

1 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-RAA-Diff]:

Remote Authorization API Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
as well as overviews of the interaction among each of these technologiessupport. Additionally,

overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you maycan make copies of it in order to develop implementations of the

technologies that are described in the Open Specifications this documentation and maycan
distribute portions of it in your implementations usingthat use these technologies or in your
documentation as necessary to properly document the implementation. You maycan also distribute

in your implementation, with or without modification, any schema, IDL'sschemas, IDLs, or code
samples that are included in the documentation. This permission also applies to any documents
that are referenced in the Open Specifications. documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that maymight cover your implementations of the technologies
described in the Open Specifications. documentation. Neither this notice nor Microsoft's delivery of
thethis documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specification maySpecifications document might be covered by the
Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a

written license, or if the technologies described in the Open Specificationsthis documentation are
not covered by the Open Specifications Promise or Community Promise, as applicable, patent

licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation maymight
be covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mailemail
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications dodocumentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available
standardstandards specifications and network programming art, and assumes, as such, assume that
the reader either is familiar with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

12/16/2011 1.0 New Released new document.

3/30/2012 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 2.0 Major Significantly changed the technical content.

8/8/2013 3.0 Major Significantly changed the technical content.

11/14/2013 4.0 Major Significantly changed the technical content.

2/13/2014 5.0 Major Significantly changed the technical content.

5/15/2014 5.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 6.0 Major Significantly changed the technical content.

10/16/2015 6.0
No
ChangeNone

No changes to the meaning, language, or formatting of the
technical content.

3 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.4 Relationship to Other Protocols .. 8
1.5 Prerequisites/Preconditions ... 8
1.6 Applicability Statement ... 8
1.7 Versioning and Capability Negotiation ... 8
1.8 Vendor Extensible Fields ... 8
1.9 Standards Assignments ... 8

2 Messages ... 9
2.1 Transport .. 9
2.2 Common Data Types .. 9

2.2.1 Data Types .. 10
2.2.1.1 AUTHZR_HANDLE ... 10

2.2.2 Enumerations ... 10
2.2.2.1 AUTHZ_CONTEXT_INFORMATION_CLASS ... 10
2.2.2.2 AUTHZ_SECURITY_ATTRIBUTE_OPERATION ... 11
2.2.2.3 AUTHZ_SID_OPERATION ... 12

2.2.3 Structures ... 12
2.2.3.1 AUTHZR_ACCESS_REPLY ... 13
2.2.3.2 AUTHZR_ACCESS_REQUEST ... 13
2.2.3.3 AUTHZR_CONTEXT_INFORMATION .. 14
2.2.3.4 AUTHZR_SECURITY_ATTRIBUTE_STRING_VALUE 15
2.2.3.5 AUTHZR_SECURITY_ATTRIBUTE_V1 .. 15
2.2.3.6 AUTHZR_SECURITY_ATTRIBUTE_V1_VALUE ... 16
2.2.3.7 AUTHZR_SECURITY_ATTRIBUTES_INFORMATION 16
2.2.3.8 AUTHZR_SID_AND_ATTRIBUTES .. 17
2.2.3.9 AUTHZR_TOKEN_GROUPS .. 17
2.2.3.10 AUTHZR_TOKEN_USER .. 17
2.2.3.11 SR_SD ... 17

3 Protocol Details ... 19
3.1 authzr Server Details .. 19

3.1.1 Abstract Data Model .. 19
3.1.2 Timers .. 19
3.1.3 Initialization ... 19
3.1.4 Message Processing Events and Sequencing Rules .. 20

3.1.4.1 AuthzrFreeContext (Opnum 0) .. 20
3.1.4.2 AuthzrInitializeContextFromSid (Opnum 1) .. 20
3.1.4.3 AuthzrInitializeCompoundContext (Opnum 2) ... 22
3.1.4.4 AuthzrAccessCheck (Opnum 3) ... 23
3.1.4.5 AuthzGetInformationFromContext (Opnum 4) ... 24
3.1.4.6 AuthzrModifyClaims (Opnum 5) .. 26
3.1.4.7 AuthzrModifySids (Opnum 6) .. 28

3.1.5 Timer Events .. 29
3.1.6 Other Local Events .. 29

4 Protocol Examples ... 30

5 Security ... 33
5.1 Security Considerations for Implementers ... 33
5.2 Index of Security Parameters .. 33

4 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Full IDL .. 34

7 Appendix B: Product Behavior ... 37

8 Change Tracking .. 38

9 Index ... 39

5 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

This document specifies the Remote Authorization API Protocol. The Remote Authorization API Protocol
is a Remote Procedure Call (RPC)-based protocol used to perform various authorization queries on
remote computers.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative and can contain the terms MAY,
SHOULD, MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also

normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

TheThis document uses the following terms are specific to this document:

access control decision: Choosing whether to allow a user access of a resource on a specific
remote service based on a given authorization policy.

access control list (ACL): A list of access control entries (ACEs) that collectively describe the
security rules for authorizing access to some resource; for example, an object or set of objects.

Active Directory: A general-purpose network directory service. Active Directory also refers to
the Windows implementation of a directory service. Active Directory stores information about

a variety of objects in the network. Importantly, user accounts, computer accounts, groups, and
all related credential information used by the Windows implementation of Kerberos are stored in
Active Directory. Active Directory is either deployed as Active Directory Domain Services (AD
DS) or Active Directory Lightweight Directory Services (AD LDS). [MS-ADTS] describes both
forms. For more information, see [MS-AUTHSOD] section 1.1.1.5.2, Lightweight Directory
Access Protocol (LDAP) versions 2 and 3, Kerberos, and DNS.

authorization policy: A set of rules that govern a user's access to one or more resources or

classes of resources.

client context: A context describing an execution environment from which an activation request
has originated.

impersonation token: A security context, created on the server, that represents the set of rights
and privileges of the user. Used to test whether the user is authorized to access a resource.

principal self: A well-known security identifier (SID) used to represent the identity of a security

principal when that security principal is also the object that is being protected with a security
descriptor. Applicable only to directory objects that are representing security principals, the
principal self identifier allows the security descriptor on the directory object to grant specific
user rights to the principal itself. As an example, a user object for fred@domain.com might have
a security descriptor that allowed principal-self:update-shoe-size. The intent is to allow fred to
update his own shoe size. The use of the fixed value SID for principal self prevents every user
object from needing a unique security descriptor, thus conserving space in the directory

database.

RPC endpoint: A network-specific address of a server process for remote procedure calls (RPCs).
The actual name of the RPC endpoint depends on the RPC protocol sequence being used. For
example, for the NCACN_IP_TCP RPC protocol sequence an RPC endpoint might be TCP port
1025. For more information, see [C706].

security descriptor: A data structure containing the security information associated with a
securable object. A security descriptor identifies an object's owner by its security identifier

(SID). If access control is configured for the object, its security descriptor contains a
discretionary access control list (DACL) with SIDs for the security principals who are allowed or

6 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

denied access. Applications use this structure to set and query an object's security status. The
security descriptor is used to guard access to an object as well as to control which type of

auditing takes place when the object is accessed. The security descriptor format is specified in
[MS-DTYP] section 2.4.6; a string representation of security descriptors, called SDDL, is

specified in [MS-DTYP] section 2.5.1.

security identifier (SID): An identifier for security principals in Windows that is used to identify
an account or a group. Conceptually, the SID is composed of an account authority portion
(typically a domain) and a smaller integer representing an identity relative to the account
authority, termed the relative identifier (RID). The SID format is specified in [MS-DTYP] section
2.4.2; a string representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD]
section 1.1.1.2.

smart card: A portable device that is shaped like a business card and is embedded with a memory
chip and either a microprocessor or some non-programmable logic. Smart cards are often used
as authentication tokens and for secure key storage. Smart cards used for secure key storage
have the ability to perform cryptographic operations with the stored key without allowing the
key itself to be read or otherwise extracted from the card.

token: A set of rights and privileges for a given user.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of

this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

https://www2.opengroup.org/ogsys/catalog/c706

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-LSAT] Microsoft Corporation, "Local Security Authority (Translation Methods) Remote Protocol".

7 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SFU] Microsoft Corporation, "Kerberos Protocol Extensions: Service for User and Constrained

Delegation Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

None.

1.3 Overview

The Remote Authorization API (RAZA) protocol is designed to allow applications to simulate an access
control decision that would be made when a given principal attempts to access a resource on a
remote service that is protected with a given authorization policy. Because these are simulations,

they can vary from the actual groups and/or claims in a user's token.

For example, a user can log on with a password, or the user can log on using a smart card (with

authentication assurance provisioned). Each type of logon will result in a different kind of
impersonation token. Logging on using the password produces an impersonation token with a
mapped group or claim; logging on using the smart card produces an impersonation token without a
mapped group or claim.

The following are some of the examples of this protocol's applications:

 Simulate the groups and/or claims that a user would have if the user were to authenticate to a
remote service.

 Simulate a user's access to a hypothetical resource on a specific remote service that is protected
with a given authorization policy.

 Simulate how potential changes to the user's group or claim assignments maycan affect access to
resources on the remote machine.

The RAZA protocol defines client and server protocol roles.<1> A general description of message flow
is as follows:

1. The RAZA client initiates a RAZA conversation by issuing a request to a RAZA server to initialize

and maintain a resource manager object.

2. The RAZA server listens to an RPC endpoint. When a client makes the preceding request, the
RAZA server creates and maintains state for a resource manager object on behalf of the client.

3. The RAZA client can then request creation of a client context for a user by specifying the user's
security identifier (SID). After a client context is successfully created on the server, the RAZA
client can examine the contents of the client context (for example, the group SIDs and claims

within the client context) and/or modify the client context. Additionally, the RAZA client can

perform an "AccessCheck" using the client context and a specified security descriptor.

RAZA supports the following method calls to provide clients a way to simulate access control decisions.

 AuthzrFreeContext

 AuthzrInitializeContextFromSid

 AuthzrInitializeCompoundContext

 AuthzrAccessCheck

8 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 AuthzGetInformationFromContext

 AuthzrModifyClaims

 AuthzrModifySids

1.4 Relationship to Other Protocols

The Remote Authorization API Protocol is dependent on RPC and TCP for its transport.

No other protocol currently depends on the Remote Authorization API Protocol.

1.5 Prerequisites/Preconditions

The Remote Authorization API Protocol is an RPC interface and, as a result, has the prerequisites
specified in [MS-RPCE] (section 1.5) as being common to RPC interfaces.

It is assumed that a Remote Authorization API Protocol client has obtained the name of a remote

computer that supports the Remote Authorization API Protocol before this protocol is invoked.

1.6 Applicability Statement

This protocol is appropriate only for implementing a tool to remotely approximate and profile "what-if"
authorization decisions.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

 Supported Transports: This protocol uses multiple RPC Protocol Sequences as specified in
section 2.1.

 Security and Authentication Methods: As specified in [MS-RPCE] section 3.2.1.4.1.

 Capability Negotiation: The RAZA protocol does not support negotiation of the interface version
to use. Instead, an implementation needs to be configured with the interface version to use.

1.8 Vendor Extensible Fields

This protocol cannot be extended by any party other than Microsoft.

This protocol uses Win32 error codes as defined in [MS-ERREF] section 2.2. Vendors SHOULD reuse
those values with their indicated meaning. Choosing any other value runs the risk of a collision in the
future.

1.9 Standards Assignments

The following table lists the universally unique identifier (UUID) value for the authzr interface
specified in section 3.1.

Parameter Value Reference

UUID for authzr 0b1c2170-5732-4e0e-8cd3-d9b16f3b84d7 [C706]

9 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

2.1 Transport

This protocol uses the following RPC protocol sequences as specified in [MS-RPCE] (section 2.1.1.1 for

TCP/IP - NCACN_IP_TCP and section 2.1.1.2 for SMB - NCACN_NP):

 RPC over TCP/IP

This protocol uses the following RPC endpoints:

 Dynamic endpoints as specified in [C706] part 4

This protocol MUST use the following UUIDs:

 authzr interface: 0b1c2170-5732-4e0e-8cd3-d9b16f3b84d7

 Object UUIDs: 9a81c2bd-a525-471d-a4ed-49907c0b23da and 5fc860e0-6f6e-4fc2-83cd-
46324f25e90b

2.2 Common Data Types

This protocol MUST indicate to the RPC runtime that it is to support both the NDR and NDR64 transfer

syntaxes and provide a negotiation mechanism for determining which transfer syntax will be used
([MS-RPCE] section 3.1.1.5.1.1).

The following data types are specified in [MS-DTYP]:

Data type name Section

ACCESS_MASK 2.4.3

BYTE 2.2.6

DWORD 2.2.9

GUID 2.3.4

LARGE_INTEGER 2.3.5

LONG 2.2.27

LONG64 2.2.31

LUID 2.3.7

OBJECT_TYPE_LIST 2.3.9

PVOID 2.2.59

RPC_SID 2.4.2.3

RPC_SID_IDENTIFIER_AUTHORITY 2.4.1.1

SID 2.4.2

SID_IDENTIFIER_AUTHORITY 2.4.1

ULONG 2.2.51

ULONG64 2.2.54

10 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Data type name Section

USHORT 2.2.58

VOID 2.2.59

WCHAR 2.2.60

WORD 2.2.61

2.2.1 Data Types

This protocol defines the following data type.

DataType name Section Description

AUTHZR_HANDLE 2.2.1.1 Represents an explicit RPC binding handle associated with an authzr interface.
Used to maintain security information about a principal.

2.2.1.1 AUTHZR_HANDLE

The AUTHZR_HANDLE data type is used to maintain security information about a principal; it
represents an explicit RPC binding handle associated with an authzr interface. This is used to identify
the client context when calling methods in this protocol, and the server tracks the AUTHZR_HANDLE
for each ClientContext ADM element in its ClientContextList.

 typedef [context_handle] PVOID AUTHZR_HANDLE;

2.2.2 Enumerations

This protocol uses the following enumeration.

Enumeration name Section Description

AUTHZ_CONTEXT_INFORMATION_CLASS 2.2.2.1 References the security attributes of a principal
represented by an AUTHZR_HANDLE.

AUTHZ_SECURITY_ATTRIBUTE_OPERATION 2.2.2.2 Identifies operation types on a client context object.

AUTHZ_SID_OPERATION 2.2.2.3 Indicates the type of SID operations that can be made
by a call to the AuthzrModifySids method.

2.2.2.1 AUTHZ_CONTEXT_INFORMATION_CLASS

The AUTHZ_CONTEXT_INFORMATION_CLASS enumeration is used to indicate security attributes of a
principal represented by an AUTHZR_HANDLE.

 typedef enum _AUTHZ_CONTEXT_INFORMATION_CLASS {
 AuthzContextInfoUserSid = 1,

11 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 AuthzContextInfoGroupsSids = 2,
 AuthzContextInfoRestrictedSids = 3,
 ReservedEnumValue4 = 4,
 ReservedEnumValue5 = 5,
 ReservedEnumValue6 = 6,
 ReservedEnumValue7 = 7,
 ReservedEnumValue8 = 8,
 ReservedEnumValue9 = 9,
 ReservedEnumValue10 = 10,
 ReservedEnumValue11 = 11,
 AuthzContextInfoDeviceSids = 12,
 AuthzContextInfoUserClaims = 13,
 AuthzContextInfoDeviceClaims = 14,
 ReservedEnumValue15 = 15,
 ReservedEnumValue16 = 16
 } AUTHZ_CONTEXT_INFORMATION_CLASS;

AuthzContextInfoUserSid: Indicates the principal's user SID and its attribute.

AuthzContextInfoGroupsSids: Indicates the groups to which the principal belongs and their
attributes.

AuthzContextInfoRestrictedSids: Indicates the restricted SIDs in the principal's security context
and their attributes.

ReservedEnumValue4: Not used.

ReservedEnumValue5: Not used.

ReservedEnumValue6: Not used.

ReservedEnumValue7: Not used.

ReservedEnumValue8: Not used.

ReservedEnumValue9: Not used.

ReservedEnumValue10: Not used.

ReservedEnumValue11: Not used.

AuthzContextInfoDeviceSids: Indicates the groups to which the device principal belongs and their

attributes.

AuthzContextInfoUserClaims: Indicates the user's security attributes information.

AuthzContextInfoDeviceClaims: Indicates the device's security attributes information.

ReservedEnumValue15: Not used.

ReservedEnumValue16: Not used.

2.2.2.2 AUTHZ_SECURITY_ATTRIBUTE_OPERATION

The AUTHZ_SECURITY_ATTRIBUTE_OPERATION enumeration structure is used with the
AuthzrModifyClaims operation (section 3.1.4.6) to identify operation types on a client context object.

 typedef enum _AUTHZ_SECURITY_ATTRIBUTE_OPERATION {

12 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 AUTHZ_SECURITY_ATTRIBUTE_OPERATION_NONE = 0,
 AUTHZ_SECURITY_ATTRIBUTE_OPERATION_REPLACE_ALL = 1,
 AUTHZ_SECURITY_ATTRIBUTE_OPERATION_ADD = 2,
 AUTHZ_SECURITY_ATTRIBUTE_OPERATION_DELETE = 3,
 AUTHZ_SECURITY_ATTRIBUTE_OPERATION_REPLACE = 4
 } AUTHZ_SECURITY_ATTRIBUTE_OPERATION;

AUTHZ_SECURITY_ATTRIBUTE_OPERATION_NONE: No operation will be performed.

AUTHZ_SECURITY_ATTRIBUTE_OPERATION_REPLACE_ALL: The ImpersonationAccessToken on

the specified client context will be replaced.

AUTHZ_SECURITY_ATTRIBUTE_OPERATION_ADD: A new claim will be added to the server's
ImpersonationAccessToken associated with the specified client context.

AUTHZ_SECURITY_ATTRIBUTE_OPERATION_DELETE: An existing claim will be deleted from the
ImpersonationAccessToken array associated with the specified client context if it is present in
that array.

AUTHZ_SECURITY_ATTRIBUTE_OPERATION_REPLACE: An existing claim will be replaced in the
ImpersonationAccessToken array associated with the specified client context if it is present in
the array.

2.2.2.3 AUTHZ_SID_OPERATION

The AUTHZ_SID_OPERATION enumeration indicates the type of SID operations that can be made by a
call to the AuthzrModifySids operation (section 3.1.4.7).

 typedef enum _AUTHZ_SID_OPERATION {
 AUTHZ_SID_OPERATION_NONE = 0,
 AUTHZ_SID_OPERATION_REPLACE_ALL = 1,
 AUTHZ_SID_OPERATION_ADD = 2,
 AUTHZ_SID_OPERATION_DELETE = 3,
 AUTHZ_SID_OPERATION_REPLACE = 4
 } AUTHZ_SID_OPERATION;

AUTHZ_SID_OPERATION_NONE: Do not modify anything.

AUTHZ_SID_OPERATION_REPLACE_ALL: Replace the existing SIDs with the specified SIDs. If
replacement SIDs are not specified, delete the existing SIDs. This operation can be specified only
once and must be the only operation specified.

AUTHZ_SID_OPERATION_ADD: Add a new SID. If the SID already exists, fail the call.

AUTHZ_SID_OPERATION_DELETE: Delete the specified SID. If the specified SID is not found, fail
the call without taking action.

AUTHZ_SID_OPERATION_REPLACE: Replace the existing SID with the specified SID. If the SID

does not exist, add the specified SID.

2.2.3 Structures

This protocol uses the following structures.

13 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Structure name Section Description

AUTHZR_ACCESS_REPLY 2.2.3.1 Defines the contents of a remote access check
reply.

AUTHZR_ACCESS_REQUEST 2.2.3.2 Defines the contents of a remote access check
request.

AUTHZR_CONTEXT_INFORMATION 2.2.3.3 Contains security information about a principal.

AUTHZR_SECURITY_ATTRIBUTE_STRING_VALUE 2.2.3.4 Specifies a string value associated with a security
attribute.

AUTHZR_SECURITY_ATTRIBUTE_V1 2.2.3.5 Specifies a security attribute and one or more
value pairs.

AUTHZR_SECURITY_ATTRIBUTE_V1_VALUE 2.2.3.6 Specifies a value associated with a security
attribute.

AUTHZR_SECURITY_ATTRIBUTES_INFORMATION 2.2.3.7 Specifies one or more security attributes and
values.

AUTHZR_SID_AND_ATTRIBUTES 2.2.3.8 Contains information about the security identifiers
(SIDs) in a token.

AUTHZR_TOKEN_GROUPS 2.2.3.9 Represents a security identifier (SID) and its
attributes.

AUTHZR_TOKEN_USER 2.2.3.10 Identifies the user associated with a token.

SR_SD 2.2.3.11 Contains a self-relative security descriptor.

2.2.3.1 AUTHZR_ACCESS_REPLY

The AUTHZR_ACCESS_REPLY structure defines the contents of a remote access check reply.

 typedef struct _AUTHZR_ACCESS_REPLY {
 [range(0, 256)] DWORD ResultListLength;
 [size_is(ResultListLength)] ACCESS_MASK* GrantedAccessMask;
 [size_is(ResultListLength)] DWORD* Error;
 } AUTHZR_ACCESS_REPLY;

ResultListLength: The number of elements in the GrantedAccessMask and Error arrays. This
number matches the number of entries in the object type list structure used in the access check.
The length MUST be between 1 and 256. If no object type is used to represent the object,

ResultListLength MUST be set to 1.

GrantedAccessMask: A pointer to an array of granted access masks.

Error: A pointer to an array of DWORD error code results for each element of the array.

2.2.3.2 AUTHZR_ACCESS_REQUEST

The AUTHZR_ACCESS_REQUEST structure defines the contents of a remote access check request.

 typedef struct _AUTHZR_ACCESS_REQUEST {

14 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ACCESS_MASK DesiredAccess;
 RPC_SID* PrincipalSelfSid;
 [range(0, 256)] DWORD ObjectTypeListLength;
 [size_is(ObjectTypeListLength)] OBJECT_TYPE_LIST* ObjectTypeList;
 } AUTHZR_ACCESS_REQUEST;

DesiredAccess: The type of access to test.

PrincipalSelfSid: A pointer to the security identifier (SID) to use for the principal self SID in the

access control list (ACL).

ObjectTypeListLength: The number of elements in the ObjectTypeList array.

ObjectTypeList: A pointer to an array of OBJECT_TYPE_LIST structures in the object tree for the
object.

2.2.3.3 AUTHZR_CONTEXT_INFORMATION

The AUTHZR_CONTEXT_INFORMATION structure contains security information about a principal.

 typedef struct _AUTHZR_CONTEXT_INFORMATION {
 USHORT ValueType;
 [switch_is(ValueType)] union _AUTHZR_CONTEXT_INFORMATION_UNION {
 [case(0x1)]
 AUTHZR_TOKEN_USER* pTokenUser;
 [case(0x2, 0x3, 0xC)]
 AUTHZR_TOKEN_GROUPS* pTokenGroups;
 [case(0xD, 0xE)]
 AUTHZR_SECURITY_ATTRIBUTES_INFORMATION* pTokenClaims;
 } ContextInfoUnion;
 } AUTHZR_CONTEXT_INFORMATION;

ValueType: Identifies the type of the ContextInfoUnion member.

Value Meaning

0x0001 (user) ContextInfoUnion contains an AUTHZR_TOKEN_USER structure, as specified in

section 2.2.3.10.

0x0002 (groups)

0x0003 (restricted
groups)

0x000C (device
groups)

ContextInfoUnion contains an AUTHZR_TOKEN_GROUPS structure, as specified in
section 2.2.3.9.

0x000D (user
claim)

0x000E (device
claim)

ContextInfoUnion contains an AUTHZR_SECURITY_ATTRIBUTES_INFORMATION
structure, as specified in section 2.2.3.7.

ContextInfoUnion: A pointer to an AUTHZR_TOKEN_USER, AUTHZR_TOKEN_GROUPS, or
AUTHZR_SECURITY_ATTRIBUTES_INFORMATION structure, depending on the value of ValueType.

15 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.3.4 AUTHZR_SECURITY_ATTRIBUTE_STRING_VALUE

The AUTHZR_SECURITY_ATTRIBUTE_STRING_VALUE structure contains the string value of a claim.

 typedef struct _AUTHZR_SECURITY_ATTRIBUTE_STRING_VALUE {
 [range(2, 32768)] ULONG Length;
 [string] [size_is(Length)] WCHAR* Value;
 } AUTHZR_SECURITY_ATTRIBUTE_STRING_VALUE;

Length: The length of the string in the Value parameter.

Value: A Unicode string containing the pass-through string value of the claim.

2.2.3.5 AUTHZR_SECURITY_ATTRIBUTE_V1

The AUTHZR_SECURITY_ATTRIBUTE_V1 structure specifies one or more security attribute and value

pairs that are associated with a remote authorization context.

 typedef struct _AUTHZR_SECURITY_ATTRIBUTE_V1 {
 [range(2, 256)] ULONG Length;
 [string] [size_is(Length)] WCHAR* Value;
 USHORT ValueType;
 USHORT Reserved;
 ULONG Flags;
 [range(0, 1024)] ULONG ValueCount;
 [size_is(ValueCount)] AUTHZR_SECURITY_ATTRIBUTE_V1_VALUE* Values;
 } AUTHZR_SECURITY_ATTRIBUTE_V1;

Length: The length of the Value parameter, in bytes. MUST be between 2 and 256.

Value: A Unicode string containing the security value. This string MUST be between 2 and 256 bytes
in length, inclusive.

ValueType: A union tag value indicating the type of information contained in Values member.

Reserved: Reserved. This member MUST be set to zero when sent and MUST be ignored when
received.

Flags: MUST be zero or a combination of one or more of the following values.

Value Description

AUTHZ_SECURITY_ATTRIBUTE_NON_INHERITABLE

0x00000001

This security attribute is not inherited
across processes.

AUTHZ_SECURITY_ATTRIBUTE_VALUE_CASE_SENSITIVE
0x00000002

The value of the attribute is case
sensitive. This flag is valid for values that
contain string types.

ValueCount: The number of attribute and value pairs pointed to by the Values member. The
number of attribute and value pairs MUST be between 0 and 1,024, inclusive.

Values: An array of AUTHZR_SECURITY_ATTRIBUTE_V1_VALUE structures, as defined in section
2.2.3.6. Each structure contains a security attribute and value pair.

16 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.3.6 AUTHZR_SECURITY_ATTRIBUTE_V1_VALUE

The AUTHZR_SECURITY_ATTRIBUTE_V1_VALUE structure defines a claim.

 typedef struct _AUTHZR_SECURITY_ATTRIBUTE_V1_VALUE {
 USHORT ValueType;
 [switch_is(ValueType)] union _AUTHZR_SECURITY_ATTRIBUTE_UNION {
 [case(0x1)]
 LONG64 Int64;
 [case(0x2, 0x6)]
 ULONG64 Uint64;
 [case(0x3)]
 AUTHZR_SECURITY_ATTRIBUTE_STRING_VALUE String;
 } AttributeUnion;
 } AUTHZR_SECURITY_ATTRIBUTE_V1_VALUE;

ValueType: Identifies the type of the AttributeUnion member.

Value Meaning

0x0001 AttributeUnion contains a LONG64 value.

0x0002,
0x0006

AttributeUnion contains a ULONG64 value.

0x0003 AttributeUnion contains an AUTHZR_SECURITY_ATTRIBUTE_STRING_VALUE structure, as
specified in section 2.2.3.4.

AttributeUnion: A LONG64, ULONG64, or AUTHZR_SECURITY_ATTRIBUTE_STRING_VALUE,
depending on the value of ValueType.

2.2.3.7 AUTHZR_SECURITY_ATTRIBUTES_INFORMATION

The AUTHZR_SECURITY_ATTRUBUTES_INFORMATION structure specifies one or more security
attributes.

 typedef struct _AUTHZR_SECURITY_ATTRIBUTES_INFORMATION {
 USHORT Version;
 USHORT Reserved;
 [range(0, 1024)] ULONG AttributeCount;
 [size_is(AttributeCount)] AUTHZR_SECURITY_ATTRIBUTE_V1* Attributes;
 } AUTHZR_SECURITY_ATTRIBUTES_INFORMATION;

Version: The version of this structure. This value MUST be set to 0x0001.

Reserved: Reserved. This member MUST be set to zero when sent and MUST be ignored when

received.

AttributeCount: The number of attributes specified by the Attribute member. The number of
attributes MUST be between zero and 1,024, inclusive.

Attributes: A pointer to an array of AUTHZR_SECURITY_ATTRIBUTE_V1 structures, defined in section
2.2.3.5.

17 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.3.8 AUTHZR_SID_AND_ATTRIBUTES

The AUTHZR_SID_AND_ATTRIBUTES structure contains information about the security identifiers
(SIDs) in a token.

 typedef struct _AUTHZR_SID_AND_ATTRIBUTES {
 RPC_SID* Sid;
 DWORD Attributes;
 } AUTHZR_SID_AND_ATTRIBUTES;

Sid: A SID structure, as specified in [MS-DTYP] section 2.4.2.3. This is a pass-through value and
SHOULD NOT be interpreted by the RAZA protocol.

Attributes: Specifies attributes associated with the SID. This is a pass-through value and SHOULD
NOT be interpreted by the RAZA protocol.

2.2.3.9 AUTHZR_TOKEN_GROUPS

The AUTHZR_TOKEN_GROUPS structure represents a security identifier (SID) and its attributes.

 typedef struct _AUTHZR_TOKEN_GROUPS {
 DWORD GroupCount;
 [size_is(GroupCount)] AUTHZR_SID_AND_ATTRIBUTES Groups[];
 } AUTHZR_TOKEN_GROUPS;

GroupCount: Indicates the number of structures in the Groups array.

Groups: An array of AUTHZR_SID_AND_ATTRIBUTES structures (section 2.2.3.8) representing

groups associated with the token.

2.2.3.10 AUTHZR_TOKEN_USER

The AUTHZR_TOKEN_USER structure identifies the user associated with a token.

 typedef struct _AUTHZR_TOKEN_USER {
 AUTHZR_SID_AND_ATTRIBUTES User;
 } AUTHZR_TOKEN_USER;

User: Contains an AUTHZR_SID_AND_ATTRIBUTES structure (section 2.2.3.8) representing the user
associated with the access token.

2.2.3.11 SR_SD

The SR_SD structure defines a self-relative security descriptor. A self-relative security descriptor
contains the security descriptor structure itself and the necessary security information associated with
the descriptor.

 typedef struct _SR_SD {
 [range(20, 131228)] DWORD dwLength;
 [size_is(dwLength)] BYTE* pSrSd;

18 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 } SR_SD;

dwLength: The length, in bytes, of the data pointed to in the pSrSd member.

pSrSd: A pointer to a self-relative security descriptor.

19 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

The Remote Authorization Protocol is used to approximate an access control decision that would be
made when a given principal attempts to access a hypothetical resource on a remote service that is
protected with a given authorization policy.

All remote authorization methods return 0x00000000 on success; otherwise, they return a 32-bit,
nonzero Win32 error code. For more details about Win32 error values, see [MS-ERREF].

Unless otherwise specified, the pointer type for the RAZA RPC interface is pointer_default(unique).
Method calls are received at a dynamically assigned endpoint ([MS-RPCE] section 2.1.1.1). The
endpoints for the Netlogon service are negotiated by the RPC endpoint mapper ([MS-RPCE] section
2.1.1.1).

The client side of this protocol is simply a pass-through. That is, there are no additional timers or
other states required on the client side of this protocol. Calls made by the higher-layer protocol or

application are passed directly to the transport, and the results returned by the transport are passed

directly back to the higher-layer protocol or application.

3.1 authzr Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The organization is provided to explain how the protocol
behaves. This document does not mandate that implementations adhere to this model as long as their
external behavior is consistent with that specified in this document.

The RAZA server maintains one or more of the following abstract data types as abstract variables:

 ImpersonationAccessToken (Public): A Token/Authorization Context (see [MS-DTYP] section
2.5.2).

 ClientContext:A data structure containing the following members:

 RPCClient: An AUTHZR_HANDLE structure (section 2.2.1.1).

 AuthzContext: An ImpersonationAccessToken.

Additionally, the RAZA server MUST maintain the following data structure:

 ClientContextList: A list of ClientContext objects.

3.1.2 Timers

None.

3.1.3 Initialization

The authzr server registers an endpoint with RPC over TCP/IP. The authzr server MUST register the
Negotiate security support provider authentication_type constant [0x09] as the security provider

([MS-RPCE] section 3.3.3.3.1.3) used by the RPC interface.

The ClientContextList is emptied during initialization.

20 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.4 Message Processing Events and Sequencing Rules

This interface includes the following methods.

Method Description

AuthzrFreeContext Opnum: 0

AuthzrInitializeContextFromSid Opnum: 1

AuthzrInitializeCompoundContext Opnum: 2

AuthzrAccessCheck Opnum: 3

AuthzGetInformationFromContext Opnum: 4

AuthzrModifyClaims Opnum: 5

AuthzrModifySids Opnum: 6

All methods MUST NOT throw exceptions.

3.1.4.1 AuthzrFreeContext (Opnum 0)

The AuthzrFreeContext method (opnum 0) frees all remote structures and memory associated with the
client context identified by the ContextHandle parameter.

 DWORD AuthzrFreeContext(
 [in, out] AUTHZR_HANDLE* ContextHandle);

ContextHandle: A pointer to an AUTHZR_HANDLE structure, as defined in section 2.2.1.1. This
handle indicates the client context to be freed.

Return Values:

If the function succeeds, it MUST return 0x00000000.

If the function fails, it MUST return a nonzero 32-bit error code.

When a remote authorization server receives this message, it MUST look up the ClientContext
structure in the ClientContextTable ADM element and free all structures and memory associated
with the ClientContext.

3.1.4.2 AuthzrInitializeContextFromSid (Opnum 1)

The AuthzrInitializeContextFromSid method (opnum 1) creates a client context from a given security
identifier (SID). For domain SIDs, token group and claim attributes will be retrieved from Active
Directory through Kerberos.

 DWORD AuthzrInitializeContextFromSid(
 [in] handle_t Binding,
 [in] DWORD Flags,
 [in] RPC_SID* Sid,
 [in] [unique] LARGE_INTEGER* pExpirationTime,
 [in] LUID Identifier,
 [out] AUTHZR_HANDLE* ContextHandle);

21 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Binding: A primitive RPC handle that identifies a particular client/server binding.

Flags: Indicates the type of logon behavior when initializing the client context. The following flags are

defined.

Value Description

0x00000000 When no flags are set, AuthzInitializeContextFromSid attempts to
retrieve the user's token group information by performing an S4U
logon.

AUTHZ_COMPUTE_PRIVILEGES
(0x00000008)

AuthzInitializeContextFromSid retrieves privileges for the new
context. If this function performs an S4U logon, it retrieves privileges
from the token. Otherwise, it retrieves privileges from all SIDs in the

context.

All other bits MUST be set to zero.

Sid: A pointer to the SID of the principal for whom a remote client context will be created. This MUST

be a valid user or computer account.

pExpirationTime: Reserved. This parameter MUST be set to NULL when sent and MUST be ignored
when received.

Identifier: Reserved. This parameter MUST be set to zero when sent and MUST be ignored when
received.

ContextHandle: A pointer to an AUTHZR_HANDLE structure, as defined in section 2.2.1.1.

Return Values:

If the function succeeds, the function MUST return 0x00000000.

If the function fails, it MUST return a nonzero error code.

When a RAZA server receives this message, the server MUST perform the following:

1. If any bits other than 0x00000008 are set in Flags, the server MUST return
ERROR_INVALID_PARAMETER.

2. Call LsarOpenPolicy ([MS-LSAT] section 3.1.4.2) with the following as input:

 SystemName: NULL.

 DesiredAccess: Contains the bit value 0x00000800 for POLICY_LOOKUP_NAMES.

3. Call LsarLookupSids ([MS-LSAT] section 3.1.4.11) on the returned PolicyHandle.

 PolicyHandle: The PolicyHandle returned from the aforementioned LsarOpenPolicy.

 SidEnumBuffer: The SidInfo part of this structure contains the Sid parameter. The Entries
part of this structure is set to 1. LookupLevel is set to LsapLookupWksta.

The return values from LsarLookupSids are as follows:

 ReferencedDomains list: The domain name is found as follows:

1. Locate the entry in the TranslatedNames list that corresponds to the SID in question.
This entry contains a Names structure with a DomainIndex.

22 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2. Find the ReferencedDomains list entry with an index that matches the DomainIndex
from the structure in the preceding step. The domain name is found in the Name field of

the Domains structure.

 TranslatedNames: Contains the UserName in the Name field of the Names structure of

the entry in the list corresponding to the SID in question (from the SidEnumBuffer input list).

4. Perform a Kerberos S4U2Self service ticket request using the S4U2self
KRB_TGS_REQ/KRB_TGS_REP protocol extension as specified in [MS-SFU] section 3.1.5.1.1.1.

 The userName MUST be set to the user name obtained in step 2.

 The userRealm MUST be set to the domain name of the obtained in step 2.

 The chksum MUST be set as specified in [MS-SFU] section 2.2.2.

 The auth-package MUST be set to "Kerberos".

5. Initialize and populate an ImpersonationAccessToken as specified in [MS-KILE] section 3.4.5.3.

6. Allocate and initialize a new AUTHZR_HANDLE structure, as defined in section 2.2.1.1, and assign
ContextHandle to the new structure.

7. Allocate memory for a new ClientContext object, set the RPCClient member to the
AUTHZR_HANDLE initialized in step 6, and set AuthzContext to the
ImpersonationAccessToken initialized in step 5.

8. Append the ClientContext object created in step 7 to the ClientContextList.

3.1.4.3 AuthzrInitializeCompoundContext (Opnum 2)

The AuthzrInitializeCompoundContext method (opnum 2) creates a compound context from two
specified context handles.

 DWORD AuthzrInitializeCompoundContext(
 [in] AUTHZR_HANDLE UserContextHandle,
 [in] AUTHZR_HANDLE DeviceContextHandle,
 [out] AUTHZR_HANDLE* CompoundContextHandle);

UserContextHandle: An AUTHZR_HANDLE structure, as defined in section 2.2.1.1, that represents
the user context for the compound context.

DeviceContextHandle: An AUTHZR_HANDLE structure, as defined in section 2.2.1.1, that represents
the device context for the compound context.

CompoundContextHandle: A pointer to an AUTHZR_HANDLE structure, as defined in section
2.2.1.1.

Return Values:

If the function succeeds, the function MUST return 0x00000000. If the function fails, it MUST return a
nonzero value.

When a RAZA server receives this message, the server MUST perform the following:

1. Allocate a new ImpersonationAccessToken.

23 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2. Copy the ImpersonationAccessToken.Sids array in the ImpersonationAccessToken of the
UserContextHandle into the ImpersonationAccessToken.Sids array in the

ImpersonationAccessToken created in step 1.

3. Copy the ImpersonationAccessToken.UserIndex field in the ImpersonationAccessToken of

the UserContextHandle to the ImpersonationAccessToken.UserIndex field in the
ImpersonationAccessToken created in step 1.

4. Copy the ImpersonationAccessToken.UserClaims array in the ImpersonationAccessToken
of the UserContextHandle to the ImpersonationAccessToken.UserClaims array in the
ImpersonationAccessToken created in step 1.

5. Copy the ImpersonationAccessToken.Sids array in the ImpersonationAccessToken of the
DeviceContextHandle into the ImpersonationAccessToken.DeviceSids array in the

ImpersonationAccessToken created in step 1.

6. Copy the ImpersonationAccessToken.UserIndex field in the ImpersonationAccessToken of
the DeviceContextHandle to the ImpersonationAccessToken.DeviceIndex field in the

ImpersonationAccessToken created in step 1.

7. Copy the ImpersonationAccessToken.UserClaims array in the ImpersonationAccessToken
of the DeviceContextHandle to the ImpersonationAccessToken.DeviceClaims array in the

ImpersonationAccessToken created in step 1.

8. Allocate and initialize a new AUTHZR_HANDLE structure.

9. Allocate a new ClientContext object, set the RPCClient member to the AUTHZR_HANDLE
allocated in step 8, and set the AuthzContext member to the ImpersonationAccessToken
created in step 1.

10. Add the new ClientContext object to the ClientContextList.

3.1.4.4 AuthzrAccessCheck (Opnum 3)

The AuthzrAccessCheck method (opnum 3) determines which access bits can be granted to a client for
a given set of security descriptors. The AUTHZR_ACCESS_REPLY structure returns an array of granted
access masks and error status.

 DWORD AuthzrAccessCheck(
 [in] AUTHZR_HANDLE ContextHandle,
 [in] DWORD Flags,
 [in] AUTHZR_ACCESS_REQUEST* pRequest,
 [in] [range(1, 16)] DWORD SecurityDescriptorCount,
 [in] [size_is(SecurityDescriptorCount)] SR_SD* pSecurityDescriptors,
 [in, out] AUTHZR_ACCESS_REPLY* pReply);

ContextHandle: An AUTHZR_HANDLE structure, as defined in section 2.2.1.1, containing the client
context handle.

Flags: Reserved. This parameter MUST be set to zero.

pRequest: A pointer to an AUTHZR_ACCESS_REQUEST structure, as defined in section 2.2.3.2. This
structure contains the body of the "what-if" access check request.

SecurityDescriptorCount: The number of security descriptors in the pSecurityDescriptors

parameter, not including the primary security descriptor.

24 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

pSecurityDescriptors: A pointer to an array of SR_SD structures, as defined in section 2.2.3.11. The
first entry in this array is the primary security descriptor, and it will be used as the security

descriptor for the AccessCheck evaluation.

pReply: A pointer to an AUTHZR_ACCESS_REPLY structure, as defined in section 2.2.3.1. This

parameter will contain the body of the access check response.

Return Values:

If the function succeeds, the function MUST return 0x00000000.

If the function fails, it MUST return a nonzero error code.

When a RAZA server receives this message, the server MUST perform the following:

 Check that the upper 16 bits of the Flags parameter are set to zero, and if not, return a nonzero
error code.

 If the client connects to the server using ObjectUUID as 5fc860e0-6f6e-4fc2-83cd-46324f25e90b

then remove all ACEs of type SYSTEM_SCOPED_POLICY_ID_ACE ([MS-DTYP] section 2.4.4.16)
from the pSecurityDescriptors[0] parameter.

 Perform an AccessCheck evaluation using the algorithm specified in [MS-DTYP] section 2.5.3.2,
where the preceding parameters are mapped to the parameter names of the algorithm described
according to the following table.

AccessCheck pseudocode
parameter RAZA protocol AuthzrAccessCheck evaluation

SecurityDescriptor pSecurityDescriptors[0]

Token (Authorization Context) The ImpersonationAccessToken in the ClientContext object associated with
the ContextHandle

Access Request mask The DesiredAccess member of the AUTHZR_ACCESS_REQUEST structure
pointed to by pRequest

Object Tree The ObjectTypeList member of the AUTHZR_ACCESS_REQUEST structure
pointed to by pRequest

PrincipalSelfSubst SID The PrincipalSelfSid member of the AUTHZR_ACCESS_REQUEST structure
pointed to by pRequest

GrantedAccess The memory location of the GrantedAccessMask member of the
AUTHZR_ACCESS_REPLY structure pointed to by pRequest

3.1.4.5 AuthzGetInformationFromContext (Opnum 4)

The AuthzGetInformationFromContext method (opnum 4) returns information about the identified

client context.

 DWORD AuthzGetInformationFromContext(
 [in] AUTHZR_HANDLE ContextHandle,
 [in] AUTHZ_CONTEXT_INFORMATION_CLASS InfoClass,
 [out] AUTHZR_CONTEXT_INFORMATION** ppContextInformation);

25 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ContextHandle: An AUTHZR_HANDLE structure, as defined in section 2.2.1.1. Represents the client
context to retrieve information from.

InfoClass: An AUTHZ_CONTEXT_INFORMATION_CLASS enumeration, as defined in section 2.2.2.1.
Possible values for this field are specified in section 2.2.2.1.

ppContextInformation: A two-layer pointer to an AUTHZR_CONTEXT_INFORMATION structure, as
defined in section 2.2.3.3. Used to return the context information.

Return Values:

If the function succeeds, the function MUST return 0x00000000.

If the function fails, it MUST return a nonzero error code value.

When a RAZA server receives this message, the server MUST perform the following:

 If the InfoClass parameter is one of the following values, the RAZA server MUST:

1. Initialize a new AUTHZR_CONTEXT_INFORMATION structure.

2. Set the ppContextInformation parameter to the memory address of the new structure.

3. Perform the corresponding action using the ImpersonationAccessToken in the
ClientContext object identified in the ContextHandle parameter:

 AuthzContextInfoUserSid (1):

1. Set the ValueType member in the new AUTHZR_CONTEXT_INFORMATION object to

1.

2. Set the pTokenUser member of the new AUTHZR_CONTEXT_INFORMATION object to
the address of the element at the ImpersonationAccessToken.UserIndex of the
ImpersonationAccessToken.Sids array.

 AuthzContextInfoGroupsSids (2):

1. Set the ValueType member in the new AUTHZR_CONTEXT_INFORMATION object to
2.

2. Set the pTokenGroups member of the new AUTHZR_CONTEXT_INFORMATION object
to the value of the ImpersonationAccessToken.Sids member.

 AuthzContextInfoRestrictedSids (3):

1. Set the ValueType member in the new AUTHZR_CONTEXT_INFORMATION object to
3.

2. Set the pTokenGroups member of the new AUTHZR_CONTEXT_INFORMATION object
to the value of the ImpersonationAccessToken.RestrictedSids member.

 AuthzContextInfoDeviceSids (12):

1. Set the ValueType member in the new AUTHZR_CONTEXT_INFORMATION object to
12.

2. Set the pTokenGroups member of the new AUTHZR_CONTEXT_INFORMATION object
to the value of the ImpersonationAccessToken.DeviceSids member.

 AuthzContextInfoUserClaims (13):

26 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1. Set the ValueType member in the new AUTHZR_CONTEXT_INFORMATION object to
13.

2. Set the pTokenClaims member of the new AUTHZR_CONTEXT_INFORMATION object
to the value of the ImpersonationAccessToken.Claims member.

 AuthzContextInfoDeviceClaims (14):

1. Set the ValueType member in the new AUTHZR_CONTEXT_INFORMATION object to
14.

2. Set the pTokenClaims member of the new AUTHZR_CONTEXT_INFORMATION object
to the value of the ImpersonationAccessToken.DeviceClaims member.

 If the InfoClass parameter is any other value, the requested information is not supported. The
RAZA server MUST set ppContextInformation to NULL and return a nonzero error code value.

3.1.4.6 AuthzrModifyClaims (Opnum 5)

The AuthzrModifyClaims method (opnum 5) modifies information about the identified client context.

 DWORD AuthzrModifyClaims(
 [in] AUTHZR_HANDLE ContextHandle,
 [in] AUTHZ_CONTEXT_INFORMATION_CLASS ClaimClass,
 [in] [range(1, 65535)] DWORD OperationCount,
 [in] [size_is(OperationCount)] AUTHZ_SECURITY_ATTRIBUTE_OPERATION* pClaimOperations,
 [in] [unique] AUTHZR_SECURITY_ATTRIBUTES_INFORMATION* pClaims);

ContextHandle: An AUTHZR_HANDLE structure, as defined in section 2.2.1.1. Represents the client
context to modify.

ClaimClass: An AUTHZ_CONTEXT_INFORMATION_CLASS enumeration, as defined in section 2.2.2.1.

Indicates the claim class.

OperationCount: The number of operations to be performed.

pClaimOperations: A pointer to an array of AUTHZ_SECURITY_ATTRIBUTE_OPERATION
enumerations, as defined in section 2.2.2.2. Specifies the operations to be performed on each
claim.

pClaims: A pointer to an array of AUTHZR_SECURITY_ATTRIBUTES_INFORMATION structures, as
defined in section 2.2.3.7. Contains the claim(s) used to modify the client context.

Return Values:

If the function succeeds, the function MUST return 0x00000000.

If the function fails, it MUST return a nonzero error code value.

When a RAZA server receives this message, the server MUST perform the following:

If the InfoClass parameter is any value other than AuthzContextInfoUserClaims (13) or
AuthzContextInfoDeviceClaims (14), the requested modification is not supported. When this happens,
the RAZA server MUST set ppContextInformation to NULL and return FALSE.

The RAZA server MUST check the first element in the pClaimOperations array as indicated by
OperationCount and perform operations as follows:

27 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the value pointed to by the pClaimOperations parameter is
AUTHZ_SECURITY_ATTRIBUTE_OPERATION_NONE, the RAZA server MUST return

0x00000000.

 If the value pointed to by the pClaimsOperations parameter is

AUTHZ_SECURITY_ATTRIBUTE_OPERATION_REPLACE_ALL, the RAZA server MUST perform
the following on the ImpersonationAccessToken in the ClientContext identified by the
ContextHandle:

1. Map the InfoClass parameter value to the corresponding ImpersonationAccessToken array
according to the following table and replace it with the pClaims Attribute member array.

2. Return 0x00000000 if the operation was a success; otherwise, return a nonzero error code.

 If the value pointed to by the pClaimOperations parameter is any other value of

AUTHZ_SECURITY_ATTRIBUTE_OPERATION, perform the steps prescribed after the next
paragraph.

The RAZA server MUST perform the following steps on each element in the pClaimOperations array as

indicated by OperationCount:

1. If the element is not the first element and the value is
AUTHZ_SECURITY_ATTRIBUTE_OPERATION_NONE or

AUTHZ_SECURITY_ATTRIBUTE_OPERATION_REPLACE_ALL, the RAZA server MUST return a
nonzero error code. The case in which the first element is one of these values is described above.

2. If the element is AUTHZ_SECURITY_ATTRIBUTE_OPERATION_ADD, append the
corresponding element in the pClaims Attributes array to the ImpersonationAccessToken
array identified according to the following table.

3. If the element is AUTHZ_SECURITY_ATTRIBUTE_OPERATION_DELETE, search the
ImpersonationAccessToken array identified according to the following table for a member

whose Value member equals the Value member of the corresponding element of the Attributes
array in the pClaims parameter. If one is found, delete that element from the identified

ImpersonationAccessToken array and free any memory associated with that element.

4. If the element is AUTHZ_SECURITY_ATTRIBUTE_OPERATION_REPLACE, search the
ImpersonationAccessToken array identified according to the following table for a member
whose Value member equals the Value member of the corresponding element of the Attributes
array in the pClaims parameter.

1. If the attribute is located, replace the Values member of the located attribute with the
replacement Values member, which is located in the corresponding Attributes array element
in the Attributes member of pClaims. If the replacement Values member does not exist, the
located attribute is deleted.

2. If the attribute is not located, it is added using the replacement Values member, which is
located in the corresponding Attributes array element in the Attributes member of pClaims.

If the replacement Values member does not exist, the operation is ignored and no failure is
reported.

ClaimClass parameter value Corresponding ImpersonationAccessToken array

AuthzContextInfoUserClaims ImpersonationAccessToken.Claims

AuthzContextInfoDeviceClaims ImpersonationAccessToken.DeviceClaims

28 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.4.7 AuthzrModifySids (Opnum 6)

The AuthzrModifySids method (opnum 6) modifies the list of SIDs associated with the identified client
context.

 DWORD AuthzrModifySids(
 [in] AUTHZR_HANDLE ContextHandle,
 [in] AUTHZ_CONTEXT_INFORMATION_CLASS SidClass,
 [in] [range(1, 65535)] DWORD OperationCount,
 [in] [size_is(OperationCount)] AUTHZ_SID_OPERATION* pSidOperations,
 [in] [unique] AUTHZR_TOKEN_GROUPS* pSids);

ContextHandle: An AUTHZR_HANDLE structure, as defined in section 2.2.1.1, representing the client
context to be modified.

SidClass: An AUTHZ_CONTEXT_INFORMATION_CLASS enumeration value, as defined in section
2.2.2.1, indicating the SID class.

OperationCount: The number of operations to be performed.

pSidOperations: A pointer to an array of AUTHZ_SID_OPERATION enumeration values that specify
the group modifications to be made.

pSids: A pointer to an AUTHZR_TOKEN_GROUPS structure, as defined in section 2.2.3.9, specifying
the groups to be modified.

Return Values:

If the function succeeds, it MUST return 0x00000000.

If the function fails, it MUST return a nonzero error code value.

On receipt of this message, a RAZA server MUST complete the following process:

1. If the InfoClass parameter contains any value other than AuthzContextInfoGroupSids (2) or
AuthzContextInfoDeviceSids (12), or if the requested modification is not supported, the RAZA
server MUST return ERROR_INVALID_PARAMETER.

2. The RAZA server MUST check the first element in the pSidOperations array as indicated by
OperationCount.

3. If the value pointed to by the pSidOperations parameter is AUTHZ_SID_OPERATION_NONE, the
RAZA server must return 0x00000000.

4. If the value pointed to by the pSidOperations parameter is
AUTHZ_SID_OPERATION_REPLACE_ALL, the RAZA server MUST perform the following operations

on the ImpersonationAccessToken in the ClientContext identified by the ContextHandle:

1. Map the InfoClass parameter value to the corresponding ImpersonationAccessToken array
according to the following table, and replace it with the pSids Groups member array.

2. Return 0x00000000 if the operation is successful; otherwise, return a nonzero error code.

5. If the value pointed to by the pSidOperations parameter is any other value of the
AUTHZ_SID_OPERATION enumeration, continue with the following process.

The RAZA server MUST complete the following process for each element in the pSidOperations array

as indicated by OperationCount:

29 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1. If the element is not the first element and the value is AUTHZ_SID_OPERATION_NONE or
AUTHZ_SID_OPERATION_REPLACE_ALL, the RAZA server MUST return a nonzero error code. The

case in which the first element is one of these values is described earlier.

2. If the element is AUTHZ_SID_OPERATION_ADD, search the ImpersonationAccessToken

array identified according to the following table for a member whose member equals the member
of the corresponding element of the Groups array in the pSids parameter. If one is found, the
RAZA server MUST return ERROR_GROUP_EXISTS, otherwise, append the corresponding element
in the Groups array in the pSids parameter to the ImpersonationAccessToken array identified
according to the following table. If the corresponding element of the Groups array in the pSids
parameter does not exist, then RAZA server MUST fail with ERROR_INVALID_PARAMETER.

3. If the element is AUTHZ_SID_OPERATION_DELETE, search the ImpersonationAccessToken

array that is identified according to the following table for a member whose member equals the
member of the corresponding element of the Groups array in the pSids parameter. If one is found,
delete that element from the identified ImpersonationAccessToken array and free any memory
that was associated with that element. If the search fails, the RAZA server MUST return
ERROR_NOT_FOUND. If the corresponding element of the Groups array in the pSids parameter

does not exist, then the RAZA server MUST fail with ERROR_INVALID_PARAMETER.

4. If the element is AUTHZ_SID_OPERATION_REPLACE, search the ImpersonationAccessToken array
identified according to the following table for a member whose member equals the member of the
corresponding element of the Groups array in the pSids parameter.

1. If the Sid is located, replace the member of the Sid located in the array with the replacement
Sid, which is located in the corresponding Groups array element in the Groups member of the
pSids parameter. If the corresponding replacement Groups member does not exist, then the
RAZA server MUST fail with ERROR_INVALID_PARAMETER.

2. If the Sid is not located, it is added using the replacement Sid, which is located in the
corresponding Groups array element in the Groups member of the pSids parameter. If the
corresponding replacement Groups member does not exist, then the RAZA server MUST fail
with ERROR_INVALID_PARAMETER.

SIDClass parameter value Corresponding ImpersonationAccessToken array

AuthzContextInfoGroupSids ImpersonationAccessToken.Sids

AuthzContextInfoDeviceSids ImpersonationAccessToken.DeviceSids

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

30 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

The following example shows a sample call sequence from a client to a server for a typical use of the
RAZA protocol to query the permissions available to a given user with the SID S-1-5-21-3448151421-
356457007-600757626-4138921 for a resource protected on the server with a security descriptor
where built-in administrators and local system have file all access, everyone has read and execute,
and the user has read, write, and execute.

 Client sends AuthzrInitializeContextFromSid.

Parameter field Parameter value

Handle_t

[RPC handle to server]

Flags

0x8

SID

S-1-5-21-3448151421-356457007-600757626-4138921

pExpirationTime

NULL

LUID

{0xdead,0xbeef}

 Client receives AuthzrInitializeContextFromSid.

Parameter field Parameter value

Status

0

ContextHandle

[context handle](This data is opaque to the client.)

 Client sends AuthzrAccessCheck.

Parameter field Parameter value

Handle_t

[RPC handle to server]

ContextHandle

[ContextHandle received from server using AuthzrInitializeContextFromSid]

31 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Parameter field Parameter value

Flags

0x0

pRequest.DesiredAccess

0x02000000

(MAXIMUM_ALLOWED)

pRequest.PrincipalSelfSid

NULL

pRequest.ObjectTypeListLength

0

pRequest.ObjectTypeList

NULL

SecurityDescriptorCount

1

pSecurityDescriptors

01 00 04 80 14 00 00 00 24 00 00 00 00 00 00 00 30 00 00 00 01 02 00 00
00 00 00 05 20 00 00 00 20 02 00 00 01 01 00 00 00 00 00 05 12 00 00 00
02 00 6C 00 04 00 00 00 00 00 18 00 FF 01 1F 00 01 02 00 00 00 00 00 05
20 00 00 00 20 02 00 00 00 00 14 00 FF 01 1F 00 01 01 00 00 00 00 00 05
12 00 00 00 00 00 14 00 A9 00 12 00 01 01 00 00 00 00 00 01 00 00 00 00
00 00 24 00 BF 01 12 00 01 05 00 00 00 00 00 05 15 00 00 00 7D 9D 86
CD 2F 1A 3F 15 7A D5 CE 23 A9 27 3F 00

This is equivalent to the following string value:
O:BAG:SYD:(A;;FA;;;BA)(A;;FA;;;SY)(A;;FRFX;;;WD)(A;;FWFRFX;;;S-1-5-
21-3448151421-356457007-600757626-4138921)

 Client receives AuthzrAccessCheck.

Parameter field Parameter value

Status

0

pReply.ResultListLength

1

pReply.GrantedAccessMask

0x1201BF

32 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Parameter field Parameter value

 (FILE_GENERIC_READ | FILE_GENERIC_WRITE | FILE_GENERIC_EXECUTE)

pReply.Error

ERROR_SUCCESS

 Client sends AuthzrFreeContext.

Parameter field Parameter value

Handle_t

[RPC handle to server]

ContextHandle

[ContextHandle received from server using AuthzrInitializeContextFromSid]

 Client receives AuthzrFreeContext.

Parameter field Parameter value

Status

0

ContextHandle

NULL

33 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

5.1 Security Considerations for Implementers

Use of the RAZA protocol requires the client user to have access to read the user and claim

information of security principals that the client is preforming authorization queries on.<2> AccessIt is
recommended that access to the RAZA interface should be limited to a subset of the principals who
have access to read account information.

5.2 Index of Security Parameters

None.

34 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided below, where "ms-dtyp.idl" refers to the IDL found
in [MS-DTYP] Appendix A. The syntax uses the IDL syntax extensions defined in [MS-RPCE] sections
2.2.4 and 3.1.1.5.1. For example, as noted in [MS-RPCE] section 2.2.4.9, a pointer_default
declaration is not required and pointer_default(unique) is assumed.

 import "ms-dtyp.idl";

 [uuid(0b1c2170-5732-4e0e-8cd3-d9b16f3b84d7)]
 [version(0.0)]
 [pointer_default(ptr)]
 [ms_union]
 interface authzr {
 typedef [context_handle] PVOID AUTHZR_HANDLE;
 typedef struct _AUTHZR_ACCESS_REQUEST {
 ACCESS_MASK DesiredAccess;
 RPC_SID * PrincipalSelfSid;
 [range(0,256)] DWORD ObjectTypeListLength;
 [size_is(ObjectTypeListLength)] OBJECT_TYPE_LIST * ObjectTypeList;
 } AUTHZR_ACCESS_REQUEST;

 typedef struct _SR_SD {
 [range(20,131228)] DWORD dwLength;
 [size_is(dwLength)] BYTE * pSrSd;
 } SR_SD;

 typedef struct _AUTHZR_ACCESS_REPLY {
 [range(0,256)] DWORD ResultListLength;
 [size_is(ResultListLength)] ACCESS_MASK * GrantedAccessMask;
 [size_is(ResultListLength)] DWORD * Error;
 } AUTHZR_ACCESS_REPLY;

 typedef enum _AUTHZ_CONTEXT_INFORMATION_CLASS {
 AuthzContextInfoUserSid = 1,
 AuthzContextInfoGroupsSids = 2,
 AuthzContextInfoRestrictedSids = 3,
 ReservedEnumValue4 = 4,
 ReservedEnumValue5 = 5,
 ReservedEnumValue6 = 6,
 ReservedEnumValue7 = 7,
 ReservedEnumValue8 = 8,
 ReservedEnumValue9 = 9,
 ReservedEnumValue10 = 10,
 ReservedEnumValue11 = 11,
 AuthzContextInfoDeviceSids = 12,
 AuthzContextInfoUserClaims = 13,
 AuthzContextInfoDeviceClaims = 14,
 ReservedEnumValue15 = 15,
 ReservedEnumValue16 = 16
 } AUTHZ_CONTEXT_INFORMATION_CLASS;

 typedef struct _AUTHZR_SID_AND_ATTRIBUTES {
 RPC_SID * Sid;
 DWORD Attributes;
 } AUTHZR_SID_AND_ATTRIBUTES;

 typedef struct _AUTHZR_TOKEN_USER {
 AUTHZR_SID_AND_ATTRIBUTES User;
 } AUTHZR_TOKEN_USER;

 typedef struct _AUTHZR_TOKEN_GROUPS {
 DWORD GroupCount;
 [size_is(GroupCount)] AUTHZR_SID_AND_ATTRIBUTES Groups[];
 } AUTHZR_TOKEN_GROUPS;

 typedef struct _AUTHZR_SECURITY_ATTRIBUTE_STRING_VALUE {

35 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [range(2,32768)] ULONG Length;
 [string] [size_is(Length)] WCHAR * Value;
 } AUTHZR_SECURITY_ATTRIBUTE_STRING_VALUE;

 typedef struct _AUTHZR_SECURITY_ATTRIBUTE_V1_VALUE {
 USHORT ValueType;
 [switch_is(ValueType)] union AUTHZR_SECURITY_ATTRIBUTE_UNION {
 [case(0x1)]
 LONG64 Int64;
 [case(0x2, 0x6)]
 ULONG64 Uint64;
 [case(0x3)]
 AUTHZR_SECURITY_ATTRIBUTE_STRING_VALUE String;
 } AttributeUnion;
 } AUTHZR_SECURITY_ATTRIBUTE_V1_VALUE;

 typedef struct _AUTHZR_SECURITY_ATTRIBUTE_V1 {
 [range(2,256)] ULONG Length;
 [string] [size_is(Length)] WCHAR * Value;
 USHORT ValueType;
 USHORT Reserved;
 ULONG Flags;
 [range(0,1024)] ULONG ValueCount;
 [size_is(ValueCount)] AUTHZR_SECURITY_ATTRIBUTE_V1_VALUE * Values;
 } AUTHZR_SECURITY_ATTRIBUTE_V1;

 typedef struct _AUTHZR_SECURITY_ATTRIBUTES_INFORMATION {
 USHORT Version;
 USHORT Reserved;
 [range(0,1024)] ULONG AttributeCount;
 [size_is(AttributeCount)] AUTHZR_SECURITY_ATTRIBUTE_V1 * Attributes;
 } AUTHZR_SECURITY_ATTRIBUTES_INFORMATION;

 typedef struct _AUTHZR_CONTEXT_INFORMATION {
 USHORT ValueType;
 [switch_is(ValueType)] union AUTHZR_CONTEXT_INFORMATION_UNION {
 [case(0x1)]
 AUTHZR_TOKEN_USER * pTokenUser;
 [case(0x2, 0x3, 0xC)]
 AUTHZR_TOKEN_GROUPS * pTokenGroups;
 [case(0xD, 0xE)]
 AUTHZR_SECURITY_ATTRIBUTES_INFORMATION * pTokenClaims;
 } ContextInfoUnion;
 } AUTHZR_CONTEXT_INFORMATION;

 typedef enum _AUTHZ_SECURITY_ATTRIBUTE_OPERATION {
 AUTHZ_SECURITY_ATTRIBUTE_OPERATION_NONE = 0,
 AUTHZ_SECURITY_ATTRIBUTE_OPERATION_REPLACE_ALL = 1,
 AUTHZ_SECURITY_ATTRIBUTE_OPERATION_ADD = 2,
 AUTHZ_SECURITY_ATTRIBUTE_OPERATION_DELETE = 3,
 AUTHZ_SECURITY_ATTRIBUTE_OPERATION_REPLACE = 4
 } AUTHZ_SECURITY_ATTRIBUTE_OPERATION;

 typedef enum _AUTHZ_SID_OPERATION {
 AUTHZ_SID_OPERATION_NONE = 0,
 AUTHZ_SID_OPERATION_REPLACE_ALL = 1,
 AUTHZ_SID_OPERATION_ADD = 2,
 AUTHZ_SID_OPERATION_DELETE = 3,
 AUTHZ_SID_OPERATION_REPLACE = 4
 } AUTHZ_SID_OPERATION;

 DWORD AuthzrFreeContext(
 [in, out] AUTHZR_HANDLE * ContextHandle);
 DWORD AuthzrInitializeContextFromSid(
 [in] handle_t Binding,
 [in] DWORD Flags,
 [in] RPC_SID * Sid,
 [in] [unique] LARGE_INTEGER * pExpirationTime,
 [in] LUID Identifier,
 [out] AUTHZR_HANDLE * ContextHandle);

36 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 DWORD AuthzrInitializeCompoundContext(
 [in] AUTHZR_HANDLE UserContextHandle,
 [in] AUTHZR_HANDLE DeviceContextHandle,
 [out] AUTHZR_HANDLE * CompoundContextHandle);
 DWORD AuthzrAccessCheck(
 [in] AUTHZR_HANDLE ContextHandle,
 [in] DWORD Flags,
 [in] AUTHZR_ACCESS_REQUEST * pRequest,
 [in] [range(1,16)] DWORD SecurityDescriptorCount,
 [in] [size_is(SecurityDescriptorCount)] SR_SD * pSecurityDescriptors,
 [in, out] AUTHZR_ACCESS_REPLY * pReply);
 DWORD AuthzGetInformationFromContext(
 [in] AUTHZR_HANDLE ContextHandle,
 [in] AUTHZ_CONTEXT_INFORMATION_CLASS InfoClass,
 [out] AUTHZR_CONTEXT_INFORMATION ** ppContextInformation);
 DWORD AuthzrModifyClaims(
 [in] AUTHZR_HANDLE ContextHandle,
 [in] AUTHZ_CONTEXT_INFORMATION_CLASS ClaimClass,
 [in] [range(1,65535)] DWORD OperationCount,
 [in] [size_is(OperationCount)] AUTHZ_SECURITY_ATTRIBUTE_OPERATION * pClaimOperations,
 [in] [unique] AUTHZR_SECURITY_ATTRIBUTES_INFORMATION * pClaims);
 DWORD AuthzrModifySids(
 [in] AUTHZR_HANDLE ContextHandle,
 [in] AUTHZ_CONTEXT_INFORMATION_CLASS SidClass,
 [in] [range(1,65535)] DWORD OperationCount,
 [in] [size_is(OperationCount)] AUTHZ_SID_OPERATION * pSidOperations,
 [in] [unique] AUTHZR_TOKEN_GROUPS * pSids);
 };

37 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Note: Some of the information in this section is subject to change because it applies to a preliminary
product version, and thus may differ from the final version of the software when released. All behavior
notes that pertain to the preliminary product version contain specific references to it as an aid to the

reader.

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 Technical Preview operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or

SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 1.3: The RAZA client role is implemented on all Windows 8, Windows 8.1, and Windows
10 operating system-based products configured to run in a Windows domain environment. The RAZA

server role is implemented on Windows Server 2012, Windows Server 2012 R2, and Windows Server
2016 Technical Preview and is operating when the Windows Server 2012, Windows Server 2012 R2, or
Windows Server 2016 Technical Preview server is configured to run in a Windows domain

environment.

<2> Section 5.1: In Windows, this access is controlled by membership in the Windows Authorization
Access Group.

38 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

39 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

9 Index

A

Abstract data model
 server 19
 authzr 19
Applicability 8
AUTHZ_CONTEXT_INFORMATION_CLASSenumeration 10
AUTHZ_SECURITY_ATTRIBUTE_OPERATIONenumeration 11
AUTHZ_SID_OPERATIONenumeration 12
AuthzGetInformationFromContext (Opnum 4) method 24
AUTHZR_ACCESS_REPLYstructure 13
AUTHZR_ACCESS_REQUESTstructure 13
AUTHZR_CONTEXT_INFORMATIONstructure 14
AUTHZR_SECURITY_ATTRIBUTE_STRING_VALUEstructure 15
AUTHZR_SECURITY_ATTRIBUTE_V1_VALUEstructure 16
AUTHZR_SECURITY_ATTRIBUTE_V1structure 15
AUTHZR_SECURITY_ATTRIBUTES_INFORMATIONstructure 16
AUTHZR_SID_AND_ATTRIBUTESstructure 17
AUTHZR_TOKEN_GROUPSstructure 17
AUTHZR_TOKEN_USERstructure 17
AuthzrAccessCheck (Opnum 3) method 23
AuthzrFreeContext (Opnum 0) method 20
AuthzrInitializeCompoundContext (Opnum 2) method 22

AuthzrInitializeContextFromSid (Opnum 1) method 20
AuthzrModifyClaims (Opnum 5) method 26
AuthzrModifySids (Opnum 6) method 28

C

Capability negotiation 8
Change tracking 38
Common data types 9
 enumerations 10
 structures 12

D

Data model - abstract
 server 19
 authzr 19
Data types
 common - overview 9

E

Enumerations
 AUTHZ_CONTEXT_INFORMATION_CLASS 10
 AUTHZ_SECURITY_ATTRIBUTE_OPERATION 11
 AUTHZ_SID_OPERATION 12
 overview 10
Events

 local
 server
 authzr 29
 local - server 29
 timer
 server
 authzr 29
 timer - server 29
Examples
 overview 30

40 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

F

Fields - vendor extensible 8
Full IDL 34

G

Glossary 5

I

IDL 34
Implementer - security considerations 33
Index of security parameters 33
Informative references 7
Initialization
 server 19
 authzr 19
Introduction 5

L

Local events
 server 29
 authzr 29

M

Message processing
 server 20
 authzr 20
Messages
 common data types 9
 transport 9
Methods
 AuthzGetInformationFromContext (Opnum 4) 24
 AuthzrAccessCheck (Opnum 3) 23
 AuthzrFreeContext (Opnum 0) 20
 AuthzrInitializeCompoundContext (Opnum 2) 22

 AuthzrInitializeContextFromSid (Opnum 1) 20
 AuthzrModifyClaims (Opnum 5) 26
 AuthzrModifySids (Opnum 6) 28

N

Normative references 6

O

Overview (synopsis) 7

P

Parameters - security index 33
Preconditions 8
Prerequisites 8
Product behavior 37
Protocol Details
 overview 19

R

References 6
 informative 7

41 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 normative 6
Relationship to other protocols 8

S

Security
 implementer considerations 33
 parameter index 33
Sequencing rules
 authzr 20
 server 20
Server
 abstract data model 19
 AuthzGetInformationFromContext (Opnum 4) method 24
 authzr
 abstract data model 19
 AuthzGetInformationFromContext (Opnum 4) method 24

 AuthzrAccessCheck (Opnum 3) method 23
 AuthzrFreeContext (Opnum 0) method 20
 AuthzrInitializeCompoundContext (Opnum 2) method 22
 AuthzrInitializeContextFromSid (Opnum 1) method 20
 AuthzrModifyClaims (Opnum 5) method 26
 AuthzrModifySids (Opnum 6) method 28
 initialization 19
 local events 29
 message processing 20
 sequencing rules 20
 timer events 29
 timers 19
 AuthzrAccessCheck (Opnum 3) method 23
 AuthzrFreeContext (Opnum 0) method 20
 AuthzrInitializeCompoundContext (Opnum 2) method 22
 AuthzrInitializeContextFromSid (Opnum 1) method 20
 AuthzrModifyClaims (Opnum 5) method 26
 AuthzrModifySids (Opnum 6) method 28
 initialization 19
 local events 29
 message processing 20
 sequencing rules 20
 timer events 29
 timers 19
SR_SDstructure 17
Standards assignments 8
Structures
 AUTHZR_ACCESS_REPLY 13
 AUTHZR_ACCESS_REQUEST 13
 AUTHZR_CONTEXT_INFORMATION 14
 AUTHZR_SECURITY_ATTRIBUTE_STRING_VALUE 15
 AUTHZR_SECURITY_ATTRIBUTE_V1 15
 AUTHZR_SECURITY_ATTRIBUTE_V1_VALUE 16
 AUTHZR_SECURITY_ATTRIBUTES_INFORMATION 16
 AUTHZR_SID_AND_ATTRIBUTES 17
 AUTHZR_TOKEN_GROUPS 17
 AUTHZR_TOKEN_USER 17
 overview 12
 SR_SD 17

T

Timer events
 server 29
 authzr 29
Timers
 server 19
 authzr 19

42 / 42

[MS-RAA-Diff] - v20160714
Remote Authorization API Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Tracking changes 38
Transport 9

V

Vendor extensible fields 8
Versioning 8

