
1 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MS-PCQ]:

Performance Counter Query Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

2/22/2007 0.01 New Version 0.01 release

6/1/2007 1.0 Major Updated and revised the technical content.

7/3/2007 1.0.1 Editorial Changed language and formatting in the technical content.

7/20/2007 1.0.2 Editorial Changed language and formatting in the technical content.

8/10/2007 1.1 Minor Clarified the meaning of the technical content.

9/28/2007 1.2 Minor Revised a figure.

10/23/2007 1.3 Minor Added a Windows Behavior note.

11/30/2007 1.3.1 Editorial Changed language and formatting in the technical content.

1/25/2008 1.3.2 Editorial Changed language and formatting in the technical content.

3/14/2008 1.3.3 Editorial Changed language and formatting in the technical content.

5/16/2008 1.3.4 Editorial Changed language and formatting in the technical content.

6/20/2008 1.3.5 Editorial Changed language and formatting in the technical content.

7/25/2008 1.3.6 Editorial Changed language and formatting in the technical content.

8/29/2008 1.4 Minor Corrected some error codes.

10/24/2008 2.0 Major Updated and revised the technical content.

12/5/2008 3.0 Major Updated and revised the technical content.

1/16/2009 4.0 Major Updated and revised the technical content.

2/27/2009 5.0 Major Updated and revised the technical content.

4/10/2009 5.1 Minor Clarified the meaning of the technical content.

5/22/2009 6.0 Major Updated and revised the technical content.

7/2/2009 6.1 Minor Clarified the meaning of the technical content.

8/14/2009 6.1.1 Editorial Changed language and formatting in the technical content.

9/25/2009 6.2 Minor Clarified the meaning of the technical content.

11/6/2009 6.2.1 Editorial Changed language and formatting in the technical content.

12/18/2009 6.2.2 Editorial Changed language and formatting in the technical content.

1/29/2010 6.2.3 Editorial Changed language and formatting in the technical content.

3/12/2010 7.0 Major Updated and revised the technical content.

4/23/2010 8.0 Major Updated and revised the technical content.

6/4/2010 9.0 Major Updated and revised the technical content.

7/16/2010 9.0.1 Editorial Changed language and formatting in the technical content.

3 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Date
Revision
History

Revision
Class Comments

8/27/2010 9.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 10.0 Major Updated and revised the technical content.

11/19/2010 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 10.0 None
No changes to the meaning, language, or formatting of the

technical content.

5/6/2011 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 10.1 Minor Clarified the meaning of the technical content.

9/23/2011 10.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 11.0 Major Updated and revised the technical content.

3/30/2012 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 12.0 Major Updated and revised the technical content.

11/14/2013 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 13.0 Major Significantly changed the technical content.

10/16/2015 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.4 Relationship to Other Protocols .. 8
1.5 Prerequisites/Preconditions ... 8
1.6 Applicability Statement ... 8
1.7 Versioning and Capability Negotiation ... 9
1.8 Vendor-Extensible Fields ... 9
1.9 Standards Assignments ... 9

2 Messages ... 10
2.1 Transport .. 10
2.2 Common Data Types .. 10

2.2.1 RPC_HQUERY ... 10
2.2.2 PRPC_HQUERY ... 10
2.2.3 error_status_t .. 11
2.2.4 Structures ... 11

2.2.4.1 _PERF_COUNTERSET_REG_INFO .. 11
2.2.4.2 _PERF_COUNTER_REG_INFO .. 12
2.2.4.3 _STRING_BUFFER_HEADER .. 18
2.2.4.4 _STRING_COUNTER_HEADER ... 18
2.2.4.5 _PERF_INSTANCE_HEADER .. 19
2.2.4.6 _PERF_COUNTER_IDENTIFIER .. 19
2.2.4.7 _PERF_DATA_HEADER ... 20
2.2.4.8 _PERF_COUNTER_HEADER ... 20
2.2.4.9 _PERF_COUNTER_DATA ... 21
2.2.4.10 _PERF_MULTI_INSTANCES ... 21
2.2.4.11 _PERF_MULTI_COUNTERS .. 21

3 Protocol Details ... 23
3.1 Server Details .. 23

3.1.1 Abstract Data Model .. 23
3.1.1.1 Countersets .. 23
3.1.1.2 Counterset Instances ... 23
3.1.1.3 Counters .. 23
3.1.1.4 Providers ... 23
3.1.1.5 Query Handles .. 24

3.1.2 Timers .. 24
3.1.3 Initialization ... 24
3.1.4 Message Processing Events and Sequencing Rules .. 24

3.1.4.1 PerflibV2 Interface .. 25
3.1.4.1.1 PerflibV2EnumerateCounterSet (Opnum 0) ... 25
3.1.4.1.2 PerflibV2QueryCounterSetRegistrationInfo (Opnum 1) 26
3.1.4.1.3 PerflibV2EnumerateCounterSetInstances (Opnum 2) 32
3.1.4.1.4 PerflibV2OpenQueryHandle (Opnum 3)... 34
3.1.4.1.5 PerflibV2QueryCounterInfo (Opnum 5) ... 34
3.1.4.1.6 PerflibV2QueryCounterData (Opnum 6) .. 36
3.1.4.1.7 PerflibV2ValidateCounters (Opnum 7) .. 43
3.1.4.1.8 PerflibV2CloseQueryHandle (Opnum 4) .. 45

3.1.5 Timer Events .. 45
3.1.6 Other Local Events .. 45

3.2 Client Details ... 46

5 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.1 Abstract Data Model .. 46
3.2.2 Timers .. 46
3.2.3 Initialization ... 46
3.2.4 Message Processing Events and Sequencing Rules .. 46
3.2.5 Timer Events .. 47
3.2.6 Other Local Events .. 47

4 Protocol Examples ... 48
4.1 Querying for Performance Counter Data .. 48

5 Security ... 50
5.1 Security Considerations for Implementers ... 50
5.2 Index of Security Parameters .. 50

6 Appendix A: Full IDL .. 51

7 Appendix B: Product Behavior ... 53

8 Change Tracking .. 55

9 Index ... 56

6 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 Introduction

The Performance Counter Query Protocol is a remote procedure call (RPC)–based protocol that is
used for browsing performance counters and retrieving performance counter values from a server.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

Authentication Service (AS): A service that issues ticket granting tickets (TGTs), which are used
for authenticating principals within the realm or domain served by the Authentication Service.

counterset: A logical entity consisting of a group of related performance counters. For more
information, see [MSDN-COUNT].

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique

identifier (UUID).

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

Network Data Representation (NDR): A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For

more information, see [MS-RPCE] and [C706] section 14.

performance counter: A numeric measurement of the performance of one or more computing
resources. Bandwidth, Throughputs, and Availability are examples of performance counters.

Performance Log Users Group: A set of users that have permission granted by the system
administrator to collect performance counter information.

Performance Monitor Users Group: A set of users that have permission granted by the system

administrator to collect performance counter information.

provider: A logical entity that updates the performance counter values. For more information,
see [MSDN-COUNT].

remote procedure call (RPC): A context-dependent term commonly overloaded with three
meanings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three definitions: (*) The

runtime environment providing remote procedure call facilities. The preferred usage for this

meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC
exchange". (*) A single message from an exchange as defined in the previous definition. The
preferred usage for this term is "RPC message". For more information about RPC, see [C706].

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

https://go.microsoft.com/fwlink/?LinkId=89980
https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

7 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

RPC transport: The underlying network services used by the remote procedure call (RPC) runtime
for communications between network nodes. For more information, see [C706] section 2.

system performance time: A timer that is updated at a hardware-dependent frequency. It has a
higher-resolution (more accurate) than system time.

system time: Coordinated universal time (UTC) with a resolution in milliseconds.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

Unicode string: A Unicode 8-bit string is an ordered sequence of 8-bit units, a Unicode 16-bit
string is an ordered sequence of 16-bit code units, and a Unicode 32-bit string is an ordered

sequence of 32-bit code units. In some cases, it could be acceptable not to terminate with a
terminating null character. Unless otherwise specified, all Unicode strings follow the UTF-16LE
encoding scheme with no Byte Order Mark (BOM).

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager

entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in
the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does
not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

well-known endpoint: A preassigned, network-specific, stable address for a particular

client/server instance. For more information, see [C706].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

https://www2.opengroup.org/ogsys/catalog/c706

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-LCID] Microsoft Corporation, "Windows Language Code Identifier (LCID) Reference".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-LCID%5d.pdf#Section_70feba9f294e491eb6eb56532684c37f
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

8 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MSDN-AUTHLEV] Microsoft Corporation, "RPC_C_AUTHN_LEVEL_xxx", http://msdn.microsoft.com/en-
us/library/ms678435.aspx

[MSDN-COUNT] Microsoft Corporation, "Performance Counters", http://msdn.microsoft.com/en-
us/library/aa373083.aspx

[MSDN-IMPLVL] Microsoft Corporation, "RPC_C_IMP_LEVEL_xxx", http://msdn.microsoft.com/en-
us/library/ms693790.aspx

[MSFT-COUNTERTYPES] Microsoft Corporation, "Counter Types", March 2003,
http://technet2.microsoft.com/WindowsServer/en/library/2c455a3c-6964-432b-9402-
40f439b980881033.mspx

[PIPE] Microsoft Corporation, "Named Pipes", http://msdn.microsoft.com/en-us/library/aa365590.aspx

1.3 Overview

To effectively manage systems, administrators need the capability to query for performance counter

data on the health or state of a particular application or system. Software components that are
designed with performance counters are therefore easier to manage and diagnose. The Performance
Counter Query Protocol enables system administrators to query performance counters on a remote
server.

The Performance Counter Query Protocol is used to retrieve performance counter information from a
server. The protocol allows a client to enumerate the performance counters that are available on the
server. The server can use the protocol to return performance counter information, such as localized

counter names and description strings, performance counter types (for more information, see [MSDN-
COUNT]), and instance information if there are multiple instances of a performance counter. The client

can also use the protocol to establish a query on the server and add or remove performance counters
to it. The client can then repeatedly retrieve performance counter data that is associated with the
query by using the protocol.

1.4 Relationship to Other Protocols

The Performance Counter Query Protocol relies on RPC for its transport. The Performance Counter
Query Protocol is not used by any other protocol.

1.5 Prerequisites/Preconditions

The Performance Counter Query Protocol is implemented over RPC, and therefore has those
prerequisites that are specified in [MS-RPCE] and that are common to RPC interfaces.

It is assumed that a client has obtained the name or IP address of the server that supports the

Performance Counter Query Protocol before invoking the Performance Counter Query Protocol. The
protocol also assumes that the client has sufficient security privileges to access files on the server.

1.6 Applicability Statement

The Performance Counter Query Protocol is appropriate for querying performance library 2.0–based
counter providers and their counter data on a server.

https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=89956
https://go.microsoft.com/fwlink/?LinkId=89956
https://go.microsoft.com/fwlink/?LinkId=89980
https://go.microsoft.com/fwlink/?LinkId=89980
https://go.microsoft.com/fwlink/?LinkId=90023
https://go.microsoft.com/fwlink/?LinkId=90023
https://go.microsoft.com/fwlink/?LinkId=90180
https://go.microsoft.com/fwlink/?LinkId=90180
https://go.microsoft.com/fwlink/?LinkId=90247
https://go.microsoft.com/fwlink/?LinkId=89980
https://go.microsoft.com/fwlink/?LinkId=89980
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

9 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1.7 Versioning and Capability Negotiation

This document addresses versioning issues in security and authentication methods (as specified in
section 2.1 and [MS-RPCE]).

1.8 Vendor-Extensible Fields

The Performance Counter Query Protocol uses Win32 error codes. These values are taken from the
Windows error number space that is specified in [MS-ERREF] section 2.2. Vendors SHOULD reuse
those values with their indicated meaning because choosing any other value risks a collision in the

future.

1.9 Standards Assignments

 Parameter Value Reference

RPC interface UUID da5a86c5-12c2-4943-ab30-7f74a813d853 [C706]

Well-known endpoint \PIPE\winreg [PIPE]

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=90247

10 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Messages

 This section specifies common data types and how Performance Counter Query Protocol messages are
encapsulated on the wire.

2.1 Transport

The Performance Counter Query Protocol uses the ncacn_np RPC protocol sequence.

The Performance Counter Query Protocol uses an RPC well-known endpoint. The well-known
endpoint is a pipe name (for more information, see [PIPE]):

 \PIPE\winreg

The Performance Counter Query Protocol uses security information, as specified in [MS-RPCE] section

2.2.1.1.7. The client MUST specify the RPC Authentication Service (AS) as SPNEGO or NTLM.

The client MUST use an AS that encrypts all data being transferred to or from the RPC and ensures
that the data is from the expected server and has not been modified.

The server MUST perform operations specified by the Performance Counter Query Protocol only if the
AS being used encrypts all data being transferred to and from the procedure call and allows the server
to perform on the client's behalf.<1> For more information on how the AS encrypts data, see [MSDN-
AUTHLEV].

2.2 Common Data Types

The Performance Counter Query Protocol MUST indicate to the RPC runtime that it is to support the
Network Data Representation (NDR) transfer syntax only, as specified in [C706] part 4.

In addition to RPC base types and definitions, as specified in [C706] and [MS-RPCE], additional data

types are defined in the following sections, 2.2.1 through 2.2.3.

2.2.1 RPC_HQUERY

This type is declared as follows:

 typedef [context_handle] HANDLE RPC_HQUERY;

RPC_HQUERY is a context handle used to maintain information about the performance counters that
are being queried from the server by the client. The handle is returned by the server when the client
initiates communication to query for performance counter data. The client then adds performance

counters to a query list, maintained on the server, using the returned handle. When the client queries
for the values of the performance counters, the server determines which performance counters to
query based on the handle the client passes to the query method. The client closes the handle upon
completion of the performance counter query, allowing the server to free the appropriate resources.

2.2.2 PRPC_HQUERY

This type is declared as follows:

 typedef RPC_HQUERY* PRPC_HQUERY;

PRPC_HQUERY is a pointer to an RPC_HQUERY handle.

https://go.microsoft.com/fwlink/?LinkId=90247
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89956
https://go.microsoft.com/fwlink/?LinkId=89956
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

11 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.3 error_status_t

The type error_status_t is the return type from the interface methods; it is represented as an
unsigned long. When the interface methods return successfully, the value is 0. Otherwise, it

represents the failure that occurred, and its possible values are Win32 error codes, as specified in
[MS-ERREF].

2.2.4 Structures

The following structures, sections 2.2.4.1 through 2.2.4.11, are not defined in the Interface

Definition Language (IDL) file but are necessary to understand the information that is returned by
the Performance Counter Query Protocol.

All multibyte data fields in the Performance Counter Query Protocol are little-endian. All the structures
MUST begin on 8-byte boundaries, although the data that is contained within the structure need not
be aligned to 8-byte boundaries.

2.2.4.1 _PERF_COUNTERSET_REG_INFO

The _PERF_COUNTERSET_REG_INFO structure contains information about the counterset and is used
when enumerating performance counter information about the server.

 typedef struct _PERF_COUNTERSET_REG_INFO {
 GUID CounterSetGuid;
 unsigned long CounterSetType;
 unsigned long DetailLevel;
 unsigned long NumCounters;
 unsigned long InstanceType;
 } PERF_COUNTERSET_REG_INFO,
 *PPERF_COUNTERSET_REG_INFO;

CounterSetGuid: A GUID uniquely identifying the counterset.

CounterSetType: Unused. MUST be set to 0, and MUST be ignored on receipt.

DetailLevel: The detail level of the counterset that is used to indicate the intended target audience.
The value MUST be one of the following.

Value Meaning

0x00000064 Novice level. Designed to be accessed by casual users who do not have detailed system
knowledge.

0x000000C8 Advanced level. Designed to be accessed by information technology (IT) administrators who
are monitoring multiple machines.

NumCounters: The number of counters that are defined in the counterset.

InstanceType: There can be a single or multiple active instances of the counterset, and the client

must handle these instances differently. A single active instance of a counterset corresponds to a
single active instance of a performance counter within that counterset. This field indicates whether
the counterset is single, aggregate, or multiple-instance. The value MUST be one of the following.

Value Meaning

0x00000000 Single instance. Only one instance of the counterset is active on the system at any time while
the system is running.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

12 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

0x00000002 Multiple instances. There can be several instances of the counterset active on the system at
any time while the system is running.

0x00000004 Global aggregate. Performs an aggregation operation that is specified in the performance
counter definition. The aggregation operation is performed on the client side for each counter
in the counterset across all available and active instances of the counterset in the system.

0x00000006 Multiple-instance aggregate. Performs an aggregation operation that is specified in the
performance counter definition. The aggregation operation is performed on the client side for
each performance counter in the counterset across a client-specified set of instances of that
counterset. For example, a client can average the value of counter "A" from counterset
instances "1", "2", and "5".

0x0000000C Global aggregate history. Performs an aggregation operation that is specified in the counter
definition. The aggregation operation is performed on the client side for each performance
counter in the counterset across all available instances of the counterset. The result of the
aggregation operation can then be cached by the consumer and referenced for later use. For
example, if a counter is deleted by the server between client queries, the client can use the
value of the counter that was obtained in the last query for the aggregation operation.

0x00000016 Instance aggregate. Not implemented.

2.2.4.2 _PERF_COUNTER_REG_INFO

The _PERF_COUNTER_REG_INFO structure contains information on the counter and is used when
enumerating performance counter information on the server.

 typedef struct _PERF_COUNTER_REG_INFO {
 unsigned long CounterId;
 unsigned long Type;
 unsigned __int64 Attrib;
 unsigned long DetailLevel;
 long DefaultScale;
 unsigned long BaseCounterId;
 unsigned long PerfTimeId;
 unsigned long PerfFreqId;
 unsigned long MultiId;
 unsigned long AggregateFunc;
 unsigned long Reserved;
 } PERF_COUNTER_REG_INFO,
 *PPERF_COUNTER_REG_INFO;

CounterId: The numeric identifier of the counter. A performance counter's CounterId value MUST
be unique within its counterset.

Type: The type of counter. The client MAY need to perform numeric operations on the value of the
counter that is retrieved from the server to use it for analysis. Unless explicitly stated as an

instantaneous value, the client MAY need to cache the value of the counter to compare it with the
value from the next query. The value MUST be one of the following.

Value Meaning

PERF_COUNTER_COUNTER

0x10410400

The counter data is a 32-bit value that indicates the rate of
events being counted per second. To get the rate, the client
takes the difference between counter values from two
subsequent queries and divides it by the time difference

between the two query time stamps. The unit of time is

13 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

system time. The value is displayed as a rate of counts
per second.

PERF_COUNTER_TIMER

0x20410500

The counter data is a 64-bit value that indicates the
percentage of time that the server component updating the
counter data was active over the sample interval. The client
takes the difference in this value between subsequent
queries and divides it by the sample interval; it displays this
ratio as a percentage.

PERF_COUNTER_QUEUELEN_TYPE

0x00450400

The counter data is a 32-bit value that indicates the
average change in the length of a queue over the sample
interval. The client takes the difference in this value

between subsequent queries and divides it by the sample
interval.

PERF_COUNTER_LARGE_QUEUELEN_TYPE

0x00450500

This counter is similar to PERF_COUNTER_QUEUELEN_TYPE,
except that the counter data is a 64-bit value.

PERF_COUNTER_100NS_QUEUELEN_TYPE

0x00550500

This counter is similar to
PERF_COUNTER_LARGE_QUEUELEN_TYPE, except that the
client assumes its clock is updated at a frequency of 100
nanoseconds for this calculation.

PERF_COUNTER_OBJ_TIME_QUEUELEN_TYPE

0x00650500

The counter data is a 32-bit value that indicates the
average change in the length of a queue over the sample
interval. The client takes the difference in this value
between subsequent queries and divides it by the time
difference that the server provides through the PerfTimeId
counter, which contains the time stamp, and the PerfFreqId
counter, which contains the frequency at which the server
updates the time.

PERF_COUNTER_BULK_COUNT

0x10410500

This counter is similar to PERF_COUNTER_COUNTER, except
that the counter data is a 64-bit value.

PERF_COUNTER_TEXT

0X00000B00

This counter is not a numeric counter, but rather Unicode
text. The value is displayed as text.

PERF_COUNTER_RAWCOUNT

0x00010000

The counter data is an instantaneous 32-bit value and is
not divided by a sample interval to calculate the average.

PERF_COUNTER_LARGE_RAWCOUNT

0x00010100

This counter is similar to PERF_COUNTER_RAWCOUNT,
except that the counter data is a 64-bit value.

PERF_COUNTER_RAWCOUNT_HEX

0x00000000

The counter data is an instantaneous 32-bit value and is
not divided by a sample interval to calculate the average.
The value is displayed as a hexadecimal number.

PERF_COUNTER_LARGE_RAWCOUNT_HEX

0x00000100

This counter is similar to
PERF_COUNTER_RAWCOUNT_HEX, except that the counter
data is a 64-bit value.

PERF_SAMPLE_FRACTION

0x20C20400

The counter data is a 32-bit value that is used with another
counter to calculate a ratio that is displayed as a
percentage. The client takes the difference between this
counter data value and divides it by the difference between
the data value queries of the BaseCounterId counter.

PERF_SAMPLE_COUNTER

0x00410400

The 32-bit counter data is similar to the
PERF_COUNTER_COUNTER, except that the system
performance time is used to calculate the sample interval

14 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

instead of the system time.

PERF_COUNTER_TIMER_INV

0x21410500

The 64-bit counter data is generally used to show inactive
time. The client takes the difference in the counter data
between two queries and then divides that by the sample
interval, which is calculated by using the system
performance time. This ratio is then subtracted from 1 and
displayed as a percentage.

PERF_ELAPSED_TIME

0x30240500

The 64-bit counter data contains a time value from which
the value of the PerfTimeId counter is subtracted. This
difference is then divided by the value of the PerfFreqId
counter, which contains the frequency at which the server

updates the time.

PERF_SAMPLE_BASE

0x40030401

The 32-bit counter data is used as the BaseCounterId for
calculations that involve PERF_SAMPLE_FRACTION and
MUST be greater than 0.

PERF_AVERAGE_TIMER

0x30020400

The 32-bit counter data is generally used to indicate the
average time for an operation. The client takes the
difference in the counter data between subsequent queries
and divides that by the frequency of the system clock. It
then divides this value by the value of the difference
between subsequent queries of the BaseCounterId counter,
which would contain the number of operations.

PERF_AVERAGE_BASE

0x40030402

The 32-bit counter data is used as the BaseCounterId
counter in calculations that involve PERF_AVERAGE_TIMER
or PERF_AVERAGE_BULK.

PERF_AVERAGE_BULK

0x40020500

The 64-bit counter data is generally used to show an
average metric, such as bytes, for an operation. The client
takes the difference in this value between subsequent
queries and divides that value by the difference in the value
of the BaseCounterId counter.

PERF_OBJ_TIME_TIMER

0x20610500

The 64-bit counter data is used as a server-specific timer.
The client takes the difference in the counter data between
subsequent queries and then divides that by the difference
in time. The time difference is calculated by taking the
difference of the PerfTimeId counter between subsequent
queries and dividing it by the value of the PerfFreqId
counter.

PERF_PRECISION_100NS_TIMER

0x20570500

The 64-bit counter data is used as a precise elapsed timer.
The client takes the difference in the counter data between
subsequent queries and then divides that by the value of
the difference in the BaseCounterId counter; the
BaseCounterId counter represents a clock time that is
assumed to be updated at a frequency of 100 nanoseconds.

PERF_PRECISION_SYSTEM_TIMER

0x20470500

The 64-bit counter data is used as an elapsed timer. The
client takes the difference in the counter data from
subsequent queries and divides it by the difference in the
counter data of the BaseCounterId counter, which serves as
a timestamp counter. The client assumes the frequency of
the clock is the same as the system performance timer.

PERF_PRECISION_OBJECT_TIMER

0x20670500

The 64-bit counter data is used as a precise elapsed timer.
The client takes the difference in the counter data between
subsequent queries and divides that by the value of the
difference in time. This difference is calculated by taking

15 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

the difference between subsequent queries of the
PerfTimeId counter and dividing it by the frequency,
which is the value of the PerfFreqId counter.

 PERF_100NSEC_TIMER

0x20510500

The 64-bit counter data is used to indicate the ratio of
active time over elapsed time. The client takes the
difference in the counter data between subsequent queries
and then divides that by the sample interval; the frequency
of the client clock is assumed to be 100 nanoseconds. The
value is displayed as a percentage.

 PERF_100NSEC_TIMER_INV

0x21510500

The 64-bit counter data is the inverse of the
PERF_100NSEC_TIMER; it shows the ratio of inactive time

over elapsed time. The client takes the difference in this
counter value between subsequent queries and then divides
it by the sample interval; this result is subtracted from 1
and then displayed as a percentage. The frequency of the
client clock in this calculation is assumed to be 100
nanoseconds.

PERF_COUNTER_MULTI_TIMER

0x22410500

The 64-bit counter data is used to indicate the average
ratio of active time over elapsed time; it is used when there
are multiple instances, such as disks that are being
monitored. The client takes the difference in the counter
data between subsequent queries and divides it by the
sample interval. The client uses the frequency of the
system performance time to calculate elapsed time. This
ratio is then divided by the value of the MultiId counter and
is displayed as a percentage.

PERF_COUNTER_MULTI_TIMER_INV

0x23410500

The 64-bit counter data is the inverse of the
PERF_COUNTER_MULTI_TIMER. The client takes the
difference in the counter data between subsequent queries
and divides it by the sample interval. The client uses the
frequency of the system performance time. This value is
then subtracted from the value of the MultiId counter and is
displayed as a percentage.

 PERF_100NSEC_MULTI_TIMER

0x22510500

The 64-bit counter data is used to indicate the average
ratio of active time over elapsed time; it is used when there
are multiple instances, such as disks that are being
monitored. The client takes the difference in the counter
data between subsequent queries and divides it by the
sample interval. The client uses the frequency of 100
nanoseconds to calculate elapsed time. This ratio is then
divided by the value of the MultiId counter and is displayed
as a percentage.

 PERF_100NSEC_MULTI_TIMER_INV

0x23510500

The 64-bit counter data is the inverse of the
PERF_100NSEC_MULTI_TIMER. The client takes the
difference in the counter data between subsequent queries
and then divides it by the sample interval; the client uses
the frequency of 100 nanoseconds to calculate elapsed
time. This value is then subtracted from the value of the
MultiId counter; it is displayed as a percentage.

PERF_RAW_FRACTION

0x20020400

The 32-bit counter data is used to show a ratio between
two values. The client takes the counter data and divides it
by the value of the BaseCounterId counter; it displays this
ratio as a percentage.

PERF_RAW_BASE The 32-bit counter data is used by the client in calculations
involving the PERF_RAW_FRACTION counter. The client

16 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

0x40030403 SHOULD NOT display this counter.

PERF_LARGE_RAW_FRACTION

0x20020500

The counter data is similar to PERF_RAW_FRACTION,
except that it is a 64-bit value.

PERF_LARGE_RAW_BASE

0x40030500

The 64-bit counter data is used by the client in calculations
that involve PERF_LARGE_RAW_FRACTION,
PERF_PRECISION_SYSTEM_TIMER, and
PERF_PRECISION_100NS_TIMER counters.

Attrib: The counter attributes describe certain properties that can be combined in certain cases. The
value MUST be one or more of the following.

Value Meaning

0x0000000000000001 Reference. The query on the server MUST dereference the counter to obtain the
value.<2>

0x0000000000000002 No display. Instructs the client consumer querying for performance counter data
not to display the counter value.

0x0000000000000004 No group separator. Instructs the client consumer querying performance counter
data to display the counter values as a single number without commas between
digits.

0x0000000000000008 Display as real. Instructs the client consumer querying performance counter to
display the counter value as a real number.

0x0000000000000010 Display as hexadecimal. Instructs the client consumer querying performance
counter to display the counter value as a hexadecimal number.

Note that only certain combinations of the preceding possible values are allowed.

 The "Reference" value (0x0000000000000001) can be specified with any other value.

 The "No display" value (0x0000000000000002) MUST NOT be specified with the "No group
separator", "Display as real" or "Display as hex" values.

 The "No group separator" (0x0000000000000004) or the "Display as real"
(0x0000000000000008) values MUST NOT be specified with the "Display as hex" value.

DetailLevel: The detail level of the counter. The value MUST be one of the following.

Value Meaning

0x00000064 Novice level. Designed to be accessed by casual users who do not have detailed system
knowledge.

0x000000C8 Advanced level. Designed to be accessed by IT administrators who are monitoring multiple
machines.

DefaultScale: Indicates the amount by which the counter value is scaled. Valid values are from
0xFFFFFFF6 to 0x0000000A (-10 to 10 decimal). For example, if the value of the counter is
0x0000000A (10 decimal) and the default scale is 0x00000002 (2 decimal), the counter value that
is calculated by the client MUST be 0x000003E8 (1000 decimal).

BaseCounterId: The CounterId of another counter in the counterset whose value is used by the
client in calculating this counter's value. The type of calculation depends of the type of the

performance counter.

17 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

For example, the difference in the value between queries of a counter are divided by the difference
in the value between queries of the counter whose CounterId is BaseCounterId.

The following counter types require a BaseCounterId.

Counter type Base counter type

PERF_AVERAGE_TIMER PERF_AVERAGE_BASE

PERF_AVERAGE_BULK PERF_AVERAGE_BASE

PERF_LARGE_RAW_FRACTION PERF_LARGE_RAW_BASE

PERF_PRECISION_SYSTEM_TIMER PERF_LARGE_RAW_BASE

PERF_PRECISION_100NS_TIMER PERF_LARGE_RAW_BASE

PERF_RAW_FRACTION PERF_RAW_BASE

PERF_SAMPLE_FRACTION PERF_SAMPLE_BASE

PerfTimeId: The CounterId of another counter in the counterset whose time value is used to

calculate the value of this counter.

In certain cases, such as when calculating rate, it is necessary to gather a time value and take the
difference between subsequent queries of this time value to calculate elapsed time on the client.
PerfTimeId specifies the CounterId of the counter, which MUST be of type
PERF_COUNTER_LARGE_RAWCOUNT, in the counterset that will contain the time value that is
used to calculate the rate of this counter. The following counter types require a PerfTimeId (for

more information, see [MSFT-COUNTERTYPES]):

 PERF_COUNTER_OBJ_TIME_QUEUELEN_TYPE

 PERF_ELAPSED_TIME

 PERF_OBJ_TIME_TIMER

 PERF_PRECISION_OBJECT_TIMER

PerfFreqId: The CounterId of another counter in the counterset whose frequency value is used to
calculate the value of this counter.

In certain cases, such as when rate is calculated, it is necessary to gather a time value and take
the difference between subsequent queries of this time value. The time value is then divided by
the frequency at which time is updated to calculate the elapsed time, in seconds, on the client.
PerfFreqId specifies the CounterId of the counter, which MUST be of type
PERF_COUNTER_LARGE_RAWCOUNT, in the counterset whose value will contain the frequency at
which time is updated to calculate the rate of this counter. The following counter types require a
PerfFreqId (for more information, see [MSFT-COUNTERTYPES]):

 PERF_COUNTER_OBJ_TIME_QUEUELEN_TYPE

 PERF_ELAPSED_TIME

 PERF_OBJ_TIME_TIMER

 PERF_PRECISION_OBJECT_TIMER

MultiId: The CounterId of another counter within the current counterset that is used to calculate
the value of this counter.

https://go.microsoft.com/fwlink/?LinkId=90180

18 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

In certain cases, such as when rate counters are scaled, it is necessary to divide the difference in
this counter value between queries by an additional value on the client. The CounterId of the

counter is specified by MultiId. It MUST be of type PERF_COUNTER_RAWCOUNT in the counterset
that is used as a divisor to this counter value. The following counter types require a MultiId (for

more information, see [MSFT-COUNTERTYPES]):

 PERF_COUNTER_MULTI_TIMER

 PERF_100NSEC_MULTI_TIMER

 PERF_100NSEC_MULTI_TIMER_INV

 PERF_COUNTER_MULTI_TIMER_INV

AggregateFunc: The aggregation function to be performed by the client on the counter if the
counterset to which the counter belongs is of type Global Aggregate, Multiple Instance Aggregate,

or Global Aggregate History. The client specifies across which counter instances the aggregation
are performed if the counterset type is Multiple Instance Aggregate; otherwise, the client MUST
aggregate values across all instances of the counterset. One of the following values MUST be

specified.

Value Meaning

0x00000000 Undefined.

0x00000001 Total. The sum of the values of the returned counter instances.

0x00000002 Average. The average of the values of the returned counter instances.

0x00000003 Minimum. The minimum value of the returned counter instance values.

0x00000004 Maximum. The maximum value of the returned counter instance values.

Reserved: This is a reserved field. It MUST be set to 0, and MUST be ignored on receipt.

2.2.4.3 _STRING_BUFFER_HEADER

The _STRING_BUFFER_HEADER structure is used at the beginning of a counter string header block
that is returned when retrieving the names or description strings of performance counters. For

more information, see Figure 2 in section 3.1.4.1.2.

 typedef struct _STRING_BUFFER_HEADER {
 DWORD dwSize;
 DWORD dwCounters;
 } PERF_STRING_BUFFER_HEADER,
 *PPERF_STRING_BUFFER_HEADER;

dwSize: The total size, in bytes, of the data that is returned.

dwCounters: The total number of counters in the counterset.

2.2.4.4 _STRING_COUNTER_HEADER

The _STRING_COUNTER_HEADER structure is used in a counter string header block.

 typedef struct _STRING_COUNTER_HEADER {
 DWORD dwCounterId;
 DWORD dwOffset;
 } PERF_STRING_COUNTER_HEADER,

19 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 *PPERF_STRING_COUNTER_HEADER;

dwCounterId: The CounterId of the performance counter.

dwOffset: The offset from the end of the set of _STRING_COUNTER_HEADER structures to which
this structure belongs to its corresponding name or description. For more information, see figure 2
in section 3.1.4.1.2.

2.2.4.5 _PERF_INSTANCE_HEADER

The _PERF_INSTANCE_HEADER structure is used at the beginning of an instance block that is returned
when enumerating counterset instances or when returning performance counter data from
multiple instances.

 typedef struct _PERF_INSTANCE_HEADER {
 unsigned long Size;
 unsigned long InstanceId;
 } PERF_INSTANCE_HEADER,
 *PPERF_INSTANCE_HEADER;

Size: The total size, in bytes, of the structure and the instance name.

InstanceId: The counterset instance identifier. Each active instance of a counterset can be identified
by the combination of its instance name and instance identifier. Two active instances of a
counterset SHOULD NOT have the same combination of instance name and instance identifier.
<3>

2.2.4.6 _PERF_COUNTER_IDENTIFIER

The _PERF_COUNTER_IDENTIFIER structure is used to identify performance counters when adding
or removing counters from a query or when enumerating performance counter metadata on the

server.

 typedef struct _PERF_COUNTER_IDENTIFIER {
 GUID CounterSetGuid;
 unsigned long Status;
 unsigned long Size;
 unsigned long CounterId;
 unsigned long InstanceId;
 unsigned long Index;
 unsigned long Reserved;
 } PERF_COUNTER_IDENTIFIER,
 *PPERF_COUNTER_IDENTIFIER;

CounterSetGuid: The GUID of the counterset.

Status: A Win32 error code that indicates whether the operation was successful. Win32 error codes

are specified in [MS-ERREF].

Size: The total size, in bytes, of the structure and the instance name. The structure is followed by the
instance name, represented as a Unicode string.

CounterId: The numeric identifier of the counter.

InstanceId: The instance identifier of the counterset.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

20 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Index: The position in which the corresponding counter data is returned from a
PerflibV2QueryCounterData (section 3.1.4.1.6) method call. For more information, see

PerflibV2QueryCounterInfo (section 3.1.4.1.5).

Reserved: Clients MUST set this field to 0 and MUST ignore this field on receipt.

2.2.4.7 _PERF_DATA_HEADER

The _PERF_DATA_HEADER structure is used at the beginning of a sequence of counter header blocks
that are returned when the client queries the server for performance counter values.

 typedef struct _PERF_DATA_HEADER {
 unsigned long dwTotalSize;
 unsigned long dwNumCounter;
 unsigned __int64 PerfTimeStamp;
 unsigned __int64 PerfTime100NSec;
 unsigned __int64 PerfFreq;
 SYSTEMTIME SystemTime;
 } PERF_DATA_HEADER,
 *PPERF_DATA_HEADER;

dwTotalSize: The total size, in bytes, of the data.

dwNumCounter: The number of counters whose value is retrieved.

PerfTimeStamp: A high-resolution clock.

PerfTime100NSec: The number of 100 nanosecond intervals since January 1, 1601, in Coordinated
Universal Time (UTC).

PerfFreq: The frequency of a high-resolution clock.

SystemTime: The time at which data is collected on the provider side. The format of this field is as
specified in [MS-DTYP].

2.2.4.8 _PERF_COUNTER_HEADER

The _PERF_COUNTER_HEADER structure is used at the beginning of a counter header block.

 typedef struct _PERF_COUNTER_HEADER {
 unsigned long dwStatus;
 unsigned long dwType;
 unsigned long dwSize;
 unsigned long Reserved;
 } PERF_COUNTER_HEADER,
 *PPERFCOUNTERHEADER;

dwStatus: A Win32 error code that indicates whether the operation was successful. Win32 error
codes are specified in [MS-ERREF].

dwType: The performance counter type. The value MUST be one of the following.

Value Meaning

PERF_ERROR_RETURN

0x00000000

An error occurred when the performance counter value was queried.

PERF_SINGLE_COUNTER The query returned a single-instance performance counter value.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

21 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

0x00000001

PERF_MULTI_COUNTERS

0x00000002

The query returned multiple performance counter values.

PERF_MULTI_INSTANCES

0x00000004

The query returned values from multiple instances of a performance counter.

PERF_COUNTERSET

0x00000006

The query returned the values of all instances of all performance counters that
belong to the counterset.

dwSize: The size, in bytes, of the structure and data.

Reserved: MUST be set to 0, and MUST be ignored on receipt.

2.2.4.9 _PERF_COUNTER_DATA

The _PERF_COUNTER_DATA structure is used in the counter header block.

 typedef struct _PERF_COUNTER_DATA {
 unsigned long dwDataSize;
 unsigned long dwSize;
 } PERF_COUNTER_DATA,
 *PPERF_COUNTER_DATA;

dwDataSize: The size, in bytes, of the performance counter data.

dwSize: The size, in bytes, of the structure and performance counter data.

2.2.4.10 _PERF_MULTI_INSTANCES

The _PERF_MULTI_INSTANCES structure is used in the counter header block.

 typedef struct _PERF_MULTI_INSTANCES {
 unsigned long dwTotalSize;
 unsigned long dwInstances;
 } PERF_MULTI_INSTANCES,
 *PPERF_MULTI_INSTANCES;

dwTotalSize: The size, in bytes, of the header and data.

dwInstances: The number of instances from which data is collected.

2.2.4.11 _PERF_MULTI_COUNTERS

The _PERF_MULTI_COUNTERS structure is used in the counter header block.

 typedef struct _PERF_MULTI_COUNTERS {
 unsigned long dwSize;
 unsigned long dwCounters;
 } PERF_MULTI_COUNTERS,
 *PPERF_MULTI_COUNTERS;

dwSize: The size, in bytes, of this structure and the array of Performance Counter IDs.

22 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

dwCounters: The number of counters.

23 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Protocol Details

The client side of the Performance Counter Query Protocol is simply a pass-through. Therefore, no
additional timers or other states are required on the client side of the Performance Counter Query
Protocol. Calls made by the higher-layer protocol or application are passed directly to the transport,
and the results that are returned by the transport are passed directly back to the higher-layer protocol
or application.

3.1 Server Details

The server handles client requests for any of the methods, as specified in section 3.1.4, and operates
on the performance counters on the server.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in the Performance Counter Query Protocol. The described organization is
provided to facilitate the explanation of how the protocol behaves. This document does not mandate

that implementations adhere to this model as long as their external behavior is consistent with what is
described in this document.

3.1.1.1 Countersets

Performance counters are organized into countersets. Each counterset is a logical grouping of one

or more performance counters. A counterset is identified by a GUID and a name.

For example, a processor counterset can contain performance counters related to the system
processor (CPU).

3.1.1.2 Counterset Instances

Depending on the entity that is updating the performance counter value, multiple instances of a
counterset can exist. For example, a single-processor machine has only one instance of a counterset
that contains processor-related performance counters; however, a dual-processor machine has two
instances.

Each instance of a counterset is identified by a numeric ID and name.

3.1.1.3 Counters

Each performance counter in a counterset is identified by a numeric ID; a counter can be uniquely
identified on the system by using the counterset GUID, counterset instance name or ID, and counter
ID. Each performance counter can have a localized name and description, type, and detail level among

other metadata fields. Depending on the type of performance counter, it can be necessary to use the
value of other performance counters to calculate the value.

3.1.1.4 Providers

Performance counter values are updated by logical entities called providers. The providers are

registered within the system, and they create the counterset instances using implementation-specific
mechanisms. For each created instance, the system maintains information about the provider that is
updating that instance.

24 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.5 Query Handles

Clients can perform two types of query operations on the server by using the Performance Counter
Query Protocol: Browse the counterset and performance counter metadata on the server or query

the performance counter values from the counterset instances. When a client requests browsing
countersets or performance counter metadata (sections 3.1.4.1.1, 3.1.4.1.2, and 3.1.4.1.3), the
server does not associate any state with these requests, but simply sends to the client the available
metadata on the system.

When a client wants to query the server for performance counter values from counterset instances, it
uses the Performance Counter Query Protocol to create an RPC_HQUERY handle on the server. The
server maintains a single table of query handles associating client connections to internal server states

related to the connection. For each handle, the server keeps a list of performance counter identifiers
(for more information about performance counter identifiers see section 2.2.4.6). The client can add
or remove performance counter identifiers from the list, as specified in section 3.1.4.1.7.

When the client makes the query operation (see section 3.1.4.1.6), the server retrieves the
performance counter values from the system by using system interfaces; the server passes to these

interfaces the list of performance counter identifiers associated with the query handle. For each

performance counter identifier, the system retrieves the performance counter value from its
corresponding provider and returns it to the server. The server accumulates the values and sends the
data to the client.

In addition, the client can enumerate the performance counter metadata about the performance
counters it added to the query handle. In that case, the server returns the performance counter
information that is associated with the RPC_HQUERY handle passed from the client (section 3.1.4.1.5).

In certain cases, aggregation operations, such as addition or an average, can be performed by the

client after it retrieves the performance counter values from the server. The counterset identifies
whether an aggregation operation can be performed, and each performance counter in the counterset
specifies a specific aggregation operation.

For example, a performance counter being queried by the client, associated with the RPC_HQUERY
handle, can belong to a counterset of type Multiple Instance Aggregate. The AggregateFunc property

of this performance counter, which is a member of the _PERF_COUNTER_REG_INFO structure, can be
set to value 0x00000001. In this case, all instances that the client queries will be returned; the client

component of the performance counter infrastructure will use these values to calculate the total sum
of the instances of that performance counter, to pass back to the requesting application.

When the client no longer needs to query the server for performance counter values, it closes the
RPC_HQUERY handle; afterward, the server can free any resources that are associated with the
handle.

3.1.2 Timers

No protocol timers are required—other than the internal ones that are used in remote procedure
calls to implement resiliency to network outages, as specified in [MS-RPCE].

3.1.3 Initialization

 None.

3.1.4 Message Processing Events and Sequencing Rules

The Performance Counter Query Protocol MUST indicate to the RPC runtime that it is to perform a
strict NDR data consistency check at target level 6.0, as specified in [MS-RPCE] section 3.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

25 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The Performance Counter Query Protocol MUST indicate to the RPC runtime that it is to reject a NULL
unique or full pointer with a nonzero conformant value, as specified in [MS-RPCE] section 3.

The Performance Counter Query Protocol MUST indicate to the RPC runtime through the
strict_context_handle attribute that it is to reject use of context handles that are created by a

method of a different RPC interface than this one, as specified in [MS-RPCE] section 3.

3.1.4.1 PerflibV2 Interface

The PerflibV2 interface is a set of methods that the client can use to enumerate performance

counter metadata and query performance counter values on a server. The client can view all the
counters that are installed on the system. After the client has decided which performance counters are
of interest, it can open a query on the server and add the necessary counters. The client then queries
these counters, upon which the server returns the values of the counters that are specified by the
client. The client closes the query on the server once it has queried the counters for the necessary
duration.

Methods in RPC Opnum Order

Method Description

PerflibV2EnumerateCounterSet Allows a client to enumerate the available countersets on a server.

Opnum: 0

PerflibV2QueryCounterSetRegistrationInfo Allows a client to enumerate metadata about a counterset or
performance counter on a server.

Opnum: 1

PerflibV2EnumerateCounterSetInstances Retrieves all active instances of a counterset on a server.

Opnum: 2

PerflibV2OpenQueryHandle Opens a handle that is used to add, remove, or collect performance
counters from a server.

Opnum: 3

PerflibV2CloseQueryHandle Closes the handle that is returned from the
PerflibV2OpenQueryHandle method.

Opnum: 4

PerflibV2QueryCounterInfo Returns information on the performance counters.

Opnum: 5

PerflibV2QueryCounterData Retrieves performance counter data.

Opnum: 6

PerflibV2ValidateCounters Adds or removes performance counters from the query.

Opnum: 7

These methods MUST not throw exceptions except for those that are thrown by the underlying RPC

protocol, as specified in [MS-RPCE].

Many of these methods return data in buffers whose format is not specified in the IDL file. All

structures that are returned in the data buffer MUST begin on 8-byte boundaries, and all multibyte
data fields are little-endian.

3.1.4.1.1 PerflibV2EnumerateCounterSet (Opnum 0)

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

26 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The PerflibV2EnumerateCounterSet method allows a client to enumerate the available countersets on
a server.

 error_status_t PerflibV2EnumerateCounterSet(
 [in, string] wchar_t* szMachine,
 [in, range(0, 256)] DWORD dwInSize,
 [out] DWORD* pdwOutSize,
 [out] DWORD* pdwRtnSize,
 [out, size_is(dwInSize), length_is(* pdwOutSize)]
 GUID* lpData
);

szMachine: A Unicode string specifying a server name, which is passed directly to the counter

provider. Counter providers can ignore the server name provided by szMachine.

dwInSize: The size of the buffer, in number of GUIDs.

pdwOutSize: On output, the number of GUIDs that are returned in the array. The server MUST set

this value to zero if the value of dwInSize is less than the total number of GUIDs on the server.

pdwRtnSize: On output, the total number of GUIDs on the server.

lpData: The buffer that returns an array of GUIDs.

Return Values: This method MUST return zero (ERROR_SUCCESS) for success; otherwise, it MUST
return one of the standard Windows errors, as specified in [MS-ERREF] section 2.2.

Return value/code Description

0x00000000

ERROR_SUCCESS

The return value indicates success.

0x00000005

ERROR_ACCESS_DENIED

The server returns this value to the client if the authentication level of
the client is less than RPC_C_AUTHN_LEVEL_PKT_PRIVACY.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

This return value is used to indicate when the size of the client-provided
buffer is not large enough to accommodate all of the GUID values that
are being returned by the server.

0x0000000E

ERROR_OUTOFMEMORY

This return value is used to indicate that the server, while attempting to
return all of the appropriate GUIDs to the client, could not allocate
memory.

3.1.4.1.2 PerflibV2QueryCounterSetRegistrationInfo (Opnum 1)

The PerflibV2QueryCounterSetRegistrationInfo method allows a client to enumerate metadata about a
counterset or performance counter on a server.

 error_status_t PerflibV2QueryCounterSetRegistrationInfo(
 [in, string] wchar_t* szMachine,
 [in] GUID* CounterSetGuid,
 [in] DWORD RequestCode,
 [in] DWORD RequestLCID,
 [in, range(0, 134217728)] DWORD dwInSize,
 [out] DWORD* pdwOutSize,
 [out] DWORD* pdwRtnSize,
 [out, size_is(dwInSize), length_is(* pdwOutSize)]
 unsigned char* lpData

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

27 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

szMachine: A Unicode string specifying a server name, which is passed directly to the counter
providers. Counter providers can ignore the server name provided by szMachine.

CounterSetGuid: The GUID of the counterset whose information needs to be retrieved; this can also
be the GUID of the counterset to which the performance counters whose information is being
queried belong.

RequestCode: The type of information on the counterset to retrieve. The value MUST be one of the
following.

Value Meaning

0x00000001 Return information about the counterset.

0x00000002 Return information about a performance counter.

0x00000003 Return the name of the counterset.

0x00000004 Return the description of the counterset.

0x00000005 Return the names of the performance counters.

0x00000006 Return the descriptions of the performance counters.

0x00000007 Return the name of the provider.

0x00000008 Return the GUID of the provider.

0x00000009 Return the English-language name of the counterset.

0x0000000A Return the English-language names of the performance counters.

RequestLCID: When the value of RequestCode is 0x00000003, 0x00000004, 0x00000005, or
0x00000006, RequestLCID specifies the locale ID (as specified in [MS-LCID]), or is set to 0 to
instruct the server to use its default language.

When the value of RequestCode is 0x00000002, RequestLCID specifies the counter ID.

When the value of RequestCode is 0x00000001, 0x00000007, 0x00000008, 0x00000009, or
0x0000000A, RequestLCID MUST be set to zero and ignored upon receipt.<4>

dwInSize: The size, in bytes, of the buffer.

pdwOutSize: The size, in bytes, of the data in the buffer pointed to by lpData.

pdwRtnSize: The necessary size, in bytes, to retrieve all the requested data.

lpData: The buffer that returns the requested data.

Return Values: This method MUST return zero (ERROR_SUCCESS) for success; otherwise, it MUST
return one of the standard Windows errors, as specified in [MS-ERREF] section 2.2.

Return value/code Description

0x00000000

ERROR_SUCCESS

The return value indicates success.

0x00000005 The server returns this value to the client if the authentication level of

%5bMS-LCID%5d.pdf#Section_70feba9f294e491eb6eb56532684c37f
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

28 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

ERROR_ACCESS_DENIED the client is less than RPC_C_AUTHN_LEVEL_PKT_PRIVACY.

0x00000057

ERROR_INVALID_PARAMETER

This return value indicates that there was a problem with the
parameter that was passed by the client to the server. The server
MUST return this value when:

 RequestCode (the RequestCode is not between 0x00000001 and
0x0000000A inclusive).

0x00001068

ERROR_WMI_GUID_NOT_FOUND

The server returns this value if it does not have a counterset with the
same GUID as the one passed by the client through the
CounterSetGuid parameter of the method.

The server will also return this value if it cannot find the GUID of the
provider to which the counterset belongs.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The server will return this value to the client if the RequestCode
parameter is valid, but the buffer pointed to by lpData is not of
sufficient size.

0x0000106A

ERROR_WMI_ITEMID_NOT_FOUND

The server returns this error code when the value of RequestCode is
0x02 and a counterset with the GUID provided through the
CounterSetGuid parameter exists, but the counter identifier is not
found in the counterset.

The data that this method returns depends on the type of information that is requested, as denoted by
the RequestCode parameter.

 If the value of RequestCode is 0x00000003, 0x00000004, 0x00000005, or 0x00000006, and the
language specified by RequestLCID is not installed on the server, an error MUST be returned.

 If RequestCode = 0x00000001, the server returns information about the counterset. The server
MUST return a _PERF_COUNTERSET_REG_INFO structure that is followed by a set of
_PERF_COUNTER_REG_INFO structures. The number of _PERF_COUNTER_REG_INFO structures

MUST be equal to the NumCounters field of the PERF_COUNTERSET_REG_INFO structure.

Figure 1: PerflibV2QueryCounterSetRegistrationInfo return if RequestCode = 0x00000001

The following diagram illustrates data size, alignment, and endianness.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_PERF_COUNTERSET_REG_INFO (row 1, CounterSetGuid)

29 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

_PERF_COUNTERSET_REG_INFO (row 2, CounterSetGuid)

_PERF_COUNTERSET_REG_INFO (row 3, CounterSetGuid)

_PERF_COUNTERSET_REG_INFO (row 4, CounterSetGuid)

_PERF_COUNTERSET_REG_INFO (row 5, CounterSetType)

_PERF_COUNTERSET_REG_INFO (row 6, DetailLevel)

_PERF_COUNTERSET_REG_INFO (row 7, NumCounters)

_PERF_COUNTERSET_REG_INFO (row 8, InstanceType)

_PERF_COUNTER_REG_INFO (row 1, CounterId)

_PERF_COUNTER_REG_INFO (row 2, Type)

_PERF_COUNTER_REG_INFO (row 3, Attrib)

_PERF_COUNTER_REG_INFO (row 4, Attrib)

_PERF_COUNTER_REG_INFO (row 5, DetailLevel)

_PERF_COUNTER_REG_INFO (row 6, DefaultScale)

_PERF_COUNTER_REG_INFO (row 7, BaseCounterId)

_PERF_COUNTER_REG_INFO (row 8, PerfTimeId)

_PERF_COUNTER_REG_INFO (row 9, PerfFreqId)

_PERF_COUNTER_REG_INFO (row 10, MultiId)

_PERF_COUNTER_REG_INFO (row 11, AggregateFunc)

_PERF_COUNTER_REG_INFO (row 12, Reserved)

 If RequestCode = 0x00000002, the server returns information about a performance counter. The
server MUST return a _PERF_COUNTER_REG_INFO structure.

The following diagram illustrates data size, alignment, and endianness.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_PERF_COUNTER_REG_INFO (row 1, CounterId)

_PERF_COUNTER_REG_INFO (row 2, Type)

30 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

_PERF_COUNTER_REG_INFO (row 3, Attrib)

_PERF_COUNTER_REG_INFO (row 4, Attrib)

_PERF_COUNTER_REG_INFO (row 5, DetailLevel)

_PERF_COUNTER_REG_INFO (row 6, DefaultScale)

_PERF_COUNTER_REG_INFO (row 7, BaseCounterId)

_PERF_COUNTER_REG_INFO (row 8, PerfTimeId)

_PERF_COUNTER_REG_INFO (row 9, PerfFreqId)

_PERF_COUNTER_REG_INFO (row 10, MultiId)

_PERF_COUNTER_REG_INFO (row 11, AggregateFunc)

_PERF_COUNTER_REG_INFO (row 12, Reserved)

 If RequestCode = 0x00000003, 0x00000004, or 0x00000009, the server returns either the
localized name (RequestCode = 0x00000003) or description (RequestCode = 0x00000004). The
RequestCode 0x00000009 specifies returning the name as an English-language string. The server

MUST return a null-terminated Unicode string.

 If RequestCode = 0x00000005, 0x00000006, or 0x0000000A, the server returns either the
localized names (RequestCode = 0x00000005) or descriptions (RequestCode = 0x00000006). The
RequestCode 0x0000000A specifies returning the names of the counters as English-language
strings. The server MUST return a _STRING_BUFFER_HEADER structure that is followed by a set of

_STRING_COUNTER_HEADER structures and then a set of null-terminated Unicode strings and

MUST be 8-byte aligned. The number of _STRING_COUNTER_HEADER structures MUST be equal
to the dwCounters field of the _STRING_BUFFER_HEADER structure. The offset to the beginning
of a string is the size of the _STRING_BUFFER_HEADER plus the size of the
_STRING_COUNTER_HEADER structures that are multiplied by the number of counters plus the
dwOffset value of the _STRING_COUNTER_HEADER structure.

31 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 2: PerflibV2QueryCounterSetRegistrationInfo return if RequestCode = 0x00000005

The following diagram illustrates data size, alignment, and endianness. In this example, the names of
two performance counters are returned (STRING_BUFFER_HEADER.dwCounters == 2). The name of
the first counter is 6 bytes in length, while the name of the second counter is 8 bytes in length.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_STRING_BUFFER_HEADER (row 1, dwSize)

_STRING_BUFFER_HEADER (row 2, dwCounters)

_STRING_COUNTER_HEADER (row 1, dwCounterId)

_STRING_COUNTER_HEADER (row 2, dwOffset)

_STRING_COUNTER_HEADER (row 1, dwCounterId)

_STRING_COUNTER_HEADER (row 2, dwOffset)

Unicode String Name of the first counter

Name of the First Counter Unicode String Name of the Second Counter

Unicode String Name of the second counter

Name of the Second Counter Padding (MUST be uninitialized)

32 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If RequestCode = 0x00000007, the server returns the name of the performance counter provider.
The server MUST return a null-terminated Unicode string.

 If RequestCode = 0x00000008, the server returns the GUID of the performance counter provider.
The server MUST return a GUID.

3.1.4.1.3 PerflibV2EnumerateCounterSetInstances (Opnum 2)

The PerflibV2EnumerateCounterSetInstances method retrieves all active instances of the client-
specified counterset on the server.

 error_status_t PerflibV2EnumerateCounterSetInstances(
 [in, string] wchar_t* szMachine,
 [in] GUID* CounterSetGuid,
 [in, range(0, 67108864)] DWORD dwInSize,
 [out] DWORD* pdwOutSize,
 [out] DWORD* pdwRtnSize,
 [out, size_is(dwInSize), length_is(* pdwOutSize)]
 unsigned char* lpData
);

szMachine: A Unicode string specifying a server name, which is passed directly to the counter
providers. Counter providers can ignore the server name provided by szMachine.

CounterSetGuid: The GUID of the counterset whose instances are to be enumerated.

Return value/code Description

0x00000000

ERROR_SUCCESS

The return value indicates success.

0x00000005

ERROR_ACCESS_DENIED

The server returns this value to the client if the authentication
level of the client is less than
RPC_C_AUTHN_LEVEL_PKT_PRIVACY.

0x00001068

ERROR_WMI_GUID_NOT_FOUND

The server returns this value when it cannot find a counterset
with the GUID that was specified by the client in the
CounterSetGuid parameter.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The server returns this value to the client when the buffer the
client has provided is not large enough to accommodate the
instance information.

0x00001069

ERROR_WMI_INSTANCE_NOT_FOUND

The server returns this value to the client when there are no

active instances of the counterset whose information can be
returned.

0x00001073

ERROR_WMI_INVALID_REGINFO

The server returns this to the client if, for any reason when trying
to enumerate counterset instances, the information that the
server expected was different than what the applications exposing
performance counters returned. For example, the server
(through some standard repository), expected information about
one instance of a counterset to be returned (because it was
specified as a single-instance counterset), but the application
actually maintaining the information returned instance
information about multiple instances of the counterset.

0x0000000E

ERROR_OUTOFMEMORY

The server returns this value to the client if, for any reason as it
tries to return the instance information of the specified
counterset, it fails to allocate memory.

33 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

dwInSize: The size, in bytes, of the buffer.

pdwOutSize: The total size, in bytes, of the data that is returned and written to the buffer.

pdwRtnSize: The necessary size, in bytes, to retrieve all the requested data.

lpData: The buffer that contains the instances information for the counterset.

Return Values: This method MUST return zero (ERROR_SUCCESS) for success; otherwise, it MUST
return one of the standard Windows errors, as specified in [MS-ERREF] section 2.2.

The server MUST return a data array in which each element is a _PERF_INSTANCE_HEADER structure
that is followed by a null-terminated Unicode string instance name. The size field of the
_PERF_INSTANCE_HEADER structure MUST be the size of the _PERF_INSTANCE_HEADER structure
plus the space that is occupied by the instance name string; and MUST be an 8-byte multiple.

Figure 3: PerflibV2EnumerateCounterSetInstances return

The following diagram illustrates data size, alignment, and endianness. In this example, information
about two instances of the counterset is returned by the server. The first instance name is 6 bytes in
length, and the second instance name is 8 bytes in length. The two bytes in padding between the end
of the first instance name string and the beginning of the next _PERF_INSTANCE_HEADER structure

MUST be uninitialized and MUST be ignored by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_PERF_INSTANCE_HEADER (row 1, Size)

_PERF_INSTANCE_HEADER (row 2, InstanceId)

Unicode string for First Instance Name (row 1)

First Instance Name (row 2) Padding (MUST be uninitialized)

_PERF_INSTANCE_HEADER (row 1, Size)

_PERF_INSTANCE_HEADER (row 2, InstanceId)

Unicode string for Second Instance Name (row 1)

Second Instance Name (row 2)

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

34 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.4.1.4 PerflibV2OpenQueryHandle (Opnum 3)

The PerflibV2OpenQueryHandle method returns a handle to the client that the client then uses to add,
remove, and collect performance counters from the server.

 error_status_t PerflibV2OpenQueryHandle(
 [in, string] wchar_t* szMachine,
 [out] PRPC_HQUERY phQuery
);

szMachine: A Unicode string specifying a server name, which is passed directly to the counter
providers. Counter providers can ignore the server name provided by szMachine.

phQuery: A handle used by other methods to add, remove, and collect performance counters.

Return Values: This method MUST return zero (ERROR_SUCCESS) for success; otherwise, it MUST
return one of the standard Windows errors, as specified in [MS-ERREF] section 2.2.

Return value/code Description

0x00000000

ERROR_SUCCESS

The return value indicates success.

0x00000005

ERROR_ACCESS_DENIED

The server returns this value to the client if the authentication level of
the client is less than RPC_C_AUTHN_LEVEL_PKT_PRIVACY.

0x0000000E

ERROR_OUTOFMEMORY

The server returns this value to the client if for any reason memory
allocation fails as it tries to allocate memory to begin storing state
about the client request.

0x000005AA

ERROR_NO_SYSTEM_RESOURCES

The server returns this value if it cannot allocate other system
resource to process the client request. This is not specifically memory
about the client request or handle.

3.1.4.1.5 PerflibV2QueryCounterInfo (Opnum 5)

The PerflibV2QueryCounterInfo method returns information on the performance counters that
belong to the performance counter query associated with the RPC_HQUERY; these performance
counters are associated with RPC_HQUERY by calling the PerflibV2ValidateCounters method. The
server MUST return performance counter metadata information, stored in a

_PERF_COUNTER_IDENTIFIER structure for each performance counter, for the performance counters
that are associated with the RPC_HQUERY handle.

 error_status_t PerflibV2QueryCounterInfo(
 [in] RPC_HQUERY hQuery,
 [in, range(0, 67108864)] DWORD dwInSize,
 [out] DWORD* pdwOutSize,
 [out] DWORD* pdwRtnSize,
 [out, size_is(dwInSize), length_is(*pdwOutSize)]
 unsigned char* lpData
);

hQuery: The handle returned by the PerflibV2OpenQueryHandle method; an exception is thrown or an
error is returned by RPC if the handle did not originate from the PerflibV2OpenQueryHandle
method.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

35 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

dwInSize: The size, in bytes, of the buffer.

pdwOutSize: The size, in bytes, of the data that is written to the buffer.

pdwRtnSize: The necessary size, in bytes, to retrieve all the requested data.

lpData: The buffer that contains the requested counter information.

Return Values: This method MUST return zero (ERROR_SUCCESS) for success; otherwise, it MUST
return one of the standard Windows errors, as specified in [MS-ERREF] section 2.2.

Return value/code Description

0x00000000

ERROR_SUCCESS

The return value indicates success.

0x00000005

ERROR_ACCESS_DENIED

The server returns this value to the client if the authentication level of
the client is less than RPC_C_AUTHN_LEVEL_PKT_PRIVACY.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The server will return this value if the buffer pointed to by lpData is not
of sufficient size to return the requested information back to the client.

The server MUST return a data array in which each element is a _PERF_COUNTER_IDENTIFIER
structure that is followed by a null-terminated Unicode string instance name. The index field of the
_PERF_COUNTER_IDENTIFIER structure MUST indicate the position of the corresponding
_PERF_COUNTER_HEADER block in the array of returned _PERF_COUNTER_HEADER blocks by
subsequent PerflibV2QueryCounterData method calls associated with the RPC_HQUERY handle.

The status field of the _PERF_COUNTER_IDENTIFIER structure SHOULD be set to a Win32 error code
by the server and MUST be ignored by the client. The size field of the _PERF_COUNTER_IDENTIFIER

structure MUST be an 8-byte multiple.

Figure 4: PerflibV2QueryCounterInfo return

The following diagram illustrates data size, alignment, and endianness. In this example, information
about two counters is returned by the server. The first instance name is 6 bytes in length, and the

second instance name is 8 bytes in length. The two bytes in padding between the end of the first

instance name string and the beginning of the next _PERF_COUNTER_IDENTIFIER structure MUST be
set to 0 by the server and MUST be ignored by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_PERF_COUNTER_IDENTIFIER (row 1, CounterSetGuid)

_PERF_COUNTER_IDENTIFIER (row 2, CounterSetGuid)

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

36 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

_PERF_COUNTER_IDENTIFIER (row 3, CounterSetGuid)

_PERF_COUNTER_IDENTIFIER (row 4, CounterSetGuid)

_PERF_COUNTER_IDENTIFIER (row 5, Status)

_PERF_COUNTER_IDENTIFIER (row 6, Size)

_PERF_COUNTER_IDENTIFIER (row 7, CounterId)

_PERF_COUNTER_IDENTIFIER (row 8, InstanceId)

_PERF_COUNTER_IDENTIFIER (row 9, Index)

_PERF_COUNTER_IDENTIFIER (row 10, Reserved)

Unicode string of Instance Name (row 1)

Instance Name (row 2) Padding (MUST be set to 0)

_PERF_COUNTER_IDENTIFIER (row 1, CounterSetGuid)

_PERF_COUNTER_IDENTIFIER (row 2, CounterSetGuid)

_PERF_COUNTER_IDENTIFIER (row 3, CounterSetGuid)

_PERF_COUNTER_IDENTIFIER (row 4, CounterSetGuid)

_PERF_COUNTER_IDENTIFIER (row 5, Status)

_PERF_COUNTER_IDENTIFIER (row 6, Size)

_PERF_COUNTER_IDENTIFIER (row 7, CounterId)

_PERF_COUNTER_IDENTIFIER (row 8, InstanceId)

_PERF_COUNTER_IDENTIFIER (row 9, Index)

_PERF_COUNTER_IDENTIFIER (row 10, Reserved)

Unicode string of Instance Name (row 1)

Instance Name (row 2)

3.1.4.1.6 PerflibV2QueryCounterData (Opnum 6)

37 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The PerflibV2QueryCounterData method retrieves data for the performance counters associated
with the query. Performance counters can be added or removed from queries by calling

PerflibV2ValidateCounters.

 error_status_t PerflibV2QueryCounterData(
 [in] RPC_HQUERY hQuery,
 [in, range(0, 1073741824)] DWORD dwInSize,
 [out] DWORD* pdwOutSize,
 [out] DWORD* pdwRtnSize,
 [out, size_is(dwInSize), length_is(* pdwOutSize)]
 unsigned char* lpData
);

hQuery: The handle returned by the PerflibV2OpenQueryHandle method; an exception is thrown or an
error is returned by RPC if the handle did not originate from the PerflibV2OpenQueryHandle
method.

dwInSize: The size, in bytes, of the buffer.

pdwOutSize: The size, in bytes, of the data that is returned and written to the buffer.

pdwRtnSize: The necessary size, in bytes, to retrieve all the requested data.

lpData: The buffer that contains the requested counter information.

Return Values: This method MUST return zero (ERROR_SUCCESS) for success; otherwise, it MUST
return one of the standard Windows error codes, as specified in [MS-ERREF] section 2.2.

Return value/code Description

0x00000000

ERROR_SUCCESS

The return value indicates success.

0x00000005

ERROR_ACCESS_DENIED

The server returns this value to the client if the authentication level of
the client is less than RPC_C_AUTHN_LEVEL_PKT_PRIVACY.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The server will return this value to the client if the size of the buffer
pointed to by lpData is not of sufficient size to return the performance
counter values to the client.

The server MUST return a _PERF_DATA_HEADER structure that is followed by a set of
_PERF_COUNTER_HEADER blocks. The format of the _PERF_COUNTER_HEADER block MUST be
determined by the dwType field of the _PERF_COUNTER_HEADER structure.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

38 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 5: PerflibV2QueryCounterData return

The following diagram illustrates data size, alignment, and endianness.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_PERF_DATA_HEADER (row 1, dwTotalSize)

_PERF_DATA_HEADER (row 2, dwNumCounter)

_PERF_DATA_HEADER (row 3, PerfTimeStamp)

_PERF_DATA_HEADER (row 4, PerfTimeStamp)

_PERF_DATA_HEADER (row 5, PerfTime100NSec)

_PERF_DATA_HEADER (row 6, PerfTime100NSec)

_PERF_DATA_HEADER (row 7, PerfFreq)

_PERF_DATA_HEADER (row 8, PerfFreq)

_PERF_DATA_HEADER (row 9, SystemTime)

_PERF_DATA_HEADER (row 10, SystemTime)

_PERF_DATA_HEADER (row 11, SystemTime)

_PERF_DATA_HEADER (row 12, SystemTime)

_PERF_DATA_HEADER (row 13, SystemTime)

39 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

_PERF_DATA_HEADER (row 14, SystemTime)

_PERF_DATA_HEADER (row 15, SystemTime)

_PERF_DATA_HEADER (row 16, SystemTime)

_PERF_COUNTER_HEADER blocks

 If dwType = PERF_ERROR_RETURN (0x00000000), the _PERF_COUNTER_HEADER block MUST
contain one _PERF_COUNTER_HEADER structure, and the dwStatus field of the structure
indicates the error by using a Win32 error code. Win32 error codes are specified in [MS-ERREF].

 If dwType = PERF_SINGLE_COUNTER (0x00000001), the _PERF_COUNTER_HEADER block MUST
contain a _PERF_COUNTER_HEADER structure that is followed by a _PERF_COUNTER_DATA
structure and then followed by the counter value.

Figure 6: PerflibV2QueryCounterData return if dwType = PERF_SINGLE_COUNTER

The following diagram illustrates data size, alignment, and endianness.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_PERF_COUNTER_HEADER (row 1, dwStatus)

_PERF_COUNTER_HEADER (row 2, dwType)

_PERF_COUNTER_HEADER (row 3, dwSize)

_PERF_COUNTER_HEADER (row 4, Reserved)

_PERF_COUNTER_DATA (row 1, dwDataSize)

_PERF_COUNTER_DATA (row 2, dwSize)

Counter value (Will be two rows if the counter value is 64-bits)

 If dwType = PERF_MULTI_COUNTERS (0x00000002), the _PERF_COUNTER_HEADER block MUST
contain a _PERF_COUNTER_HEADER structure that is followed by a _PERF_MULTI_COUNTERS
structure, followed by an array of performance counter IDs, followed by a sequence of
_PERF_COUNTER_DATA blocks. Each _PERF_COUNTER_DATA block MUST contain a
_PERF_COUNTER_DATA structure that is followed by the performance counter value. The order of

40 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

the elements in the array of counter IDs MUST be the same as the order of the corresponding
performance counter values. The number of _PERF_COUNTER_DATA structures and the length of

the performance counter ID array MUST be equal to the dwCounters field of the
_PERF_MULTI_COUNTERS structure.

Figure 7: PerflibV2QueryCounterData return if dwType = _PERF_MULTI_COUNTERS

The following diagram illustrates data size, alignment, and endianness.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_PERF_COUNTER_HEADER (row 1, dwStatus)

_PERF_COUNTER_HEADER (row 2, dwType)

_PERF_COUNTER_HEADER (row 3, dwSize)

_PERF_COUNTER_HEADER (row 4, Reserved)

_PERF_MULTI_COUNTERS (row 1, dwSize)

_PERF_MULTI_COUNTERS (row 2, dwCounters)

Counter ID array (Each element is one row, number of rows depends on number of counters)

_PERF_COUNTER_DATA (row 1, dwDataSize)

_PERF_COUNTER_DATA (row 2, dwSize)

Counter value (Will be two rows if the counter value is 64-bits)

 If dwType = _PERF_MULTI_INSTANCES (0x00000004), the _PERF_COUNTER_HEADER block
MUST contain a _PERF_COUNTER_HEADER structure that is followed by a
_PERF_MULTI_INSTANCES structure and then followed by a sequence of

41 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

_PERF_INSTANCE_HEADER blocks. Each _PERF_INSTANCE_HEADER block MUST contain a
_PERF_INSTANCE_HEADER structure that is followed by a _PERF_COUNTER_DATA structure and

then followed by the performance counter value. The number of _PERF_INSTANCE_HEADER blocks
MUST be equal to the dwInstances field of the _PERF_MULTI_INSTANCES structure.

The following diagram illustrates data size, alignment, and endianness.

Figure 8: PerflibV2QueryCounterData return if dwType = _PERF_MULTI_INSTANCES

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_PERF_COUNTER_HEADER (row 1, dwStatus)

_PERF_COUNTER_HEADER (row 2, dwType)

_PERF_COUNTER_HEADER (row 3, dwSize)

_PERF_COUNTER_HEADER (row 4, Reserved)

_PERF_MULTI_INSTANCES (row 1, dwTotalSize)

_PERF_MULTI_INSTANCES (row 2, dwInstances)

_PERF_INSTANCE_HEADER (row 1, Size)

_PERF_INSTANCE_HEADER (row 2, InstanceId)

42 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Unicode string of Instance Name (row 1)

Instance Name (row 2) Padding (MUST be set to 0)

_PERF_COUNTER_DATA (row 1, dwDataSize)

_PERF_COUNTER_DATA (row 2, dwSize)

Counter value (Will be two rows if the counter value is 64-bits)

 If dwType = PERF_COUNTERSET (0x00000006), the _PERF_COUNTER_HEADER block MUST
contain the following, in order: a _PERF_COUNTER_HEADER structure, a
_PERF_MULTI_COUNTERS structure, the performance counter ID array, a

_PERF_MULTI_INSTANCES structure, and a set of _PERF_INSTANCE_HEADER blocks. Each
_PERF_INSTANCE_HEADER block MUST contain a _PERF_INSTANCE_HEADER structure that is

followed by a sequence of _PERF_COUNTER_DATA blocks, and each _PERF_COUNTER_DATA block
MUST contain a _PERF_COUNTER_DATA structure that is followed by the performance counter
value. The number of _PERF_COUNTER_DATA blocks MUST be equal to the dwCounters field of
the _PERF_MULTI_COUNTERS structure and the length of the performance counter ID array. The

order of the elements in the array of counter IDs MUST be the same as the order of the
corresponding performance counter values. The number of _PERF_INSTANCE_HEADER blocks
MUST be equal to the dwInstances field of the _PERF_MULTI_INSTANCES structure.

Figure 9: PerflibV2QueryCounterData return if dwType = PERF_COUNTERSET

The following diagram illustrates data size, alignment, and endianness.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_PERF_COUNTER_HEADER (row 1, dwStatus)

_PERF_COUNTER_HEADER (row 2, dwType)

43 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

_PERF_COUNTER_HEADER (row 3, dwSize)

_PERF_COUNTER_HEADER (row 4, Reserved)

_PERF_MULTI_COUNTERS (row 1, dwSize)

_PERF_MULTI_COUNTERS (row 2, dwCounters)

Counter ID array (Each element is one row; number of rows depends on number of counters)

_PERF_MULTI_INSTANCES (row 1, dwTotalSize)

_PERF_MULTI_INSTANCES (row 2, dwInstances)

_PERF_INSTANCE_HEADER (row 1, Size)

_PERF_INSTANCE_HEADER (row 2, InstanceId)

_PERF_COUNTER_DATA (row 1, dwDataSize)

_PERF_COUNTER_DATA (row 2, dwSize)

Counter value (Will be two rows if the counter value is 64-bits)

3.1.4.1.7 PerflibV2ValidateCounters (Opnum 7)

This PerflibV2ValidateCounters method either adds or removes performance counters from the

query.

 error_status_t PerflibV2ValidateCounters(
 [in] RPC_HQUERY hQuery,
 [in, range(0, 67108864)] DWORD dwInSize,
 [in, out, size_is(dwInSize)] unsigned char* lpData,
 [in] DWORD dwAdd
);

hQuery: The handle that is created by the PerflibV2OpenQueryHandle method; an exception is thrown
or an error is returned by RPC if the handle did not originate from the PerflibV2OpenQueryHandle
method.

dwInSize: The size, in bytes, of the buffer.

lpData: The buffer that contains the counter information to add to, or remove from, the query. The
server will return this buffer after it has attempted to add or remove the specified counters; the
Status field of each _PERF_COUNTER_IDENTIFIER structure will contain information about
whether or not the server was successful.

dwAdd: A Boolean value that indicates if counters are being added to, or removed from, the query. If
counters are being added, this MUST be set to TRUE; otherwise, it MUST be set to FALSE.

Return Values: This method MUST return zero (ERROR_SUCCESS) for success; otherwise, it MUST
return one of the standard Windows error codes, as specified in [MS-ERREF] section 2.2.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

44 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x00000000

ERROR_SUCCESS

The return value indicates success.

0x00000005

ERROR_ACCESS_DENIED

The server returns this value to the client if the authentication level of the
client is less than RPC_C_AUTHN_LEVEL_PKT_PRIVACY.

0x00000057

ERROR_INVALID_PARAMETER

The server returns this value to the client for any of the following reasons:

 dwSize is less than the size of the _PERF_COUNTER_IDENTIFIER
structure (this condition would prevent the server from returning
information about one counter).

 The size of a single _PERF_COUNTER_IDENTIFIER structure that is
passed into the buffer by the client is smaller than the expected size of
a _PERF_COUNTER_IDENTIFIER structure.

0x0000000E

ERROR_OUTOFMEMORY

The server will return this value to the client if, in the process of completing
the client's request of adding or removing performance counters from the
query, a memory allocation fails.

Errors are returned to the client by the server in one of two ways: the first is if the performance
counter infrastructure on the server could not add or remove performance counters from the query;
the second is if the provider that is exposing the performance counter returns an error, in which case

the performance counter infrastructure passes the error back to the client.

When the PerflibV2ValidateCounters method returns, the Status field of each
_PERF_COUNTER_IDENTIFIER sent to the server will have the result of whether or not the server was
able to successfully add or remove that particular performance counter from the query that is
identified by the handle hQuery.

If the performance counter infrastructure is setting the Status field to an error value, then it MUST be

one of the following values.

 Return value/code Description

0x00000000

ERROR_STATUS

The return value indicates success. The counter was either successfully
added or removed from the query.

0x00001068

ERROR_WMI_GUID_NOT_FOUND

The server cannot find the GUID that was passed by the client in the
CounterSetGuid field of the _PERF_COUNTER_IDENTIFIER structure.

0x0000106A

ERROR_WMI_ITEMID_NOT_
FOUND

The server cannot find the counter whose numeric identifier is in the
CounterId field of the _PERF_COUNTER_IDENTIFIER structure.

0x00000003

ERROR_PATH_NOT_FOUND

The server cannot find an active instance with the name that was placed
after the _PERF_COUNTER_IDENTIFIER structure.

0x000000B7

ERROR_ALREADY_EXISTS

The client tried to add a performance counter that has already been added in
a previous call to PerflibV2ValidateCounters.

ERROR_INVALID_PARAMETER

0x00000057

The server will return this value in the Status field of the
_PERF_COUNTER_IDENTIFIER either when the _PERF_COUNTER_IDENTIFIER
is corrupt, or if the server cannot find the counter to delete from the query
that is specified by the structure.

0x0000000E The server will return this value to the client if, either in the process of
adding or removing a counter from a query, a memory allocation failure

45 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Return value/code Description

ERROR_OUTOFMEMORY occurred.

When this method is called, the buffer MUST contain an array of _PERF_COUNTER_IDENTIFIER blocks
that reference the performance counters to add to, or remove from, the query. Each
_PERF_COUNTER_IDENTIFIER block MUST contain a _PERF_COUNTER_IDENTIFIER structure; a
multiple-instance counter set _PERF_COUNTER_IDENTIFIER structure MUST be followed by a null-
terminated Unicode string instance name, while a single-instance counter set

_PERF_COUNTER_IDENTIFIER structure MUST be followed by a string instance name. Setting the
CounterId field of the _PERF_COUNTER_IDENTIFIER structure to 0xFFFFFFFF indicates a wildcard
character. Setting the instance name string to "*" indicates a wildcard character.

When the method returns, the Status field of each _PERF_COUNTER_IDENTIFIER structure in the
array MUST specify if the operation succeeded for the counters that are referenced by that structure.

3.1.4.1.8 PerflibV2CloseQueryHandle (Opnum 4)

The PerflibV2CloseQueryHandle method closes the handle that is returned from the
PerflibV2OpenQueryHandle method.

 error_status_t PerflibV2CloseQueryHandle(
 [in, out] PRPC_HQUERY phQuery
);

phQuery: A handle that is created by the PerflibV2OpenQueryHandle method. An exception is thrown
or an error is returned by RPC if the handle did not originate from the PerflibV2OpenQueryHandle
method. On method return, phQuery MUST be set to NULL.

Return Values: This method MUST return zero (ERROR_SUCCESS) for success; otherwise, it MUST
return one of the standard Windows errors, as specified in [MS-ERREF] section 2.2.

Return value/code Description

0x00000000

ERROR_SUCCESS

The return value indicates success.

0x00000005

ERROR_ACCESS_DENIED

The server returns this value to the client if the authentication level of the client
is less than RPC_C_AUTHN_LEVEL_PKT_PRIVACY. The opened handle, phQuery,
remains in that state until the client calls PerflibV2CloseQueryHandle with
authentication level RPC_C_AUTHN_LEVEL_PKT_PRIVACY.

3.1.5 Timer Events

No timer events are required except for the events that are maintained in the underlying RPC
transport.

3.1.6 Other Local Events

There are no local events inherently associated with the Performance Counter Query Protocol.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

46 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2 Client Details

3.2.1 Abstract Data Model

The state information that is required for successful operation of the Performance Counter Query
Protocol is primarily stored on the server; other than the handle that is obtained from the
PerflibV2OpenQueryHandle (section 3.1.4.1.4) method, all information such as the list of
performance counters being queried is stored on the server.

If the client simply wants to either enumerate the available countersets or counterset instances on

the server, or retrieve information about the counterset or counters that belong to the counterset, it
does not need to establish a handle with the server by calling the PerflibV2OpenQueryHandle method.
The client can simply call the PerflibV2EnumerateCounterSet (section 3.1.4.1.1),
PerflibV2EnumerateCounterSetInstances (section 3.1.4.1.3), or
PerflibV2QueryCounterSetRegistrationInfo (section 3.1.4.1.2) methods to retrieve the necessary
information from the server.

If the client wants to query for performance counter data, or performance counter metadata

associated with a particular query, from the server, then it first creates a handle. The client creates a
handle by calling the PerflibV2OpenQueryHandlemethod. The server, upon receiving this call, stores
the client machine information it receives from the RPC layer. The server also uses this handle to
associate back to the client the performance counter2 that the client adds to the query by calling
PerflibV2ValidateCounters (section 3.1.4.1.7). The server then returns this handle back to the client.
The purpose of the handle is for the server to be able to distinguish between different client

performance counter queries; the information that is passed back to the client, in the form of an
RPC_HQUERY (section 2.2.1) handle, only contains the information necessary for the server to
distinguish between separate queries. The client does not have knowledge of the contents or structure
of the handle. For example, a specific implementation of the Performance Counter Query Protocol MAY
return back a 32-bit unsigned numeric identifier as an RPC_HQUERY handle to the client; the client
will then use this RPC_HQUERY handle, without explicit knowledge that the representation is a 32-bit
unsigned integer, in subsequent communication to the server to query for performance counter data.

When the client has completed its necessary communication with the server, it closes the handle it

obtained from the server by calling PerflibV2CloseQueryHandle. This allows the server to free any
information it retained with respect to the client's query (such as the list of performance counters that
were being queried). The client can also free the memory that is associated with the RPC_HQUERY
handle.

3.2.2 Timers

No protocol timers are required—other than those internal ones that are used in remote procedure
calls to implement resiliency to network outages, as specified in [MS-RPCE].

3.2.3 Initialization

There is no client-side initialization.

3.2.4 Message Processing Events and Sequencing Rules

The Performance Counter Query Protocol MUST indicate to the RPC runtime that it is to perform a
strict NDR data consistency check at target level 6.0, as specified in [MS-RPCE] section 3.

The Performance Counter Query Protocol MUST indicate to the RPC runtime that it is to reject a NULL
unique or full pointer with a nonzero conformant value, as specified in [MS-RPCE] section 3.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

47 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.5 Timer Events

No timer events are required except for the events that are maintained in the underlying RPC
transport.

3.2.6 Other Local Events

There are no client-specific local events.

48 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4 Protocol Examples

The following example demonstrates the usage of the Performance Counter Query Protocol. The client
queries the value of certain performance counters that are organized into one counterset that is
found on the server.

4.1 Querying for Performance Counter Data

Figure 10: Querying for performance counter data

49 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1. The client calls PerflibV2EnumerateCounterSet on the server.

2. The server returns all the available countersets to the client.

3. The client selects a counterset based on GUID and calls PerflibV2QueryCounterSetRegistrationInfo
by using RequestCode = 0x00000001.

4. The server returns the counterset information of the counterset that is specified by the GUID in
PerflibV2QueryCounterSetRegistrationInfo, in addition to information about the performance
counters that belong to the counterset.

5. To query the performance counter data of certain counters, the client calls
PerflibV2OpenQueryHandle to open a handle to a query on the server.

6. The server returns a handle to a query; the client uses this handle to specify the performance
counters whose values are to be queried.

7. The client, using the information that was returned from
PerflibV2QueryCounterSetRegistrationInfo, specifies the performance counters from the counterset

that are to be queried.

8. The client calls PerflibV2ValidateCounters with the dwAdd parameter set to TRUE to add the
counters to the query that is specified by the handle that is returned in step 6.

9. The server adds the performance counter information to the query that is specified by the handle

and returns.

10. The client calls PerflibV2QueryCounterData to retrieve the values of the performance counters that
are stored in the query that is specified by the handle.

11. The server returns the values of the performance counters in the query that is specified by the
handle.

12. The client calls PerflibV2CloseQueryHandle to close the handle that it obtained in step 6 because it
is finished querying the server.

13. The server releases all resources that are associated with the query that is specified by the handle
and returns.

50 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5 Security

The following sections specify security considerations for implementers of the Performance Counter
Query Protocol.

5.1 Security Considerations for Implementers

The Performance Counter Query Protocol introduces no security considerations except for those that
are applicable to RPC. Specifically, the client is required to use the
RPC_C_AUTHN_LEVEL_PKT_PRIVACY authentication level.

5.2 Index of Security Parameters

Security parameter Section

None N/A

51 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided below, where "ms-dtyp.idl" is the IDL found in
[MS-DTYP] Appendix A.

 import "ms-dtyp.idl";

 [
 uuid(da5a86c5-12c2-4943-ab30-7f74a813d853),
 pointer_default(unique),
 version(1.0)
]

 interface PerflibV2
 {

 typedef [context_handle] HANDLE RPC_HQUERY;
 typedef RPC_HQUERY * PRPC_HQUERY;

 error_status_t
 PerflibV2EnumerateCounterSet(
 [in, string] wchar_t * szMachine,
 [in, range(0, 256)] DWORD dwInSize,
 [out] DWORD * pdwOutSize,
 [out] DWORD * pdwRtnSize,
 [out, size_is(dwInSize), length_is(* pdwOutSize)]
 GUID * lpData
);

 error_status_t
 PerflibV2QueryCounterSetRegistrationInfo(
 [in, string] wchar_t * szMachine,
 [in] GUID * CounterSetGuid,
 [in] DWORD RequestCode,
 [in] DWORD RequestLCID,
 [in, range(0, 134217728)] DWORD dwInSize,
 [out] DWORD * pdwOutSize,
 [out] DWORD * pdwRtnSize,
 [out, size_is(dwInSize), length_is(* pdwOutSize)] unsigned char *
 lpData
);

 error_status_t
 PerflibV2EnumerateCounterSetInstances(
 [in, string] wchar_t * szMachine,
 [in] GUID * CounterSetGuid,
 [in, range(0, 67108864)] DWORD dwInSize,
 [out] DWORD * pdwOutSize,
 [out] DWORD * pdwRtnSize,
 [out, size_is(dwInSize), length_is(* pdwOutSize)] unsigned char *
 lpData
);

 error_status_t
 PerflibV2OpenQueryHandle(
 [in, string] wchar_t * szMachine,
 [out] PRPC_HQUERY phQuery
);

 error_status_t
 PerflibV2CloseQueryHandle(
 [in, out] PRPC_HQUERY phQuery
);

 error_status_t
 PerflibV2QueryCounterInfo(
 [in] RPC_HQUERY hQuery,

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

52 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [in, range(0, 67108864)] DWORD dwInSize,
 [out] DWORD * pdwOutSize,
 [out] DWORD * pdwRtnSize,
 [out, size_is(dwInSize), length_is(* pdwOutSize)] unsigned char *
 lpData
);

 error_status_t
 PerflibV2QueryCounterData(
 [in] RPC_HQUERY hQuery,
 [in, range(0, 1073741824)] DWORD dwInSize,
 [out] DWORD * pdwOutSize,
 [out] DWORD * pdwRtnSize,
 [out, size_is(dwInSize), length_is(* pdwOutSize)] unsigned char *
 lpData
);

 error_status_t
 PerflibV2ValidateCounters(
 [in] RPC_HQUERY hQuery,
 [in, range(0, 67108864)] DWORD dwInSize,
 [in, out, size_is(dwInSize)] unsigned char * lpData,
 [in] DWORD dwAdd
);

 }

53 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

Windows Client

 Windows Vista operating system

 Windows 7 operating system

 Windows 8 operating system

 Windows 8.1 operating system

 Windows 10 operating system

Windows Server

 Windows Server 2008 operating system

 Windows Server 2008 R2 operating system

 Windows Server 2012 operating system

 Windows Server 2012 R2 operating system

 Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears

with the product version, behavior changed in that service pack or QFE. The new behavior also applies

to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.1: A Windows server will impersonate the client; the minimum impersonation level is
RPC_C_IMP_LEVEL_IMPERSONATE. Windows only allows system administrators, members of the
Performance Log Users Group, and members of the Performance Monitor Users Group to
perform operations that are related to querying performance counter data or metadata. For more
information on how an AS allows servers to act on the behalf of clients, see [MSDN-IMPLVL].

<2> Section 2.2.4.2: Windows applications that use the performance counter infrastructure organize

the performance counter into countersets. In order to update a performance counter, the application

must first create an active instance of that counterset; this in turn will create an active instance of the
performance counter that belongs to that counterset. The application can then update that instance of
the performance counter with the appropriate values.

On Windows, when an application wants to create an active instance of a counterset, the performance
counter infrastructure will allocate memory in the application's process space to store the values of the
different performance counters belonging to that instance of the counterset. The application then

makes a method call to update a particular performance counter; this function finds the appropriate
place in the memory where the counter value for the performance counter being updated resides, and

https://go.microsoft.com/fwlink/?LinkId=90023

54 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

updates that memory with the new value. When a client queries the performance counter value, the
performance counter infrastructure simply copies the contents of the memory corresponding to that

performance counter instance.

Alternatively, an application can provide a pointer to the performance counter. Thus, when the

application creates an instance of the performance counter, the memory space that would normally
contain the performance counter value instead contains a pointer to the variable containing the
performance counter value. This is done by calling a method that initializes the memory contents of
that performance counter instance to be the address of a variable. Thus, when a client queries for the
performance counter, the infrastructure can't simply copy the contents of the memory; it must use
that memory as an address to find the actual performance counter value. In order to instruct the
infrastructure that the contents of the memory corresponding to a performance counter instance is an

address and not the actual performance counter value, the Attrib field of the
_PERF_COUNTER_REG_INFO structure that defines the performance counter must be set to Reference
(0x0000000000000001).

<3> Section 2.2.4.5: Windows does not enforce that the combination of instance name and instance
be unique for a particular counterset.

<4> Section 3.1.4.1.2: Windows Vista and later and Windows Server 2008 and later incorrectly

attempt to load the resources that correspond to RequestCode when RequestCode equals
0x00000001, 0x00000007, 0x00000008, 0x00000009, or 0x0000000A; if they are unable to do so,
Windows returns an error code.

55 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

56 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

9 Index

A

Abstract data model
 client 46
 server 23
Applicability 8

C

Capability negotiation 9
Change tracking 55
Client
 abstract data model 46
 initialization 46
 local events 47
 message processing 46
 sequencing rules 46
 timer events 47

 timers 46
Common data types 10

D

Data model - abstract
 client 46
 server 23
Data types 10
 common - overview 10

E

error_status_t 11
Events
 local - client 47
 local - server 45
 timer - client 47
 timer - server 45
Examples
 overview 48
 querying for performance counter data 48
 querying for performance counter data example 48

F

Fields - vendor-extensible 9

Full IDL 51

G

Glossary 6

I

IDL 51
Implementer - security considerations 50
Implementers - security considerations 50
Index of security parameters 50
Informative references 8
Initialization
 client 46
 server 24
Introduction 6

L

Local events
 client 47
 server 45

M

Message processing
 client 46
 server 24
Messages
 common data types 10
 data types 10
 structures 11
 transport 10
Methods

 PerflibV2 Interface 25

N

Normative references 7

O

Overview (synopsis) 8

P

Parameters - security 50
Parameters - security index 50
PERF_COUNTER_DATA structure 21
PERF_COUNTER_HEADER structure 20
PERF_COUNTER_IDENTIFIER structure 19
PERF_COUNTER_REG_INFO structure 12
PERF_COUNTERSET_REG_INFO structure 11
PERF_DATA_HEADER structure 20
PERF_INSTANCE_HEADER structure 19
PERF_MULTI_COUNTERS structure 21
PERF_MULTI_INSTANCES structure 21
PERF_STRING_BUFFER_HEADER structure 18
PERF_STRING_COUNTER_HEADER structure 18
PerflibV2 Interface method 25
PerflibV2CloseQueryHandle method 45

PerflibV2EnumerateCounterSet method 25
PerflibV2EnumerateCounterSetInstances method 32
PerflibV2OpenQueryHandle method 34
PerflibV2QueryCounterData method 36
PerflibV2QueryCounterInfo method 34
PerflibV2QueryCounterSetRegistrationInfo method

26
PerflibV2ValidateCounters method 43
PPERF_COUNTER_DATA 21
PPERF_COUNTER_IDENTIFIER 19
PPERF_COUNTER_REG_INFO 12
PPERF_COUNTERSET_REG_INFO 11
PPERF_DATA_HEADER 20
PPERF_INSTANCE_HEADER 19
PPERF_MULTI_COUNTERS 21
PPERF_MULTI_INSTANCES 21
PPERF_STRING_BUFFER_HEADER 18

57 / 57

[MS-PCQ] - v20170601
Performance Counter Query Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

PPERF_STRING_COUNTER_HEADER 18
PPERFCOUNTERHEADER 20
Preconditions 8
Prerequisites 8
Product behavior 53
Protocol Details
 overview 23

Q

Querying for performance counter data example 48

R

References 7
 informative 8
 normative 7
Relationship to other protocols 8

S

Security 50
 implementer considerations 50
 parameter index 50
Sequencing rules
 client 46
 server 24
Server
 abstract data model 23
 initialization 24
 local events 45
 message processing 24
 overview 23
 PerflibV2 Interface method 25
 sequencing rules 24
 timer events 45
 timers 24
Standards assignments 9
Structures 11

T

Timer events
 client 47
 server 45

Timers
 client 46
 server 24
Tracking changes 55
Transport 10
Transport - message 10

V

Vendor-extensible fields 9
Versioning 9

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 RPC_HQUERY
	2.2.2 PRPC_HQUERY
	2.2.3 error_status_t
	2.2.4 Structures
	2.2.4.1 _PERF_COUNTERSET_REG_INFO
	2.2.4.2 _PERF_COUNTER_REG_INFO
	2.2.4.3 _STRING_BUFFER_HEADER
	2.2.4.4 _STRING_COUNTER_HEADER
	2.2.4.5 _PERF_INSTANCE_HEADER
	2.2.4.6 _PERF_COUNTER_IDENTIFIER
	2.2.4.7 _PERF_DATA_HEADER
	2.2.4.8 _PERF_COUNTER_HEADER
	2.2.4.9 _PERF_COUNTER_DATA
	2.2.4.10 _PERF_MULTI_INSTANCES
	2.2.4.11 _PERF_MULTI_COUNTERS

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Countersets
	3.1.1.2 Counterset Instances
	3.1.1.3 Counters
	3.1.1.4 Providers
	3.1.1.5 Query Handles

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 PerflibV2 Interface
	3.1.4.1.1 PerflibV2EnumerateCounterSet (Opnum 0)
	3.1.4.1.2 PerflibV2QueryCounterSetRegistrationInfo (Opnum 1)
	3.1.4.1.3 PerflibV2EnumerateCounterSetInstances (Opnum 2)
	3.1.4.1.4 PerflibV2OpenQueryHandle (Opnum 3)
	3.1.4.1.5 PerflibV2QueryCounterInfo (Opnum 5)
	3.1.4.1.6 PerflibV2QueryCounterData (Opnum 6)
	3.1.4.1.7 PerflibV2ValidateCounters (Opnum 7)
	3.1.4.1.8 PerflibV2CloseQueryHandle (Opnum 4)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Querying for Performance Counter Data

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

