

1 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

[MS - NRPC - Diff]:

Netlogon Remote Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation (ñthis
documentationò) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter -protocol relationships and interactions.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your i mplementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.
Á Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
thi s documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promi se or the Microsoft Community Promise . If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Commun ity Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com .

Á License Programs . To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map .

Á Trademarks . The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under t hose rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, email
addresses, logos, people, place s, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are int ended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and sup port, please contact dochelp@microsoft.com .

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Revision Summary

Date
Revision
History

Revision
Class Comments

12/18/2006 0.01 New Version 0.01 release

3/2/2007 1.0 Major Version 1.0 release

4/3/2007 1.1 Minor Version 1.1 release

5/11/2007 1.2 Minor Version 1.2 release

6/1/2007 1.2.1 Editorial Changed language and formatting in the technical content.

7/3/2007 2.0 Major Technical changes were made to existing sections.

7/20/2007 2.1 Minor Made technical and editorial changes based on feedback.

8/10/2007 2.2 Minor Updated content based on feedback.

9/28/2007 2.3 Minor Made technical and editorial changes based on feedback.

10/23/2007 2.4 Minor Made technical and editorial changes based on feed back.

11/30/2007 2.5 Minor Made technical changes based on feedback.

1/25/2008 2.6 Minor Clarified the meaning of the technical content.

3/14/2008 2.7 Minor Clarified the meaning of the technical content.

5/16/2008 3.0 Major Updated and revised the technical content.

6/20/2008 4.0 Major Updated and revised the technical content.

7/25/2008 5.0 Major Updated and revised the technical content.

8/29/2008 6.0 Major Updated and revised the technical content.

10/24/2008 6.1 Minor Clarified the meaning of the technical content.

12/5/2008 7.0 Major Updated and revised the technical content.

1/16/2009 7.1 Minor Clarified the meaning of the technical content.

2/27/2009 8.0 Major Updated and revised the technical content.

4/10/2009 9.0 Major Updated and revised the technical content.

5/22/2009 9.1 Minor Clarified the meaning of the technical content.

7/2/2009 10.0 Major Updated and revised the technical content.

8/14/2009 11.0 Major Updated and revised the technical content.

9/25/2009 12.0 Major Updated and revised the technical content.

11/6/2009 13.0 Major Updated and revised the technical content.

12/18/2009 14.0 Major Updated and revised the technical content.

1/29/2010 15.0 Major Updated and revised the technical conte nt.

3/12/2010 16.0 Major Updated and revised the technical content.

3 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Date
Revision
History

Revision
Class Comments

4/23/2010 17.0 Major Updated and revised the technical content.

6/4/2010 18.0 Major Updated and revised the technical content.

7/16/2010 18.1 Minor Clarified the meaning of the technical content.

8/27/2010 19.0 Major Updated and revised the technical content.

10/8/2010 20.0 Major Updated and revised the technical content.

11/19/2010 21.0 Major Updated and revised the technical content.

1/7/2011 21.1 Minor Clarified the meaning of the technical content.

2/11/2011 21.2 Minor Clarified the meaning of the technical content.

3/25/2011 21.3 Minor Clarified the meaning of the technical content.

5/6/2011 22.0 Major Updated and revised the technical content.

6/17/2011 23.0 Major Updated and revised the technical content.

9/23/2011 23.0 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 24.0 Major Updated and revised the technical content.

3/30/2012 25.0 Major Updated and revised the technical content.

7/12/2012 26.0 Major Updated and revised the technical content.

10/25/2012 27.0 Major Updated and revised the technical content.

1/31/2013 28.0 Major Updated and revised the technical content.

8/8/2013 29.0 Major Updated and revised the technical content.

11/14/2013 30.0 Major Updated and revised the technical content.

2/13/2014 30.1 Minor Clarified the meaning of the technical content.

5/15/2014 31.0 Major Updated and revised the technical content.

6/30/ 2015 32.0 Major Significantly changed the technical content.

10/16/2015 32.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 33.0 Major Significantly changed the technical content.

6/1/2017 33.1 Minor Clarified the meaning of the technical content.

9/15/2017 34.0 Major Significantly changed the technical content.

12/1/2017 34.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/12/2018 35.0 Major Significantly changed the technical content.

9/23/2019 36.0 Major Significantly changed the technical content.

8/26/2020 37.0 Major Significantly changed the technical content.

4 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Date
Revision
History

Revision
Class Comments

4/7/2021 38.0 Major Significantly changed the technical content.

6/25/2021 39.0 Major Significantly changed the technical content.

5 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Table of Contents

1 Introduction 12
1.1 Glossary 12
1.2 References 20

1.2.1 Normative References 20
1.2.2 Informative References 21

1.3 Overview 22
1.3.1 Pass-Through Authentication 22
1.3.2 Pass-Through Authentication and Domain Trusts 23
1.3.3 Account Database Replication 25
1.3.4 Secure Channel Maintenance 25
1.3.5 Domain Trust Services 25
1.3.6 Message Protection Services 25
1.3.7 Administrative Services 25

1.3.7.1 Netlogon Operational Flow on Domain Members 26
1.3.7.2 Netlogon Operational Flow on Domain Controllers 26

1.3.8 Netlogon Structures and Methods 26
1.3.8.1 History of Netlogon 27

1.3.8.1.1 New Methods Derived from Existing Methods 27
1.3.8.1.2 Using Dummy Fields in Structures 27
1.3.8.1.3 Fields and Structures Used by Netlogon Pass - through Methods 27
1.3.8.1.4 Using Negotiated Flags 28

1.4 Relationship to Other Protocols 28
1.5 Prerequisites/Preconditions 29
1. 6 Applicability Statement 29
1.7 Versioning and Capability Negotiation 30
1.8 Vendor -Extensible Fields 30
1.9 Standards Assignments 30

2 Messag es 31
2.1 Transport 31
2.2 Common Data Types 31

2.2.1 Struct ures and Enumerated Types 31
2.2.1.1 Basic Structures 31

2.2.1.1.1 CYPHER_BLOCK 31
2.2.1.1.2 STRING 32
2.2.1.1.3 LM_OWF_PASSWORD 32
2.2.1.1.4 NT_OWF_PASSWORD 32
2.2.1.1.5 NETLOGON_AUTHENTICATOR 33

2.2.1.2 DC Location Structures 33
2.2.1.2.1 DOMAIN_CONTROLLER_INFOW 33
2. 2.1.2.2 NL_SITE_NAME_ARRAY 35
2.2.1.2.3 NL_SITE_NAME_EX_ARRAY 35
2.2.1.2.4 NL_SOCKET_ADDRESS 36

2.2.1. 2.4.1 IPv4 Address Structure 36
2.2.1.2.4.2 IPv6 Address Structure 36

2.2.1.2.5 NL_DNS_NAME_INFO 37
2.2.1.2.6 NL_DNS_NAME_INFO_ARRAY 38

2.2.1.3 Secure Channel Establishment and Maintenance Structures 39
2.2.1.3.1 NL_AUTH_MESSAGE 39
2.2.1.3.2 NL_AUTH_SIGNATURE 40
2.2.1.3.3 NL_AUTH_SHA2_SIGNATURE 41
2.2.1.3.4 NETLOGON_CREDENTIAL 42
2.2.1.3.5 NETLOGON_LSA_POLICY_INFO 43
2.2.1.3.6 NETLOGON_WORKSTATION_INFO 43
2.2.1.3.7 NL_TRUST_PASSWORD 44

6 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.1. 3.8 NL_PASSWORD_VERSION 45
2.2.1.3.9 NETLOGON_WORKSTATION_INFORMATION 46
2.2.1.3.10 NETLOGON_ONE_DOMAIN_INFO 46
2.2.1.3.11 NETLOGON_DOMAIN_INFO 48
2. 2.1.3.12 NETLOGON_DOMAIN_INFORMATION 49
2.2.1.3.13 NETLOGON_SECURE_CHANNEL_TYPE 49
2.2.1.3.14 NETLOGON_CAPABILITIES 50
2.2.1.3.15 NL_OSVERSIONINFO_V1 50
2. 2.1.3.16 NL_IN_CHAIN_SET_CLIENT_ATTRIBUTES_V1 51
2.2.1.3.17 NL_IN_CHAIN_SET_CLIENT_ATTRIBUTES 52
2.2.1.3.18 NL_OUT_CHAIN_SET_CLIENT_ATTRIBUTES_V1 52
2.2.1.3.19 NL_OUT_CHAIN_SET_CLIENT_ATTRIBUTES 52

2.2.1.4 Pass-Through Authentication Structures 53
2.2.1.4.1 LM_CHALLENGE 53
2.2.1.4.2 NETLOGON_GENERIC_INFO 53
2.2.1.4.3 NETLOGON_INTERACTIVE_INFO 53
2.2.1.4.4 NETLOGON_SERVICE_INFO 54
2.2.1.4.5 NETLOGON_NETWORK_INFO 54
2.2.1.4.6 NETLOGON_LEVEL 55
2.2.1.4.7 NETLOGON_SID_AND_ATTRIBUTES 56
2.2.1.4.8 NETLOGON_VALIDATION_GENERIC_INFO2 56
2.2.1.4.9 USER_SESSION_KEY 57
2.2.1.4.10 GROUP_MEMBERSHIP 57
2.2.1.4.11 NETLOGON_VALIDATION_SAM_INFO 58
2.2.1.4.12 NETLOGON_VALIDATION_SAM_INFO2 58
2.2.1.4.13 NETLOGON_VALIDATION_SAM_INFO4 59
2.2.1.4.14 NETLOGON_VALIDATION 61
2.2.1.4.15 NETLOGON_LOGON_IDENTITY_INFO 61
2.2.1.4.16 NETLOGON_LOGON_INFO_CLASS 62
2.2.1.4.17 NETLOGON_VALIDATION_INFO_CLASS 63
2.2.1.4.18 NETLOGON Specific Access Masks 64

2.2.1.5 Account Database Replication Structures 64
2.2.1.5.1 NETLOGON_DB_CHANGE (Announcement) Message 64
2.2.1.5.2 NLPR_QUOTA_LIMITS 67
2.2.1.5.3 NETLOGON_DELTA_ACCOUNTS 67
2.2.1.5.4 NETLOGON_DELTA_ALIAS 69
2. 2.1.5.5 NLPR_SID_INFORMATION 70
2.2.1.5.6 NLPR_SID_ARRAY 70
2.2.1.5.7 NETLOGON_DELTA_ALIAS_MEMBER 70
2.2.1.5.8 NETLOGON_DELTA_DELETE_GROUP 71
2.2.1.5.9 NETLOGON_DELTA_DELETE_USER 71
2.2.1.5.10 NETLOGON_DELTA_DOMAIN 72
2.2.1.5.11 NETLOGON_DELTA_ENUM 73
2.2.1.5.12 NETLOGON_DELTA_ENUM_ARRAY 73
2.2.1.5.13 NETLOGON_DELTA_GROUP 74
2.2.1.5.14 NLPR_LOGON_HOURS 75
2.2.1.5.15 NLPR_USER_PRIVATE_INFO 75
2.2.1.5.16 NETLOGON_DELTA_USER 78
2.2.1.5.17 NETLOGON_DELTA_GROUP_MEMBER 79
2.2.1.5.18 NETLOGON_DELTA_ID_UNION 79
2.2.1.5.19 NETLOGON_DELTA_POLICY 80
2.2.1.5.20 NLPR_CR_CIPHER_VALUE 81
2. 2.1.5.21 NETLOGON_DELTA_SECRET 82
2.2.1.5.22 NETLOGON_DELTA_TRUSTED_DOMAINS 83
2.2.1.5.23 NETLOGON_RENAME_ALIAS 84
2.2.1.5.24 NETLOGON_RENAME_GROUP 84
2.2.1.5.25 NETLOGON_RENAME_USER 85
2.2.1.5.26 NLPR_MODIFIED_COUNT 86

7 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.1.5.27 NETLOGON_DELTA_UNION 86
2.2.1.5.28 NETLOGON_DELTA_TYPE 88
2. 2.1.5.29 SYNC_STATE 89

2.2.1.6 Domain Trust Structures 90
2.2.1.6.1 DOMAIN_NAME_BUFFER 90
2.2.1.6.2 DS_DOMAIN_TRUSTSW 90
2.2.1. 6.3 NETLOGON_TRUSTED_DOMAIN_ARRAY 92
2.2.1.6.4 NL_GENERIC_RPC_DATA 92

2.2.1.7 Administrative Services Structures 93
2.2.1.7.1 NETLOGON_CONTROL_DATA_INFORMATION 93
2.2.1.7.2 NETLOGON_INFO_1 93
2.2.1.7.3 NETLOGON_INFO_2 94
2.2.1.7.4 NETLOGON_INFO_3 95
2.2.1.7.5 NETLOGON_INFO_4 96
2.2.1.7. 6 NETLOGON_CONTROL_QUERY_INFORMATION 96

2.2.1.8 Obsolete Structures 97
2.2.1.8.1 NETLOGON_VALIDATION_UAS_INFO 97
2.2.1.8.2 NETLOGON_LOGOFF_UAS_INFO 97
2.2.1.8.3 UAS_INFO_0 98
2.2.1.8.4 NETLOGON_DUMMY1 98

2.3 Directory Service Schema Elements Used by the Netlogon Remote Protocol 98

3 Protocol Details 99
3.1 Netlogon C ommon Authentication Details 100

3.1.1 Abstract Data Model 100
3.1.2 Timers 102
3.1.3 Initialization 102
3.1.4 Message Processing Events and Sequencing Rules 102

3.1.4.1 Session -Key Negotiation 102
3.1.4.2 Netlogon Negotiable Options 104
3.1.4.3 Session -Key Computation 106

3.1.4.3.1 AES Session -Key 106
3.1.4.3.2 Strong -key Session -Key 106
3.1.4.3.3 DES Session -Key 107

3.1.4. 4 Netlogon Credential Computation 107
3.1.4.4.1 AES Credential 107
3.1.4.4.2 DES Credential 107

3.1.4.5 Netlogon Authenticator Computation and Verification 108
3.1.4.6 Calling Methods Requiring Session -Key Establishment 109
3.1.4.7 Calling Methods Not Requiring Se ssion -Key Establishment 111
3.1.4.8 Determining If the Implementation Is Running on a Domain Controller 111
3.1.4.9 Determining if a Request is for the Current Domain 111
3.1.4.10 Client Domain Controller Location 111

3.1.5 Timer Events 111
3.1.6 Other Local Events 111

3.2 Pass-Through Authentication Details 112
3.2.1 Abstract Data Model 112
3.2.2 Timers 112
3.2.3 Initialization 112
3.2.4 Message Processing Events and Sequencing Rules 112

3.2.4.1 Generic Pass -Through 112
3.2.5 Timer Events 113
3.2.6 Other Local Events 113

3.3 Netlogon as a Security Support Provider 113
3.3.1 Abstract Data Model 113
3.3.2 Timers 114
3.3.3 Initialization 114
3.3.4 Message Processing Events and Sequencing Rules 114

8 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.3.4.1 The NL_AUTH_MESSAGE Token 114
3.3.4.1.1 Generating an Initial NL_AUTH_MESSAGE Token 115
3.3.4.1.2 Receiving an Initial NL_AUTH_MESSAGE Token 115
3.3.4.1.3 Generating a Return NL_AUTH_MESSAGE Token 115
3.3.4.1.4 Receiving a Return NL_AUTH_MESSAGE Token 115

3.3.4.2 The Netlogon Signature Token 116
3.3.4.2.1 Generating a Client Netlogon Signature Token 116
3.3.4.2.2 Receiving a Client Netlogon Signature Token 118
3.3.4.2.3 Generating a Server Netlogon Signature Token 120
3.3.4.2.4 Receiving a Server Netlogon Signature Toke n 121

3.3.5 Timer Events 121
3.3.6 Other Local Events 121

3.4 Netl ogon Client Details 121
3.4.1 Abstract Data Model 122
3.4.2 Timers 123
3.4.3 Initialization 123
3.4.4 Higher -Layer Triggered Events 124
3.4.5 Message Processing Events and Sequencing Rules 124

3.4.5.1 DC Location Methods 124
3.4.5.1.1 Calling DsrGetDcNameEx2 124
3.4.5.1.2 Calling DsrGetDcNameEx 124
3.4.5.1.3 Calling DsrGetDcName 124
3.4.5.1.4 Calling NetrGetDCName 124
3.4.5.1.5 Calling NetrGetAnyDCName 124
3.4.5.1.6 Calling DsrGetSiteName 125
3.4.5.1.7 Calling DsrGetDcSiteCoverageW 125
3.4.5.1.8 Calling DsrAddressToSiteNamesW 125
3.4.5.1.9 Calling DsrAddressToSiteNamesExW 125
3.4.5.1.10 Calling DsrDeregisterDnsHostRecords 125
3.4.5.1.11 Calling DsrUpdateReadOnlyServerDnsRecords 125

3.4.5.2 Secure Channel Establishment and Maintenance Methods 125
3.4.5.2.1 Calling NetrServerReqChallenge 125
3.4.5.2.2 Calling NetrServerAuthenticate3 125
3.4.5.2.3 Calling NetrServerAuthenticate2 126
3.4.5.2.4 Calling NetrServerAuthenticate 126
3.4.5.2.5 Calling NetrServerPasswordSet2 126
3.4.5.2.6 Calling NetrServerPasswordSet 127
3.4.5.2.7 Calling NetrServerPasswordGet 127
3.4.5.2.8 Calling NetrServerTrustPasswordsGet 128
3.4.5.2.9 Calling NetrLogonGetDomainInfo 128
3.4.5.2.10 Calling NetrLogonGetCapabilities 128
3.4.5.2.11 Calling NetrChainSetClientAttributes 128

3.4.5.3 Pass-Through Authentication Methods 129
3.4.5.3.1 Setting ConnectionStatus 129
3.4.5.3.2 Calling NetrLogonSamLogonEx 129
3.4.5.3.3 Calling NetrLogonSamLogonWithFlags 130
3.4.5.3.4 Calling NetrLogonSamLogon 130
3.4.5.3.5 Calling NetrLogonSamLogoff 131

3.4.5.4 Account Database Replication Methods 132
3.4.5.4.1 Calling NetrDatabaseDeltas 132
3.4.5.4.2 Calling NetrDatabaseSync2 132
3.4.5.4.3 Calling NetrDatabaseSync 133
3.4.5.4.4 Calling NetrDatabaseRedo 133

3.4.5.5 Domain Trusts Methods 134
3.4.5.5.1 Calling DsrEnumerateDomainTrusts 134
3.4.5.5.2 Calling NetrEnumerateTrustedDomainsEx 134
3.4.5.5.3 Calling NetrEnumerateTrustedDomains 134
3.4.5.5.4 Calling NetrGetForestTrustInformation 134

9 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.4.5.5.5 Calling DsrGetForestTrustInformation 134
3.4.5.5.6 Calling NetrServerGetTrustInfo 134

3.4.5.6 Message Protection Methods 134
3.4.5.6.1 Calling NetrLogonGetTrustRid 134
3.4.5.6.2 Calling NetrLogonComputeServerDigest 135
3.4.5.6.3 Calling NetrLogonComputeClientDigest 135
3.4.5.6.4 Calling NetrLogonSendToSam 135
3.4.5.6.5 Calling NetrLogonSetServiceBits 135
3.4.5.6.6 Calling NetrLogonGetTimeServiceParentDomain 135

3.4.5.7 Administrative Services Methods 135
3.4.5.7.1 Calling NetrLogonControl2Ex 135
3.4.5.7.2 Calling NetrLogonControl2 136
3.4.5.7.3 Calling NetrLogonControl 136

3.4.5.8 Obsolete Methods 136
3.4.5.8. 1 Calling NetrLogonUasLogon 136
3.4.5.8.2 Calling NetrLogonUasLogoff 136
3.4.5.8.3 Calling NetrAccountDeltas 136
3.4.5.8.4 Calling NetrAccountSync 136

3.4.6 Timer Events 136
3.4.6.1 Timer Expiry on domainControllerCacheTimer 136

3.4.7 Other Local Events 137
3.5 Netlogon Server Details 137

3.5. 1 Abstract Data Model 137
3.5.2 Timers 140
3.5.3 Initialization 140
3.5.4 Message Processing Events and Sequencing Rules 141

3.5.4.1 RPC Binding Handles for Netlogon Methods 146
3.5.4.2 Determining client privileges 146
3.5.4.3 DC Location Methods 147

3.5.4.3.1 DsrGetDcNameEx2 (Opnum 34) 147
3.5.4.3.2 DsrGetDcNameEx (Opnum 27) 156
3.5.4.3.3 DsrGetDcName (Opnum 20) 157
3.5.4.3.4 NetrGetDCName (Opnum 11) 157
3.5.4.3.5 NetrGetAnyDCName (Opnum 13) 158
3.5.4.3.6 DsrGetSiteName (Opnum 28) 159
3.5.4.3.7 DsrGetDcSiteCoverageW (Opnum 38) 159
3.5.4.3.8 DsrAddressToSiteNamesW (Opnum 33) 160
3.5.4.3.9 DsrAddressToSiteNamesExW (Opnum 37) 161
3.5.4.3.10 DsrDeregisterDnsHostRecords (Opnum 41) 161
3.5.4.3.11 DsrUpdateReadOnlyServerDnsRecords (Opnum 48) 162

3.5.4.4 Secure Channel Establishment and Maintenance Methods 163
3.5.4.4.1 NetrServerReqChallenge (Opnum 4) 163
3.5.4.4.2 NetrServerAuthenticate3 (Opnum 26) 164
3.5.4.4.3 NetrServerAuthenticate2 (Opnum 15) 166
3.5.4.4.4 NetrServerAuthenticate (Opnum 5) 166
3.5.4.4.5 NetrServerPasswordSet2 (Opnum 30) 167
3.5.4.4.6 NetrServerPasswordSet (Opnum 6) 168
3.5.4.4.7 NetrServerPasswordGet (Opnum 31) 169
3.5.4.4.8 NetrServerTrustPasswordsGet (Opnum 42) 171
3.5.4.4.9 NetrLogonGetDomainInfo (Opnum 29) 172
3.5.4.4.10 NetrLogonGetCapabilities (Opnum 21) 174
3.5.4.4.11 NetrChainSetClientAttributes (Opnum 49) 175

3.5.4.5 Pass-Through Authentication Methods 176
3.5.4.5.1 (Updated Section) NetrLogonSamLogonEx (Opnum 39) 176
3.5.4.5.2 NetrLogonSamLogonWithFlags (Opnum 45) 179
3.5.4.5.3 (Updated Section) NetrLogonSamLogon (Opnum 2) 181
3.5.4.5.4 NetrLogonSamLogoff (Opnum 3) 181

3.5.4.6 Account Database Replication Methods 183

10 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.5.4.6.1 NetrData baseDeltas (Opnum 7) 183
3.5.4.6.2 NetrDatabaseSync2 (Opnum 16) 184
3.5.4.6.3 NetrDatabaseSync (Opnum 8) 187
3.5.4.6.4 NetrDatabaseRedo (Opnum 17) 187

3.5.4.7 Domain Trust Methods 189
3.5.4.7.1 DsrEnumerateDomainTrusts (Opnum 40) 189
3.5.4.7.2 NetrEnumerateTrustedDomainsEx (Opnum 36) 191
3.5.4.7.3 NetrEnumerateTrustedDomains (Opnum 19) 192
3.5.4.7.4 NetrGetForestTrustInformation (Opnum 44) 193
3.5.4.7.5 DsrGetForestTrustInformation (Opnum 43) 194
3.5.4.7.6 NetrServerGetTrustInfo (Opnum 46) 198

3.5.4.8 Message Protection Methods 200
3.5.4.8.1 NetrLogonGetTrustRid (Opnum 23) 200
3.5.4.8.2 NetrLogonComputeServerDigest (Opnum 24) 201
3.5.4.8.3 NetrLogonComputeClientDigest (Opnum 25) 202
3.5.4.8.4 NetrLogonSendToSam (Opnum 32) 203
3.5.4.8.5 NetrLogonSetServiceBits (Opnum 22) 204
3.5.4.8.6 NetrLogonGetTimeServiceParentDomain (Opnum 35) 206

3.5.4.9 Administrative Services Methods 207
3.5.4.9.1 NetrLogonControl2Ex (Opnum 18) 207
3.5.4.9.2 NetrLogonControl2 (Opnum 14) 212
3.5.4.9.3 NetrLogonControl (Opnum 12) 213

3.5.4.10 Obsolete Methods 213
3.5.4. 10.1 NetrLogonUasLogon (Opnum 0) 213
3.5.4.10.2 NetrLogonUasLogoff (Opnum 1) 213
3.5.4.10.3 NetrAccountDeltas (Opnum 9) 213
3.5.4.10.4 NetrAccountSync (Opnum 10) 214

3.5.5 Timer Events 214
3.5.6 Other Local Events 214

3.6 Netlogon NT Replication Details 214
3.6.1 Abstract Data Model 216
3.6.2 Timers 217
3.6.3 Initialization 217
3.6.4 Message Processing Events and Sequencing Rules 218

3.6.4.1 Message Processing on PDC 218
3.6.4.2 Message Processing on BDC 219

3.6.5 Timer Events 219
3.6.5.1 Timer Events on PDC 219
3.6.5.2 Timer Events on BDC 220

3.6. 5.2.1 Full Synchronization 220
3.6.5.2.2 Partial Synchronization 220

3.6.6 Other Local Events 221

4 Protocol Examples 222
4.1 (Updated Section) NetrLogonSamLogon with Secure Channel 222
4.2 Cryptographic Values for Session Key Validation 227

4.2.1 ASCII MD4 Testing 228
4.2.2 UNICODE MD4 Testing 228

5 Security Considerations 229
5.1 Security Considerations for Implementers 229
5.2 Index of Security Parameters 230

6 Appendix A: Full IDL 231

7 (Updated Section) Appendix B: Product Behavior 255

8 Change Tracking 275

9 Index 276

11 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

12 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1 Introduction

The Netlogon Remote Protocol is a remote procedure call (RPC) interface that is used for user and
machine authentication on domain -based networks. The Netlogon Remote Protocol RPC interface is
also used to replicate the database for backup domain controllers (BDCs).

The Netlogon Remote Protocol is used to maintain domain relationships from the members of a
domain to the domain controller (DC), among DCs for a domain, and between DCs across domains.

This RPC interface is used to discover and manage these relationships.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

Active Directory : The Windows implementation of a general -purpose directory service, which uses
LDAP as its primary access protocol. Active Directory stores information about a variety of
objects in the network such a s user accounts, computer accounts, groups, and all related
credential information used by Kerberos [MS -KILE]. Active Directory is either deployed as Active
Directory Domain Services (AD DS) or Active Directory Lightweight Directory Services (AD LDS),

whic h are both described in [MS -ADOD]: Active Directory Protocols Overview.

Advanced Encryption Standard (AES) : A block cipher that supersedes the Data Encryption
Standard (DES). AES can be used to protect electronic data. The AES algorithm can be used to
encr ypt (encipher) and decrypt (decipher) information. Encryption converts data to an
unintelligible form called ciphertext; decrypting the ciphertext converts the data back into its
original form, called plaintext. AES is used in symmetric -key cryptography, m eaning that the
same key is used for the encryption and decryption operations. It is also a block cipher,

meaning that it operates on fixed -size blocks of plaintext and ciphertext, and requires the size of
the plaintext as well as the ciphertext to be an e xact multiple of this block size. AES is also

known as the Rijndael symmetric encryption algorithm [FIPS197].

alias : A group that is local to a particular machine (as opposed to a group that has security
permissions and settings for the entire domain).

aut hentication : The ability of one entity to determine the identity of another entity by proving an

identity to a server while providing key material that binds the identity to subsequent
communications.

authentication level : A numeric value indicating the le vel of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS -RPCE].

authenticator : When used in reference to the Netlogon Protocol, the dat a stored in the
NETLOGON_AUTHENTICATOR structure.

authoritative response : An authoritative response is one in which the server has all necessary
resources to service the caller's request. If some of the resources are temporarily unavailable,
then the serve r will indicate that its response is not authoritative. When a server does not return
an authoritative response, it is reasonable for the caller to retry the request at another server.
The reasons why a request is non -authoritative are always implementatio n-specific and could
include any failure of the server to allocate necessary resources.

backup domain controller (BDC) : A domain controller (DC) that receives a copy of the domain

directory database from the primary domain controller (PDC). This copy is sy nchronized
periodically and automatically with the primary domain controller (PDC). BDCs also authenticate

13 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

user logons and can be promoted to function as the PDC. There is only one PDC or PDC
emulator in a domain, and the rest are backup domain controllers .

binary large object (BLOB) : A collection of binary data stored as a single entity in a database.

binding handle : A data structure that represents the logical connection between a client and a

server.

checked build : A special build of an operating system that contains fewer compiler optimizations
and more debugging checks than a production environment build. The purpose of the checked
build is to make identifying and diagnosing operating system ïlevel problems easier. For more
information, see [MSDN -CHKBLD] .

client challenge : A 64 -bit nonce generated on the client side.

computer name : The DNS or NetBIOS name.

computer object : An object of class computer. A computer object is a security principal object;

the principal is the operating system running on the computer. The shared secret allows the
operating system running on the computer to authenticate itself independently of any user
running on the system. See security principal.

credential : Previously established, authentication data that is used by a securi ty principal to
establish its own identity. When used in reference to the Netlogon Protocol, it is the data that is

stored in the NETLOGON_CREDENTIAL structure.

database : For the purposes of the Netlogon RPC, a database is a collection of user accounts,
ma chine accounts, aliases, groups, and policies, managed by a component. The database, or the
component managing the database, must expose a mechanism to enable Netlogon to gather
changes from and apply changes to the database. Additionally, it must export a database serial
number in order to track changes for efficient replication.

database serial number : A numeric value that is incremented each time a database transaction

is applied to the database.

decryption : In cryptography, the process of transforming e ncrypted information to its original
clear text form.

delta : One of a set of possible changes that can be made to a database.

direct trust : A type of authentication functionality in which one domain accepts another domain as
an authoritative source to prov ide object authentication and other Active Directory services for
that other domain. For example, if a direct trust is established from domain, DOMAIN -A, to

domain, DOMAIN -B, DOMAIN -A trusts DOMAIN -B. If a domain, DOMAIN -A, must authenticate
an object, suc h as a user account, from a domain, DOMAIN -B, DOMAIN -A requests that
DOMAIN -B authenticate the user account, and DOMAIN -A will treat the response from DOMAIN -
B as reliable.

directory service (DS) : A service that stores and organizes information about a computer
network's users and network shares, and that allows network administrators to manage users'

access to the shares. See also Active Directory.

DNS name : A fully qualified domain name (FQDN).

domain : A set of users and computers sharing a common name space and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)
and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain contr oller provides authentication of members, creating
a unit of trust for its members. Each domain has an identifier that is shared among its members.

For more information, see [MS -AUTHSOD] section 1.1.1.5 and [MS -ADTS].

14 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

domain account : A stored set of attrib utes representing a principal used to authenticate a user or
machine to an Active Directory domain.

domain controller (DC) : The service, running on a server, that implements Active Directory, or
the server hosting this service. The service hosts the data s tore for objects and interoperates

with other DCs to ensure that a local change to an object replicates correctly across all DCs.
When Active Directory is operating as Active Directory Domain Services (AD DS), the DC
contains full NC replicas of the config uration naming context (config NC), schema naming
context (schema NC), and one of the domain NCs in its forest. If the AD DS DC is a global
catalog server (GC server), it contains partial NC replicas of the remaining domain NCs in its
forest. For more info rmation, see [MS -AUTHSOD] section 1.1.1.5.2 and [MS -ADTS]. When
Active Directory is operating as Active Directory Lightweight Directory Services (AD LDS),

several AD LDS DCs can run on one server. When Active Directory is operating as AD DS, only
one AD DS DC can run on one server. However, several AD LDS DCs can coexist with one AD DS
DC on one server. The AD LDS DC contains full NC replicas of the config NC and the schema NC
in its forest. The domain controller is the server side of Authentication Protoco l Domain Support
[MS -APDS].

domain local group : An Active Directory group that allows user objects, global groups, and

universal groups from any domain as members. It can additionally include, and be a member of,
other domain local groups from within its d omain. A group object g is a domain local group if
and only if GROUP_TYPE_RESOURCE_GROUP is present in g!groupType; see [MS -ADTS] section
2.2.12, "Group Type Flags". A security -enabled domain local group is valid for inclusion within
access control lists (ACLs) from its own domain. If a domain is in mixed mode, then a security -
enabled domain local group in that domain allows only user objects as members.

domain member (member machine) : A machine that is joined to a domain by sharing a secret

between the mac hine and the domain.

domain name : A domain name or a NetBIOS name that identifies a domain.

Domain Name System (DNS) : A hierarchical, distributed database that contains mappings of
domain names to various types of data, such as IP addresses. DNS enables th e location of
computers and services by user - friendly names, and it also enables the discovery of other

information stored in the database.

domain tree : A set of domains that are arranged hierarchically, typically following an

accompanying DNS hierarchy, w ith trusts between parents and children. An example domain
tree might be a.example.com, b.example.com, and example.com; domain A and domain B each
trust example.com but do not trust each other directly. They will have a transitive trust
relationship throug h example.com.

dynamic endpoint : A network -specific server address that is requested and assigned at run time.
For more information, see [C706].

encryption key : One of the input parameters to an encryption algorithm. Generally speaking, an
encryption algor ithm takes as input a clear - text message and a key, and results in a cipher - text
message. The corresponding decryption algorithm takes a cipher - text message, and the key,
and results in the original clear - text message.

endpoint : A network -specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence

ncacn_ip_tcp), an endpoint mi ght be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

enterprise network : The network of computer systems in an organization, such as a cor poration.
An enterprise can span geographical locations and often includes a variety of computer types,
operating systems, protocols, and network architectures.

15 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

forest : One or more domains that share a common schema and trust each other transitively. An
or ganization can have multiple forests. A forest establishes the security and administrative

boundary for all the objects that reside within the domains that belong to the forest. In contrast,
a domain establishes the administrative boundary for managing obj ects, such as users, groups,

and computers. In addition, each domain has individual security policies and trust relationships
with other domains.

forest trust : A type of trust where the trusted party is a forest, which means that all domains in
that forest are trusted.

forest trust information : Information about namespaces, domain names, and security identifiers
(SIDs) owned by a trusted forest.

full database synchronization : A mechanism for synchronizing an entire database record set on

a particular replic ation partner.

fully qualified domain name (FQDN) : In Active Directory, a fully qualified domain name (FQDN)
that identifies a domain.

global catalog (GC) : A unified partial view of multiple naming contexts (NCs) in a distributed
partitioned directory. The Active Directory directory service GC is implemented by GC servers.
The definition of global catalog is specified in [MS -ADTS] section 3.1.1.1.8.

globally unique identifier (GUID) : A term used interchangeably with universally unique
identifi er (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algor ithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

group : A collection of objects that can be treated as a whole.

Hash - based Message Authentication Code (HMAC) : A mechanism for messag e authentication
using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash

function (for example, MD5 and SHA -1) in combination with a secret shared key. The
cryptographic strength of HMAC depends on the properties of the u nderlying hash function.

interactive logon : A software method in which the account information and credentials input by
the user interactively are authenticated by a server or domain controller (DC).

Interface Definition Language (IDL) : The International S tandards Organization (ISO) standard

language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

Key Distribution Center (KDC) : The Kerberos service that implements the authentication and
ticket granting se rvices specified in the Kerberos protocol. The service runs on computers
selected by the administrator of the realm or domain; it is not present on every machine on the
network. It must have access to an account database for the realm that it serves. KDCs are

integrated into the domain controller role. It is a network service that supplies tickets to clients
for use in authenticating to services.

key list request : A Kerberos protocol message used to request a list of key types the KDC can
supply to the clie nt to support single sign -on capabilities in legacy protocols.

Lightweight Directory Access Protocol (LDAP) : The primary access protocol for Active
Directory. Lightweight Directory Access Protocol (LDAP) is an industry -standard protocol,
established by the Internet Engineering Task Force (IETF), which allows users to query and

update information in a directory service (DS), as described in [MS -ADTS]. The Lightweight
Directory Access Protocol can be either version 2 [RFC1777] or version 3 [RFC3377].

16 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Local Se curity Authority (LSA) : A protected subsystem that authenticates and logs users onto
the local system. LSA also maintains information about all aspects of local security on a system,

collectively known as the local security policy of the system.

Local Secu rity Authority (LSA) database : A Microsoft -specific terminology for the part of the

user account database containing account privilege information (such as specific account rights)
and domain security policy information.

mailslot : A mechanism for one -way i nterprocess communications (IPC). For more information, see
[MSLOT] and [MS -MAIL].

mixed mode : A state of an Active Directory domain that supports domain controllers (DCs)
running Windows NT Server 4.0 operating system. Mixed mode does not allow organizati ons to
take advantage of new Active Directory features such as universal groups, nested group

membership, and interdomain group membership. See also native mode.

naming context (NC) : An NC is a set of objects organized as a tree. It is referenced by a
DSName. The DN of the DSName is the distinguishedName attribute of the tree root. The GUID

of the DSName is the objectGUID attribute of the tree root. The security identifier (SID) of the
DSName, if present, is the objectSid attribute of the tree root; for Active Directory Domain
Services (AD DS), the SID is present if and only if the NC is a domain naming context (domain

NC). Active Directory supports organizing several NCs into a tree structure.

NetBIOS name : A 16 -byte address that is used to identify a N etBIOS resource on the network.
For more information, see [RFC1001] and [RFC1002].

Netlogon : In a Windows NT operating system -compatible network security environment, the
component responsible for synchronization and maintenance functions between a primary
domain controller (PDC) and backup domain controllers (BDC). Netlogon is a precursor to the
directory replication server (DRS) protocol.

network logon : A software method in which the account information and credentials previously
supplied by the user as p art of an interactive logon are used again to log the user onto another
network resource.

nonce : A number that is used only once. This is typically implemented as a random number large
enough that the probability of number reuse is extremely small. A nonce is used in
authentication protocols to prevent replay attacks. For more information, see [RFC2617].

NT LAN Manager (NTLM) : An authentication protocol that is based on a challenge - response

sequence for authentication.

one - way function (OWF) : The calculatio n of a hash of the password using the Rivest -Shamir -
Adleman (RSA) MD4 function. OWF is used to refer to the resulting value of the hash operation.

opnum : An operation number or numeric identifier that is used to identify a specific remote
procedure call (R PC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS -RPCE].

original equipment manufacturer (OEM) character set : A character encoding used where the

mappings between characters is dependent upon the code page co nfigured on the machine,
typically by the manufacturer.

partial database synchronization : A mechanism for synchronizing a set of database records on
a particular replication partner.

primary domain : A domain (identified by a security identifier (SID)) that the server is joined to.
For a domain controller (DC), the primary domain is that of the domain itself.

17 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

primary domain controller (PDC) : A domain controller (DC) designated to track changes made
to the accounts of all computers on a domain. It is the only computer to receive these changes

directly, and is specialized so as to ensure consistency and to eliminate the potential for
conflicting entries in the Active Directory database. A domain has only one PDC.

principal : An authenticated entity that initiate s a message or channel in a distributed system.

privilege : The right of a user to perform system -related operations, such as debugging the
system. A user's authorization context specifies what privileges are held by that user.

RC4 : A variable key - length sy mmetric encryption algorithm. For more information, see
[SCHNEIER] section 17.1.

read - only domain controller (RODC) : A domain controller (DC) that does not accept originating
updates. Additionally, an RODC does not perform outbound replication. An RODC cannot be the

primary domain controller (PDC) for its domain.

relative identifier (RID) : The last item in the series of SubAuthority values in a security identifier

(SID) [SIDD]. It distinguishes one account or group from all other accounts and groups in t he
domain. No two accounts or groups in any domain share the same RID.

remote procedure call (RPC) : A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime

environment providing for communication facilities between computers (the RPC runtime); a set
of request -and - response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C7 06].

RPC protocol sequence : A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS -RPCE].

RPC transport : The underlying netw ork services used by the remote procedure call (RPC) runtime

for communications between network nodes. For more information, see [C706] section 2.

secret key : A symmetric encryption key shared by two entities, such as between a user and the
domain controll er (DC), with a long lifetime. A password is a common example of a secret key.
When used in a context that implies Kerberos only, a principal's secret key.

secure channel : An authenticated remote procedure call (RPC) connection between two machines
in a do main with an established security context used for signing and encrypting RPC packets.

Security Account Manager (SAM) : A centrally managed service, such as Active Directory

Domain Services (AD DS), that enables a server to establish a trust relationship wi th other
authorized servers. The SAM also maintains information about domains and security principals,
and provides client - to -server information by using several available standards for access control
lists (ACLs).

security account manager (SAM) built - in d atabase : The part of the user account database
that contains account information (such as account names and passwords) for accounts and

groups that are pre -created at the database installation.

security context : An abstract data structure that contains aut horization information for a
particular security principal in the form of a Token/Authorization Context (see [MS -DTYP] section
2.5.2). A server uses the authorization information in a security context to check access to
requested resources. A security cont ext also contains a key identifier that associates mutually
established cryptographic keys, along with other information needed to perform secure
communication with another security principal.

Security Descriptor Definition Language (SDDL) : The format used to specify a security
descriptor as a text string, specified in [MS -DTYP] section 2.5.1.

18 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

security identifier (SID) : An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account autho rity portion (typically a

domain) and a smaller integer representing an identity relative to the account authority, termed
the relative identifier (RID). The SID format is specified in [MS -DTYP] section 2.4.2; a string

representation of SIDs is specified i n [MS -DTYP] section 2.4.2 and [MS -AZOD] section 1.1.1.2.

security principal : A unique entity, also referred to as a principal, that can be authenticated by
Active Directory. It frequently corresponds to a human user, but also can be a service that offers
a resource to other security principals. Other security principals might be a group, which is a set
of principals. Groups are supported by Active Directory.

security provider : A pluggable security module that is specified by the protocol layer above the
rem ote procedure call (RPC) layer, and will cause the RPC layer to use this module to secure

messages in a communication session with the server. The security provider is sometimes
referred to as an authentication service. For more information, see [C706] and [MS -RPCE].

security support provider (SSP) : A dynamic - link library (DLL) that implements the Security
Support Provider Interface (SSPI) by making one or more security packages available to

applications. Each security package provides mappings between an a pplication's SSPI function
calls and an actual security model's functions. Security packages support security protocols such

as Kerberos authentication and NTLM.

Security Support Provider Interface (SSPI) : An API that allows connected applications to call
one of several security providers to establish authenticated connections and to exchange data
securely over those connections. It is equivalent to Generic Security Services (GSS) -API, and
the two are on - the -wire compatible.

server : A computer on which the remote procedure call (RPC) server is executing.

server challenge (SC) : A 64 -bit nonce generated on the server side.

service principal name (SPN) : The name a client uses to identify a service for mutual
authentication. For more information, see [MS -ADTS] section 2.2.21 (Service Principal Name)
and [RFC1964] section 2.1.1.

session key : A relatively short - lived symmetric key (a cryptographic key negotiated by the client
and the server based on a shared secret). A session key's lifespan is bounded b y the session to
which it is associated. A session key has to be strong enough to withstand cryptanalysis for the
lifespan of the session.

shared secret : A piece of data that is known only to the security principal and an authenticating
authority; for exam ple, a user and a domain controller. It is used to prove the principal's
identity. A password is a common example of a shared secret. Also called a "secret key".

site : A collection of one or more well -connected (reliable and fast) TCP/IP subnets. By defini ng
sites (represented by site objects) an administrator can optimize both Active Directory access
and Active Directory replication with respect to the physical network. When users log in, Active

Directory clients find domain controllers (DCs) that are in t he same site as the user, or near the
same site if there is no DC in the site. See also Knowledge Consistency Checker (KCC). For more
information, see [MS -ADTS].

sub - authentication : Optional and additional authentication functionality, usually provided by
extending an authentication algorithm.

sub - authentication package : An optional component that provides additional authentication
functionality. If a sub -authentication package is installed, the authentication package calls the

sub -authentication package be fore returning its authentication result. The request to verify by a
sub -authentication package is indicated by the ParameterControl field of the LogonInformation
parameter (see [MS -APDS] section 3.1.5.2.1, Verifying Responses with Sub -Authentication
Packages).

19 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Time - To - Live (TTL) : The time duration for which a Server Object is available.

transitive trust : The state of two domains establishing trust through an intermediary domain. For
example, if domain A trusts domain B, and domain B trusts domain C, then d omain A can be
configured to trust domain C through transitive trust.

trust : To accept another authority's statements for the purposes of authentication and
authorization, especially in the case of a relationship between two domains. If domain A trusts
dom ain B, domain A accepts domain B's authentication and authorization statements for
principals represented by security principal objects in domain B; for example, the list of groups
to which a particular user belongs. As a noun, a trust is the relationship between two domains
described in the previous sentence.

trusted domain : A domain that is trusted to make authentication decisions for security principals

in that domain.

trusted domain object (TDO) : A collection of properties that define a trust relationship with
another domain, such as direction (outbound, inbound, or both), trust attributes, name, and

security identifier of the other domain. For more information, see [MS -ADTS].

Unicode : A character encoding standard developed by the Unicode Cons ortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]

provides three forms (UTF -8, UTF -16, and UTF -32) and seven schemes (UTF -8, UTF -16, UTF -16
BE, UTF-16 LE, UTF -32, UTF -32 LE, and UTF -32 BE).

Un icode string : A Unicode 8 -bit string is an ordered sequence of 8 -bit units, a Unicode 16 -bit
string is an ordered sequence of 16 -bit code units, and a Unicode 32 -bit string is an ordered
sequence of 32 -bit code units. In some cases, it could be acceptable not to terminate with a
terminating null character. Unless otherwise specified, all Unicode strings follow the UTF -16LE
encoding scheme with no Byte Order Mark (BOM).

universally unique identifier (UUID) : A 128 -bit value. UUIDs can be used for multiple
pur poses, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross -process communication such as client and server interfaces, manager

entry -point vectors, and RPC objects. UUIDs are highly likely to be u nique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechan ism to generate the UUID. Specifically, the use of

this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

user principal name (UPN) : A user account name (sometimes referred to as the u ser logon
name) and a domain name that identifies the domain in which the user account is located. This
is the standard usage for logging on to a Windows domain. The format is:
someone@example.com (in the form of an email address). In Active Directory, the

userPrincipalName attribute of the account object, as described in [MS -ADTS].

Windows Time Service (W32Time) : A service that supports time synchronization against
network and hardware time sources. For more information, see [WTSREF] and [MS -SNTP].

writabi lity : The abstract feature capability representing the ability of a domain controller (DC) to
accept modifications and issue originating updates, with respect to a given naming context (NC)
replica.

writable domain controller : A domain controller that perf orms originating updates and outbound

replication.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

20 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the sec tion numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to a ssure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, Augu st 1997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[FIPS197] FIPS PUBS, "Advanced Encryption Standard (AES)", FIPS PUB 197, November 2001,
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

[FIPS4 6-2] FIPS PUBS, "Data Encryption Standard (DES)", FIPS PUB 46 -2, December 1993,

https://csrc.nist.gov/publications/detail/fips/46/2/archive/1993 -12 -30

[FIPS81] FIPS PUBS, "DES Modes of Operation", December 1980,
https://csrc.nist.gov/csrc/media/publication s/fips/81/archive/1980 -12 -02/documents/fips81.pdf

[MS -ADA1] Microsoft Corporation, "Active Directory Schema Attributes A -L".

[MS -ADA2] Microsoft Corporation, "Active Directory Schema Attributes M".

[MS -ADA3] Microsoft Corporation, "Active Directory Schema Attributes N -Z".

[MS -ADSC] Microsoft Corporation, "Active Directory Schema Classes".

[MS -ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS -APDS] Microsoft Corporation, "Authentication Protocol Domain Support".

[MS -CIFS] Microsoft Corporation, "Common Internet File System (CIFS) Protocol".

[MS -DRSR] Microsoft Corporation, "Directory Replication Service (DRS) Remote Protocol".

[MS -DTYP] Microsoft Corporation, "Windows Data Types".

[MS -ERREF] Microsoft Corporation, "Windows Error Codes".

[MS -GPSB] Microsoft Corporation, "Group Policy: Security Protocol Extension".

[MS -KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS -LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Re mote Protocol".

[MS -MAIL] Microsoft Corporation, "Remote Mailslot Protocol".

[MS -NBTE] Microsoft Corporation, "NetBIOS over TCP (NBT) Extensions".

[MS -NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

21 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

[MS -PAC] Microsoft Corporat ion, "Privilege Attribute Certificate Data Structure".

[MS -RCMP] Microsoft Corporation, "Remote Certificate Mapping Protocol".

[MS -RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS -RPRN] Microsoft Corporation, "Print System Remo te Protocol".

[MS -RRP] Microsoft Corporation, "Windows Remote Registry Protocol".

[MS -SAMR] Microsoft Corporation, "Security Account Manager (SAM) Remote Protocol (Client - to -

Server)".

[MS -SAMS] Microsoft Corporation, "Security Account Manager (SAM) Remote Protocol (Server - to -
Server)".

[MS -SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MS -SNTP] Microsoft Corporation, "Network Time Protocol (NTP) Authentication Extensions".

[MS -WKST] Microsoft Corporation, "Workstation Service Remote Prot ocol".

[RFC1035] Mockapetris, P., "Domain Names - Implementation and Specification", STD 13, RFC 1035,
November 1987, http://www.ietf.org/rfc/rfc1035.txt

[RFC1320] Rivest, R., "The MD4 Message -Digest Algorithm", RFC 1320, April 1992,
http://www.ietf.org/rf c/rfc1320.txt

[RFC1321] Rivest, R., "The MD5 Message -Digest Algorithm", RFC 1321, April 1992,

http://www.ietf.org/rfc/rfc1321.txt

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed -Hashing for Message
Authentication", RFC 2104, February 199 7, http://www.ietf.org/rfc/rfc2104.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

[RFC2234] Crocker, D. and Overell, P., "Augmented BNF for Synt ax Specifications: ABNF", RFC 2234,
November 1997, http://www.ietf.org/rfc/rfc2234.txt

[RFC2782] Gulbrandsen, A., Vixie, P., and Esibov, L., "A DNS RR for specifying the location of services
(DNS SRV)", RFC 2782, February 2000, http://www.ietf.org/rfc/rfc2 782.txt

[RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and Stevens, W., "Basic Socket Interface
Extensions for IPv6", RFC 3493, February 2003, http://www.ietf.org/rfc/rfc3493.txt

[RFC4634] Eastlake III, D. and Hansen, T., "US Secure Hash Algor ithms (SHA and HMAC -SHA)", RFC
4634, July 2006, http://www.ietf.org/rfc/rfc4634.txt

[RFC791] Postel, J., Ed., "Internet Protocol: DARPA Internet Program Protocol Specification", RFC 791,

September 1981, http://www.rfc -editor.org/rfc/rfc791.txt

1.2.2 Informative References

[LANMAN] Microsoft Corporation, "LAN Manager Authentication Level", http://msdn.microsoft.com/en -
us/library/ms814176.aspx

[LSAPOLICY] Microsoft Corporation, "LSA Policy", http://msdn.microsoft.com/en -

us/library/ms721831.aspx

22 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

[MS -ADOD] Microsoft Corporation, "Active Directory Protocols Overview".

[MS -GPOD] Microsoft Corporation, "Group Policy Protocols Overview".

[MSDOCS -TokenGrp] Microsoft Corporation, "TOKEN_GROUPS_AND_PRI VILEGES structure",
https://docs.microsoft.com/en -us/windows/win32/api/winnt/ns -winnt - token_groups_and_privileges

[MSFT -CVE-2020 -1472] Microsoft Corporation, "CVE -2020 -1472 | Netlogon Elevation of Privilege
Vulnerability", 08/11/2020, https://portal.msrc.m icrosoft.com/en -US/security -guidance/advisory/CVE -
2020 -1472

[NTLM] Microsoft Corporation, "Microsoft NTLM", http://msdn.microsoft.com/en -

us/library/aa378749.aspx

[NTSTATUSERR] Microsoft Corporation, "NTSTATUS Values", http://msdn.microsoft.com/en -
us/librar y/ff557697.aspx

[PIPE] Microsoft Corporation, "Named Pipes", http://msdn.microsoft.com/en -us/library/aa365590.aspx

[SCHNEIER] Schneier, B., "Applied Cryptography, Second Edition", John Wiley and Sons, 1996, ISBN:
0471117099, http://www.wiley.com/WileyCDA/W ileyTitle/productCd -0471117099.html

[SPNNAMES] Microsoft Corporation, "Name Formats for Unique SPNs", http://msdn.microsoft.com/en -
us/library/ms677601.aspx

[SSPI] Microsoft Corporation, "SSPI", https://docs.microsoft.com/en -

us/windows/desktop/SecAuthN/sspi

1.3 Overview

The Netlogon Remote Protocol is used for secure communication between machines in a domain and
domain controllers (DCs) (both domain members and DCs). The communication is secured by using a

shared session key computed between the client and the DC that is engaged in the secure

communication. The session key is computed by using a preconfigured shared secret that is known to
the client and the DC.

The Netlogon Remote Protocol client an d server can only run on domain - joined systems and are
started during boot. When a system is unjoined from the domain, then the client and server are
stopped and will not be started during boot.

The following sections describe the scenarios in which this p rotocol is used. It provides an overview
about the general purpose of this protocol and the flow of its operations.

1.3.1 Pass -Through Authentication

In a scenario where a user does an interac tive logon to a client machine and connects to a server, the

connection is authenticated. The client and the server engage in an authentication protocol, such as
NTLM (as specified in [MS -NLMP]), which validates the user credentials and logs the user on to the

server upon successful validation. This type of logon is known as network logon because it happens
over a network connection from the client to the server.

To authenticate the user, the server passes the user credentials securely to a Domain Controlle r (DC)
in the domain of the user account. (The DC is the only entity, other than the client machine, that
knows the user secret key; that is, the user password.) After the logon request is delivered to the DC

and the DC successfully validates the credentia ls, the DC refers back to the server those attributes of
the user account that the server can use in authorization decisions (such as granting the user access
to a particular file).

23 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

It is the responsibility of the Netlogon Remote Protocol to deliver the lo gon request to the DC over a
secure channel that is established from the server (acting as the secure channel client) to the DC

(acting as the secure channel server). The secure channel is achieved by encrypting the
communication traffic with a session key computed using a secret key (called a server's machine

account password) shared by the server and the DC.

Upon successful validation of the user credentials on the DC, the Netlogon Remote Protocol delivers
the user authorization attributes (referred to as user validation information) back to the server over
the secure channel.

This mechanism of delegating the authentication request to a DC is called pass - through
authentication, a process in which the server passes the logon request through to the DC. The
following figure is an illustration that depicts a process of pass - through authentication in which the

authentication request is passed over a secure channel from a server in Domain A to a DC in the
domain containing the user account, in this case the DC is also in Domain A.

Figure 1 : Pass - through authentication

1.3.2 Pass -Through Authentication and Domain Trusts

The user acc ount can be in a domain other than the domain of the server. In that case, the DC
receiving the logon request from the server passes the request on to a DC in the domain of the user
account. To make such scenarios work, the domain of the server (called the resource domain) and the
domain of the user account (called the account domain) engage in a trust relationship, in which
authentication decisions made in the account domain are trusted in the resource domain. In such trust

relationships, the resource doma in is called the trusting domain, while the account domain is called
the trusted domain. Trust relationships are established by administrators of the two domains.

24 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The result of a trust establishment is a shared secret (called a trust password) that DCs use in the two
domains for computing the session key that is used for protecting the secure channel traffic. By using

this secure channel, the DC in the resource domain can pass logon requests securely to the DC in the
account domain, in the same way that the server passed the logon request to the former DC. The

secure channel between DCs in two domains that are connected via a trust relationship is called a
trusted domain secure channel. In contrast, the secure channel between the server and the DC in the
res ource domain is called a workstation secure channel. The following illustration depicts a process of
pass - through authentication in which the authentication request is passed over two secure channels:
from a server in Domain A to a DC in the same domain, a nd then from that DC to a DC in Domain B,
which contains the user account.

Figure 2 : Pass - through authentication and domain trusts

In this scenario, the two domains are connected by means of a direct trust relationship. Consider a
scenario in which the two domains are connected by means of an "intermediate trust partner"; the

resource domain trusts the intermediate domain, which in turn trusts the account domain. There can

be multiple domains connected by me ans of trust relationships along the chain of direct domain trusts
between the resource and the account domains. This type of trust relationship, in which the resource
domain trusts the account domain through a chain of trust relationships between intermed iate
domains, is called transitive trust. Each link in the transitive trust chain is backed by a shared secret
used by DCs in two domains involved in the link for establishing the secure channel. Thus, the
resource domain DC can deliver the logon request t o the account domain DC over a chain of secure
channels.

25 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1.3.3 Account Database Replication

Account database replication is relevant only fo r server - to -server communication of the protocol.

So far, we have considered scenarios in which there is one domain controller (DC) in a domain. In

practice, multiple DCs are placed into a domain for redundancy and load balancing so that multiple
DCs can s ervice logon requests from many servers. In such scenarios, the DCs need to share the user
account database.<1>

A backup domain controller (BDC) was a domain controller that maintained a full copy of the domain
account database and could satisfy authentica tion requests but would not allow modification of the
accounts. Instead, the BDCs of a domain replicate the account database from the primary domain
controller (PDC) using account database replication methods.<2>

To request and transfer the replication dat a securely, Netlogon uses the secure channel that the BDCs
establish with the PDC by using the BDC's machine account password. This type of secure channel is
called the server secure channel.

1.3.4 Secure Channel Maintenance

The security of a channel based on a shared secret depends on the secrecy of that shared value. Good
cryptographic hygiene requires that such a shared value not be permanent. This protocol includes the
facility to choose a new password and communicate it from the client to the DC. This allows client
implementations of this protocol to set new passwords on machine accounts (if the request comes
over a workstation secure channel) or on the trust accounts (if the request comes over a trusted
domain secure channel).

1.3.5 Domain Trust Services

In some application scenarios, it can be desirable to obtain the list of domain trusts. For example, an
application collecting user credentials might need to present the list of trusted domains from which
users can choose their domains. The Netlogon Remote Protocol provides services to such applications

via methods for retrieving domain trust information.

1.3.6 Message Protection Services

Some applicat ions might need to authenticate their messages sent to and received from a DC.

Windows Time Service (W32Time) is an example of such an application running on a machine that
authenticates messages carrying time information received from the DC. The Netlogon Remote
Protocol provides services to such applications via methods for computing a cryptographic digest of
the message by using the machine account or trust password as the cryptographic key. By using these
methods, the application running on the DC obtai ns the message digest and includes it in its response
to the client. The application running on the client receives the message, obtains the message digest,
and compares the digest with that received from the DC. If the two digests are the same, the client

determines that the message was indeed sent by the DC.

1.3.7 Administrative Services

Administrators might need to control or query the behavior related to Netlogon operations. For

example, an administrator might want to force a ch ange of the machine account password, or might
want to reset the secure channel to a particular DC in the domain. Netlogon provides such
administrative services via methods for querying and controlling the server.

26 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1.3.7.1 Netlogon Operational Flow on Domain Member s

The first action that a Netlogon client performs on a domain member is finding a DC in its domain with
which to set up the secure channel. This process is called the DC discovery. After a DC is discovered,

the domain member sets up a secure channel to the DC.

For all subsequent requests from the client to the DC pertaining to authentication, the Netlogon
Remote Protocol transmits the request by using the se cure channel. The Netlogon Remote Protocol
receives the user validation data over the secure channel from the DC and returns the data to the
authentication protocol.

Periodically, the operating system can use the Netlogon Remote Protocol to change the mach ine
account password.

1.3.7.2 Netlogon Operational Flow on Domain Controllers

Upon receiving a logon request, Netlogon determines the account domain of the user being

authenticated. Netlogon determines the trust link over which to send the request toward the accou nt

domain. Netlogon finds a DC in the trusted domain on that link and sets up the secure channel to that
DC by using the trust password for the trusted domain. Netlogon passes the logon request through to
that DC. Netlogon receives the user validation data from that DC and returns the data to the secure
channel client making the logon request.

Netlogon synchronizes BDC account databases with the PDC account database.

Periodically, Netlogon changes the machine account password for the DC. On the PDC, Netlogo n
periodically changes trust passwords for all directly trusted domains.

Netlogon performs the aforementioned services requested by applications or administrators.

1.3.8 Netlogon Structures and Methods

The Netlogon Remote Protocol structures and methods that are specified in Structures and

Enumerated Types (section 2.2.1) and Messaging Processing Events and Sequencing Rules

(section 3.5.4) are grouped according to the Ne tlogon scenarios and operational flows as follows:

Á DC Location Structures (section 2.2.1.2) and DC Location Methods (section 3.5.4.3). This
protocol uses the structures and methods in this group to locate a domain controller (DC) in the
specified domain. Methods in this group are also used for obtaining the site information that is
related to DC discovery, as well as f or maintaining Domain Name System (DNS) registration
information for DCs.

Á Secure Channel Establishment and Maintenance Structures (section 2.2.1.3) and Secure
Channel Establishment and Maintenance Methods (section 3.5.4.4). Structures and methods
in this g roup are used for setting up and maintaining the secure channel.

Á Pass - Through Authentication Structures (section 2.2.1.4) and Pass - Through
Authentication Methods (section 3.5.4.5). These structures and methods are used for
performing pass - through authentic ation and obtaining user validation information.

Á Account Database Replication Structures (section 2.2.1.5) and Account Database

Replication Methods (section 3.5.4.6). These structures and methods were used in the account
database replication.

Á Domain Trust Structures (section 2.2.1.6) and Domain Trust Methods (section 3.5.4.7).
Structures and methods in this group are used for retrieving domain trust information.

Á Message Protection Methods (section 3.5.4.8). Methods in this group are used for performing
the message protection services.

27 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á Administrative Services Structures (section 2.2.1.7) and Administrative Services Methods
(section 3.5.4.9). This group of structures and methods is used for querying and controlling the

Netlogon Remote Protocol server.

Á Obsolete Structures (section 2.2.1.8) and Obsolete Methods (section 3.5.4.10). The structures

and methods in this group are unsupported and obsolete.

1.3.8.1 History of Netlogon

The Netlogon Remote Protocol is an older protocol that has been through multiple revisions and

expansions. As a result, some of the methods are used only in LAN Manager environments, and new
structures and methods have been introduced to support new functi onality.

1.3.8.1.1 New Methods Derived from Existing Methods

In many cases, a new method would differ from an existing method by the addition of one or a few
new parameters. In such cases, one of two naming conventions was used. One convention was that

the new method would typically be named identically to the existing method, except for the addition of

a suffix such as Ex (to mean Extended, as in the DsrGetDcNameEx method, which is the extended
version of th e original DsrGetDcName method). The other convention was to add a numeral value to
reflect the method revision number (as in the NetrServerAuthenticate2 method and
NetrServerAuthenticate3 method, which are the new versions of the original NetrServerAuthen ticate
method).

1.3.8.1.2 Using Dummy Fields in Structures

The requirements of this protocol have evolved over time. During the original design phase, typed but
unused fields were appended to some structures. In lat er versions of the protocol, if new data needed
to be transmitted between the client and the server, these fields could be used without ill effects, so
long as the type of the data was preserved. The servers of a previous version of the Netlogon protocol
would receive and ignore the fields.

In many cases, an introduction of a new Ex structure necessitated an introduction of a corresponding

Ex RPC method for passing the new structure between the client and the server. As an alternative to

the growing number of Ex structures and methods, an approach was introduced to avoid the addition
of new structures and methods by using dummy fields. New structures would have a few unused
fields, such as DummyString1 , DummyString2 , DummyLong1 , and DummyLong2 . These
dummy f ields allow additional information that was not conceived originally to be passed through the
interface in a safe fashion. If the structure has not been extended, these fields are set to zero and
ignored upon receipt.

For example, a dummy field DummyString 1 of the
NETLOGON_ONE_DOMAIN_INFO (section 2.2.1.3.10) structure was used at one point to carry trust
extension attributes. As a dummy field got used, it might or might not be renamed. In the case of
NETLOGON_ONE_DOMAIN_INFO, DummyString1 was renamed as Tr ustExtension to reflect the
new nature of the field. This scheme of dummy field usage worked well: this protocol running on a
new client receiving the NETLOGON_ONE_DOMAIN_INFO structure would use the TrustExtension
field as appropriate, while the NETLOGON_ ONE_DOMAIN_INFO running on an old client would

completely ignore the DummyString1 field.

1.3.8.1.3 Fields and Structures Used by Netlogon Pass - through Methods

During the design of the NetrLogonSamLogon method which is used for Netlogon pass - through,
three fields we re created to pass information opaquely for applications:

Á LogonLevel

Á LogonInformation

28 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á ValidationLevel

At that time, it was thought that there would be four types of logon:

Á Interactive

Á Network

Á Service

Á Generic

However, only three were used: Interactive, Netw ork, and Generic. Service type remains an option
that can be used by callers, and like all Netlogon pass - through behavior, it is specified by the receiving
protocol.

1.3.8.1.4 Using Negotiated Flags

The client and the server often need to know the capabilities of their partners in their client/server
communications. For example, it is sometimes necessary or desirable for a newer version client to
avoid calling a method that the older version server does not implement. Similarly, the new server
would avoid sending fields that the older client is going to treat as dummies and ignore. To make this
possible, the client and the server need to establish a common set of capabilities that both the client
and the server support.

For this reason, the NetrServerAuthenticate3 method (section 3.5.4.4.2), which is called early on
during setup of the secure channel between the client and the server, includes the NegotiateFlags
parameter. The NegotiateFlags parameter uses a set of bit flags to carry the client and server
capabilities. The client sets its capabilities on input, and the server responds with capabilities that it
supports out of those sent by the client. The resulti ng set of bit flags is the set of capabilities that the
client and the server mutually support.

1.4 Relationship to Other Protocols

The Netlogon Remote Protocol depends on RPC and o n the mailslot datagram delivery service, as
specified in [MS -SMB], which are its transports.

Figure 3 : Transport relationships

Other non -RFC standard specifications relevant to the implementation of the Netlogon Remote
Protocol are:

Á Directory Technical Specification [MS -ADTS] defines Active Directory data types, data structures,
and their interactions, many of which are relevant to the functioning of the Netlogon Remote
Protocol.

29 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á Group Policy: Security Protocol Extension [MS -GPSB] is for managing secure channel signing and
encryption settings.

Á Local Security Authority (Domain Policy) Remote Protocol Specification [MS -LSAD] is used for
accessing certain directory information.

Á NT LAN Manager (NTLM) Authentication Protocol S pecification [MS -NLMP] uses netlogon for pass -
through authentication and specifies how to do one -way functions (OWF) of the computer
password.

Á Security Account Manager (SAM) Remote Protocol Specification (Client - to -Server) [MS -SAMR] is
used for account loo kup during session -key negotiation.

Authentication Protocol Domain Support Specification [MS -APDS] is an example of how authentication
protocols can use generic pass - through, as described in section 3.2.4.1.

1.5 Prerequisites/Preconditions

This protocol is an RPC interface and, as a result, has the prerequisites that [MS -RPCE] specifies as
being common to RPC interfaces.

Netlogon replication uses the mailslot datagram deliver y mechanism; therefore, it depends on this
mailslot delivery mechanism being operational before Netlogon begins operation. For mailslot
operational requirements, see [MS -MAIL] section 1.5. The mailslot delivery mechanism is described in
[MS -CIFS] section 2 .2.4.33.

To use this protocol or to use Netlogon as a security support provider (SSP), a computer requires a
shared secret (section 3.1.1) with the domain controller (DC).

The client of the secure channel is required to discover the DC to which it is estab lishing a secure

channel. Thus, a domain member discovers a DC in its domain.

A BDC discovers the primary domain controller (PDC) in its domain. A DC discovers a DC for each of
its trusted domains.

Upon establishing a secure channel, a client can call any of the methods of this protocol that require a
secure channel. This requires both the client and the server to have a working RPC implementation,
including the security extensions ([MS -RPCE] section 2.2.1.1.7). For a complete list of methods that

require a secure channel, see section 3.5.

All methods of this protocol are RPC calls from the client to the server that perform the complete
operation in a single call. No shared state between the client and server is assumed other than the
security context that w as previously established. There are no restrictions on the number of times that
a method can be called or the order in which methods can be called, unless explicitly noted in sections
3.4 and 3.5.

The Netlogon Remote Protocol client and server can run onl y on domain - joined systems. This protocol

is enabled or disabled during the domain join and unjoin tasks as described in [MS -ADOD] and
specified in [MS -WKST] sections 3.2.4.12, 3.2.4.13, and 3.2.4.14.

1.6 Applicability Statement

The Netlogon Remote Protocol contains an implementation of a security support provider (SSP), which

provides packet encryption and signing services to secure client and server communication at the RPC
packet level. These security services are u sed for establishing a secure channel for RPC -based client -
to -server communication.

The Netlogon Remote Protocol can act as a secure transport for NTLM authentication and for other
authentication mechanisms between arbitrary servers and the account authori ty or DC for that server.

30 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The Netlogon Remote Protocol also provides methods for maintaining the trust password for all trusted
domains. Additional information for the methods in this topic is provided in section 3 for cases where

the server is not a membe r of a domain and resolves requests independently.

1.7 Versioning and Capability Negotiation

Á Supported Transports: This protocol uses the mailslot datagram delivery service, RPC over named
pipes ([PIPE]), and RPC over TCP/IP as its only transports. Also see Transport (section 2.1).

Á Security and Authentication Methods: As specified in section 3.2 a nd [MS -RPCE] section 1.7.

Á Protocol Version: This protocol's RPC interface has a single version number of 1.0. Microsoft can
extend this protocol by adding RPC methods to the interface with opnums lying numerically
beyond those defined in this document. A c lient determines whether such methods are supported
by attempting to invoke the method. If the version of the interface does not implement the
method being invoked, it is required that the RPC server return an opnum out of range error. RPC
versioning and c apability negotiation for this situation is specified in [C706] and [MS -RPCE]

section 2.1.

For methods with multiple definitions (for example, NetrServerAuthenticate (section 3.5.4.4.4),
NetrServerAuthenticate2 (section 3.5.4.4.3), and NetrServerAuthentica te3 (section
3.5.4.4.2)), the Netlogon Remote Protocol first tries the most recent definition of the method for
which it has code. If that fails, this protocol tries the next most recent definition, and so on. Using
the NetrServerAuthenticate example, this protocol tries NetrServerAuthenticate3 first,
NetrServerAuthenticate2 second, and finally NetrServerAuthenticate .

Á Capability Negotiation: When a secure channel is established, the NegotiateFlags parameter of the

NetrServerAuthenticate2 and NetrServerAuthenticate3 is used to negotiate a common set of
capabilities that each of the participants in the negotiation can support. See section 3.1.4.2.

1.8 Vendor -Extensible Fields

This protocol uses NTSTATUS values as defined in [MS -ERREF] section 2.3. Vendors are free to choose

their own values for this field, as long as the C bit (0x20000000) i s set, indicating it is a customer
code.

1.9 Standards Assignments

This protocol uses the following RPC UUID, endpoint, and mailslot assignments:

Parameter Value Reference

RPC interface UUID 12345678 -1234 -ABCD-EF00-01234567CFFB Section 2.1

Pipe name \ PIPE\ NETLOGON Section 2.1

Mailslot name \ MAILSLOT \ NET\ NETLOGON Section 2.1

31 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2 Messages

2.1 Transport

This protocol SHOULD<3> use the following RPC protocol sequences as specified in [MS -RPCE] section

2.1:

Á RPC over TCP/IP

Á RPC over named pipes

This protocol uses RPC dynamic endpoints for RPC over TCP/IP, as specified in [C706] sec tion 4.

This protocol uses the following well -known endpoint. This endpoint is a named pipe for RPC over
SMB:

Á \ PIPE\ NETLOGON

This protocol uses the mailslot datagram delivery service ([MS -MAIL] and [MS -SMB]). Mailslot
messages (see [MS -MAIL] section 2.2.1) are sent to the following mailslot:

Á \ MAILSLOT \ NET\ NETLOGON. This named mailslot is used in Netlogon replication, as defined in
section 3.6.

This protocol MUST use the universally unique identifier (UUID) 12345678 -1234 -ABCD-EF00-
01234567CFFB. The RPC version number is 1.0.

This protocol uses the Netlogon SSP. The server MUST use the RPC security provider extensions ([MS -
RPCE] section 2.2.1.1.7). It SHOULD<4> register the Netlogon security package as specifi ed in
section 3.3.

2.2 Common Data Types

In addition to the RPC base types and definitions that are specified in [C706] section 4.2.9 and [MS -
RPCE] section 2.2, additional data types are defined in the following sections.<5>

2.2.1 Structures and Enumerated Types

This section specifies structures and enumerated types that are used by the Netlogon RPC methods
specified in section 3.5. Section 2.2.1.1 specifies the basic structures that are elementary to this
protocol and which are used by many method s. The structures are grouped according to their usage
scenarios.

2.2.1.1 Basic Structures

The structures in this group do not fall into any particular category of Netlogon usage scenarios. They
are used b y multiple Netlogon Remote Protocol methods.

2.2.1.1.1 CYPHER_BLOCK

The CYPHER_BLOCK structure defines an encrypted eight -character string. The type of encryption
used is application dependent.

 typedef struct _CYPHER_BLOCK {

 CHAR data[8];

 } CYPHER_BLOCK,

32 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 *PCYPHER_BLOCK;

data: An encrypted eight -character string.

2.2.1.1.2 STRING

The STRING structure contains the length, the maximum length, and a pointer to a buffer containing
the strin g.

 typedef struct _STRING {

 USHORT Length;

 USHORT MaximumLength;

 [size_is(MaximumLength), length_is(Length)]

 CHAR * Buffer;

 } STRING,

 *PSTRING;

Length: The length of the data pointed to by Buffer , in bytes.

MaximumLength: The total allocated le ngth of the data pointed to by Buffer , in bytes.<6>

Buffer: A pointer to a buffer containing the character string.

2.2.1.1.3 LM_OWF_PASSWORD

The LM_OWF_PASSWORD structure carries a one -way function (OWF) of a LAN Manager password.
The LM_OWF_PASSWORD structure SHOULD be encrypted, as specified by each method that uses

this structure. See the NetrServerPasswordSet method (section 3.5.4.4.6) for encryption
information.

 typedef struct _LM_OWF_PASSWORD {

 CYPHER_BLOCK data[2];

 } LM_OWF_PASSWORD,

 *PLM_OWF_PASSWORD,

 ENCRYPTED_LM_OWF_PASSWORD,

 *PENCRYPTED_LM_OWF_PASSWORD;

data: An array of CYPHER_BLOCK structures (se ction 2.2.1.1.1) that contains the LMOWFv1 of a
password. LMOWFv1 is specified in NTLM v1 Authentication in [MS -NLMP] section 3.3.1.

2.2.1.1.4 NT_OWF_PASSWORD

The NT_OWF_PASSWORD structure SHOULD<7> define a one -way function (OWF) of a domain
password. The NT_OWF_PASSWORD structure SHOULD be encrypted, as specified by each method
that uses this structure. When this structure is encrypted, Netlog on methods uses the DES encryption
algorithm in ECB mode, as specified in [MS -SAMR] section 2.2.11.1.1 Encrypting an NT Hash or LM
Hash Value with a specified key. The session key is the specified 16 -byte key used to derive its keys

using the 16 -byte value process, as specified in [MS -SAMR] section 2.2.11.1.4. For specific encryption
information, see the individual methods, such as NetrServerTrustPasswordsGet (section 3.5.4.4.8)

and NetrServerGetTrustInfo (section 3.5.4.7.6).

 typedef struct _NT_OWF_PASSWORD {

 CYPHER_BLOCK data[2];

 } NT_OWF_PASSWORD,

 *PNT_OWF_PASSWORD,

 ENCRYPTED_NT_OWF_PASSWORD,

 *PENCRYPTED_NT_OWF_PASSWORD;

33 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

data: An array of CYPHER_BLOCK structures (section 2.2.1.1.1) that contains the NTOWFv1 of a
password. NTOWFv1 is specified in NTLM v1 Authentication in [MS -NLMP] section 3.3.1.

2.2.1.1.5 NETLOGON_AUTHENTICATOR

The NETLOGON_AUTHENTICATOR structure defines an authentication credential.

 typedef struct _NETLOGON_AUTHENTICATOR {

 NETLOGON_CREDENTIAL Credential;

 DWORD Timestamp;

 } NETLOGON_AUTHENTICATOR,

 *PNETLOGON_AUTHENTICATOR;

Credential: A NETLOGON_CREDENTIAL (section 2.2.1.3.4) structure that contains the encrypted
portion of the authenticator.

Timestamp: An integer value that contains the time of day at which the client constructed this

authentication credential, represented as the number of elapsed seconds since 00:00:00 of
January 1, 1970. The authenticator is constructed just before making a call to a method that
requir es its usage.

2.2.1.2 DC Location Structures

The structures in this group relate to locating a domain controller (DC).

2.2.1.2.1 DOMAIN_CONTROLLER_INFOW

The DOMAIN_CONTROLLER_INFOW structure SHOULD<8> define information returned by the
following methods: DsrGetDcName (section 3.5.4.3.3), DsrGetDcNameEx (section 3.5.4.3.2), and

DsrGetDcNameEx2 (section 3.5.4.3.1). This structure is used to describe naming and addressing
information a bout a DC.

 typedef struct _DOMAIN_CONTROLLER_INFOW {

 [string, unique] wchar_t* DomainControllerName;

 [string, unique] wchar_t* DomainControllerAddress;

 ULONG DomainControllerAddressType;

 GUID DomainGuid;

 [string, unique] wchar_t* DomainName;

 [s tring, unique] wchar_t* DnsForestName;

 ULONG Flags;

 [string, unique] wchar_t* DcSiteName;

 [string, unique] wchar_t* ClientSiteName;

 } DOMAIN_CONTROLLER_INFOW,

 *PDOMAIN_CONTROLLER_INFOW;

DomainControllerName: A pointer to a null - terminated UTF -16 str ing that contains a NetBIOS or
fully qualified domain name (FQDN) of the DC, prefixed with " \ \ ".

DomainControllerAddress: A pointer to a null - terminated Unicode string that contains the DC

address, prefixed with " \ \ ". The string SHOULD<9> be either a textu al representation of an
IPv4/IPv6 address or the NetBIOS name of the DC, determined by the
DomainControllerAddressType field.

DomainControllerAddressType: A 32 -bit value indicating the DC address type, which MUST be one,
and only one, of the following.

34 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Val ue Meaning

0x00000001 The address is a string that contains an IPv4 address in dotted -decimal
notation (for example, 192.168.0.1), or an IPv6 address in colon -separated
notation.<10>

0x00000002 The address is a NetBIOS name.

DomainGuid: A globally unique identifier (GUID) structure ([MS -DTYP] section 2.3.4.1) that contains
an identifier for the domain. When there is no domain GUID, this field MUST be set to zero. A

GUID SHOULD<11> be used across all computers and networks wherever a uniq ue identifier is
required.

DomainName: A pointer to a Unicode string that contains the NetBIOS or FQDN of the domain.

DnsForestName: A pointer to a null - terminated Unicode string that contains the FQDN of the forest.

Flags: A set of bit flags in little -end ian format that describe the features and roles of the DC. A flag is

TRUE (or set) if its value is equal to 1. The value is constructed from zero or more bit flags from
the following table, with the exceptions that bit J cannot be combined with A, B, D, E, or P; bit F

cannot be combined with I; and bit K cannot be combined with L.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

O N M 0 0 0 0 0 0 0 0 0 0 0 T S R Q P L K J I H G F E D C B 0 A

Where the bits are defined as:

Value Description

A The DC is the domain's primary domain controller (PDC).

B The DC contains the global catalog (GC) for the forest Active Directory.

C The DC supports the Lightweight Directory Access Protocol (LDAP).

D The DC supports a directory service.

E The DC is a Kerberos Key Distribution Center (KDC).

F The DC has a network time service available but no clock hardware.

G The DC is in the closest site to the client.

H The DC has a writable directory service available.

I The DC has clock hardware and a network time service available.

J The DC is an LDAP server servicing an Application naming context (NC) ([MS -
ADTS] section 3.1.1.1.5).

K The DC is a read -only domain controller (RODC).<12>

L The server is a writable domain controller.<13>

M The DC's name is a DNS name.

N The DC's doma in name is a DNS name.

O The DC's forest name is a DNS name.

35 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Value Description

P The DC has an Active Directory Web Service available.<14>

Q The DC has a functional level of DS_BEHAVIOR_WIN2012 or later.

R The DC has a functional level of DS_BEHAVIOR_WIN2012R2 or later.

S The DC has a functional level of DS_BEHAVIOR_WIN2016 or later.

T The DC supports key list requests, as specified in [MS -KILE] section 2.2.11. If this
bit is set, bit S and bit E must also be set.

All other bits MUST be set to zero and MUST be ignored on receipt.

DcSiteName: A pointer to a null - terminated Unicode string that SHOULD<15> contain the site name

that is associated with the DC. When there is no associated site, this field MUST be NULL.

ClientSiteName: A pointer to a null - terminated Unicode string that contains the client's site name.
When there is no client site name, this field MUST be NULL.

2.2.1.2.2 NL_SITE_NAME_ARRAY

The NL_SITE_NA ME_ARRAY structure defines an array of site names.

 typedef struct _NL_SITE_NAME_ARRAY {

 ULONG EntryCount;

 [size_is(EntryCount)] PRPC_UNICODE_STRING SiteNames;

 } NL_SITE_NAME_ARRAY,

 *PNL_SITE_NAME_ARRAY;

EntryCount: The number of entries in SiteNames .

SiteNames: A pointer to an array of null - terminated RPC_UNICODE_STRING strings ([MS -DTYP]
section 2.3.10) that contain site names. For more information about sites, see [MS -ADTS] section

6.1.1.2.2.1.

2.2.1.2.3 NL_SITE_NAME_EX_ARR AY

The NL_SITE_NAME_EX_ARRAY structure defines an array of site and subnet names. This structure
extends the NL_SITE_NAME_ARRAY (section 2.2.1.2.2) structure by adding an array of subnets that
correspond to the sites.

 typedef struct _NL_SITE_NAME_EX_ARRAY {

 ULONG EntryCount;

 [size_is(EntryCount)] PRPC_UNICODE_STRING SiteNames;

 [size_is(EntryCount)] PRPC_UNICODE_STRING SubnetNames;

 } NL_SITE_NAME_EX_ARRAY,

 *PNL_SITE_NAME_EX_ARRAY;

En tryCount: The number of entries in SiteNames and SubnetNames .

SiteNames: A pointer to an array of null - terminated Unicode strings that contain site names. For
details about sites, see [MS -ADTS] section 6.1.1.2.2.1.

SubnetNames: A pointer to an array of nul l- terminated Unicode strings that contain subnet names.
For details about subnets, see [MS -ADTS] section 6.1.1.2.2.2.1.

36 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.1.2.4 NL_SOCKET_ADDRESS

The NL_SOCKET_ADDRESS structure contains a socket address .

 typedef struct _NL_SOCKET_ADDRESS {

 [size_is(iSockaddrLength)] UCHAR * lpSockaddr;

 ULONG iSockaddrLength;

 } NL_SOCKET_ADDRESS,

 *PNL_SOCKET_ADDRESS;

lpSockaddr: A pointer to an octet string. The format of the lpSockaddr member when an IPv4
socket add ress is used is specified in section 2.2.1.2.4.1. The format of the lpSockaddr member
when an IPv6 socket address is used is specified in section 2.2.1.2.4.2.

iSockaddrLength: The length of the octet string pointed to by lpSockaddr , in bytes.

2.2.1.2.4.1 IPv4 Address Structure

The IPv4 Address structure specifies the format of an IPv4 socket address. This structure is built as
if on a little -endian machine and i s treated as a byte array.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AddressFamily Port

Address

Padding

...

AddressFamily (2 bytes): The address family; MUST be 0x0002.

Port (2 bytes): An IP port number.

Address (4 bytes): An IP address, as specified in [RFC791].

Padding (8 bytes): This field is set to zero and ignored by the server.

2.2.1.2.4.2 IPv6 Address Structure

The IPv6 Address structure specifies the format of an IPv6 socket address. This stru cture is built as
if on a little -endian machine and is treated as a byte array.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AddressFamily Port

FlowInfo

Address (16 bytes)

...

37 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

...

ScopeID

AddressFamily (2 bytes): Address family; MUST be 0x0017.

Port (2 bytes): An IP port number.

FlowInfo (4 bytes): Flow information. This field is not used by the protocol. The field MUST be set to

zero and MUST be ignored on receipt.

Address (16 bytes): An I P address, as specified in [RFC3493].

ScopeID (4 bytes): A set of interfaces for a scope, as specified in [RFC3493].

2.2.1.2.5 NL_DNS_NAME_INFO

The NL_DNS_NAME_INFO structure provides the information on a DN S name (record) (as specified
in [RFC2782]) to be updated by the DsrUpdateReadOnlyServerDnsRecords method (section

3.5.4.3.11). DsrUpdateReadOnlyServerDnsRecords method will update DNS as requested by the
Register field's value in this structure.

 typedef s truct _NL_DNS_NAME_INFO {

 ULONG Type;

 [string] wchar_t* DnsDomainInfo;

 ULONG DnsDomainInfoType;

 ULONG Priority;

 ULONG Weight;

 ULONG Port;

 UCHAR Register;

 ULONG Status;

 } NL_DNS_NAME_INFO,

 *PNL_DNS_NAME_INFO;

Type: The type of DNS name, whi ch MUST be one, and only one, of the following.

Value Meaning

NlDnsLdapAtSite

22

_ldap._tcp.<SiteName>._sites.<DnsDomainName>.

Allows a client to find an LDAP server in the domain named by
<DnsDomainName> and is in the site named by <SiteName>.

NlDnsGcAtSite

25

_ldap._tcp.<SiteName>._sites.gc._msdcs.<DnsForestName>.

Allows a client to find a DC serving a global catalog (GC) in the forest
named by <DnsForestName> and is in the site named by <SiteName>.

NlDnsDsaCname

28

<DsaGuid>._msdcs.<DnsForestName>.

Allows a client to find a DC in the forest named by <DnsForestName>
based on the DSA GUID. For a definition of DSA GUID, see [MS -ADTS]
section 1.1.

NlDnsKdcAtSite

30

_kerberos._tcp.<SiteName>._sites.dc._msdcs.<DnsDomainNa me>.

Allows a client to find a DC running a Kerberos KDC in the domain
named by <DnsDomainName> and is in the site named by
<SiteName>.

NlDnsDcAtSite

32

_ldap._tcp.<SiteName>._sites.dc._msdcs.<DnsDomainName>.

Allows a client to find a DC in the domain named by

38 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Value Meaning

<DnsDomainName> and is in the site named by <SiteName>.

NlDnsRfc1510KdcAtSite

34

_kerberos._tcp.<SiteName>._sites.<DnsDomainName>.

Allows a client to find an RFC -1510 compliant Kerberos KDC in the
domain named by <DnsDomainName> and is in the site named by
<SiteName>.

NlDnsGenericGcAtSite

36

_gc._tcp.<SiteName>._sites.<DnsForestName>.

Allows a client to find a global catalog (GC) server in the forest named
by <DnsForestName> and is in the site named by < SiteName>.

DnsDomainInfo: The string that will be based on the DnsDomainInfoType field defined below.

DnsDomainInfoType: The type of DnsDomainInfo member, which MUST be one, and only one, of
the following:

Value Meaning

NlDnsDomainName

1

The DnsDomainInfo member is a DNS domain name.

NlDnsDomainNameAlias

2

The DnsDomainInfo member is a DNS domain name alias.

NlDnsForestName

3

The DnsDomainInfo member is a DNS forest name.

NlDnsForestNameAlias

4

The DnsDomainInfo member is a DNS forest name alias.

NlDnsNdncDomainName

5

The DnsDomainInfo member is a non -domain NC (application NC)
name. For a definition of application NC, see [MS -ADTS] section 1.1.

NlDnsRecordName

6

The DnsDomainInfo member is a DNS record name that is required
to be deregistered. This is valid only for deregistration in which the
Register value is set to FALSE. For the types of DNS record name, see
[MS -ADTS] section 6.3.2.

Priority: The priority for DNS SRV records.

Weight: The weight for DNS SRV records.

Port: The port for the DNS SRV record.

Register: Zero indicates to deregister the DNS name; other values indicate to register the DNS name.

Status: The update status of the DNS name. Status SHOULD<16> be set to 0x00 000000 on success;
otherwise, it contains a nonzero error code.

2.2.1.2.6 NL_DNS_NAME_INFO_ARRAY

The NL_DNS_NAME_INFO_ARRAY structure provides the information on DNS names (records) to
be update d by the DsrUpdateReadOnlyServerDnsRecords (section 3.5.4.3.11) method.

 typedef struct _NL_DNS_NAME_INFO_ARRAY {

 ULONG EntryCount;

 [size_is(EntryCount)] PNL_DNS_NAME_INFO DnsNamesInfo;

 } NL_DNS_NAME_INFO_ARRAY,

39 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 *PNL_DNS_NAME_INFO_ARRAY;

EntryCount: The number of entries in the DnsNamesInfo field.

DnsNamesInfo: A pointer to an array of the NL_DNS_NAME_INFO (section 2.2.1.2.5) structure,
which SHOULD<17> contain DNS name information.

2.2.1.3 Secure Channel Establishment and Maintenance Structures

Structures and enumerated types in this group are used to establish and maintain the secure channel.

2.2.1.3.1 NL_AUTH_MESSAGE

The NL_AUTH_MESSAGE structure is a token containing information that is part of the first message
in establishing a security context between a client and a server. It is used for establishing the secure
session when Netlogon functions as a security support provider (SSP). For details about

NL_AUTH_MESSAGE construction, see section 3.3.4.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MessageType

Flags

Buffer (variable)

...

MessageType (4 bytes): A 32 -bit unsigned integer. This value is used to indicate whether the

message is a negotiate request message sent from a client to a server, or a negotiate response
message sent from the server to the client. MessageType MUST be one, and only one, of the
following.

Value Meaning

0x00000000 This is a negotiate request message.

0x00000001 This is a negotiate response message.

Flags (4 bytes): A set of bit flags indicating the principal names carried in the request. A flag is TRUE
(or set) if its value is equal to 1. These flags are set only in negotiate request messages. The

value is constructed from one or more bit flags from the following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 E D C B A

Where the bits are defined as:

Value Description

A Buffer contains a NetBIOS domain name as an OEM_STRING ([MS -CIFS] section

40 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Value Description

2.2.1.1).

B Buffer contains a NetBIOS computer name as an OEM_STRING.

C Buffer contains a DNS domain name as a compressed UTF -8 string, as specified in
[RFC1035] section 4.1.4.

D Buffer contains a DNS host name as a compressed UTF -8 string.

E Buffer contains a NetBIOS computer name as a compressed UTF -8 string.

All other bits MUST be set to zero and MUST be ignored on receipt.

Buffer (variable): A text buffer that contains a concatenation of null - terminated strings for each of

the name flags set in the Flags field. The order is the same as the order of t he Flags values (A ï
E). This buffer is only used in negotiate request messages. For negotiate response messages, the
buffer contains a NULL character.

2.2.1.3.2 NL_AUTH_SIGNATURE

The NL_AUTH_SIGNATURE structure is a security token that defines the authentication signature
used by Netlogon to execute Netlogon methods over a secure channel. It follows the security trailer

that a security provider MUST associate with a signed or encrypted message. A security trailer or
sec_trailer structur e ([MS -RPCE] section 2.2.2.11) has syntax equivalent to the auth_verifier_co_t
structure, as specified in "Common Authentication Verifier Encodings" in [C706] section 13.2.6.1.
When Netlogon is functioning as its own SSP for the RPC connection, this struct ure contains the
signature, a sequence number, and if encryption is requested, a confounder. See section 3.3.4.2.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SignatureAlgorithm SealAlgorithm

Pad Flags

SequenceNumber

...

Checksum

...

Confounder

...

SignatureAlgorithm (2 bytes): A 16 -bit little -endian integer that identifies the algorithm that is
used for signature computation. The only supported signature algorithm is HMAC -MD5, as
specified in [RFC2104]. The SignatureAlgorithm field MUST contain the following value.

Value Meanin g

0x0077 The packet is signed using HMAC -MD5.

41 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

SealAlgorithm (2 bytes): A 16 -bit little -endian integer that identifies the algorithm used for
encryption. The only supported encryption algorithm is RSA -RC4 (for more information about RC4,

see [SCHNEIER] section 17.1). The SealAlgorithm field MUST contain one of the following
va lues.

Value Meaning

0xFFFF The packet is not encrypted.

0x007A The packet is encrypted using RC4.

Pad (2 bytes): A 2 -byte padding field. Both bytes MUST be set to 0xFF.

Flags (2 bytes): Specifies properties of the structure. No flags are currently defined. Both bytes
MUST be set to zero and MUST be ignored on receipt.

SequenceNumber (8 bytes): A 64 -bit little -endian integer containing the sequence number of the
RPC message. For more details about how to calculate the SequenceNumber , see section

3.3.4.2.1.

Checksum (8 bytes): A 64 -bit value containing the final checksum of the signature and the R PC
message. For more details about how to calculate the checksum, see section 3.3.4.2.1.

Confounder (8 bytes): A buffer used when the structure is used for encryption in addition to signing.
The bytes are filled with random data that is used by the encrypt ion algorithm. If the structure is
used only for signing, the confounder is not included. For details about the confounder and
encrypting the data, see section 3.3.4.2.1.

2.2.1.3.3 NL_AUTH_SHA2_SIGNATURE

The NL_AUTH_SHA2_SIGNATUR E structure is a security token that defines the SHA2
authentication signature that SHOULD<18> be used by Netlogon to execute Netlogon methods over a
secure channel. It follows the security trailer that a security provider MUST associate with a signed or

encrypted message. A security trailer or sec_trailer structure ([MS -RPCE] section 2.2.2.11) has syntax

equivalent to the auth_verifier_co_t structure, as specified in [C706] section 13.2.6.1. When Netlogon
is functioning as its own SSP for the RPC connectio n, this structure contains the signature, a sequence
number, and (if encryption is requested) a confounder. See section 3.3.4.2.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SignatureAlgorithm SealAlgorithm

Pad Flags

SequenceNumber

...

Checksum (8 bytes)

...

Confounder

...

42 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Reserved (24 bytes)

é

SignatureAlgorithm (2 bytes): A 16 -bit little -endian integer that identifies the algorithm that is
used for signature computation. The only supported signature algorithm is HMAC -SHA256
[RFC4634]. The SignatureAlgorithm field MUST contain the following value.

Value Meaning

0x0013 The p acket is signed using HMAC -SHA256.

SealAlgorithm (2 bytes): A 16 -bit little -endian integer that identifies the algorithm used for

encryption. The only supported encryption algorithm is AES -128 [FIPS197]. The SealAlgorithm
field MUST contain one of the fol lowing values.

Value Meaning

0xFFFF The packet is not encrypted.

0x001A The packet is encrypted using AES -128.

Pad (2 bytes): A 2 -byte padding field. Both bytes MUST be set to 0xFF.

Flags (2 bytes): Specifies properties of the structure. No Flags are currently defined. Both bytes
MUST be set to zero and MUST be ignored on receipt.

SequenceNumber (8 bytes): A 64 -bit little -endian integer containing the sequence number of the
RPC message. For more detai ls about how to calculate the SequenceNumber , see section
3.3.4.2.1.

Checksum (8 bytes): A 64 -bit value containing the final Checksum of the signature and the RPC

message. For more details about how to calculate the Checksum , see section 3.3.4.2.1.

Confoun der (8 bytes): A buffer that is employed when the structure is used for encryption, in

addition to signing. The bytes are filled with random data that is used by the encryption algorithm.
If the structure is used only for signing, the Confounder is not inc luded. For details about the
Confounder and encrypting the data, see section 3.3.4.2.1.

Reserved (24 bytes): The sender SHOULD<19> set these bytes to zero, and the receiver MUST
ignore them.

2.2.1.3.4 NETLOGON_CREDENTIAL

The NETLOGON_CREDENTIAL structure contains 8 bytes of data that have two distinct uses: for
session -key negotiation and for building a Netlogon authenticator.

 typedef struct _NETLOGON_CREDENTIAL {

 CHAR data[8];

 } NETLOGON_CREDENTIAL,

 *PNETLOGON_CREDENTIAL;

data: The meaning of the 8 bytes of data contained in this structure is determined by the following:

Á When session -key negotiation is performed, the data field carries an 8 -byte challenge. Also
see section 3.1.4. 1.

43 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á When the NETLOGON_CREDENTIAL is used as part of a NETLOGON_AUTHENTICATOR
structure (section 2.2.1.1.5), the data field carries 8 bytes of encrypted data, as specified in

the Netlogon Credential Computation (section 3.1.4.4) and Netlogon Authenticator
Co mputation and Verification (section 3.1.4.5) sections.

2.2.1.3.5 NETLOGON_LSA_POLICY_INFO

The NETLOGON_LSA_POLICY_INFO structure defines Local Security Authority (LSA) policy
information as an unsigned character buffer. For details, see [LSAPOLICY] and [MS -LSAD].

 typedef struct _NETLOGON_LSA_POLICY_INFO {

 ULONG LsaPolicySize;

 [size_is(LsaPolicySize)] UCHAR * LsaPolicy ;

 } NETLOGON_LSA_POLICY_INFO,

 *PNETLOGON_LSA_POLICY_INFO;

LsaPolicySize: This field is not used and is set to zero.

LsaPolicy: This field is not used and is initialized to NULL.

2.2.1.3.6 NETLOGON_WORKSTATION_INFO

The NETLOGON_WORKSTATION_INFO structure defines information passed into the

NetrLogonGetDomainInfo method, as specified in 3.5.4.4.9. It SHOULD<20> be used to convey
information about a member workstation from the client side to the server side.

 typedef struct _NETLOGON_WORKSTATION_INFO{

 NETLOGON_LSA_POLICY_INFO LsaPolicy;

 [string] wchar_t* DnsHostName;

 [string] wchar_t* SiteName;

 [string] wchar_t* Dummy1;

 [string] wchar_t* Dummy2;

 [string] wchar_t* Dummy3;

 [string] wchar_t* Dummy4;

 RPC_UNICODE_STRING OsVersion;

 RPC_UNICODE_STRING OsName;

 RPC_UNICODE_STRING DummyString3;

 RPC_UNICODE_STRING DummyString4;

 ULONG WorkstationFlags;

 ULONG KerberosSupportedEncryptionTypes;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_WORKSTATION_INFO,

 *PNETLOGON_WORKSTATION_INFO;

LsaPolicy: A NETLOGON_LSA_POLICY_INFO structure, as specified in section 2.2.1.3.5, that
contains the LSA policy for this domain.

DnsHostName: A null - terminated Unicode string that contains the DNS host name of the client.

SiteName: A null - terminated Unicode string that contains the name of t he site where the workstation
resides.

Dummy1: MUST be set to NULL and MUST be ignored on receipt. The Netlogon usage of dummy
fields is described in section 1.3.8.1.2.

Dummy2: See definition of Dummy1.

Dummy3: See definition of Dummy1.

44 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Dummy4: See definit ion of Dummy1.

OsVersion: An RPC_UNICODE_STRING structure (as defined in [MS -DTYP] section 2.3.10) in which
the Length and MaximumLength fields are set to the size of an OSVERSIONINFOEX structure
and the Buffer field points to an OSVERSIONINFOEX ([MS -RPRN] section 2.2.3.10.2) structure.

OsVersion contains the version number of the operating system installed on the client machine.

OsName: A null - terminated Unicode string that SHOULD<21> contain the name of the operating
system installed on the client machine . The DC that receives this data structure updates the
operatingSystem attribute of the client's machine account object in Active Directory, as specified
in [MS -ADA3] section 2.53.

DummyString3: A STRING structure, defined in section 2.2.1.1.1, that MUST contain 0 for the
Length field, 0 for the MaximumLength field, and NULL for the Buffer field. It is ignored upon

receipt. The Netlogon usage of dummy fields is described in section 1.3.8.1.2.

DummyString4: See definition for DummyString3.

WorkstationFlags: A set of bit flags specifying workstation behavior. A flag is TRUE (or set) if its
value is equal to 1. The value is constructed from zero or more bit flags from the following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 B A

Where the bits are defined as:

Value Description

A Client will receive inbound trusts as specified in [MS -LSAD] section 2.2.7.9. The client sets this bit in
order to receive the inbound trusts.

B Client handles the update of the service principal name (SPN).

All other bits MUST be set to zero and MUST be ignored on receipt.

KerberosSupportedEncryptionTypes: The msDS - SupportedEncryptionTypes attribute of the
client's machine account object in Active Directory, as specified in [MS -ADA2] section 2.465.<22>

DummyLong3: MUST be set to zero and MUST be ignored on receipt. The Netlogon usage of dummy
fields is described in section 1.3.8.1.2.

DummyL ong4: See definition of DummyLong3.

2.2.1.3.7 NL_TRUST_PASSWORD

The NL_TRUST_PASSWORD structure defines a buffer for carrying a computer account password, or
a trust password, to be transmitted over the wi re. It SHOULD<23> be transported as an input

parameter to the NetrServerPasswordSet2 method, as specified in section 3.5.4.4.5. Domain
members use NetrServerPasswordSet2 to change their computer account password. The primary
domain controller uses NetrServ erPasswordSet2 to change trust passwords for all directly trusted

domains. The NL_TRUST_PASSWORD structure is encrypted using the negotiated encryption
algorithm before it is sent over the wire.

 typedef struct _NL_TRUST_PASSWORD {

 WCHAR Buffer[256];

 ULONG Length;

 } NL_TRUST_PASSWORD,

45 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 *PNL_TRUST_PASSWORD;

Buffer: Array of Unicode characters that is treated as a byte buffer containing the password, as
follows:

Á For a computer account password, the buffer has the following format:

Figure 4 : Computer account password buffer format

The first (512 ï Length) bytes MUST be randomly generated data that serves as an additional
source of entropy during encryption. The last Length bytes of the buffer MUST contain the
clear text password.

Á For a domain trust password, the buffer has the following format:

Figure 5 : Domain trust password buffer format

The last Length bytes of the buffer contain the clear text password. The 12 bytes preceding

the password are filled with the password version information as defined below. The rest of

the buffer is filled with randomly generated data.

Á The PasswordVersion part of the preceding diagram has the following format:

Figure 6 : Password version buffer format

Where ReservedField , PasswordVersionNumber , and PasswordVersionPresent are the

fields of the NL_PASSWORD_VERSION structure, as specified in section 2.2.1.3.8. The
PasswordVersionPresent field is used to indicate whether the buffer contains a computer
account password or a trust password: If the value of the PasswordVersionPresent field is
0x02231968, then the buffer contains a trust password; otherwise the buffer contains a
computer account password.

Length: The length of the password, in byte s.

2.2.1.3.8 NL_PASSWORD_VERSION

46 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The NL_PASSWORD_VERSION structure defines a password version number that is used to
distinguish between different versions of information passed in the Buffer field of the

NL_TRUST_PASSWORD structure (section 2.2.1.3.7). The NL_PASSWORD_VERSION structure
SHOULD<24> be prepended to the password in the buffer of NL_TRUST_PASSWORD and is only

used for interdomain trust accounts.

 typedef struct _NL_PASSWORD_VERSION {

 ULONG ReservedField;

 ULONG PasswordVersionNumber;

 ULONG PasswordVersionPresent;

 } NL_PASSWORD_VERSION,

 *PNL_PASSWORD_VERSION;

ReservedField: MUST be set to zero when sent and MUST be ignored on receipt.

PasswordVersionNumber: Integer value that contains th e current password version number. The
password version number is incremented by one when a new password is generated; the value for

the first password is one.

PasswordVersionPresent: MUST be 0x02231968, which is a constant used to indicate that the

passwo rd version number is present and is stored in PasswordVersionNumber field. This
member is relevant only for server - to -server communication.

2.2.1.3.9 NETLOGON_WORKSTATION_INFORMATION

The NETLOGON_WORKSTATION_INFORMATION union SHOULD<25> select between two
parameters of type NETLOGON_WORKSTATION_INFO structure, as specified in section 2.2.1.3.6,

based on the value of the Level parameter of the NetrLogonGetDomainInfo method, as specified in
section 3.5.4.4.9.

 typedef

 [swit ch_type(DWORD)]

 union _NETLOGON_WORKSTATION_INFORMATION {

 [case(1)]

 PNETLOGON_WORKSTATION_INFO WorkstationInfo;

 [case(2)]

 PNETLOGON_WORKSTATION_INFO LsaPolicyInfo;

 } NETLOGON_WORKSTATION_INFORMATION,

 *PNETLOGON_WORKSTATION_INFORMATION;

WorkstationInfo: Field is selected when the switched DWORD ([MS -DTYP] section 2.2.9) constant is

0x00000001.

LsaPolicyInfo: Field is selected when the switched DWORD constant is 0x00000002.

2.2.1.3.10 NETLOGON_ONE_DOMAIN_INFO

The NETLOGON_ONE_DOMAIN_INFO structure SHOULD<26> define information about a single
domain. It is in turn contained in the NETLOGON_DOMAIN_INFO structure, as specified in section

2.2.1 .3.11. The NETLOGON_DOMAIN_INFO structure describes domain relationships and is
generated as output from the NetrLogonGetDomainInfo method, as specified in section 3.5.4.4.9.

 typedef struct _NETLOGON_ONE_DOMAIN_INFO {

 RPC_UNICODE_STRING DomainName;

 RPC_UNICODE_STRING DnsDomainName;

 RPC_UNICODE_STRING DnsForestName;

 GUID DomainGuid;

 PRPC_SID DomainSid;

 RPC_UNICODE_STRING TrustExtension;

47 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 RPC_UNICODE_STRING DummyString2;

 RPC_UNICODE_STRING DummyString3;

 RPC_UNICODE_STRING DummyString4;

 ULONG DummyLong1;

 ULONG DummyLong2;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_ONE_DOMAIN_INFO,

 *PNETLOGON_ONE_DOMAIN_INFO;

DomainName: A null - terminated Unicode string that contains the NetBIOS name of the domain being

described. This field MUST NO T be an empty string.

DnsDomainName: A null - terminated Unicode string that contains the DNS domain name for this
domain. This field MUST NOT be an empty string.

DnsForestName: A null - terminated Unicode string that contains the DNS forest name for this
doma in.

DomainGuid: A globally unique 128 -bit identifier for this domain.

DomainSid: The security identifier (SID), as specified in [MS -DTYP] section 2.4.2.3 for this domain.

TrustExtension: An RPC_UNICODE_STRING structure, as specified in [MS -DTYP] section 2.3.10,
which does not point to a Unicode string, but in fact points to a buffer of size 16, in bytes, in the
following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

ParentIndex

TrustType

TrustAttributes

This structure is supplementary domain trust information that contains the following fields of a
DS_DOMAIN_TRUSTSW structure (section 2.2.1.6.2): Flags , ParentIndex , TrustType , and
TrustAttributes . For more details on usage in NetrLogonGetDomainInfo, see section 3.5.4.4.9.

DummyString2: A STRING structure, defined in section 2.2.1.1.2, that MUST contain 0 for the
Length field, 0 for the MaximumLength field, and NULL for the Buffer field. It is ignored upon
receipt. The Netlogon usage of dummy fields is described in section 1.3.8.1.2.

DummyString3: See definition for DummyString2.

DummyString4: See definition for DummyString2.

DummyLong1: MUST be set to zero and MUST be ignored on receipt. The Netlogon usage of dummy
fields is des cribed in section 1.3.8.1.2.

DummyLong2: See definition for DummyLong1.

DummyLong3: See definition for DummyLong1.

DummyLong4: See definition for DummyLong1.

48 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.1.3.11 NETLOGON_DOMAIN_INFO

The NETLOG ON_DOMAIN_INFO structure SHOULD<27> define information returned as output from
the NetrLogonGetDomainInfo method, as specified in section 3.5.4.4.9. It contains information

about a domain, including naming information and a list of trusted domains.

 typedef struct _NETLOGON_DOMAIN_INFO {

 NETLOGON_ONE_DOMAIN_INFO PrimaryDomain;

 ULONG TrustedDomainCount;

 [size_is(TrustedDomainCount)] PNETLOGON_ONE_DOMAIN_INFO TrustedDomains;

 NETLOGON_LSA_POLICY_INFO LsaPolicy;

 RPC_UNICODE_STRING DnsHostNameInDs;

 RPC_UNICODE_STRING DummyString2;

 RPC_UNICODE_STRING DummyString3;

 RPC_UNICODE_STRING DummyString4;

 ULONG WorkstationFlags;

 ULONG SupportedEncTypes;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_DOMAIN_INFO,

 *PNETLOGON_DOMAIN_INFO;

PrimaryDomain: A NETLOGON_ONE_DOMAIN_INFO structure, as specified in section 2.2.1.3.10,
that contains information about the domain of which the server is a member.

TrustedDomainCount: The number of trusted domains listed in Truste dDomains.

TrustedDomains: A pointer to an array of NETLOGON_ONE_DOMAIN_INFO structures, as
specified in section 2.2.1.3.10, which contain information about domains with which the current
domain has a trust relationship.

LsaPolicy: A NETLOGON_LSA_POLICY_INF O data structure that contains the LSA policy for this

domain. This field is not used. For details, see section 2.2.1.3.5.

DnsHostNameInDs: A null - terminated Unicode string that contains the Active Directory DNS host

name for the client.

DummyString2: A STRING structure, defined in section 2.2.1.1.2, that MUST contain 0 for the
Length field, 0 for the MaximumLength field, and NULL for the Buffer field. It is ignored upon
receipt. The Netlogon usage of dummy fields is described in section 1 .3.8.1.2.

DummyString3: See definition for DummyString2.

DummyString4: See definition for DummyString2.

WorkstationFlags: A set of bit flags that specify workstation behavior. A flag is TRUE (or set) if its
value is equal to 1. The value is constructed fro m zero or more bit flags from the following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 B A

Where the bits are defined as:

Value Description

A Client receives inbound trusts.

B Client handles the update of the service principal name (SPN). See [SPNNAMES] for details.

49 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

All other bits MUST be set to zero and MUST be ignored on receipt.

SupportedEncTypes: A set of bit flags that SHOULD<28> specify the encryption types supported, as
specified in [MS -LSAD] section 2.2.7.18. See [MS -LSAD] for a specification of these bit values and
their allowed combinations.

DummyLong3: MUST be set to zero and MUST be ignore d on receipt. The Netlogon usage of dummy
fields is described in section 1.3.8.1.2.

DummyLong4: See definition of DummyLong3.

2.2.1.3.12 NETLOGON_DOMAIN_INFORMATION

The NETLOGON_DOMAIN_INFORMATION union SHOULD<29> select either a
NETLOGON_DOMAIN_INFO , as specified in section 2.2.1.3.11, or a

NETLOGON_LSA_POLICY_INFO , as specified in section 2.2.1.3.5, data type based on the value of
the Level parameter to the NetrLogonGetDomainInfo method, as specified in section 3.5.4.4.9.

 typedef

 [switch_type(DWORD)]

 union _NETLOGON_DOMAIN_INFORMATION {

 [case(1)]

 PNETLOGON_DOMAIN_INFO DomainInfo;

 [case(2)]

 PNETLOGON_LSA_POLICY_INFO LsaPolicyInfo;

 } NETLOGON_DOMAIN_INFORMATION,

 *PNETLOGON_DOMAIN_INFORMATION;

DomainInfo: This field is selected when the switched DWORD ([MS -DTYP] section 2.2.9) value is set
to 0x00000001. The union contains a NETLOGON_DOMAIN_INFO structure, as specified in
section 2.2.1.3.11.

LsaPolicyInfo: This field is selected when the switched DWORD value is set to 0 x00000002. The
union contains a NETLOGON_LSA_POLICY_INFO structure, as specified in section 2.2.1.3.5.

2.2.1.3.13 NETLOGON_SECURE_CHANNEL_TYPE

The NETLOGON_SECURE_CHANNEL_TYPE enumeration specifies the type of secure channel to use
in a logon transaction.

 typedef enum _NETLOGON_SECURE_CHANNEL_TYPE

 {

 NullSecureChannel = 0,

 MsvApSecureChannel = 1,

 WorkstationSecureChannel = 2,

 TrustedDnsDomain SecureChannel = 3,

 TrustedDomainSecureChannel = 4,

 UasServerSecureChannel = 5,

 ServerSecureChannel = 6,

 CdcServerSecureChannel = 7

 } NETLOGON_SECURE_CHANNEL_TYPE;

NullSecureChannel: An unauthenticated channel type. This value MUST NOT be used in th e Netlogon
RPC calls between a client and a remote server. The error code STATUS_INVALID_PARAMETER is
returned.

MsvApSecureChannel: A secure channel between the local NT LAN Manager (NTLM) security
provider and the Netlogon server. The client and the serve r are the same machine for this channel

50 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

type. This value MUST NOT be used in the Netlogon RPC calls between a client and a remote
server. The error code STATUS_INVALID_PARAMETER is returned.

WorkstationSecureChannel: A secure channel from a domain member t o a DC.

TrustedDnsDomainSecureChannel: A secure channel between two DCs, connected through a trust

relationship created between two Active Directory domains. A trusted domain object (TDO) is used
in this type of channel.

TrustedDomainSecureChannel: A secur e channel between two DCs, connected through a trust
relationship created between two domains.<30>

UasServerSecureChannel: Secure channel from a LAN Manager server to a DC. This value is no
longer supported, and it MUST NOT be used in the Netlogon RPC call s between a client and a
remote server. The error code STATUS_INVALID_PARAMETER is returned.

ServerSecureChannel: A secure channel from a backup domain controller to a primary domain
controller.

CdcServerSecureChannel: A secure channel from a read -only dom ain controller (RODC) to a
domain controller.<31>

2.2.1.3.14 NETLOGON_CAPABILITIES

The NETLOGON_CAPABILITIES union SHOULD<32> carry the supported Netlogon capabilities.

 typedef

 [switch_type(DWORD)]

 union _NETLOGON_CAPABILITIES {

 [case(1)]

 ULONG ServerCapabilities;

 } NETLOGON_CAPABILITIES,

 *PNETLOGON_CAPABILITIES;

ServerCapabilities: A 32 -bit set of bit flags that identify the server's capabilities (section
3.5.4.4.10).

2.2.1.3.15 NL_OSVERSIONINFO_V1

The NL_OSVERSIONINFO_V1 structure specifies the values used to update the
operatingSystemVersion and operating System attributes on the client's computer account object
in Active Directory on a normal (writable) DC.<33>

 typedef struct _NL_OSVERSIONINFO_V1 {

 DWORD dwOSVersionInfoSize;

 DWORD dwMajorVersion;

 DWORD dwMinorVersion;

 DWORD dwBuildNumber;

 DWORD dwPlatformId;

 wchar_t szCSDVersion[128];

 USHORT wServicePackMajor;

 USHORT wServicePackMinor;

 USHORT wSuiteMask;

 UCHAR wProductType;

 UCHAR wReserved;

 } NL_OSVERSIONINFO_V1;

dwOSVersionInfoSize: The size, in bytes, of this data structure. Set this member to
sizeof(NL_OSVERSIONINFO_V1).

51 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

dwMajorVersion: The implementation -specific major version number of the operating system.<34>

dwMinorVersion: The implementation -specific minor version number of the operating system.<35>

dwBuildNumber: The build nu mber of the operating system.

dwPlatformId: The operating system platform.<36>

szCSDVersion: A null - terminated string, such as "Service Pack 3", that indicates the latest service
pack installed on the system. If no service pack has been installed, the stri ng is empty.

wServicePackMajor: The major version number of the latest service pack installed on the system.
For example, for "Service Pack 3", the major version number is 3. If no service pack has been
installed, the value is 0.

wServicePackMinor: The min or version number of the latest service pack installed on the system.
For example, for "Service Pack 3", the minor version number is 0.

wProductType: Any additional information about the system. This member can be one of the

following values.

Value Meaning

VER_NT_DOMAIN_CONTROLLER

0x00000002

The system is a DC.

VER_NT_SERVER

0x00000003

The system is a server. Note that a server that is also a DC is reported
as VER_NT_DOMAIN_CONTROLLER, not VER_NT_SERVER.

VER_NT_WORKSTATION

0x00000001

Identifies the operating system.<37>

wReserved: Reserved for future use.<38>

2.2.1.3.16 NL_IN_CHAIN_SET_CLIENT_ATTRIBUTES_V1

The NL_IN_CHAIN_SET_CLIENT_ATTRIBUTES_V1 structure specifies the values to update on the
client's computer account object in Active Directory on a normal (writable) domain controller.<39>

 typedef struct _NL_IN_CHAIN_SET_CLIENT_ATTRIBUTES_V1 {

 [unique, string] wchar_t* ClientDnsHostName;

 [uni que] NL_OSVERSIONINFO_V1* OsVersionInfo_V1;

 [unique, string] wchar_t* OsName;

 } NL_IN_CHAIN_SET_CLIENT_ATTRIBUTES_V1;

ClientDnsHostName: A NULL or null - terminated Unicode string that is used to update the attribute
dNSHostName on the client's computer ac count object in Active Directory.

OsVersionInfo_V1: If not NULL, the attribute operatingSystemVersion on the client's computer

account in Active Directory (using the ABNF Syntax as specified in [RFC2234]) is set to:

Á If OsVersionInfo_V1.dwBuildNumber is 0:

operatingSystemVersion = MajorVersion "." MinorVersion

MajorVersion = "OsVersionInfo_V1.dwMajorVersion"

MinorVersion = "OsVersionInfo_V1.dwMinorVersion"

Á Otherwise:

52 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

operatingSystemVersion = MajorVersion "." MinorVersion "."

 BuildNum ber

MajorVersion = "OsVersionInfo_V1.dwMajorVersion"

MinorVersion = "OsVersionInfo_V1.dwMinorVersion"

BuildNumber = "OsVersionInfo_V1.dwBuildNumber"

OsName: A NULL or a null - terminated Unicode string that SHOULD<40> be used to update the
attribute operatin gSystem on the client's computer account object in Active Directory.

2.2.1.3.17 NL_IN_CHAIN_SET_CLIENT_ATTRIBUTES

The NL_IN_CHAIN_SET_CLIENT_ATTRIBUTES union defines versioning.

 typedef

 [switch_type(DWORD)]

 union {

 [case(1)]

 NL_IN_CHAIN_SET_CLIENT_ATTRIBUTES_V1 V1;

 } NL_IN_CHAIN_SET_CLIENT_ATTRIBUTES;

V1: An NL_IN_CHAIN_SET_CLIENT_ATTRIBUTES_V1 (section 2.2.1.3.16) structure.<41>

2.2.1.3.18 NL_OUT_CHAIN_SET_CLIENT_ATTRIBUTES_V1

The NL_OUT_CHAIN_SET_CLIENT_ATTRIBUTES_V1 structure SHOULD<42> specify the values
returned from the normal (writable) DC.

 typedef struct _NL_OUT_CHAIN_SET_CLIENT_ATTRIBUTES_V1 {

 [unique, string] wchar_t* HubName;

 [unique, string] wchar_t** OldDnsHostName;

 [unique] ULONG * SupportedEncTypes;

 } NL_OUT_CHAIN_SET_CLIENT_ATTRIBUTES_V1;

HubName: The NetBIOS name of the writable domain controller receiving
NetrChainSetClientAttributes (section 3.5.4.4.11). The read -only domain controller (RODC) that
invoked the method NetrChainSetClientAttributes S HOULD<43> attempt to replicate the computer
account object from HubName to itself, ignoring errors.

OldDnsHostName: The client's DNS host name, if any, from the dNSHostName attribute

([MS -ADA1] section 2.185) on the client's computer account object in Act ive Directory on the
writable domain controller. If there was an update to the dNSHostName attribute by the writable
domain controller as a result of receiving NetrChainSetClientAttributes, this value will hold the
previous value of that attribute.

Support edEncTypes: The supported encryption algorithms received from the
NetrLogonGetDomainInfo request, in the SupportedEncTypes field in the
NETLOGON_DOMAIN_INFO (section 2.2.1.3.11) structure.<44>

2.2.1.3.19 NL_OUT_CHAIN_SET_CLIENT_ATTRIBUTES

The NL_OUT_CHAIN_SET_CLIENT_ ATTRIBUTES union defines versioning. Currently, only version
1 is supported.

 typedef

 [switch_type(DWORD)]

 union {

 [case(1)]

53 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 NL_OUT_CHAIN_SET_CLIENT_ATTRIBUTES_V1 V1;

 } NL_OUT_CHAIN_SET_CLIENT_ATTRIBUTES;

V1: An NL_OUT_CHAIN_SET_CLIENT_ATTRIBUTES_V 1 (section 2.2.1.3.18) structure.<45>

2.2.1.4 Pass -Through Authentication Structures

Structures and enumerated ty pes in this group are used for generic pass - though and for user logon

and logoff.

2.2.1.4.1 LM_CHALLENGE

The LM_CHALLENGE structure carries a LAN Manager authentication challenge.

 typedef struct {

 CHAR data[8];

 } LM_CHALLENGE;

data: A string of eight characters that contains a LAN Manager authentication challenge, which is an
unencrypted nonce.

For more information, see [LANMAN].

2.2.1.4.2 NETLOGON_GENERIC_INFO

The NETLOGON_GENERIC_INFO structure defines a structure that contains logon information in

binary format. Authentication protocols make use of this structure for passing generic logon data
through the Netlogon secure channel to a DC in the domain that contains the user account to use the
domain's database. For an example of using the NETLOGON_GENERIC_INFO structure, see any of
the examples documented in [MS -APDS].

 typedef struct _NETLOGON_GENERIC_INFO {

 NETLOGON_LOGON_IDENTITY_INFO Identity;

 RPC_UNICODE_STRING PackageName;

 ULONG DataLength;

 [size_is(DataLength)] UCHAR * LogonData;

 } NETLOGON_GENERIC_INFO,

 *PNETLOGON_GENERIC_INFO;

Identity: The NETLOGON_LOGON_IDENTI TY_INFO structure, as specified in section 2.2.1.4.15,
contains information about the logon identity. The LogonDomainName field of the
NETLOGON_LOGON_IDENTITY_INFO structure indicates the target domain that contains the
user account.

PackageName: Contains the name of the security provider, such as Kerberos, to which the data will

be delivered on the domain controller in the target domain that was specified in the Identity field.
This name MUST match the name of an existing security provider; otherwise, the Security Support

Provider Interface (SSPI) ([SSPI]) returns a package not found error.

DataLength: The length, in bytes, of LogonData .

LogonData: A pointer to a block of binary data that contains the information to be sent to the
security package reference d in PackageName . This data is opaque to Netlogon.

2.2.1.4.3 NETLOGON_INTERACTIVE_INFO

54 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The NETLOGON_INTERACTIVE_INFO structure defines information about an interactive logon
instance.

 typed ef struct _NETLOGON_INTERACTIVE_INFO {

 NETLOGON_LOGON_IDENTITY_INFO Identity;

 LM_OWF_PASSWORD LmOwfPassword;

 NT_OWF_PASSWORD NtOwfPassword;

 } NETLOGON_INTERACTIVE_INFO,

 *PNETLOGON_INTERACTIVE_INFO;

Identity: A NETLOGON_LOGON_IDENTITY_INFO structure, as specified in section 2.2.1.4.15,

that contains information about the logon identity.

LmOwfPassword: An LM_OWF_PASSWORD structure, as specified in section 2.2.1.1.3, that
contains the LMOWFv1 of a password. LMOWFv1 is specified in NTLM v1 Authentication in [MS -
NLMP] section 3.3.1.

NtOwfPassword: An NT_OWF_PASSWORD structure, as specified in section 2.2.1.1.4, that
contains the NTOWFv1 of a password. NTOWFv1 is specified in NTLM v1 Authentication in [MS -
NLMP] section 3.3.1.

2.2.1.4.4 NETLOGON_SERVICE_INFO

The NETLOGON_SERVICE_INFO structure defines information about a service account logon.
Operating system services use service accounts as their run - time security identity.

 typedef struct _NETLOGON_SERVICE_INFO {

 NETLOGON_LOGON_IDENTITY_INFO Identity;

 LM_OWF_PASSWORD LmOwfPassword;

 NT_OWF_PASSWORD NtOwfPassword;

 } NETLOGON_SERVICE_INFO,

 *PNETLOGON_SERVICE_INFO;

Identity: NETLOGON_LOGON_IDENTITY_INFO structure, as specified in section 2.2.1.4.15, that
contains information about the logon identity.

LmOwfPassword: LM_OWF_PASSWORD structure, as specified in section 2.2.1.1.3, that contains
the LMOWFv1 of a password. LMOWFv1 is specified in NTLM v1 Authen tication in [MS -NLMP]
section 3.3.1.

NtOwfPassword: NT_OWF_PASSWORD structure, as specified in section 2.2.1.1.4, that contains
the NTOWFv1 of a password. NTOWFv1 is specified in NTLM v1 Authentication in [MS -NLMP]
section 3.3.1.

2.2.1.4.5 NETLOGON_NETWORK_INFO

The NETLOGON_NETWORK_INFO structure defines information that describes a network account
logon.

 typedef struct _NETLOGON_NETWORK_INFO {

 NETLOGON_LOGON_IDENTITY_INFO Identity;

 LM_CHALLENGE LmChallenge;

 STRING NtChallengeResponse;

 STRING LmChallengeResponse;

 } NETLOGON_NETWORK_INFO,

 *PNETLOGON_NETWORK_INFO;

55 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Identity: NETLOGON_LOGON_IDENTITY_INFO structure, as specified in section 2.2.1.4.15, that
contains information about the logon ide ntity. The Identity.LogonDomainName field MUST

match the DomainName field of the authenticate message received by the client. The
authenticate message is defined in [MS -NLMP] section 2.2.1.3.

LmChallenge: LM_CHALLENGE structure, as specified in section 2.2 .1.4.1, that contains the
network authentication challenge. For details about challenges, see [MS -NLMP].

NtChallengeResponse: String that contains the NT response (see [MS -NLMP]) to the network
authentication challenge.

LmChallengeResponse: String that con tains the LAN Manager response (see [MS -NLMP]) to the
network authentication challenge.

2.2.1.4.6 NETLOGON_LEVEL

The NETLOGON_LEVEL union defines a union of all types of logon information.

 typedef

 [switch_type(NETLOGON_LOGON_INFO_CLASS)]

 union _NETLOGON_LEVEL {

 [case(NetlogonInteractiveInformation)]

 PNETLOGON_INTERACTIVE_INFO LogonInteractive;

 [case(NetlogonInteractiveTransitiveInformation)]

 PNETLOGON_INTERACTIVE_INFO LogonInteractiveTransitive;

 [case(NetlogonServiceInformation)]

 PNETLOGON_SERVICE_INFO LogonService;

 [case(NetlogonServiceTransitiveInformation)]

 PNETLOGON_SERVICE_INFO LogonServiceTransitive;

 [case(NetlogonNetworkInformation)]

 PNETLOGON_NETWORK_INFO LogonNetwork;

 [case(NetlogonNetworkTransitiveInformation)]

 PNETLOGON_NETWORK_INFO LogonNetworkTransitive;

 [case(NetlogonGenericInformation)]

 PNETLOGON_GENERIC_INFO LogonGeneric;

 [default] ;

 } NETLOGON_LEVEL,

 *PNETLOGON_LEVEL;

LogonInteractive: This field is selected when the logon information type is
NetlogonInteractiveInformation . The data type is NETLOGON_INTERACTIVE_INFO , as

specified in section 2.2.1.4.3.

LogonInteractiveTransitive: This field is selected when the logon information type is
NetlogonInteractiveTransitiveInformation . The data type is
NETLOGON_INTERACTIVE_INFO , as specified in section 2.2.1.4.3.

LogonService: This field is selected when the logon information type is
NetlogonServiceInformation . The data type is NETLOGON_SERVICE_INFO , as specified in

section 2.2.1.4.4.

LogonServiceTransitive: This field is selected when the logon information type is
NetlogonServiceTransitiveInformation . The data type is NETLOGON_SERVICE_INFO , as
specified in section 2 .2.1.4.4.

LogonNetwork: This field is selected when the logon information type is
NetlogonNetworkInformation . The data type is NETLOGON_NETWORK_INFO , as specified in
section 2.2.1.4.5.

56 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

LogonNetworkTransitive: This field is selected when the logon informati on type is
NetlogonNetworkTransitiveInformation . The data type is NETLOGON_NETWORK_INFO , as

specified in section 2.2.1.4.5.

LogonGeneric: This field is selected when the logon information type is

NetlogonGenericInformation . The data type is NETLOGON_GENERI C_INFO , as specified in
section 2.2.1.4.2.

2.2.1.4.7 NETLOGON_SID_AND_ATTRIBUTES

The NETLOGON_SID_AND_ATTRIBUTES structure contains a security identifier (SID) and its
attributes.

 typed ef struct _NETLOGON_SID_AND_ATTRIBUTES {

 PRPC_SID Sid;

 ULONG Attributes;

 } NETLOGON_SID_AND_ATTRIBUTES,

 *PNETLOGON_SID_AND_ATTRIBUTES;

Sid: A pointer to a security identifier (SID), as specified in [MS -DTYP] section 2.4.2.3.

Attributes: A set of bit flags that contains the set of security attributes assigned to this SID. A bit is
TRUE (or set) if its value is equal to 1. The value is constru cted from one or more bit flags from

the following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 0 D 0 C B A

Where the bits are defined as:

Value Description

A The SID cannot have the SE_GROUP_ENABLED attribute removed. Corresponds to the SID
attribute SE_GROUP_MANDATORY . This attribute prevents the user from disabling the group.

Disabling a group causes the group to be ignored by access validation routines.

B The SID is enabled by default (as opposed to being enabled by an application). Corresponds to
the SID attribute SE_GROUP_ENABLED_BY_DEFAULT .

C The SID is enabled for access checks. Corresponds to the SID attribute SE_GROUP_ENABLED .

D This group is a domain local group. Corresponds to SE_GROUP_RESOURCE .

All other bits MUST be set to zero and MUST be ignored on receipt. For more information, see
[MSDOCS -TokenGrp].

These values are opaque to the Netlogon protocol. They are not used or processed directly. All fields
of this structure have the same meaning as the identically named fields in the
KERB_SID_AND_ATTRIBUTES structure as specified in [MS -PAC] section 2.2.1.

2.2.1.4.8 NETLOGON_VALIDATION_GENERIC_INFO2

The NETLOGON_VALIDATION_GENERIC_INFO2 structure defines a structure that contains
account information in binary format. This struc ture is used by authentication protocols to return
generic account information upon successful logon validation. For an example of using the
NETLOGON_VALIDATION_GENERIC_INFO2 structure, see any of the examples in [MS -APDS].

57 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 typedef struct _NETLOGON_VALIDATION_GENERIC_INFO2 {

 ULONG DataLength;

 [size_is(DataLength)] UCHAR * ValidationData;

 } NETLOGON_VALIDATION_GENERIC_INFO2,

 *PNETLOGON_VALIDATION_GENERIC_INFO2;

DataLength: An integer value that contains the length of the data referenced by ValidationData , in
bytes.

ValidationData: A pointer to a buffer that contains the logon validation information.

2.2.1.4.9 USER_SESSION_KEY

The USER_SESSION_KEY structure defines an encrypted user session key.

 typedef struct _USER_SESSION_KEY {

 CYPHER_BLOCK data[2];

 } USER_SESSION_KEY,

 *PUSER_SESSION_KEY;

data: A two -element CYPHER_BLOCK structure, as specified in section 2.2.1.1.1, that c ontains the
16 -byte encrypted user session key.

2.2.1.4.10 GROUP_MEMBERSHIP

The GROUP_MEMBERSHIP structure identifies the group to which an account belongs.

 typedef struct _GROUP_MEMBERSHIP {

 ULONG Relative Id;

 ULONG Attributes;

 } GROUP_MEMBERSHIP,

 *PGROUP_MEMBERSHIP;

RelativeId: The relative identifier (RID) for a particular group.

Attributes: A set of values that describe the group membership attributes set for the RID specified in
RelativeId . The value is constructed from one or more bit flags from the following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 C B A

Where the bits are defined as:

Value Description

A The SID cannot have the SE_GROUP_ENABLED attribute removed. Corresponds to the SID
attribute SE_GROUP_MANDATORY . This attribute prevents the user from disabling the group.
Disabling a group causes the group to be ignored by access validation routines.

B The SID is enabled by default (as opposed to being enabled by an application). Corresponds to
the SID attribute SE_GROUP_ENABLED_BY_DEFAULT .

C The SID is enabled for access checks. Corresponds to the SID attribute SE_GROUP_ENABLED .
The SE_GR OUP_ENABLED attribute enables the group.

58 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

All other bits MUST be zero and MUST be ignored on receipt. For more information, see [MSDOCS -
TokenGrp].

These values are opaque to the Netlogon protocol. They are not used or processed directly. All fields
of thi s structure have the same meaning as the identically named fields in the

GROUP_MEMBERSHIP structure as specified in [MS -PAC] section 2.2.2.

2.2.1.4.11 NETLOGON_VALIDATION_SAM_INFO

The NETLOGON_VALIDATION_SAM_INFO structure defines account information retrieved from a
database upon a successful user logon validation.

All fields of this structure, except the fields detailed following the structure definition, have the same
meaning as the identically named fields in the KERB_VALIDATION_INFO structure, as specified in

[MS -PAC] section2.5. Additionally, fields of this structure that are defined as OLD_LARGE_INTEGER
are 64 -bit timestamps equivalent to the identically named fields in the KERB_V ALIDATION_INFO
structure of FILETIME type ([MS -DTYP] section 2.3.3).

 typedef struct _NETLOGON_VALIDATION_SAM_INFO {

 OLD_LARGE_INTEGER LogonTime;

 OLD_LARGE_INTEGER LogoffTime;

 OLD_LARGE_INTEGER KickOffTime;

 OLD_LARGE_INTEGER PasswordLastSet;

 OLD_LARGE_INTEGER PasswordCanChange;

 OLD_LARGE_INTEGER PasswordMustChange;

 RPC_UNICODE_STRING EffectiveName;

 RPC_UNICODE_STRING FullName;

 RPC_UNICODE_STRING LogonScript;

 RPC_UNICODE_STRING ProfilePath;

 RPC_UNICODE_STRING HomeDirectory;

 RPC_UNICODE_STRING HomeDirectoryDrive;

 USHORT LogonCount;

 USHORT BadPasswordCount;

 ULONG UserId;

 ULONG PrimaryGroupId;

 ULONG GroupCount;

 [size_is(GroupCount)] PGROUP_MEMBERSHIP GroupIds;

 ULONG UserFlags;

 USER_SESSION_KEY UserSessionKey;

 RPC_UNICODE_STRING LogonServer;

 RPC_UNICODE_STRING LogonDomainName;

 PRPC_SID LogonDomainId;

 ULONG ExpansionRoom[10];

 } NETLOGON_VALIDATION_SAM_INFO,

 *PNETLOGON_VALIDATION_SAM_INFO;

LogonServer: An RPC_UNICODE_STRING structure (defined in [MS -DTYP] section 2.3.10) that
contains the NetBIOS name of the server that populates this structure.

ExpansionRoom: A ten -element array of unsigned 32 -bit integers. This member has a function

similar to that of dummy fields, as detailed in section 1.3.8.1.2. Each element of the array MUST
be zero when sent and MUST be ignored on receipt.

2.2.1.4.12 NETLOGON_VALIDATION_SAM_INFO2

The NETLOGON_VALIDATION_SAM_INFO2 structure is an extension to
NETLOGON_VALIDATION_SAM_INFO , as specified in section 2.2.1.4.11, with support for storing
extra SIDs.

All fields of this structure, except the f ields detailed following the structure definition, have the same
meaning as the identically named fields in the KERB_VALIDATION_INFO structure as specified in [MS -
PAC] section 2.5. Additionally, fields of this structure that are defined as OLD_LARGE_INTEGE R are

59 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

64 -bit timestamps equivalent to the identically named fields in the KERB_VALIDATION_INFO structure
of FILETIME type ([MS -DTYP] section 2.3.3).

 typedef struct _NETLOGON_VALIDATION_SAM_INFO2 {

 OLD_LARGE_INTEGER LogonTime;

 OLD_LARGE_INTEGER LogoffTi me;

 OLD_LARGE_INTEGER KickOffTime;

 OLD_LARGE_INTEGER PasswordLastSet;

 OLD_LARGE_INTEGER PasswordCanChange;

 OLD_LARGE_INTEGER PasswordMustChange;

 RPC_UNICODE_STRING EffectiveName;

 RPC_UNICODE_STRING FullName;

 RPC_UNICODE_STRING LogonScript;

 RPC_UNICODE_STRING ProfilePath;

 RPC_UNICODE_STRING HomeDirectory;

 RPC_UNICODE_STRING HomeDirectoryDrive;

 USHORT LogonCount;

 USHORT BadPasswordCount;

 ULONG UserId;

 ULONG PrimaryGroupId;

 ULONG GroupCount;

 [size_is(GroupCount)] PGROUP_MEMBERSH IP GroupIds;

 ULONG UserFlags;

 USER_SESSION_KEY UserSessionKey;

 RPC_UNICODE_STRING LogonServer;

 RPC_UNICODE_STRING LogonDomainName;

 PRPC_SID LogonDomainId;

 ULONG ExpansionRoom[10];

 ULONG SidCount;

 [size_is(SidCount)] PNETLOGON_SID_AND_ATTRIBUTES ExtraSids;

 } NETLOGON_VALIDATION_SAM_INFO2,

 *PNETLOGON_VALIDATION_SAM_INFO2;

LogonServer: An RPC_UNICODE_STRING structure that contains the NetBIOS name of the server

that populates this structure.

ExpansionRoom: A ten -element array of unsigned 32 -bit integers. This member has a function

similar to that of dummy fields, as described in section 1.3.8.1.2. Each eleme nt of the array MUST
be zero when sent and MUST be ignored on receipt.

2.2.1.4.13 NETLOGON_VALIDATION_SAM_INFO4

The NETLOGON_VALIDATION_SAM_INFO4 structure extends

NETLOGON_VALIDATIO N_SAM_INFO2 , as specified in section 2.2.1.4.12, by storing the FQDN of
the domain of the user account and the user principal.

All fields of this structure, except the fields detailed following the structure definition, have the same
meaning as the identic ally named fields in the KERB_VALIDATION_INFO structure, as specified in [MS -
PAC] section 2.5. Additionally, fields of this structure that are defined as OLD_LARGE_INTEGER are
64 -bit timestamps equivalent to the identically named fields in the KERB_VALIDAT ION_INFO structure
of FILETIME type ([MS -DTYP] section 2.3.3).

 typedef struct _NETLOGON_VALIDATION_SAM_INFO4 {

 OLD_LARGE_INTEGER LogonTime;

 OLD_LARGE_INTEGER LogoffTime;

 OLD_LARGE_INTEGER KickOffTime;

 OLD_LARGE_INTEGER PasswordLastSet;

 OLD_LARGE_INTEGER PasswordCanChange;

 OLD_LARGE_INTEGER PasswordMustChange;

 RPC_UNICODE_STRING EffectiveName;

 RPC_UNICODE_STRING FullName;

 RPC_UNICODE_STRING LogonScript;

 RPC_UNICODE_STRING ProfilePath;

60 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 RPC_UNICODE_STRING HomeDirectory;

 RPC_UNICODE_STRING HomeDirectoryDrive;

 unsigned short LogonCount;

 unsigned short BadPasswordCount;

 unsigned long UserId;

 unsigned long PrimaryGroupId;

 unsigned long GroupCount;

 [size_is(GroupCount)] PGROUP_MEMBERSHIP GroupIds;

 unsigned long UserFlags;

 USER_SESSION_KEY UserSessionKey;

 RPC_UNICODE_STRING LogonServer;

 RPC_UNICODE_STRING LogonDomainName;

 PRPC_SID LogonDomainId;

 unsigned char LMKey[8];

 ULONG UserAccountControl;

 ULONG SubAuthStatus;

 OLD_LARGE_INTEGER LastSuccessfulILogon;

 OLD_LARGE_INTEGER LastFailedILogon;

 ULONG FailedILogonCount;

 ULONG Reserved4[1];

 unsigned long SidCount;

 [size_is(SidCount)] PNETLOGON_SID_AND_ATTRIBUTES ExtraSids;

 RPC_UNICODE_STRING DnsLogonDomainName;

 RPC_UNICODE_STRING Upn;

 RPC_UNICODE_STRING ExpansionString1;

 RPC_UNICODE_STRING ExpansionString2;

 RPC_UNICODE_STRING ExpansionString3;

 RPC_UNICODE_STRING ExpansionString4;

 RPC_UNICODE_STRING ExpansionString5;

 RPC_UNICODE_STRING ExpansionStrin g6;

 RPC_UNICODE_STRING ExpansionString7;

 RPC_UNICODE_STRING ExpansionString8;

 RPC_UNICODE_STRING ExpansionString9;

 RPC_UNICODE_STRING ExpansionString10;

 } NETLOGON_VALIDATION_SAM_INFO4,

 *PNETLOGON_VALIDATION_SAM_INFO4;

LogonServer: An RPC_UNICODE_ STRING structure that contains the NetBIOS name of the server

that populates this structure.

LMKey: Contains the first 8 bytes of the LMOWF ([MS -NLMP] section 3.3.1) if NTLMV1 is used, or the
first 8 bytes of the KXKEY ([MS -NLMP] section 3.4.5.1) if NTLMV2 is used.

Reserved4: An unsigned 32 -bit integer. This member is reserved. MUST be zero when sent and MUST
be ignored on receipt.

DnsLogonDomainName: Contains the FQDN of the domain of the user account.

Upn: Contains the user principal name (UPN).

ExpansionString1: A STRING structure, defined in section 2.2.1.1.2, that MUST contain 0 for the
Length field, 0 for the MaximumLength field, and NULL for the Buffer field. It is ignored upon
receipt. Expansion strin gs have a function similar to that of dummy fields, as described in section
1.3.8.1.2.

ExpansionString2: See definition for ExpansionString1.

ExpansionString3: See definition for ExpansionString1.

ExpansionString4: See definition for ExpansionString1.

Expa nsionString5: See definition for ExpansionString1.

ExpansionString6: See definition for ExpansionString1.

61 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

ExpansionString7: See definition for ExpansionString1.

ExpansionString8: See definition for ExpansionString1.

ExpansionString9: See definition for Exp ansionString1.

ExpansionString10: See definition for ExpansionString1.

2.2.1.4.14 NETLOGON_VALIDATION

The NETLOGON_VALIDATION union defines a union of all types of user validation information
values.

 typedef

 [switch_type(enum _NETLOGON_VALIDATION_INFO_CLASS)]

 union _NETLOGON_VALIDATION {

 [case(NetlogonValidationSamInfo)]

 PNETLOGON_VALIDATION_SAM_INFO ValidationSam;

 [case(NetlogonValidationSamInfo2)]

 PNETLOGON_VALIDATION_SAM_INFO2 ValidationSam2;

 [case(NetlogonValidationGenericInfo2)]

 PNETLOGON_VALIDATION_GENERIC_INFO2 ValidationGeneric2;

 [case(NetlogonValidationSamInfo4)]

 PNETLOGON_VALIDATION_SAM_INFO4 ValidationSam4;

 [default] ;

 } NETLOGON_VALIDATION,

 *PNETLOGON_VALIDATION;

ValidationSam: This field is selected when the validation information type is

NetlogonValidationSamInfo . The selected data type is
NETLOGON_VALIDATION_SAM_INFO , as specified in section 2.2.1.4.11.

ValidationSam2: This field is selec ted when the validation information type is
NetlogonValidationSamInfo2 . The selected data type is

NETLOGON_VALIDATION_SAM_INFO2 , as specified in section 2.2.1.4.12.

ValidationGeneric2: This field is selected when the validation information type is

Netlogon ValidationGenericInfo2 . The selected data type is
NETLOGON_VALIDATION_GENERIC_INFO2 , as specified in section 2.2.1.4.8.

ValidationSam4: This field is selected when the validation information type is
NetlogonValidationSamInfo4 . The selected data type is
NETLOGON_VALIDATION_SAM_INFO4 , as specified in section 2.2.1.4.13.

2.2.1.4.15 NETLOGON_LOGON_IDENTITY_INFO

The NETLOGON_LOGON_IDENTITY_INFO structure defines a logon identity within a do main.

 typedef struct _NETLOGON_LOGON_IDENTITY_INFO {

 RPC_UNICODE_STRING LogonDomainName;

 ULONG ParameterControl;

 OLD_LARGE_INTEGER Reserved;

 RPC_UNICODE_STRING UserName;

 RPC_UNICODE_STRING Workstation;

 } NETLOGON_LOGON_IDENTITY_INFO,

 *PNETLOGON_LOGON_IDENTITY_INFO;

LogonDomainName: Contains the NetBIOS name of the domain of the account. The case of the
domain name MUST be preserved across all messages.

62 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

ParameterControl: A set of bit flags that contain information pertaining to the logon validatio n
processing. A flag is TRUE (or set) if its value is equal to 1. The value is constructed from zero or

more bit flags from the following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X W V U T S R Q 0 0 0 P 0 0 0 O 0 N M L K J I H G F E D C B A 0

Where the bits are defined as:

Value Description

A Clear text passwords can be transmitted for this logon identity.

B Update the logon statistics for this account upon successful logon.

C Return the user parameter list for this account upon successful logon.

D Do not attempt to log this account on as a guest upon logon failure.

E Allow this account to log on with the domain controller account.

F Return the password expiration date and time upon successful logon.

G Send a client challenge upon logon request.

H Attempt logon as a guest for this account only.

I Return the profile path upon successful logon.

J Attempt logon to the specified domain only.

K Allow this account to log on with the computer account.

L Disable allowing fallback to guest account for this account.

M Force the logon of this account as a guest if the password is incorrect.

N This account has supplied a clear text password.

O Allow NTLMv1 authentication ([MS -NLMP]) when only NTLMv2 ([NTLM]) is allowed.

P Use sub -authentication ([MS -APDS] section 3.1.5.2.1).

Q - X Encode the sub -authentication package identifier. Bits Q ïX are used to encode the integer value
of the sub -authentication package identifier (this is in little -endian ord er).

Reserved: MUST be set to zero when sent and MUST be ignored on receipt.

UserName: Contains the name of the user.

Workstation: Contains the NetBIOS name of the workstation from which the user is logging on.

2.2.1.4.16 NETLOGON_LOGON_INFO_CLASS

The NETLOGON_LOGON_INFO_CLASS enumeration SHOULD<46> identif y a particular type of
logon information block.

 typedef enum _NETLOGON_LOGON_INFO_CLASS

 {

63 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 NetlogonInteractiveInformation = 1,

 NetlogonNetworkInformation = 2,

 NetlogonServiceInformation = 3,

 NetlogonGenericInformation = 4,

 NetlogonInteractiveTra nsitiveInformation = 5,

 NetlogonNetworkTransitiveInformation = 6,

 NetlogonServiceTransitiveInformation = 7

 } NETLOGON_LOGON_INFO_CLASS;

NetlogonInteractiveInformation: Logon information pertains to an interactive account logon.
Interactive account logon requires a user to physically input credentials to the client that are then
authenticated by the DC.

NetlogonNetworkInformation: Logon information pertains to a network account logon. Network
logon is transparent to the user. The user has alr eady input his or her credentials during

interactive logon and has been authenticated by the server or DC. These credentials are used
again to log the user onto another network resource without prompting the user for his or her
credentials.

NetlogonService Information: Logon information pertains to a service account logon. A service
account acts as a non -privileged user on the local computer and presents anonymous credentials
to any remote server.

NetlogonGenericInformation: Logon information pertains to a g eneric account logon. This type of

account logon is for generic pass - through authentication, as specified in section 3.2.4.1, that
enables servers to forward NTLM and Digest authentication credentials to a DC for authorization.

NetlogonInteractiveTransitiv eInformation: Logon information pertains to a transitive interactive
account logon and can be passed through transitive trust links.

NetlogonNetworkTransitiveInformation: Logon information pertains to a transitive network
account logon and can be passed th rough transitive trust links.

NetlogonServiceTransitiveInformation: Logon information pertains to a transitive service account

logon and can be passed through transitive trust links.

2.2.1.4.17 NETLOGON_VALIDATION_INFO_CLASS

The NETLOGON_VALIDATION_INFO_CLASS enumeration SHOULD<47> select the type of logon
information block being used.

 typedef enum _NETLOGON_VALIDATION_INFO_CLASS

 {

 NetlogonValidationUasInfo = 1,

 Net logonValidationSamInfo = 2,

 NetlogonValidationSamInfo2 = 3,

 NetlogonValidationGenericInfo = 4,

 NetlogonValidationGenericInfo2 = 5,

 NetlogonValidationSamInfo4 = 6

 } NETLOGON_VALIDATION_INFO_CLASS;

NetlogonValidationUasInfo: Associated structure is NETLOGON_VALIDATION_UAS_INFO
(section 2.2.1.8.1).

NetlogonValidationSamInfo: Associated structure is NETLOGON_VALIDATION_SAM_INFO

(section 2.2.1.4.11).

NetlogonValidationSamInfo2: Associated structure is NETLOGON_VALIDATION_SAM_INFO2
(section 2.2.1.4.12).

64 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

NetlogonValidationGenericInfo: Associated structure is
NETLOGON_VALIDATION_GENERIC_INFO2 (section 2.2.1.4.8).

NetlogonValidationGenericInfo2: Associated structure is
NETLOGON_VALIDATION_GENERIC_INFO2 .

Net logonValidationSamInfo4: Associated structure is NETLOGON_VALIDATION_SAM_INFO4
(section 2.2.1.4.13).

2.2.1.4.18 NETLOGON Specific Access Masks

Access Rights : The access rights defined by this protocol are specified by the bit settings in the
following table:

Name Value Informative Summary

NETLOGON_UAS_LOGON_ACCESS 0x0001 Obsolete (LAN Manager).

NETLOGON_UAS_LOGOFF_ACCESS 0x0002 Obsolete (LAN Manager).

NETLOGON_CONTROL_ACCESS 0x0004 Granted to security principals that are system operators, account
operators, admi nistrators, or components of the operating
system.

NETLOGON_QUERY_ACCESS 0x0008 Granted to all security principals.

NETLOGON_SERVICE_ACCESS 0x0010 Granted to all security principals that are administrators or
components of the operating system.

NETLOGON_FTINFO_ACCESS 0x0020 Granted to all security principals that are authenticated users.

NETLOGON_WKSTA_RPC_ACCESS 0x0040 Granted to all security principals that are local users or
administrators.

2.2.1.5 Account Database Replication Structures

Structures and enumerated types in this group are used for account database replication.<48> These
structures are relevant only for server - to -server communication, and are obsolete.

2.2.1.5.1 NETLOGON_DB_CHANGE (Announcement) Message

The NETLOGON_DB_CHANGE message is used to indicate that one or more changes have taken
place in the account database, and carries an indication of the changes from the PDC to the BDC.
Because it is sent in the open, this is a hint, and the BDC must connect to the PDC over a reliable
transport and secure connection to obtain the actual change. Th e following is the format of the

payload of a mailslot message used in Netlogon replication, as specified in section 3.6.

The DBChangeInfo field represents information about a state of one of the databases (security

account manager (SAM) built - in database, Security Account Manager (SAM) database, or Local
Security Authority (LSA) database). The number of DBChangeInfo fields is specified by t he DBCount
field. The format of the DBChangeInfo field is described below.

The fields are in little -endian format and have the following meanings:

65 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MessageType LowSerialNumber

... DateAndTime

... Pulse

... Random

... PrimaryDCName (variable)

...

DomainName (variable)

...

UnicodePrimaryDCName (variable)

...

UnicodeDomainName (variable)

...

DBCount

DBChangeInfo (variable)

...

DomainSidSize

DomainSid (variable)

...

MessageFormatVersion

MessageToken

MessageType (2 bytes): A two -byte field identifying the message. MUST be set to 0x000A.

LowSerialNumber (4 bytes): The low DWORD ([MS -DTYP] section 2.2.9) part of the 64 -bit
data base serial number of the SAM database.

DateAndTime (4 bytes): An unsigned 32 -bit value representing the time stamp for the SAM
database creation time. This MUST be expressed as the number of seconds elapsed since midnight
of January 1, 1970.

66 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Pulse (4 byte s): An unsigned 32 -bit value that specifies the message interval in seconds between
change announcements sent to the BDCs.

Random (4 bytes): An unsigned 32 -bit value that indicates the number of seconds the recipient of
the message waits before contacting the sender.

PrimaryDCName (variable): The null - terminated name of the PDC sending the message. MUST be
encoded in the original equipment manufacturer (OEM) character set.

DomainName (variable): The null - terminated domain name encoded in the OEM character set. The
domain name is padded to a multiple of 2 bytes for alignment reasons.

UnicodePrimaryDCName (variable): The null - terminated name of the PDC sending the message.
MUST be encoded in the Unicode character set.

UnicodeDomainName (variable): The null - terminated domain name. MUST be encoded in the

Unicode character set.

DBCount (4 bytes): An unsigned 32 -bit value representing the number of DBChangeInfo fields in
the message.

DBChangeInfo (variable): A set of DBChangeInfo messages, as specified below, that indicate the
changes that are pending replication. There are DBCount entries in this set.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DBIndex

LargeSerialNumber

...

DateAndTime

...

DBIndex (4 bytes): A 32 -bit value that identifies the database as follows:

Value Meaning

0x00000000 Indicates the SAM database.

0x00000001 Indicates the SAM built - in database.

0x00000002 Indicates the LSA database.

LargeSerialNumber (8 bytes): A 64 -bit value that contains the database serial number for the

database identified by the DBIndex field.

DateAndTime (8 bytes): The time in UTC of the database creation expressed as an 8 -byte value
in the TIME format in a FILE TIME structure, as specified in [MS -RPCE] section 6.

In what follows, the above message is referred to as the announcement message.

DomainSidSize (4 bytes): An unsigned 32 -bit value specifying the size in bytes of the DomainSid
field.

67 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

DomainSid (variable): The domain SID, as specified in [MS -DTYP] section 2.4.2.3.

MessageFormatVersion (4 bytes): An unsigned 32 -bit value containing the version of the message
fo rmat. MUST be set to 0x00000001.

MessageToken (4 bytes): An unsigned 32 -bit field identifying the message. MUST be set to

0xFFFFFFFF.

2.2.1.5.2 NLPR_QUOTA_LIMITS

The NLPR_QUOTA_LIMITS structure defines a s et of system resources that are available to a
domain user.

 typedef struct _NLPR_QUOTA_LIMITS {

 ULONG PagedPoolLimit;

 ULONG NonPagedPoolLimit;

 ULONG MinimumWorkingSetSize;

 ULONG MaximumWorkingSetSize;

 ULONG PagefileLimit;

 OLD_LARGE_INTEGER Reserved;

 } NLPR_QUOTA_LIMITS,

 *PNLPR_QUOTA_LIMITS;

PagedPoolLimit: Specifies the number of bytes of paged pool memory assigned to the user. The
paged pool is an area of system memory (physical memory used by the operating system) for
objects that can be written to disk when they are not being used.

NonPagedPoolLimit: Specifies the number of bytes of nonpaged pool memory assigned to the user.

The nonpaged pool is an area of system memory for objects that cannot be written to disk but
MUST remain in physical memory as long as they are allocated.

MinimumWorkingSetSize: Specifies the minimum set size assigned to the user. The working set of
a process is the set of memory pages currently visible to the process in physical RAM memory.
These p ages are present in memory when the application is running and available for an

application to use without triggering a page fault.

MaximumWorkingSetSize: Specifies the maximum set size assigned to the user.

PagefileLimit: Specifies the maximum size, in by tes, of the paging file, which is a reserved space on
disk that backs up committed physical memory on the computer.

Reserved: Set to zero and ignored on receipt.

2.2.1.5.3 NETLOGON_DELTA_ACCOUNTS

The NETLOGON_DELTA_ACCOUNTS structure contains the settings and privileges for a Local

Security Authority (LSA) account. This structure is used for replicating the LSA account data from the
primary domain controller (PDC) to a backup domain controller (BDC).

 typedef struct _NETLOGON_DELTA_ACCOUNTS {

 ULONG PrivilegeEntries;

 ULONG PrivilegeControl;

 [size_is(PrivilegeEntries)] ULONG* PrivilegeAttributes;

 [size_is(PrivilegeEntries)] PRPC_UNICODE_STRING PrivilegeNames;

 NLPR_QUOTA_LIMITS QuotaLimits ;

 ULONG SystemAccessFlags;

 SECURITY_INFORMATION SecurityInformation;

 ULONG SecuritySize;

 [size_is(SecuritySize)] UCHAR* SecurityDescriptor;

 RPC_UNICODE_STRING DummyString1;

 RPC_UNICODE_STRING DummyString2;

68 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 RPC_UNICODE_STRING DummyString3;

 RPC_UNICODE_STRING DummyString4;

 ULONG DummyLong1;

 ULONG DummyLong2;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_DELTA_ACCOUNTS,

 *PNETLOGON_DELTA_ACCOUNTS;

PrivilegeEntries: The number of privileges associated with the LSA account.

PrivilegeControl: A bit flag describing the properties of the account privileges. A flag is TRUE (or set)
if its value is equal to 1. The PrivilegeControl value is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 A

Where the bits are defined as:

Value Description

A All of the specified privileges MUST be held by the process that is requesting access.

All other bits MUST be set to zero and MUST be ignored on receipt.

PrivilegeAttributes: Pointer to an array of unsigned 32 -bit values that contain a set of bit flags

describing each privilege's attributes. An attribute is TRUE (or set) if its valu e is equal to 1. The
value is constructed from zero or more bit flags from the following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 B A

Where the bits are defined as:

Value Description

A Privilege is enabled by default.

B Privilege is enabled.

All other bits MUST be set to zero and MUST be ignored on receipt.

PrivilegeNames: A pointer to an array of privilege names represented as RPC_UNICODE_STRING

structures. See [MS -DTYP] section 2.3.10 for a specification of the RPC_UNICODE_STRING

structure. The names of the privileges are implementation specific.

QuotaLimits: An NLPR_QUOT A_LIMITS structure (section 2.2.1.5.2) that describes the account's
current quota settings.

SystemAccessFlags: A set of the following bit flags that specify the ways in which the account is
permitted to access the system as detailed in POLICY_MODE_INTERACT IVE,

POLICY_MODE_NETWORK, POLICY_MODE_BATCH, POLICY_MODE_SERVICE, and
POLICY_MODE_PROXY of [MS -LSAD]. See [MS -LSAD] for the specification of these bit values and
allowed combinations.

69 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

SecurityInformation: A SECURITY_INFORMATION structure, as specified in [MS-DTYP] section
2.4.7, that specifies portions of a security descriptor about the trusted domain.

SecuritySize: The size, in bytes, of the SecurityDescriptor field.

SecurityDescriptor: A pointer to a SECURITY_DESCRIPTOR structure, as specified in [MS -DTYP]

section 2.4.6, that describes the security settings for the account object.

DummyString1: A STRING structure, defined in section 2.2.1.1.2, that MUST contain 0 for the
Length field, 0 for the MaximumLength field, and NULL for the Buffer field. It is igno red upon
receipt. The Netlogon usage of dummy fields is described in section 1.3.8.1.2.

DummyString2: See definition for DummyString1 field.

DummyString3: See definition for DummyString1 field.

DummyString4: See definition for DummyString1 field.

DummyLong1: MUST be set to zero and MUST be ignored on receipt. The Netlogon usage of dummy

fields is described in section 1.3.8.1.2.

DummyLong2: See definition for DummyLong1 field.

DummyLong3: See definition for DummyLong1 field.

DummyLong4: See definiti on for DummyLong1 field.

2.2.1.5.4 NETLOGON_DELTA_ALIAS

The NETLOGON_DELTA_ALIAS structure contains information about a SAM alias. This structure is
used to replicate the SAM alias data from the PDC to a BDC.

 typedef struct _NETLOGON_DELTA_ALIAS {

 RPC_UNICODE_STRING Name;

 ULONG RelativeId;

 SECURITY_INFORMATION SecurityInformation;

 ULONG SecuritySize;

 [size_is(SecuritySize)] UCHAR * SecurityDescriptor;

 RPC_UNICODE_STRING Comment;

 RPC_UNICODE_STRING DummyString2;

 RPC_UNICODE_STRING DummyString3;

 RPC_UNICODE_STRING DummyString4;

 ULONG DummyLong1;

 ULONG DummyLong2;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_DELTA_ALIAS,

 *PNETLOGON_DELTA_ALIAS;

Name: An RPC_UNICODE_STRING stru cture, as specified in [MS -DTYP] section 2.3.10, that
contains the alias name.

RelativeId: The RID for the alias.

SecurityInformation: A SECURITY_INFORMATION structure, as specified in [MS -DTYP] section
2.4.7, that contains security settings for the alias.

SecuritySize: The size, in bytes, of the SecurityDescriptor field.

SecurityDescriptor: A pointer to a SECURITY_DESCRIPTOR structure, as specified in [MS -DTYP]
section 2.4.6, that describes the security information for the alias object.

70 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Comment: An RPC_UNICODE_STRING that contains the administrative comment string for the
alias.

DummyString2: A STRING structure, as defined in section 2.2.1.1.2, that MUST contain 0 for the
Length field, 0 for the MaximumLength field, and NULL for the Buffer field. It is ignored upon

receipt. The Netlogon usage of dummy fields is described in section 1.3.8.1.2.

DummyString3: See definition for DummyString2 field.

DummyString4: See definition for DummyString2 field.

DummyLong1: MUST be set to zero and MUST be ignored on receipt. The Netlogon usage of dummy
fields is described in section 1.3.8.1.2.

DummyLong2: See definition for DummyLong1 field.

DummyLong3: See definition for DummyLong1 field.

DummyLong4: See definition for DummyL ong1 field.

2.2.1.5.5 NLPR_SID_INFORMATION

The NLPR_SID_INFORMATION structure is used to form a wrapper for a SID; it is used to transmit
a SID during certain replication operations. See section 3.6 for details.

 typedef struct _NLPR_SID_INFORMATION {

 PRPC_SID SidPointer;

 } NLPR_SID_INFORMATION,

 *PNLPR_SID_INFORMATION;

SidPointer: A pointer to a SID structure ([MS -DTYP] section 2.4.2.3).

2.2.1.5.6 NLPR_SID_ARRAY

The NLPR_SID_ARRAY structure defines an array of pointers to security identifier structures.

 typedef struct _NLPR_SID_ARRAY {

 ULONG Count;

 [size_is(Count)] PNLPR_SID_INFORMATION Sids;

 } NLPR_SID_ARRAY,

 *PNLPR_SID_ARRAY;

Count: The number of po inters in the Sids array.

Sids: An array of NLPR_SID_INFORMATION structures, as specified in section 2.2.1.5.5, each of
which is a pointer to a SID.

2.2.1.5.7 NETLOGON_DELTA_ALIAS_MEMBER

The NETLOGON_DELTA_ALIAS_MEMBER structure contains all the members of a SAM alias. This

structure is used for replicating the SAM alias data from the PDC to a BDC, as detailed in section 3.6.

 typedef struct _NETLOGON_DELTA_ALIAS_MEMBER {

 NLPR_SID_ARRAY Members;

 ULONG DummyLong1;

 ULONG DummyLong2;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_DELTA_ALIAS_MEMBER,

71 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 *PNETLOGON_DELTA_ALIAS_MEMBER;

Members: An NLPR_SID_ARRAY structure, as specified in section 2.2.1.5.6, that contains an array
of SIDs for each member of the alias.

DummyLong1: MUST be set to zero and MUST be ignored on receipt. The Netlogon usage of dummy

fields is described in section 1.3.8.1.2.

DummyLong2: See definition for DummyLong1 field.

DummyLong3: See definition for DummyLong1 field.

DummyLong4: See definition for DummyLong1 field.

2.2.1.5.8 NETLOGON_DELTA_DELETE_GROUP

The NETLOGON_D ELTA_DELETE_GROUP structure contains information about a group to be

deleted in the database. This structure is used for replicating the SAM group data from the PDC to a
BDC, as detailed in section 3.6.

 typedef struct _NETLOGON_DELTA_DELETE_GROUP {

 [stri ng] wchar_t* AccountName;

 RPC_UNICODE_STRING DummyString1;

 RPC_UNICODE_STRING DummyString2;

 RPC_UNICODE_STRING DummyString3;

 RPC_UNICODE_STRING DummyString4;

 ULONG DummyLong1;

 ULONG DummyLong2;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_DELTA_DELETE_GROUP,

 *PNETLOGON_DELTA_DELETE_GROUP;

AccountName: A null - terminated Unicode string that contains the name of the group to delete.

DummyString1: A STRING structure, as defined in section 2.2.1.1.2, that MUST contain 0 for the

Length field, 0 for the MaximumLength field, and NULL for the Buffer field. It is ignored upon
receipt. The Netlogon usage of dummy fields is described in section 1.3.8.1.2.

DummyString2: See definition for DummyString1 field.

DummyString3: See definition for DummyString1 field.

DummyString4: See definition for DummyString1 field.

DummyLong1: MUST be set to zero and MUST be ignored on receipt. The Netlogon usage of dummy
fields is described in section 1.3.8.1.2.

DummyLong2: See definition for DummyLong1 field.

DummyLong3: See definition for DummyLong1 field.

DummyLong4: See definition for Dumm yLong1 field.

2.2.1.5.9 NETLOGON_DELTA_DELETE_USER

The NETLOGON_DELTA_DELETE_USER structure contains information about a user account to be
deleted in the database.

 typedef struct _NETLOGON_DELTA_DELETE_USER {

72 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 [string] wchar_t* AccountName;

 RPC_UNICODE_STRING DummyString1;

 RPC_UNICODE_STRING DummyString2;

 RPC_UNICODE_STRING DummyString3;

 RPC_UNICODE_STRING DummyString4;

 ULONG DummyLong1;

 ULONG DummyLong2;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_DELTA_DELETE_USER,

 *PNETLOGON_DELTA_DELETE_USER;

AccountName: A null - terminated Unicode string that contains the name of the user to delete.

DummyString1: A STRING structure, defined in section 2.2.1.1.2, that MUST contain 0 for the
Length field, 0 for the MaximumLength field, and NULL for the Buffer field. It is ignored upon
receipt. The Netlogon usage of dummy fields is described in section 1.3.8.1.2.

DummyString2: See definition for DummyString1.

DummyString3: See definiti on for DummyString1.

DummyString4: See definition for DummyString1.

DummyLong1: MUST be set to zero and MUST be ignored on receipt. The Netlogon usage of dummy

fields is described in section 1.3.8.1.2.

DummyLong2: See definition for DummyLong1.

DummyLong3: See definition for DummyLong1.

DummyLong4: See definition for DummyLong1.

2.2.1.5.10 NETLOGON_DELTA_DOMAIN

The NETLOGON_DELTA_DOMAIN structure contains information about a domain. Most of the fields

in this structure are obtained by querying the database. This structure is used to replicate the domain
data from the PDC to a BDC, as detailed in Netlogon NT Replicaton Details (section 3. 6).

All fields of this structure, except the fields detailed following the structure definition, have the same
meaning as the identically named fields in the Domain Fields section in [MS -SAMR] section 2.2.3.1.

 typedef struct _NETLOGON_DELTA_DOMAIN {

 RPC_UNICODE_STRING DomainName;

 RPC_UNICODE_STRING OemInformation;

 OLD_LARGE_INTEGER ForceLogoff;

 USHORT MinPasswordLength;

 USHORT PasswordHistoryLength;

 OLD_LARGE_INTEGER MaxPasswordAge;

 OLD_LARGE_INTEGER MinPasswordAge;

 OLD_LARGE_INTEGER DomainModifiedCount;

 OLD_LARGE_INTEGER DomainCreationTime;

 SECURITY_INFORMATION SecurityInformation;

 ULONG SecuritySize;

 [size_is(SecuritySize)] UCHAR * SecurityDescriptor;

 RPC_UNICODE_STRING DomainLockoutInformation;

 RPC_UNICODE_STRING DummyString2;

 RPC_UNICODE_STRING DummyString3;

 RPC_UNICODE_STRING DummyString4;

 ULONG PasswordProperties;

 ULONG DummyLong2;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_DELTA_DOMAIN,

73 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 *PNETLOGON_DELTA_DOMAIN;

SecurityInformation: A SECURITY_INFORMATION str ucture, as specified in [MS -DTYP] section
2.4.7, that specifies portions of a security descriptor about the domain.

SecuritySize: The size, in bytes, of the SecurityDescriptor field.

SecurityDescriptor: A pointer to a SECURITY_DESCRIPTOR structure, as specified in [MS -DTYP]
section 2.4.6, that contains the security settings for the domain object.

DomainLockoutInformation: An RPC_UNICODE_STRING structure, as specified in [MS -DTYP]
section 2.3.10, that contains the domain lockout informatio n detailed in [MS -SAMR]. The Buffer
field points to the SAMPR_DOMAIN_LOCKOUT_INFORMATION structure, as specified in [MS -
SAMR] section 2.2.3.15, and the Length and MaximumLength fields are set to the size in bytes

of the SAMPR_DOMAIN_LOCKOUT_INFORMATION str ucture pointed to by the Buffer field.

DummyString2: A STRING structure, defined in section 2.2.1.1.2, that MUST contain 0 for the

Length field, 0 for the MaximumLength field, and NULL for the Buffer field. It is ignored upon
receipt. The Netlogon usage of dummy fields is described in section 1.3.8.1.2.

DummyString3: See definition for DummyString2 field.

DummyString4: See definition for DummyString2 field.

DummyLong2: MUST be set to zero and MUST be ignored on receipt. The Netlogon usage of dummy

fields is described in section 1.3.8.1.2.

DummyLong3: See definition for DummyLong2 field.

DummyLong4: See definition for DummyLong2 field.

2.2.1.5.11 NETLOGON_DELTA_ENUM

The NETLOGON_DELTA_ENUM structure defines a common structure that encapsulates all possible

types of database changes. Database changes, in the context of Netlogon, are called deltas.

 typedef struct _NETLOGON_DELTA_ENUM {

 NETLOGON_DELTA_TYPE DeltaType;

 [switch_is(DeltaType)] NETLOGON_DELTA_ID_UNION DeltaID;

 [switch_is(DeltaType)] NETLOGON_DELTA_UNION DeltaUnion;

 } NETLOGON_DELTA_ENUM,

 *PNETLOGON_DELTA_ENUM;

DeltaType: One of the values from the NETLOGON_DELTA_TYPE enumeration, as spe cified in
section 2.2.1.5.28.

DeltaID: One of the NETLOGON_DELTA_ID_UNION union (section 2.2.1.5.18) types selected
based on the value of the DeltaType field.

DeltaUnion: One of the NETLOGON_DELTA_UNION union (section 2.2.1.5.27) types selected
based on th e value of the DeltaType .

2.2.1.5.12 NETLOGON_DELTA_ENUM_ARRAY

The NETLOGON_DELTA_ENUM_ARRAY structure defines an array of delta objects.

 typedef struct _NETLOGON_DELTA_ENUM_ARRAY {

 DWORD CountReturned;

 [size_is(CountReturned)] PNETLOGON_DELTA_ENUM Deltas;

74 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 } NETLOGON_DELTA_ENUM_ARRAY,

 *PNETLOGON_DELTA_ENUM_ARRAY;

CountReturned: The number of elements in the Deltas field.

Deltas: An array of NETLOGON_DELTA_ENUM structures, as specified in section 2.2.1.5.11.

2.2.1.5.13 NETLOGON_DELTA_GROUP

The NETLOGON_DELTA_GROUP structure contains information about a SAM group account. This
structure is used for replicati ng the group data from the PDC to a BDC, as detailed in section 3.6.

 typedef struct _NETLOGON_DELTA_GROUP {

 RPC_UNICODE_STRING Name;

 ULONG RelativeId;

 ULONG Attributes;

 RPC_UNICODE_STRING AdminComment;

 SECURITY_INFORMATION SecurityInformation;

 ULONG SecuritySize;

 [size_is(SecuritySize)] UCHAR* SecurityDescriptor;

 RPC_UNICODE_STRING DummyString1;

 RPC_UNICODE_STRING DummyString2;

 RPC_UNICODE_STRING DummyString3;

 RPC_UNICODE_STRING DummyString4;

 ULONG DummyLong1;

 ULONG DummyLong2;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_DELTA_GROUP,

 *PNETLOGON_DELTA_GROUP;

Name: A RPC_UNICODE_STRING structure that contains the group name.

RelativeId: The RID for the group.

Attributes: A set of bit flags that describe attributes of the SID. An attribute is true (or set) if its
value is equal to 1. The value is constructed from one or more bit flags from the following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 C B A

Where the bits are defined as:

Value Description

A The SID cannot have the SE_GROUP_ENABLED attribute removed. Corresponds to the SID
attribute SE_GROUP_MANDATORY . This attribute prevents the user from disabling the group.
Disabling a group causes the group to be ignored by access validation routines.

B The SID is enabled by default (as opposed to being enabled by an application). Corresponds to the
SID attribute SE_GROUP_ENABLED_BY_DEFAULT .

C The SID is enabled for access checks. Corresponds to the SID attribute SE_GROUP_ENABLED .

All other bits MUST be set to zero and MUST be ignored on receipt. For more information, see

[MSDOCS -TokenGrp].

75 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

AdminComment: An RPC_UNICODE_STRING structure, as specified in [MS -DTYP] section 2.3.10,
that contains an administrative comment for the group.

SecurityInformation: A SECURITY_INFORMATION structure, as specified in [MS -DTYP] section
2.4.7, that specifies p ortions of a security descriptor about the group.

SecuritySize: The size, in bytes, of the SecurityDescriptor field.

SecurityDescriptor: A pointer to a SECURITY_DESCRIPTOR structure, as specified in [MS -DTYP]
section 2.4.6, that contains the security setti ngs of the group object.

DummyString1: A STRING structure, defined in section 2.2.1.1.2, that MUST contain 0 for the
Length field, 0 for the MaximumLength field, and NULL for the Buffer field. It is ignored upon
receipt. The Netlogon usage of dummy fields is described in section 1.3.8.1.2.

DummyString2: See definition for DummyString1.

DummyString3: See definition for DummyString1.

DummyString4: See definition for DummyString1.

DummyLong1: MUST be set to zero and MUST be ignored on receipt. The Netlogon usa ge of dummy
fields is described in section 1.3.8.1.2.

DummyLong2: See definition for DummyLong1.

DummyLong3: See definition for DummyLong1.

DummyLong4: See definition for DummyLong1.

2.2.1.5.14 NLPR_LOGON_HOURS

The NLPR_LOGON_HOURS structure contains the logon policy information that specifies when a user
account is permitted to authenticate.

 typedef struct _NLPR_LOGON_HOURS {

 USHORT UnitsPerWeek;

 [size_is(1260), length_is((UnitsPerWeek + 7)/8)]

 UCHAR * LogonHours;

 } NLPR_LOGON_HOURS,

 *PNLPR_LOGON_HOURS;

The fields in this structure have the same meanings as identically named fields of the

SAMPR_LOGON_HOURS structure, as specified in [MS -SAMR] section 2.2.6.5.

2.2.1.5.15 NLPR_USER_PRIVATE_INFO

The NLPR_USER_PRIVATE_INFO structure defines a data buffer that is optionally encrypted with
the session key, as detailed in this section. The structure is used t o carry user account passwords as
follows.

 typedef struct _NLPR_USER_PRIVATE_INFO {

 UCHAR SensitiveData;

 ULONG DataLength;

 [size_is(DataLength)] UCHAR * Data;

 } NLPR_USER_PRIVATE_INFO,

 *PNLPR_USER_PRIVATE_INFO;

76 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

SensitiveData: Is either TRUE (0x01) o r FALSE (0x00). The SensitiveData field indicates whether
the data is encrypted as follows. If this field is set to 0x00, then the data is not encrypted. If the

field is set to 0x01, the data pointed to by the Data field is encrypted with the session key u sed
on the secure channel between the client and the server exchanging this data structure to the

client. The encryption algorithm is RC4 if the flag C is set in the negotiated flags between the
client and the server, as specified in section 3.1.4.2; other wise the encryption algorithm is DES.

DataLength: The size, in bytes, of the Data field.

Data: A pointer to a buffer with a size of DataLength . If the SensitiveData field is set to TRUE, this
data is encrypted as defined in the SensitiveData field. The buf fer content prior to encryption (if
any) is shown in the following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DataType

LmLength LmMaximumLength

Unused1

LmHash[0..3]

LmHash[4..7]

LmHash[8..11]

LmHash[12..15]

NtLength NtMaximumLength

Unused2

NtHash[0..3]

NtHash[4..7]

NtHash[8..11]

NtHash[12..15]

LmHistoryLength LmHistoryMaximumLength

Unused3

NtHistoryLength NtHistoryMaximumLength

Unused4

NtHistoryArray (variable)

77 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

...

LmHistoryArray (variable)

...

DataType: An unsigned integer. This value MUST be 0x00000002.

LmLength: An unsigned (short) integer. This value MUST be either 0x0010 or 0x0000. If 0x0010,
the LmHash field contains the LM hash of the user password (specified in [MS -NLMP]). If

0x0000, the value of the LmHash field is undefined and MUST be ignored upon receipt .

LmMaximumLength: This value MUST be the same value as LmLength .

Unused1: This value MUST be zero and ignored on receipt.

LmHash: The encrypted ([MS -SAMR] section 2.2.11.1) LM OWF ([MS -NLMP] section 3.3) of the
user password. The 16 -byte encryption key i s created by concatenating four times the relative
ID (from the given user's SID).

NtLength: An unsigned (short) integer. This value MUST be either 0x0010 or 0x0000. If 0x0010,
the NtHash field contains the NT hash of the user password (specified in [MS -NLMP]). If
0x0000, the value of the NtHash field is undefined and MUST be ignored upon receipt.

NtMaximumLength: This value MUST be the same value as NtLength .

Unused2: This value MUST be zero and ignored on receipt.

NtHash: The encrypted ([MS -SAMR] section 2.2.11.1) NT OWF ([MS -NLMP] section 3.3) of the
user password. The 16 -byte encryption key is created by concatenating four times the relative

ID (from the given user's SID).

LmHistoryLength: An unsigned (short) integer. This value is the length, in bytes , of the
LmHistoryArray field.

LmHistoryMaximumLength: This value MUST be the same value as LmHistoryLength .

Unused3: This value MUST be zero and ignored on receipt.

NtHistoryLength : An unsigned (short) integer. This value is the length, in bytes, of the
NtHistoryArray field.

NtHistoryMaximumLength: This value MUST be the same value as NtHistoryLength .

Unused4 : This value MUST be zero and ignored on receipt.

NtHistoryArray: An array of NT hash values of user passwords for the given user. The array is
ordered so that the first element is the hash of the current password and the last element is
the hash of the oldest password.

Note The number of elements in the array is the value of t he NtHistoryLength field divided by

0x0010.

LmHistoryArray: An array of LM hash values of user passwords for the given user. The array is
ordered so that the first element is the hash of the current password and the last element is
the hash of the oldest p assword.

Note The number of elements in the array is the value of the LmHistoryLength field divided by
0x0010.

78 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.1.5.16 NETLOGON_DELTA_USER

The NETLOGON_DELTA_USER structure contains information abou t a SAM user account. This
structure is used for replicating the user account data from the PDC to a BDC, as detailed in section

3.6.

All fields of this structure, except the fields detailed following the structure definition, have the same
meanings as the identically named fields in the Common User Fields , as specified in [MS -SAMR]
section 2.2.6.1 and the SAMPR_USER_INTERNAL1_INFORMATION structure fields, as specified in
[MS -SAMR] section 2.2.6.23.

 typedef struct _NETLOGON_DELTA_USER {

 RPC_UNICODE_STRING UserName;

 RPC_UNICODE_STRING FullName;

 ULONG UserId;

 ULONG PrimaryGroupId;

 RPC_UNICODE_STRING HomeDirectory;

 RPC_UNICODE_STRING HomeDirectoryDrive;

 RPC_UNICODE_STRING ScriptPath;

 RPC_UNICODE_STRING AdminComment;

 RPC_UNICODE_STRING WorkStations;

 OLD_LARGE_INTEGER LastLogon;

 OLD_LARGE_INTEGER LastLogoff;

 NLPR_LOGON_HOURS LogonHours;

 USHORT BadPasswordCount;

 USHORT LogonCount;

 OLD_LARGE_INTEGER PasswordLastSet;

 OLD_LARGE_INTEGER AccountExpires;

 ULONG UserAccountControl;

 ENCRYPTED_NT_OWF_PASSWORD EncryptedNtOwfPassword;

 ENCRYPTED_LM_OWF_PASSWORD EncryptedLmOwfPassword;

 UCHAR NtPasswordPresent;

 UCHAR LmPasswordPresent;

 UCHAR PasswordExpired;

 RPC_UNICODE_STRING UserComment;

 RPC_UNICODE_STRING Parameters;

 USHORT CountryCode;

 USHORT CodePage;

 NLPR_USER_PRIVATE_INFO PrivateData;

 SECURITY_INFORMATION SecurityInformation;

 ULONG SecuritySize;

 [size_is(SecuritySize)] UCHAR * SecurityDescriptor;

 RPC_UNICODE_STRING ProfilePath;

 RPC_UNICODE_STRING DummyString2;

 RPC_UNICODE_STRING DummyString3;

 RPC_UNICODE_STRING DummyString4;

 ULONG DummyLong1;

 ULONG DummyLong2;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_DELTA_USER,

 *PNETLOGON_DELTA_USER;

PrivateData: An NLPR_USER_PRIVATE_INFO structure, as specified in section 2.2.1.5.15,

containing the Priv ateData field of the SAMPR_USER_INFORMATION structure, as specified in
[MS -SAMR] section 2.2.6.6.

SecurityInformation: A SECURITY_INFORMATION structure, as specified in [MS -DTYP] section
2.4.7, that specifies portions of a security descriptor about the user account.

SecuritySize: The size, in bytes, of SecurityDescriptor .

SecurityDescriptor: A pointer to a SECURITY_DESCRIPTOR structure, as spec ified in [MS -DTYP]
section 2.4.6, that specifies the security settings for the user account object.

79 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

DummyString2: A STRING structure, defined in section 2.2.1.1.2, that MUST contain 0 for the
Length field, 0 for the MaximumLength field, and NULL for the Bu ffer field. It is ignored upon

receipt. The Netlogon usage of dummy fields is described in section 1.3.8.1.2.

DummyString3: See definition for DummyString2.

DummyString4: See definition for DummyString2

DummyLong1: The high part (the first 32 bits) of the LastBadPasswordTime field of the
SAMPR_USER_INTERNAL3_INFORMATION structure, as specified in [MS -SAMR] section
2.2.6.7.

DummyLong2: See definition for DummyLong1.

DummyLong3: See definition for DummyLong1.

DummyLon g4: See definition for DummyLong1.

2.2.1.5.17 NETLOGON_DELTA_GROUP_MEMBER

The NETLOGON_DELTA_GROUP_MEMBER structure contains information about members of a
group by providing pointers to a list of group members and their respective attributes. This structure
is used to replicate the group membership data from the PDC to a BDC, as detailed in section 3.6.

All fields of this structure, except the fields detailed following the structure defi nition, have the same

meanings as the identically named fields of the SAMPR_GET_MEMBERS_BUFFER structure, as
specified in [MS -SAMR] section 2.2.7.14. The last four fields of the structure (DummyLong1,
DummyLong2, DummyLong3, and DummyLong4) are not found i n [MS -SAMR].

 typedef struct _NETLOGON_DELTA_GROUP_MEMBER {

 [size_is(MemberCount)] ULONG * Members;

 [size_is(MemberCount)] ULONG * Attributes;

 ULONG MemberCount;

 ULONG DummyLong1;

 ULONG DummyLong2;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_DELTA_GROUP_MEMBER,

 *PNETLOGON_DELTA_GROUP_MEMBER;

DummyLong1: MUST be set to zero and MUST be ignored on receipt. The Netlogon usage of dummy
fields is described in section 1.3.8.1.2.

DummyLong2: See definition for DummyLong1.

DummyLong3: See definitio n for DummyLong1.

DummyLong4: See definition for DummyLong1.

2.2.1.5.18 NETLOGON_DELTA_ID_UNION

The NETLOGON_DELTA_ID_UNION union defines an account identifier type that is selected based
on the requested database change.

 typedef

 [switch_type(NETLOGON_DELTA_TYPE)]

 union _NETLOGON_DELTA_ID_UNION {

 [case(AddOrChangeDomain, AddOrChangeGroup, DeleteGroup, RenameGroup, AddOrChangeUser,

DeleteUser, RenameUser, ChangeGroupMembership, AddOrChangeAlias, DeleteAlias,

RenameAlias, ChangeAliasMembership, DeleteGroupByName, DeleteUserByName)]

 ULONG Rid;

80 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 [case(AddOrChangeLsaPolicy, AddOrChangeLsaTDomain, DeleteLsaTDomain,

AddOrChangeLsaAccount, DeleteLsaAccount)]

 PRPC_SID Sid;

 [case(AddOrChangeLsaSecret, DeleteLsaSecret)]

 [string] wchar_t* Name;

 [default] ;

 } NETLOGON_DELTA_ID_UNION,

 *PNETLOGON_DELTA_ID_UNION;

Rid: A 32 -bit RID whose type is selected when the following delta types are switched:
AddOrChangeDomain(1), AddOrChangeGroup(2), RenameGroup(4), DeleteGroup(3),
AddOrChangeUser(5), DeleteUser(6), RenameUser(7), C hangeGroupMembership(8),
AddOrChangeAlias(9), DeleteAlias(10), RenameAlias(11), ChangeAliasMembership(12),
DeleteGroupByName(20), and DeleteUserByName(21).

Sid: A pointer to a SID whose type is selected when the following delta types are switched:
AddOrCha ngeLsaPolicy(13), AddOrChangeLsaDomain(14), DeleteLsaTDomain(15),
AddOrChangeLsaAccount(16), and DeleteLsaAccount(17).

Name: A null - terminated Unicode string that contains an identifier name. This identifier type is
selected when the following delta types are switched: AddOrChangeLsaSecret(18) and
DeleteLsaSecret(19).

2.2.1.5.19 NETLOGON_DELTA_POLICY

The NETLOGON_DELTA_POLICY structure contains information about the LSA policy. This structure
is used for replicating the LSA policy data from the PDC to a BDC, as detailed in section 3.6.

 typedef struct _NETLOGON_DELTA_POLICY {

 ULONG MaximumLogSize;

 OLD_LARGE_INTEGER AuditRetentionPeriod;

 UCHAR AuditingMode;

 ULONG MaximumAuditEventCount;

 [size_ is(MaximumAuditEventCount + 1)]

 ULONG * EventAuditingOptions;

 RPC_UNICODE_STRING PrimaryDomainName;

 PRPC_SID PrimaryDomainSid;

 NLPR_QUOTA_LIMITS QuotaLimits;

 OLD_LARGE_INTEGER ModifiedId;

 OLD_LARGE_INTEGER DatabaseCreationTime;

 SECURITY_INFORMATION SecurityInformation;

 ULONG SecuritySize;

 [size_is(SecuritySize)] UCHAR * SecurityDescriptor;

 RPC_UNICODE_STRING DummyString1;

 RPC_UNICODE_STRING DummyString2;

 RPC_UNICODE_STRING DummyString3;

 RPC_UNICODE_STRING DummyString4;

 ULONG DummyLong1;

 ULONG DummyLong2;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_DELTA_POLICY,

 *PNETLOGON_DELTA_POLICY;

MaximumLogSize: This field has the same meaning as the identically named field of the
POLICY_AUDIT_LOG_INFO structure, as specified in [MS -LSAD] section 2.2.4.3.

AuditRetentionPeriod: This field has the same meaning as the identically named field of the

POLICY_AUDIT_LOG_ INFO structure, as specified in [MS -LSAD] section 2.2.4.3.

AuditingMode: This field has the same meaning as the identically named field of the
LSAPR_POLICY_AUDIT_EVENTS_INFO structure, as specified in [MS -LSAD] section 2.2.4.4.

81 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

MaximumAuditEventCount: This field has the same meaning as the identically named field of the
LSAPR_POLICY_AUDIT_EVENTS_INFO structure, as specified in [MS -LSAD] section 2.2.4.4.

EventAuditingOptions: This field has the same meaning as the identically named field of the
LSAPR_POLICY_ AUDIT_EVENTS_INFO structure, as specified in [MS -LSAD] section 2.2.4.4.

PrimaryDomainName: An RPC_UNICODE_STRING structure, as specified in [MS -DTYP] section
2.3.10, that contains the NetBIOS name of the primary domain.

PrimaryDomainSid: A pointer to the SI D for the primary domain.

QuotaLimits: An NLPR_QUOTA_LIMITS structure, as specified in section 2.2.1.5.2, that contains
information about system resource quotas imposed on an account.

ModifiedId: An OLD_LARGE_INTEGER structure, as specified in [MS -SAMR] se ction 2.2.2.2, that
contains the count that is incremented each time the database is modified. This count is the

database serial number for the database.

DatabaseCreationTime: A 64 -bit time stamp, equivalent to a FILETIME , specifying when the
database was created.

SecurityInformation: A SECURITY_INFORMATION bit flag that contains security information
about the policy. For details about SECURITY_INFORMATION structure, see [MS -DTYP] section
2.4.7.

SecuritySize: The size, in bytes, of the SecurityDescriptor fi eld.

SecurityDescriptor: A pointer to a SECURITY_DESCRIPTOR structure, as specified in [MS -DTYP]
section 2.4.6, that describes the security settings for the LSA policy object.

DummyString1: A STRING structure, defined in section 2.2.1.1.2, that MUST contai n 0 for the
Length field, 0 for the MaximumLength field, and NULL for the Buffer field. It is ignored upon
receipt. The Netlogon usage of dummy fields is described in section 1.3.8.1.2.

DummyString2: See definition for DummyString1.

DummyString3: See defin ition for DummyString1.

DummyString4: See definition for DummyString1.

DummyLong1: MUST be set to zero and MUST be ignored on receipt. The Netlogon usage of dummy
fields is described in section 1.3.8.1.2.

DummyLong2: See definition for DummyLong1.

DummyLong3: See definition for DummyLong1.

DummyLong4: See definition for DummyLong1.

2.2.1.5.20 NLPR_CR_CIPHER_VALUE

The NLPR_CR_CIPHER_VALUE structure defines an encrypted string buffer that contains the value
of an LSA Secret Object as specified in [MS -LSAD].

 typedef struct _NLPR_CR_CIPHER_VALUE {

 ULONG Length;

 ULONG MaximumLength;

 [size_is(MaximumLength), length_is(Length)]

 UCHAR * Buffer;

 } NLPR_CR_CIPHER_VALUE,

 *PNLPR_CR_CIPHER_VALUE;

82 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Length: The length, in bytes, of the used portion of the buffer.

MaximumLength: The maximum length, in bytes, of the buffer.

Buffer: A pointer to a buffer that contains the secret data encrypted wi th the session key used on the
secure channel between the client and the server exchanging this data structure. The encryption

algorithm is RC4 if the flag C is set in the negotiated flags between the client and the server as
detailed in section 3.1.4.2; o therwise the encryption algorithm is DES.

2.2.1.5.21 NETLOGON_DELTA_SECRET

The NETLOGON_DELTA_SECRET structure contains information about the LSA secret object, as
specified in [MS -LSAD]. This stru cture is used to replicate the LSA secret object data from the PDC to
a BDC, as detailed in section 3.6.

 typedef struct _NETLOGON_DELTA_SECRET {

 NLPR_CR_CIPHER_VALUE CurrentValue;

 OLD_LARGE_INTEGER CurrentValueSetTime;

 NLPR_CR_CIPHER_VALUE OldValue;

 OLD_LARGE_INTEGER OldValueSetTime;

 SECURITY_INFORMATION SecurityInformation;

 ULONG SecuritySize;

 [size_is(SecuritySize)] UCHAR * SecurityDescriptor;

 RPC_UNICODE_STRING DummyString1;

 RPC_UNICODE_STRING DummyString2;

 RPC_UNICODE_STRING DummyString3;

 RPC_UNICODE_STRING DummyString4;

 ULONG DummyLong1;

 ULONG DummyLong2;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_DELTA_SECRET,

 *PNETLOGON_DELTA_SECRET;

CurrentValue: An NLPR_CR_CIPHER_VALUE structure, as specified in section 2.2.1.5.20, that

contains the encrypted current value of the LSA secret.

CurrentValueSetTime: A 64 -bit time stamp, equivalent to a FILETIME , at which the current value
of the LSA secret object was set.

OldValue: An NLPR_CR_CIPHER_VALUE structure, as specified in section 2.2.1.5.20, that contains
the encrypted previous (old) value of the LSA secret.

OldValueSetTime: A 64 -bit time stamp, equivalent to a FILETIME , at which the previous value of
the LSA secret object was set.

SecurityInformation: A SECURITY_INFORMATION structure, as specified in [MS -DTYP] section
2.4.7, that specifies portions of a security descriptor about the secret object.

SecuritySize: The size, in bytes, of the SecurityDescriptor member.

SecurityDesc riptor: A pointer to a SECURITY_DESCRIPTOR structure, as specified in [MS -DTYP]
section 2.4.6 that describes the security settings for the LSA secret object.

DummyString1: A STRING structure, defined in section 2.2.1.1.2, that MUST contain 0 for the
Length field, 0 for the MaximumLength field, and NULL for the Buffer field. It is ignored upon
receipt. The Netlogon usage of dummy fields is described in section 1.3.8.1.2.

DummyString2: See definition for DummyString1.

DummyString3: See definition for DummyStr ing1.

83 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

DummyString4: See definition for DummyString1

DummyLong1: MUST be set to zero and MUST be ignored on receipt. The Netlogon usage of dummy
fields is described in section 1.3.8.1.2.

DummyLong2: See definition for DummyLong1.

DummyLong3: See definition for DummyLong1.

DummyLong4: See definition for DummyLong1.

2.2.1.5.22 NETLOGON_DELTA_TRUSTED_DOMAINS

The NETLOGON_DELTA_TRUSTED_DOMAINS structure contains information about a trust ed
domain. This structure is used for replicating the trusted domain data from the PDC to a BDC.

 typedef struct _NETLOGON_DELTA_TRUSTED_DOMAINS {

 RPC_UNICODE_STRING DomainName;

 ULONG NumControllerEntries;

 [size_is(NumControllerEntries)]

 PRPC_UNICODE_STRING ControllerNames;

 SECURITY_INFORMATION SecurityInformation;

 ULONG SecuritySize;

 [size_is(SecuritySize)] UCHAR * SecurityDescriptor;

 RPC_UNICODE_STRING DummyString1;

 RPC_UNICODE_STRING DummyString2;

 RPC_UNICODE_STRING DummyString3;

 RPC_UNICODE_STRING DummyString4;

 ULONG TrustedPosixOffset;

 ULONG DummyLong2;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_DELTA_TRUSTED_DOMAINS,

 *PNETLOGON_DELTA_TRUSTED_DOMAINS;

DomainName: An RPC_UNICODE_STRING structure, as specified in [MS -DTYP] section 2.3.10,
that contains the NetBIOS name of the trusted domain.

NumControllerEntries: Number of domain controller (DC) names listed in the ControllerNames
field.<49>

ControllerNames: Pointer to an array of RPC_UN ICODE_STRING structures, as specified in [MS -

DTYP] section 2.3.10, that contain the NetBIOS names of the DCs in the trusted domain. The only
restriction is the maximum value of the 32 -bit unsigned integer enforced by RPC.<50>

SecurityInformation: A SECURIT Y_INFORMATION structure, as specified in [MS -DTYP] section
2.4.7, that specifies portions of a security descriptor about the trusted domain.

SecuritySize: Size, in bytes, of the SecurityDescriptor field.

SecurityDescriptor: Pointer to a SECURITY_DESCRIPTOR structure, as specified in [MS -DTYP]

section 2.4.6 that describes the security settings for the trusted domain object.

DummyString1: A STRING structure, defined in section 2.2.1.1.2, that MUST contain 0 for the
Length field, 0 for the MaximumLength field, and NULL for the Buffer field. It is ignored upon
receipt. The Netlogon usage of dummy fields is described in section 1.3.8.1.2.

DummyString2: See definition for DummyString1.

DummyString3: See definition for DummyString1.

DummyString4: See definition for DummyString1.

84 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

TrustedPosixOffset: The value that contains the POSIX offset for the trusted domain, as specified in
[MS -ADTS] section 6.1.6.

DummyLong2: MUST be set to zero and MUST be ignored on receipt. The Netlogon usage of dummy
fields is described in section 1.3.8.1.2.

DummyLong3: See definition for DummyLong2.

DummyLong4: See definition for DummyLong2.

2.2.1.5.23 NETLOGON_RENAME_ALIAS

The NETLOGON_RENAME_ALIAS structure specifies a rename of an alias.

 typedef struct _NETLOGON_DELTA_RENAME_ALIAS {

 RPC_UNICODE_STRING OldName;

 RPC_UNICODE_STRING NewName;

 RPC_UNICODE_STRING DummyString1;

 RPC_UNICODE_STRING DummyString2;

 RPC_UNICODE_STRING DummyString3;

 RPC_UNICODE_STRING DummyString4;

 ULONG DummyLong1;

 ULONG DummyLong2;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_RENAME_ALIAS,

 *PNETLOGON_DELTA_RENAME_ALIAS;

OldName: An RPC_UNICODE_STRING structure, as specified in [MS -DTYP] section 2.3.10, that
contains the previous name of the alias.

NewName: An RPC_UNICODE_STRING structure, as specified in [MS -DTYP] section 2.3.10, that

contains the new name to assign to the alias.

DummyString1: A STRIN G structure, defined in section 2.2.1.1.2, that MUST contain 0 for the
Length field, 0 for the MaximumLength field, and NULL for the Buffer field. It is ignored upon
receipt. The Netlogon usage of dummy fields is described in section 1.3.8.1.2.

DummyString 2: See definition for DummyString1.

DummyString3: See definition for DummyString1.

DummyString4: See definition for DummyString1.

DummyLong1: MUST be set to zero and MUST be ignored on receipt. The Netlogon usage of dummy
fields is described in section 1.3 .8.1.2.

DummyLong2: See definition for DummyLong1.

DummyLong3: See definition for DummyLong1.

DummyLong4: See definition for DummyLong1.

2.2.1.5.24 NETLOGON_RENAME_GROUP

The NETLOGON_RENAME_GR OUP structure specifies a rename of a group.

 typedef struct _NETLOGON_DELTA_RENAME_GROUP {

 RPC_UNICODE_STRING OldName;

 RPC_UNICODE_STRING NewName;

 RPC_UNICODE_STRING DummyString1;

85 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 RPC_UNICODE_STRING DummyString2;

 RPC_UNICODE_STRING DummyString3;

 RPC_UNICODE_STRING DummyString4;

 ULONG DummyLong1;

 ULONG DummyLong2;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_RENAME_GROUP,

 *PNETLOGON_DELTA_RENAME_GROUP;

OldName: An RPC_UNICODE_STRING structure, as specified in [MS -DTYP] section 2.3.10, that

contains the group's previous name.

NewName: An RPC_UNICODE_STRING structure, as specified in [MS -DTYP] section 2.3.10, that
contains the new name to assign to the group.

DummyString1: A STRING str ucture, defined in section 2.2.1.1.2, that MUST contain 0 for the
Length field, 0 for the MaximumLength field, and NULL for the Buffer field. It is ignored upon

receipt. The Netlogon usage of dummy fields is described in section 1.3.8.1.2.

DummyString2: See definition for DummyString1.

DummyString3: See definition for DummyString1.

DummyString4: See description for DummyString1.

DummyLong1: MUST be set to zero and MUST be ignored on receipt. The Netlogon usage of dummy
fields is described in section 1.3.8.1 .2.

DummyLong2: See definition for DummyLong1.

DummyLong3: See definition for DummyLong1.

DummyLong4: See definition for DummyLong1.

2.2.1.5.25 NETLOGON_RENAME_USER

The NETLOGON_RENAME_USER stru cture specifies a rename of a user account.

 typedef struct _NETLOGON_DELTA_RENAME_USER {

 RPC_UNICODE_STRING OldName;

 RPC_UNICODE_STRING NewName;

 RPC_UNICODE_STRING DummyString1;

 RPC_UNICODE_STRING DummyString2;

 RPC_UNICODE_STRING DummyString3;

 RPC_UNICODE_STRING DummyString4;

 ULONG DummyLong1;

 ULONG DummyLong2;

 ULONG DummyLong3;

 ULONG DummyLong4;

 } NETLOGON_RENAME_USER,

 *PNETLOGON_DELTA_RENAME_USER;

OldName: An RPC_UNICODE_STRING structure, as specif ied in [MS -DTYP] section 2.3.10, that
contains the user account's previous name.

NewName: An RPC_UNICODE_STRING structure, as specified in [MS -DTYP] section 2.3.10, that
contains the new name to assign to the user account.

86 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

DummyString1: A STRING structure, defined in section 2.2.1.1.2, that MUST contain 0 for the
Length field, 0 for the MaximumLength field, and NULL for the Buffer field. It is ignored upon

receipt. The Netlogon usage of dummy fields is described in section 1.3.8.1.2.

DummyString2: See definition for DummyString1.

DummyString3: See definition for DummyString1.

DummyString4: See definition for DummyString1.

DummyLong 1: MUST be set to zero and MUST be ignored on receipt. The Netlogon usage of dummy
fields is described in section 1.3.8.1.2.

DummyLong2: See definition for DummyLong1.

DummyLong3: See definition for DummyLong1.

DummyLong4: See definition for DummyLong1.

2.2.1.5.26 NL PR_MODIFIED_COUNT

The NLPR_MODIFIED_COUNT structure specifies a count for the number of times an account's
database has been modified.

 typedef struct _NLPR_MODIFIED_COUNT {

 OLD_LARGE_INTEGER ModifiedCount;

 } NLPR_MODIFIED_COUNT,

 *PNLPR_MODIFIED_COUNT;

ModifiedCount: An OLD_LARGE_INTEGER structure, as specified in [MS -SAMR] section 2.2.2.2, that
contains the number of modifications made to the database since its creation. This value is the

database serial number.

2.2.1.5.27 NETLOGON_DELTA_UNION

The NETLOGON_DELTA_UNION union defines a union of all types of database changes (deltas).

 typedef

 [switch_type(NETLOGON_DELTA_TYPE)]

 union _NETLOGON_DELTA_UNION {

 [case(AddOrChangeDomain)]

 PNETLOGON_DELTA_DOMAIN DeltaDomain;

 [case(AddOrChangeGroup)]

 PNETLOGON_DELTA_GROUP DeltaGroup;

 [case(RenameGroup)]

 PNETLOGON_DELTA_RENAME_GROUP DeltaRenameGroup;

 [case(AddOrChangeUser)]

 PNETLOGON_DELTA_USER DeltaUser;

 [case(RenameUser)]

 PNETLOGON_DELTA_RENAME_USER DeltaRenameUser;

 [case(ChangeGroupMembership)]

 PNETLOGON_DELTA_GROUP_MEMBER DeltaGroupMember;

 [case(AddOrChangeAlias)]

 PNETLOGON_DELTA_ALIAS DeltaAlias;

 [case(RenameAlias)]

 PNETLOGON_DELTA_RENAME_ALIAS DeltaRenameAlias;

 [case(ChangeAliasMembership)]

 PNETLOGON_DELTA_ALIAS_MEMBER DeltaAliasMember;

 [case(AddOrChangeLsaPolicy)]

 PNETLOGON_DELTA_POLICY DeltaPolicy;

 [case(AddOrChangeLsaTDomain)]

 PNETLOGON_DELTA_TRUSTED_DOMAINS DeltaTDomains;

87 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 [case(AddOrChangeLsaAccount)]

 PNETLOGON_DELTA_ACCOUNTS DeltaAccounts;

 [case(AddOrChangeLsaSecret)]

 PNETLOGON_DELTA_SECRET DeltaSecret;

 [case(DeleteGroupByNa me)]

 PNETLOGON_DELTA_DELETE_GROUP DeltaDeleteGroup;

 [case(DeleteUserByName)]

 PNETLOGON_DELTA_DELETE_USER DeltaDeleteUser;

 [case(SerialNumberSkip)]

 PNLPR_MODIFIED_COUNT DeltaSerialNumberSkip;

 [default] ;

 } NETLOGON_DELTA_UNION,

 *PNETLOGON_DELTA_UNION;

DeltaDomain: A pointer to a NETLOGON_DELTA_DOMAIN structure, as specified in section

2.2.1.5.10, that describes a domain. This structure is selected when the delta type is
AddOrChangeDomain.

DeltaGroup: A poin ter to a NETLOGON_DELTA_GROUP structure, as specified in section

2.2.1.5.13, that describes a group account. This structure is selected when the delta type is
AddOrChangeGroup.

DeltaRenameGroup: A pointer to a NETLOGON_RENAME_GROUP structure, as specified in section
2.2.1.5.24, that describes a rename of a group account. This structure is selected when the delta

type is RenameGroup.

DeltaUser: A pointer to a NETLOGON_DELTA_USER structure, as specified in section 2.2.1.5.16,
that describes a domain user acco unt. This structure is selected when the delta type is
AddOrChangeUser.

DeltaRenameUser: A pointer to a NETLOGON_RENAME_USER structure, as specified in section
2.2.1.5.25, that describes a rename of a user account. This structure is selected when the delta

type is RenameUser.

DeltaGroupMember: A pointer to a NETLOGON_DELTA_GROUP_MEMBER structure, as specified

in section 2.2.1.5.17, that describes a group membership. This structure is selected when the
delta type is ChangeGroupMembership.

DeltaAlias: A point er to a NETLOGON_DELTA_ALIAS structure, as specified in section 2.2.1.5.4,
that describes an alias. This structure is selected when the delta type is AddOrChangeAlias.

DeltaRenameAlias: A pointer to a NETLOGON_RENAME_ALIAS structure, as specified in sectio n

2.2.1.5.23, that describes a rename of an alias. This structure is selected when the delta type is
RenameAlias.

DeltaAliasMember: A pointer to a NETLOGON_DELTA_ALIAS_MEMBER structure, as specified in
section 2.2.1.5.7, that describes an alias membership. This structure is selected when the delta
type is ChangeAliasMembership.

DeltaPolicy: A pointer to a NETLOGON_DELTA_POLICY structure, as specified in section
2.2.1.5.19, that describes an LSA policy. This structure is selected when the delta type is

AddOr ChangeLsaPolicy.

DeltaTDomains: A pointer to a NETLOGON_DELTA_TRUSTED_DOMAINS structure, as specified in
section 2.2.1.5.22, that describes a trusted domain. This structure is selected when the delta type
is AddOrChangeLsaTDomain.

DeltaAccounts: A pointer to a NETLOGON_DELTA_ACCOUNTS structure, as specified in section
2.2.1.5.3, that describes an LSA account. This structure is selected when the delta type is

AddOrChangeLsaAccount.

88 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

DeltaSecret: A pointer to a NETLOGON_DELTA_SECRET structure, as specified in section
2.2.1.5.21, that describes a LSA secret object as detailed in [MS -LSAD]. This structure is selected

when the delta type is AddOrChangeLsaSecret.

DeltaDeleteGroup: A pointer to a NETLOGON_DELTA_DELETE_GROUP structure, as specified in

section 2.2.1.5.8, that describes a group account deletion. This structure is selected when the
delta type is DeleteGroupByName.

DeltaDeleteUser: A pointer to a NETLOGON_DELTA_DELETE_USER structure, as specified in
section 2.2.1.5.9, that desc ribes a user account deletion. This structure is selected when the delta
type is DeleteUserByName.

DeltaSerialNumberSkip: A pointer to an NLPR_MODIFIED_COUNT structure, as specified in
section 2.2.1.5.26, that holds the database serial number. This structu re is selected when the

delta type is SerialNumberSkip.

2.2.1.5.28 NETLOGON_DELTA_TYPE

The NETLOGON_DELTA_TYPE enumeration defines an enumerated set of possible database
changes.

 typedef en um _NETLOGON_DELTA_TYPE

 {

 AddOrChangeDomain = 1,

 AddOrChangeGroup = 2,

 DeleteGroup = 3,

 RenameGroup = 4,

 AddOrChangeUser = 5,

 DeleteUser = 6,

 RenameUser = 7,

 ChangeGroupMembership = 8,

 AddOrChangeAlias = 9,

 DeleteAlias = 10,

 RenameAlias = 11,

 ChangeAliasMembership = 12,

 AddOrChangeLsaPolicy = 13,

 AddOrChangeLsaTDomain = 14,

 DeleteLsaTDomain = 15,

 AddOrChangeLsaAccount = 16,

 DeleteLsaAccount = 17,

 AddOrChangeLsaSecret = 18,

 DeleteLsaSecret = 19,

 DeleteGroupB yName = 20,

 DeleteUserByName = 21,

 SerialNumberSkip = 22

 } NETLOGON_DELTA_TYPE;

AddOrChangeDomain: Adds or changes a domain Security Account Manager (SAM) account.

AddOrChangeGroup: Adds or changes a group SAM account.

DeleteGroup: Deletes a group SAM account.

RenameGroup: Renames a group SAM account.

AddOrChangeUser: Adds or changes a user SAM account.

DeleteUser: Deletes a user SAM account.

RenameUser: Renames a user SAM account.

ChangeGroupMembership: Changes a group membership record.

89 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

AddOrChangeAlias: Adds or changes an alias.

DeleteAlias: Deletes an alias.

RenameAlias: Renames an alias.

ChangeAliasMembership: Changes the membership record for an alias.

AddOrChangeLsaPolicy: Adds or changes an LSA policy.

AddOrChangeLsaTDomain: Adds or changes a trusted domain account.

DeleteLsaTDomain: Deletes a trusted domain account.

AddOrChangeLsaAccount: Adds or changes an LSA user or machine account.

DeleteLsaAccount: Deletes an LSA user or machine account.

AddOrChangeLsaSecret: Adds or changes an LSA encrypted data block.

DeleteLsaSecret: Deletes an LSA encrypted data block.

The following three types MAY<51> have an additional requirement.

DeleteGroupByName: Deletes a group account based on a string name.

DeleteUserByName: Deletes a user account b ased on a string name.

SerialNumberSkip: Updates the database serial number.

2.2.1.5.29 SYNC_STATE

The SYNC_STATE enumeration tracks the progress of synchronization of the database between BDCs
and PDCs. Sync hronization is initiated by the client calling NetrDatabaseSync2 (section 3.5.4.6.2).
All references to SyncContext in the following synchronization state descriptions refer to the

SyncContext parameter in that method.

 typedef enum _SYNC_STATE

 {

 NormalS tate = 0,

 DomainState = 1,

 GroupState = 2,

 UasBuiltInGroupState = 3,

 UserState = 4,

 GroupMemberState = 5,

 AliasState = 6,

 AliasMemberState = 7,

 SamDoneState = 8

 } SYNC_STATE,

 *PSYNC_STATE;

NormalState: A state that MUST be used unless the current synchronization is the restart of a full
synchronization.

DomainState: The SyncContext parameter is the domain RID with which to continue.

GroupState: The SyncContext parameter is the global group RID with which to continue.

UasBuiltInGr oupState: Not used.

UserState: The SyncContext parameter is the user RID with which to continue.

90 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

GroupMemberState: The SyncContext parameter is the global group RID with which to continue.

AliasState: The SyncContext parameter MUST have a value of 0, indic ating synchronization restarts
at the first database alias and that AddOrChangeAlias (see NETLOGON_DELTA_TYPE
enumeration section 2.2.1.5.28) was the last account change being performed prior to the restart.

AliasMemberState: The SyncContext parameter MUST have a value of 0, indicating synchronization
restarts at the first database alias and that ChangeAliasMembership (NETLOGON_DELTA_TYPE
enumeration section 2.2.1.5.28) was the last account change being performed prior to the restart.

SamDoneState: The data base has finished synchronization.

2.2.1.6 Domain Trust Structures

Structures in this group are used for retrieving trust information.

2.2.1.6.1 DOMAIN_NAME_BUFFER

The DOMAIN_NAME_BUFFER structure defines information returned by the
NetrEnumerateTrustedDomains method, as specified in section 3.5.4.7.3. The structure is used to

describe a set of trusted doma in names.

 typedef struct _DOMAIN_NAME_BUFFER {

 ULONG DomainNameByteCount;

 [unique, size_is(DomainNameByteCount)]

 UCHAR * DomainNames;

 } DOMAIN_NAME_BUFFER,

 *PDOMAIN_NAME_BUFFER;

DomainNameByteCount: The size, in bytes, of the buffer pointed to by the DomainNames field,
including all UTF -16 null characters.

DomainNames: The Unicode string buffer that contains the list of trusted domains. The list format is

a UTF-16 string composed of one or more substrings. Each substring is separated from adjacent
substrings by the UTF -16 null character, 0x0000. After the final substring, the string is terminated

by two UTF -16 null characters.

For example, if there are three trusted domains, DOMAIN1, DOMAIN2, and DOMAIN3, the
DomainNames string buffer would have th e following form:

DOMAIN1<null>DOMAIN2<null>DOMAIN3<null><null>

where <null> is the UTF -16 null character, 0x0000.

2.2.1.6.2 DS_DOMAIN_TRUSTSW

The DS_DOMAIN_TRUSTSW structure defines information about a domain trust. It is part of the
NETLOGON_TRUSTED_DOMAIN_ARRAY structure, as specified in section 2.2.1.6.3, returned by
the DsrEnumerateDomainTrusts method, as specified in section 3.5.4.7.1. This structure

SHOULD<52> contain naming information and trust - related information for a specific trusted domain.

 typedef struct _DS_DOMAIN_TRUSTSW {

 [string] wchar_t* NetbiosDomainName;

 [string] wchar_t* DnsDomainName;

 ULONG Flags;

 ULONG ParentIndex;

 ULONG TrustType;

 ULONG TrustAttributes;

 PRPC_SID DomainSid;

91 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 GUID DomainGuid;

 } DS_DOMAIN_TRUSTSW,

 *PDS_DOMAIN_TRUSTSW;

NetbiosDomainName: A pointer to a null - terminated Unicode string that contains the NetBIOS name
of the trusted domain.

DnsDomainName: A pointer to a null - terminated Unicode string that contains the FQDN of the
trusted domain.

Flags: A set of bit flags that defines the domain trust attributes. A flag is TRUE (or set) if its value is
equal to 1. The value is constructed from zero or more bit flags from t he following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 F E D C B A

Where the bits are defined as:

Value Description

A Domain is a member of a forest.

B Domain is directly trusted by the current domain.

C Domain is the root of a forests.

D Domain is the primary domain of the queried server.

E Primary domain is running in native mode.

F Domain directly trusts the current domain.

All other bits MUST be set to zer o and MUST be ignored on receipt.

ParentIndex: An integer value that contains the index in the
NETLOGON_TRUSTED_DOMAIN_ARRAY array (returned by DsrEnumerateDomainTrusts
method) that corresponds to the parent domain of the domain represented by this structu re. This

field is set if all of the following conditions are met:

Á The A flag is specified in the Flags parameter of the DsrEnumerateDomainTrusts method.

Á The Flags field of DS_DOMAIN_TRUSTSW structure does not contain the C flag.

Otherwise, it MUST be set to zero and MUST be ignored.

TrustType: An integer value that describes the type of domain with which the trust is associated.
TrustType is one of the following values.

Value Meaning

0x0000 0001 Trust is with a domain.<53>

0x00000002 Trust is with an Active Directory domain.<54>

0x00000003 Trust is with an MIT Kerberos realm.

0x00000004 Trust is with a Distributed Computing Environment (DCE) realm.

92 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

All other values MUST be ignored on receipt.

TrustAttributes: A set of bit flags describing trust link attributes. A flag is true (or set) if its value is
equal to 1. The value is constructed from zero or more bit flags from the following table, with the
exception that bit F cannot be combin ed with E or D.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 0 0 0 0 0 0 0 I H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 G F E D C B A

Where the bits are defined as:

Value Description

A Trust link MUST NOT allow transitivity.

B Trust link MAY<55> be valid.

C Trust link MUST be set for SID filtering of the client domain. For details about SID
filtering, see [MS -PAC].

D Trust link can contain forest trust information.

E Trust link is to either a domain or a forest that is not part of the enterprise
network.

F Trust link is internal to the forest.

G Trust is to be treated as external for trust boundary purposes.

H Domain is parent domain.

I Domain is root of another forest.

All other bits MUST be set to zero and MUST be ignored on receipt.

DomainSid: A pointer to a SID structure ([MS -DTYP] section 2.4.2.3) that identifies the current
domain. If the TrustAttributes field is set to C or D, the value is 0.

DomainGuid: A GUID structure ([MS -DTYP] section 2.3.4.1) that identif ies the current domain.

2.2.1.6.3 NETLOGON_TRUSTED_DOMAIN_ARRAY

The NETLOGON_TRUSTED_DOMAIN_ARRAY structure SHOULD<56> define information returned

by the NetrEnumerateTrustedDomains Ex method, as specified in section 3.5.4.7.2.

 typedef struct _NETLOGON_TRUSTED_DOMAIN_ARRAY {

 DWORD DomainCount;

 [size_is(DomainCount)] PDS_DOMAIN_TRUSTSW Domains;

 } NETLOGON_TRUSTED_DOMAIN_ARRAY,

 *PNETLOGON_TRUSTED_DOMAIN_ARRAY;

DomainCount: The number of entries in the Domains field.

Domains: An array of DS_DOMAIN_TRUSTSW structures (section 2.2.1.6.2) that describe domains

trusted by the server processing the NetrEnumerateTrustedDomainsEx method call.

2.2.1.6.4 NL_GENERIC_RPC_DATA

93 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The NL_GENERIC_RPC_DATA structure SHOULD<57> define a format for marshaling arrays of
unsigned long values and Unicode strings, by value, over RPC. This structure c an be used to transmit

generic data over RPC from the server to a client.

 typedef struct _NL_GENERIC_RPC_DATA {

 ULONG UlongEntryCount;

 [size_is(UlongEntryCount)] ULONG * UlongData;

 ULONG UnicodeStringEntryCount;

 [size_is(UnicodeStringEntryCount)]

 PRPC_UNICODE_STRING UnicodeStringData;

 } NL_GENERIC_RPC_DATA,

 *PNL_GENERIC_RPC_DATA;

UlongEntryCount: The number of entries in the UlongData field.

UlongData: A pointer to an array of unsigned 32 -bit integer values.

UnicodeStringEntryCount: The number of entries in UnicodeStringData field.

UnicodeStringData: A pointer to an array of Unicode STRING structures (section 2.2.1.1.2).

2.2.1.7 Administrative Services Structur es

Structures in this group are used to query and control Netlogon behavior.

2.2.1.7.1 NETLOGON_CONTROL_DATA_INFORMATION

The NETLOGON_CONTROL_DATA_INFORMATION union is use d as input to the
NetrLogonControl2 method, as specified in section 3.5.4.9.2, and the NetrLogonControl2Ex

method, as specified in section 3.5.4.9.1. This union selects a data type, based on the FunctionCode
parameter passed to the method. For details abou t FunctionCode values, see NetrLogonControl2Ex ,
section 3.5.4.9.1.

 typedef

 [switch_type(DWORD)]

 union _NETLOGON_CONTROL_DATA_INFORMATION {

 [case(5,6,9,10)]

 [string] wchar_t* TrustedDomainName;

 [case(65534)]

 DWORD DebugFlag;

 [case(8)]

 [string] wchar_t* UserName;

 [default] ;

 } NETLOGON_CONTROL_DATA_INFORMATION,

 *PNETLOGON_CONTROL_DATA_INFORMATION;

TrustedDomainName: A pointer to a null - terminated Unicode string that contains a trusted domain
name. Switched on the DWORD ([MS -DTYP] section 2.2.9) values 0x00000005, 0x00000006,

0x00000009, and 0x0000000A. The DWORD values are equivalent to FunctionCode values. For a

complete list of the Netlogon function codes and their associated meanings, see the
NetrLogonControl2Ex method (section 3.5.4.9.1).

DebugFlag: A DWORD that contains an implementation -specific debug flag. Switched on the value
0x0000FFFE.

UserName: A pointer to null - terminated Unicode string that contains a username. Switched on the
DWORD value 0x00000008.

2.2.1.7.2 NETLOGON_INFO_1

94 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The NETLOGON_INFO_1 structure defines information returned as part of an administrative query,
as detailed in the description of the NetrLogonControl2Ex method in section 3.5.4.9.1. Th is

structure is used to convey information about the state and properties of the secure channel to a DC
in the primary domain of the queried server. Additionally, this structure MAY<58> contain information

about the state of the database synchronization.

 t ypedef struct _NETLOGON_INFO_1 {

 DWORD netlog1_flags;

 NET_API_STATUS netlog1_pdc_connection_status;

 } NETLOGON_INFO_1,

 *PNETLOGON_INFO_1;

netlog1_flags: A set of bit flags that are defined in the following table. A flag SHOULD<59> be TRUE

(or set) if its value is equal to 1. The value is constructed from zero or more bit flags from the
following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 G F E D C B A

Value Description

A One of the databases is out -of -date, and replication is needed.

B At least one of the databases is currently being replicated.

C At least one of the databases requires a full synchronization update.

D At least one database record requires an update.

E The DC used on the secure channel is reachable over TCP/IP. If this flag is not set,
then the DC does not have a known IP address.

F The DC used on the secure channel runs W32Time.

G The last update of one of the DNS records on the DC failed.

All other bits MUST be set to zero and MUST be ignored on receipt.

To a client, bit D will appear arbitrarily set to 0 or 1 and the client is not expec ted to perform any
action based on this value. For more information, see the server to server database
synchronization topic in section 3.6.

netlog1_pdc_connection_status: The integer value that indicates the connection status, as

described in Setting Conn ectionStatus (section 3.4.5.3.1), of the secure channel to a DC in the

primary domain of the queried server.

2.2.1.7.3 NETLOGON_INFO_2

The NETLOGON_INFO_2 structure defines information returned as part of an a dministrative query of
the status of the Netlogon server, as detailed in the description of the NetrLogonControl2Ex method
in section 3.5.4.9.1. This structure is used to convey information about the status and properties of

the secure channel to a DC in t he primary or directly trusted domain specified by the caller of
NetrLogonControl2Ex method.

95 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 typedef struct _NETLOGON_INFO_2 {

 DWORD netlog2_flags;

 NET_API_STATUS netlog2_pdc_connection_status;

 [string] wchar_t* netlog2_trusted_dc_name;

 NET_API_STATUS netlog2_tc_connection_status;

 } NETLOGON_INFO_2,

 *PNETLOGON_INFO_2;

netlog2_flags: A set of bit flags describing the following control query responses from the DC. A flag
is TRUE (or set) if its value is equal to 1. The value is constructed from zero or more bit flags from
the following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 C 0 B A 0 0 0 0

Where the flags SHOULD<60> be defined as shown in the following table.

Value Description

A The DC used on the secure channel has an IP address (either IPv4 or IPv6).

B The DC used on the secure channel runs W32Time.

C Signifies that the trust verification status was returned in the
netlog2_pdc_connection_status field.

All other bits MUST be set to zero and MUST be ignored on receipt.

netlog2_pdc_connection_status: Unless the C bit is set in netlog2_flags field, this field indicates
the connection status, as described in Setting Conn ectionStatus (section 3.4.5.3.1), of the

secure channel to a DC in the primary domain of the queried server. If the C bit is set in
netlog2_flags field, this field indicates the connection status of verifying the secure channel to
the DC in the specified d omain specified by the caller of NetrLogonControl2Ex method (section

3.5.4.9.1).

netlog2_trusted_dc_name: A pointer to a null - terminated Unicode string that contains the DNS or
NetBIOS name of the DC used on the secure channel for the specified domain. The name is the
FQDN if the DC was discovered using the discovery mechanism based on the DNS query and LDAP
ping ([MS -ADTS] section 6.3.3). The name is the NetBIOS name if the DC was discovered using
the mailslot -based mechanism ([MS -ADTS] section 6.3.5).

net log2_tc_connection_status: An integer value that indicates the connection status, described in
Setting ConnectionStatus (section 3.4.5.3.1), of the secure channel to the DC in the specified
domain.

2.2.1.7.4 NETLOGON_INFO_3

The NETLOGON_INFO_3 structure defines information returned as part of an administrative query of
the status of the Netlogon server, as detailed in the description of the NetrLogonControl2Ex method

in section 3.5.4.9.1. This structure is used to return the number of NTLM logo ns attempted on the
queried server since the last restart.

 typedef struct _NETLOGON_INFO_3 {

 DWORD netlog3_flags;

 DWORD netlog3_logon_attempts;

96 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 DWORD netlog3_reserved1;

 DWORD netlog3_reserved2;

 DWORD netlog3_reserved3;

 DWORD netlog3_reserved4;

 DWORD netlog3_reserved5;

 } NETLOGON_INFO_3,

 *PNETLOGON_INFO_3;

netlog3_flags: MUST be set to zero and MUST be ignored on receipt.

netlog3_logon_attempts: The number of NTLM logon attempts made on the server since the last

restart.

netlog3_reserved1: MUST be set to zero and MUST be ignored on receipt.

netlog3_reserved2: MUST be set to zero and MUST be ignored on receipt.

netlog3_reserved3: MUST be set to ze ro and MUST be ignored on receipt.

netlog3_reserved4: MUST be set to zero and MUST be ignored on receipt.

netlog3_reserved5: MUST be set to zero and MUST be ignored on receipt.

2.2.1.7.5 NETLOGON_INFO_4

The NETLOGON_INFO_4 structure defines information that is returned as part of an administrative
query of the status of the Netlogon server, as detailed in the description of the
NetrLogonControl2Ex method in section 3.5.4.9.1. This structure is used to convey in formation
about the status and properties of the secure channel to a DC in the primary or directly trusted
domain containing the user account specified by the caller of the NetrLogonControl2Ex method.

 typedef struct _NETLOGON_INFO_4 {

 [string] wchar_t* netlog4_trusted_dc_name;

 [string] wchar_t* netlog4_trusted_domain_name;

 } NETLOGON_INFO_4,

 *PNETLOGON_INFO_4;

netlog4_trusted_dc_name: A pointer to a null - terminated Unicode string that contains the DNS or
NetBIOS name of a DC that is used on the secure channel for the primary or directly trusted
domain containing the specified user account. The name is the FQDN if the DC was discovered

using the discovery mechanism based on the DNS query and LDAP ping ([MS -ADTS] section
6.3.3). The name is the NetBIOS na me if the DC was discovered using the mailslot -based
mechanism ([MS -ADTS] section 6.3.5).

netlog4_trusted_domain_name: A pointer to a null - terminated Unicode string that contains the
NetBIOS name of the primary or directly trusted domain containing the spe cified user account.

2.2.1.7.6 NETLOGON_CONTROL_QUERY_INFORMATION

The NETLOGON_CONTROL_QUERY_INFORMATION union selects an appropriate
NETLOGON_INFO data type, based on the value of the QueryLevel parameter to the
NetrLogonControl2Ex method described in section 3.5.4.9.1.

 typedef

 [switch_type(DWORD)]

 union _NETLOGON_CONTROL_QUERY_INFORMATION {

 [case(1)]

 PNETLOGON_INFO_1 NetlogonInfo1;

 [case(2)]

 PNETLOGON_INFO_2 NetlogonInfo2;

97 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 [case(3)]

 PNETLOGON_INFO_3 NetlogonI nfo3;

 [case(4)]

 PNETLOGON_INFO_4 NetlogonInfo4;

 [default] ;

 } NETLOGON_CONTROL_QUERY_INFORMATION,

 *PNETLOGON_CONTROL_QUERY_INFORMATION;

NetlogonInfo1: This field is selected when the switched DWORD ([MS -DTYP] section 2.2.9) value is
1. For mo re details about NETLOGON_INFO_1 structure, see section 2.2.1.7.2.

NetlogonInfo2: This field is selected when the switched DWORD value is 2. For more details about
NETLOGON_INFO_2 structure, see section 2.2.1.7.3.

NetlogonInfo3: This field is selected when the switched DWORD value is 3. For more details about
NETLOGON_INFO_3 structure, see section 2.2.1.7.4.

NetlogonInfo4: This field is selected when the switched DWORD value is 4. For more details about

NETLOGON_INFO_4 structure, see section 2.2.1.7.5.

2.2.1.8 Obsolete Structures

The structures in this section SHOULD<61> be unsupported, but they are types associated with
parameters in methods defined in Obsolete Methods (section 3.4.5. 8) that are also obsolete.

2.2.1.8.1 NETLOGON_VALIDATION_UAS_INFO

The NETLOGON_VALIDATION_UAS_INFO structure was for the support of LAN Manager products
and is beyond the scope of thi s document.

 typedef struct _NETLOGON_VALIDATION_UAS_INFO {

 [string] wchar_t* usrlog1_eff_name;

 DWORD usrlog1_priv;

 DWORD usrlog1_auth_flags;

 DWORD usrlog1_num_logons;

 DWORD usrlog1_bad_pw_count;

 DWORD usrlog1_last_logon;

 DWORD usrlog1_last_logoff;

 DWORD usrlog1_logoff_time;

 DWORD usrlog1_kickoff_time;

 DWORD usrlog1_password_age;

 DWORD usrlog1_pw_can_change;

 DWORD usrlog1_pw_must_change;

 [string] wchar_t* usrlog1_computer;

 [string] wchar_t* usrlog1_domain;

 [string] wchar_t* usrlog1_script_path;

 DWORD usrlog1_reserved1;

 } NETLOGON_VALIDATION_UAS_INFO,

 *PNETLOGON_VALIDATION_UAS_INFO;

2.2.1.8.2 NETLOGON_LOGOFF_UAS_INFO

The NETLOGON_LOGOFF_UAS_INFO structure was for the support of LAN Manager products and is
beyond the scope of this document.

 typedef struct _NETLOGON_LOGOFF_UAS_INFO {

 DWORD Duration;

 USHORT LogonCount;

 } NETLOGON_LOGOFF_UAS_INFO,

 *PNETLOGON_LOGOFF_UAS_INFO;

98 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.1.8.3 UAS_INFO_0

The UAS_INFO_0 structure was for the support of LAN Manager products and is beyond the scope of
this document.

 typedef struct _UAS_INFO_0 {

 CHAR ComputerName[16];

 ULONG TimeCreated;

 ULONG SerialNumber;

 } UAS_INFO_0,

 *PUAS_INFO_0;

2.2.1.8.4 NETLOGON_DUMMY1

The NETLOGON_DUMMY1 union MAY<62> serve as a placeholder.

 typedef

 [switch_type(DWORD)]

 union {

 [case(1)]

 ULONG Dummy;

 } NETLOGON_DUMMY1,

 *PNETLOGON_DUMMY1;

Dummy: The field is selected when the switched DWORD ([MS -DTYP] section 2.2.9) value is 1.

2.3 Dir ectory Service Schema Elements Used by the Netlogon Remote Protocol

The Netlogon Remo te Protocol accesses the directory service schema classes and attributes listed in
the following table.

For the syntactic specifications of the following <Class> or <Class><Attribute> pairs, refer to Active

Directory Domain Services (AD DS) ([MS -ADA1], [M S-ADA3], and [MS -ADSC]).

Class Attribute

nTDSDSA objectGUID

trustedDomain trustAuthIncoming

trustAuthOutgoing

computer lmPwdHistory

operatingSystem

securityIdentifier

operatingSystemVersion

servicePrincipalName

unicodePwd

dnsHostName

99 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3 Protocol Details

The Netlogon Remote Protocol remote procedure call (RPC) interface is used primarily to maintain the
relationship between a machine and its domain, and relationships among domain controllers (DCs)
and domains. As s uch, there are several distinct responsibilities that the RPC interface fulfills while
acting in this maintenance capacity. These responsibilities are as follows:<63>

Á To establish and maintain the secure channel that is used by members of a domain to

commu nicate with the domain controller (DC).

Á To transport authentication requests from domain members to the DC, and among DCs. This
functionality is most commonly implemented by authentications using the NTLM Authentication
Protocol ([MS -NLMP]), but it is also used by other protocols such as Kerberos and Digest ([MS -
APDS] section 1.4).

Á To transmit certain account changes, such as password changes or account lockout information.

Details about the types of account changes that can be transmitted are as specif ied in Netlogon

NT Replication Details (section 3.6).

Á To serve as its own security provider for its RPC connection; that is, the authentication protocol is
used both within the RPC exchanges for specific methods, and also as a general authentication
protoc ol for the entire Netlogon Remote Protocol RPC interface.

The details of the Netlogon Remote Protocol are presented in the following sections:

Á Section 3.1 specifies the authentication aspects that are common to all Netlogon Remote Protocol

roles, including establishing the secure channel. Before any method that utilizes the secure
channel can be invoked, the authentication process that is described in this section MUST be
completed.

Á Section 3.2 specifies the use of the Netlogon Remote Protocol for pass - through authentication.

Á Section 3.3 specifies the use of the Netlogon Remote Protocol authentication method as a generic

security authentication mechanism.

Á Sections 3.4 and 3.5 detail client and server operations, respectively.

Á Section 3.6 specifies t he behavior of the Netlogon Remote Protocol in the account replication role
in environments with BDCs.

All the Netlogon Remote Protocol methods return 0x00000000 (NERR_Success) to indicate success;
otherwise, they return a 32 -bit nonzero error code. There are two types of error codes returned,
NET_API_STATUS ([MS -ERREF] section 2.2) and NTSTATUS ([MS -ERREF] section 2.3). For more
information about NTSTATUS values, see [NTSTATUSERR].

Common Error Processing Rules

Several Netlogon Remote Protocol methods appl y the processing rules listed in the following section to
determine which error codes are returned. The applicable processing rules from those mentioned in
this section are referred to in each of the method descriptions. Error codes prepended with the pref ix

STATUS are of type NTSTATUS ([MS -ERREF] section 2.3); the remaining error codes are of type
NET_API_STATUS. Error codes prepended with the prefix ERROR are defined in [MS -ERREF] section
2.2.

Common Error
Processing
Rule Description

A If a server does n ot support a specific Netlogon RPC method, it MUST return
ERROR_NOT_SUPPORTED or STATUS_NOT_SUPPORTED, based on the return type. This

100 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Common Error
Processing
Rule Description

includes the case when the server is not a domain controller.

B If the input parameter to a Netlogon RPC request is a com puter name or server name, the
server SHOULD<64> look up this name in the domain the server hosts. If the name is not
found, the server MUST return ERROR_INVALID_COMPUTERNAME or
STATUS_INVALID_COMPUTER_NAME.

C If a server needs to locate a domain controller (DC) to service a Netlogon RPC request, it
follows the method specified in [MS -ADTS] section 6.3.6. If the DC cannot be located by
following this method, the server MUST return ERROR_NO_LOGON_SERVERS or
STATUS_NO_LOGON_SERVERS, depending on the return type.

D If the Directory Service is paused and the Netlogon RPC method cannot be processed further,
the server returns STATUS_DS_BUSY.

E The server MUST return ERROR_NO_SUCH_DOMAIN if the DC could not be located for the
specified domain, or if the specified domain is not primary or directly trusted.

The default pointer type for the Netlogon Remote Protocol RPC interface is pointer_default(unique).
Method calls are received at a dynamically assigned endpoint ([MS -RPCE] section 3.3.3.3.1.4). The
end points for the Netlogon Remote Protocol service are negotiated by the RPC endpoint mapper ([MS -
RPCE] section 3.3.3.3.1.4).

Out of Memory Errors

Netlogon Remote Protocol methods require allocation of memory in order to execute their processing
rules. If a c lient or server is unable to allocate the memory required, it MUST return

STATUS_NO_MEMORY.

3.1 Netlogon Common Authentication Details

The Netlogon RPC interface is used to establish and maintain the secure channe l. The client MUST
attempt to establish this secure channel with a domain controller within the client's domain. (Common

Error Processing Rule C MUST be applied whenever a secure connection to a DC is required by a
method.) Establishing the secure channel is accomplished by first negotiating a session key (as
specified in section 3.1.4.1) over nonprotected RPC (nonprotected RPC is an RPC connection without
any underlying security support), resulting in both the client and server mutually verifying each
othe r's credentials. Verifying Netlogon credentials on both the client and server establishes that both
ends shared the same password information for the requesting client. Therefore, both Netlogon

credentials are valid. The client and server both store a copy of the Netlogon credential computed by
using the client challenge. This stored client Netlogon credential serves as a seed for authenticating
further client - to -server operations.

Upon successful mutual verification, both client and server have the informa tion necessary to compute
a session key. The session key is used to secure further RPC communication between the two
machines.

The following sections specify the common steps in the authentication portion of the Netlogon RPC

interface, including Netlogon c redential computation and the derivation and use of the session key.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This docume nt does not mandate that implementations

101 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

adhere to this model as long as their external behavior is consistent with that described in this
document.

The Netlogon interface is used to create a secure connection between a client and a server, where the
serve r is a domain controller (DC). The client of the Netlogon interface can be a member of the

domain, another DC in the same domain, or a DC in a different but trusting domain. This secure
connection is often referred to as the secure channel.

The connection is secured by using cryptographic algorithms. The key used for these algorithms, the
session key, is computed on both the client and the server and is based on a shared secret that has
been previously shared between the client and the server. After the ses sion key is computed on both
sides, it is used to encrypt the communication between the two parties. There are two methods of
deriving the key. The method used is version -dependent, as specified in section 3.1.4.3.

Abstract variables of the session key ope rations are as follows:

ClientStoredCredential: A NETLOGON_CREDENTIAL (section 2.2.1.3.4) structure containing the
credential that is created by the client and received by the server and that is used during

computation and verification of the Netlogon auth enticator (section 3.1.4.5).

ClientChallenge: A pointer to a NETLOGON_CREDENTIAL structure that contains the client
challenge.

NegotiateFlags: A 32 -bit set of bit flags that identify the negotiated capabilities between the client
and the server.

ServerStoredCredential: A NETLOGON_CREDENTIAL structure containing the credential that is
created by the server and received by the client and that is used during computation and
verification of the Netlogon authenticator.

ServerChallenge: A pointer to a NETLOGON_CREDENTIAL structure that contains th e server
challenge (SC) response.

SharedSecret: An even -numbered sequence of bytes, with no embedded zero values, that is a plain -

text secret (password) shared between the client and the server. Implementers can choose to
store the unicodePwd ([MS -ADA3] se ction 2.332) instead of a clear text version of the shared
secret.<65><66> For more information, refer to the ADM element Password in [MS -WKST]
section 3.2.1.6; initialization of this shared ADM element is covered in the domain join and unjoin
sections of [MS -WKST] (sections 3.2.4.13 and 3.2.4.14).

TrustPasswordVersion: An unsigned 32 -bit integer that SHOULD<67> indicate the number of times

that a trust password has changed.

SealSecureChannel: A Boolean setting that indicates whether the RPC message has to be encrypted
or just integrity -protected ([C706] section 13.2.5). When TRUE, the message will be encrypted;
otherwise, it will be integrity -protected.

StrongKeySupport: A Boolean setting that indicates whether a strong method of creating the session
key wi ll be used. A strong method, in the context of Netlogon, is one that uses the MD5 message -

digest algorithm [RFC1321]. The behavior of this setting is specified in section 3.1.4.3.

The Netlogon client and server variables are as follows:

LocatedDCsCache: A cache containing a set of previously located DCs. The fields of the cache are
implementation -specific but are required to contain enough information to be able to respond
correctly to a DC locator request. Any cache implementation MUST be able to return th e set of
cache results given a domain name. The results are equivalent to the
DOMAIN_CONTROLLER_INFOW structure (section 2.2.1.2.1). Also, each entry maintains, and

returns with any cache lookup, two timestamps. The first timestamp indicates when the entry was
created so that age checks can be performed to invalidate stale cache entries. The second

102 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

timestamp indicates the last communication with the indicated machine in order to facilitate
periodic liveliness tests with the cached DC (see section 3.5.4.3.1) .

SealSecureChannel: A Boolean setting that indicates whether the RPC message has to be encrypted
or just integrity -protected ([C706] section 13.2.5). When TRUE, the message will be encrypted;

otherwise, it will be integrity -protected.

Implementations SHO ULD<68> persistently store and retrieve the SealSecureChannel variable.

VulnerableChannelAllowList: A setting expressed in Security Descriptor Definition Language
(SDDL) ([MS -DTYP] section 2.5.1) of Netlogon client allowed to not use secure bindings, see
section 3.1.4.6.<69>

3.1.2 Timers

None.

3.1.3 Initialization

See section 3.4.3 for client initialization, and see section 3.5.3 for server initialization.

3.1.4 Message Processing Events and Sequencing Rules

Netlogon communication between a client and a server occurs through RPC calls. A subset of the

methods defined by Netlogon's RPC interface requires a session key to be established between the
client and the server before these methods are called. Section 3.1.4.6 lists all Netlogon methods that
require a session key. This section also specifies the sequence of steps that a client MUST follow when
calling any met hod in the list. Section 3.1.4.7 specifies the required sequence of steps that a client
MUST follow when calling methods that do not require a session key. Section 3.1.4.3 specifies how the
session key is computed. Section 3.1.4.10 specifies how a client a ttempts to locate a domain

controller in a domain.

3.1.4.1 Session -Key Negotiation

Session -key negotiation between a client and a server is performed over an unprotected RPC channel.

The following diagram illustrates the negotiation flow.

103 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Figure 7 : Session - key negotiation

Session -key negotiation works as follows.

1. The client binds to the remote Netlogon RPC endpoint on the server. The client then generates a
nonce, called the client challenge, and sends the client challenge to the server as an input
argument to the NetrServerReqChallenge method call.

2. The server receives the client's NetrServerReqChallenge call. The server generates its own
nonce, called the server challenge (SC). In its response to the cl ient's NetrServerReqChallenge
method call, the server sends the SC back to the client as an output argument to

NetrServerReqChallenge . After the client has received the server's response, both computers
have one another's challenge nonce (client challenge and server challenge (SC), respectively).

3. The client computes a session key, as specified in section 3.1.4.3, Session -Key Computation. The
client specifies an initial set of capabilities by providing an initial set of values in the
NegotiateFlags.

4. The client computes its client Netlogon credential by using client challenge as input to the
credential computation algorithm, as specified in section 3.1.4.4.

5. The client exchanges its client Netlogon credential with the server by passing it in the
NetrServerA uthenticate, NetrServerAuthenticate2, or NetrServerAuthenticate3 call as the

104 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

ClientCredential input argument. The selection of the specific method called by the client is
specified in section 3.4.5.2.2.

6. The server receives the NetrServerAuthenticate , NetrS erverAuthenticate2 , or
NetrServerAuthenticate3 call and verifies the client Netlogon credential. It does this by

computing a session key, as specified in section 3.1.4.3, duplicating the client Netlogon credential
computation, using its stored copy of clie nt challenge, and comparing the result of this
recomputation with the client Netlogon credential that was just received from the client. If the
comparison fails, the server MUST fail session -key negotiation without further processing of the
following steps .

7. If none of the first 5 bytes of the client challenge is unique, the server MUST fail session -key
negotiation without further processing of the following steps.<70>

8. The server computes its server Netlogon credential by using the server challenge as input to the
credential computation algorithm, as specified in section 3.1.4.4. The server returns the server
Netlogon credential as the ServerCredential output parameter of the NetrServerAuthenticate ,
NetrServerAuthenticate2 , or NetrServerAuthenticate3 call.

9. The client verifies the server Netlogon credential. It does this by recomputing the server Netlogon
credential, using its stored copy of server challenge, and comparing the result of this

recomputation with the server Netlogon credential passed back from th e server. If the comparison
fails, the client MUST fail session -key negotiation.

10. Upon mutual verification, the client and server agree to use the computed session key for
encrypting and/or signing further communications.

11. The client calls the NetrLogonGetCa pabilities method (section 3.4.5.2.10).

12. The server SHOULD<71> return the negotiated flags for the current exchange.

13. The client SHOULD<72> compare the received ServerCapabilities (section 3.5.4.4.10) with the

negotiated NegotiateFlags (section 3.5.4.4.2), a nd if there is a difference, the session key
negotiation is aborted.

14. The client sets the ServerSessionInfo.LastAuthenticationTry (indexed by server name) to the
current time. This prevents authentication retries from occurring for 45 seconds unless a new
transport notification is received.

In the first phase of session -key negotiation (NetrServerReqChallenge), the client and server
exchange nonces. This allows both the client and the server to compute a session key by using the

algorithm described in secti on 3.1.4.3. To provide mutual authentication, both the client and the
server calculate a Netlogon credential based on their own nonce, using the computed session key, and
exchange them in the second phase of session -key negotiation (NetrServerAuthenticate or
NetrServerAuthenticate2 or NetrServerAuthenticate3). Because nonces are exchanged in the
first phase, this allows each side to calculate the other party's Netlogon credential locally, and then
compare it with the received one. If the locally computed cr edential matches the one supplied by the

other party, this proves to the client and to the server that the respective party has access to the
shared secret.

For more information about the methods involved in session -key negotiation, see client and server
details in sections 3.4 and 3.5.

3.1.4.2 Netlogon Negotiable Options

As part of the session -key negotiation, the client and server use the NegotiateFlags parameter of
NetrServerAuthenticate2 or NetrServerAuthenticate3 to negotiate s upport for the following options.
The client offers an initial set of capabilities through the NegotiateFlags parameter to the server as
input. The server then selects the capabilities acceptable to it. The capabilities that are supported by

105 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

the server are combined with the capabilities supported by the client by performing a bit -wise AND;
the result of the operation is returned to the client as output, as detailed in sections 3.5.4.4.2 and

3.5.4.4.3. The client MUST inspect the returned negotiation capabil ities to determine whether server -
selected capabilities are supported by the client, and that all of the capabilities required by the client

are returned by the server. For example, a client could be configured outside the protocol to require
strong -key su pport; if the server did not offer strong -key support, the client rejects the server.

If NT4Emulator is set to TRUE and bit U has not been set in NegotiateFlags as input, then the server
MUST return 0 for bits J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, a nd Y in the output of the
NegotiateFlags parameter.

The following options are negotiable between the client and the server as part of the session -key
negotiation. An option is TRUE (or set) if its value is equal to 1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 Y X 0 0 0 0 W 0 0 V U T S R Q P O N M L K J I H G F E D C B A

Where the negotiable options SHOULD<73> be defined as the following:

Option Meaning

A Not used. MUST be ignored on receipt.

B Presence of this flag indicates that BDCs persistently try to update their database to the PDC's version
after they get a notification indicating that their database is out -of -date. Server - to -server only.

C Supports RC4 encryption.

D Not used. MUST be ignored on receipt.

E Supports BDCs handling CHANGELOGs. Server - to -server only.

F Supports restarting of full synchronization between DCs. Server - to -server only.

G Does not require ValidationLevel 2 for nongeneric passthrough.

H Supports the NetrDatabaseRedo (Opnum 17) functi onality (section 3.5.4.6.4).

I Supports refusal of password changes.

J Supports the NetrLogonSendToSam (Opnum 32) functionality.

K Supports generic pass - through authentication.

L Supports concurrent RPC calls.

M Supports avoiding of user account database replication. Server - to -server only.

N Supports avoiding of Security Authority database replication. Server - to -server only.

O Supports strong keys.

P Supports transitive trusts.

Q Not used. MUST be ignored on receipt.

R Supports the NetrServerPasswordSet2 functionality.

S Supports the NetrLogonGetDomainInfo functionality.

106 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Option Meaning

T Supports cross - forest trusts.

U When this flag is negotiated between a client and a server, it indicates that the server ignores the
NT4Emulator ADM element.

V Supports RODC pass - through to different domains.

W Supports Advanced Encryption Standard (AES) encryption (128 bit in 8 -bit CFB mode) and SHA2
hashing as specified in sections 2.2.1.3.3, 3.1.4.3, 3.1.4.4, and 3.3.

X Not used. MUST be ignor ed on receipt.

Y Supports Secure RPC.

All other bits MUST be set as specified in the NegotiateFlags description and MUST be ignored on
receipt.

3.1.4.3 Session -Key Computation

Although ClientChallenge and ServerChallenge are treated normally as byte arrays,
ClientChallenge and ServerChallenge are treated as 64 -bit integers in little -endian format to set
the sum in the following pseudocode. The carry of the most -significant bit is ignored in the sum of the
ClientChallenge and ServerChallenge .

3.1.4.3.1 AES Session -Key

If AES support is negotiated between the client and the server, the strong -key support flag is ignored

and the session key is computed with the HMAC -SHA256 algorithm [RFC4634], as shown in the
following p seudocode. SHA256Reset, SHA256Input, SHA256FinalBits, and SHA256Result are
predicates or functions specified in [RFC4634]. MD4 is specified in [RFC1320].

 ComputeSessionKey(SharedSecret, ClientChallenge,

 ServerChallenge)

 M4SS := MD4 (UNICODE(SharedSecret))

 CALL SHA256Reset(HashContext, M4SS, sizeof(M4SS));

 CALL SHA256Input(HashContext, ClientChallenge, sizeof(ClientChallenge));

 CALL SHA256FinalBits (HashContext, ServerChallenge, sizeof(ServerChallenge));

 CALL SHA256Result(HashContext, SessionKey);

 SET SessionKey to lower 16 bytes of the SessionKey;

The key produced with AES support negotiated is 128 bits (16 bytes).

3.1.4.3.2 Strong -key Session -Key

If AES is not negotiated and strong -key support is one of the flags in the NegotiateFlags between the
client and the server, the session key is computed with the MD5 message -digest algorithm [RFC1321],

as shown in the following pseudocode. MD5Init, MD5Upda te (where the third parameter is the byte

count size of the second parameter), and MD5Final are predicates or functions specified in [RFC1321].
HMAC_MD5 is a function specified in [RFC2104]. The md5Context variable is of type MD5_CTX, as
specified in [RFC1 321].

 SET zeroes to 4 bytes of 0

 ComputeSessionKey(SharedSecret, ClientChallenge,

 ServerChallenge)

107 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 M4SS := MD4(UNICODE(SharedSecret))

 CALL MD5Init(md5context)

 CALL MD5Update(md5context, zeroes, 4)

 CALL MD5Update(md5context, ClientChallenge, 8)

 CALL MD5Update(md5context, ServerChallenge, 8)

 CALL MD5Final(md5context)

 CALL HMAC_MD5(md5context.digest, md5context.digest length,

 M4SS, length of M4SS, output)

 SET Session - Key to output

The key produced with strong -key support negotiated is 128 bits (16 bytes).

3.1.4.3.3 DES Session -Key

If neither AES nor strong -key support is negotiated between the client and the server, the session key
is computed by using the DES encrypti on algorithm in ECB mode, as specified in [FIPS81], as follows.

 ComputeSessionKey(SharedSecret, ClientChallenge,

 ServerChallenge)

 M4SS := MD4(UNICODE(SharedSecret))

 SET sum to ClientChallenge + ServerChallenge

 SET k1 to lower 7 bytes of the M4SS

 SET k2 to upper 7 bytes of the M4SS

 CALL DES_ECB(sum, k1, &output1)

 CALL DES_ECB(output1, k2, &output2)

 SET Session - Key to output2

The key produced without AES and strong -key support negotiated is 64 bits and i s padded to 128 bits
with zeros in the most -significant bits.

3.1.4.4 Netlogon Credential Computation

When establishing a secure channel, the input is the client challenge when the Netlogon credential for
the client is bein g computed, and the server challenge (SC) when the Netlogon credential for the

server is being computed. For subsequent calls using authenticators, the input is the previously
computed credential.

Output contains the computed 64 -bit Netlogon credential.

3.1.4.4.1 AES Credential

If AES support is negotiated between the client and the server, the Netlogon credentials are computed
using the AES -128 encryption algorithm in 8 -bit CFB mode with a zero initialization vector.

 ComputeNetlogonCredential(Input, Sk ,

 Output)

 SET IV = 0

 CALL AesEncrypt(Input, Sk, IV, Output)

AesEncrypt is the AES -128 encryption algorithm in 8 -bit CFB mode with a zero initialization vector
[FIPS197].

3.1.4.4.2 DES Credential

108 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The session key is computed as follows.

 Init LMKey(KeyIn, KeyOut)

 KeyOut[0] = KeyIn[0] >> 0x01;

 KeyOut[1] = ((KeyIn[0]&0x01)<<6) | (KeyIn[1]>>2);

 KeyOut[2] = ((KeyIn[1]&0x03)<<5) | (KeyIn[2]>>3);

 KeyOut[3] = ((KeyIn[2]&0x07)<<4) | (KeyIn[3]>>4);

 KeyOut[4] = ((KeyIn[3]&0x 0F)<<3) | (KeyIn[4]>>5);

 KeyOut[5] = ((KeyIn[4]&0x1F)<<2) | (KeyIn[5]>>6);

 KeyOut[6] = ((KeyIn[5]&0x3F)<<1) | (KeyIn[6]>>7);

 KeyOut[7] = KeyIn[6] & 0x7F;

 for(int i=0; i<8; i++){

 KeyOut[i] = (KeyOut[i] << 1) & 0xfe;

 }

Assume bytes(s, e, l) returns bytes from s to e of the byte array l. After a session key is computed, a
Netlogon credential is computed. If AES support is not negotiated between the client and the server,

th e Netlogon credentials are computed using DES:

 ComputeNetlogonCredential(Input, Sk,

 Output)

 SET k1 to bytes(0, 6, Sk)

 CALL InitLMKey(k1, k3)

 SET k2 to bytes(7, 13, Sk)

 CALL InitLMKey(k2, k4)

 CALL DES_ECB(Input, k3, &output1)

 CALL DES_ECB(output1, k4, &output2)

 SET Output to output2

DES_ECB is the DES encryption algorithm in ECB mode ([FIPS81] and [FIPS46 -2]).

3.1.4.5 Netlogon Authenticator Computation and Verification

All methods that require a secure channel, except NetrLogonSamLogonEx, will use Netlogon
authenticators. If the Netlogon RPC call is using Netlogon authenticators, the following steps are used

to calculate the authenticator:

1. Each time a client sends a new request, it records the current time stamp (expressed as the
number of seconds since 00:00:00 on January 1, 1970 (UTC)) in the Timestamp field of the
NETLOGON_AUTHENTICATOR structure, as specified in section 2.2.1.1.5. The client also adds the
value of this time stamp to the stored Netlogon client credential and encrypts the result with the
session key, using the Netlogon credential computation algorithm described in section 3.1.4.4. T he

result of this computation is stored in the Credential field of the NETLOGON_AUTHENTICATOR
structure and is then sent to the server.

 SET TimeNow = current time;

 SET ClientAuthenticator.Timestamp = TimeNow;

 SET ClientStoredCredential = ClientStoredCrede ntial + TimeNow;

 CALL ComputeNetlogonCredential(ClientStoredCredential,

 Session - Key, ClientAuthenticator.Credential);

2. When the server receives a request, the server confirms the validity of the Netlogon authenticator
that it received with th e request. Validation is achieved by adding the time stamp transmitted in
the received Netlogon authenticator to the server's stored copy of the Netlogon credential, and by
encrypting the result with the session key, using the algorithm specified in sectio n 3.1.4.4. The

server then compares the Netlogon credential that it just calculated with the Netlogon credential

109 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

transmitted in the received Netlogon authenticator. If the Netlogon credentials do not match, the
operation fails, and an error indicating that access is denied is returned to the client.

If the Netlogon credentials match, the server increments the Netlogon credential in the Netlogon
authenticator by one, performs the computation described in Netlogon Credential

Computation , section 3.1.4.4, and stores the new Netlogon credential. The server returns a
Netlogon authenticator that contains the new Netlogon credential to the client.

 SET ServerStoredCredential = ServerStoredCredential +

 ClientAuthenticator.Timestamp;

 CALL ComputeNetlogo nCredential(ServerStoredCredential,

 Session - Key, TempCredential);

 IF TempCredential != ClientAuthenticator.Credential

 THEN return access denied error

 SET ServerStoredCredential = ServerStoredCredential + 1;

 CALL ComputeNetlogonCredential(ServerStoredCredential,

 Session - Key, ServerAuthenticator.Credential);

3. The client validates the returned Netlogon authenticator by incrementing its stored Netlogon
credential by one, encrypting the result with the session key using the algorithm described in
section 3.1.4.4, and comparing the results. If this is successful, the client stores the Netlogon
credential part of the Netlogon authenticator as the new Netlogon credential. If the validation fails,
the client SHOULD re -establish i ts secure channel with the domain controller.

 SET ClientStoredCredential = ClientStoredCredential + 1;

 CALL ComputeNetlogonCredential(ClientStoredCredential,

 Session - Key, TempCredential);

 IF TempCredential != ServerAuthenticator.Credential

 THEN return abort

In each of the addition operations previously performed, the least -significant 4 bytes of the credential
are added with the 4 -byte time stamp value (or the constant 1), and overflow is ignored. This leaves
the most -significant 4 bytes o f the credential unmodified.

3.1.4.6 Calling Methods Requiring Session -Key Establishment

To call the methods in the following set, the client and the server MUST have performed session -key
negotiation. If negotiation has not been completed prior to the time of a call, negotiation MUST be
initiated and completed before making the call. Each method that requires a secure channel is
described in section 3.5, with the errors specified. For descr iptions of the following methods, see
section 3.5.

Á NetrGetForestTrustInformation

Á NetrLogonGetCapabilities

Á NetrLogonSamLogon

Á NetrLogonSamLogonEx

Á NetrLogonSamLogonWithFlags

Á NetrLogonSamLogoff

Á NetrLogonSendToSam

110 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á NetrServerPasswordGet

Á NetrServerPasswordSet

Á Net rServerPasswordSet2

Á NetrServerGetTrustInfo

Á NetrServerTrustPasswordsGet

Á NetrLogonGetDomainInfo

Á NetrDatabaseDeltas

Á NetrDatabaseSync2

Á NetrDatabaseSync

Á NetrDatabaseRedo

Á NetrAccountDeltas

Á NetrAccountSync

Á NetrLogonDummyRoutine1

The client and server follow this sequence of steps.<74>

1. The client SHOULD<75> bind to the RPC server using TCP/IP.

The client and server MUST utilize a secure bind. If a secure bind is used, the client instructs the
RPC runtime to use the Netlogon SSP ([MS -RPCE] section 2.2.1.1.7) fo r privacy/integrity of the

RPC messages. If the SealSecureChannel setting is TRUE, the client requests the Privacy
authentication level from the RPC runtime. If the SealSecureChannel setting is FALSE, then the
authentication level requested is Integrity.

2. I f the call to be made uses Netlogon authenticators, the client MUST compute the Netlogon
authenticator to be passed as a parameter to the RPC method, as specified in section 3.1.4.5.

3. The client calls the method on the server. If the RPC server denies acce ss, the client attempts to
re -establish the session key with the target server if the difference between the current time and

value of ServerSessionInfo.LastAuthenticationTry (indexed by the name of the target server) is
greater than 45 seconds.

4. If secure bind is not used, the server MUST deny the request unless client is in the
VulnerableChannelAllowList setting.<76>

5. The server MUST verify the authenticator, if used, and compute the return authenticator, as
specified in section 3.1.4.5.

6. If none of the firs t 5 bytes of the ClientStoredCredential computation result (step 1, section

3.1.4.5) is unique, the server MUST fail session -key negotiation without further processing of the

following steps.<77>

7. The client MUST validate the returned authenticator, if used .

8. The client MAY unbind from the server, but it SHOULD<78> reuse the binding for multiple RPC
calls.

111 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.1.4.7 Calling Methods Not Requiring Session -Key Establishment

The client follows this sequence of steps:

1. The client SHOULD bind to the RPC server over TCP/IP but MAY<79> use the named pipe

" \ PIPE\ NETLOGON".

Note The TCP/IP channel cannot support impersonation for access control and is therefore
unusable. The server will ignore any calls made via this channel.

2. The client calls the method on the server.

3. The client unbinds from the server or reuses the binding for multiple RPC calls.

3.1.4.8 Determining If the Implementation Is Running on a Domain Controller

The implementation determines whether it is running on a domain controller by querying the current
server configuration by calling the abstract interface ServerGetInfo specified in [MS -DTYP] section

2.6, specifying a level of 101. The resulting bufptr contains a SERVER_INFO_101 structure, as
specified in [MS -DTYP] section 2.3.12. The determination is TRUE if sv101_version_type contains

SV_TYPE_DOMAIN_CTRL or SV_TYPE_DOMAIN BAKCTRL. If sv101_version_type does not contain
either of these values, the determination is FALSE.

3.1.4.9 Determining if a Request is for the Current Domain

If the server is running on a domain controller (DC), the server determines if a request is for its

domain by comparing the domain the request was intended for and the domain -name ADM element.

3.1.4.10 Client Domain Controller Location

The client MUST attempt to locate a domain controller of a given domain. A client locally invokes

processing rules specified in DsrGetDcName (section 3.5.4.3.3) with the method parameters set as

follows:

Á Set the ComputerName parameter to NULL.

Á Set the Doma inName parameter to the domain name.

Á Set the DomainGuid parameter to NULL.

Á Set the SiteGuid parameter to NULL.

Á Set the Flags parameter to a bitwise OR of the bits L and R that are specified in

DsrGetDcNameEx2 (section 3.5.4.3.1).

If DsrGetDcName returns wi th no errors, the DomainControllerName field of the returned
DomainControllerInfo structure will contain the DC name.

3.1.5 Timer Events

No protocol timer event s are required on the client beyond the timers required in the underlying RPC
transport.

3.1.6 Other Local Events

No additional local events are used on the client beyond the events maintained in the underlying RPC
transport and Group Policy notification.

112 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The Netlogon client and server register a local change notification callback with the Group Policy:
Security Protocol Extension Client [MS -GPSB]. The client SHOULD<80> send Netlogon a PolicyChange

event when the policy is changed.

3.2 Pass -Through Authentication Details

Netlogon has various roles, one of which is to securel y transport data for authentication packages
between the client and the server.

3.2.1 Abstract Data Model

None.

3.2.2 Timers

None.

3.2.3 Initialization

Using Netlogon for pass - through authentication requires a session key to have already been

negotiated, as specified in section 3.1.4.1.

3.2.4 Message Processing Events and Sequencing Rules

Netlogon is used to securely transport data for authentication packages between the client and the

server. This is accomplished by packages calling the NetrLogonSamLogon or NetrLogonSamLogonEx
methods. Netlogon takes the data specified in the input parameters by the authentication package on
the client and sends it unexamined over the secure channel to the server. The server delivers the data
to the target authentication package.

3.2.4.1 Generic Pass -Through

When using the NetrLogonSamLogon method, as specified in section 3.5.4.5.3, or the
NetrLogonSamLogonEx method, as specified in section 3.5.4.5.1, for generic pass - through, the
following requirements MUST be met:

Á The LogonLevel parameter is 4 (NetlogonGenericInformation), as specified in section 2.2.1.4.16.

Á The ValidationLevel parameter is 5 (NetlogonValidationGenericInfo2), as specified in section

2.2.1.4.14.

The LogonInformation parameter is NETLOGON_GENERIC_INFO structure, as specified in section
2.2.1.4.2.

Á NETLOGON_GENERIC_INFO .PackageName is "Kerberos" ([MS -APDS] section 3.2.5.1) or
"WDigest" ([MS -APDS] section 3.3.5.1).

Protocols that use Netlogon for generic pass - through will also include opaque Binary Large Objects
(BLOBs) that comprise their respective message data. These BLOBs are pas sed in the LogonData

field of the NETLOGON_GENERIC_INFO structure, with the size of the data specified in the
DataLength field. The BLOB is passed from one system's Netlogon component to the other system's
component over the wire. Netlogon will then pass t he opaque BLOB to the security package specified
in the PackageName field.

The NETLOGON_LOGON_IDENTITY_INFO structure (as specified in section 2.2.1.4.15) inside the
NETLOGON_GENERIC_INFO structure (as specified in section 2.2.1.4.2) MUST:

113 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á Contain the Logo nDomainName.

Á Ensure that the rest of the NETLOGON_LOGON_IDENTITY_INFO fields are zeroed out.

The response is sent by the domain controller via the ValidationInformation parameter, which points
to a pointer to the NETLOGON_VALIDATION_GENERIC_INFO2 structure (section 2.2.1.4.8).

See [MS -APDS] for a specification of how NTLM, Kerberos, and Digest authentication packages use the
Netlogon secure channel.

3.2.5 Timer Events

No protocol timer events are required on the client beyond the timers required in the underlying RPC
transport.

3.2.6 Other Local Events

No additional local events ar e used on the client beyond the events maintained in the underlying RPC

transport.

3.3 Netlogon as a Security Support Provider

In addition to other functionality, Netlogon also serves as a limited private S SP<81> for use by
Netlogon and RPC ([MS -RPCE] section 2.2.1.1.7) when encrypting and signing data during

communication.<82> Central to this capability is the use of the session key, as specified in section
3.1. This section specifies the behavior of the se curity provider role for both client and server.

Netlogon implements a service that allows the RPC runtime to perform a security context negotiation
between the client and the server and to use per -message calls to protect the data being passed over
the ne twork. For Netlogon to be able to perform this functionality, a session key MUST have been
established between the client and the server as specified in section 3.1. Netlogon registers with the

RPC runtime as a security provider with the auth_type value (a s specified in [MS -RPCE] section

2.2.2.11) of 0x44.

When serving as its own generic SSP, Netlogon always provides the following service features:

Á Integrity: Signed messages are constructed so that they cannot be tampered with while in
transit. The generation and receipt of the Netlogon Signature token will always provide integrity
protection for the messages.

Á Sequence Detect: Signed messages are constructed s uch that out -of -order sequences can be

detected. The generation and receipt of the Netlogon Signature token will always detect out -of -
sequence messages.

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Netlogon serves as a security provider for its own RPC connections. As such, it provides the following
service: Confidentiality.

For protocol features, once a session key has been established through the session key negotiation,
Netlogon relies upon the RPC runtime to invoke the per -message functions. The following define the
services provided by the Netlogon security support provider (SSP).

114 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Note The following defined variables are logical, abstract parameters that an implementation is
required to maintain a nd expose to provide the proper level of service. How these variables are

maintained and exposed is determined by the implementation.

Confidentiality: A Boolean setting that indicates that the caller is requiring encryption of messages

so that they cannot be read while in transit. Requesting this service results in Netlogon encrypting
the message. For more information, see sections 3.1.4.2 and 3.1.4.3.

As per [MS -RPCE] section 2.2.2.11, the auth_level field of the sec_trailer structure determines
the authen tication level used. Netlogon only supports RPC_C_AUTHN_LEVEL_PKT_INTEGRITY and
RPC_C_AUTHN_LEVEL_PKT_PRIVACY. A value of RPC_C_AUTHN_LEVEL_PKT_INTEGRITY implies
that Integrity is provided by the Netlogon SSP, and a value of
RPC_C_AUTHN_LEVEL_PKT_PRIVACY i mplies that Confidentiality is provided by the Netlogon SSP.

Sequence detection is always provided.

The Netlogon SSP maintains the following set of data for each session:

ClientSequenceNumber: A 64 -bit integer value used for detecting out -of -order messages on the

client side.

ServerSequenceNumber: A 64 -bit integer value used for detecting out -of -order messages on the
server side.

Session - Key: See section 3.1.4.3 for Session - Key computation details.

NegotiateFlags: See section 3.1.1 for NegotiateFlags details.

MessageBlockSize: An integer that indicates the minimum size of messages for encryption. This
value MUST be 1.

3.3.2 Timers

None.

3.3.3 Initialization

Establishing a Netlogon security context requires a session key to have already been negotiated, as
specified in section 3.1.4.1.

3.3.4 Message Processing Events and Sequencing Rules

Netlogon uses two types of tokens when functioning as an SSP: NL_AUTH_MESSAGE and

NL_AUTH_SIGNATURE.

3.3.4.1 The NL_AUTH_MESSAGE Token

The NL_AUTH_MESSAGE token contains information that is part of the first message in an
authenticated transaction between a client and a server. It contains a message type, flags, and

naming information. For the exact format, see section 2.2.1.3.1.

The NL_AUTH_MESSAGE token is part of the RPC PDU AUTH trailer structure as specified in [MS -
RPCE] section 2.2.2.11.

The client generates an initial token and sends it to the server. The server receives the token,
processes it, and passes back a return token to the client.

115 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The exchange of this message requires a session key to have been negotiated as specified in section
3.1. Upon successful exchange of tokens, the application starts using per -message calls to protect the

data being passed over the network.

3.3.4.1.1 Generating an Initial NL_AUTH _MESSAGE Token

The client generates a NL_AUTH_MESSAGE token to initiate authentication to a server. The
MessageType field of this token MUST be set to zero to indicate that this is a Negotiate message
type.

The client MUST provide at least one domain name and one computer name in the token by providing
the Flags bit and the corresponding text buffer. The Flags field i s a bitwise OR of the values
described under the Flags field of the NL_AUTH_MESSAGE token in section 2.2.1.3.1. This value

represents the names available in the token. The Buffer field is then composed by concatenating the
strings of the names indicated by the Flags value. The compressed UTF -8 strings are generated, as
specified in [RFC1035] section 4.1.4.

The following is an example token on the wire.

 00 00 00 00 17 00 00 00 4E 54 44 45 56 00 4E 41 NTDEV.NA

 53 4B 4F 00 05 6E 74 64 65 76 04 63 6 F 72 70 09 SKO..ntdev.corp.

 6D 69 63 72 6F 73 6F 66 74 03 63 6F 6D 00 05 4E microsoft.com..N

 41 53 4B 4F 00 ASKO.

3.3.4.1.2 Receiving an Initial NL_AUTH_MESSAGE Token

When the server receives the initial NL_AUTH_MESSAGE token (section 2.2.1.3.1), the server will
check the token type and extract the client names using the Flags values and corresponding text
buffer passed. The server MUST return SEC_E_INVALID_TOKEN (0x800 90308), indicating that an
invalid token has been received, when any of the following are true:

Á The MessageType is not set to 0x00000000.

Á A flag for a particular name type is present and the corresponding text buffer cannot be extracted
from the Buffer.

Á The token does not contain at least one domain name and one computer name.

The server initializes ServerSequenceNumber to 0. This sequence number is used to detect out -of -
order messages.

3.3.4.1.3 Generating a Return NL_AUTH_MESSAGE Token

Upon successful verification and extraction of data from the initial token, the server verifies that a

successful session -key negotiation has occurred by the presence of the Session - Key data item for the
client. If no negotiation has occurred, the server MUST return SEC_E_INVALID_TOKEN (0x80090308)
indicating that an invalid token has been received.

The server generates a return NL_AUTH_MESSAGE (section 2.2.1.3.1) token. The MessageType

MUST be set to 1 to indicate that this is a Negotiate response message type, the Flags field is set to
zero, the Buffer field contains a NULL character, and the NL_AUTH_MESSAGE token MUST be
padded to 12 bytes in length.

The return NL_AUTH_MESSAGE token is then sent back to t he client along with any additional
application -specific data.

3.3.4.1.4 Receiving a Return NL_AUTH_MESSAGE Token

When the client receives the return token, it verifies that:

116 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á The NL_AUTH_MESSAGE token is at least 12 bytes in length.

Á The MessageType is set to 1.

If either of these conditions are not true, the client MUST return SEC_E_INVALID_TOKEN
(0x80090308) indicating that an invalid token has been received.

Otherwise, the client initializes ClientSequenceNumber to 0, which is used to detect out -of -order
messages.

3.3.4.2 The Netlogon Signature Token

The Netlogon Signature token contains information that MUST be part of each protected message. It
contains a signature algorithm identifier, encryption algorithm identifier, confounder, flags, sequence
number, and checksum (see section 2.2.1.3.2 for the exact format). When data is protected/signed, a
Netlogon Signature token is generated that describes the algorithms used and contains the
checksum of the data to be sent. When data is received and is unprotected/verified, the Netlogon

Signature token is used.

3.3.4.2.1 Generating a Client Netlogon Signature Token

If AES is negotiated, a client generates an NL_AUTH_SHA2_SIGNATURE token (section 2.2.1.3.3)
that contains an HMAC -SHA256 checksum [RFC4634], a sequence number, and a confounde r (if
confidentiality has been requested) to send data protected on the wire. The data is encrypted using
the AES algorithm. If AES is not negotiated, a client generates a Netlogon Signature token that
contains an HMAC -MD5 checksum ([RFC2104]), a sequence number, and a confounder (if
confidentiality has been requested) to send data protected on the wire. The data is encrypted using

the negotiated encryption algorithm. Note that in the algorithm that follows, the term Confidentiality is
used as defined in se ction 3.3.1. The following steps are performed to generate the client Netlogon
Signature tokens and to encrypt the data if requested.

1. If AES is negotiated:

Á The SignatureAlgorithm first byte MUST be set to 0x13, and the second byte MUST be set to
0x00.

Á If the Confidentiality option (section 3.3.1) is requested from the application, then the

SealAlgorithm first byte MUST be set to 0x1A, the second byte MUST be set to 0x00, and the
Confounder MUST be filled with cryptographically random data.

Á If the Confident iality option (section 3.3.1) is not requested, then the SealAlgorithm MUST
be filled with two bytes of 0xff and the Confounder is not included in the token.

2. If AES is not negotiated:

Á The SignatureAlgorithm first byte MUST be set to 0x77, and the second by te MUST be set to

0x00.

Á If the Confidentiality option (section 3.3.1) is requested from the application, then the

SealAlgorithm first byte MUST be set to 0x7A, the second byte MUST be set to 0x00, and the
Confounder MUST be filled with cryptographically ra ndom data.

Á If the Confidentiality option is not requested, then the SealAlgorithm MUST be filled with two
bytes of value 0xff and the Confounder is not included in the token.

3. The Pad MUST be filled with 0xff bytes.

4. The Flags MUST be filled with 0x00 bytes.

5. The SequenceNumber is computed using the following algorithm.

117 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Assume byte(n, l) returns byte n of the 32 -bit number l. The n parameter is limited to 0..3. The
least significant byte is 0, the most significant byte is 3.

SET CopySeqNumber[0] to byte(3, ClientSequenceNumber.LowPart)

SET CopySeqNumber[1] to byte(2, ClientSequenceNumber.LowPart)

SET CopySeqNumber[2] to byte(1, ClientSequenceNumber.LowPart)

SET CopySeqNumber[3] to byte(0, ClientSequenceNumber.LowPart)

SET CopySeqN umber[4] to byte(3, ClientSequenceNumber.HighPart)

SET CopySeqNumber[5] to byte(2, ClientSequenceNumber.HighPart)

SET CopySeqNumber[6] to byte(1, ClientSequenceNumber.HighPart)

SET CopySeqNumber[7] to byte(0, ClientSequenceNumber.HighPart)

Set CopySeqNumbe r[4] to CopySeqNumber[4] OR 0x80

6. The ClientSequenceNumber MUST be incremented by 1.

7. If AES is negotiated, then a signature MUST be computed using the following algorithm:

 CALL SHA256Reset(&HashContext, Sk, sizeof(Sk));

 CALL SHA256Input(HashContext, NL_AUTH_SHA2_SIGNATURE, 8);

 IF Confidentiality requested

 CALL SHA256Input(HashContext, Confounder, 8);

 CALL SHA256FinalBits(HashContext, Message, size of Message);

 CALL SHA256Result(HashContext, output);

 SET Signature to output

Note : In the first call to SHA256Input, only the first 8 -bytes of the
NL_AUTH_SHA2_SIGNATURE structure are used.

Else, a signature MUST be computed using the following algorithm:

 SET zeroes to 4 bytes of 0

 CALL MD5Init(md5context)

 CALL MD5Update(md5contex t, zeroes, 4)

 CALL MD5Update(md5context, NL_AUTH_SIGNATURE, 8)

 IF Confidentiality requested

 CALL MD5Update(md5context, Confounder, 8)

 CALL MD5Update(md5context, Message, size of Message)

 CALL MD5Final(md5context)

 CALL HMAC_MD5(md5context.digest, md5context.digest length,

 Session - Key, size of Session Key, output)

 SET Signature to output

Note : In the second call to MD5Update, only the first 8 -bytes of the NL_AUTH_SIGNATURE
structure are used.

After the signature is computed, the signature MUST be truncated, with only the first 8 bytes
being copied into the Checksum field of NL_AUTH_SHA2_SIGNATURE structure (section
2.2.1.3.3) if AES is negotiated, otherwise, into the Checksum field of NL_AUTH_SIGNATURE
structure (section 2.2.1.3.2).

8. If the Confidentiality option is requested, the Confounder field and the data MUST be encrypted,
in that order, using the same encryption algorithm.

Á If AES is negotiated, then the server MUST use AES -128 in 8 -bit CFB mode fo r encryption. The
server MUST derive the AES key using the following algorithm:

 FOR (I=0; I < Key Length; I++)

 EncryptionKey[I] = SessionKey[I] XOR 0xf0

118 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The server MUST encrypt the Confounder field using the initialization vector constructed by
concatenati ng the sequence number with itself twice (thus getting 16 bytes of data). For

encrypting the data, the initialization vector MUST be constructed using the last block of the
encrypted Confounder field.

Á Else, the server MUST use RC4 for encryption. The serve r MUST derive the RC4 key using the
following algorithm:

 SET zeroes to 4 bytes of 0

 FOR (I=0; I < Key Length; I++)

 XorKey [I] = SessionKey[I] XOR 0xf0

 CALL hmac_md5(zeroes, 4, XorKey, size of XorKey, TmpData)

 CALL hmac_md5(CopySeqNumber, size of Copy SeqNumber, TmpData,

 size of TmpData, EncryptionKey)

The hmac_md5 function is defined in the Appendix of [RFC2104]. The server MUST use this key to

initialize RC4 and encrypt the Confounder field and then the data. The server MUST initialize RC4
only once, before encrypting the Confounder field.

9. The SequenceNumber MUST be encrypted. If AES is negotiated, then the AES -128 algorithm in
8-bit CFB mode MUST be used, using the SessionKey with an initialization vector constructed by
concatenating the first 8 bytes of the checksum with itself twice (thus getting 16 bytes of data),
otherwise the RC4 algorithm MUST be used.

The RC4 key MUST be derived as follows:

 SET zeroes to 4 bytes of 0

 CALL hmac_md5(zeroes, 4, SessionKey, size of SessionKey, TmpData)

 CALL hmac_md5(Checksum, size of Checksum, TmpData, size of TmpData,

 EncryptionKey)

The Netlogon Signature token MUST then be sent to the server along with the data.

3.3.4.2.2 Receiving a Client Netlogon Signature Token

When a server receives encrypted data, it verifies the Netlogon Signature token. If AES is
negotiated, a server receives an NL_AUTH_SHA2_SIGNATURE structure, otherwise it receives an
NL_AUTH_SIGNATURE structure. The following steps are performed to verify the data and to decrypt
with AES if negotiated, otherwise RC4 if required:

1. The SignatureAlgorithm bytes MUST be verified to ensure:

Á If AES is negotiated, the first byte is set to 0x13; otherwise the first byte is set to 0x77.

Á The second byte is set to 0x00.

If either of these two is incorrect, an SEC_E_MESSAGE_ALTERED (0x8009030F) MUST be

returned.

2. If the Confidentiality option is requested from the application, then the SealAlgorithm MUST be
verified to ensure that if AES is negot iated, the first byte is set to 0x1A; otherwise the first byte is
set to 0x7A. The second byte is set to 0x00.

If the Confidentiality option is not requested, then the SealAlgorithm MUST be verified to contain
all 0xff bytes.

119 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

If either of these two is inco rrect, an SEC_E_MESSAGE_ALTERED (0x8009030F) MUST be
returned.

3. The Pad MUST be verified to contain all 0xff bytes and SEC_E_MESSAGE_ALTERED (0x8009030F)
MUST be returned otherwise.

4. The Flags data SHOULD<83> be disregarded.

5. The SequenceNumber MUST be decryp ted. If AES is negotiated, then the AES -128 algorithm
MUST be used with Session Key and an initialization vector constructed by concatenating the
checksum with itself (thus getting 16 bytes of data). Otherwise, the RC4 algorithm MUST be used.
The RC4 key M UST be derived as follows:

 SET zeroes to 4 bytes of 0

 CALL hmac_md5(zeroes, 4, SessionKey, size of SessionKey, TmpData)

 CALL hmac_md5(Checksum, size of Checksum, TmpData, size of TmpData,

 DecryptionKey)

6. A local copy of SequenceNumber MUST be computed using the following algorithm.

Assume byte(n, l) returns byte n of the 32 -bit number l. The n parameter is limited to 0..3. The
least significant byte is 0, the most significant byte is 3.

 SET CopySeqNumber[0] to byte(3, S erverSequenceNumber.LowPart)

 SET CopySeqNumber[1] to byte(2, ServerSequenceNumber.LowPart)

 SET CopySeqNumber[2] to byte(1, ServerSequenceNumber.LowPart)

 SET CopySeqNumber[3] to byte(0, ServerSequenceNumber.LowPart)

 SET CopySeqNumber[4] to byte(3, ServerSe quenceNumber.HighPart)

 SET CopySeqNumber[5] to byte(2, ServerSequenceNumber.HighPart)

 SET CopySeqNumber[6] to byte(1, ServerSequenceNumber.HighPart)

 SET CopySeqNumber[7] to byte(0, ServerSequenceNumber.HighPart)

 Set CopySeqNumber[4] to CopySeqNumber[4] OR 0x80

7. The SequenceNumber MUST be compared to CopySeqNumber . If these two do not match,
SEC_E_OUT_OF_SEQUENCE ([MS -ERREF] section 2.1.1) MUST be returned.<84>

8. ServerSequenceNumber MUST be incremented.

If the Confidentiality option is requested, the Confounder and the data MUST be decrypted using
RC4.

9. If the Confidentiality option is requested, the Confounder and the data MUST be decrypted.

Á The AES key used MUST be derived using the following algorithm:

 FOR (I=0; I < Key Length; I++)

 EncryptionKey [I] = SessionKey[I] XOR 0xf0

If AES is negotiated, decrypt using an initialization vector constructed by concatenating twice the
sequence number (thus getting 16 bytes of data).

Á The RC4 key used MUST be derive d using the following algorithm:

 SET zeroes to 4 bytes of 0

 FOR (I=0; I < Key Length; I++)

 XorKey [I] = SessionKey[I] XOR 0xf0

120 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 CALL hmac_md5(zeroes, 4, XorKey, size of XorKey, TmpData)

 CALL hmac_md5(CopySeqNumber, size of CopySeqNumber, TmpData,

 size of TmpData, EncryptionKey)

The hmac_md5 function is specified in [RFC2104].

10. If AES is negotiated, then a signature MUST be computed using the following algorithm:

 CALL SHA256Reset(&HashContext, Sk, sizeof(Sk));

 CALL SHA256Input(HashContext, NL_AUTH_SHA2_SIGNATURE, 8);

 IF Confidentiality requested

 CALL SHA256Input(HashContext, Confounder, 8);

 CALL SHA256FinalBits(HashContext, Message, size of Message);

 CALL SHA256Result(Has hContext, output);

 SET Signature to output

Note : In the first call to SHA256Input only the first 8 -bytes of the

NL_AUTH_SHA2_SIGNATURE structure are used.

Else a signature MUST be computed using the following algorithm:

 SET zeroes to 4 bytes of 0

 CALL MD5Init(md5context)

 CALL MD5Update(md5context, zeroes, 4)

 CALL MD5Update(md5context, NL_AUTH_SIGNATURE, 8)

 IF Confidentiality requested

 CALL MD5Update(md5context, Confounder, 8)

 CALL MD5Update(md5context, Message, size of Message)

 CALL MD5Final(md5context)

 CALL HMAC_MD5(md5context.digest, md5context.digest length,

 Session Key, size of Session Key, output)

 SET Signature to output

Note : In the second call to MD5Update only the first 8 -bytes of the NL_AUTH_SIGNATURE
structure are used.

11. The first 8 bytes of the computed signature MUST be compared to the checksum. If these two do
not match, the SEC_E_MESSAGE_ALTERED (0x8009030F) MUST be re turned, indicating that the
message was altered.

3.3.4.2.3 Generating a Server Netlogon Signature Token

If AES is negotiated, a server generates an NL_AUTH_SHA2_SIGNATURE token that contains an
HMAC-SHA256 checksum [RFC4634], a sequence number, and a Confounder (if confidentiality has
been requested) to send data protected on the wire. The data is encrypted using the AES algorithm. If
AES is not negotiated, a client generates a Netlogon Signature token that contains an HMAC -MD5
checksum ([RFC2104]), a sequence numbe r, and a Confounder (if confidentiality has been
requested) to send data protected on the wire. The data is encrypted using the negotiated encryption

algorithm. Note that in the algorithm that follows, the term Confidentiality is used as defined in

section 3.3.1. The following steps are performed to generate the server Netlogon Signature tokens
and to encrypt the data if requested.

1-4. Same as steps 1 -4 in section 3.3.4.2.1.

5. The SequenceNumber MUST be computed using the following algorithm:

Assume byte(n, l) returns byte n of the 32 -bit number l. The n parameter is limited to 0..3. The
least significant byte is 0, the most significant byte is 3.

121 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 SET CopySeqNumber[0] to byte(3, ServerSequenceN umber.LowPart)

 SET CopySeqNumber[1] to byte(2, ServerSequenceNumber.LowPart)

 SET CopySeqNumber[2] to byte(1, ServerSequenceNumber.LowPart)

 SET CopySeqNumber[3] to byte(0, ServerSequenceNumber.LowPart)

 SET CopySeqNumber[4] to byte(3, ServerSequenceNumber.H ighPart)

 SET CopySeqNumber[5] to byte(2, ServerSequenceNumber.HighPart)

 SET CopySeqNumber[6] to byte(1, ServerSequenceNumber.HighPart)

 SET CopySeqNumber[7] to byte(0, ServerSequenceNumber.HighPart)

6. The ServerSequenceNumber MUST be incremented by one. Th e Netlogon Signature token MUST
then be sent to the client along with the data.

7-9. Same as steps 7 -9 in section 3.3.4.2.1.

3.3.4.2.4 Receiving a Server Netlogon Signature Token

When a client receives encrypted data, it verifies the Netlogon Signature token. If AES is negotiated, a

client receives an NL_AUTH_SHA2_SIGNATURE structure, otherwise it receives an
NL_AUTH_SIGNATURE structure. The following steps are performed to verify the data and to decrypt
with AES if negotiated, otherwise RC4 MUST be used if required.

1-5. Follow steps 1 -5 in section 3.3.4.2.2.

6. A local copy of SequenceNumber MUST be computed using the following algorithm:

Assume byte(n, l) returns byte n of the 32 -bit number l. The n parameter is limited to 0..3. The
least significant byte is 0, and the most significant byte is 3.

 SET CopySeqNumber[0] to byte(3, ClientSequenceNumber.LowPart)

 SET CopySeqNumber[1] to byte(2, ClientSequenceNumber.LowPart)

 SET CopySeqNumber[2] to byte(1, ClientSequenceNumber.LowPart)

 SET CopySeqNumber[3] to byte(0, Cl ientSequenceNumber.LowPart)

 SET CopySeqNumber[4] to byte(3, ClientSequenceNumber.HighPart)

 SET CopySeqNumber[5] to byte(2, ClientSequenceNumber.HighPart)

 SET CopySeqNumber[6] to byte(1, ClientSequenceNumber.HighPart)

 SET CopySeqNumber[7] to byte(0, ClientS equenceNumber.HighPart)

7. Follow step 7 in section 3.3.4.2.2.

8. ClientSequenceNumber MUST be incremented.

9. Follow steps 9 -11 in section 3.3.4.2.2.

3.3.5 Timer Events

None.

3.3.6 Other Local Events

None.

3.4 Netlogon Client Details

The following sections specify data and state maintained by the Netlogon RPC client. They include

details of calling Netlogon RPC methods on the client side of the client/s erver communication. A client
in this context can be a domain member (member machine), a member server, or a DC. The provided
data is to facilitate the explanation of how the protocol behaves. This section does not mandate that

122 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

implementations adhere to th is model as long as their external behavior is consistent with that
described in this document.<85>

3.4.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to partic ipate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that de scribed in this

document.

The Netlogon Protocol client maintains the following variables in addition to the ones described in
section 3.1, Netlogon Common Details, which are part of the abstract state.

ClientCapabilities: A 32 -bit set of flags defined in s ection 3.1.4.2 that identifies the client's
supported options.

domain - name (Public): For client machines, the NetBIOS name of the domain to which the machine
has been joined. This ADM element is shared with DomainName.NetBIOS ([MS -WKST] section

3.2.1.6). F or domain controllers, the domain name to which the domain controller has a direct
trust.

The Netlogon client variables that are registry keys are as follows:

RejectMD5Servers: A Boolean variable that indicates whether the client SHOULD<86> reject servers
that are using MD5 encryption.

RequireSignOrSeal: Indicates whether the client SHOULD<87> continue session -key negotiation
when the server did not specify support for Secure RPC as described in the negotiable option Y of

section 3.1.4.2.

RequireStrongKey: A Boolean variable that indicates whether the client SHOULD<88><89>
negotiate the use of a strong key during secure channel creation as described by the negotiable
option O of section 3.1.4.2.

These registry keys and values MUST be exposed at a specified registry path via the Windows Remote
Registry Protocol [MS -RRP]. For each abstract data model (ADM) element that is loaded from the

registry, there is one instance that is shared between the Win dows Remote Registry Protocol and the
protocol(s) that uses the ADM element. Any changes made to the RejectMD5Servers registry key
will not be reflected in the ADM elements until the Netlogon server is stopped and restarted. Any
changes made to the Require StrongKey and RequireSignOrSeal registry keys are reflected in the
ADM elements when a PolicyChange event is received (section 3.1.6).

When a secure channel is established, the client maintains:

ServerSessionInfo : A table indexed by PrimaryName with the fo llowing members:

Á PrimaryName : The PrimaryName (section 3.5.4.4.1) used by the client during session -key
negotiations (section 3.1.4.1).

Á ClientSequenceNumber : See section 3.3.1 for ClientSequenceNumber details.

Á ServerSequenceNumber : See section 3.3.1 for ServerSequenceNumber details.

Á Session - Key : See section 3.1.4.3 for Session -Key computation details.

Á NegotiateFlags : See section 3.1.1 for NegotiateFlags details.

Á ClientStoredCredential : See section 3.1.1 for ClientStoredCredential details.

123 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á DomainName : See se ction 3.1.1 for ClientStoredCredential details.

Á ConnectionStatus : See section 3.1.1 for ClientStoredCredential details.

Á LastAuthenticationTry : A FILETIME ([MS -DTYP] section 2.3.3) indicating the time when the last
authentication attempt was made. The time stamp is used to determine if at least 45 seconds

have passed since the last authentication attempt.

3.4.2 Timers

If the client is running on a domain controller, the clie nt MUST create a domainControllerCacheTimer

with an expiry of 15 minutes. The operation of this timer is specified in section 3.4.6.1.

3.4.3 Initialization

If the client is running on a member workstation, the client MUST initialize the LocatedDCsCache
with one entry, as follows:

Á The client MUST attempt to locate a domain controller (DC) from the client's domain by
performing the steps described i n section 3.1.4.10 for the domain specified by the domain -name
ADM element. If a DC is successfully located, the LocatedDCsCache is populated based on the
resulting DomainControllerInfo structure.

Á If the client fails to locate a DC, the client ignores erro rs and MUST continue initialization.

If the client is running on a DC, the client MUST initialize the LocatedDCsCache for each domain
trusted by the client DC, as follows:

Á The client MUST get a trusted domain list by performing the external behavior consis tent with
locally invoking LsarEnumerateTrustedDomains ([MS -LSAD] section 3.1.4.7.8).

Á The EnumerationContext parameter MUST be set to 0.

Á The PreferredMaximumLength SHOULD<90> be set to 4096.

Á A policy handle is not needed locally.

Á The client MUST attempt to locate a DC (section 3.1.4.10) for each of the domain entries of the

returned trusted domain list.

Á If the client fails when attempting to locate a DC for a domain entry in the trusted domain list,
the client MUST ignore errors and continue to attempt to l ocate DCs for the remaining domain
entries in the trusted domain list.

Á For each successfully located DC, the client must add an entry to the ServerSessionInfo table
with the new entry's PrimaryName set to
DOMAIN_CONTROLLER_INFOW.DomainControllerName and th e new entry's

DomainName set to DOMAIN_CONTROLLER_INFOW.DomainName .

Á For each located DC, the client MUST attempt to establish a session key with the located DC

(section 3.1.4.10)

ServerSessionInfo MUST be empty.

ClientCapabilities are initialized in an implementation -specific way to reflect the capabilities offered
by that client implementation. The client sets the value according to the bit field, defined as shown in
Netlogon Negotiable Options (section 3.1.4.2). Bits C, G, I, J, K, L, O, P, R, S, T, V, W, and Y

SHOULD<91> be set to 1 when a corresponding capability is supported by a given implementation. Bit
U is set if the client is determined to be running on a domain controller (section 3.1.4.8). Other bits
are not used and can be set to zero, but are ignored upon receipt.

124 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

RejectMD5Servers MUST be initialized to FALSE.

RequireSignOrSeal SHOULD<92> be initialized to TRUE.

RequireStrongKey SHOULD<93> be initialized to FALSE.

domain - name is a shared Abstract Data Model element with DomainName.NetBIOS in ([MS -

WKST] section 3.2.1.6).

TrustPasswordVersion MUST be initialized to 0.

3.4.4 Higher -Layer Triggered Events

Netlogon responds to a few higher - layer triggered events.

Á Transport being added or removed. Whenever a new transport becomes available or unavailable,
Netlogon MUST incorporate the transport event and use the DC Locator components ([MS -ADTS]
section 6.3.6) to make sure that it has a valid domain controller to connect to.

Á If an application calls a Netlogon method and a secure channel is not currently set up, a secure
channel MUST be established before the RPC call to the server is made.

3.4.5 Message Processing Events and Sequencing Rules

For all of the method calls, the client MUST bind to the server before making the RPC call. If an
application calls a Netlogon method and a secure channel is not currently set up, a secure channel
MUST be established before the RPC call to the server is made. For details, see sections 3.1.4.6 and
3.1.4.7.

If the NegotiateFlags bit L is not set, clients calling the
NetrLogonSamLogon / NetrLogonSamLogonEx / NetrLogonSamLogonWithFlags metho ds MUST
have only one outstanding RPC call at a time. If the NegotiateFlags bit L is set, clients can have more
than one concurrent RPC call.

Whenever a new transport becomes available or unavailable, Netlogon receives a notification, and it
uses the DC Lo cator component ([MS -ADTS] section 6.3.6) to make sure that it has a valid domain

controller with which to connect.

3.4.5.1 DC Location Methods

3.4.5.1.1 Calling DsrGetDcNameEx2

No client -specific events or rules are required.

3.4.5.1.2 Calling DsrGetDcNameEx

No client -specific events or rules are required.

3.4.5.1.3 Calling DsrGetDcName

No client -specific events or rules are required.<94>

3.4.5.1.4 Calling NetrGetDCName

No client -specific events or rules are required.

3.4.5.1.5 Calling NetrGetAnyDCName

125 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

No client -specific events or rules are required.

3.4.5.1.6 Calling DsrGetSiteName

No client -specific events or rules are required.

3.4.5.1.7 Calling DsrGetDcSiteCoverageW

No client -specific events or rules are required.

3.4.5.1.8 Calling DsrAddressToSiteNamesW

No client -specific events or rules are required.

3.4.5.1.9 Calling DsrAddressToSiteNamesExW

No client -specific events or rules are required.

3.4.5.1.10 Calling DsrDeregisterDnsHostRecords

The client SHOULD be prepared to handle ERROR_ACCESS_DENIED if the server determines that the
client does not have appropriate privileges.

3.4.5.1.11 Calling DsrUpdateReadOnlyServerDnsRecords

The RODC client MUST do the following to call DsrUpdateReadOnlyServerDnsRecords.

Á Use the secure channel established with a DC in the domain identified by domain -name and pass
its name as the ServerName parameter.<95>

Á Pass the client name as the ComputerName parameter.

Á Pass a valid client Netlogon authenticator as the Authenticator parameter.

After the method returns, t he client MUST verify the ReturnAuthenticator, as defined in section

3.1.4.5.

3.4.5.2 Secure Channel Establishment and Maintenance Methods

3.4.5.2.1 Calling NetrServerReqChallenge

The client MUST do the following:

Á Pass a valid domain controller name as the PrimaryName parameter.

Á Generate 64 bits of random data to pass as the ClientChallenge parameter.

3.4.5.2.2 Calling NetrServerAuthenticate3

To call NetrServerAuthenticate3, the client MUST have called NetrServerReqChallenge and have a local

copy of the server challenge (SC).

The client MUST set ClientStoredCredential to 0.

The client MUST set ServerStoredCredential to 0.

The client MUST compute a Net logon credential using the algorithm described in section 3.1.4.4. The
result MUST be computed using the client challenge used in the call to NetrServerReqChallenge. The
computed credential is passed as the ClientCredential parameter.

126 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

If the server returns STATUS_ACCESS_DENIED and the client used AES:

Á If RejectMD5Servers is set to FALSE and the NegotiateFlags parameter bit flag W is not set, the
client retries to establish the session with the MD5/DES algorithm.

Á If RejectMD5Servers is set to TRUE, the clien t MUST fail session -key negotiation.

If RequireStrongKey is set to TRUE, and the server did not specify bit O in the NegotiateFlags output
parameter as specified in section 3.1.4.2, the client MUST fail session -key negotiation.

If RequireSignOrSeal is set to TRUE, and the server did not specify bit Y in the NegotiateFlags output
parameter as specified in section 3.1.4.2, the client MU ST fail session -key negotiation.

After the call to NetrServerAuthenticate3 completes successfully, the client MUST compute the server
Netlogon credential (as specified in section 3.1.4.4) and compare it with the one passed from the
server for verification. The result MUST be computed using the server challenge. If the comparison

fails, the client MUST fail session -key negotiation.

If the return value indicates that the method is not available on the server, the client MUST retry with
a call to NetrServerAut henticate2. If that call also fails with the method not available on the server,
the client MUST retry with a call to NetrServerAuthenticate.

The client MUST compute a session key to use for encrypting further communications, as specified in
section 3.1.4. 3.

The client sets ConnectionStatus (section 3.4.5.3.1) if changed.

3.4.5.2.3 Calling NetrServerAuthenticate2

Message processing is identical to NetrServerAuthenticate3, as specified in section 3.4.5.2.2, except
for the followi ng:

The AccountRid parameter is not present in NetrServerAuthenticate2.

3.4.5.2.4 Calling NetrServerAuthenticate

Message processing is identical to NetrServerAuthenticate3,<96> as specified in section 3.4.5.2.2,
except for the following:

Á The NegotiateFlags parameter is not present in NetrServerAuthenticate.

Á The AccountRid parameter is not present in NetrServerAuthenticate.

3.4.5.2.5 Calling NetrServerPasswordSet2

The client MUST do the following:

Á Have a secure channel that is established with a domain controller in the domain that is identified
by domain -name and pass its name as the PrimaryName parameter.

Á Encrypt the ClearNewPassword parameter using the negotiated encryption algorithm (determined
by bits C, O, or W, respectively, in the NegotiateFlags member of the ServerSessionInfo table
entry for PrimaryName) and the session key established as the encryption key.

Á Pass a valid client Netlogon authenticator as the Authenticator parameter.

The Clear NewPassword parameter is constructed as follows, assuming a WCHAR -represented
password of length X bytes.

If the password is for an interdomain account:

127 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á The password is copied into the Buffer field of ClearNewPassword , which is treated as an array of
bytes , starting at byte offset (512 - X).

Á An NL_PASSWORD_VERSION structure, as specified in section 2.2.1.3.8, is prepared. The
PasswordVersionNumber field of the structure is set to the value of the TrustPasswordVersion

variable corresponding to the password b eing set. The first trust password generated has
TrustPasswordVersion equal to one. Each time a new trust password is generated, its
TrustPasswordVersion is computed by adding one to the value of TrustPasswordVersion of
the previous password. The NL_PASSWO RD_VERSION structure is copied into
ClearNewPassword.Buffer starting at byte offset (512 - X - size of (NL_PASSWORD_VERSION)).
For more information on the NL_PASSWORD_VERSION structure, see section 2.2.1.3.8.

Á The first (512 - X) - size of (NL_PASSWORD_VERS ION) bytes of ClearNewPassword.Buffer are

filled with randomly generated data.

Á ClearNewPassword.Length is set to X.

For any other type of account:

Á The password is copied into the Buffer field of ClearNewPassword , which is treated as an array of
bytes, star ting at byte offset (512 - X).

Á The first (512 - X) bytes are filled with randomly generated data.

Á ClearNewPassword.Length is set to X.

After the method returns, the client MUST verify the ReturnAuthenticator as defined in section 3.1.4.5.

On receiving STATUS_ACCESS_DENIED, the client SHOULD<97> re -establish the secure channel with
the domain controller.

3.4.5.2.6 Calling NetrServerPasswordSet

The client MUST do the following:

Á Have a secure channel established with a DC in the domain identified by domain -name and pass
its name as the PrimaryName parameter.

Á Pass the encrypted new password:

1. Compute the NTOWFv1 ([MS -NLMP] section 3.3.1) of the new password.

2. Encrypt ([MS -SAMR] section 2.2.11.1.1) the result of step 1 using the Session -Key for the
secure channel as the specified key.

3. Pass the result of step 2 as the UasNewPassword parameter.

Á Pass a valid client Netlogon authenticator as the Authenticator parameter.

After the method returns, the client MUST verify the R eturnAuthenticator as specified in section
3.1.4.5.

On receiving STATUS_ACCESS_DENIED, the client SHOULD<98> re -establish the secure channel with
the domain controller.

3.4.5.2.7 Calling NetrServerPasswordGet

The client calling this method MUST be a backup domain co ntroller (BDC). The client MUST do the
following:

128 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á Have a secure channel established with a domain controller in the domain identified by domain -
name and pass its name as the ServerName parameter.

Á Pass a valid client Netlogon authenticator as the Authentica tor parameter.

The client MUST decrypt the EncryptedNtOwfPassword return parameter that was encrypted (as

specified in [MS -SAMR] section 2.2.11.1.1) with the Session -Key for the secure channel as the
specified key.

After the method returns, the client MUST verify the ReturnAuthenticator as defined in section 3.1.4.5.

On receiving STATUS_ACCESS_DENIED, the client SHOULD<99> reestablish the secure channel with
the domain controller.

3.4.5.2.8 Calling NetrServerTrustPasswordsGet

The process for calling NetrServerTrustPasswordsGet is the same as that used for
NetrServerGetTrustInfo, except the TrustInfo parameter is not specified.

See section 3.4.5.5.6, Calling NetrServerGetTrustInfo.

3.4.5.2.9 Calling NetrLogonGetDomainInfo

The client MUST do the following:

Á Have a secure channel established with a domain controller in the domain identified by domain -
name and pass its name as the ServerName parameter.

Á Pass a valid client Netlogon authenticator as the Authenticator parameter.

Á Pass the Level parameter set to 1 or 2.

After the method returns, the client MUST verify the ReturnAuthenticator as defined in section 3.1.4.5.

On receiving STATUS_ACCESS_DENIED, the client SHOULD<100> re -establish the secure channel
with the domain controller.

3.4.5.2.10 Calling NetrLogonGetCapabilities

The client SHOULD<101> do the following:

Á Have a secure channel established with a domain controller in the domain identified by domain -
name and pass its name as the ServerName parameter.

Á Pass a valid client Netlogon authenticator as the Authenticator parameter.

After the method returns, the client MUST verify the ReturnAuthenticator (section 3.1.4.5) and

compare the received Capabilities with the negotiated flags of the current secure chan nel. If the
negotiated flags do not match, then the client SHOULD<102> re -establish the secure channel with the
DC.

Upon receiving STATUS_NOT_IMPLEMENTED, the client MUST treat this as successful confirmation
that the DC does not support AES [FIPS197].<103 >

On receiving STATUS_ACCESS_DENIED, the client SHOULD<104> re -establish the secure channel
with the DC.

3.4.5.2.11 Calling NetrChainSetClientAttributes

The read -only domain controller MUST do the following:

129 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á Have a secure channel established with a normal (writable) DC in the domain identified by
domain -name and pass its name as the ServerName parameter.

Á Pass a valid client Netlogon authenticator as the Authenticator parameter.

Á Pass the dwInVersion parameter s et to 1.

Á Pass the address of a valid NL_OUT_CHAIN_SET_CLIENT_ATTRIBUTES_V1 structure as the
pmsgIn parameter.

Á Pass the pdwOutVersion parameter set to the address of the value 1.

Á Pass the address of a valid NL_OUT_CHAIN_SET_CLIENT_ATTRIBUTES_V1 structure as the
pmsgOut parameter.

After the method returns, the client MUST verify the ReturnAuthenticator, as specified in section
3.1.4.5.

On receiving STATUS_ACCESS_DENIED, the client SHOULD<105> reestablish the secure channel with

the normal (writable) DC.

3.4.5.3 Pass -Through Authentication Methods

All clients set Conne ctionStatus (section 3.4.5.3.1) if changed.

3.4.5.3.1 Setting ConnectionStatus

When one of the following return values is received, the client sets ConnectionStatus to that value:

Á NERR_Success

Á STATUS_NO_LOGON_SERVERS

Á STATUS_ACCESS_DENIED

Á STATUS_NO_TRUST_LSA_SECRET

Á STATUS_NO_TRUST_SAM_ACCOUNT

Á STATUS_INVALID_SERVER_STATE

Á STATUS_NO_MEMORY

Á STATUS_INSUFFICIENT_RESOURCES

Á STATUS_DISK_FULL

3.4.5.3.2 Calling NetrLogonSamLogonEx

The client MUST do the following:

Á Have a secur e channel established with a domain controller in the domain identified by domain -
name and pass its name as the LogonServer parameter.

Á Pass the client name as the ComputerName parameter.

Á If the LogonLevel is NetlogonInteractiveInformation or NetlogonIntera ctiveTransitiveInformation,

the client SHOULD<106> encrypt the LmOwfPassword and NtOwfPassword members in the
NETLOGON_INTERACTIVE_INFO structure.

130 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á If the LogonLevel is NetlogonServiceInformation or NetlogonServiceTransitiveInformation,
encrypt<107> the LmOwfPassword and NtOwfPassword members in the

NETLOGON_SERVICE_INFO structure.

Á If the LogonLevel is NetlogonGenericInformation, then encrypt<108> the LogonData member in

the NETLOGON_GENERIC_INFO structure.

Á Call the method using Secure RPC, as specified i n [MS -RPCE] section 3.3.1.5.2.1.

If the NegotiateFlags bit V is not set, then the read -only domain controller (RODC) does not set
ExtraFlags C or D.

If the NegotiateFlags bit P is set, then the client converts the following:

Á NetlogonInteractiveInformation to NetlogonInteractiveTransitiveInformation

Á NetlogonNetworkInformation to NetlogonNetworkTransitiveInformation

Á NetlogonServiceInformation to NetlogonServiceTransitiveInformation

If the NegotiateFlags bit G is not set and LogonLevel is not NetlogonGenericIn formation, then the
ValidationLevel parameter MUST be set to 2
(NETLOGON_VALIDATION_SAM_INFO (section 2.2.1.4.11)).

The LogonLevel , LogonInformation , ValidationLevel , and ValidationInformation parameters are
specified in [MS -APDS] for NTLM, Kerberos, and D igest, and in [MS -RCMP] for TLS/SSL.

To call for Generic -Passthrough to authentication packages, the LogonLevel parameter MUST be set to
4 (NetlogonGenericInformation), and the ValidationLevel parameter MUST be set to 5
(NetlogonValidationGenericInfo2). Th e LogonInformation parameter MUST be a
NETLOGON_GENERIC_INFO structure, as specified in section 2.2.1.4.2.

After the method returns, the client MUST:

Á If the LogonLevel is NetlogonNetworkInformation or

NetlogonNetworkTransitiveInformation , the client MUST d ecrypt the UserSessionKey and the

first two elements of the ExpansionRoom array in the
NETLOGON_VALIDATION_SAM_INFO (section 2.2.1.4.11) or in the
NETLOGON_VALIDATION_SAM_INFO2 (section 2.2.1.4.12) structure.

Á Verify that it received an authoritative respon se by checking the Authoritative parameter. If the
Authoritative parameter is TRUE, the client MUST treat the result as final. If the Authoritative
parameter is FALSE, the client retries the call at a later time or at a different domain controller.

On rece iving STATUS_ACCESS_DENIED, the client SHOULD<109> re -establish the secure channel

with the DC.

3.4.5.3.3 Calling NetrLogonSamLogonWithFlags

Message processing for NetrLogonSamLogonWithFlags is identical to NetrLogonSamLogon, except for

the following:

Á NetrLogonSamLogonWithFlags has the additional parameter ExtraFlags .

See section 3.4.5.3.4.

3.4.5.3.4 Calling NetrLogonSamLogon

The client MUST do the following:

131 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á Have a secure channel established with a domain controller in the domain identified by domain -
name and pass its name as the LogonServer parameter.

Á Pass the client name as the ComputerName parameter.

Á If the LogonLevel is NetlogonInteractiveInformation or Ne tlogonInteractiveTransitiveInformation,

then encrypt<110> the LmOwfPassword and NtOwfPassword members in the
NETLOGON_INTERACTIVE_INFO structure.

Á If the LogonLevel is NetlogonServiceInformation or NetlogonServiceTransitiveInformation, then
encrypt the LmOw fPassword and NtOwfPassword members in the NETLOGON_SERVICE_INFO
structure.

Á If the LogonLevel is NetlogonGenericInformation, then encrypt the LogonData member in the
NETLOGON_GENERIC_INFO structure.

Á If the LogonLevel is NetlogonNetworkInformation or
Netlog onNetworkTransitiveInformation , then encrypt the UserSessionKey and the first two

elements of the ExpansionRoom array in the
NETLOGON_VALIDATION_SAM_INFO (section 2.2.1.4.11) or in the
NETLOGON_VALIDATION_SAM_INFO2 (section 2.2.1.4.12) structure.

Á Pass a va lid client Netlogon authenticator as the Authenticator parameter.

If the NegotiateFlags bit P is set, the client converts the following:

Á NetlogonInteractiveInformation to NetlogonInteractiveTransitiveInformation

Á NetlogonNetworkInformation to NetlogonNetwor kTransitiveInformation

Á NetlogonServiceInformation to NetlogonServiceTransitiveInformation

If the NegotiateFlags bit G is not set and LogonLevel is not NetlogonGenericInformation, then the
ValidationLevel parameter MUST be set to 2
(NETLOGON_VALIDATION_SAM_ INFO (section 2.2.1.4.11)).

The LogonLevel , LogonInformation , ValidationLevel , and ValidationInformation parameters are
specified in [MS -APDS] for NTLM, Kerberos, and Digest, and in [MS -RCMP] for TLS/SSL.

To call for Generic -Passthrough to authentication p ackages, the LogonLevel parameter MUST be set to
4 (NetlogonGenericInformation), and the ValidationLevel parameter MUST be set to 5
(NetlogonValidationGenericInfo2). The LogonInformation parameter MUST be a
NETLOGON_GENERIC_INFO structure, as specified in section 2.2.1.4.2.

After the method returns, the client MUST:

Á Verify the ReturnAuthenticator , as specified in section 3.1.4.5.

Á Verify that it received an authoritative response by checking the Authoritative parameter. If the
Authoritative parameter is TRUE, the client MUST treat the result as final. If the Authoritative
parameter is FALSE, the client retries the call at a later t ime or at a different domain controller.

On receiving STATUS_ACCESS_DENIED, the client SHOULD<111> reestablish the secure channel with
the DC.

3.4.5.3.5 Calling NetrLogonSamLogoff

The client MUST do the following:

Á Have a secure cha nnel established with a domain controller in the domain identified by domain -
name and pass its name as the LogonServer parameter.

132 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á Pass the client name as the ComputerName parameter.

Á Pass a valid client Netlogon authenticator as the Authenticator parameter.

After the method returns, the client MUST verify the ReturnAuthenticator as specified in section
3.1.4.5.

On receiving STATUS_ACCESS_DENIED, the client SHOULD<112> reestablish the s ecure channel with
the DC.

3.4.5.4 Account Database Replication Methods

3.4.5.4.1 Calling NetrDatabaseDeltas

The client calling this method MUST be a backup domain controller (BDC). It MUST do the following:

Á Pass a valid PDC name as the PrimaryName parameter.

Á Pass the client BDC name as the ComputerName parameter.

Á Pass a valid client Netlogon authenticator as the Authenticator parameter.

Á Pass a valid database identifier as the DatabaseID parameter as follows:

Á For the SAM database, the DatabaseID parameter MUST be 0x00000000.

Á For the SAM built - in database, the DatabaseID parameter MUST be 0x00000001.

Á For the LSA database, the DatabaseID parameter MUST be 0x00000002.

Á Pass the value of the l ocal database serial number as the DomainModifiedCount .

Á Pass the preferred maximum length of data to be returned in the DeltaArray parameter as the
PreferredMaximumLength parameter.

On receiving the STATUS_MORE_ENTRIES status code, the client continues cal ling this routine in a

loop updating DomainModifiedCount until all missing database entries are received. On receiving the
STATUS_SUCCESS status code, the client terminates the loop. The client MAY terminate the loop early
without receiving all entries. Fo r example, if the client chooses to do so on a system shutdown
notification.

On receiving STATUS_ACCESS_DENIED, the client SHOULD<113> reestablish the secure channel with
the domain controller.

3.4.5.4.2 Calling NetrDatabaseSync2

The client calling this method MUST be a backup domain controller (BDC). The client SHOULD<114>
call this method in a loop (referred to in this section as the synchronization loop) until all database
records are received as indicated by the return code STATUS_SUCCESS.

The client MUST do the following:

Á Pass a valid PDC name as the PrimaryName parameter.

Á Pass the client BDC name as the ComputerName parameter.

Á Pass a valid client Netlogon authenticator as the Authenticator parameter.

Á Pass a valid database identifier as the DatabaseID parameter as follows:

Á For the SAM database, the DatabaseID parameter MUST be 0x00000000.

133 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á For the SAM built - in database, the DatabaseID parameter MUST be 0x00000001.

Á For the LSA database, DatabaseID MUST be 0x00000002.

Á Set RestartState to NormalState unless this call is a restart of a synchronization loop, in which
case set RestartState as follows:

Á GroupState if the last delta type of the previous synchronization loop was AddOrChangeGroup.

Á UserState if the last delta type of the previous synchronization loop was AddOrChangeUser.

Á GroupMemberState if the last delta type of the previous synchronization loop was
ChangeGroupMembership.

Á AliasState if the last delta type of th e previous synchronization loop was AddOrChangeAlias.

Á AliasMemberState if the last delta type of the previous synchronization loop was
ChangeAliasMembership.

Á If this is a first call in a synchronization loop, pass SyncContext as 0x00000000. Otherwise, pass
SyncContext as the SyncContext value returned by the previous call in a synchronization loop,
either continued as normal or terminated.

Á Pass the preferred maximum length of data to be referenced in the DeltaArray parameter as the
PreferredMaximumLength parameter.

On receiving the STATUS_MORE_ENTRIES status code, the client SHOULD<115> continue calling this

routine in a loop until all missing database entries are received. On receiving the STATUS_SUCCESS
status code, the client MUST terminate the loop. The client MAY terminate the loop early on without
receiving all entries. For example, if the client chooses to do so on a system shutdown notification. In
that case, if the client intends to restart the synchronization loop at a later point, the client MUST
m aintain the state for setting the RestartState parameter to restart the loop as previously described.

On receiving STATUS_ACCESS_DENIED, the client SHOULD<116> re -establish the secure channel
with the domain controller.

3.4.5.4.3 Calling NetrDatabaseSync

Calling thi s method is identical to calling NetrDatabaseSync2, as specified in section 3.4.5.4.2, except
that this call does not use the RestartState parameter, as it doesn't support restarting the
synchronization loop.

3.4.5.4.4 Calling NetrDatabaseRedo

The client calling thi s method MUST be a backup domain controller (BDC). The client MUST do the
following:

Á Pass a valid PDC name as the PrimaryName parameter.

Á Pass the client BDC name as the ComputerName parameter.

Á Pass a valid client Netlogon authenticator as the Authenticator parameter.

Á Pass a valid single account object information request message as defined in the

CHANGELOG_ENTRY structure in section 3.5.4.6.4.

Á Pass the size of the single account object information request message as the ChangeLogEntrySize
parameter.

On rece iving STATUS_ACCESS_DENIED, the client SHOULD<117> reestablish the secure channel with
the domain controller.

134 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.4.5.5 Domain Trusts Methods

3.4.5.5.1 Calling DsrEnumerateDomainTrusts

No client -specific events or rules are required.

3.4.5.5.2 Calling NetrEnumerateTrustedDomainsEx

No client -specific events or rules are required.

3.4.5.5.3 Calling NetrEnumerateTrustedDomain s

No client -specific events or rules are required.

3.4.5.5.4 Calling NetrGetForestTrustInformation

The client calling this method MUST be a DC in a different domain. If the NegotiateFlags bit T is not

set, then the client does not call this method.

The client MUST do the following:

Á Have a secure channel established with a domain controller in the domain identified by domain -
name and pass its name as the ServerName parameter.

Á Pass a valid client Netlogon authenticator as the Authenticator parameter.

After the method returns, the client MUST verify the ReturnAuthenticator as specified in section
3.1.4.5.

On receiving STATUS_ACCESS_DENIED, the client SHOULD<118> reestablish the secure channel with
the domain controller.

3.4.5.5.5 Calling DsrGetForestTrustInformation

The client SHOULD be prepared to handle ERROR_ACCESS_DENIED, if the server determines that the
client does not have appropriate privileges.

3.4.5.5.6 Calling NetrServerGetTrustInfo

The client MUST do the following:

Á Have a secure channel established with a domain controller in the domain identified by domain -
name and pass its name as the TrustedDcName parameter.

After the method returns, the client MU ST verify the ReturnAuthenticator as specified in section
3.1.4.5.

On receiving STATUS_ACCESS_DENIED, the client SHOULD<119> reestablish the secure channel with
the domain controller.

3.4.5.6 Message Protection Methods

3.4.5.6.1 Calling Net rLogonGetTrustRid

If the client requires the RID for the computer account of the calling machine, the caller MUST specify
this by passing NULL for both the ServerName and DomainName parameters. Otherwise, a valid
ServerN ame MUST be passed. The client SHOULD be prepared to handle ERROR_ACCESS_DENIED, if

the server determines that the client does not have appropriate privileges.

135 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.4.5.6.2 Calling NetrLogonComputeServerDigest

The client SHOU LD be prepared to handle ERROR_ACCESS_DENIED, if the server determines that the
client does not have appropriate privileges.

3.4.5.6.3 Calling NetrLogonComputeClientDigest

When comparing digests, the client compares the ne w password digest first. If this comparison fails,
the client compares the old password digest. If that comparison also fails, the digests do not match.
The client SHOULD be prepared to handle ERROR_ACCESS_DENIED, if the server determines that the
client d oes not have appropriate privileges.

3.4.5.6.4 Calling NetrLogonSendToSam

The client calling this method MUST be a backup domain controller (BDC) or read -only domain
controller (RODC). The client MUST do the following:

Á Have a secure channel established with a domain controller in the domain identified by domain -
name and pass its name as the PrimaryName parameter.

Á Encrypt the OpaqueBuffer parameter using the negotiated encryption algorithm (determined by
bits C, O, or W, respectively, in the NegotiateFlags member of the ServerSessionInfo table

entry for PrimaryName) and the session key established as the encryption key.

Á Pass a valid client Netlogon authenticator as the Authenticator parameter.

After the method returns, the client SHOULD<120> verify the ReturnAuthenticator as specified in
section 3.1.4.5.

For details about how the OpaqueBuffer parameter is used, see [MS -SAMS].

3.4.5.6.5 Calling NetrLogonSetServiceBits

The client SHOULD be prepared to handl e ERROR_ACCESS_DENIED if the server determines that the

client does not have appropriate privileges.

3.4.5.6.6 Calling NetrLogonGetTimeServiceParentDomain

The client SHOULD be prepared to handle ERROR_ACCESS_DENIED, if the server determines that the
client does not have appropriate privileges.

3.4.5.7 Administrative Services Methods

3.4.5.7.1 Calling NetrLogonControl2Ex

The client MUST do the following:

Supply t he Data parameter if the client is calling with one of the following FunctionCode values:

Á 0x00000005(NETLOGON_CONTROL_REDISCOVER)

Á 0x00000006(NETLOGON_CONTROL_TC_QUERY)

Á 0x00000008(NETLOGON_CONTROL_FIND_USER)

Á 0x00000009(NETLOGON_CONTROL_CHANGE_PASSWORD)

Á 0x0000000A(NETLOGON_CONTROL_TC_VERIFY)

136 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

For details about the FunctionCode values, see section 3.5.4.9.1.

The client SHOULD be prepared to handle ERROR_ACCESS_DENIED, if the server determines that the
client does not have appropriate privileges.

3.4.5.7.2 Calling N etrLogonControl2

The client MUST not use this method for calls requiring QueryLevel set to 4. All other client
requirements are identical to NetrLogonControl2Ex (section 3.4.5.7.1).

3.4.5.7.3 Calling NetrLogonControl

No client -specific events or rules are required.

3.4.5.8 Obsolete Methods

3.4.5.8.1 Calling NetrLogonUasLogon

This method was used only by LAN Manager clients and is not currently used.

3.4.5.8.2 Calling NetrLog onUasLogoff

This method was used only by LAN Manager clients and is not currently used.

3.4.5.8.3 Calling NetrAccountDeltas

This method supports LAN Manager products.

3.4.5.8.4 Calling NetrAccountSync

This method supports LAN Manager products.

3.4.6 Timer Events

3.4.6.1 Timer Expiry on domainControllerCacheTimer

This event occurs whenever the domainControllerCacheTimer expires.

If the client is a domain controller (DC), the client MUST get a trusted domain list by performing the
external behavior consistent with locally invoking LsarEnumerateTrustedDomains ([MS -LSAD] section
3.1.4.7.8).

Á The EnumerationContext parameter MUST be s et to 0.

Á The PreferredMaximumLength SHOULD<121> be set to 4096.

Á A policy handle is not needed locally.

The client MUST attempt to locate a DC (section 3.1.4.10) for each of the domain entries of the
returned trusted domain list.

Á If the client fails when at tempting to locate a DC for a domain entry in the trusted domain list, the
client MUST ignore errors and continue to attempt to locate DCs for the remaining domain entries

in the trusted domain list.

Á For each successfully located DC: If the DomainControlle rInfo.Flags has bit G set, and the
ServerSessionInfo table's entry PrimaryName field whose DomainName field matches the

137 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

DomainControllerInfo.DomainName field does not match the
DomainControllerInfo.DomainControllerName field, the client MUST update the nam e in

PrimaryName so that it matches DomainControllerInfo.DomainControllerName . The client
also MUST attempt to establish a session key with the located DC (section 3.1.4.10).

3.4.7 Other Local Events

No additional local events are used on the client beyond the events maintained in the underlying RPC
transport and GP notification.

When Netlogon receives a PolicyChange event ([MS -GPOD] section 2.8.2), NRPC implementations that
persistently store and retrieve the RequireStrongKey and RequireSignOrSeal variables as defined
in section 3.4.1 SHOULD<122> load the new value.

3.5 Netlogon Server Details

3.5.1 Abstract Data Model

This section describes a conceptual model of possible data o rganization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

A Netlogon Remote Protocol server maintains the following abstract variables in addition to the ones
defined in section 3.1:

NetlogonSecurityDescriptor: A security descriptor t hat is used for verifying access security during
processing of some methods. This security descriptor MUST NOT be changed.

ServerCapabilities: A 32 -bit set of bit flag options defined in section 3.1.4.2 that identifies the
server's supported options.

DNSDo mainName: The FQDN domain name for the domain to which the server belongs. This ADM
element is shared with DomainName.FQDN ([MS -WKST] section 3.2.1.6).

NetbiosDomainName: The NetBIOS domain name for the domain to which the server belongs. This
ADM element is shared with DomainName.NetBIOS [MS -WKST] section 3.2.1.6).

DomainGuid: The GUID for the domain. This ADM element is shared with DomainGuid ([MS -WKST]

section 3.2.1.6).

DomainSid: The security identifier for the domain. This ADM element is shared with DomainSid
([MS -WKST] section 3.2.1.6).

AllowSingleLabelDNSDomain: A Boolean that specifies whether DC location via single label DNS
names is enabled.

AllowDnsSuffixSearch: A Boolean th at specifies whether DC location via single - label domains using
DNS suffix composition is enabled.

SiteName: The site name of the computer.

NextClostestSiteName: The name of the site that is closest to the site of the computer.

DynamicSiteName: Dynamically determined site name of the computer.

DynamicSiteNameTimeout: An implementation -specific time span that determines whether it
SHOULD<123> be time to rediscover the site name.

138 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

DynamicSiteNameSetTime: An implementation -specific t imestamp indicating the time at which
DynamicSiteName was determined.

ChallengeTable: A table indexed by ComputerName with the following members:

Á ComputerName: The ComputerName (section 3.5.4.4.1) used by the DC during session -

key negotiations (section 3.1 .4.1).

Á ClientChallenge: A pointer to a NETLOGON_CREDENTIAL (section 2.2.1.3.4) structure that
contains the client challenge.

Á ServerChallenge: A pointer to a NETLOGON_CREDENTIAL structure that contains the server
challenge (SC) response.

Á SecureChannelType: A NETLOGON_SECURE_CHANNEL_TYPE (section 2.2.1.3.13)
enumerated value, as specified in section 2.2.1.3.13, that indicates the type of the secure

channel being established.

FailedDiscoveryCache: A cache containing a set of failed DC discovery attempts. The f ields of the
cache are implementation -specific but any cache implementation MUST be able to return the time
when the last DC discovery attempt failed for a given domain name (see section 3.5.4.3.1).

FailedDiscoveryCachePeriod: The length of time, in second s, for which an entry in the
FailedDiscoveryCache is valid.

CacheEntryValidityPeriod: The length of time, in hours, for which an entry in the
LocatedDCsCache is valid.

CacheEntryPingValidityPeriod: The length of time, in minutes, for which an entry in the
LocatedDCsCache is considered valid without having to ping the DC represented by that cached
entry.

The Netlogon server variables which are registry keys are as follows:

RejectMD5Clients: A Boolean variable that indicates whether the server SHOULD<124> rej ect

incoming clients that are using MD5 encryption.

SignSecureChannel: A Boolean variable that determines whether a domain member attempts to
negotiate signing for all secure channel traffic that it initiates.

TrustedDomains: A list of domain trusts (of ty pe DS_DOMAIN_TRUSTSW (section 2.2.1.6.2))
obtained by calling DsrEnumerateDomainTrusts (section 3.5.4.7.1).

When the server is a DC, it also maintains the following abstract variables:

RejectDES: A Boolean variable that indicates whether the server MUST r eject incoming clients using

DES encryption in ECB mode.

DnsForestName: The FQDN forest name for the forest to which the domain belongs. The
DnsForestName value is configured as specified in [MS -WKST] and is shared with
DomainName.FQDN ([MS -WKST] section 3.2.1.6).

LogonAttempts: A 32 -bit unsigned integer shared from LogonAttempts ([MS -APDS] section 3.1.1).

NT4Emulator: A Boolean variable that indicates whether the server offers only server capabilities of a

the client specifically requests otherwise.<125>

RefusePasswordChange: Indicates whether the server refuses client password changes. This
domain -wide setting indicates to client machines to avoid password changes. When TRUE, the
NegotiateFlags bit I is sent.

139 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

DCRPCPort: The domain controller Netlogon port that SHOULD<126> be registered with the RPC
endpoint mapper instead of the standard dynamic port. It is read only once, at initialization.

SiteCoverage: The names of all the sites that a domain controller covers.

TrustedDomainObjectsCollection: A collect ion of trusted domain objects as defined and initialized

in [MS -LSAD] section 3.1.1.5.

The server also maintains the following abstract variable for backup domain controller (BDC)
replication:

SynchronizationComplete: A Boolean variable that indicates that database synchronization is
complete.

When a secure channel is established, the server maintains:

ClientSessionInfo : A table indexed by ComputerName with the following members:

Á ComputerName : The ComputerName (section 3.5.4.4.1) used by the D C during session -key

negotiations (section 3.1.4.1).

Á ClientSequenceNumber : See section 3.3.1 for ClientSequenceNumber details.

Á AccountRid : The RID of this client's machine account.

Á ServerSequenceNumber : See section 3.3.1 for ServerSequenceNumber details.

Á Session - Key : See section 3.1.4.3 for Session -Key computation details.

Á NegotiateFlags : See section 3.1.1 for NegotiateFlags details.

Á ServerStoredCredential : See section 3.1.1 for ServerStoredCredential details.

Á SecureChannelType : A NETLOGON_SECURE_CHANNEL_T YPE enumerated value, as
specified in section 2.2.1.3.13, which indicates the type of secure channel being established

with this client.

In addition, Netlogon stores service state information.

ServerServiceBits: A set of bit flags used to store the state of running services. If the bit is set to 0,

the corresponding service is not running; otherwise, the bit is set to 1 and the corresponding
service is running. The value of the bit flags is constructed from zero or more bit flags in the
following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 B 0 0 A 0 0 0 0 0 0

The meanings of the flags are described in the following table.

Value Description

A The time service is running.

B The time service with clock hardware is running.

C The Active Directory Web service is running.

140 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.5.2 Timers

None.

3.5.3 Initialization

The server side registers an endpoint with RPC over named pipes transport, using the NETLOGON
named pipe<127> and an endpoint with RPC over TCP/IP. When DCRPCPort is present and is not
NULL, and the server is a domain controller, then the DC MUST also register the port listed in
DCRPCPort ([MS -RPCE] section 3.3.3.3.1.4). The server side MUST register the Netlogon security

support provider (SSP) authentication_type constant [0x44] as the security provider ([MS -RPCE]
section 3.3.3.3.1.3) used by the RPC interface.

NetlogonSecurityDescriptor : Initialized to the following value, expressed in Security Descriptor
Description Language (SDDL) ([MS -DTYP] section 2.5.1):
D:(A;;CCLCSWRPWPDTLOCRR C;;;SY)(A;;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;BA)(A;;CCLCSWLOC
RRC;;;IU)(A;;CCLCSWLOCRRC;;;SU) S:(AU;FA;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;WD)

ChallengeTable MUST be empty.

ClientSessionInfo MUST be empty.

RefusePasswordChange SHOULD be FALSE.

The ServerCapabilities fi eld is initialized to reflect the capabilities offered by that server
implementation.

RejectMD5Clients SHOULD<128> be initialized in an implementation -specific way and set to FALSE.

SealSecureChannel SHOULD be TRUE.

SignSecureChannel SHOULD<129> be initial ized in an implementation -specific way and set to
TRUE. Any changes made to the SignSecureChannel registry keys are reflected in the ADM elements
when a PolicyChange event is received (section 3.1.6).

StrongKeySupport SHOULD<130> be TRUE.

NetbiosDomainName is a shared ADM element with DomainName.NetBIOS ([MS -WKST] section
3.2.1.6).

DomainGuid : Prior to the initialization of the Netlogon Remote Protocol, DomainGuid has already

been initialized, as specified in [MS -WKST] section 3.2.1.6, since Netlogon Remote Protocol is running
on a system already joined to a domain.

DomainSid : Prior to the initialization of the Netlogon Remote Protocol, DomainSid has already been
initialized, as specified in [MS -WKST] section 3.2.1.6, since Netlogon Remote Protocol is running on a
system already joined to a domain.

AllowSingleLabelDNSDomain SHOULD<131> be set to a locally configured value.

AllowDnsSuffixSearch SHOULD<132> be set to TRUE.

SiteName SHOULD<133> be initialized from msDS -SiteName ([MS -ADTS] section 3.1.1.4.5.29) of
the computer object if the server is a DC. If the server is not a DC, this ADM element is set to a locally
configured value.

NextClosestSite Name Initialized as follows: If the server is a DC, the server invokes
IDL_DRSQuerySitesByCost ([MS -DRSR] section 4.1.16), setting NextClosestSiteName to the site
that is closest to SiteName but not equal to SiteName . If the server is not a DC, this ADM el ement is

initialized to NULL.

141 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

DynamicSiteNameSetTime MUST be set to a value such that DynamicSiteNameSetTime plus
DynamicSiteNameTimeout is less than the current time.

FailedDiscoveryCachePeriod SHOULD<134> be set to a locally configured value.

CacheEntryV alidityPeriod SHOULD<135> be set to a locally configured value.

CacheEntryPingValidityPeriod SHOULD<136> be set to a locally configured value.

If the NRPC server is a DC, then the following abstract data model variables are initialized:

Á DCRPCPort SHOULD<13 7> be initialized in an implementation -specific way and MUST default to
NULL.

Á DnsForestName is initialized from the FQDN of rootDomainNamingContext ([MS -ADTS]
section 3.1.1.3.2.16).

Á The objects in TrustedDomainObjectsCollection are initialized as specifie d in [MS -LSAD]

section 3.1.1.5.

Á The NT4Emulator field is set to FALSE.

Á RejectDES SHOULD<138> be initialized in an implementation -specific way and SHOULD<139>
default to TRUE.

Á ServerServiceBits is initialized to zero.

Á SiteCoverage is initialized in an impl ementation -specific way and MUST default to NULL.

Implementations SHOULD<140> persistently store and retrieve the SiteCoverage variable.

3.5.4 Message Processing Events and Sequencing Rules

The following section specifies data and state maintained by the Net logon RPC server. It includes
details about receiving Netlogon RPC methods on the server side of the client/server communication.

The provided data is to facilitate the explanation of how the protocol behaves. This section does not
mandate that implementat ions adhere to this model as long as their external behavior is consistent
with that described in this document.

This protocol MUST instruct the RPC runtime, via the strict_context_handle attribute, to reject use
of context handles created by a method of a different RPC interface than this one, as specified in [MS -
RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency
check at target level 6.0, as specified in [MS -RPCE] section 3.

Methods in RPC Opnum Order

Method Description

NetrLogonUasLogon This method was for support of LAN Manager products, and it is no
longer used. This method was introduced in LAN Manager.

Opnum: 0

NetrLogonUasLogoff This method was for support of LAN Manager products, and it is no
longer used. This method was introduced in LAN Manager.

Opnum: 1

NetrLogonSamLogon The NetrLogonSamLogon method updates the user's lastLogon
attribute for the Security Account Manager (SAM).

Opnum: 2

142 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Method Description

NetrLogonSamLogoff The NetrLogo nSamLogoff method handles logoff requests for the SAM.

Opnum: 3

NetrServerReqChallenge The NetrServerReqChallenge method receives a client challenge and
returns a server challenge.

Opnum: 4

NetrServerAuthenticate The NetrServerAuthenticate method authenticates an account by
verifying that the computed client credentials are the same as those
provided in the previous challenge.

Opnum: 5

NetrServerPasswordSet The NetrServerPasswordSet method sets a new password for an
account in the User Account Subsystem (UAS).

Opnum: 6

NetrDatabaseDeltas The NetrDatabaseDeltas method returns a set of recent actions
performed on the Security Account Manager (SAM) database, along
with the number of times the domain has been modified.

Opnum: 7

NetrDatabaseSync The NetrDatabaseSync method provides an interface to synchronize a
backup domain controller's Security Account Manager (SAM) database
to that of the primary domain controller (PDC) by means of replication.

Opnum: 8

NetrAccountDelt as The NetrAccountDeltas method supported LAN Manager BDCs and is no
longer supported.

Opnum: 9

NetrAccountSync The NetrAccountSync method supported LAN Manager BDCs and is no
longer supported.

Opnum: 10

NetrGetDCName The NetrGetDCName method retrieves the NetBIOS name of the PDC
for a specified domain.

Opnum: 11

NetrLogonControl The NetrLogonControl method executes a specific Netlogon control
operation.

Opnum: 12

NetrGetAnyDCName The NetrGetAnyDCName method retrieves the name of a domain
con troller in a specified domain.

Opnum: 13

NetrLogonControl2 The NetrLogonControl2 method executes a specific Netlogon control
operation. This method extends NetrLogonControl by allowing an input
buffer that contains data for a particular query.

Opnum: 14

NetrServerAuthenticate2 The NetrServerAuthenticate2 method handles logoff requests for the
Security Account Manager (SAM).

Opnum: 15

NetrDatabaseSync2 The NetrDatabaseSync2 method is used by a BDC to request the entire
database from a PDC. It i s called only by a BDC that has been
previously authenticated by the PDC.

143 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Method Description

Opnum: 16

NetrDatabaseRedo The NetrDatabaseRedo method is used by a SAM BDC to request
information about a single account. It is called only by a BDC that has
been previously authenticated by the PDC.

Opnum: 17

NetrLogonControl2Ex The NetrLogonControl2Ex method executes a specific Netlogon control
operation. The introduction of this method added support for query
level (4) to both NetrLogonControl2Ex and NetrLogonCo ntrol2 for
retrieving user account information.

Opnum: 18

NetrEnumerateTrustedDomains The NetrEnumerateTrustedDomains method returns an enumeration of
trusted domain names.

Opnum: 19

DsrGetDcName The DsrGetDcName method returns the current domain control ler for a
specified domain.

Opnum: 20

NetrLogonGetCapabilities The NetrLogonGetCapabilities method returns server capabilities.

Opnum: 21

NetrLogonSetServiceBits The NetrLogonSetServiceBits method indicates to Netlogon whether a
domain controller is runn ing a specified service. This is done by setting
service bits.

Opnum: 22

NetrLogonGetTrustRid The NetrLogonGetTrustRid method is used to obtain the RID of the
account that is used by the specified server in its secure channel, to
determine the DomainName for the specified domain.

Opnum: 23

NetrLogonComputeServerDigest The NetrLogonComputeServerDig est method computes a cryptographic
digest of a message.

Opnum: 24

NetrLogonComputeClientDigest The NetrLogonComputeClientDigest method is used by a client to
compute a cryptographic digest of a message.

Opnum: 25

NetrServerAuthenticate3 The NetrServerAu thenticate3 method extends
NetrServerAuthenticate2, returning an account RID after
authentication.

Opnum: 26

DsrGetDcNameEx The DsrGetDcNameEx method returns the current domain controller
for a specified domain and site.

Opnum: 27

DsrGetSiteName The DsrG etSiteName method returns the site name for a specified
computer.

Opnum: 28

NetrLogonGetDomainInfo The NetrLogonGetDomainInfo method returns information that
describes the current domain to which a specified client belongs.

Opnum: 29

144 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Method Description

NetrServerPasswordSet2 The NetrServerPasswordSet2 method allows an account to set a new
clear text password. This method extends NetrServerPasswordSet,
which specifies an encrypted one -way function (OWF) of a password.

Opnum: 30

NetrServerPasswordGet The NetrServerPasswordGet method allows a BDC to get a computer
account password from the PDC in the domain.

Opnum: 31

NetrLogonSendToSam The NetrLogonSendToSam method allows a BDC or RODC to forward
user account password changes to the PDC.

Opnum: 32

DsrAddressToSiteNamesW The DsrAddressToSiteNamesW method resolves a list of socket
addresses as their corresponding site names.

Opnum: 33

DsrGetDcNameEx2 The DsrGetDcNameEx2 method returns the current DC for a specified
domain and site .

Opnum: 34

NetrLogonGetTimeServiceParentDomain The NetrLogonGetTimeServiceParentDomain method returns the name
of the parent domain of the current domain.

Opnum: 35

NetrEnumerateTrustedDomainsEx The NetrEnumerateTrustedDomainsEx method returns a list of trusted
domains from a specified server.

Opnum: 36

DsrAddressToSiteNamesExW The DsrAddressToSiteNamesExW method translates a list of socket
addresses into their corresponding site names and subnet nam es.

Opnum: 37

DsrGetDcSiteCoverageW The DsrGetDcSiteCoverageW method returns a list of sites covered by
a DC.

Opnum: 38

NetrLogonSamLogonEx The NetrLogonSamLogonEx method provides an extension to
NetrLogonSamLogon that allows for NT LAN Manager (NTLM) pa ss-
through authentication.

Opnum: 39

DsrEnumerateDomainTrusts The DsrEnumerateDomainTrusts method returns an enumerated list of
domain trusts, filtered by a set of flags, from a specified server.

Opnum: 40

DsrDeregisterDnsHostRecords The DsrDeregisterDnsHostRecords method deletes DNS entries, except
for type A records registered by a DC.

Opnum: 41

NetrServerTrustPasswordsGet The NetrServerTrustPasswordsGet method returns encrypted
passwords for an account o n a server.

Opnum: 42

DsrGetForestTrustInformation The DsrGetForestTrustInformation method retrieves the trust
information for the forest of the specified domain controller, or for a
forest trusted by the forest of the specified DC.

Opnum: 43

145 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Method Description

NetrGetFore stTrustInformation The NetrGetForestTrustInformation method retrieves the trust
information for the forest of which the member's domain is itself a
member.

Opnum: 44

NetrLogonSamLogonWithFlags The NetrLogonSamLogonWithFlags method handles logon requests f or
the SAM according to specific property flags.

Opnum: 45

NetrServerGetTrustInfo The NetrServerGetTrustInfo method returns an information block from
a specified server. The information includes encrypted passwords for a
specific account and trust data.

Opnum: 46

OpnumUnused47 Opnum: 47

DsrUpdateReadOnlyServerDnsRecords The DsrUpdateReadOnlyServerDnsRecords method allows an RODC to
send a control command to a normal (writable) DC for site -specific and
CName types of DNS records update.

Opnum: 48

NetrCh ainSetClientAttributes When a read -only DC receives either the NetrServerAuthenticate3
method or the NetrLogonGetDomainInfo method, with updates
requested, it invokes this method on a normal (writable) DC to update
to a client's computer account object in Active Directory.

Opnum: 49

Note that gaps in the opnum numbering sequence represent opnums that SHOULD NOT<141> be
used over the wire.

All methods MUST NOT throw an exception.

The following is a complete list of the Netlogon methods that require a secu re channel to be

established before they are called by a client. See section 3.1.4.1 for details about how to establish a
secure channel between the client and the server:

Á DsrUpdateReadOnlyServerDnsRecords

Á NetrGetForestTrustInformation

Á NetrLogonSamLogon

Á NetrLogonSamLogonEx

Á NetrLogonSamLogonWithFlags

Á NetrLogonSamLogoff

Á NetrLogonSendToSam

Á NetrServerPasswordGet

Á NetrServerPasswordSet

Á NetrServerPasswordSet2

Á NetrServerGetTrustInfo

Á NetrServerTrustPasswordsGet

146 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á NetrLogonGetDomainInfo

Á NetrChainSetClientAttributes

Á NetrDatabaseDeltas

Á NetrDatabaseSync

Á NetrDatabaseSync2

Á NetrDatabaseRedo

Á NetrAccountDeltas

Á NetrAccountSync

Á NetrLogonDummyRoutine1

3.5.4.1 RPC Binding Handles for Netlogon Methods

RPC binding is the process of creating a logical connection between a client and a server. The
information that composes the binding between client and server is represented by a structure called a
binding handle.

All Netlogon RPC methods accept an RPC binding handle as the first parameter. With the exception of

the NetrLogonSamLogonEx (section 3.5.4.5.1) method, which uses an RPC primitive binding handle as
specified in [C706] section 2, all Netlogon RPC methods use a custom binding handle.

This type is declared as follows:

 typedef [handle] wchar_t* LOGONSRV_HANDLE;

This custom binding handle is a null - terminated Unicode string of the name of the server that receives

the call. The server name can be in either the NetBIOS format or the DNS format. It might or might
not be prefixed with two backslashes. There is no prescriptive requirement regarding backslashes. If
the string is NULL, the server is the same as the client (that is, the local computer).

3.5.4.2 Determining client privileges

To determine access rights, the client access token is retrieved from the RPC transport, as described
for RpcImpersonationAccessToken in [MS -RPCE] section 3.3.3.4.3.

Method Access Control Algorithm: During processing of methods that implement access checks, the
server implementing this protocol SHOULD perform access security verification on the client's identity
using the algorithm specified by the Access Check Algorithm Pseudocode ([MS -DTYP] section 2.5.3.2).
For this protocol, the input param eters of that algorithm are mapped as follows:

Á SecurityDescriptor : This MUST be the NetlogonSecurityDescriptor ADM element.

Á Token / Authorization Context : This MUST be the identity of the client from the ADM element
RpcImpersonationAccessToken, retrieved a s specified in [MS -RPCE] section 3.3.3.4.3.

Á Access Request mask : This is specified by each method's processing logic and MUST be one or
more of the Access Rights specified previously in section 2.2.1.4.18.

Á Object Tree : This parameter MUST be NULL.

Á PrincipalSelfSubst SID : This parameter MUST be NULL.

147 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.5.4.3 DC Location Methods

Methods in this group are used to locate a domain controller.

3.5.4.3.1 DsrGetDcNameEx2 (Opnum 34)

The DsrGetDcNameEx2 method SHOULD<142> return information about a domain controller (DC)
in the specified domain and site. If the AccountName parameter is not NULL, and a DC matchi ng the
requested capabilities (as defined in the Flags parameter) responds during this method call, then that
DC will have verified that the DC account database contains an account for the AccountName
specified. The server that receives this call is not re quired to be a DC.

 NET_API_STATUS DsrGetDcNameEx2(

 [in, unique, string] LOGONSRV_HANDLE ComputerName,

 [in, unique, string] wchar_t* AccountName,

 [in] ULONG AllowableAccountControlBits,

 [in, unique, string] wchar_t* DomainName,

 [in, unique] GUID* DomainGuid,

 [in, unique, string] wchar_t* SiteName,

 [in] ULONG Flags,

 [out] PDOMAIN_CONTROLLER_INFOW* DomainControllerInfo

);

ComputerName: The custom binding handle defined in section 3.5.4.1.

AccountName: A null - terminated Unicode string that cont ains the name of the account that MUST
exist and be enabled on the DC.

AllowableAccountControlBits: A set of bit flags that list properties of the AccountName account. A
flag is TRUE (or set) if its value is equal to 1. If the flag is set, then the account MUST have that
property; otherwise, the property is ignored. The value is constructed from zero or more bit flags

from the following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 0 0 0 0 0 F 0 0 0 0 0 0 0 0 0 0 0 E D C 0 B A 0 0 0 0 0 0 0 0

Where the bits are defined as:

Value Description

A Account for users whose primary account is in another domain. This account provides user access to

the domain, but not to any domain that trusts the domain.

B Normal domain user account.

C Interdomain trust account.

D Computer account for a domain member.

E Computer account for a backup domain controller (BDC).

F Computer account for a read -only domain controller (RODC).<143>

All other bits MUST be set to zero and MUST be ign ored on receipt.

148 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

DomainName: A null - terminated Unicode string that contains the domain name. If the string is NULL
or empty (that is, the first character in the string is the null - terminator character), then the

primary domain name is assumed.

DomainGuid: A pointer to a GUID structure that specifies the GUID of the domain queried. If

DomainGuid is not NULL and the domain specified by DomainName cannot be found, the DC
locator attempts to locate a DC in the domain that has the GUID specified by DomainGuid . T his
allows renamed domains to be found by their GUID.

SiteName: A null - terminated string that contains the name of the site in which the DC MUST be
located.

Flags: A set of bit flags that provide additional data that is used to process the request. A flag is TRUE
(or set) if its value is equal to 1. The value is constructed from zero or more bit flags from the

following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S R 0 0 0 0 0 0 W V U T Q P O N M L K J I H G F E D C B 0 0 0 A

Where the bits are defined as:

Value Description

A The server ignores any cached DC data.

B The server returns a DC that supports directory service functions.

C The server first attempts to find a DC that supports directory service functions.

D The server returns a DC that is a global catalog server for the forest.

E The server returns a DC that is the PDC for the domain.

F The server uses cached DC data if available, even if the cached data is expired.

G The server returns a DC that has an IP (either IPv4 or IPv6) address.

H The server returns a DC that is currently running the Kerberos Key Distribution Center service.

I The server returns a DC that is currently running W32Time.

J The server returns a DC that is writable.

K The server first attempts to find a DC that is a reliable time server. If a reliable time server is
unavailable, the server returns a DC that is currently running W32Time.

L The server returns a different DC in the domain if one ex ists.

M The server returns an LDAP server. The server MAY return a DC.

N Specifies that the DomainName parameter is a NetBIOS name.

O Specifies that the DomainName parameter is a DNS name.

P The server attempts to find a DC in the next closest site if a DC in the closest site is not available. If
a DC in the next closest site is also not available, the server returns any available DC.<144>

Q The server returns a DC that has a DC functional level of DS_BEHAVIOR_WIN2008 or greater, as
specified i n [MS -ADTS] section 6.1.4.2.

149 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Value Description

R Specifies that the names returned in the DomainControllerName and DomainName fields of
DomainControllerInfo are DNS names.

S Specifies that the names returned in the DomainControllerName and DomainName fields of
DomainControllerInfo are NetBIOS names.

T The server returns a DC that is currently running the Active Directory Web Service.

U The server returns a DC that has a DC functional level of DS_BEHAVIOR_WIN2012 or greater, as
specified in [MS -ADTS] section 6.1.4.2.

V The server returns a DC that has a DC functional level of DS_BEHAVIOR_WIN2012R2 or greater, as
specified in [MS -ADTS] section 6.1.4.2.

W The server returns a DC that has a DC functional level of DS_BEHAVIOR_WIN2016 or greater, as
speci fied in [MS -ADTS] section 6.1.4.2.

All other bits MUST be set to zero. The server MUST return ERROR_INVALID_FLAGS if any of the
unspecified bits are not zero.

DomainControllerInfo: A pointer to a DOMAIN_CONTROLLER_INFOW structure (section 2.2.1.2.1)
conta ining data about the DC.

Return Values: The method returns 0x00000000 on success; otherwise, it returns a nonzero error

code.

On receiving this call, the server MUST perform the following Flags parameter validations:

Á Flags D, E, and H MUST NOT be combined with each other.

Á Flag N MUST NOT be combined with the O flag.

Á Flag R MUST NOT be combined with the S flag.

Á Flags B, Q, U, V, and W MUST NOT be combined with each other.

Á Flag K MUST NOT be combined with any of the flags: B, C, D, E, or H.

Á Flag P MUST NOT be set when the SiteName parameter is provided.

The server MUST return ERROR_INVALID_FLAGS for any of the previously mentioned conflicting
combinations.

Additionally, the server MUST perform the following parameter validations:

Á If the flag D is set and Domai nName parameter is neither NULL nor empty, the DomainName is a
valid NetBIOS name format or a FQDN format, and the DomainName is not the FQDN or NetBIOS
name of a trusted forest, then the server MUST return ERROR_NO_SUCH_DOMAIN. To determine

the list of tr usted forests, and their FQDN) and NetBIOS names, the server MUST use the
TrustedDomains ADM. The domains from this collection that have the C bit set in the Flags field

represent the trusted forests.

Á If the flag N is set and DomainName parameter is neither NULL nor empty and the DomainName is
NOT a valid NetBIOS name format, then the server MUST return ERROR_INVALID_DOMAINNAME.

Á If the flag O is set and DomainName parameter is neither NULL nor empty and the DomainName

is NOT in a valid F QDN format and AllowDnsSuffixSearch is FALSE, then the server MUST return
ERROR_INVALID_DOMAINNAME.

150 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á If neither the N flag nor the O flag are specified and DomainName parameter is neither NULL nor
empty, then the server MUST return ERROR_INVALID_DOMAINNAME if the DomainName is

neither a valid NetBIOS name format nor a valid FQDN format.

If the A bit in Flags is not set, then the server attempts to use the LocatedDCsCache and

FailedDiscoveryCache if it has them, even if the F bit in Flags is not set. The process for this is as
follows:

Á If there is no entry for the requested domain in LocatedDCsCache , then check if it exists in
FailedDiscoveryCache . If an entry is found in FailedDiscoveryCache , the n find the delta
between the current time and the last failure time for that cache entry. If this delta is less than
FailedDiscoveryCachePeriod , the server returns an error.

Á If there is an entry for the requested domain in LocatedDCsCache , but its capabili ties do not

include the requested capabilities, then invalidate the cached entry and attempt to locate a DC as
described below.

Á If the delta between the current time and the creation time for the entry in LocatedDCsCache is

greater than the CacheEntryValid ityPeriod and the F bit in the Flags is not set, then invalidate
the cached entry and attempt to locate a DC as described below.

Á If the difference between the current time and the refresh time for the entry in

LocatedDCsCache is greater than CacheEntryPing ValidityPeriod , then the server MUST send
a ping message to the DC prior to returning the value. The ping mechanism to be used, whether
LDAP Ping ([MS -ADTS] section 6.3.3) or Mailslot Ping ([MS -ADTS] section 6.3.5), is determined
based on the N and O bit s ettings in the Flags , as described below. If a ping of the DC fails, then it
MUST invalidate the cache entry and attempt to locate a DC as described below. Otherwise update
the refresh time and return the cached result.

The server MUST attempt to locate a domain controller for the domain specified by the client. The

server SHOULD<145> implement alternate means of locating a DC: for example, a static list in a file,
or the two methods detailed in [MS -ADTS] section 6.3.6.

If the ComputerName parameter is not NULL, it is compared against the server's computer name. If

the server is not a DC (section 3.1.4.8) and the ComputerName parameter does not match the
server's computer name, the server MUST return STATUS_INVALID_COMPUTER_NAME. If the
ComputerName paramet er matches the server's computer name, the ComputerName parameter is
NULL, or the server is a DC, then processing proceeds.

The server uses the DC location protocol ([MS -ADTS] section 6.3.6) to locate a DC (the located DC is
known as the responding DC). Th ere are two methods of locating a DC that the DC location protocol
supports. One of the methods involves the DNS -based discovery mechanism (described below) and
then the LDAP ping message, and the other method involves the mailslot ping message.

If the N bit is set in the Flags parameter, the mailslot message MUST be sent.

If the O bit is set in the Flags parameter, DNS -based discovery MUST be performed, and the LDAP

message MUST be sent.

Á If the DomainName parameter is an FQDN with a single label and Allow DnsSuffixSearch is TRUE

and AllowSingleLabelDNSDomain is FALSE, then a DNS -based discovery is attempted. The DNS
SRV queries specified below are performed by using FQDNs formed by appending in turn each of
the server's DNS suffixes to DomainName .

If neithe r the N bit nor the O bit are specified, then:

Á If the DomainName parameter is an FQDN with more than one label (as specified in [RFC1035]),

or if the AllowSingleLabelDNSDomain field is TRUE and the DomainName parameter is an
FQDN with a single label, then a DNS -based discovery is attempted and an LDAP message sent.

151 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á If the DomainName parameter is a syntactically valid NetBIOS name (as specified in [MS -NBTE]),
then the mailslot message MUST be sent.

If the DNS -based discovery is performed, the server identifi es the candidate DCs by performing DNS
SRV queries as follows:

1. Based on the value of the B, D, E, H, and M bits in the Flags parameter, the appropriate query is
selected from those listed in [MS -ADTS] section 6.3.6. Other bits specified in the Flags parame ter
do not contribute to the selection of this query but are used to validate against the capabilities
published in the ping response. The table below shows the specific query that is used for the
different valid combinations of these bits:

Bits
specified Non site - specific query Site -specific query

B=0/1,
D=0,
E=1,
H=0,
M=0/1

_ldap._tcp.pdc._msdcs.<domainname> N/A

B=0/1,
D=0,
E=0,
H=1,

M=0/1

_kerberos._tcp.dc._msdcs.<domainname> _kerberos._tcp.<sitename>._sites.dc._msdcs.<domainname>

B=0/1,
D=1,
E=0,
H=0,
M=1

_gc._tcp.<forestname> _gc._tcp.<sitename>._sites.<forestname>

B=0/1,
D=0,
E=0,
H=0,
M=1

_ldap._tcp.<domainname> _ldap._tcp.<sitename>._sites.<domainname>

B=0/1,
D=1,
E=0,
H=0,
M=0

_gc._tcp.dc._msdcs.<forestname> _gc._tcp.<sitename>._sites.dc._msdcs.<forestname>

B=0/1,
D=0,
E=0,
H=0,
M=0

_ldap._tcp.dc._msdcs.<domainname> _ldap._tcp.<sitename>._sites.dc._msdcs.<domainname>

2. If the SiteName parameter is not NULL, the server MUST attempt a site -specific query. For

example, if the request is to locate a Key Distribution Center (KDC), the following query is used:
_kerberos._tcp.< SiteName >._sites.dc._msdcs.< DomainName >.

3. If the SiteName parameter is NULL, the server MUST at tempt to first use a site -specific query for
the SiteName (ADM element) site where applicable. For example, if the request is to locate a
KDC, the following query is used:
_kerberos._tcp.< SiteName >._sites.dc._msdcs.< DomainName >. If the site -specific query does

not result in any candidate domain controllers, or if the candidate domain controllers are not
reachable via LDAP ping (described below), and if the P bit in the Flags parameter is set, and if
NextClosestSiteName (ADM element) is not NULL, then the se rver MUST attempt to locate a DC

152 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

in the next closest site by performing a site -specific query for NextClosestSiteName . If a DC in
the next closest site is not available, or if the P bit in the Flags parameter was not set, or if

NextClosestSiteName was NULL , the server MUST return any available DC, using a non -site -
specific query to determine the candidate domain controllers. Using the same KDC example as

before, the following non -site -specific query is used: _kerberos._tcp.dc._msdcs.< DomainName >.

In either mechanism (defined in [MS -ADTS] section 6.3.6), multiple candidate DCs can be discovered.
The candidate DCs are pinged to determine availability and ability to satisfy the specified
requirements.

The LDAP/mailslot ping messages are constructed as follows:

When using the LDAP ping method ([MS -ADTS] section 6.3.3), the server MUST set the parameters of
the LDAP message as follows:

Á The DnsDomain field of the message is set to the DomainName parameter of the
DsrGetDcNameEx2 call. If DomainName is NULL, the Dns Domain field of the message is set to
DnsDomainName (section 3.5.1). If the DomainName parameter is an FQDN with a single label

and AllowDnsSuffixSearch is TRUE and AllowSingleLabelDNSDomain is FALSE, the
DnsDomain field of the message is set to the FQDN formed by appending in turn each of the
server's DNS suffixes to DomainName .

Á The Host field of the message is set to the ComputerName that is sending the message.

Á The User field of the message is not set.

Á The AAC fi eld of the message is not set.

Á The DomainSid field of the message is not set.

Á If the DomainGuid parameter of the DsrGetDcNameEx2 is not NULL, the DomainGuid field of
the message is set to the DomainGuid parameter, else the DomainGuid field of the message i s
not set.

When using the mailslot ping method ([MS -ADTS] section 6.3.5), the server MUST set the parameters
of the mailslot message as follows:

Á The UnicodeComputerName field of the message is set to the ComputerName that is sending
the message.

Á The Unicod eUserName field of the message is not set.

Á The AllowableAccountControlBits field of the message is not set.

Á The DomainSidSize field of the message is set to 0x00000000.

Á The DomainSid field of the message is not set.

Á The DomainGuid field of the message is not set.

If the AccountName parameter is specified, the server MUST perform the following additional

processing that is defined in [MS -ADTS]:

Á The LDAP and mailslot query message fields are set as specified in [MS -ADTS] sections 6.3 .3 and
6.3.5, except for the following:

Á LDAP ping message:

Á The User field of the message is set to the value of the AccountName parameter.

153 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á The AAC field of the message is mapped from the AllowableAccountControlBits parameter,
according to the table in [MS -SAMR] section 3.1.5.14.2, where the

"ProtocolUserAccountControl" column defines the AAC field while the
"DatabaseUserAccountControl" column defines the AllowableAccountControlBits .

Á Mailslot message:

Á The UnicodeUserName field of the message is set to the va lue of the AccountName
parameter.

Á The AllowableAccountControlBits field of the message is mapped from the
AllowableAccountControlBits parameter, according to the table in [MS -SAMR] section
3.1.5.14.2, where the "ProtocolUserAccountControl" column defines the AAC field while
the "DatabaseUserAccountControl" column defines the AllowableAccountControlBits .

LDAP/Mailslot ping responses from the candidate DCs are processed (in the order in which they are
received) along with the flags to determine if the server queried meets all of the requirements, until a
server that meets the requirements is found or an implementation -specific timeout is r eached.

If the B bit in the Flags is set, the server SHOULD<146> return a DC that supports directory service
functions. To determine if a domain controller meets this requirement, the server MUST check the
value of the NETLOGON_SAM_LOGON_RESPONSE.NtVersion field in the message and ensure that

NETLOGON_NT_VERSION_5 or greater is specified. If a server that meets this requirement cannot be
located, the server MUST return ERROR_NO_SUCH_DOMAIN.

If the C bit in the Flags is set, the service MUST first attempt to find a DC that supports directory
service functions.<147> To determine if a domain controller meets this requirement, the server MUST
check the value of the NETLOGON_SAM_LOGON_RESPONSE.NtVersion field in the message and
ensure that NETLOGON_NT_VERSION_5 o r greater is specified. If a DC that supports the directory
service functions is not available, the server MUST return the name of a non ïdirectory service DC.

If the D bit in the Flags is set, the server MUST return a DC that is a global catalog server for the
forest of domains. To determine if a domain controller is a global catalog server, the server MUST
check the value of the FG bit in the Flags field of the message as defined in [MS -ADTS] section

6.3.1.2.

If the E bit in the Flags is set, the server MU ST return a DC that is the PDC for the domain. To
determine if a domain controller is a primary domain controller the server MUST check the value of the
FP bit in the Flags field of the message as defined in [MS -ADTS] section 6.3.1.2. If a server that meet s

this requirement cannot be located, the server MUST return ERROR_NO_SUCH_DOMAIN.

If the G bit in the Flags is set, the server MUST return a DC that has an IP (either IPv4 or IPv6)
address. The IP address is verified by examining the DcIpAddress field of the
NETLOGON_SAM_LOGON_RESPONSE message ([MS -ADTS] section 6.3.1.8) or the DcSockAddr field
of the NETLOGON_SAM_LOGON_RESPONSE_EX message ([MS -ADTS] section 6.3.1.9). If a server
that meets this requirement cannot be located, the server MUST return ERROR_N O_SUCH_DOMAIN.

If the H bit in the Flags is set, the server MUST return a DC that is currently running the Kerberos Key
Distribution Center service. To determine if a domain controller is currently running the Kerberos Key
Distribution Center service, the server MUST check the value of the FK bit in the Flags field of the

message as defined in [MS -ADTS] section 6.3.1.2. If a server that meets this requirement cannot be
located, the server MUST return ERROR_NO_SUCH_DOMAIN.

If the I bit in the Flags is set, t hen the server MUST return a DC that is currently running W32Time. To
determine if a domain controller is currently running an [MS -SNTP] implementation, the server MUST

check the value of the FT bit in the Flags field of the message as defined in [MS -ADTS] section
6.3.1.2. If a server that meets this requirement cannot be located, the server MUST return
ERROR_NO_SUCH_DOMAIN.

154 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

If the J bit in the Flags is set, the server MUST return a DC that is writable.<148> To determine if a
domain controller is writable, the server MUST check the value of the FW bit in the Flags field of the

message as defined in [MS -ADTS] section 6.3.1.2. If a server that meets this requirement cannot be
located, the server MUST return ERROR_NO_SUCH_DOMAIN.

If the K bit in the Flags is se t, the server returns a DC that is a reliable time server. If a reliable time
server is unavailable, the server returns a DC that is a time server. To determine whether a domain
controller is a reliable time server, the server MUST check the value of the F GT bit in the Flags field of
the message as defined in [MS -ADTS] section 6.3.1.2. To determine whether a domain controller is a
time server, the server MUST check the value of the FT bit in the Flags field of the message as
defined in [MS -ADTS] section 6.3 .1.2. If a domain controller that meets either of these requirements
cannot be located, the server MUST return ERROR_NO_SUCH_DOMAIN.

If the L bit in the Flags is set, the server MUST return a DC in the domain other than the server if one
exists. This flag is ignored if the recipient if not running as a DC.

If the M bit in the Flags is set, the server MUST return an LDAP server. To determine if a domain
controller is an LDAP server, the server MUST check the value of the FL bit in the Flags field of the

mess age as defined in [MS -ADTS] section 6.3.1.2. The server MAY return a DC. No other services are
required to be present on the server returned. The server MAY return a server that has a writable

config container or a writable schema container. If the D bit i n the Flags is set, the server returned
MUST be an LDAP server and a global catalog server and might be a DC. No other services are implied
to be present at the server. If this flag is specified, the B, C, E, H, I, J, and T bits in the Flags are
ignored al ong with their respective processing requirements.

If the Q bit in Flags is set, the server MUST return a DC that has a functional level of
DS_BEHAVIOR_WIN2008 or greater. To determine the functional level of a DC, the server MUST locate
the DC's nTDSDSA o bject in the directory and verify the msDS - Behavior - Version attribute as

specified in [MS -ADTS] section 6.1.4.2.

If the T bit in the Flags is set, the server SHOULD<149> return a DC that is currently running the
Active Directory Web Service. To determine i f a domain controller is currently running the Active
Directory Web Service, the server MUST check the value of the FWS bit in the Flags field of the
message as defined in [MS -ADTS] section 6.3.1.2. If a server that meets this requirement cannot be

located , the server MUST return ERROR_NO_SUCH_DOMAIN.

If the U bit in Flags is set, the server MUST return a DC that has a functional level of

DS_BEHAVIOR_WIN2012 or greater. To determine the functional level of a DC, the server MUST locate
the DC's nTDSDSA object in the directory and verify the msDS - Behavior - Version attribute as
specified in [MS -ADTS] section 6.1.4.2.

If the V bit in Flags is set, the server MUST return a DC that has a functional level of
DS_BEHAVIOR_WIN2012R2 or greater. To determine the functional level of a DC, the server MUST
locate the DC's nTDSDSA object in the directory and verify the msDS - Behavior - Version attribute as

specified in [MS -ADTS] section 6.1.4.2.

If the W bit in Flags is set, then the server MUST return a DC that has a functional level of
DS_BEHAVIOR_WIN2016 or greater. To determine the functional level of a DC, the server MUST locate
the DC's nTDSDSA object in the directory and verify the msDS - Behavior - Version attribu te as

specified in [MS -ADTS] section 6.1.4.2.

NETLOGON_SAM_LOGON_RESPONSE_EX ([MS -ADTS] section 6.3.1.9) and
NETLOGON_SAM_LOGON_RESPONSE ([MS -ADTS] section 6.3.1.8) messages are received from a DC

in response to the LDAP and the mailslot messages, respecti vely. Using these response messages, the
DsrGetDcNameEx2 populates the returned DOMAIN_CONTROLLER_INFOW structure (section
2.2.1.2.1) as follows:

Á The DnsHostName , DnsDomainName , NetbiosComputerName , and NetbiosDomainName
fields are compressed and MUST be d ecompressed as specified in [MS -ADTS] section 6.3.7.

155 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á If the R flag is set in the Flags parameter:

Á The DomainControllerInfo.DomainControllerName field MUST be set to the value of the
DnsHostName message field. If the DnsHostName field is not set in the mess age, the error
ERROR_NO_SUCH_DOMAIN MUST be returned.

Á The DomainControllerInfo.DomainName field MUST be set to the value of the
DnsDomainName message field. If the DnsDomainName field is not set in the message,
the error ERROR_NO_SUCH_DOMAIN MUST be retur ned.

Á If the S flag is set in the Flags parameter:

Á The DomainControllerInfo.DomainControllerName field MUST be set to the value of the
NetbiosComputerName message field.

Á The DomainControllerInfo.DomainName field MUST be set to the value of the

NetbiosDoma inName message field.

Á If neither the R nor S flags are set in the Flags parameter:<150>

Á The DomainControllerInfo.DomainControllerName field MUST be set to either the value
of the DnsHostName message field, or to the value of the NetbiosComputerName
messag e field.<151>

Á The DomainControllerInfo.DomainName field MUST be set to either the value of the

DnsDomainName message field, or to the value of the NetbiosDomainName message
field.<152>

Á If the IP address of the DC to which the message was sent is known from the underlying transport
protocol, the DomainControllerInfo.DomainControllerAddress field MUST be set to that
address. Otherwise, the field is set from the value of the
NETLOGON_SAM_LOGON_RESPONSE_EX.DcSockAddr message field if the
NETLOGON_SAM_LOGON_RESPONSE_EX.DcSockAddrSize message field is not zero.

Á If the IP address of the DC is not available because the aforementioned conditions are not met,
the DomainControllerInfo.DomainControllerAddress field MUST be set to the
NETLOGON_SAM_ LOGON_RESPONSE_EX.NetbiosComputerName field.

Á The DomainControllerInfo.DomainControllerAddressType field MUST be set to 0x00000001
if the DomainControllerAddress field is set to the IP address of the DC. Otherwise, the
DomainControllerInfo.DomainControllerA ddressType field MUST be set to 0x00000002 for a
NETBIOS name.

Á The DomainControllerInfo.DomainGuid field MUST be set to the
NETLOGON_SAM_LOGON_RESPONSE.DomainGuid or the
NETLOGON_SAM_LOGON_RESPONSE_EX.DomainGuid field.

Á The DomainControllerInfo.DnsForestNam e field MUST be set to the value of the
NETLOGON_SAM_LOGON_RESPONSE.DnsForestName or the
NETLOGON_SAM_LOGON_RESPONSE_EX.DnsForestName fields if they are present, or to

NULL if the NETLOGON_SAM_LOGON_RESPONSE.DnsForestName and the
NETLOGON_SAM_LOGON_RESPONS E_EX.DnsForestName fields are not present.

Á The DomainControllerInfo.Flags field MUST be set to the value of the
NETLOGON_SAM_LOGON_RESPONSE.Flags or the
NETLOGON_SAM_LOGON_RESPONSE_EX.Flags field. Additionally, the following flags are set
in the DomainCont rollerInfo.Flags field:

Á The flag M MUST be set if the DomainControllerInfo.DomainControllerName field is set to

the FQDN of the DC.

156 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Á The flag N MUST be set if the DomainControllerInfo.DomainName field is set to the FQDN
of the domain.

Á The flag O MUST be set if the DomainControllerInfo.DnsForestName field is set.

Á The DomainControllerInfo.DcSiteName field MUST be set to the value of the

NETLOGON_SAM_LOGON_RESPONSE_EX.DcSiteName field if it is present, or to NULL if the
NETLOGON_SAM_LOGON_RESPONSE_EX.DcSiteName field is not present.

Á The DomainControllerInfo.ClientSiteName field MUST be set to the value of the
NETLOGON_SAM_LOGON_RESPONSE_EX.ClientSiteName field if it is present, or to NULL if
the NETLOGON_SAM_LOGON_RESPONSE_EX.ClientSiteName field is not present.

Á If the NETLOGON_SAM_LOGON_RESPONSE_EX.NextClosestSiteName field is present,
the value MUST be saved in the NextClosestSiteName ADM element.

If a satisfactory NETLOGON_SAM_LOGON_RESPONSE_NT40 ([MS -ADTS] section 6.3.1.7) response
message is received in resp onse to the mailslot messages, the DsrGetDcNameEx2 call populates the

returned DOMAIN_CONTROLLER_INFOW structure (section 2.2.1.2.1) as follows:

Á The DomainControllerInfo.DomainControllerName field MUST be set to the
NETLOGON_SAM_LOGON_RESPONSE_NT40.Unicode LogonServer field.

Á The DomainControllerInfo.DomainControllerAddress field MUST be set to the

NETLOGON_SAM_LOGON_RESPONSE_NT40.UnicodeLogonServer field.

Á The DomainControllerInfo.DomainControllerAddressType field MUST be set to 0x00000002.

Á The DomainControllerInfo.DomainGuid field MUST be set to NULL.

Á The DomainControllerInfo.DomainName field MUST be set to the
NETLOGON_SAM_LOGON_RESPONSE_NT40.UnicodeLogonServer field.

Á The DomainControllerInfo.DnsForestName field MUST be set to NULL.

Á The DomainControllerInfo.Flags field MUST have the A and H flags set if the response is to a

PDC query; otherwise it MUST be set to 0x00000000.

Á The DomainControllerInfo.DcSiteName field MUST be set to NULL.

Á The DomainControllerInfo.ClientSiteName field MUST be set to NULL.

If the AccountName parameter is not NULL, the response message validation adds the following
check: if the DC res ponse is received indicating the lack of an account, as specified in [MS -ADTS]
sections 6.3.3 and 6.3.5, the server MUST return ERROR_NO_SUCH_USER.

If the server successfully locates a DC for the requested capabilities, it saves the result in the

LocatedDC sCache . If a DC for the domain cannot be located, the server saves the result in the
FailedDiscoveryCache .

3.5.4.3.2 DsrGetDcNameEx (Opnum 27)

The DsrGetDcNameEx method is a predecessor to the DsrGetDcNameEx2 (section 3.5.4.3.1)
method. The method SHOULD<153> return information about a domain controller in the specified

domain and site. All parameters of this method have the same meanings as the identically named
parameters of the DsrGetDcNameEx2 method.

 NET_API_STATUS DsrGetDcNameEx(

 [in, unique, string] LOGONSRV_HANDLE ComputerName,

 [in, unique, string] wchar_t* DomainName,

 [in, unique] GUID* DomainGuid,

157 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 [in, unique, string] wchar_t* SiteName,

 [in] ULONG Flags,

 [out] PDOMAIN_CONTROLLER_INFOW* DomainControllerInfo

);

On recei ving this call, the server MUST perform all of the processing done on receiving the
DsrGetDcNameEx2 call, except that any processing specific to the AccountName and
AllowableAccountControlBits parameters is ignored. This function MUST be processed as if th e
AccountName and AllowableAccountControlBits parameters were not specified.

3.5.4.3.3 DsrGetDcName (Opnum 20)

The DsrGetDcName method is a predecessor to the DsrGetDcNameEx2 method (section 3.5.4.3.1).
The method SHOULD<154> return inform ation about a domain controller in the specified domain. All
parameters of this method have the same meanings as the identically named parameters of the
DsrGetDcNameEx2 method, except for the SiteGuid parameter, detailed as follows.

 NET_API_STATUS DsrGetDcName(

 [in, unique, string] LOGONSRV_HANDLE ComputerName,

 [in, unique, string] wchar_t* DomainName,

 [in, unique] GUID* DomainGuid,

 [in, unique] GUID* SiteGuid,

 [in] ULONG Flags,

 [out] PDOMAIN_CONTROLLER_INFOW* DomainContro llerInfo

);

SiteGuid: This parameter MUST be NULL and ignored upon receipt.

The DsrGetDcName call accepts the SiteGuid parameter instead of the SiteName parameter of the
DsrGetDcNameEx call. On receiving this call, the server MUST perform all of the processing done on
receiving the DsrGetDcNameEx call.

3.5.4.3.4 NetrGetDCName (Opnum 11)

The NetrGetDCName method MAY<155> be used to retrieve the NetBIOS name of the PDC f or the
specified domain.

 NET_API_STATUS NetrGetDCName(

 [in, string] LOGONSRV_HANDLE ServerName,

 [in, unique, string] wchar_t* DomainName,

 [out, string] wchar_t** Buffer

);

ServerName: The custom binding handle, as defined in section 3.5.4.1, that re presents the
connection to a domain controller.

DomainName: A null - terminated Unicode string that specifies the NetBIOS name of the domain.

Buffer: A pointer to a null - terminated Unicode string that contains the NetBIOS name of the PDC for
the specified do main. The server name returned by this method is prefixed by two backslashes
(\ \).

Return Values: The method returns 0x00000000 on success; otherwise, it MUST return a nonzero
error code and SHOULD return the following error code.

Return Value/Code Descrip tion

0x00000035 The network path was not found.

158 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Return Value/Code Descrip tion

ERROR_ BAD_ NETPATH

If the DomainName parameter is not NULL and is not a valid NetBIOS name format, the server
MUST return NERR_DCNotFound ([MS -ERREF] section 2.2).

The server MUST attempt to locate a PDC for the domain specified by the client. The server MUST
return NERR_DCNotFound if the PD C could not be located for the specified domain. The server

SHOULD<156> implement alternate means of locating DCs: for example, a static list in a file, or two
methods detailed in [MS -ADTS] section 6.3.6.

NetrGetDcName returns the name of the discovered PD C.

3.5.4.3.5 NetrGetAnyDCName (Opnum 13)

The NetrGetAnyDCName method MAY<157> be used to retrieve the name of a domain controller in

the specified primary or directly trusted domain. Only DCs can return the name of a DC in a specified
directly trusted domain.

 NET_API_STATUS NetrGetAnyDCName(

 [in, unique, string] LOGONSRV_HANDLE ServerName,

 [in, unique, string] wchar_t* DomainName,

 [out, string] wchar_t** Buffer

);

ServerName: The custom binding handle, as defined in section 3.5.4.1.

DomainName: A null - terminated Unicode string that contains the name of the primary or directly
trusted domain. If the string is NULL or empty (that is, the first character in the string is the null -
terminator character), the primary domain name is assumed.

Buffer: A pointer to an allocated buffer that contains the null - terminated Unicode string containing
the NetBIOS name of a DC in the specified domain. The DC name is prefixed by two backslashes
(\ \).

Return Values: The method returns 0x00 000000 on success; otherwise, it MUST return a nonzero

error code and SHOULD return the following error code.

Return Value/Code Description

0x00000712

ERROR_DOMAIN_TRUST_INCONSISTENT

The name or security ID (SID) of the domain specified is inconsistent
with the trust information for that domain.

The server MUST attempt to locate a DC for the domain specified by the client. The server
SHOULD<158> implement alternate means to locate domain controllers: for example, a static list in a
file, o r the two methods detailed in [MS -ADTS] section 6.3.6. If the server that receives this call is the
PDC for the domain specified in DomainName, the server MUST return ERROR_NO_SUCH_DOMAIN.

If the ServerName parameter is not a valid binding handle (as defin ed in section 3.5.4.1), the server

MUST return ERROR_INVALID_COMPUTERNAME.

This method also returns errors based on Common Error Processing Rule E, specified in section 3.

NetrGetAnyDcName returns the name of the discovered DC.

159 / 284

[MS -NRPC-Diff] - v20210625
Netlogon Remote Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.5.4.3.6 DsrGetSiteName (Opnum 28)

The DsrGetSiteName method SHOULD<159> return the site name for the specified computer that
receives this call.

 NET_API_STATUS DsrGetSiteName(

 [in, unique, string] LOGONSRV_HANDLE ComputerName,

 [out, string] wchar_t** SiteNam e

);

ComputerName: The custom binding handle (defined in section 3.5.4.1).

SiteName: A null - terminated Unicode string that contains the name of the site in which the computer
that receives this call resides.

Return Values: The method returns 0x00000000 on success; otherwise, it MUST return a nonzero
error code and SHOULD return the following error code.

Return Value/Code Description

0x0000077F

ERROR_NO_SITENAME

No site name is available for this machine.

If the computer has been configured w ith a SiteName, it MUST return the SiteName immediately.

If the DynamicSiteNameSetTime plus the DynamicSiteNameTimeout is less than the current time

(meaning that the DynamicSiteNameSetTime is older than allowed by DynamicSiteNameTimeout),
then:

Á The server MUST locate a domain controller in the domain. The server SHOULD<160> implement
alternate means to locate DCs: for example, a static list in a file, or the two methods detailed in
[MS -ADTS] section 6.3.6. If the server cannot locate a DC for the domain, t hen the server MUST

return ERROR_NO_SUCH_DOMAIN.

Á The server then populates the SiteName parameter with the
NETLOGON_SAM_LOGON_RESPONSE_EX message ([MS -ADTS] section 6.3.1.9) by setting the
SiteName parameter to NETLOGON_SAM_LOGON_RESPONSE_EX.ClientSiteName . The server
stores the discovered site name in DynamicSiteName .

Á The server sets the DynamicSiteNameSetTime to the current time.

Otherwise, DynamicSiteName MUST be returned immediately as the SiteName parameter.

If it is determined that the server that receives this call has no site name, the server MUST return

ERROR_NO_SITENAME.

This method also returns errors based on Common Error Processing Rules B and C, specified in section
3.

3.5.4.3.7 DsrGetDcSiteCoverageW (Opnum 38)

The DsrGetDcSiteCoverageW method SHOULD<161> return a list of sites covered by a domain
controller. Site coverage is detailed in [MS -ADTS] section 6.1.1.2.2.

 NET_API_STATUS DsrGetDcSiteCoverageW(

 [in, unique, string] LOGONSRV_HANDLE ServerName,

 [out] PNL_SITE_NAME_ARRAY* SiteNames

);

