, and
lengthCombinedCapabilities fields of the
Confirm Active PDU Data (section 2.2.1.13.2.1).

= There is not enough data to read the

[MS-RDPBCGR] - v20230920

125/ 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

Value

Meaning

sourceDescriptor, numberCapabilities,
pad2O0ctets, and capabilitySets fields of the
Confirm Active PDU Data (section 2.2.1.13.2.1).

ERRINFO_CAPABILITYSETTOOSMALL
0x000010E7

There is not enough data to read the
capabilitySetType and the lengthCapability
fields in a received Capability Set (section
2.2.1.13.1.1.1).

ERRINFO_CAPABILITYSETTOOLARGE
0x000010E8

A Capability Set (section 2.2.1.13.1.1.1) has been
received with a lengthCapability field that contains
a value greater than the total length of the data
received.

ERRINFO_NOCURSORCACHE
0x000010E9

One of two possible errors:

L] Both the colorPointerCacheSize and
pointerCachesSize fields in the Pointer
Capability Set (section 2.2.7.1.5) are set to
zero.

= The pointerCacheSize field in the Pointer
Capability Set (section 2.2.7.1.5) is not
present, and the colorPointerCacheSize field
is set to zero.

ERRINFO_BADCAPABILITIES
0x000010EA

The capabilities received from the client in the
Confirm Active PDU (section 2.2.1.13.2) were not
accepted by the server.

ERRINFO_VIRTUALCHANNELDECOMPRESSIONERR
0x000010EC

An error occurred while using the bulk compressor
(section 3.1.8 and [MS-RDPEGDI] section 3.1.8) to
decompress a Virtual Channel PDU (section 2.2.6.1)

ERRINFO_INVALIDVCCOMPRESSIONTYPE
0x000010ED

An invalid bulk compression package was specified
in the flags field of the Channel PDU Header
(section 2.2.6.1.1).

ERRINFO_INVALIDCHANNELID
0x000010EF

An invalid MCS channel ID was specified in the
mcsPdu field of the Virtual Channel PDU (section
2.2.6.1).

ERRINFO_VCHANNELSTOOMANY
0x000010F0

The client requested more than the maximum
allowed 31 static virtual channels in the Client
Network Data (section 2.2.1.3.4).

ERRINFO_REMOTEAPPSNOTENABLED
0x000010F3

The INFO_RAIL flag (0x00008000) MUST be set in
the flags field of the Info Packet (section
2.2.1.11.1.1) as the session on the remote server
can only host remote applications.

ERRINFO_CACHECAPNOTSET
0x000010F4

The client sent a Persistent Key List PDU (section
2.2.1.17) without including the prerequisite Revision
2 Bitmap Cache Capability Set (section 2.2.7.1.4.2)
in the Confirm Active PDU (section 2.2.1.13.2).

ERRINFO_BITMAPCACHEERRORPDUBADLENGTH2
0x000010F5

The NumInfoBlocks field in the Bitmap Cache
Error PDU Data is inconsistent with the amount of
data in the Info field ([MS-RDPEGDI] section
2.2.2.3.1.1).

ERRINFO_OFFSCRCACHEERRORPDUBADLENGTH

There is not enough data to process an Offscreen

126 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Value

Meaning

0x000010F6

Bitmap Cache Error PDU ([MS-RDPEGDI] section
2.2.2.3.2).

ERRINFO_DNGCACHEERRORPDUBADLENGTH

0x000010F7

There is not enough data to process a DrawNineGrid
Cache Error PDU ([MS-RDPEGDI] section 2.2.2.3.3).

ERRINFO_GDIPLUSPDUBADLENGTH
0x000010F8

There is not enough data to process a GDI+ Error
PDU ([MS-RDPEGDI] section 2.2.2.3.4).

ERRINFO_SECURITYDATATOOSHORT2
0x00001111

There is not enough data to read a Basic Security
Header (section 2.2.8.1.1.2.1).

ERRINFO_SECURITYDATATOOSHORT3
0x00001112

There is not enough data to read a Non-FIPS
Security Header (section 2.2.8.1.1.2.2) or FIPS
Security Header (section 2.2.8.1.1.2.3).

ERRINFO_SECURITYDATATOOSHORT4
0x00001113

There is not enough data to read the
basicSecurityHeader and length fields of the
Security Exchange PDU Data (section 2.2.1.10.1).

ERRINFO_SECURITYDATATOOSHORTS
0x00001114

There is not enough data to read the CodePage,
flags, cbDomain, cbUserName, cbPassword,
cbAlternateShell, cbWorkingDir, Domain,
UserName, Password, AlternateShell, and
WorkingDir fields in the Info Packet (section
2.2.1.11.1.1).

ERRINFO_SECURITYDATATOOSHORT6
0x00001115

There is not enough data to read the CodePage,
flags, cbDomain, cbUserName, cbPassword,
cbAlternateShell, and cbWorkingDir fields in the
Info Packet (section 2.2.1.11.1.1).

ERRINFO_SECURITYDATATOOSHORT?
0x00001116

There is not enough data to read the
clientAddressFamily and cbClientAddress fields
in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORTS
0x00001117

There is not enough data to read the clientAddress
field in the Extended Info Packet (section
2.2.1.11.1.1.1),

ERRINFO_SECURITYDATATOOSHORT9
0x00001118

There is not enough data to read the cbClientDir
field in the Extended Info Packet (section
2.2.1.11.1.1.1),

ERRINFO_SECURITYDATATOOSHORT10
0x00001119

There is not enough data to read the clientDir field
in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT11
0x0000111A

There is not enough data to read the
clientTimeZone field in the Extended Info Packet
(section 2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT12
0x0000111B

There is not enough data to read the
clientSessionld field in the Extended Info Packet
(section 2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT13
0x0000111C

There is not enough data to read the
performanceFlags field in the Extended Info
Packet (section 2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT14

There is not enough data to read the

[MS-RDPBCGR] - v20230920

127 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

Value

Meaning

0x0000111D

cbAutoReconnectCookie field in the Extended
Info Packet (section 2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT15
0x0000111E

There is not enough data to read the
autoReconnectCookie field in the Extended Info
Packet (section 2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT16
0x0000111F

The cbAutoReconnectCookie field in the Extended
Info Packet (section 2.2.1.11.1.1.1) contains a value
which is larger than the maximum allowed length of
128 bytes.

ERRINFO_SECURITYDATATOOSHORT17
0x00001120

There is not enough data to read the
clientAddressFamily and cbClientAddress fields
in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT18
0x00001121

There is not enough data to read the clientAddress
field in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT19
0x00001122

There is not enough data to read the cbClientDir
field in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT20
0x00001123

There is not enough data to read the clientDir field
in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT21
0x00001124

There is not enough data to read the
clientTimeZone field in the Extended Info Packet
(section 2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT22
0x00001125

There is not enough data to read the
clientSessionld field in the Extended Info Packet
(section 2.2.1.11.1.1.1).

ERRINFO_SECURITYDATATOOSHORT23
0x00001126

There is not enough data to read the Client Info PDU
Data (section 2.2.1.11.1).

ERRINFO_BADMONITORDATA
0x00001129

The number of TS_MONITOR_DEF (section
2.2.1.3.6.1) structures present in the
monitorDefArray field of the Client Monitor Data
(section 2.2.1.3.6) is less than the value specified in
monitorCount field.

0x0000112A

ERRINFO_VCDECOMPRESSEDREASSEMBLEFAILED

The server-side decompression buffer is invalid, or
the size of the decompressed VC data exceeds the
chunking size specified in the Virtual Channel
Capability Set (section 2.2.7.1.10).

ERRINFO_VCDATATOOLONG
0x0000112B

The size of a received Virtual Channel PDU (section
2.2.6.1) exceeds the chunking size specified in the
Virtual Channel Capability Set (section 2.2.7.1.10).

ERRINFO_BAD_FRAME_ACK_DATA
0x0000112C

There is not enough data to read a
TS_FRAME_ACKNOWLEDGE_PDU ([MS-RDPRFX
section 2.2.3.1).

ERRINFO_GRAPHICSMODENOTSUPPORTED
0x0000112D

The graphics mode requested by the client is not
supported by the server.

[MS-RDPBCGR] - v20230920

128 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

%5bMS-RDPRFX%5d.pdf#Section_62495a4aa49546eab4595cde04c44549

Value

Meaning

ERRINFO_GRAPHICSSUBSYSTEMRESETFAILED
0x0000112E

The server-side graphics subsystem failed to reset.

ERRINFO_GRAPHICSSUBSYSTEMFAILED
0x0000112F

The server-side graphics subsystem is in an error
state and unable to continue graphics encoding.

ERRINFO_TIMEZONEKEYNAMELENGTHTOOSHORT
0x00001130

There is not enough data to read the
cbDynamicDSTTimeZoneKeyName field in the
Extended Info Packet (section 2.2.1.11.1.1.1).

ERRINFO_TIMEZONEKEYNAMELENGTHTOOLONG
0x00001131

The length reported in the
cbDynamicDSTTimeZoneKeyName field of the
Extended Info Packet (section 2.2.1.11.1.1.1) is too
long.

ERRINFO_DYNAMICDSTDISABLEDFIELDMISSING
0x00001132

The dynamicDaylightTimeDisabled field is not
present in the Extended Info Packet (section
2.2.1.11.1.1.1).

ERRINFO_VCDECODINGERROR
0x00001133

An error occurred when processing dynamic virtual
channel data ([MS-RDPEDYC] section 3.3.5).

ERRINFO_VIRTUALDESKTOPTOOLARGE
0x00001134

The width or height of the virtual desktop defined by
the monitor layout in the Client Monitor Data
(section 2.2.1.3.6) is larger than the maximum
allowed value of 32,766.

ERRINFO_MONITORGEOMETRYVALIDATIONFAILED
0x00001135

The monitor geometry defined by the Client Monitor
Data (section 2.2.1.3.6) is invalid.

ERRINFO_INVALIDMONITORCOUNT
0x00001136

The monitorCount field in the Client Monitor Data
(section 2.2.1.3.6) is too large.

ERRINFO_UPDATESESSIONKEYFAILED
0x00001191

An attempt to update the session keys while using
Standard RDP Security mechanisms (section 5.3.7)
failed.

ERRINFO_DECRYPTFAILED
0x00001192

One of two possible error conditions:

= Decryption using Standard RDP Security
mechanisms (section 5.3.6) failed.

= Session key creation using Standard RDP
Security mechanisms (section 5.3.5) failed.

ERRINFO_ENCRYPTFAILED
0x00001193

Encryption using Standard RDP Security
mechanisms (section 5.3.6) failed.

ERRINFO_ENCPKGMISMATCH
0x00001194

Failed to find a usable Encryption Method (section
5.3.2) in the encryptionMethods field of the Client
Security Data (section 2.2.1.4.3).

ERRINFO_DECRYPTFAILED2
0x00001195

Unencrypted data was encountered in a protocol
stream which is meant to be encrypted with
Standard RDP Security mechanisms (section 5.3.6).

129 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06

2.2.5.2 Server Status Info PDU

The Status Info PDU is sent by the server to update the client with status information. This PDU is only
sent to clients that have indicated that they are capable of status updates using the
RNS_UD_CS_SUPPORT_STATUSINFO_PDU flag in the Client Core Data (section 2.2.1.3.2).

=
N
w

0[(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

shareDataHeader (18 bytes)

statusCode

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header,
a Share Data Header, and a status code.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

130 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT

be included in the PDU.

shareDataHeader (18 bytes): A Share Data Header containing information about the packet. The

type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_STATUS_INFO_PDU (54), and the pduSource field MUST be set to zero.

statusCode (4 bytes): A 32-bit, unsigned integer. Status code.

Value

Meaning

TS_STATUS_FINDING_DESTINATION
0x00000401

The destination computer is being located.

TS_STATUS_LOADING_DESTINATION
0x00000402

The destination computer is being prepared for use.

TS_STATUS_BRINGING_SESSION_ONLINE
0x00000403

The destination computer is being prepared to accept a
remote connection.

TS_STATUS_REDIRECTING_TO_DESTINATION

The client is being redirected to the destination computer.

0x00000404

TS_STATUS_VM_LOADING
0x00000501

The destination virtual machine image is being loaded.

TS_STATUS_VM_WAKING
0x00000502

The destination virtual machine is being resumed from
sleep or hibernation.

TS_STATUS_VM_STARTING
0x00000503

The destination virtual machine is being started.

TS_STATUS_VM_STARTING_MONITORING
0x00000504

Monitoring of the destination virtual machine is being
initiated.

TS_STATUS_VM_RETRYING_MONITORING
0x00000505

Monitoring of the destination virtual machine is being
reinitiated.

2.2.6 Static Virtual Channels

2.2.6.1 Virtual Channel PDU

The Virtual Channel PDU is sent from client to server or from server to client and is used to transport
data between static virtual channel endpoints.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

tpktHeader

x224Data mcsPdu (variable)

131/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

securityHeader (variable)

channelPduHeader

virtualChannelData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsPdu (variable): If the PDU is being sent from client to server, this field MUST contain a variable-
length, PER-encoded MCS Domain PDU (DomainMCSPDU) which encapsulates an MCS Send Data
Request structure (SDrq, choice 25 from DomainMCSPDU), as specified in [T125] section 11.32
(the ASN.1 structure definition is given in [T125] section 7, parts 7 and 10). The userData field of
the MCS Send Data Request contains a Security Header and the static virtual channel data.

If the PDU is being sent from server to client, this field MUST contain a variable-length, PER-
encoded MCS Domain PDU (DomainMCSPDU) which encapsulates an MCS Send Data Indication
structure (SDin, choice 26 from DomainMCSPDU), as specified in [T125] section 11.33 (the ASN.1
structure definition is given in [T125] section 7, parts 7 and 10). The userData field of the MCS
Send Data Indication contains a Security Header and the static virtual channel data.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the security headers
described in section 2.2.8.1.1.2.

If the PDU is being sent from client to server:

= The securityHeader field MUST contain a Non-FIPS Security Header (section 2.2.8.1.1.2.2) if
the Encryption Method selected by the server is ENCRYPTION_METHOD_40BIT (0x00000001),
ENCRYPTION_METHOD_56BIT (0x00000008), or ENCRYPTION_METHOD_128BIT
(0x00000002).

If the PDU is being sent from server to client:

] The securityHeader field MUST contain a Basic Security Header (section 2.2.8.1.1.2.1) if the
Encryption Level selected by the server is ENCRYPTION_LEVEL_LOW (1).

= The securityHeader field MUST contain a Non-FIPS Security Header (section 2.2.8.1.1.2.2) if
the Encryption Method selected by the server is ENCRYPTION_METHOD_40BIT (0x00000001),
ENCRYPTION_METHOD_56BIT (0x00000008), or ENCRYPTION_METHOD_128BIT
(0x00000002).

If the Encryption Method selected by the server is ENCRYPTION_METHOD_FIPS (0x00000010) the
securityHeader field MUST contain a FIPS Security Header (section 2.2.8.1.1.2.3).

132 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

channelPduHeader (8 bytes): A Channel PDU Header (section 2.2.6.1.1) structure, which contains
control flags and describes the size of the opaque channel data.

virtualChannelData (variable): Variable-length data to be processed by the static virtual channel
protocol handler. This field MUST NOT be larger than CHANNEL_CHUNK_LENGTH (1600) bytes in
size unless the maximum virtual channel chunk size is specified in the optional VCChunkSize field
of the Virtual Channel Capability Set (section 2.2.7.1.10).

2.2.6.1.1 Channel PDU Header (CHANNEL_PDU_HEADER)

The CHANNEL_PDU_HEADER MUST precede all opaque static virtual channel traffic chunks transmitted
via RDP between a client and server.

-
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

length

flags

length (4 bytes): A 32-bit, unsigned integer. The total length in bytes of the uncompressed channel
data, excluding this header. The data can span multiple Virtual Channel PDUs and the individual
chunks will need to be reassembled in that case (section 3.1.5.2.2).

flags (4 bytes): A 32-bit, unsigned integer. The channel control flags.

Flag Meaning

CHANNEL_FLAG_FIRST Indicates that the chunk is the first in a sequence.
0x00000001

CHANNEL_FLAG_LAST Indicates that the chunk is the last in a sequence.
0x00000002

CHANNEL_FLAG_SHOW_PROTOCOL The Channel PDU Header MUST be visible to the application
0x00000010 endpoint (section 2.2.1.3.4.1).

CHANNEL_FLAG_SUSPEND All virtual channel traffic MUST be suspended. This flag is only
0x00000020 valid in server-to-client virtual channel traffic. It MUST be ignored
in client-to-server data.

CHANNEL_FLAG_RESUME All virtual channel traffic MUST be resumed. This flag is only valid
0x00000040 in server-to-client virtual channel traffic. It MUST be ignored in

client-to-server data.

CHANNEL_FLAG_SHADOW_PERSISTENT | This flag is unused and its value MUST be ignored by the client

0x00000080 and server.

CHANNEL_PACKET_COMPRESSED The virtual channel data is compressed. This flag is equivalent to
0x00200000 MPPC bit C (for more information see [RFC2118] section 3.1).
CHANNEL_PACKET_AT_FRONT The decompressed packet MUST be placed at the beginning of the
0x00400000 history buffer. This flag is equivalent to MPPC bit B (for more

information see [RFC2118] section 3.1).

133/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90316

Flag

Meaning

CHANNEL_PACKET_FLUSHED
0x00800000

The decompressor MUST reinitialize the history buffer (by filling it
with zeros) and reset the HistoryOffset to zero. After it has been
reinitialized, the entire history buffer is immediately regarded as
valid. This flag is equivalent to MPPC bit A (for more information
see [RFC2118] section 3.1). If the
CHANNEL_PACKET_COMPRESSED (0x00200000) flag is also
present, then the CHANNEL_PACKET_FLUSHED flag MUST be
processed first.

CompressionTypeMask
0x000F0000

Indicates the compression package which was used to compress
the data. See the discussion which follows this table for a list of
compression packages.

If neither the CHANNEL_FLAG_FIRST (0x00000001) nor the CHANNEL_FLAG_LAST (0x00000002)
flag is present, the chunk is from the middle of a sequence.

Instructions specifying how to set the compression flags can be found in section 3.1.8.2.1.

Possible compression types are as follows.

Value Meaning
PACKET_COMPR_TYPE_8K RDP 4.0 bulk compression (section 3.1.8.4.1).
0x0

Ox1

PACKET_COMPR_TYPE_64K RDP 5.0 bulk compression (section 3.1.8.4.2).

0x2

PACKET_COMPR_TYPE_RDP6 RDP 6.0 bulk compression ([MS-RDPEGDI] section 3.1.8.1).

0x3

PACKET_COMPR_TYPE_RDP61 | RDP 6.1 bulk compression ([MS-RDPEGDI] section 3.1.8.2).

Instructions detailing how to compress a data stream are listed in section 3.1.8.2, while
decompression of a data stream is described in section 3.1.8.3.

2.2.7 Capability Sets

2.2.7.1 Mandatory Capability Sets

2.2.7.1.1 General Capability Set (TS_GENERAL_CAPABILITYSET)

The TS_GENERAL_CAPABILITYSET structure is used to advertise general characteristics and is
based on the capability set specified in [T128] section 8.2.3. This capability is sent by both client and

server.

1
0(1|2|3(4|5|6[7|8|9|0|1

N
w

4/5(6(7|8(9(0|1(2(3|4|5(6|7|8|9|0]|1

capabilitySetType

lengthCapability

osMajorType

osMinorType

[MS-RDPBCGR] - v20230920

134 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
https://go.microsoft.com/fwlink/?LinkId=90544

protocolVersion

pad2octetsA

compressionTypes

extraFlags

updateCapabilityFlag

remoteUnshareFlag

compressionLevel

refreshRectSupport

suppressOutputSupport

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_GENERAL (1).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

osMajorType (2 bytes): A 16-bit, unsigned integer. The type of platform.

Value

Meaning

OSMAJORTYPE_UNSPECIFIED
0x0000

Unspecified platform

OSMAJORTYPE_WINDOWS
0x0001

Windows platform

OSMAJORTYPE_0OS2
0x0002

0S/2 platform

OSMAJORTYPE_MACINTOSH
0x0003

Macintosh platform

OSMAJORTYPE_UNIX
0x0004

UNIX platform

OSMAJORTYPE_IOS
0x0005

iOS platform

OSMAJORTYPE_OSX
0x0006

0OS X platform

OSMAJORTYPE_ANDROID
0x0007

Android platform

OSMAJORTYPE_CHROME_OS
0x0008

Chrome OS platform

osMinorType (2 bytes): A 16-bit, unsigned integer. The version of the platform specified in the

osMajorType field.

Value

Meaning

OSMINORTYPE_UNSPECIFIED
0x0000

Unspecified version

OSMINORTYPE_WINDOWS_31X
0x0001

Windows 3.1x

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

135/ 444

Value Meaning

OSMINORTYPE_WINDOWS_95 Windows 95
0x0002

OSMINORTYPE_WINDOWS_NT Windows NT
0x0003

OSMINORTYPE_OS2_V21 0S/2 2.1
0x0004

OSMINORTYPE_POWER_PC PowerPC
0x0005

OSMINORTYPE_MACINTOSH Macintosh
0x0006

OSMINORTYPE_NATIVE_XSERVER Native X Server
0x0007

OSMINORTYPE_PSEUDO_XSERVER Pseudo X Server
0x0008

OSMINORTYPE_WINDOWS RT Windows RT
0x0009

protocolVersion (2 bytes): A 16-bit, unsigned integer. The protocol version. This field MUST be set
to TS_CAPS_PROTOCOLVERSION (0x0200).

pad2octetsA (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

compressionTypes (2 bytes): A 16-bit, unsigned integer. General compression types. This field
MUST be set to zero.

extraFlags (2 bytes): A 16-bit, unsigned integer. General capability information.

All RDP versions, except for RDP 4.0, support the following flags.

Flag Meaning
FASTPATH_OUTPUT_SUPPORTED Advertiser supports fast-path output.<24>
0x0001

NO_BITMAP_COMPRESSION_HDR Advertiser supports excluding the 8-byte Compressed Data
0x0400 Header (section 2.2.9.1.1.3.1.2.3) from the Bitmap Data (section
2.2.9.1.1.3.1.2.2) structure or the Cache Bitmap (Revision 2)
Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.3).

All RDP versions, except for RDP 4.0 and 5.0, support the following additional flags.

Flag Meaning

LONG_CREDENTIALS_SUPPORTED Advertiser supports long-length credentials for the user name,
0x0004 password, or domain name in the Save Session Info PDU
(section 2.2.10.1).<25>

All RDP versions, except for RDP 4.0, 5.0 and 5.1, support the following additional flags.

136 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

Flag Meaning

AUTORECONNECT_SUPPORTED Advertiser supports auto-reconnection (section 5.5).

0x0008

ENC_SALTED_CHECKSUM Advertiser supports salted MAC generation (section 5.3.6.1.1).
0x0010

updateCapabilityFlag (2 bytes): A 16-bit, unsigned integer. Support for update capability. This field
MUST be set to zero.

remoteUnshareFlag (2 bytes): A 16-bit, unsigned integer. Support for remote unsharing. This field
MUST be set to zero.

compressionlLevel (2 bytes): A 16-bit, unsigned integer. General compression level. This field MUST
be set to zero.

refreshRectSupport (1 byte): An 8-bit, unsigned integer. Server-only flag that indicates whether
the Refresh Rect PDU (section 2.2.11.2) is supported.

Value Meaning

FALSE Server does not support Refresh Rect PDU.
0x00

TRUE Server supports Refresh Rect PDU.

0x01

suppressOutputSupport (1 byte): An 8-bit, unsigned integer. Server-only flag that indicates
whether the Suppress Output PDU (section 2.2.11.3) is supported.

Value Meaning

FALSE Server does not support Suppress Output PDU.
0x00

TRUE Server supports Suppress Output PDU.

0x01

2.2.7.1.2 Bitmap Capability Set (TS_BITMAP_CAPABILITYSET)

The TS_BITMAP_CAPABILITYSET structure is used to advertise bitmap-orientated characteristics and is
based on the capability set specified in [T128] section 8.2.4. This capability is sent by both client and
server.

1 2 3
0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

capabilitySetType lengthCapability
preferredBitsPerPixel receivelBitPerPixel
receive4BitsPerPixel receive8BitsPerPixel

137 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90544

desktopWidth desktopHeight

pad2octets desktopResizeFlag
bitmapCompressionFlag highColorFlags drawingFlags
multipleRectangleSupport pad2octetsB

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_BITMAP (2).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

preferredBitsPerPixel (2 bytes): A 16-bit, unsigned integer. The server MUST set this field to the
color depth of the session, while the client SHOULD set this field to the color depth requested in
the Client Core Data (section 2.2.1.3.2).

receivelBitPerPixel (2 bytes): A 16-bit, unsigned integer. Indicates whether the client can receive
1 bpp. This field is ignored and SHOULD be set to TRUE (0x0001).

receive4BitsPerPixel (2 bytes): A 16-bit, unsigned integer. Indicates whether the client can receive
4 bpp. This field is ignored and SHOULD be set to TRUE (0x0001).

receive8BitsPerPixel (2 bytes): A 16-bit, unsigned integer. Indicates whether the client can receive
8 bpp. This field is ignored and SHOULD be set to TRUE (0x0001).

desktopWidth (2 bytes): A 16-bit, unsigned integer. The width of the desktop in the session.
desktopHeight (2 bytes): A 16-bit, unsigned integer. The height of the desktop in the session.
pad2octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

desktopResizeFlag (2 bytes): A 16-bit, unsigned integer. Indicates whether resizing the desktop by
using a Deactivation-Reactivation Sequence is supported (see section 1.3.1.3 for an overview of
the Deactivation-Reactivation Sequence).

Value Meaning

FALSE Desktop resizing is not supported.
0x0000

TRUE Desktop resizing is supported.
0x0001

bitmapCompressionFlag (2 bytes): A 16-bit, unsigned integer. Indicates whether bitmap
compression is supported. This field MUST be set to TRUE (0x0001) because support for
compressed bitmaps is required for a connection to proceed.

highColorFlags (1 byte): An 8-bit, unsigned integer. Client support for 16 bpp color modes. This
field is ignored and SHOULD be set to zero.

drawingFlags (1 byte): An 8-bit, unsigned integer. Flags describing support for 32 bpp bitmaps.

Flag Meaning

DRAW_ALLOW_DYNAMIC_COLOR_FIDELITY | Indicates support for lossy compression of 32 bpp bitmaps

138 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Flag

Meaning

0x02

by reducing color-fidelity on a per-pixel basis ([MS-
RDPEGDI] section 3.1.9.1.4).

0x04

DRAW_ALLOW_COLOR_SUBSAMPLING

Indicates support for chroma subsampling when
compressing 32 bpp bitmaps ([MS-RDPEGDI] section
3.1.9.1.3).

DRAW_ALLOW_SKIP_ALPHA
0x08

Indicates that the client supports the removal of the alpha-
channel when compressing 32 bpp bitmaps. In this case the
alpha is assumed to be OxFF, meaning the bitmap is
opaque.

DRAW_UNUSED_FLAG
0x10

An unused flag that MUST be ignored by the client if it is
present in the server-to-client Bitmap Capability Set.

Compression of 32 bpp bitmaps is specified in [MS-RDPEGDI] section 3.1.9.

multipleRectangleSupport (2 bytes): A 16-bit, unsigned integer. Indicates whether the use of
multiple bitmap rectangles is supported in the Bitmap Update (section 2.2.9.1.1.3.1.2). This field
MUST be set to TRUE (0x0001) because multiple rectangle support is required for a connection to

proceed.

pad2octetsB (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.1.3 Order Capability Set (TS_ORDER_CAPABILITYSET)

The TS_ORDER_CAPABILITYSET structure advertises support for primary drawing order-related
capabilities and is based on the capability set specified in [T128] section 8.2.5 (for more information
about primary drawing orders, see [MS-RDPEGDI] section 2.2.2.2.1.1). This capability is sent by both

client and server.

1
0(1|2|3(4|5|6(7|8|9|0|1

5(6|/7|8(9|0|1[2|3|4|5|6|7|8[9|0]1

capabilitySetType

lengthCapability

terminalDescriptor (16 bytes)

pad4octetsA

desktopSaveXGranularity

desktopSaveYGranularity

pad2octetsA

maximumOrderLevel

numberFonts

orderFlags

orderSupport (32 bytes)

[MS-RDPBCGR] - v20230920

139 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
https://go.microsoft.com/fwlink/?LinkId=90544
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

textFlags orderSupportExFlags

pad4octetsB

desktopSaveSize

pad2octetsC pad2octetsD

textANSICodePage pad2octetsE

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_ORDER (3).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

terminalDescriptor (16 bytes): A 16-element array of 8-bit, unsigned integers. Terminal descriptor.
This field is ignored and SHOULD be set to all zeros.

pad4octetsA (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.

desktopSaveXGranularity (2 bytes): A 16-bit, unsigned integer. X granularity used in conjunction
with the SaveBitmap Primary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.1.2.12). This
value is ignored and assumed to be 1.

desktopSaveYGranularity (2 bytes): A 16-bit, unsigned integer. Y granularity used in conjunction
with the SaveBitmap Primary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.1.2.12). This
value is ignored and assumed to be 20.

pad2octetsA (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

maximumOrderLevel (2 bytes): A 16-bit, unsigned integer. Maximum order level. This value is
ignored and SHOULD be set to ORD_LEVEL_1_ORDERS (1).

numberFonts (2 bytes): A 16-bit, unsigned integer. Number of fonts. This value is ignored and
SHOULD be set to zero.

orderFlags (2 bytes): A 16-bit, unsigned integer. A 16-bit unsigned integer. Support for drawing
order options.

Flag Meaning

NEGOTIATEORDERSUPPORT Indicates support for specifying supported drawing orders in the
0x0002 orderSupport field. This flag MUST be set.
ZEROBOUNDSDELTASSUPPORT Indicates support for the TS_ZERO_BOUNDS_DELTAS (0x20) flag
0x0008 ([IMS-RDPEGDI] section 2.2.2.2.1.1.2). The client MUST set this flag.
COLORINDEXSUPPORT Indicates support for sending color indices (not RGB values) in
0x0020 orders.

SOLIDPATTERNBRUSHONLY Indicates that this party can receive only solid and pattern brushes.
0x0040

ORDERFLAGS_EXTRA_FLAGS Indicates that the orderSupportExFlags field contains valid data.

140 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Flag Meaning

0x0080

orderSupport (32 bytes): An array of 32 bytes indicating support for various primary drawing

orders. The indices of this array are the negotiation indices for the primary orders specified in

[MS-RDPEGDI] section 2.2.2.2.1.1.2.

Negotiation index

Primary drawing order or orders

TS_NEG_DSTBLT_INDEX
0x00

DstBIt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.1).

TS_NEG_PATBLT_INDEX
0x01

PatBIt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.3) and OpaqueRect Primary Drawing Order
([MS-RDPEGDI] section 2.2.2.2.1.1.2.5).

TS_NEG_SCRBLT_INDEX
0x02

ScrBlt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.7).<26>

TS_NEG_MEMBLT_INDEX
0x03

MemBIt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.9).<27>

TS_NEG_MEM3BLT_INDEX

Mem3BIt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.10).

0x04
UnusedIndex1 The contents of the byte at this index MUST be ignored.
0x05
UnusedIndex?2 The contents of the byte at this index MUST be ignored.
0x06

TS_NEG_DRAWNINEGRID_INDEX
0x07

DrawNineGrid Primary Drawing Order ([MS-RDPEGDI]
section 2.2.2.2.1.1.2.21).

TS_NEG_LINETO_INDEX
0x08

LineTo Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.11).

TS_NEG_MULTI_DRAWNINEGRID_INDEX
0x09

MultiDrawNineGrid Primary Drawing Order ([MS-RDPEGDI]
section 2.2.2.2.1.1.2.22).

UnusedIndex3
0x0A

The contents of the byte at this index MUST be ignored.

TS_NEG_SAVEBITMAP_INDEX
0x0B

SaveBitmap Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.12).

UnusedIndex4
0x0C

The contents of the byte at this index MUST be ignored.

UnusedIndex5
0x0D

The contents of the byte at this index MUST be ignored.

UnusedIndex6
Ox0E

The contents of the byte at this index MUST be ignored.

TS_NEG_MULTIDSTBLT_INDEX
0xO0F

MultiDstBIt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.2).

141 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Negotiation index

Primary drawing order or orders

TS_NEG_MULTIPATBLT_INDEX
0x10

MultiPatBIt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.4).

TS_NEG_MULTISCRBLT_INDEX
Ox11

MultiScrBlt Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.8).

TS_NEG_MULTIOPAQUERECT_INDEX
0x12

MultiOpaqueRect Primary Drawing Order ([MS-RDPEGDI]
section 2.2.2.2.1.1.2.6).

TS_NEG_FAST_INDEX_INDEX
0x13

FastIndex Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.14).

TS_NEG_POLYGON_SC_INDEX
0x14

PolygonSC Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.16) and PolygonCB Primary Drawing Order ([MS-
RDPEGDI] section 2.2.2.2.1.1.2.17).

TS_NEG_POLYGON_CB_INDEX
0x15

PolygonCB Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.17) and PolygonSC Primary Drawing Order ([MS-
RDPEGDI] section 2.2.2.2.1.1.2.16).

TS_NEG_POLYLINE_INDEX
0x16

Polyline Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.18).

UnusedIndex?7
0x17

The contents of the byte at this index MUST be ignored.

TS_NEG_FAST_GLYPH_INDEX
0x18

FastGlyph Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.15).

TS_NEG_ELLIPSE_SC_INDEX
0x19

EllipseSC Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.19) and EllipseCB Primary Drawing Order ([MS-
RDPEGDI] section 2.2.2.2.1.1.2.20).

TS_NEG_ELLIPSE_CB_INDEX
Ox1A

EllipseCB Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.20) and EllipseSC Primary Drawing Order ([MS-
RDPEGDI] section 2.2.2.2.1.1.2.19).

TS_NEG_INDEX_INDEX

GlyphIndex Primary Drawing Order ([MS-RDPEGDI] section

0x1B 2.2.2.2.1.1.2.13).

UnusedIndex8 The contents of the byte at this index MUST be ignored.
0x1C

UnusedIndex9 The contents of the byte at this index MUST be ignored.
0x1D

UnusedIndex10 The contents of the byte at this index MUST be ignored.
Ox1E

UnusedIndex11 The contents of the byte at this index MUST be ignored.
Ox1F

If an order is supported, the byte at the given index MUST contain the value 0x01. Any order not
supported by the client causes the server to spend more time and bandwidth using workarounds,
such as other primary orders or simply sending screen bitmap data in a Bitmap Update (sections
2.2.9.1.1.3.1.2 and 2.2.9.1.2.1.2). If no primary drawing orders are supported, this array MUST
be initialized to all zeros.

142 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

textFlags (2 bytes): A 16-bit, unsigned integer. Values in this field MUST be ignored.

orderSupportExFlags (2 bytes): A 16-bit, unsigned integer. Extended order support flags.

Flag Meaning

ORDERFLAGS_EX_CACHE_BITMAP_REV3_SUPPORT The Cache Bitmap (Revision 3) Secondary Drawing

0x0002 Order ([MS-RDPEGDI] section 2.2.2.2.1.2.8) is
supported.

ORDERFLAGS_EX_ALTSEC_FRAME_MARKER_SUPPORT | The Frame Marker Alternate Secondary Drawing

0x0004 Order ([MS-RDPEGDI] section 2.2.2.2.1.3.7) is
supported.

pad4octetsB (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.

desktopSaveSize (4 bytes): A 32-bit, unsigned integer. The maximum usable size of bitmap space
for bitmap packing in the SaveBitmap Primary Drawing Order ([MS-RDPEGDI] section
2.2.2.2.1.1.2.12). This field is ignored by the client and assumed to be 230400 bytes (480 * 480).

pad2octetsC (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.
pad2octetsD (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

textANSICodePage (2 bytes): A 16-bit, unsigned integer. ANSI code page descriptor being used by
the client (for a list of code pages, see [MSDN-CP]). This field is ignored by the client and SHOULD
be set to zero by the server.

pad2octetsE (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.
2.2.7.1.4 Bitmap Cache Capability Set

2.2.7.1.4.1 Revision 1 (TS_BITMAPCACHE_CAPABILITYSET)

The TS_BITMAPCACHE_CAPABILITYSET structure is used to advertise support for Revision 1 bitmap
caches ([MS-RDPEGDI] section 3.1.1.1.1). This capability is only sent from client to server.

In addition to specifying bitmap caching parameters in the Revision 1 Bitmap Cache Capability Set, a
client MUST also support the MemBIt and Mem3BIt Primary Drawing Orders ([MS-RDPEGDI] sections
2.2.2.2.1.1.2.9 and 2.2.2.2.1.1.2.10, respectively) in order to receive the Cache Bitmap (Revision 1)
Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.2).

0/1|2]|3|4|5|6|7|8]|9 é 1/2(3(4|5|6|7|8|9 S 1/2|3|4|5|6|7|8|9 g 1
capabilitySetType lengthCapability
padil
pad2
pad3
pad4
pad5

143 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=89981
%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

pad6

CacheOEntries CacheOMaximumcCellSize
CachelEntries CachelMaximumcCellSize
Cache2Entries Cache2MaximumcCellSize

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_BITMAPCACHE (4).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

pad1l (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.
pad2 (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.
pad3 (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.
pad4 (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.
pad5 (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.
pad6 (4 bytes): A 32-bit, unsigned integer. Padding. Values in this field MUST be ignored.

CacheOEntries (2 bytes): A 16-bit, unsigned integer. The number of entries in Bitmap Cache 0
(maximum allowed value is 200 entries).

CacheOMaximumCellSize (2 bytes): A 16-bit, unsigned integer. The maximum cell size in Bitmap
Cache 0.

CachelEntries (2 bytes): A 16-bit, unsigned integer. The number of entries in Bitmap Cache 1
(maximum allowed value is 600 entries).

CachelMaximumcCellSize (2 bytes): A 16-bit, unsigned integer. The maximum cell size in Bitmap
Cache 1.

Cache2Entries (2 bytes): A 16-bit, unsigned integer. The number of entries in Bitmap Cache 2
(maximum allowed value is 65535 entries).

Cache2MaximumcCellSize (2 bytes): A 16-bit, unsigned integer. The maximum cell size in Bitmap
Cache 2.

2.2.7.1.4.2 Revision 2 (TS_BITMAPCACHE_CAPABILITYSET_REV2)

The TS_BITMAPCACHE_CAPABILITYSET_REV2 structure is used to advertise support for Revision 2
bitmap caches ([MS-RDPEGDI] section 3.1.1.1.1). This capability is only sent from client to server.

In addition to specifying bitmap caching parameters in the Revision 2 Bitmap Cache Capability Set, a
client MUST also support the MemBIt and Mem3BIt Primary Drawing Orders ([MS-RDPEGDI] sections
2.2.2.2.1.1.2.9 and 2.2.2.2.1.1.2.10, respectively) in order to receive the Cache Bitmap (Revision 2)
Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.3).

144 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

capabilitySetType lengthCapability

CacheFlags Pad2 NumCellCaches

BitmapCache0CellInfo

BitmapCachelCellInfo

BitmapCache2CellInfo

BitmapCache3CellInfo

BitmapCache4CellInfo

Pad3

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_BITMAPCACHE_REV2 (19).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

CacheFlags (2 bytes): A 16-bit, unsigned integer. Properties which apply to all the bitmap caches.

Flag Meaning

PERSISTENT_KEYS_EXPECTED_FLAG Indicates that the client will send a Persistent Key List PDU during
0x0001 the Connection Finalization phase of the RDP Connection Sequence
(see section 1.3.1.1 for an overview of the RDP Connection
Sequence phases).

ALLOW_CACHE_WAITING_LIST_FLAG | Indicates that the client supports a cache waiting list. If a waiting
0x0002 list is supported, new bitmaps are cached on the second hit rather
than the first (that is, a bitmap is sent twice before it is cached).

Pad2 (1 byte): An 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.

NumcCellCaches (1 byte): An 8-bit, unsigned integer. Number of bitmap caches (with a maximum
allowed value of 5).

BitmapCacheOCellInfo (4 bytes): A TS BITMAPCACHE CELL CACHE INFO structure. Contains
information about the structure of Bitmap Cache 0. The maximum number of entries allowed in
this cache is 600. This field is only valid if NumCellCaches is greater than or equal to 1.

BitmapCachelCellInfo (4 bytes): A TS_BITMAPCACHE_CELL_CACHE_INFO structure. Contains
information about the structure of Bitmap Cache 1. The maximum number of entries allowed in
this cache is 600. This field is only valid if NumCellCaches is greater than or equal to 2.

145 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

BitmapCache2CellInfo (4 bytes): A TS_BITMAPCACHE_CELL_CACHE_INFO structure. Contains
information about the structure of Bitmap Cache 2. The maximum number of entries allowed in
this cache is 65536. This field is only valid if NumCellCaches is greater than or equal to 3.

BitmapCache3CellInfo (4 bytes): A TS_BITMAPCACHE_CELL_CACHE_INFO structure. Contains
information about the structure of Bitmap Cache 3. The maximum number of entries allowed in
this cache is 4096. This field is only valid if NumCellCaches is greater than or equal to 4.

BitmapCache4CellInfo (4 bytes): A TS_BITMAPCACHE_CELL_CACHE_INFO structure. Contains
information about the structure of Bitmap Cache 4. The maximum number of entries allowed in
this cache is 2048. This field is only valid if NumCellCaches is equal to 5.

Pad3 (12 bytes): A 12-element array of 8-bit, unsigned integers. Padding. Values in this field MUST
be ignored.

2.2.7.1.4.2.1 Bitmap Cache Cell Info (TS_BITMAPCACHE_CELL_CACHE_INFO)

The TS_BITMAPCACHE_CELL_CACHE_INFO structure contains information about a bitmap cache on
the client.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]|9|0]|1

CellInfo

CellInfo (4 bytes): A 32-bit unsigned integer that contains information about a bitmap cache on the
client. The format of the CellInfo field is described by the following bitmask diagram.

0[{1(2|3|4|5|6|7|8|9(0(1({2|3|4|5|6|7|8|9|0|1(2(3(4|5(6|7|8]|9|0]|1

NumEntries k

NumEntries (31 bits): A 31-bit unsigned integer that contains the number of entries in the
cache.

k (1 bit): A 1-bit field that indicates that the bitmap cache is persistent across RDP connections
and that the client expects to receive a unique 64-bit bitmap key in the Cache Bitmap
(Revision 2) Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.3) for every bitmap
inserted into this cache. If this bit is set, 64-bit keys MUST be sent by the server.

2.2.7.1.5 Pointer Capability Set (TS_POINTER_CAPABILITYSET)

The TS_POINTER_CAPABILITYSET structure advertises pointer cache sizes and flags and is based on
the capability set specified in [T128] section 8.2.11. This capability is sent by both client and server.

1 2 3
0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

capabilitySetType lengthCapability

colorPointerFlag colorPointerCacheSize

pointerCacheSize

146 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
https://go.microsoft.com/fwlink/?LinkId=90544

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field

MUST be set to CAPSTYPE_POINTER (8).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

colorPointerFlag (2 bytes): A 16-bit, unsigned integer. Indicates support for color pointers. Since
RDP supports monochrome cursors by using Color Pointer Updates and New Pointer Updates
(sections 2.2.9.1.1.4.4 and 2.2.9.1.1.4.5 respectively), the value of this field is ignored and is
always assumed to be TRUE (at a minimum the Color Pointer Update MUST be supported by an

RDP client).

Value Meaning

FALSE Monochrome mouse cursors are supported.
0x0000

TRUE Color mouse cursors are supported.
0x0001

colorPointerCacheSize (2 bytes): A 16-bit, unsigned integer. The number of available slots in the
24 bpp color pointer cache used to store data received in the Color Pointer Update (section

2.2.9.1.1.4.4).

pointerCacheSize (2 bytes): A 16-bit, unsigned integer. The number of available slots in the pointer
cache used to store pointer data of arbitrary bit depth received in the New Pointer Update (section

2.2.9.1.1.4.5).

If the value contained in this field is zero or the Pointer Capability Set sent from the client does
not include this field, the server will not use the New Pointer Update.

2.2.7.1.6 Input Capability Set (TS_INPUT_CAPABILITYSET)

The TS_INPUT_CAPABILITYSET structure is used to advertise support for input formats and
devices. This capability is sent by both client and server. The keyboardLayout, keyboardType,
keyboardSubType, and keyboardFunctionKey fields of the server-to-client
TS_INPUT_CAPABILITYSET structure SHOULD<28> be set to zero, and the imeFileName field of
the server-to-client TS_INPUT_CAPABILITYSET structure SHOULD<29> be filled with zeros.

1

0({1(2|3|4|5|6|7|8|9(0(1[{2(3|4|5|6|7]|8

1123|456

capabilitySetType

lengthCapability

inputFlags

pad2octetsA

keyboardLayout

keyboardType

keyboardSubType

keyboardFunctionKey

imeFileName (64 bytes)

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

147 / 444

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_INPUT (13).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

inputFlags (2 bytes): A 16-bit, unsigned integer. Input support flags.

Flag Meaning

INPUT_FLAG_SCANCODES Indicates support for using scancodes in the Keyboard Event
0x0001 notifications (sections 2.2.8.1.1.3.1.1.1 and 2.2.8.1.2.2.1).
INPUT_FLAG_MOUSEX Indicates support for Extended Mouse Event notifications (sections
0x0004 2.2.8.1.1.3.1.1.4and 2.2.8.1.2.2.4).
INPUT_FLAG_FASTPATH_INPUT Advertised by RDP 5.0 and 5.1 servers to indicate support for fast-
0x0008 path input.

INPUT_FLAG_UNICODE Indicates support for Unicode Keyboard Event notifications
0x0010 (sections 2.2.8.1.1.3.1.1.2 and 2.2.8.1.2.2.2).
INPUT_FLAG_FASTPATH_INPUT2 Advertised by all RDP servers, except for RDP 4.0, 5.0, and 5.1
0x0020 servers, to indicate support for fast-path input. Clients that do not

support this flag will not be able to use fast-path input when
connecting to RDP 5.2, 6.0, 6.1, 7.0, 7.1, 8.0, 8.1, 10.0, 10.1, 10.2,
10.3, 10.4, and 10.5 servers.

INPUT_FLAG_UNUSED1 An unused flag that MUST be ignored by the client if it is present in
0x0040 the server-to-client Input Capability Set.
INPUT_FLAG_MOUSE_RELATIVE This flag MUST be ignored by the server if it is present in the client-
0x0080 to-server Input Capability Set and the protocol version specified in

the Client Core Data (section 2.2.1.3.2) is less than 0x00080011.
If the protocol version is greater than or equal to 0x00080011, then
this flag indicates that the client supports relative mouse mode
(section 2.2.8.1.1.3.1.1.7 and section 2.2.8.1.2.2.7).

TS_INPUT_FLAG_MOUSE_HWHEEL Indicates support for horizontal Mouse Wheel Event notifications
0x0100 (sections 2.2.8.1.1.3.1.1.3 and 2.2.8.1.2.2.3).

TS_INPUT_FLAG_QOE_TIMESTAMPS | Indicates support for Quality of Experience (QoE) Timestamp
0x0200 Event notifications (section 2.2.8.1.2.2.6). There is no slow-path
support for Quality of Experience (QoE) timestamps.

At a minimum, the INPUT_FLAG_SCANCODES flag MUST be set, as server-side RDP keyboard
input handling is restricted to keyboard scancodes and Unicode input (unlike the code-point or
virtual codes supported in [T128]).

pad2octetsA (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

keyboardLayout (4 bytes): A 32-bit, unsigned integer. The active input locale identifier, also known
as the "HKL" (for example, 0x00000409 for a "US" keyboard layout and 0x00010407 for a
"German (IBM)" keyboard layout). For a list of input locale identifiers, see [MSFT-DIL]. The active

148 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90544
https://go.microsoft.com/fwlink/?LinkId=202824

input locale identifier is only specified in the client Input Capability Set and SHOULD be the
same as the keyboard layout specified in the Client Core Data (section 2.2.1.3.2).<30>

keyboardType (4 bytes): A 32-bit, unsigned integer. Keyboard type.

Value Meaning

0x00000001 IBM PC/XT or compatible (83-key) keyboard
0x00000002 Olivetti "ICO" (102-key) keyboard
0x00000003 IBM PC/AT (84-key) or similar keyboard
0x00000004 IBM enhanced (101- or 102-key) keyboard
0x00000005 Nokia 1050 and similar keyboards
0x00000006 Nokia 9140 and similar keyboards
0x00000007 Japanese keyboard

This value is only specified in the client Input Capability Set and SHOULD correspond with that
sent in the Client Core Data.

keyboardSubType (4 bytes): A 32-bit, unsigned integer. Keyboard subtype (an original equipment
manufacturer-dependent value). This value is only specified in the client Input Capability Set
and SHOULD correspond with that sent in the Client Core Data.

keyboardFunctionKey (4 bytes): A 32-bit, unsigned integer. Number of function keys on the
keyboard. This value is only specified in the client Input Capability Set and SHOULD correspond
with that sent in the Client Core Data.

imeFileName (64 bytes): A 64-byte field, containing the input method editor (IME) file name
associated with the input locale. This field contains up to 31 Unicode characters plus a null
terminator and is only specified in the client Input Capability Set and its contents SHOULD
correspond with that sent in the Client Core Data.

2.2.7.1.7 Brush Capability Set (TS_BRUSH_CAPABILITYSET)

The TS_BRUSH_CAPABILITYSET advertises client brush support. This capability is only sent from
client to server.

1 2
0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3|4|5|6(7|8|9|0(1

w

capabilitySetType lengthCapability

brushSupportLevel

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_BRUSH (15).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

brushSupportLevel (4 bytes): A 32-bit, unsigned integer. The maximum brush level supported by
the client.

149 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Value Meaning

BRUSH_DEFAULT Support for solid-color and monochrome pattern brushes with no

0x00000000 caching. This is an RDP 4.0 implementation.

BRUSH_COLOR_8x8 Ability to handle color brushes (4-bit or 8-bit in RDP 5.0; 4-bit, 8-bit,

0x00000001 16-bit, or 24-bit in all other RDP versions, except for RDP 4.0) and
caching. Brushes are limited to 8-by-8 pixels.

BRUSH_COLOR_FULL Ability to handle color brushes (4-bit or 8-bit in RDP 5.0; 4-bit, 8-bit,

0x00000002 16-bit, or 24-bit in all other RDP versions, except for RDP 4.0) and

caching. Brushes can have arbitrary dimensions.

2.2.7.1.8 Glyph Cache Capability Set (TS_GLYPHCACHE_CAPABILITYSET)

The TS_GLYPHCACHE_CAPABILITYSET structure advertises the glyph support level and associated
cache sizes. This capability is only sent from client to server.

1
0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]|1

N
w

capabilitySetType lengthCapability

GlyphCache (40 bytes)

FragCache

GlyphSupportLevel pad2octets

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_GLYPHCACHE (16).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

GlyphCache (40 bytes): An array of 10 TS CACHE DEFINITION structures. An ordered specification
of the layout of each of the glyph caches with IDs 0 through to 9 ([MS-RDPEGDI] section
3.1.1.1.2).

FragCache (4 bytes): Fragment cache data. The maximum number of entries allowed in the cache is
256, and the largest allowed maximum size of an element is 256 bytes.

GlyphSupportLevel (2 bytes): A 16-bit, unsigned integer. The level of glyph support.

Value Meaning

GLYPH_SUPPORT_NONE The client does not support glyph caching. All text output will be sent to the
0x0000 client as expensive Bitmap Updates (sections 2.2.9.1.1.3.1.2 and
2.2.9.1.2.1.2).

GLYPH_SUPPORT_PARTIAL | Indicates support for Revision 1 Cache Glyph Secondary Drawing Orders ([MS-

150 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

Value Meaning

0x0001 RDPEGDI] section 2.2.2.2.1.2.5).
GLYPH_SUPPORT_FULL Indicates support for Revision 1 Cache Glyph Secondary Drawing Orders ([MS-
0x0002 RDPEGDI] section 2.2.2.2.1.2.5).

GLYPH_SUPPORT_ENCODE | Indicates support for Revision 2 Cache Glyph Secondary Drawing Orders ([MS-
0x0003 RDPEGDI] section 2.2.2.2.1.2.6).

If the GlyphSupportLevel is greater than GLYPH_SUPPORT_NONE (0), the client MUST support
the GlyphIndex Primary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.1.2.13) or the FastIndex
Primary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.1.2.14). If the FastIndex Primary
Drawing Order is not supported, then support for the GlyphIndex Primary Drawing Order is
assumed by the server (order support is specified in the Order Capability Set, as described in
section 2.2.7.1.3).

pad2octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.1.8.1 Cache Definition (TS_CACHE_DEFINITION)

The TS_CACHE_DEFINITION structure specifies details about a particular cache in the Glyph Capability
Set (section 2.2.7.1.8) structure.

e

2 3
0(1|/2|3(4(5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

CacheEntries CacheMaximumCellSize

CacheEntries (2 bytes): A 16-bit, unsigned integer. The number of entries in the cache. The
maximum number of entries allowed in a cache is 254, and the largest allowed maximum size of
an element is 2048 bytes.

CacheMaximumcCellSize (2 bytes): A 16-bit, unsigned integer. The maximum size in bytes of an
entry in the cache.

2.2.7.1.9 Offscreen Bitmap Cache Capability Set (TS_OFFSCREEN_CAPABILITYSET)

The TS_OFFSCREEN_CAPABILITYSET structure is used to advertise support for offscreen bitmap
caching ([MS-RDPEGDI] section 3.1.1.1.5). This capability is only sent from client to server.

1
0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]|1

N
w

capabilitySetType lengthCapability

offscreenSupportLevel

offscreenCacheSize offscreenCacheEntries

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_OFFSCREENCACHE (17).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

offscreenSupportLevel (4 bytes): A 32-bit, unsigned integer. Offscreen bitmap cache support level.

151 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

Value Meaning

FALSE Offscreen bitmap cache is not supported.
0x00000000

TRUE Offscreen bitmap cache is supported.
0x00000001

offscreenCacheSize (2 bytes): A 16-bit, unsigned integer. The maximum size, in kilobytes, of the
client-side offscreen bitmap cache.

offscreenCacheEntries (2 bytes): A 16-bit, unsigned integer. The maximum number of cache
entries allowed in the client-side offscreen bitmap cache.

2.2.7.1.10 Virtual Channel Capability Set (TS_VIRTUALCHANNEL_CAPABILITYSET)

The TS_VIRTUALCHANNEL_CAPABILITYSET structure is used to advertise virtual channel support
characteristics. This capability is sent by both client and server.

1 2 3
0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

capabilitySetType lengthCapability

flags

VCChunkSize (optional)

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_VIRTUALCHANNEL (20).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

flags (4 bytes): A 32-bit, unsigned integer. Virtual channel compression flags.

Flag Meaning

VCCAPS_NO_COMPR Virtual channel compression is not supported.

0x00000000

VCCAPS_COMPR_SC Indicates to the server that virtual channel compression is supported by the
0x00000001 client for server-to-client traffic. The highest compression level supported by the

client is advertised in the Client Info PDU (section 2.2.1.11).

VCCAPS_COMPR_CS_8K | Indicates to the client that virtual channel compression is supported by the
0x00000002 server for client-to-server traffic (the compression level is limited to RDP 4.0
bulk compression).

VCChunkSize (4 bytes): A 32-bit unsigned integer. When sent from server to client, this field
contains the maximum allowed size of a virtual channel chunk. When sent from client to server,
the value in this field is ignored by the server; the server determines the maximum virtual channel
chunk size. This value MUST be greater than or equal to CHANNEL_CHUNK_LENGTH and less than
or equal to 16256.

2.2.7.1.11 Sound Capability Set (TS_SOUND_CAPABILITYSET)

152 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

The TS_SOUND_CAPABILITYSET structure advertises the ability to play a "beep" sound. This capability
is sent only from client to server.

1 2
0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

w

capabilitySetType lengthCapability

soundFlags pad2octetsA

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_SOUND (12).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

soundFlags (2 bytes): A 16-bit, unsigned integer. Support for sound options.

Flag Meaning

SOUND_FLAG_BEEPS | Playing a beep sound is supported.
0x0001

If the client advertises support for beeps, it MUST support the Play Sound PDU (section
2.2.9.1.1.5).

pad2octetsA (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.2 Optional Capability Sets

2.2.7.2.1 Bitmap Cache Host Support Capability Set
(TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET)

The TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET structure is used to advertise support for
persistent bitmap caching ([MS-RDPEGDI] section 3.1.1.1.1). This capability set is only sent from
server to client.

1 2
0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

w

capabilitySetType lengthCapability

cacheVersion padil pad2

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_BITMAPCACHE_HOSTSUPPORT (18).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

cacheVersion (1 byte): An 8-bit, unsigned integer. Cache version. This field MUST be set to
TS_BITMAPCACHE_REV2 (0x01), which indicates support for the Revision 2 bitmap caches ([MS-
RDPEGDI] section 3.1.1.1.1).

padl (1 byte): An 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.

153 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

pad2 (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.2.2 Control Capability Set (TS_CONTROL_CAPABILITYSET)

The TS_CONTROL_CAPABILITYSET structure is used by the client to advertise control capabilities and
is fully described in [T128] section 8.2.10. This capability is only sent from client to server and the
server ignores its contents.

1
0(1|/2|3(4|(5|6|(7|8|9|0(1|2|3(4|5|6(|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

N
w

capabilitySetType lengthCapability
controlFlags remoteDetachFlag
controllnterest detachlInterest

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_CONTROL (5).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

controlFlags (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to zero.

remoteDetachFlag (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to FALSE
(0x0000).

controlInterest (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to
CONTROLPRIORITY_NEVER (0x0002).

detachInterest (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to
CONTROLPRIORITY_NEVER (0x0002).

2.2.7.2.3 Window Activation Capability Set
(TS_WINDOWACTIVATION_CAPABILITYSET)

The TS_WINDOWACTIVATION_CAPABILITYSET structure is used by the client to advertise window
activation characteristics capabilities and is fully specified in [T128] section 8.2.9. This capability is
only sent from client to server and the server ignores its contents.

1
0(1|/2|3(4|(5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

N
w

capabilitySetType lengthCapability
helpKeyFlag helpKeyIndexFlag
helpExtendedKeyFlag windowManagerKeyFlag

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_ACTIVATION (7).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

154 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90544
https://go.microsoft.com/fwlink/?LinkId=90544

helpKeyFlag (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to FALSE (0x0000).

helpKeyIndexFlag (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to FALSE
(0x0000).

helpExtendedKeyFlag (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to FALSE
(0x0000).

windowManagerKeyFlag (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to FALSE
(0x0000).

2.2.7.2.4 Share Capability Set (TS_SHARE_CAPABILITYSET)

The TS_SHARE_CAPABILITYSET structure is used to advertise the channel ID of the sender and is fully
specified in [T128] section 8.2.12. This capability is sent by both client and server.

1 2 3
0(1|2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

capabilitySetType lengthCapability

nodelD pad2octets

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_SHARE (9).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

nodelID (2 bytes): A 16-bit, unsigned integer. This field SHOULD be set to zero by the client and to
the server channel ID by the server (0Ox03EA).

pad2octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.7.2.5 Font Capability Set (TS_FONT_CAPABILITYSET)

The TS_FONT_CAPABILITYSET structure is used to advertise font support options. This capability is
sent by both client and server.

w

1 2
0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]|1

capabilitySetType lengthCapability

fontSupportFlags pad2octets

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of the capability set. This field
MUST be set to CAPSTYPE_FONT (14).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

fontSupportFlags (2 bytes): A 16-bit, unsigned integer. The font support options. This field
SHOULD be set to FONTSUPPORT_FONTLIST (0x0001).

pad2octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

155/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90544

2.2.7.2.6 Multifragment Update Capability Set
(TS_MULTIFRAGMENTUPDATE_CAPABILITYSET)

The TS_MULTIFRAGMENTUPDATE_CAPABILITYSET structure is used to specify capabilities related to
the fragmentation and reassembly of Fast-Path Updates (section 2.2.9.1.2.1). This capability is sent
by both client and server.

N
w

1
0(1|/2|3(4|(5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

capabilitySetType lengthCapability

MaxRequestSize

capabilitySetType (2 bytes): A 16-bit, unsigned integer. Type of the capability set. This field MUST
be set to CAPSETTYPE_MULTIFRAGMENTUPDATE (26).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

MaxRequestSize (4 bytes): A 32-bit, unsigned integer. The size of the buffer used to reassemble
the fragments of a Fast-Path Update (section 2.2.9.1.2.1). The size of this buffer places a cap on
the size of the largest Fast-Path Update that can be fragmented (there MUST always be enough
buffer space to hold all of the related Fast-Path Update fragments for reassembly).

2.2.7.2.7 Large Pointer Capability Set (TS_LARGE_POINTER_CAPABILITYSET)

The TS_LARGE_POINTER_CAPABILITYSET structure is used to specify capabilities related to large
mouse pointer shape support. This capability is sent by both client and server.

To support large pointer shapes, the client and server MUST support multifragment updates and
indicate this support by exchanging the Multifragment Update Capability Set (section 2.2.7.2.6). The
MaxRequestSize field of the Multifragment Update Capability Set MUST be set based on the flags
included in the largePointerSupportFlags field. If only the LARGE_POINTER_FLAG_96x96
(0x00000001) flag is specified, then the MaxRequestSize field MUST be set to at least 38,055 bytes
(so that a 96 x 96 pixel 32bpp pointer can be transported). If the LARGE_POINTER_FLAG_384x384
(0x00000002) flag is included, then the MaxRequestSize MUST be set to at least 608,299 bytes (so
that a 384 x 384 pixel 32bpp pointer can be transported).

N
w

1
0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]|1

capabilitySetType lengthCapability

largePointerSupportFlags

capabilitySetType (2 bytes): A 16-bit, unsigned integer. Type of the capability set. This field MUST
be set to CAPSETTYPE_LARGE_POINTER (27).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data,
including the size of the capabilitySetType and lengthCapability fields.

largePointerSupportFlags (2 bytes): Support for large pointer shapes.

156 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Flag Meaning

LARGE_POINTER_FLAG_96x96 Mouse pointer shapes of up to 96x96 pixels in size are supported.
0x00000001

LARGE_POINTER_FLAG_384x384 | Mouse pointer shapes of up to 384x384 pixels in size, and the Fast-Path
0x00000002 Large Pointer Update (section 2.2.9.1.2.1.11), are supported.

Mouse pointer shapes are used by the following pointer updates:
= Color Pointer Update (section 2.2.9.1.1.4.4)

= New Pointer Update (section 2.2.9.1.1.4.5)

» Fast-Path Color Pointer Update (section 2.2.9.1.2.1.7)

= Fast-Path New Pointer Update (section 2.2.9.1.2.1.8)

» Fast-Path Large Pointer Update (section 2.2.9.1.2.1.11)

The pointer shape data is contained within the AND and XOR masks encapsulated in each of these
updates.

2.2.7.2.8 Desktop Composition Capability Set (TS_COMPDESK_CAPABILITYSET)

The TS_COMPDESK_CAPABILITYSET structure is used to support desktop composition. This capability
is sent by both client and server.

1 2 3
0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

capabilitySetType lengthCapability

CompDeskSupportLevel

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of capability set. This field MUST
be set to 0x0019 (CAPSETTYPE_COMPDESK).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data.

CompDeskSupportLevel (2 bytes): A 16-bit, unsigned integer. The desktop composition support
level.

Value Meaning

COMPDESK_NOT_SUPPORTED | Desktop composition services are not supported.
0x0000

COMPDESK_SUPPORTED Desktop composition services are supported.
0x0001

2.2.7.2.9 Surface Commands Capability Set (TS_SURFCMDS_CAPABILITYSET)

The TS_SURFCMDS_CAPABILITYSET structure advertises support for Surface
Commands (section 2.2.9.2). This capability is sent by both the client and the server.

157 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

capabilitySetType lengthCapability

cmdFlags

reserved

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of capability set. This field MUST
be set to 0x001C (CAPSETTYPE_SURFACE_COMMANDS).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data.

cmdFlags (4 bytes): A 32-bit, unsigned integer. Flags indicating which Surface Commands are
supported.

Flag Meaning

SURFCMDS_SETSURFACEBITS The Set Surface Bits Command (section 2.2.9.2.1) is supported.
0x00000002

SURFCMDS_FRAMEMARKER The Frame Marker Command (section 2.2.9.2.3) is supported.
0x00000010

SURFCMDS_STREAMSURFACEBITS | The Stream Surface Bits Command (section 2.2.9.2.2) is
0x00000040 supported.

If the client advertises support for surface commands, it MUST also indicate support for fast-path
output by setting the FASTPATH_OUTPUT_SUPPORTED (0x0001) flag in the extraFlags field of
the General Capability Set (section 2.2.7.1.1).

reserved (4 bytes): This field is reserved for future use and has no effect on the RDP wire traffic. It
MUST be set to zero.

2.2.7.2.10 Bitmap Codecs Capability Set (TS_BITMAPCODECS_CAPABILITYSET)

The TS_BITMAPCODECS_CAPABILITYSET structure advertises support for bitmap encoding and
decoding codecs used in conjunction with the Set Surface Bits Surface Command (section 2.2.9.2.1)
and Cache Bitmap (Revision 3) Secondary Drawing Order ([MS-RDPEGDI] section 2.2.2.2.1.2.8). This
capability is sent by both the client and server.

N
w

1
0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

capabilitySetType lengthCapability

supportedBitmapCodecs (variable)

capabilitySetType (2 bytes): A 16-bit, unsigned integer. The type of capability set. This field MUST
be set to 0x001D (CAPSETTYPE_BITMAP_CODECS).

lengthCapability (2 bytes): A 16-bit, unsigned integer. The length in bytes of the capability data.

158 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

supportedBitmapCodecs (variable): A variable-length field containing a TS_BITMAPCODECS
structure (section 2.2.7.2.10.1).

2.2.7.2.10.1 Bitmap Codecs (TS_BITMAPCODECS)

The TS_BITMAPCODECS structure contains an array of bitmap codec capabilities.

e

2
0(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

w

bitmapCodecCount bitmapCodecArray (variable)

bitmapCodecCount (1 byte): An 8-bit, unsigned integer. The number of bitmap codec capability
entries contained in the bitmapCodecArray field (the maximum allowed is 255).

bitmapCodecArray (variable): A variable-length array containing a series of TS_BITMAPCODEC
structures (section 2.2.7.2.10.1.1) that describes the supported bitmap codecs. The number of
TS_BITMAPCODEC structures contained in the array is given by the bitmapCodecCount field.

2.2.7.2.10.1.1 Bitmap Codec (TS_BITMAPCODEC)

The TS_BITMAPCODEC structure is used to describe the encoding parameters of a bitmap codec.

—
N
w

0(1|/2|3(4(5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

codecGUID (16 bytes)

codecID codecPropertiesLength codecProperties (variable)

codecGUID (16 bytes): A Globally Unique Identifier (section 2.2.7.2.10.1.1.1) that functions as a
unique ID for each bitmap codec.

Value Meaning

CODEC_GUID_NSCODEC The Bitmap Codec structure defines encoding parameters for the
{0xCA8D1BB9, 0x000F, Ox154F, 0x58, NSCodec Bitmap Codec ([MS-RDPNSC] sections 2 and 3). The
0X9F, OXAE, 0x2D, Ox1A, 0x87, OXE2, codecProperties field MUST contain an NSCodec Capability Set
0xD6} ([MS-RDPNSC] section 2.2.1) structure.

CODEC_GUID_REMOTEFX The Bitmap Codec structure defines encoding parameters for the
{0x76772F12, 0xBD72, 0x4463, OXAF RemoteFX Bitmap Codec (MS-RDPRFX] sections 2 and 3) The

0xB3, 0xB7, 0x3C, 0x9C, Ox6F, 0x78 codecProperties field MUST contain a
0x86) ' ' ' ' " | TS_RFX_CLNT_CAPS_CONTAINER ([MS-RDPRFX] section 2.2.1.1)

structure or a TS_RFX_SRVR_CAPS_CONTAINER ([MS-RDPRFX]
section 2.2.1.2) structure.

CODEC_GUID_IMAGE_REMOTEFX The Bitmap Codec structure defines encoding parameters for the

159 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPNSC%5d.pdf#Section_543fd1f18074412289441017261810ca
%5bMS-RDPRFX%5d.pdf#Section_62495a4aa49546eab4595cde04c44549

Value Meaning

{0x2744CCD4, 0x9D8A, 0x4E74, RemoteFX Bitmap Codec ([MS-RDPRFX] sections 2 and 3)
0x80, 0x3C, 0x0E, 0xCB, OxEE, 0xA1, operating in image mode ([MS-RDPRFX] section 2.2.1.1.1.1). The
0x9C, 0x54} codecProperties field MUST contain a

TS_RFX_CLNT_CAPS_CONTAINER ([MS-RDPRFX] section 2.2.1.1)
structure or a TS_RFX_SRVR_CAPS_CONTAINER ([MS-RDPRFX]
section 2.2.1.2) structure.<31>

CODEC_GUID_IGNORE The Bitmap Codec structure MUST be ignored.

{0x9C4351A6, 0x3535, Ox42AE, 0x91,
0x0C, 0xCD, OxFC, OxE5, 0x76, 0x0B,
0x58Y}

codecID (1 byte): An 8-bit unsigned integer. When sent from the client to the server, this field
contains a unique 8-bit ID that can be used to identify bitmap data encoded using the codec in
wire traffic associated with the current connection - this ID is used in subsequent Set Surface Bits
commands (section 2.2.9.2.1) and Cache Bitmap (Revision 3) orders ([MS-RDPEGDI] section
2.2.2.2.1.2.8). When sent from the server to the client, the value in this field is ignored by the
client - the client determines the 8-bit ID to use for the codec. If the codecGUID field contains
the CODEC_GUID_NSCODEC GUID, then this field MUST be set to 0x01 (the codec ID 0x01 MUST
NOT be associated with any other bitmap codec).

codecPropertiesLength (2 bytes): A 16-bit, unsigned integer. The size in bytes of the
codecProperties field.

codecProperties (variable): A variable-length array of bytes containing data that describes the
encoding parameter of the bitmap codec. If the codecGUID field is set to
CODEC_GUID_NSCODEC, this field MUST contain an NSCodec Capability Set ([MS-RDPNSC]
section 2.2.1) structure. Otherwise, if the codecGUID field is set to CODEC_GUID_REMOTEFX,
this field MUST contain a TS_RFX_CLNT_CAPS_CONTAINER ([MS-RDPRFX] section 2.2.1.1)
structure when sent from client to server, and a TS_RFX_SRVR_CAPS_CONTAINER ([MS-RDPRFX]
section 2.2.1.2) structure when sent from server to client.

2.2.7.2.10.1.1.1 Globally Unique Identifier (GUID)

The GUID structure contains 128 bits that represent a globally unique identifier that can be used to
provide a distinctive reference number, as specified in [MS-DTYP] section 2.3.4.

-
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

codecGUID1

codecGUID2 codecGUID3

codecGUID4 codecGUID5S codecGUID6 codecGUID7

codecGUIDS8 codecGUID9 codecGUID10 codecGUID11

codecGUID1 (4 bytes): A 32-bit, unsigned integer. The first GUID component.
codecGUID2 (2 bytes): A 16-bit, unsigned integer. The second GUID component.
codecGUID3 (2 bytes): A 16-bit, unsigned integer. The third GUID component.

codecGUID4 (1 byte): An 8-bit, unsigned integer. The fourth GUID component.

160 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

codecGUIDS5 (1 byte): An 8-bit, unsigned integer. The fifth GUID component.
codecGUIDG6 (1 byte): An 8-bit, unsigned integer. The sixth GUID component.
codecGUID7 (1 byte): An 8-bit, unsigned integer. The seventh GUID component.
codecGUIDS8 (1 byte): An 8-bit, unsigned integer. The eighth GUID component.
codecGUIDY9 (1 byte): An 8-bit, unsigned integer. The ninth GUID component.
codecGUID10 (1 byte): An 8-bit, unsigned integer. The tenth GUID component.

codecGUID11 (1 byte): An 8-bit, unsigned integer. The eleventh GUID component.
2.2.8 Keyboard and Mouse Input

2.2.8.1 Input PDU Packaging
2.2.8.1.1 Slow-Path (T.128) Formats
2.2.8.1.1.1 Share Headers

2.2.8.1.1.1.1 Share Control Header (TS_SHARECONTROLHEADER)

The TS_SHARECONTROLHEADER header is a T.128 header ([T128] section 8.3) that MUST be present
in the following PDUs.

= Demand Active PDU (section 2.2.1.13.1).

= Confirm Active PDU (section 2.2.1.13.2).

» Deactivate All PDU (section 2.2.3.1).

= Enhanced Security Server Redirection PDU (section 2.2.13.3.1).
= All Data PDUs (section 2.2.8.1.1.1.2).

A definitive list of all Data PDUs is given in section 2.2.8.1.1.1.2 in the description of the pduType2
field.

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

totalLength pduType

pduSource

totalLength (2 bytes): A 16-bit unsigned integer. The total length of the packet in bytes (the length
includes the size of the Share Control Header). If the totalLength field equals 0x8000, then the
Share Control Header and any data that follows MAY be interpreted as a T.128 FlowPDU as
described in [T128] section 8.5 (the ASN.1 structure definition is detailed in [T128] section 9.1)
and MUST be ignored.

pduType (2 bytes): A 16-bit unsigned integer. It contains the PDU type and protocol version
information. The format of the pduType field is described by the following bitmask diagram.

161 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90544

w

1 2
0(1|/2|3(4|5|6(7|(8|9(0(1|2|3(4|5|6[7|8|9(0(1]|2|3(|4|5|6[|7|8|9|0(1

type PDUVersion

type (4 bits): A 4-bit unsigned integer that specifies the PDU type.

Value (4 bits) Meaning

PDUTYPE_DEMANDACTIVEPDU | Demand Active PDU (section 2.2.1.13.1).
Ox1

PDUTYPE_CONFIRMACTIVEPDU | Confirm Active PDU (section 2.2.1.13.2).
0x3

PDUTYPE_DEACTIVATEALLPDU | Deactivate All PDU (section 2.2.3.1).

0x6
PDUTYPE_DATAPDU Data PDU (actual type is revealed by the pduType2 field in the
0x7 Share Data Header (section 2.2.8.1.1.1.2) structure).

PDUTYPE_SERVER_REDIR_PKT | Enhanced Security Server Redirection PDU (section 2.2.13.3.1).
OxA

PDUVersion (12 bits): A 12-bit unsigned integer that specifies the PDU version.

pduSource (2 bytes): A 16-bit unsigned integer. The channel ID that is the transmission source of
the PDU.

2.2.8.1.1.1.2 Share Data Header (TS_SHAREDATAHEADER)

The TS_SHAREDATAHEADER header is a T.128 header ([T128] section 8.3) that MUST be present in
all Data PDUs. A definitive list of all Data PDUs is given in the description of the pduType2 field.

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

shareControlHeader

sharelD

padl streamID

uncompressedLength pduType2 compressedType

compressedLength

shareControlHeader (6 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing information
about the packet. The PDUVersion subfield of the pduType field of the Share Control Header
MUST be set to TS_PROTOCOL_VERSION (0x1).

sharelD (4 bytes): A 32-bit, unsigned integer. Share identifier for the packet (see [T128] section
8.4.2 for more information about share IDs).

padl (1 byte): An 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.

162 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90544

streamlID (1 byte): An 8-bit, unsigned integer. The stream identifier for the packet.

Value Meaning

STREAM_UNDEFINED | Undefined stream priority. This value might be used in the Server Synchronize PDU

0x00 (section 2.2.1.19) due to a server-side RDP bug. It MUST NOT be used in
conjunction with any other PDUs.

STREAM_LOW Low-priority stream.

0x01

STREAM_MED Medium-priority stream.

0x02

STREAM_HI High-priority stream.

0x04

uncompressedLength (2 bytes): A 16-bit, unsigned integer. The uncompressed length of the

packet in bytes.

pduType2 (1 byte): An 8

-bit, unsigned integer. The type of Data PDU.

Value

PDUTYPE2_UPDATE
0x02

Graphics Update PDU (section 2.2.9.1.1.3)

PDUTYPE2_CONTROL
0x14

Control PDU (section 2.2.1.15.1)

PDUTYPE2_POINTER
0x1B

Pointer Update PDU (section 2.2.9.1.1.4)

PDUTYPE2_INPUT

Input Event PDU (section 2.2.8.1.1.3)

0x1C
PDUTYPE2_SYNCHRONIZE Synchronize PDU (section 2.2.1.14.1)
Ox1F
PDUTYPE2_REFRESH_RECT Refresh Rect PDU (section 2.2.11.2.1)
0x21

PDUTYPE2_PLAY_SOUND
0x22

Play Sound PDU (section 2.2.9.1.1.5.1)

0x23

PDUTYPE2_SUPPRESS_OUTPUT Suppress Output PDU (section 2.2.11.3.1)

0x24

PDUTYPE2_SHUTDOWN_REQUEST Shutdown Request PDU (section 2.2.2.1.1)

0x25

PDUTYPE2_SHUTDOWN_DENIED Shutdown Request Denied PDU (section 2.2.2.2.1)

0x26

PDUTYPE2_SAVE_SESSION_INFO Save Session Info PDU (section 2.2.10.1.1)

PDUTYPE2_FONTLIST
0x27

Font List PDU (section 2.2.1.18.1)

[MS-RDPBCGR] - v20230920

163 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Value

Meaning

PDUTYPE2_FONTMAP
0x28

Font Map PDU (section 2.2.1.22.1)

PDUTYPE2_SET_KEYBOARD_INDICATORS
0x29

Set Keyboard Indicators PDU (section 2.2.8.2.1.1)

PDUTYPE2_BITMAPCACHE_PERSISTENT_LIST
0x2B

Persistent Key List PDU (section 2.2.1.17.1)

PDUTYPE2_BITMAPCACHE_ERROR_PDU
0x2C

Bitmap Cache Error PDU ([MS-RDPEGDI] section 2.2.2.3.1)

PDUTYPE2_SET_KEYBOARD_IME_STATUS
0x2D

Set Keyboard IME Status PDU (section 2.2.8.2.2.1)

PDUTYPE2_OFFSCRCACHE_ERROR_PDU
Ox2E

Offscreen Bitmap Cache Error PDU ([MS-RDPEGDI] section
2.2.2.3.2)

PDUTYPE2_SET_ERROR_INFO_PDU
0x2F

Set Error Info PDU (section 2.2.5.1.1)

PDUTYPE2_DRAWNINEGRID_ERROR_PDU
0x30

DrawNineGrid Cache Error PDU ([MS-RDPEGDI] section
2.2.2.3.3)

PDUTYPE2_DRAWGDIPLUS_ERROR_PDU
0x31

GDI+ Error PDU ([MS-RDPEGDI] section 2.2.2.3.4)

PDUTYPE2_ARC_STATUS_PDU
0x32

Auto-Reconnect Status PDU (section 2.2.4.1.1)

PDUTYPE2_STATUS_INFO_PDU
0x36

Status Info PDU (section 2.2.5.2)

PDUTYPE2_MONITOR_LAYOUT_PDU
0x37

Monitor Layout PDU (section 2.2.12.1)

compressedType (1 byte): An 8-bit, unsigned integer. The compression type and flags specifying
the data following the Share Data Header (section 2.2.8.1.1.1.2).

Flag Meaning

CompressionTypeMask | Indicates the package which was used for compression. See the table which follows
OXOF for a list of compression packages.

PACKET_COMPRESSED | The payload data is compressed. This flag is equivalent to MPPC bit C (for more

0x20 information see [RFC2118] section 3.1).

PACKET_AT_FRONT The decompressed packet MUST be placed at the beginning of the history buffer.

0x40 This flag is equivalent to MPPC bit B (for more information see [RFC2118] section
3.1).

PACKET_FLUSHED The decompressor MUST reinitialize the history buffer (by filling it with zeros) and

0x80 reset the HistoryOffset to zero. After it has been reinitialized, the entire history

buffer is immediately regarded as valid. This flag is equivalent to MPPC bit A (for
more information see [RFC2118] section 3.1). If the PACKET_COMPRESSED (0x20)
flag is also present, then the PACKET_FLUSHED flag MUST be processed first.

[MS-RDPBCGR] - v20230920

164 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad
https://go.microsoft.com/fwlink/?LinkId=90316

Instructions specifying how to set the compression flags can be found in section 3.1.8.2.1.

Possible compression types are as follows.

Value

Meaning

PACKET_COMPR_TYPE_8K
0x0

RDP 4.0 bulk compression (section 3.1.8.4.1).

PACKET_COMPR_TYPE_64K
Ox1

RDP 5.0 bulk compression (section 3.1.8.4.2).

PACKET_COMPR_TYPE_RDP6
0x2

RDP 6.0 bulk compression ([MS-RDPEGDI] section 3.1.8.1).

PACKET_COMPR_TYPE_RDP61
0x3

RDP 6.1 bulk compression ([MS-RDPEGDI] section 3.1.8.2).

Instructions specifying how to compress a data stream are listed in section 3.1.8.2, while
decompression of a data stream is described in section 3.1.8.3.

compressedLength (2 bytes):

bytes.

A 16-bit, unsigned integer. The compressed length of the packet in

2.2.8.1.1.2 Security Headers

2.2.8.1.1.2.1 Basic (TS_SECURITY_HEADER)

The TS_SECURITY_HEADER structure is used to store security flags.

=

0[(1(2|3|4|5|6|7|8|9|0

112|3|4|5(6(7(8[9(0(1|2|3|4|5|6|7|8(9|0|1

flags

flagsHi

flags (2 bytes): A 16-bit, unsigned integer that contains security flags.

Flag

Meaning

SEC_EXCHANGE_PKT
0x0001

Indicates that the packet is a Security Exchange PDU (section 2.2.1.10). This
packet type is sent from client to server only. The client only sends this
packet if it will be encrypting further communication and Standard RDP
Security mechanisms (section 5.3) are in effect.

SEC_TRANSPORT_REQ
0x0002

Indicates that the packet is an Initiate Multitransport Request PDU (section
2.2.15.1). This flag MUST NOT be present if the PDU containing the security
header is being sent from client to server.

This flag MUST NOT be present if the PDU containing the security header is

not being sent on the MCS message channel. The ID of the message channel
is specified in the Server Message Channel Data (section 2.2.1.4.5).

SEC_TRANSPORT_RSP
0x0004

Indicates that the packet is an Initiate Multitransport Response PDU (section
2.2.15.2). This flag MUST NOT be present if the PDU containing the security
header is being sent from server to client.

This flag MUST NOT be present if the PDU containing the security header is
not being sent on the MCS message channel. The ID of the message channel
is specified in the Server Message Channel Data (section 2.2.1.4.5).

[MS-RDPBCGR] - v20230920

165/ 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Flag

Meaning

SEC_ENCRYPT
0x0008

Indicates that the packet is encrypted.

SEC_RESET_SEQNO
0x0010

This flag is not processed by any RDP clients or servers and MUST be ignored.

SEC_IGNORE_SEQNO
0x0020

This flag is not processed by any RDP clients or servers and MUST be ignored.

SEC_INFO_PKT
0x0040

Indicates that the packet is a Client Info PDU (section 2.2.1.11). This packet
type is sent from client to server only. If Standard RDP Security mechanisms
are in effect, then this packet MUST also be encrypted.

SEC_LICENSE_PKT
0x0080

Indicates that the packet is a Licensing PDU (section 2.2.1.12).

SEC_LICENSE_ENCRYPT_CS
0x0200

Indicates to the client that the server is capable of processing encrypted
licensing packets. It is sent by the server together with any licensing PDUs
(section 2.2.1.12).

SEC_LICENSE_ENCRYPT_SC
0x0200

Indicates to the server that the client is capable of processing encrypted
licensing packets. It is sent by the client together with the
SEC_EXCHANGE_PKT flag when sending a Security Exchange PDU (section
2.2.1.10).

SEC_REDIRECTION_PKT
0x0400

Indicates that the packet is a Standard Security Server Redirection PDU
(section 2.2.13.2.1) and that the PDU is encrypted.

SEC_SECURE_CHECKSUM
0x0800

Indicates that the MAC for the PDU was generated using the "salted MAC
generation" technique (section 5.3.6.1.1). If this flag is not present, then the
standard technique was used (sections 2.2.8.1.1.2.2 and 2.2.8.1.1.2.3).

SEC_AUTODETECT_REQ
0x1000

Indicates that the packet is an Auto-Detect Request PDU (section 2.2.14.3).
This flag MUST NOT be present if the PDU containing the security header is
being sent from client to server.

This flag MUST NOT be present if the PDU containing the security header is
not being sent on the MCS message channel. The ID of the message channel
is specified in the Server Message Channel Data (section 2.2.1.4.5).

SEC_AUTODETECT_RSP
0x2000

Indicates that the packet is an Auto-Detect Response PDU (section 2.2.14.4).
This flag MUST NOT be present if the PDU containing the security header is
being sent from server to client.

This flag MUST NOT be present if the PDU containing the security header is
not being sent on the MCS message channel. The ID of the message channel
is specified in the Server Message Channel Data (2.2.1.4.5).

SEC_HEARTBEAT
0x4000

Indicates that the packet is a Heartbeat PDU (section 2.2.16.1). This flag
MUST NOT be present if the PDU containing the security header is not being
sent on the MCS message channel. The ID of the message channel is specified
in the Server Message Channel Data (2.2.1.4.5).

SEC_FLAGSHI_VALID
0x8000

Indicates that the flagsHi field contains valid data. If this flag is not set, then
the contents of the flagsHi field MUST be ignored.

flagsHi (2 bytes): A 16-bit, unsigned integer. This field is reserved for future use. It is currently
unused and all values are ignored. This field MUST contain valid data only if the
SEC_FLAGSHI_VALID bit (0x8000) is set in the flags field. If this bit is not set, the flagsHi field is
uninitialized and MAY contain random data.

[MS-RDPBCGR] - v20230920

166 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

2.2.8.1.1.2.2 Non-FIPS (TS_SECURITY_HEADER1)

The TS_SECURITY_HEADER1 structure extends the Basic Security Header (section 2.2.8.1.1.2.1) and
is used to store a 64-bit Message Authentication Code.

-
N
w

0(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

flags flagsHi

dataSignature

flags (2 bytes): A 16-bit, unsigned integer that contains security flags as specified in section
2.2.8.1.1.2.1.

flagsHi (2 bytes): A 16-bit, unsigned integer. This field is reserved for future use. It is currently
unused and all values are ignored. This field MUST contain valid data only if the
SEC_FLAGSHI_VALID bit (0x8000) is set in the flags field. If this bit is not set, the flagsHi field is
uninitialized and MAY contain random data.

dataSignature (8 bytes): A 64-bit Message Authentication Code generated by using one of the
techniques described in section 5.3.6.1.

2.2.8.1.1.2.3 FIPS (TS_SECURITY_HEADER2)

The TS_SECURITY_HEADER?2 structure extends the Basic Security Header (section 2.2.8.1.1.2.1) and
is used to store padding information and a 64-bit Message Authentication Code.

—
N
w

flags flagsHi

length version padlen

dataSignature

flags (2 bytes): A 16-bit, unsigned integer that contains security flags as specified in section
2.2.8.1.1.2.1.

flagsHi (2 bytes): A 16-bit, unsigned integer. This field is reserved for future use. It is currently
unused and all values are ignored. This field MUST contain valid data only if the
SEC_FLAGSHI_VALID bit (0x8000) is set in the flags field. If this bit is not set, the flagsHi field is
uninitialized and MAY contain random data.

length (2 bytes): A 16-bit, unsigned integer. The length of the FIPS security header. This field MUST
be set to 0x0010 (16 bytes).

version (1 byte): An 8-bit, unsigned integer. The version of the FIPS header. This field SHOULD be
set to TSFIPS_VERSION1 (0x01).

167 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

padlen (1 byte): An 8-bit, unsigned integer. The number of padding bytes of padding appended to
the end of the packet prior to encryption to make sure that the data to be encrypted is a multiple
of the 3DES block size (that is, a multiple of 8 because the block size is 64 bits).

dataSignature (8 bytes): A 64-bit Message Authentication Code generated by using the techniques
specified in section 5.3.6.2.

2.2.8.1.1.3 Client Input Event PDU (TS_INPUT_PDU)

The Input Event PDU is used to transmit input events from client to server.<32><33>

-
N
w

0(1(2|3|4|5|6|7|8|9|0(1|2[3[4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

tpktHeader

x224Data mcsSDrq (variable)

securityHeader (variable)

clientInputEventData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Request structure (SDrq, choice 25 from DomainMCSPDU), as
specified in [T125] section 11.32 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Request contains a Security Header
and a Client Input Event PDU Data (section 2.2.8.1.1.3.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

clientInputEventData (variable): The actual contents of the Client Input Event PDU, as specified in
section 2.2.8.1.1.3.1.

168 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

2.2.8.1.1.3.1 Client Input Event PDU Data (TS_INPUT_PDU_DATA)

The TS_INPUT_PDU_DATA structure contains a collection of Slow-Path Input Events (section
2.2.8.1.1.3.1.1) generated by the client and intended to be processed by the server.

-
N
w

0(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

shareDataHeader (18 bytes)

numEvents

pad20ctets slowPathInputEvents (variable)

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_INPUT (28).

numEvents (2 bytes): A 16-bit, unsigned integer. The number of Slow-Path Input Events packed
together in the slowPathInputEvents field.

pad2Octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

slowPathInputEvents (variable): A collection of Slow-Path Input Events to be processed by the
server. The number of events present in this array is given by the numEvents field.

2.2.8.1.1.3.1.1 Slow-Path Input Event (TS_INPUT_EVENT)

The TS_INPUT_EVENT structure is used to wrap event-specific information for all slow-path input
events.

-
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

eventTime

messageType slowPathInputData (variable)

eventTime (4 bytes): A 32-bit, unsigned integer. The 32-bit time stamp for the input event. This
value is ignored by the server.

messageType (2 bytes): A 16-bit, unsigned integer. The input event type.

Value Meaning

INPUT_EVENT_SYNC Indicates a Synchronize Event (section 2.2.8.1.1.3.1.1.5).

169 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Value Meaning

0x0000

INPUT_EVENT_UNUSED Indicates an Unused Event (section 2.2.8.1.1.3.1.1.6).
0x0002

INPUT_EVENT_SCANCODE | Indicates a Keyboard Event (section 2.2.8.1.1.3.1.1.1).
0x0004

INPUT_EVENT_UNICODE Indicates a Unicode Keyboard Event (section 2.2.8.1.1.3.1.1.2).
0x0005

INPUT_EVENT_MOUSE Indicates a Mouse Event (section 2.2.8.1.1.3.1.1.3).
0x8001

INPUT_EVENT_MOUSEX Indicates an Extended Mouse Event (section 2.2.8.1.1.3.1.1.4).
0x8002

INPUT_EVENT_MOUSEREL | Indicates a Relative Mouse Event (section 2.2.8.1.1.3.1.1.7).
0x8004

slowPathInputData (variable): TS_KEYBOARD_EVENT, TS_UNICODE_KEYBOARD_EVENT,
TS_POINTER_EVENT, TS_POINTERX_EVENT, TS_SYNC_EVENT, or TS_UNUSED_EVENT. The actual
contents of the input event specified by the messageType field (sections 2.2.8.1.1.3.1.1.1
through 2.2.8.1.1.3.1.1.6).

2.2.8.1.1.3.1.1.1 Keyboard Event (TS_KEYBOARD_EVENT)

The TS_KEYBOARD_EVENT structure is a standard T.128 Keyboard Event ([T128] section 8.18.2). RDP
keyboard input is restricted to keyboard scancodes, unlike the code-point or virtual codes supported in
T.128 (a scancode is an 8-bit value specifying a key location on the keyboard). The server accepts a
scancode value and translates it into the correct character depending on the language locale and
keyboard layout used in the session.

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

keyboardFlags keyCode

pad20ctets

keyboardFlags (2 bytes): A 16-bit, unsigned integer. The flags describing the keyboard event.

Flag Meaning

KBDFLAGS_EXTENDED Indicates that the keystroke message contains an extended scancode. For
0x0100 enhanced 101-key and 102-key keyboards, extended keys include the right ALT
and right CTRL keys on the main section of the keyboard; the INS, DEL, HOME,
END, PAGE UP, PAGE DOWN and ARROW keys in the clusters to the left of the
numeric keypad; and the Divide ("/") and ENTER keys in the numeric keypad.

KBDFLAGS_EXTENDED1 | Used to send keyboard events triggered by the PAUSE key.

0x0200 A PAUSE key press and release MUST be sent as the following sequence of
keyboard events:

= CTRL (0x1D) DOWN

170 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90544

Flag Meaning

= NUMLOCK (0x45) DOWN
= CTRL (0x1D) UP
= NUMLOCK (0x45) UP

The CTRL DOWN and CTRL UP events MUST both include the
KBDFLAGS_EXTENDED1 flag.

KBDFLAGS_DOWN Indicates that the key was down prior to this event.

0x4000

KBDFLAGS_RELEASE The absence of this flag indicates a key-down event, while its presence indicates a
0x8000 key-release event.

keyCode (2 bytes): A 16-bit, unsigned integer. The scancode of the key which triggered the event.
pad2Octets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2,8.1.1.3.1.1.2 Unicode Keyboard Event (TS_UNICODE_KEYBOARD_EVENT)

The TS_UNICODE_KEYBOARD_EVENT structure is used to transmit a Unicode input code, as opposed
to a keyboard scancode. Support for the Unicode Keyboard Event is advertised in the Input Capability
Set (section 2.2.7.1.6).

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]|9|0]|1

keyboardFlags unicodeCode

pad20ctets

keyboardFlags (2 bytes): A 16-bit unsigned integer. The flags describing the Unicode keyboard
event.

Flag Meaning

KBDFLAGS_RELEASE | The absence of this flag indicates a key-down event, whereas its presence indicates
0x8000 a key-release event.

unicodeCode (2 bytes): A 16-bit unsigned integer. The Unicode character input code.

pad20ctets (2 bytes): A 16-bit unsigned integer. Padding. Values in this field MUST be ignored.

2.2.8.1.1.3.1.1.3 Mouse Event (TS_POINTER_EVENT)

The TS_POINTER_EVENT structure is a standard T.128 Pointing Device Event ([T128] section 8.18.1).
RDP adds flags to deal with wheel mice and extended mouse buttons.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

pointerFlags xPos

yPos

171 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90544

Mouse wheel event.

pointerFlags (2 bytes): A 16-bit, unsigned integer. Contains flags that describe the pointer event.

Flag

Meaning

PTRFLAGS_HWHEEL
0x0400

The event is a horizontal mouse wheel rotation. The only valid flags in a
horizontal wheel rotation event are PTRFLAGS_WHEEL_NEGATIVE and the

WheelRotationMask; all other pointer flags are ignored. This flag MUST NOT
be sent to a server that does not indicate support for horizontal mouse
wheel events in the Input Capability Set (section 2.2.7.1.6).

PTRFLAGS_WHEEL
0x0200

The event is a vertical mouse wheel rotation. The only valid flags in a
vertical wheel rotation event are PTRFLAGS_WHEEL_NEGATIVE and the
WheelRotationMask; all other pointer flags are ignored.

PTRFLAGS_WHEEL_NEGATIVE
0x0100

The wheel rotation value (contained in the WheelRotationMask bit field) is
negative and MUST be sign-extended before injection at the server.

WheelRotationMask
Ox01FF

The bit field describing the number of rotation units the mouse wheel was
rotated. The value is negative if the PTRFLAGS_WHEEL_NEGATIVE flag is
set.

If both PTRFLAGS_WHEEL and PTRFLAGS_HWHEEL are specified, then PTRFLAGS_WHEEL takes
precedence.

Mouse movement event.

Flag Meaning

PTRFLAGS_MOVE
0x0800

Indicates that the mouse position MUST be updated to the location specified by the xPos
and yPos fields.

Mouse button events.

Flag Meaning

PTRFLAGS_DOWN
0x8000

Indicates that a press event has occurred at the position specified by the xPos and
yPos fields. The button flags indicate which button has been pressed and at least
one of these flags MUST be set.

PTRFLAGS_BUTTON1
0x1000

Mouse button 1 (left button) was pressed or released. If the PTRFLAGS_DOWN flag is
set, then the button was pressed, otherwise it was released.

PTRFLAGS_BUTTON2
0x2000

Mouse button 2 (right button) was pressed or released. If the PTRFLAGS_DOWN flag
is set, then the button was pressed, otherwise it was released.

PTRFLAGS_BUTTON3
0x4000

Mouse button 3 (middle button or wheel) was pressed or released. If the
PTRFLAGS_DOWN flag is set, then the button was pressed, otherwise it was
released.

xPos (2 bytes): A 16-bit, unsigned integer. The x-coordinate of the pointer relative to the top-left
corner of the server's desktop. This field SHOULD be ignored by the server if either the
PTRFLAGS_WHEEL (0x0200) or the PTRFLAGS_HWHEEL (0x0400) flag is specified in the
pointerFlags field.

yPos (2 bytes): A 16-bit, unsigned integer. The y-coordinate of the pointer relative to the top-left
corner of the server's desktop. This field SHOULD be ignored by the server if either the
PTRFLAGS_WHEEL (0x0200) or the PTRFLAGS_HWHEEL (0x0400) flag is specified in the
pointerFlags field.

172 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

2.2.8.1.1.3.1.1.4 Extended Mouse Event (TS_POINTERX_EVENT)

The TS_POINTERX_EVENT structure has the same format as the

TS POINTER EVENT (section 2.2.8.1.1.3.1.1.3). The fields and possible field values are all the same,
except for the pointerFlags field. Support for the Extended Mouse Event is advertised in the Input
Capability Set (section 2.2.7.1.6).

-
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

pointerFlags xPos

yPos

pointerFlags (2 bytes): A 16-bit unsigned integer. Contains flags that describe the extended mouse

event.
Flag Meaning
PTRXFLAGS_DOWN Indicates that a press event has occurred at the position specified by the xPos and
0x8000 yPos fields. The button flags indicate which button has been pressed and at least

one of these flags MUST be set.

PTRXFLAGS_BUTTON1 | Extended mouse button 1 (also referred to as button 4) was pressed or released. If
0x0001 the PTRXFLAGS_DOWN flag is set, the button was pressed; otherwise, it was
released.

PTRXFLAGS_BUTTONZ2 | Extended mouse button 2 (also referred to as button 5) was pressed or released. If
0x0002 the PTRXFLAGS_DOWN flag is set, the button was pressed; otherwise, it was
released.

xPos (2 bytes): A 16-bit unsigned integer. The x-coordinate of the pointer.

yPos (2 bytes): A 16-bit unsigned integer. The y-coordinate of the pointer.

2.2.8.1.1.3.1.1.5 Synchronize Event (TS_SYNC_EVENT)

The TS_SYNC_EVENT structure is a standard T.128 Input Synchronize Event ([T128] section 8.18.6).
In RDP this event is used to synchronize the values of the toggle keys (for example, Caps Lock) and to
reset the server key state to all keys up. This event is sent by the client to communicate the state of
the toggle keys. The synchronize event SHOULD be followed by key-down events to communicate
which keyboard and mouse keys are down.

-
N
w

0(1|/2|3(4|(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

pad20ctets toggleFlags

pad2O0ctets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

toggleFlags (4 bytes): A 32-bit, unsigned integer. Flags indicating the "on" status of the keyboard
toggle keys.

173/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90544

Flag Meaning

TS_SYNC_SCROLL_LOCK | Indicates that the Scroll Lock indicator light SHOULD be on.
0x00000001

TS_SYNC_NUM_LOCK Indicates that the Num Lock indicator light SHOULD be on.
0x00000002

TS_SYNC_CAPS_LOCK Indicates that the Caps Lock indicator light SHOULD be on.
0x00000004

TS_SYNC_KANA_LOCK Indicates that the Kana Lock indicator light SHOULD be on.
0x00000008

2.2.8.1.1.3.1.1.6 Unused Event (TS_UNUSED_EVENT)

The TS_UNUSED_EVENT structure is sent by RDP 4.0, 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, and 7.1 clients if
the server erroneously did not indicate support for scancodes in the Input Capability Set
(TS _INPUT CAPABILITYSET) (section 2.2.7.1.6).

pad20ctets

pad4Octets (4 bytes): A 32-bit, unsigned integer. This field is padding, and the values in this field
MUST be ignored.

pad2O0ctets (2 bytes): A 32-bit, unsigned integer. This field is padding, and the values in this field
MUST be ignored.

2.2.8.1.1.3.1.1.7 Relative Mouse Event (TS_RELPOINTER_EVENT)

The TS_RELPOINTER_EVENT structure is used to specify relative mouse pointer movement (as
opposed to absolute positioning). Support for the Relative Mouse Event is advertised in the Input

Capability Set (section 2.2.7.1.6).

-
N
w

0(1|/2|3(4|(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

pointerFlags xDelta

yDelta

pointerFlags (2 bytes): A 16-bit unsigned integer. Contains flags that describe the pointer event.

Mouse movement event.

Flag Meaning

PTRFLAGS_MOVE | Indicates that the mouse pointer MUST be moved using the delta specified by the xDelta
and yDelta fields.

174 / 444

[MS-RDPBCGR] - v20230920
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Flag Meaning

0x0800

Mouse button events.

Flag Meaning

PTRFLAGS_DOWN Indicates that a press event has occurred at the position resulting from the

0x8000 application of the xDelta and yDelta fields to the previous position. The button
flags indicate which button has been pressed and at least one of these flags MUST
be set.

PTRFLAGS_BUTTON1 Mouse button 1 (left button) was pressed or released. If the PTRFLAGS_DOWN flag
0x1000 is set, then the button was pressed; otherwise, it was released.

PTRFLAGS_BUTTONZ2 Mouse button 2 (right button) was pressed or released. If the PTRFLAGS_DOWN
0x2000 flag is set, then the button was pressed; otherwise, it was released.

PTRFLAGS_BUTTON3 Mouse button 3 (middle button or wheel) was pressed or released. If the
0x4000 PTRFLAGS_DOWN flag is set, then the button was pressed; otherwise, it was
released.

PTRXFLAGS_BUTTON1 | Extended mouse button 1 (also referred to as button 4) was pressed or released. If
0x0001 the PTRXFLAGS_DOWN flag is set, the button was pressed; otherwise, it was
released.

PTRXFLAGS_BUTTON2 | Extended mouse button 2 (also referred to as button 5) was pressed or released. If
0x0002 the PTRXFLAGS_DOWN flag is set, the button was pressed; otherwise, it was
released.

xDelta (2 bytes): A 16-bit signed integer. The distance the pointer has moved on the x-axis since
the previous position update was sent. Negative values indicate that the pointer is moving to the
left.

yDelta (2 bytes): A 16-bit signed integer. The distance the pointer has moved on the y-axis since
the previous position update was sent. Negative values indicate that the pointer is moving up.

2.2.8.1.2 Client Fast-Path Input Event PDU (TS_FP_INPUT_PDU)

The Fast-Path Input Event PDU is used to transmit input events from client to server.<34> Fast-path
revises client input packets from the first byte with the goal of improving bandwidth. The TPKT Header
([T123] section 8), X.224 Class 0 Data TPDU ([X224] section 13.7), and MCS Send Data Request
([T125] section 11.32) are replaced; the Security Header (section 2.2.8.1.1.2) is collapsed into the
fast-path input header, and the Share Data Header (section 2.2.8.1.1.1.2) is replaced by a new fast-
path format. The contents of the input notification events (section 2.2.8.1.1.3.1.1) are also changed
to reduce their size, particularly by removing or reducing headers. Support for fast-path input is
advertised in the Input Capability Set (section 2.2.7.1.6).

e

2 3
0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

fpInputHeader lengthl length2 (optional) fipsInformation (optional)

dataSignature (optional)

175/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

numEvents (optional)

fpInputEvents (variable)

fpInputHeader (1 byte): An 8-bit, unsigned integer. One-byte, bit-packed header. This byte
coincides with the first byte of the TPKT Header ([T123] section 8). Three pieces of information
are collapsed into this byte:

Security flags

Number of events in the fast-path input PDU

Action code

The format of the fpInputHeader byte is described by the following bitmask diagram.

0

1

e

2(3|4|5(6|7|8[|9|0|1(2|3

N
w

action| numEvents | flags

action (2 bits): A 2-bit, unsigned integer that indicates whether the PDU is in fast-path or slow-
path format.

Value (2 bits)

Meaning

FASTPATH_INPUT_ACTION_FASTPATH
0x0

Indicates the PDU is a fast-path input PDU.

FASTPATH_INPUT_ACTION_X224
0x3

Indicates the presence of a TPKT Header initial version byte,
which indicates that the PDU is a slow-path input PDU (in this
case the full value of the initial byte MUST be 0x03).

numEvents (4 bits): A 4-bit, unsigned integer that collapses the number of fast-path input
events packed together in the fpInputEvents field into 4 bits if the number of events is in the
range 1 to 15. If the number of input events is greater than 15, then the numEvents bit field
in the fast-path header byte MUST be set to zero, and the numEvents optional field inserted
after the dataSignature field. This allows up to 255 input events in one PDU.

flags (2 bits): A 2-bit, unsigned integer that contains the flags describing the cryptographic
parameters of the PDU.

Flag (2 bits)

Meaning

FASTPATH_INPUT_SECURE_CHECKSUM
0Ox1

Indicates that the MAC signature for the PDU was generated
using the "salted MAC generation" technique (section
5.3.6.1.1). If this bit is not set, then the standard technique
was used (sections 2.2.8.1.1.2.2 and 2.2.8.1.1.2.3).

FASTPATH_INPUT_ENCRYPTED
0x2

Indicates that the PDU contains an 8-byte MAC signature
after the optional length2 field (that is, the dataSignature
field is present) and the contents of the PDU are encrypted
using the negotiated encryption package (sections 5.3.2 and
5.3.6).

[MS-RDPBCGR] - v20230920
Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

176 / 444

lengthl (1 byte): An 8-bit, unsigned integer. If the most significant bit of the length1 field is not
set, then the size of the PDU is in the range 1 to 127 bytes and the length1 field contains the
overall PDU length (the length2 field is not present in this case). However, if the most significant
bit of the length1 field is set, then the overall PDU length is given by the low 7 bits of the length1
field concatenated with the 8 bits of the length2 field, in big-endian order (the length2 field
contains the low-order bits). The overall PDU length SHOULD be less than or equal to 16,383
bytes.

length2 (1 byte): An 8-bit, unsigned integer. If the most significant bit of the length1 field is not
set, then the length2 field is not present. If the most significant bit of the length1 field is set,
then the overall PDU length is given by the low 7 bits of the length1 field concatenated with the 8
bits of the length2 field, in big-endian order (the length2 field contains the low-order bits). The
overall PDU length SHOULD be less than or equal to 16,383 bytes.

fipsInformation (4 bytes): An optional Fast-Path FIPS Information (section 2.2.8.1.2.1) structure,
present when the Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3) is
ENCRYPTION_METHOD_FIPS (0x00000010).

dataSignature (8 bytes): MAC generated over the packet using one of the techniques described in
section 5.3.6 (the FASTPATH_INPUT_SECURE_CHECKSUM flag, which is set in the
fpInputHeader field, describes the method used to generate the signature). This field MUST be
present if the FASTPATH_INPUT_ENCRYPTED flag is set in the fpInputHeader field.

numEvents (1 byte): An 8-bit, unsigned integer. The number of fast-path input events packed
together in the fpInputEvents field (up to 255). This field is present if the numEvents bit field in
the fast-path header byte is zero.

fpInputEvents (variable): An array of Fast-Path Input Event (section 2.2.8.1.2.2) structures to be
processed by the server. The number of events present in this array is given by the numEvents
bit field in the fast-path header byte, or by the numEvents field in the Fast-Path Input Event PDU
(if it is present).

2.2.8.1.2.1 Fast-Path FIPS Information (TS_FP_FIPS_INFO)

The TS_FP_FIPS_INFO structure contains FIPS information for inclusion in a fast-path header.

=

2
0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

w

length version padlen

length (2 bytes): A 16-bit, unsigned integer. The length of the FIPS Security Header (section
2.2.8.1.1.2.3). This field MUST be set to 0x0010 (16 bytes).

version (1 byte): An 8-bit, unsigned integer. The version of the FIPS Header. This field SHOULD be
set to TSFIPS_VERSION1 (0x01).

padlen (1 byte): An 8-bit, unsigned integer. The number of padding bytes of padding appended to
the end of the packet prior to encryption to make sure that the data to be encrypted is a multiple
of the 3DES block size (that is, a multiple of 8 because the block size is 64 bits).

2.2.8.1.2.2 Fast-Path Input Event (TS_FP_INPUT_EVENT)

The TS_FP_INPUT_EVENT structure is used to describe the type and encapsulate the data for a
fast-path input event sent from client to server. All fast-path input events conform to this basic
structure (sections 2.2.8.1.2.2.1 t0 2.2.8.1.2.2.6).

177 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

1 2 3
0({1(2|3|4|5|6|7|8|9|(0(1|2(3[|4|5|/6|7|8|9|0|1|2|3|4|5|6[7[(8|9|0]1
eventHeader eventData (variable)

eventHeader (1 byte): An 8-bit, unsigned integer. One byte bit-packed event header. Two pieces of

information are collapsed into this byte:

Fast-path input event type

Flags specific to the input event

The format of the eventHeader field is described by the following bitmask diagram.

=

1123 5(6|7

N
w

eventCod

eventFlags

eventFlags (5 bits): A 5-bit unsigned integer that contains flags specific to the input event.

eventCode (3 bits): A 3-bit unsigned integer

that specifies the type code of the input event.

Value (3 bits)

Meaning

FASTPATH_INPUT_EVENT_SCANCODE
0x0

Indicates a Fast-Path Keyboard
Event (section 2.2.8.1.2.2.1).

FASTPATH_INPUT_EVENT_MOUSE
Ox1

Indicates a Fast-Path Mouse
Event (section 2.2.8.1.2.2.3).

FASTPATH_INPUT_EVENT_MOUSEX
0x2

Indicates a Fast-Path Extended Mouse
Event (section 2.2.8.1.2.2.4).

FASTPATH_INPUT_EVENT_SYNC
0x3

Indicates a Fast-Path Synchronize
Event (section 2.2.8.1.2.2.5).

FASTPATH_INPUT_EVENT_UNICODE
0x4

Indicates a Fast-Path Unicode Keyboard
Event (section 2.2.8.1.2.2.2).

FASTPATH_INPUT_EVENT_MOUSEREL
0x5

Indicates a Fast Path Relative Mouse Event (section
2.2.8.1.2.2.7).

FASTPATH_INPUT_EVENT_QOE_TIMESTAMP
0x6

Indicates a Fast-Path Quality of Experience (QoE)
Timestamp Event (section 2.2.8.1.2.2.6).

eventData (variable): Optional and variable-length data specific to the input event.

2.2.8.1.2.2.1 Fast-Path Keyboard Event (TS_FP_KEYBOARD_EVENT)

The TS_FP_KEYBOARD_EVENT structure is the fast-path variant of the

TS KEYBOARD EVENT (section 2.2.8.1.1.3.1.1.1).

[MS-RDPBCGR] - v20230920

178 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

eventHeader keyCode

eventHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
eventHeader byte field described in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)
MUST be set to FASTPATH_INPUT_EVENT_SCANCODE (0). The eventFlags bitfield (5 bits in size)
contains flags describing the keyboard event.

5-Bit Codes Meaning
FASTPATH_INPUT_KBDFLAGS_RELEASE The absence of this flag indicates a key-down event, while its
0x01 presence indicates a key-release event.

FASTPATH_INPUT_KBDFLAGS_EXTENDED Indicates that the keystroke message contains an extended
0x02 scancode. For enhanced 101-key and 102-key keyboards,
extended keys include the right ALT and right CTRL keys on the
main section of the keyboard; the INS, DEL, HOME, END, PAGE
UP, PAGE DOWN and ARROW keys in the clusters to the left of
the numeric keypad; and the Divide ("/") and ENTER keys in
the numeric keypad.

FASTPATH_INPUT_KBDFLAGS_EXTENDED1 | Used to send keyboard events triggered by the PAUSE key.

0x04 A PAUSE key press and release MUST be sent as the following
sequence of keyboard events:

» CTRL (0x1D) DOWN

» NUMLOCK (0x45) DOWN
» CTRL (0x1D) UP

* NUMLOCK (0x45) UP

The CTRL DOWN and CTRL UP events MUST both include the
FASTPATH_INPUT_KBDFLAGS_EXTENDED1 flag.

keyCode (1 byte): An 8-bit, unsigned integer. The scancode of the key which triggered the event.

2.2.8.1.2.2.2 Fast-Path Unicode Keyboard Event
(TS_FP_UNICODE_KEYBOARD_EVENT)

The TS_FP_UNICODE_KEYBOARD_EVENT structure is the fast-path variant of the
TS UNICODE KEYBOARD EVENT (section 2.2.8.1.1.3.1.1.2) structure. Support for the Unicode
Keyboard Event is advertised in the Input Capability Set (section 2.2.7.1.6).

—
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

eventHeader unicodeCode

eventHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)
MUST be set to FASTPATH_INPUT_EVENT_UNICODE (4). The eventFlags bitfield (5 bits in size)
contains flags describing the keyboard event.

179 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

5-Bit Codes Meaning

FASTPATH_INPUT_KBDFLAGS_RELEASE | The absence of this flag indicates a key-down event, whereas its
0x01 presence indicates a key-release event.

unicodeCode (2 bytes): A 16-bit unsigned integer. The Unicode character input code.

2.2.8.1.2.2.3 Fast-Path Mouse Event (TS_FP_POINTER_EVENT)

The TS_FP_POINTER_EVENT structure is the fast-path variant of the
TS POINTER_EVENT (section 2.2.8.1.1.3.1.1.3) structure.

=
N
w

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

eventHeader pointerFlags xPos

yPos

eventHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)
MUST be set to FASTPATH_INPUT_EVENT_MOUSE (1). The eventFlags bitfield (5 bits in size)
MUST be zeroed out.

pointerFlags (2 bytes): A 16-bit, unsigned integer. Contains flags that describe the pointer event.
The possible flags are identical to those found in the pointerFlags field of the
TS _POINTER_EVENT structure.

xPos (2 bytes): A 16-bit, unsigned integer. The x-coordinate of the pointer relative to the top-left
corner of the server's desktop. This field SHOULD be ignored by the server if either the
PTRFLAGS_WHEEL (0x0200) or the PTRFLAGS_HWHEEL (0x0400) flag is specified in the
pointerFlags field.

yPos (2 bytes): A 16-bit, unsigned integer. The y-coordinate of the pointer relative to the top-left
corner of the server's desktop. This field SHOULD be ignored by the server if either the
PTRFLAGS_WHEEL (0x0200) or the PTRFLAGS_HWHEEL (0x0400) flag is specified in the
pointerFlags field.

2.2.8.1.2.2.4 Fast-Path Extended Mouse Event (TS_FP_POINTERX_EVENT)

The TS_FP_POINTERX_EVENT structure is the fast-path variant of the
TS POINTERX EVENT (section 2.2.8.1.1.3.1.1.4) structure. Support for the Extended Mouse Event is
advertised in the Input Capability Set (section 2.2.7.1.6).

0(1|/2|3(4|(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

eventHeader pointerFlags xPos

yPos

eventHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)
MUST be set to FASTPATH_INPUT_EVENT_MOUSEX (2). The eventFlags bitfield (5 bits in size)
MUST be zeroed out.

180 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

pointerFlags (2 bytes): A 16-bit, unsigned integer. Contains flags that describe the pointer event.
The possible flags are identical to those found in the pointerFlags field of the
TS_POINTERX_EVENT structure.

xPos (2 bytes): A 16-bit, unsigned integer. The x-coordinate of the pointer.

yPos (2 bytes): A 16-bit, unsigned integer. The y-coordinate of the pointer.

2.2.8.1.2.2.5 Fast-Path Synchronize Event (TS_FP_SYNC_EVENT)

The TS_FP_SYNC_EVENT structure is the fast-path variant of the
TS SYNC EVENT (section 2.2.8.1.1.3.1.1.5) structure.

0[(1(2|3|4|5|6|7|8|9|(0(1|(2[3[4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

eventHeader

eventHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)
MUST be set to FASTPATH_INPUT_EVENT_SYNC (3). The eventFlags bitfield (5 bits in size)
contains flags indicating the "on" status of the keyboard toggle keys.

5-Bit Codes Meaning

FASTPATH_INPUT_SYNC_SCROLL_LOCK | Indicates that the Scroll Lock indicator light SHOULD be on.
0x01

FASTPATH_INPUT_SYNC_NUM_LOCK Indicates that the Num Lock indicator light SHOULD be on.
0x02

FASTPATH_INPUT_SYNC_CAPS_LOCK Indicates that the Caps Lock indicator light SHOULD be on.
0x04

FASTPATH_INPUT_SYNC_KANA_LOCK Indicates that the Kana Lock indicator light SHOULD be on.
0x08

2.2.8.1.2.2.6 Fast-Path Quality of Experience (QoE) Timestamp Event
(TS_FP_QOETIMESTAMP_EVENT)

The TS_FP_QOETIMESTAMP_EVENT structure is used to enable the calculation of Quality of
Experience (QoE) metrics. This event is sent solely for informational and debugging purposes and
MUST NOT be transmitted to the server if the TS_INPUT_FLAG_QOE_TIMESTAMPS (0x0200) flag was
not received in the Input Capability Set (section 2.2.7.1.6).

=

2 3
0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

eventHeader timestamp

eventHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)

181 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

MUST be set to FASTPATH_INPUT_EVENT_QOE_TIMESTAMP (6). The eventFlags bitfield (5 bits in
size) MUST be zeroed out.

timestamp (4 bytes): A 32-bit, unsigned integer. A client-generated timestamp, in milliseconds,
that indicates when the current input batch was encoded by the client. The value of the first
timestamp sent by the client implicitly defines the origin for all subsequent timestamps. The
server is responsible for handling roll-over of the timestamp.

2.2.8.1.2.2.7 Fast-Path Relative Mouse Event (TS_FP_RELPOINTER_EVENT)

The TS_FP_RELPOINTER_EVENT structure is the fast path variant of the
TS_RELPOINTER_EVENT (section 2.2.8.1.1.3.1.1.7) structure.

-
N
w

0(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

eventHeader pointerFlags xDelta

yDelta

eventHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in size)
MUST be set to FASTPATH_INPUT_EVENT_MOUSEREL (5). The eventFlags bitfield (5 bits in size)
MUST be zeroed out.

pointerFlags (2 bytes): A 16-bit unsigned integer. Contains flags that describe the pointer event.
The possible flags are identical to those found in the pointerFlags field of the
TS_RELPOINTER_EVENT structure.

xDelta (2 bytes): A 16-bit signed integer. The distance the pointer has moved on the x-axis since
the previous position update was sent. Negative values indicate that the pointer is moving to the
left.

yDelta (2 bytes): A 16-bit signed integer. The distance the pointer has moved on the y-axis since
the previous position update was sent. Negative values indicate that the pointer is moving up.

2.2.8.2 Keyboard Status PDUs

2.2.8.2.1 Server Set Keyboard Indicators PDU

The Set Keyboard Indicators PDU is sent by the server to synchronize the state of the keyboard toggle
keys (Scroll Lock, Num Lock, and so on). It is similar in operation to the Client Synchronize Input
Event Notification (sections 2.2.8.1.1.3.1.1.5 and 2.2.8.1.2.2.5), but flows in the opposite direction.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

182 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

setKeyBdIndicatorsPduData (22 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Set Keyboard Indicators PDU Data (section 2.2.8.2.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

setKeyBdIndicatorsPduData (22 bytes): The actual contents of the Set Keyboard Indicators PDU,
as specified in section 2.2.8.2.1.1.

2.2.8.2.1.1 Set Keyboard Indicators PDU Data
(TS_SET_KEYBOARD_INDICATORS_PDU)

The TS_SET_KEYBOARD_INDICATORS_PDU structure contains the actual contents of the Set
Keyboard Indicators PDU (section 2.2.8.2.1). The contents of the LedFlags field is identical to the
flags used in the Client Synchronize Input Event Notification (section 2.2.8.1.1.3.1.1.5).

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

shareDataHeader (18 bytes)

183 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

Unitld

LedFlags

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_SET_KEYBOARD_INDICATORS (41).

Unitld (2 bytes): A 16-bit, unsigned integer. Hardware related value. This field SHOULD be ignored
by the client and as a consequence SHOULD be set to zero by the server.

LedFlags (2 bytes): A 16-bit, unsigned integer. The flags indicating the "on" status of the keyboard
toggle keys.

Flag Meaning

TS_SYNC_SCROLL_LOCK | Indicates that the Scroll Lock indicator light SHOULD be on.
0x0001

TS_SYNC_NUM_LOCK Indicates that the Num Lock indicator light SHOULD be on.
0x0002

TS_SYNC_CAPS_LOCK Indicates that the Caps Lock indicator light SHOULD be on.
0x0004

TS_SYNC_KANA_LOCK Indicates that the Kana Lock indicator light SHOULD be on.
0x0008

2.2.8.2.2 Server Set Keyboard IME Status PDU

The Set Keyboard IME Status PDU is used to request that the client set the state of the input method
editor (IME) and is sent by the server<35> when the user's session employs at least one IME. This
PDU is accepted and ignored by non-IME-aware clients.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

setKeyBdImeStatusPduData (28 bytes)

184 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Set Keyboard IME Status PDU Data (section 2.2.8.2.2.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0) then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

setKeyBdImeStatusPduData (28 bytes): The actual contents of the Set Keyboard IME Status PDU,
as specified in section 2.2.8.2.2.1.

2.2.8.2.2.1 Set Keyboard IME Status PDU Data
(TS_SET_KEYBOARD_IME_STATUS_PDU)

The TS_SET_KEYBOARD_IME_STATUS_PDU structure contains the actual contents of the Set
Keyboard IME Status PDU (section 2.2.8.2.2). The ImeState and ImeConvMode fields are used as
input parameters to a Fujitsu Oyayubi-specific IME control function on Asian IME clients.

For more information on input method editors (IMEs), see [International], section "Input Method
Editors" in chapter 5.

-
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

shareDataHeader (18 bytes)

185 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

Unitld

ImeState

ImeConvMode

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_SET_KEYBOARD_IME_STATUS (45).

Unitld (2 bytes): A 16-bit, unsigned integer. The unit identifier for which the IME message is
intended. This field SHOULD be ignored by the client and as a consequence SHOULD be set to zero
by the server.

ImeState (4 bytes): A 32-bit, unsigned integer. Indicates the open or closed state of the IME.

Value Meaning

IME_STATE_CLOSED | The IME state is closed.
0x00000000

IME_STATE_OPEN The IME state is open.
0x00000001

ImeConvMode (4 bytes): A 32-bit, unsigned integer. Indicates the IME conversion mode.

Flag Meaning

IME_CMODE_NATIVE The input mode is native. If not set, the input mode is alphanumeric.
0x00000001

IME_CMODE_KATAKANA The input mode is Katakana. If not set, the input mode is Hiragana.
0x00000002

IME_CMODE_FULLSHAPE The input mode is full-width. If not set, the input mode is half-width.
0x00000008

IME_CMODE_ROMAN The input mode is Roman.

0x00000010

IME_CMODE_CHARCODE Character-code input is in effect.

0x00000020

IME_CMODE_HANJACONVERT | Hanja conversion mode is in effect.
0x00000040

IME_CMODE_SOFTKBD A soft (on-screen) keyboard is being used.
0x00000080

IME_CMODE_NOCONVERSION | IME conversion is inactive (that is, the IME is closed).
0x00000100

IME_CMODE_EUDC End-User Defined Character (EUDC) conversion mode is in effect.
0x00000200

186 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Flag Meaning

IME_CMODE_SYMBOL Symbol conversion mode is in effect.
0x00000400

IME_CMODE_FIXED Fixed conversion mode is in effect.
0x00000800

2.2.9 Basic Output

2.2.9.1 Output PDU Packaging
2.2.9.1.1 Slow-Path (T.128) Format

2.2.9.1.1.1 Share Headers

The Share Headers used in conjunction with slow-path output PDUs are the same as those used in
conjunction with slow-path input PDUs. These headers are described in section 2.2.8.1.1.1.

2.2.9.1.1.2 Security Headers

The Security Headers used in conjunction with slow-path output PDUs are the same as those used in
conjunction with slow-path input PDUs. These headers are described in section 2.2.8.1.1.2.

2.2.9.1.1.3 Server Graphics Update PDU (TS_GRAPHICS_PDU)

The Slow-Path Graphics Update PDU is used to transmit graphics updates from server to client.

—
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

slowPathGraphicsUpdates (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,

187 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Slow-Path Graphics Update (section 2.2.9.1.1.3.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

slowPathGraphicsUpdates (variable): A variable-length array of Slow-Path Graphics Updates
(section 2.2.9.1.1.3.1) to be processed by the client.

2.2.9.1.1.3.1 Slow-Path Graphics Update (TS_GRAPHICS_UPDATE)

The TS_GRAPHICS_UPDATE structure is used to describe the type and encapsulate the data for a
slow-path graphics update sent from server to client.<36> All slow-path graphic updates conform to
this basic structure (section 2.2.9.1.1.3.1.1).

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6[7|8|9(0(1]|2|3|4|5|6(7|8|9|0(1

shareDataHeader (18 bytes)

updateType

updateData (variable)

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_UPDATE (2).

updateType (2 bytes): A 16-bit, unsigned integer. Type of the graphics update.

Value Meaning

UPDATETYPE_ORDERS Indicates an Orders Update ([MS-RDPEGDI] section 2.2.2.2).

188 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

Value Meaning

0x0000

UPDATETYPE_BITMAP Indicates a Bitmap Graphics Update (section 2.2.9.1.1.3.1.2).
0x0001

UPDATETYPE_PALETTE Indicates a Palette Update (section 2.2.9.1.1.3.1.1).

0x0002

UPDATETYPE_SYNCHRONIZE Indicates a Synchronize Update (section 2.2.9.1.1.3.1.3).
0x0003

updateData (variable): Variable-length data specific to the graphics update.

2.2,9.1.1.3.1.1 Palette Update (TS_UPDATE_PALETTE)

The TS_UPDATE_PALETTE structure contains global palette information that covers the entire session's
palette ([T128] section 8.18.6). Only 256-color palettes are sent in this update. Palletized color is
supported only in RDP 4.0, 5.0, 5.1, 5.2, 6.0, 6.1, 7.0, and 7.1.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]|9|0]|1

shareDataHeader (18 bytes)

paletteData (variable)

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_UPDATE (2).

paletteData (variable): The actual palette update data, as specified in section 2.2.9.1.1.3.1.1.1.

2.2,9.1.1.3.1.1.1 Palette Update Data (TS_UPDATE_PALETTE_DATA)

The TS_UPDATE_PALETTE_DATA encapsulates the palette data that defines a Palette
Update (section 2.2.9.1.1.3.1.1).

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

updateType pad20ctets

numberColors

paletteEntries (variable)

189 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90544

updateType (2 bytes): A 16-bit, unsigned integer. The update type. This field MUST be set to
UPDATETYPE_PALETTE (0x0002).

pad2O0ctets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

numberColors (4 bytes): A 32-bit, unsigned integer. The humber of RGB triplets in the paletteData
field. This field MUST be set to 256 (the number of entries in an 8 bpp palette).

paletteEntries (variable): An array of palette entries in RGB triplet format (section
2.2.9.1.1.3.1.1.2) packed on byte boundaries. The number of triplet entries is given by the
numbercColors field.

2.2.9.1.1.3.1.1.2 RGB Palette Entry (TS_PALETTE_ENTRY)

The TS_PALETTE_ENTRY structure is used to express the red, green, and blue components necessary
to reproduce a color in the additive RGB space.

e

2
0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]|1

w

red green blue

red (1 byte): An 8-bit, unsigned integer. The red RGB color component.
green (1 byte): An 8-bit, unsigned integer. The green RGB color component.

blue (1 byte): An 8-bit, unsigned integer. The blue RGB color component.

2.2.9.1.1.3.1.2 Bitmap Update (TS_UPDATE_BITMAP)

The TS_UPDATE_BITMAP structure contains one or more rectangular clippings taken from the server-
side screen frame buffer ([T128] section 8.17).

-
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

shareDataHeader (18 bytes)

bitmapData (variable)

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_UPDATE (2).

bitmapData (variable): The actual bitmap update data, as specified in section 2.2.9.1.1.3.1.2.1.

190 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90544

2.2.9.1.1.3.1.2.1 Bitmap Update Data (TS_UPDATE_BITMAP_DATA)

The TS_UPDATE_BITMAP_DATA structure encapsulates the bitmap data that defines a Bitmap
Update (section 2.2.9.1.1.3.1.2).

-
N
w

0(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

updateType numberRectangles

rectangles (variable)

updateType (2 bytes): A 16-bit, unsigned integer. The update type. This field MUST be set to
UPDATETYPE_BITMAP (0x0001).

numberRectangles (2 bytes): A 16-bit, unsigned integer. The number of screen rectangles present
in the rectangles field.

rectangles (variable): Variable-length array of TS BITMAP DATA (section 2.2.9.1.1.3.1.2.2)
structures, each of which contains a rectangular clipping taken from the server-side screen frame
buffer. The number of screen clippings in the array is specified by the numberRectangles field.

2.2.9.1.1.3.1.2.2 Bitmap Data (TS_BITMAP_DATA)

The TS_BITMAP_DATA structure wraps the bitmap data for a screen area rectangle containing a
clipping taken from the server-side screen frame buffer.

0[{1(2|3|4|5|6|7|8|9(0(1(2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

destlLeft destTop
destRight destBottom
width height
bitsPerPixel flags
bitmapLength bitmapComprHdr (optional)

bitmapDataStream (variable)

destLeft (2 bytes): A 16-bit, unsigned integer. Left bound of the rectangle.
destTop (2 bytes): A 16-bit, unsigned integer. Top bound of the rectangle.
destRight (2 bytes): A 16-bit, unsigned integer. Inclusive right bound of the rectangle.

destBottom (2 bytes): A 16-bit, unsigned integer. Inclusive bottom bound of the rectangle.

191 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

width (2 bytes): A 16-bit, unsigned integer. The width of the rectangle.
height (2 bytes): A 16-bit, unsigned integer. The height of the rectangle.

bitsPerPixel (2 bytes): A 16-bit, unsigned integer. The color depth of the rectangle data in bits-per-
pixel.

flags (2 bytes): A 16-bit, unsigned integer. The flags describing the format of the bitmap data in the
bitmapDataStream field.

Flags Meaning
BITMAP_COMPRESSION Indicates that the bitmap data is compressed. The bitmapComprHdr
0x0001 field MUST be present if the NO_BITMAP_COMPRESSION_HDR

(0x0400) flag is not set.

NO_BITMAP_COMPRESSION_HDR | Indicates that the bitmapComprHdr field is not present (removed for
0x0400 bandwidth efficiency to save 8 bytes).

bitmapLength (2 bytes): A 16-bit, unsigned integer. The size in bytes of the data in the
bitmapComprHdr and bitmapDataStream fields.

bitmapComprHdr (8 bytes): Optional Compressed Data Header structure (section 2.2.9.1.1.3.1.2.3)
specifying the bitmap data in the bitmapDataStream. This field MUST be present if the
BITMAP_COMPRESSION (0x0001) flag is present in the flags field, but the
NO_BITMAP_COMPRESSION_HDR (0x0400) flag is not.

bitmapDataStream (variable): A variable-length array of bytes describing a bitmap image. Bitmap
data is either compressed or uncompressed, depending on whether the BITMAP_COMPRESSION
flag is present in the flags field. Uncompressed bitmap data is formatted as a bottom-up, left-to-
right series of pixels. Each pixel is a whole number of bytes. Each row contains a multiple of four
bytes (including up to three bytes of padding, as necessary). Compressed bitmaps not in 32 bpp
format are compressed using Interleaved RLE and encapsulated in an RLE Compressed Bitmap
Stream structure (section 2.2.9.1.1.3.1.2.4), while compressed bitmaps at a color depth of 32 bpp
are compressed using RDP 6.0 Bitmap Compression and stored inside an RDP 6.0 Bitmap
Compressed Stream structure ([MS-RDPEGDI] section 2.2.2.5.1).

2.2.9.1.1.3.1.2.3 Compressed Data Header (TS_CD_HEADER)

The TS_CD_HEADER structure is used to describe compressed bitmap data.

1
0(1|/2|3(4|(5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

N
w

cbCompFirstRowSize cbCompMainBodySize

cbScanWidth cbUncompressedSize

cbCompFirstRowSize (2 bytes): A 16-bit, unsigned integer. The field MUST be set to 0x0000.

cbCompMainBodySize (2 bytes): A 16-bit, unsigned integer. The size in bytes of the compressed
bitmap data (which follows this header).

cbScanWidth (2 bytes): A 16-bit, unsigned integer. The width of the bitmap (which follows this
header) in pixels (this value MUST be divisible by 4).

cbUncompressedSize (2 bytes): A 16-bit, unsigned integer. The size in bytes of the bitmap data
(which follows this header) after it has been decompressed.

192 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

2.2.9.1.1.3.1.2.4 RLE Compressed Bitmap Stream (RLE_BITMAP_STREAM)

The RLE_BITMAP_STREAM structure contains a stream of bitmap data compressed using Interleaved
Run-Length Encoding (RLE). Bitmap data compressed by the server MUST follow a Compressed Data
Header (section 2.2.9.1.1.3.1.2.3) structure unless the exclusion of this header has been specified in
the General Capability Set (section 2.2.7.1.1).

A compressed bitmap is sent as a series of compression orders that instruct the decoder how to
reassemble a compressed bitmap (a particular bitmap can have many valid compressed
representations). A compression order consists of an order header, followed by an optional encoded
run length, followed by optional data associated with the compression order. Some orders require the
decoder to refer to the previous scanline of bitmap data and because of this fact the first scanline
sometimes requires special cases for decoding.

Standard Compression Orders begin with a one-byte order header. The high order bits of this header
contain a code identifier, while the low order bits store the unsigned length of the associated run
(unless otherwise specified). There are two forms of Standard Compression Orders:

= The regular form contains a 3-bit code identifier and a 5-bit run length.
= The lite form contains a 4-bit code identifier and a 4-bit run length.

For both the regular and lite forms a run length of zero indicates an extended run (a MEGA run),
where the byte following the order header contains the encoded length of the associated run. The
encoded run length is calculated using the following formula (unless otherwise specified):

EncodedMegaRunLength = RunLength - (MaximumNonMegaRunLength + 1)

The maximum run length that can be stored in a non-MEGA regular order is 31, while a non-MEGA lite
order can only store a maximum run length of 15.

Extended Compression Orders begin with a one-byte order header which contains an 8-bit code
identifier. There are two types of Extended Compression Orders:

= The MEGA_MEGA type stores the unsigned length of the associated run in the two bytes following
the order header (in little-endian order).

= The single-byte type is used to encode short, commonly occurring foreground/background
sequences and single black or white pixels.

Pseudo-code describing how to decompress a compressed bitmap stream can be found in section

1 2
0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

w

rleCompressedBitmapStream (variable)

rleCompressedBitmapStream (variable): An array of compression codes describing compressed
structures in the bitmap.

Background Run Orders

A Background Run Order encodes a run of pixels where each pixel in the run matches the
uncompressed pixel on the previous scanline. If there is no previous scanline then each pixel in the
run MUST be black.

193 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

When encountering back-to-back background runs, the decompressor MUST write a one-pixel
foreground run to the destination buffer before processing the second background run if both runs
occur on the first scanline or after the first scanline (if the first run is on the first scanline, and the
second run is on the second scanline, then a one-pixel foreground run MUST NOT be written to the
destination buffer). This one-pixel foreground run is counted in the length of the run.

The run length encodes the number of pixels in the run. There is no data associated with Background
Run Orders.

Code Identifier Meaning
REGULAR_BG_RUN The compression order encodes a regular-form background run. The run length is stored
0x0 in the five low-order bits of the order header byte. If this value is zero, then the run

length is encoded in the byte following the order header and MUST be incremented by
32 to give the final value.

MEGA_MEGA_BG_RUN | The compression order encodes a MEGA_MEGA background run. The run length is stored
OXFO in the two bytes following the order header (in little-endian format).

Foreground Run Orders

A Foreground Run Order encodes a run of pixels where each pixel in the run matches the
uncompressed pixel on the previous scanline XOR'd with the current foreground color. The initial
foreground color MUST be white. If there is no previous scanline, then each pixel in the run MUST be
set to the current foreground color.

The run length encodes the number of pixels in the run.

If the order is a "set" variant, then in addition to encoding a run of pixels, the order also encodes a
new foreground color (in little-endian format) in the bytes following the optional run length. The
current foreground color MUST be updated with the new value before writing the run to the
destination buffer.

Code Identifier Meaning
REGULAR_FG_RUN The compression order encodes a regular-form foreground run. The run length is
0x1 stored in the five low-order bits of the order header byte. If this value is zero, then

the run length is encoded in the byte following the order header and MUST be
incremented by 32 to give the final value.

MEGA_MEGA_FG_RUN The compression order encodes a MEGA_MEGA foreground run. The run length is
OxF1 stored in the two bytes following the order header (in little-endian format).

LITE_SET_FG_FG_RUN The compression order encodes a "set" variant lite-form foreground run. The run
0xC length is stored in the four low-order bits of the order header byte. If this value is

zero, then the run length is encoded in the byte following the order header and
MUST be incremented by 16 to give the final value.

MEGA_MEGA_SET_FG_RUN | The compression order encodes a "set" variant MEGA_MEGA foreground run. The
OxF6 run length is stored in the two bytes following the order header (in little-endian
format).

Dithered Run Orders

A Dithered Run Order encodes a run of pixels which is composed of two alternating colors. The two
colors are encoded (in little-endian format) in the bytes following the optional run length.

The run length encodes the number of pixel-pairs in the run (not pixels).

194 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Code Identifier Meaning

LITE_DITHERED_RUN The compression order encodes a lite-form dithered run. The run length is stored
OXE in the four low-order bits of the order header byte. If this value is zero, then the
run length is encoded in the byte following the order header and MUST be
incremented by 16 to give the final value.

MEGA_MEGA_DITHERED_RUN | The compression order encodes a MEGA_MEGA dithered run. The run length is
OxF8 stored in the two bytes following the order header (in little-endian format).

Color Run Orders

A Color Run Order encodes a run of pixels where each pixel is the same color. The color is encoded (in
little-endian format) in the bytes following the optional run length.

The run length encodes the number of pixels in the run.

Code Identifier Meaning
REGULAR_COLOR_RUN The compression order encodes a regular-form color run. The run length is stored in
0x3 the five low-order bits of the order header byte. If this value is zero, then the run

length is encoded in the byte following the order header and MUST be incremented
by 32 to give the final value.

MEGA_MEGA_COLOR_RUN | The compression order encodes a MEGA_MEGA color run. The run length is stored in
OxF3 the two bytes following the order header (in little-endian format).

Foreground / Background Image Orders

A Foreground/Background Image Order encodes a binary image where each pixel in the image that is
not on the first scanline fulfills exactly one of the following two properties:

(a) The pixel matches the uncompressed pixel on the previous scanline XOR'ed with the current
foreground color.

(b) The pixel matches the uncompressed pixel on the previous scanline.

If the pixel is on the first scanline then it fulfills exactly one of the following two properties:
(c) The pixel is the current foreground color.

(d) The pixel is black.

The binary image is encoded as a sequence of byte-sized bitmasks which follow the optional run
length (the last bitmask in the sequence can be smaller than one byte in size). If the order is a "set"
variant then the bitmasks MUST follow the bytes which specify the new foreground color. Each bit in
the encoded bitmask sequence represents one pixel in the image. A bit that has a value of 1
represents a pixel that fulfills either property (a) or (c), while a bit that has a value of 0 represents a
pixel that fulfills either property (b) or (d). The individual bitmasks MUST each be processed from the
low-order bit to the high-order bit.

The run length encodes the number of pixels in the run.

If the order is a "set" variant, then in addition to encoding a binary image, the order also encodes a
new foreground color (in little-endian format) in the bytes following the optional run length. The
current foreground color MUST be updated with the new value before writing the run to the
destination buffer.

195/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Code Identifier

Meaning

REGULAR_FGBG_IMAGE
0x2

The compression order encodes a regular-form foreground/background image.
The run length is encoded in the five low-order bits of the order header byte
and MUST be multiplied by 8 to give the final value. If this value is zero, then
the run length is encoded in the byte following the order header and MUST be
incremented by 1 to give the final value.

MEGA_MEGA_FGBG_IMAGE
OxF2

The compression order encodes a MEGA_MEGA foreground/background image.
The run length is stored in the two bytes following the order header (in little-
endian format).

LITE_SET_FG_FGBG_IMAGE
0xD

The compression order encodes a "set" variant lite-form
foreground/background image. The run length is encoded in the four low-
order bits of the order header byte and MUST be multiplied by 8 to give the
final value. If this value is zero, then the run length is encoded in the byte
following the order header and MUST be incremented by 1 to give the final
value.

OxF7

MEGA_MEGA_SET_FGBG_IMAGE | The compression order encodes a "set" variant MEGA_MEGA

foreground/background image. The run length is stored in the two bytes
following the order header (in little-endian format).

Color Image Orders

A Color Image Order encodes a run of uncompressed pixels.

The run length encodes the number of pixels in the run. So, to compute the actual number of bytes
which follow the optional run length, the run length MUST be multiplied by the color depth (in bits-

per-pixel) of the bitmap data.

Code Identifier

REGULAR_COLOR_IMAGE
0x4

The compression order encodes a regular-form color image. The run length is
stored in the five low-order bits of the order header byte. If this value is zero,
then the run length is encoded in the byte following the order header and MUST
be incremented by 32 to give the final value.

MEGA_MEGA_COLOR_IMAGE
OxF4

The compression order encodes a MEGA_MEGA color image. The run length is
stored in the two bytes following the order header (in little-endian format).

Special Orders

Code Identifier Meaning

SPECIAL_FGBG_1 | The compression order encodes a foreground/background image with an 8-bit bitmask of

0xF9 0x03.
SPECIAL_FGBG_2 | The compression order encodes a foreground/background image with an 8-bit bitmask of
OXFA 0x05.
WHITE The compression order encodes a single white pixel.
OxFD
BLACK The compression order encodes a single black pixel.
OxFE
2.2,9.1.1.3.1.3 Synchronize Update (TS_UPDATE_SYNC)

[MS-RDPBCGR] - v20230920

196 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

The TS_UPDATE_SYNC structure is an artifact of the T.128 protocol ([T128] section 8.6.2) and
SHOULD be ignored.

0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

shareDataHeader (18 bytes)

updateType

pad20ctets

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_UPDATE (2).

updateType (2 bytes): A 16-bit, unsigned integer. The update type. This field MUST be set to
UPDATETYPE_SYNCHRONIZE (0x0003).

pad2O0ctets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.9.1.1.4 Server Pointer Update PDU (TS_POINTER_PDU)

The Pointer Update PDU is sent from server to client and is used to convey pointer information,
including pointers' bitmap images, use of system or hidden pointers, use of cached cursors and
position updates.

-
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

shareDataHeader (18 bytes)

messageType

197 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90544

pad20ctets pointerAttributeData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and the Pointer Update PDU data.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_POINTER (27).

messageType (2 bytes): A 16-bit, unsigned integer. Type of pointer update.

Value Meaning

TS_PTRMSGTYPE_SYSTEM Indicates a System Pointer Update (section 2.2.9.1.1.4.3).
0x0001

TS_PTRMSGTYPE_POSITION | Indicates a Pointer Position Update (section 2.2.9.1.1.4.2).
0x0003

TS_PTRMSGTYPE_COLOR Indicates a Color Pointer Update (section 2.2.9.1.1.4.4).
0x0006

TS_PTRMSGTYPE_CACHED Indicates a Cached Pointer Update (section 2.2.9.1.1.4.6).
0x0007

TS_PTRMSGTYPE_POINTER Indicates a New Pointer Update (section 2.2.9.1.1.4.5).
0x0008

198 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

T.128 Monochrome Pointer updates ([T128] section 8.14.2) are not used in RDP and are not
planned for a future version. Monochrome pointers are translated into 24 bpp cursors using the
Color Pointer Update (section 2.2.9.1.1.4.4) when the New Pointer Update (section 2.2.9.1.1.4.5)
is not supported, or sent as 1 bpp using the New Pointer Update.

pad2O0ctets (2 bytes): A 16-bit, unsigned integer. Padding. Values in this field MUST be ignored.

pointerAttributeData (variable): A Pointer Position Update (section 2.2.9.1.1.4.2), System Pointer
Update (section 2.2.9.1.1.4.3), Color Pointer Update (section 2.2.9.1.1.4.4), New Pointer Update
(section 2.2.9.1.1.4.5), or Cached Pointer Update (section 2.2.9.1.1.4.6). The actual contents of
the slow-path pointer update.

2.2.9.1.1.4.1 Point (TS_POINT16)

The TS_POINT16 structure specifies a point relative to the top-left corner of the server's desktop.

=
N
w

0(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

XxPos yPos

xPos (2 bytes): A 16-bit, unsigned integer. The x-coordinate relative to the top-left corner of the
server's desktop.

yPos (2 bytes): A 16-bit, unsigned integer. The y-coordinate relative to the top-left corner of the
server's desktop.

2.2.9.1.1.4.2 Pointer Position Update (TS_POINTERPOSATTRIBUTE)

The TS_POINTERPOSATTRIBUTE structure is used to indicate that the client pointer MUST be moved to
the specified position relative to the top-left corner of the server's desktop ([T128] section 8.14.4).

—
N
w

0(1|/2|3(4|(5|6|7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

position

position (4 bytes): A Point (section 2.2.9.1.1.4.1) structure containing the new x-coordinates and y-
coordinates of the pointer.

2.2.9.1.1.4.3 System Pointer Update (TS_SYSTEMPOINTERATTRIBUTE)

The TS_SYSTEMPOINTERATTRIBUTE structure is used to hide the pointer or to set its shape to the
operating system default ([T128] section 8.14.1).

-
N
w

0(1|/2|3(4(5|6|(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

systemPointerType

systemPointerType (4 bytes): A 32-bit, unsigned integer. The type of system pointer.

Value Meaning
SYSPTR_NULL The hidden pointer.
0x00000000

199 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90544
https://go.microsoft.com/fwlink/?LinkId=90544
https://go.microsoft.com/fwlink/?LinkId=90544

Value Meaning

SYSPTR_DEFAULT | The default system pointer.
0x00007F00

2.2.9.1.1.4.4 Color Pointer Update (TS_COLORPOINTERATTRIBUTE)

The TS_COLORPOINTERATTRIBUTE structure represents a regular T.128 24 bpp color pointer, as
specified in [T128] section 8.14.3. This pointer update is used for both monochrome and color pointers
in RDP.

0123456789(1)123456789312345678981
cachelndex hotSpot
width
height lengthAndMask
lengthXorMask xorMaskData (variable)

andMaskData (variable)

pad (optional)

cachelIndex (2 bytes): A 16-bit, unsigned integer. The zero-based cache entry in the pointer cache
in which to store the pointer image. The number of cache entries is specified using the Pointer
Capability Set (section 2.2.7.1.5).

hotSpot (4 bytes): A Point (section 2.2.9.1.1.4.1) structure containing the x-coordinates and y-
coordinates of the pointer hotspot.

width (2 bytes): A 16-bit, unsigned integer. The width of the pointer in pixels. The maximum
allowed pointer width is 96 pixels if the client set the LARGE_POINTER_FLAG_96x96
(0x00000001) flag in the Large Pointer Capability Set (section 2.2.7.2.7). If the
LARGE_POINTER_FLAG_96x96 was not set, the maximum allowed pointer width is 32 pixels.

height (2 bytes): A 16-bit, unsigned integer. The height of the pointer in pixels. The maximum
allowed pointer height is 96 pixels if the client set the LARGE_POINTER_FLAG_96x96
(0x00000001) flag in the Large Pointer Capability Set (section 2.2.7.2.7). If the
LARGE_POINTER_FLAG_96x96 was not set, the maximum allowed pointer height is 32 pixels.

lengthAndMask (2 bytes): A 16-bit, unsigned integer. The size in bytes of the andMaskData field.
lengthXorMask (2 bytes): A 16-bit, unsigned integer. The size in bytes of the xorMaskData field.

xorMaskData (variable): A variable-length array of bytes. Contains the 24-bpp, bottom-up XOR
mask scan-line data. The XOR mask is padded to a 2-byte boundary for each encoded scan-line.

200 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90544

For example, if a 3x3 pixel cursor is being sent, then each scan-line will consume 10 bytes (3
pixels per scan-line multiplied by 3 bytes per pixel, rounded up to the next even number of bytes).

andMaskData (variable): A variable-length array of bytes. Contains the 1-bpp, bottom-up AND
mask scan-line data. The AND mask is padded to a 2-byte boundary for each encoded scan-line.
For example, if a 7x7 pixel cursor is being sent, then each scan-line will consume 2 bytes (7 pixels
per scan-line multiplied by 1 bpp, rounded up to the next even number of bytes).

pad (1 byte): An optional 8-bit, unsigned integer. Padding. Values in this field MUST be ignored.

2.2.9.1.1.4.5 New Pointer Update (TS_POINTERATTRIBUTE)

The TS_POINTERATTRIBUTE structure is used to send pointer data at an arbitrary color depth.
Support for the New Pointer Update is advertised in the Pointer Capability Set (section 2.2.7.1.5).

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1|(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

xorBpp colorPtrAttr (variable)

xorBpp (2 bytes): A 16-bit, unsigned integer. The color depth in bits-per-pixel of the XOR mask
contained in the colorPtrAttr field.

colorPtrAttr (variable): Encapsulated Color Pointer Update (section 2.2.9.1.1.4.4) structure which
contains information about the pointer. The Color Pointer Update fields are all used, as specified in
section 2.2.9.1.1.4.4; however color XOR data is presented in the color depth described in the
xorBpp field (for 8 bpp, each byte contains one palette index; for 4 bpp, there are two palette
indices per byte).

2.2.9.1.1.4.6 Cached Pointer Update (TS_CACHEDPOINTERATTRIBUTE)

The TS_CACHEDPOINTERATTRIBUTE structure is used to instruct the client to change the current
pointer shape to one already present in the pointer cache.

-
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

cachelndex

cachelndex (2 bytes): A 16-bit, unsigned integer. A zero-based cache entry containing the cache
index of the cached pointer to which the client's pointer MUST be changed. The pointer data MUST
have already been cached using either the Color Pointer Update (section 2.2.9.1.1.4.4) or New
Pointer Update (section 2.2.9.1.1.4.5).

2.2.9.1.1.5 Server Play Sound PDU

The Play Sound PDU instructs the client to play a "beep" sound.

—
N
w

0(1|/2|3(4|(5|6(7|8|9|0(1|2|3(4|5|6|7|8|9[(0(1]|2|3(4|5|6[7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

201 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

securityHeader (variable)

playSoundPduData (26 bytes)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Play Sound PDU Data (section 2.2.9.1.1.5.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

playSoundPduData (26 bytes): The actual contents of the Play Sound PDU, as specified in section
2.2.9.1.1.5.1.

2.2.9.1.1.5.1 Play Sound PDU Data (TS_PLAY_SOUND_PDU_DATA)

The TS_PLAY_SOUND_PDU_DATA structure contains the contents of the Play Sound PDU, which is a
Share Data Header (section 2.2.8.1.1.1.2) and two fields.

202 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

shareDataHeader (18 bytes)

duration

frequency

shareDataHeader (18 bytes): Share Data Header containing information about the packet. The
type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be
set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_PLAY_SOUND (34).

duration (4 bytes): A 32-bit, unsigned integer. Duration of the beep the client MUST play.

frequency (4 bytes): A 32-bit, unsigned integer. Frequency of the beep the client MUST play.

2.2.9.1.2 Server Fast-Path Update PDU (TS_FP_UPDATE_PDU)

Fast-path revises server output packets from the first byte with the goal of improving bandwidth. The
TPKT Header ([T123] section 8), X.224 Class 0 Data TPDU ([X224] section 13.7), and MCS Send Data
Indication ([T125] section 11.33) are replaced; the Security Header (section 2.2.8.1.1.2) is collapsed
into the fast-path output header; and the Share Data Header (section 2.2.8.1.1.1.2) is replaced by a
new fast-path format. The contents of the graphics and pointer updates (sections 2.2.9.1.1.3 and
2.2.9.1.1.4) are also changed to reduce their size, particularly by removing or reducing headers.
Support for fast-path output is advertised in the General Capability Set (section 2.2.7.1.1).

e

2 3
0(1|/2|3(4|(5|6|7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

fpOutputHeader lengthl length2 (optional) fipsInformation (optional)

dataSignature (optional)

fpOutputUpdates
(variable)

fpOutputHeader (1 byte): An 8-bit, unsigned integer. One-byte, bit-packed header. This byte
coincides with the first byte of the TPKT Header ([T123] section 8). Two pieces of information are
collapsed into this byte:

= Security flags

= Action code

203/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

The format of the fpOutputHeader byte is described by the following bitmask diagram.

=
N
w

0(1|/2|3(4|5|6(7(8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6[7|8|9|0(1

action| reserved | flags

action (2 bits): A 2-bit, unsigned integer that indicates whether the PDU is in fast-path or slow-
path format.

Value (2 bits) Meaning

FASTPATH_OUTPUT_ACTION_FASTPATH | Indicates that the PDU is a fast-path output PDU.

0x0

FASTPATH_OUTPUT_ACTION_X224 Indicates the presence of a TPKT Header ([T123] section 8)
0x3 initial version byte which indicates that the PDU is a slow-

path output PDU (in this case the full value of the initial byte
MUST be 0x03).

reserved (4 bits): A 4-bit, unsigned integer that is unused and reserved for future use. This field
MUST be set to zero.

flags (2 bits): A 2-bit, unsigned integer that contains flags describing the cryptographic
parameters of the PDU.

Flag (2 bits) Meaning

FASTPATH_OUTPUT_SECURE_CHECKSUM | Indicates that the MAC signature for the PDU was

ox1 generated using the "salted MAC generation" technique
(section 5.3.6.1.1). If this bit is not set, then the standard
technique was used (sections 2.2.8.1.1.2.2 and

2.2.8.1.1.2.3).
FASTPATH_OUTPUT_ENCRYPTED Indicates that the PDU contains an 8-byte MAC signature
0x2 after the optional length2 field (that is, the

dataSignature field is present), and the contents of the
PDU are encrypted using the negotiated encryption
package (sections 5.3.2 and 5.3.6).

lengthl (1 byte): An 8-bit, unsigned integer. If the most significant bit of the length1 field is not

set, then the size of the PDU is in the range 1 to 127 bytes and the length1 field contains the
overall PDU length (the length2 field is not present in this case). However, if the most significant
bit of the length1 field is set, then the overall PDU length is given by the low 7 bits of the
length1l field concatenated with the 8 bits of the length2 field, in big-endian order (the length2
field contains the low-order bits). The overall PDU length SHOULD be less than or equal to 16,383
bytes.

length2 (1 byte): An 8-bit, unsigned integer. If the most significant bit of the length1 field is not

set, then the length2 field is not present. If the most significant bit of the length1 field is set,
then the overall PDU length is given by the low 7 bits of the length1 field concatenated with the 8
bits of the length2 field, in big-endian order (the length2 field contains the low-order bits). The
overall PDU length SHOULD be less than or equal to 16,383 bytes.

fipsInformation (4 bytes): An optional Fast-Path FIPS Information (section 2.2.8.1.2.1) structure,

present when the Encryption Method selected by the server (sections 5.3.2 and 2.2.1.4.3) is
ENCRYPTION_METHOD_FIPS (0x00000010).

204 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

dataSignature (8 bytes): MAC generated over the packet using one of the techniques specified in
section 5.3.6 (the FASTPATH_OUTPUT_SECURE_CHECKSUM flag, which is set in the
fpOutputHeader field, describes the method used to generate the signature). This field MUST be
present if the FASTPATH_OUTPUT_ENCRYPTED flag is set in the fpOutputHeader field.

fpOutputUpdates (variable): An array of Fast-Path Update (section 2.2.9.1.2.1) structures to be
processed by the client.

2.2.9.1.2.1 Fast-Path Update (TS_FP_UPDATE)

The TS_FP_UPDATE structure is used to describe and encapsulate the data for a fast-path update sent
from server to client. All fast-path updates conform to this basic structure (sections 2.2.9.1.2.1.1 to
2.2.9.1.2.1.10).

1 2 3
0(1|2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

compressionFlags
(optional)

updateHeader size

updateData (variable)

updateHeader (1 byte): An 8-bit, unsigned integer. Three pieces of information are collapsed into
this byte:

= Fast-path update type
= Fast-path fragment sequencing
= Compression usage indication

The format of the updateHeader byte is described by the following bitmask diagram.

-
N
w

0[{1(2|3|4|5|6|7|8|9(0(1({2|3|4|5|6|7|8|9|0|1(2(3(4|5(6|7|8]|9|0]|1

fragm
updateCode |entati
on

compr
ession

updateCode (4 bits): A 4-bit, unsigned integer that specifies the type code of the update.

Value (4 bits) Meaning

FASTPATH_UPDATETYPE_ORDERS Indicates a Fast-Path Orders Update ([MS-RDPEGDI
0x0 section 2.2.2.2).

FASTPATH_UPDATETYPE_BITMAP Indicates a Fast-Path Bitmap Update (section

Ox1 2.2.9.1.2.1.2).

FASTPATH_UPDATETYPE_PALETTE Indicates a Fast-Path Palette Update (section

0x2 2.2.9.1.2.1.1).
FASTPATH_UPDATETYPE_SYNCHRONIZE Indicates a Fast-Path Synchronize Update (section
0x3 2.2.9.1.2.1.3).

205 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

%5bMS-RDPEGDI%5d.pdf#Section_745f2eeed110464c8aca06fc1814f6ad

Value (4 bits)

Meaning

FASTPATH_UPDATETYPE_SURFCMDS
0x4

Indicates a Fast-Path Surface Commands Update (section
2.2.9.1.2.1.10).

FASTPATH_UPDATETYPE_PTR_NULL
0x5

Indicates a Fast-Path System Pointer Hidden Update
(section 2.2.9.1.2.1.5).

FASTPATH_UPDATETYPE_PTR_DEFAULT
0x6

Indicates a Fast-Path System Pointer Default Update
(section 2.2.9.1.2.1.6).

FASTPATH_UPDATETYPE_PTR_POSITION
0x8

Indicates a Fast-Path Pointer Position Update (section
2.2.9.1.2.1.4).

FASTPATH_UPDATETYPE_COLOR
0x9

Indicates a Fast-Path Color Pointer Update (section
2.2.9.1.2.1.7).

FASTPATH_UPDATETYPE_CACHED
OxA

Indicates a Fast-Path Cached Pointer Update (section
2.2.9.1.2.1.9).

FASTPATH_UPDATETYPE_POINTER
0xB

Indicates a Fast-Path New Pointer Update (section
2.2.9.1.2.1.8).

FASTPATH_UPDATETYPE_LARGE_POINTER
0xC

Indicates a Fast-Path Large Pointer Update (section
2.2.9.1.2.1.11).

fragmentation (2 bits): A 2-bit, unsigned integer that specifies the fast-path fragment

sequencing information. Support for fast-
Update Capability Set (section 2.2.7.2.6).

path fragmentation is specified in the Multifragment

Flag (2 bits) Meaning

FASTPATH_FRAGMENT_SINGLE
0x0

The fast-path data in the updateData field is not part of a sequence
of fragments.

FASTPATH_FRAGMENT_LAST
Ox1

The fast-path data in the updateData field contains the last
fragment in a sequence of fragments.

FASTPATH_FRAGMENT_FIRST
0x2

The fast-path data in the updateData field contains the first
fragment in a sequence of fragments.

FASTPATH_FRAGMENT_NEXT
0x3

The fast-path data in the updateData field contains the second or
subsequent fragment in a sequence of fragments.

compression (2 bits): A 2-bit, unsigned integer that specifies compression parameters.

Flag (2 bits)

FASTPATH_OUTPUT_COMPRESSION_USED
0x2

Indicates that the compressionFlags field is present.

compressionFlags (1 byte): An 8-bit, unsigned integer. Optional compression flags. The flags used

in this field are exactly the same as the flags

used in the compressedType field in the Share

Data Header (section 2.2.8.1.1.1.2) and have the same meaning.

size (2 bytes): A 16-bit, unsigned integer. The

size in bytes of the data in the updateData field.

updateData (variable): Optional and variable-length data specific to the update.

[MS-RDPBCGR] - v20230920

206 / 444

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Copyright © 2023 Microsoft Corporation
Release: September 20, 2023

2.2.9.1.2.1.1 Fast-Path Palette Update (TS_FP_UPDATE_PALETTE)

The TS_FP_UPDATE_PALETTE structure is the fast-path variant of the
TS UPDATE PALETTE (section 2.2.9.1.1.3.1.1) structure.

N
w

1
0(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

compressionFlags

(optional) size

updateHeader

paletteUpdateData (variable)

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field, specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_PALETTE (2).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

paletteUpdateData (variable): Variable-length palette data. Both slow-path and fast-path utilize
the same data format, a Palette Update Data (section 2.2.9.1.1.3.1.1.1) structure, to represent
this information.

2.2.9.1.2.1.2 Fast-Path Bitmap Update (TS_FP_UPDATE_BITMAP)

The TS_FP_UPDATE_BITMAP structure is the fast-path variant of the
TS UPDATE BITMAP (section 2.2.9.1.1.3.1.2) structure.

w

1 2
0({1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

compressionFlags

(optional) size

updateHeader

bitmapUpdateData (variable)

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_BITMAP (1).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

207 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

bitmapUpdateData (variable): Variable-length bitmap data. Both slow-path and fast-path utilize
the same data format, a Bitmap Update Data (section 2.2.9.1.1.3.1.2.1) structure, to represent
this information.

2.2.9.1.2.1.3 Fast-Path Synchronize Update (TS_FP_UPDATE_SYNCHRONIZE)

The TS_FP_UPDATE_SYNCHRONIZE structure is the fast-path variant of the
TS_UPDATE_SYNC (section 2.2.9.1.1.3.1.3) structure.

1 2 3
0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

compressionFlags size

updateHeader >
(optional)

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field described in the Fast-Path Update (section 2.2.9.1.2.1). The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_SYNCHRONIZE (3).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field described in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. This field MUST be set to zero.

2.2.9.1.2.1.4 Fast-Path Pointer Position Update (TS_FP_POINTERPOSATTRIBUTE)

The TS_FP_POINTERPOSATTRIBUTE structure is the fast-path variant of the
TS_POINTERPOSATTRIBUTE structure (section 2.2.9.1.1.4.2).

1 2 3
0[{1(2|3|4|5|6|7|8|9(0(1(2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

compressionFlags

(optional) size

updateHeader

pointerPositionUpdateData

updateHeader (1 byte): The format of this field is the same as the updateHeader byte field
specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The updateCode bitfield (4 bits
in size) MUST be set to FASTPATH_UPDATETYPE_PTR_POSITION (8).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

pointerPositionUpdateData (4 bytes): Pointer coordinates. Both slow-path and fast-path utilize the
same data format, a Pointer Position Update (section 2.2.9.1.1.4.2) structure, to represent this
information.

2.2.9.1.2.1.5 Fast-Path System Pointer Hidden Update
(TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE)

The TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE structure is used to hide the pointer.

208 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

w

1 2
0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

compressionFlags

(optional) size

updateHeader

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_PTR_NULL (5).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. This field MUST be set to zero.

2.2.9.1.2.1.6 Fast-Path System Pointer Default Update
(TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE)

The TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE structure is used to set the shape of the pointer to
the operating system default.

N
w

1
0(1|/2|3(4(5|6|(7|8|9|0(1|2|3(4|5|6(|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

compressionFlags

(optional) size

updateHeader

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_PTR_DEFAULT (6).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. This field MUST be set to zero.

2.2.9.1.2.1.7 Fast-Path Color Pointer Update (TS_FP_COLORPOINTERATTRIBUTE)

The TS_FP_COLORPOINTERATTRIBUTE structure is the fast-path variant of the
TS COLORPOINTERATTRIBUTE (section 2.2.9.1.1.4.4) structure.

N
w

1
0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

updateHeader compressionFlags size
(optional)

colorPointerUpdateData (variable)

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_COLOR (9).

209 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

colorPointerUpdateData (variable): Color pointer data. Both slow-path and fast-path utilize the
same data format, a Color Pointer Update (section 2.2.9.1.1.4.4) structure, to represent this
information.

2.2.9.1.2.1.8 Fast-Path New Pointer Update (TS_FP_POINTERATTRIBUTE)

The TS_FP_POINTERATTRIBUTE structure is the fast-path variant of the
TS POINTERATTRIBUTE (section 2.2.9.1.1.4.5) structure.

1 2 3
0(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

compressionFlags size

updateHeader (optional)

newPointerUpdateData (variable)

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_POINTER (11).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

newPointerUpdateData (variable): Color pointer data at arbitrary color depth. Both slow-path and
fast-path utilize the same data format, a New Pointer Update (section 2.2.9.1.1.4.5) structure, to
represent this information.

2.2.9.1.2.1.9 Fast-Path Cached Pointer Update (TS_FP_CACHEDPOINTERATTRIBUTE)

The TS_FP_CACHEDPOINTERATTRIBUTE structure is the fast-path variant of the
TS CACHEDPOINTERATTRIBUTE (section 2.2.9.1.1.4.6) structure.

w

1 2
0(1|/2|3(4|(5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

compressionFlags

(optional) size

updateHeader

cachedPointerUpdateData

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_CACHED (10).

210/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

cachedPointerUpdateData (2 bytes): Cached pointer data. Both slow-path and fast-path utilize
the same data format, a Cached Pointer Update (section 2.2.9.1.1.4.6) structure, to represent this
information.

2.2.9.1.2.1.10 Fast-Path Surface Commands Update (TS_FP_SURFCMDS)

The TS_FP_SURFCMDS structure encapsulates one or more Surface Command (section
2.2.9.1.2.1.10.1) structures.

1 2 3
0(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

updateHeader compressionFlags size
(optional)

surfaceCommands (variable)

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_SURFCMDS (4).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
(section 2.2.9.1.2.1) structure.

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

surfaceCommands (variable): An array of Surface Command (section 2.2.9.1.2.1.10.1) structures
containing a collection of commands to be processed by the client.

2.2,9.1.2.1.10.1 Surface Command (TS_SURFCMD)

The TS_SURFCMD structure is used to specify the Surface Command type and to encapsulate the data
for a Surface Command sent from a server to a client. All Surface Commands in section 2.2.9.2
conform to this structure.

-
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]|1

cmdType cmdData (variable)

cmdType (2 bytes): A 16-bit unsigned integer. Surface Command type.

211 /444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Value Meaning

CMDTYPE_SET_SURFACE_BITS Indicates a Set Surface Bits Command (section 2.2.9.2.1).
0x0001

CMDTYPE_FRAME_MARKER Indicates a Frame Marker Command (section 2.2.9.2.3).
0x0004

CMDTYPE_STREAM_SURFACE_BITS | Indicates a Stream Surface Bits Command (section 2.2.9.2.2).
0x0006

cmdData (variable): Variable-length data specific to the Surface Command.

2.2.9.1.2.1.11 Fast-Path Large Pointer Update
(TS_FP_LARGEPOINTERATTRIBUTE)

The TS_FP_LARGEPOINTERATTRIBUTE structure is used to transport mouse pointer shapes larger than
96x96 pixels in size.

0123456789(1)123456789512345678981
updateHeader Com(pol‘stsisoirc]);lll?ags size
xorBpp cachelndex
hotSpot
width height
lengthAndMask
lengthXorMask

xorMaskData (variable)

andMaskData (variable)

pad (optional)

updateHeader (1 byte): An 8-bit, unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_LARGE_POINTER
(12).

compressionFlags (1 byte): An 8-bit, unsigned integer. The format of this optional field (as well as
the possible values) is the same as the compressionFlags field specified in the Fast-Path Update
structure.

212 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

size (2 bytes): A 16-bit, unsigned integer. The format of this field (as well as the possible values) is
the same as the size field specified in the Fast-Path Update structure.

xorBpp (2 bytes): A 16-bit, unsigned integer. The color depth in bits-per-pixel of the XOR mask
contained in the xorMaskData field.

cachelIndex (2 bytes): A 16-bit, unsigned integer. The zero-based cache entry in the pointer cache
in which to store the pointer image. The number of cache entries is specified using the Pointer
Capability Set (section 2.2.7.1.5).

hotSpot (4 bytes): A Point (section 2.2.9.1.1.4.1) structure containing the x-coordinates and y-
coordinates of the pointer hotspot.

width (2 bytes): A 16-bit, unsigned integer. The width of the pointer in pixels. The maximum
allowed pointer width is 384 pixels.

height (2 bytes): A 16-bit, unsigned integer. The height of the pointer in pixels. The maximum
allowed pointer height is 384 pixels.

lengthAndMask (4 bytes): A 32-bit, unsigned integer. The size in bytes of the andMaskData field.
lengthXorMask (4 bytes): A 32-bit, unsigned integer. The size in bytes of the xorMaskData field.

xorMaskData (variable): A variable-length array of bytes. Contains the 24-bpp, bottom-up XOR
mask scan-line data. The XOR mask is padded to a 2-byte boundary for each encoded scan-line.
For example, if a 3x3 pixel cursor is being sent, then each scan-line will consume 10 bytes (3
pixels per scan-line multiplied by 3 bytes per pixel, rounded up to the next even number of bytes).

andMaskData (variable): A variable-length array of bytes. Contains the 1-bpp, bottom-up AND
mask scan-line data. The AND mask is padded to a 2-byte boundary for each encoded scan-line.
For example, if a 7x7 pixel cursor is being sent, then each scan-line will consume 2 bytes (7 pixels
per scan-line multiplied by 1 byte per pixel, rounded up to the next even number of bytes).

pad (1 byte): An optional 8-bit, unsigned integer used for padding. Values in this field MUST be
ignored.

2.2.9.2 Surface Commands

Surface Commands all conform to the layout of the Surface Command (section 2.2.9.1.2.1.10.1)
structure and MUST be wrapped in a Fast-Path Surface Commands Update (section 2.2.9.1.2.1.10).

2.2.9.2.1 Set Surface Bits Command (TS_SURFCMD_SET_SURF_BITS)

The Set Surface Bits Command is used to transport encoded bitmap data destined for a rectangular
region of the primary drawing surface from an RDP server to an RDP client.

-
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

cmdType destLeft
destTop destRight
destBottom bitmapData (variable)

213/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

cmdType (2 bytes): A 16-bit, unsigned integer. Surface Command type. This field MUST be set to
CMDTYPE_SET_SURFACE_BITS (0x0001).

destLeft (2 bytes): A 16-bit, unsigned integer. Left bound of the destination rectangle that will
contain the decoded bitmap data.

destTop (2 bytes): A 16-bit, unsigned integer. Top bound of the destination rectangle that will
contain the decoded bitmap data.

destRight (2 bytes): A 16-bit, unsigned integer. Exclusive right bound of the destination rectangle
that will contain the decoded bitmap data. This field SHOULD be ignored, as the width of the
encoded bitmap image is specified in the Extended Bitmap Data (section 2.2.9.2.1.1) present in
the variable-length bitmapData field.

destBottom (2 bytes): A 16-bit, unsigned integer. Exclusive bottom bound of the destination
rectangle that will contain the decoded bitmap data. This field SHOULD be ignored, as the height
of the encoded bitmap image is specified in the Extended Bitmap Data present in the variable-
length bitmapData field.

bitmapData (variable): An Extended Bitmap Data structure that contains an encoded bitmap image.

2.2,9.2,1.1 Extended Bitmap Data (TS_BITMAP_DATA_EX)

The TS_BITMAP_DATA_EX structure is used to encapsulate encoded bitmap data.

e

2
0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

w

bpp flags reserved codecID

width height

bitmapDatalLength

exBitmapDataHeader (variable)

bitmapData (variable)

bpp (1 byte): An 8-bit, unsigned integer. The color depth of the bitmap data in bits-per-pixel.
flags (1 byte): An 8-bit, unsigned integer that contains flags.

Flag Meaning

EX_COMPRESSED_BITMAP_HEADER_PRESENT
- - - - Indicates that the optional exBitmapDataHeader

0x01 field is present.

reserved (1 byte): An 8-bit, unsigned integer. This field is reserved for future use. It MUST be set to
zero.

214 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

codecID (1 byte): An 8-bit, unsigned integer. The client-assigned ID that identifies the bitmap codec
that was used to encode the bitmap data. Bitmap codec parameters are exchanged in the Bitmap
Codecs Capability Set (section 2.2.7.2.10). If this field is 0, then the bitmap data is not encoded
and can be used without performing any decoding transformation.

width (2 bytes): A 16-bit, unsigned integer. The width of the decoded bitmap image in pixels.
height (2 bytes): A 16-bit, unsigned integer. The height of the decoded bitmap image in pixels.

bitmapDatalLength (4 bytes): A 32-bit, unsigned integer. The size in bytes of the bitmapData
field.

exBitmapDataHeader (variable): An optional Extended Compressed Bitmap Header (section
2.2.9.2.1.1.1) structure that contains nonessential information associated with bitmap data in the
bitmapData field. This field MUST be present if the
EX_COMPRESSED_BITMAP_HEADER_PRESENT (0x01) flag is present.

bitmapData (variable): A variable-length array of bytes containing bitmap data encoded using the
codec identified by the ID in the codecID field.

2.2.9.2.1.1.1 Extended Compressed Bitmap Header
(TS_COMPRESSED_BITMAP_HEADER_EX)

The TS_COMPRESSED_BITMAP_HEADER_EX structure is used to encapsulate nonessential
information associated with bitmap data being transported in an Extended Bitmap Data (section
2.2.9.2.1.1) structure.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

highUniqueld

lowUniqueld

tmMilliseconds

tmSeconds

highUniqueld (4 bytes): A 32-bit, unsigned integer that contains the high-order bits of a unique 64-
bit identifier for the bitmap data.

lowUniqueld (4 bytes): A 32-bit, unsigned integer that contains the low-order bits of a unique 64-
bit identifier for the bitmap data.

tmMilliseconds (8 bytes): A 64-bit, unsigned integer that contains the milliseconds component of
the timestamp that indicates when the bitmap data was generated. The timestamp (composed of
the tmMilliseconds and tmSeconds fields), denotes the period of time that has elapsed since
January 1, 1970 (midnight UTC/GMT), not counting leap seconds.

tmSeconds (8 bytes): A 64-bit, unsigned integer that contains the seconds component of the
timestamp that indicates when the bitmap data was generated. The timestamp (composed of the
tmMilliseconds and tmSeconds fields), denotes the period of time that has elapsed since
January 1, 1970 (midnight UTC/GMT), not counting leap seconds.

215/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

2.2.9.2.2 Stream Surface Bits Command (TS_SURFCMD_STREAM_SURF_BITS)

The Stream Surface Bits Command is used to transport encoded bitmap data destined for a
rectangular region of the primary drawing surface from an RDP server to an RDP client.

-
N
w

0(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

cmdType destLeft
destTop destRight
destBottom bitmapData (variable)

cmdType (2 bytes): A 16-bit, unsigned integer. Surface Command type. This field MUST be set to
CMDTYPE_STREAM_SURFACE_BITS (0x0006).

destLeft (2 bytes): A 16-bit, unsigned integer. Left bound of the destination rectangle that will
contain the decoded bitmap data.

destTop (2 bytes): A 16-bit, unsigned integer. Top bound of the destination rectangle that will
contain the decoded bitmap data.

destRight (2 bytes): A 16-bit, unsigned integer. Exclusive right bound of the destination rectangle
that will contain the decoded bitmap data.

destBottom (2 bytes): A 16-bit, unsigned integer. Exclusive bottom bound of the destination
rectangle that will contain the decoded bitmap data.

bitmapData (variable): An Extended Bitmap Data (section 2.2.9.2.1.1) structure that contains an
encoded bitmap image.

2.2.9.2.3 Frame Marker Command (TS_FRAME_MARKER)

The Frame Marker Command is used to group multiple surface commands so that these commands
can be processed and presented to the user as a single entity, a frame.

-
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

cmdType frameAction

frameld

cmdType (2 bytes): A 16-bit, unsigned integer. Surface Command type. This field MUST be set to
CMDTYPE_FRAME_MARKER (0x0004).

frameAction (2 bytes): A 16-bit, unsigned integer. Identifies the beginning and end of a frame.

Value Meaning

SURFACECMD_FRAMEACTION_BEGIN | Indicates the start of a new frame.
0x0000

216 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

Value Meaning

SURFACECMD_FRAMEACTION_END Indicates the end of the current frame.
0x0001

frameld (4 bytes): A 32-bit, unsigned integer. The ID identifying the frame.
2.2.10 Logon and Authorization Notifications

2.2.10.1 Server Save Session Info PDU

The Save Session Info PDU is used by the server to transmit session and user logon information back
to the client after the user has logged on.

=
N
w

0(1|2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

tpktHeader

x224Data mcsSDin (variable)

securityHeader (variable)

saveSessionInfoPduData (variable)

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.
x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable-length PER-encoded MCS Domain PDU (DomainMCSPDU) which
encapsulates an MCS Send Data Indication structure (SDin, choice 26 from DomainMCSPDU), as
specified in [T125] section 11.33 (the ASN.1 structure definitions are given in [T125] section 7,
parts 7 and 10). The userData field of the MCS Send Data Indication contains a Security Header
and a Save Session Info PDU Data (section 2.2.10.1.1) structure.

securityHeader (variable): Optional security header. The presence and format of the security
header depends on the Encryption Level and Encryption Method selected by the server (sections
5.3.2 and 2.2.1.4.3). If the Encryption Level selected by the server is greater than
ENCRYPTION_LEVEL_NONE (0) and the Encryption Method selected by the server is greater than
ENCRYPTION_METHOD_NONE (0), then this field MUST contain one of the following headers:

= Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server is
ENCRYPTION_LEVEL_LOW (1).

= Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Method selected by the
server is ENCRYPTION_METHOD_40BIT (0x00000001), ENCRYPTION_METHOD_56BIT
(0x00000008), or ENCRYPTION_METHOD_128BIT (0x00000002).

217/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

https://go.microsoft.com/fwlink/?LinkId=90541
https://go.microsoft.com/fwlink/?LinkId=90588
https://go.microsoft.com/fwlink/?LinkId=90543

= FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Method selected by the server is
ENCRYPTION_METHOD_FIPS (0x00000010).

If the Encryption Level selected by the server is ENCRYPTION_LEVEL_NONE (0) and the Encryption
Method selected by the server is ENCRYPTION_METHOD_NONE (0), then this header MUST NOT
be included in the PDU.

saveSessionInfoPduData (variable): The actual contents of the Save Session Info PDU, as
specified in section 2.2.10.1.1.

2.2.10.1.1 Save Session Info PDU Data (TS_SAVE_SESSION_INFO_PDU_DATA)

The TS_SAVE_SESSION_INFO_PDU_DATA structure is a wrapper around different classes of user
logon information.

0[{1(2|3|4|5|6|7|8(9(0(1({2|3|4|5|6|7|8|9|0|1(2(3(4|5(6|7|8|9|0]|1

shareDataHeader (18 bytes)

infoType

infoData (variable)

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing information
about the packet. The type subfield of the pduType field of the Share Control Header (section
2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_SAVE_SESSION_INFO (38).

infoType (4 bytes): A 32-bit, unsigned integer. The type of logon information.

Value Meaning

INFOTYPE_LOGON This is a notification that the user has logged on. The infoData field

0x00000000 which follows contains a Logon Info Version 1 (section
2.2.10.1.1.1) structure.

INFOTYPE_LOGON_LONG This is a notification that the user has logged on. The infoData field

0x00000001 which follows contains a Logon Info Version 2 (section

2.2.10.1.1.2) structure. This type is supported by all RDP versions
except for RDP 4.0 and 5.0, and SHOULD be used if the
LONG_CREDENTIALS_SUPPORTED (0x00000004) flag is set in the
General Capability Set (section 2.2.7.1.1).

INFOTYPE_LOGON_PLAINNOTIFY This is a notification that the user has logged on. The infoData field
0x00000002 which follows contains a Plain Notify structure which contains 576
bytes of padding (section 2.2.10.1.1.3). This type is supported by all
RDP versions except for RDP 4.0 and 5.0.

INFOTYPE_LOGON_EXTENDED_INFO | The infoData field which follows contains a Logon Info Extended
0x00000003 (section 2.2.10.1.1.4) structure. This type is supported by all RDP
versions except for RDP 4.0, 5.0, and 5.1.

218 / 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

infoData (variable): A Logon Info Version 1 (section 2.2.10.1.1.1), Logon Info Version 2
(section 2.2.10.1.1.2), Plain Notify (section 2.2.10.1.1.3), or Logon Info Extended (section
2.2.10.1.1.4) structure. The type of data that follows depends on the value of the infoType field.

2.2.10.1.1.1 Logon Info Version 1 (TS_LOGON_INFO)

The TS_LOGON_INFO structure is a fixed-length structure that contains logon information intended
for the client.

=
N
w

0[{1(2|3|4|5|6|7|8|(9(0(1({2|3|4|5|6|7|8|9|0(1(2(3(4|5(6|7|8|9|0]|1

cbDomain

Domain (52 bytes)

cbUserName

UserName (512 bytes)

Sessionld

cbDomain (4 bytes): A 32-bit, unsigned integer. The size of the Unicode character data (including
the mandatory null terminator) in bytes present in the fixed-length Domain field.

Domain (52 bytes): An array of 26 Unicode characters: Null-terminated Unicode string containing
the name of the domain to which the user is logged on. The length of the character data in bytes
is given by the cbDomain field.

cbUserName (4 bytes): A 32-bit, unsigned integer. Size of the Unicode character data (including the
mandatory null terminator) in bytes present in the fixed-length UserName field.

UserName (512 bytes): An array of 256 Unicode characters: Null-terminated Unicode string
containing the username which was used to log on. The length of the character data in bytes is
given by the cbUserName field.

Sessionld (4 bytes): A 32-bit, unsigned integer. Optional ID of the session on the remote server
according to the server. Sent by all RDP servers, except for RDP 4.0 servers.

2.2.10.1.1.2 Logon Info Version 2 (TS_LOGON_INFO_VERSION_2)

TS_LOGON_INFO_VERSION_2 is a variable-length structure that contains logon information intended
for the client.

219/ 444

[MS-RDPBCGR] - v20230920

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
Copyright © 2023 Microsoft Corporation

Release: September 20, 2023

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

Version Size

Sessionld

cbDomain

cbUserName

Pad (558 bytes)

Domain (variable)

UserName (variable)

Version (2 bytes): A 16-bit, uns