
1 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[MS-PPGRH]:
Peer-to-Peer Graphing Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Revision Summary

Date

Revision

History

Revision

Class Comments

03/12/2010 1.0 Major First Release.

04/23/2010 1.1 Minor Updated the technical content.

06/04/2010 1.2 Minor Updated the technical content.

07/16/2010 1.3 Minor Clarified the meaning of the technical content.

08/27/2010 1.3 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 1.3 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 1.3 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 1.4 Minor Clarified the meaning of the technical content.

02/11/2011 1.4 No change No changes to the meaning, language, or formatting of

the technical content.

03/25/2011 1.4 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 1.4 No change No changes to the meaning, language, or formatting of

the technical content.

06/17/2011 1.5 Minor Clarified the meaning of the technical content.

09/23/2011 1.5 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 2.0 Major Significantly changed the technical content.

03/30/2012 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 2.1 Minor Clarified the meaning of the technical content.

10/25/2012 2.1 No change No changes to the meaning, language, or formatting of

the technical content.

01/31/2013 2.1 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 3.0 Major Significantly changed the technical content.

11/14/2013 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/13/2014 3.0 No change No changes to the meaning, language, or formatting of

3 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Date

Revision

History

Revision

Class Comments

the technical content.

05/15/2014 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Contents

1 Introduction ... 8
1.1 Glossary ... 8
1.2 References .. 9

1.2.1 Normative References ... 9
1.2.2 Informative References ... 10

1.3 Overview .. 10
1.3.1 Graph Topology ... 10
1.3.2 Connecting and Disconnecting ... 11

1.3.2.1 Signature .. 12
1.3.2.2 Contacts .. 12
1.3.2.3 Partition Detection .. 12
1.3.2.4 Short Term Partition Repair.. 12
1.3.2.5 Long Term Partition Repair .. 12

1.3.3 Direct Connection ... 13
1.3.4 Security Extension Points .. 13

1.3.4.1 Connection Security .. 13
1.3.4.2 Record Security .. 13

1.3.5 Shared Database .. 13
1.3.5.1 Records ... 13
1.3.5.2 Record Lifetime .. 13
1.3.5.3 Record Flooding .. 14
1.3.5.4 Record Synchronization ... 14
1.3.5.5 Record Types ... 14

1.3.5.5.1 Graph Info ... 14
1.3.5.5.2 Signature ... 14
1.3.5.5.3 Contact .. 14
1.3.5.5.4 Presence .. 15

1.3.6 Time Synchronization ... 15
1.4 Relationship to Other Protocols .. 15
1.5 Prerequisites/Preconditions ... 16
1.6 Applicability Statement ... 16
1.7 Versioning and Capability Negotiation ... 17
1.8 Vendor-Extensible Fields ... 17
1.9 Standards Assignments .. 17

2 Messages.. 18
2.1 Transport .. 18
2.2 Message Syntax .. 18

2.2.1 Message Components ... 18
2.2.1.1 Message Framing .. 18
2.2.1.2 PEER_MESSAGE ... 19
2.2.1.3 PEER_IN6_ADDRESS ... 20
2.2.1.4 PEER_IN6_ADDRESS_EX ... 20
2.2.1.5 PEER_ADDRESS ... 21
2.2.1.6 RECORD_ABSTRACT ... 21
2.2.1.7 HASH_INFO_ENTRY .. 22
2.2.1.8 HASH_ENTRY_BOUNDARY ... 22
2.2.1.9 PEER_RECORD ... 23

2.2.2 Messages .. 27
2.2.2.1 AUTH_INFO ... 27

5 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.2.2 CONNECT .. 28
2.2.2.3 WELCOME .. 29
2.2.2.4 REFUSE ... 31
2.2.2.5 DISCONNECT ... 32
2.2.2.6 SOLICIT_NEW .. 33
2.2.2.7 SOLICIT_TIME .. 34
2.2.2.8 SOLICIT_HASH ... 35
2.2.2.9 ADVERTISE .. 36
2.2.2.10 REQUEST ... 37
2.2.2.11 FLOOD... 38
2.2.2.12 SYNC_END ... 38
2.2.2.13 PT2PT .. 39
2.2.2.14 ACK .. 40

2.2.3 Internal Record types ... 41
2.2.3.1 Graph Info Record .. 41
2.2.3.2 Signature Record .. 44
2.2.3.3 Contact Record ... 44
2.2.3.4 Presence Record ... 45
2.2.3.5 Record Attributes .. 45

2.2.4 Internal Messages .. 47
2.2.4.1 Ping .. 47

3 Protocol Details .. 48
3.1 Client Details ... 48

3.1.1 Abstract Data Model ... 48
3.1.2 Timers .. 51
3.1.3 Initialization .. 52
3.1.4 Higher-Layer Triggered Events ... 53

3.1.4.1 Creating a New Graph ... 53
3.1.4.2 Opening an Existing Graph ... 54
3.1.4.3 Application Adds a Record .. 54
3.1.4.4 Application Updates a Record ... 55
3.1.4.5 Application Deletes a Record .. 56
3.1.4.6 Application Publishes Presence ... 57
3.1.4.7 Application Allows Direct Connections .. 57
3.1.4.8 Application Initiates Listening ... 57
3.1.4.9 Application Requests to Connect to the Graph .. 57
3.1.4.10 Application Requests that Deferred Records be Revalidated 58
3.1.4.11 Application Requests To Be Notified About a Specific Record Type 58
3.1.4.12 Application Closes the Graph .. 58

3.1.5 Processing Events and Sequencing Rules ... 58
3.1.5.1 Pre-Authentication Messages .. 58

3.1.5.1.1 Receive AUTH_INFO .. 58
3.1.5.1.2 Receive Other Messages During Authentication 59

3.1.5.2 Post-Authentication Messages .. 60
3.1.5.2.1 Receive CONNECT ... 60
3.1.5.2.2 Receive WELCOME .. 62
3.1.5.2.3 Receive REFUSE .. 64
3.1.5.2.4 Receive DISCONNECT .. 64
3.1.5.2.5 Receive SOLICIT_NEW ... 65
3.1.5.2.6 Receive SOLICIT_TIME .. 66
3.1.5.2.7 Receive SOLICIT_HASH ... 66
3.1.5.2.8 Receive ADVERTISE ... 67

6 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.5.2.9 Receive REQUEST.. 68
3.1.5.2.10 Receive FLOOD ... 68
3.1.5.2.11 Receive SYNC_END .. 69
3.1.5.2.12 Receive ACK ... 70
3.1.5.2.13 Receive PT2PT .. 71

3.1.6 Timer Events ... 71
3.1.6.1 Authentication Timer ... 71
3.1.6.2 Connect Timer .. 71
3.1.6.3 Contact Timer .. 71
3.1.6.4 Signature Timer ... 72
3.1.6.5 Partition Detection Timer ... 72
3.1.6.6 Graph Maintenance Timer .. 72
3.1.6.7 Record Expiration Timer .. 72
3.1.6.8 Autorefresh Timer ... 73
3.1.6.9 Presence Timer .. 73

3.1.7 Other Local Events ... 73
3.1.7.1 Sending a Message ... 73
3.1.7.2 Creating a Record ... 73
3.1.7.3 Publishing a Record... 74
3.1.7.4 Publishing a Presence Record ... 74
3.1.7.5 Publishing a Contact Record ... 75
3.1.7.6 Publishing a Signature Record .. 75
3.1.7.7 Publishing a Graph Info Record... 76
3.1.7.8 Updating a Record .. 76
3.1.7.9 Deleting a Record ... 77
3.1.7.10 Receiving a Record .. 77

3.1.7.10.1 Receive an Application Record ... 77
3.1.7.10.2 Receive a Graph Info Record ... 78
3.1.7.10.3 Receive a Signature Record .. 78
3.1.7.10.4 Receive a Contact Record ... 78
3.1.7.10.5 Receive a Presence Record ... 78

3.1.7.11 Signature Calculation .. 79
3.1.7.12 Contact Maintenance ... 79
3.1.7.13 Partition Detection .. 80
3.1.7.14 Connection Maintenance .. 80
3.1.7.15 Long-Term Partition Repair .. 81
3.1.7.16 Graph Maintenance ... 81
3.1.7.17 Presence Maintenance ... 81
3.1.7.18 Expiring Application Record .. 82
3.1.7.19 Expired Signature Record Found ... 82
3.1.7.20 Expired Presence Record Found .. 82
3.1.7.21 Expired Contact Record Found .. 82
3.1.7.22 Autorefreshing Records .. 82
3.1.7.23 Local IP Addresses Change ... 83
3.1.7.24 Establishing a New Connection ... 83
3.1.7.25 Disconnecting a Connection .. 85
3.1.7.26 An Incoming Connection Is Established .. 85
3.1.7.27 Validating a Received Record .. 86
3.1.7.28 Securing a Record ... 87
3.1.7.29 Performing a Sync All .. 88
3.1.7.30 Performing a Time-Based Sync ... 88
3.1.7.31 Performing a Hash-Based Sync ... 88
3.1.7.32 Record Conflict Resolution .. 89

7 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.7.33 Updating Connection Utility .. 90

4 Protocol Examples .. 91
4.1 Establishing a Connection ... 91
4.2 Sync All .. 91
4.3 Hash-Based Sync ... 92
4.4 Record Flooding ... 94

5 Security .. 96
5.1 Security Considerations for Implementers ... 96
5.2 Index of Security Parameters .. 96

6 Appendix A: Product Behavior .. 97

7 Change Tracking... 98

8 Index ... 99

8 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1 Introduction

The Peer-to-Peer Graphing Protocol is a peer-to-peer protocol for establishing and maintaining a
connected set of nodes (referred to as a graph) and for replicating data among the nodes.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

Coordinated Universal Time (UTC)

big-endian
FILETIME
globally unique identifier (GUID)

MD5 hash
Unicode
UTF-8

The following terms are specific to this document:

connection utility: The usefulness of a connection. This number is adjusted each time a node
receives a record, such that a connection that delivers new information has a higher

connection utility than one that delivers duplicate information.

contact: A node that publishes a contact record. Contacts are used by graph maintenance
to detect partitions.

contact record: A record published by a contact that includes the contact's address and the
graph signature at the time of publication.

database: The set of all non-expired records published in a graph.

direct connection: A connection between two nodes that is used only for sending application

messages.

graph: A set of connected nodes.

graph ID: A unique string identifier for the graph instance. A graph ID is limited to 256
characters, including the string terminator.

graph info record: A record used to publish graph configuration.

graph maintenance: The process by which each node attempts to improve its connectivity
within the graph.

graph security provider: A pluggable extension that provides record security and connection
security.

neighbor: A node that is connected to another node via a neighbor connection.

%5bMS-GLOS%5d.pdf

9 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

neighbor connection: A connection between two nodes that is used for Record flooding and
synchronization.

node: An instance of the Peer-to-Peer Graphing Protocol.

node ID: A statistically unique 64-bit identifier for a node in a graph. A node ID must be

unique within a graph.

peer time: A view of time shared by all nodes in a graph. Peer time is an approximation of the
Coordinated Universal Time (UTC), but may diverge as the nodes in a graph continue to
recalculate peer time based on the peer time reported by other nodes.

peer time delta: The difference between the machine local UTC and the graph peer time.
Each time the peer time is needed, it is calculated by applying the peer time delta to the
local system time expressed in UTC.

presence record: A record used to publish information about a node.

record: A piece of data that is published by a node to the graph. Records are the primary
mechanism of communication in a graph.

record ID: The identifier of a record. A record ID must be unique within a graph.

signature: The lowest node ID in the graph.

signature node: The node that has the lowest node ID.

signature record: The record that is used to publish the graph's signature. There is only one
signature record for a graph.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We

will assist you in finding the relevant information.

[ISO-8601] International Organization for Standardization, "Data Elements and Interchange Formats
- Information Interchange - Representation of Dates and Times", ISO/IEC 8601:2004, December
2004,
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874&ICS1=1&ICS2

=140&ICS3=30

Note There is a charge to download the specification.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89920
http://go.microsoft.com/fwlink/?LinkId=89920
%5bMS-DTYP%5d.pdf

10 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, September 1981,
http://www.ietf.org/rfc/rfc0793.txt

[RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992,
http://www.ietf.org/rfc/rfc1321.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2460] Deering, S., and Hinden, R., "Internet Protocol, Version 6 (IPv6) Specification", RFC
2460, December 1998, http://www.ietf.org/rfc/rfc2460.txt

[RFC3697] Rajahalme, J., Conta, A., Carpenter, B., and Deering, S., "IPv6 Flow Label Specification",
RFC 3697, March 2004, http://www.ietf.org/rfc/rfc3697.txt

[RFC4291] Hinden, R., and Deering, S., "IP Version 6 Addressing Architecture", RFC 4291, February

2006, http://www.ietf.org/rfc/rfc4291.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-PNRP] Microsoft Corporation, "Peer Name Resolution Protocol (PNRP) Version 4.0".

[MS-PPSEC] Microsoft Corporation, "Peer-to-Peer Grouping Security Protocol".

1.3 Overview

The Peer-to-Peer Graphing Protocol enables applications to publish data into a database shared
among a number of nodes organized into a graph, and have the database synchronized over all the
nodes in the graph. The Peer-to-Peer Graphing Protocol builds a network topology that allows the
graph to scale to large numbers of nodes, provides reliable synchronization of the database, and
evolves the graph topology so as to minimize latency as conditions change.

1.3.1 Graph Topology

A graph strives to maintain a good topology by balancing the following goals:

Minimizing the average latency between any two nodes.

Minimizing the latency between publishing nodes and all other nodes.

Being well connected in order to survive the failure of large numbers of nodes and Graph

partitions.

Minimizing the amount of internode traffic.

It should be noted that these properties conflict with each other and the graph constantly attempts
to reach a compromise among these goals via periodic tuning. For more information, see section
3.1.6.6.

A small graph may look something like this.

http://go.microsoft.com/fwlink/?LinkId=90493
http://go.microsoft.com/fwlink/?LinkId=90275
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90357
http://go.microsoft.com/fwlink/?LinkId=189226
http://go.microsoft.com/fwlink/?LinkId=90464
%5bMS-GLOS%5d.pdf
%5bMS-PNRP%5d.pdf
%5bMS-PPSEC%5d.pdf

11 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 1: Example of a graph

1.3.2 Connecting and Disconnecting

When establishing the first connection to a graph, it is necessary for an application to supply the
Peer-to-Peer Graphing Protocol with the address and port of an active node. The Peer-to-Peer
Graphing Protocol does not define any discovery mechanism for discovering nodes for the initial
connection.

When the address and port of an existing node are found, the node first authenticates with the
existing node. After successful authentication, the existing node will either allow the connection or
refuse it. In either case, the existing node will provide the connecting node with a list of its
neighbors. If the existing node refused the connection (usually because it already has the
maximum number of neighbors), the connecting node will attempt to connect to one of the existing
node's neighbors.

To participate in a graph, a node begins listening for connection requests from other nodes.

If the node is the creator of the graph, it begins listening immediately.

If another node is found and a connection is established, the local node begins listening after

synchronization.

If a connection cannot be established and the node has previously synchronized its database, it

begins listening.

If a connection cannot be established and the node has never synchronized its database, it does

not listen - it cannot be part of the graph until it first finds another node.

After the node has synchronized and started listening, it attempts to connect to more nodes in the
graph. There are several ways to find other nodes:

Through available presence records in the graph.

Through available contact records in the graph.

Through node information passed back from neighbors in the graph.

After a node is found, the same mechanism is used to create additional connections. For more
information, see section 3.1.7.24.

12 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

When a node disconnects from a neighbor, either because it is leaving the graph or because it has
pruned the connection as part of graph maintenance, it first sends a message to the neighbor.

The message contains the reason for disconnecting and provides a list of the disconnecting node's
neighbors. For more information, see section 3.1.7.25.

1.3.2.1 Signature

The signature is defined to be the lowest node ID in the graph. The node with the lowest node ID
is called the signature node. The signature node publishes the signature record and refreshes it
periodically.

If a node receives a signature record containing a node ID that is higher than that of the local node
ID, it will update the signature record to contain the local node ID.

When a signature node leaves the graph, it deletes the signature record. Each node sees this
deletion and does a random back-off with a waiting period proportional to its node ID. This causes
the nodes with the lowest node IDs to publish the signature record sooner, minimizing the number
of times that an incorrect signature record is republished.

The process of publishing the signature record, and updating the record when it is found to be
incorrect, is called signature record. For more information, see section 3.1.7.11.

The signature record is different from all other record types in that it has a fixed record ID.

1.3.2.2 Contacts

Each graph contains a number of contacts, the number of which scales with the size of the graph.
The contacts are self-selected in such a way that the total number of contacts remains at or near
the ideal number. The ideal number of contacts is calculated based on the estimated size of the
graph. A contact publishes its addresses and its locally cached signature in a contact record. The

contact record is periodically refreshed and updated any time the contact sees a change in the
signature. For more information, see section 3.1.7.12.

1.3.2.3 Partition Detection

Each node monitors the signature record and the signature contained in contact records. If the
signature in any contact record is different from the locally cached signature, a partition is detected.

1.3.2.4 Short Term Partition Repair

When a partition is detected, the nodes that detect the partition will wait a short period of time for
the contact record and signature record to match again (via receiving a new signature record or
contact record). If this does not happen, the node will attempt to connect to the contact whose
record does not match. For more information, see section 3.1.7.13.

1.3.2.5 Long Term Partition Repair

It is not possible to detect all partitions. To help repair partitions that cannot be detected, each

contact node will periodically attempt to form a connection to a new node. Because a node in a
different partition of the graph (if a partition exists at all) would not have any data in the graph that
could be used to locate it (such as presence records or contact records), the new node is determined
by requesting the application built on top of the Peer-to-Peer Graphing Protocol to find a node. Not
all applications will be capable of finding new nodes. For more information, see section 3.1.7.15.

13 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1.3.3 Direct Connection

In addition to neighbor connections, a node can also have direct connections. A direct
connection is one over which no record flooding or synchronization occurs. A direct connection is

only used for application messages. direct connections do not take part in graph maintenance. For
more information, see section 3.1.7.24.

1.3.4 Security Extension Points

The Peer-to-Peer Graphing Protocol exposes a security extension point, allowing an application to
specify a graph security provider. A graph security provider extends the capabilities of the
protocol to provide connection security and data security.

1.3.4.1 Connection Security

If specified, the Peer-to-Peer Graphing Protocol will call into the graph security provider for
authentication whenever a new connection is established. The graph security provider can supply

and receive messages during the authentication phase to implement the desired authentication
model. After authentication is complete, the graph security provider will be called to perform
encryption/decryption on all messages sent/received over the connection. For more information, see

section 3.1.7.28.

1.3.4.2 Record Security

If specified, the Peer-to-Peer Graphing Protocol will call into the graph security provider whenever a
record is sent or received, allowing it to provide authorization and record integrity.

To support the graph security provider, each record contains a field for security data, which the

graph security provider may use for storage of additional data about the record. For example, the
security data field may contain a cryptographic signature of the record data. For more information,
see section 3.1.7.28.

1.3.5 Shared Database

The primary way in which nodes in a graph communicate with each other is through records in a
shared database. The graph database is the set of all records that have been published in the graph

that have not yet expired. nodes can publish new records into the database, modify existing
records, or remove records from the database. The updates will be flooded from the originating
nodes to all other nodes in the graph. A node that is newly joined or reconnected to the graph will
synchronize its copy of the database with other active members in the graph. Section 3 describes
the details of these operations.

1.3.5.1 Records

A record is the basic unit of information in the database, and therefore in the graph. Each record has
a unique record ID that is formed by generating a GUID and combining it with a hash of the
record's Creator ID. Each record also has a type, defined by a GUID. The Peer-to-Peer Graphing
Protocol defines a range of reserved types that applications cannot use, but otherwise the record

type is application-defined.

1.3.5.2 Record Lifetime

Each record has a specific lifetime between the time it is created and the time it is scheduled to
expire. The creation, last modification, and expiration times are all transmitted in the record and are
expressed in peer time.

%5bMS-GLOS%5d.pdf

14 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

A record remains in the database until it expires. Expired records are purged periodically from the
database (see sections 3.1.7.18 through3.1.7.21), and are never sent over a network connection.

When modifying a record, the expiration time may be increased, but never decreased. A record that
is no longer wanted is marked as "deleted"; the record still exists in the database and will be purged

after it has expired.

1.3.5.3 Record Flooding

Whenever a record is added, updated, or deleted, the record is flooded throughout the graph,
ensuring that all connected nodes get the updated information. When a node receives a record from
a neighbor that was useful (the record was one that the node did not have, or was newer than the
version that the node had), the connection utility for that connection is incremented. Otherwise,

the connection utility is decremented.

1.3.5.4 Record Synchronization

Whenever a new neighbor connection is formed, the initiating node begins record synchronization.

Record synchronization ensures that both nodes in the connection have identical databases. There
are three types of synchronization: Sync All, Time-based Sync, and Hash-based Sync.

Sync All (section 3.1.7.29) is used when a node first connects to the graph. Sync All sends all the
records in the database from the existing node to the connecting node.

Time-based Sync (section 3.1.7.30) is used when a node re-connects to a graph, but already has an
older copy of the database. Time-based Sync will send all records in the database that were created
or modified after the time (peer time) at which the connecting node previously left the graph. A
Time-based Sync is always followed by a Hash-based Sync.

Hash-based Sync (section 3.1.7.31) is used when a node is making an additional connection to the

graph. In this case, it is expected that both nodes will have identical or nearly identical databases. A
Hash-based Sync compares the databases using record hashes, and sends only those records that
are found to be different or missing.

1.3.5.5 Record Types

There are four internal record types defined by the Peer-to-Peer Graphing Protocol: Signature,
Contact, Presence, and Graph Info, which are used to implement graph maintenance, node

presence, and publication of graph information.

1.3.5.5.1 Graph Info

The Graph Info Record (section 2.2.3.1) contains basic information about the graph and its
configuration. This record is published when the graph is created and updated as its configuration is
changed. When a Graph Info Record is received, its information is cached by the local node.

1.3.5.5.2 Signature

The signature record (section 2.2.3.2) is used to compute and publish the graph signature. For more

information, see section 1.3.2.1.

1.3.5.5.3 Contact

The contact record (section 2.2.3.3) is used to publish the addresses of contacts and the signature
of the graph. This information is used for partition detection and repair. For more information, see

section 1.3.2.2.

15 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1.3.5.5.4 Presence

The presence record (section 3.1.4.4) is used to publish information about a node. The information
contains the addresses on which the node is listening, the node ID, and an application-defined

attribute string. The lifetime of a presence record is controlled by the Presence Lifetime field of the
Graph Info Record.

The existence of a presence record is meant to imply that the node is active in the graph. To make
this assumption useful, the following rules are applied to the presence record:

A node that leaves the graph deletes its presence record before leaving.

The lifetime of the presence record is short enough that a node that ungracefully leaves the

graph without deleting its presence record will only appear active for a short time.

The publication of presence records also allows the Peer-to-Peer Graphing Protocol to know about
more nodes in the graph than just its neighbors. This additional knowledge allows for more options
when performing graph maintenance, and enables application scenarios that require knowledge

about other nodes in the graph.

1.3.6 Time Synchronization

In order to enforce the expiration of records, each node in the graph must have a synchronized view
of time. To accomplish this, the Peer-to-Peer Graphing Protocol implements the concept of peer
time. Peer time is initialized to UTC when a graph is created, and moves at approximately the same
rate. For more information, see section 3.1.5.2.2.

When the graph is created, the peer time is set to UTC as seen by the creator of the graph. When a
node first connects to the graph, it sets its peer time to be the peer time as seen by the remote

node (that is, the node to which it is connected). When an active node makes a connection to an
additional node, it sets its peer time to a weighted average of its current peer time and the peer
time received from its new neighbor. In this way, the peer time of all nodes is consistently averaged
together, keeping them close in value.

It should be noted that this averaging does allow peer time to move backward by small amounts on
occasion.

peer time is measured as the number of 100s of nanosecond intervals since Jan. 1, 1601 and

expressed in UTC format.

1.4 Relationship to Other Protocols

The Peer-to-Peer Graphing Protocol exposes a set of APIs to access its functionalities and an
interface to allow applications to plug in a graph security provider to implement network and data
security. The P2P Grouping protocol [MS-PPSEC] uses the Peer-to-Peer Graphing Protocol and
implements a graph security provider component to implement a secure distributed database

protocol.

The Peer-to-Peer Graphing Protocol uses the TCP protocol [RFC793] as a transport and IPv6

[RFC2460] as the network-layer protocol.

The following diagram shows how the Peer-to-Peer Graphing Protocol interacts with other protocols.

%5bMS-GLOS%5d.pdf
%5bMS-PPSEC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90493
http://go.microsoft.com/fwlink/?LinkId=90357

16 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 2: P2P Graphing relationship to other protocols

1.5 Prerequisites/Preconditions

In order to connect to a graph, a node must already know the address and port of another node.
These must be obtained via external mechanisms or protocols by the applications that use the Peer-
to-Peer Graphing Protocol, such as the Peer Name Resolution Protocol (PNRP) [MS-PNRP].

Because the Peer-to-Peer Graphing Protocol provides no way to discover the security configuration

of a graph, a node must be configured in advance with a choice of graph security provider. The
graph security provider is an optional component, and if none is specified, then the Peer-to-Peer
Graphing Protocol simply does not implement any security. However, if a graph security provider is
used, each node in a given graph must be configured to use the same one.

1.6 Applicability Statement

The protocol is intended for a setting in which all nodes in a graph have symmetric connectivity--any

node should be able to successfully form a TCP connection to any other node. To the extent that this
is not true, the reliability and efficiency characteristics of a graph degrade.

Because there is redundancy inherent in the record flooding protocol, the Peer-to-Peer Graphing
Protocol is better suited to smaller chunks of data. For example, using a graph for distribution of file
metadata is more appropriate than using a graph for file distribution.

%5bMS-PNRP%5d.pdf

17 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The Peer-to-Peer Graphing Protocol is equally suited to scenarios where one node is a broadcaster
and all others are receivers and scenarios where all nodes are equally publishing.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

Supported Transports: This protocol is implemented on top of TCP over IPv6, as described in

section 2.1.

Protocol Versions: The protocol version is 1.0.

Security and Authentication Methods: The protocol delegates to the higher layer applications

the implementation of the security and authentication methods. The Peer-to-Peer Graphing
Protocol will call up into an application-provided component to secure and authenticate new
connections and to secure and validate any record that is flooded in the graph.

Localization: The protocol does not contain locale-dependent information.

Capability Negotiation: This protocol does not contain any version or capability negotiation

mechanism.

The Peer-to-Peer Graphing Protocol messages each contain a version number. The message syntax
allows for future data to be added to the message payload without breaking backward compatibility.
However, there is no version or capability negotiation implemented.

1.8 Vendor-Extensible Fields

Applications that use the Peer-to-Peer Graphing Protocol are able to define their own Record types.
Each record in a graph has a Record Type, which is expressed as a GUID. A vendor may use any

GUID except those in the reserved range (see section 2.2.3).

1.9 Standards Assignments

None.

%5bMS-GLOS%5d.pdf

18 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2 Messages

This protocol references commonly used data types as defined in [MS-DTYP].

Unless otherwise qualified, instances of GUID in sections 2 and 3 refer to [MS-DTYP] section 2.3.4.

2.1 Transport

The Peer-to-Peer Graphing Protocol uses TCP [RFC793] over IPv6 [RFC2460] as its transport. The
specific port used is determined by each client independently and can be either provided by the
application or randomly selected by the protocol. The Peer-to-Peer Graphing Protocol also allows

applications to specify a graph security provider, which can inject messages into the authentication
exchange and may encrypt (or even augment or modify) each message before it is sent over the
TCP connection.

2.2 Message Syntax

The message syntax specified following does not require any particular field alignment for fields that
follow a variable-length field.

Unless otherwise noted, all fields are represented in big-endian byte order.

The Peer-to-Peer Graphing Protocol sends messages specified in section 2.2.2. Messages of larger
sizes are broken up into frames, as specified in section 2.2.1.1. Also, each message type uses some
common message components specified in sections 2.2.1.2 through 2.2.1.9. The default frame size
used by the protocol is 16,379 bytes. Any message received by the protocol with a size larger than
the frame size MUST be dropped, and the connection MUST be aborted.

2.2.1 Message Components

2.2.1.1 Message Framing

The Peer-to-Peer Graphing Protocol uses TCP, which is a stream-based communication mechanism.
However, the protocol is message-oriented. Additionally, the size of a message can be quite large.
Thus, the Peer-to-Peer Graphing Protocol defines a framing mechanism to break up messages and
to find the boundaries between frames.

Each message is broken into one or more frames. Each frame is described by a frame size and
followed by the frame body.

Each message defined by the Peer-to-Peer Graphing Protocol contains the message size within the
message, allowing the Peer-to-Peer Graphing Protocol to detect when a complete message has been
received.

The framing mechanism can be depicted by the following framing structure.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Frame Size Frame Payload (variable)

...

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90493
http://go.microsoft.com/fwlink/?LinkId=90357

19 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Frame Size (2 bytes): The total number of bytes in the current frame. This value MUST be at
least 1 and the maximum MUST be less than or equal to the size specified in the Max Frame

Size element described in section 3.1.1.

Frame Payload (variable): The frame payload.

2.2.1.2 PEER_MESSAGE

Each message that is exchanged between nodes MUST be prefixed by the following structure.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Message Size

Version Message Type Reserved

Message Size (4 bytes): The total number of bytes in the message.

Version (1 byte): The Peer-to-Peer Graphing Protocol version number. This MUST be set to
0x10 to signify version 1.0.

Message Type (1 byte): MUST be one of the following values.

Value Meaning

0x01 AUTH_INFO

0x02 CONNECT

0x03 WELCOME

0x04 REFUSE

0x05 DISCONNECT

0x06 SOLICIT_NEW

0x07 SOLICIT_TIME

0x08 SOLICIT_HASH

0x09 ADVERTISE

0x0A REQUEST

0x0B FLOOD

0x0C SYNC_END

0x0D PT2PT

0x0E ACK

Reserved (2 bytes): MUST be set to zero and ignored on receipt.

20 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.1.3 PEER_IN6_ADDRESS

This structure represents a single IPv6 address.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Protocol Family Port

IPv6 Address

...

...

...

Protocol Family (2 bytes): MUST be set to 0x0017 for IPv6.

Port (2 bytes): The TCP port on which the Node is listening.

IPv6 Address (16 bytes): The numerical value of an IPv6 Address [RFC4291].

2.2.1.4 PEER_IN6_ADDRESS_EX

This structure represents a single IPv6 address and a Peer ID.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Protocol Family Port

IPv6 Address

...

...

...

Peer ID (variable)

...

Protocol Family (2 bytes): MUST be set to 0x0017 for IPv6.

Port (2 bytes): The TCP port on which the node is listening.

IPv6 Address (16 bytes): The numerical value of an IPv6 Address [RFC4291].

http://go.microsoft.com/fwlink/?LinkId=90464
http://go.microsoft.com/fwlink/?LinkId=90464

21 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Peer ID (variable): The null-terminated UTF-8 string representing the Peer ID.

2.2.1.5 PEER_ADDRESS

This structure represents a single IPv6 address and appears in the message syntax for records.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Size

Protocol Family Port

Flow Info

IPv6 Address

...

...

...

Zero

Size (4 bytes): MUST be set to 0x20.

Protocol Family (2 bytes): MUST be set to 0x0017 for IPv6.

Port (2 bytes): The TCP port on which the node is listening.

Flow Info (4 bytes): The IPv6 flow information [RFC3697].

IPv6 Address (16 bytes): The numeric value of the IPv6 Address [RFC4291].

Zero (4 bytes): MUST be set to 0x00000000.

2.2.1.6 RECORD_ABSTRACT

Used in the ADVERTISE (section 2.2.2.9) message, a RECORD_ABSTRACT represents the record ID
and version of a given record.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Record ID

...

...

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90464

22 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

...

Version

Record ID (16 bytes): The record ID, expressed as a GUID.

Version (4 bytes): The version number of this record.

2.2.1.7 HASH_INFO_ENTRY

Used in the SOLICIT_HASH (section 2.2.2.8) message, a HASH_INFO_ENTRY represents the hash of
Record Abstracts for the given record range.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hash

...

...

...

Modification Time

...

Record ID

...

...

...

Hash (16 bytes): An MD5 hash of RECORD_ABSTRACT (section 2.2.1.6) structures.

Modification Time (8 bytes): The peer time value of the last modifier of the last record in the
range, at the time when the record was modified.

Record ID (16 bytes): The record ID at the upper boundary of the record range, expressed as

a GUID.

2.2.1.8 HASH_ENTRY_BOUNDARY

Used in the ADVERTISE (section 2.2.2.9) message, a HASH_ENTRY_BOUNDARY represents a range
of record IDs and modification times.

%5bMS-GLOS%5d.pdf

23 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Modification Time Lower

...

Record ID Lower

...

...

...

Modification Time Upper

...

Record ID Upper

...

...

...

Count

Modification Time Lower (8 bytes): The lowest value of the last modification time for the
range of records.

Record ID Lower (16 bytes): The lowest value of record ID for the range of records,
expressed as a GUID.

Modification Time Upper (8 bytes): The highest value of the last modification time for the
range of records.

Record ID Upper (16 bytes): The highest value of record ID for the range of records,

expressed as a GUID.

Count (4 bytes): The number of records present in this range.

2.2.1.9 PEER_RECORD

This represents a record that is part of the graph database. Each record is identified by a record
type that defines the format of the payload data. The Peer-to-Peer Graphing Protocol defines four
internal record types to represent data that is internally used by the protocol. For more details, see

section 2.2.3.

24 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Record Type

...

...

...

Record ID

...

...

...

Record Version

Reserved Z

1

Z

2

Z

3

Z

4

Z

5

Z

6

D Z

8

Creator ID Length

Creator ID (variable)

...

Last Modified By ID Length

Last Modified By ID (variable)

...

Security Data Size

Security Data (variable)

...

Creation Time

...

25 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Expiration Time

...

Last Modification Time

...

Graph ID Length

Graph ID (variable)

...

Protocol Version Payload Data Size

... Payload Data (variable)

...

Attributes Length

Attributes (variable)

...

Record Type (16 bytes): The type of this record, expressed as a GUID. The Peer-to-Peer

Graphing Protocol reserves the following record types for internal use only.

Name Value

RECORD_TYPE_GRAPH_INFO { 00000100-0000-0000-0000-000000000000 }

RECORD_TYPE_SIGNATURE { 00000200-0000-0000-0000-000000000000 }

RECORD_TYPE_CONTACT { 00000300-0000-0000-0000-000000000000 }

RECORD_TYPE_PRESENCE { 00000400-0000-0000-0000-000000000000 }

Record ID (16 bytes): The unique ID of this record in the graph, expressed as a GUID.

Record Version (4 bytes): The current version of this record. This version is initialized to 1 on
record creation and incremented each time the record is updated.

Reserved (3 bytes): MUST be set to 0x000000 and ignored on receipt.

Z1 (1 bit): MUST be set to 0.

Z2 (1 bit): MUST be set to 0.

26 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Z3 (1 bit): MUST be set to 0.

Z4 (1 bit): MUST be set to 0.

Z5 (1 bit): MUST be set to 0.

Z6 (1 bit): MUST be set to 0.

D (1 bit): (Deleted): Indicates that the record has been deleted. If set to 1, the Payload Data
field of this record MUST be empty.

Z8 (1 bit): MUST be set to 0.

Creator ID Length (4 bytes): The length, in characters, of the string that follows, including
the terminating null character. This field MUST be in the range 2 to 256.

Creator ID (variable): A null-terminated Unicode string representing the Peer ID of the
record creator.

Last Modified By ID Length (4 bytes): The length, in characters, of the Last Modified By ID
string, including the terminating null character. This field MUST be in the range 0 to 256.

Last Modified By ID (variable): A null-terminated Unicode string representing the Peer ID of
the node that last modified this record. This field MUST NOT be present if the Last Modified
By ID Length value is 0x00000000.

Security Data Size (4 bytes): The size of Security Data, in bytes.

Security Data (variable): The security data supplied by the graph security provider. If
Security Data Size is 0x00000000, this field MUST NOT be present.

Creation Time (8 bytes): The peer time value of the record creator at the time that this record
was created.

Expiration Time (8 bytes): The peer time at the local node at which this record will expire.

Last Modification Time (8 bytes): The peer time value of the last modifier at the time that
the record was last modified. For a record that has never been modified, this field MUST have

the same value as the Creation Time.

Graph ID Length (4 bytes): The length, in characters, of the string that follows, including the
terminating null character. This field MUST be in the range 2 to 256.

Graph ID (variable): A null-terminated Unicode string representing the graph ID of the graph
to which this record belongs.

Protocol Version (2 bytes): The Peer-to-Peer Graphing Protocol version number. This MUST
be set to 0x0100 to signify version 1.0.

Payload Data Size (4 bytes): The size of the Payload Data, in bytes.

Payload Data (variable): The payload data.

Attributes Length (4 bytes): The length, in characters, of the Attributes string, including the
terminating null character.

Attributes (variable): A null-terminated Unicode XML string that contains the set of attribute
name and value pairs that are associated with this record. This field MUST NOT be present if

%5bMS-GLOS%5d.pdf

27 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

the Attributes Length value is 0x00000000. See section 2.2.3.5 for the specification of the
syntax of Attributes.

2.2.2 Messages

2.2.2.1 AUTH_INFO

AUTH_INFO is the first message sent by the connection initiator when establishing a connection.
Because this message is sent before the graph security provider negotiation, it is always sent in the
clear.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Message Size

Version Message Type Reserved1

Connection Type Reserved2 Graph ID Offset

Source Peer ID Offset Destination Peer ID Offset

Graph ID Data (variable)

...

Source Peer ID Data (variable)

...

Destination Peer ID Data (variable)

...

Message Size (4 bytes): The total number of bytes in the message.

Version (1 byte): The Peer-to-Peer Graphing Protocol version number. This MUST be set to

0x10 to signify version 1.0.

Message Type (1 byte): MUST be set to 0x01.

Reserved1 (2 bytes): MUST be set to zero and ignored on receipt.

Connection Type (1 byte): MUST be one of the following values.

Value Meaning

CONNECTION_TYPE_NEIGHBOR

0x01

This is for a neighbor connection.

CONNECTION_TYPE_DIRECT This is a direct connection.

28 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

0x02

Reserved2 (1 byte): MUST be set to zero and MUST be ignored on receipt.

Graph ID Offset (2 bytes): The offset, in bytes, from the beginning of the message to the
graph ID.

Source Peer ID Offset (2 bytes): The offset, in bytes, from the beginning of the message to

the source Peer ID.

Destination Peer ID Offset (2 bytes): The offset, in bytes, from the beginning of the
message to the destination Peer ID.

Graph ID Data (variable): A null-terminated UTF-8 string representing the graph ID.

Source Peer ID Data (variable): A null-terminated UTF-8 string representing the Peer ID of

the node that is initiating the connection.

Destination Peer ID Data (variable): A null-terminated UTF-8 string representing the Peer ID

of the node that the connection is intended for. If the Destination Peer ID Offset is equal to
Message Size, this field MUST NOT be present.

2.2.2.2 CONNECT

The CONNECT message is used by a node to establish a direct connection or neighbor connection
with another node. This message provides the destination node with the listening addresses of the

source node.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Message Size

Version Message Type Reserved1

Z

1

Z

2

Z

3

Z

4

U D Z

7

N Address Count Address Offset

Friendly Name Offset Reserved2

Source Node ID

...

IPv6 Address Array (variable)

...

Friendly Name (variable)

29 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

...

Message Size (4 bytes): The total number of bytes in the message.

Version (1 byte): The Peer-to-Peer Graphing Protocol version number. This MUST be set to
0x10 to signify version 1.0.

Message Type (1 byte): MUST be set to 0x02.

Reserved1 (2 bytes): MUST be set to zero and MUST be ignored on receipt.

Z1 (1 bit): MUST be set to 0 and MUST be ignored on receipt.

Z2 (1 bit): MUST be set to 0 and MUST be ignored on receipt.

Z3 (1 bit): MUST be set to 0 and MUST be ignored on receipt.

Z4 (1 bit): MUST be set to 0 and MUST be ignored on receipt.

U (1 bit): (Update): When set, indicates that the source node has begun listening and now has
a valid set of addresses.

D (1 bit): (Direct): When set, indicates that this connection is being established as a direct
connection.

Z7 (1 bit): MUST be set to 0 and MUST be ignored on receipt.

N (1 bit): (Neighbor List): When set, this flag indicates that the source node wants the list of
neighbors of the target node.

Address Count (1 byte): The total number of address entries included in the message. If the
Update bit is set, this field MUST NOT be zero.

Address Offset (2 bytes): The offset, in bytes, from the beginning of the message to the first

address in the address list.

Friendly Name Offset (2 bytes): The offset, in bytes, from the beginning of the message to
the Friendly Name.

Reserved2 (2 bytes): MUST be set to zero and MUST be ignored on receipt.

Source Node ID (8 bytes): The node ID of the sender.

IPv6 Address Array (variable): An array of Address Count IPv6 addresses in
PEER_IN6_ADDRESS (section 2.2.1.3) form. This field MUST NOT be present if the Address

Count is 0.

Friendly Name (variable): A null-terminated UTF-8 string representing the friendly name of
the sender. If the Friendly Name Offset is equal to the Message Size, this field MUST NOT
be present.

2.2.2.3 WELCOME

The WELCOME message is sent in response to a CONNECT message if the connection is accepted.

30 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Message Size

Version Message Type Reserved1

Node ID

...

Peer Time

...

Address Count Reserved2 Address Offset

Peer ID Offset Friendly Name Offset

IPv6 Address Array (variable)

...

Peer ID (variable)

...

Friendly Name (variable)

...

Message Size (4 bytes): The total number of bytes in the message.

Version (1 byte): The Peer-to-Peer Graphing Protocol version number. This MUST be set to
0x10 to signify version 1.0.

Message Type (1 byte): MUST be set to 0x03.

Reserved1 (2 bytes): MUST be set to zero and MUST be ignored on receipt.

Node ID (8 bytes): The node ID of the node sending the WELCOME message.

Peer Time (8 bytes): The current peer time. This field is used for peer time calculation.

Address Count (1 byte): The total number of address entries included in the message.

Reserved2 (1 byte): MUST be set to zero and MUST be ignored on receipt.

Address Offset (2 bytes): The offset, in bytes, from the beginning of the message to the first
address in the address list.

31 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Peer ID Offset (2 bytes): The offset, in bytes, from the beginning of the message to Peer ID.

Friendly Name Offset (2 bytes): The offset, in bytes, from the beginning of the message to
Friendly Name.

IPv6 Address Array (variable): An array of Address Count IPv6 addresses in

PEER_IN6_ADDRESS (section 2.2.1.3) form. This field MUST NOT be present if the Address
Count is 0x00.

Peer ID (variable): A null-terminated UTF-8 string representing the Peer ID of the sender.

Friendly Name (variable): A null-terminated UTF-8 string representing the friendly name of
the sender. If Friendly Name Offset is equal to Message Size, this field MUST NOT be
present.

2.2.2.4 REFUSE

The REFUSE message is sent in response to the CONNECT (section 2.2.2.2) message when the

connection is not accepted.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Message Size

Version Message Type Reserved

Error Code Address Count Address Offset

IPv6 Address Array (variable)

...

Message Size (4 bytes): The total number of bytes in the message.

Version (1 byte): The Peer-to-Peer Graphing Protocol version number. This MUST be set to
0x10 to signify version 1.0.

Message Type (1 byte): MUST be set to 0x04.

Reserved (2 bytes): MUST be set to zero and MUST be ignored on receipt.

Error Code (1 byte): One of the following values.

Value Meaning

REFUSE_CODE_BUSY

0x01

The sending node already has the

maximum number of neighbor connections.

This code is never sent for a direct

connection.

REFUSE_CODE_ALREADY_CONNECTED

0x02

The connection on which this message was

received is already in the CONNECTED

state and the CONNECT message did not

32 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

have the Update bit set.

REFUSE_CODE_DUPLICATE_CONNECTION

0x03

The sending node is already connected to

the receiving node on another connection.

REFUSE_CODE_DIRECT_CONNECTION_DISALLOWED

0x04

The receiving node is not accepting direct

connections. This code MUST be returned

when the application is not expecting direct

connections.

Address Count (1 byte): The total number of address entries included in the message.

Address Offset (2 bytes): The offset, in bytes, from the beginning of the message to the first
address in the address list.

IPv6 Address Array (variable): An array of Address Count IPv6 addresses in

PEER_IN6_ADDRESS (section 2.2.1.3) form. This field MUST NOT be present if the Address
Count is 0x00.

2.2.2.5 DISCONNECT

The DISCONNECT message is sent by a node before terminating an existing connection. After
receiving this message, the remote node MUST terminate the connection.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Message Size

Version Message Type Reserved

Reason Address Count Address Offset

IPv6 Address Array (variable)

...

Message Size (4 bytes): The total number of bytes in the message.

Version (1 byte): The Peer-to-Peer Graphing Protocol version number. This MUST be set to
0x10 to signify version 1.0.

Message Type (1 byte): MUST be set to 0x05.

Reserved (2 bytes): MUST be set to zero and MUST be ignored on receipt.

Reason (1 byte): MUST be one of the following values.

Name Meaning

DISCONNECT_REASON_LEAVING The sender is leaving the graph.

33 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Name Meaning

0x01

DISCONNECT_REASON_LEAST_USEFUL

0x02

The sender is performing graph maintenance, and

this is the least useful connection.

DISCONNECT_REASON_APP_DISCONNECT

0x03

The application requested that the connection be

disconnected.

Address Count (1 byte): The total number of address entries included in the message.

Address Offset (2 bytes): The offset, in bytes, from the beginning of the message to the first

address in the address list.

IPv6 Address Array (variable): An array of IPv6 addresses in PEER_IN6_ADDRESS (section
2.2.1.3) form. This field MUST NOT be present if the Address Count is 0x00.

2.2.2.6 SOLICIT_NEW

The SOLICIT_NEW message is sent by a node that connected to the graph for the first time (and has

never synchronized before). This message initiates a sync of the entire database.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Message Size

Version Message Type Reserved

Inclusion Count Exclusion Count Record Types Offset

Record Types (variable)

...

Message Size (4 bytes): The total number of bytes in the message.

Version (1 byte): The Peer-to-Peer Graphing Protocol version number. This MUST be set to
0x10 to signify version 1.0.

Message Type (1 byte): MUST be set to 0x06.

Reserved (2 bytes): MUST be set to zero and MUST be ignored on receipt.

Inclusion Count (1 byte): The count of record types to be included in the sync. This field
MUST be set to 0x00 if Exclusion Count is nonzero.

Exclusion Count (1 byte): The count of record types that are to be excluded from the sync.
This field MUST be set to 0x00 if Inclusion Count is nonzero.

Record Types Offset (2 bytes): The offset, in bytes, from the beginning of the message of the
Record Type array.

34 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Record Types (variable): The array of record types that are included or excluded, expressed
as an array of GUIDs in big-endian byte order. The record types that are synchronized are

controlled by the inclusion/exclusion list:

When no record types are specified, all record types MUST be synchronized.

When Inclusion Count is nonzero, the sync MUST include only the record types in the

Record Types array.

When Exclusion Count is nonzero, the sync MUST include all record types except those in

the Record Types array.

2.2.2.7 SOLICIT_TIME

The SOLICIT_TIME message is used to initiate Time-based Sync.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Message Size

Version Message Type Reserved

Inclusion Count Exclusion Count Record Types Offset

Modification Time

...

Record Types (variable)

...

Message Size (4 bytes): The total number of bytes in the message.

Version (1 byte): The Peer-to-Peer Graphing Protocol version number. This MUST be set to

0x10 to signify version 1.0.

Message Type (1 byte): MUST be set to 0x07.

Reserved (2 bytes): MUST be set to zero and MUST be ignored on receipt.

Inclusion Count (1 byte): The count of record types to be included in the sync. This field
MUST be 0x00 if Exclusion Count is nonzero.

Exclusion Count (1 byte): The count of record types that are to be excluded from the sync.

This field MUST be 0x00 if Inclusion Count is nonzero.

Record Types Offset (2 bytes): The offset, in bytes, from the beginning of the message to the
Record Types array.

%5bMS-GLOS%5d.pdf

35 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Modification Time (8 bytes): The node's peer time value when it left the graph. This value is
the minimum Modification Time of the records that the responder will flood in response to

the message.

Record Types (variable): The array of record types that are included or excluded, expressed

as an array of GUIDs in big-endian byte order. This array is interpreted the same as in
SOLICIT_NEW (section 2.2.2.6).

2.2.2.8 SOLICIT_HASH

The SOLICIT_HASH message is used to initiate a Hash-based Sync.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Message Size

Version Message Type Reserved1

Inclusion Count Exclusion Count Record Types Offset

Hash Count

Hash Entry Offset Reserved2

Record Types (variable)

...

Hash Entry Array (variable)

...

Message Size (4 bytes): The total number of bytes in the message.

Version (1 byte): The Peer-to-Peer Graphing Protocol version number. This MUST be set to
0x10 to signify version 1.0.

Message Type (1 byte): MUST be set to 0x08.

Reserved1 (2 bytes): MUST be set to zero and ignored on receipt.

Inclusion Count (1 byte): The count of record types to be included in the sync. This field
MUST be 0x00 if Exclusion Count is nonzero.

Exclusion Count (1 byte): The count of record types that are to be excluded from the sync.
This field MUST be set to 0x00 if Inclusion Count is nonzero.

Record Types Offset (2 bytes): The offset, in bytes, from the beginning of the message to the
Record Type array.

36 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Hash Count (4 bytes): The number of HASH_INFO_ENTRY (section 2.2.1.7) structures
included in the message.

Hash Entry Offset (2 bytes): The offset, in bytes, from the beginning of the message to the
Hash Entry Array.

Reserved2 (2 bytes): MUST be set to zero and MUST be ignored on receipt.

Record Types (variable): The array of record types that are included or excluded, expressed
as an array of GUIDs in big-endian byte order. This array is interpreted the same as in
SOLICIT_NEW (section 2.2.2.6).

Hash Entry Array (variable): The array of HASH_INFO_ENTRY structures that describe the
Records in the Database.

2.2.2.9 ADVERTISE

The ADVERTISE message is sent in response to a SOLICIT_HASH (section 2.2.2.8) message. This

message describes the boundaries and record lists for each record range in the SOLICIT_HASH
message for which the locally computed hashes do not match the remotely calculated hashes.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Message Size

Version Message Type Reserved1

Hash Entry Boundary Count

Record Abstract Count

Hash Entry Boundary Offset Reserved2

Record Abstracts Offset

Hash Entry Boundary array (variable)

...

Record Abstracts array (variable)

...

Message Size (4 bytes): The total number of bytes in the message.

Version (1 byte): The Peer-to-Peer Graphing Protocol version number. This MUST be set to

0x10 to signify version 1.0.

Message Type (1 byte): MUST be set to 0x09.

Reserved1 (2 bytes): MUST be set to zero and ignored on receipt.

37 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Hash Entry Boundary Count (4 bytes): The count of HASH_ENTRY_BOUNDARY (section
2.2.1.8) structures in this message.

Record Abstract Count (4 bytes): The count of RECORD_ABSTRACT (section 2.2.1.6)
structures in this message.

Hash Entry Boundary Offset (2 bytes): The offset, in bytes, from the beginning of the
message to the HASH_ENTRY_BOUNDARY array.

Reserved2 (2 bytes): MUST be set to zero and ignored on receipt.

Record Abstracts Offset (4 bytes): The offset, in bytes, from the beginning of the message to
the RECORD_ABSTRACT array.

Hash Entry Boundary array (variable): The array of HASH_ENTRY_BOUNDARY structures.

Record Abstracts array (variable): The array of RECORD_ABSTRACT structures.

2.2.2.10 REQUEST

The REQUEST message is sent in response to an ADVERTISE (section 2.2.2.9) message. The
receiver responds by sending FLOOD (section 2.2.2.11) messages for each record that is requested.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Message Size

Version Message Type Reserved

Record Abstract Count

Record Abstracts Offset

Record Abstracts Array (variable)

...

Message Size (4 bytes): The total number of bytes in the message.

Version (1 byte): The Peer-to-Peer Graphing Protocol version number. This MUST be set to

0x10 to signify version 1.0.

Message Type (1 byte): MUST be set to 0x0A.

Reserved (2 bytes): MUST be set to zero and ignored on receipt.

Record Abstract Count (4 bytes): The count of RECORD_ABSTRACT (section 2.2.1.6)
structures in this message.

Record Abstracts Offset (4 bytes): The offset of the Record Abstracts Array.

Record Abstracts Array (variable): The array of RECORD_ABSTRACT structures.

38 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.2.11 FLOOD

The FLOOD message is used to send a record from one node to another.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Message

Version Message Type Reserved1

Record Offset Reserved2

Record Data (variable)

...

Message (4 bytes): The total number of bytes in the message.

Version (1 byte): The Peer-to-Peer Graphing Protocol version number. This MUST be set to
0x10 to signify version 1.0.

Message Type (1 byte): MUST be set to 0x0B.

Reserved1 (2 bytes): MUST be set to zero and ignored on receipt.

Record Offset (2 bytes): The offset, in bytes, from the beginning of the message to the
Record Data.

Reserved2 (2 bytes): MUST be set to zero and MUST be ignored on receipt.

Record Data (variable): The record data, in PEER_RECORD (section 2.2.1.9) format.

2.2.2.12 SYNC_END

The SYNC_END message is sent to mark the end of a synchronization phase.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Message Size

Version Message Type Reserved1

Z

1

Z

2

Z

3

Z

4

Z

5

Z

6

Z

7

F Reserved2 Reserved3

Message Size (4 bytes): The total number of bytes in the message.

Version (1 byte): The Peer-to-Peer Graphing Protocol version number. This MUST be set to
0x10 to signify version 1.0.

39 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Message Type (1 byte): MUST be set to 0x0C.

Reserved1 (2 bytes): MUST be set to zero and ignored on receipt.

Z1 (1 bit): MUST be set to 0 and MUST be ignored on receipt.

Z2 (1 bit): MUST be set to 0 and MUST be ignored on receipt.

Z3 (1 bit): MUST be set to 0 and MUST be ignored on receipt.

Z4 (1 bit): MUST be set to 0 and MUST be ignored on receipt.

Z5 (1 bit): MUST be set to 0 and MUST be ignored on receipt.

Z6 (1 bit): MUST be set to 0 and MUST be ignored on receipt.

Z7 (1 bit): MUST be set to 0 and MUST be ignored on receipt.

F (1 bit): (Final): This bit MUST always be set. This bit indicates that this is the final SYNC_END

message and that the synchronization phase is complete.

Reserved2 (1 byte): MUST be set to zero and MUST be ignored on receipt.

Reserved3 (2 bytes): MUST be set to zero and MUST be ignored on receipt.

2.2.2.13 PT2PT

The PT2PT message is used by the application to send data from one Node to another. The PT2PT
message can be sent on either a Direct or a Neighbor connection.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Message Size

Version Message Type Reserved1

Data Offset Reserved2

Data Type

...

...

...

Payload Data (variable)

...

Message Size (4 bytes): The total number of bytes in the message.

40 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Version (1 byte): The Peer-to-Peer Graphing Protocol version number. This MUST be set to
0x10 to signify version 1.0.

Message Type (1 byte): MUST be set to 0x0D.

Reserved1 (2 bytes): MUST be set to zero and ignored on receipt.

Data Offset (2 bytes): The offset, in bytes, from the beginning of the message to the Payload
Data.

Reserved2 (2 bytes): MUST be set to zero and ignored on receipt.

Data Type (16 bytes): The application-supplied data type, expressed as a GUID. GUID
{0ccbb0d2-be41-4bd6-914b058ec5dcce64} is reserved by the protocol and MUST NOT be
used by the application. For more details, see section 2.2.4.1.

Payload Data (variable): The application-supplied data.

2.2.2.14 ACK

The ACK message is sent to acknowledge one or more FLOOD (section 2.2.2.11) messages, and to
report whether each Record sent in the FLOOD message or messages was useful.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Message Size

Version Message Type Reserved

ACKs Count ACKs Offset

Record ACK (variable)

...

Message Size (4 bytes): The total number of bytes in the message.

Version (1 byte): The Peer-to-Peer Graphing Protocol version number. This MUST be set to
0x10 to signify version 1.0.

Message Type (1 byte): MUST be set to 0x0E.

Reserved (2 bytes): MUST be set to zero and ignored on receipt.

ACKs Count (2 bytes): The number of Record ACKs in this message.

ACKs Offset (2 bytes): The offset, in bytes, from the beginning of the message to the start of
the Record ACK Array.

Record ACK (variable): An array of Record ID/Flag pairs, with each pair in the array formatted
as follows.

%5bMS-DTYP%5d.pdf

41 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Record ID

...

...

...

Reserved U

Record ID (16 bytes): The Record ID, expressed as a GUID.

Reserved (31 bits): MUST be set to zero and MUST be ignored on receipt.

U (1 bit): When set, indicates that the acknowledged FLOOD for this Record ID was
useful. When not set, the FLOOD was not useful.

2.2.3 Internal Record types

This section defines a set of internal record types used by the Peer-to-Peer Graphing Protocol, and

defines the structure of the Payload Data field of the PEER_RECORD (section 2.2.1.9) structure for
those types.

Graph Info Record (section 2.2.3.1)

Signature Record (section 2.2.3.2)

Contact Record (section 2.2.3.3)

Presence Record (section 2.2.3.4)

2.2.3.1 Graph Info Record

The Graph Info Record is used to publish the graph configuration to every member of the graph. It
is represented as a PEER_RECORD (section 2.2.1.9) with the following fields set:

Record Type MUST be set to the GUID value {00000100-0000-0000-0000-000000000000}

Record Id: MUST be set to the GUID value {6c796768-7732-406b-bc6e-5e9c0d864580}

Payload Data MUST be set to the following data BLOB.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Size

Reserved D I

42 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Scope

Graph ID Length

Graph ID (variable)

...

Creator ID Length

Creator ID (variable)

...

Friendly Name Length

Friendly Name (variable)

...

Comment Length

Comment (variable)

...

Presence Lifetime

Max Presence Records

Max Record Size

Size (4 bytes): The total number of bytes in this structure.

Reserved (30 bits): MUST be set to zero and MUST be ignored on receipt.

D (1 bit): (Deferred Expiration): When set, indicates that record expiration occurs only when

the node is connected to at least one other node.

I (1 bit): (Ignored): The value of this bit MUST be set to zero and MUST be ignored.

Scope (4 bytes): Specifies the scope in which the graph operates.

Name Meaning

PEER_GRAPH_SCOPE_GLOBAL

0x00000001

Scope includes the Internet.

PEER_GRAPH_SCOPE_SITELOCAL Scope is restricted to a site, for example, a corporation

43 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Name Meaning

0x00000002 intranet.

PEER_GRAPH_SCOPE_LINKLOCAL

0x00000003

Scope is restricted to a local subnet.

Graph ID Length (4 bytes): The length, in characters, of the Graph ID string, including the
terminating null character. This field MUST be in the range 2 to 256.

Graph ID (variable): The graph ID as a null-terminated Unicode string. This field MUST NOT

be changed after the graph is created.

Creator ID Length (4 bytes): The length, in characters, of the Creator ID string, including
the terminating null character. This field MUST be in the range 2 to 256.

Creator ID (variable): The Peer ID of the Graph Creator as a null-terminated Unicode string.
This field MUST NOT be changed after the graph is created.

Friendly Name Length (4 bytes): The length, in characters, of the Friendly Name string,

including the terminating null character. This field MUST be in the range 0 to 256.

Friendly Name (variable): The friendly name of the Graph as a null-terminated Unicode
string. If the Friendly Name Length is 0x00000000, this field MUST NOT be present.

Comment Length (4 bytes): The length, in characters, of the Comment string, including the
terminating null character. This field MUST be in the range 0 to 512.

Comment (variable): The comment associated with the Graph as a null-terminated Unicode
string. If the Comment Length is 0x00000000, this field MUST NOT be present.

Presence Lifetime (4 bytes): Specifies the lifetime, in seconds, of a presence record. The
value MUST be either 0x00000000 or greater than or equal to 300. If the value is
0x00000000, the lifetime of a presence record MUST be the default value of 300 seconds (5

minutes).

Max Presence Records (4 bytes): Specifies the maximum number of presence records that
should be published in the graph at one time. The value is interpreted as follows.

Value Meaning

0xFFFFFFFF presence records MUST be automatically published for all users.

0 presence records MUST NOT be published unless requested by the Application.

0x00000001 —

0xFFFFFFFE

The maximum number of presence records that SHOULD be published at one

time. Each node MUST determine whether to publish or unpublish its

presence, as specified in section 3.1.7.17.

Max Record Size (4 bytes): Specifies the value that indicates the size, in bytes, of the largest

record that can be added to a graph. This value MUST be either 0x00000000 or between
1,024 (indicating a size of 1 KB) and 62,914,560 (indicating a size of 60 MB). A value of
0x00000000 is interpreted as the maximum size, 60 MB. This value constrains only the
combined size of the record payload and Attributes.

44 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.3.2 Signature Record

The Signature Record is used to publish the signature of the graph. It is represented as a
PEER_RECORD (section 2.2.1.9) with the following fields set:

Record Type: MUST be set to the GUID value {00000200-0000-0000-0000-000000000000}

Record ID: MUST be set to the GUID value {4c515c94-4252-494f-8440-34cc79769c81}

Payload Data MUST have the following format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Signature

...

Signature (8 bytes): The signature of the graph expressed as the node ID of the publishing
node.

2.2.3.3 Contact Record

The Contact Record is used to publish the address information for a contact node, along with the
signature of the graph at the time the Record was published.

It is represented as a PEER_RECORD (section 2.2.1.9) with the following fields set:

Record Type MUST be set to the GUID value {00000300-0000-0000-0000-000000000000}

Payload Data MUST have the following data format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Signature

...

Node ID

...

Number of Addresses

Addresses (variable)

...

Signature (8 bytes): The signature of the graph at the time the record was published.

Node ID (8 bytes): The node ID of the publisher.

45 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Number of Addresses (4 bytes): The number of Addresses.

Addresses (variable): The array of addresses for the gen node. The address is expressed in
PEER_ADDRESS (section 2.2.1.5) format.

2.2.3.4 Presence Record

The Presence Record is used to publish information about a node.

It is represented as a PEER_RECORD (section 2.2.1.9) with the following fields set:

Record Type MUST be set to the GUID value {00000400-0000-0000-0000-000000000000}

Payload Data MUST have the following data format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Node ID

...

Attributes Length

Attributes (variable)

...

Number of Addresses

Addresses (variable)

...

Node ID (8 bytes): The node ID of the publisher.

Attributes Length (4 bytes): The length, in characters, of the Attributes string, including the

terminating null character.

Attributes (variable): The node attributes as a null-terminated Unicode string. If the
Attributes Length value is 0x00000000, this field MUST NOT be present.

Number of Addresses (4 bytes): The number of Addresses.

Addresses (variable): The array of addresses for the given node. Each address is expressed in
PEER_ADDRESS (section 2.2.1.5) format.

2.2.3.5 Record Attributes

Each record may contain a set of attributes, which are name/value pairs encoded in XML. These
attributes allow record searching at the application level.

The XML schema for the attributes is as follows.

46 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="attributes">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" name="attribute">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="type" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="string"/>

 <xs:enumeration value="int"/>

 <xs:enumeration value="date"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

attribute/name: The name of the name/value pair. This is a sequence of no more than 40

alphanumeric characters defined as the set of the numbers 0 to 9, the letters a to z and the letters A
to Z; no other characters are allowed.

The following list identifies the specific attribute names that are reserved by the Peer Infrastructure.
These attributes MUST NOT be present in any application-defined record:

peerlastmodifiedby

peercreatorid

peerlastmodificationtime

peerrecordid

peerrecordtype

peercreationtime

peerlastmodificationtime

The name of an attribute need not be unique inside a record. For example, there can be multiple

name/value pairs with the name "keyword" in the same record.

attribute/type: The type of the name/value pair. The only allowed values are the strings "int",
"string", and "date". If this value is "int", the attribute value MUST be all digits. If this is "string",
the value can be any string. If this is "date", the value MUST be a valid date string formatted as
specified in [ISO-8601].

http://go.microsoft.com/fwlink/?LinkId=89920

47 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

attribute: The body of the attribute tag contains the value of the name/value pair.

An example of the expected format of the attributes string is as follows.

<attributes>

 <attribute name="Owner" type="string">Scott</attribute>

 <attribute name="Birthday" type="date">1972-04-04</attribute>

 <attribute name="Priority" type="int">1</attribute>

</attributes>

2.2.4 Internal Messages

2.2.4.1 Ping

A Ping message is sent by the local Node over a Neighbor connection to test connectivity with the
remote Neighbor. The message MUST be a PT2PT (section 2.2.2.13) message with the following

values:

Message Size (4 byte unsigned integer value): The total number of bytes in the message.

Version (1 byte unsigned integer value): The Peer-to-Peer Graphing Protocol version number.
This MUST be set to 0x10 to signify version 1.0.

Message Type (1 byte unsigned integer value): MUST be set to 0x0D.

Reserved1 (2 byte unsigned integer value): MUST be set to zero and MUST be ignored on
receipt.

Data Offset (2 byte unsigned integer value): The offset, in bytes, from the beginning of the
message to the Payload Data.

Reserved2 (2 byte unsigned integer value): MUST be set to zero and MUST be ignored on

receipt.

Data Type (16 byte GUID): MUST be set to GUID {0ccbb0d2-be41-4bd6-914b058ec5dcce64}

Payload Data (variable-length binary value): MUST NOT be present.

48 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3 Protocol Details

The Peer-to-Peer Graphing Protocol only has one protocol role, often referred as "peer", following
the peer-to-peer networking convention. This single role handles both the client- and server-style
functionality defined in the protocol. In this document, the role is referred to as "client"; there is no
"server" role defined in this document.

3.1 Client Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an instance of an
implementation maintains to participate in this protocol. The described organization is provided to
facilitate the explanation of how the protocol behaves. This document does not mandate that
implementations adhere to this model as long as their external behavior is consistent with that
described in this document.

Note that multiple instances of the implementation may reside on a single host, corresponding to

multiple graphs. Each instance, however, is associated with a single graph.

Presence Lifetime: (unsigned integer value) : The lifetime, in seconds, for which presence records
MUST be published. This value is specified by the application when creating the graph and published
in the graph info record. Each Node in the graph will read this value from the graph info record.

Max Presence Records: An integer value specifying the maximum number of presence records to
be published in the graph. This value is specified by the application when creating the graph and
received by other nodes in the graph info record.

Force Publish Presence: A flag indicating whether the application has requested the local node to
publish its presence record. For more details, see section 3.1.4.6.

Max Record Size: An integer value specifying the maximum size of a record. This value is specified
by the application when creating the graph, and received by other nodes in the graph info record.

Peer ID: A string identifying the local node's user. This string is used inside the protocol to identify
a user in the graph.

Node ID: (64 bit unsigned integer): An instance of a node.

Graph ID: A string identifying a graph.

Friendly Name: A null-terminated Unicode string containing a friendly name for the graph.

Comment: A null-terminated Unicode string containing a comment used to describe the graph.

Database: A set of all the records that have been published in the graph that have not yet expired.

GraphSecurityProvider: A pointer to a configured graph security provider to be used to provide
security for this Graph.

Max Frame Size: The largest message size supported by the graph security provider, in bytes. This
value cannot exceed 32,768 bytes.

Defer Expiration: A Boolean flag indicating whether the graph should expire records when not
connected.

49 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Scope: An integer value indicating the IPv6 scope of the graph as defined in [RFC2460]. MUST be
one of the following values:

Value Meaning

PEER_GRAPH_SCOPE_GLOBAL

(0x01)

The IP addresses for the peer graph's network scope can be from any

unblocked address range.

PEER_GRAPH_SCOPE_SITELOCAL

(0x02)

The IP addresses for the peer graph's network scope MUST be within

the IP range defined for the site.

PEER_GRAPH_SCOPE_LINKLOCAL

(0x03)

The IP addresses for the peer graph's network scope MUST be within

the IP range defined for the local area network.

Deferred Record List: A list of records that have been received, but that the graph security
provider could not validate immediately. At some point in the future, the graph security provider will
ask for these records to be re-validated.

Signature: The signature of the graph, as viewed by the local node.

Contact List: A list of the current graph contacts, including, for each, its IP address, port, view of
the graph signature, Peer ID, and Contact Record Id.

ContactMin: The minimum number of contacts permitted to be present in the graph at any given
time. This value is calculated as described in section 3.1.7.12.

ContactMax: The maximum number of contacts permitted to be present in the graph at any given
time. This value is calculated as described in section 3.1.7.12.

Presence List: A list of all the nodes in the graph that are publishing presence records, including,
for each, its node ID, IP addresses, ports, Peer ID, and Presence Record Id.

Peer Time Delta: The delta that, when applied to the UTC time as seen by the local node, will

result in Peer Time. For more details, see section 3.1.5.2.2.

Peer Time: The time value calculated by applying the Peer Time Delta to the UTC time of the local

node.

TConnect: A FILETIME value storing the sender's Peer Time when a CONNECT message is sent.

Referral Entry: A data structure containing a node ID, an IP address, a port, an integer sequence
number indicating order of receipt, and a flag indicating whether a Connection attempt has been

made to the node.

Referral List: A list of Referral Entries for referrals that have been received in WELCOME and
REFUSE messages. The maximum size for this list MUST be 100 entries. This is used to store
referrals received from neighbor nodes.

Neighbor List: A list of the local node's neighbors, including, for each, the remote node's Peer ID,
Node ID, IP addresses, port, and current connection utility, and an integer sequence number
indicating order of inclusion in the list.

Minimum Neighbors: The minimum number of neighbors that a node is configured to require. The
default value is 2.

http://go.microsoft.com/fwlink/?LinkId=90357
%5bMS-GLOS%5d.pdf

50 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Ideal Neighbors: The ideal number of neighbors that a node is configured to converge on. The
default value is 3.

Maximum Neighbors: The maximum number of neighbors that a node will allow. The default value
is 7.

IsListening: A Boolean value indicating whether the node is currently listening for incoming
connections.

Listening addresses: The list of addresses the node is listening on. This list is kept updated by the
local node.

fNeverConnected: A Boolean flag that indicates whether the node's database has been previously
synchronized.

Record Notify List: A list of record types for which the application has requested a notification.

fAcceptDirectConnection: A Boolean flag that indicates whether the node MUST accept incoming

direct connections. For more details, see section 3.1.5.2.1.

SYNC_TYPE: A variable indicating the current synchronization operation (if any) for each
connection. Values are in the following set: {NONE_SYNC_ALL, SYNC_HASH, SYNC_TIME}.

Sync Record Types: An array containing a list of record types to be synchronized during a
synchronize operation on a particular connection. Each element of the array contains a GUID storing

the value of the Record Type and a Boolean flag indicating whether the Record Type has been
synchronized.

Current Sync Record Type: For each connection, a pointer to the element of Sync Record Types
corresponding to the record type (if any) currently being synchronized on that connection.

All Record Types Synched: For each connection, a flag indicating whether all record types have
been synchronized during a synchronization operation.

Prioritized Record Types: An application-provided array containing a list of record types that will

have high priority during synchronization operations.

Records To Send: A list of records to be flooded to the responder node during a SYNC_HASH
operation.

Direct Connection: A flag associated with a Connection to indicate the connection type (direct
connection or neighbor connection).

Connection: An object associated with a socket connection, either outgoing or incoming.

The following states are defined to keep track of the state of each connection; a connection MUST

always be in exactly one of the following states:

Incoming Connections (see section 3.1.7.26)

IN_CONN_STATE_ALLOC: A connection object to handle the incoming connection has been

allocated.

IN_CONN_STATE_ACCEPTED: The socket connection has succeeded.

IN_CONN_STATE_GOT_AUTHINFO: An AUTH_INFO message has been received on the

connection.

51 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

IN_CONN_STATE_AUTHENTICATED: The connection has been successfully authenticated.

IN_CONN_STATE_DISCONNECTED: The socket associated with this connection has been

disconnected.

Outgoing Connections (see section 3.1.7.24)

OUT_CONN_STATE_ALLOC: A connection object to handle the outgoing connection has been

allocated.

OUT_CONN_STATE_SOCKET: The outgoing socket has been successfully set up.

OUT_CONN_STATE_SOCK_CONNECTED: The outgoing socket is connected.

OUT_CONN_STATE_SENT_AUTHINFO: An AUTH_INFO message has been sent on the

connection.

OUT_CONN_STATE_AUTHENTICATED: The connection is authenticated.

OUT_CONN_STATE_DISCONNECTED: The socket associated with this connection has been

disconnected.

Link: An object representing a connection to a neighbor.

The following set of states is used to keep track of the state of a link: a link MUST always be in
exactly one of the followed states (see sections 3.1.7.24 and 3.1.7.26).

LINK_STATE_START: The link has been created, but no network connection has been made.

LINK_STATE_AUTHENTICATED: The network connection has been established.

LINK_STATE_CONNECT_WAIT: A CONNECT message has been sent, and the link is waiting for a

response.

LINK_STATE_CONNECTED: The neighbor relationship has been established.

LINK_STATE_DISCONNECTING: The link is disconnecting.

LINK_STATE_DISCONNECTED: The link is no longer connected.

LINK_STATE_CONNECT_FAILED: The connection supporting this link failed.

Note that the above conceptual data can be implemented using a variety of techniques. An
implementation is at liberty to implement such data in any way it pleases.

3.1.2 Timers

Authentication Timer: The timer that is used to terminate a connection that has not authenticated
quickly enough. The timer is based on the Node's local time and MUST be initialized for each

connection when authentication begins and MUST be set to a value between 20 seconds and 300
seconds, depending on the number of connections that the node currently has. The exact value in

seconds to which the timer is set MUST be:

52 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Where cConns is the current number of connections that are or have passed state
IN_CONN_STATE_ALLOC or OUT_CONN_STATE_ALLOC. For more details, see section 3.1.6.1.

Connect Timer: The timer that is used to terminate a connection that has not responded to a
CONNECT message in a timely manner. This timer is based on the node's local time and MUST be

set to 60 seconds. For more details, see section 3.1.6.2.

Contact Timer: The timer that is used to wait after detecting imbalance in the number of contacts
before the local node will promote or demote itself from being a contact. This timer is based on the
node's local time and MUST be initialized after detecting the imbalance, and MUST be set to an

integer value uniformly distributed between 10 seconds and 180 seconds. For more details, see
section 3.1.6.3.

Signature Timer: The timer that is used to wait after detecting that a signature is either

unpublished or incorrect. This time is based on the node's local time. For more details, see section
3.1.6.4.

Partition Detection Timer: The timer that is used to wait after detecting that a contact is out of
sync with the signature. This timer is based on the node's local time and MUST be initialized after
detecting the out-of-sync contact to a random integer value uniformly distributed between 5
seconds and 30 seconds. For more details, see section 3.1.7.13.

Graph Maintenance Timer: The timer that causes periodic graph maintenance to occur. The value
of this timer is based on the node's local time and MUST be 300 seconds when the local node has
neighbors, and 30 seconds otherwise. For more details, see section 3.1.7.16.

Presence Timer: The timer that is used to wait after detecting that the number of presence records
is outside the desired range before publishing or unpublishing the local node's Presence. This timer
is based on the node's local time and MUST be initialized after detecting the imbalance, and MUST
be set to be an integer value uniformly distributed between 30 and 180 seconds. For more details,

see section 3.1.7.17.

Record Expiration Timer: The timer that is used to scan the graph database for expired records to
be deleted. This timer is based on the node's local time. For more details, see section 3.1.7.18.

Record Autorefresh Timer: The timer that is used to scan the graph database to automatically
update the expiration time on specially flagged internal records. This timer is based on the node's
local time. For more details, see section 3.1.7.22.

3.1.3 Initialization

None.

53 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Creating a New Graph

Creating a new graph is an application-initiated operation. The application MUST supply the
following information:

A graph ID to uniquely identify the graph; see Graph ID in section 3.1.1.

The Peer ID of the peer creating the graph; see Peer ID in section 3.1.1.

The maximum Record size that can be published in the graph. See Max Record Size in section

3.1.1.

The maximum number of presence records to be published in the graph. See Max Presence

Records in section 3.1.1.

The lifetime of a presence record. See Presence Lifetime in section 3.1.1.

A flag indicating whether the graph should expire records when offline.

The IPv6 scope for the graph as defined in [RFC2460].

The application MAY also provide the following information:

An optional null-terminated Unicode string not longer than 256 characters containing the Friendly

Name of the graph.

An optional null-terminated Unicode string not longer than 512 characters containing a Comment

to be used to describe of the graph.

An optional graph security provider.

When creating a new graph, the local node MUST do the following:

Store the above application-supplied values as Graph ID, Peer ID, Max Record Size, Max

Presence Records, Presence Lifetime, Defer Expiration, Friendly Name, Comment, and
GraphSecurityProvider, respectively. (The last three MUST be given null values if the application

provided no value for them.)

Create a local node ID as a random 64-bit number.

Create the (empty) database.

Set the Peer Time Delta to 0.

Publish a Graph Info Record containing the application-specified Graph configuration parameters.

For more details, see section 3.1.7.7.

Set the NeverConnected flag to TRUE.

The Defer Expiration flag MUST be set to true if the application requested to not expire records

while offline; otherwise it MUST be set to false.

The Record Autorefresh time MUST be set to expire in 4 seconds.

If Defer Expiration flag is set to false, the Record Expiration Timer MUST be set to expire in 0

seconds.

http://go.microsoft.com/fwlink/?LinkId=90357

54 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

A graph is uniquely identified by the Graph ID. A graph MUST NOT have more than one creator node
(that is, it MUST have only one Graph Info Record). A security provider layer such as [MS-PPSEC]

SHOULD be used to prevent graph merger by requiring authentication.

3.1.4.2 Opening an Existing Graph

When opening an existing graph, the application MUST supply the following information:

A graph ID to uniquely identify the graph to be opened. See Graph ID in section 3.1.1.

The Peer ID of the peer opening the graph. See Peer ID in section 3.1.1.

If the graph has been created with a graph security provider, the same graph security provider

MUST be provided.

The application MAY also provide the following information:

An optional array of prioritized record types that will have precedence during synchronization.

The local node MUST do the following:

Assign the above values to Graph ID, Peer ID, GraphSecurityProvider, and Prioritized Record

Types, respectively. (The latter MUST be assigned a null value if the application did not provide

one.)

Create a local Node ID as a random 64-bit number.

Create the (empty) database. If the local node has a persisted database (see section 3.1.4.12),

this persisted database SHOULD be loaded into the empty database. Each record in the persisted
database MUST first be validated before inclusion in the database. For more details, see section
3.1.7.27. When loading a persisted database, the Presence, Signature, and Contact Records

MUST NOT be included.

If a persistent database is loaded, the NeverConnected flag MUST be initialized to FALSE.

If a persistent database is not loaded, the NeverConnected flag MUST be initialized to TRUE.

If the local node has a persisted database (see section 3.1.4.12) accompanied by a persisted

Peer Time Delta, the local node MUST use the persisted Peer Time Delta. Otherwise, it MUST set

the Peer Time Delta to 0.

The Autorefresh Timer MUST be set to expire in 4 seconds.

If Defer Expiration is false, the Record Expiration Timer MUST be set to expire in 0 seconds.

3.1.4.3 Application Adds a Record

When the application requests that a record be added to the database, the following PEER_RECORD

(section 2.2.1.9) field values MUST be provided to the Peer-to-Peer Graphing Protocol:

Record Type

Expiration Time

The Peer-to-Peer Graphing Protocol MUST then construct a new record using those field values. In
addition, values for the following fields MAY be provided by the application; if they are not provided,

those fields MUST NOT be present in the PEER_RECORD:

%5bMS-PPSEC%5d.pdf

55 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Payload Data

Attributes

Record Version

Values for the following fields MAY be provided by the application; if not, the specified default values
MUST be used:

Creator Id. The default value is the Peer ID.

Last Modified By ID. The default value is the Peer ID.

Any other field provided by the application MUST be ignored by the protocol.

The record MUST then be validated with the following steps:

The Record Type MUST NOT be in the reserved range. For more details, see section 2.2.1.9.

The Autorefresh flag MUST NOT be set.

The record size MUST be less than the Max Record Size. For more details, see section 3.1.1.

If Attributes are provided, they MUST conform to the attribute syntax (see section 2.2.3.5).

Expiration Time MUST be later than the current Peer Time.

If the above record validation fails for any reason, then the record MUST NOT be processed further
and an error MUST be returned to the application.

The fields of the records MUST be initialized as described in section 2.2.1.9.

If a Security Provider is configured it MUST be called to secure the record. For more details, see
section 3.1.7.28. The record MUST then be published. For more details, see section 3.1.7.3.

3.1.4.4 Application Updates a Record

When the application requests that a record be updated, it MUST provide the following information:

Record ID: the record ID for an existing record to be modified.

The Peer-to-Peer Graphing Protocol MUST construct a new record using that field value. In addition,
the application MAY provide values to replace the existing values in any or all of the following record

fields. Otherwise, the existing field values MUST be preserved.

Attributes

Record Data

Expiration Time

New values for the following fields MAY be provided by the application. If not provided, default

values MUST be used as specified below:

Last Modified By ID. The default value is the Peer ID.

Any other field provided by the application MUST be ignored by the protocol.

Record construction MUST then be completed as follows:

56 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The value of the Record Version of the existing record MUST be incremented by 1.

If the application has provided new attributes, the value of the Attribute field of the existing

record MUST be replaced with the data provided.

If the application has provided Record Data, the value of the Record Data field of the existing

record MUST be replaced with the data provided.

If the application has provided an Expiration Time, the value of the Expiration Time field of

the existing record MUST be replaced with the data provided.

The value of the field Modified By of the existing record MUST be replaced with the data

provided.

The record MUST then be validated according to the following steps:

The provided Record ID MUST match an existing record in the database.

The existing record MUST NOT be marked as Deleted.

The size of the record MUST be less than the Max Record Size. For more details, see section

3.1.1.

The updated Expiration Time MUST NOT be before the original Expiration Time.

The Record Type MUST NOT be in the reserved range (see section 2.2.1.9).

The Autorefresh Flag MUST NOT be set.

The Attributes MUST conform to the syntax specified in section2.2.3.5.

If the record validation fails for any reason, then the record MUST NOT be processed further and an
error MUST be returned to the application.

If a Security Provider is specified for the Group, it MUST be called to secure the record. For more

details, see section 3.1.7.28.

The record MUST then be written in the database, as specified in section 3.1.7.8.

3.1.4.5 Application Deletes a Record

When the application requests that a record be deleted, the application MUST provide the following
information:

The Record ID for an existing record.

The record MUST first be validated as follows:

The provided Record ID MUST correspond to an existing Record in the database.

The existing record MUST NOT be marked as Deleted.

The existing Record Type MUST NOT be in the reserved range. For more details, see section

2.2.1.9.

If this record validation fails for any reason, then the record MUST NOT be processed further and an
error MUST be returned to the application.

57 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the record passes the validation, it MUST then be deleted. For more details, see section 3.1.7.9.

3.1.4.6 Application Publishes Presence

When the application requests that the node's presence be published, the local presence record

MUST be published, as specified in section 3.1.7.4. The node's Force Publish Presence flag MUST
then be set and presence maintenance MUST then be performed as specified in section 3.1.7.17.

3.1.4.7 Application Allows Direct Connections

When the application requests that the node accept incoming direct connections, the
fAcceptDirectConnection flag MUST be set.

3.1.4.8 Application Initiates Listening

When the application requests that the local node begin listening, it MUST specify the following
information:

An unsigned integer value specifying the IPv6 Scope to listen on. See [RFC2460].

An unsigned integer value specifying the IPv6 Scope identifier. See [RFC2460].

An unsigned integer value specifying a TCP port to listen on. See [RFC793].

The local node MUST initiate the following actions, starting with the first, and continuing
asynchronously:

Begin listening for incoming connections on the addresses corresponding to the specified scope

and scope ID.

Record the list of addresses in Listening Addresses.

Bind to the port specified by the application.

Perform Graph Maintenance, as specified in section 3.1.7.16.

Perform Presence Maintenance, as specified in section 3.1.7.17.

Perform Signature Calculation, as specified in section 3.1.7.11.

Initialize the Graph Maintenance Timer as specified in section 3.1.2.

If the local node has one or more neighbor connections in the CONNECTED state, it MUST send a
CONNECT message to each with the following information:

The Update bit MUST be set. The Neighbor List bit and Direct bit MUST be clear.

The Source Node ID MUST be the node ID of the local node.

The Address Array MUST contain the list of addresses that the node is listening on.

3.1.4.9 Application Requests to Connect to the Graph

When the application requests that the node initiate a connection, it MUST specify the following
information:

The IPv6 address and TCP port of an existing node to connect to.

http://go.microsoft.com/fwlink/?LinkId=90357
http://go.microsoft.com/fwlink/?LinkId=90357
http://go.microsoft.com/fwlink/?LinkId=90493

58 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

A flag indicating whether the connection request is for a neighbor connection or a direct

connection.

If the IPv6 address and TCP port supplied by the application match with one of the node's Listening

Addresses, an error MUST be returned to the application and the request MUST NOT be processed
further.

If the application is requesting a neighbor connection and the local node's Neighbor List is NOT
empty, an error MUST be returned to the application and the request MUST NOT be processed
further.

Otherwise a new connection MUST be attempted and the Direct Connect flag MUST be set according
to the application request. For more details, see section 3.1.7.24.

3.1.4.10 Application Requests that Deferred Records be Revalidated

When the application requests that deferred records be revalidated, each record in the Deferred
Record List is removed from the list and re-processed as if it had just been received in a FLOOD

message. For more details, see section 3.1.5.2.10.

3.1.4.11 Application Requests To Be Notified About a Specific Record Type

When an application requests to be notified when a change in the local database occurs for a
specified list of record types, the local node MUST store the list of Record types in the Record Notify
List.

3.1.4.12 Application Closes the Graph

When the application requests that the local node close, the following actions MUST be performed:

If the local node has published a Contact record, it MUST delete it, as specified in section 3.1.7.9.

If the local node has published a Presence record, it MUST delete it, as specified in section

3.1.7.9.

If the local node has published the Signature record, it MUST delete it, as specified in section

3.1.7.9.

The local node MUST send a DISCONNECT message and terminate each connection currently in

state LINK_STATE_CONNECTED.

The local node MUST terminate any connection in any state.

If the application requests to persist the database, the graph database MUST be persisted on disk

along with the node's current Peer Time Delta.

3.1.5 Processing Events and Sequencing Rules

3.1.5.1 Pre-Authentication Messages

3.1.5.1.1 Receive AUTH_INFO

The AUTH_INFO message (section 2.2.2.1) MUST be the first message sent on a connection, and
MUST be sent only by the connection's initiator.

59 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the AUTH_INFO message is received in any state other than IN_CONN_STATE_ACCEPTED or from
the connection's responder, the connection MUST be terminated.

The following steps MUST be taken to validate the AUTH_INFO message:

The Message Size MUST be verified to be at least 0x10.

The Connection Type MUST be verified to be either 0x01 or 0x02.

The offsets MUST be verified to satisfy the following conditions:

Graph ID Offset is less than Source Peer ID Offset.

Source Peer ID Offset is less than Destination Peer ID Offset.

Destination Peer ID Offset is no greater than Message Size.

The content of the Source Peer ID string MUST NOT be empty.

The content of the Graph ID Data field MUST NOT be empty,

If the value of the Destination Peer ID Offset field is less than the Message Size, the content

of the Destination Peer ID field MUST NOT be empty.

The content of the Graph ID field MUST match the Graph ID of the local Node.

If the content of the Destination Peer ID field is not empty it MUST match the Peer ID of the

local Node.

If any of the above conditions are not verified or a local Node instance cannot be located, the
connection MUST be terminated.

Otherwise, the message MUST be forwarded to the local Node. If a Graph Security Provider is not
configured on the local Node instance, the Authentication Timer MUST be canceled and the
Connection state MUST be set to IN_CONN_STATE_AUTHENTICATED.

If a Graph Security Provider is configured on the local Node instance:

Connection state MUST be set to IN_CONN_STATE_GOT_AUTHINFO.

The Graph Security Provider MUST be queried for the message to send in response.

If the Graph Security Provider returns an error, the connection MUST be terminated.

Otherwise, if the Graph Security Provider supplies a message to send in response, the
message MUST be sent.

If the Graph Security Provider indicates that the security negotiation is completed, then the

Connection state MUST be set to IN_CONN_STATE_AUTHENTICATED and the Authentication
Timer MUST be canceled.

If the Graph Security Provider indicates that the security negotiation is not completed, the

state of the Connection MUST NOT be changed and any message received MUST be forwarded
to the Graph Security Provider.

3.1.5.1.2 Receive Other Messages During Authentication

If the local node is the connection initiator for a connection in the

OUT_CONN_STATE_SENT_AUTHINFO state or a connection responder for a connection in the

60 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

IN_CONN_STATE_GOT_AUTHINFO state, and a message is received before the connection reaches
the IN_CON_STATE_AUTHENTICATED or OUT_CON_STATE_AUTHENTICATED state, the message

MUST be passed to the configured graph security provider. If the graph security provider returns an
error, the connection MUST be terminated. If the graph security provider returns a message to send,

the message MUST be sent to the remote node.

If the graph security provider returns a code that states that authentication is complete, the
connection MUST move to the IN_CONN_STATE_AUTHENTICATED state (in the case of the
responder) or OUT_CONN_STATE_AUTHENTICATED state (in the case of the initiator), and the
Authentication Timer MUST be canceled.

If any error occurs during connection establishment, the connection MUST be aborted and any
further messages received on the connection MUST NOT be processed.

For a connection initiator, when the connection moves to the AUTHENTICATED state, a CONNECT
message MUST be sent:

The Direct bit MUST be set if the Direct Connection flag is set.

The Update bit MUST NOT be set.

The Neighbor List bit SHOULD be set if the Direct Connection flag is set.

The Source Node ID MUST be the node ID of the local node.

The Address Array MUST be empty if the local node is not currently listening (as indicated by

the IsListening flag). Otherwise, the Address Array MUST contain the listening addresses listed in
Listening Addresses.

The Friendly Name field MAY contain a string, though this field has no impact on the protocol.

A Connect Timer MUST be set for the connection as specified in section 3.1.6.2.

TConnect MUST be set to the local node's Peer Time when the CONNECT message is sent.

3.1.5.2 Post-Authentication Messages

If a graph security provider is configured on the local node, every message that is received on a
connection in state IN_CON_AUTHENTICATED or OUT_CON_AUTHENTICATED MUST be forwarded to

the graph security provider to be decrypted before it can be processed by the node as a received
Message. If the graph security provider returns an error, the message MUST be discarded.

Each decrypted message (or unencrypted received message, if no graph security provider is
Configured) MUST begin with the same message header (see PEER_MESSAGE (section 2.2.1.2)),
which contains the type of the message. If an unknown message type (outside the range 0x00
through 0x0E) is received, or if a known message is received, but cannot be parsed properly (with a

Message Size less than 0x00000008, or a version field value other than 0x10, or any other field
invalid), the connection MUST be terminated, and the invalid message otherwise ignored.

3.1.5.2.1 Receive CONNECT

This message is sent by the connection initiator after authentication completes. It is also sent when
the initiator begins listening, if the initiator was not listening at the time that it first sends the
CONNECT message.

If the message fails to conform to any of the following conditions, then the message MUST be
discarded unprocessed and the connection MUST be terminated.

61 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The Message Size MUST be at least 0x18.

Address Count * 20 + Address Offset MUST be at most Message Size.

Friendly Name Offset MUST be at least Address Count * 20 + Address Offset.

Friendly Name Offset MUST be at most Message Size.

If the CONNECT message's Update bit is set, and this message was received from a Link that is not
yet in the LINK_STATE_CONNECTED state, the Update bit MUST be ignored. Otherwise, the
addresses in the message MUST be used to update this connection's entry in the Neighbor List, and
then processing of the message MUST be halted.

If the CONNECT message's Direct bit is set, this message is intended to establish a direct

connection. If the application has not caused the Direct Connection flag to be set (see section
3.1.4.7), the node MUST send (see section 3.1.7.1) a REFUSE message containing the following
data:

Error Code MUST be set to the value REFUSE_CODE_DIRECT_CONNECTION_DISALLOWED.

Address Count MUST be set to 0.

Address Offset MUST be set to 0.

The Ipv6 Address Array field MUST NOT be present.

The node MUST then halt processing the message and terminate the connection.

Otherwise, the node MUST send (see section 3.1.7.1) a WELCOME message with the following data:

Node ID MUST be set to the value of the local node ID.

Peer Time MUST be set to the local peer time.

Address Count MUST be set to 0.

Address Offset MUST be set to 0.

Ipv6 Address Array MUST NOT be present.

The node MUST then set the connection state to LINK_STATE_CONNECTED.

If there is another existing neighbor connection for the node that sent the CONNECT message (that
is, if the node ID in the message is identical to the node ID of one of the entries in the Neighbor
List), the node MUST send (see section 3.1.7.1) a REFUSE message with the following information:

Error Code MUST be set to REFUSE_CODE_DUPLICATE_CONNECTION.

Address Count MUST be set to 0.

Address Offset MUST be set to 0.

IPv6 Address Array MUST NOT be present.

The node MUST then halt processing of the message and terminate the connection.

If the local node already has a count of Neighbors greater than or equal to Maximum neighbors, the
node MUST respond by sending (see section 3.1.7.1) a REFUSE message, and then halt processing

62 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

of the message and terminate the connection. The REFUSE message MUST contain the following
information:

Error Code MUST be set to REFUSE_CODE_BUSY.

Address Count MUST be set to the number of neighbor referrals returned (default is 10).

Address Offset MUST specify the starting point of the Ipv6 Address Array inside the message.

Ipv6 Address Array MUST contain a list of Address Count PEER_IN6_ADDRESS objects.

If the CONNECT message was sent on a Link that was already in the CONNECTED state, a REFUSE
message MUST be sent (see section 3.1.7.1) containing the following information:

Error Code MUST be set to REFUSE_CODE_ALREADY_CONNECTED.

Address Count MUST be set to 0.

Address Offset MUST be set to 0.

IPv6 Address Array MUST NOT be present.

The node MUST then halt processing of the message and terminate the connection.

If none of the above cases hold, the remote node information from the CONNECT message MUST be
stored in the Neighbor List and a WELCOME message MUST be sent (see section 3.1.7.1) with the
following information:

Node ID MUST be set to the local node ID.

Peer Time MUST be set to the local node's peer time.

Address Count MUST be set to the number of returned referrals (the default value is 10) if the

Neighbor List bit in the Connect message is set; otherwise it MUST be set to 0.

Address Offset MUST be set to the starting point of the Ipv6 Address Array if the Address

Count is greater than 0.

Ipv6 Address Array MUST contain a list of Address Count PEER_IN6_ADDRESS objects if

Address Count is greater than 0; it MUST NOT be present if Address Count is 0.

The connection state MUST then be set to LINK_STATE_AUTHENTICATED.

If the Defer Expiration flag is set to true, the Record Expiration Timer MUST be set to expire in 0
seconds.

3.1.5.2.2 Receive WELCOME

This message is sent by the connection responder in response to a CONNECT message. If the
message fails to conform to any of the following conditions, then the message MUST be discarded

unprocessed and the connection MUST be terminated.

The Message Size MUST be at least 0x20.

Address Count * 20 + Address Offset MUST be less than Message Size.

Peer ID Offset MUST be at least Address Count * 20 + Address Offset.

63 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Friendly Name Offset MUST be greater than Peer ID Offset.

Friendly Name Offset MUST be no greater than Message Size.

If this message is received, but the link is not in the LINK_STATE_CONNECT_WAIT state, then the

message MUST be discarded and the connection MUST be terminated.

Otherwise, the remote node information from the WELCOME message MUST be added to the
Neighbor List, and the connection moved into the LINK_STATE_CONNECTED state.

If this is the first connection for the node (that is, the Neighbor List has only this one entry), the
local node MUST:

Perform graph maintenance. For more details, see section 3.1.7.16.

If the Defer Expiration flag is set, the Record Expiration Time MUST be set to expire in 0 seconds.

Also, a PING message MUST be sent (see section 3.1.7.1) on each connection in the

LINK_STATE_CONNECTED state, to help detect dead TCP connections. The message MUST conform
to the syntax specified in section 2.2.4.1. The addresses in the message's IPv6 address array, if
any, MUST be added to the Referral List. The oldest entries from the Referral List MUST be removed
if the Referral List has reached its maximum size (see section 3.1.1).

The Local node's peer time MUST be updated according to the steps below:

The PTWELCOME time MUST be computed as follows:

where initially is the Peer Time included in the WELCOME
message and

TCONNECT is the Peer Time when the CONNECT message was sent.

TWelcome is the Peer Time when the WELCOME message is received.

If PTWELCOME is more than 20 minutes different from the local peer time, the received peer time

MUST be ignored, and MUST NOT be included in the Peer Time averaging below.

Otherwise, the local node's Peer Time Delta PTDlocal MUST be calculated as follows:

64 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the neighbor list has only this one entry, the local peer time MUST be set to the adjusted

remote node peer time as follows:

Otherwise the local node's peer time MUST be adjusted using the remote node's peer time as

follows:

Finally, the local node MUST begin synchronizing the local database with the remote node. If the
NeverConnected flag is set to true, it MUST begin a Sync All (see section 3.1.7.29). Otherwise, it
MUST begin a Time-based Sync (see section 3.1.7.30).

3.1.5.2.3 Receive REFUSE

This message is sent by the connection responder in response to a CONNECT message. If the
message fails to conform to any of the following conditions, then the message MUST be discarded

unprocessed and the connection MUST be terminated.

The Message Size MUST be at least 0x0C.

Address Count * 20 + Address Offset MUST be at most Message Size.

Error Code MUST be a value between 0x01 and 0x04, inclusive.

If this message is received, but the Link is not in LINK_STATE_CONNECT_WAIT state the message

MUST be ignored and the connection MUST be terminated.

Otherwise, the addresses in the message's address array, if any, MUST be added to the Referral

List. If during the insertion of the new addresses, the Referral List reaches its maximum size, the
least recently added entries MUST be removed in order to keep the list within its maximum size.

Upon receiving this message, the local node MUST terminate the connection unless Error Code is
REFUSE_CODE_ALREADY_CONNECTED.

The Node MUST try to connect to another node selected from the Referral List as described below:

A Node MUST be selected at random within the Referral List

If a connection attempt has already been made to the selected node, the next node in the list

MUST be selected. Step 2 MUST be repeated until a node is identified or all nodes in the list have
been scanned.

If a node is selected after executing the previous two steps, the local node MUST try to connect

to the selected node. The selected node's Referral Entries MUST be flagged to indicate that a

connection attempt has been made.

3.1.5.2.4 Receive DISCONNECT

This message is sent over a Neighbor or direct connection to inform the receiving node that this
connection MUST be terminated.

65 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the message fails to conform to any of the following conditions, then the message MUST be
discarded unprocessed and the connection MUST be terminated.

The Message Size MUST be at least 0x0C.

Address Count * 20 + Address Offset MUST be at most Message Size.

Reason MUST be a value between 0x01 and 0x03, inclusive.

Otherwise, the addresses in the message's address array, if any, MUST be added to the Referral
List. If during the insertion of the new addresses, the Referral List reaches its maximum size, the
least recently added entries (based on sequence number) MUST be removed in order to keep the list
within its maximum size.

If this connection was a neighbor connection (that is, if the Direct Connection flag value is false for
this connection), the local node MUST perform graph maintenance, specified in section 3.1.7.16.

3.1.5.2.5 Receive SOLICIT_NEW

This message is sent by the connection initiator after it reaches the LINK_STATE_CONNECTED state,
if the connection initiator has never synchronized with a node in the graph as indicated by the flag
NeverConnected.

If the message fails to conform to any of the following conditions, then the message MUST be
discarded unprocessed and the connection MUST be terminated.

The Message Size MUST be at least 0x0C.

The Inclusion Count MUST be either 0x00 or 0x01.

Either the Inclusion Count or the Exclusion Count MUST be 0.

(Inclusion Count + Exclusion Count) * 16 + Record Types Offset MUST be at most

Message Size.

When both Inclusion Count and Exclusion Count are 0, all records MUST be synchronized.

If the message is received when the Link is not in the LINK_STATE_CONNECTED state, the message
MUST be ignored, and the connection MUST be terminated.

Otherwise, in response to this message, the local node MUST perform the following actions:

If Inclusion Count is 0x01, the local node MUST start sending (see section 3.1.7.1) one FLOOD

message (see section 3.1.7.1) for each record in the database whose Record Type matches the
value in the Record Types field. Each FLOOD message MUST be constructed as specified in
section 2.2.2.11. After all the FLOOD messages have been sent, a SYNC_END message MUST be
sent (see section 3.1.7.1) with the Final flag set.

If Exclusion Count is nonzero, the local Node MUST, for each Record type not listed in Record

Types:

Start sending (see section 3.1.7.1) one FLOOD message for each record of that Record Type.

Each FLOOD message MUST be constructed as specified in section 2.2.2.11.

Send (see section 3.1.7.1) a SYNC_END message with the Final flag set if this is the last value

not listed in Record Types, and with the Final flag not set otherwise.

66 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

When the local node sends a SYNC_END message with the Final flag set, it MUST set the

SyncType flag on the connection to NONE.

3.1.5.2.6 Receive SOLICIT_TIME

This message is sent by the connection initiator after it reaches the LINK_STATE_CONNECTED state,
if the connection initiator has previously synchronized with a node in the graph, but is reconnecting
to the graph after being inactive.

If the message fails to conform to any of the following conditions, then the message MUST be
discarded unprocessed and the connection MUST be terminated.

The Message Size MUST be at least 20.

Inclusion Count MUST be 0x00 or Exclusion Count MUST be 0x00.

Inclusion Count MUST be either 0x00 or 0x01.

(Inclusion Count + Exclusion Count) * 16 + Record Types Offset MUST be at most Message

Size.

If the message is received when the Link is not in the LINK_STATE_CONNECTED state, the message

MUST be ignored and the connection MUST be terminated.

Otherwise, in response to this message, the local node MUST perform the following actions:

If Inclusion Count is 0x01, the local node MUST start sending (see section 3.1.7.1) one FLOOD

message (see section 3.1.7.1) for each record in the database whose Record Type matches the
value in the Record Types field, and whose Last Modification Time is no less than the value of
the Modification Time field in the received SOLICIT_TIME message. Each FLOOD message

MUST be constructed as specified in section 2.2.2.11. After all the FLOOD messages have been
sent, a SYNC_END message MUST be sent (see section 3.1.7.1) with the Final flag set.

If Exclusion Count is nonzero, the local node MUST, for each Record type not listed in Record

Types:

Send (see section 3.1.7.1) one FLOOD message for each record of that Record Type whose

Last Modification Time is no less than the value of the Modification Time field in the

received SOLICIT_TIME message. Each FLOOD message MUST be constructed as specified in
section 2.2.2.11.

Send (see section 3.1.7.1) a SYNC_END message with the Final flag set if this is the last value

not listed in Record Types, and with the Final flag unset otherwise.

3.1.5.2.7 Receive SOLICIT_HASH

This message is sent by the connection initiator after it reaches the LINK_STATE_CONNECTED state,
if the connection initiator has already synchronized with another node in the graph.

If the message fails to conform to any of the following conditions, then the message MUST be

discarded unprocessed and the connection MUST be terminated.

The Message Size MUST be at least 0x14.

Inclusion Count MUST be 0x00 or Exclusion Count MUST be 0x00.

67 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

(Inclusion Count + Exclusion Count) * 0x10 + Record Types Offset MUST be <= Hash

Entry Offset.

Hash Entry Offset * 0x28 + Hash Entry Offset MUST be <= Message Size.

If the message is received when the Link is not in the LINK_STATE_CONNECTED state, the message
MUST be ignored and the connection MUST be terminated.

Otherwise the local node MUST:

Set the Connection Sync Type state to SYNC_HASH and

Send (see section 3.1.7.1) an ADVERTISE message containing a list of record ranges for which

the hash in the HASH_INFO_ENTRY did not match the hash generated by the responder, as

follows:

The local node MUST generate an MD5 hash, as specified in section 3.1.7.31, of records in the

local Node's Database for each Record Range included in the SOLICIT_HASH message.

For each range of Records where the hash included in the HASH_INFO_ENTRY does not match

the local node's generated hash, the local node MUST:

Include a HASH_ENTRY_BOUNDARY containing the upper and lower bounds of the range and

the number of Records within that range.

Include a RECORD_ABSTRACT for each record within that range.

The Hash Entry Boundary Count MUST be equal to the number of record ranges that did not

match.

The Record Abstract Count MUST be equal to the total number of records in all the ranges

that did not match.

3.1.5.2.8 Receive ADVERTISE

This message is sent by the connection responder in response to a SOLICIT_HASH message.

If the message fails to conform to any of the following conditions, then the message MUST be
discarded unprocessed and the connection MUST be terminated.

The Message Size MUST be at least 0x18.

Hash Entry Boundary Offset MUST be at most Record Abstracts Offset.

Record Abstracts Offset MUST be at most Message Size.

(Hash Entry Boundary Count) * 52 + Hash Entry Boundary Offset MUST be at most Record

Abstracts Offset.

(Record Abstract Count) * 20 + Record Abstracts Offset MUST be at most Message Size.

If the message is received when the Link is not in LINK_STATE_CONNECTED state, or the message
is received and the SyncType state is not SYNC_HASH, the message MUST be ignored and the
connection MUST be terminated.

Otherwise the local node MUST generate two lists, Records To Request and Records To Send:

Records To Request

68 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

For each Record Abstract included in the ADVERTISE message that is either not in the local

database or that has a lower record Version in the local database, that record MUST be added

to the Records To Request list.

Records To Send

For each Record range included in the ADVERTISE message, if either a record exists in the

local database but does not appear in the Record Abstracts or the record exists in the local
database with a higher Record Version than in the Record Abstracts, that record MUST be
added to the Records To Send list.

After generating these lists, the local node MUST send (see section 3.1.7.1) a REQUEST message:

The Record Abstract Count MUST be equal to the number of Records in the Records To

Request list.

The Record Abstracts Array MUST contain an entry for each Record in the Records To Request

list.

The Record Version in each RECORD_ABSTRACT MUST be the Record Version being requested.

3.1.5.2.9 Receive REQUEST

This message is sent by the connection initiator in response to an ADVERTISE message.

If the message fails to conform to any of the following conditions, then the message MUST be
discarded unprocessed and the connection MUST be terminated.

The Message Size MUST be at least 0x14.

Record Abstracts Offset MUST be at most Message Size.

(Record Abstract Count) * 20 + Record Abstracts Offset MUST be at most Message Size.

If the message is received when the connection is not in the LINK_STATE_CONNECTED state, or the
message is received and the connection's Sync Type state is not set to SYNC_HASH, the message
MUST be ignored and the connection MUST be terminated.

In response to this message, the local node MUST send (see section 3.1.7.1) a FLOOD message for

each record requested in the Record Abstracts. The FLOOD messages MAY be sent in any order.
After the last FLOOD message (see section 2.2.2.11), a SYNC_END message with the Final bit set
MUST be sent (see section 3.1.7.1), and the connection's Sync State MUST be set to NONE.

3.1.5.2.10 Receive FLOOD

This message is sent any time a remote node updates a record or receives an updated record. The
message is also sent as part of synchronization.

If the message fails to conform to any of the following conditions, then the message MUST be
discarded unprocessed and the connection MUST be terminated.

The Message Size MUST be at least 0x10.

Record Offset MUST be at most Message Size.

Reserved2 MUST be zero.

69 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the message is received when the connection is not in the LINK_STATE_CONNECTED state, the
message MUST be discarded and the connection MUST be terminated.

Otherwise, the record contained in the Record Data field in the FLOOD message MUST be
validated, as specified in section 3.1.7.27. If the record is not found to be valid, the FLOOD message

MUST NOT be processed further.

Otherwise, the local node MUST determine if the record is "new", "already present" or "old" using
the following algorithm:

If no record identified by the same record ID is found in the local database, the record MUST be

classified as "new".

Otherwise, the Record Conflict Resolution algorithm, specified in section 3.1.7.32, MUST be used

to classify the record.

If the received record is classified as "new", the record MUST be added to the local database, and if
a record already exists in the local database with the same record ID, it MUST be deleted. A new

FLOOD message containing this record MUST also be sent (see section 3.1.7.1) to each Neighbor
other than the one that sent this FLOOD message.

If the received record is "old", the local node MUST respond with a FLOOD message (see section

3.1.7.1) containing the record with the same Record ID from the local database.

For all three classifications, the local node MUST send (see section 3.1.7.1) an ACK message to the
FLOOD message's sender, containing the record ID for this record, with the "Useful" flag set to 1 if
the received record was classified as "new", and set to 0 otherwise. The local node MUST also
update the connection utility associated with this connection, as specified in section 3.1.7.33.

Further processing MUST be performed on the received record according to its Record Type. For
more details, see sections 3.1.7.10 through 3.1.7.10.5.

3.1.5.2.11 Receive SYNC_END

The SYNC_END message is sent by the connection responder when it has completed the requested
synchronization process.

If the message fails to conform to any of the following conditions, then the message MUST be
discarded unprocessed and the connection MUST be terminated.

The Message Size MUST be at least 0x0C.

If the message is received when the connection is not in the LINK_STATE_CONNECTED state, or the
connection Sync State is set to NONE, the message MUST be ignored.

If a SYNC_END message is received with Final flag set and the connection SYNC_TYPE is
SYNC_HASH, the receiving node MUST perform the following steps:

The local node MUST send (see section 3.1.7.1) a FLOOD message for each record in the list of

Records To Send (see section 3.1.7.31). Each FLOOD message MUST be constructed as specified

in section 2.2.2.11.

If the Defer Expiration flag is set to true, the local node MUST initialize the Record Expiration

Timer to expire in 0 seconds.

If a SYNC_END message is received with the Final bit set and the connection's SYNC_TYPE is
SYNC_TIME or SYNC_NEW, the receiving node MUST perform the following steps:

70 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Set the Connection Sync Type state to NONE.

If for this connection, Current Sync Record Type has a non-null value and All Record Types

Synched is set to FALSE, the receiving node MUST:

Select the Record Type from the Sync Record Types array pointed to by this connection's

Current Sync Record Type pointer (see section 3.1.7.29 for initialization of this array and
pointer).

Send (see section 3.1.7.1) a SOLICIT_TIME or SOLICIT_NEW message (to match the

connection's SYNC_TYPE) for the selected Record Type in the array:

In the case of a SOLICIT_TIME message, the Modification Time MUST be set to the peer

time at which the node left the graph (based on the persisted Peer Time Delta; see section
3.1.4.2).

Inclusion Count MUST be 1.

Exclusion Count MUST be 0.

Record Types Array MUST contain one entry containing the GUID of the selected Record

Type.

Update Current Sync Record Type for this connection, to point to the next Record Type in the

Record Types array (or to have a null value if there are no more Record Types in the array).

If for this connection, Current Sync Record Type has a null value, and All Record Types Synched

is set to FALSE, the local Node MUST:

Set All Record Types Synched to TRUE for this connection.

Send (see section 3.1.7.1) a SOLICIT_TIME or SOLICIT_NEW message (to match the current

value of SYNC_TYPE) for all remaining records:

In the case of a SOLICIT_TIME message, Modification Time MUST be set to the peer time

at which the node left the graph.

Inclusion count MUST be 0.

Exclusion count MUST be 2 + the number of elements in the Prioritized Record Types

array.

Record Types Array MUST contain one entry for the Graph Info Record type, one entry

for the Presence Record type, and one entry for each element of the Prioritized Record

Type array.

If All Record Types Synched is set to TRUE for this connection, the local node MUST set

SYNC_TYPE for this connection to NONE, and in addition, if the Defer Expiration flag is set to
TRUE, initialize the Record Expiration Timer to expire in 0 seconds.

If the SYNC_END is received and the Final flag is not set, the message MUST be ignored.

3.1.5.2.12 Receive ACK

This message is sent in response to a FLOOD message to inform the receiver whether or not the
FLOOD was useful.

71 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the message fails to conform to any of the following conditions, then the message MUST be
discarded unprocessed and the connection MUST be terminated.

The Message Size MUST be at least 0x0C.

ACKs Offset MUST be at most Message Size.

(ACKs Count * 20) + ACKs Offset MUST be at most Message Size.

If the message is received when the connection is not in the LINK_STATE_CONNECTED state, the
connection MUST be terminated.

Otherwise, the local node MUST update the connection utility associated with this connection, as
specified in section 3.1.7.33.

3.1.5.2.13 Receive PT2PT

The PT2PT message is sent when requested by the application.

If the message fails to conform to any of the following conditions, then the message MUST be
discarded unprocessed and the connection MUST be terminated.

The Message Size MUST be at least 0x10.

Data Offset MUST be at most Message Size.

If the message is received when the LINK is not in LINK_STATE_CONNECTED state, the connection
MUST be terminated.

If the Data Type is { 0ccbb0d2-be41-4bd6-914b058ec5dcce64 }, the message is an internal Ping
(see section 2.2.4.1) and MUST NOT be processed further. Otherwise, the local node MUST pass the
payload of this message to the higher-layer application.

3.1.6 Timer Events

3.1.6.1 Authentication Timer

When this timer fires, it means that the connection associated with the timer has not completed
authentication. The connection MUST be terminated.

3.1.6.2 Connect Timer

When this timer fires, it means that the local node sent a CONNECT message over the associated
connection, but no WELCOME or REFUSE was received. The connection MUST be terminated.

3.1.6.3 Contact Timer

When this timer fires, it means that contact maintenance found that the number of contacts in the
graph was either too high or too low.

If a contact record corresponding to the local node is currently in the graph database with its
Deleted flag unset, and the number of contacts is still higher than the maximum value calculated as
specified in section 3.1.7.12:

The local node MUST delete the contact record with its own node ID from the database. For more

details, see section 3.1.7.9.

72 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If no contact record corresponding to the local node is currently in the graph database or if all
contact records corresponding to the local node in the graph database have the Deleted flag set, and

the number of contacts is still lower than the minimum value calculated as specified in section
3.1.7.12:

The local node MUST publish a contact record in the graph database. For more details, see

section 3.1.7.5.

3.1.6.4 Signature Timer

When this timer fires, it MUST be reset to fire in 24 hours. Also, if no Signature Record is present in
the graph database or the Signature Record in the graph database has the Deleted flag set or the

Signature value in the Signature Record is greater than the local node ID, a new Signature record
MUST be created with the signature value set to the local node’s node ID. This Signature record
MUST then be published, as specified in section 3.1.7.6.

3.1.6.5 Partition Detection Timer

If this timer fires, it means that partition detection (see section 3.1.7.13) found a contact record in
the graph database with its Deleted flag unset, whose Signature field value did not match the

signature record. When the timer fires, the node MUST check all the contact records in the database
with their Deleted flags unset, and if a contact record is found whose Signature field value does not
match the signature record, a new connection MUST be established with the contact whose record
has the nonmatching Signature, using the address information in the contact record. For more
details, see section 3.1.7.24.

3.1.6.6 Graph Maintenance Timer

This is a periodic timer, initially set when the node begins listening, as specified in section 3.1.4.8.
When the timer fires, graph maintenance MUST be performed as specified in section 3.1.7.16 and
the timer MUST be reset to fire in 300 seconds if the node has at least one Link in the
LINK_STATE_CONNECTED state, or in 30 seconds if the node has no Links in the
LINK_STATE_CONNECTED state.

3.1.6.7 Record Expiration Timer

When this timer fires, the database MUST be scanned for expired records (records for which the
PEER_RECORD expiration value is larger than the current peer time). When an Application record is
found to be expired and its record ID is in the Record Notify List, the higher-layer application MUST
be notified. If an expired Signature, Presence, or Contact record is found, the expired record MUST
be handled as specified in sections 3.1.7.19, 3.1.7.20, 3.1.7.21, respectively.

The Record Expiration Timer MUST also be reset every time it fires, with a duration calculated as the

value timerdelay as specified below:

ftNext= Expiration time value of the next record in the database to expire.

ftCurrent= Current peer time

delayMin = 15 seconds

delayMax = 24 hours

73 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.6.8 Autorefresh Timer

When this timer fires, a graph database autorefresh MUST be performed as specified in section
3.1.7.22.

3.1.6.9 Presence Timer

When this timer fires, it means that presence maintenance detected an incorrect number of
presence records (with their Deleted flags unset) currently published in the graph.

If there is currently a presence record in the graph database with its Deleted flag unset and with the
local node's node ID, and the number of presence records in the database is still higher than Max
Presence Records + 10:

The local node MUST delete the presence record for its node ID, as specified in section 3.1.7.9.

If there is currently no presence record in the graph database with the local node's node ID and with

its Deleted flag unset, and the number of presence records is still lower than Max Presence Records:

The local node MUST publish a presence record containing its node ID, as specified in section

3.1.7.4.

3.1.7 Other Local Events

3.1.7.1 Sending a Message

If a graph security provider is configured on the local Node, every message that is sent on a
connection in state IN_CONN_AUTHENTICATED or OUT_CONN_AUTENTICATED MUST be forwarded
to the graph security provider to be encrypted before it is sent on the network.

If the graph security provider returns an error, the message MUST be dropped.

3.1.7.2 Creating a Record

When creating a record, a PEER_RECORD MUST be created, and the following fields MUST be
initialized as follows:

The Record ID MUST be generated as follows:

If the record type is Graph Info Record, the Record ID MUST be set according to section

2.2.3.1.

74 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the record type is Signature Record, the Record ID MUST be set according to section

2.2.3.2.

Otherwise the Record ID MUST be calculated as follows:

A 128-bit GUID value, guid, MUST be randomly generated.

A 64-bit value, lowPart, MUST be generated XORing the low 64 bits of the guid value with the

high 64 bits of the guidvalue.

A 128-bit value, hash, MUST be generated as the MD5 hash of the Creator ID.

A 64-bit value, highPart, MUST be generating XORing the high 64 bits of hash with the low 64

bits of hash.

The Record ID MUST be generated as a 128-bit value where the low 64 bits are set to the value

of lowPart and high 64 bits are set to the value of highPart. The Creation Time and Modification
Time MUST be set to the current peer time.

The Creator ID MUST be set to the local Peer ID.

The Last Modified By ID field MUST be empty.

3.1.7.3 Publishing a Record

The steps of publishing a record are as follows:

If a graph security provider is configured, the record MUST be passed to it, and the secured record
returned from it, as specified in section 3.1.7.28. If the graph security provider returns an error, the
record MUST NOT be processed further.

The record MUST be added to the local database.

If the value of the Expiration Time in the new record + 15 seconds is less than the time the Record

Expiration Timer is scheduled to fire, then the Record Expiration Timer's duration MUST be updated
to fire at the new record's Expiration Time value.

If the new record's Autorefresh flag is set and the value of the Expiration Time in the new record +
60 seconds is less than the time the Autorefresh Timer is scheduled to fire, then the Autorefresh

Timer's duration MUST be updated to fire at the new Record's Expiration Time value.

If the new record's Autorefresh flag is set and the Autorefresh Timer is not set, it MUST be set to fire
at the new record's Expiration Time value.

If the record's Autorefresh Timer expiration time is less than 4 seconds, it MUST be set to 4
seconds.

A FLOOD message (see section 3.1.7.1) containing the Record (in PEER_RECORD format) in its
Record Data field MUST be sent to all neighbors.

3.1.7.4 Publishing a Presence Record

To publish a presence record, a new record MUST first be created, as specified in section 3.1.7.2. If
the local node has already published a presence record for the local node's node ID in the graph
database, the values from the previous presence record MUST replace those already assigned in the
new record.

75 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Regardless, the Record fields MUST be set as follows:

The Modification Time MUST be set to the current peer time.

The Expiration Time MUST be set to the current peer time + Presence Lifetime.

The Record Type MUST be set to the GUID {00000400-0000-0000-0000-000000000000}.

The Node ID MUST be set to the local node ID.

The Attributes MUST be set to the application-specified string.

The Addresses field MUST include the list of addresses at which the local node ID is listening,

stored in Listening addresses (see section 3.1.1).

The Autorefresh flag MUST NOT be set if the record is published because of a higher-layer

application-triggered event, as specified in section 3.1.4.6. Otherwise the flag MUST be set.

If there is already a presence record in the graph database with its Deleted flag unset and with the

local node's node ID, the record MUST be updated using the newly created record, as specified in
section 3.1.7.8. Otherwise, the new record MUST be published, as specified in section 3.1.7.3.

3.1.7.5 Publishing a Contact Record

To publish a contact record, a new record MUST be created as specified in section 3.1.7.2. If there is
already a contact record in the graph database with its Deleted flag unset and with the local node's
node ID, the values from the previous contact record MUST replace those already assigned in the
new record. In addition, the record fields MUST be set as follows:

The Modification Time MUST be set to the current peer time.

The Expiration Time MUST be set to the current peer time + 900 seconds.

The Record Type MUST be set to the GUID {00000300-0000-0000-0000-000000000000}.

The Signature MUST be set to the graph signature stored in the Signature Record in the local

node's database. The Node ID MUST be set to the local node ID.

The Addresses field MUST include the list of addresses at which the local node is listening,

stored in Listening addresses (see section 3.1.1).

The Autorefresh flag MUST be set.

If there already exists a contact record in the graph database with its Deleted flag unset and with
the local node's node ID, the record MUST be updated using the newly created record, as specified
in section 3.1.7.8. Otherwise, the new record MUST be published; see section 3.1.7.3.

3.1.7.6 Publishing a Signature Record

To publish a signature record, a new record MUST be created as specified in section 3.1.7.2. If a

signature record is already present in the graph database with its Deleted flag unset, the values
from the previous signature record MUST replace those already assigned in the new record.

Moreover, the record fields MUST be set as follows:

The Modification Time MUST be set to the current peer time.

The Expiration Time MUST be set to the current peer time + 300 seconds.

76 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The Record Type MUST be set to the GUID {00000200-0000-0000-0000-000000000000}.

The Record ID MUST be set to the GUID {4c515c94-4252-494f-8440-34cc79769c81}.

The signature record fields MUST be set as follows:

The Signature MUST be set to the local node ID.

The Autorefresh flag MUST be set.

If a signature record already exists in the database with its Deleted flag unset, the record MUST be
updated using the newly created record, as specified in section 3.1.7.8. Otherwise, the new record
MUST be published, as specified in section 3.1.7.3.

3.1.7.7 Publishing a Graph Info Record

To publish a graph info record, a new record MUST be created as specified in section 3.1.7.2. If the
graph info record already exists in the database with its Deleted flag unset, the values from the

previous graph info record MUST replace those already assigned in the new record. In addition, the
following record fields MUST be set as follows:

The Modification Time MUST be set to the current peer time.

The Expiration Time MUST be set to the current peer time + 300 seconds.

The Record Type MUST be set to the GUID {00000100-0000-0000-0000-000000000000}.

The Record ID MUST be set to GUID {6c796768-7732-406b-bc6e-5e9c0d864580}

The Creator ID MUST be the local Peer ID.

All other fields MUST meet the requirements specified in section 2.2.3.1.

If the graph info record already exists in the database with its Deleted flag unset, the record MUST
be updated, using the newly created record, as specified in section 3.1.7.8. Otherwise, the new

record MUST be published, as specified in section 3.1.7.3.

When updating a graph info record, the fields that MUST NOT be changed, as specified in section
2.2.3.1, MUST be left unchanged by the update.

3.1.7.8 Updating a Record

When a record is updated, a new record MUST be supplied that meets the following conditions, in
addition to those listed in section 3.1.4.4.

The Record ID MUST be the same as the record that is being updated.

The Deleted flag on the corresponding record in the graph database MUST NOT be set.

The Record Type MUST be the same as the record that is being updated.

The Creation Time MUST be the same as the record that is being updated.

The Modification Time MUST be later than the Creation Time of the record that is being

updated.

The Expiration Time MUST be no earlier than the Expiration Time of the record that is being

updated.

77 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The Expiration Time MUST be later than the Last Modification Time.

The Record Version MUST be greater than the Version of the record that is being updated.

The Creator ID MUST be the same as the record that is being updated.

If any of the above conditions are not met, the record MUST NOT be updated.

Otherwise, the existing record MUST be deleted from the database, as specified in section 3.1.7.9,
and the new one MUST be published, as specified in section 3.1.7.3.

3.1.7.9 Deleting a Record

When a record is deleted, an update MUST be performed, as specified in section 3.1.6.8, but with

the following differences:

The record Deleted bit MUST be set.

The record Payload Data Size MUST be 0.

The record Payload Data MUST be empty.

The record attribute length MUST be 0.

The record attribute MUST be empty.

All the other fields of the PEER_RECORD structure MUST otherwise be identical to those in the

record being deleted.

3.1.7.10 Receiving a Record

If a received record is classified as "new" and added to the database, the Record Expiration Timer

and Autorefresh Timer MUST be updated as follows:

If the value of the Expiration Time in the new record + 15 seconds is less than the time the

Record Expiration Timer is scheduled to fire, then the Record Expiration Timer's duration MUST
be updated to fire at the new record's Expiration Time value.

If the new record's Autorefresh flag is set and the value of the Expiration Time in the new

record + 60 seconds is less than the time the Autorefresh Timer is scheduled to fire, then the
Autorefresh Timer's duration MUST be updated to fire at the new record's Expiration Time
value.

If the new record's Autorefresh flag is set and the Autorefresh Timer is not set, it MUST be set to

fire at the new record's Expiration Time value.

If the record's Autorefresh Timer expiration time is less than 4 seconds, it MUST be set to 4

seconds.

3.1.7.10.1 Receive an Application Record

If the record contained in the FLOOD message is not an internal record (see section 2.2.3), the
application MUST be notified of the new incoming record if the record type is listed in the Record
Notify List.

78 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.7.10.2 Receive a Graph Info Record

If the record contained in the FLOOD message is a graph info record and its Deleted flag is unset,
the Presence Lifetime, Max Presence Records, and Max Record Size MUST be read from the

graph info record and stored in the corresponding data items specified in section 3.1.1.

3.1.7.10.3 Receive a Signature Record

If the record contained in the FLOOD message is a signature record and its Deleted flag is unset,
signature calculation MUST be performed as specified in section 3.1.7.11.

3.1.7.10.4 Receive a Contact Record

If the record contained in the FLOOD message is a contact record with its Deleted flag set and an
entry with the same record ID is present in the Contact List, it MUST be removed from the Contact
List.

If it is a contact record that does not have the Deleted flag set and an entry with the same record ID
is not in the Contact List, the following data from the record MUST be placed in a new entry in the
Contact List:

Record ID

Signature

Peer ID

Node ID

List of Addresses

If it is a contact record that does not have its Deleted flag set and an entry with the same record ID
is in the Contact List, then the data from the record MUST be used to replace the corresponding data
in the Contact List. For more details, see section 3.1.1.

After receiving a contact record, the local node MUST perform contact maintenance, as specified in
section 3.1.7.12.

3.1.7.10.5 Receive a Presence Record

If the record contained in the FLOOD message is a Presence Record that has its Deleted flag set and
an entry with the same record ID is present in the Presence List, it MUST be removed from the
Presence List.

If it is a Presence Record that does not have its Deleted flag set and an entry with the same record
ID is not present in the Presence List, the following data from the record MUST be added to the
Presence List:

Record ID

Peer ID

Node ID

List of Addresses

79 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If it is a Presence Record that does not have its Deleted flag set and an entry with the same record
ID is present in the Presence List, the data from the record MUST be used to replace the

corresponding data in the Presence List.

3.1.7.11 Signature Calculation

The signature of a graph is defined as the lowest node ID in the graph.

When signature calculation is triggered, the following algorithm MUST be executed:

If the signature record is currently present in the graph database with its Deleted flag unset, and

the Signature in the record is less than or equal to the local node ID, then the algorithm is
completed and signature calculation MUST terminate without further action.

If the signature record is not present in the graph database, or is present but with its Deleted

flag set, a delay exponentially proportional to the node ID MUST calculated as follows:

where N is the unsigned integer signified by the top 8 bits of the local node ID and delay is

expressed in seconds.

If the signature record is currently present in the graph database with its Deleted flag unset, and

the Signature in the record is greater than the local node's node ID, delay MUST be assigned the
value of 0.1 seconds.

After the delay value has been calculated, the signature timer MUST be set to fire after delay
seconds. For more details, see section 3.1.6.4.

3.1.7.12 Contact Maintenance

Contact Maintenance involves calculating the desired range of Contact Records, and then checking
that the current Contact count falls within that range. If there is no contact record in the local
database with its Deleted flag unset and with the local node's node ID, and the number of Contact
Records with their Deleted flags unset in the database is below the minimum (Cmin) calculated as
specified below, or if there is a contact record with its Deleted flag unset in the local database with

the local node's node ID, and the number of Contact Records with their Deleted flags unset in the
database is above the maximum (Cmax) calculated as specified below, then the Contact Timer
MUST be set for a random delay between 10 seconds and 180 seconds. For more details, see section
3.1.6.3.

80 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Cmin MUST be calculated as follows:

Where S is the current Graph Signature, treated as an unsigned integer. The maximum number of
Contacts Cmax MUST be calculated as the minimum number of Contacts plus 5:

3.1.7.13 Partition Detection

Partition detection is the process that looks for mismatches between the graph signature and the
signature reported by contacts. When partition detection is performed, the database MUST be
scanned for contact records with their Deleted flags unset and with a different signature from the
signature value in the database's signature record. If any of these are found, the partition detection

timer MUST be set with a random delay between 5 and 30 seconds. For more details, see section
3.1.6.5.

3.1.7.14 Connection Maintenance

Connection Maintenance is the process that attempts to maintain an ideal number of connections to

other Graph Nodes, and chooses which connections to keep based on the usefulness of the
connections. When Connection Maintenance is performed, the following actions MUST be taken:

If the number of neighbor connections is greater than the value of Ideal Neighbors, and this

Connection Maintenance is being performed as a result of Graph Maintenance Timer expiration
(see section 3.1.6.6):

The neighbor connection with the lowest connection utility MUST be disconnected, as specified

in section 3.1.7.25.

If the number of neighbor connections is zero, a new connection MUST be attempted.

If the number of neighbor connections is less than the value of Minimum Neighbors and the

fNeverConnected flag is unset, a new connection MUST be attempted.

If the number of neighbor connections is less than the Ideal Neighbor Count and the Connection

Maintenance is being performed as a result of Graph Maintenance Timer expiration, a new

connection MUST be attempted.

In order to attempt a new connection, a node MUST first be randomly selected from among the

Presence List, Contact List, and Referral List satisfying the following conditions:

The node ID of the selected node MUST NOT be equal to the node ID of the local node.

81 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The Local node MUST NOT have a connection with the selected node.

After a node is selected, a connection to it MUST be attempted, as specified in section3.1.7.24.

3.1.7.15 Long-Term Partition Repair

When performing long-term partition repair, if there is a Contact Record with its Deleted flag unset
in the database and with the local node's Node ID, the higher-layer application MUST be requested
to form another connection.

3.1.7.16 Graph Maintenance

Graph maintenance is performed periodically, and as a result of several events. When graph

maintenance is performed, the following steps MUST be taken in the following order:

Signature Calculation, as specified in section 3.1.7.11.

Contact Maintenance, as specified in section 3.1.7.12.

Partition Detection, as specified in section 3.1.7.13.

Connection Maintenance, as specified in section 3.1.7.14.

Long-term partition repair, as specified in section 3.1.7.15.

After every step in graph maintenance has completed, the Graph Maintenance Timer MUST be reset
as specified in section 3.1.6.6.

3.1.7.17 Presence Maintenance

The presence maintenance process ensures that the local node publishes its presence record when

valid, and strives to maintain the configured number of presence records in the graph.

A node performing presence maintenance MUST do the following:

If the local node currently has a presence record for its node ID in the graph database with its

Deleted flag unset, but is no longer listening (as indicated by the IsListening flag), the node
MUST delete the presence record for its node ID from the database, as specified in section
3.1.7.9.

If the local node currently does not have a presence record for its node ID in the graph database,

or the record is expired, or the record has its Deleted flag set, but it is listening (as indicated by
the IsListening flag) and either Max Presence Records is -1 or the application has forced
publication (as indicated by the Force Publish Presence flag), the node MUST publish its presence
record, as specified in section 3.1.7.4.

If Max Presence Records is not 0 or -1 and the Force Publish Presence flag is unset:

If the local node currently has a presence record in the graph database with the local node's

node ID and with its Deleted flag unset, and the number of presence records in the graph

database is greater than Max Presence Records + 10, the Presence Timer MUST be set to fire
at a random delay between 30 seconds and 180 seconds. For more details, see section
3.1.6.9.

If the local node currently does not have a presence record containing its node ID in the graph

database, or all such records have their Deleted flags set, and the number of presence records

82 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

in the database is less than Max Presence Records, the Presence Timer MUST be set to fire at
a random delay between 30 seconds and 180 seconds.

3.1.7.18 Expiring Application Record

For each expired Application record the following actions MUST be taken by the local node:

The local node MUST remove the expired record from the database.

If the record's Record type is in the Record Notify list, the local node MUST notify the higher-

layer application.

3.1.7.19 Expired Signature Record Found

If an expired Signature Record is found, Signature Calculation MUST begin immediately, as specified
in section 3.1.7.11.

Also, the expired record MUST be removed from the database.

3.1.7.20 Expired Presence Record Found

When an expired Presence Record is found:

If the node whose node ID is on the Presence Record is in the Presence List, it MUST be removed

from the Presence List and the higher-layer Application MUST be notified of the expired Presence
Record. The expired record MUST be removed from the database.

3.1.7.21 Expired Contact Record Found

When an expired Contact Record is found, Contact Maintenance MUST be performed immediately, as
specified in section 3.1.7.12. The expired record MUST be removed from the database.

3.1.7.22 Autorefreshing Records

The following actions MUST be taken by the local node, in order, when autorefreshing records:

The graph database MUST be scanned for the set of records that have their Autorefresh flags set,
their Deleted flags unset and an expiration time value less than or equal to the local Node Peer Time
+ 20 seconds.

For each record in this set, the record MUST be updated using an otherwise identical Record with the

following record fields changed:

If the existing record's Expiration Time value is later than the record's Last Modification

Time, the new Expiration Time field's value MUST be set to:

 where:

PeerTime is the Peer Time on the Local Node.

LastModifiedTime is the Last Modification Time field in the Record.

ExpirationTime is the Expiration Time field in the record.

83 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the existing record's Expiration Time value is not later than the Record's Last Modification

Time, the new Expiration Time field's value MUST be set to 300 seconds.

The new record's Last Modification Time field value MUST be set to the current value of the

local node's peer time.

3.1.7.23 Local IP Addresses Change

The local node MUST perform the following actions in sequence when a local IP address changes:

If the local node has a presence record in the Graph database with the local Node's Node ID and
with its Deleted flag unset, the presence record MUST be updated, as specified in section 3.1.7.8,
using an otherwise identical Presence Record that contains the new address information in its

Addresses field.

If the local node has a Contact Record in the Graph database with the local Node's Node ID and with
its Deleted flag unset, the Contact Record MUST be updated, as specified in section 3.1.7.8, using
an otherwise identical Contact Record that contains the new address information in its Addresses

field.

The list of Listening addresses MUST be updated to reflect the change.

The local node MUST perform graph maintenance, as specified in section 3.1.7.16.

3.1.7.24 Establishing a New Connection

The following state machine demonstrates the state transitions to set up and shut down a Link from
the initiator side.

84 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 3: State transitions when setting up a connection

To establish a connection to a remote node, the local node MUST take the following steps:

The local node MUST start the Authentication Timer, as specified in section 3.1.6.1.

The local node MUST open a TCP connection to the desired IP address.

After the TCP connection is established, the connection MUST be set to the

OUT_CONN_STATE_SOCK_CONNECTED state.

The connection's connection utility MUST be initialized to 0.

The local node MUST send (see section 3.1.7.1) an AUTH_INFO message:

The Graph ID Data MUST be set to the graph ID being used.

The Source Peer ID Data MUST be set to the local Peer ID.

85 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The Destination Peer ID Data MUST be set to the Peer ID of the destination node if that Peer

ID is known. Otherwise it MUST be empty.

The Direct Connection flag MUST be set according to the application request. For more details,

see section 3.1.4.7.

If no graph security provider is configured for the node, the connection state MUST be set to

OUT_CONN_STATE_AUTHENTICATED.

If a graph security provider is configured on the node, the Connection state MUST be set to

OUT_CONN_SENT_AUTHINFO and any further incoming message MUST be passed to the graph
security provider to complete the connection security negotiation.

If any error occurs during connection establishment, the connection MUST be aborted and any
further messages received on the connection MUST NOT be processed.

3.1.7.25 Disconnecting a Connection

When disconnecting a neighbor connection, the local node MUST send (See section 3.1.7.1) a
DISCONNECT message on the neighbor link. If the local node's Neighbor List is not empty, the

DISCONNECT message MUST be built as follows:

Address Count: MUST be set to the number of addresses returned, up to a maximum of 10.

Address Offset: MUST be set as specified in section 2.2.2.5.

Address Array: MUST contain a list of [Address Count] least recently added addresses, based

on their sequence numbers in Neighbor List.

If the local node's Neighbor List is empty, the DISCONNECT message MUST be built as follows:

Address Count: MUST be 0

Address Offset: MUST be the size of the DISCONNECT message in bytes

Address Array: MUST NOT be present.

After disconnecting a connection, the local node MUST perform graph maintenance, as specified in
section 3.1.7.16.

3.1.7.26 An Incoming Connection Is Established

The diagram below shows the finite state machine associated with accepting an incoming connection
and disconnect.

86 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 4: State transitions when accepting an incoming message

When a connection is established to the local node, the following steps MUST be taken by the node

in order to accept the connection:

The local node MUST start the Authentication Timer.

The local node MUST accept the TCP connection.

The Connection state MUST be set to IN_CONN_STATE_ACCEPTED.

The connection's connection utility MUST be set to 0.

3.1.7.27 Validating a Received Record

The Record Data field in a received FLOOD message MUST conform to the format of a
PEER_RECORD. In addition, it MUST meet the following conditions:

The FLOOD data size MUST be at least 90.

Creator ID Length MUST be at least 2 and at most 256.

The Record ID MUST be validated according to the following steps:

A 128 bit value, hash, MUST be generated as the MD5 hash of the value of the Creator ID

field.

87 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

A 64 bit value, highVal, MUST be generated by XORing the high-order 64 bits of hash with the

low-order 64 bits of hash.

The value of highVal MUST match the high-order 64 bits of the Record ID.

Last Modified By ID Length MUST be either zero or between 2 and 256, inclusive.

Expiration Time MUST be greater than Last Modification Time.

Last Modification Time MUST be at least Creation Time.

Graph ID Length MUST be between 2 and 256, inclusive.

Graph ID MUST match the graph ID of the local graph.

Protocol Version MUST be 0x0100.

If the Record Deleted bit is set, Payload Data Size MUST be zero.

Payload Data Size + (Attributes Length * 2) MUST be no greater than Max Record Size.

If Last Modification Time and Creation Time are identical, then Last Modified By ID Length

MUST be 0.

If present, the attributes data MUST conform with the attribute syntax specified in section

2.2.3.5.

If any of the above conditions are not met by the PEER_RECORD, the local node MUST discard it
without further processing.

After the PEER_RECORD is validated, the record MUST be passed to the graph security provider for

further validation. The graph security provider MUST return one of the following three responses:

Valid - The record is valid, and MUST be processed further.

Invalid - The record is invalid for some reason. The record MUST NOT be processed further.

Defer Validation - The record could not be validated yet, but the graph security provider expects

to be able to attempt validation in the future. The record MUST be placed in the Deferred record

List. The Record MUST NOT be processed further at this time.

Any response other than the above MUST be discarded without any action being taken in

response.

3.1.7.28 Securing a Record

When the local application creates, modifies, or deletes a record (see sections 3.1.4.3,3.1.4.4, and
3.1.4.5), the record MUST first be passed to the graph security provider, if one is configured on the

local node. If the graph security provider returns a block of data, the data MUST be placed in the
record's Security Data field, and the Security Data Size field updated with the length of the field.

The graph security provider MAY return an error while securing a record. This MUST cause the
record operation (creation, update, or deletion) to be aborted, and the record MUST NOT be
processed further.

88 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.7.29 Performing a Sync All

A node performing a Sync All over a particular connection MUST first initialize the Sync Record
Types array for the connection with the following Record Type GUIDs, in order:

Graph Info Record

Presence Records

The Record types in Prioritized Record Types (see section 3.1.4.2), in order.

The node MUST then initialize Current Sync Record Type for the connection to point to the first entry
in the Sync Record Types array, initialize SYNC_TYPE for the connection to the value SYNC_NEW,

and initialize the All Record Types Synched flag to FALSE.

Finally, the node MUST send (see section 3.1.7.1) a SOLICIT_NEW message over the connection
with the following properties:

The Inclusion Count MUST be set to 0x01.

The Exclusion Count MUST be set to 0x00.

The Record Types array MUST include one entry for the Graph Info Record Type.

3.1.7.30 Performing a Time-Based Sync

When a node reconnects to a graph and already has a copy of the database, it MUST perform a
Time-based Sync to synchronize all records changed while it was offline. To do so, it MUST first
initialize the Sync Record Types array for the connection with the following Record Type GUIDs, in
order:

Graph Info Record

Presence Record

The Record types listed in Prioritized Record Types, in order (see section 3.1.4.2).

The node MUST then initialize Current Sync Record Type for the connection to point to the first entry
in the Sync Record Types array, initialize SYNC_TYPE for the connection to the value SYNC_TIME,

and initialize the All Record Types Synched flag to FALSE.

Finally, the node MUST send (see section 3.1.7.1) a SOLICIT_TIME message over the connection
with the following properties:

The Modification Time MUST be the peer time at which the node left the graph.

The Inclusion Count MUST be set to 0x01.

The Exclusion Count MUST be set to 0x00.

The Record Types array MUST include one entry for the Graph Info Record Type.

3.1.7.31 Performing a Hash-Based Sync

A Hash-based Sync is performed after a Time-based Sync and any time that a connection is made
after the first one (the first connection uses either Sync All or Time-based Sync).

89 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The initiator of a Hash-based Sync MUST first sort its database and divide it into fixed-size Record
Ranges. The primary sort MUST be by the record's Last Modification Time, and the secondary sort

MUST be by the record ID. The size of each Record Range MUST be 10 Records. Each resulting
Record Range can therefore be described by:

(ModificationTimeMIN, RecordIDMIN, ModificationTimeMAX, RecordIDMAX)

Any record satisfying the following conditions is in the given Record Range:

ModificationTime >= ModificationTimeMIN

ModificationTime <= ModificationTimeMIN

RecordID >= RecordIDMIN

RecordID <= RecordIDMAX

(ModificationTimeMIN, RecordIDMIN)is the lower boundary of the Record Range.

(ModificationTimeMAX, RecordIDMAX)is the upper boundary of the Record Range.

After the Record Ranges are determined, an MD5 hash MUST be generated for each Record Range.
The data hashed for each Record Range are the Record IDs and Record Versions:

hash = MD5(RecordID1, RecordVersion1, RecordID2, RecordVersion2, ...)

After the hashes are generated, the initiator node MUST send (see section 3.1.7.1) a SOLICIT_HASH
message:

The Inclusion Count MUST be 0x00.

The Exclusion Count MUST be 0x00.

The Hash Count MUST be nonzero.

The Hash Entry Array MUST contain a HASH_INFO_ENTRY for each Record Range.

Each HASH_INFO_ENTRY MUST contain the MD5 hash [RFC1321] for its Record Range as

described above.

Each HASH_INFO_ENTRY MUST contain the upper boundary for its range as described above.

3.1.7.32 Record Conflict Resolution

When a record is received in a FLOOD message and the local node already has a record with that
record ID in its database, the local node MUST determine whether the received record is "newer"
(should replace the existing record), "already present" (the Records are the same), or "older". The
decision MUST be made as follows:

If the Record Versions are different, the record with the higher Version is "newer", and the other

is "older".

Otherwise, if one record has been updated (Last Modified By ID is not empty), but the other

has not, the record that was updated is "newer", and the other is "older".

Otherwise, if the Last Modified By ID fields are different, the Record that has the lexigraphically

higher value is "newer", and the other is "older".

http://go.microsoft.com/fwlink/?LinkId=90275

90 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Otherwise, if the Last Modification Time is different, the Record with the higher value is

"newer", and the other is "older".

Otherwise, if the record Security Data Size is different, the record with the larger value is

"newer", and the other is "older".

Otherwise, if the record Security Data is different, the Record with the higher value is "newer",

and the other is "older".

Otherwise, the record is "already present".

3.1.7.33 Updating Connection Utility

The connection utility is a measure of the usefulness of a connection. When a FLOOD message is
sent over the connection, both nodes on either end of the connection MUST update the connection
utility, LU, associated with the connection. The new connection utility, LU1, MUST be computed as

follows:

91 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4 Protocol Examples

4.1 Establishing a Connection

Node 2 wants to connect to a graph previously created by Node 1. Node 1 is already listening for
incoming connections, and its address and port are known by Node 2. Node 2 has never connected
to the graph before.

Figure 5: Example of a message exchange when connecting to a graph

To establish the connection, the following steps occur:

Node 2 establishes a TCP connection to Node 1.

Node 2 sends an AUTH_INFO message to Node 1. Because this graph is not using a graph

security provider, authentication is complete without any additional messages.

Node 2 sends a CONNECT message to Node 1. Node 2 is not yet listening, so no addresses are

contained in the CONNECT message.

Node 1 has no other connections (and, thus, has not reached its maximum neighbor count), so it

accepts the new neighbor connection. In response, Node 1 sends a WELCOME message to Node
2.

4.2 Sync All

After establishing the connection, Node 2 synchronizes the graph database. Because Node 2 has
never synchronized with this graph before, it must perform a Sync All.

92 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 6: Example of a Sync All message exchange

Performing a Sync All includes the following steps:

Node 2 sends a SOLICIT_NEW message to Node 1.

Node 1 responds by sending a FLOOD message for each record in the database. In this example,

there are three records with IDs 1, 2, and 3 (using integers instead of GUIDs for record IDs for
simplicity), and therefore three FLOOD messages.

After sending the last FLOOD, Node 1 sends a SYNC_END to inform Node 2 that all records have

been sent.

After synchronization has completed, Node 2 will open a listening socket on an application

specified port so that it can accept new neighbor connections. Now that Node 2 is listening, it will
send a CONNECT message to Node 1 with the Update bit set and its listening addresses in the
message. Node 1does not send a response to this CONNECT message because the Update bit is

set.

4.3 Hash-Based Sync

Node 3 is a node that has previously been connected to this graph, and the graph database at the
time it was last connected to the graph was persisted to disk. Prior to connecting to the graph, Node
3 loads its persisted database.

Node 3 knows the address and port of Node 2, and establishes a connection just like Node 2
connected to Node 1 above.

Because Node 3 has an older copy of the graph database, it performs a Time-based Sync rather
than a Sync All. Time-based Sync looks very similar to Sync All above, so this exchange is not

shown. Following the Time-based Sync, Node 3 performs a Hash-based Sync.

93 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 7: Example of a Hash-based Sync message exchange

Performing a Hash-based Sync includes the following steps:

Node 3 divides its database into ranges of 10 records each. In this database, there are only five

records, so it has a single range.

Node 3 calculates an MD5 hash of the record IDs and Record Versions in the range.

Node 3 sends Node 2 a SOLICIT_HASH message containing the range and hash calculated above.

Node 2 calculates an MD5 hash of the record IDs and Record Versions of all the records in its

database for each range specified by Node 3.

Node 2 notices that the hashes it generated in step 4 differ from the hashes sent in the

SOLICIT_HASH message, and sends an ADVERTISE message containing all the record IDs and
Record Versions in the ranges that differ.

Node 3 sees that the ADVERTISE message contains information about two records that it does

not have (3 and 6), and sends a REQUEST message for those two records. Node 3 also sees that
the ADVERTISE message does not contain information about Records 4 and 7, and remembers

this for use below.

Node 2 responds to the REQUEST message by sending FLOOD messages for Records 3 and 6.

Node 2 sends a SYNC_END after flooding all the requested records.

Having noticed in step 6 that Node 2 was missing Records 4 and 7, Node 3 now sends FLOOD

messages for Records 4 and 7.

94 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

After synchronizing, Node 3 now begins listening just as Node 2 did above. Upon listening, Node

3 performs Graph Maintenance. Because there are now three nodes in the graph, Node 3 is able

to find a Node that it is not already connected to. Node 3 establishes a connection to Node 1, as

above. At this point, all three nodes are interconnected.

4.4 Record Flooding

Node 1 publishes a record in the graph.

Figure 8: Example of a Record Flooding message exchange

The following steps flood the Record to all Nodes:

Node 1 creates a new record, and sends a FLOOD message containing the record to Node 2.

Node 2 had not seen this record, so it sends an ACK message back to Node 1 stating that the

FLOOD was useful.

Node 1 sends a FLOOD message to its other neighbor, Node 3. Note that sending the FLOOD

messages is done asynchronously, and does not wait for the ACK in step 2.

Node 3 had not seen this record, so it sends an ACK message back to Node 1 stating that the

FLOOD was useful.

Having received a useful FLOOD message in step 2, Node 2 sends a FLOOD message containing

the same record to its other neighbor, Node 3.

95 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Node 3 already has Record 8, and thus considers the FLOOD message from step 5 to not be

useful. Node 3 sends an ACK message back to Node 2 stating that the FLOOD was not useful.

96 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

5 Security

5.1 Security Considerations for Implementers

No security whatsoever is provided by default by the Peer-to-Peer Graphing Protocol. Therefore
there is no guarantee that a neighbor providing new or updated records for inclusion in the graph
database is a legitimate, authorized member of the graph, nor that the data received on any
connection has not been inspected or tampered with en route.

The Peer-to-Peer Graphing Protocol allows a graph security provider to be layered on top of it to

handle:

Negotiating secure (encrypted, integrity-protected) connections with peers.

Authenticating peers as Group members.

Checking authorization for received record additions, updates, and deletions.

A well-designed graph security provider, such as P2P Grouping [MS-PPSEC], can protect against

unauthorized record injection, modification, or on-the-wire inspection.

5.2 Index of Security Parameters

None.

%5bMS-PPSEC%5d.pdf

97 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows XP operating system Service Pack 2 (SP2)

Windows Vista operating system

Windows 7 operating system

Windows Home Server 2011 server software

Windows 8 operating system

Windows 8.1 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number

appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

98 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

99 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

8 Index

A

Abstract data model 48
ACK packet 40
ADVERTISE packet 36
Applicability 16
AUTH_INFO packet 27

C

Capability negotiation 17
Change tracking 98
CONNECT packet 28
Connecting and disconnecting - overview 11
Connection security - overview 13
Contact_Record packet 44
Contacts - overview 12

D

Data model - abstract 48
Direct connection - overview 13
DISCONNECT packet 32

E

Establishing a connection example 91
Examples

establishing a connection 91
hash-based sync 92
record flooding 94
sync all 91

F

Fields - vendor-extensible 17
FLOOD packet 38

G

Glossary 8
Graph topology - overview 10
Graph_Info_Record packet 41

H

HASH_ENTRY_BOUNDARY packet 22
HASH_INFO_ENTRY packet 22
Hash-based sync example 92
Higher-layer triggered events

direct connections - application allows 57
graph

application closes 58
application requests to connect to 57
creating new 53
opening existing 54

listening - application initiates 57
presence - application publishes 57
record

application adds 54
application deletes 56
application requests that deferred be

revalidated 58
application requests to be notified about

specific type 58
application updates 55

I

Implementer - security considerations 96
Index of security parameters 96
Informative references 10
Initialization 52
Internal record types 41
Introduction 8

L

Local events
connection

` utility - updating 90
disconnecting 85
establishing new 83
incoming - established 85
maintenance 80

contact maintenance 79
graph maintenance 81
local IP addresses change 83
message - sending 73
partition

detection 80
repair - long-term 81

presence maintenance 81
record

application - expiring 82
autorefreshing 82

conflict resolution 89
contact

expired found 82
publishing 75

creating 73
deleting 77
graph info - publishing 76
presence

expired found 82
publishing 74

publishing 74
received - validating 86
receiving 77
securing 87
signature

expired found 82
publishing 75

updating 76
signature calculation 79
sync

hash-based - performing 88
time-based - performing 88

100 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

sync all - performing 88

M

Message_Framing packet 18
Messages

internal record types 41
ping message 47
record attributes 45
transport 18

N

Normative references 9

O

Overview
connecting and disconnecting 11
connection security 13
contacts 12
direct connection 13
graph topology 10
partition

detection 12
repair

long -term 12
short-term 12

record security 13
security extension points 13
shared database 13
signature 12
synopsis 10
time synchronization 15

P

Parameters - security index 96
Partition

detection - overview 12
repair

long -term - overview 12
short-term - overview 12

PEER_ADDRESS packet 21
PEER_IN6_ADDRESS packet 20
PEER_IN6_ADDRESS_EX packet 20
PEER_MESSAGE packet 19
PEER_RECORD packet 23
Ping message 47
Preconditions 16
Prerequisites 16
Presence_Record packet 45
Product behavior 97

PT2PT packet 39

R

Record
attributes 45
flooding example 94
security - overview 13

RECORD_ABSTRACT packet 21

References
informative 10
normative 9

REFUSE packet 31
Relationship to other protocols 15
REQUEST packet 37

S

Security
extension points - overview 13
implementer considerations 96
parameter index 96

Shared database - overview 13
Signature - overview 12
Signature_Record packet 44
SOLICIT_HASH packet 35
SOLICIT_NEW packet 33
SOLICIT_TIME packet 34

Standards assignments 17
Sync all example 91
SYNC_END packet 38

T

Time synchronization - overview 15
Timer events

authentication timer 71
autorefresh timer 73
connect timer 71
contact timer 71
graph maintenance timer 72
partition detection timer 72
presence timer 73
record expiration timer 72
signature timer 72

Timers 51
Tracking changes 98
Transport 18
Triggered events

direct connections - application allows 57
graph

application closes 58
application requests to connect to 57
creating new 53
opening existing 54

listening - application initiates 57
presence - application publishes 57
record

application adds 54
application deletes 56
application requests that deferred be

revalidated 58
application requests to be notified about

specific type 58
application updates 55

V

Vendor-extensible fields 17
Versioning 17

101 / 101

[MS-PPGRH] — v20140502
 Peer-to-Peer Graphing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

W

WELCOME packet 29

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Graph Topology
	1.3.2 Connecting and Disconnecting
	1.3.2.1 Signature
	1.3.2.2 Contacts
	1.3.2.3 Partition Detection
	1.3.2.4 Short Term Partition Repair
	1.3.2.5 Long Term Partition Repair

	1.3.3 Direct Connection
	1.3.4 Security Extension Points
	1.3.4.1 Connection Security
	1.3.4.2 Record Security

	1.3.5 Shared Database
	1.3.5.1 Records
	1.3.5.2 Record Lifetime
	1.3.5.3 Record Flooding
	1.3.5.4 Record Synchronization
	1.3.5.5 Record Types
	1.3.5.5.1 Graph Info
	1.3.5.5.2 Signature
	1.3.5.5.3 Contact
	1.3.5.5.4 Presence

	1.3.6 Time Synchronization

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Message Components
	2.2.1.1 Message Framing
	2.2.1.2 PEER_MESSAGE
	2.2.1.3 PEER_IN6_ADDRESS
	2.2.1.4 PEER_IN6_ADDRESS_EX
	2.2.1.5 PEER_ADDRESS
	2.2.1.6 RECORD_ABSTRACT
	2.2.1.7 HASH_INFO_ENTRY
	2.2.1.8 HASH_ENTRY_BOUNDARY
	2.2.1.9 PEER_RECORD

	2.2.2 Messages
	2.2.2.1 AUTH_INFO
	2.2.2.2 CONNECT
	2.2.2.3 WELCOME
	2.2.2.4 REFUSE
	2.2.2.5 DISCONNECT
	2.2.2.6 SOLICIT_NEW
	2.2.2.7 SOLICIT_TIME
	2.2.2.8 SOLICIT_HASH
	2.2.2.9 ADVERTISE
	2.2.2.10 REQUEST
	2.2.2.11 FLOOD
	2.2.2.12 SYNC_END
	2.2.2.13 PT2PT
	2.2.2.14 ACK

	2.2.3 Internal Record types
	2.2.3.1 Graph Info Record
	2.2.3.2 Signature Record
	2.2.3.3 Contact Record
	2.2.3.4 Presence Record
	2.2.3.5 Record Attributes

	2.2.4 Internal Messages
	2.2.4.1 Ping

	3 Protocol Details
	3.1 Client Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Creating a New Graph
	3.1.4.2 Opening an Existing Graph
	3.1.4.3 Application Adds a Record
	3.1.4.4 Application Updates a Record
	3.1.4.5 Application Deletes a Record
	3.1.4.6 Application Publishes Presence
	3.1.4.7 Application Allows Direct Connections
	3.1.4.8 Application Initiates Listening
	3.1.4.9 Application Requests to Connect to the Graph
	3.1.4.10 Application Requests that Deferred Records be Revalidated
	3.1.4.11 Application Requests To Be Notified About a Specific Record Type
	3.1.4.12 Application Closes the Graph

	3.1.5 Processing Events and Sequencing Rules
	3.1.5.1 Pre-Authentication Messages
	3.1.5.1.1 Receive AUTH_INFO
	3.1.5.1.2 Receive Other Messages During Authentication

	3.1.5.2 Post-Authentication Messages
	3.1.5.2.1 Receive CONNECT
	3.1.5.2.2 Receive WELCOME
	3.1.5.2.3 Receive REFUSE
	3.1.5.2.4 Receive DISCONNECT
	3.1.5.2.5 Receive SOLICIT_NEW
	3.1.5.2.6 Receive SOLICIT_TIME
	3.1.5.2.7 Receive SOLICIT_HASH
	3.1.5.2.8 Receive ADVERTISE
	3.1.5.2.9 Receive REQUEST
	3.1.5.2.10 Receive FLOOD
	3.1.5.2.11 Receive SYNC_END
	3.1.5.2.12 Receive ACK
	3.1.5.2.13 Receive PT2PT

	3.1.6 Timer Events
	3.1.6.1 Authentication Timer
	3.1.6.2 Connect Timer
	3.1.6.3 Contact Timer
	3.1.6.4 Signature Timer
	3.1.6.5 Partition Detection Timer
	3.1.6.6 Graph Maintenance Timer
	3.1.6.7 Record Expiration Timer
	3.1.6.8 Autorefresh Timer
	3.1.6.9 Presence Timer

	3.1.7 Other Local Events
	3.1.7.1 Sending a Message
	3.1.7.2 Creating a Record
	3.1.7.3 Publishing a Record
	3.1.7.4 Publishing a Presence Record
	3.1.7.5 Publishing a Contact Record
	3.1.7.6 Publishing a Signature Record
	3.1.7.7 Publishing a Graph Info Record
	3.1.7.8 Updating a Record
	3.1.7.9 Deleting a Record
	3.1.7.10 Receiving a Record
	3.1.7.10.1 Receive an Application Record
	3.1.7.10.2 Receive a Graph Info Record
	3.1.7.10.3 Receive a Signature Record
	3.1.7.10.4 Receive a Contact Record
	3.1.7.10.5 Receive a Presence Record

	3.1.7.11 Signature Calculation
	3.1.7.12 Contact Maintenance
	3.1.7.13 Partition Detection
	3.1.7.14 Connection Maintenance
	3.1.7.15 Long-Term Partition Repair
	3.1.7.16 Graph Maintenance
	3.1.7.17 Presence Maintenance
	3.1.7.18 Expiring Application Record
	3.1.7.19 Expired Signature Record Found
	3.1.7.20 Expired Presence Record Found
	3.1.7.21 Expired Contact Record Found
	3.1.7.22 Autorefreshing Records
	3.1.7.23 Local IP Addresses Change
	3.1.7.24 Establishing a New Connection
	3.1.7.25 Disconnecting a Connection
	3.1.7.26 An Incoming Connection Is Established
	3.1.7.27 Validating a Received Record
	3.1.7.28 Securing a Record
	3.1.7.29 Performing a Sync All
	3.1.7.30 Performing a Time-Based Sync
	3.1.7.31 Performing a Hash-Based Sync
	3.1.7.32 Record Conflict Resolution
	3.1.7.33 Updating Connection Utility

	4 Protocol Examples
	4.1 Establishing a Connection
	4.2 Sync All
	4.3 Hash-Based Sync
	4.4 Record Flooding

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

