
1 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-NRTP]:

.NET Remoting: Core Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

7/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

9/28/2007 1.0 Major Updated and revised the technical content.

10/23/2007 1.0.1 Editorial Changed language and formatting in the technical content.

11/30/2007 2.0 Major Added and updated sections.

1/25/2008 2.0.1 Editorial Changed language and formatting in the technical content.

3/14/2008 2.0.2 Editorial Changed language and formatting in the technical content.

5/16/2008 2.0.3 Editorial Changed language and formatting in the technical content.

6/20/2008 3.0 Major Updated and revised the technical content.

7/25/2008 4.0 Major Updated and revised the technical content.

8/29/2008 4.1 Minor Clarified the meaning of the technical content.

10/24/2008 5.0 Major Updated and revised the technical content.

12/5/2008 5.1 Minor Clarified the meaning of the technical content.

1/16/2009 6.0 Major Updated and revised the technical content.

2/27/2009 6.1 Minor Clarified the meaning of the technical content.

4/10/2009 6.1.1 Editorial Changed language and formatting in the technical content.

5/22/2009 6.1.2 Editorial Changed language and formatting in the technical content.

7/2/2009 6.1.3 Editorial Changed language and formatting in the technical content.

8/14/2009 6.1.4 Editorial Changed language and formatting in the technical content.

9/25/2009 6.2 Minor Clarified the meaning of the technical content.

11/6/2009 6.2.1 Editorial Changed language and formatting in the technical content.

12/18/2009 6.3 Minor Clarified the meaning of the technical content.

1/29/2010 6.4 Minor Clarified the meaning of the technical content.

3/12/2010 7.0 Major Updated and revised the technical content.

4/23/2010 8.0 Major Updated and revised the technical content.

6/4/2010 8.0.1 Editorial Changed language and formatting in the technical content.

7/16/2010 9.0 Major Updated and revised the technical content.

8/27/2010 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

1/7/2011 10.0 Major Updated and revised the technical content.

2/11/2011 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 10.1 Minor Clarified the meaning of the technical content.

9/23/2011 10.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 11.0 Major Updated and revised the technical content.

3/30/2012 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 11.1 Minor Clarified the meaning of the technical content.

10/25/2012 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

11/14/2013 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 12.0 Major Significantly changed the technical content.

10/16/2015 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 8
1.1 Glossary ... 8
1.2 References .. 13

1.2.1 Normative References ... 13
1.2.2 Informative References ... 14

1.3 Overview .. 14
1.3.1 Remote Method Invocation Model ... 15
1.3.2 Passing Server Objects .. 16
1.3.3 Server Object Instantiation and Binding .. 17

1.4 Relationship to Other Protocols .. 17
1.5 Prerequisites/Preconditions ... 18
1.6 Applicability Statement ... 19
1.7 Versioning and Capability Negotiation ... 19
1.8 Vendor-Extensible Fields ... 19
1.9 Standards Assignments ... 19

2 Messages ... 20
2.1 Transport .. 20

2.1.1 TCP Transport .. 20
2.1.1.1 Client Details .. 20

2.1.1.1.1 Sending Request ... 20
2.1.1.1.2 Receiving Reply ... 20

2.1.1.2 Server Details ... 21
2.1.1.2.1 Receiving Request ... 21
2.1.1.2.2 Sending Reply ... 21

2.1.2 HTTP Transport .. 22
2.1.2.1 Client Details .. 22

2.1.2.1.1 Sending Request ... 22
2.1.2.1.2 Receiving Reply ... 22

2.1.2.2 Server Details ... 23
2.1.2.2.1 Receiving Request ... 23
2.1.2.2.2 Sending Reply ... 23

2.1.3 SOAP Transport .. 23
2.1.3.1 SOAP on HTTP .. 24

2.1.3.1.1 Client Details .. 24
2.1.3.1.1.1 Sending Request .. 24
2.1.3.1.1.2 Receiving Reply ... 24

2.1.3.1.2 Server Details ... 24
2.1.3.1.2.1 Receiving Request .. 24
2.1.3.1.2.2 Sending Reply ... 24

2.1.3.2 SOAP on TCP .. 25
2.1.3.2.1 Client Details .. 25

2.1.3.2.1.1 Sending Request .. 25
2.1.3.2.1.2 Receiving Reply ... 25

2.1.3.2.2 Server Details ... 25
2.1.3.2.2.1 Receiving Request .. 25
2.1.3.2.2.2 Sending Reply ... 25

2.2 Message Syntax ... 25
2.2.1 Common Patterns ... 25

2.2.1.1 IdentifierName ... 26
2.2.1.2 RemotingTypeName .. 26
2.2.1.3 LibraryName .. 26
2.2.1.4 Method Signature .. 27

2.2.2 Common Types .. 27
2.2.2.1 ObjRef ... 27

5 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.2 TypeInfo .. 28
2.2.2.3 EnvoyInfo .. 28
2.2.2.4 ChannelInfo ... 29
2.2.2.5 ChannelDataStore ... 29
2.2.2.6 DictionaryEntry ... 29
2.2.2.7 System.Exception ... 30
2.2.2.8 SystemException .. 31
2.2.2.9 RemotingException ... 31
2.2.2.10 SerializationException .. 31
2.2.2.11 System.Type .. 31
2.2.2.12 UnitySerializationHolder ... 32
2.2.2.13 MemberInfoSerializationHolder ... 32
2.2.2.14 DelegateEntry .. 33
2.2.2.15 DelegateSerializationHolder .. 34
2.2.2.16 CallContextRemotingData .. 35
2.2.2.17 ServerFault .. 35

2.2.3 TCP Message Syntax ... 36
2.2.3.1 Common Enumerations .. 36

2.2.3.1.1 OperationType .. 36
2.2.3.1.2 ContentDistribution .. 36
2.2.3.1.3 HeaderToken .. 37
2.2.3.1.4 HeaderDataFormat .. 37
2.2.3.1.5 StringEncoding .. 37
2.2.3.1.6 TCPStatusCode ... 38

2.2.3.2 Common Types ... 38
2.2.3.2.1 CountedString ... 38
2.2.3.2.2 TcpUriString ... 38
2.2.3.2.3 ChunkDelimiter ... 39

2.2.3.3 Message Frame Structure... 39
2.2.3.3.1 Single Message Content ... 39
2.2.3.3.2 Chunked Message Content .. 40
2.2.3.3.3 Frame Headers.. 42

2.2.3.3.3.1 EndHeader .. 42
2.2.3.3.3.2 CustomHeader ... 42
2.2.3.3.3.3 StatusCodeHeader ... 42
2.2.3.3.3.4 StatusPhraseHeader ... 43
2.2.3.3.3.5 RequestUriHeader .. 43
2.2.3.3.3.6 CloseConnectionHeader .. 44
2.2.3.3.3.7 ContentTypeHeader ... 44
2.2.3.3.3.8 UnknownHeader .. 44

2.2.4 SOAP Serialization Format ... 45
2.2.4.1 SOAP Action String .. 45
2.2.4.2 Remoting Type Name Encoding ... 45
2.2.4.3 Method Name Encoding ... 45
2.2.4.4 Method Signature SOAP Header .. 45
2.2.4.5 Call Context SOAP Header .. 46

2.2.5 .NET Remoting Description Notation .. 46

3 Protocol Details ... 49
3.1 Common Details .. 49

3.1.1 Abstract Data Model .. 49
3.1.2 Timers .. 53
3.1.3 Initialization ... 53
3.1.4 Higher-Layer Triggered Events ... 53
3.1.5 Message Processing Events and Sequencing Rules .. 54

3.1.5.1 Mapping to Binary Format .. 54
3.1.5.1.1 Mapping Remote Method Request .. 54
3.1.5.1.2 Mapping Remote Method Invocation Reply .. 55

6 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.1.3 Mapping Remote Field Get .. 56
3.1.5.1.4 Mapping Remote Field Set .. 56
3.1.5.1.5 Mapping Library Information ... 57
3.1.5.1.6 Mapping Class Instances .. 57
3.1.5.1.7 Mapping Array Instances .. 58
3.1.5.1.8 Mapping Primitive Values .. 58
3.1.5.1.9 Mapping Enum Values .. 58
3.1.5.1.10 Mapping Delegate .. 58
3.1.5.1.11 Mapping String Values ... 58
3.1.5.1.12 Mapping Null Object ... 58

3.1.5.2 Mapping Remoting Data Model to SOAP Format .. 59
3.1.5.2.1 Mapping Remote Method Invocation .. 59
3.1.5.2.2 Mapping Remote Method Invocation Reply .. 59
3.1.5.2.3 Mapping Remote Field Get .. 60
3.1.5.2.4 Mapping Remote Field Set .. 60
3.1.5.2.5 Mapping Class Instances .. 60
3.1.5.2.6 Mapping Array Instances .. 60
3.1.5.2.7 Mapping Primitive Values .. 60
3.1.5.2.8 Mapping Enum Values .. 60
3.1.5.2.9 Mapping Delegate .. 60
3.1.5.2.10 Mapping Null Object ... 60
3.1.5.2.11 Mapping Exception... 61

3.1.5.3 Resolving Object Reference .. 61
3.1.6 Timer Events .. 61
3.1.7 Other Local Events .. 61

3.2 Server Details .. 61
3.2.1 Abstract Data Model .. 61
3.2.2 Timers .. 62
3.2.3 Initialization ... 62
3.2.4 Higher-Layer Triggered Events ... 62

3.2.4.1 Register SAO ServerType ... 62
3.2.4.2 Marshal Server Object ... 63
3.2.4.3 Unmarshal Server Object ... 63

3.2.5 Message Processing Events and Sequencing Rules .. 63
3.2.5.1 Receiving a Message ... 63

3.2.5.1.1 Process the Message Frame .. 63
3.2.5.1.2 Binding to Server Object .. 64
3.2.5.1.3 De-Serializing the Message Content ... 64
3.2.5.1.4 Dispatching the Call ... 64
3.2.5.1.5 Serializing the Reply .. 65

3.2.5.1.5.1 Serializing to Binary Serialization Format 65
3.2.5.1.5.2 Serializing to SOAP Serialization Format 65
3.2.5.1.5.3 Marshaling Server Objects and Proxy Instances 65

3.2.5.1.6 Sending Reply ... 66
3.2.5.1.7 Constructing Exception Messages .. 66

3.2.5.1.7.1 Constructing SerializationException .. 66
3.2.5.1.7.2 Constructing a Remoting Exception .. 66

3.2.6 Timer Events .. 67
3.2.7 Other Local Events .. 67

3.3 Client Details ... 67
3.3.1 Abstract Data Model .. 67
3.3.2 Timers .. 67
3.3.3 Initialization ... 67
3.3.4 Higher-Layer Triggered Events ... 67

3.3.4.1 Get SAO Proxy .. 67
3.3.4.1.1 Creating Proxy from Request URI and Server Type 67

3.3.4.2 Remote Method Invocation ... 68
3.3.4.2.1 Serializing the Request ... 68

7 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.4.2.1.1 Serializing to Binary Serialization Format 68
3.3.4.2.1.2 Serializing to SOAP Serialization Format 68

3.3.4.2.2 Sending the Request .. 69
3.3.4.2.3 Reading the Reply ... 69
3.3.4.2.4 De-Serializing the Response ... 69
3.3.4.2.5 Completing the Invocation .. 70

3.3.5 Message Processing Events and Sequencing Rules .. 70
3.3.6 Timer Events .. 70
3.3.7 Other Local Events .. 70

4 Protocol Examples ... 71
4.1 Two-Way Method Invocation Using TCP-Binary .. 71
4.2 Two-Way Method Invocation Using SOAP Over HTTP .. 76
4.3 Faults in SOAP Over HTTP ... 79
4.4 One-Way Method Invocation Using SOAP Over TCP .. 80
4.5 One-Way Method Invocation Using HTTP-Binary ... 81

5 Security ... 83
5.1 Security Considerations for Implementers ... 83
5.2 Index of Security Parameters .. 83

6 Appendix A: Product Behavior ... 84

7 Change Tracking .. 90

8 Index ... 91

8 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

The .NET Remoting: Core Protocol Specification specifies a mechanism by which a calling program can
invoke a method in a different address space over the network. Arguments are passed along as part of
the invocation message and return values are sent in the response.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

AppDomain: An isolated environment where .NET applications execute. AppDomains provide

isolation, unloading, and security boundaries for executing .NET managed code. For more
information see [MSDN-AppDomain].

argument: A named Data Value that is passed as part of a Remote Method invocation or
returned as part of the results of a Remote Method invocation. For more information about
Remote Method invocation, see [MS-NRTP] section 3.1.1.

array: A Remoting Type that is an ordered collection of values. The values are identified by their
position and position is determined by a set of integer indices. The number of indices required to

represent the position is called the Rank of the Array. An Array is part of the Remoting Data
Model and also specifies the Remoting Type of its items. For more information, [MS-NRTP]
section 3.1.1.

Assignable: A reference to the ability of a Data Value to be assigned to a Remoting Type. This
ability is determined by a set of rules described in the Abstract Data Model (section 3.1.1) under
Data Values.

authentication: The ability of one entity to determine the identity of another entity.

base64 encoding: A binary-to-text encoding scheme whereby an arbitrary sequence of bytes is
converted to a sequence of printable ASCII characters, as described in [RFC4648].

binary format identifier: A string that is contained in the message frame. The binary format
identifier identifies the serialization format of the message content as specified in [MS-
NRBF]. Its value is 'application/octet-stream'.

Call Context: A mechanism to pass data that is not part of the method Arguments between client

and server. It is a collection of name-value pairs that is carried with the execution of a Remote
Method. This collection is sent along with other method Arguments from client to server, and
is transmitted back, along with the Return Values and output Arguments, from the server to
the client. For more information, see [MS-NRTP] section 1.3.

certificate: A certificate is a collection of attributes (1) and extensions that can be stored
persistently. The set of attributes in a certificate can vary depending on the intended usage of
the certificate. A certificate securely binds a public key to the entity that holds the corresponding

private key. A certificate is commonly used for authentication and secure exchange of
information on open networks, such as the Internet, extranets, and intranets. Certificates are
digitally signed by the issuing certification authority (CA) and can be issued for a user, a
computer, or a service. The most widely accepted format for certificates is defined by the ITU-T
X.509 version 3 international standards. For more information about attributes and extensions,
see [RFC3280] and [X509] sections 7 and 8.

channel: An entry point through which a server gets connection requests from a client. A Channel

contains information about the chosen transport (for example, TCP) and supports one or more

http://go.microsoft.com/fwlink/?LinkId=193455
http://go.microsoft.com/fwlink/?LinkId=90487
%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90590

9 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

formats (for example, binary or SOAP). A server can host one or more Channels. For more
information, see [MS-NRTP] section 3.2.3.

Channel URI: The part of the Request URI that contains the URI scheme, the host name, and an
optional port number for a Channel. For TCP, the Channel URI has the form

tcp://hostname:port. For HTTP, the Channel URI has the form http://hostname[:port]. For
more information, see [RFC3986].

chunked encoding: A transport-specific encoding of message content that breaks the content
up into a series of octet segments. This allows dynamically produced content to be transferred,
along with the information necessary for the recipient to verify that it has received the full
message. For more information on HTTP chunking, see HTTP Transport (section 2.1.2). For
more information on TCP chunking, see TCP Transport (section 2.1.1).

class: A Remoting Type that encapsulates a set of named values and a set of methods that
operate on those values. The named values are called Members of the Class. A Class is part of
the Remoting Data Model. For more information, see [MS-NRTP] section 3.1.1.

credential: Previously established, authentication data that is used by a security principal to
establish its own identity. When used in reference to the Netlogon Protocol, it is the data that is
stored in the NETLOGON_CREDENTIAL structure.

data value: An instance of a Remoting Type, which may be a Class, Array, Enum, or Primitive.
A Data Value is part of the Remoting Data Model. For more information, see [MS-NRTP]
section 3.1.1.

delegate: A user or resource that has permissions to act on behalf of another user or resource.

deserialize: See unmarshal (1).

digest: The fixed-length output string from a one-way hash function that takes a variable-length
input string and is probabilistically unique for every different input string. Also, a cryptographic

checksum of a data (octet) stream.

Digest Access Authentication: A mechanism built on top of HTTP that allows a client program to

provide credentials without having to send a user name and password in plaintext when
making a request. For more information, see [RFC2617].

Enum: A Primitive type whose members are constrained to a set of values. The Primitive type is
considered to be an underlying Remoting Type of the Enum. Each value has a name
associated with it. An Enum is part of the Remoting Data Model, and an abbreviation for

"enumeration." For more information, see [MS-NRTP] section 3.1.1.

Envoy Sink Information: A Data Value associated with a Server Object or Server Type. When
a Server Object reference to an associated Server Object or Server Type is transmitted to a
client, the Envoy Sink Information is sent as well. The Envoy Sink Information contents are
undefined, and can be used by application authors to send arbitrary data. For more information,
see the example in Protocol Overview (section 1.3).

Exception: A Class that indicates an error in the execution of a Remote Method. It is sent as

part of the return message from a server to a client. An Exception contains a human-readable
message that indicates what the error is, and can also have additional data to identify the error.
An Exception is part of the Remoting Data Model. For more information, see [MS-NRTP]
section 3.1.1.

Generic Argument: A formal argument used in a Generic Type or a Generic Remote Method
to represent a parameterized Remoting Type. Generic Arguments can be referenced in the

Class or the method as opaque Remoting Types. They are replaced by the actual types when
the Class or the method is used. For more information, see Generic Type and Methods in
[ECMA-335].

http://go.microsoft.com/fwlink/?LinkId=90453
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=93453

10 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Generic Remote Method: A Remote Method that is parameterized by one or more Remoting
Types. The method caller must provide the actual Remoting Types (in addition to the Input

Arguments). For more information, see [MS-NRTP] section 3.1.1.

Generic Type: A Class, Server Type, or Server Interface that is parameterized by one or more

Remoting Types. A Generic Type contains GenericArguments as a placeholder for the
parameterized Remoting Types. A Generic Type cannot have any instances. For more
information, see Generic Types and Methods in [ECMA-335].

Hypertext Transfer Protocol (HTTP): An application-level protocol for distributed, collaborative,
hypermedia information systems (text, graphic images, sound, video, and other multimedia
files) on the World Wide Web.

Input Argument: A named Data Value that is passed as part of a Remote Method invocation

from the client to the server. For more information, see Remote Method in the Abstract Data
Model (section 3.1.1).

Instantiated Generic Type: A Remoting Type that is the result of replacing the Generic

Arguments of a Generic Type with the actual Remoting Types. An Instantiated Generic
Class can have instances. For more information, see Generic Types and Methods in [ECMA-
335].

IPv4 address in string format: A string representation of an IPv4 address in dotted-decimal
notation, as described in [RFC1123] section 2.1.

IPv6 address in string format: A string representation of an IPv6 address, as described in
[RFC4291] section 2.2.

Library: Part of the Remoting Data Model. A Library is a named unit that contains a collection
of Remoting Types. For more information, see Library in [MS-NRTP] section 3.1.1.

local name: A string value that, together with an XML namespace, identifies XML element and

attribute names. For more information, see [XMLNS-2ED].

logical call ID: An optional string value that identifies the logical thread of execution. This value

is passed as part of the Call Context and can be used in implementation-specific local threading
models on the server.

marshaled server object (MSO): A Marshaled Server Object is a Server Object that is
created by a higher layer, and not in response to an incoming request. For more information on
server objects, (see Server-Activated Object (SAO) for more information on the latter).. The

.NET Remoting Lifetime Services Protocol [MS-NRLS] provides a mechanism for controlling the
lifetimes of marshaled server objects.

member: See Class.

message content: The serialized body of a message.

message frame: A transport-specific structure for adding headers to a message. When using
HTTP, message frames are represented as HTTP headers. For more information, see HTTP

Transport (section 2.1.2). When using TCP, message frames are represented as defined in

Message Frame Structure (section 2.2.3.3).

Message Properties: A collection of implementation-specific, name-value pairs that are
transmitted as part of a Remote Method invocation. Message Properties are used to
exchange implementation-specific data between clients and servers.

method signature: A list of the remoting types of the arguments of a remote method.

NT LAN Manager (NTLM) Authentication Protocol: A protocol using a challenge-response

mechanism for authentication in which clients are able to verify their identities without

http://go.microsoft.com/fwlink/?LinkId=90268
http://go.microsoft.com/fwlink/?LinkId=90464
http://go.microsoft.com/fwlink/?LinkId=90602
%5bMS-NRLS%5d.pdf#Section_dffdda1f2c454978927c4280469ce355

11 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

sending a password to the server. It consists of three messages, commonly referred to as Type
1 (negotiation), Type 2 (challenge) and Type 3 (authentication). For more information, see [MS-

NLMP].

Null Object: Part of the Remoting Data Model. Null Object is a special value that can be used

in place of an instance of a Class, Array, or String. It indicates that no instance is being
specified. For more information, see [MS-NRTP] section 3.1.1.

One-Way Method: A Remote Method that has no application response sent from the
implementation of the Remote Method back to the caller. This pattern is sometimes referred to
as "fire and forget".

Output Argument: A named Data Value that is returned as part of the results of a Remote
Method invocation. For more information, see Remote Method in Abstract Data Model (section

3.1.1).

Primitive Type: Part of the Remoting Data Model. Primitive Types are predefined Remoting
Types such as Byte, Int16, Int32, Int64, and so on. For more information, see [MS-NRTP]

section 3.1.1

Primitive Value: Part of the Remoting Data Model. A Primitive Value is an instance of a
Primitive Type.

proxy: Part of the Remoting Data Model. A Proxy forwards the invocations of Remote
Methods from the client to the Server Object for execution. The Proxy contains the Request
URI of the Server Object. For more information, see [MS-NRTP] section 3.1.1.

Remote Field: Part of the Remoting Data Model. A Remote Field is a remotely accessible field.
For more information, see [MS-NRTP] section 3.1.1.

Remote Method: Part of the Remoting Data Model. A Remote Method is a remotely callable
operation. A Remote Method can either be One-Way or Two-Way. In the case of a One-Way

Method, there is no reply from the implementation. For more information, see [MS-NRTP]
section 3.1.1

Remoting Data Model: A model that is used to represent higher-layer–defined data structures
and values, and to represent a Remote Method invocation and the Return Value or error
information from that invocation. A protocol, such as [MS-NRLS], that is built on top of this
protocol can be defined by using the Remoting Data Model, and can be agnostic to the
serialization format. For more information, see Abstract Data Model (section 3.1.1).

Remoting Type: Part of the Remoting Data Model. Class, Array, Enum, and Primitive are
different kinds of Remoting Types. All Remoting Types are identified by a name that is case
sensitive. For more information, see [MS-NRTP] section 3.1.1

Request URI: A URI that provides an address of a Server Object. The Request URI has two
major components: a component that is used by the underlying transport to route the message
to an appropriate transport endpoint (Channel URI); and another component to map the

message to a Server Object within a server (Server Object URI).

Return Value: A Data Value that is returned as part of the results of a Remote Method
invocation. For more information, see Remote Method in Abstract Data Model (section 3.1.1).

serialization: A mechanism by which an application converts an object into an XML
representation.

Serialization Format: The structure of the serialized message content, which can be either binary
or SOAP. Binary serialization format is specified in [MS-NRBF]. SOAP serialization format is

specified in [MS-NRTP].

%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4

12 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

serialize: The process of taking an in-memory data structure, flat or otherwise, and turning it into
a flat stream of bytes. See also marshal.

Server Interface: Part of the Remoting Data Model. A Server Interface is a Remoting Type
that encapsulates a set of method declarations. The methods have no implementation. For more

information, see Server Interface in Abstract Data Model (section 3.1.1).

server object: Part of the Remoting Data Model. A server object is an instance of a Server
Type. A server object is either an SAO or an MSO.

Server Object Reference: A representation of an SAO or MSO that can be passed between a
client and a server. It contains sufficient information to construct a proxy to invoke Remote
Methods on the SAO or MSO.

Server Object Table: A table that contains the list of available Server Objects in the server.

Server Object URI: A relative URI that identifies a Server Object in a given server. It is the
path part of Request URI, excluding the leading forward slash (/).

Server Type: Part of the Remoting Data Model. A Server Type contains Remote Methods.

server-activated object (SAO): A server object that is created on demand in response to a client
request. See also marshaled server object.

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO): An authentication

mechanism that allows Generic Security Services (GSS) peers to determine whether their
credentials support a common set of GSS-API security mechanisms, to negotiate different
options within a given security mechanism or different options from several security
mechanisms, to select a service, and to establish a security context among themselves using
that service. SPNEGO is specified in [RFC4178].

Single-Call SAO: An SAO that is created every time a Remote Method on its Server Type is
called. For longer-lived SAOs, see Singleton SAO.

Singleton SAO: An SAO that is created the first time a method on its server type is called;

subsequent calls to the remote methods on the server type reuse the existing SAO unless it
expires. For shorter-lived SAOs, see single-call SAO.

SOAP: A lightweight protocol for exchanging structured information in a decentralized, distributed
environment. SOAP uses XML technologies to define an extensible messaging framework,
which provides a message construct that can be exchanged over a variety of underlying
protocols. The framework has been designed to be independent of any particular programming

model and other implementation-specific semantics. SOAP 1.2 supersedes SOAP 1.1. See
[SOAP1.2-1/2003].

SOAP Format Identifier: A string that is contained in the message frame. It identifies the
serialization format of the message content as specified in [SOAP1.1]. Its value is 'text/xml;
charset="utf-8"'.

System Library: A specially designated library that can be used to reduce the wire size for

commonly used data types. The name of the library is agreed to by both the server and the

client.

System.Object: Part of the Remoting Data Model. System.Object is a Class that has no
Members. A Class that does not extend another Class is considered to extend
System.Object.

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping

http://go.microsoft.com/fwlink/?LinkId=90461
http://go.microsoft.com/fwlink/?LinkId=90521
http://go.microsoft.com/fwlink/?LinkId=90520

13 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

Two-Way Method: A Remote Method that has a response sent from the implementation of the
Remote Method back to the caller.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

Uniform Resource Identifier (URI): A string that identifies a resource. The URI is an addressing
mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI):
Generic Syntax [RFC3986].

user agent: An HTTP user agent, as specified in [RFC2616].

UTF-8: A byte-oriented standard for encoding Unicode characters, defined in the Unicode standard.
Unless specified otherwise, this term refers to the UTF-8 encoding form specified in

[UNICODE5.0.0/2007] section 3.9.

XML: The Extensible Markup Language, as described in [XML1.0].

XML namespace: A collection of names that is used to identify elements, types, and attributes in

XML documents identified in a URI reference [RFC3986]. A combination of XML namespace and
local name allows XML documents to use elements, types, and attributes that have the same
names but come from different sources. For more information, see [XMLNS-2ED].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS-NNS] Microsoft Corporation, ".NET NegotiateStream Protocol".

[MS-NRBF] Microsoft Corporation, ".NET Remoting: Binary Format Data Structure".

[MS-NRLS] Microsoft Corporation, ".NET Remoting: Lifetime Services Extension".

[MS-OAUT] Microsoft Corporation, "OLE Automation Protocol".

[RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities", STD 13, RFC 1034, November

1987, http://www.ietf.org/rfc/rfc1034.txt

http://go.microsoft.com/fwlink/?LinkId=154659
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90599
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-NNS%5d.pdf#Section_93df08eba6c44dff81c3519cf7236df4
%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
%5bMS-NRLS%5d.pdf#Section_dffdda1f2c454978927c4280469ce355
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961
http://go.microsoft.com/fwlink/?LinkId=90263

14 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[RFC1123] Braden, R., "Requirements for Internet Hosts - Application and Support", RFC 1123,
October 1989, http://www.ietf.org/rfc/rfc1123.txt

[RFC1766] Alvestrand, H., "Tags for the Identification of Languages", RFC 1766, March 1995,
http://www.ietf.org/rfc/rfc1766.txt

[RFC1945] Berners-Lee, T., Fielding, R., and Frystyk, H., "Hypertext Transfer Protocol -- HTTP/1.0",
RFC 1945, May 1996, http://www.ietf.org/rfc/rfc1945.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, http://www.rfc-editor.org/rfc/rfc2616.txt

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., et al., "HTTP Authentication: Basic and Digest
Access Authentication", RFC 2617, June 1999, http://www.rfc-editor.org/rfc/rfc2617.txt

[RFC3513] Hinden, R. and Deering, S., "Internet Protocol Version 6 (IPv6) Addressing Architecture",
RFC 3513, April 2003, http://www.ietf.org/rfc/rfc3513.txt

[RFC3986] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (URI): Generic

Syntax", STD 66, RFC 3986, January 2005, http://www.ietf.org/rfc/rfc3986.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.rfc-editor.org/rfc/rfc4234.txt

[RFC793] Postel, J., Ed., "Transmission Control Protocol: DARPA Internet Program Protocol
Specification", RFC 793, September 1981, http://www.rfc-editor.org/rfc/rfc793.txt

[SOAP1.1] Box, D., Ehnebuske, D., Kakivaya, G., et al., "Simple Object Access Protocol (SOAP) 1.1",
May 2000, http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[UNICODENORMFORMS] Davis, M., "Unicode Normalization Forms", November, 1999,

http://www.unicode.org/unicode/reports/tr15/tr15-18.html

1.2.2 Informative References

[ECMA-335] ECMA, "Common Language Infrastructure (CLI): Partitions I through VI", Standard ECMA-
335, http://www.ecma-international.org/flat/publications/Standards/Ecma-335.htm

1.3 Overview

The .NET Remoting Protocol specifies a mechanism by which a calling program on one machine can
invoke a method on a different machine. Arguments are passed along as part of the invocation
message, and Return Values are sent in the response.

This protocol defines a simple type system that is a generalization of the common features found in
type systems in programming languages. The components of the type system are specified in Abstract

Data Model (section 3.1.1). If data can be represented as a Remoting Type, it can be serialized into
the .NET Remoting Binary Format, as defined in [MS-NRBF], or the SOAP format as specified in
[SOAP1.1]. The rules for serialization of data that is represented using the Remoting Data Model
into the .NET Remoting Binary Format are specified in Mapping to Binary Format (section 3.1.5.1). The
rules for serialization of data represented using the Remoting Data Model into the SOAP format are
defined in Mapping Remoting Data Model to SOAP Format (section 3.1.5.2). The .NET Remoting: Core
Protocol Specification introduces a notation for the higher layer to define types and methods in the

Remoting Data Model. The grammar for the notation is given in .NET Remoting Description

http://go.microsoft.com/fwlink/?LinkId=90268
http://go.microsoft.com/fwlink/?LinkId=120475
http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=90427
http://go.microsoft.com/fwlink/?LinkId=90453
http://go.microsoft.com/fwlink/?LinkId=90462
http://go.microsoft.com/fwlink/?LinkId=150872
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=93485
http://go.microsoft.com/fwlink/?LinkId=93453
%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
http://go.microsoft.com/fwlink/?LinkId=90520

15 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Notation (section 2.2.5). This notation can be used by any protocol that depends on the .NET
Remoting Protocol. The notation is used in this specification and in [MS-NRLS].

This section presents a brief overview of the following:

 Remote Method Invocation Model

 Passing Server Objects

 Server Objects Instantiation and Binding

1.3.1 Remote Method Invocation Model

 The .NET Remoting Protocol specifies a mechanism to invoke a method where the calling program
and the target method are in different address spaces. Following is an example.

Figure 1: The .NET Remoting Protocol

This protocol defines two roles: client and server. A client initiates communication by calling a Remote
Method with Input Arguments using a Proxy. The server responds by executing the method in an

implementation-specific manner. The Remote Method can be either a One-Way or a Two-Way
Method. If the method is One-Way, then no response is sent back to the client. If the method is Two-
Way, then the server sends back a response that can contain a Return Value and Output
Arguments.

The protocol defines two mechanisms for exchanging additional data with each Remote Method call:
Call Context and Message Properties.

A Call Context is a collection of name-value pairs. A client can add name-value pairs to the Call

Context of a Remote Method. The Call Context is then transmitted when the Remote Method is

invoked. The server can then modify the Call Context before it transmits the updated Call Context
back to the client.

Message Properties is another collection of name-value pairs that behaves in the same way as Call
Context. Values in the Call Context are intended to be used for transmitting application-defined
values, while the Message Properties are intended to be used for infrastructure-defined values. This

protocol does not define any values that are carried as Message Properties or Call Context values.

Remote Method implementations can choose to return an Exception to the caller to indicate an error
in processing. Server-side errors such as a connection error, a data validity error, or a server

%5bMS-NRLS%5d.pdf#Section_dffdda1f2c454978927c4280469ce355

16 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

availability error are returned to the client as one of two Exceptions: Remoting Exception or
Serialization Exception.

Remote Method Arguments, Return Value, Call Context, Message Properties, and Exceptions are all
represented by Data Values.

1.3.2 Passing Server Objects

The Server Object or a Proxy can be part of a graph of nodes of a Data Value. However, unlike other
Data Values, when a graph that contains a Server Object or a Proxy is passed as part of a Remote

Method invocation they are transmitted as Server Object References.

When a client receives a Server Object Reference from a server, it might receive additional,
application-specific data in a part of the Server Object Reference called the Envoy Sink Information.
Data sent as the Envoy Sink Information is implementation specific, and the semantics of that
information have to be agreed between the client and server out of band. An example of Envoy Sink
Information is a set of rules to validate Remote Method Arguments. This protocol does not define any
data sent in the Envoy Sink Information.<1>

The following example shows a server sending a Server Object Reference from a server to a client.

Figure 2: A server sending a Server Object Reference from a server to a client

The following example shows a client sending a Server Object Reference to a server. The server uses

the Server Object Reference to call back the client.

17 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 3: A Server Object Reference being sent by the client and then used by the server to
call back the client

1.3.3 Server Object Instantiation and Binding

A client's Remote Method invocation is targeted to a given Server Object by the passing of the
Request URI of the Server Object as part of the call. A server implementation uses the Request URI
to bind the call to the appropriate Server Object. A server implementation can bind the Request URI to
a Server Type or Server Object.

If the binding is to a Server Type, then the server implementation creates a new Server Object by
instantiating the Server Type. The created Server Object can then be used to dispatch the method call

in an implementation-specific way. Such Server Objects are called Server-Activated Objects
(SAOs). Server implementations can be configured to save created SAOs for future calls. Such SAOs
are called Singleton SAOs. If the SAO is not configured to be saved, every subsequent call results in
the creation of a new instance of the SAO. Such SAOs are called Single-Call SAOs.

Some Server Objects are created by a higher-layer on the server, and not in response to a client
request. These Server Objects are called Marshaled Server Objects (MSO). When a Request URI is

bound to such an object, the object is used to dispatch the server call in an implementation-specific

way.

1.4 Relationship to Other Protocols

This protocol defines the central mechanisms of the .NET Remoting Protocol stack, which convert a

Remote Method invocation into an exchange of encoded messages. This protocol depends on other
structures and protocols for the encoding and transport of its messages. Further protocols can extend
this protocol to provide additional services, such as .NET Remoting Lifetime Services [MS-NRLS] which

%5bMS-NRLS%5d.pdf#Section_dffdda1f2c454978927c4280469ce355

18 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

defines additional message and semantics to add activation and distributed lifetime management to
.NET Remoting. User applications are layered on top of this protocol and use its services for

application-specific purposes.

Before a message is sent, the Remote Method is converted to a serialized form for transmission on

the wire. A binary encoding for .NET Remoting is specified in .NET Remoting Binary Format [MS-
NRBF]. When the binary encoding is used, .NET Remoting can be bound to either TCP [RFC793] or
HTTP [RFC2616]. The TCP binding is specified in TCP Transport (section 2.1.1), and the HTTP binding
is specified in HTTP Transport (section 2.1.2).

.NET remoting can also use SOAP1.1, which includes both encoding semantics and transport bindings.
The SOAP encoding is specified in [SOAP1.1], with .NET remoting-specific portions of the mapping
specified in SOAP Serialization Format (section 2.2.4) of this specification. When SOAP is used, .NET

remoting can be bound to either TCP [RFC793] or HTTP [RFC2616]. The TCP binding to SOAP is
specified in SOAP on TCP (section 2.1.3.2), and the HTTP binding can be found in [SOAP1.1] section 6,
with .NET remoting-specific portions of the mapping specified in SOAP on HTTP (section 2.1.3.1) of
this specification.

Figure 4: Relationships between .NET Remoting protocols

1.5 Prerequisites/Preconditions

If the HTTPS transport is used, a server certificate must be deployed and a client certificate can be
deployed.

This protocol does not define any means for activating a server or a client. The server must be
configured and begin listening in an implementation-specific way on a Channel. For more information

on Channels, see Initialization (section 3.2.3). The client must know the format and transport used by

the server (for example, binary format over HTTP).

The client needs the Request URI of the server, and both the client and server need to agree on the
following:

1. Definitions of the Remote Method

2. The Types of Data Values to be exchanged

%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
http://go.microsoft.com/fwlink/?LinkId=150872
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90520

19 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3. The names of the Libraries that contain the types

4. The Library that is the System Library

1.6 Applicability Statement

This protocol is useful for transferring object method invocation information in a distributed
environment. This protocol is designed for use on private networks, and is not appropriate for use on
public networks. See Security Considerations for Implementers (section 5.1) for more details.

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas:

 Supported transports: This protocol can use SOAP, TCP, HTTP, or HTTPS as a transport. Details
are provided in Transport (section 2.1).

 Protocol versions: Only one version of this protocol is currently defined.

 Security and authentication methods: This protocol relies on the security provided by the
following:

 .NET Negotiate Stream for TCP as defined in [MS-NNS], HTTPS, HTTP Basic Access, and
Digest Access

 NTLM authentication as defined in [RFC2617] and [MS-NLMP]

This protocol does not have security and authentication provisions of its own.

 Capability negotiation: An implementation of this protocol with SOAP over HTTP can

interoperate with other implementations of SOAP over HTTP that implement [SOAP1.1]. This
protocol provides a mechanism to distinguish an implementation of this protocol from other
implementations of SOAP over HTTP. A client role of this protocol indicates this by using the User-
Agent header as specified in Versioning and Capability Negotiation (section 2.1.3.1.1.1). The

server role uses this information when sending a SOAP fault as specified in
ServerFault (section 2.2.2.17).

1.8 Vendor-Extensible Fields

This protocol allows custom headers to be added to the message frame structure when TCP is used
as a transport, as specified in CustomHeader (section 2.2.3.3.3.2). Custom headers added to the TCP
message frame are ignored by .NET remoting. This protocol does not include vendor-extensible fields

when HTTP is used as a transport. However, this protocol does not preclude implementers from adding
HTTP headers, as specified in [RFC2616] section 4.2. This protocol also does not preclude
implementers from adding SOAP headers as specified in [SOAP1.1] section 4.2.

1.9 Standards Assignments

No standards assignments are made by this protocol.

%5bMS-NNS%5d.pdf#Section_93df08eba6c44dff81c3519cf7236df4
http://go.microsoft.com/fwlink/?LinkId=90373
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90520

20 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

2.1 Transport

2.1.1 TCP Transport

This section specifies the protocol to use TCP as specified in [RFC793] to transmit method invocation
and return information.

If instructed by a higher-level protocol in an implementation-specific way, an implementation of this

protocol MUST require the implementation of the [MS-NNS] protocol on the server to authenticate the
TCP client using SPNEGO.

The higher-level protocol MUST provide, in an implementation-specific way, the required credentials
for the authentication. Implementations of this protocol MUST NOT process the credentials or
authentication information before transmission. Such processing typically happens entirely inside

implementations of lower protocol layers. An extension of this protocol MAY use the credentials from
the lower protocol layers for authorization or impersonation.

2.1.1.1 Client Details

2.1.1.1.1 Sending Request

In the client role, an implementation MUST first establish a TCP connection to the server. A client

implementation MAY cache and reuse a connection to a specific server port or create a new
connection.<2>

After a connection is established, a client implementation MUST transmit the message content that
contains information to perform invocation of the target Remote Method identified by the higher layer
as specified in Remote Method Invocation.

The implementation MUST construct a message frame structure as specified in Message Frame

Structure with the following additional constraints:

 The implementation SHOULD use single message content (section 2.2.3.3.1) but MAY use chunked
message content (section 2.2.3.3.2).<3>

 The implementation MUST set the OperationType field of the message frame to
OneWayRequest(1) if the Remote Method is a One-Way Method; otherwise, the field MUST be set
to Request(0).

 The implementation MUST send a request message that consists of the message frame and the

message content using the previously established TCP connection. The message content MUST be
sent as specified in Message Frame Structure. If any error occurs while the message is being
written, the implementation MAY reestablish the connection and retransmit the message.

 If the Remote Method is One-Way then the connection MAY be reused after the message has been

sent. If the Remote Method is Two-Way then the connection MUST NOT be used to send any other
requests to the server until the response for the request is received.<4>

2.1.1.1.2 Receiving Reply

If the OperationType of the message is Request(0), an implementation MUST wait for the Two-Way
Reply message in the same connection. The implementation MAY have an implementation-specific
time-out period. If the server does not reply within the time-out period, the higher layer MAY be
notified of the time-out error.<5>

http://go.microsoft.com/fwlink/?LinkId=150872
%5bMS-NNS%5d.pdf#Section_93df08eba6c44dff81c3519cf7236df4

21 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the message frame of the reply message does not conform to the structure specified in Message
Frame Structure (section 2.2.3.3) or if the OperationType field of the message frame is not Reply(2),

then the implementation MUST notify the higher layer of the error.

An implementation MAY process implementation-defined CustomHeaders in an implementation-specific

way. The implementation MUST ignore any CustomHeaders that it does not understand.

The data in the transport buffer MUST be consumed so that the connection can be reused.

 An implementation of the protocol MAY cache the connection after reading the reply, unless the
message frame has a CloseConnectionHeader.

2.1.1.2 Server Details

2.1.1.2.1 Receiving Request

The server implementation of this protocol MUST listen on the TCP port as specified in section 3.2.3.
When a connection is available, the implementation of the protocol MUST process the message from

the connection stream as follows. An implementation MUST NOT send anything other than the reply to

this request in this connection.

If the message frame of the request message does not conform to the structure specified in Message
Frame Structure (section 2.2.3.3) or if the OperationType field of the message frame is neither
Request(0) nor OneWayRequest(1) then an implementation MUST send back a fault as specified
below.

An implementation MAY process implementation-defined CustomHeaders in an implementation-specific
way. The implementation MUST ignore any CustomHeaders that it does not understand.<6>

A transport fault MUST be sent as a reply as specified in Sending Reply (section 2.1.1.2.2) with
additional constraints on the message frame construction as follows:

 The ContentDistribution field MUST be written as NotChunked.

 The ContentLength field MUST be written as zero.

 The StatusCode header MUST be written with a value of 1 (Error).

 The StatusPhrase header SHOULD contain helpful text about the error.

 The CloseConnection header MUST be written to indicate that the connection must not be cached

after processing this message.

 The implementation MUST NOT write any MessageContent.

2.1.1.2.2 Sending Reply

If the OperationType of the request message is OneWayRequest(1), then an implementation MUST
NOT send any response. The rest of this section applies only to incoming request messages where the

OperationType of the message is Request(0).

An implementation MUST construct a TCP message frame as specified in Message Frame
Structure (section 2.2.3.3) with the following constraints:

 The implementation SHOULD use single message content (section 2.2.3.3.1) but MAY use chunked
message content (section 2.2.3.3.2).<7>

 The OperationType MUST be written as Reply(2).

22 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The associated Method Type of the target Remote Method obtained as specified in Dispatching
the Call (section 3.2.5.1.4) MUST be obtained in an implementation-specific way. If the Method

Type is One-Way, then the reply MUST contain an empty message content.

Finally, the implementation MUST package the message content following the message frame as

specified in Message Frame Structure (section 2.2.3.3).

A server implementation MUST send the reply in the same connection that the request came in. The
implementation MAY use the Close Connection header specified in the CloseConnectionHeader
subsection under the Message Frame Structure (section 2.2.3.3) to indicate the client should not send
any more messages in this connection.

2.1.2 HTTP Transport

This section specifies the protocol to use HTTP transport as specified in [RFC1945] and [RFC2616] to
transmit method invocation and return information. At a high level, the message request of a Remote
Method invocation MUST be sent as part of an HTTP request and the reply from the server MUST be
sent as part of the HTTP response. In the case of a one-way method, the HTTP response body MUST

be empty, as specified in Sending Reply (section 2.1.2.2.2).

Port 80 is the standard port assignment for HTTP and port 443 is the standard port assignment for
HTTPS. However, an implementation MUST support other ports if specified by a higher-level protocol
in an implementation-defined way.

If instructed by a higher-level protocol in an implementation-specific way, implementations of this
protocol MUST require that the HTTP implementation on the server use Basic or Digest Access
Authentication for HTTP to authenticate the HTTP client, as specified in [RFC2617] or NTLM

authentication [MS-NLMP] for HTTP.

The higher-level protocol MUST provide in an implementation-specific way either credentials in the
form of user name/password or a client-side certificate. Implementations of this protocol MUST NOT
process the credentials or authentication information. Such processing typically happens entirely
inside implementations of lower protocol layers.

2.1.2.1 Client Details

2.1.2.1.1 Sending Request

A Remote Method invocation request MUST be mapped to an HTTP request and MUST have the
following HTTP headers:

 An implementation MAY use HTTP/1.0 or HTTP/1.1.<8><9>

 The HTTP Method SHOULD be a POST. The HTTP Method MAY be M-POST.

 The Request-URI of the HTTP request message MUST be set to the Server Object URI of the
Remote Method.

 The User-Agent SHOULD contain the string "MS .NET Remoting".<10>

 The Content-Type MUST be either a binary format identifier or a SOAP format identifier.

 The message content MUST be transmitted as the HTTP request message body. The message body

MAY be sent using chunked transfer coding as specified in [RFC2616] section 3.6.1. If the
message body is not chunked then the Content-Length entity header MUST contain the length of
the message body in decimal number of octets.<11>

2.1.2.1.2 Receiving Reply

http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90373
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
http://go.microsoft.com/fwlink/?LinkId=90372

23 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the target Remote Method that is identified by the higher layer as specified in Remote Method
Invocation (section 3.3.4.2) is Two-Way, then the implementation MUST wait for a response. If a

response is not received before an implementation-defined time-out, the implementation SHOULD
cancel the request and report an error to the higher layer.<12>

For Two-Way Remote Methods, if the status code of the HTTP response is one of the successful codes
as specified in [RFC2616] section 10.2 or one of the server-error codes as specified in [RFC2616]
section 10.5, the response MUST be processed further as specified in section 3.3.4.2.4. If the Status-
Code is one of the client-error codes as specified in [RFC2616] section 10.4, the response MUST NOT
be processed any further.

For both Two-Way and One-Way Remote Methods an implementation MAY handle other status codes
in an implementation-specific way that complies with [RFC2616]. If an error occurs in processing of

the other status codes, the response MUST NOT be processed any further.<13>

2.1.2.2 Server Details

2.1.2.2.1 Receiving Request

A Remote Method invocation request is mapped to an HTTP request. An implementation MUST accept
request messages that are sent using either HTTP/1.0 or HTTP/1.1. If the HTTP method is neither
POST nor M-POST or if the Content-Type is neither a binary format identifier nor a SOAP format
identifier, then an implementation MUST send back a transport fault as specified in the following list.

An implementation MUST send back an HTTP response:

 The HTTP Status-Code of the response MUST be 400.

 The Reason-Phrase SHOULD be "Bad Request".

 The Body of the response MUST be empty.

2.1.2.2.2 Sending Reply

A Remote Method reply is mapped to an HTTP response and MUST have the following HTTP header
fields:

 The Content-Type of the response MUST match the Content-Type of the request.

 An implementation MUST return an HTTP response with a Status-Code and message body as
shown in the following table. The Reason-Phrase value SHOULD be as follows.

Request message Status-Code Reason-Phrase Message body

One-Way Method 202 Accepted Empty

Two-Way Method 200 OK Serialized message content

2.1.3 SOAP Transport

At a high level, a Two-Way Remote Method invocation is modeled as a SOAP request message with an
associated response message. A One-Way Remote Method invocation is modeled as a SOAP request
message with no response message.

A request message MUST be constructed as follows:

 The content of the request message MUST be a valid Envelope infoset per [SOAP1.1] section 4.

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90520

24 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The SOAP body infoset MUST contain a valid method request struct per [SOAP1.1] section 7.

 Any method parameters MUST be encoded as a valid serialization of the [SOAP1.1] section 5

encoding.

A response message MUST be constructed as follows:

 The content of the response message MUST be a valid Envelope infoset per [SOAP1.1] section 4.

 The SOAP body infoset MUST contain a valid method response struct per [SOAP1.1] section 7.

 Any method parameters MUST be encoded as a valid serialization of the [SOAP1.1] section 5
encoding.

When using .NET Remoting over the SOAP protocol, .NET Remoting can be bound to HTTP or TCP.

 For HTTP, .NET Remoting method invocation MUST be bound to an HTTP request/response pair per
[SOAP1.1] section 6.

 For TCP, see section 2.1.1 (raw TCP binding).

2.1.3.1 SOAP on HTTP

When using HTTP, the message MUST be transmitted as specified in [SOAP1.1] section 6.

2.1.3.1.1 Client Details

2.1.3.1.1.1 Sending Request

HTTP request MUST be constructed as specified in [SOAP1.1] section 6 with the following additional
constraints:

 The Request-URI of the HTTP request message MUST be set to the Server Object URI of the

Remote Method.

 The User-Agent SHOULD contain the string "MS .NET Remoting".<14>

 The charset of the Content-Type SHOULD be UTF-8.

2.1.3.1.1.2 Receiving Reply

An HTTP response MUST be processed as specified in [SOAP1.1] section 6.

An implementation MAY handle status codes—other than successful codes specified in [RFC2616]

section 10.2 or one of the server-error codes as specified in [RFC2616] section 10.5—in an
implementation-specific way that complies with [RFC2616]. If an error occurs in the processing of the
other status codes, the response MUST NOT be processed any further.<15>

2.1.3.1.2 Server Details

2.1.3.1.2.1 Receiving Request

HTTP request MUST be processed as specified in [SOAP1.1] section 6.

2.1.3.1.2.2 Sending Reply

HTTP response MUST be constructed as specified in [SOAP1.1] section 6 with the following additional
constraint:

http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=90520

25 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The charset of the Content-Type SHOULD be UTF-8.

2.1.3.2 SOAP on TCP

This section specifies a binding of SOAP to TCP for use in .NET Remoting:

 The TCP connection MUST be a duplex connection.

 The SOAP request and the SOAP response MUST be transmitted through the same connection. The
connection MUST be exclusive for a request-response until the response is completely processed
by the client.

 The payload MUST include enough information outside the SOAP Envelope (as transport frame
header) to identify the Server Object and the format identifier.

 SOAP Faults have no impact on the TCP Message Frame structure.

2.1.3.2.1 Client Details

2.1.3.2.1.1 Sending Request

A SOAP request parameter using TCP transport MUST be sent as specified in the Sending Request
subsection under the TCP Transport section with the following additional constraint:

 The Content-Type header MUST be set to a SOAP format identifier.

2.1.3.2.1.2 Receiving Reply

A SOAP reply using TCP transport MUST be processed as specified in the Receiving Reply subsection
under the TCP Transport section.

2.1.3.2.2 Server Details

2.1.3.2.2.1 Receiving Request

A SOAP request parameter using TCP transport MUST be processed as specified in the Receiving
Request subsection under the TCP Transport section with the following additional constraint:

 If the Content-Type is not a SOAP format identifier, the message does not belong to this transport

protocol. A transport fault MUST be sent back as specified in the Receiving Request subsection
under the TCP Transport section.

2.1.3.2.2.2 Sending Reply

A SOAP reply parameter using TCP transport MUST be sent as specified in the Sending Reply
subsection under the TCP Transport section.

2.2 Message Syntax

2.2.1 Common Patterns

This section specifies common string patterns using Augmented Backus-Naur Form (ABNF) syntax
specified in [RFC4234].

http://go.microsoft.com/fwlink/?LinkId=90462

26 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.1.1 IdentifierName

IdentifierName MUST follow Annex 7 of Technical Report 15 of the Unicode Standard 3.0 governing
the set of characters permitted to start and be included in identifiers as specified in

[UNICODENORMFORMS]. Identifiers MUST be in the canonical format defined by Unicode
Normalization Form C.

For more information see [ECMA-335] section 8.5.1.

2.2.1.2 RemotingTypeName

A value that complies with this pattern identifies a Remoting Type. It MUST be of the following format.

Formats for type names

TypeName = 0*1(NamespaceIdentifier '.') TypeIdentifier 0*1(TypeParameterList)
0*1(Dimension)

Dimension = '[' '*' / 0*(',') ']'

TypeIdentifier = 0*(TypeIdentifier '+') IDENTIFIER 0*1(TypeParameterCount)

TypeParameterCount = '`' 1*('0'-'9')

TypeParameterList = '[' '[' QualifiedTypeName ']' 0*(',' '[' QualifiedTypeName ']') ']' <16>

NamespaceIdentifier = IDENTIFIER 0*('.' IDENTIFIER)

IDENTIFIER = See IdentifierName (section 2.2.1.1)

QualifiedTypeName = TypeName ',' LibraryName

2.2.1.3 LibraryName

A value complying with this pattern identifies a Library in the Remoting Data Model. It MUST be of the
following format.

Formats for library names

LibraryName = LibraryIdentifier *(',' LibraryProperty)

LibraryIdentifier = IDENTIFIER; as specified in IdentifierName (section 2.2.1.1)

LibraryProperty = VersionProperty / PublicKeyTokenProperty / CultureProperty /
RetargetableProperty

VersionProperty = 'Version' '=' VersionValue

RetargetableProperty = 'Retargetable' '=' 'Yes' / 'No'

VersionValue = UInt16 '.' UInt16 '.' UInt16 '.' UInt16

UInt16 = 1*5(DIGIT) ; Range from 0 to 65536

PublicKeyTokenProperty = 'PublicKeyToken' '=' TokenValue

TokenValue = 16*16(HEXDIG) / NULLSTRING

NULLSTRING = 'null'

http://go.microsoft.com/fwlink/?LinkId=93485
http://go.microsoft.com/fwlink/?LinkId=93453

27 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Formats for library names

CultureProperty = Culture of the Library in [RFC1766] format, or "neutral" for language-
independent (nonsatellite) assemblies.

2.2.1.4 Method Signature

A value complying with this pattern uniquely identifies a Method in a Class. The value MUST be of the
following format.

 Formats for Method Signature

Method = TypeName IDENTIFIER TypeIdentifierList ArgumentList

ArgumentList = '(' 0*1(Argument 0*(',' Argument)) ')' ';'

Argument = TypeName 0*1('ByRef'')

TypeIdentifierList = '[' '[' TypeIdentifier ']' 0*(',' '[' TypeIdentifier ']') ']'

IDENTIFIER = See IdentifierName (section 2.2.1.1)

TypeIdentifier = See RemotingTypeName (section 2.2.1.2)

2.2.2 Common Types

This section defines Classes that are used by this protocol. The Class definitions in this section use the

notation defined in section 2.2.5. The definitions correspond to the Remoting Data Model and can be
mapped to the formats specified in [MS-NRBF] or [SOAP1.1]. The instructions to map the Classes to

the binary format specified in [MS-NRBF] are specified in 3.1.5.1. The instructions to map the Classes
to the SOAP format [SOAP1.1] are specified in 3.1.5.2.

2.2.2.1 ObjRef

ObjRef is a Class. The Library name of the Class is "mscorlib". It represents a Server Object
Reference. It is Assignable to Remoting Types of all Server Objects.

 namespace System.Runtime.Remoting
 {
 class ObjRef
 {
 String uri;
 Int32 objRefFlags;
 System.Runtime.Remoting.TypeInfo typeInfo;
 System.Runtime.Remoting.EnvoyInfo envoyInfo;
 System.Runtime.Remoting.ChannelInfo channelInfo;
 Bool fIsMarshalled;
 }
 }

uri: A URI that identifies the Server Object.

http://go.microsoft.com/fwlink/?LinkId=120475
%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
http://go.microsoft.com/fwlink/?LinkId=90520

28 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

objRefFlags: An Int32 value that indicates whether the ObjRef is created from a MSO or from a
SAO. If the second lowest bit (value of 2) is set, then ObjRef is created from an SAO.

Otherwise, it is created from an MSO.

typeInfo: A TypeInfo instance that contains name, Base Class, and Interfaces of the Server Type.

envoyInfo: An instance of EnvoyInfo that contains the Envoy Sink Information of the Server
Object.

channelInfo: A ChannelInfo instance that contains a list of ServerURIs.

fIsMarshalled: An Int32 value that specifies whether ObjRef is well-formed. An ObjRef is well-
formed if all of the following are true:

 The ObjRef Class is not a Null Object.

 The uri field is not a Null Object.

 One of the following is true:

 The second lowest bit of objRefFlags (value of 2) is set.

 The channelInfo field is not a Null Object.

If the second lowest bit (value of 2) is set, then the value of the uri field MUST be an absolute
URI. Otherwise, the value of the uri field MUST be a relative URI.

2.2.2.2 TypeInfo

TypeInfo is a Class. The Library name of the Class is "mscorlib". It contains information about the
Server Type and is used in an ObjRef class.

 namespace System.Runtime.Remoting
 {
 class TypeInfo
 {
 String serverType;
 String[] serverHierarchy;
 String[] interfacesImplemented;
 }
 }

serverType: A String value that identifies the Server Type. The format of the String value is
specified as QualifiedTypeName in section TypeName.

serverHierarchy: An Array of String values that identifies the Base Classes of the Server Type.
The format of the String is specified as QualifiedTypeName in section TypeName.

interfacesImplemented: An Array of String that identifies the Server Interfaces implemented

by Server Type. The format of the String value is specified as QualifiedTypeName in section
TypeName.

2.2.2.3 EnvoyInfo

EnvoyInfo is a Class. The Library name of the Class is "mscorlib". An instance of this Class contains
Envoy Sink Information.

 namespace System.Runtime.Remoting

29 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 {
 class EnvoyInfo
 {
 System.Object envoySinks;
 }
 }

envoySinks: A Data Value that represents the Envoy Sink Information of a Server Object. The
value of this field MUST NOT be a Server Object or a Proxy.

2.2.2.4 ChannelInfo

ChannelInfo is a Class. The Library name of the Class is "mscorlib". It contains the information about
available channels in the server. It is used by ObjRef.

 namespace System.Runtime.Remoting
 {
 class ChannelInfo
 {
 System.Object[] channelData;
 }
 }

channelData: An Array that can contain instances of ChannelDataStore specified in
ChannelDataStore (section 2.2.2.5).

2.2.2.5 ChannelDataStore

ChannelDataStore is a Class. The Library name of the Class is "mscorlib". It is an item in the
'channelData' Array in the ChannelInfo Class.

 namespace System.Runtime.Remoting
 {
 class ChannelDataStore
 {
 String[] _channelURIs;
 System.Collections.DictionaryEntry[] extraData;
 }
 }

_channelURIs: Contains a Channel URI. The Array MUST contain at least one item.

extraData: This field SHOULD be a Null Object. Readers MUST ignore this field.

2.2.2.6 DictionaryEntry

DictionaryEntry is a Class. The Library name of the Class is "mscorlib". It is defined as follows.

 namespace System.Collection
 {
 class DictionaryEntry
 {
 System.Object _key;
 System.Object _value;
 }

30 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 }

key: _An instance of any Remoting Type.

_value: An instance of any Remoting Type.

2.2.2.7 System.Exception

System.Exception is a Class. The Library name of the Class is "mscorlib". This is the Base Class for all
Exception Classes.

 namespace System
 {
 class Exception
 {
 String ClassName;
 String Message;
 System.Exception InnerException;
 String HelpUrl;
 String StackTraceString;
 String RemoteStackTraceString;
 Int32 RemoteStackIndex;
 String ExceptionMethod;
 Int32 HResult;
 String Source;
 System.Object Data;

 }
 }

ClassName: The TypeName of the Exception Class. If the instance is a Derived Class of this Class
then this field MUST contain the TypeName of the most Derived Class.

Message: A String value that represents a human-readable text that describes the Exception. The

string MAY be localized.<17>

InnerException: An instance assignable to System.Exception that is wrapped by this Exception. If
this Exception does not wrap any other Exception, then the value of this field MUST be
NullObject.

HelpUrl: Link to a page that contains additional information about the Exception. This field is
optional and its value MAY be NullObject.

RemoteStackTraceString: String representation of the call stack when the Exception was thrown

on the server side. If the Exception was thrown across multiple remoting boundaries, then this
field SHOULD contain a concatenation of the stack traces of all the remoting servers. The stack
traces MUST be ordered from the ultimate Remoting Server to the first Remoting Server that
was called by the client.

RemoteStackIndex: An int representing the number of Remoting boundaries that the Exception
has propagated beyond the first one. This value MUST be zero for a simple client server

scenario.

ExceptionMethod: A string value that provides information about the method that throws the
Exception.

HResult: An Int32 value that specifies the numerical error code.

31 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Source: A string value that is set by the code that throws the Exception. This MAY be any string.

Data: An instance of any Data Value that provides additional information about the Exception. The

semantics of the value are not part of this protocol.<18>

2.2.2.8 SystemException

SystemException is a Derived Class of System.Exception. The Library name of the Class is "mscorlib".
There are no Members other than the Members inherited from the System.Exception Class. This Class
has an additional constraint: The HResult MUST be hex value 0x80131501.

 namespace System
 {
 class SystemException : System.Exception
 {
 }
 }

2.2.2.9 RemotingException

RemotingException is a Derived Class of SystemException. The Library name of the Class is
"mscorlib". There are no Members other than the Members inherited from the System.Exception Class.
This Class has an additional constraint: The HResult MUST be hex value 0x8013150B.

 namespace System.Runtime.Remoting
 {
 class RemotingException : System.SystemException
 {
 }
 }

2.2.2.10 SerializationException

SerializationException is a Derived Class of SystemException. The Library name of the Class is

"mscorlib". There are no Members other than the Members inherited from the System.Exception Class.
This Class has an additional constraint: The HResult MUST be hex value 0x8013150C.

 namespace System.Runtime.Serialization
 {
 class SerializationException : System.SystemException
 {
 }
 }

2.2.2.11 System.Type

System.Type is a Class contained in the System Assembly. An instance of System.Type represents a
Remoting Type. The instance can be part of a Data Value graph. The Class has no Members. It relies
on Classes that are assignable to System.Type to provide the information about the Remoting Type.

For further information, see UnitySerializationHolder (section 2.2.2.12).

 namespace System
 {

32 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 class System.Type
 {
 }
 }

This Class has no Members.

2.2.2.12 UnitySerializationHolder

UnitySerializationHolder is a Class. The Library name of the Class is "mscorlib". It contains metadata

that provides information about a Remoting Type. It is Assignable to System.Type.

 namespace System
 {
 class UnitySerializationHolder
 {
 Int32 UnityType;
 String _Data;
 String AssemblyName;
 System.Type[] GenericArguments;
 }
 }

UnityType: An Int32 value that indicates whether the Remoting Type is a Generic Type as shown

in the following table.

UnityType value Remoting Type category

4 All types except Instantiated Generic Type

8 Instantiated Generic Type

Data: _A String value that contains the name of the Remoting Type. The value MUST conform to
the format specified in TypeName (section 2.2.1.2).

AssemblyName: A String value that contains the name of the Library that contains the Remoting
Type. The value MUST conform to the format specified in LibraryName (section 2.2.1.3).

GenericArguments: A System.Type Array value that contains the information about the
Remoting Type of the actual parameters that were used to construct the Instantiated Generic
Type. This field MUST be present if UnityType is 8. This field MUST NOT be present for other
values of UnityType. This field MUST have at least one entry and MUST NOT contain any null
entries.<19>

2.2.2.13 MemberInfoSerializationHolder

MemberInfoSerializationHolder is a Class. The Library name of the Class is "mscorlib". It contains
information about a Member. The Class is defined as follows.

 namespace System.Reflection
 {
 class MemberInfoSerializationHolder
 {
 String Name;
 String AssemblyName;
 String ClassName;

33 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 String Signature;
 Int32 MemberType;
 System.Type[] GenericArguments;
 }
 }

Name: A String value that contains the name of the Member.

AssemblyName: A String value that represents the name of the Library containing the Class that
contains the Member. The value MUST conform to the format specified in

LibraryName (section 2.2.1.3).

ClassName: A String value that represents the name of the Class that contains the Member. The
value MUST conform to the format specified in RemotingTypeName (section 2.2.1.2).

Signature: A String value that uniquely identifies a Member in the given Remoting Type.

MemberType: An Int32 value that indicates the type of the Member. The possible values of the
field are as follows.

The possible values of the MemberType field

Constructor Indicates that the Member is a constructor of a .NET Class. Its value is 1.

Event Indicates that the Member is a .NET Event. Its value is 2.

Field Indicates that the Member is a field of a .NET Class. Its value is 4.

Method Indicates that the Member is a method of a .NET Class. Its value is 8.

NestedType Indicates that the Member is a nested .NET Class. Its value is 128.

Property Indicates that the Member is a property of a .NET Class. Its value is 16.

GenericArguments: A System.Type Array value that contains the information about the Remoting
Type of the actual parameters that were used to construct the Instantiated Generic Method. If
the Member is not generic, then this field MUST contain Null Object.<20>

2.2.2.14 DelegateEntry

DelegateEntry is a Class. The Library name of the Class is "mscorlib". The full name of the Class is
System.DelegateSerializationHolder+DelegateEntry. It is a linked list that has one node for each
Remote Method. Each entry contains information about the Delegate itself, the Remote Method, and

Target object. It is defined as follows.

 namespace System
 {
 class DelegateSerializationHolder+DelegateEntry
 {
 String assembly;
 System.DelegateSerializationHolder+DelegateEntry delegateEntry;
 String methodName;
 System.Object target;
 String targetTypeAssembly;
 String targetTypeName;
 String type;
 }
 }

34 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

assembly: A String value that contains the name of a Library that contains the Delegate. The
value MUST conform to the format specified in LibraryName (section 2.2.1.3).

delegateEntry: A DelegateEntry value that contains a reference to another DelegateEntry. The
value MUST be a Null Object if there are no additional DelegateEntries.

methodName: A String value that contains the name of a Remote Method of the Delegate.

target: A String value that contains the name of a Member of DelegateSerializationHolder. The
DelegateSerializationHolder instance that contains this DelegateEntry MUST contain a Member
with this name.

targetTypeAssembly: A String value that contains the name of the Library that contains the
Remoting Type target of the Delegate. The value MUST conform to the format specified in
LibraryName (section 2.2.1.3).

targetTypeName: A String value that contains the name of the Remoting Type target of the
Delegate. The value MUST conform to the format specified in
RemotingTypeName (section 2.2.1.2).

type: A String value that contains the name of the Delegate. The value MUST conform to the
format specified in RemotingTypeName (section 2.2.1.2).

2.2.2.15 DelegateSerializationHolder

DelegateSerializationHolder is a Class. The Library name of the Class is "mscorlib". Its full name is
'System.DelegateSerializationHolder'. It contains information about a Delegate.

The DelegateSerializationHolder has a Member called Delegate, whose type is a
DelegateEntry (section 2.2.2.14) value. The DelegateSerializationHolder is structured as a linked list,

with each instance of DelegateEntry providing a reference to information about a Remote Method and
its target in the Delegate.

For each Remote Method target of the Delegate, there is a Member to contain the Target Proxy for the

Method. The Member is typed to the Server Type of the Remote Method. As specified in section
2.2.2.14, the value of the target field of the DelegateEntry for the Remote Method MUST match the
name of this Member. An implementation MAY use any naming scheme to name the target

Member.<21>

For each Remote Method, there is an optional Member that is typed to
System.Reflection.MemberInfoSerializationHolder that contains information about the Method. To
represent a Method, the Members of MemberInfoSerializationHolder MUST be set as follows:

 The field Signature MUST contain the Method Signature of the Delegate. It MUST conform to
the format specified in Method Signature (section 2.2.1.4).

 The value of the field MemberType MUST be 8.

If the Method Member is present, then the method name specified by the Name field of
MemberInfoSerializationHolder MUST match the methodName in the DelegateEntry.

The Method Member MUST be of the following format.

 Format for Member names

MethodMemberName = 'Method' Index

Index = 1*('0'-'9')

35 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

For a given DelegateSerializationHolder, the value of the Index MUST start from 0 and MUST increase
by 1 for each Method Member. The Index value MUST match the index of the DelegateEntry for the

Remote Method in the linked list.<22>

2.2.2.16 CallContextRemotingData

CallContextRemotingData is a Class. The Library name of the Class is "mscorlib". It is used to send
Logical Call ID as part of the Call Context.

 namespace System.Runtime.Remoting.Messaging
 {
 class CallContextRemotingData
 {
 String ___logicalCallID;
 }
 }

_logicalCallID: A string value that represents the Logical Call ID. The value MAY be any Unicode
string.

2.2.2.17 ServerFault

ServerFault is a Class. The Library name of the Class is "mscorlib". It contains fault detail information

that is used as part of SOAP fault.

 namespace System.Runtime.Serialization.Formatters
 {
 class ServerFault
 {
 String exceptionType;
 String message;
 String stackTrace;
 System.Exception exception;
 }
 }

 exceptionType: A String that contains the name of the Remoting Type of the Exception. The

format of the string is as specified in section 2.2.1.2.

 message: A String that contains a human-readable text message that describes the fault.

 stackTrace: A String that contains the StackTrace field of the Exception.

 exception: A Data Value that is assignable to System.Exception. The exception object is
serialized as specified in [SOAP1.1] section 5. The structure of the System.Exception Class is
specified in section 2.2.2.7.

If the client is an implementation of the .NET Remoting Protocol, then the Exception field MUST have a
valid value and the other elements MUST contain a serialized Null Object. Otherwise, the Exception
field MUST contain a Null Object and other elements MUST contain a valid value.

The client is considered to be an implementation of the .NET Remoting Protocol if one of the following
is true:

 The transport is TCP.

 The transport is HTTP and the User-Agent header contains "MS .Net Remoting" (case sensitive).

http://go.microsoft.com/fwlink/?LinkId=90520

36 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.3 TCP Message Syntax

The Remote Method payload is transmitted in message content between clients and server. The
protocol does not consume or modify the message content (except in the case of chunked encoding

where the message content is encoded into one or more chunks). The protocol inserts a message
frame before the message content and consumes it on the receiving end. The message frame contains
the following information:

1. OperationType that specifies whether the message is a Two-Way Request, Two-Way Response or
One-Way message.

2. Request URI that identifies the Server Object.

3. Content Type that identifies the serialization format.

4. ContentDistribution that specifies whether or not the message content is transmitted as
chunked encoding.

5. Close Connection header that indicates whether the connection must be closed after reading the

message.

6. Custom Headers from higher layers.

2.2.3.1 Common Enumerations

2.2.3.1.1 OperationType

The type of the values of this enumeration is UInt16. The enumeration is used in the OperationType
field of the TCP message frame. The possible values of the enumeration and their meanings are given

as follows.

Constant/value Description

Request

0

Identifies a request message of a Two-Way Method.

OneWayRequest

1

Identifies a request message of a One-Way Method.

Reply

2

Identifies a reply message of a Two-Way Method.

2.2.3.1.2 ContentDistribution

The type of the values of this enumeration is UInt16. The enumeration is used in the
ContentDistribution field of the TCP message frame. The possible values of the enumeration and their
meanings are given as follows.

Constant/value Description

NotChunked

0

Message content is not written as chunked encoding.

Chunked

1

Message content is written as chunked encoding.

37 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.3.1.3 HeaderToken

The type of the values of this enumeration is UInt16. The enumeration is used to identify the message

frame headers. The possible values of the enumeration and their meanings are given as follows.

Constant/value Description

EndHeaders

0

Identifies the EndHeader.

Custom

1

Identifies a CustomHeader.

StatusCode

2

Identifies a StatusCodeHeader.

StatusPhrase

3

Identifies a StatusPhraseHeader.

RequestUri

4

Identifies the RequestURIHeader.

CloseConnection

5

Identifies a CloseConnectionHeader.

ContentType

6

Identifies a ContentTypeHeader.

2.2.3.1.4 HeaderDataFormat

The type of the values of this enumeration is Byte. A value of the enumeration is contained in a
message frame header and identifies the type of the data contained in the header. The possible

HeaderDataFormat constants and their meanings are as follows.

Constant/value Description

Void

0

Indicates that there is no data in the containing header.

CountedString

1

Indicates that the following data is a CountedString.

Byte

2

Indicates that the following data is a BYTE.

Uint16

3

Indicates that the following data is a UINT16.

Int32

4

Indicates that the following data is an INT32.

2.2.3.1.5 StringEncoding

38 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The type of the values of this enumeration is Byte. The enumeration is used in the CountedString
type. The values for the StringEncoding constant are as follows.

Constant/value Description

Unicode

0

Byte that identifies the string as a Unicode-encoded string.

UTF8

1

Byte that identifies the string as a UTF-8-encoded string.

2.2.3.1.6 TCPStatusCode

The type of the values of this enumeration is UInt16. The enumeration is used in the
StatusCodeHeader. The possible values and their meanings are as follows.

Constant/value Description

Success

0

No Error.

Error

1

Error when processing the message frame.

2.2.3.2 Common Types

2.2.3.2.1 CountedString

The strings in the header section are defined as CountedString. The CountedString has a one-byte
format identifier, followed by the length of the encoded string in bytes and the encoded bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StringEncoding Length

... StringData (variable)

...

StringEncoding (1 byte): A StringEncoding value that identifies whether the string encoding is UTF-
8 or Unicode.

Length (4 bytes): An int32 value that specifies the length of StringData in bytes.

StringData (variable): The string data whose length is specified in the Length field and encoding
specified in the StringEncoding field.

2.2.3.2.2 TcpUriString

This is the Request URI for the TCP transport. The format of the URI MUST conform to the form
specified in [RFC3986] section 3 with the following constraints:

http://go.microsoft.com/fwlink/?LinkId=90453

39 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The URI string MUST have the scheme as "tcp".

 The server host address MUST be in the host subcomponent of the URI. It MAY be a Domain Name

System (DNS) name as specified in [RFC1034] section 3, an IPv4 address as specified in
[RFC1123] section 2.1, or an IPv6 address as specified in [RFC3513] section 2.2.<23>

 There are no fixed ports for this protocol. The URI MUST contain the port subcomponent.

 The Server Object URI path MUST be the path subcomponent.

2.2.3.2.3 ChunkDelimiter

When a message frame contains multiple chunks of message content, an instance of the
ChunkDelimiter type is used at the end of each chunk.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DelimiterValue

DelimiterValue (2 bytes): This field contains a UInt16 value that indicates a delimiter. Its value
MUST be hex 0x0D0A ('\r' '\n').

2.2.3.3 Message Frame Structure

The message body consists of a message frame structure followed by the message content. The
protocol allows writing all of the message content in a single chunk after the message frame or as
multiple chunks that appear contiguously after the message frame. Each chunk is prefixed by the
length of the chunk and the last chunk as a length of 0 bytes.<24>

2.2.3.3.1 Single Message Content

The message content follows the message frame. The message frame's ContentLength field indicates

this with a value of 0 followed by an int32 value that indicates the length of the message content.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolId

MajorVersion MinorVersion OperationType

ContentLength (variable)

...

Headers (variable)

...

MessageContent (variable)

...

http://go.microsoft.com/fwlink/?LinkId=90263
http://go.microsoft.com/fwlink/?LinkId=90268
http://go.microsoft.com/fwlink/?LinkId=90427

40 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ProtocolId (4 bytes): This field contains an Int32 value that identifies the protocol. Its value MUST
be hex 0x54454E2E.

MajorVersion (1 byte): This field contains a byte value that identifies the major version of the
protocol. Its value MUST be 1.

MinorVersion (1 byte): This field contains a byte value that identifies the minor version of the
protocol. Its value MUST be 0.

OperationType (2 bytes): The field is of type OperationType. This field identifies whether the
message is for a One-Way Method or Two-Way Method and, if the message is for a Two-Way
Method, the field identifies whether the message is a request message or reply message.

ContentLength (variable): A field that follows the operation field. This field is of variable length. It
contains a UInt16 and can optionally contain an Int32.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ContentDistribution Length (optional)

...

ContentDistribution (2 bytes): A value that specifies whether the content is chunked or not. Its
value MUST be 0.

Length (4 bytes): An Int32 value that specifies the length of the data in the message content.
This field MUST be present if the ContentDistribution field is 0 (Not Chunked); otherwise,
this field MUST NOT be present.

Headers (variable): A combination of frame header packets as defined in section Frame Headers
(section 2.2.3.3.3).

MessageContent (variable): A stream of bytes that contains the content. The number of bytes in
the stream MUST equal the value of the Length field of the ContentLength field of the message
frame.

2.2.3.3.2 Chunked Message Content

In this mode, the message content is segmented into multiple parts. The mode is indicated with a
value of 1 in the ContentDistribution field of the message frame. A chunked message content is
shown as follows.

Figure 5: Layout of chunked message content

The message is of the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolId

41 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

MajorVersion MinorVersion OperationType

ContentDistribution Headers (variable)

...

Chunk1Size

MessageContentChunk1 (variable)

...

Trailer1 MoreChunks (variable)

...

LastChunkSize

LastTrailer

ProtocolId (4 bytes): This field contains an Int32 value that identifies the protocol. Its value MUST
be hex 0x54454E2E.

MajorVersion (1 byte): This field contains a byte value that identifies the major version of the

protocol. Its value MUST be 1.

MinorVersion (1 byte): This field contains a byte value that identifies the minor version of the
protocol. Its value MUST be 0.

OperationType (2 bytes): The field is of type OperationType. This field identifies whether the

message is for a One-Way Method or Two-Way Method and, if the message is for a Two-Way
Method, identifies whether the message is a request message or reply message.

ContentDistribution (2 bytes): A value that specifies whether the content is chunked or not. Its
value MUST be 1.

Headers (variable): A combination of frame header packets as specified in section Frame Headers
(section 2.2.3.3.3).

Chunk1Size (4 bytes): This field is of type Int32 and specifies the length of the message content
chunk.

MessageContentChunk1 (variable): A segment of the message content data whose length is

specified by the last field (Chunk1Size). The number of bytes in the MessageContentChunk1
segment MUST equal the value of the Chunk1Size field.

Trailer1 (2 bytes): Indicates the end of a chunk. The type of this field is ChunkDelimiter.

MoreChunks (variable): Additional segments of the message content. Each segment consists of a
ChunkSize, MessageContentChunk, and Trailer, as previously specified for the first segment. The
number of bytes in MessageContentChunk MUST equal the value of the ChunkSize field.

LastChunkSize (4 bytes): This field is of type Int32 and specifies the length of the message content

chunk. The size of the last chunk MUST be zero.

LastTrailer (2 bytes): Indicates the end of a chunk. The type of this field is ChunkDelimiter.

42 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.3.3.3 Frame Headers

Message frames SHOULD have one or more frame headers. The last frame header MUST be an
EndHeader that marks the end of headers. The following diagram describes the layout of headers in a

message frame.

Figure 6: Layout of headers in a message frame

For more information on the Members of the message frame structure, refer to section Message Frame

Structure (section 2.2.3.3).

The following sections describe the headers that are available for the Headers and EndHeader sections

of this packet.

2.2.3.3.3.1 EndHeader

The EndHeader marks the end of the headers.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EndHeadersToken

EndHeadersToken (2 bytes): The field contains a HeaderToken value that identifies the EndHeader
type. Its value MUST be 0.

2.2.3.3.3.2 CustomHeader

The CustomHeader is used for passing implementation-specific information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CustomHeaderToken HeaderName (variable)

...

HeaderValue (variable)

...

CustomHeaderToken (2 bytes): A HeaderToken enumeration that identifies the custom header. Its
value MUST be 1.

HeaderName (variable): A CountedString value that represents the name of the custom header.

HeaderValue (variable): A CountedString value that represents the value of the custom header.

2.2.3.3.3.3 StatusCodeHeader

43 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The StatusCodeHeader is included in reply messages of Two-Way Method invocation.
StatusCodeHeader contains the error code for any error that occurred when the server interpreted the

request message frame.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StatusCodeHeaderToken DataType StatusCodeValue

...

StatusCodeHeaderToken (2 bytes): A HeaderToken enumeration that indicates the header type.
Its value MUST be 2.

DataType (1 byte): A HeaderDataFormat enumeration indicating the type of the data to be UInt16.
Its value MUST be 3.

StatusCodeValue (2 bytes): A TCPStatusCode enumeration that indicates the status code.

2.2.3.3.3.4 StatusPhraseHeader

The StatusPhraseHeader header is optionally included along with StatusCodeHeader with an error
code. It contains a human-readable message about the error.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StatusPhraseHeaderToken DataType
StatusPhraseValue

(variable)

...

StatusPhraseHeaderToken (2 bytes): A HeaderToken enumeration that indicates the Header type.
Its value MUST be 3.

DataType (1 byte): A HeaderDataFormat enumeration that indicates the type of the data to be
CountedString. Its value MUST be 1.

StatusPhraseValue (variable): A CountedString value that represents the human-readable
message.

This header MAY accompany StatusCodeHeader to indicate the error in human-readable form. A
missing header implies a value of empty string.

2.2.3.3.3.5 RequestUriHeader

The RequestUriHeader header contains the RequestURI.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RequestUriHeaderToken DataType UriValue (variable)

...

44 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

RequestUriHeaderToken (2 bytes): A HeaderToken enumeration that indicates the Header type.
Its value MUST be 4.

DataType (1 byte): A HeaderDataFormat enumeration that indicates the type of the data to be
CountedString. Its value MUST be 1.

UriValue (variable): A TcpUriString value that represents the RequestURI.

The requested URI can be a relative or an absolute URI.

2.2.3.3.3.6 CloseConnectionHeader

The CloseConnectionHeader packet header indicates that the receiver is not supposed to cache the
connection after processing message containing this header.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CloseConnectionHeaderToken DataType

CloseConnectionHeaderToken (2 bytes): A HeaderToken enumeration that indicates the Header
type. Its value MUST be 5.

DataType (1 byte): A HeaderDataFormat enumeration that indicates the type of the data. Its value
MUST be 0 indicating that there is no Data for this record.

2.2.3.3.3.7 ContentTypeHeader

 The ContentTypeHeader header indicates the serialization format of the message content.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ContentTypeHeaderToken DataType ContentTypeValue
(variable)

...

ContentTypeHeaderToken (2 bytes): A HeaderToken enumeration that indicates the Header type.
Its value MUST be 6.

DataType (1 byte): A HeaderDataFormat enumeration that indicates the type of the data to be
CountedString. Its value MUST be 1.

ContentTypeValue (variable): A CountedString value that represents the content-type of the

message content.

2.2.3.3.3.8 UnknownHeader

An UnknownHeader header has an unknown HeaderToken. It is meant for handling the addition of
headers in future. An implementation MUST NOT write this header. However this header MUST be
ignored on read.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

UnknownHeaderToken DataType DataValue (variable)

45 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

UnknownHeaderToken (2 bytes): An UInt16 value. Its value MUST be greater than 6.

DataType (1 byte): A HeaderDataFormat enumeration that indicates the type of the data.

DataValue (variable): The type of this field is as specified in the table in HeaderDataFormat.

2.2.4 SOAP Serialization Format

2.2.4.1 SOAP Action String

A SOAP Action string is a URI that is used as the SOAP Action field in the HTTP header as specified in
[SOAP1.1] section 6. The SOAP action is derived from the Remote Method. An implementation MUST
define its own mechanism to create a SOAP action for the given Remote Method. The client and server
MUST agree on the mechanism so that a given Remote Method ends up with the same SOAP action on

both sides.<25>

2.2.4.2 Remoting Type Name Encoding

SOAP XML messages use qualified names to identify Remoting Type names, which consist of an XML
namespace and a local name. An implementation MUST define its own mechanism to derive the
XML namespace and local name for the given Remoting Type. The client and the server MUST agree

on the mechanism so that a given Remoting Type ends up with the same qualified name on both
sides.<26>

2.2.4.3 Method Name Encoding

As specified in [SOAP1.1] section 7, the Remoting Method MUST be mapped to a SOAP struct. The
name of the struct MUST be a qualified name and MUST be distinct for request and response. An

implementation MUST define its own mechanism to derive the XML namespace and local name for the
request and response. The client and the server MUST agree on the mechanism so that a given
method ends up with the same qualified names on both sides.<27>

2.2.4.4 Method Signature SOAP Header

The Method Signature in SOAP is serialized as an element whose schema is as follows.

 <xs:schema xmlns:tns="http://schemas.microsoft.com/clr/soap/
 messageProperties" elementFormDefault="qualified"
 targetNamespace="http://schemas.microsoft.com/clr/soap/messageProperties"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="__MethodSignature">
 <xs:simpleType>
 <xs:list itemType="xs:QName" />
 </xs:simpleType>
 </xs:element>
 </xs:schema>

MethodSignature is an element whose local name is "__MethodSignature" and whose XML namespace
is "http://schemas.microsoft.com/clr/soap/messageProperties". The value of the header contains a list
of qualified names separated by a SPACE (x20). Each qualified name identifies the Remoting Type of a
parameter encoded as specified in the Remoting Type Name Encoding section.

http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=90520

46 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.4.5 Call Context SOAP Header

The Call Context MUST be encoded as a SOAP header element. The element's local name MUST be
"__CallContext" and its XML namespace MUST be

"http://schemas.microsoft.com/clr/soap/messageProperties". It MUST be encoded as a struct, as
specified in [SOAP1.1] section 5. The name of the struct MUST be "LogicalCallContext" from
"http://schemas.microsoft.com/clr/ns/System.Runtime.Remoting.Messaging" namespace. Each name-
value pair of the Call Context MUST be mapped to a Member name and a Member value of the struct.
The Member values MUST be encoded as specified in [SOAP1.1] section 5.

2.2.5 .NET Remoting Description Notation

This section specifies a description notation to describe the metadata of the Remoting Data Model. The
notation is meant for higher-level services such as [MS-NRLS] that are layered on top of this protocol
to define their protocol in a remote procedure call (RPC) style.

The notation provides a way to describe the following components of the Remoting Data Model that is

defined in Abstract Data Model (section 3.1.1).

Primitive Types are mapped to the following keywords in the notation:

 Data model type Notation keyword

BOOLEAN bool

BYTE Byte

INT8 SByte

INT16 Int16

INT32 Int32

INT64 Int64

UINT16 UInt16

UINT32 UInt32

UINT64 UInt64

Decimal Decimal

Char Char

String String

Double Double

Single Single

TimeSpan TimeSpan

DateTime DateTime

A Class is defined with the keyword class followed by the name of the Class. The Generic Arguments
of a Class are defined inside a pair of angle brackets '<', '>' following the name of the Class and are
separated by commas. The Base Class of a Class is defined following the Generic Arguments and is
separated from the Generic Argument with a colon ':'. The body of the Class is defined inside a pair of

braces '{', '}'. A Class definition consists of a list of Member definitions. Each Member definition

http://go.microsoft.com/fwlink/?LinkId=90520
%5bMS-NRLS%5d.pdf#Section_dffdda1f2c454978927c4280469ce355

47 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

consists of a Remoting Type name followed by the name of the Member terminated with a semicolon
';'.

An Array is constructed by appending opening and closing brackets '[]' to the item Remoting Type
name. The Rank of an Array is indicated by putting a comma ',' inside the brackets '[]'. The number of

commas inside a pair of brackets '[]' is one less than the value of the Rank. For example, an Array
with a Rank of 2 is '[,]'. The notation does not have a way to represent the lower bounds or upper
bounds of an Array.

An Enum is defined with the keyword enum followed by the name of the Enum. The underlying
Remoting Type of the Enum is defined following the Enum name separated by a colon ':'. The
Members of the Enum are defined inside a pair of braces '{', '}' following the name of the Enum. Each
Member definition consists of a Member name followed by an '=' and the value of the Member.

Member definitions are separated by a ','.

A Server Interface is defined with the keyword interface followed by the name of the Server Interface.
The Generic Arguments of the Server Interface are defined inside a pair of angle brackets '<', '>'
following the name of the Server Interface and are separated by commas. The Base Interfaces are

defined following the Generic Arguments and are separated from the Generic Arguments with a colon
':' The Base Interfaces are separated by a comma ','. The body of the Server Interface is defined

inside opening and closing braces '{', '}'. A Server Interface definition consists of a list of Method and
Member definitions.

Each Remote Field is defined as a Member consisting of a Remoting Type name followed by the
name of the Remote Field terminated with a semicolon ';'.

Each Remote Method definition consists of a Remoting Type name followed by the name of the
Remote Method. The Generic Arguments of the Remote Method are defined inside a pair of angle
brackets '<', '>' following the name of the Remote Method and are separated by commas. The

Arguments of the Remote Method are defined inside a pair of parentheses '(', ')' following the Generic
Arguments and are separated by commas. Each Arguments definition consists of the name of the
Remoting Type of an Arguments followed by the Arguments name. An Argument can be prefixed with
a 'out' or 'ref' keyword to indicate an out or ref Arguments. If neither 'out' nor 'ref' is specified, then it
indicates the Argument to be an 'in' Argument.

A Delegate is defined with the keyword delegate followed by the declaration of the Remote Method.

The grammar for the subset used by this specification and by [MS-NRLS] is specified in the following

table with the ABNF syntax specified in [RFC4234].

Grammar

CompilationUnit = 0*(Namespace)

Namespace = 'namespace' NamespaceIdentifier '{' 0*(Class / Interface / Enum / Delegate) '}'

Class = 'class' IDENTIFIER TypeVariableList Base ClassBody

ClassBase = 0*1(':' TypeIdentifier)

ClassBody = '{' 0*(Member) '}'

Member = TypeName IDENTIFIER ';'

Interface = 'interface' IDENTIFIER TypeVariableList InterfaceBase InterfaceBody

InterfaceBase = 0*1(':' TypeIdentifier 0*(',' TypeIdentifier))

InterfaceBody = '{' 0*(Method / Member) '}'

Method = TypeName IDENTIFIER TypeVariableList ArgumentList

http://go.microsoft.com/fwlink/?LinkId=90462

48 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Grammar

ArgumentList = '(' 0*1(Argument 0*(',' Argument)) ')' ';'

Argument = (0*1('ref' / 'out')) TypeName IDENTIFIER

Enum = 'enum' IDENTIFIER ':' EnumBase EnumBody

EnumBase = NumericType

EnumBody = '{' 0*1(EnumMember 0*(',' EnumMember)) '}'

EnumMember = IDENTIFIER '=' 1*(DIGIT)

Delegate = 'delegate' Method

TypeVariableList = 0*1('<' IDENTIFIER 0*(',' IDENTIFIER) '>')

TypeName = (TypeIdentifier / PrimitiveType)

Dimension = 0*('[' 0* (',') ']')

TypeIdentifier = NamespaceIdentifier TypeArgumentList

TypeArgumentList = 0*1(',' TypeName 0*(',' TypeName) '.') <28>

PrimitiveType = NumericType / 'String'/ 'Decimal' / 'TimeSpan' / 'DateTime' / 'Double' / 'Single' /
'Char'/ 'Bool'

NumericType = 'SByte' / 'Int16' / 'Int32' / 'Int64' / 'Byte' / 'UInt16' / 'UInt32' / 'UInt64'

NamespaceIdentifier = 0*(IDENTIFIER '.') IDENTIFIER

IDENTIFIER = See section IdentifierName (Identifier Name)

49 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

The Remoting Data Model represents higher-layer-defined data structures and values as directed
edge-labeled graphs of nodes. Also, the Remoting Data Modelcan represent a Remote Method
invocation and the Return Value or error information from the invocation. Providing a mapping to any
specific programming language is beyond the scope of this document. Section 2.2.5 contains an

informal notation to describe the Remoting Data Model.

Mapping to Binary Format (section 3.1.5.1) provides a mapping to binary format structures from the
Remoting Data Model. Mapping RDM to SOAP Format (section 3.1.5.2) provides a mapping between
the Remoting Data Model and the SOAP Data Model.

Remoting Type

A Remoting Type defines the structure of data. Class, Array, Enum, Primitive Type, Server Interface,
and Server Type are different kinds of Remoting Types. Remoting Types are contained in a Library. All
Remoting Types are identified by a name that is unique when qualified with the name of the

containing Library. Remoting Type names are case sensitive. A Remoting Type name consists of a
namespace and a name. The format of the name of a Remoting Type is defined in
RemotingTypeName (section 2.2.1.2).

Library

A Library is a named unit that contains a collection of Remoting Types. The names of the Remoting
Types in a Library are unique within the Library. The Library name includes a version, culture string,

and a hash value that together uniquely identify the Library. The format of the name of a Library is
defined in LibraryName (section 2.2.1.3).<29>

System Library

A designated library that can be used to reduce the wire size for commonly used data types. The
name of the Library <30> is agreed to by both the server and the client implementations of the
protocol. The protocol provides mechanisms to convey the Library information in an implicit way. For
more information about the specific mechanisms, see section 2.2.4.2 in this document; also see

BinaryTypeEnum and Class Record definitions in [MS-NRBF].

Data Value

A Data Value is an instance of a Remoting Type that can be a Class, Array, Enum, Primitive or Server
Type. Data Values are logically structured as directed edge-labeled graphs of nodes where nodes are
also Data Values. Instances of Primitive Types and Enums have no outbound edges. Instances of
Server Types, Arrays, and Classes have outbound edges. A single-reference graph node has a single
inbound edge. A multireference graph node has multiple inbound edges.

A Data Value is defined to be Assignable to a Server Type if one of the following is true:

 The Data Value is of the specified Server Type.

%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5

50 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The Data Value is Null Object and the specified Remoting Type is a Class, Array, String, Server
Interface, or Server Type.

 The Remoting Type of the Data Value is specified to be Assignable to the specified Remoting Type.

 If a Remoting Type is Assignable to a Class, then it is Assignable to its Base Class.

Primitive Types

Primitive Types are predefined Remoting Types. The Remoting Data Model supports the following
Primitive Types specified in [MS-DTYP]:

 BOOLEAN

 BYTE

 INT8

 INT16

 INT32

 INT64

 UINT16

 UINT32

 UINT64

The Remoting Data Model supports the Type Decimal specified in [MS-OAUT].

It also supports the following Primitive Types:

 Char: Represents a Unicode character value.

 String: Represents a string of Unicode characters.

 Double: Represents a 64-bit double-precision floating-point value. A double value ranges from
negative 1.79769313486232e308 to positive 1.79769313486232e308.

 Single: Represents a 32-bit single-precision floating-point value. A Single value ranges from -
3.402823e38 to positive 3.402823e38.

 TimeSpan: Represents time duration as an integer value that specifies the number of 100
nanoseconds. The values range from -10675199 days, 2 hours, 48 minutes and 05.4775808
seconds to 10675199 days, 2 hours, 48 minutes and 05.4775807 seconds.

 DateTime: Represents an instant of time as an INT64 value that specifies the number of 100
nanoseconds that had elapsed since 12:00:00, January 1, 0001. The value can represent time
instants in a granularity of 100 nanoseconds until 23:59:59.9999999, December 31, 9999. A
DateTime value can also indicate information about the time zone as follows.

 Value Meaning of field 'ticks'

Unspecified Time zone information is not specified.

UTC The time specified is in the Coordinated Universal Time (UTC) time zone.

Local The time specified is in the local time zone.<31>

Null Object

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961

51 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Null Object is a special value that can be used in place of an instance of a Server Type, Class, Array,
or String. Null Object indicates that no instance is being specified.

Class

A Class is a Remoting Type that contains a set of named values. The named values are called

Members of the Class. Every Member of a Class is defined to be of a specific Remoting Type called the
Member Type. The value of a Member is a Data Value that is Assignable to the Member Type. See
Data Value for rules about when a Data Value is Assignable to a Remoting Type.

The Remoting Data Model supports a Class extending another Class. The extended Class is called the
Base Class. The extending Class is called the Derived Class. A Derived Class can be extended by
another Class. For example Class B extends Class A and Class C extends Class B. In this case both
Class A and B are Base Classes of Class C and both Class B and C are Derived Classes of A. A Derived

Class inherits the Members of its Base Classes. If a Class does not extend any Class then it is
considered to implicitly extend a Class called System.Object. System.Object is a Class that has no
Members.

Array

An Array is a Remoting Type that is an ordered collection of items. The items are identified by their
position. Position is determined by a set of integer indices. The number of indices that are required to

represent the position is called the Rank of the Array. An Array with Rank equal to 1 is said to be
single-dimensional; an Array with Rank greater than 1 is said to be multidimensional. The Array
supports specifying the lower and the upper bounds of the indices. Unless a lower bound is specified,
an index value's lower bound is 0. Unless an upper bound is specified an index has no upper bounds.

An Array also specifies the Remoting Type of its items, called the Item Type. In an instance of an
Array, the value of an item is a Data Value that is Assignable to the Item Type. See Data Value for
rules about when a Data Value is Assignable to a Remoting Type.

Enum

Enum (short for Enumeration) is a Primitive Type whose values are constrained to a set of values. The

Primitive Type is considered to be the underlying Remoting Type of the Enum. Each value of the Enum
has a name associated with it that is unique within the values of the Enum.

Server Interface

A Server Interface is a Remoting Type that contains a collection of Remote Methods and Remote Field
declarations. A Remote Method defined in a Server Interface does not have an implementation. A

Server Interface does not have any instances.

Server Type

A Server Type is a Remoting Type that implements the Remote Methods in one or more Interfaces.
The Remoting Data Model allows Server Types that extend Server Types. An Extending Server Type
inherits the Methods of the extending Server Type.

Server Object

A Server Object is an instance of a Server Type.

Proxy

A Proxy is an instance of a Server Type that forwards references to Remote Methods to the Server
Object for execution.

Remote Field

52 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

A Remote Field is a remotely accessible field declared in a Server Interface or a Server Type. A
definition of a Remote Field includes the following:

 Name: A String value representing the name of the Remote Field.

 Type: The Remoting Type of the value contained by the field Remote Field.

Remote Method

A Remote Method is a remotely callable method declared in a Server Interface or a Server Type. A
definition of a Remote Method includes the following:

 Name: A String value representing the name of the Remote Method.

 Arguments: An ordered collection of Arguments where each Argument has a name, direction, and
a Remoting Type. The direction is defined as follows:

 in: The Arguments appears in the Remote Method invocation request.

 out: The Arguments appears in the Remote Method invocation reply.

 ref: The Arguments appears in both the Remote Method invocation request and the Remote
Method invocation reply.

 Return Type: The Remoting Type of the value returned by the Remote Method.

 Method Type: An enumeration indicating whether the Remote Method is One-Way or Two-Way. A
One-Way Method invocation does not expect any replies.

A Method is uniquely identified in a Server Interface or a Server Type with the name of the Method
and the ordered collection of Remoting Types of the Arguments, called the Method Signature.

The Remote Method invocation request consists of the following:

 Input Arguments: An ordered collection of named Data Values, one for each Argument whose

direction is 'in' or 'ref'. A Data Value corresponding to an Argument MUST be Assignable to the
Remoting Type of the Argument. See Data Value for rules about when a Data Value is Assignable
to a Remoting Type.

 CallContext: A collection of name-value pairs. The collection supports any valid String as the
name and any Data Value as its value. The names MUST be unique in the collection.

 Method Signature: An ordered collection of Remoting Types. Each Remoting Type in the collection
corresponds to an Argument of the Method.

The information returned by a Remote Method consists of the following:

 Return Value: A Data Value that is Assignable to the Return Type of the Method.

 Output Arguments: An ordered collection of named Data Values, one for each Argument whose

direction is 'out' or 'ref'. A Data Value corresponding to an Argument MUST be Assignable to the
Remoting Type of the Argument. See Data Value for rules about when a Data Value is Assignable

to a Remoting Type.

 Exception: A Data Value that is Assignable to the System.Exception Class. The structure of
System.Exception is specified in section 2.2.2.7.

 CallContext: A collection of name-value pairs. The collection supports any valid String as the

name and any Data Value as its value. The names MUST be unique in the collection.

An Exception is returned to indicate a failure in the execution of a Remote Method. When a Remote
Method's execution fails there are no Return Values or Output Arguments.

53 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Generic Remote Method

A Generic Remote Method is a Remote Method that is parameterized by one or more Remoting Types.

The method caller must provide the actual Remoting Types (in addition to the Input Arguments). It
adds the following to the definition of a Method:

 Generic Method Arguments: An ordered collection of Generic Arguments

The Remote Method invocation request consists of the following in addition to what is defined in

 Generic Argument Values: An Array of System.Type classes that contains the values for the
parameterized Remoting Types.<32>

Delegate

A Delegate is a part of the Remoting Data Model. It contains references to one or more Remote
Methods. A Delegate has a fixed Method Signature, and each Remote Method referenced by the

Delegate has the same Method Signature.

Client Connection State Diagram

The following state diagram captures the state transitions during the lifetime of a client connection.

Figure 7: State transitions during the lifetime of a client connection

3.1.2 Timers

There are no timers that are common to the server and the client.

3.1.3 Initialization

There is no initialization that is common to the server and the client.

3.1.4 Higher-Layer Triggered Events

There are no higher-layer triggered events that are common to the server and the client.

54 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Mapping to Binary Format

3.1.5.1.1 Mapping Remote Method Request

Information required to perform a Remote Method invocation consists of a Server Type or Server
Interface name, a Remote Method name, Input Arguments, Generic Arguments values, Method
Signature, and a Call Context.

The implementation MAY construct an Array of System.Object classes called Message Properties in
order to transmit implementation-specific information to the server. The Array, if constructed, MUST
contain items whose Remoting Types are instances of the DictionaryEntry Class as specified in
DictionaryEntry (section 2.2.2.6). Each DictionaryEntry item MUST contain the name and the value of
the implementation-specific information.<33>

The request is serialized into the serialization stream by using the records specified in [MS-NRBF], as

follows:

A SerializationHeaderRecord record as specified in [MS-NRBF] MUST be serialized. The Remote Method
invocation request is serialized using a BinaryMethodCall record and a MethodCallArray record. The
Server Type or the Server Interface name MUST be serialized in the TypeName field of the
BinaryMethodCall record. The Remote Method name is serialized in the MethodName field of the
BinaryMethodCall record. The MethodCallArray record is conditional and the rules for the presence of
the MethodCallArray record are given in the following table. The table specifies the rules for serializing

the request and the values for the MessageEnum field of the BinaryMethodCall record.

 Item name Condition
 MessageEnum field
bits

 Item's serialized
location

Input Arguments No Arguments NoArgs -NA-

Input Arguments All Arguments are primitive ArgsInLine Args field of the
BinaryMethodCall
record

Input Arguments At least one nonprimitive
Argument and no
GenericArgumentsValues,
MethodSignature, CallContext, or
Message Properties

ArgsIsArray A separate
ArraySingleObject
record that follows the
BinaryMethodCall
record

Input Arguments Otherwise ArgsInArray An item in the
MethodCallArray
record

GenericArgumentsValues Absent 0 -NA-

GenericArgumentsValues Present Generic Method An item in the
MethodCallArray
record

Method Signature Absent 0 -NA-

Method Signature Present MethodSignatureInArray An item in the
MethodCallArray
record

Call Context LogicalCallID Only ContextInLine CallContext field of
the BinaryMethodCall
record

%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5

55 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Item name Condition
 MessageEnum field
bits

 Item's serialized
location

Call Context Otherwise ContextInArray An item in the
MethodCallArray
record

Message Properties Absent 0 -NA-

Message Properties Present PropertiesInArray An item in the
MethodCallArray
record

If none of the items in the preceding table ended up in a MethodCallArray record then the record
MUST be not present.

Following this, the Data Values contained in the Input Arguments, Generic Arguments values, Method
Signature, Call Context, and Message Properties MUST be serialized. Each node in the Data Value
graph MUST be iterated and each node MUST be serialized exactly once as specified in the following

sections.

3.1.5.1.2 Mapping Remote Method Invocation Reply

The Remote Method invocation reply consists of Return Value, OutputArguments, Exception, and Call
Context.

The implementation MAY construct an Array of System.Object classes called Message Properties in
order to transmit implementation-specific information to the client. The Array, if constructed, MUST
contain items whose Remoting Types are instances of the DictionaryEntry Class as defined in

DictionaryEntry (section 2.2.2.6). Each DictionaryEntry item MUST contain the name and the value of
the implementation-specific information.<34>

The reply is serialized into the serialization stream by using the records defined in [MS-NRBF], as
follows:

A SerializationHeader record as defined in [MS-NRBF] MUST be serialized. Following the
SerializationHeader record, the Remote Method invocation reply MUST be serialized using a

BinaryMethodReturn record and a MethodReturnCallArray record. The MethodReturnCallArray record is
conditional and the rules for the presence of the MethodReturnCallArray record are given in the
following table. The table specifies the rules for serializing reply and the values for the MessageEnum
field of the BinaryMethodReturn record.

 Item
name Condition MessageEnum bit Item's serialized location

Return
value

None ReturnValueVoid -NA-

Return
value

Null NoReturnValue -NA-

Return
value

Primitive Value ReturnValueInline ReturnValue field of the
BinaryMethodReturn record

Return
value

non-Primitive Value ReturnValueInArray An item in the
MethodReturnCallArray record

Output
Argument

None NoArgs -NA-

Output All Primitive ArgsInLine Args field of the

%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5

56 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Item
name Condition MessageEnum bit Item's serialized location

Argument BinaryMethodReturn record

Output
Argument

At least one non-primitive
Argument and no Exception, Call
Context, or Message Properties

ArgsIsArray A separate ArraySingleObject record
that follows the BinaryMethodReturn
record

Output
Argumen

t

Otherwise ArgsInArray An item in the
MethodReturnCallArray record

Exception Absent 0 -NA-

Exception Present ExceptionInArray An item in the
MethodReturnCallArray record

Call Context LogicalCallID Only ContextInLine The Call Context field of the
BinaryMethodReturn record

Call Context Otherwise ContextInArray An item in the
MethodReturnCallArray record

Message
Properties

Absent 0 -NA-

Message
Properties

Present PropertiesInArray An item in the
MethodReturnCallArray record

If none of the items in the preceding table ended up in the MethodReturnCallArray record, then the
record MUST be not present.

Following this, the Data Value contained in the Return Value, OutputArguments, Exception, Call
Context, and Message Properties MUST be serialized. Each node in the Data Value graph MUST be

iterated and each node MUST be serialized exactly once as specified in the following sections.

3.1.5.1.3 Mapping Remote Field Get

An implementation MUST implement getting the value of a Remote Field as a Remote Method
invocation of the method FieldGetter as specified in [MS-NRLS] section 3.5.4.1, with the following
constraints:

 The fieldName Argument MUST be set to the name of the Remote Field.

 The typeName Argument MUST be set to the name of the Server Interface containing the Remote
Field.

The output value of the val Argument MUST be used as the Field value.

3.1.5.1.4 Mapping Remote Field Set

An implementation MUST implement setting the value of a Remote Field as a Remote Method
invocation of the method FieldSetter as specified in [MS-NRLS] section 3.5.4.2, with the following

constraints:

 The fieldName Argument MUST be set to the name of the Remote Field.

 The typeName Argument MUST be set to the name of the Server Interface containing the Remote
Field.

 The val Argument MUST be set to the new value of the field.

%5bMS-NRLS%5d.pdf#Section_dffdda1f2c454978927c4280469ce355

57 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.1.5 Mapping Library Information

The following records defined in [MS-NRBF] reference a Library:

 BinaryArray

 ClassWithMembersAndTypes

Each of the preceding records references a BinaryLibrary record by LibraryId field. Before serializing
any of the preceding records, the referenced BinaryLibrary record MUST be written.

3.1.5.1.6 Mapping Class Instances

A Class instance MUST be serialized by using the Class records specified in [MS-NRBF].

The first instance in the serialization stream of a Class in a Library other than the System Library

SHOULD be serialized by using the ClassWithMembersAndTypes record. The
ClassWithMembersAndTypes record allows a receiver to de-serialize the Class instance without

requiring the receiver to have any out-of-band information about the Class. If the Member Type
information is available to the receiver through an implementation-specific out-of-band mechanism,
then a sender MAY perform serialization by using the ClassWithMembers record in order to reduce the
size of data transmitted.

If the receiver is unable to process a ClassWithMembers record because it does not have the Member
Type information for the record, the receiver MUST treat the case as a serialization error and abort
processing. Sections 3.2.5.1.3 and 3.3.4.2.4 specify the error handling mechanism for the server and
the client implementation, respectively.

Subsequent instances of the Class SHOULD be serialized by using the ClassWithId record but MAY be
serialized like the first instance of the Class.<35>

The first instance in the serialization stream of a Class in the System Library SHOULD be serialized by

using the SystemClassWithMembersAndTypes record. The SystemClassWithMembersAndTypes record
allows a receiver to de-serialize the Class instance without requiring the receiver to have any out-of-

band information about the Class. If the Member Type information is available to the receiver through
an implementation-specific out-of-band mechanism, then a sender MAY perform serialization by using
the SystemClassWithMembers record in order to reduce the size of data transmitted.

 If the receiver is unable to process a SystemClassWithMembers record because it does not have the
Member Type information for the record, the receiver MUST treat the case as a serialization error and

abort processing. Sections 3.2.5.1.3 and 3.3.4.2.4 specify the error handling mechanism for the
server and the client implementation respectively.

The first instance in the serialization stream of a Class in the System Library MAY instead be serialized
using a ClassWithMembersAndTypes or ClassWithMembers record. In such cases the Library name
MUST be serialized as specified in section 3.1.5.1.5 and the Library Identifier part of the Library name
as specified in section 2.2.1.3 MUST be the name of the System Library.

Subsequent instances of the Class SHOULD be serialized using the ClassWithId record but MAY be
serialized like the first instance of the Class.<36>

The names of the Class Members whose values are serialized are set in the MemberNames field of
the ClassInfo structure of the Class records. For ClassWithMembersAndTypes and
SystemClassWithMembersAndTypes records, the MemberTypeInfo field MUST be set by using the
Member Types of the Class as specified in the MemberTypeInfo structure.

The values of all the Members MUST be serialized following this record. The record types that MUST be

used for various types of Member values are as follows.

%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5

58 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Data value type Binary record

Primitive Type MemberPrimitiveUnTyped, if MemberType was Primitive Type

MemberPrimitiveTyped, if MemberType was System.Object

String BinaryObjectString or MemberReferenceRecord

Class MemberReference or Class records

Array Member ReferenceRecord

Enum MemberReference or Class records

3.1.5.1.7 Mapping Array Instances

An Array with more than one dimension or with a dimension whose first index is not 0 MUST be

serialized by using the BinaryArray record.

A single-dimensional Array of string whose lower bound is 0 SHOULD be serialized by using the
ArraySingleString record. The Array MAY be serialized by using the BinaryArray record.

A single-dimensional Array of primitive whose lower bound is 0 SHOULD be serialized by using the
ArraySinglePrimitive record. It MAY be serialized by using the BinaryArray record.

A single-dimensional Array of System.Object whose lower bound is 0 MAY be serialized as an
ArraySingleObject record. The Array MAY be serialized by using the BinaryArray record.<37>

The values of the Array items MUST be serialized following the BinaryArray, ArraySingleString,
ArraySinglePrimitive or ArraySingleObject record. The record types that MUST be used for various
types of Array item values are given in the table in the Mapping Class Instances section.

3.1.5.1.8 Mapping Primitive Values

Primitive Values in Classes and Arrays MUST be serialized as part of MemberPrimitiveUnTyped or
MemberPrimitiveTyped. If the value is part of Arguments inlined in the BinaryMethodCall or
BinaryMethodReturn record then they MUST be serialized as ValueWithCode.

3.1.5.1.9 Mapping Enum Values

An Enum MUST be serialized as a Class with a single Member called "value__". The Member Type

MUST be the underlying Primitive Type of the Enum.

3.1.5.1.10 Mapping Delegate

 A Delegate MUST be serialized as the DelegateSerializationHolder Class, as specified in section
2.2.2.15. Each Remote Method of the Delegate is mapped to a Method and each Proxy is mapped to a
Target in the DelegateSerializationHolder instance.

3.1.5.1.11 Mapping String Values

String values in Classes and Arrays MUST be serialized as part of BinaryObjectString, as specified in
[MS-NRBF]. If the value is part of Arguments inlined in the BinaryMethodCall or BinaryMethodReturn
record, as specified in [MS-NRBF], then they MUST be serialized as StringValueWithCode, as specified
in [MS-NRBF].

3.1.5.1.12 Mapping Null Object

%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5

59 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

A Null Object in Classes and Arrays MUST be serialized using ObjectNull, ObjectNullMultiple or
ObjectNullMultiple256 records, as specified in [MS-NRBF]. A Null Object in Arguments inlined in the

BinaryMethodCall or BinaryMethodReturn record, as specified in [MS-NRBF], MUST be serialized as
ValueWithCode with the value of the PrimitiveTypeEnum field set to 17 (Null).

3.1.5.2 Mapping Remoting Data Model to SOAP Format

3.1.5.2.1 Mapping Remote Method Invocation

The message content of a Remote Method call MUST be encoded as a SOAP Envelope as specified in

[SOAP1.1] section 4:

 The encodingStyle attribute SHOULD be written as part of the SOAP Envelope element with a
value of http://schemas.xmlsoap.org/soap/encoding/.

 The Call Context of a Remote Method call MUST be encoded as specified in Call Context SOAP
Header (section 2.2.4.5)

 The implementation MAY add implementation-defined SOAP header elements (children of the

soap:Header element) to the SOAP request in order to transmit implementation-specific
information to the server. Any implementation-defined SOAP header elements SHOULD use the
namepace "http://schemas.microsoft.com/clr/soap/messageProperties".<38>

 If a Method Signature is present then it MUST be mapped as a SOAP header element as specified
in Method Signature SOAP Header (section 2.2.4.4) with additional constraint that the order of the
qualified names MUST match the parameter order.

 The qualified name of the method struct MUST be derived as specified in Method Name

Encoding (section 2.2.4.3).

 The Input Arguments MUST be mapped as specified in [SOAP1.1] section 7.1.

 Each Data Value in the Arguments MUST be encoded by using the SOAP encoding style. The
specification for SOAP encoding is specified in [SOAP1.1] section 5.

3.1.5.2.2 Mapping Remote Method Invocation Reply

The message content of a Remote Method invocation reply MUST be encoded as a SOAP Envelope as

specified in [SOAP1.1] section 4:

 The encodingStyle attribute SHOULD be written as part of the SOAP Envelope element with a
value of http://schemas.xmlsoap.org/soap/encoding/.

 The Call Context of a Remote Method invocation reply MUST be encoded as specified in Call
Context SOAP Header (section 2.2.4.5).

 The implementation MAY add implementation-defined SOAP header elements (children of the

soap:Header element) to the SOAP response in order to transmit implementation-specific
information to the client. Any implementation-defined SOAP header elements SHOULD use the

namespace "http://schemas.microsoft.com/clr/soap/messageProperties".<39>

 If the method was executed without any Exception, then the Return Value and the Output
Arguments MUST be mapped as specified in section 7.1 of [SOAP1.1].<40>

 Each Data Value in the Return Value and Arguments MUST be encoded by using SOAP encoding.
The specification for SOAP encoding can be found in [SOAP1.1] section 5.

If the method resulted in an Exception, then the Exception MUST be encoded as a SOAP fault as
specified in the Mapping Exception section.

%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=90520

60 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.2.3 Mapping Remote Field Get

An implementation MUST implement getting the value of a Remote Field as a Remote Method
invocation of the method FieldGetter as specified in [MS-NRLS] section 3.5.4.1, with the following

constraints:

 The fieldName Argument MUST be set to the name of the Remote Field.

 The typeName Argument MUST be set to the name of the Server Interface that contains the
Remote Field.

The output value of the val Argument MUST be used as the Remote Field value.

3.1.5.2.4 Mapping Remote Field Set

An implementation MUST implement setting the value of a Remote Field as a Remote Method
invocation of the FieldSetter method as specified in [MS-NRLS] section 3.5.4.2, with the following
constraints:

 The fieldName Argument MUST be set to the name of the Remote Field.

 The typeName Argument MUST be set to the name of the Server Interface that contains the
Remote Field.

 The val Argument MUST be set to the new value of the Remote Field.

3.1.5.2.5 Mapping Class Instances

Classes MUST be encoded as SOAP structs as specified in [SOAP1.1] section 5.4.1, where the Member
names are the accessor names. The Class name MUST be encoded as specified in Remoting Type
Name Encoding (section 2.2.4.2).

3.1.5.2.6 Mapping Array Instances

Arrays MUST be encoded as SOAP Arrays as specified in [SOAP1.1] section 5.4.2. The Remoting Type
name of the Array MUST be encoded as specified in the Remoting Type Name Encoding section. An
Array with a lower bound greater than 0 is encoded as Partial Arrays as specified in [SOAP1.1] section
5.4.2.

An Array of bytes MUST be encoded as specified in [SOAP1.1] section 5.2.3.

3.1.5.2.7 Mapping Primitive Values

Primitive Type Values MUST be encoded as SOAP simple values as specified in [SOAP1.1] section 5.2.

3.1.5.2.8 Mapping Enum Values

Enum Values MUST be encoded using the name associated with the value as SOAP enumerations as
specified in [SOAP1.1] section 5.2.2.

3.1.5.2.9 Mapping Delegate

 A Delegate MUST be serialized as the DelegateSerializationHolder Class, as specified in section
2.2.2.15. Each Remote Method of the Delegate is mapped to a Method and each Proxy is mapped to a
Target in the DelegateSerializationHolder instance.

3.1.5.2.10 Mapping Null Object

Null Object MUST be encoded as specified in [SOAP1.1] section 5.

http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=90520

61 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.2.11 Mapping Exception

Exceptions returned by the server MUST be turned into SOAP faults as specified in [SOAP1.1] section
4.4:

faultcode: MUST be set as specified in [SOAP1.1] section 4.4.

faultstring: SHOULD be set to a human-readable message as specified in [SOAP1.1] section 4.4.

faultactor: SHOULD be a URI that identifies the source as specified in [SOAP1.1] section 4.4.<41>

detail: As specified in [SOAP1.1] section 4.4, this element is intended for carrying application-specific
error information. In .NET Remoting, the detail MUST contain a serialized instance of ServerFault
as specified in section 2.2.2.17. The instance MUST be encoded as specified in [SOAP1.1] section
5.

3.1.5.3 Resolving Object Reference

When de-serializing the message content, if an ObjRef is encountered and has the fIsMarshalled
field set to true, then it MUST be converted either into a Proxy or a Server Object. To create a Proxy,

an implementation requires a Request URI and a Server Type. The Server Type MUST be obtained
from the typeInfo field of the ObjRef. The Request URI MUST be obtained as follows:

 As specified in ObjRef (section 2.2.2.1), if the value of the objRefFlags field has the second
lowest bit (value of 2), then the uri field of the ObjRef has an absolute URI that MUST be used as
the Request URI.

 If the value of the objRefFlags field has the second lowest bit (value of 2) not set, then the uri
field contains a relative URI. ObjRef.ChannelInfo.ChannelData contains information about the

available channel, including any intraprocess and interprocess channel. An implementation MUST
ignore ChannelData information if the implementation does not understand the structure. An
implementation MAY choose any one of the channels. The implementation MUST combine the
relative URI specified in the uri field with the Channel URI of the chosen channel to get the
Request URI.<42>

If the host subcomponent of the Request URI refers to the implementation's machine and if the Server
Object URI part of the Request URI is present in the Server Object Table, then the ObjRef is

resolved to the actual Server Object in the ServerObjectTable. In this case, the de-serialized object
graph contains the actual Server Object. Otherwise, a new Proxy MUST be created from the Request
URI and the Server Type, as specified in Creating Proxy from Request URI and Server
Type (section 3.3.4.1.1).

3.1.6 Timer Events

There are no timer events that are common to the server and the client.

3.1.7 Other Local Events

There are no other local events that are common to the server and the client.

3.2 Server Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

http://go.microsoft.com/fwlink/?LinkId=90520

62 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

adhere to this model as long as their external behavior is consistent with that described in this
document.

Server Type Table

This table contains entries of Server Object URI, the Server Types of SAO, and a Boolean value that

specifies whether the SAO is a Singleton.

Server Object Table

This table contains Server Object URIs and the corresponding Server Objects. The Server Objects can
be Singleton SAOs or MSOs.

Channel Table

This table contains an entry for each Channel instance. Each entry has the following items.

 Channel: The instance of the Channel set up on the server.

 Channel URI: URI for the Server Channel.

 Format Identifier: A string value that identifies the serialization format. Valid values are a binary
format identifier and a SOAP format identifier.

 Transport: A string value that indicates which transport protocol to use. Valid values are "TCP",
"SOAP-TCP", "HTTP", and "SOAP-HTTP".

3.2.2 Timers

There are no timers used by this protocol.

3.2.3 Initialization

The server Channel Table is initialized by the higher layer. Each Channel has a Channel URI. Higher-

level protocols MUST indicate in an implementation-specific way the following information about the
Transport:

 Whether the Channel uses TCP, HTTP, SOAP-TCP (SOAP protocol over the underlying TCP
transport) or SOAP-HTTP (SOAP protocol over the underlying HTTP transport) Transport.

 If the transport is HTTP (with or without SOAP), then the authentication mechanism as none,
Basic, Digest, or NTLM, required credentials, and client certification to use in the case of HTTPS.

 If the transport is TCP then the authentication mechanism as none or .NET NegotiateStream
Protocol and the required credentials as specified in [MS-NNS].

For each Channel, the server MUST listen at the port indicated by the Channel's Channel URI.

3.2.4 Higher-Layer Triggered Events

3.2.4.1 Register SAO ServerType

When the higher-layer registers a Server Type with a Server Object URI and a Boolean value

specifying whether the SAO is singleton, an implementation MUST do the following:

 If the URI is already present in the Server Type Table or the Server Object Table, the
implementation MUST notify the higher layer about the error.

%5bMS-NNS%5d.pdf#Section_93df08eba6c44dff81c3519cf7236df4

63 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If there were no errors then the implementation MUST add the Server Type, Server Object URI,
and the boolean value to the Server Type Table.

3.2.4.2 Marshal Server Object

When the higher layer registers a Server Object with a Server Object URI, the implementation MUST
do the following:

 If the URI is already present in the Server Type Table or the Server Object Table, the
implementation MUST notify the higher layer about the error.

 If there were no errors, then the implementation MUST add the Server Object URI and Server
Object to the Server Object Table.

3.2.4.3 Unmarshal Server Object

When the higher layer unregisters a Server Object using its Server Object URI, an implementation

MUST do the following:

 If the Server Object URI is not found in the Server Object Table, then the higher layer MUST be
notified about the error and not do the following:

 Remove the entry with the Server Object URI from the Server Object Table.

 The requests that are being processed, if any, MUST be allowed to complete.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Receiving a Message

On receiving a message, an implementation of the protocol MUST perform the following actions:

1. Process the message frame.

2. Bind to an appropriate Server Object.

3. De-serialize the Request message content.

4. Validate and Dispatch call.

5. Serialize the Reply message content.

6. Send the Reply.

3.2.5.1.1 Process the Message Frame

 An implementation MUST determine the Channel associated with the received message in an
implementation-specific way. How the message frame is processed depends on the transport

information of the associated Channel, as specified in the following table.

Transport

 Section
specifying the
process Server Object URI Format identifier

TCP Receiving Request
under TCP Transport

The path subcomponent of the URI
extracted from the RequestURIHeader of
the message frame

The Content Type field of
the ContentTypeHeader

64 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Transport

 Section
specifying the
process Server Object URI Format identifier

SOAP-

TCP

Receiving Request
under SOAP on TCP

The path subcomponent of the URI
extracted from the RequestURIHeader of
the message frame

The Content Type field of
the ContentTypeHeader

HTTP Receiving Request
under HTTP
Transport

Request URI in the Request-Line of the
HTTP message

Content-Type entity-header
field

SOAP-
HTTP

Receiving Request
under SOAP on
HTTP

Request URI in the Request-Line of the
HTTP message

Content-Type entity-header
field

3.2.5.1.2 Binding to Server Object

An implementation MUST look up the Server Object URI got from the message in the Server Object
Table. If Server Object Table does not have the Server Object, then the Server Type Table MUST be
looked up for the specified Server Object URI. If the Server Object URI is not found in both the tables,

then a RemotingException MUST be constructed as specified in Constructing a Remoting
Exception (section 3.2.5.1.7.2) and the Exception MUST be sent back to the client.

If the Server Object URI is found in the Server Object Table, then the corresponding Server Object in
the table MUST be used to dispatch the call. Otherwise, if the Server Object URI is found in the
Server Type Table, then a new Server Object MUST be created. If the Boolean value for the Server
Object URI in the Server Object Table indicated that the SAO is a singleton then the Server Object

MUST be added to the Server Object Table.

3.2.5.1.3 De-Serializing the Message Content

An implementation MUST use the Content Type retrieved from the message to identify the
serialization format of the message content as specified in the following table.

 Content Type Serialization format specification Mapping section

Binary format identifier Binary format as specified in [MS-NRBF] Section 3.1.5.1

SOAP format identifier SOAP format as specified in [SOAP1.1] Section 3.1.5.2

The message content MUST be de-serialized to produce the Server Type or Server Interface name,

Remote Method name, Input Arguments, Call Context, and the Method Signature. If the message
content does not conform to the structure specified in the appropriate serialization format specification
(as specified in the preceding table) or if mapping (as specified in the preceding table) the data from
the serialization stream to the Remoting Data Model resulted in an error, then a SerializationException
instance MUST be constructed as specified in Constructing SerializationException (section 3.2.5.1.7.1)
and the Exception MUST be returned to the client. The Exception message SHOULD convey the nature

of the structural error. If the Data Values in the message content contain ObjRefs they MUST be
resolved as specified in Resolving Object Reference (section 3.1.5.3).

3.2.5.1.4 Dispatching the Call

This section defines the mechanism to invoke the Remote Method implementation targeted for the
Server Object that was bound to the Server Object URI as specified in Binding to Server
Object (section 3.2.5.1.2) using the values de-serialized from the message content.

%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
http://go.microsoft.com/fwlink/?LinkId=90520

65 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The Server Type or Server Interface de-serialized from the message content has to fulfill one of the
following conditions:

 The Remoting Type of the Server Object is the Server Type.

 The Remoting Type of the Server Object is a derived Class of the Server Type.

 The Remoting Type of the Server Object implements the Server Interface.

If none of the above conditions is true, then a RemotingException MUST be constructed as specified in
Constructing a Remoting Exception (section 3.2.5.1.7.2) and the Exception MUST be sent back to the
client.

An implementation of this protocol MAY use this information in an implementation-specific way to bind
to the Remote Method implementation. An implementation MAY also perform integrity checks of this
information in an implementation-specific way. If any error is encountered in this process, then a

RemotingException MUST be constructed as specified in the Constructing a Remoting
Exception (section 3.2.5.1.7.2) and the Exception MUST be sent back to the client.<43>

An implementation of the protocol MUST invoke the Remote Method targeted for the Server Object
with the Input Arguments and CallContext got by de-serialization as specified in De-Serializing the
Message Content (section 3.2.5.1.3).<44>

3.2.5.1.5 Serializing the Reply

The completion of a Remote Method can yield a Return Value, Output Arguments, or Exception. The
values of the Call Context that were part of the request message MUST be returned back as part of
the reply unless the Remote Method implementation removed the values explicitly. These values MUST
be serialized into the message content. The serialization format MUST be the same as that of the
request. If there is any error during serialization then a SerializationException instance MUST be
constructed as specified in Constructing SerializationException (section 3.2.5.1.7.1) and the Exception

MUST be returned to the client.

3.2.5.1.5.1 Serializing to Binary Serialization Format

An implementation MUST construct a BinaryMethodReturn record and insert any additional required
records as defined in Mapping Remote Method Invocation Reply (section 3.1.5.1.2) using the Return
Value, Output Arguments, Call Context, and Exception values.

3.2.5.1.5.2 Serializing to SOAP Serialization Format

An implementation MUST serialize the Return Value, Output Arguments, Call Context, and Exception
values as specified in Mapping Remote Method Invocation Reply (section 3.1.5.2.2).

3.2.5.1.5.3 Marshaling Server Objects and Proxy Instances

A Data Value that is being serialized can contain a Server Object or a Proxy. These MUST be serialized
as ObjRef instances.

In case of a Server Object, the Server Object MUST be marshaled as specified in the Marshal Server
Object section if it is not already marshaled. An implementation MUST provide a valid Server Object
URI but MAY use any algorithm to create it.<45>

 For a Data Value containing a Server Object or MSO Proxy instance, an ObjRef MUST be constructed
as specified in the following table.

 Field Value

uri Server Object URI of the Server Object

66 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Field Value

typeInfo Names of the Server Type, its Base Classes, and interfaces as specified in the TypeInfo section

objRefFlags 0

fIsMarshalled True

ChannelInfo Must be initialized as specified in the ChannelInfo section with each instance of ChannelData
containing a Channel URI for each initialized channel.

For a Data Value containing an SAO Proxy, an ObjRef MUST be constructed as specified in the
following table.

 Field Value

uri Request-URI for the Proxy

typeInfo Names of the Server Type, its Base Classes, and interfaces as specified in the TypeInfo section

objRefFlags 2

fIsMarshalled True

ChannelInfo Null Object

3.2.5.1.6 Sending Reply

The serialized message content of the reply MUST be sent back as the reply. The mechanism to send
the reply message is dependent on the transport that is used. The actual mechanism is specified in the
Transport (section 2.1) section. The reply message MUST have the same Content-Type as the request.
How the reply message is transmitted depends on the transport information of the associated

Channel, as specified in the following table.

 Transport Section specifying the process

TCP Sending Reply under TCP Transport (section 2.1.1)

SOAP-TCP Sending Reply under the SOAP on TCP (section 2.1.3.2)

HTTP Sending Reply under HTTP Transport (section 2.1.2)

SOAP-HTTP Sending Reply under the SOAP on HTTP (section 2.1.3.1)

3.2.5.1.7 Constructing Exception Messages

3.2.5.1.7.1 Constructing SerializationException

An instance of SerializationException as specified in section 2.2.2.10 MUST be constructed with the

InnerException field as a Null Object. The value of the field Data MUST be a Null Object.<46>

3.2.5.1.7.2 Constructing a Remoting Exception

A RemotingException (as specified in section 2.2.2.9) MUST be constructed with the InnerException
field as a Null Object. The value of the field Data MUST be a Null Object.<47>

67 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.6 Timer Events

There are no timer events in this protocol.

3.2.7 Other Local Events

There are no other local events.

3.3 Client Details

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

Proxy Table

The Proxy Table is used to associate a Proxy with appropriate Server Object, transport, serialization
format, and the address of the Server Object. It contains an entry for each Proxy instance. Each entry

has the following items.

Proxy: The instance of the Proxy that is being looked up.

Request URI: URI for the Server Object.

ServerTypeName: QualifiedTypeName, as specified in RemotingTypeName (section 2.2.1.2), that
identifies the Server Type.

Format Identifier: A string value that identifies the serialization format. Valid values are a binary

format identifier and a SOAP format identifier.

Transport: A string value that indicates which transport protocol to use. Valid values are "TCP",
"SOAP-TCP", "HTTP", and "SOAP-HTTP".

3.3.2 Timers

There are no timers used by this protocol.

3.3.3 Initialization

3.3.4 Higher-Layer Triggered Events

3.3.4.1 Get SAO Proxy

When the higher layer requests a Proxy for a Request URI and a Server Type name, an
implementation MUST create a Proxy as specified in the following section.

3.3.4.1.1 Creating Proxy from Request URI and Server Type

If the Request URI is not well-formed, the higher layer MUST be notified of the error. The format of
the Request URI for TCP is specified in the TcpUriString section. The format of the Request URI for
HTTP is specified in [RFC2616] section 3.2.2.

http://go.microsoft.com/fwlink/?LinkId=90372

68 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The implementation MUST create a new Proxy instance and add the Proxy, Request URI, Server Type
name, Transport Protocol information, and the serialization format to the Proxy Table. The

mechanism for determining the serialization format and the Transport Protocol for the given
Request URI is implementation-specific and beyond the scope of this protocol.

3.3.4.2 Remote Method Invocation

When the higher layer invokes a Remote Method using a Proxy that passes Arguments and Call
Context, the implementation MUST do the following:

1. Serialize the Request.

2. Send the message to the server.

3. Wait for the response from the server.

4. Read the response from the connection stream.

5. De-serialize the response message content.

6. Pass the de-serialized values to the higher layer that invoked the Remote Method.

3.3.4.2.1 Serializing the Request

An implementation MUST look up the Proxy Table to get the Request URI, ServerTypeName,
Transport, and Content-Type. If the Proxy Table does not contain the Proxy, then the higher layer
MUST be notified of the error. An instance of Method Signature MAY be constructed from the Remoting
Types of the Arguments of the Remote Method that is being invoked.<48>

The Server Type name, Remote Method name, Method Signature, Input Arguments and CallContext
MUST be serialized into message content. The serialization format of the message content is specified

by the Content-Type value, specified as follows.

 Format identifier Serializaton format

Binary format identifier Binary format as specified in [MS-NRBF]

SOAP format identifier SOAP format as specified in [SOAP1.1]

3.3.4.2.1.1 Serializing to Binary Serialization Format

An implementation MUST construct a BinaryMethodCall record and insert any additional required

records as defined in Mapping Remote Method Request (section 3.1.5.1.1) using the Server Type
name, Remote Method name, Method Signature, Input Arguments, and Call Context.

3.3.4.2.1.2 Serializing to SOAP Serialization Format

An implementation MUST serialize the Server Type name, Remote Method name, Method Signature,
Input Arguments, and Call Context as specified in Mapping Remote Method
Invocation (section 3.1.5.2.1).

When using the SOAP protocol, the value of the SOAP Action MUST be encoded as specified in Soap
Action String (section 2.2.4.1) and set in the message frame as specified in the following list:

 If SOAP is bound to HTTP, then the value of SOAP Action MUST be set as the "SOAPAction" HTTP
header.

%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
http://go.microsoft.com/fwlink/?LinkId=90520

69 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If SOAP is bound to TCP then, the value of SOAP Action MUST be encoded as a CustomHeader
with "SOAPAction" as the name as specified in Custom Header (section 2.2.3.3.3.2).

If the serialized Data Values contain a Server Object or a Proxy, they MUST be serialized as specified
in Marshaling Server Objects and Proxy instances (section 3.2.5.1.5.3).

3.3.4.2.2 Sending the Request

 How the Request URI and Content-Type are transmitted depends on the transport information
associated with the Proxy, which was obtained in an earlier step, "Serializing the Request" (section
3.3.4.2.1). The Request MUST be transmitted as specified in the following table.

Transport Request URI Content Type

 Specification for
sending message

TCP MUST be set in the RequestURIHeader of
the message frame.

MUST be set in the
ContentTypeHeader of the
message frame.

Sending Request
under TCP
Transport

SOAP-

TCP

MUST be set in the RequestURIHeader of
the message frame.

MUST be set in the
ContentTypeHeader of the
message frame.

Sending Request
under SOAP on TCP

HTTP The Server Object URIpart of the Request
URI MUST be set as the Request-URI in the
Request-Line of the HTTP Request.

MUST be set in the Content-
Type entity-header field.

Sending Request
under HTTP
Transport

SOAP-
HTTP

The Server Object URI part of the Request
URI MUST be set as the Request-URI in the
Request-Line of the HTTP Request.

MUST be set in the Content-
Type entity-header field
section.

Sending Request
under SOAP on
HTTP

3.3.4.2.3 Reading the Reply

For a One-Way Method, there is no reply message and hence an implementation MUST NOT wait for a
reply. For a Two-Way Method, the implementation MUST wait for the reply. How the Reply message is
processed depends on the transport information associated with the Proxy, which was obtained in an
earlier step, "Serializing the Request" (section 3.3.4.2.1). The Reply message MUST be processed as
specified in the sections listed in the following table.

 Transport Section specifying the process

TCP Receiving Reply under TCP Transport section

SOAP-TCP Receiving Reply under the SOAP on TCP section

HTTP Receiving Reply under HTTP Transport section

SOAP-HTTP Receiving Reply under the SOAP on HTTP section

3.3.4.2.4 De-Serializing the Response

The Return Value and Output Arguments or an Exception along with values MUST be obtained by de-
serializing the message content. The serialization format MUST be the same as that specified in the
Sending the Request section. The serialization format and the mapping to the Remoting Data Model
for a Content Type are specified in the following table.

70 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Content Type Serialization format specification Mapping section

Binary format identifier Binary format as specified in [MS-NRBF] Section 3.1.5.1

SOAP format identifier SOAP format as specified in [SOAP1.1] Section 3.1.5.2

If the message content does not conform to the structure specified in the appropriate serialization
format specification (as specified in the preceding table) or if mapping (as specified in the preceding

table) the data from the serialization stream to the Remoting Data Model resulted in an error, then the
higher layer MUST be notified of the error. In case of an error the implementation MAY stop reading
the message further. If the Data Values in the message content contain ObjRefs they MUST be
resolved as specified in Resolving Object Reference (section 3.1.5.3)

3.3.4.2.5 Completing the Invocation

The de-serialized values MUST be returned to the calling method as ReturnValue, Output Arguments,

Call Context, or Exception. If the Remoting Type of any of the de-serialized values does not match the
Remoting Types expected by the remote method, then the higher-layer abstraction MUST be notified

of the type mismatch error.

3.3.5 Message Processing Events and Sequencing Rules

There are no events processed by the client role.

3.3.6 Timer Events

There are no timer events in the client role.

3.3.7 Other Local Events

There are no other local events in the client role.

%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
http://go.microsoft.com/fwlink/?LinkId=90520

71 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

4.1 Two-Way Method Invocation Using TCP-Binary

This code sample illustrates the message exchanged for a Remote Method invocation.

In this sample the client invokes the SendAddress method defined in the Server Interface
RemotingTest.MyServer defined as follows.

 namespace RemotingTest
 {
 interface MyServer
 {
 System.String SendAddress(Address address);
 }

 class Address
 {
 System.String Street;
 System.String City;
 System.String State;
 System.String Zip;
 }
 }

The client invokes the method with the following values for the parameters:

Address.Street = "One Microsoft Way",

Address.City = "Redmond",

Address.State = "WA"

Address.Zip = "98054".

The server is configured to support TCP and the messages are expected to be encoded in [MS-NRBF].
The remoting server is a Single-Call SAO at "tcp://RemotingMachine:8080/MyServer.Rem".

The Remote Method returns a value of "Address received" in the response message to the client.

A sequence diagram for the preceding message exchange pattern is provided in the following figure.

%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5

72 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 8: A sequence diagram for the preceding message exchange pattern

A dump of the request message is as follows.

 0000 2E 4E 45 54 01 00 00 00 00 00 74 01 00 00 04 00 .NET......t.....

 0010 01 01 22 00 00 00 74 63 70 3A 2F 2F 6D 61 68 65 .."...tcp://mahe

 0020 73 68 64 65 76 32 3A 38 30 38 30 2F 4D 79 53 65 shdev2:8080/MySe

 0030 72 76 65 72 2E 72 65 6D 06 00 01 01 18 00 00 00 rver.rem........

 0040 61 70 70 6C 69 63 61 74 69 6F 6E 2F 6F 63 74 65 application/octe

 0050 74 2D 73 74 72 65 61 6D 00 00 t-stream..

The interpretation of the preceding message frame is as follows.

 ProtocolIdentifier: 0x54454E2E
 MajorVersion: 1 (0x1)
 MinorVersion: 0 (0x0)
 OperationType: Request (0x00)
 ContentLength
 ContentDistribution : ContentLength (0x00)
 ContentLength: 314 (0x13A)
 Header 1:
 RequestUriHeader
 HeaderToken: RequestUri (0x04)
 DataType: CountedString (0x01)
 StringEncoding: UTF8 (0x01)
 UriValue : tcp://RemotingTestMachine:8080/MyServer.rem
 Header 2:
 ContentTypeHeader:
 HeaderToken: ContentType (0x06)
 DataType: CountedString (0x01)

 ContentTypeValue: application/octet-stream

 Header 3:
 EndHeader:
 HeaderToken: EndOfHeaders(0x00)

 The OperationType field indicates this is a Request message of a Two-Way Method.

73 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The ContentDistribution field indicates that the message content is not chunked.

 The ContentLength field indicates the length of the message content in bytes.

 The RequestUriHeader header contains the Request URI of the server.

 The ContentTypeHeader header indicates the format identifier to be binary serialization format.

 The EndHeader header indicates the end of the headers and the message frame.

 0000 00 01 00 00 00 FF FF FF FF 01 00 00 00 00 00 00ÿÿÿÿ.......

 0010 00 15 14 00 00 00 12 0B 53 65 6E 64 41 64 64 72SendAddr

 0020 65 73 73 12 6F 44 4F 4A 52 65 6D 6F 74 69 6E 67 ess.oDOJRemoting

 0030 4D 65 74 61 64 61 74 61 2E 4D 79 53 65 72 76 65 Metadata.MyServe

 0040 72 2C 20 44 4F 4A 52 65 6D 6F 74 69 6E 67 4D 65 r, DOJRemotingMe

 0050 74 61 64 61 74 61 2C 20 56 65 72 73 69 6F 6E 3D tadata, Version=

 0060 31 2E 30 2E 32 36 32 32 2E 33 31 33 32 36 2C 20 1.0.2622.31326,

 0070 43 75 6C 74 75 72 65 3D 6E 65 75 74 72 61 6C 2C Culture=neutral,

 0080 20 50 75 62 6C 69 63 4B 65 79 54 6F 6B 65 6E 3D PublicKeyToken=

 0090 6E 75 6C 6C 10 01 00 00 00 01 00 00 00 09 02 00 null............

 00A0 00 00 0C 03 00 00 00 51 44 4F 4A 52 65 6D 6F 74QDOJRemot

 00B0 69 6E 67 4D 65 74 61 64 61 74 61 2C 20 56 65 72 ingMetadata, Ver

 00C0 73 69 6F 6E 3D 31 2E 30 2E 32 36 32 32 2E 33 31 sion=1.0.2622.31

 00D0 33 32 36 2C 20 43 75 6C 74 75 72 65 3D 6E 65 75 326, Culture=neu

 00E0 74 72 61 6C 2C 20 50 75 62 6C 69 63 4B 65 79 54 tral, PublicKeyT

 00F0 6F 6B 65 6E 3D 6E 75 6C 6C 05 02 00 00 00 1B 44 oken=null......D

 0100 4F 4A 52 65 6D 6F 74 69 6E 67 4D 65 74 61 64 61 OJRemotingMetada

 0110 74 61 2E 41 64 64 72 65 73 73 04 00 00 00 06 53 ta.Address.....S

 0120 74 72 65 65 74 04 43 69 74 79 05 53 74 61 74 65 treet.City.State

 0130 03 5A 69 70 01 01 01 01 03 00 00 00 06 04 00 00 .Zip............

 0140 00 11 4F 6E 65 20 4D 69 63 72 6F 73 6F 66 74 20 ..One Microsoft

 0150 57 61 79 06 05 00 00 00 07 52 65 64 6D 6F 6E 64 Way......Redmond

 0160 06 06 00 00 00 02 57 41 06 07 00 00 00 05 39 38WA......98

 0170 30 35 34 0B 054.

The interpretation of the preceding message content is as follows.

 Binary Serialization Format
 SerializationHeaderRecord:
 BinaryHeaderEnum: SerializedStreamHeader (0x00)
 TopId: 0 (0x0)
 HeaderId: -1 (0xFFFFFFFF)
 MajorVersion: 1 (0x1)
 MinorVersion: 0 (0x0)
 BinaryMethodCall:
 BinaryHeaderEnum: BinaryMethodCall (0x15)
 MessageEnum: 00000014
 NoArgs: (...............................0)
 ArgsInline: (..............................0.)
 ArgsIsArray: (.............................1..)
 ArgsInArray: (............................0...)
 NoContext: (...........................1....)
 ContextInline: (..........................0.....)
 ContextInArray: (.........................0......)
 MethodSignatureInArray: (........................0.......)
 PropertyInArray: (.......................0........)
 NoReturnValue: (......................0.........)
 ReturnValueVoid: (.....................0..........)
 ReturnValueInline: (....................0...........)
 ReturnValueInArray: (...................0............)
 ExceptionInArray: (..................0.............)
 Reserved: (000000000000000000..............)
 MethodName:

74 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 PrimitiveTypeEnum: String (0x12)
 Data: SendAddress
 TypeName:
 PrimitiveTypeEnum: String (0x12)

 Data: RemotingTest.MyServer, RemotingTest, Version=1.0.2616.21414,
 Culture=neutral, PublicKeyToken=null
 MethodCallArray:(ArraySingleObject)
 BinaryHeaderEnum: ArraySingleObject (0x10)
 ObjectId: 1 (0x01)
 Length: 1 (0x1)
 MemberReference:
 BinaryHeaderEnum: MemberReference (0x09)
 IdRef: 2 (0x02)
 BinaryLibrary:
 BinaryHeaderEnum: BinaryLibrary (0x0C)
 AssemId: 3 (0x03)
 LibraryString: LibraryString:RemotingTest,
 Version=1.0.2621.26113, Culture=neutral, PublicKeyToken=null
 ClassWithMembersAndTypes:
 BinaryHeaderEnum: ClassWithMembersAndTypes (0x05)
 ObjectId: 2 (0x02)
 Name: RemotingTest.MyData
 NumMembers: 4 (0x04)
 MemberNames:
 Data: Street
 MemberNames:
 Data: City
 MemberNames:
 Data: State
 MemberNames:
 Data: Zip
 BinaryTypeEnumA:
 String (0x01)
 String (0x01)
 String (0x01)
 String (0x01)
 AssemId: 3 (0x03)
 BinaryObjectString:
 BinaryHeaderEnum: BinaryObjectString (0x06)
 ObjectId: 04 (0x04)
 Length: 17 (0x11)
 Value: One Microsoft Way
 BinaryObjectString:
 BinaryHeaderEnum: BinaryObjectString (0x06)
 ObjectId: 05 (0x04)
 Length: 7 (0x07)
 Value: Redmond
 BinaryObjectString:
 BinaryHeaderEnum: BinaryObjectString (0x06)
 ObjectId: 06 (0x04)
 Length: 2 (0x02)
 Value: WA
 BinaryObjectString:
 BinaryHeaderEnum: BinaryObjectString (0x06)
 ObjectId: 07 (0x04)
 Length: 5 (0x05)
 Value: 98054
 MessageEnd:
 BinaryHeaderEnum: MessageEnd (0x11)

 The BinaryMethodCall record contains the Server Type name and the Remote Method name. The
ArgsIsArray flag in the MessageEnum field indicates that the Arguments are passed as part of a
MethodCallArray record. The NoContext flag in the MessageEnum field indicates that there is no
CallContext that is sent as part of this message.

75 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The MethodCallArray record contains one entry for the only Argument.

 The MemberReference record provides a reference to the actual value.

 The BinaryLibrary record associates the Id value of 3 to the Library name RemotingTest,
Version=1.0.2621.26113, Culture=neutral, PublicKeyToken=null.

 ClassWithMembersAndTypes record contains the Input Argument passed. It lists the four Member
names and their Remoting Types (all strings in this case).

 Four BinaryObjectString records contain the string values of the four Members (Street, City, State
and Zip).

The message frame and the message content for the response message from the server are as
follows.

 0000 2E 4E 45 54 01 00 02 00 00 00 27 00 00 00 00 00 .NET......'.....

The interpretation of the preceding message frame is as follows.

 ProtocolIdentifier: 54454E2E
 MajorVersion: 1 (0x1)
 MinorVersion: 0 (0x0)
 OperationType: Response (0x02)
 ContentLength
 ContentDistribution : ContentLength (0x00)
 ContentLength: 39 (0x27)
 Header 1:
 EndHeader:
 HeaderToken: EndOfHeaders(0x00)

 The OperationType field indicates that this is a Response message of a Two-Way Method.

 The ContentDistribution field indicates that the message content is not chunked.

 The ContentLength field indicates the length of the message content in bytes.

 The EndHeader header indicates the end of the headers and the message frame.

 0000 00 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00

 0010 00 16 11 08 00 00 12 10 41 64 64 72 65 73 73 20Address

 0020 72 65 63 65 69 76 65 64 0B received.

The interpretation of the preceding message content is as follows.

 Binary Serialization Format
 SerializationHeaderRecord:
 BinaryHeaderEnum: SerializedStreamHeader (0x00)
 TopId: 0 (0x0)
 HeaderId: 0 (0x0)
 MajorVersion: 1 (0x1)
 MinorVersion: 0 (0x0)
 BinaryMethodReturn:

76 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 BinaryHeaderEnum: BinaryMethodReturn (0x16)
 MessageEnum: 00000811
 NoArgs: (...............................1)
 ArgsInline: (..............................0.)
 ArgsIsArray: (.............................0..)
 ArgsInArray: (............................0...)
 NoContext: (...........................1....)
 ContextInline: (..........................0.....)
 ContextInArray: (.........................0......)
 MethodSignatureInArray: (........................0.......)
 PropertyInArray: (.......................0........)
 NoReturnValue: (......................0.........)
 ReturnValueVoid: (.....................0..........)
 ReturnValueInline: (....................1...........)
 ReturnValueInArray: (...................0............)
 ExceptionInArray: (..................0.............)
 Reserved: (000000000000000000..............)
 ReturnValue:
 PrimitiveTypeEnum: String (0x12)
 Data: Address received
 ArgsCount: 0 (0x0)
 MessageEnd:
 BinaryHeaderEnum: MessageEnd (0x0B)

The BinaryMethodReturn record indicates that the message content is a response to a message. The
NoArgs and the NoContext flags in the MessageEnum field indicate that there is no Output
Arguments or Call Context associated with this call. The ReturnValueInline flag in the MessageEnum
field indicates that the Return Value is part of the Method Return record. The actual value is encoded
as StringValueWithCode.

4.2 Two-Way Method Invocation Using SOAP Over HTTP

The next example shows the message trace using the SOAP transport with HTTP. In this sample, the
client invokes the SendAddress method defined in the Server Interface RemotingTest.MyServer

defined as follows.

 namespace RemotingTest
 {
 interface MyServer
 {
 Address SendAddress(Array a, int I);
 }

 class Address
 {
 String Street;
 String City;
 String State;
 String Zip;
 }
 }

The client invokes the method with the following values for the parameters:

a = new int[-1..8][4..5],

I = 42

The remoting server is a Single-Call SAO at "http://RemotingMachine:8080/MyServer.soap".

77 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The HTTP headers of the request message are shown as follows.

 POST /MyServer.soap HTTP/1.1
 User-Agent: Mozilla/4.0+(compatible; MSIE 6.0; Windows 6.0.6000.0; MS .NET
 Remoting; MS .NET CLR 2.0.50727.1318)
 Content-Type: text/xml; charset="utf-8"
 SOAPAction: "http://schemas.microsoft.com/clr/nsassem/
 RemotingTest.MyServer/RemotingTest#DoIt"
 Host: localhost:8080
 Content-Length: 1582
 Expect: 100-continue
 Connection: Keep-Alive

The request is an HTTP/1.1 request. The HTTP headers are set as specified in the Sending Request
subsection of SOAP on HTTP. The "MyServer.soap" is the Server Object URI. The
"http://schemas.microsoft.com/clr/nsassem/RemotingTest.MyServer/RemotingTest#DoIt" is the
SOAPAction created from the name of the Remote Method and the Server Type name as specified in

SOAP Action String (section 2.2.4.1).

The body of the message is as follows.

 <SOAP-ENV:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <SOAP-ENV:Header>
 <h3:__MethodSignature xsi:type="SOAP-ENC:methodSignature"
 SOAP-ENC:root="1"
 xmlns:h3="http://schemas.microsoft.com/clr/soap/messageProperties"
 xmlns:a1="http://schemas.microsoft.com/clr/ns/System">
 a1:Array xsd:int
 </h3:__MethodSignature>
 <h3:__CallContext href="#ref-4" SOAP-ENC:root="1"
 xmlns:h3="http://schemas.microsoft.com/clr/soap/messageProperties" />
 <a2:LogicalCallContext id="ref-4"
 xmlns:a2="http://schemas.microsoft.com/clr/ns/System.Runtime.Remoting.Messaging">
 <Hdr1 id="ref-5">HeaderValue</Hdr1>
 </a2:LogicalCallContext>
 </SOAP-ENV:Header>

 <SOAP-ENV:Body>
 <i6:DoIt id="ref-1"
 xmlns:i6="http://schemas.microsoft.com/clr/nsassem/RemotingTest.MyServer/RemotingTest">

 <i>42</i>
 </i6:DoIt>
 <SOAP-ENC:Array id="ref-7"
 SOAP-ENC:arrayType="xsd:int[10,2]" SOAP-ENC:offset="[-1,4]">
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>

78 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 </SOAP-ENC:Array>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

The message is a SOAP envelope. There are two SOAP headers: MethodSignature and CallContext.
The MethodSignature header contains the string "a1:Array xsd:int", which is a list of qualified names
as specified in Mapping Remoting Data Model to SOAP Format (section 3.1.5.2), subsection Mapping
Remote Method Invocation (section 3.1.5.2.1). The CallContext header contains a single name-value
pair encoded as specified in Call Context SOAP Header (section 2.2.4.5). The name is "Hdr1" and the
value is "HeaderValue". The SOAP body consists of a single element called "DoIt" from the

"http://schemas.microsoft.com/clr/nsassem/RemotingTest.MyServer/RemotingTest" namespace. The
local name and the XML namespace of this element are encoded as specified in the Windows behavior
of Method Name Encoding (section 2.2.4.3). The Arguments "a" and "I" are represented by the two
child elements of DoIt. Argument "I" is a simple value (42). Argument "a" is a two-dimensional Array
with the dimension of the first Array spanning from -1 to 8 (10 items) and the second Array spanning
from 4 to 5 (2 items). The 20 items of the Array are encoded inside the Array element.

The server returns an instance of the Address Class as Return Value as follows:

Address.Street = "One Microsoft Way",

Address.City = "Redmond",

Address.State = "WA"

Address.Zip = "98054".

The HTTP headers of the reply message are shown as follows. The reply message is encoded as
specified in the Sending Reply subsection under SOAP on HTTP (section 2.1.3.1). The StatusCode is

200. The Content-Type is text/xml;charset="utf-8" which is the SOAP Format Identifier.

 Version=1.1, Status-Code=200, Reason-Phrase=OK.
 Content-Length: 1497
 Content-Type: text/xml; charset="utf-8"
 Server: MS .NET Remoting, MS .NET CLR 2.0.50727.1318

The HTTP body of the reply message is given as follows. The body is a SOAP Envelope. The reply
echoes the CallContext and MethodSignature headers. The SOAP body of the reply message contains a

single element called DoItResponse. It is encoded as specified in the Windows behavior of Method
Name Encoding (section 2.2.4.3). The element contains one child element called "return" that contains

a reference to the Return Value. The Return Value is serialized under the "Address" element.

 <SOAP-ENV:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

79 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <SOAP-ENV:Header>
 <h3:__MethodSignature xsi:type="SOAP-ENC:methodSignature"
 SOAP-ENC:root="1"
 xmlns:h3="http://schemas.microsoft.com/clr/soap/messageProperties"
 xmlns:a1="http://schemas.microsoft.com/clr/ns/System">
 a1:Array xsd:int
 </h3:__MethodSignature>
 <h3:__CallContext href="#ref-4"
 xmlns:h3="http://schemas.microsoft.com/clr/soap/messageProperties"
 SOAP-ENC:root="1"/>
 <a2:LogicalCallContext id="ref-4"
 xmlns:a2="http://schemas.microsoft.com/clr/ns/System.Runtime.Remoting.
 Messaging">
 <Hdr1 id="ref-5">HeaderValue</Hdr1>
 </a2:LogicalCallContext>
 </SOAP-ENV:Header>

 <SOAP-ENV:Body>
 <i6:DoItResponse id="ref-1"
 xmlns:i6="http://schemas.microsoft.com/clr/nsassem/RemotingTest.MyServer/
 RemotingTest">
 <return href="#ref-8"/>
 </i6:DoItResponse>
 <a3:Address id="ref-8" xmlns:a3="http://schemas.microsoft.com/clr/
 nsassem/RemotingTest/RemotingTest%2C%20Version%3D1.0.0.0%2C%20Culture%
 3Dneutral%2C%20PublicKeyToken%3Dnull">
 <Street id="ref-9">One Microsoft Way</Street>
 <City id="ref-10">Redmond</City>
 <State id="ref-11">WA</State>
 <Zip id="ref-12">98052</Zip>
 </a3:Address>.
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

4.3 Faults in SOAP Over HTTP

If the Remoting Method implementation of "DoIt" throws an Exception, then it is returned to the client

as a SOAP fault. The HTTP headers of the reply message are shown in the following code example.
The reply message is encoded as specified in Sending Reply (section 2.1.3.1.2.2) under SOAP on
HTTP (section 2.1.3.1). The Status-Code is 500. The Content-Type is text/xml;charset="utf-8" which
is the SOAP Format Identifier.

 Version=1.1, Status-Code=500, Reason-Phrase=Internal Server Error.Content-Length: 2312
 Content-Type: text/xml; charset="utf-8"
 Server: MS .NET Remoting, MS .NET CLR 2.0.50727.1318

The HTTP body of the reply message is given in the following sample. The body is a SOAP Envelope.
The reply echoes the CallContext and MethodSignature headers. The SOAP body of the reply message
contains the SOAP Fault element. It is encoded as specified in Mapping Exception (section 3.1.5.2.11).

The faultcode value of SOAP-ENV:Server conveys the fault is on the server side. The faultstring
contains the Exception message thrown by the application. The detail value consists of the serialized

instance of the Exception. The other elements—exceptionType, message, and stackTrace—have null
values. The structure of the serialized Exception message can be found in
SystemException (section 2.2.2.9).

 <SOAP-ENV:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"

80 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <SOAP-ENV:Header>
 <h4:__CallContext href="#ref-3"
 xmlns:h4="http://schemas.microsoft.com/clr/soap/
 messageProperties"
 SOAP-ENC:root="1"/>
 <a1:LogicalCallContext id="ref-3"
 xmlns:a1="http://schemas.microsoft.com/clr/ns/System.Runtime.
 Remoting.Messaging">
 <Hdr1 id="ref-5">HeaderValue</Hdr1>
 </a1:LogicalCallContext>
 </SOAP-ENV:Header>

 <SOAP-ENV:Body>
 <SOAP-ENV:Fault id="ref-1">
 <faultcode id="ref-6">SOAP-ENV:Server</faultcode>
 <faultstring id="ref-7">
 **** System.Exception - Invalid Arguments
 </faultstring>
 <detail xsi:type="a2:ServerFault"
 xmlns:a2="http://schemas.microsoft.com/clr/ns/System.Runtime.
 Serialization.Formatters">
 <exceptionType xsi:null="1"/>
 <message xsi:null="1"/>
 <stackTrace xsi:null="1"/>
 <exception href="#ref-8"/>
 </detail>
 </SOAP-ENV:Fault>
 <a3:Exception id="ref-8"
 xmlns:a3="http://schemas.microsoft.com/clr/ns/System">
 <ClassName id="ref-9">System.Exception</ClassName>
 <Message id="ref-10">Invalid Arguments</Message>
 <InnerException xsi:null="1"/>
 <HelpURL xsi:null="1"/>
 <StackTraceString id="ref-11">
 at RemotingTest.MyServer.DoIt(Array a, Int32 I) in
 C:\temp\RemotingTest\RemotingSinkTest\RemotingTest\Program.cs:line 245
 at System.Runtime.Remoting.Messaging.StackBuilderSink.
 _PrivateProcessMessage(IntPtr md, Object[] args, Object server,
 Int32 methodPtr, Boolean fExecuteInContext, Object[] outArgs)
 at System.Runtime.Remoting.Messaging.StackBuilderSink.
 SyncProcessMessage(IMessage msg, Int32 methodPtr, Boolean
 fExecuteInContext)
 </StackTraceString>
 <RemoteStackTraceString xsi:null="1"/>
 <RemoteStackIndex>0</RemoteStackIndex>
 <ExceptionMethod id="ref-12">8.DoIt.RemotingTest,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null.RemotingTest.
 MyServer.RemotingTest.Method1 DoIt(System.Array, Int32)</ExceptionMethod>
 <HResult>-2146233079</HResult>
 <Source id="ref-13">RemotingTest</Source>
 </a3:Exception>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

4.4 One-Way Method Invocation Using SOAP Over TCP

The SOAP envelope is constructed in the same way as SOAP over HTTP. However, a TCP message
frame is used as specified in the Sending Request subsection under the SOAP on TCP section.

The TCP message frame for a One-Way Method with SOAP payload is as follows.

 0000 2E 4E 45 54 01 00 01 00 00 00 52 02 00 00 04 00 .NET......R.....

 0010 01 01 22 00 00 00 74 63 70 3A 2F 2F 6D 61 68 65 .."...tcp://mahe

 0020 73 68 64 65 76 32 3A 38 30 38 30 2F 4D 79 53 65 shdev2:8080/MySe

81 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 0030 72 76 65 72 2E 72 65 6D 06 00 01 01 19 00 00 00 rver.rem........

 0040 74 65 78 74 2F 78 6D 6C 3B 20 63 68 61 72 73 65 text/xml; charse

 0050 74 3D 22 75 74 66 2D 38 22 01 00 01 0A 00 00 00 t="utf-8".......

 0060 53 4F 41 50 41 63 74 69 6F 6E 01 64 00 00 00 22 SOAPAction.d..."

 0070 68 74 74 70 3A 2F 2F 73 63 68 65 6D 61 73 2E 6D http://schemas.m

 0080 69 63 72 6F 73 6F 66 74 2E 63 6F 6D 2F 63 6C 72 icrosoft.com/clr

 0090 2F 6E 73 61 73 73 65 6D 2F 44 4F 4A 52 65 6D 6F /nsassem/DOJRemo

 00A0 74 69 6E 67 4D 65 74 61 64 61 74 61 2E 4D 79 53 tingMetadata.MyS

 00B0 65 72 76 65 72 2F 44 4F 4A 52 65 6D 6F 74 69 6E erver/DOJRemotin

 00C0 67 4D 65 74 61 64 61 74 61 23 53 61 79 48 65 6C gMetadata#SayHel

 00D0 6C 6F 22 00 00 lo"..

The interpretation of the preceding trace is as follows.

 ProtocolIdentifier: 0x54454E2E
 MajorVersion: 1 (0x1)
 MinorVersion: 0 (0x0)
 OperationType: OneWay (0x01)
 ContentLength
 ContentDistribution : Not Chunked (0x01)
 ContentLength: 594 (0x252)
 Header 1
 RequestUriHeader
 HeaderToken : RequestUri (0x04)
 DataType : CountedString (0x01)
 UriValue: tcp://maheshdev2:8080/MyServer.rem
 Header 2:
 ContentTypeHeader
 HeaderToken: ContentType (0x06)
 DataType : CountedString (0x01)
 ContentTypeValue : text/xml; charset="utf-8"
 Header 3:
 Custom Header
 StringEncoding: UTF8 (0x01)
 Name: SOAPAction
 StringEncoding: UTF8 (0x01)
 Value: "http://schemas.microsoft.com/clr/nsassem/
 DOJRemotingMetadata.MyServer/
 DOJRemotingMetadata#SayHello"
 Header 3:
 EndHeader:
 HeaderToken: EndOfHeaders(0x00)

The key field to note for a One-Way Method request is the OperationType field. It contains a value of
1 indicating the request as One-Way. Because the payload is SOAP, the content-type is text/xml and
the message frame has a custom header for SOAPAction.

4.5 One-Way Method Invocation Using HTTP-Binary

The binary message content of HTTP with binary is constructed the same way as TCP with binary as
shown in the Two-Way Method Invocation Using TCP-Binary section. However, the message frame is
made of HTTP headers as specified in the Sending Request subsection under the HTTP Transport

section.

The HTTP headers for a One-Way Method with Binary payload is shown as follows.

 POST /MyServer.soap HTTP/1.1
 User-Agent: Mozilla/4.0+(compatible; MSIE 6.0; Windows 6.0.6000.0;
 MS .NET Remoting; MS .NET CLR 2.0.50727.1318)

82 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Content-Type: application/octet-stream
 Host: localhost:8080
 Content-Length: 607
 Expect: 100-continue
 Connection: Keep-Alive

The HTTP request header "Content-Type" contains "application/octet-stream" indicating that the
payload is binary. For HTTP there is no field in the request headers to indicate that the request is One-
Way.

The server returns an HTTP response with a Status-Code of 202, as follows.

 Version=1.1, Status-Code=202, Reason-Phrase=Accepted.
 Content-Length: 0
 Server: MS .NET Remoting, MS .NET CLR 2.0.50727.1318

83 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

5.1 Security Considerations for Implementers

As specified in [MS-NRBF], the .NET Remoting Binary Format has constructs that could lead to security

attacks. Such attacks are also possible in the SOAP encoding, where the Array sizes can be specified
in the wire. To mitigate these attacks, it is recommended that implementers consider building
implementations that use or encourage the use of HTTPS and that enforce use of HTTP authentication
or TCP with authentication and encryption (as specified in [MS-NNS]). Alternatively, an
implementation can allow the higher layer to configure an upper limit for the size.

The .NET Remoting Protocol allows Server Objects to be marshaled transparently when a graph of

Data Values containing a Server Object is sent across. This inadvertent exposing of new service
endpoints can result in security issues. To mitigate such attacks, it is recommended that implementers
consider building implementations that require explicit opt-in by the application to enable the
transparent marshaling.

De-serialization results in the creation of an instance of a Remoting Type whose information is
provided in the message content. It might be unsafe to create an instance of certain Remoting Types.
It is recommended that an implementation protect against attacks in which the message content

includes unsafe Remoting Types. Such attacks can be mitigated by authentication. Alternatively, an
implementation can allow the higher layer to configure a list of Remoting Types in an implementation-
specific way and disallow de-serialization of any Remoting Type that is not in the list.

5.2 Index of Security Parameters

 Security parameter Section

TCP authentication TCP Transport (section 2.1.1)

HTTP authentication HTTP Transport (section 2.1.2)

HTTPS HTTP Transport (section 2.1.2)

%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
%5bMS-NNS%5d.pdf#Section_93df08eba6c44dff81c3519cf7236df4

84 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

This document specifies version-specific details in the Microsoft .NET Framework. The following
versions of .NET Framework are available in the following released Windows product or as
supplemental software, see [MS-NETOD] section 4.

 Microsoft .NET Framework 1.0

 Microsoft .NET Framework 2.0

 Microsoft .NET Framework 3.0

 Microsoft .NET Framework 3.5

 Microsoft .NET Framework 4.0

 Microsoft .NET Framework 4.5

 Microsoft .NET Framework 4.6

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or

SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 1.3.2: Windows allows applications to plug in extensions called Envoy Sinks that are run

when a Remote Method is invoked. The actual interface of the extension is beyond the scope of this
protocol. Windows uses the Envoy Sink Information to send a list of Envoy Sinks from the server to
the client to carry out any client-side behavior such as validating parameters. If there is no
application-provided data, this field is a NullObject in Windows.

<2> Section 2.1.1.1.1: Windows maintains a pool of connections for a given ServerObject (identified
by its address). Each pool has a receive time-out and a connection time-out. Connections are
preserved until the connection time-out expires. A new connection is created if there are no cached
connections or if the connection is configured to do SPNEGO authentication.

<3> Section 2.1.1.1.1: Windows never writes chunked messages. However, it can consume chunked
messages.

<4> Section 2.1.1.1.1: Windows with .NET Framework 1.0 or Microsoft .NET Framework 1.1
retransmits a message once upon failure. Windows with .NET Framework 2.0, .NET Framework 3.0,
.NET Framework 3.5, .NET Framework 4.0, or .NET Framework 4.5 allows users to configure the

number of retransmissions. The default count is 1.

<5> Section 2.1.1.1.2: A Receive time-out can be configured by the higher layer.

<6> Section 2.1.1.2.1: If the serialization format is SOAP, then the SOAPAction in the CustomHeader
of a request message is processed as specified in the first Windows behavior note in section 3.2.5.1.4.

<7> Section 2.1.1.2.2: Windows never writes chunked messages. However, it can consume chunked
messages.

http://go.microsoft.com/fwlink/?LinkId=627609

85 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<8> Section 2.1.2.1.1: In Windows the client always sends request in HTTP/1.1. The request has the
following request headers set:

 Host request header is set to the host and the port number of the server.

 Expect request header is set to 100-continue.

 Connection request header is set to Keep-Alive.

<9> Section 2.1.2.1.1: IPv6 address is supported only on .NET Framework 2.0, .NET Framework 3.0,
.NET Framework 3.5, .NET Framework 4.0, and .NET Framework 4.5.

<10> Section 2.1.2.1.1: Windows sets the User-Agent to "Mozilla/4.0+(compatible; MSIE 6.0;
Windows <Windows-Ver>; MS .NET Remoting; MS .NET CLR <.NET-Ver>)" where "Windows-Ver"
refers to the version of Windows and ".NET-Ver" refers to the version of .NET Framework.

<11> Section 2.1.2.1.1: Windows never sends messages by using chunked transfer coding.

<12> Section 2.1.2.1.2: The response time-out can be configured by the higher layer.

<13> Section 2.1.2.1.2: Windows supports HTTP redirection (status code specified in [RFC2616]
section 10.3). The higher layer can configure to disable HTTP redirection. If disabled, the higher layer
is notified of the error. The informational codes (the status code specified in section [RFC2616] 10.1)
are handled as specified in [RFC2616] and are not propagated to the higher layer.

<14> Section 2.1.3.1.1.1: Windows sets the User-Agent to "Mozilla/4.0+(compatible; MSIE 6.0;

Windows <Windows-Ver>; MS .NET Remoting; MS .NET CLR <.NET-Ver>)" where "Windows-Ver"
refers to the version of Windows and ".NET-Ver" refers to the version of .NET Framework.

<15> Section 2.1.3.1.1.2: Windows supports HTTP redirection (status code specified in [RFC2616]
section 10.3). The higher layer can configure to disable HTTP redirection. If disabled, the higher layer
is notified of the error. The informational codes (status code specified in [RFC2616] section 10.1) are
handled as specified in [RFC2616] and are not propagated to the higher layer.

<16> Section 2.2.1.2: TypeParameterList is always empty in .NET Framework 1.0 and .NET

Framework 1.1.

<17> Section 2.2.2.7: This field is localized in Windows.

<18> Section 2.2.2.7: The Data field is present only in .NET Framework 2.0, .NET Framework 3.0,
.NET Framework 3.5, .NET Framework 4.0, and .NET Framework 4.5.

<19> Section 2.2.2.12: A UnityType value of 8 is valid only in .NET Framework 2.0, .NET Framework
3.0, .NET Framework 3.5, .NET Framework 4.0, and .NET Framework 4.5.

<20> Section 2.2.2.13: The GenericArguments field is present only in .NET Framework 2.0, .NET

Framework 3.0, .NET Framework 3.5, .NET Framework 4.0, and .NET Framework 4.5.

<21> Section 2.2.2.15: Windows names the target Member as specified by the following format.

 Format for target Member name

TargetMemberName = 'Target' Index

Index = 1*('0'-'9')

For a given DelegateSerializationHolder, the Index value starts from 0 and increases by 1 for each
target Member. The Index value matches the index of the DelegateEntry for the Remote Method in the
linked list.

http://go.microsoft.com/fwlink/?LinkId=90372

86 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<22> Section 2.2.2.15: The Method Member is present only in .NET Framework 2.0, .NET Framework
3.0, .NET Framework 3.5, .NET Framework 4.0, and .NET Framework 4.5.

<23> Section 2.2.3.2.2: IPv6 addresses are supported only on .NET Framework 2.0, .NET Framework
3.0, .NET Framework 3.5, .NET Framework 4.0, and .NET Framework 4.5.

<24> Section 2.2.3.3: Windows never writes chunked messages. However, it can consume chunked
messages.

<25> Section 2.2.4.1: Windows allows the application to associate a SOAP action with a Remote
Method. In the absence of such an association, Windows derives SOAPAction from the Remote Method
name by concatenating the XML namespace of the Server Type and the Remote Method name
separated by a number sign ('#').

SoapAction = XML namespace of Server Type '#' Remote Method Name where XML namespace of a

Server Type is constructed as specified in section Remoting Type Name Encoding.

<26> Section 2.2.4.2: Windows allows the application to associate an XML namespace and a local
name with a Remoting Type. In the absence of such an association, Windows derives the qualified

name from the Remoting Type name and the Library name.

If the Library name of the Remoting Type is "mscorlib", then the XML namespace is defined as follows.

XML namespace definition

SystemNamespace = CLRNSPREFIX '/' ClrNamespace(TypeName)

CLRNSPREFIX = 'http://schemas.microsoft.com/clr/ns'

ClrNamespace(TypeName) = ClrNamespace nonterminal token in TypeName in the Common Patterns
section

If the Library name of the Remoting Type is not "mscorlib", then the XML namespace is defined by
using the ABNF syntax specified in [RFC4234] as follows.

XML namespace definition

NonSystemNamespace = CLRNSASSEMPREFIX '/' ClrNamespace(TypeName) '/' UriEncoded(
LibraryName)

CLRNSASSEMPREFIX = 'http://schemas.microsoft.com/clr/nsassem'

ClrNamespace(TypeName) = ClrNamespace nonterminal token in TypeName in the Common Patterns
section

UriEncoded(LibraryName) = LibraryName as defined in the Common Patterns section with characters
' ' (SPACE) replaced with '%20', '=' replaced with '%3D' and ',' replaced
with '%2C'

If the application did not explicitly define it, the local name is defined by the LocalName nonterminal
token in TypeName in the Common Patterns section.

<27> Section 2.2.4.3: Windows allows the application to associate an XML namespace and a local
name for the request and response. In the absence of such an association, Windows derives the XML
namespace from the Server Type name and the Library name by using the ABNF syntax defined in
[RFC4234], specified as follows.

How Windows derives an XML namespace from the Server Type name and the Library name

MethodNamespace = CLRNSASSEMPREFIX '/' ClrNamespace(TypeName) '/' LibraryIdentifier(

http://go.microsoft.com/fwlink/?LinkId=90462

87 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

How Windows derives an XML namespace from the Server Type name and the Library name

LibraryName) '/' LocalName() '/' LocalName(TypeName)

CLRNSASSEMPREFIX = 'http://schemas.microsoft.com/clr/nsassem'

ClrNamespace(TypeName) = ClrNamespace nonterminal token in TypeName in the Common Patterns
section

LibraryIdentifier (
LibraryName)

= The LibraryIdentifier nonterminal token in LibraryName as defined in the
Common Patterns section

LocalName(TypeName) = The LocalName nonterminal token in TypeName in the Common Patterns
section

The LocalName of the request is the same as the name of the Remote Method.

The LocalName of the response is the name of the request appended with the string "Response".

<28> Section 2.2.5: TypeArgumentList is always empty in .NET Framework version 1.0 and .NET
Framework version 1.1.

<29> Section 3.1.1: In Windows a Library is called an assembly.

<30> Section 3.1.1: The name of the System Library in Windows is "mscorlib".

<31> Section 3.1.1: In .NET Framework 1.0 and .NET Framework 1.1, the DateTime value supports
only Unspecified. UTC and Local are supported only in .NET Framework 2.0, .NET Framework 3.0, .NET

Framework 3.5, .NET Framework 4.0, and .NET Framework 4.5.

<32> Section 3.1.1: In Windows, the Generic Remote Method is supported only on .NET Framework
2.0, .NET Framework 3.0, .NET Framework 3.5, .NET Framework 4.0, and .NET Framework 4.5.

<33> Section 3.1.5.1.1: Windows allows extensions of its implementation to participate in the
serialization of a message. It allows the extensions to provide a collection of DictionaryEntry items

that are serialized as Message Properties.

<34> Section 3.1.5.1.2: Windows allows extensions of its implementation to participate in the

serialization of a message. It allows the extensions to provide a collection of DictionaryEntry items
that are serialized as Message Properties.

<35> Section 3.1.5.1.6: Windows always writes using the ClassWithMembersAndTypes for Classes
that are not in the System Library. Windows can read all the versions. Windows uses the ClassWithId
record to write subsequent instances of a Class unless the Members that are serialized vary from one
instance to another; in that case, Windows uses the Class records with Member information.

<36> Section 3.1.5.1.6: Windows always writes using the SystemClassWithMembersAndTypes for
classes that are in the System Library and ClassWithMembersAndTypes for Classes that are not in the
System Library. Windows can read all the versions. Windows uses the ClassWithId record to write
subsequent instances of a Class unless the Members that are serialized vary from one instance to
another; in that case, Windows uses the Class records with Member information.

<37> Section 3.1.5.1.7: Windows always writes:

 ArraySingleString for single-dimensional string Arrays with a lower bound of 0.

 ArraySinglePrimitive for single-dimensional primitive Arrays with a lower bound of 0.

 ArraySingleObject for single-dimensional System.Object Arrays with a lower bound of 0.

<38> Section 3.1.5.2.1: Windows allows extensions of its implementation to participate in the
serialization of a message. Windows allows the extensions to provide a collection of name-value pairs.

88 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The name is written as the local name of the header element. The namespace of the header element
is "http://schemas.microsoft.com/clr/soap/messageProperties". The value is encoded as specified in

Mapping Remoting Data Model to SOAP Format (section 3.1.5.2).

<39> Section 3.1.5.2.2: Windows allows extensions of its implementation to participate in the

serialization of a message. It allows the extensions to provide a collection of name-value pairs. The
name is written as the local name of the header element. The namespace of the header element is
"http://schemas.microsoft.com/clr/soap/messageProperties". The value is encoded as specified in the
Data Values Encoding section.

<40> Section 3.1.5.2.2: Windows gets the name of the response struct (child of the SOAP Body
element in the response message) by appending the name of the request struct (child of the SOAP
Body element in the request message) with the string "Response". The name of the Return Value

accessor in Windows is "return".

<41> Section 3.1.5.2.11: Windows server implementation never writes the faultactor field. However
it can consume a SOAP fault message with the faultactor field present.

<42> Section 3.1.5.3: Windows chooses a Channel URI based on the registered schemes specified in
Creating Proxy from Request URI and Server Type (section 3.3.4.1.1). It picks the first Channel URI
whose scheme is registered in the client Channel Table.

<43> Section 3.2.5.1.4: The Windows mechanism for binding to a Remote Method is as follows:

If there is no method in the Server Type with the Remote Method name that was de-serialized, then a
RemotingException is constructed as specified in the Constructing a Remoting
Exception (section 3.2.5.1.7.2) section and the Exception is sent back to the client.

If there is more than one Remote Method in the Server Type with the given name, Windows uses the
Method Signature de-serialized to disambiguate. For each of the matching Remote Methods, the
Remoting Types in the Method Signature are checked against the Remoting Type of the Remote

Method's Argument. If all the Remoting Types match, then the Remote Method is chosen. If no
Remote Method matches the Method Signature or if there are multiple matches and no Method
Signature, then a RemotingException is constructed as specified in the Constructing a Remoting

Exception (section 3.2.5.1.7.2) section, and the Exception is sent back to the client.

When using the SOAP protocol, if the Message Frame has a SOAP-Action header then the SOAP-Action
is compared with the SOAP-Action inferred for the Remote Method as specified in the SOAP Action
String (section 2.2.4.1) section. If they do not match, then a RemotingException is constructed as

specified in the Constructing a Remoting Exception (section 3.2.5.1.7.2) section and the Exception is
sent back to the client.

<44> Section 3.2.5.1.4: The Server Object is a CLR object whose type is Server Type and the Remote
Method maps to a method in the Class. The Array of Data Values is passed as parameters to the
method. The CallContext is passed as thread-specific CallContext values in the CLR.

<45> Section 3.2.5.1.5.3: Windows generates unique Server Object URIs as shown in the following

table.

 Format of the dynamically generated Server Object URI

 ServerObjectURI = GuidPart '/ 'BytesPart '_' SequenceId '.rem'

 GuidPart = 8*8(HEXDIGIT) 3*3 ('_' 4*4(HEXDIGHT)) '_' 12*12(HEXDIGIT)

 BytesPart = 24 * 24 (DIGIT / ('A'-'Z') / ('a'-'z') / '+' / '_')

 SequenceId = 1*10(DIGIT)

89 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The GuidPart is a string representation of a GUID with '-' replaced by '_'. Windows uses the same
GUID for all the Server Object URIs hosted in an AppDomain. The BytePart consists of 18 randomly

generated bytes that are Base64 encoded. The bytes are generated for every Marshaled Server
Object. SequenceId is an integer ranging from -2,147,483,648 to 2,147,483,647. It starts from 1 and

is incremented for every Marshaled Server Object. Incrementing SequenceId value from
2,147,483,647 wraps it to be -2,147,483,648.

<46> Section 3.2.5.1.7.1: Windows populates the Message field with a localized text message
describing the error. The StackTraceString contains text describing the call stack from where the
Exception is thrown. The RemoteStackTraceString is NullObject. RemoteStackIndex is 0.
ExceptionMethod contains text that lists the Method name, Library name and Remoting Type name.
Source contains text representing the name of the Application.

<47> Section 3.2.5.1.7.2: Windows populates the Message field with a localized text message
describing the error. The StackTraceString contains text describing the call stack from where the
Exception is thrown. The RemoteStackTraceString is NullObject. RemoteStackIndex is 0.
ExceptionMethod contains text that lists the Method Name, Library name, and Remoting Type name.
Source contains text representing the name of the Application.

<48> Section 3.3.4.2.1: Windows constructs a MethodSignature when there is more than one method

with the same name in a Server Type. In this case the MethodSignature is used to disambiguate the
methods.

90 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

91 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Index

.

.NET Remoting Description Notation message 46

A

Abstract data model
 client (section 3.1.1 49, section 3.3.1 67)
 server (section 3.1.1 49, section 3.2.1 61)
Applicability 19

B

Binding 17
Binding to Server Object 64
Byte 37

C

Call Context SOAP header 46
CallContextRemotingData 35
Capability negotiation 19
Change tracking 90
ChannelDataStore 29
ChannelInfo 29
ChunkDelimiter packet 39
Chunked 36
Chunked_Message_Content packet 40
Client
 abstract data model (section 3.1.1 49, section

3.3.1 67)
 higher-layer triggered events (section 3.1.4 53,

section 3.3.4 67)
 initialization (section 3.1.3 53, section 3.3.3 67)
 local events (section 3.1.7 61, section 3.3.7 70)
 message processing (section 3.1.5 54, section

3.3.5 70)
 other local events 70
 sequencing rules (section 3.1.5 54, section 3.3.5

70)
 timer events (section 3.1.6 61, section 3.3.6 70)
 timers (section 3.1.2 53, section 3.3.2 67)
CloseConnection 37
CloseConnectionHeader packet 44
Common Patterns message 25
Common Types message 27
Completing the Invocation 70
Constructing
 Remoting Exception 66
 SerializationException 66
ContentType 37

ContentTypeHeader packet 44
CountedString 37
CountedString packet 38
Creating Proxy from Request URI and Server Type

67
Custom 37
CustomHeader packet 42

D

Data model - abstract

 client (section 3.1.1 49, section 3.3.1 67)
 server (section 3.1.1 49, section 3.2.1 61)
De-Serializing the Message Content 64
De-Serializing the Response 69
DictionaryEntry 29
Dispatching the Call 64

E

EndHeader packet 42
EndHeaders 37
EnvoyInfo 28
Error 38
Examples 71
Exception 30

F

Faults in SOAP over HTTP 79
Fields - vendor-extensible 19
Frame headers 42

G

Get SAO Proxy 67
Glossary 8

H

Higher-layer triggered events
 client (section 3.1.4 53, section 3.3.4 67)
 server (section 3.1.4 53, section 3.2.4 62)
HTTP - Binary - OneWay Method Invocation 81
HTTP transport
 client - receiving reply 22
 client - sending request 22
 overview 22
 server - receiving request 23
 server - sending reply 23

I

IdentifierName 26
Implementer - security considerations 83
Index of security parameters 83

Informative references 14
Initialization
 client (section 3.1.3 53, section 3.3.3 67)
 server (section 3.1.3 53, section 3.2.3 62)
Int32 37
Introduction 8

L

LibraryName 26
Local events
 client (section 3.1.7 61, section 3.3.7 70)
 server (section 3.1.7 61, section 3.2.7 67)

M

Mapping

92 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Array Instances (section 3.1.5.1.7 58, section
3.1.5.2.6 60)

 Class Instances (section 3.1.5.1.6 57, section
3.1.5.2.5 60)

 Enum Values (section 3.1.5.1.9 58, section
3.1.5.2.8 60)

 Exception 61
 Library Information 57
 Null Object (section 3.1.5.1.12 58, section

3.1.5.2.10 60)
 Primitive Values (section 3.1.5.1.8 58, section

3.1.5.2.7 60)
 Remote Field Get (section 3.1.5.1.3 56, section

3.1.5.2.3 60)
 Remote Field Set (section 3.1.5.1.4 56, section

3.1.5.2.4 60)
 Remote Method
 Invocation 59
 invocation reply (section 3.1.5.1.2 55, section

3.1.5.2.2 59)
 request 54
 String Values 58
Marshal Server Object 63

Marshaling Server Objects 65
Message frame structure 39
Message processing
 client (section 3.1.5 54, section 3.3.5 70)
 server (section 3.1.5 54, section 3.2.5 63)
Messages
 .NET Remoting Description Notation 46
 Common Patterns 25
 common patterns - overview 25
 Common Types 27
 common types - overview 27
 SOAP serialization format 45
 syntax - TCP
 common enumerations 36
 common types 38
 frame headers 42
 message frame structure 39
 syntax - TCP - overview 36
 TCP Message Syntax 36
 transport 20
Method name encoding 45
Method Signature SOAP Header 45

N

Normative references 13
NotChunked 36

O

ObjRef 27
OneWay Method Invocation
 HTTP - Binary 81
 SOAP over TCP 80

OneWayRequest 36
Other local events
 client 70
 server 67
Overview (synopsis) 14

P

Parameters - security index 83
Passing Server Objects 16
Preconditions 18
Prerequisites 18
Process the Message Frame 63
Product behavior 84
Proxy 67
Proxy instances 65

R

Reading the Reply 69
Receiving a message - overview 63
References 13
 informative 14
 normative 13
Register SAO ServerType 62

Relationship to other protocols 17
Remote Method Invocation
 model 15
 overview 68
Remoting Type name encoding 45
RemotingException 31
Reply 36
Request 36
Request URI 67
RequestUri 37
RequestUriHeader packet 43

S

Security
 implementer considerations 83
 parameter index 83
Sending Reply 66
Sending the Request 69
Sequencing rules
 client (section 3.1.5 54, section 3.3.5 70)
 server (section 3.1.5 54, section 3.2.5 63)
SerializationException 31
Serializing
 the Reply 65
 the request 68
 to Binary Serialization Format (section 3.2.5.1.5.1

65, section 3.3.4.2.1.1 68)
 to SOAP Serialization Format (section 3.2.5.1.5.2

65, section 3.3.4.2.1.2 68)
Server
 abstract data model (section 3.1.1 49, section

3.2.1 61)
 higher-layer triggered events (section 3.1.4 53,

section 3.2.4 62)
 initialization (section 3.1.3 53, section 3.2.3 62)
 local events (section 3.1.7 61, section 3.2.7 67)
 message processing (section 3.1.5 54, section

3.2.5 63)
 other local events 67

 sequencing rules (section 3.1.5 54, section 3.2.5
63)

 timer events (section 3.1.6 61, section 3.2.6 67)
 timers (section 3.1.2 53, section 3.2.2 62)
Server Object Instantiation 17
Server Type 67
ServerFault 35
Single_Message_Content packet 39

93 / 93

[MS-NRTP] - v20160714
.NET Remoting: Core Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SOAP action string 45
SOAP on HTTP
 client - receiving reply 24
 client - sending request 24
 overview 24
 server - receiving request 24
 server - sending reply 24
SOAP on TCP
 client - receiving reply 25
 client - sending request 25
 overview 25
 server - receiving request 25
 server - sending reply 25
SOAP over HTTP - TwoWay Method Invocation 76
SOAP over TCP - OneWay Method Invocation 80
SOAP serialization format 45
Standards assignments 19
StatusCode 37
StatusCodeHeader packet 42
StatusPhrase 37
StatusPhraseHeader packet 43
Success 38
Syntax 25

System.Type 31
SystemException 31

T

TCP 36
TCP Message Syntax message 36
TCP transport
 client - receiving reply 20
 client - sending request 20
 overview 20
 server - receiving request 21
 server - sending reply 21
TCP-Binary - TwoWay Method Invocation 71
TcpUriString 38
Timer events
 client (section 3.1.6 61, section 3.3.6 70)
 server (section 3.1.6 61, section 3.2.6 67)
Timers
 client (section 3.1.2 53, section 3.3.2 67)
 server (section 3.1.2 53, section 3.2.2 62)
Tracking changes 90
Transport 20
Triggered events - higher-layer
 client (section 3.1.4 53, section 3.3.4 67)
 server (section 3.1.4 53, section 3.2.4 62)
TwoWay Method Invocation
 SOAP over HTTP 76
 TCP-Binary 71
TypeInfo 28
TypeName 26

U

Uint16 37
Unicode 37
UnitySerializationHolder 32
UnknownHeader packet 44
Unmarshal Server Object 63
UTF8 37

V

Vendor-extensible fields 19
Versioning 19
Void 37

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Remote Method Invocation Model
	1.3.2 Passing Server Objects
	1.3.3 Server Object Instantiation and Binding

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 TCP Transport
	2.1.1.1 Client Details
	2.1.1.1.1 Sending Request
	2.1.1.1.2 Receiving Reply

	2.1.1.2 Server Details
	2.1.1.2.1 Receiving Request
	2.1.1.2.2 Sending Reply

	2.1.2 HTTP Transport
	2.1.2.1 Client Details
	2.1.2.1.1 Sending Request
	2.1.2.1.2 Receiving Reply

	2.1.2.2 Server Details
	2.1.2.2.1 Receiving Request
	2.1.2.2.2 Sending Reply

	2.1.3 SOAP Transport
	2.1.3.1 SOAP on HTTP
	2.1.3.1.1 Client Details
	2.1.3.1.1.1 Sending Request
	2.1.3.1.1.2 Receiving Reply

	2.1.3.1.2 Server Details
	2.1.3.1.2.1 Receiving Request
	2.1.3.1.2.2 Sending Reply

	2.1.3.2 SOAP on TCP
	2.1.3.2.1 Client Details
	2.1.3.2.1.1 Sending Request
	2.1.3.2.1.2 Receiving Reply

	2.1.3.2.2 Server Details
	2.1.3.2.2.1 Receiving Request
	2.1.3.2.2.2 Sending Reply

	2.2 Message Syntax
	2.2.1 Common Patterns
	2.2.1.1 IdentifierName
	2.2.1.2 RemotingTypeName
	2.2.1.3 LibraryName
	2.2.1.4 Method Signature

	2.2.2 Common Types
	2.2.2.1 ObjRef
	2.2.2.2 TypeInfo
	2.2.2.3 EnvoyInfo
	2.2.2.4 ChannelInfo
	2.2.2.5 ChannelDataStore
	2.2.2.6 DictionaryEntry
	2.2.2.7 System.Exception
	2.2.2.8 SystemException
	2.2.2.9 RemotingException
	2.2.2.10 SerializationException
	2.2.2.11 System.Type
	2.2.2.12 UnitySerializationHolder
	2.2.2.13 MemberInfoSerializationHolder
	2.2.2.14 DelegateEntry
	2.2.2.15 DelegateSerializationHolder
	2.2.2.16 CallContextRemotingData
	2.2.2.17 ServerFault

	2.2.3 TCP Message Syntax
	2.2.3.1 Common Enumerations
	2.2.3.1.1 OperationType
	2.2.3.1.2 ContentDistribution
	2.2.3.1.3 HeaderToken
	2.2.3.1.4 HeaderDataFormat
	2.2.3.1.5 StringEncoding
	2.2.3.1.6 TCPStatusCode

	2.2.3.2 Common Types
	2.2.3.2.1 CountedString
	2.2.3.2.2 TcpUriString
	2.2.3.2.3 ChunkDelimiter

	2.2.3.3 Message Frame Structure
	2.2.3.3.1 Single Message Content
	2.2.3.3.2 Chunked Message Content
	2.2.3.3.3 Frame Headers
	2.2.3.3.3.1 EndHeader
	2.2.3.3.3.2 CustomHeader
	2.2.3.3.3.3 StatusCodeHeader
	2.2.3.3.3.4 StatusPhraseHeader
	2.2.3.3.3.5 RequestUriHeader
	2.2.3.3.3.6 CloseConnectionHeader
	2.2.3.3.3.7 ContentTypeHeader
	2.2.3.3.3.8 UnknownHeader

	2.2.4 SOAP Serialization Format
	2.2.4.1 SOAP Action String
	2.2.4.2 Remoting Type Name Encoding
	2.2.4.3 Method Name Encoding
	2.2.4.4 Method Signature SOAP Header
	2.2.4.5 Call Context SOAP Header

	2.2.5 .NET Remoting Description Notation

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Mapping to Binary Format
	3.1.5.1.1 Mapping Remote Method Request
	3.1.5.1.2 Mapping Remote Method Invocation Reply
	3.1.5.1.3 Mapping Remote Field Get
	3.1.5.1.4 Mapping Remote Field Set
	3.1.5.1.5 Mapping Library Information
	3.1.5.1.6 Mapping Class Instances
	3.1.5.1.7 Mapping Array Instances
	3.1.5.1.8 Mapping Primitive Values
	3.1.5.1.9 Mapping Enum Values
	3.1.5.1.10 Mapping Delegate
	3.1.5.1.11 Mapping String Values
	3.1.5.1.12 Mapping Null Object

	3.1.5.2 Mapping Remoting Data Model to SOAP Format
	3.1.5.2.1 Mapping Remote Method Invocation
	3.1.5.2.2 Mapping Remote Method Invocation Reply
	3.1.5.2.3 Mapping Remote Field Get
	3.1.5.2.4 Mapping Remote Field Set
	3.1.5.2.5 Mapping Class Instances
	3.1.5.2.6 Mapping Array Instances
	3.1.5.2.7 Mapping Primitive Values
	3.1.5.2.8 Mapping Enum Values
	3.1.5.2.9 Mapping Delegate
	3.1.5.2.10 Mapping Null Object
	3.1.5.2.11 Mapping Exception

	3.1.5.3 Resolving Object Reference

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Register SAO ServerType
	3.2.4.2 Marshal Server Object
	3.2.4.3 Unmarshal Server Object

	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Receiving a Message
	3.2.5.1.1 Process the Message Frame
	3.2.5.1.2 Binding to Server Object
	3.2.5.1.3 De-Serializing the Message Content
	3.2.5.1.4 Dispatching the Call
	3.2.5.1.5 Serializing the Reply
	3.2.5.1.5.1 Serializing to Binary Serialization Format
	3.2.5.1.5.2 Serializing to SOAP Serialization Format
	3.2.5.1.5.3 Marshaling Server Objects and Proxy Instances

	3.2.5.1.6 Sending Reply
	3.2.5.1.7 Constructing Exception Messages
	3.2.5.1.7.1 Constructing SerializationException
	3.2.5.1.7.2 Constructing a Remoting Exception

	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Client Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.4.1 Get SAO Proxy
	3.3.4.1.1 Creating Proxy from Request URI and Server Type

	3.3.4.2 Remote Method Invocation
	3.3.4.2.1 Serializing the Request
	3.3.4.2.1.1 Serializing to Binary Serialization Format
	3.3.4.2.1.2 Serializing to SOAP Serialization Format

	3.3.4.2.2 Sending the Request
	3.3.4.2.3 Reading the Reply
	3.3.4.2.4 De-Serializing the Response
	3.3.4.2.5 Completing the Invocation

	3.3.5 Message Processing Events and Sequencing Rules
	3.3.6 Timer Events
	3.3.7 Other Local Events

	4 Protocol Examples
	4.1 Two-Way Method Invocation Using TCP-Binary
	4.2 Two-Way Method Invocation Using SOAP Over HTTP
	4.3 Faults in SOAP Over HTTP
	4.4 One-Way Method Invocation Using SOAP Over TCP
	4.5 One-Way Method Invocation Using HTTP-Binary

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

