
1 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

[MS-NFPS]:  

Near Field Proximity: Sharing Protocol 

 

Intellectual Property Rights Notice for Open Specifications Documentation 

 Technical Documentation. Microsoft publishes Open Specifications documentation for protocols, 
file formats, languages, standards as well as overviews of the interaction among each of these 
technologies.  

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other 
terms that are contained in the terms of use for the Microsoft website that hosts this 
documentation, you may make copies of it in order to develop implementations of the 

technologies described in the Open Specifications and may distribute portions of it in your 
implementations using these technologies or your documentation as necessary to properly 

document the implementation. You may also distribute in your implementation, with or without 
modification, any schema, IDL's, or code samples that are included in the documentation. This 
permission also applies to any documents that are referenced in the Open Specifications.  

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.  

 Patents. Microsoft has patents that may cover your implementations of the technologies 
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the 
documentation grants any licenses under those or any other Microsoft patents. However, a given 
Open Specification may be covered by Microsoft Open Specification Promise or the Community 

Promise. If you would prefer a written license, or if the technologies described in the Open 
Specifications are not covered by the Open Specifications Promise or Community Promise, as 
applicable, patent licenses are available by contacting iplg@microsoft.com.  

 Trademarks. The names of companies and products contained in this documentation may be 
covered by trademarks or similar intellectual property rights. This notice does not grant any 

licenses under those rights. For a list of Microsoft trademarks, visit 
www.microsoft.com/trademarks.  

 Fictitious Names. The example companies, organizations, products, domain names, e-mail 
addresses, logos, people, places, and events depicted in this documentation are fictitious. No 
association with any real company, organization, product, domain name, email address, logo, 
person, place, or event is intended or should be inferred. 

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other 
than specifically described above, whether by implication, estoppel, or otherwise.  

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming 
environments in order for you to develop an implementation. If you have access to Microsoft 
programming tools and environments you are free to take advantage of them. Certain Open 
Specifications are intended for use in conjunction with publicly available standard specifications and 
network programming art, and assumes that the reader either is familiar with the aforementioned 

material or has immediate access to it. 

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks


2 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

Revision Summary 

Date 
Revision 
History 

Revision 
Class Comments 

1/31/2013 1.0 New Released new document. 

8/8/2013 1.1 Minor Clarified the meaning of the technical content. 

11/14/2013 1.1 None No changes to the meaning, language, or formatting of the 
technical content. 

2/13/2014 1.1 None No changes to the meaning, language, or formatting of the 
technical content. 

5/15/2014 1.1 None No changes to the meaning, language, or formatting of the 

technical content. 

6/30/2015 2.0 Major Significantly changed the technical content. 

10/16/2015 2.0 No Change No changes to the meaning, language, or formatting of the 
technical content. 



3 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

Table of Contents 

1 Introduction ............................................................................................................ 5 
1.1 Glossary ........................................................................................................... 5 
1.2 References ........................................................................................................ 6 

1.2.1 Normative References ................................................................................... 6 
1.2.2 Informative References ................................................................................. 6 

1.3 Overview .......................................................................................................... 6 
1.4 Relationship to Other Protocols ............................................................................ 7 
1.5 Prerequisites/Preconditions ................................................................................. 8 
1.6 Applicability Statement ....................................................................................... 8 
1.7 Versioning and Capability Negotiation ................................................................... 8 
1.8 Vendor-Extensible Fields ..................................................................................... 9 
1.9 Standards Assignments ....................................................................................... 9 

2 Messages ............................................................................................................... 10 
2.1 Transport ........................................................................................................ 10 
2.2 Message Syntax ............................................................................................... 10 

2.2.1 Socket Connect Header ............................................................................... 10 
2.2.2 Share Header ............................................................................................. 10 
2.2.3 Reply Header ............................................................................................. 11 
2.2.4 Share Protocol Footer .................................................................................. 11 
2.2.5 Connection Type Enumeration ...................................................................... 12 

3 Protocol Details ..................................................................................................... 13 
3.1 Common Details .............................................................................................. 13 

3.1.1 Abstract Data Model .................................................................................... 13 
3.1.2 Timers ...................................................................................................... 13 
3.1.3 Initialization ............................................................................................... 13 
3.1.4 Higher-Layer Triggered Events ..................................................................... 13 
3.1.5 Message Processing Events and Sequencing Rules .......................................... 13 
3.1.6 Timer Events .............................................................................................. 13 
3.1.7 Other Local Events ...................................................................................... 13 

3.1.7.1 Setting Up a Socket: When the Session is a Client .................................... 13 
3.1.7.2 Setting Up a Socket: When the Session is a Server ................................... 14 

3.2 Share Sender Details ........................................................................................ 15 
3.2.1 Abstract Data Model .................................................................................... 15 
3.2.2 Timers ...................................................................................................... 16 
3.2.3 Initialization ............................................................................................... 16 
3.2.4 Higher-Layer Triggered Events ..................................................................... 16 
3.2.5 Message Processing Events and Sequencing Rules .......................................... 16 
3.2.6 Timer Events .............................................................................................. 16 
3.2.7 Other Local Events ...................................................................................... 16 

3.2.7.1 Session Provided ................................................................................... 16 
3.2.7.2 Session Socket Successfully Set Up ......................................................... 17 

3.3 Share Receiver Details ...................................................................................... 17 
3.3.1 Abstract Data Model .................................................................................... 17 
3.3.2 Timers ...................................................................................................... 18 
3.3.3 Initialization ............................................................................................... 19 
3.3.4 Higher-Layer Triggered Events ..................................................................... 19 
3.3.5 Message Processing Events and Sequencing Rules .......................................... 19 
3.3.6 Timer Events .............................................................................................. 19 
3.3.7 Other Local Events ...................................................................................... 19 

3.3.7.1 TapAndSendFiles Activation Event ........................................................... 19 
3.3.7.2 Session Socket Successfully Set Up Event ................................................ 20 
3.3.7.3 Socket Closed Due to Fault Event ............................................................ 20 
3.3.7.4 Socket Gracefully Closed Event ............................................................... 20 



4 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

4 Protocol Examples ................................................................................................. 21 
4.1 Success Scenario ............................................................................................. 21 

4.1.1 Connect ..................................................................................................... 21 
4.1.2 Accept ....................................................................................................... 22 
4.1.3 Share Header ............................................................................................. 22 
4.1.4 Reply Header ............................................................................................. 22 
4.1.5 Share Data ................................................................................................ 23 

4.1.5.1 Base Case ............................................................................................ 23 
4.1.5.2 511-Byte OPC Package .......................................................................... 23 
4.1.5.3 512-Byte OPC Package .......................................................................... 24 

4.2 Abort Scenario ................................................................................................. 24 
4.2.1 Connect ..................................................................................................... 25 
4.2.2 Accept ....................................................................................................... 25 
4.2.3 Abort Received ........................................................................................... 25 

5 Security ................................................................................................................. 26 
5.1 Security Considerations for Implementers ........................................................... 26 
5.2 Index of Security Parameters ............................................................................ 26 

6 Appendix A: Product Behavior ............................................................................... 27 

7 Change Tracking .................................................................................................... 28 

8 Index ..................................................................................................................... 29 

 



5 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

1 Introduction 

The Near Field Proximity: Sharing Protocol primarily relies on the Near Field Proximity: Bidirectional 
Services Protocol [MS-NFPB] as a trigger for completing the message exchange specified in this 
protocol. After being triggered, this protocol then relies on Office Open XML File Format [ECMA-376] 
for creating an OPC package, and then TCP/IP and/or Bluetooth/RFCOMM for data transport. 

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD, 

MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also 
normative but do not contain those terms. All other sections and examples in this specification are 
informative. 

1.1 Glossary 

The following terms are specific to this document: 

Advanced Encryption Standard (AES): A block cipher that supersedes the Data Encryption 

Standard (DES). AES can be used to protect electronic data. The AES algorithm can be used to 
encrypt (encipher) and decrypt (decipher) information. Encryption converts data to an 
unintelligible form called ciphertext; decrypting the ciphertext converts the data back into its 
original form, called plaintext. AES is used in symmetric-key cryptography, meaning that the 

same key is used for the encryption and decryption operations. It is also a block cipher, 
meaning that it operates on fixed-size blocks of plaintext and ciphertext, and requires the size of 
the plaintext as well as the ciphertext to be an exact multiple of this block size. AES is also 
known as the Rijndael symmetric encryption algorithm [FIPS197]. 

big-endian: Multiple-byte values that are byte-ordered with the most significant byte stored in the 
memory location with the lowest address. 

domain: A set of users and computers sharing a common namespace and management 

infrastructure. At least one computer member of the set must act as a domain controller (DC) 
and host a member list that identifies all members of the domain, as well as optionally hosting 
the Active Directory service. The domain controller provides authentication (2) of members, 

creating a unit of trust for its members. Each domain has an identifier that is shared among its 
members. For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS]. 

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in 

the memory location with the lowest address. 

Near Field Communication (NFC): An international standard for short-range wireless, 
contactless connectivity that provides intuitive, simple, and safe communication between 
electronic devices. NFC is the technology on smartphones that makes proximity scenarios 
possible. For example, it allows a user to wave the smartphone over a NFC-compatible device to 
send information without needing to touch the devices together or go through multiple steps 
setting up a connection. 

NFPB: The Near Field Proximity: Bidirectional Services Protocol [MS-NFPB]. 

OPC file: See OPC package. 

OPC package: A .ZIP file archive [PKZIP] that follows the Open Packaging Conventions (OPC). 

Open Packaging Conventions (OPC): An open standard for a portable container technology that 
defines a structured way to store application data with related resources by using a standard 
.ZIP file format. OPC is a component of Office Open XML File Formats [ECMA-376]. 

pub/sub: Refers to publication/subscription, a design model in which publishers send notification 

of events that are received by subscribers, which have registered for those events. 

%5bMS-NFPB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=89870
%5bMS-AUTHSOD%5d.pdf
%5bMS-ADTS%5d.pdf


6 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send 
data in the form of message units between computers over the Internet. TCP handles keeping 

track of the individual units of data (called packets) that a message is divided into for efficient 
routing through the Internet. 

UTF-8: A byte-oriented standard for encoding Unicode characters, defined in the Unicode standard. 
Unless specified otherwise, this term refers to the UTF-8 encoding form specified in 
[UNICODE5.0.0/2007] section 3.9. 

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined 
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT. 

1.2 References 

Links to a document in the Microsoft Open Specifications library point to the correct section in the 
most recently published version of the referenced document. However, because individual documents 
in the library are not updated at the same time, the section numbers in the documents may not 
match. You can confirm the correct section numbering by checking the Errata.   

1.2.1 Normative References 

We conduct frequent surveys of the normative references to assure their continued availability. If you 
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will 
assist you in finding the relevant information.  

[MS-NFPB] Microsoft Corporation, "Near Field Proximity: Bidirectional Services Protocol". 

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt 

1.2.2 Informative References 

[ECMA-376] ECMA International, "Office Open XML File Formats", 1st Edition, ECMA-376, December 

2006, http://www.ecma-international.org/publications/standards/Ecma-376.htm 

1.3 Overview 

The Near Field Proximity: Sharing Protocol provides real-time sharing of an Open Packaging 
Conventions (OPC) [ECMA-376] package from one peer to another. 

In this specification, the server role of this protocol is referred to as the Share Sender, and the client 
role is referred to as the Share Receiver. 

In the Share Sender role, when the user wants to share an OPC package, this protocol uses the Near 
Field Proximity: Bidirectional Services Protocol [MS-NFPB] to establish a session that can be used to 
send the OPC package to the user-indicated peer. 

The receiving peer implements the Share Receiver, which is performed by handling an incoming 

trigger from the underlying NFPB Protocol. This trigger is a share-specific session. 

The following diagram shows a generic sequence of data sharing with this protocol. 

http://go.microsoft.com/fwlink/?LinkId=154659
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
%5bMS-NFPB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-NFPB%5d.pdf


7 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

 

Figure 1: Data sharing sequence 

1.4 Relationship to Other Protocols 

The following diagram shows the relationship of the Near Field Proximity: Sharing Protocol with other 
protocols. 



8 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

 

Figure 2: Relationship to other protocols 

The Near Field Proximity: Sharing Protocol uses the Near Field Proximity: Bidirectional Services 
Protocol [MS-NFPB] to establish a session between a share source and share target. That session is 
then used to establish a connection between the source and the target. That connection can be used 
by the source to send an OPC package to the target. 

1.5 Prerequisites/Preconditions 

Peers are required to be able to communicate via compatible networking technologies; for example, 

TCP/IP over wireless networks. There are no other preconditions or prerequisites for these protocols to 
function between peers. There are no assumed security associations or connections required between 
peers except those that are required by the pub/sub transport link layer. 

1.6 Applicability Statement 

The Near Field Proximity: Sharing Protocol is well-suited to function on top of transports such as Near 
Field Communication (NFC). This protocol has been designed for linking two applications for the 

purposes of simple, real-time sharing of files. This protocol is designed to function in a cross-platform, 
cross-domain, or non-domain environment. 

1.7 Versioning and Capability Negotiation 

This document covers versioning issues in the following areas: 

 Security and Authentication Methods: The Near Field Proximity: Sharing Protocol relies on the 
underlying NFPB protocol for versioning. As specified in [MS-NFPB], the underlying Session Factory 
service has bound algorithms for each version of the service. If, in the future, security and/or 
authentication methods require updating, the use of this protocol will trigger updated behavior on 
the underlying negotiated Session Factory service version. 

 Capability Negotiation: This protocol relies on the underlying NFPB protocol for explicit 
capability negotiation as specified in section 3.2.3. 

%5bMS-NFPB%5d.pdf
%5bMS-NFPB%5d.pdf


9 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

1.8 Vendor-Extensible Fields 

None. 

1.9 Standards Assignments 

None. 



10 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

2 Messages 

2.1 Transport 

The transport for the Near Field Proximity: Sharing Protocol is either TCP/IP or Bluetooth/RFCOMM. 

Each of those is a reliable connection-oriented socket. 

2.2 Message Syntax 

None of the messages in this protocol has alignment requirements; that is, there are no padding bytes 

to force a specific alignment. Unless explicitly specified otherwise, all fields use big-endian encoding. 

Most of this protocol consists of a stream of bytes that contain the OPC file being transferred; 
however, there are well-defined header and footer messages, which are described in the following 
sections. 

2.2.1 Socket Connect Header 

The Socket Connect header specifies the connection type of a socket connection to be established. It 
has the following structure. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

SessionID 

... 

ConnectionType Reserved1 A Reserved2 

SessionID (8 bytes): The ID of the Session object. At the conclusion of the session exchange, each 
peer has a Session object, and the two Session objects' SessionID fields match. It is used by 

the Share Receiver to find the correct Session object to associate with the inbound socket. 

ConnectionType (1 byte): The connection type of the socket connection to be established, from the 
Connection Type Enumeration (section 2.2.5). 

Reserved1 (2 bytes): This field MUST be set to zero when sent and MUST be ignored when received. 

A (1 bit): The Abort flag. A client sets this flag in order to indicate to the server that the client is 
required to terminate the session immediately. This flag is useful when, for example, the user has 
decided not to accept a socket or share connection. 

Reserved2 (7 bits): This field MUST be set to zero when sent and MUST be ignored when received. 

2.2.2 Share Header 

The Share header specifies an estimated size of an OPC package. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

HeaderSize TotalContentSizeEstimate 



11 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

... 

... 

HeaderSize (2 bytes): The value 10 in little-endian encoding (0x0A, 0x00). Future versions of this 
protocol MAY specify a larger size, and implementations MUST accept any value greater than or 
equal to 10 and ignore fields that are not defined in this specification. 

TotalContentSizeEstimate (8 bytes): An estimated size of the OPC package to be shared, in little-
endian encoding. When this field is set to zero, the sender indicates that the size of the package is 
unknown, which can happen when the package is being streamed. This value is used only for 
providing an estimate to the user of how long the transfer will take. 

2.2.3 Reply Header 

The Reply header specifies how many bytes to read from the socket for the rest of the header. 

0 
1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

HeaderSize 

HeaderSize (2 bytes): The value 2 in little-endian encoding (0x02, 0x00). Future versions of this 
protocol might specify a larger size, and implementations MUST accept any value greater than or 
equal to 2 and MUST ignore fields that are not defined in this specification. 

2.2.4 Share Protocol Footer 

The Share Protocol footer specifies the last piece of the OPC package, up to 15 bytes. The total size 
of this message MUST be 48 bytes. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

Remainder (variable, optional) 

... 

... 

Reserved (variable) 

... 

... 

RemainderLength 

Remainder (variable, optional): The final bytes of the OPC file, which did not fit exactly in a block 
of data. The size of this field is specified in the RemainderLength field. If the size is zero, this 
field SHOULD NOT be not present. 



12 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

Reserved (variable): This field MUST be set to zero when sent and MUST be ignored when received. 
The size of this field is a function of the RemainderLength field value, as follows: 

ReservedLength = 47 - RemainderLength 

RemainderLength (1 byte): The length of the Remainder field, in bytes. This value MUST be from 

zero to 15, inclusive. 

2.2.5 Connection Type Enumeration 

The Connection Type enumeration is used to specify the type of source and destination address used 

by the Near Field Proximity: Sharing Protocol. These values are based on the same addresses 
exchanged in the NFPB OobConnector Service. The source refers to the peer with a Session object 
that has a Share Receiver role. The destination refers to the peer with a Session object that has a 
Share Sender role. 

Value Source address Destination address 

0 Wi-Fi Direct Address Wi-Fi Direct Address 

1 Link Local Address Link Local Address 

2 IPv4 Link Local Address IPv4 Link Local Address 

3 Proximity Address Proximity Address 

4 Bluetooth MAC Address Bluetooth MAC Address 

5 Global Address Global Address 

6 Global Address Teredo Address 

7 Teredo Address Global Address 

8 Teredo Address Teredo Address 



13 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

3 Protocol Details 

3.1 Common Details 

There are some aspects of the Near Field Proximity: Sharing Protocol that are common to both the 

Share Sender and Share Receiver roles. Conceptually, these requirements reside in a layer between 
the NFPB protocol [MS-NFPB] and this protocol. In the abstract data model of the NFPB protocol, the 
Session Factory service allows creation of Session objects, one within each peer. The protocol provides 
for either static or random role-determination for these Session objects; in both cases, one Session 
object has the client role and the other Session object has the server role. 

The Near Field Proximity: Sharing Protocol mandates, by the conventions it follows, that the Share 

Sender MUST always produce Session objects with the server role, and the Share Receiver MUST 
always produce Session objects with the client role. This is a direct result of the fact that the Share 
Sender always creates a SessionFactory object with the Launch flag set. 

3.1.1 Abstract Data Model 

None. 

3.1.2 Timers 

None. 

3.1.3 Initialization 

None. 

3.1.4 Higher-Layer Triggered Events 

None. 

3.1.5 Message Processing Events and Sequencing Rules 

None. 

3.1.6 Timer Events 

None. 

3.1.7 Other Local Events 

This section specifies actions taken by either a Share Sender or Share Receiver for setting up a socket. 

3.1.7.1 Setting Up a Socket: When the Session is a Client 

When a Session object with the client role transitions to the Ready state, and its 
ReferencedOobConnector object has also transitioned to the Ready state, the Share Sender or 
Share Receiver MUST start a parallel set of socket connects to the remote peer, with each of the nine 
different connection types (section 2.2.5). With respect to these connect attempts, the Share Sender 

or Receiver MUST perform the following actions: 

%5bMS-NFPB%5d.pdf


14 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

 Use the Session object's RemoteTcpPort element as the destination TCP port for all IP socket 
connects. 

 Use the Session object's RemoteRfcommPort element as the destination RFCOMM port for all 
Bluetooth socket connects. 

 Use the Session object's ReferencedOobConnector object's LocalAddresses as the bound 
source address for each socket connect. 

 Use the Session object's ReferencedOobConnector object's RemoteAddresses as the specific 
destination address for each socket connect. 

Note  Sending from a specific bound port is not required. 

The Share Sender or Share Receiver MUST NOT attempt a specific connect if either the Local or 
Remote address is all zeros. 

The Share Sender or Share Receiver can delay connection type 0 until after the Session object's 
ReferencedOobConnector object's WfdPeerConnected element transitions to TRUE. 

If a connect attempt fails, it SHOULD be retried after a 10-millisecond delay, unless the Session 
socket is already successfully set up. 

If a full handshake is incomplete after 4 seconds, a second, parallel set of socket connects to the 
remote peer can be started. 

When a socket successfully connects, the Share Receiver MUST send an appropriate Socket Connect 
header (section 2.2.1) on the socket. The ConnectionType field MUST match the type of connection 
attempted by that socket. When the Share Receiver successfully sends its Socket Connect header, 
the Share Receiver MUST wait for a Socket Connect header to be received from the Share Sender in 
reply. If the received Socket Connect header is not identical to the one the Share Receiver just sent, 
the socket MUST be closed and the connection attempt is considered to have failed. If the received 
Socket Connect header is identical to the one the Share Receiver just sent: 

 The Session socket MUST be considered successfully set up and MUST be set as the Socket 

object within the appropriate Share Sender or Receiver. 

 All the other parallel connection attempts MUST be stopped and abandoned. 

3.1.7.2 Setting Up a Socket: When the Session is a Server 

When a Session object with the server role transitions to the Ready state, and its 
ReferencedOobConnector object has also transitioned to the Ready state, the Share Sender or 
Share Receiver MUST perform the following actions: 

1. Begin accepting socket connections on the TCP port and/or the RFCOMM port. 

2. Read a Socket Connect header (section 2.2.1) from any connected sockets: 

1. The Share Sender or Share Receiver MUST use its SessionFactory object to find the Session 

object by its SessionID, which is found in the Socket Connect header. 

2. If the Session object cannot be found, or if the Session already has a socket successfully set 
up, the Share Sender or Share Receiver MUST close the socket. 

3. The Share Sender or Share Receiver MUST choose exactly one of the connected sockets for 
this Session object and send the Socket Connect header as a reply. 

Note  The timeframe for choosing a socket is not specified, but it SHOULD be done quickly enough to 
ensure a good user experience. 



15 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

1. If the A (Abort) flag is set, the Share Sender or Share Receiver MUST transition the Session 
object to the Terminated state and gracefully close all sockets created by the Session object. 

2. If the A (Abort) flag is not set, the Session socket MUST be considered successfully set up and 
MUST be set as the Socket object within the Share Sender or Share Receiver. 

3.2 Share Sender Details 

The Share Sender corresponds to the server role in the Near Field Proximity: Sharing Protocol. 

3.2.1 Abstract Data Model 

This section describes a conceptual model of possible data organization that a Share Sender 
implementation maintains to participate in this protocol. The described organization is provided to 
facilitate the explanation of how the protocol behaves. This document does not mandate that 
implementations adhere to this model as long as their external behavior is consistent with that 

described in this document. 

ShareSender:  An instance of a ShareSender element contains the entire state for an outbound 
sharing attempt.  

Note  This protocol includes the following abstract data model elements, which are directly 
accessed from the NFPB protocol, as specified in [MS-NFPB] section 3.1.1: 

Session:  The Session object provided by the SessionFactory. 

SessionFactory:  The SessionFactory object that the Share Sender creates within the NFPB 

protocol to handle the creation of Session objects. 

The following elements are specific to this protocol: 

IV:  A random 16-byte initialization vector used for encrypting. 

Package:  A single OPC package to be shared with a peer. 

Socket:  The TCP/IP or Bluetooth/RFCOMM socket chosen for sending the Package. 

State:  The current state of the Share Sender. The state value can be one of the following: 

Value Meaning 

WaitingForSession The object has created the SessionFactory, and is waiting for a Session. 

SetupSocket The object has received a Session from the SessionFactory, and is attempting to set up a 

Socket to the peer for transmission of the Package. 

SendingBody The object's Socket is successfully set up and the object is now transmitting the Share 
header (section 2.2.2), waiting for the Reply header (section 2.2.3), sending the IV object, 
or sending the encrypted OPC package over the socket. 

SendingFooter The object is transmitting the Share Protocol footer (section 2.2.4). 

The following diagram shows the state transitions for the Share Sender. 

%5bMS-NFPB%5d.pdf


16 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

 

Figure 3: Share sender state transitions 

SymmetricKey:  A 128-bit Advanced Encryption Standard (AES) key derived by taking the 
SHA256 hash of the Session object's SharedSecretKey field. 

3.2.2 Timers 

None. 

3.2.3 Initialization 

When the user indicates an intention to share an OPC package, a ShareSender object SHOULD be 

created with elements initialized as follows: 

Package: The OPC package specified by the user. 

SessionFactory: A newly created SessionFactory object with the following elements: 

 An AppID string, set to "Global" or "TapAndSendFiles". This element provides for capability 
negotiation via the NFPB protocol. 

 The L (Launch) flag MUST be set. 

IV: A 16-byte cryptographically-random initialization vector. 

State: WaitingForSession. 

3.2.4 Higher-Layer Triggered Events 

The only higher-layer triggered event is the user creating a new instance of a ShareSender object. 

3.2.5 Message Processing Events and Sequencing Rules 

None. 

3.2.6 Timer Events 

None. 

3.2.7 Other Local Events 

The following local events change the Share Sender's State, as shown in the diagram in section 3.2.1. 

 Session provided 

 Session socket successfully set up 

The actions required by these events are specified in the sections that follow. 



17 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

3.2.7.1 Session Provided 

This event is triggered when the Share Sender's SessionFactory object provides a Session object. If 
the Share Sender's State is WaitingForSession, this MUST be set as the object's Session element, the 

State element MUST transition to SetupSocket, and the SessionFactory object MUST be deactivated 
or destroyed. 

The behavior for the SetupSocket state is specified in section 3.1.7. 

3.2.7.2 Session Socket Successfully Set Up 

When a Share Sender's Socket object has been successfully set up (section 3.1.7), the Share Sender 
state MUST transition to SendingBody, and the following actions MUST be performed: 

1. Create a Share header (section 2.2.2) with the following values: 

 HeaderSize: The value 10 in little-endian encoding (0x0A, 0x00). No other value is valid. 

 TotalContentSizeEstimate: An estimate of the size of the OPC package. If an estimate 
cannot be determined, this value MUST be zero. 

2. Send the Share header over the Socket. 

3. Synchronously read 2 bytes for the HeaderSize field of a Reply header (section 2.2.3) from the 
Socket. 

4. Interpret the 2 bytes as a little-endian encoded 16-bit unsigned integer that specifies how many 
bytes to read for the rest of the message. 

5. If nonzero length, synchronously read (HeaderSize – 2) bytes from the Socket. 

Note  If the HeaderSize is exactly 2, there is nothing to read. 

1. Set the Share Sender's SymmetricKey element to a 128-bit key derived by taking the SHA256 
hash of the Session object's SharedSecretKey element. 

2. Send the IV as the first block on the Socket. 

The Near Field Proximity: Sharing Protocol requires a specific encryption scheme. Each block MUST be 
encrypted by using a standard AES 128-block cipher with the IV and SymmetricKey objects as input. 

Each complete block (16 full bytes) of the OPC package MUST be encrypted and then sent on the 
Socket. 

After all complete blocks of data have been encrypted and sent, the following actions MUST be 
performed: 

1. Create a Share Protocol footer (section 2.2.4) and initialize to all zeros. 

2. Place any remaining (less than 16 bytes) OPC package data at the beginning of the Share 
Protocol footer. 

3. Set the RemainderLength field to be the number of OPC package data bytes placed into the 

Share Protocol footer. 

4. Encrypt the three final blocks that comprise the Share Protocol footer. 

5. Send the final three blocks that comprise the Share Protocol footer on the Socket. 

6. Gracefully close the Socket. 



18 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

3.3 Share Receiver Details 

The Share Receiver corresponds to the client role in the Near Field Proximity: Sharing Protocol. 

3.3.1 Abstract Data Model 

This section describes a conceptual model of possible data organization that a Share Receiver 
implementation maintains to participate in this protocol. The described organization is provided to 
facilitate the explanation of how the protocol behaves. This document does not mandate that 
implementations adhere to this model as long as their external behavior is consistent with that 

described in this document. 

ShareReceiver: An instance of a ShareReceiver element contains the entire state for an inbound 
sharing attempt. 

Note  This protocol includes the following abstract data model elements, which are directly 
accessed from the NFPB protocol, as specified in [MS-NFPB] section 3.1.1: 

Session:  The Session object provided by the SessionFactory. 

SessionFactory:  The SessionFactory object that the Share Receiver creates within the NFPB 
protocol to handle the creation of Session objects. 

The following elements are specific to this protocol: 

IV:  A 16-byte initialization vector used for decrypting. 

Socket:  The TCP/IP or Bluetooth/RFCOMM socket used for receiving the Package (section 
3.2.1). 

State:  The current state of the Share Receiver. The state value can be one of the following. 

Value Meaning 

SetupSocket The object has received its Session from the SessionFactory, and is 
attempting to set up a Socket to the peer for transmission of the 
Package. 

ReceivingHeader The object's Socket is successfully set up and the object is now waiting for 
the Share header (section 2.2.2) over this socket. 

ReplyHeaderAndReceivingIV The Share header has been successfully received and the object is now 
transmitting the Reply header (section 2.2.3) and receiving the IV over 
this socket. 

ReceivingPackage The object has received the IV and is now receiving the encrypted OPC 
package over this socket. 

The following diagram shows the state transitions for the Share Receiver: 

 

Figure 4: Share receiver state transitions 

%5bMS-NFPB%5d.pdf


19 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

SymmetricKey:  A 128-bit AES key derived by taking the SHA256 hash of the Session object's 
SharedSecretKey field. 

3.3.2 Timers 

None. 

3.3.3 Initialization 

Inbound activations of the Share Receiver can arrive without any explicit user context. In order to 
support this role, the NFPB protocol and its services MUST be initialized as specified in [MS-NFPB] 
section 3.1.3. In addition, the TapAndSendFiles Activation (section 3.3.7.1) local event MUST be 
registered as a handler for Session Factory Service Activation messages ([MS-NFPB] section 
2.2.12) that contain the following elements: 

 An AppInfo structure with a PlatformQualifier field containing the "Global" UTF-8 string and an 

AppID field containing the "TapAndSendFiles" UTF-8 string. 

 The L (Launch) flag set. 

3.3.4 Higher-Layer Triggered Events 

The only higher-layer triggered event is the user creating a new instance of a ShareReceiver object. 

3.3.5 Message Processing Events and Sequencing Rules 

When the Share Receiver is in the ReceivingPackage state, all received data MUST be interpreted as 
16-byte blocks of encrypted OPC package. Each block MUST be decrypted by using a standard AES 

128 block cipher with the IV and SymmetricKey objects as input. 

3.3.6 Timer Events 

None. 

3.3.7 Other Local Events 

The following local events change the Share Receiver's State, as shown in the diagram in section 
3.3.1. 

 TapAndSendFiles activation 

 Session socket successfully set up 

 Socket closed due to fault 

 Socket gracefully closed 

The actions required by these events are specified in the sections that follow. 

3.3.7.1 TapAndSendFiles Activation Event 

When the underlying NFPB protocol indicates that a TapAndSendFiles Activation has occurred, a new 
ShareReceiver object (section 3.3.1) MUST be created with the following elements: 

 A SessionFactory object, starting with step 6 of Handling Session Factory Service Activation 
([MS-NFPB] section 3.1.5.6). 

%5bMS-NFPB%5d.pdf
%5bMS-NFPB%5d.pdf


20 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

 The Session object provided by the SessionFactory. 

 The State set to SetupSocket. 

The behavior for the SetupSocket state is specified in section 3.1.7. 

3.3.7.2 Session Socket Successfully Set Up Event 

When a Share Receiver's Socket has been successfully set up (section 3.1.7), the Share Receiver 
state MUST transition to ReplyHeaderAndReceivingIV (section 3.3.1), and the following actions MUST 
be performed: 

1. Synchronously read 2 bytes for the HeaderSize field of a Share header (section 2.2.2) from the 
Socket. 

2. Interpret the 2 bytes as a little-endian encoded 16-bit unsigned integer that specifies how many 
bytes to read for the rest of the message. 

3. If nonzero length, synchronously read (HeaderSize – 2) bytes from the Socket. 

Note  If the HeaderSize value is exactly 2, there is nothing to read. 

4. If the total received HeaderSize value is greater than or equal to 10 (0x0A, 0x00), bytes 3 

through 10 are to be interpreted as the TotalContentSizeEstimate field of the message, which is 
a little-endian encoded 64-bit unsigned integer. 

5. All bytes received in the Share header after the 10th byte MUST be ignored. 

6. Create a Reply header (section 2.2.3) with the following value: 

 HeaderSize: The value 2 in little-endian encoding (0x02, 0x00). No other value is valid. 

7. Set the Share Receiver's SymmetricKey element to a 128-bit key derived by taking the SHA256 
hash of the Session object's SharedSecretKey element. 

8. Prepare the Share Receiver to receive the IV as the next 16 bytes of the data stream. 

9. Send the Reply header over the Socket. 

10. The next 16 bytes received MUST be set as the Share Receiver's IV element. After these 16 bytes 
have been received, the state MUST transition to ReceivingPackage. 

3.3.7.3 Socket Closed Due to Fault Event 

The ShareReceiver object (section 3.3.1) MUST be abandoned. 

3.3.7.4 Socket Gracefully Closed Event 

If the Share Receiver state is not ReceivingPackage, the ShareReceiver object MUST be abandoned. 

If the Share Receiver state is ReceivingPackage, the received data can be decrypted and provided to 
the user. The ShareReceiver object MUST now be deactivated for external interactions. 

All decrypted data except the final three blocks MUST be interpreted as an OPC package. 

The final three blocks of decrypted data MUST be interpreted as a Share Protocol footer (section 
2.2.4), and only the Remainder field is to be interpreted as the final bytes of the actual OPC package. 



21 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

4 Protocol Examples 

This section describes the following scenarios as examples of the Near Field Proximity: Sharing 
Protocol: 

 Success scenario: The protocol running successfully to completion. 

 Abort scenario: The protocol running to failure. 

4.1 Success Scenario 

This scenario describes an example of the protocol running successfully to completion. It is assumed 
that the NFPB protocol is triggered by the underlying transport and runs to completion, producing a 
Session object on both the Share Sender (section 3.2.1) and Share Receiver (section 3.3.1) systems 

running this protocol. 

This example demonstrates the Share Sender sharing an OPC file with a known size of 500 bytes. 

4.1.1 Connect 

The Share Sender begins accepting socket connections (section 3.1.7.2). 

The Share Receiver begins socket connection attempts to the Share Sender (section 3.1.7.1). 

Two of the socket connections are successful within 700 milliseconds, and a third would have been 
successful at 2 seconds. The Share Sender sends the following Socket Connect header (section 
2.2.1) on the two successful socket connections.  

First connection (successful): 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

SessionID 

... 

0x01 0x0000 0 0x00 

Second connection (successful): 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

SessionID 

... 

0x04 0x0000 0 0x00 

Third connection (would have been successful, given enough time): 



22 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

SessionID 

... 

0x05 0x0000 0 0x00 

 

4.1.2 Accept 

The Share Receiver receives the Socket Connect header (section 2.2.1) for the two successful 
connections. After an implementation-defined delay, the Share Receiver selects one of the socket 
connections for which to send a Socket Connect header reply. This reply exactly matches the data 

received on that socket.  

The third connection, which would have been successful given enough time, did not complete before 
the Share Receiver made its selection. It is not possible to determine which connection types will be 
successful prior to their actually connecting. 

4.1.3 Share Header 

Upon receipt of the reply Socket Connect header (section 2.2.1), the Share Sender sends the Share 
header (section 2.2.2). The Share Sender has the size of the OPC package to be sent, so it sets the 
TotalContentSizeEstimate field of the Share header appropriately. In this case, the Share header 
contains the following values in byte order: 0x0A, 0x00, 0xF4, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 
0x00. The following packet diagram shows the values in little-endian 16-bit word order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

0x000A 0x01F4 

0x00000000 

0x0000 

 

4.1.4 Reply Header 

Upon receipt of the complete Share header (section 2.2.2), the Share Receiver responds with a Reply 
header (section 2.2.3). The Reply header contains no useful information in this version of the protocol 

and is provided for future versions of the protocol. The Reply header contains the following values: 
0x02, 0x00. The following packet diagram shows the values in little-endian 16-bit word order. 

0 
1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

0x0002 

 



23 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

4.1.5 Share Data 

Upon receipt of the Reply header (section 2.2.3), the Share Receiver starts streaming the IV () 
followed by the encrypted blocks of OPC data (except any remainder bytes that do not fill a full 16-

byte block; these are included instead within the Share Protocol footer). Once it is done streaming the 
main OPC data, it constructs the Share Protocol footer (section 2.2.4) and sends it on the socket, 
and then gracefully closes the socket. 

4.1.5.1 Base Case 

With the above base-case assumptions, the following OPC data is sent: 

IV (16 bytes) 

31 x Encrypted OPC data blocks (16 bytes each, 496 bytes total) 

Share Protocol footer (48 bytes) 

The Share Protocol footer contains the following values:  

Remainder (500 – 496 = 4 bytes)  

Zeros (43 bytes)  

RemainderLength: 0x04 (1 byte)  

The following packet diagram shows the Share Protocol footer with these values. 

0 1 2 3 4 5 6 7 8 9 1 0 1 2 3 4 5 6 7 8 9 2 0 1 2 3 4 5 6 7 8 9 3 0 1 

Remainder 

0x00000000 

(continued for 9 additional rows) 

0x000000 0x04 

4.1.5.2 511-Byte OPC Package 

In order to illustrate a corner block-size case, instead assume that the OPC package is 511 bytes: 

IV (16 bytes) 

31 x Encrypted OPC data blocks (16 bytes each, 496 bytes total) 

Share Protocol footer (48 bytes) 

The Share Protocol footer would contain the following values:  

Remainder (511 – 496 = 15 bytes)  

Zeros (32 bytes)  

RemainderLength: 0x0F (1 byte) 

The following packet diagram shows the Share Protocol footer with these values. 



24 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

0 1 2 3 4 5 6 7 8 9 1 0 1 2 3 4 5 6 7 8 9 2 0 1 2 3 4 5 6 7 8 9 3 0 1 

Remainder 

... 

... 

... 0x00 

0x00000000 

(continued for 6 additional rows) 

0x000000 0x0F 

4.1.5.3 512-Byte OPC Package 

In order to illustrate a case with even divisibility by the block size, instead assume that the OPC 
package is 512 bytes: 

IV (16 bytes)32 x Encrypted OPC data blocks (16 bytes each, 512 bytes total)Share Protocol footer 
(48 bytes) 

The Share Protocol footer would contain the following values:  

Remainder (512 – 512 = 0 bytes) Zeros (47 bytes) RemainderLength: 0x00 (1 byte) 

The following packet diagram shows the Share Protocol footer with these values. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

0x00000000 

(continued for 10 additional rows) 

0x000000 0x00 

 

4.2 Abort Scenario 

This scenario describes an example of the protocol running to failure due to the user on the Share 
Receiver declining a message to receive the OPC package. This makes the assumption that the NFPB 
protocol is triggered by the underlying transport and runs to completion, producing Session objects 
on both the Share Sender and Share Receiver systems running this protocol. After the Session 

objects are created, the user on the Share Receiver is given the opportunity to decline, and does so. 

In this example, the Share Sender is prepared to share an OPC file, but because it is declined, its 
length is ignored. 



25 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

4.2.1 Connect 

The Share Receiver begins accepting socket connections. See section 3.1.7.2. 

The Share Sender begins socket connection attempts to the Share Receiver. See section 3.1.7.1. 

The Share Sender sends the Socket Connect header (section 2.2.1) on each of the successful socket 
connections. 

4.2.2 Accept 

The Share Receiver receives the Socket Connect header (section 2.2.1) for the first successful 

connection. The Share Receiver sends the Socket Connect header reply on the first successful 
connection, but because the user has declined, the Abort flag is set. The Share Receiver then closes 
the socket gracefully, and the ShareReceiver object (section 3.3.1) is abandoned. 

4.2.3 Abort Received 

The Share Sender receives the Socket Connect header (section 2.2.1) reply with the Abort flag set, 
and so it closes all its sockets and abandons the Session object. 



26 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

5 Security 

5.1 Security Considerations for Implementers 

None. 

5.2 Index of Security Parameters 

None. 



27 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

6 Appendix A: Product Behavior 

The information in this specification is applicable to the following Microsoft products or supplemental 
software. References to product versions include released service packs. 

  

 Windows 8 operating system 

 Windows 8.1 operating system 

 Windows 10 operating system  

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears 
with the product version, behavior changed in that service pack or QFE. The new behavior also applies 
to subsequent service packs of the product unless otherwise specified. If a product edition appears 
with the product version, behavior is different in that product edition. 

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed 

using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or 
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not 
follow the prescription. 



28 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

7 Change Tracking 

No table of changes is available. The document is either new or has had no changes since its last 
release. 



29 / 29 

[MS-NFPS] - v20151016 
Near Field Proximity: Sharing Protocol 
Copyright © 2015 Microsoft Corporation 
Release: October 16, 2015 

8 Index

A 
 
Applicability 8 
 

C 
 
Capability negotiation 8 
Change tracking 28 
Client 
   overview 13 
Connection Type Enumeration message 12 
 

F 
 
Fields - vendor-extensible 9 
 

G 
 
Glossary 5 
 

I 
 
Implementer - security considerations 26 
Index of security parameters 26 
Informative references 6 
Introduction 5 
 

M 
 
Messages 
   Connection Type Enumeration 12 
   Connection Type Enumeration message 12 
   Reply Header 11 
   Reply Header message 11 
   Share Header 10 
   Share Header message 10 
   Share Protocol Footer 11 
   Share Protocol Footer message 11 
   Socket Connect Header 10 
   Socket Connect Header message 10 

   transport 10 
 

N 
 
Normative references 6 
 

O 
 
Overview (synopsis) 6 
 

P 
 
Parameters - security index 26 
Preconditions 8 
Prerequisites 8 
Product behavior 27 
Proxy 
   overview 13 
 

R 
 

References 6 
   informative 6 
   normative 6 
Relationship to other protocols 7 
Reply Header message 11 
 

S 
 
Security 
   implementer considerations 26 
   parameter index 26 
Server 
   overview 13 
Share Header message 10 
Share Protocol Footer message 11 
Socket Connect Header message 10 
Standards assignments 9 
 

T 
 
Tracking changes 28 
Transport 10 
 

V 
 
Vendor-extensible fields 9 
Versioning 8 

 


	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Socket Connect Header
	2.2.2 Share Header
	2.2.3 Reply Header
	2.2.4 Share Protocol Footer
	2.2.5 Connection Type Enumeration


	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.6 Timer Events
	3.1.7 Other Local Events
	3.1.7.1 Setting Up a Socket: When the Session is a Client
	3.1.7.2 Setting Up a Socket: When the Session is a Server


	3.2 Share Sender Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.6 Timer Events
	3.2.7 Other Local Events
	3.2.7.1 Session Provided
	3.2.7.2 Session Socket Successfully Set Up


	3.3 Share Receiver Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.5 Message Processing Events and Sequencing Rules
	3.3.6 Timer Events
	3.3.7 Other Local Events
	3.3.7.1 TapAndSendFiles Activation Event
	3.3.7.2 Session Socket Successfully Set Up Event
	3.3.7.3 Socket Closed Due to Fault Event
	3.3.7.4 Socket Gracefully Closed Event



	4 Protocol Examples
	4.1 Success Scenario
	4.1.1 Connect
	4.1.2 Accept
	4.1.3 Share Header
	4.1.4 Reply Header
	4.1.5 Share Data
	4.1.5.1 Base Case
	4.1.5.2 511-Byte OPC Package
	4.1.5.3 512-Byte OPC Package


	4.2 Abort Scenario
	4.2.1 Connect
	4.2.2 Accept
	4.2.3 Abort Received


	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

