
1 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

[MS-OAPXBC]:

OAuth 2.0 Protocol Extensions for Broker Clients

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for protocols,
file formats, languages, standards as well as overviews of the interaction among each of these
technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the

technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL's, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming
environments in order for you to develop an implementation. If you have access to Microsoft
programming tools and environments you are free to take advantage of them. Certain Open
Specifications are intended for use in conjunction with publicly available standard specifications and
network programming art, and assumes that the reader either is familiar with the aforementioned

material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Revision Summary

Date Revision History Revision Class Comments

10/16/2015 1.0 New Released new document.

3 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.4 Relationship to Other Protocols .. 7
1.5 Prerequisites/Preconditions ... 8
1.6 Applicability Statement ... 8
1.7 Versioning and Capability Negotiation ... 8
1.8 Vendor-Extensible Fields ... 8
1.9 Standards Assignments ... 8

2 Messages ... 9
2.1 Transport .. 9
2.2 Common Data Types .. 9
2.3 Directory Service Schema Elements ... 9

3 Protocol Details ... 10
3.1 OAuthBrokerExtension Client Details .. 10

3.1.1 Abstract Data Model .. 10
3.1.2 Timers .. 10
3.1.3 Initialization ... 10
3.1.4 Higher-Layer Triggered Events ... 11
3.1.5 Message Processing Events and Sequencing Rules .. 11

3.1.5.1 Token endpoint (/token) .. 11
3.1.5.1.1 POST (Request for Nonce) .. 11

3.1.5.1.1.1 Request Body .. 11
3.1.5.1.1.2 Response Body .. 11
3.1.5.1.1.3 Processing Details .. 11

3.1.5.1.2 POST (Request for Primary Refresh Token) ... 11
3.1.5.1.2.1 Request Body .. 12
3.1.5.1.2.2 Response Body .. 12
3.1.5.1.2.3 Processing Details .. 12

3.1.5.1.3 POST (Exchange Primary Refresh Token for Access Token) 12
3.1.5.1.3.1 Request Body .. 12
3.1.5.1.3.2 Response Body .. 12
3.1.5.1.3.3 Processing Details .. 12

3.1.6 Timer Events .. 13
3.1.7 Other Local Events .. 13

3.2 OAuthBrokerExtension Server Details ... 13
3.2.1 Abstract Data Model .. 13
3.2.2 Timers .. 13
3.2.3 Initialization ... 13
3.2.4 Higher-Layer Triggered Events ... 13
3.2.5 Message Processing Events and Sequencing Rules .. 13

3.2.5.1 Token endpoint (/token) .. 13
3.2.5.1.1 POST (Request for Nonce) .. 14

3.2.5.1.1.1 Request Body .. 14
3.2.5.1.1.2 Response Body .. 14
3.2.5.1.1.3 Processing Details .. 14

3.2.5.1.2 POST (Request for Primary Refresh Token) ... 15
3.2.5.1.2.1 Request Body .. 15

3.2.5.1.2.1.1 Username Password Authentication .. 15
3.2.5.1.2.1.2 User JWT Authentication .. 16

4 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3.2.5.1.2.1.3 Refresh Token Authentication... 16
3.2.5.1.2.2 Response Body .. 16
3.2.5.1.2.3 Processing Details .. 17

3.2.5.1.3 POST (Exchange Primary Refresh Token for Access Token) 18
3.2.5.1.3.1 Request Body .. 18
3.2.5.1.3.2 Response Body .. 19
3.2.5.1.3.3 Processing Details .. 19

3.2.6 Timer Events .. 20
3.2.7 Other Local Events .. 20

4 Protocol Examples ... 21
4.1 Obtain a Nonce .. 21
4.2 Obtain a Primary Refresh Token ... 21
4.3 Obtain an Access Token .. 22

5 Security ... 24
5.1 Security Considerations for Implementers ... 24
5.2 Index of Security Parameters .. 24

6 Appendix A: Product Behavior ... 25

7 Change Tracking .. 26

8 Index ... 27

5 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

1 Introduction

The OAuth 2.0 Protocol Extensions for Broker Clients specify extensions to [RFC6749] (The OAuth 2.0
Authorization Framework) that allow a broker client to obtain access tokens on behalf of calling clients.
When no operating system version information is specified, information in this document applies to all
relevant versions of Windows. Similarly, when no AD FS behavior level is specified, information in
this document applies to all AD FS behavior levels.

In addition to the terms specified in section 1.1, the following terms are used in this document:

From [RFC6749]:

 access token

 access token request

 access token response

 authorization server

 client identifier

 confidential client

 refresh token

 resource owner

From [OIDCCore]:

 ID token

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,

MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are

informative.

1.1 Glossary

The following terms are specific to this document:

Active Directory: A general-purpose network directory service. Active Directory also refers to
the Windows implementation of a directory service. Active Directory stores information about
a variety of objects in the network. Importantly, user accounts, computer accounts, groups, and
all related credential information used by the Windows implementation of Kerberos are stored in
Active Directory. Active Directory is either deployed as Active Directory Domain Services

(AD DS) or Active Directory Lightweight Directory Services (AD LDS). [MS-ADTS] describes
both forms. For more information, see [MS-AUTHSOD] section 1.1.1.5.2, Lightweight Directory
Access Protocol (LDAP) versions 2 and 3, Kerberos, and DNS.

Active Directory Domain Services (AD DS): A directory service (DS) implemented by a domain
controller (DC). The DS provides a data store for objects that is distributed across multiple DCs.
The DCs interoperate as peers to ensure that a local change to an object replicates correctly
across DCs. For more information, see [MS-AUTHSOD] section 1.1.1.5.2 and [MS-ADTS]. For

information about product versions, see [MS-ADTS] section 1. See also Active Directory.

Active Directory Federation Services (AD FS): A Microsoft implementation of a federation
services provider, which provides a security token service (STS) that can issue security tokens

http://go.microsoft.com/fwlink/?LinkId=301486
http://go.microsoft.com/fwlink/?LinkId=523840
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-ADTS%5d.pdf
%5bMS-AUTHSOD%5d.pdf

6 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

to a caller using various protocols such as WS-Trust, WS-Federation, and Security Assertion
Markup Language (SAML) version 2.0.

AD FS behavior level: A specification of the functionality available in an AD FS server. Possible
values such as AD_FS_BEHAVIOR_LEVEL_1 and AD_FS_BEHAVIOR_LEVEL_2 are described in

[MS-OAPX].

AD FS server: See authorization server in [RFC6749].

JavaScript Object Notation (JSON): A text-based, data interchange format that is used to
transmit structured data, typically in Asynchronous JavaScript + XML (AJAX) web applications,
as described in [RFC4627]. The JSON format is based on the structure of ECMAScript (Jscript,
JavaScript) objects.

JSON Web Token (JWT): A type of token that includes a set of claims encoded as a JSON object.

For more information, see [IETFDRAFT-JWT].

relying party (RP): A web application or service that consumes security tokens issued by a
security token service (STS).

Uniform Resource Identifier (URI): A string that identifies a resource. The URI is an addressing
mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI):
Generic Syntax [RFC3986].

X.509: An ITU-T standard for public key infrastructure subsequently adapted by the IETF, as
specified in [RFC3280].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[FIPS180-2] National Institute of Standards and Technology, "Secure Hash Standard", FIPS PUB 180-

2, August 2002, http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[MS-ADA1] Microsoft Corporation, "Active Directory Schema Attributes A-L".

[MS-ADA2] Microsoft Corporation, "Active Directory Schema Attributes M".

[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes".

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-OAPX] Microsoft Corporation, "OAuth 2.0 Protocol Extensions".

[OIDCCore] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and Mortimore, C., "OpenID

Connect Core 1.0 incorporating errata set 1", November 2014, http://openid.net/specs/openid-
connect-core-1_0.html

http://go.microsoft.com/fwlink/?LinkId=301486
http://go.microsoft.com/fwlink/?LinkId=140879
http://go.microsoft.com/fwlink/?LinkId=90453
http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89868
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-OAPX%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=523840
http://go.microsoft.com/fwlink/?LinkId=523840

7 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000, http://www.rfc-
editor.org/rfc/rfc2818.txt

[RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, October
2006, http://www.rfc-editor.org/rfc/rfc4648.txt

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, October 2012,
http://www.rfc-editor.org/rfc/rfc6749.txt

[RFC7515] Jones, M., Bradley, J., and Sakimura, N., "JSON Web Signature (JWS)", RFC 7515, May
2015, http://www.rfc-editor.org/rfc/rfc7515.txt

[RFC7516] Jones, M., and Hildebrand, J., "JSON Web Encryption (JWE)", RFC 7516, May 2015,
http://www.rfc-editor.org/rfc/rfc7516.txt

[SP800-108] National Institute of Standards and Technology., "Special Publication 800-108,
Recommendation for Key Derivation Using Pseudorandom Functions", October 2009,
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

1.2.2 Informative References

None.

1.3 Overview

Active Directory Federation Services (AD FS) implements parts of the OAuth 2.0 Authorization
Framework, as defined in [RFC6749] as well as the extensions described in [MS-OAPX]. In addition to
these, AD FS also implements extensions to enable broker clients to retrieve tokens from an
authorization server on behalf of other clients. These extensions for broker clients are specified in this
document.

Note Throughout this specification, the fictitious names "client.example.com" and

"server.example.com" are used as they are used in [RFC6749].

1.4 Relationship to Other Protocols

The OAuth 2.0 Protocol Extensions for Broker Clients (this document) specify extensions to the
industry standard OAuth 2.0 Authorization Framework that is defined in [RFC6749] and the extensions

described in [MS-OAPX]. These extensions are therefore dependent on the OAuth 2.0 protocol and the
extensions in [MS-OAPX] and use HTTPS [RFC2818] as the underlying transport protocol.

http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90383
http://go.microsoft.com/fwlink/?LinkId=90383
http://go.microsoft.com/fwlink/?LinkId=90487
http://go.microsoft.com/fwlink/?LinkId=301486
http://www.rfc-editor.org/rfc/rfc7515.txt
http://www.rfc-editor.org/rfc/rfc7516.txt
http://go.microsoft.com/fwlink/?LinkId=186039
http://go.microsoft.com/fwlink/?LinkId=301486
%5bMS-OAPX%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=301486
%5bMS-OAPX%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90383

8 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Figure 1: Protocol dependency

1.5 Prerequisites/Preconditions

The OAuth 2.0 Protocol Extensions for Broker Clients define extensions to [RFC6749] and [MS-OAPX].
A prerequisite to implementing the OAuth 2.0 Protocol Extensions is that the REQUIRED parts of
[RFC6749] have been implemented on the AD FS server.

These extensions also assume that if the OAuth 2.0 client requests authorization for a particular
resource, or relying party, secured by the AD FS server, the client knows the identifier of that

resource. These extensions also assume that the OAuth 2.0 client knows its own client identifier and
all relevant client authentication information if it is a confidential client.

The client runs on a device for which there is a corresponding msDS-Device object in Active Directory
with the following additional requirements:

 The client has access to the private key of a device certificate. The public portion of the device
certificate is stored in the altSecurityIdentities attribute of the device's msDS-Device object in
Active Directory.

 The client has access to the private key of a session transport key (STK). The public portion of
the STK is stored in the msDS-KeyCredentialLink attribute of the device's msDS-Device object
in Active Directory.

1.6 Applicability Statement

The OAuth 2.0 Protocol Extensions for Broker Clients are supported by all AD FS servers that are at an
AD FS behavior level of AD_FS_BEHAVIOR_LEVEL_2 or higher. See [MS-OAPX] section 3.2.1.1 for the
formal definition of AD FS behavior level.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

Supported Transports: The OAuth 2.0 Protocol Extensions for Broker Clients support only HTTPS
[RFC2818] as the transport protocol.

Protocol Versions: The OAuth 2.0 Protocol Extensions for Broker Clients do not define protocol
versions.

http://go.microsoft.com/fwlink/?LinkId=301486
%5bMS-OAPX%5d.pdf
%5bMS-OAPX%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90383

9 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Localization: The OAuth 2.0 Protocol Extensions for Broker Clients do not return localized strings.

Capability Negotiation: The OAuth 2.0 Protocol Extensions for Broker Clients do not support

capability negotiation.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

10 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

2 Messages

2.1 Transport

The HTTPS protocol [RFC2818] MUST be used as the transport.

2.2 Common Data Types

None.

2.3 Directory Service Schema Elements

This protocol accesses the Directory Service schema classes and attributes that are listed in the
following table(s).

For the syntax of <Class> or <Class><Attribute> pairs, refer to one of the following:

 Active Directory Domain Services (AD DS) [MS-ADA1] [MS-ADA2] [MS-ADSC]

Class Attribute

msDS-Device altSecurityIdentities

msDS-KeyCredentialLink

user msDS-KeyCredentialLink

http://go.microsoft.com/fwlink/?LinkId=90383
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf

11 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3 Protocol Details

3.1 OAuthBrokerExtension Client Details

The client role<1> of the OAuth 2.0 Protocol Extensions for Broker Clients is the initiator of requests

for access tokens on behalf of other clients. The client role also stores data that is important to these
requests such as a nonce and the primary refresh token.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The client role is expected to be aware of the relying party or resource identifier of the resource server
if it requests authorization for a particular resource. See [MS-OAPX] section 3.2.5.2.1.1 for

information about the resource parameter.

The following elements are defined by this protocol:

Client Identifier: An identifier, represented as a string, that uniquely identifies the client to the
server.

Nonce: An opaque, base64-encoded value that is provided by the server and used in requests for a
primary refresh token.

Primary Refresh Token: A refresh token that the client can exchange for access tokens from the

server.

Session Key: A key used to sign access token requests and decrypt access token responses. The

client receives this key from the server in the response that is described in section 3.1.5.1.2.2.
This key MUST be stored in a secure manner.

Device Certificate: An X.509 certificate that represents the device on which the client runs. The
client MUST have access to the private key. The altSecurityIdentities attribute of an msDS-Device

object in Active Directory is used to store and access the public portion of the certificate.

Session Transport Key: A key used to decrypt the session key. The msDS-KeyCredentialLink
attribute of an msDS-Device object in Active Directory is used to store and access the key. The
msDS-Device object MUST be the same object in Active Directory that contains the public portion
of the Device Certificate.

User Authentication Key: A key used to authenticate an end user. The msDS-KeyCredentialLink
attribute of a user object in Active Directory is used to store and access the public portion of the

key.

3.1.2 Timers

None.

3.1.3 Initialization

The OAuth 2.0 Protocol Extensions for Broker Clients do not define any special initialization
requirements.

%5bMS-OAPX%5d.pdf

12 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Message Processing Events and Sequencing Rules

The resource that is accessed and manipulated by this protocol is defined in [RFC6749] and shown
below for reference.

Resource Description

Token endpoint (/token) For a description, see section 3.2.5.

The HTTP responses to all the HTTP methods are defined in corresponding sections of [RFC6749].

3.1.5.1 Token endpoint (/token)

The following HTTP methods are allowed to be performed on this resource.

HTTP method Description

POST For a description, see section 3.2.5.1.

3.1.5.1.1 POST (Request for Nonce)

This method requests a nonce value from the server that the client then includes in a future request

for a primary refresh token, as defined in section 3.1.5.1.2.

This operation is transported by an HTTP POST and can be invoked through the following URI:

 /token

3.1.5.1.1.1 Request Body

The format of the request is defined in section 3.2.5.1.1.1.

3.1.5.1.1.2 Response Body

The format of the response is defined in section 3.2.5.1.1.2.

3.1.5.1.1.3 Processing Details

The nonce that is received in the response body of this request is stored in the Nonce abstract data
model element (section 3.1.1). This nonce is used in a future request for a primary refresh token, as

defined in section 3.1.5.1.2.

3.1.5.1.2 POST (Request for Primary Refresh Token)

This method requests a primary refresh token that the client can then exchange for access tokens, as
defined in section 3.1.5.1.3.

This operation is transported by an HTTP POST and can be invoked through the following URI:

http://go.microsoft.com/fwlink/?LinkId=301486

13 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 /token

3.1.5.1.2.1 Request Body

The format of the request is defined in section 3.2.5.1.2.1.

3.1.5.1.2.2 Response Body

The format of the response is defined in section 3.2.5.1.2.2.

3.1.5.1.2.3 Processing Details

Request processing:

The client uses the Nonce ADM element value (section 3.1.1) that it received from the server in a
previous nonce request (section 3.1.5.1.1) to populate the request_nonce field of the request.

The client signs the request JSON Web Token (JWT) described in section 3.1.5.1.2.1 using the
private key of the Device Certificate ADM element (section 3.1.1).

If using user JWT authentication as described in section 3.2.5.1.2.1.2, the client signs the assertion

JWT using the private key of the User Authentication Key ADM element (section 3.1.1), and sets
the kid field of the assertion JWT header to the SHA-256 hash (see [FIPS180-2]) of the public key of
the User Authentication Key ADM element (section 3.1.1).

Response processing:

The client stores the refresh_token field of the response in the Primary Refresh Token ADM
element (section 3.1.1).

The client decrypts the session_key_jwe field of the response by following the process described in

[RFC7516] section 5.2 and by using the Session Transport Key ADM element (section 3.1.1). The
client stores the decrypted key in the Session Key ADM element.

3.1.5.1.3 POST (Exchange Primary Refresh Token for Access Token)

This method exchanges a primary refresh token for an access token.

This operation is transported by an HTTP POST and can be invoked through the following URI:

 /token

3.1.5.1.3.1 Request Body

The format of the request is defined in section 3.2.5.1.3.1.

3.1.5.1.3.2 Response Body

The format of the response is defined in section 3.2.5.1.3.2.

3.1.5.1.3.3 Processing Details

The client first requests a primary refresh token from the server as defined in section 3.2.5.1.2. It
then uses the Primary Refresh Token ADM element (section 3.1.1) to populate the refresh_token
field in this request for the access token.

http://go.microsoft.com/fwlink/?LinkId=89868
http://www.rfc-editor.org/rfc/rfc7516.txt

14 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

The client derives a signing key from the Session Key ADM element (section 3.1.1), the constant
label "AzureAD-SecureConversation", and the ctx value provided in the JWT header of the request by

using the process described in [SP800-108]. The client uses this signing key to sign the request.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 OAuthBrokerExtension Server Details

The server role<2> of the OAuth 2.0 Protocol Extensions for Broker Clients corresponds to the notion
of an authorization server as defined in [RFC6749] section 1.1 (Roles). The server role responds to the
client's requests for a nonce, a primary refresh token, and access tokens.

3.2.1 Abstract Data Model

None.

3.2.2 Timers

None.

3.2.3 Initialization

The OAuth 2.0 Protocol Extensions for Broker Clients do not define any special initialization
requirements.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Message Processing Events and Sequencing Rules

The resource accessed and manipulated by this protocol is defined in [RFC6749] and is shown below
for reference.

Resource Description

Token endpoint
(/token)

As defined in [RFC6749] section 3.2 (Token Endpoint), the token endpoint on the authorization
server is used by an OAuth 2.0 client to obtain an access token by presenting its authorization
grant or refresh token.

The HTTP responses to all the HTTP methods are defined in corresponding sections of [RFC6749].

3.2.5.1 Token endpoint (/token)

As defined in [RFC6749] section 3.2 (Token Endpoint), the token endpoint on the AD FS server is used
by an OAuth 2.0 client to obtain an access token by presenting its authorization grant or refresh
token. The following HTTP methods are allowed to be performed on this endpoint.

http://go.microsoft.com/fwlink/?LinkId=186039
http://go.microsoft.com/fwlink/?LinkId=301486
http://go.microsoft.com/fwlink/?LinkId=301486
http://go.microsoft.com/fwlink/?LinkId=301486

15 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

HTTP
method Description

POST An access token request issued by the OAuth 2.0 client to the token endpoint of the AD FS server
in accordance with the requirements of [RFC6749] section 4.1.3 (Access Token Request).

3.2.5.1.1 POST (Request for Nonce)

This method requests a nonce value from the server that the client then includes in a future request
for a primary refresh token, as defined in section 3.2.5.1.2.

This operation is transported by an HTTP POST and can be invoked through the following URI:

 /token

3.2.5.1.1.1 Request Body

To request a nonce, the client creates and sends the following request body.

 POST /token HTTP/1.1
 Content-Type: application/x-www-form-urlencoded

 grant_type=srv_challenge

3.2.5.1.1.2 Response Body

The server sends the following response body for this request.

 HTTP/1.1 200 OK
 Cache-Control: no-store
 Pragma: no-cache
 Content-Type: application/json;charset=UTF-8

 {"Nonce":<nonce>}

The response contains a JSON object with one element:

Nonce (REQUIRED): An opaque, base64 URL encoded value ([RFC4648] section 5). Padding is not
required ([RFC4648] section 3.2). It is to be used by the client in a future request for a primary
refresh token.

3.2.5.1.1.3 Processing Details

Generation of the Nonce field of the response is implementation specific, provided that the nonce
meets the following requirements:

 The server MUST be able to verify that any nonce value received from the client in a request for a
primary refresh token (section 3.2.5.1.2) matches a nonce that was previously issued by the
server.

 The server SHOULD be able to verify that any nonce value received from the client in a request for
a primary refresh token matches a nonce that was issued recently (see section 3.2.5.1.2.3).

 The server SHOULD use a method that makes it difficult for an attacker to guess valid nonce
values.

http://go.microsoft.com/fwlink/?LinkId=90487

16 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3.2.5.1.2 POST (Request for Primary Refresh Token)

This method requests a primary refresh token that the client can then exchange for access tokens, as
defined in section 3.2.5.1.3.

This operation is transported by an HTTP POST and can be invoked through the following URI:

 /token

3.2.5.1.2.1 Request Body

A signed request is passed as a JSON Web Token (JWT), as specified in [OIDCCore] section 6.1. The
JWTs are signed either with a device key or session keys.

The format of the signed request is as follows:

 POST /token HTTP/1.1
 Content-Type: application/x-www-form-urlencoded
 grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer&request=<signed JWT>

The signed JWT format is defined in [RFC7515].

The JWT fields MUST be given the following values:

client_id (REQUIRED): A unique identifier for the broker client.<3>

scope (REQUIRED): MUST contain at least the scopes "aza" and "openid". Additional scopes can be
included and follow the format described in [RFC6749] section 3.3.

request_nonce (REQUIRED): A nonce previously obtained from the server by making the request
described in section 3.1.5.1.1.

Additionally, the client MUST provide user authentication in the request. The client does this by

including the JWT fields from one of the following:

 Section 3.2.5.1.2.1.1 for username and password authentication.

 Section 3.2.5.1.2.1.2 if using a signed JWT for authentication.

 Section 3.2.5.1.2.1.3 if using a previous refresh token for authentication.

The signature header fields MUST be given the following values:

typ (REQUIRED): "JWT"

alg (REQUIRED): "RS256"

x5c (REQUIRED): The certificate used to sign the request, following the format described in
[RFC7515] section 4.1.6.

3.2.5.1.2.1.1 Username Password Authentication

If authenticating the user by using username and password, the client includes the following fields in

the JWT described in section 3.2.5.1.2.1:

grant_type (REQUIRED): "password"

username (REQUIRED): The username of the user for which the primary refresh token is requested.

http://go.microsoft.com/fwlink/?LinkId=523840
http://www.rfc-editor.org/rfc/rfc7515.txt
http://go.microsoft.com/fwlink/?LinkId=301486

17 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

password (REQUIRED): The password of the user for which the primary refresh token is requested.

3.2.5.1.2.1.2 User JWT Authentication

If authenticating the user by using a signed JWT, the client includes the following fields in the JWT

described in section 3.2.5.1.2.1:

grant_type (REQUIRED): "urn:ietf:params:oauth:grant-type:jwt-bearer"

assertion (REQUIRED): A signed JWT used to authenticate the user.

The JWT fields for the JWT provided in the assertion field MUST be given the following values:

iss (REQUIRED): The username of the user for which the primary refresh token is requested.

iat (REQUIRED): See [OIDCCore] section 6.1.

exp (REQUIRED): See [OIDCCore] section 6.1.

use (REQUIRED): "ngc"

aud (REQUIRED): The Issuer Identifier ([OIDCCore] section 1.2) of the server that the client is
sending the request to.

use (REQUIRED): "ngc"

The signature header fields of the assertion field MUST be given the following values:

typ (REQUIRED): "JWT"

alg (REQUIRED): "RS256"

kid (REQUIRED): The identifier for the key used to sign the request.

use (REQUIRED): "ngc"

3.2.5.1.2.1.3 Refresh Token Authentication

If authenticating the user by using a previously obtained refresh token, the client includes the
following fields in the JWT described in section 3.2.5.1.2.1:

grant_type (REQUIRED): "refresh_token"

refresh_token (REQUIRED): A refresh token ([RFC6749] section 1.5) that was previously obtained
from the server.

3.2.5.1.2.2 Response Body

The response to the request is a JSON object with the following fields:

token_type (REQUIRED): The string "pop", indicating that the returned refresh token requires proof

of possession.

refresh_token (REQUIRED): A primary refresh token. Like a refresh token described in [RFC6749]
section 1.5, this can be used by clients to obtain fresh access tokens. Unlike the refresh tokens
described in [RFC6749], the primary refresh token requires additional proof of possession to use
as described in section 3.2.5.1.3, and can be used by any client known to the server.

refresh_token_expires_in (REQUIRED): The validity interval for the primary refresh token in
seconds, as an integer.

http://go.microsoft.com/fwlink/?LinkId=523840
http://go.microsoft.com/fwlink/?LinkId=301486
http://go.microsoft.com/fwlink/?LinkId=301486

18 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

session_key_jwe (REQUIRED): A base64 URL–encoded and encrypted key value. The key is
encrypted using the JSON Web Encryption (JWE) standard [RFC7516]. The relevant part of the

JWE is the encrypted key section, which the client will use for future signature and decryption
operations as described in section 3.1.5.1.3.

id_token (REQUIRED): An ID token for the user that is authenticated in the request, as described in
[OIDCCore]. The audience for the ID token, that is, the aud field, is the same value given in
section 3.2.5.1.2.1 for the client_id field. The token does not need to be signed.

3.2.5.1.2.3 Processing Details

After receiving the request, the server verifies the signature of the request and also verifies that the
request_nonce is a nonce value previously issued by the server as defined in section 3.2.5.1.1. The

server SHOULD also verify that the nonce was issued recently.<4> If the signature or nonce are
invalid, the server returns the error "invalid_grant" using the format described in [RFC6749] section
5.2.

The server then processes the request as a resource owner password credentials grant (see

[RFC6749] section 4.3) using the client_id field of the request with the following modifications:

 The server authenticates the user based on the fields of the request:

 If the request uses username and password authentication as in section 3.2.5.1.2.1.1, the
server authenticates the user as in a resource owner password credentials grant ([RFC6749]
section 4.3) using the client_id, scope, and password fields of the request.

 If the request uses user JWT authentication as in section 3.2.5.1.2.1.2, the server processes
the request as follows:

1. The server finds the user object in Active Directory with a user principal name ([MS-ADTS]
section 5.1.1.1.1) matching the iss field of the assertion JWT.

2. It finds the public key for the signature by finding the value of the msDS-
KeyCredentialLink attribute on the user object for which the SHA-256 hash ([FIPS180-2]

section 6.2.2) of the attribute value matches the kid field of the assertion JWT.

3. The server then verifies the signature of the assertion JWT by using the public key that
was found in the previous step.

4. If any of the corresponding objects or values cannot be found or the signature of the
assertion JWT is not valid, the server returns the "invalid_grant" error using the format

described in [RFC6749] section 5.2.

 If the request uses refresh token authentication as in section 3.2.5.1.2.1.3, the server
validates the refresh token as in [RFC6749] section 6.

 The server uses the response format described in section 3.2.5.1.2.2 for successful responses;
error responses are returned as described in [RFC6749] section 5.2.

 If the server requires user interaction at the authorization endpoint ([MS-OAPX] section 3.2.5.1)

before processing this request (for example, to give consent or to provide additional

authentication), the server returns the interaction_required error using the format described in
[RFC6749] section 5.2.

 The server does NOT issue an access token.

 The server MUST issue a primary refresh token (in place of a normal refresh token) and include it
in the refresh_token field of the response.

 The server MUST include an ID token [OIDCCore] in the id_token field response.

http://www.rfc-editor.org/rfc/rfc7516.txt
http://go.microsoft.com/fwlink/?LinkId=523840
http://go.microsoft.com/fwlink/?LinkId=301486
%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89868
%5bMS-OAPX%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=523840

19 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

The server finds the msDS-Device object in Active Directory that has an alternateSecurityIdentifiers
value matching the value of the x5c parameter of the request header. The server then populates the

session_key_jwe field of the response by creating a session key and encrypting it by following the
process in [RFC7516] section 5.1 and by using the session transport key found in the msDS-

KeyCredentialLink attribute of the previously located msDS-Device object.

3.2.5.1.3 POST (Exchange Primary Refresh Token for Access Token)

Given the primary refresh token that was obtained in section 3.2.5.1.2, this method requests an
access token.

This operation is transported by an HTTP POST and can be invoked through the following URI:

 /token

3.2.5.1.3.1 Request Body

A signed request is passed as a JSON Web Token (JWT), as specified in [OIDCCore] section 6.1. The
JWTs are signed either with a device key or session keys.

The format of the signed request is as follows:

 POST /token HTTP/1.1
 Content-Type: application/x-www-form-urlencoded
 grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer&request=<signed JWT>

The signed JWT format is defined in [RFC7515].

The JWT fields MUST be given the following values:

client_id (REQUIRED): The client identifier for the client to which an access token is to be issued, as
in [RFC6749] section 1.1. If the request is made through a broker client, then this is the client

identifier of the client that the broker is acting on behalf of.

scope (REQUIRED): The scope that the client requests for the access token, as in [RFC6749] section
3.3. The client MUST include the scope "openid" in the request. If the scope "aza" is included in
the request, the server includes a new primary refresh token in the response.

resource (REQUIRED): The resource for which the access token is requested, as in [MS-OAPX]

section 2.2.3.

iat (REQUIRED): See [OIDCCore] section 6.1.

exp (REQUIRED): See [OIDCCore] section 6.1.

grant_type (REQUIRED): "refresh_token"

refresh_token (REQUIRED): A primary refresh token that was previously received from the server.

See section 3.1.5.1.2.

The JWT header fields MUST be given the following values. See [RFC7515] section 4 for field
descriptions.

alg (REQUIRED): The supported value is "HS256", which indicates the algorithm used for the
signature.

ctx (REQUIRED): The base64 encoded bytes used for signature key derivation.

http://www.rfc-editor.org/rfc/rfc7516.txt
http://go.microsoft.com/fwlink/?LinkId=523840
http://www.rfc-editor.org/rfc/rfc7515.txt
http://go.microsoft.com/fwlink/?LinkId=301486
%5bMS-OAPX%5d.pdf

20 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

kid (REQUIRED): The only supported value is "session", which indicates that a session key is used for
the signature.

3.2.5.1.3.2 Response Body

The response format is an encrypted JWT. The encrypted JWT (or JWE) format is described in
[RFC7516].

The JWT header fields MUST be given the following values:

alg (REQUIRED): "dir"

enc (REQUIRED): "A256GCM"

ctx (REQUIRED): The base64-encoded binary value used for encryption key derivation.

kid (REQUIRED): "session"

After decryption, the JWT response MUST contain the following elements:

access_token (REQUIRED): An access token for the client. See the access_token parameter in
[RFC6749] section 5.1.

token_type (REQUIRED): "bearer"

expires_in (REQUIRED): The lifetime, in seconds, of the access token. See the expires_in parameter
in [RFC6749] section 5.1.

refresh_token (OPTIONAL): The new primary refresh token.

refresh_token_expires_in (OPTIONAL): The lifetime, in seconds, of the primary refresh token
returned in the refresh_token field of the response.

scope (REQUIRED): The scopes included in the access token.

id_token (OPTIONAL): An ID token for the user that was authenticated in the request, as defined in
[OIDCCore]. The audience for the ID token, that is, the aud field, is the same value given in
section 3.2.5.1.3.1 for the client_id field. The token does not need to be signed.

3.2.5.1.3.3 Processing Details

The server verifies that the request was signed by the client with a key derived from the session key
previously issued to the client using the process for deriving the signing key described in section
3.1.5.1.3.3. If the signature is invalid, the server returns the error "invalid_grant" using the format
described in [RFC6749] section 5.2.

If the resource query parameter is invalid or is not found to be registered on the AD FS server, the AD

FS server responds to the OAuth 2.0 client according to the requirements of [RFC6749] section
4.1.2.1 (Error Response). The REQUIRED error parameter of the response MUST be set to the
invalid_resource error code, which is defined in [MS-OAPX] section 2.3.1.

The server then issues an access token for the requested resource following the process in [RFC6749]
section 6, using the scope and refresh_token values provided in the request, with the following
exceptions:

 The response format is as described in section 3.2.5.1.3.2 for successful responses; error
responses are returned as described in [RFC6749] section 5.2.

 If the server requires user interaction at the authorization endpoint ([MS-OAPX] section 3.2.5.1)
before processing this request (for example, to give consent or to provide additional

http://www.rfc-editor.org/rfc/rfc7516.txt
http://go.microsoft.com/fwlink/?LinkId=301486
http://go.microsoft.com/fwlink/?LinkId=523840
http://go.microsoft.com/fwlink/?LinkId=301486
%5bMS-OAPX%5d.pdf

21 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

authentication), the server returns the interaction_required error using the format described in
[RFC6749] section 5.2.

 If the scope parameter contains the scope "aza", the server issues a new primary refresh token
and sets it in the refresh_token field of the response, as well as setting the

refresh_token_expires_in field to the lifetime of the new primary refresh token if one is
enforced.

 The scope of the issued access token is always returned in the scope response field, even if it is
the same as the scope in the request.

 The server can include an ID token (see [OIDCCore]) in the id_token field of the response.

The server encrypts the response using a key that was derived by using the same process as that
used for deriving the signing key, as defined in section 3.1.5.1.3.3.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

http://go.microsoft.com/fwlink/?LinkId=523840

22 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

4 Protocol Examples

The following sections show examples of the requests and responses that are defined by the OAuth
2.0 Protocol Extensions for Broker Clients.

Note Throughout these examples, the fictitious name "server.example.com" is used as it is used in
[RFC6749].

Note Throughout these examples, the HTTP samples line breaks were added and irrelevant fields

were removed to enhance readability.

4.1 Obtain a Nonce

The following example shows a request from the broker client to the AD FS server for a nonce (section

3.2.5.1.1.1) and the response from the AD FS server that contains the nonce (section 3.2.5.1.1.2).

Request:

 POST https://server.example.com/adfs/oauth2/token/
 HTTP/1.1
 {
 Content-Type=application/x-www-form-urlencoded,
 Host=server.example.com,
 Content-Length=24,
 Expect=[100-continue]
 }
 grant_type=srv_challenge

Response:

 HTTP/1.1 200 OK
 {
 Content-Length=1200,
 Content-Type=application/json;charset=UTF-8
 }
 {"Nonce":"eyJWZXJza..."}

4.2 Obtain a Primary Refresh Token

The following example shows a request from the broker client to the AD FS server for a primary

refresh token (section 3.2.5.1.2.1) using the obtained nonce (section 4.1) and the response from the
AD FS server that contains the primary refresh token (section 3.2.5.1.2.2).

Request:

 POST https://server.example.com/adfs/oauth2/token/
 HTTP/1.1
 {
 Content-Type=application/x-www-form-urlencoded,
 Host=server.example.com,
 Content-Length=4176,
 Expect=[100-continue]
 }
 MessageOffset:251
 grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer
 &request=eyJ0eXAiOiJKV1...

http://go.microsoft.com/fwlink/?LinkId=301486

23 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

As described in sections 3.2.5.1.2.1 and 3.2.5.1.2.1.1, the content of the request parameter above is
a signed JWT. An example of the raw JWT with header is given below.

 {
 "typ":"JWT",
 "alg":"RS256",
 "x5c":["MIIEMzC..."]
 }
 {
 "client_id":"38aa3b87-a06d-4817-b275-7a316988d93b",
 "scope":"aza openid",
 "grant_type":"password",
 "username":"janedoe@example.com",
 "password":"password",
 "request_nonce":"eyJWZXJza..."
 }

Response:

 HTTP/1.1 200 OK
 {
 Content-Length=6123,
 Content-Type=application/json;charset=UTF-8
 }
 {
 "token_type":"pop",
 "refresh_token":"rghyF1xMq2YQTbE..."
 "refresh_token_expires_in":604800,
 "session_key_jwe":"eyJlbmMiOiJBMjU2R0NNIi...",
 "id_token":"eyJ0eXAiOiJKV1QiLCJhbGci..."
 }

4.3 Obtain an Access Token

The following example shows a request from the broker client to the AD FS server for an access token
(section 3.2.5.1.3.1) using the obtained primary refresh token (section 4.2) and the response from
the AD FS server that contains the access token (section 3.2.5.1.3.2).

Request:

 POST https://server.example.com/adfs/oauth2/token/
 HTTP/1.1
 {
 Content-Type=application/x-www-form-urlencoded,
 Host=fs.lindft5.com,
 Content-Length=4630,
 Expect=[100-continue]
 }
 grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer
 &request=eyJhbGciOiJIUz...

As described in section 3.2.5.1.3.1, the content of the request parameter above is a signed JWT. An
example of the raw JWT with header is given below.

 {
 "alg":"HS256",
 "ctx":"alusEDoF8fY+3p3EPnLFzBjl2DUty0Ov",
 "kid":"session"
 }
 {

24 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 "client_id":"s6BhdRkqt3",
 "scope":"aza openid",
 "resource":"https://resource_server1",
 "iat":1443739462,
 "exp":1443743062,
 "grant_type":"refresh_token",
 "refresh_token":"rghyF1xMq2YQTbE..."
 }

Response:

 HTTP/1.1 200 OK
 {
 Content-Length=8739,
 Content-Type=application/json;charset=UTF-8
 }
 eyJhbGciOiJka...

As described in section 3.2.5.1.3.2, the content of the response above is an encrypted JWT. An

example of the decrypted JWT with header is given below.

 {
 "alg":"dir",
 "enc":"A256GCM",
 "ctx":"alusEDoF8fY+3p3EPnLFzBjl2DUty0Ov",
 "kid":"session"
 }
 {
 "access_token":"eyJ0eXAiOiJKV1QiL...",
 "token_type":"bearer",
 "expires_in":3600,
 "refresh_token":"xWsRetnGYw6T...",
 "refresh_token_expires_in":604800,
 "scope":"profile",
 "id_token":"eyJ0eXAiOiJKV1..."
 }

25 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

26 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows 10 v1511 operating system

 Windows Server 2016 Technical Preview operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears

with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not

follow the prescription.

<1> Section 3.1: The client role of the OAuth 2.0 Protocol Extensions for Broker Clients can be
exercised by Windows client operating systems and by Windows server operating systems.

<2> Section 3.2: The server role of the OAuth 2.0 Protocol Extensions for Broker Clients can be
exercised by Windows server operating systems, but not by Windows client operating systems.

<3> Section 3.2.5.1.2.1: Windows clients use the identifier "38aa3b87-a06d-4817-b275-
7a316988d93b" to represent the broker client.

<4> Section 3.2.5.1.2.3: The Windows implementation of the AD FS server verifies that the nonce
was issued within the last 10 minutes.

27 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

28 / 28

[MS-OAPXBC] - v20151016
OAuth 2.0 Protocol Extensions for Broker Clients
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

8 Index

A

Applicability 8

C

Capability negotiation 8
Change tracking 26
Common data types 9

D

Directory service schema elements 9

E

Examples
 Obtain a Nonce example 21
 Obtain a Primary Refresh Token example 21
 Obtain an Access Token example 22

F

Fields - vendor-extensible 8

G

Glossary 5

I

Implementer - security considerations 24
Index of security parameters 24
Informative references 7

Introduction 5

M

Messages
 transport 9

N

Normative references 6

O

Oauthbrokerextension client
 Abstract data model 10
 Higher-layer triggered events 11
 Initialization 10
 Message processing events and sequencing rules

11
 Other local events 13
 Timer events 13
 Timers 10
Oauthbrokerextension server
 Abstract data model 13
 Higher-layer triggered events 13
 Initialization 13

 Message processing events and sequencing rules
13

 Other local events 20
 Timer events 20
 Timers 13
Overview (synopsis) 7

P

Parameters - security index 24
Preconditions 8
Prerequisites 8
Product behavior 25
Protocol Details
 OAuthBrokerExtension Client 10
 OAuthBrokerExtension Server 13
Protocol examples
 Obtain a Nonce 21
 Obtain a Primary Refresh Token 21
 Obtain an Access Token 22

R

References
 informative 7
 normative 6
Relationship to other protocols 7

S

Security
 implementer considerations 24
 parameter index 24
Standards assignments 8

T

Tracking changes 26
Transport 9
 common data types 9
 Directory service schema elements 9

V

Vendor-extensible fields 8

Versioning 8

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.3 Directory Service Schema Elements

	3 Protocol Details
	3.1 OAuthBrokerExtension Client Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Token endpoint (/token)
	3.1.5.1.1 POST (Request for Nonce)
	3.1.5.1.1.1 Request Body
	3.1.5.1.1.2 Response Body
	3.1.5.1.1.3 Processing Details

	3.1.5.1.2 POST (Request for Primary Refresh Token)
	3.1.5.1.2.1 Request Body
	3.1.5.1.2.2 Response Body
	3.1.5.1.2.3 Processing Details

	3.1.5.1.3 POST (Exchange Primary Refresh Token for Access Token)
	3.1.5.1.3.1 Request Body
	3.1.5.1.3.2 Response Body
	3.1.5.1.3.3 Processing Details

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 OAuthBrokerExtension Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Token endpoint (/token)
	3.2.5.1.1 POST (Request for Nonce)
	3.2.5.1.1.1 Request Body
	3.2.5.1.1.2 Response Body
	3.2.5.1.1.3 Processing Details

	3.2.5.1.2 POST (Request for Primary Refresh Token)
	3.2.5.1.2.1 Request Body
	3.2.5.1.2.1.1 Username Password Authentication
	3.2.5.1.2.1.2 User JWT Authentication
	3.2.5.1.2.1.3 Refresh Token Authentication

	3.2.5.1.2.2 Response Body
	3.2.5.1.2.3 Processing Details

	3.2.5.1.3 POST (Exchange Primary Refresh Token for Access Token)
	3.2.5.1.3.1 Request Body
	3.2.5.1.3.2 Response Body
	3.2.5.1.3.3 Processing Details

	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	4.1 Obtain a Nonce
	4.2 Obtain a Primary Refresh Token
	4.3 Obtain an Access Token

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

