

1 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[MS-PEAP-Diff]:

Protected Extensible Authentication Protocol (PEAP)

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

10/22/2006 0.01 New Version 0.01 release

1/19/2007 1.0 Major Version 1.0 release

3/2/2007 1.1 Minor Version 1.1 release

4/3/2007 1.2 Minor Version 1.2 release

5/11/2007 1.3 Minor Version 1.3 release

6/1/2007 1.3.1 Editorial Changed language and formatting in the technical content.

7/3/2007 1.3.2 Editorial Changed language and formatting in the technical content.

7/20/2007 1.3.3 Editorial Changed language and formatting in the technical content.

8/10/2007 1.3.4 Editorial Changed language and formatting in the technical content.

9/28/2007 2.0 Major Updated a reference.

10/23/2007 2.0.1 Editorial Changed language and formatting in the technical content.

11/30/2007 3.0 Major
Clarified and expanded descriptions of how Compound Session
Keys and MAC Compound Keys are created.

1/25/2008 3.0.1 Editorial Changed language and formatting in the technical content.

3/14/2008 3.1 Minor Clarified the meaning of the technical content.

5/16/2008 3.1.1 Editorial Changed language and formatting in the technical content.

6/20/2008 3.1.2 Editorial Changed language and formatting in the technical content.

7/25/2008 3.1.3 Editorial Changed language and formatting in the technical content.

8/29/2008 3.1.4 Editorial Changed language and formatting in the technical content.

10/24/2008 3.1.5 Editorial Changed language and formatting in the technical content.

12/5/2008 4.0 Major Updated and revised the technical content.

1/16/2009 5.0 Major Updated and revised the technical content.

2/27/2009 5.0.1 Editorial Changed language and formatting in the technical content.

4/10/2009 6.0 Major Updated and revised the technical content.

5/22/2009 7.0 Major Updated and revised the technical content.

7/2/2009 8.0 Major Updated and revised the technical content.

8/14/2009 9.0 Major Updated and revised the technical content.

9/25/2009 10.0 Major Updated and revised the technical content.

11/6/2009 11.0 Major Updated and revised the technical content.

12/18/2009 12.0 Major Updated and revised the technical content.

3 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Date
Revision
History

Revision
Class Comments

1/29/2010 13.0 Major Updated and revised the technical content.

3/12/2010 14.0 Major Updated and revised the technical content.

4/23/2010 14.0.1 Editorial Changed language and formatting in the technical content.

6/4/2010 14.1 Minor Clarified the meaning of the technical content.

7/16/2010 14.2 Minor Clarified the meaning of the technical content.

8/27/2010 14.2 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 15.0 Major Updated and revised the technical content.

11/19/2010 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 16.0 Major Updated and revised the technical content.

2/11/2011 17.0 Major Updated and revised the technical content.

3/25/2011 18.0 Major Updated and revised the technical content.

5/6/2011 19.0 Major Updated and revised the technical content.

6/17/2011 20.0 Major Updated and revised the technical content.

9/23/2011 20.0 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 21.0 Major Updated and revised the technical content.

3/30/2012 21.1 Minor Clarified the meaning of the technical content.

7/12/2012 21.2 Minor Clarified the meaning of the technical content.

10/25/2012 22.0 Major Updated and revised the technical content.

1/31/2013 22.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 23.0 Major Updated and revised the technical content.

11/14/2013 23.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 23.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 24.0 Major Updated and revised the technical content.

6/30/2015 25.0 Major Significantly changed the technical content.

10/16/2015 26.0 Major Significantly changed the technical content.

7/14/2016 27.0 Major Significantly changed the technical content.

6/1/2017 27.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 28.0 Major Significantly changed the technical content.

4 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 9

1.2.1 Normative References ... 9
1.2.2 Informative References ... 10

1.3 Overview .. 11
1.4 Relationship to Other Protocols .. 13
1.5 Prerequisites/Preconditions ... 15
1.6 Applicability Statement ... 15
1.7 Versioning and Capability Negotiation ... 15
1.8 Vendor-Extensible Fields ... 15
1.9 Standards Assignments ... 15

2 Messages ... 16
2.1 Transport .. 16
2.2 Message Syntax ... 16

2.2.1 EAP Packet .. 16
2.2.2 PEAP Packet ... 16
2.2.3 PEAP Fragment Acknowledgement Packet .. 18
2.2.4 TLV ... 18
2.2.5 Vendor-Specific TLV .. 19
2.2.6 Outer TLVs... 19

2.2.6.1 Client Hello Packet With Outer TLVs .. 19
2.2.6.2 PEAP Start Packet With Outer TLVs ... 20

2.2.7 EAP Expanded Types ... 20
2.2.8 EAP Extensions Methods .. 21

2.2.8.1 EAP TLV Extensions Method .. 21
2.2.8.1.1 Cryptobinding TLV ... 21
2.2.8.1.2 Result TLV .. 23
2.2.8.1.3 SoH Response TLV ... 24

2.2.8.2 SoH EAP Extensions Method ... 24
2.2.8.2.1 SoH Request TLV ... 25
2.2.8.2.2 SoH TLV ... 25

2.2.8.3 Capabilities Negotiation Method .. 25
2.2.8.3.1 Capabilities Method Request ... 26
2.2.8.3.2 Capabilities Method Response ... 27

3 Protocol Details ... 28
3.1 Common Details .. 28

3.1.1 Abstract Data Model .. 28
3.1.2 Timers .. 29
3.1.3 Initialization ... 29
3.1.4 Higher-Layer Triggered Events ... 29
3.1.5 Message Processing Events and Sequencing Rules .. 29

3.1.5.1 Status and Error Handling .. 29
3.1.5.2 PEAP Packet Processing ... 30

3.1.5.2.1 Received PEAP Packet with L and M Bit Set ... 30
3.1.5.2.2 Sending PEAP Packet with packet size more than MaxSendPacketSize 30
3.1.5.2.3 Compress_Encrypt_Send Method... 30

3.1.5.3 Version Negotiation ... 30
3.1.5.4 Phase 1 (TLS Tunnel Establishment) .. 31
3.1.5.5 Cryptobinding ... 31

3.1.5.5.1 Input Data Used in the Cryptobinding HMAC-SHA1-160 Operation 31
3.1.5.5.2 Key Used in the Cryptobinding HMAC-SHA1-160 Operation 31

3.1.5.5.2.1 PEAP Tunnel Key (TK) .. 32

5 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.5.5.2.2 Intermediate PEAP MAC Key (IPMK) and Compound MAC Key (CMK) 32
3.1.5.6 Phase 2 (EAP Encapsulation) .. 33
3.1.5.7 Key Management .. 34

3.1.6 Timer Events .. 35
3.1.7 Other Local Events .. 35

3.1.7.1 Interface with TLS ... 35
3.1.7.2 Interface with EAP... 35

3.2 Peer Details ... 36
3.2.1 Abstract Data Model .. 36
3.2.2 Timers .. 38
3.2.3 Initialization ... 38
3.2.4 Higher-Layer Triggered Events ... 39
3.2.5 Message Processing Events and Sequencing Rules .. 39

3.2.5.1 Status and Error Handling .. 39
3.2.5.2 Phase 1 (TLS Tunnel Establishment) .. 39
3.2.5.3 PEAP Peer Cryptobinding Validation ... 39
3.2.5.4 Packet Processing ... 40

3.2.5.4.1 General Packet Validation ... 40
3.2.5.4.2 Received PEAP Request .. 40
3.2.5.4.3 Received PEAP Packet with S Bit Set .. 41
3.2.5.4.4 Received PEAP Packet With Inner EAP Type As Identity 42
3.2.5.4.5 Received SoH Request TLV ... 42
3.2.5.4.6 Received Capabilities Method Request .. 42
3.2.5.4.7 Received EAP TLV Extensions Method Packet 43
3.2.5.4.8 Received EAP Success .. 44
3.2.5.4.9 Received EAP Failure .. 44

3.2.5.5 Key Management .. 45
3.2.6 Timer Events .. 45
3.2.7 Other Local Events .. 45

3.2.7.1 TLS Session Established Successfully ... 45
3.2.7.2 TLS Session Failed to Establish ... 46
3.2.7.3 Interface with EAP... 46

3.3 Server Details .. 46
3.3.1 Abstract Data Model .. 46
3.3.2 Timers .. 48
3.3.3 Initialization ... 48
3.3.4 Higher-Layer Triggered Events ... 48
3.3.5 Message Processing Events and Sequencing Rules .. 48

3.3.5.1 Status and Error Handling .. 48
3.3.5.2 Phase 1 (TLS Tunnel Establishment) .. 48
3.3.5.3 PEAP Server Cryptobinding Validation .. 49
3.3.5.4 Packet Processing ... 49

3.3.5.4.1 General Packet Validation ... 49
3.3.5.4.2 Received PEAP Response .. 49
3.3.5.4.3 Received PEAP Packet with Inner EAP Type As Identity (Identity Received)

 ... 50
3.3.5.4.4 Received Capabilities Method Response .. 51
3.3.5.4.5 Received EAP NAK ... 51
3.3.5.4.6 Received SoH .. 52
3.3.5.4.7 Received EAP TLV Extensions Method Packet 53

3.3.5.5 Key Management .. 54
3.3.6 Timer Events .. 54
3.3.7 Other Local Events .. 54

3.3.7.1 TLS Session Established Successfully ... 54
3.3.7.2 TLS Session Failed to Establish ... 55
3.3.7.3 EAP Inner Method Authentication Success .. 55
3.3.7.4 EAP Inner Method Authentication Failed ... 55

6 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4 Protocol Examples ... 56
4.1 Examples with No Support for Cryptobinding and SoH Processing........................... 56

4.1.1 Successful PEAP Phase 1 and 2 Negotiation .. 56
4.1.2 Successful PEAP Phase 1 with Failed Phase 2 Negotiation 57
4.1.3 Successful PEAP Phase 1 with Fast Reconnect .. 58

4.2 Cryptobinding and SoH Processing Supported on PEAP Server Only 59
4.2.1 Successful PEAP Phase 1 and 2 Negotiation .. 59

4.3 Cryptobinding and SoH Processing on PEAP Server and PEAP Peer 60
4.3.1 Successful PEAP Phase 1 and 2 Negotiation .. 61
4.3.2 Successful PEAP Phase 1 with Fast Reconnect .. 62
4.3.3 Fallback to Full Authentication upon a Fast Reconnect Failure 62

4.4 Sample Cryptobinding TLV Data ... 63
4.4.1 Cryptobinding TLV Request from Server to Client .. 64

4.4.1.1 Header .. 64
4.4.1.2 Nonce .. 64
4.4.1.3 Compound MAC .. 64

4.4.1.3.1 Data for HMAC-SHA1-160 Operation .. 64
4.4.1.3.2 Key for HMAC-SHA1-160 Operation ... 64

4.4.1.3.2.1 Temp Key ... 64
4.4.1.3.2.2 IPMK Seed .. 64
4.4.1.3.2.3 IPMK and CMK ... 65

4.4.2 Cryptobinding TLV Response from Client to Server .. 65
4.4.2.1 Header .. 65
4.4.2.2 Nonce .. 66
4.4.2.3 Compound MAC .. 66

4.4.2.3.1 Data for HMAC-SHA1-160 Operation .. 66
4.4.2.3.2 Key for HMAC-SHA1-160 Operation ... 66

4.4.2.3.2.1 Temp Key ... 66
4.4.2.3.2.2 IPMK Seed .. 66
4.4.2.3.2.3 IPMK and CMK ... 66

4.4.3 MPPE Keys Generation... 67

5 Security ... 68
5.1 Security Considerations for Implementers ... 68

5.1.1 Fast Reconnect ... 68
5.1.2 Identity Verification .. 68
5.1.3 Authentication Outcomes ... 68

5.2 Index of Security Parameters .. 68

6 Appendix A: Product Behavior ... 69

7 Change Tracking .. 72

8 Index ... 73

7 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

1 Introduction

The Protected Extensible Authentication Protocol (PEAP) is an extension to the Extensible
Authentication Protocol (EAP) [RFC3748].

EAP is an authentication framework that supports multiple authentication methods. PEAP adds security
services to those EAP methods that EAP provides.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 Glossary

This document uses the following terms:

access point: A network access server (NAS) that is implementing [IEEE802.11-2012], connecting
wireless devices to form a wireless network.

authentication: The ability of one entity to determine the identity of another entity by proving an
identity to a server while providing key material that binds the identity to subsequent
communications.

binary large object (BLOB): A discrete packet of data that is stored in a database and is treated
as a sequence of uninterpreted bytes.

certificate: A certificate is a collection of attributes and extensions that can be stored persistently.
The set of attributes in a certificate can vary depending on the intended usage of the certificate.
A certificate securely binds a public key to the entity that holds the corresponding private key. A
certificate is commonly used for authentication and secure exchange of information on open
networks, such as the Internet, extranets, and intranets. Certificates are digitally signed by the
issuing certification authority (CA) and can be issued for a user, a computer, or a service. The
most widely accepted format for certificates is defined by the ITU-T X.509 version 3

international standards. For more information about attributes and extensions, see [RFC3280]

and [X509] sections 7 and 8.

cipher suite: A set of cryptographic algorithms used to encrypt and decrypt files and messages.

cleartext: In cryptography, cleartext is the form of a message (or data) that is transferred or
stored without cryptographic protection.

context handle: An opaque handle returned by a TLS implementation to the higher layer (PEAP

layer) after a TLS session is established successfully. This is a handle to the TLS session's
security parameter structure ([RFC5246] section A.6) maintained by the TLS layer. As a TLS
implementation can handle multiple sessions simultaneously, it relies on the context handle to
identify the corresponding session when receiving calls to encrypt and decrypt message
functions from the higher layer.

decryption: In cryptography, the process of transforming encrypted information to its original
clear text form.

EAP: See Extensible Authentication Protocol (EAP).

EAP identity: The identity of the Extensible Authentication Protocol (EAP) peer as specified in
[RFC3748].

EAP method: An authentication mechanism that integrates with the Extensible Authentication
Protocol (EAP); for example, EAP-TLS, Protected EAP v0 (PEAPv0), EAP-MSCHAPv2, and so on.

8 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

EAP peer: A network access client that is requesting access to a network using EAP as the
authentication method

EAP server: The backend authentication server; typically a RADIUS (as specified in [RFC2865])
server.

encryption: In cryptography, the process of obscuring information to make it unreadable without
special knowledge.

Extensible Authentication Protocol (EAP): A framework for authentication that is used to
provide a pluggable model for adding authentication protocols for use in network access
authentication, as specified in [RFC3748].

fast reconnect: A shortcut negotiation that capitalizes on information exchanged in the initial
authentication to expedite the reestablishment of a session.

Group Policy: A mechanism that allows the implementer to specify managed configurations for
users and computers in an Active Directory service environment.

handshake: An initial negotiation between a peer and an authenticator that establishes the
parameters of their transactions.

inner EAP method: An Extensible Authentication Protocol (EAP) method that is tunneled within
another EAP method.

man in the middle (MITM): An attack that deceives a server or client into accepting an
unauthorized upstream host as the actual legitimate host. Instead, the upstream host is an
attacker's host that is manipulating the network so that the attacker's host appears to be the
desired destination. This enables the attacker to decrypt and access all network traffic that
would go to the legitimate host. The attacker is able to read, insert, and modify at-will messages
between two hosts without either party knowing that the link between them is compromised.

MPPE Keys: Specifies the key material generated by the EAP methods which can be used to

perform data encryption between peer and NAS. There are two types MPPE Keys based on the
direction of data flow they are used with - MPPE Send Key and MPPE Receive key. Each EAP

method has its own mechanism of generating these keys. For example, section 2.3 of
[RFC5216] specifies the mechanism to generate the MPPE Keys (MS-MPPE-Send-Key and MS-
MPPE-Recv-Key) for EAP-TLS authentication protocol.

Network Access Identifier (NAI): The identity included within EAP–Response/Identity (section
5.1 of [RFC3748]). As defined in [RFC4282], this includes an optional username portion as well

as a realm portion.

network access server (NAS): A computer server that provides an access service for a user who
is trying to access a network. A NAS operates as a client of RADIUS. The RADIUS client is
responsible for passing user information to designated RADIUS servers and then acting on the
response returned by the RADIUS server. Examples of a NAS include: a VPN server, Wireless
Access Point, 802.1x-enabled switch, or Network Access Protection (NAP) server.

network byte order: The order in which the bytes of a multiple-byte number are transmitted on a

network, most significant byte first (in big-endian storage). This may or may not match the
order in which numbers are normally stored in memory for a particular processor.

padding: Bytes that are inserted in a data stream to maintain alignment of the protocol requests
on natural boundaries.

PEAP Peer: An implementation of a PEAP method on a EAP peer that takes care of the PEAP
method peer-side requirements.

9 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

PEAP Server: An implementation of a PEAP method on a EAP server that takes care of the PEAP
method server-side requirements.

peer: The entity being authenticated by the authenticator.

phase: A series of exchanges that provide a particular set of security services (for example,

authentication or creation of security associations (SAs)).

realm: An administrative boundary that uses one set of authentication servers to manage and
deploy a single set of unique identifiers. A realm is a unique logon space.

session: In the Challenge-Handshake Authentication Protocol (CHAP), a session is a lasting
connection between a peer and an authenticator.

statement of health (SoH): A collection of data generated by a system health entity, as specified
in [TNC-IF-TNCCSPBSoH], which defines the health state of a machine. The data is interpreted

by a Health Policy Server, which determines whether the machine is healthy or unhealthy
according to the policies defined by an administrator.

Transport Layer Security (TLS): A security protocol that supports confidentiality and integrity of
messages in client and server applications communicating over open networks. TLS supports
server and, optionally, client authentication by using X.509 certificates (as specified in [X509]).
TLS is standardized in the IETF TLS working group.

trust root: A collection of root CA keys trusted by the RP. A store within the computer of a relying
party that is protected from tampering and in which the root keys of all root CAs are held. Those
root keys are typically encoded within self-signed certificates, and the contents of a trust root
are therefore sometimes called root certificates.

tunnel: The encapsulation of one network protocol within another.

type-length-value (TLV): Information element encoded within [MS-PEAP]. Type and length fields
are a fixed size (that is, 1 to 4 bytes), and the value field is variable. "Type" indicates what kind

of field is encoded; "Length" indicates the size of "Value"; "Value" defines the data portion of the
TLV element.

virtual private network (VPN): A network that provides secure access to a private network over
public infrastructure.

X.509: An ITU-T standard for public key infrastructure subsequently adapted by the IETF, as
specified in [RFC3280].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

10 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[IANA-EAP] IANA, "Extensible Authentication Protocol (EAP) Registry", October 2006,
http://www.iana.org/assignments/eap-numbers

[IANA-ENT] Internet Assigned Numbers Authority, "Private Enterprise Numbers", January 2007,
http://www.iana.org/assignments/enterprise-numbers

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed-Hashing for Message
Authentication", RFC 2104, February 1997, http://www.ietf.org/rfc/rfc2104.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,
http://www.rfc-editor.org/rfc/rfc2246.txt

[RFC2548] Zorn, G., "Microsoft Vendor-Specific RADIUS Attributes", RFC 2548, March 1999,

http://www.ietf.org/rfc/rfc2548.txt

[RFC2865] Rigney, C., Willens, S., Rubens, A., and Simpson, W., "Remote Authentication Dial In User
Service (RADIUS)", RFC 2865, June 2000, http://www.ietf.org/rfc/rfc2865.txt

[RFC3174] Eastlake III, D., and Jones, P., "US Secure Hash Algorithm 1 (SHA1)", RFC 3174,
September 2001, http://www.ietf.org/rfc/rfc3174.txt

[RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and Levkowetz, H., "Extensible
Authentication Protocol (EAP)", RFC 3748, June 2004, http://www.ietf.org/rfc/rfc3748.txt

[RFC5216] Simon, D., Aboda, B., and Hurst, R., "The EAP-TLS Authentication Protocol", RFC 5216,
March 2008, http://www.ietf.org/rfc/rfc5216.txt

[RFC5280] Cooper, D., Santesson, S., Farrell, S., et al., "Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, May 2008,

http://www.ietf.org/rfc/rfc5280.txt

[TNC-IF-TNCCSPBSoH] TCG, "TNC IF-TNCCS: Protocol Bindings for SoH", version 1.0, May 2007,
https://trustedcomputinggroup.org/tnc-if-tnccs-protocol-bindings-soh/

1.2.2 Informative References

[IEEE802.1X] Institute of Electrical and Electronics Engineers, "IEEE Standard for Local and
Metropolitan Area Networks - Port-Based Network Access Control", December 2004,
http://ieeexplore.ieee.org/iel5/9828/30983/01438730.pdf

[MS-CHAP] Microsoft Corporation, "Extensible Authentication Protocol Method for Microsoft Challenge
Handshake Authentication Protocol (CHAP)".

[MS-GPWL] Microsoft Corporation, "Group Policy: Wireless/Wired Protocol Extension".

[RFC1661] Simpson, W., Ed., "The Point-to-Point Protocol (PPP)", STD 51, RFC 1661, July 1994,

http://www.ietf.org/rfc/rfc1661.txt

[RFC1750] Eastlake III, D., Crocker, S., and Schiller, J., "Randomness Recommendations for
Security", RFC 1750, December 1994, http://www.ietf.org/rfc/rfc1750.txt

[RFC4017] Stanley, D., Walker, J., and Aboba, B., "Extensible Authentication Protocol (EAP) Method
Requirements for Wireless LANs", RFC 4017, March 2005, http://www.ietf.org/rfc/rfc4017.txt

11 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[RFC4306] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC 4306, December 2005,
http://www.ietf.org/rfc/rfc4306.txt

1.3 Overview

Network administrators often require authentication and authorization of users or devices attaching to
their networks. For example, a network administrator can require that only known users be allowed to
connect. Likewise, the operator of a virtual private network (VPN) can require that remote network
access only be granted to known and authorized users.

EAP enables extensible authentication for network access. EAP methods operate within the EAP
framework to provide support for a variety of authentication techniques. For example, an
administrator who requires certificate-based authentication can deploy the EAP Transport Layer
Security (TLS) method, as specified in [RFC5216]. If password-based authentication is required, the
EAP Microsoft Challenge Handshake Authentication Protocol version 2 (EAP-MSCHAPv2 [MS-CHAP])
method might be used.

Strong credentials, such as digital certificates, offer many security benefits. However, in many

environments, deploying such credentials to every client can be expensive and hard to manage due to
the infrastructure they require. This, for example, is often the case for corporate wireless network
deployments. As a result, there is a need for an EAP method that can provide the security benefits of
authentication with strong credentials, without incurring the cost of an infrastructure required by a
client public key infrastructure (PKI) deployment.

PEAP version 0 is an EAP method designed to meet this need. It does so by having the client establish
a TLS session with a server by using the server's certificate. Then, the client is authenticated using its

credential of choice within that TLS session.

The flow of a successful PEAP authentication is as follows:

1. The Authenticator (network access server (NAS)) sends an optional Identity Request packet to the
EAP peer as described in [RFC3748] section 2. The EAP peer then responds to the Authenticator
with an Identity Response packet and the Authenticator forwards the same to the EAP server.

2. The EAP server and EAP peer negotiate the EAP method to use. PEAP and version 0 are selected.

The same server and peer now play the roles of PEAP server and PEAP peer as they exchange
PEAP data with the EAP packets.

3. PEAP enters phase 1. The purpose of phase 1 is to authenticate the PEAP server and to establish a
TLS session.

1. The PEAP peer and the PEAP server exchange TLS messages by placing the TLS records into
the payload of the PEAP messages.

2. These PEAP messages are exchanged until the TLS session is successfully established between

the PEAP peer and the PEAP server. This completes phase 1.

4. PEAP then enters phase 2, where the PEAP peer and the PEAP server continue to exchange PEAP
messages, with TLS records placed in the payload. The purpose of phase 2 is to allow the PEAP
server to authenticate the PEAP peer inside the TLS session established in phase 1.

1. A new EAP negotiation is initiated by the PEAP server to authenticate the PEAP peer. This new
"inner method" EAP negotiation is carried inside the TLS records being exchanged between the
PEAP peer and PEAP server.

2. The PEAP server and the PEAP peer negotiate and agree on an inner method.

3. The PEAP peer and the PEAP server exchange inner method messages until the PEAP peer is
successfully authenticated. This completes phase 2.

12 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

5. PEAP completes when phase 2 is completed.

The security provided by the TLS session established in phase 1 protects the PEAP peer authentication

in phase 2 so that passwords or other dictionary-attackable tokens can be used confidentially.

PEAP is typically deployed in an environment such as the one depicted in the following figure. The EAP

peer mutually authenticates with an EAP server using PEAP through a network access server (NAS)
(that is, a wireless access point or VPN gateway). The actual PEAP messages are carried from the EAP
peer to the NAS over lower-layer protocols such as the Point-to-Point Protocol (PPP) or [IEEE802.1X],
and from the NAS to the EAP server over a lower-layer protocol such as the Remote Authentication
Dial-In User Service (RADIUS) [RFC2865].

Figure 1: Typical PEAP deployment environment

To understand PEAP, it is necessary to understand both EAP and TLS. An overview of EAP is specified
in [RFC3748] section 2, while an overview of TLS is specified in [RFC2246] section 1. For more
information on security requirements for EAP methods that are used with wireless local area networks
(WLANs), see [RFC4017].

13 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

1.4 Relationship to Other Protocols

PEAP is an EAP method that encapsulates another instance of EAP (with slightly modified messages)
within a TLS tunnel. During phase 1 of PEAP, the PEAP client and PEAP server exchange TLS messages

encapsulated within EAP packets to establish a TLS tunnel on top of EAP between the PEAP peer and
the PEAP server.

The following diagram shows protocol layering during phase 1 of PEAP:

Figure 2: Protocol layering during phase 1 of PEAP

During phase 2 of PEAP, a new EAP method is negotiated and an EAP authentication exchange is
performed between the PEAP peer and the PEAP server as described in [RFC3748] section 2,

encapsulated in the TLS tunnel established in phase 1.

The following diagram shows protocol layering during phase 2 of PEAP:

14 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Figure 3: Protocol layering during phase 2 of PEAP

PEAP, like EAP, can run over any EAP transport that is compliant with [RFC3748], such as PPP (for
more information, see [RFC1661]).

There are a number of configurable settings for the protocol; for example, isFastReconnectAllowed,
isSoHEnable, and so on, as specified in section 3.1.1. The EAP peer which initializes this protocol is
responsible for configuring these settings as well. The peer itself might be configured through the

group policy. For example, the Group Policy: Wireless/Wired Protocol Extension [MS-GPWL] specifies
the group policy protocol to configure and deploy wireless local area network (WLAN). This
configuration also carries the EAP method configuration as a part of it. The peer can use this
configuration to initialize the PEAP method.

15 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

1.5 Prerequisites/Preconditions

PEAP requires the inner EAP authentication method to be configured both on the PEAP peer and the
server in an implementation-specific manner. EAP and TLS have their own prerequisites, as specified

in [RFC3748] section 3.1 and [RFC2246] section D.2, respectively.

For example, TLS server authentication, which PEAP uses, requires that the server have a certificate
and that the client be configured to trust the issuer of the certificate. EAP requires that both EAP
server and peer be configured with the methods which they support, in this case PEAP.

1.6 Applicability Statement

PEAP was designed for use in network access authentication.

The use of PEAP is appropriate as the basis for any network authentication scenario.

For more information on PEAP security issues, see section 5.

1.7 Versioning and Capability Negotiation

PEAP supports the concept of version negotiation. The PEAP server proposes the highest version that it
supports within the initial PEAP packet, and the PEAP peer replies with a PEAP response indicating the
version that it is configured to use. After this point, the Ver field in the PEAP packets reflects the
version that was selected.

These semantics ensure that all implementations of PEAP can communicate and enable both peers and

servers to participate in version selection for the conversation. If version negotiation fails, the use of
PEAP is not possible.

In addition to the capability to negotiate what version of PEAP to use, an implementation also needs to
support the capability to negotiate the type of inner EAP method, as specified in [RFC3748] section 5.

For more information on PEAP versioning and capability negotiation, see section 3.1.5.3.

1.8 Vendor-Extensible Fields

PEAP defines Vendor-Specific TLV (section 2.2.5) and Outer TLVs (section 2.2.6) that can be used by
vendors to exchange their own TLVs.

1.9 Standards Assignments

 Parameter

Value

Reference

PEAP EAP method type 25 [IANA-EAP]

EAP Type-Length-Value (TLV) extensions method type (also known as MS-Authentication-
TLV)

33 [IANA-EAP]

Vendor-ID for Microsoft (SMI Private Enterprise Code) 311 [IANA-ENT]

16 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2 Messages

The following sections specify how PEAP messages are encapsulated on the wire and EAP extensions
methods.

2.1 Transport

As an authentication method, PEAP MUST be transported by EAP. As a result, protocols that carry EAP
(for example, PPP [RFC1661], IEEE802.1x [IEEE802.1X], and RADIUS [RFC2865]) ultimately provide
the transport of the associated messages, as specified in [RFC3748] section 3.

As an EAP method, PEAP relies entirely on EAP for the reliable delivery of its messages.

2.2 Message Syntax

2.2.1 EAP Packet

The following shows an EAP packet (Code, Identifier, and Length), as specified in [RFC3748]
section 4.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Code Identifier Length

Type Type_Data (variable)

...

Code (1 byte): Indicates whether this packet is a Request or a Response, as specified in [RFC3748]

section 4.1.

Identifier (1 byte): Identifier for this packet, as specified in [RFC3748] section 4.1.

Length (2 bytes): The length of this packet, as specified in [RFC3748] section 4.1.

Type (1 byte): The Type of Request or Response, as specified in [RFC3748] section 4.1.

Type_Data (variable): A field that varies with the Type of Request and the associated Response, as
specified in [RFC3748] section 4.1.

2.2.2 PEAP Packet

The outer EAP packet (section 2.2.1) that contains a PEAP packet MUST have the Type field set to 25
(see section 1.9).

The following diagram shows the format of the PEAP packet, which is placed in the Type-Data field of
the EAP packet.

The fields of the header are transmitted as bytes from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags Ver Data (variable)

17 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

Flags (6 bits): A 6-bit field that is used to represent a set of flags. The value MUST be formatted as
follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

L M S A B C

L (1 bit): The L bit is set to indicate the presence of the TLS_Message_Length field, as
discussed later.

▪ The L bit MUST be set to zero in the PEAP fragment acknowledgement packet (section
2.2.3).

▪ The L bit MUST be set to one in the first fragment of a fragmented message.

M (1 bit): If the TLS message encapsulated in PEAP is fragmented, the M bit MUST be set on all

but the last fragment. If the TLS message encapsulated in PEAP is not fragmented, the M bit
MUST NOT be set.<1>

S (1 bit): The S bit is set in a PEAP start message. This differentiates the PEAP start message
from a fragment acknowledgment. The S bit MUST be sent only by the PEAP server and it
MUST be set only in the first packet from the PEAP server to the peer. Note that the PEAP start
message carries the initial handshake for the TLS session, as specified in [RFC2246] section 7.

D - R1 (1 bit): The R bits are reserved. They MUST be set to zero when sent and MUST be

ignored on receipt.

E - R2 (1 bit): The R bits are reserved. They MUST be set to zero when sent and MUST be
ignored on receipt.

F - R3 (1 bit): The R bits are reserved. They MUST be set to zero when sent and MUST be
ignored on receipt.

Ver (2 bits): Two bits are used to communicate and negotiate the version of PEAP being used; it
MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

The flags field
documented

earlier.

R V

R (1 bit): The R bit is reserved. It MUST be set to zero when sent and MUST be ignored on
receipt.

V (1 bit): Indicates the version of PEAP. It MUST be set to zero.

Data (variable): An array of bytes that MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TLS_Message_Length

18 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

TLS_Data (variable)

...

TLS_Message_Length (4 bytes): A 32-bit unsigned integer in network byte order that indicates
the length, in bytes, of the unfragmented TLS Data, and is present only if the L flag is set in
the Flags field.

TLS_Data (variable): The encapsulated (complete or fragmented) TLS packet in TLS record
format (as specified in [RFC2246] section 6).

2.2.3 PEAP Fragment Acknowledgement Packet

The PEAP Fragment Acknowledgement packet is an "empty" PEAP packet (section 2.2.2) that is used
during packet fragmentation.

The field values for the PEAP Fragment Acknowledgement packet are:

▪ The L, M, S bits are unset.

▪ The Ver field is as specified in section 2.2.2.

▪ The Data field is not present.

2.2.4 TLV

The following diagram specifies the standard TLV structure that MUST be used by the result
TLV (section 2.2.8.1.2).

The fields of the structure MUST be transmitted in network byte order from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

M R TLV Type Length

Value (variable)

...

M (1 bit): The M bit has the following possible values and MUST be set:

Value Meaning

0 This TLV support is optional for the recipient. If the TLV is not supported, the recipient MUST
ignore the TLV.

1 This TLV support is mandatory for the recipient. If the TLV is not supported, the recipient MUST
discard the PEAP packet that contains the TLV.

R (1 bit): The R bit is reserved and MUST be set to zero when sent and MUST be ignored on receipt.

TLV Type (14 bits): A 14-bit unsigned integer in network byte order that indicates the type of data
in the Value field. Allocated types include the following:

19 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Description

1 SoH TLV

2 SoH Request TLV

3 Result TLV or SoH Response TLV (when transmitted in a Vendor-Specific TLV)

7 Vendor-Specific TLV

12 Cryptobinding TLV

Length (2 bytes): A 16-bit unsigned integer in network-byte order that indicates the length, in
bytes, of the Value field.

Value (variable): The value MUST be formatted in accordance with the type specified in the TLV
Type field.

2.2.5 Vendor-Specific TLV

A vendor-specific TLV is used to carry a set of TLVs specific to a vendor (indicated by the Vendor-Id
field). The TLV Type field MUST be set to 7 (see section 2.2.4).

The following diagram shows the format of the vendor-specific TLV, which is placed in the Value field
of the TLV. The fields of the header are transmitted as bytes from left to right.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Vendor-Id

Vendor_TLVs (variable)

...

Vendor-Id (4 bytes): A 32-bit unsigned integer in network byte order, with the most significant 8
bits set to 0 and the remaining 24 bits set to the Structure and Identification of Management

Information (SMI) code of the vendor, taken from [IANA-ENT]. Microsoft vendor-specific TLVs
MUST have the Vendor-Id field set to 311 (0x00000137).

Vendor_TLVs (variable): One or more TLVs defined by the vendor, as indicated by the preceding
Vendor-Id field.

2.2.6 Outer TLVs

Outer TLVs contain optional data and are exchanged between the peer and the server during PEAP
phase 1. Peers expect Outer TLVs in the PEAP Start Packet (sent from the server to the peer), and

servers expect Outer TLVs in the Client Hello Packet (sent from the peer to the server).<2>

The exchanged Outer TLVs are used when generating the Cryptobinding TLV, as specified in section
3.1.5.5.1.

2.2.6.1 Client Hello Packet With Outer TLVs

The format of a Client Hello packet containing Outer TLVs is as follows.

20 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TLS_Message_Length

TLS_Data (variable)

...

Outer_TLV_Data (variable)

...

TLS_Message_Length (4 bytes): A 32-bit unsigned integer in network byte order that indicates the
length, in bytes, of the unfragmented TLS Data.

TLS_Data (variable): The encapsulated (complete or fragmented) TLS packet in TLS record format

(as specified in [RFC2246] section 6).

Outer_TLV_Data (variable): The Outer TLVs. The length of Outer_TLV_data field is equal to the
value of the Length field minus the value of the TLS_Message_Length field minus 10.

2.2.6.2 PEAP Start Packet With Outer TLVs

The Data present in the PEAP Start Packet is always treated as Outer TLV data. The Type_Data field
of the EAP packet MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

001000 Ver Outer_TLV_Data (variable)

...

001000 (6 bits): MUST be set to 001000.

Ver (2 bits): MUST be set to 00.

Outer_TLV_Data (variable): The Outer TLVs. The length of Outer_TLV_data field is equal to the

value of the Length field minus the value of the TLS_Message_Length field minus 6.

2.2.7 EAP Expanded Types

The following diagram shows an EAP Expanded Type packet (EAP Type, Vendor-Id, Vendor-Type,

and Vendor-Data), as specified in [RFC3748] section 5.7. The Type is 254 and the Vendor-Id,

Vendor-Type, and Vendor-Data are part of the Type_Data field of an EAP packet (section 2.2.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Vendor-Id

Vendor-Type

21 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Vendor-Data (variable)

...

Type (1 byte): MUST be set to 254, as specified in [RFC3748] section 5.7.

Vendor-Id (3 bytes): The SMI Network Management Private Enterprise Code of the vendor, as
specified in [RFC3748] section 5.7.

Vendor-Type (4 bytes): The vendor-specific method Type, as specified in [RFC3748] section 5.7.

Vendor-Data (variable): This field is defined by the vendor, as specified in [RFC3748] section 5.7.

2.2.8 EAP Extensions Methods

PEAP introduces three new EAP methods: EAP TLV Extensions Method (section 2.2.8.1), SoH EAP

Extensions Method (section 2.2.8.2), and Capabilities Negotiation Method (section 2.2.8.3). These
methods, unlike traditional EAP methods, are not used to facilitate authentication, but are instead
used to facilitate the exchange of TLVs between a PEAP peer and a PEAP server.

Given this special use of the EAP Extensions Method, these methods MUST be used only as inner EAP
methods, so that the messages are protected by the secure tunnel established by the outer EAP
method.

2.2.8.1 EAP TLV Extensions Method

The EAP packet (section 2.2.1) for the inner EAP method MUST have the Type field set to 33,
indicating that the EAP TLV Extensions Method is being used as the inner EAP method.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Type-data (variable)

...

Type (1 byte): MUST be set to 33.

Type-data (variable): TLVs specific to the EAP TLV Extension Method. See TLV (section 2.2.4) for
the structure of the TLVs. PEAP implementations MUST transmit only the following TLVs:
Cryptobinding TLV (section 2.2.8.1.1), Result TLV (section 2.2.8.1.2), and SoH Response TLV
(section 2.2.8.1.3).

Within an EAP TLV Extensions Method, the Result TLV, Cryptobinding TLV, and SoH Response TLV

can be sent in any order. The receiver MUST NOT assume any order of the TLVs.

2.2.8.1.1 Cryptobinding TLV

The cryptobinding TLV is a TLV, as specified in section 2.2.4. It is used to ensure that the EAP peer
and the EAP server participated in both the inner and the outer EAP authentications of a PEAP
authentication.

The cryptobinding TLV is carried in the Type-data field of the EAP TLV Extensions

Method (section 2.2.8.1).

The fields of the cryptobinding TLV MUST be set as follows.

22 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

M R TLV_Type Length

Value (56 bytes)

...

...

M (1 bit): The M bit MUST be set to 0.

R (1 bit): The R bit is reserved and MUST be set to zero when sent and MUST be ignored on receipt.

TLV_Type (14 bits): A 14-bit unsigned integer in network byte order that indicates the type of data

in the Value field. The TLV_Type MUST be set to 12 (0x0C) for the cryptobinding TLV.

Length (2 bytes): A 16-bit unsigned integer in network byte order that indicates the length, in bytes,
of the Value field. The value of this field MUST be 56 (0x38).

Value (56 bytes): The Value field of the cryptobinding TLV MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved Version RecvVersion SubType

Nonce (32 bytes)

...

...

Compound_MAC (20 bytes)

...

...

Reserved (1 byte): An 8-bit unsigned integer that is reserved and MUST be set to zero when

sent and MUST be ignored on receipt.

Version (1 byte): An 8-bit unsigned integer that indicates the version of the cryptobinding TLV
and MUST be set to 0.

RecvVersion (1 byte): An 8-bit unsigned integer field that MUST be set to 0.

SubType (1 byte): An 8-bit unsigned integer that indicates whether the cryptobinding TLV is a
request or a response. Its value MUST be one of the following.

Value Meaning

0 This cryptobinding TLV represents a request.

23 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

1 This cryptobinding TLV represents a response.

Nonce (32 bytes): A 256-bit unsigned integer containing a temporally unique (random) value.
For more information, see [RFC1750].

Compound_MAC (20 bytes): A 160-bit unsigned integer containing the value used to
cryptographically associate the phase 1 and phase 2 authentications of PEAP. For more
information, see section 3.1.5.5.

2.2.8.1.2 Result TLV

The Result TLV is a TLV, as specified in 2.2.4. It is used to represent the status (success or failure) of
the inner EAP method negotiation or to indicate the sender's consent (ability or inability) to participate
in a fast-reconnect.

The Result TLV is carried in the Type-data field (see EAP Packet (section 2.2.1)) of the EAP TLV

Extensions Methods.

The fields of the Result TLV MUST be set as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

M R TLV_Type Length

Value

M (1 bit): The M bit MUST be set to 1, indicating that the recipient MUST support the result TLV.

R (1 bit): The R bit is reserved and MUST be set to zero when sent and MUST be ignored on receipt.

TLV_Type (14 bits): A 14-bit unsigned integer that MUST be set to 0x03.

Length (2 bytes): A 16-bit unsigned integer in network byte order that indicates the length, in bytes,

of the Value field. This MUST be set to 0x02.

Value (2 bytes): A 16-bit unsigned integer in network byte order. The value indicates the
authentication result and MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Result

Result (2 bytes): Possible values are listed in the table below.

Value Meaning

0 Reserved and MUST NOT be sent

1 Success

2 Failure

3 — 65535 Reserved and MUST NOT be sent

24 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.8.1.3 SoH Response TLV

The SoH Response TLV is a vendor TLV sent within a Microsoft vendor-specific TLV. Sent to the PEAP

peer by the PEAP server, its ultimate recipient is the Statement of Health (SoH) entity, as specified in
[TNC-IF-TNCCSPBSoH], at the peer.

The SoH Response TLV is carried in the Type-data field of the EAP TLV Extensions Method (section
2.2.8.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

M R TLV_Type Length

Value (variable)

...

M (1 bit): The M bit MUST be set to 0.

R (1 bit): The R bit is reserved and MUST be set to zero when sent and MUST be ignored on receipt.

TLV_Type (14 bits): A 14-bit unsigned integer that MUST be set to 0x03.

Length (2 bytes): A 16-bit unsigned integer in network byte order that indicates the length, in bytes,
of the Value field.

Value (variable): This MUST contain a Statement of Health Response (SoHR) message, as defined in
[TNC-IF-TNCCSPBSoH] section 3.6.

2.2.8.2 SoH EAP Extensions Method

This method is an Expanded EAP Type (as specified in section 2.2.7) with the following values for the
fields.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Vendor-Id

Vendor-Type

Vendor-Data (variable)

...

Type (1 byte): MUST be set to 254, as specified in [RFC3748] section 5.7.

Vendor-Id (3 bytes): A 3-byte unsigned integer that MUST be set to 0x000137.

Vendor-Type (4 bytes): A 4-byte unsigned integer that MUST be set to 0x21.

Vendor-Data (variable): This contains either an SoH Request TLV or an SoH TLV (section 2.2.8.2.2).

25 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

SoH Request TLV MUST be present only in an EAP request while SoH TLV MUST be present only in
an EAP response message. The Cryptobinding TLV (section 2.2.8.1.1), Result TLV (section

2.2.8.1.2), and SoH Response TLV (section 2.2.8.1.3) MUST be carried in the EAP TLV Extensions
Method (section 2.2.8.1).

2.2.8.2.1 SoH Request TLV

The SoH Request TLV is a vendor TLV sent within a Microsoft vendor-specific TLV (section 2.2.5) in a
SoH EAP Extensions Method (section 2.2.8.2) request. Sent to the PEAP peer by the PEAP server, its
purpose is to trigger transmission of an SoH message by the peer's Statement of Health for Network
Access Protection Protocol [TNC-IF-TNCCSPBSoH] entity.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

M R TLV_Type Length

M (1 bit): The M bit MUST be set to 0.

R (1 bit): The R bit is reserved. It MUST be set to zero when sent and MUST be ignored on receipt.

TLV_Type (14 bits): A 14-bit unsigned integer that MUST be set to 0x02.

Length (2 bytes): A 16-bit unsigned integer in network byte order that indicates the length, in bytes,
of the Value field. This MUST be set to 0x00.

2.2.8.2.2 SoH TLV

The SoH TLV is a vendor TLV sent within a Microsoft vendor-specific TLV in an SoH EAP Extensions
Method response. Sent to the PEAP server by the PEAP peer, its ultimate recipient is the SoH entity
[TNC-IF-TNCCSPBSoH] at the PEAP server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

M R TLV_Type Length

Value (variable)

...

M (1 bit): The M bit MUST be set to 0.

R (1 bit): The R bit is reserved. It MUST be set to zero when sent and MUST be ignored on receipt.

TLV_Type (14 bits): A 14-bit unsigned integer that MUST be set to 0x01.

Length (2 bytes): A 16-bit unsigned integer in network byte order that indicates the length, in bytes,

of the Value field.

Value (variable): This MUST contain an SoH message, as defined in [TNC-IF-TNCCSPBSoH] section
3.5.

2.2.8.3 Capabilities Negotiation Method

The Capabilities Negotiation Method is an Expanded EAP Type (as specified in section 2.2.7) with the
following values for the fields:

26 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Vendor-Id

Vendor-Type

Vendor-Data

Type (1 byte): MUST be set to 254, as specified in [RFC3748] section 5.7.

Vendor-Id (3 bytes): A 3-byte unsigned integer that MUST be set to 0x000137.

Vendor-Type (4 bytes): A 4-byte unsigned integer that MUST be set to 0x00000022.

Vendor-Data (4 bytes): This contains 32 bits, used to denote various capabilities of the sender. Bits
0-30 are reserved for future use, and MUST be set to zero when sent and MUST be ignored on

receipt.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

0 F

Where the bits are defined as:

Value Description

F

Fragmentation Capability

2.2.8.3.1 Capabilities Method Request

The Capabilities Method Request packet is sent by the PEAP server after receiving the identity

response and before SOH/Inner EAP negotiation.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Vendor-Data

Vendor-Data (4 bytes): This contains 32 bits, and is used to denote various capabilities of the
Server. Bits 0-30 are reserved for future use.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

0 F

Where the bits are defined as:

27 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Description

F

PEAP Phase2 Fragmentation Capability. This flag is set to 1 if the PEAP server is PEAP Phase2
Fragmentation Capable, and set to 0 otherwise.

2.2.8.3.2 Capabilities Method Response

The Capabilities Method Response packet is sent by the PEAP peer after receiving the capabilities
method request packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Vendor-data

Vendor-data (4 bytes): This contains 32 bits, and is used to denote various capabilities of the PEAP
peer. Bits 0-30 are reserved for future use.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

0 F

Where the bits are defined as:

Value Description

F

PEAP Phase2 Fragmentation Capability. This flag is set to 1 if the PEAP peer is PEAP Phase2
Fragmentation Capable, and set to 0 otherwise.

28 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3 Protocol Details

The following sections specify details of PEAP, including abstract data models and message processing
rules.

3.1 Common Details

The following details are common between the PEAP peer and the server.

3.1.1 Abstract Data Model

This section describes a conceptual model that an implementation can maintain to participate in this
protocol. The described organization is provided to facilitate the explanation of how the protocol
behaves. This document does not mandate that implementations adhere to this model as long as their
external behavior is consistent with that described in this document.

The PEAP peer and server participating in this protocol maintain the following data.

isFastReconnectAllowed: A Boolean flag indicating whether fast reconnect is allowed (TRUE) for the
session or not (FALSE).

isSoHEnabled: A Boolean flag indicating whether SoH is enabled (TRUE) or not (FALSE). This is a
configurable field on both peer and server.

isCryptoSupported: A Boolean flag indicating whether the implementation supports Cryptobinding
TLVs (section 2.2.8.1.1) (TRUE) or not (FALSE). If the implementation does not support
Cryptobinding TLV, then it neither validates (if any are received) nor sends a Cryptobinding
TLV.<3>

isCryptoRequired: A Boolean flag indicating whether the implementation requires Cryptobinding

TLVs to be exchanged for the final authentication to be successful (TRUE) or not (FALSE). This is a
configurable field on both peer and server.

InnerEapType: A 4-byte unsigned integer that indicates the Extensible Authentication Protocol (EAP)
type ([RFC3748] section 5) of the PEAP inner EAP method.

BypassCapNegotiation: A Boolean flag indicating whether the machine is configured to exchange
Capabilities Negotiation Method (section 2.2.8.3) packets (TRUE) or not (FALSE).<4>

AssumePhase2Frag: A Boolean flag which indicates whether the counterpart (at the remote end)
supports fragmentation and reassembly of the PEAP inner method packets (TRUE) or not (FALSE).
This value is meaningful only when BypassCapNegotiation is set to TRUE.<5>

isCapabilitiesSupported: A Boolean flag indicating whether the implementation supports Capabilities
Negotiation Method (section 2.2.8.3) packets for the session (TRUE) or not (FALSE).<6>

isFragmentationAllowed: A Boolean flag indicating whether fragmentation and reassembly of the
PEAP inner method packets is supported for the session by both peer and server (TRUE) or not

(FALSE).<7>

MaxSendPacketSize: An integer indicating the maximum EAP packet size. These values are obtained
as specified in sections 3.2.3 and 3.3.3.

TunnelKey: The PEAP Tunnel Key (TK) is a 60-octet key generated as specified in section 3.1.5.5.2.1.
This variable is used while generating Cryptobinding TLVs (section 3.1.5.5) and, if using
cryptobinding, the final MPPE keys (section 3.1.5.7).

29 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

InnerMPPESendKey: A variable-length string returned by the inner EAP method when the inner EAP
authentication is successful. This variable is used while generating InnerSessionKey (ISK) as

specified in section 3.1.5.5.2.2.

InnerMPPESendKeyLength: Specifies the length of InnerMPPESendKey in octets.

InnerMPPERecvKey: A variable-length string returned by inner method when the inner EAP
authentication is successful. This variable is used while generating ISK as specified in section
3.1.5.5.2.2.

InnerMPPERecvKeyLength: Specifies the length of InnerMPPERecvKey in octets.

InnerSessionKey (ISK): ISK is a 32-octet string generated from keys provided by the inner method.
This variable is used while generating Cryptobinding TLVs, as specified in section 3.1.5.5.

CtxtHandle: A 128-bit context handle obtained, as specified in sections 3.2.7.1 and 3.3.7.1, when the

phase 1 tunnel is established. This handle is used in encryption and decryption of messages during
phase 2 of PEAP.

InnerIdentity: An LPWSTR string (as specified in [MS-DTYP] section 2.2.36) for storing the identity
exchanged as part of inner EAP method authentication.

3.1.2 Timers

PEAP relies on the EAP timers, as specified in [RFC3748] section 4.3. There are no PEAP
fragmentation- or reassembly-specific timers.

3.1.3 Initialization

Initialization is specified in sections 3.2.3 and 3.3.3.

3.1.4 Higher-Layer Triggered Events

Higher-layer triggered events are specified in sections 3.2.4 and 3.3.4.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Status and Error Handling

If a PEAP implementation receives a packet that does not satisfy the MUST clauses of this
specification, the packet MUST be silently discarded.

PEAP supports TLS alert messages (as specified in [RFC2246] section 7.2) from phase 1 (see section
1.3), but does not have its own error messaging capabilities.

PEAP implementations MUST support the EAP Extensions Methods for the communication of
authentication status between the PEAP peer and the PEAP server.

In EAP, success or failure packets are sent as the last packet in a conversation. However, these
packets are not protected, and they can be forged by an attacker. Also, success and failure packets
are not retransmitted and, therefore, might be lost. As a result, PEAP provides its own protected and
reliable success/failure indications via the EAP Extensions Methods. A PEAP peer implementation MUST
consider authentication successful only if it receives both an EAP success packet and an EAP TLV

extensions result TLV with the Value field set to 1 (which indicates success, as specified in section
2.2.8.1.2). This behavior is also evident in the processing rules specified in sections 3.2.5.4.7,
3.2.5.4.8, and 3.2.5.4.9.

30 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.5.2 PEAP Packet Processing

This section describes the PEAP packet processing common to peer and server. In contrast, PEAP
packet processing specific to peer and server is described in sections 3.2.5.4 and 3.3.5.4 respectively.

3.1.5.2.1 Received PEAP Packet with L and M Bit Set

If isFragmentationAllowed is TRUE and the PEAP phase 2 is in progress, then store the first
fragment and send a PEAP Fragment Acknowledgement packet (section 2.2.3) request (server) or
response (peer). For all the next fragments (M bit set and L bit not set), store the fragments and send
a PEAP Fragment Acknowledgement packet request (server) or response (peer). After receiving the
last fragment (L and M bits not set), reassemble all the fragments and do the packet processing as

specified in sections 3.2.5.4 and 3.3.5.4.

If isFragmentationAllowed is FALSE and the PEAP phase 2 is in progress, then the packet is
ignored.

3.1.5.2.2 Sending PEAP Packet with packet size more than MaxSendPacketSize

If isFragmentationAllowed is TRUE and the PEAP phase 2 is in progress, then fragment the packet
and send the first fragment (L and M bit set). After receiving a PEAP Fragment Acknowledgement

packet (section 2.2.3) response (server) or request (peer), send the next fragment (M bit set and L bit
not set). Continue sending the fragments until the last fragment (L and M bits not set).

If isFragmentationAllowed is FALSE and the PEAP phase 2 is in progress, then the packet is
ignored.

3.1.5.2.3 Compress_Encrypt_Send Method

This method takes the inner authentication method or the EAP expanded type packets as input and
processes it as follows:

1. Compress the input data as specified in section 3.1.5.6, then encrypt the compressed data by

passing it to the TLS layer using the EncryptMessage method.

2. Prepare a PEAP packet by saving the encrypted data returned by the EncryptMessage method as
the Data field of the PEAP packet and return the prepared PEAP packet as the Received PEAP
Request (section 3.2.5.4.2) or Received PEAP Response (section 3.3.5.4.2) higher-layer triggered

event.

3.1.5.3 Version Negotiation

PEAP version negotiation MUST be done as follows:

1. In the first PEAP packet (an EAP-Request) sent from the PEAP server, the Version field MUST be

set to 0.

2. The PEAP peer MUST respond with its preferred PEAP version.

3. If the PEAP server does not support the PEAP version proposed by the peer, it MUST terminate the
conversation by sending an EAP-Failure message (a PEAP server supporting a version of the PEAP
protocol SHOULD support all earlier versions of the protocol).

4. If the PEAP server supports the PEAP version proposed by the peer, it SHOULD set the Version

field to the proposed version for all subsequent PEAP request packets.

PEAP servers MAY respond to a peer proposal for older versions of the protocol by terminating the EAP
conversation with an EAP-Failure message.

31 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.5.4 Phase 1 (TLS Tunnel Establishment)

Phase 1 of PEAP is a slightly modified implementation of EAP-TLS, as specified in [RFC5216], the only
differences being:

A PEAP peer MAY send a certificate when requested by a PEAP server.

1. Implementations MUST set the Type field of the EAP packets to 25 (PEAP).

2. The TLS version supported MUST correspond to TLS v1.0.

3. To ensure interoperability, PEAP peers and PEAP servers MUST be able to negotiate the following
TLS cipher suites (as specified in [RFC2246] section A.5):

▪ TLS_RSA_WITH_RC4_128_MD5

▪ TLS_RSA_WITH_RC4_128_SHA

For more information on the semantics associated with phase 1 of PEAP, see sections 3.2.5.2 and

3.3.5.2.

3.1.5.5 Cryptobinding

By deriving and exchanging values from the PEAP phase 1 key material (Tunnel Key) and from the
PEAP phase 2 inner EAP method key material (Inner Session Key), it is possible to prove that the
two authentications terminate at the same two entities (PEAP peer and PEAP server). This process,
termed "cryptobinding", is used to protect the PEAP negotiation against "Man in the Middle" attacks.

To facilitate this, a two-way handshake between the PEAP peer and the PEAP server is initiated with
two messages: the cryptobinding request (sent from the PEAP server to PEAP peer) and the
cryptobinding response (sent from the PEAP peer to PEAP server); both messages use the same

format (see Cryptobinding TLV (section 2.2.8.1.1)).

Implementations MAY<8> choose to support the cryptobinding feature of PEAP.

The Compound_MAC field in the cryptobinding packet MUST be the output of an HMAC-SHA1-160
operation, as specified in [RFC2104] and [RFC3174]. The HMAC-SHA1-160 operation requires the data
and the key as inputs, both of which are derived from the PEAP phase 1 and the inner method. For
more details on how an implementation generates the data used in the HMAC-SHA1-160 operation for
the cryptobinding packet, see section 3.1.5.5.1. For more details on how an implementation generates

the key used in the HMAC-SHA1-160 operation for the cryptobinding packet, see section 3.1.5.5.2.

3.1.5.5.1 Input Data Used in the Cryptobinding HMAC-SHA1-160 Operation

The data used as the input to the HMAC-SHA1-160 operation used in the creation of the Compound
MAC MUST be constructed, through concatenation, as follows:

1. 60 bytes containing the cryptobinding TLV with the Compound_MAC field zeroed out.

2. 1 byte containing the EAP type sent by the peer in the first processed PEAP message. For PEAP,

the value MUST be the IANA-assigned EAP type code (25) for PEAP (see [IANA-EAP]).

3. The Outer_TLV_Data field of a PEAP start packet (as specified in section 2.2.6.2 when the
HMAC-SHA1-160 operation is performed on a Peer, or the Outer_TLV_Data field of a Client Hello
Packet (as specified in section 2.2.6.1) when the HMAC-SHA1-160 operation is performed on a
Server.

3.1.5.5.2 Key Used in the Cryptobinding HMAC-SHA1-160 Operation

32 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The key used by the HMAC-SHA1-160 operation to create the Compound MAC field is called the
Compound MAC Key (CMK). The CMK MUST be constructed by following the steps specified later in

this section. These steps produce the following intermediate values:

▪ Tunnel key (TK): A 60-octet key generated by phase 1 of PEAP. For details, see section

3.1.5.5.2.1. The generated Tunnel Key is stored in the variable TunnelKey.

▪ Inner Session Key (ISK): A 32-octet string generated from keys provided by the inner method (or
32 zero octets if the inner method does not provide keys), if PEAP did not resume an
authentication using fast-reconnect (as specified in 3.1.5.5.2.2). An ISK is not generated in the
case of fast-reconnect, because the Intermediate PEAP MAC Key (IPMK) is generated from TK (as
specified in 3.1.5.5.2.2). The generated Inner Session Key is stored in the variable
InnerSessionKey.

▪ Intermediate PEAP MAC Key (IPMK): The intermediate combined key used to derive the Compound
MAC (as specified in section 3.1.5.5.2.2).

▪ IPMK Seed: The seed value used in the call to the PRF+ operation (for more information, see

[RFC4306] section 2.13). For details, see section 3.1.5.5.2.2.

3.1.5.5.2.1 PEAP Tunnel Key (TK)

The PEAP Tunnel Key (TK) is calculated using the first 60 octets of the (secret) key material
generated, as described in the EAP-TLS algorithm (see [RFC5216] section 2.3). More explicitly, the TK
is the first 60 octets of the Key_Material, as specified in [RFC5216]: TLS-PRF-128 (master secret,
"client EAP encryption", client.random || server.random).

3.1.5.5.2.2 Intermediate PEAP MAC Key (IPMK) and Compound MAC Key (CMK)

The Intermediate PEAP MAC key (IPMK) and Compound MAC Key (CMK) are constructed using the

following steps:

▪ If the PEAP peer and the PEAP server resumed an authentication using fast reconnect, then IPMK
and CMK are obtained from TK as shown in the following steps.

▪ If the PEAP peer and the PEAP server did not resume an authentication using fast reconnect, and
an inner method was used for authenticating the PEAP peer, then the IPMK is generated using the
following steps:

1. Generate an ISK:

▪ If the inner EAP method generates keys, then an implementation MUST obtain the
InnerMPPESendKey, InnerMPPERecvKey and their lengths from the inner method as
specified in sections 3.2.5.4.7 and 3.3.7.3. The InnerMPPESendKey and
InnerMPPERecvKey are the same as MS-MPPE-Send-Key and MS-MPPE-Recv-Key
respectively as specified in [RFC2548], sections 2.4.2 and 2.4.3.

Each inner method decides how to generate these keys. The Protected Extensible

Authentication Protocol uses the keys returned by the inner method and calculates ISK as
follows: (The following Microsoft Point-to-Point Encryption (MPPE) keys are not encrypted

by RADIUS shared secret, and contain only the key itself and no length, salt, or type
field.)

 Peer ISK = InnerMPPESendKey | InnerMPPERecvKey
 Server ISK = InnerMPPERecvKey | InnerMPPESendKey

If the concatenated string length (obtained from InnerMPPESendKeyLength and
InnerMPPERecvKeyLength) is more than 32 octets, then the first 32 octets form the

33 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

ISK. If the concatenated string length is less than 32 octets, then the string is appended
with 0x00 at the end as padding to obtain a total length of 32 octets.

▪ If the inner EAP method did not generate any keys, then the ISK MUST be 32 octets of
0x00.

2. Generate the IPMK Seed as follows:

To obtain a seed value for the PRF+ function (see [RFC4306], section 2.13) in order to
generate an IPMK, an implementation MUST create a byte array containing the ASCII values
for the string "Inner Methods Compound Keys" and MUST concatenate the ISK as follows
(where "|" denotes concatenation of strings):

 IPMK Seed = "Inner Methods Compound Keys" | ISK

3. Generate the IPMK and CMK as follows:

To generate the IPMK, implementations MUST use the first 40 octets of TK (see section
3.1.5.5.2.1), and MUST use the PRF+ seed value as the input to a PRF+ operation, and MUST
generate 60 bytes. The first 40 bytes are the IPMK, while the last 20 bytes are the CMK.

 TempKey = First 40 octets of TK
 IPMK = First 40 octets of PRF+ (TempKey, IPMK Seed, 60);

This is the PRF+ algorithm (where "|" denotes concatenation).

 K = Key, S = Seed, LEN = output length

In generating IPMK and CMK, 60 bytes are required. Therefore, LEN=60 in this case.

 PRF+(K, S, LEN) = T1 | T2 | ... |Tn
 Where:
 T1 = HMAC-SHA1 (K, S | 0x01 | 0x00 | 0x00)
 T2 = HMAC-SHA1 (K, T1 | S | 0x02 | 0x00 | 0x00)

 ...

 Tn = HMAC-SHA1 (K, Tn-1 | S | n | 0x00 | 0x00)

As shown, PRF+ is computed in iterations. The number of iterations (n) depends on the output
length (LEN). The computation stops when the concatenated length of T1, T2, ..., Tn is equal
to or greater than the output length. When calculating IPMK and CMK, required output length
is 60 bytes (LEN=60). Because each HMAC-SHA1 operation generates 20 bytes, n=3 iterations
(that is, T1, T2 and T3) are required to compute IPMK and CMK.

The preceding PRF+ definition is valid only when LEN < 256 and n < 256.

3.1.5.6 Phase 2 (EAP Encapsulation)

Once phase 1 successfully completes, all subsequent EAP messages are exchanged inside the tunnel
established in phase 1. The exceptions are the EAP success or the EAP failure packets (as specified in
[RFC3748] section 4.2), which are never sent within the tunnel because result indications are handled

34 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

by the PEAP implementation itself instead of the inner EAP method (via the Result
TLV (section 2.2.8.1.2)).

PEAP can compress an inner EAP packet prior to encapsulating it within the Data field of a PEAP
packet by removing its Code, Identifier, and Length fields. This compression scheme MUST be

applied to all inner method types except for the EAP TLV Extensions Method, the Capabilities
Negotiation Method, and the SoH EAP Extensions Method; in these cases, the compression scheme
MUST NOT be applied.

Likewise, PEAP can decompress an EAP packet before passing it to an inner EAP method for
processing. It does this by setting the Code and Identifier fields of the inner EAP packet to the
values stored in the Code and Identifier fields of the outer EAP packet, and by setting the Length
field of the inner EAP packet to the length of the decrypted inner EAP message plus 4. This

decompression scheme MUST be applied to all inner EAP method types except for the EAP TLV
Extensions Method, the Capabilities Negotiation Method, and the SoH EAP Extensions Method; in these
cases, the decompression scheme MUST NOT be used.

PEAP implementations MUST only support a single EAP authentication method per session with a type

greater than or equal to 4, in addition to supporting EAP TLV Extensions Method (and optionally SoH
EAP Extensions Method) in the same session.

3.1.5.7 Key Management

PEAP methods MUST generate MPPE keys as follows.

1. If a PEAP server and PEAP peer have successfully exchanged cryptobinding TLVs, then the keys
are generated as follows:

1. The Compound Session Key (CSK) is derived with the following equation.

 CSK = PRF+ (IPMK, "Session Key Generating Function", 128)

The output length of the CSK MUST be 128 bytes. IPMK and PRF+ function is defined in
section 3.1.5.5.2.2.

For the seed value for the PRF+ function for the CSK, an implementation MUST create a byte
array containing the ASCII values for the string "Session Key Generating Function" appended
with a NULL(0x00) byte.

2. The first 64 bytes of the CSK are split into two MPPE keys, as follows.

 First 32 bytes of CSK Second 32 bytes of CSK

PEAP peer MS-MPPE-Send-Key MS-MPPE-Recv-Key

PEAP server MS-MPPE-Recv-Key MS-MPPE-Send-Key

2. When an endpoint (either a PEAP server or PEAP peer) is incapable of sending cryptobinding TLVs,

and the other endpoint is configured to accept such authentications, then the keys are obtained
from the first 64 octets of the Key_Material, as specified in [RFC5216]: TLS-PRF-128 (master
secret, "clientEAP encryption", client.random || server.random).

 First 32 bytes of Key_Material Second 32 bytes of Key_Material

PEAP peer MS-MPPE-Send-Key MS-MPPE-Recv-Key

PEAP server MS-MPPE-Recv-Key MS-MPPE-Send-Key

35 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.6 Timer Events

PEAP relies on the timer events in EAP, as specified in [RFC3748] section 4.3.

3.1.7 Other Local Events

This section describes local events common to peer and server.

PEAP relies on the TLS Protocol, as specified in [RFC2246], for session disconnects and other
conditions that occur during the course of a TLS session.

3.1.7.1 Interface with TLS

The PEAP layer interfaces with the TLS layer on both the client and server using the following abstract
methods. If either of the abstract methods described below returns a failure error code, the

connection is terminated, and the error is indicated to the transport layer.

EncryptMessage: The PEAP layer uses this method on both the client and server to encrypt the
messages exchanged during phase 2 of PEAP. This method takes the following parameters: the
CtxtHandle, the input buffer containing the message to be encrypted, the input buffer length, the
output buffer that contains the encrypted message when the method returns, the output buffer length,

and an error code.

DecryptMessage: The PEAP layer uses this method on both the client and server to decrypt the
messages exchanged during phase 2 of PEAP. This method takes the following parameters: the
CtxtHandle, the input buffer containing the encrypted message, the input buffer length, the output
buffer that contains the decrypted message when the method returns, the output buffer length, and
an error code.

Phase 1 of PEAP is a slightly modified implementation of EAP-TLS, as defined in section 3.1.5.4.

During this phase, PEAP interfaces with TLS through EAP-TLS as specified in [RFC5216].

3.1.7.2 Interface with EAP

The PEAP layer interfaces with the EAP layer on both the client and server using the following abstract

methods. If the abstract methods noted in the following descriptions return a failure error code, the
connection is terminated, and the error is indicated to the transport layer.

GetMaxSendPacketSize: The PEAP layer uses this method on both client and server to get the
maximum size of the EAP packet. The method takes the following parameter: an output integer that
contains the maximum size of the EAP packet.

isEAPAuthSuccess: The PEAP layer uses this method on the client to determine whether the inner
EAP method authentication is successful or not. This method also returns MPPE send and receive keys

in case the authentication is successful. The method takes the following parameters: an output
Boolean flag indicating authentication result, the output MPPE send and receive keys, and the lengths

of the keys in case the authentication result flag indicates TRUE.

EapInitialize: The PEAP layer or the transport layer carrying EAP uses this method on both the client
and server to initialize the EAP layer. This method takes the list of supported EAP methods as a
parameter.

36 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.2 Peer Details

3.2.1 Abstract Data Model

This section describes a model of possible data organization that a client-side implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that an implementation
adhere to this model as long as the external behavior of the implementation is consistent with what is
described in this specification.

The PEAP peer participating in this protocol maintains the following data.

isFastReconnectConfigured: A Boolean flag indicating whether fast reconnect is configured to be
allowed (TRUE) or not allowed (FALSE) for the session.

isIdPrivacyEnabled: A Boolean flag indicating whether Identity Privacy feature is enabled (TRUE)
or not (FALSE) for the session.<9>

IdentityPrivacyString: A NULL terminated Unicode string indicating the identity to be used in the

outer EAP-Identity response packet.<10>

isValidateServerCertEnabled: A Boolean flag indicating whether a server certificate will be validated
for the session. . A value of TRUE means the certificate will be validated. A value of FALSE means
the certificate will not be validated.

ServerNames: An array of NULL terminated Unicode strings indicating the names of authenticating
servers that the client configured to authenticate to.

isValidateServerNameEnabled: A Boolean flag indicating whether the subject name of the server

certificate should (TRUE) or should not (FALSE) be validated against the configured ServerNames
for the session.

isPromptForValidationDisabled: A Boolean flag indicating whether a user can (TRUE) or cannot
(FALSE) be prompted to override the validation failures on the server certificate.

TrustedCertHashInfoList: An array of 20-byte SHA1 hash ([RFC3174]) specifying the subset of
certificates from a trust root that needs to be used by the peer to validate the trust anchor
(section 6 of [RFC5280]) of the server certificate obtained during the Phase 1 TLS Tunnel

establishment.

The [MS-GPWL] specifies a mechanism to initialize the EAP methods with method-specific settings. It
specifies the settings for PEAP in BLOB format (section 2.2.3.1) and in schema format (section
2.2.3.1.2). The following table specifies the elements in the BLOB and xml schema, and it specifies the
corresponding abstract data model variable that gets initialized.

Abstract Data Model (ADM)
element BLOB element from [MS-GPWL]

Schema element from [MS-
GPWL]

isSoHEnabled PeapEnableQuarantine (2.2.3.1.2) EnableQuarantineChecks (2.2.3.2.6)

isCryptoRequired PeapEnforceCryptoBinding
(2.2.3.1.2)

RequireCryptoBinding (2.2.3.2.6)

isFastReconnectConfigured PeapFastRoaming (2.2.3.1.2) FastReconnect (2.2.3.2.6)

InnerEapType InnerEapType (2.2.3.1.2.2) baseEap:Eap (2.2.3.2.4)

isIdPrivacyEnabled PeapEnableIdentityPrivacy
(2.2.3.1.2)

EnableIdentityPrivacy (2.2.3.2.6)

37 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Abstract Data Model (ADM)
element BLOB element from [MS-GPWL]

Schema element from [MS-
GPWL]

IdentityPrivacyString IdentityPrivacyString (2.2.3.1.2) AnonymousUserName (2.2.3.2.6)

isValidateServerCertEnabled PeapTlsPhase1NoValidateServerCert
(2.2.3.1.2.1)

PerformServerValidation (2.2.3.2.5)

isValidateServerNameEnable
d

PeapTlsPhase1NoValidateName
(2.2.3.1.2.1)

AcceptServerName (2.2.3.2.5)

isPromptForValidationDisable
d

PeapTlsPhase1DisablePromptValidatio
n (2.2.3.1.2.1)

DisableUserPromptForServerValidatio
n (2.2.3.2.8)

ServerNames ServerName (2.2.3.1.2.1) ServerNames (2.2.3.2.8)

TrustedCertHashInfoList TrustedCertHashInfoList
(2.2.3.1.2.1)NumberOfCAs

(2.2.3.1.2.1) field indicates the
number of elements in the
TrustedCertHashInfoList ADM
element.

TrustedRootCA (2.2.3.2.8)Number of
<TrustedRootCA> elements

(2.2.3.2.8) indicates the number of
elements in the
TrustedCertHashInfoList ADM
element.

The client maintains the current state of the authentication in an integer variable called currentState.
The currentState variable is initialized when the client starts the PEAP authentication and remains
valid till the authentication is done. At any point in time, the currentState variable can have the
following integer values, each one representing the current state of the client machine.

▪ PEAP_BEGIN

▪ PEAP_PHASE1_INPROGRESS

▪ TUNNEL ESTABLISHED

▪ PHASE2_EAP_INPROGRESS

▪ INNER_IDENTITY_SENT

▪ SUCCESS_TLV_SENT

▪ FAILURE_TLV_SENT

▪ PEAP_SUCCESS

▪ PEAP_FAILED

38 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Figure 4: PEAP Peer State Machine

3.2.2 Timers

See section 3.1.2.

3.2.3 Initialization

PEAP MUST be initialized on the peer when it is invoked by EAP as an authentication method. This
occurs when EAP-Request/Identity packet is received, as specified in [RFC3748] section 5.1. The

currentState variable MUST be initialized to PEAP_BEGIN and the isFastReconnectAllowed datum
MUST be initialized to FALSE.

BypassCapNegotiation and AssumePhase2Frag are protocol configurations,<11> which can be
initialized in an implementation-specific manner.<12>

39 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

If isIdPrivacyEnabled is set to TRUE, then call EapSetIdentityPrivacyString with
IdentityPrivacyString as the parameter.

isCapabilitiesSupported MUST be initialized to TRUE, if the PEAP method implementation supports
Capabilities Method Negotiation (section 2.2.8.3) and BypassCapNegotiation is set to FALSE.

Otherwise, it is initialized to FALSE.

isFragmentationAllowed MUST be initialized to TRUE, if the PEAP method implementation supports
phase 2 fragmentation and BypassCapNegotiation and AssumePhase2Frag are set to TRUE.
Otherwise initialize isFragmentationAllowed to FALSE.

A PEAP peer MUST be configured with one inner EAP method to use while authenticating with a PEAP
server. The EapInitialize method is called to initialize the inner EAP instance with InnerEAPType as
the parameter.

The PEAP peer obtains the maximum EAP packet size using the GetMaxSendPacketSize method,
and assigns the size to the MaxSendPacketSize field.

3.2.4 Higher-Layer Triggered Events

Use of EAP is triggered by attempts to access the network. A transport (such as [IEEE802.1X]) is
typically invoked, which in turn invokes EAP, which ultimately results in an EAP server proposing use
of PEAP as part of the first message sent.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Status and Error Handling

Status and error handling are specified in section 3.1.5.1.

3.2.5.2 Phase 1 (TLS Tunnel Establishment)

The first PEAP packet received from the PEAP server is the PEAP start packet. It specifies the version
of the PEAP protocol and indicates that the PEAP server is prepared to begin the PEAP phase 1
negotiation. Implementations MUST reset the TLS session upon receiving a PEAP packet with the S
flag on packets other than the first packet. Implementations MUST set the EAP Type field of all PEAP

packets to 25 (PEAP).

Once the PEAP version is negotiated, all subsequent PEAP request and response packets MUST include
the negotiated version. The PEAP peer MUST set the PEAP version to 0 in PEAP responses, regardless
of the version sent in the initial or subsequent PEAP requests. The PEAP server MUST set the PEAP
version to 0 in PEAP requests. When a peer negotiates a version other than zero, the PEAP server
MUST fail the authentication by sending an EAP failure packet.

The PEAP peer response begins the negotiation of a TLS (as specified in [RFC2246]) with the PEAP

server. The TLS tunnel can be established via a TLS session resume (as specified in [RFC2246] section
F.1.4).

Note that PEAP relies on the TLS Protocol [RFC2246] to manage the TLS session (including the
handling of any error or other conditions that occur within the TLS Protocol). The TLS packets are
exchanged encapsulated in PEAP packets as explained in section 3.1.5.4.

3.2.5.3 PEAP Peer Cryptobinding Validation

Upon receipt of the cryptobinding request, the PEAP peer MUST validate the message using the
following process.

40 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The cryptobinding TLV MUST specify the appropriate subtype (for example, a request must specify a
request and a response must specify a response); otherwise the validation is declared as failed.

The PEAP peer MUST then construct the cryptobinding structure (see cryptobinding TLV), populating
its Nonce field with the nonce supplied in the corresponding cryptobinding request. The

implementation then MUST compute the Compound MAC as specified in 3.1.5.5.

A PEAP peer implementation MUST then compare the Compound MAC contained in the cryptobinding
request with the Compound MAC that the peer itself computed. If the Compound MACs do not match,
then the validation is declared as failed; otherwise, the validation is declared as success.

3.2.5.4 Packet Processing

If a packet is received with L and M bits set, then reassembly is done as specified in section 3.1.5.2.1.
After reassembly, the packet is processed as specified in the following sections.

3.2.5.4.1 General Packet Validation

When receiving a packet, the PEAP peer MUST validate that the packet conforms to the syntax as

specified in Message Syntax (section 2.2) and its subsections. If an invalid packet is received, the
error is handled as specified in section 3.2.5.1.

3.2.5.4.2 Received PEAP Request

If the currentState variable is set to PEAP_PHASE1_INPROGRESS, then:

1. Change the Type field in the PEAP packet to EAP-TLS [IANA-EAP], and process the packet as
specified in [RFC5216].

2. Prepare the EAP Response packet as specified in [RFC5216].

3. Change the Type field to PEAP, and then send the packet to the server.

If currentState is set to TUNNEL_ESTABLISHED, INNER_IDENTITY_SENT, or

PHASE2_EAP_INPROGRESS, then:

1. Pass the Data field in the PEAP packet to the TLS layer for decryption using the DecryptMessage
method.

2. If the decrypted data returned by DecryptMessage is compressed data, apply the decompression

method as specified in section 3.1.5.6.

3. If the currentState is set to TUNNEL_ESTABLISHED, then:

1. If the decrypted data matches an SoH Request TLV (section 2.2.8.2.1), then process the data
as specified in section 3.2.5.4.5.

2. If the decrypted data matches the EAP TLV Extensions Method (section 2.2.8.1), then process
the data as specified in section 3.2.5.4.7.

3. If the decrypted data matches the Identity Request packet, then process the data as specified
in section 3.2.5.4.

4. Ignore the packet if the decrypted data does not match the earlier conditions.

4. If currentState is set to INNER_IDENTITY_SENT, then:

1. If the decrypted data matches the Capabilities Negotiation Request, then process the data as
specified in section 3.2.5.4.6.

41 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2. If the decrypted data matches an SoH Request TLV, then process the data as specified in
section 3.2.5.4.5.

3. If the decrypted data matches the EAP TLV Extensions Method, then process the data as
specified in section 3.2.5.4.7.

4. If the decrypted data does not match the previous conditions, then check if the first byte
matches InnerEapType. If it does not match, then prepare an EAP Nak packet ([RFC3748]
section 5.3.1) with the Type-Data field set to InnerEapType, and then call the
Compress_Encrypt_Send method (section 3.1.5.2.3). Otherwise, prepare an EAP packet
with the fields set as follows:

▪ Code: PEAP packet Code

▪ Identifier: PEAP packet Identifier

▪ Length: Length of the decrypted data + 4

▪ Type: InnerEapType

▪ Data: Decrypted data

Pass the previously prepared EAP packet to the inner EAP method and when the inner EAP
method returns an EAP Response packet, call the Compress_Encrypt_Send routine and then
set currentState to PHASE2_EAP_INPROGRESS.

5. If currentState is set to PHASE2_EAP_INPROGRESS, then:

1. If the decrypted data matches the EAP TLV Extensions Method, then process the data as
specified in section 3.2.5.4.7.

2. If the first byte of the decrypted data does not match InnerEapType, then ignore the packet,
otherwise prepare an EAP packet with the fields set as follows:

▪ Code: PEAP packet Code

▪ Identifier: PEAP packet Identifier

▪ Length: Length of the decrypted data + 4

▪ Type: InnerEapType

▪ Data: Decrypted data

Pass the EAP packet prepared earlier to the inner EAP method and when the inner EAP method
returns an EAP Response packet, call Compress_Encrypt_Send (section 3.1.5.2.3).

If currentState is not set to PEAP_PHASE1_INPROGRESS, TUNNEL_ESTABLISHED,
INNER_IDENTITY_SENT, or PHASE2_EAP_INPROGRESS, then the packet is ignored.

3.2.5.4.3 Received PEAP Packet with S Bit Set

If the currentState variable is set to PEAP_BEGIN, then:

1. Change the Type field in the PEAP packet to EAP-TLS [IANA-EAP], and process the packet as
specified in [RFC5216].

2. Prepare the EAP Response packet as specified in [RFC5216].

3. Change the Type field to PEAP, and then send the packet to the server.

4. Change currentState to PEAP_PHASE1_IN_PROGRESS.

42 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

If currentState is not set to PEAP_BEGIN, then the packet is ignored.

3.2.5.4.4 Received PEAP Packet With Inner EAP Type As Identity

If the currentState variable is set to TUNNEL_ESTABLISHED, then:

1. Get the Identity of the peer to be authenticated from the protocol to be tunneled. For an example,
see [MS-CHAP] section 3.2.4, which explains how to get the Identity for the Extensible
Authentication Protocol Method for the Microsoft Challenge Handshake Authentication Protocol
(CHAP).

2. Prepare an EAP Identity response packet [RFC3748] with the Identity obtained in step 1 as
Type_Data value.

3. Compress the EAP packet obtained in step 2 as specified in section 3.1.5.6, and then encrypt the

compressed data by passing it to the TLS layer using the EncryptMessage method.

4. Prepare a PEAP packet by keeping the encrypted data returned by the EncryptMessage method

as the Data field of the PEAP packet. Then, send the PEAP packet to the server (see section
3.1.5.2.2).

5. Change currentState to INNER_IDENTITY_SENT.

If currentState is not set to TUNNEL_ESTABLISHED, then the packet is ignored.

3.2.5.4.5 Received SoH Request TLV

If the currentState variable is set to TUNNEL_ESTABLISHED or INNER_IDENTITY_SENT, then:

▪ If isSoHEnabled is set to FALSE:

1. Prepare an EAP NAK packet as per [RFC3748].

2. Compress the EAP packet obtained in step 1 (as specified in section 3.1.5.6), and encrypt the
compressed data by passing it to the TLS layer using the EncryptMessage method.

3. Prepare a PEAP packet by keeping the encrypted data returned by the EncryptMessage
method as the Data field of the PEAP packet. Then, send the PEAP packet to the server (see
section 3.1.5.2.2).

▪ If isSoHEnabled is set to TRUE:

1. Obtain the SoH message using an implementation-specific mechanism.

2. Prepare a SoH TLV (section 2.2.8.2.2) with the SoH message obtained in step 1, and encrypt it
by passing it to the TLS layer using the EncryptMessage method.

3. Prepare a PEAP packet by keeping the encrypted data returned by the EncryptMessage
method as the Data field of the PEAP packet. Then, send the PEAP packet to the server (see
section 3.1.5.2.2).

If currentState is not set to TUNNEL_ESTABLISHED or INNER_IDENTITY_SENT, then the packet is
ignored.

3.2.5.4.6 Received Capabilities Method Request

If the currentState variable is set to INNER_IDENTITY_SENT, then:

1. If isCapabilitiesSupported is set to FALSE, prepare an EAP NAK packet as per [RFC3748]
section 5.3.

43 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2. If isCapabilitiesSupported is set to TRUE, prepare a Capabilities Method
Response (section 2.2.8.3.2) packet with the F flag set to one if PEAP peer supports phase 2

fragmentation, otherwise set F flag to zero.<13> If the F flag of the received packet is set to one
and PEAP peer is phase 2 fragmentation capable, then set isFragmentationAllowed to TRUE,

otherwise set isFragmentationAllowed to false.

3. Compress the EAP packet (as specified in section 3.1.5.6) obtained above and then encrypt the
compressed data by passing it to the TLS layer using the EncryptMessage method.

4. Prepare a PEAP packet by keeping the encrypted data returned by the EncryptMessage method
as the Data field of the PEAP packet. Then, send the PEAP packet to the server (see section
3.1.5.2.2).

If currentState is not set to INNER_IDENTITY_SENT, then the packet is ignored.

3.2.5.4.7 Received EAP TLV Extensions Method Packet

If the currentState datum is set to TUNNEL_ESTABLISHED or PHASE2_EAP_INPROGRESS, then the

following steps are applied in sequence:

1. If a Result TLV (section 2.2.8.1.2) is received with the value field set to 2, then prepare an EAP
TLV Extensions Method (section 2.2.8.1) packet with Result TLV (the value field set to 2). Change

the currentState datum to FAILURE_TLV_SENT and proceed to step 11.

2. If the currentState datum is set to PHASE2_EAP_INPROGRESS and the authentication result flag
returned by isEAPAuthSuccess indicates FALSE, then prepare an EAP TLV Extensions Method
packet with Result TLV (the value field set to 2). Change the currentState datum to
FAILURE_TLV_SENT and proceed to step 11.

3. If the currentState datum is set to PHASE2_EAP_INPROGRESS and the authentication result flag
returned by isEAPAuthSuccess indicates TRUE, then store the InnerMPPESendKey,

InnerMPPESendKeyLength, InnerMPPERecvKey, and InnerMPPERecvKeyLength as
returned by isEAPAuthSuccess.

4. If the currentState datum is set to TUNNEL_ESTABLISHED and isFastReconnectAllowed is set
to FALSE, then prepare an EAP TLV Extensions Method packet with Result TLV (the value field set
to 2) and keep the currentState datum set to the same value and proceed to step 11.

5. If the currentState datum is set to TUNNEL_ESTABLISHED and isFastReconnectAllowed is set
to TRUE, but the peer cannot start fast reconnect because of implementation defined reasons,

then prepare an EAP TLV Extensions Method packet with Result TLV (the value field set to 2) and
keep the currentState datum set to the same value. Set isFastReconnectAllowed to FALSE
and proceed to step 11.

6. If isCryptoSupported is set to TRUE and a Cryptobinding TLV (section 2.2.8.1.1) is received
whose validation (described in section 3.2.5.3) fails, then prepare an EAP TLV Extensions Method
packet with Result TLV (the value field set to 2). Change the currentState datum to

FAILURE_TLV_SENT and proceed to step 11.

7. If isCryptoSupported is set to TRUE, isCryptoRequired is set to TRUE and the received packet

has only a Result TLV (the value field set to 1), then prepare an EAP TLV Extensions Method
packet with Result TLV (the value field set to 2). If the currentState datum is set to
PHASE2_EAP_INPROGRESS then change it to FAILURE_TLV_SENT and proceed to step 11. If the
currentState datum is set to TUNNEL_ESTABLISHED, then keep it the same and proceed to step
11.

8. If the received EAP TLV Extensions Method packet contains both a Cryptobinding TLV and a Result
TLV, and isCryptoSupported is set to TRUE, then prepare an EAP TLV Extensions Method packet
with both Result TLV (the value field set to 1) and Cryptobinding TLV (the value field set to the

44 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

computed value). Change the currentState datum to SUCCESS_TLV_SENT and proceed to step
11.

9. If the received EAP TLV Extensions Method packet contains both a Cryptobinding TLV and a Result
TLV, and isCryptoSupported is set to FALSE, then prepare an EAP TLV Extensions Method packet

with Result TLV (the value field set to 1). Change the currentState datum to
SUCCESS_TLV_SENT and proceed to step 11.

10. If the received EAP TLV Extensions Method packet contains only a Result TLV and no
Cryptobinding TLV, then prepare an EAP TLV Extensions Method packet with Result TLV (the value
field set to 1). Change the currentState datum to SUCCESS_TLV_SENT and stop processing the
packet.

11. If the received packet does not meet any of the above conditions, then ignore the packet and keep

the currentState datum set to the same value.

12. Encrypt the EAP TLV Extensions Method packet obtained above by passing it to the TLS layer using
the EncryptMessage method.

13. Prepare a PEAP packet by keeping the encrypted data returned by the EncryptMessage method
as the Data field of the PEAP packet. Then, send the PEAP packet to the server (see section
3.1.5.2.2).

If the currentState datum is set to INNER_IDENTITY_SENT, then:

1. If a Result TLV is received with the value field set to 2, then prepare an EAP TLV Extensions
Method packet with Result TLV (the value field set to 2). Change the currentState datum to
FAILURE_TLV_SENT.

2. If the received packet does not meet the above condition, then ignore the packet, keep the
currentState datum set to the same value, and stop processing the packet.

3. Encrypt the EAP TLV Extensions Method packet obtained above by passing it to the TLS layer using

the EncryptMessage method.

4. Prepare a PEAP packet, keeping the encrypted data returned by the EncryptMessage method as
the Data field. Then, send the PEAP packet to the server (see section 3.1.5.2.2).

If the currentState datum is not set to TUNNEL_ESTABLISHED, PHASE2_EAP_INPROGRESS, or
INNER_IDENTITY_SENT, then the packet is ignored.

3.2.5.4.8 Received EAP Success

If currentState is set to SUCCESS_TLV_SENT, then:

1. Trigger the Transport Layer with authentication result as Success.

2. Change currentState to PEAP_SUCCESS.

If currentState is set to FAILURE_TLV_SENT, then:

1. Trigger the Transport Layer with authentication result as failed.

2. Change currentState to PEAP_FAILED.

If currentState is not set to SUCCESS_TLV_SENT or FAILURE_TLV_SENT, then the packet is ignored.

3.2.5.4.9 Received EAP Failure

If currentState is set to SUCCESS_TLV_SENT, FAILURE_TLV_SENT, or PEAP_PHASE1_INPROGRESS,
then:

45 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

1. Trigger the Transport Layer with the authentication result as Failed.

2. Change currentState to PEAP_FAILED.

If currentState is not set to SUCCESS_TLV_SENT, FAILURE_TLV_SENT, or
PEAP_PHASE1_INPROGRESS, then the packet is ignored.

3.2.5.5 Key Management

See section 3.1.5.7.

3.2.6 Timer Events

For details on timer events, see section 3.1.6.

3.2.7 Other Local Events

Note that PEAP relies on the TLS Protocol [RFC2246] for session disconnects and other conditions that
can occur during the course of a TLS session. The local events generated by EAP_TLS and consumed
by the PEAP layer are described in the following sections.

3.2.7.1 TLS Session Established Successfully

If the TLS session established successfully:

inputParameter: TLS message

outputParamter:

▪ CtxtHandle (a context handle returned by TLS layer)

▪ Server Certificate (The certificate as received from the server by the TLS layer. The server

certificate is a X.509 certificate as described in [RFC5280]. It is made available as part of the TLS
handshake as specified in section 7.4.2 of [RFC2246].)

▪ isSessionResumed (a Boolean flag indicating whether the underlying TLS session is resumed (as
defined in sections 7.3 and F.1.4 of [RFC2246]); TRUE indicates that the TLS session is resumed.)

This event will be received from the TLS layer in response to a TLS message passed to it by the PEAP
layer during phase 1. If the currentState variable is not set to PEAP_PHASE1_INPROGRESS,
ignore this event. Otherwise, the PEAP layer MUST take the following actions:

1. The following processing MUST be done if isValidateServerCertEnabled is TRUE:

1. The trust anchor of the server certificate MUST be validated against the certificates in a trust
root <14>as specified in section 6.1 of [RFC5280]. If the validation fails, then prepare a TLS
alert message with AlertDescription set to unknown_ca (section 7.2 of [RFC2246]) and go to
Step 5.

2. Validate that the SHA1 hash ([RFC3174]) of the certificate which matched the trust anchor of
the server certificate in the preceding step is present in TrustedCertHashInfoList.

3. If the isValidateServerNameEnabled is set to TRUE, then verify that the subject name
(section 4.1.2.6 of [RFC5280]) or subject alternative name (section 4.2.1.6 of [RFC5280]) of
the server certificate exists in ServerNames.

4. If any of the validations in either of the two preceding steps fails and
isPromptForValidationDisabled is set to FALSE, the implementation could take user's

46 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

consent on whether the authentication succeeded. If the user has chosen to fail the
authentication, or if isPromptForValidationDisabled is set to TRUE and validations in either

of the two preceding steps fail, prepare a TLS Alert message with AlertDescription set to
access_denied (section 7.2 [RFC2246]). The currentState continues to be same. Go to Step

5.

2. Store the CtxtHandle returned by the TLS layer.

3. If isSessionResumed and isFastReconnectConfigured are set to TRUE, then set
isFastReconnectAllowed to TRUE; otherwise set it to FALSE.

4. Change currentState to TUNNEL_ESTABLISHED.

5. Prepare an EAP response packet as specified in [RFC5216] section 3.2.

6. Change the packet Type field to PEAP [IANA-EAP], and then send the packet to the server.

3.2.7.2 TLS Session Failed to Establish

If the TLS session failed to establish:

▪ This event will be received from the TLS layer when it is unsuccessful in establishing the TLS

session. If currentState is not set to PEAP_PHASE1_INPROGRESS, ignore this event. Otherwise,
the PEAP layer MUST take the following action:

1. Change currentState to PEAP_FAILED.

3.2.7.3 Interface with EAP

EapSetIdentityPrivacyString: The PEAP layer on the client uses this method to set the username
portion of NAI to be sent in EAP-Response/Identity packet for the identity protection ([RFC3748]
section 7.3). This method takes Unicode string as a parameter.

3.3 Server Details

3.3.1 Abstract Data Model

This section describes a model of possible data organization that a server-side implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This specification does not mandate that an implementation
adhere to this model as long as the external behavior of the implementation is consistent with what is
described in this specification.

The server maintains the following datum:

innerEAPAuthenticationMethods: An array of unsigned integers whose values correspond to the
EAP authentication method types ([IANA-EAP]) supported as inner EAP methods by the PEAP
server implementation.

currentState: The currentState datum is initialized when the server starts the PEAP authentication
and remains valid until the authentication is done. At any point in time, the currentState datum
can have the following integer values, each of which represents a possible state of the server
machine.

▪ PEAP_PHASE1_INPROGRESS

▪ WAIT_FOR_SOH_RESPONSE

47 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ WAIT_FOR_CAPABILITIES_RESPONSE

▪ INNER_IDENTITY_REQ_SENT

▪ PHASE2_EAP_INPROGRESS

▪ SUCCESS_TLV_SENT

▪ FAILURE_TLV_SENT

▪ PEAP_SUCCESS

▪ PEAP_FAILED

Figure 5: PEAP Server State Machine

48 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.3.2 Timers

Timers are specified in section 3.1.2.

3.3.3 Initialization

PEAP MUST be initialized on the EAP server when it is invoked by EAP as an authentication method.
This occurs when an EAP-enabled protocol (such as RADIUS [RFC2865]) invokes EAP, the EAP server
proposes PEAP, and the peer agrees to perform a PEAP negotiation.

A PEAP implementation MUST have an implementation-specific way of specifying what EAP methods

are supported for the inner EAP instance. The EapInitialize method SHOULD be called to initialize the
inner EAP instance with the specified inner EAP methods as the parameter.

The PEAP server obtains the maximum EAP packet size using the GetMaxSendPacketSize method,
and assigns the size to the MaxSendPacketSize field. isFastReconnectAllowed datum MUST be
initialized to FALSE.

InnerEapType MUST be initialized with the first integer of the innerEAPAuthenticationMethods

array as specified in section 3.3.1.

BypassCapNegotiation and AssumePhase2Frag are protocol configurations<15>, which can be
initialized in an implementation-specific manner.<16>

isCapabilitiesSupported MUST be initialized to TRUE, if the PEAP method implementation supports
Capabilities Method Negotiation (section 2.2.8.3) and BypassCapNegotiation is set to FALSE.
Otherwise, it is initialized to FALSE.

isFragmentationAllowed MUST be initialized to TRUE, if the PEAP method implementation supports

phase 2 fragmentation and BypassCapNegotiation and AssumePhase2Frag are set to TRUE.
Otherwise initialize isFragmentationAllowed to FALSE.

3.3.4 Higher-Layer Triggered Events

No higher-layer triggered events are used. PEAP relies on the TLS Protocol [RFC2246] for session

disconnects and other conditions that occur during the course of a TLS session.

3.3.5 Message Processing Events and Sequencing Rules

3.3.5.1 Status and Error Handling

Status and error handling is specified in section 3.1.5.1.

3.3.5.2 Phase 1 (TLS Tunnel Establishment)

When the EAP implementation negotiates PEAP as the method on the EAP server, PEAP phase 1
begins.

The first packet in a PEAP negotiation is referred to as a PEAP start packet. Version 0 implementations
MUST set the L bit to 0, the M bit based on the description in the PEAP packet, the S bit to 1, and all
of the reserved bits to 0. These flag fields are specified in the PEAP packet.

After the PEAP start packet is sent to the peer, the PEAP server expects a PEAP response from the
peer that indicates the version of PEAP that the peer supports. At the EAP level (see section 2.1),
these interactions are specified in [RFC3748] section 2.

The peer MUST then start to negotiate a TLS session.

49 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

When the TLS tunnel is established successfully, implementations SHOULD skip phase 2 if the session
is a resumption of a previous session (as specified in [RFC2246] section F.1.4). This process is known

as "fast reconnection".

3.3.5.3 PEAP Server Cryptobinding Validation

Upon receipt of the cryptobinding response, the PEAP server MUST validate the message using the
following process.

The server implementation MUST construct the cryptobinding structure, populating its Nonce field

with the nonce supplied in the corresponding cryptobinding response. The implementation MUST then
compute the Compound MAC, as specified in section 3.1.5.5.

A PEAP server implementation MUST then compare the Compound MAC contained in the cryptobinding
response with the Compound MAC that it computed. If the computed Compound MAC and the
Compound MAC reported within the cryptobinding response do not match, then the validation is
declared as failed. Otherwise it is declared as success.

3.3.5.4 Packet Processing

If a packet is received with L and M bits set, then reassembly is done as specified in section 3.1.5.2.1.
After reassembly, the packet is processed as specified in the following sections.

3.3.5.4.1 General Packet Validation

When receiving a packet, the PEAP server MUST validate that the packet conforms to the syntax as
specified in Message Syntax (section 3.3.5) and its subsections. If an invalid packet is received, the
error is handled as specified in section 3.3.5.1.

3.3.5.4.2 Received PEAP Response

If the currentState variable is set to PEAP_PHASE1_INPROGRESS, then:

1. Change the Type field in the PEAP packet to EAP-TLS (as specified in [IANA-EAP]), and process

the packet as specified in [RFC5216].

2. Prepare the EAP Request packet as specified in [RFC5216].

3. Change the Type field to PEAP, then send the packet to the client.

If currentState is set to INNER_IDENTITY_REQ_SENT, WAIT_FOR_SOH_RESPONSE,
WAIT_FOR_CAPABILITIES_RESPONSE, PHASE2_EAP_INPROGRESS, SUCCESS_TLV_SENT, or
FAILURE_TLV_SENT, then:

1. Pass the Data field in the PEAP packet to the TLS layer for decryption using the DecryptMessage
method.

2. If the decrypted data returned by DecryptMessage is compressed data as specified in 3.1.5.6,
then apply the decompression method as specified in 3.1.5.6.

3. If currentState is set to INNER_IDENTITY_REQ_SENT, then:

1. If the first byte of the decrypted data matches one (Identity type), then process the data as
specified in section 3.3.5.4.3, otherwise, ignore the packet.

4. If currentState is set to WAIT_FOR_SOH_RESPONSE, then:

1. If the decrypted data matches SoH TLV (section 2.2.8.2.2) in the SoH EAP Extensions
Method (section 2.2.8.2), then process the data as specified in section 3.3.5.4.6.

50 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2. If the decrypted data matches the EAP Nak packet, then process the data as specified in
section 3.3.5.4.5.

3. If the decrypted data does not match the earlier conditions, then ignore the packet.

5. If currentState is set to WAIT_FOR_CAPABILITIES_RESPONSE, then:

1. If the decrypted data matches the Capabilities Method Response (section 2.2.8.3.2), then
process the data as specified in section 3.3.5.4.4.

2. If the decrypted data matches the EAP Nak packet, then process the data as specified in
section 3.3.5.4.5.

3. If the decrypted data does not match the earlier conditions, then ignore the packet.

4. If the decrypted data does not match the earlier conditions, then create a Capabilities Method
Response with the F bit set to zero and process it as specified in section 3.3.5.4.4.

6. If the currentState is set to PHASE2_EAP_INPROGRESS, then:

1. If the decrypted data matches the EAP Nak packet, then process the data as specified in
section 3.3.5.4.5.

2. If the decrypted data does not match the earlier condition, then check if the first byte matches
InnerEapType. If it does not match, then ignore the packet, otherwise, prepare an EAP
packet with the fields set as follows:

▪ Code: PEAP packet Code

▪ Identifier: PEAP packet Identifier

▪ Length: Length of the decrypted data + 4

▪ Type: InnerEapType

▪ Data: Decrypted data

Pass the EAP packet prepared earlier to the inner EAP method and when the inner EAP method
returns an EAP Request packet, call the Compress_Encrypt_Send method (section

3.1.5.2.3).

7. If currentState is set to SUCCESS_TLV_SENT or FAILURE_TLV_SENT, then:

1. If the decrypted data does not match an EAP TLV Extensions Method (section 2.2.8.1), then
ignore the packet, otherwise, process the data as specified in section 3.3.5.4.7.

If currentState is not set to PEAP_PHASE1_INPROGRESS, INNER_IDENTITY_REQ_SENT,
WAIT_FOR_SOH_RESPONSE, WAIT_FOR_CAPABILITIES_RESPONSE, PHASE2_EAP_INPROGRESS,
SUCCESS_TLV_SENT, or FAILURE_TLV_SENT, then the packet is ignored.

3.3.5.4.3 Received PEAP Packet with Inner EAP Type As Identity (Identity Received)

If the currentState variable is set to INNER_IDENTITY_REQ_SENT, then the following steps MUST be
applied in sequence:

1. Store the received identity in the InnerIdentity datum.

2. If the isCapabilitiesSupported field is set to TRUE, then prepare a Capabilities Method

Request (section 2.2.8.3.1) packet with the F flag set to one if the PEAP server supports phase 2
fragmentation, otherwise, set the F flag to zero.<17> Change the currentState datum to
WAIT_FOR_CAPABILITIES_RESPONSE and proceed to step 6.

51 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3. Validate the received Identity in an implementation-specific manner. If the Identity validation fails,
then prepare an EAP TLV Extensions Method (section 2.2.8.1) packet with Result

TLV (section 2.2.8.1.2) (the value field set to 2). Change the currentState datum to
FAILURE_TLV_SENT and proceed to step 6.

4. If the isSoHEnabled field is set to TRUE, then prepare an SoH EAP Extensions
Method (section 2.2.8.2) packet with an SoH Request TLV (section 2.2.8.2.1) within it. Change the
currentState datum to WAIT_FOR_SOH_RESPONSE and proceed to step 6.

5. If all of the earlier conditions fail, then prepare an EAP Request packet with the Type field set to
InnerEapType to start the inner EAP method negotiation as described in [RFC3748] section 2.
Compress the EAP Request packet as specified in section 3.1.5.6. Change currentState to
PHASE2_EAP_INPROGRESS.

6. Send the packet prepared earlier to the TLS layer for encryption using the EncryptMessage
method.

7. Prepare a PEAP packet by keeping the encrypted data returned by the EncryptMessage method

as the Data field of the PEAP packet, and send it to the peer (see section 3.1.5.2.2).

If currentState is not set to INNER_IDENTITY_REQ_SENT, then the packet is ignored.

3.3.5.4.4 Received Capabilities Method Response

If the currentState variable is set to WAIT_FOR_CAPABILITIES_RESPONSE, then:

1. If the F flag of the received Capabilities Method Response (section 2.2.8.3.2) packet is set to one
and the PEAP server is phase 2 fragmentation-capable, then set isFragmentationAllowed to
TRUE, otherwise set isFragmentationAllowed to FALSE.

2. Validate the Identity stored in the InnerIdentity datum in an implementation-specific manner. If
the Identity validation fails, then prepare an EAP TLV Extensions Method packet (section 2.2.8.1)

with Result TLV (section 2.2.8.1.2) (with the value field set to 2). Change the currentState
datum to FAILURE_TLV_SENT and proceed to step 5.

3. If isSoHEnabled is set to TRUE, then prepare an SoH EAP Extensions Method (section 2.2.8.2)
packet with SoH Request TLV (section 2.2.8.2.1) within it. Change currentState to
WAIT_FOR_SOH_RESPONSE and proceed to step 5.

4. If isSoHEnabled is set to FALSE, then prepare an EAP Request packet with the Type field set to
InnerEapType to start the inner EAP method negotiation as described in [RFC3748]. Compress

the EAP Request packet as specified in section 3.1.5.6. Change currentState to
PHASE2_EAP_INPROGRESS.

5. Send the packet prepared earlierto the TLS layer for encryption using the EncryptMessage
method.

6. Prepare a PEAP packet by keeping the encrypted data returned by the EncryptMessage method
as the Data field of the PEAP packet. Then, send it to the peer (see section 3.1.5.2.2).

If currentState is not set to WAIT_FOR_CAPABILITIES_RESPONSE, then the packet is ignored.

3.3.5.4.5 Received EAP NAK

If the currentState variable is set to WAIT_FOR_CAPABILITIES_RESPONSE, then:

1. Assign the variable isFragmentationAllowed to FALSE.

2. Validate the received Identity in an implementation-specific manner. If the Identity validation fails,
then prepare an EAP TLV Extensions Method packet (section 2.2.8.1) with Result TLV (section

52 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.8.1.2) (with the value field set to 2). Change the currentState datum to FAILURE_TLV_SENT
and proceed to step 5.

3. If the isSoHEnabled variable is set to TRUE, then prepare an SoH EAP Extensions Method packet
with SoH Request TLV within it. Change currentState to WAIT_FOR_SOH_RESPONSE and

proceed to step 5.

4. If isSoHEnabled is set to FALSE, then prepare an EAP Request packet with the Type field set to
InnerEapType to start the inner EAP method negotiation as specified in [RFC3748]. Compress
the EAP Request packet as specified in section 3.1.5.6. Change currentState to
PHASE2_EAP_INPROGRESS.

5. Send the packet prepared earlier to the TLS layer for encryption using the EncryptMessage
method.

6. Prepare a PEAP packet by keeping the encrypted data returned by the EncryptMessage method
as the Data field of PEAP packet. Then send it to the peer (see section 3.1.5.2.2).

If the currentState is set to WAIT_FOR_SOH_RESPONSE, then:

1. Prepare an EAP Request packet with the Type field set to InnerEapType to start the inner EAP
method negotiation as specified in [RFC3748]. Compress the EAP Request packet as specified in
section 3.1.5.6. Change currentState to PHASE2_EAP_INPROGRESS.

2. Encrypt the EAP TLV Extensions Method or EAP Request packet obtained in the preceding step by
passing it to the TLS layer using the EncryptMessage method.

3. Prepare a PEAP packet by keeping the encrypted data returned by the EncryptMessage method
as the Data field of PEAP packet. Then send it to the peer (see section 3.1.5.2.2).

If the currentState is set to PHASE2_EAP_INPROGRESS, then:

1. If the first byte of the Type-Data ([RFC3748] section 5.3.1) field of the EAP NAK packet is present
in the innerEAPAuthenticationMethods array, then set that byte as innerEAPType and then

obtain the first EAP packet to be sent from the inner EAP method as denoted by innerEAPType.

Call the Compress_Encrypt_Send (section 3.1.5.2.3) on the obtained packet.

2. If the first byte of the Type-Data field of the EAP NAK packet is not present in the
innerEAPAuthenticationMethods array, then prepare an EAP TLV Extensions Method packet
with Result TLV with the value field set to 2. Change the currentState datum to
FAILURE_TLV_SENT and then call the Compress_Encrypt_Send (section 3.1.5.2.3) on the
prepared packet.

If currentState is not set to WAIT_FOR_CAPABILITIES_RESPONSE, PHASE2_EAP_INPROGRESS, or
WAIT_FOR_SOH_RESPONSE, then the packet is ignored.

3.3.5.4.6 Received SoH

If the currentState variable is set to WAIT_FOR_SOH_RESPONSE, the following steps MUST be
applied in sequence:

1. If the SoH TLV (section 2.2.8.2.2) value is declared as invalid, by the NAP component, then
prepare an EAP TLV Extensions Method (section 2.2.8.1) packet with Result
TLV (section 2.2.8.1.2) (the value field set to 2). Change currentState to FAILURE_TLV_SENT
and proceed to step 4.

2. If isFastReconnectAllowed is set to FALSE, prepare an EAP Request packet to start the inner
EAP method negotiation as described in [RFC3748]. Compress the EAP Request packet as specified
in section 3.1.5.6. Change currentState to PHASE2_EAP_INPROGRESS and proceed to step 4.

53 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3. If isFastReconnectAllowed is set to TRUE, prepare an EAP TLV Extensions Method packet with
Result TLV (the value field set to 1), SoH Response TLV (section 2.2.8.1.3) (the value field is set

to the message received from NAP), and Cryptobinding TLV (section 2.2.8.1.1) (the value field set
to the computed value) if isCryptoSupported is set to TRUE. Change currentState to

SUCCESS_TLV_SENT and proceed to step 4.<18>

4. Encrypt the EAP TLV Extensions Method or EAP Request packet obtained in the preceding steps by
passing it to the TLS layer using the EncryptMessage method.

5. Prepare a PEAP packet by keeping the encrypted data returned by the EncryptMessage method
as the Data field of the PEAP packet. Send the PEAP packet to the peer (see section 3.1.5.2.2).

If currentState is not set to WAIT_FOR_SOH_RESPONSE, the packet is ignored.

3.3.5.4.7 Received EAP TLV Extensions Method Packet

If currentState is set to FAILURE_TLV_SENT, then:

1. If a Result TLV (section 2.2.8.1.2) is received with the value field set to 2, then send an EAP
Failure packet (as specified in [RFC3748]) and change currentState to PEAP_FAILED.

If currentState is set to SUCCESS_TLV_SENT, then:

1. If the received packet does not have a Result TLV, then ignore it and stop processing the packet.

2. If a Result TLV is received with the value field set to 2 and isFastReconnectAllowed is set to
TRUE, then prepare an EAP Request packet with the Type field as Identity (as specified in
[RFC3748]).

▪ Set isFastReconnectAllowed to FALSE, and change currentState to
INNER_IDENTITY_REQ_SENT.

▪ Compress the packet, and then encrypt it by passing it to the TLS layer using the
EncryptMessage method.

▪ Prepare a PEAP packet by keeping the encrypted data returned by the EncryptMessage
method as the Data field of the PEAP packet.

▪ Send the PEAP packet to the peer (see section 3.1.5.2.2).

This completes the processing of the packet.

3. If Result TLV is received with the value field set to 2, then send an EAP Failure packet (as
specified in [RFC3748]) to peer. Change currentState to PEAP_FAILED. This completes the
processing of the packet.

4. If isCryptoSupported is set to FALSE, then send an EAP Success packet (as specified in
[RFC3748]) to peer. Change currentState to PEAP_SUCCESS. This completes the processing of
the packet.

5. If the received packet contains a Cryptobinding TLV (section 2.2.8.1.1) whose validation

(described in section 3.3.5.3) fails, then send a EAP Failure packet (as specified in [RFC3748]) to
peer. Change currentState to PEAP_FAILED. This completes the processing of the packet.

6. If the received packet does not contain a Cryptobinding TLV and isCryptoRequired is set to
TRUE, then send an EAP Failure packet (as specified in [RFC3748]) to peer. Change currentState
to PEAP_FAILED. This completes the processing of the packet.

7. If the received packet does not satisfy any of the above conditions, then send an EAP Success
packet (as specified in [RFC3748]) to peer. Change currentState to PEAP_SUCCESS.

54 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

If currentState is not set to FAILURE_TLV_SENT or SUCCESS_TLV_SENT, then the packet is ignored.

3.3.5.5 Key Management

See section 3.1.5.7.

3.3.6 Timer Events

See section 3.1.6.

3.3.7 Other Local Events

3.3.7.1 TLS Session Established Successfully

If the TLS session established successfully:

inputParameter: TLS message

outputParameter:

▪ CtxtHandle (a context handle returned by TLS layer)

▪ isSessionResumed (a Boolean flag indicating whether the underlying TLS session is resumed (as

defined in sections 7.3 and F.1.4 of [RFC2246]); TRUE indicates that the TLS session is resumed.)

This event will be received from the TLS layer in response to a TLS message passed to it by the PEAP
layer during phase 1. If the currentState variable is not set to PEAP_PHASE1_INPROGRESS, ignore
this event. Otherwise, the PEAP layer MUST do the following steps in sequence:

1. Store the isSessionResumed to isFastReconnectAllowed.

2. If isFastReconnectAllowed is set to TRUE, but the server is not able to start fast reconnect

because of implementation-defined reasons, then prepare an EAP Identity request packet.
Compress the packet as described in section 3.1.5.6. Set isFastReconnectAllowed to FALSE.
Change currentState to INNER_IDENTITY_SENT. Go to Step 7.

3. If isFastReconnectAllowed is set to TRUE, but the server cannot continue authentication
because of implementation-defined reasons, then it MUST create an EAP TLV Extensions
Method (section 2.2.8.1) packet with Result TLV (section 2.2.8.1.2) (the value field set to 2). Set
isFastReconnectAllowed to FALSE. Change currentState to FAILURE_TLV_SENT. Got to Step

7.

4. If isFastReconnectAllowed is set to FALSE, then prepare an EAP Identity Request packet.
Compress the packet as described in section 3.1.5.6. Change currentState to
INNER_IDENTITY_REQ_SENT. Go to Step 7.

5. If isFastReconnectAllowed is set to TRUE and the isSoHEnabled field is set to TRUE, prepare a
SoH EAP Extensions Method (section 2.2.8.2) packet with a SoH Request TLV (section 2.2.8.2.1)

within it. Change currentState to WAIT_FOR_SOH_RESPONSE and proceed to step 7.

6. If the above conditions are not satisfied, then prepare an EAP TLV Extensions Method packet with
Result TLV (the value field set to 1) and if isCryptoSupported is set to TRUE, then add a
Cryptobinding TLV (section 2.2.8.1.1) (with a value generated by server, as described in section
3.3.5.3). Change currentState to SUCCESS_TLV_SENT. Go to Step 7.

7. Store the CtxtHandle returned by the TLS layer. Encrypt the packet generated above by passing
it to the TLS layer using the EncryptMessage method, and after receiving the encrypted data,

55 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

prepare a PEAP packet with the encrypted data as the Data field, and send it to the peer (see
section 3.1.5.2.2). Change currentState to SUCCESS_TLV_SENT.

3.3.7.2 TLS Session Failed to Establish

If the TLS session failed to establish:

▪ This event will be received from the TLS layer when it is unsuccessful in establishing the TLS
session. If currentState is not set to PEAP_PHASE1_INPROGRESS, ignore this event. Otherwise,
the PEAP layer MUST do the following:

1. Send an EAP failure packet to the peer.

2. Change the currentState to PEAP_FAILED.

3.3.7.3 EAP Inner Method Authentication Success

Input: EAP Packet

Output: MPPE send and receive keys, and their lengths.

If EAP inner method authentication is successful, then:

▪ This event will be received from the respective EAP method layer in response to an EAP packet
passed to it. If currentState is not set to PHASE2_EAP_INPROGRESS, ignore this event.
Otherwise, the PEAP layer MUST do the following:

1. Store InnerMPPESendKey, InnerMPPESendKeyLength, InnerMPPERecvKey and
InnerMPPERecvKeyLength as returned by the inner EAP method.

2. Create an EAP TLV Extensions Method (section 2.2.8.1) packet with Result
TLV (section 2.2.8.1.2) (the value field set to 1) and if isCryptoSupported is set to TRUE,
add a Cryptobinding TLV (section 2.2.8.1.1) (with a value generated by the server, as
described in section 3.3.5.3) and if both peer and server have exchanged SoH

Request (section 2.2.8.2.1) and SoH (section 2.2.8.2.2) TLVs, add a SoH Response TLV
(section 2.2.8.1.3).

3. Encrypt the packet generated in the preceding step by passing it to the TLS layer using the
EncryptMessage method, and after receiving the encrypted data, prepare a PEAP packet with
encrypted data as the Data field and send it to the peer (see section 3.1.5.2.2). Change
currentState to SUCCESS_TLV_SENT.

3.3.7.4 EAP Inner Method Authentication Failed

If EAP inner method authentication failed, then:

▪ This event will be received from the respective EAP method layer in response to an EAP packet
passed to it. If currentState is not set to PHASE2_EAP_INPROGRESS, ignore this event.
Otherwise, the PEAP layer SHOULD do the following:

1. Create an EAP TLV Extensions Method (section 2.2.8.1) packet with result TLV (the value field
set to 2).

2. Encrypt the packet generated above by passing it to the TLS layer using the EncryptMessage
method, and after receiving the encrypted data prepare a PEAP packet with encrypted data as
Type_Data and send it to the peer. Change currentState to FAILURE_TLV_SENT.

56 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4 Protocol Examples

The following sections provide common scenarios that illustrate the function of PEAP.

4.1 Examples with No Support for Cryptobinding and SoH Processing

This section provides examples of PEAP interactions when cryptobinding and SoH processing are
supported by neither PEAP peer implementation nor PEAP server implementation.

4.1.1 Successful PEAP Phase 1 and 2 Negotiation

The following diagram depicts a complete PEAP authentication in which both phase 1 and phase 2
negotiations take place successfully.

As the authentication begins with a PEAP packet with the S bit set being sent to the peer, TLS
negotiation occurs until a TLS session has been established. Once the TLS session has been

established (the end of PEAP phase 1), all traffic is subsequently encrypted between the PEAP peer
and the server, and phase 2 has begun. phase 2 begins with PEAP capabilities negotiation. During
phase 2, the inner EAP method is negotiated and authentication occurs in a series of exchanges that

depend upon the specific inner EAP method that is used.

Phase 2 concludes with an exchange of the EAP Extensions Method with the Result TLV (with success
in the following case) within the TLS session. Subsequently, and outside the TLS session, an EAP
success packet is sent to the peer by the EAP server.

57 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Figure 6: Successful PEAP phase 1 and 2 negotiation

4.1.2 Successful PEAP Phase 1 with Failed Phase 2 Negotiation

The following diagram depicts a complete PEAP authentication in which phase 1 completes successfully
and phase 2 fails on the PEAP server side, with both the PEAP server and the peer not supporting
cryptobinding and SoH TLVs.

This example is similar to the one described in section 4.1.1; however, note that the EAP Extensions
Method with the Result TLV is a failure rather than a success, and the EAP failure packet is sent
outside the TLS session.

58 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Figure 7: Successful PEAP phase 1 with failed phase 2 negotiation

4.1.3 Successful PEAP Phase 1 with Fast Reconnect

The following diagram depicts a complete and successful PEAP authentication in which fast reconnect
was used. Note that with fast reconnect, no inner EAP authentication or capabilities negotiation takes
place.

59 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Figure 8: Successful PEAP phase 1 with fast reconnect

4.2 Cryptobinding and SoH Processing Supported on PEAP Server Only

This section provides examples of PEAP interactions when cryptobinding and SoH processing [TNC-IF-
TNCCSPBSoH] are supported by a PEAP server implementation.

4.2.1 Successful PEAP Phase 1 and 2 Negotiation

This is similar to the example in section 4.1.1, except that, after phase 1, a Capabilities request and a
SoH request are sent by the PEAP server and the peer responds with a NAK for both the requests. The
peer also ignores the cryptobinding TLV from the PEAP server.

The following figure shows the PEAP server implementation not enforcing cryptobinding; if it did, the

last message would be an EAP-Failure instead of EAP-Success.

60 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Figure 9: Successful PEAP phase 1 and 2 negotiation

4.3 Cryptobinding and SoH Processing on PEAP Server and PEAP Peer

This section provides examples of PEAP interactions when cryptobinding and SoH processing are
supported by a PEAP peer implementation, as well as a PEAP server implementation.

In the following example, cryptobinding and SoH processing is enforced on both the peer and PEAP
server implementations.

61 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4.3.1 Successful PEAP Phase 1 and 2 Negotiation

This is similar to the example in section 4.1.1, except that after phase 1, an SoH request is sent by
the PEAP server and is positively acknowledged by the peer, which sends an SoH

TLV (section 2.2.8.2.2). The peer also responds to the server's cryptobinding TLV by sending its own
cryptobinding TLV.

Figure 10: Successful PEAP phase 1 and 2 negotiation

62 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4.3.2 Successful PEAP Phase 1 with Fast Reconnect

The following diagram depicts a complete and successful PEAP authentication in which fast reconnect
was used. Note that with fast reconnect, no inner EAP authenticationor capabilities negotiation takes

place.

Figure 11: Successful PEAP phase 1 with fast reconnect

4.3.3 Fallback to Full Authentication upon a Fast Reconnect Failure

The following diagram depicts a complete and successful PEAP authentication in which fast reconnect
was attempted but failed (because, for example, fast reconnect was disabled on the peer). After the

initial exchange of SoH packets, the peer indicated a failure, forcing full authentication, as in section
4.3.1.

63 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Figure 12: Fallback to full authentication upon a fast reconnect failure

4.4 Sample Cryptobinding TLV Data

The format of the Cryptobinding TLV packet is shown in section 2.2.8.1.1.

64 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4.4.1 Cryptobinding TLV Request from Server to Client

4.4.1.1 Header

As per the description given in section 2.2.8.1.1, the first 8 octets of the cryptobinding TLV header
appear as below:

 00 0C 00 38 00 00 00 00

4.4.1.2 Nonce

The next field in the TLV is nonce, which is a 32 octet field generated by a random function. In our
case let us assume that the following nonce is generated on server machine.

 BD A7 A5 99 FA 81 65 21 AD 30 64 C2 BD DB D1 6E
 AA 94 9E 7D 98 A8 D7 94 31 47 CF 42 5D 85 DA 7B

4.4.1.3 Compound MAC

The 20 octet Compound MAC is generated as described in section 3.1.5.5. This field is generated from
an HMAC-SHA1-160 operation. This operation requires two fields: data and key.

4.4.1.3.1 Data for HMAC-SHA1-160 Operation

The data required for HMAC-SHA1-160 operation is generated as per section 3.1.5.5.1. The generated
data is as below:

 00 0C 00 38 00 00 00 00 BD A7 A5 99 FA 81 65 21
 AD 30 64 C2 BD DB D1 6E AA 94 9E 7D 98 A8 D7 94
 31 47 CF 42 5D 85 DA 7B 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 19

4.4.1.3.2 Key for HMAC-SHA1-160 Operation

The key required for HMAC-SHA1-160 operation is called the Compound MAC Key (CMK) and is
generated by the formulae described in section 3.1.5.5.2. Inputs required for this operation are the
TempKey(K) and IPMK Seed(S).

4.4.1.3.2.1 Temp Key

The most significant 40 octets of the Tunnel Key (TK) are considered as Temp Key (K). The TK is a 64-
octet key generated in PEAP phase 1. Let us assume that the following TK is generated in the PEAP
phase 1:

 73 8B B5 F4 62 D5 8E 7E D8 44 E1 F0 0D 0E BE 50
 C5 0A 20 50 DE 11 99 77 10 D6 5F 45 FB 5F BA B7
 E3 18 1E 92 4F 42 97 38 DE 40 C8 46 CD F5 0B CB
 F9 CE DB 1E 85 1D 22 52 45 3B DF 63

Only the most significant 40 octets of the above data are relevant here.

4.4.1.3.2.2 IPMK Seed

65 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

IPMK seed is defined as follows:

 IPMK Seed = "Inner Methods Compound Keys" | ISK

The ASCII representation of the string "Inner Methods Compound Keys" is (in hex):

 49 6E 6E 65 72 20 4D 65 74 68 6F 64 73 20 43 6F
 6D 70 6F 75 6E 64 20 4B 65 79 73

ISK is the Inner Session Key which would be obtained from the Inner method MPPE keys as described
in section 3.1.5.5.2.2. Let us say that the generated ISK is as below:

 67 3E 96 14 01 BE FB A5 60 71 7B 3B 5D DD 40 38
 65 67 F9 F4 16 FD 3E 9D FC 71 16 3B DF F2 FA 95

4.4.1.3.2.3 IPMK and CMK

The PRF+ function generates 60 octet output out of which the most significant 40 octets denote the

IPMK and the rest (20 octet) denote the CMK. With all the required information as described above for
PRF+ function the computed T1, T2 and T3 appear as follows:

 T1 = 3A 91 1C 25 54 73 E8 3E 9A 0C C3 33 AE 1F 8A 35 CD C7 41 63
 T2 = E7 F6 0F 6C 65 EF 71 C2 64 42 AA AC A2 B6 F1 EB 4F 25 EC A3
 T3 = 33 55 35 3B 69 20 D0 74 C7 82 E4 75 DF B0 99 9D 4D B4 67 EB
 IPMK = T1 | T2
 CMK = T3

The generated CMK and the HMAC data are passed through the HMAC-SHA1-160 operation to
generate the Compound MAC. The Compound MAC obtained from HMAC-SHA1-160 operation is as
follows:

 0C BF 10 5E 91 75 57 48 22 4F BB 83 00 06 26 91 1C FB 1B 0F

After all the above computations the Cryptobinding TLV request from server appears as follows:

 00 0C 00 38 00 00 00 00 BD A7 A5 99 FA 81 65 21
 AD 30 64 C2 BD DB D1 6E AA 94 9E 7D 98 A8 D7 94
 31 47 CF 42 5D 85 DA 7B 0C BF 10 5E 91 75 57 48
 22 4F BB 83 00 06 26 91 1C FB 1B 0F

4.4.2 Cryptobinding TLV Response from Client to Server

4.4.2.1 Header

As per the description given in section 2.2.8.1.1, the first 8 octets of the cryptobinding TLV header
appear as below:

 00 0C 00 38 00 00 00 01

66 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4.4.2.2 Nonce

The next field in the TLV is nonce, which is a 32 octet field generated by a random function. In our
case let us assume that the following nonce is generated on client machine.

 6C 6B A3 87 84 23 74 57 CC C9 0B 1A 90 8C BD F4
 71 1B 69 99 4D 0C FE 8D 3D B4 4E CB CD AD 37 E9

4.4.2.3 Compound MAC

The 20 octet Compound MAC is generated as described in section 3.1.5.5.1. This field is generated
from an HMAC-SHA1-160 operation. This operation requires two fields: data and key.

4.4.2.3.1 Data for HMAC-SHA1-160 Operation

The data required for HMAC-SHA1-160 operation is generated as per section 3.1.5.5.1. The generated

data is as below:

 00 0C 00 38 00 00 00 01 6C 6B A3 87 84 23 74 57
 CC C9 0B 1A 90 8C BD F4 71 1B 69 99 4D 0C FE 8D
 3D B4 4E CB CD AD 37 E9 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 19

4.4.2.3.2 Key for HMAC-SHA1-160 Operation

The key required for HMAC-SHA1-160 operation is called the Compound MAC Key (CMK) and is
generated by the formulae described in section 3.1.5.5.2. Inputs required for this operation are the
TempKey(K) and IPMK Seed(S).

4.4.2.3.2.1 Temp Key

Because the Tunnel Key is same for both client and server, the TempKey remains the same as well.

4.4.2.3.2.2 IPMK Seed

Because the ISK for both client and server are same, the IPMK seed remains the same as well.

4.4.2.3.2.3 IPMK and CMK

Because all the inputs to PRF+ function are same, it generates the same IPMK and CMK as the server.
The generated CMK and the HMAC data are passed through the HMAC-SHA1-160 operation to
generate the Compound MAC.

The Compound MAC obtained from HMAC-SHA1-160 operation is as follows:

 42 E0 86 07 1D 1C 8B 8C 8E 45 8F 70 21 F0 6A 6E AB 16 B6 46

After all the above computations the Cryptobinding TLV response from client appears as follows:

 00 0C 00 38 00 00 00 01 6C 6B A3 87 84 23 74 57
 CC C9 0B 1A 90 8C BD F4 71 1B 69 99 4D 0C FE 8D
 3D B4 4E CB CD AD 37 E9 42 E0 86 07 1D 1C 8B 8C
 8E 45 8F 70 21 F0 6A 6E AB 16 B6 46

67 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4.4.3 MPPE Keys Generation

The MPPE keys generation is performed as per section 3.1.5.7. It requires both the IPMK and seed (S)
as inputs. The IPMK generated by both client and server are as follows:

 3A 91 1C 25 54 73 E8 3E 9A 0C C3 33 AE 1F 8A 35 CD C7 41 63 E7 F6 0F 6C 65 EF 71 C2 64 42 AA
AC A2 B6 F1 EB 4F 25 EC A3

Seed is the ASCII encoding of the string "Session Key Generating Function" appended with byte 0x00:

 Seed = 53 65 73 73 69 6F 6E 20 4B 65 79 20 47 65 6E 65 72 61 74 69 6E 67 20 46 75 6E 63 74 69
6F 6E 00

Because the length of the keys is 128 octets, it requires 7 iterations of PRF+ function to generate 128
octets of data. The data after each iteration is as follows:

 T1 = 6A 02 D7 82 20 1B C7 13 8B F8 EF F7 33 B4 96 97 0D 7C
AB 30

 T2 = 0A C9 57 72 78 E1 DD D5 AE F7 66 97 17 52 D4 E5 84 A1
C8 95

 T3 = 03 9B 4D 05 E3 BC 9A 84 84 DD C2 AA 6E 2C E1 62 76 5C
40 68

 T4 = BF F6 5A 45 10 E3 05 74 85 DB 98 B7 99 D8 6E 66 76 3C
64 D4

 T5 = 98 89 B4 DD 1B 27 3D C8 A2 CA 73 D6 0D 11 AF B2 2C 52
BA AD

 T6 = D3 51 E0 CB 7B B2 E7 2C 7D 93 73 85 7E 03 C1 4A 32 C8
F7 E5

 T7 = 95 9F 46 68 0E 86 E6 5C 89 F8 80 C8 A6 DA 00 56 3A FB
19 C0

Based on the above data, the keys on the server side are as follows:

 RecvKey = 6A 02 D7 82 20 1B C7 13 8B F8 EF F7 33 B4 96 97 0D 7C AB 30 0A C9 57 72 78 E1 DD
D5 AE F7 66 97

 SendKey = 17 52 D4 E5 84 A1 C8 95 03 9B 4D 05 E3 BC 9A 84 84 DD C2 AA 6E 2C E1 62 76 5C 40 68
BF F6 5A 45

 Client RecvKey = server SendKey
 Client SendKey = server RecvKey

Only the most significant 64 octets are used though we generate 128 octets. The least significant 64
octets are reserved for future use.

68 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

5 Security

The following sections specify security considerations for implementers of PEAP.

5.1 Security Considerations for Implementers

5.1.1 Fast Reconnect

PEAP fast reconnect is desirable in applications such as wireless roaming. This feature allows sessions
to be resumed without completing a full authentication.

However, some issues to consider to avoid introducing security vulnerabilities include:

▪ In cases where no identity is proved with an inner EAP method, implementers need to ensure that
the appropriate authorization checks are still performed for the session.

▪ To protect against risks associated with incorrectly assigning identity on fast reconnection
scenarios, implementations need to strongly tie identity information to the TLS session. That is,
the PEAP implementation needs to determine the user identity even with a session resume. If it
cannot do so, then it will not authorize access. The reason is that because no inner EAP

authentication takes place during fast reconnect; proof of identity is based exclusively on the TLS
session.

5.1.2 Identity Verification

Because the TLS session has not yet been negotiated, the initial identity request/response occurs in

the clear, without integrity protection or authentication. It is therefore vulnerable to snooping and
packet modification.

If the initial EAP cleartext identity request/response has been tampered with, then, after the TLS
session is established, it is conceivable that the PEAP server will discover that it cannot verify the
peer's claim of identity. For example, the peer's user ID might not be valid or might not be within a

realm handled by the PEAP server. In a case where the PEAP server is unable to validate the peer's

identity claims, the PEAP server aborts the authentication.

Moreover, it cannot be assumed that the peer identities presented within multiple EAP-
Response/Identity packets will be the same. For example, the initial EAP-Response/Identity might
correspond to a machine identity, while subsequent identities might be those of the user. Thus, PEAP
implementations do not need to abort the authentication just because the identities do not match.
However, because the initial EAP-Response/Identity determines the EAP server handling the
authentication, if this or any other identity is inappropriate for use with the destination EAP server,

there is no alternative but to terminate the PEAP conversation.

5.1.3 Authentication Outcomes

Because the cleartext EAP success or failure messages can be tampered with, implementations need

to rely only on the EAP Extensions method with Result TLV's status messages to determine the

outcome of a session.

5.2 Index of Security Parameters

 Security parameter Section

Allowable EAP inner EAP method configuration Sections 3.2.3 and 3.3.3

69 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packsupdates to those products.

▪ Windows NT operating system

▪ Windows 2000 operating system

▪ Windows XP operating system

▪ Windows Server 2003 operating system

▪ Windows Vista operating system

▪ Windows Server 2008 operating system

▪ Windows 7 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows 8 operating system

▪ Windows Server 2012 operating system

▪ Windows 8.1 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows 10 operating system

▪ Windows Server 2016 operating system

▪ Windows Server operating system

Exceptions, if any, are noted below.in this section. If a an update version, service pack or Quick Fix

Engineering (QFEKnowledge Base (KB) number appears with thea product version,name, the behavior
changed in that service pack or QFE.update. The new behavior also applies to subsequent service
packs of the productupdates unless otherwise specified. If a product edition appears with the product
version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 2.2.2: The Windows NT, Windows 2000, Windows XP, Windows Server 2003, Windows
Vista, and Windows Server 2008 PEAP implementations do not support PEAP Phase 2 packet
fragmentation.

<2> Section 2.2.6: Microsoft PEAP clients never exchange outer TLVs during PEAP authentication.

However, if a PEAP server or client implementation sends outer TLVs during phase 1, PEAP clients will

utilize them in computing the compound MAC of the Cryptobinding TLV. The Windows NT, Windows
2000, Windows XP, and Windows Server 2003 PEAP clients prior will ignore the outer TLVs.

<3> Section 3.1.1: The Windows NT, Windows 2000, Windows XP, and Windows Server 2003 PEAP
implementations do not support Cryptobinding TLVs (section 2.2.8.1.1).

<4> Section 3.1.1: The ADM element is initialized with the value configured at the registry value
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RasMan\PPP\EAP\25\BypassNegotiation.

70 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

It is not supported on Windows NT, Windows 2000, Windows XP, Windows Server 2003, Windows
Vista, and Windows Server 2008.

<5> Section 3.1.1: The ADM element is initialized with the value configured at the registry value
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RasMan\PPP\EAP\25\AssumePhase2Frag

mentation. It is not supported on Windows NT, Windows 2000, Windows XP, Windows Server 2003,
Windows Vista, and Windows Server 2008.

<6> Section 3.1.1: Windows NT, Windows 2000, Windows XP, Windows Server 2003, Windows Vista,
and Windows Server 2008 do not support Capabilities Negotiation Method (section 2.2.8.3) packets; in
these cases, the peer responds with an EAP NAK and the server never sends a Capabilities Negotiation
Method packet.

<7> Section 3.1.1: The Windows NT, Windows 2000, Windows XP, Windows Server 2003, Windows

Vista, and Windows Server 2008 PEAP implementations do not support PEAP Phase 2 packet
fragmentation.

<8> Section 3.1.5.5: Windows NT, Windows 2000, Windows XP, and Windows Server 2003 do not

implement cryptobinding. Use of cryptobinding can be configured on both PEAP server and PEAP peer
implementations.

Windows PEAP server implementations always send cryptobinding TLVs. If a server implementation

configured to enforce cryptobinding TLVs sends a cryptobinding TLV and does not receive one in
response, it ends the conversation by sending an EAP-Failure. If the enforcement is not configured and
the server does not receive a cryptobinding TLV, it is processed without cryptobinding support.

Windows PEAP peer implementations can be configured to enforce the exchange of a cryptobinding
TLV. A peer receiving a cryptobinding TLV responds with a cryptobinding TLV irrespective of the
configuration. If the peer is configured to expect a cryptobinding TLV and does not receive one, it ends
the conversation by sending a Failure Result TLV (section 2.2.8.1.2). If the peer does not receive a

cryptobinding TLV and is not configured to expect a cryptobinding TLV, the peer processes the packet
without cryptobinding support.

<9> Section 3.2.1: Not supported on Windows NT, Windows 2000, Windows XP, Windows Server

2003, Windows Vista, and Windows Server 2008 PEAP implementations.

<10> Section 3.2.1: Not supported on Windows NT, Windows 2000, Windows XP, Windows Server
2003, Windows Vista, and Windows Server 2008 PEAP implementations.

<11> Section 3.2.3: Not supported on Windows NT, Windows 2000, Windows XP, Windows Server

2003, Windows Vista, and Windows Server 2008 PEAP implementations.

<12> Section 3.2.3: BypassCapNegotiation is initialized from
"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RasMan\PPP\EAP\25\BypassNegotiation
". AssumePhase2Frag is initialized from
"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RasMan\PPP\EAP\25\AssumePhase2Frag
mentation".

<13> Section 3.2.5.4.6: The Windows PEAP peer implementations never send the Capabilities Method
Response (section 2.2.8.3.2) packet with the F flag set to zero.

<14> Section 3.2.7.1: Windows uses the certificates in the "machine trusted root CA store" to validate
the trust anchor of the server certificate.

<15> Section 3.3.3: Not supported on Windows NT, Windows 2000, Windows XP, Windows Server
2003, Windows Vista, and Windows Server 2008.

<16> Section 3.3.3: BypassCapNegotiation is initialized from

"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RasMan\PPP\EAP\25\BypassNegotiation
". AssumePhase2Frag is initialized from

71 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\RasMan\PPP\EAP\25\AssumePhase2Frag
mentation".

<17> Section 3.3.5.4.3: The Windows PEAP server implementations never send a Capabilities Method
Request (section 2.2.8.3.1) packet with the F flag set to zero.

<18> Section 3.3.5.4.6: The Windows NT, Windows 2000, Windows XP, and Windows Server 2003
PEAP implementations do not support SoH [TNC-IF-TNCCSPBSoH] TLV transmission and processing.

72 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

7 Change Tracking

No table of This section identifies changes is available. The that were made to this document is either
new or has had no changes since itsthe last release. Changes are classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

6 Appendix A: Product
Behavior

Added Windows Server operating system to the list of
applicable products.

Major

73 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

8 Index

A

Abstract data model
 peer (section 3.1.1 28, section 3.2.1 36)
 server (section 3.1.1 28, section 3.3.1 46)
Applicability 15

C

Capabilities_Method_Request packet 26
Capabilities_Method_Response packet 27
Capabilities_Negotiation_Method packet 25
Capability negotiation 15
Change tracking 72
client_hello packet 19
Cryptobinding
 SoH processing
 no support

 overview example 56
 server and peer
 overview example 60
 server only
 overview example 59
 TLV data
 request from server to client
 compound MAC example 64
 nonce example 64
 overview example 64
 response from client to server
 compound MAC example 66
 nonce example 66
 overview example 65
Cryptobinding and SoH processing
 no support
 successful PEAP
 Phase 1 and 2 negotiation example 56
 Phase 1 with failed Phase 2 negotiation example 57
 Phase 1 with fast reconnect example 58
 PEAP server and PEAP peer
 fallback to full authentication upon fast reconnect failure example 62
 successful PEAP
 Phase 1 and 2 negotiation example 61
 Phase 1 with fast reconnect example 62
 PEAP server only
 successful PEAP - Phase 1 and 2 negotiation example 59
 successful PEAP - Phase 1 and 2 negotiation example 59
Cryptobinding_TLV packet 21

D

Data model - abstract
 peer (section 3.1.1 28, section 3.2.1 36)
 server (section 3.1.1 28, section 3.3.1 46)

E

EAP Expanded Types message 20
EAP Extensions method 21
EAP Extensions Methods message 21
EAP Packet message 16
EAP_Expanded_Type packet 20

74 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

EAP_Packet packet 16
EAP_TLV_Extensions_Method packet 21
Examples
 cryptobinding
 SoH processing
 no support
 overview 56
 server and peer
 overview 60
 server only
 overview 59
 TLV data
 request from server to client
 compound MAC 64
 nonce 64
 overview 64
 response from client to server
 compound MAC 66
 nonce 66
 overview 65
 cryptobinding and SoH processing
 no support
 successful PEAP

 Phase 1 and 2 negotiation 56
 Phase 1 with failed Phase 2 negotiation 57
 Phase 1 with fast reconnect 58
 PEAP server and PEAP peer
 fallback to full authentication upon fast reconnect failure 62
 successful PEAP
 Phase 1 and 2 negotiation 61
 Phase 1 with fast reconnect 62
 PEAP server only
 successful PEAP - Phase 1 and 2 negotiation 59
 overview 56

F

Fields - vendor-extensible 15

G

Glossary 7

H

Higher-layer triggered events
 peer 39
 overview 29
 server 48
 overview 29

I

Implementer - security considerations
 authentication outcomes 68
 fast reconnect 68
 identity verification 68
Index of security parameters 68
Informative references 10
Initialization
 peer (section 3.1.3 29, section 3.2.3 38)
 server (section 3.1.3 29, section 3.3.3 48)
Introduction 7

75 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

L

Local events
 peer
 interface with
 EAP (section 3.1.7.2 35, section 3.2.7.3 46)
 TLS 35
 overview (section 3.1.7 35, section 3.2.7 45)
 TLS session
 established successfully 45
 failed to establish 46
 server
 EAP inner method authentication
 failed 55
 success 55
 interface with
 EAP 35

 TLS 35
 overview 35
 TLS session
 established successfully 54
 failed to establish 55

M

Message processing
 peer
 cryptobinding 31
 error handling (section 3.1.5.1 29, section 3.2.5.1 39)
 key management (section 3.1.5.7 34, section 3.2.5.5 45)
 packet processing 40
 PEAP packet processing 30
 PEAP peer cryptobinding validation 39
 phase 1 - TLS tunnel establishment (section 3.1.5.4 31, section 3.2.5.2 39)
 phase 2 - EAP encapsulation 33
 status (section 3.1.5.1 29, section 3.2.5.1 39)
 version negotiation 30
 server
 cryptobinding 31
 error handling (section 3.1.5.1 29, section 3.3.5.1 48)
 key management (section 3.1.5.7 34, section 3.3.5.5 54)
 packet processing 49
 PEAP packet processing 30
 PEAP server cryptobinding validation 49
 phase 1 - TLS tunnel establishment (section 3.1.5.4 31, section 3.3.5.2 48)
 phase 2 - EAP encapsulation 33
 status (section 3.1.5.1 29, section 3.3.5.1 48)
 version negotiation 30
Messages
 EAP Expanded Types 20
 EAP Extensions method 21
 EAP Extensions Methods 21
 EAP Packet 16
 Outer TLVs 19
 overview 16
 PEAP Fragment Acknowledgement Packet 18
 PEAP Packet 16

 TLV 18
 transport 16
 Vendor-Specific TLV 19

N

Normative references 9

76 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

O

Outer TLVs 19
Outer TLVs message 19
Overview (synopsis) 11

P

Parameters - security index 68
PEAP Fragment Acknowledgement packet 18
PEAP Fragment Acknowledgement Packet message 18
PEAP Packet message 16

PEAP_Packet packet 16
peap_start packet 20
Peer
 abstract data model (section 3.1.1 28, section 3.2.1 36)
 higher-layer triggered events 39
 overview 29
 initialization (section 3.1.3 29, section 3.2.3 38)
 local events
 interface with
 EAP (section 3.1.7.2 35, section 3.2.7.3 46)
 TLS 35
 overview (section 3.1.7 35, section 3.2.7 45)
 TLS session
 established successfully 45
 failed to establish 46
 message processing
 cryptobinding 31
 error handling (section 3.1.5.1 29, section 3.2.5.1 39)
 key management (section 3.1.5.7 34, section 3.2.5.5 45)
 packet processing 40
 PEAP packet processing 30
 PEAP peer cryptobinding validation 39
 phase 1 - TLS tunnel establishment (section 3.1.5.4 31, section 3.2.5.2 39)
 phase 2 - EAP encapsulation 33
 status (section 3.1.5.1 29, section 3.2.5.1 39)
 version negotiation 30
 overview (section 3 28, section 3.1 28)
 sequencing rules
 cryptobinding 31
 error handling (section 3.1.5.1 29, section 3.2.5.1 39)
 key management (section 3.1.5.7 34, section 3.2.5.5 45)
 packet processing 40
 PEAP packet processing 30
 PEAP peer cryptobinding validation 39
 phase 1 - TLS tunnel establishment (section 3.1.5.4 31, section 3.2.5.2 39)
 phase 2 - EAP encapsulation 33
 status (section 3.1.5.1 29, section 3.2.5.1 39)
 version negotiation 30
 timer events (section 3.1.6 35, section 3.2.6 45)
 timers (section 3.1.2 29, section 3.2.2 38)
Preconditions 15
Prerequisites 15
Product behavior 69
Protocol Details
 overview 28

R

References 9
 informative 10
 normative 9
Relationship to other protocols 13
Result_TLV packet 23

77 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

S

Security
 implementer considerations
 authentication outcomes 68
 fast reconnect 68
 identity verification 68
 overview 68
 parameter index 68
 parameters index 68
Sequencing rules
 peer
 cryptobinding 31
 error handling (section 3.1.5.1 29, section 3.2.5.1 39)
 key management (section 3.1.5.7 34, section 3.2.5.5 45)
 packet processing 40

 PEAP packet processing 30
 PEAP peer cryptobinding validation 39
 phase 1 - TLS tunnel establishment (section 3.1.5.4 31, section 3.2.5.2 39)
 phase 2 - EAP encapsulation 33
 status (section 3.1.5.1 29, section 3.2.5.1 39)
 version negotiation 30
 server
 cryptobinding 31
 error handling (section 3.1.5.1 29, section 3.3.5.1 48)
 key management (section 3.1.5.7 34, section 3.3.5.5 54)
 packet processing 49
 PEAP packet processing 30
 PEAP server cryptobinding validation 49
 phase 1 - TLS tunnel establishment (section 3.1.5.4 31, section 3.3.5.2 48)
 phase 2 - EAP encapsulation 33
 status (section 3.1.5.1 29, section 3.3.5.1 48)
 version negotiation 30
Server
 abstract data model (section 3.1.1 28, section 3.3.1 46)
 higher-layer triggered events 48
 overview 29
 initialization (section 3.1.3 29, section 3.3.3 48)
 local events
 EAP inner method authentication
 failed 55
 success 55
 interface with
 EAP 35
 TLS 35
 overview 35
 TLS session
 established successfully 54
 failed to establish 55
 message processing
 cryptobinding 31
 error handling (section 3.1.5.1 29, section 3.3.5.1 48)
 key management (section 3.1.5.7 34, section 3.3.5.5 54)
 packet processing 49
 PEAP packet processing 30
 PEAP server cryptobinding validation 49
 phase 1 - TLS tunnel establishment (section 3.1.5.4 31, section 3.3.5.2 48)
 phase 2 - EAP encapsulation 33
 status (section 3.1.5.1 29, section 3.3.5.1 48)
 version negotiation 30
 overview (section 3 28, section 3.1 28)

 sequencing rules
 cryptobinding 31
 error handling (section 3.1.5.1 29, section 3.3.5.1 48)

78 / 78

[MS-PEAP-Diff] - v20170915
Protected Extensible Authentication Protocol (PEAP)
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 key management (section 3.1.5.7 34, section 3.3.5.5 54)
 packet processing 49
 PEAP packet processing 30
 PEAP server cryptobinding validation 49
 phase 1 - TLS tunnel establishment (section 3.1.5.4 31, section 3.3.5.2 48)
 phase 2 - EAP encapsulation 33
 status (section 3.1.5.1 29, section 3.3.5.1 48)
 version negotiation 30
 timer events (section 3.1.6 35, section 3.3.6 54)
 timers (section 3.1.2 29, section 3.3.2 48)
SoH_EAP_Extensions_Method packet 24
SoH_Request_TLV packet 25
SoH_Response_TLV packet 24
SoH_TLV packet 25
Standards assignments 15

T

Timer events
 peer (section 3.1.6 35, section 3.2.6 45)
 server (section 3.1.6 35, section 3.3.6 54)
Timers
 peer (section 3.1.2 29, section 3.2.2 38)
 server (section 3.1.2 29, section 3.3.2 48)
TLV message 18
TLV packet 18
Tracking changes 72
Transport 16
Triggered events - higher-layer
 peer 39
 overview 29
 server 48
 overview 29

V

Vendor_Specific_TLV packet 19
Vendor-extensible fields 15
Vendor-Specific TLV message 19
Versioning 15

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 EAP Packet
	2.2.2 PEAP Packet
	2.2.3 PEAP Fragment Acknowledgement Packet
	2.2.4 TLV
	2.2.5 Vendor-Specific TLV
	2.2.6 Outer TLVs
	2.2.6.1 Client Hello Packet With Outer TLVs
	2.2.6.2 PEAP Start Packet With Outer TLVs

	2.2.7 EAP Expanded Types
	2.2.8 EAP Extensions Methods
	2.2.8.1 EAP TLV Extensions Method
	2.2.8.1.1 Cryptobinding TLV
	2.2.8.1.2 Result TLV
	2.2.8.1.3 SoH Response TLV

	2.2.8.2 SoH EAP Extensions Method
	2.2.8.2.1 SoH Request TLV
	2.2.8.2.2 SoH TLV

	2.2.8.3 Capabilities Negotiation Method
	2.2.8.3.1 Capabilities Method Request
	2.2.8.3.2 Capabilities Method Response

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Status and Error Handling
	3.1.5.2 PEAP Packet Processing
	3.1.5.2.1 Received PEAP Packet with L and M Bit Set
	3.1.5.2.2 Sending PEAP Packet with packet size more than MaxSendPacketSize
	3.1.5.2.3 Compress_Encrypt_Send Method

	3.1.5.3 Version Negotiation
	3.1.5.4 Phase 1 (TLS Tunnel Establishment)
	3.1.5.5 Cryptobinding
	3.1.5.5.1 Input Data Used in the Cryptobinding HMAC-SHA1-160 Operation
	3.1.5.5.2 Key Used in the Cryptobinding HMAC-SHA1-160 Operation
	3.1.5.5.2.1 PEAP Tunnel Key (TK)
	3.1.5.5.2.2 Intermediate PEAP MAC Key (IPMK) and Compound MAC Key (CMK)

	3.1.5.6 Phase 2 (EAP Encapsulation)
	3.1.5.7 Key Management

	3.1.6 Timer Events
	3.1.7 Other Local Events
	3.1.7.1 Interface with TLS
	3.1.7.2 Interface with EAP

	3.2 Peer Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Status and Error Handling
	3.2.5.2 Phase 1 (TLS Tunnel Establishment)
	3.2.5.3 PEAP Peer Cryptobinding Validation
	3.2.5.4 Packet Processing
	3.2.5.4.1 General Packet Validation
	3.2.5.4.2 Received PEAP Request
	3.2.5.4.3 Received PEAP Packet with S Bit Set
	3.2.5.4.4 Received PEAP Packet With Inner EAP Type As Identity
	3.2.5.4.5 Received SoH Request TLV
	3.2.5.4.6 Received Capabilities Method Request
	3.2.5.4.7 Received EAP TLV Extensions Method Packet
	3.2.5.4.8 Received EAP Success
	3.2.5.4.9 Received EAP Failure

	3.2.5.5 Key Management

	3.2.6 Timer Events
	3.2.7 Other Local Events
	3.2.7.1 TLS Session Established Successfully
	3.2.7.2 TLS Session Failed to Establish
	3.2.7.3 Interface with EAP

	3.3 Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.5 Message Processing Events and Sequencing Rules
	3.3.5.1 Status and Error Handling
	3.3.5.2 Phase 1 (TLS Tunnel Establishment)
	3.3.5.3 PEAP Server Cryptobinding Validation
	3.3.5.4 Packet Processing
	3.3.5.4.1 General Packet Validation
	3.3.5.4.2 Received PEAP Response
	3.3.5.4.3 Received PEAP Packet with Inner EAP Type As Identity (Identity Received)
	3.3.5.4.4 Received Capabilities Method Response
	3.3.5.4.5 Received EAP NAK
	3.3.5.4.6 Received SoH
	3.3.5.4.7 Received EAP TLV Extensions Method Packet

	3.3.5.5 Key Management

	3.3.6 Timer Events
	3.3.7 Other Local Events
	3.3.7.1 TLS Session Established Successfully
	3.3.7.2 TLS Session Failed to Establish
	3.3.7.3 EAP Inner Method Authentication Success
	3.3.7.4 EAP Inner Method Authentication Failed

	4 Protocol Examples
	4.1 Examples with No Support for Cryptobinding and SoH Processing
	4.1.1 Successful PEAP Phase 1 and 2 Negotiation
	4.1.2 Successful PEAP Phase 1 with Failed Phase 2 Negotiation
	4.1.3 Successful PEAP Phase 1 with Fast Reconnect

	4.2 Cryptobinding and SoH Processing Supported on PEAP Server Only
	4.2.1 Successful PEAP Phase 1 and 2 Negotiation

	4.3 Cryptobinding and SoH Processing on PEAP Server and PEAP Peer
	4.3.1 Successful PEAP Phase 1 and 2 Negotiation
	4.3.2 Successful PEAP Phase 1 with Fast Reconnect
	4.3.3 Fallback to Full Authentication upon a Fast Reconnect Failure

	4.4 Sample Cryptobinding TLV Data
	4.4.1 Cryptobinding TLV Request from Server to Client
	4.4.1.1 Header
	4.4.1.2 Nonce
	4.4.1.3 Compound MAC
	4.4.1.3.1 Data for HMAC-SHA1-160 Operation
	4.4.1.3.2 Key for HMAC-SHA1-160 Operation
	4.4.1.3.2.1 Temp Key
	4.4.1.3.2.2 IPMK Seed
	4.4.1.3.2.3 IPMK and CMK

	4.4.2 Cryptobinding TLV Response from Client to Server
	4.4.2.1 Header
	4.4.2.2 Nonce
	4.4.2.3 Compound MAC
	4.4.2.3.1 Data for HMAC-SHA1-160 Operation
	4.4.2.3.2 Key for HMAC-SHA1-160 Operation
	4.4.2.3.2.1 Temp Key
	4.4.2.3.2.2 IPMK Seed
	4.4.2.3.2.3 IPMK and CMK

	4.4.3 MPPE Keys Generation

	5 Security
	5.1 Security Considerations for Implementers
	5.1.1 Fast Reconnect
	5.1.2 Identity Verification
	5.1.3 Authentication Outcomes

	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

