

1 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

[MS-NFPB-Diff]:

Near Field Proximity: Bidirectional Services Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Revision Summary

Date
Revision
History

Revision
Class Comments

1/31/2013 1.0 New Released new document.

8/8/2013 2.0 Major Significantly changed the technical content.

11/14/2013 3.0 Major Significantly changed the technical content.

2/13/2014 4.0 Major Significantly changed the technical content.

5/15/2014 5.0 Major Significantly changed the technical content.

6/30/2015 6.0 Major Significantly changed the technical content.

10/16/2015 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 7.0 Major Significantly changed the technical content.

6/1/2017 8.0 Major Significantly changed the technical content.

12/1/2017 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/12/2018 9.0 Major Significantly changed the technical content.

3 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.3.1 Session Factory Service Activation .. 8
1.3.2 OOB Connector Service Activation .. 8
1.3.3 Session Activation... 9
1.3.4 Connection Validation .. 9

1.4 Relationship to Other Protocols .. 10
1.5 Prerequisites/Preconditions ... 11
1.6 Applicability Statement ... 11
1.7 Versioning and Capability Negotiation ... 11
1.8 Vendor-Extensible Fields ... 12

1.8.1 Service Descriptor Entries .. 12
1.8.2 AppInfo Platform Qualifiers .. 12
1.8.3 Session Activation and Acknowledgment Extensions .. 12

1.9 Standards Assignments ... 12

2 Messages ... 13
2.1 Transport .. 13
2.2 Message Syntax ... 13

2.2.1 Accept Header .. 13
2.2.2 AppInfo Structure ... 14
2.2.3 Extension Structure .. 15
2.2.4 OOB Connector Service ACK Message .. 15

2.2.4.1 OOB Attribute Header .. 18
2.2.4.2 OOB Attribute Type Constants .. 18
2.2.4.3 OOB Provisioning Settings Constants ... 19
2.2.4.4 OOB Device Info Attribute Format ... 19
2.2.4.5 OOB Provisioning Info Attribute Format ... 21
2.2.4.6 OOB Configuration Timeout Attribute Format .. 22

2.2.5 OOB Connector Service Activation Message .. 22
2.2.6 Role Compatibility Constants .. 25
2.2.7 Service Activation Header .. 25
2.2.8 Service Descriptor Message ... 26
2.2.9 Service Descriptor Structure .. 27
2.2.10 Session ACK Message .. 28
2.2.11 Session Activation Message .. 29
2.2.12 Session Factory Service Activation Message ... 31

3 Protocol Details ... 34
3.1 Peer Details ... 34

3.1.1 Abstract Data Model .. 34
3.1.1.1 NfpService ... 35
3.1.1.2 OOB Connector Object ... 35
3.1.1.3 Session Factory Object .. 37
3.1.1.4 Session Object .. 38

3.1.2 Timers .. 39
3.1.3 Initialization ... 40
3.1.4 Higher-Layer Triggered Events ... 40
3.1.5 Message Processing Events and Sequencing Rules .. 40

3.1.5.1 Service Descriptor Sequence .. 40
3.1.5.2 OOB Connector Exchange .. 41

4 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.5.3 Handling OOB Connector Service Activation Messages 42
3.1.5.4 Handling OOB Connector Service ACK Messages 43
3.1.5.5 Session Factory Exchange .. 43
3.1.5.6 Handling Session Factory Service Activation ... 44
3.1.5.7 Handling Session Activation .. 45
3.1.5.8 Handling Session ACK Messages ... 46
3.1.5.9 Handling the Accept Header ... 46

3.1.6 Timer Events .. 46
3.1.7 Other Local Events .. 47

4 Protocol Examples ... 48
4.1 Transport Activation and Initial Service Descriptor.. 48
4.2 Peer A Service Descriptor Received by Peer B .. 49
4.3 Peer B Service Descriptor Received by Peer A .. 53
4.4 Peer A Receives OOB Connector Service Activation Message, Responds with OOB

Connector Service ACK ... 55
4.5 Peer A Session Factory Service Activation Received by Peer B, Responds with Session

Activation ... 56
4.6 Peer B Session Activation Received by Peer A, Responds with Session ACK 57
4.7 Peer A Session ACK Received by Peer B, Begins Connection Validation 57
4.8 Peer B Accept Header Received by Peer A, Completes Connection Validation 58

5 Security ... 59
5.1 Security Considerations for Implementers ... 59
5.2 Index of Security Parameters .. 59

6 (Updated Section) Appendix A: Product Behavior.. 60

7 Change Tracking .. 61

8 Index ... 62

5 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1 Introduction

The Near Field Proximity: Bidirectional Services Protocol provides a way for devices such as
smartphones to discover services and version information on other devices. It provides a transport-
agnostic means of building up impromptu connections between peers, so it can be used on any
transport system where peers can subscribe to message types and publish messages based on those
types. A prototypical transport is Near Field Communication (NFC) [ECMA-340].

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

authentication: The ability of one entity to determine the identity of another entity.

base64 encoding: A binary-to-text encoding scheme whereby an arbitrary sequence of bytes is
converted to a sequence of printable ASCII characters, as described in [RFC4648].

big-endian: Multiple-byte values that are byte-ordered with the most significant byte stored in the
memory location with the lowest address.

binary large object (BLOB): A discrete packet of data that is stored in a database and is treated

as a sequence of uninterpreted bytes.

ChannelID: An 8-byte value used in message exchanges to identify the channel on which the next
message is published. It is generated by using cryptographically secure pseudo-random
numbers to make the chance of collision in the 64-bit address space unlikely.

domain: A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)
and host a member list that identifies all members of the domain, as well as optionally hosting

the Active Directory service. The domain controller provides authentication of members, creating
a unit of trust for its members. Each domain has an identifier that is shared among its members.
For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

encryption: In cryptography, the process of obscuring information to make it unreadable without
special knowledge.

Internet Protocol version 4 (IPv4): An Internet protocol that has 32-bit source and destination

addresses. IPv4 is the predecessor of IPv6.

Internet Protocol version 6 (IPv6): A revised version of the Internet Protocol (IP) designed to
address growth on the Internet. Improvements include a 128-bit IP address size, expanded
routing capabilities, and support for authentication and privacy.

KeepAlive timer: A method of tracking the currency of an instance of Session Factory or OOB
Connector object in the abstract data model. The timer is started when an object instance is

created, and it keeps track of the number of references to that instance by protocol clients.

When the number of client references reaches zero, the object is deleted.

key: In cryptography, a generic term used to refer to cryptographic data that is used to initialize a
cryptographic algorithm. Keys are also sometimes referred to as keying material.

key derivation: The act of deriving a cryptographic key from another value (for example, the
derivation of a cryptographic key from a password).

6 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

key exchange: A synonym for key establishment. The procedure that results in shared secret
keying material among different parties. Key agreement and key transport are two forms of key

exchange. For more information, see [CRYPTO] section 1.11, [SP800-56A] section 3.1, and
[IEEE1363] section 3.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

Media Access Control (MAC) address: A hardware address provided by the network interface
vendor that uniquely identifies each interface on a physical network for communication with
other interfaces, as specified in [IEEE802.3]. It is used by the media access control sublayer of
the data link layer of a network connection.

Near Field Communication (NFC): An international standard for short-range wireless,

contactless connectivity that provides intuitive, simple, and safe communication between
electronic devices. NFC is the technology on smartphones that makes proximity scenarios
possible. For example, it allows a user to wave the smartphone over a NFC-compatible device to
send information without needing to touch the devices together or go through multiple steps

setting up a connection.

network layer (L3): The third layer in the ISO/OSI reference model that provides the ability to

transfer variable length data sequences from a source host on one network to a destination host
on a different network while maintaining the quality of service (QoS) requested by the transport
layer.

organizationally unique identifier (OUI): A unique 24-bit string that uniquely identifies a
vendor, manufacturer, or organization on a worldwide l basis, as specified in [IEEE-OUI]. The
OUI is used to help distinguish both physical devices and software, such as a network protocol,
that belong to one entity from those that belong to another.

out-of-band (OOB): A process for authenticating a user where two communication channels are
used simultaneously between two devices or roles. A cellular network is an example of a channel
that is commonly used for performing out-of-band authentication.

peer-to-peer: A server-less networking technology that allows several participating network
devices to share resources and communicate directly with each other.

private key: One of a pair of keys used in public-key cryptography. The private key is kept secret
and is used to decrypt data that has been encrypted with the corresponding public key. For an

introduction to this concept, see [CRYPTO] section 1.8 and [IEEE1363] section 3.1.

pub/sub: Refers to publication/subscription, a design model in which publishers send notification
of events that are received by subscribers, which have registered for those events.

public key: One of a pair of keys used in public-key cryptography. The public key is distributed
freely and published as part of a digital certificate. For an introduction to this concept, see
[CRYPTO] section 1.8 and [IEEE1363] section 3.1.

publication: A message placed on the underlying transport along with a type identifier. Multiple
individual publication messages may be placed on the transport with the same type identifier.

Peers receive a published message if they have previously subscribed to it by type.

subscription: A registration performed by a subscriber to specify a requirement to receive events,
future messages, or historical data.

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping

track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

7 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Uniform Resource Identifier (URI): A string that identifies a resource. The URI is an addressing
mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI):

Generic Syntax [RFC3986].

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple

purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must

be used for generating the UUID.

UTF-8: A byte-oriented standard for encoding Unicode characters, defined in the Unicode standard.
Unless specified otherwise, this term refers to the UTF-8 encoding form specified in
[UNICODE5.0.0/2007] section 3.9.

Wi-Fi Direct (WFD): A standard that allows Wi-Fi devices to connect to each other without
requiring a wireless access point (WAP). This standard enables WFD devices to transfer data

directly among each other resulting in significant reductions in setup.

winning peer: A peer that has the preference to be the server in future message exchanges. This
term applies to the relevant message exchange between the two peers.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[RFC2045] Freed, N., and Borenstein, N., "Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies", RFC 2045, November 1996, http://www.rfc-
editor.org/rfc/rfc2045.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[WF-P2P1.2] Wi-Fi Alliance, "Wi-Fi Peer-to-Peer (P2P) Technical Specification v1.2", https://www.wi-

fi.org/wi-fi-peer-to-peer-p2p-technical-specification-v12

Note There is a charge to download the specification.

[WF-WSC2.0.2] Wi-Fi Alliance, "Wi-Fi Simple Configuration Technical Specification v2.0.2", August
2011, https://www.wi-fi.org/wi-fi-simple-configuration-technical-specification-v202

Note There is a charge to download the specification.

8 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1.2.2 Informative References

[ECMA-340] ECMA International, "Near Field Communication Interface and Protocol (NFCIP-1)", 2nd
edition, ECMA-340, December 2004, http://www.ecma-international.org/publications/files/ECMA-

ST/Ecma-340.pdf

[IEEE-OUI] IEEE Standards Association, "IEEE OUI Registration Authority", February 2007,
http://standards.ieee.org/regauth/oui/oui.txt

[MS-NFPS] Microsoft Corporation, "Near Field Proximity: Sharing Protocol".

[NSA] National Security Agency, "NSA Suite B Cryptography", November 2009,
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml

[RFC4380] Huitema, C., "Teredo: Tunneling IPv6 over UDP through Network Address Translations
(NATs)", RFC 4380, February 2006, http://www.ietf.org/rfc/rfc4380.txt

1.3 Overview

Although the underlying transport for the Near Field Proximity: Bidirectional Services Protocol is
undefined, the protocol models the transport as a publication/subscription system to exchange
messages between peers. The transport is modeled with the assumption that it is either active or
inactive. Typically, there is user-intent to activate the transport, but that is not required. When active,
the transport transmits all local publications to peer subscribers on the other side of the transport, and
it does so just once. When inactive, the transport does not transmit or receive any data.

Peers can use the information in protocol messages to activate services. A Service Descriptor
contains a list of services and versions that are defined by this protocol. Each service is identified by a
UUID, which peers can use to send activation messages for the service. To exchange Service
Descriptor messages, each peer both publishes and subscribes to the service.

Some services can be inherently client/server, so that upon reception of a Service Descriptor
message with a compatible service, a client can immediately activate this service by replying with an

activation message.

Other services can be inherently peer-to-peer and use client preference ID fields to determine the
specific peer that will begin the next phase of service activation. Each peer randomly generates an ID
to provide highly probable uniqueness and includes the ID in each Service Descriptor. The peer that
generates the numerically higher ID is the winning peer, and it sends the next message for a given
service. A specific peer can only be winning or losing with respect to another specific peer.

When a client application establishes a connection over the network layer (L3), it validates the

connection by exchanging handshake data with the server, as described in section 1.3.4 Connection
Validation.

1.3.1 Session Factory Service Activation

Either peer can choose to activate the remote peer's Session Factory service in order to establish a

single-instanced session between an application running locally and another instance of the same

application running on the remote peer. Optionally, a peer can support launching or acquiring the
application in addition to, or instead of, establishing the single-instanced session between two
instances of the application.

1.3.2 OOB Connector Service Activation

A winning peer can activate the remote peer's OOB Connector service in order to provide out-of-
band (OOB) transport options for the peers to connect. These connection options allow the Session
Factory service a simple means of address resolution.

9 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1.3.3 Session Activation

The following diagram shows a generic sequence of session activation.

Figure 1: Session activation sequence

1.3.4 Connection Validation

After session activation (section 1.3.3) and subsequent L3 establishment, the client validates the
connection by exchanging handshake data with the server, as shown in the following diagram. The
handshake data consists of an Accept Header (section 2.2.1).

10 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 2: Connection validation

1.4 Relationship to Other Protocols

The following diagram shows the relationship of the Near Field Proximity: Bidirectional Services
Protocol with other protocols.

Figure 3: Relationship to other protocols

11 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The Service Descriptor does not depend on any specific transport, and as such, does not technically
depend on any other protocol.

The OOB Connector service depends only on the Service Descriptor for service discovery,
versioning, and winner/loser role-determination. The OOB Connector service uses the

publication/subscription transport for activation and acknowledgment. The exchanged data is
combined with data exchanged by the Session Factory service by higher-level protocols to establish
single-instanced connections between applications.

The Session Factory service depends only on the Service Descriptor for service discovery and
versioning; it does not depend on the Service Descriptor for winner/loser role-determination. The
Session Factory service performs winner/loser role-determination in the activation message
exchange rather than the Service Descriptor message exchange. The Session Factory service uses

the publication/subscription transport for winner/loser role-determination, activation, and
acknowledgement. As described previously, the exchanged data in activation and acknowledgment
scenarios is combined with data exchanged by the OOB Connector service by higher-level protocols
to establish single-instanced connections between applications. These connections are typically
established over TCP/IP or RFCOMM/Bluetooth. However, the OOB Connector service does not

mandate a specific transport. The higher-level protocol can determine, at runtime, which transports to

use to establish the session's connection.

The Near Field Proximity: Sharing Protocol [MS-NFPS] is an example of a higher-level protocol.

1.5 Prerequisites/Preconditions

Peers communicate by using compatible networking technologies such as TCP/IP over wireless

networks. There are no other preconditions or prerequisites for this protocol to function between
peers. There are no presupposed security associations or connections required between peers except
those that are required by the unspecified pub/sub transport link layer.

1.6 Applicability Statement

The Near Field Proximity: Bidirectional Services Protocol is well-suited to function on top of transports

such as Near Field Communication (NFC) [ECMA-340]. This protocol has been designed for linking two
applications for the purposes of simple real-time sharing of files. This protocol is designed to function
in cross-platform, cross-domain, and non-domain configurations.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

▪ Security and Authentication Methods: The Service Descriptor neither requires nor provides
any security or authentication methods. The OOB Connector service and Session Factory
service contain specific embedded key exchange algorithms that can be used by higher-level
protocols to provide a level of security for continuing communication over an OOB channel.

However, the specific algorithms are attached to specific versions of the Session Factory service;
there is not a more granular means of negotiating algorithms.

▪ Capability Negotiation: This protocol performs explicit capability negotiation by using the
Service Descriptor structure (section 2.2.9).

12 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1.8 Vendor-Extensible Fields

1.8.1 Service Descriptor Entries

Each entry within a Service Descriptor message (section 2.2.8) is a Service Descriptor structure
(section 2.2.9), which contains a service activation UUID that uniquely identifies each service. Vendors
that wish to define a new service MUST generate a new UUID for the service.

1.8.2 AppInfo Platform Qualifiers

AppInfo platform qualifiers SHOULD be defined by each vendor that implements any of the following
protocols:

▪ The Session Factory protocol

▪ The Launch App protocol

▪ The Launch Compatible App protocol

A vendor SHOULD define its qualifier based on a domain name, like "fabrikam.com", which is owned
by the vendor, to ensure that no other vendor uses the same value. The platform qualifier is specified
by an AppInfo structure (section 2.2.2).

1.8.3 Session Activation and Acknowledgment Extensions

The Session Factory protocol has an extension pattern that can be used by implementations of this
protocol. If an implementation defines an extension, a random 8-byte value SHOULD be used to
ensure that no other implementation uses the same value. 8 bytes is enough to make collisions
unlikely.

1.9 Standards Assignments

None.

13 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2 Messages

2.1 Transport

As stated earlier in this document, a specific transport is not defined. However, the general

requirements for a transport are as follows:

Transports on which this protocol is built MUST be able to provide reliable packet-based delivery of
messages. The transport MUST be able to provide the size of each message, independently of its
payload, to the component that implements the protocol.

Messages are published and subscribed over the transport on channels that are analogous to ports in
TCP/IP. Well-known channel names allow two peers to establish initial communication. If a bi-

directional exchange is required, the first message SHOULD contain an ID that allows the receiver to
return a message on a channel based on that ID.

In this document, all multi-message exchanges except the final message use an 8-byte identifier to

denote the channel on which the following message MUST be published. This identifier is referred to as
a ChannelID. ChannelIDs MUST be generated by using cryptographically secure pseudo-random
numbers to reduce the likelihood of collisions. A collision can result in a protocol failure, which means
that the exchange MUST be manually attempted again. With Near Field Communication (NFC) as the

typical transport, the user is required to tap or swipe the devices together again. However, with 64
bits of ChannelID address space, the chance of collision is unlikely.

Some transports, like Near Field Communication (NFC), require that the channel be encoded in
characters that are allowed in a URI. When that is the case, the channel MUST be encoded by using
base64 [RFC2045], with the exception that padding characters MUST be omitted. ChannelIDs that are
8 bytes therefore result in channels that are exactly 11 characters long.

2.2 Message Syntax

None of the messages in this protocol has alignment requirements; that is, there are no padding bytes

for forcing specific alignment. Additionally, fields are made as small as possible to optimize for fast
transmission over low-bit-rate transports. Unless explicitly specified otherwise, all fields use big-

endian encoding.

There is no single common header for all messages in this protocol; however, there are some common
structures within messages, which are described in the sections that follow.

2.2.1 Accept Header

The Accept header is sent by a client application to the server after a session is activated over an L3
connection. The server MUST validate the handshake data and return the same Accept header to the
client on the connected socket.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SessionID

...

ConnectionType

14 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

SessionID (8 bytes): This MUST be the same value that the client generated and sent in the
ReplyChannelID field of the preceding Session Activation message (section 2.2.11). The

SessionID verification ensures that the applications that tapped are the ones that are connected
over L3.

ConnectionType (4 bytes): Indicates the type of transport that the server and client connected
over. This MUST be set to one of the following values.

Value Connection Type

0x00000000 Wi-Fi Direct (WFD)

0x00000001 Link Local (IPv6)

0x00000002 Link Local (IPv4)

0x00000004 Bluetooth

2.2.2 AppInfo Structure

The AppInfo structure is used by platforms implementing the Session Factory protocol, the Launch
App protocol, or the Launch Compatible App protocol. The AppInfo structure format is specified as
follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PlatformQualifierSize PlatformQualifier (variable)

...

...

AppIDSize AppID (variable)

...

...

PlatformQualifierSize (1 byte): The length of the PlatformQualifier field, in bytes. The value
MUST be greater than zero and less than or equal to 20.

PlatformQualifier (variable): A UTF-8 string that specifies the namespace for the application
identifier AppID. This usually refers to an application store or application environment within an
OS platform. The string MUST NOT be null-terminated or contain embedded nulls.

AppIDSize (1 byte): The length of the AppID field, in bytes. The value MUST be nonzero.

AppID (variable): A platform-dependent identifier for a specific application. Platforms SHOULD use
the smallest identifier size that is practical in order to produce compact designs. This field contains
arbitrary binary data up to the length specified in the AppIDSize field.

A message containing an AppInfo structure that does not meet any of the preceding field criteria
MUST be ignored.

15 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.3 Extension Structure

The Extension structure can be used by platforms implementing the Session Factory protocol. The
Extension structure format is specified as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ExtensionType

...

ExtensionDataSize ExtensionData (variable)

...

...

ExtensionType (8 bytes): A platform-dependent value that identifies the type of the extension. A
platform that defines an extension SHOULD declare and publish a random number to identify that
extension.

ExtensionDataSize (1 byte): The length of the ExtensionData field in bytes. The value MUST be
nonzero. Extensions not meeting this criterion MUST be ignored.

ExtensionData (variable): A platform-dependent BLOB of data for a specific extension. Platforms

SHOULD use the smallest data size that is practical in order to produce compact designs. This field
contains arbitrary binary data up to the length specified in the ExtensionDataSize field.

2.2.4 OOB Connector Service ACK Message

The OOB Connector Service ACK message is the acknowledgment reply to the OOB Connector
Service Activation message (section 2.2.5). The OOB Connector Service ACK message format is
specified as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WiFiDirectAddress (16 bytes)

...

...

...

LinkLocalAddress (16 bytes)

...

...

...

16 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

IPv4LinkLocalAddress (16 bytes)

...

...

...

ProximityAddress (16 bytes)

...

...

...

GlobalAddress (16 bytes)

...

...

...

TeredoAddress (16 bytes)

...

...

...

BlueToothMACAddress

...

WiFiDirectListenBlobLength WiFiDirectListenBlob (variable, optional)

...

...

WiFiDirectAddress (16 bytes): A randomly-generated IPv6 link-local address. If the OOB Connector
protocol results in a new WFD layer 2 link, the publisher MUST assign this address to the link in
order to allow layer 3 connectivity.

Use of this value is optional. It SHOULD be set to zero if not used.

LinkLocalAddress (16 bytes): The best link-local IPv6 address assigned to the publisher. "Best" is
defined in order of decreasing precedence of the following: connectivity, Wi-Fi infrastructure links,

17 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

transmit bit rate, receive bit rate, and non-tunnel links. If no link-local address is suitable, the
value of this field SHOULD be zero.

IPv4LinkLocalAddress (16 bytes): The best IPv4 link-local address assigned to the publisher in V4-
MAPPED format. "Best" is defined in order of decreasing precedence of the following: connectivity,

Wi-Fi infrastructure links, transmit bit rate, receive bit rate, and non-tunnel links. If no IPv4 link-
local address is suitable, the value of this field SHOULD be zero.

This value provides for connectivity over networks that do not support link-local IPv6 traffic, such
as some legacy Wi-Fi networks.

ProximityAddress (16 bytes): An IPv6 address assigned to the transport link that this message is
published on. Not all pub/sub transports support IP connectivity; an example that can support IP
is TransferJet. If the underlying transport does not support IP, the value of this field SHOULD be

zero.

GlobalAddress (16 bytes): The "best" global IPv6 address assigned to the publisher. "Best" is
defined in order of decreasing precedence of the following: connectivity, non-Teredo-type

[RFC4380], transmit bit rate, receive bit rate, and, non-tunnel links. If no global address is
suitable, the value of this field SHOULD be zero.

TeredoAddress (16 bytes): The"best" Teredo-type IPv6 address assigned to the publisher. "Best" is

defined in order of decreasing precedence of the following: connectivity, Teredo-type, transmit
bitrate, and receive bitrate. If no Teredo address is suitable, the value of this field SHOULD be
zero.

The Teredo Tunneling protocol is a technology that allows Internet nodes to have global IPv6
addressing capability tunneled over IPv4 networks.

BlueToothMACAddress (8 bytes): The Media Access Control (MAC) address of the best Bluetooth
adapter available to the publisher. "Best" is defined by the platform; many platforms only allow

zero or one Bluetooth adapter. If no Bluetooth adapter is available, the value of this field SHOULD
be zero.

WiFiDirectListenBlobLength (2 bytes): The length, in bytes, of the WiFiDirectListenBlob field
that follows. If the value of this field is zero, the WiFiDirectListenBlob field is not present.

WiFiDirectListenBlob (variable, optional): The WFD listen data, in the following format. All values
for this structure are in little-endian format, unless specified otherwise.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

OOBAttributeHeader

... OOBDeviceInfoAttribute (variable)

...

...

OOBProvisioningInfoAttribute (variable)

...

...

18 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

OOBConfigurationTimeoutAttribute

OOBAttributeHeader (6 bytes): The OOB Attribute header (section 2.2.4.1).

OOBDeviceInfoAttribute (variable): OOB data in Device Info Attribute format (section
2.2.4.4).

OOBProvisioningInfoAttribute (variable): OOB data in Provisioning Info Attribute format
(section 2.2.4.5).

OOBConfigurationTimeoutAttribute (4 bytes): OOB data in Configuration Timeout Attribute
format (section 2.2.4.6).

2.2.4.1 OOB Attribute Header

The OOB Attribute header defines the version and size of either the WiFiDirectListenBlob in an
OOB Connector Service ACK message (section 2.2.4) or the WiFiDirectConnectBlob in an OOB

Connector Service Activation message (section 2.2.5). The OOB Attribute header is specified as
follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalDataLength Length

Version OOBType

TotalDataLength (2 bytes): The length, in bytes, of the OOB data BLOB, which can be either a
WiFiDirectListenBlob or a WiFiDirectConnectBlob, depending on the value of the OOBType field.

Length (2 bytes): The length, in bytes, of the following fields.

Version (1 byte): A value identifying the version of OOB data. This value MUST be 0x10.

OOBType (1 byte): A value identifying the type of OOB data. This value MUST be one of the
following.

OOB type Description

0x01 OOB provisioning listener data

0x02 OOB provisioning connector data

2.2.4.2 OOB Attribute Type Constants

The OOB Attribute Type constants specify the identifiers of possible formats of OOB attribute data.

Attribute ID Attribute type

0 OOB status

1 OOB device info

2 OOB provisioning info

19 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Attribute ID Attribute type

3 OOB group ID

4 OOB listen channel

5 OOB configuration timeout

6-220 Reserved

2.2.4.3 OOB Provisioning Settings Constants

The OOB Provisioning Settings constants specify the bit settings of possible provisioning options for
the OOB Provisioning Info Attribute format (section 2.2.4.5).

Bit(s) Meaning

0 Create new group

1 Enforce group type setting

2 Desired group type

3-7 Reserved

Bit 0: This bit is set to 1 if the provisioning information can be used for forming a new group with the
target peer-to-peer device; otherwise, the information is used for joining an existing group.

Bit 1: This bit is set to 1 to enforce the desired group type setting in Bit 2; otherwise, the desired
group type setting is simply a preference.

Bit 2: This bit is set to 0 if the desired group type is transient and set to 1 if the desired group type is

persistent.

2.2.4.4 OOB Device Info Attribute Format

The OOB Device Info Attribute format defines device information in either the WiFiDirectListenBlob

in an OOB Connector Service ACK message (section 2.2.4) or the WiFiDirectConnectBlob in an OOB
Connector Service Activation message (section 2.2.5). The OOB Device Info Attribute Format is
specified as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AttributeID Length P2PDeviceAddress

...

... ConfigMethods PrimaryDeviceType

...

... DeviceCapabilities

20 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

DeviceName (variable)

...

...

AttributeID (1 byte): The type of OOB attribute, as defined in section 2.2.4.2. This value is 0x01
for the OOB Device Info Attribute format.

Length (2 bytes): The length, in bytes, of the following fields.

P2PDeviceAddress (6 bytes): An identifier that uniquely references a peer-to-peer device [WF-
P2P1.2].

ConfigMethods (2 bytes): The Wi-Fi Simple Configuration (WSC) methods [WF-WSC2.0.2] that are
supported by this device. Byte ordering within the ConfigMethods field is big-endian.

PrimaryDeviceType (8 bytes): The primary device type of the peer-to-peer device in the following
format. Byte ordering within the PrimaryDeviceType field is big-endian.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CategoryID OUI

... SubcategoryID

CategoryID (2 bytes): The vendor-independent main device category identifier. The predefined
values for this field and the corresponding values for the SubcategoryID field are shown in
the following table. Note that there is no way to indicate a vendor-specific main device
category. The organizationally unique identifier (OUI) [IEEE-OUI] value in the OUI field

applies only to the interpretation of the subcategory value.

Main device category CategoryID Device subcategory SubcategoryID

Computer 1 PC 1

 Server 2

 Media Center 3

Input Device 2

Printers, Scanners, Faxes, and Copiers 3 Printer 1

 Scanner 2

Camera 4 Digital Still Camera 1

Storage 5 NAS 1

Network Infrastructure 6 Access point 1

 Router 2

 Switch 3

Displays 7 Television 1

21 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Main device category CategoryID Device subcategory SubcategoryID

 Electronic Picture Frame 2

 Projector 3

Multimedia Devices 8 DAR 1

 PVR 2

 MCX 3

 DMR 4

Gaming Devices 9 Xbox 1

 Xbox360 2

 Playstation 3

Telephone 10 Windows Mobile 1

OUI (4 bytes): The OUI of the device. For the predefined values specified in the CategoryID
field, the Wi-Fi Alliance byte values 0x00 0x50 0xF2 0x04 are used.

SubcategoryID (2 bytes): The vendor-specific device subcategory identifier. The predefined

values for this field are specified in the preceding table.

DeviceCapabilities (1 byte): The capabilities of the peer-to-peer device.

DeviceName (variable): A UTF-8 string that specifies the friendly name of the peer-to-peer device.
Byte ordering within the DeviceName field is big-endian.

2.2.4.5 OOB Provisioning Info Attribute Format

The OOB Provisioning Info Attribute format defines provisioning settings in the
WiFiDirectListenBlob in an OOB Connector Service ACK message (section 2.2.4). The OOB
Provisioning Info Attribute format is specified as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AttributeID Length ProvisioningSettings

SelectedConfigMethod PINLength A

...

...

AttributeID (1 byte): The type of OOB attribute, as defined in section 2.2.4.2. This value is 0x02 for
the OOB Provisioning Info Attribute format.

Length (2 bytes): The length, in bytes, of the following fields.

ProvisioningSettings (1 byte): One or more provisioning bit settings, as defined in section 2.2.4.4.

SelectedConfigMethod (2 bytes): The Wi-Fi Simple Configuration (WSC) method [WF-WSC2.0.2]
that was selected by a peer-to-peer device for provisioning.

22 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

PINLength (1 byte): The length, in bytes, of the following PINData field. This field contains a value
from 0 to 8 bytes. If it is zero, the PINData field is not present.

A - PINData (variable, optional): An array of bytes that represent a PIN to be used for
provisioning.

2.2.4.6 OOB Configuration Timeout Attribute Format

The OOB Configuration Timeout Attribute format defines the listener timeout in the
WiFiDirectListenBlob in an OOB Connector Service ACK message (section 2.2.4). The OOB

Configuration Timeout Attribute format is specified as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AttributeID Length ListenerConfigTimeout

AttributeID (1 byte): The type of OOB attribute, as defined in section 2.2.4.2. This value is 0x05 for
OOB Configuration Timeout Attribute format.

Length (2 bytes): Contains the length of the following fields in the attribute in bytes. This value
MUST be 1.

ListenerConfigTimeout (1 byte): The amount of time, in units of 100 milliseconds, this peer-to-

peer device will spend waiting for WFD communication after an OOB data transfer. Valid timeout
values range from zero to 255.

2.2.5 OOB Connector Service Activation Message

The OOB Connector Service Activation message is a reply to the Service Descriptor message

(section 2.2.8). It is used to establish a paired set of OOB Connector objects (section 3.1.1.2)
between two peers. If the local SourceID is greater than the ActivationChannelID in the received

Service Descriptor message, an OOB Connector Service Activation message MUST be published
on the ActivationChannelID of the Session Activation message (section 2.2.11), unless the OOB
Connector object for that remote service is already created and active.

The OOB Connector Service Activation message format is specified as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ServiceActivationHeader (28 bytes)

...

...

...

ReplyChannelID

...

WiFiDirectAddress (16 bytes)

23 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

...

...

...

LinkLocalAddress (16 bytes)

...

...

...

IPv4LinkLocalAddress (16 bytes)

...

...

...

ProximityAddress (16 bytes)

...

...

...

GlobalAddress (16 bytes)

...

...

...

TeredoAddress (16 bytes)

...

...

...

Reserved

BlueToothMACAddress

24 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

...

WiFiDirectConnectBlobLength WiFiDirectConnectBlob (variable, optional)

...

...

ServiceActivationHeader (28 bytes): A Service Activation header (section 2.2.7). The
ServiceActivationUUID MUST be {E46EDA50-9B5D-41F1-B89E-327B5EA38B16}. The
ServiceVersion MUST be 1.

ReplyChannelID (8 bytes): This value is also the identifier of the OOB Connector object (section
3.1.1.2). It MUST be generated at random by the publisher. The publisher of this message MUST
subscribe to the ReplyChannelID prior to publishing this message to ensure that replies are not
missed.

WiFiDirectAddress (16 bytes): A randomly generated IPv6 link-local address. If the OOB Connector
protocol results in a new WFD layer 2 link, the publisher MUST assign this address to the link in

order to allow layer 3 connectivity.

Use of this field is OPTIONAL. It MAY be ignored and the value SHOULD be set to zero if unused.

LinkLocalAddress (16 bytes): The best link-local IPv6 address assigned to the publisher. "Best" is
defined in order of decreasing precedence of the following: connectivity, Wi-Fi infrastructure links,
transmit bit rate, receive bit rate, and non-tunnel links. If no link-local address is suitable, the
value of this field SHOULD be zero.

IPv4LinkLocalAddress (16 bytes): The best IPv4 link-local address assigned to the publisher in V4-

mapped format. "Best" is defined in order of decreasing precedence of the following: connectivity,
Wi-Fi infrastructure links, transmit bit rate, receive bit rate, and non-tunnel links. If no IPv4 link-
local address is suitable, the value of this field SHOULD be zero.

This value provides for connectivity over networks that do not support link-local IPv6 traffic, such
as some legacy Wi-Fi networks.

ProximityAddress (16 bytes): The IPv6 address assigned to the transport link that this message is
published on. Not all pub/sub transports support IP connectivity; an example that can support IP

is TransferJet. If the underlying transport does not support IP, the value of this field SHOULD be
zero.

GlobalAddress (16 bytes): The best global IPv6 address assigned to the publisher. "Best" is defined
in order of decreasing precedence of the following: connectivity, non-Teredo-type [RFC4380],
transmit bit rate, receive bit rate, and non-tunnel links. If no global address is suitable, the value
of this field SHOULD be zero.

TeredoAddress (16 bytes): The best Teredo-type IPv6 address assigned to the publisher. "Best" is
defined in order of decreasing precedence of the following: connectivity, Teredo-type, transmit bit

rate, and receive bit rate. If no Teredo address is suitable, the value of this field SHOULD be zero.

The Teredo Tunneling protocol is a technology that allows Internet nodes to have global IPv6
addressing capability tunneled over IPv4 networks.

Reserved (4 bytes): This field MUST be set to zero when sent and MUST be ignored when received.

BlueToothMACAddress (8 bytes): The Media Access Control (MAC) address of the best Bluetooth

adapter available to the publisher. "Best" is defined by the platform; many platforms only allow

25 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

zero or one Bluetooth adapter. If no Bluetooth adapter is available, the value of this field SHOULD
be zero.

WiFiDirectConnectBlobLength (2 bytes): The length, in bytes, of the WiFiDirectConnectBlob
field that follows. If the value of this field is zero, the WiFiDirectConnectBlob field is not

present.

WiFiDirectConnectBlob (variable, optional): The WFD connect data, in the following format. All
values for this structure are in little-endian format, unless specified otherwise.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

OOBAttributeHeader

... OOBDeviceInfoAttribute

...

OOBAttributeHeader (6 bytes): The OOB Attribute header (section 2.2.4.1).

OOBDeviceInfoAttribute (variable): OOB data in Device Info Attribute format (section

2.2.4.4).

2.2.6 Role Compatibility Constants

The Role Compatibility constants SHOULD<1> be used to check the value of the Role field in a
Session Factory Service Activation message (section 2.2.12) for compatibility with the role of the

receiver of that message.

Value in Role field Compatible role value

0x01 (peer role) 0x01 (peer role)

0x02 (host role) 0x03 (client role)

0x03 (client role) 0x02 (host role)

2.2.7 Service Activation Header

The Service Activation header is common to all service activation messages. The Service
Activation header format is specified as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SourceID

...

ServiceActivationUUID (16 bytes)

...

26 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

...

...

ExtendedInfo ServiceVersion

SourceID (8 bytes): The identifier of the system that published the activation message. The value of
the SourceID field MUST be identical to the value of the ActivationChannelID field that the
sending system also published within its Service Descriptor message (section 2.2.8). This

identifier is not used as the reply ChannelID for this message; it is used for debugging and role
determination. If the activation message requires a reply message, the reply ChannelID MUST be
specified in the body of the specific activation message rather than in this header.

ServiceActivationUUID (16 bytes): A UUID that specifies the service being activated.

ExtendedInfo (2 bytes): This field is primarily provided for 32-bit alignment of the Service

Activation header. All service protocols defined in this specification require that this field SHOULD

be zero; however, it can safely be ignored by receivers. Other service protocols might require
other uses for this field.

ServiceVersion (2 bytes): An unsigned integer that specifies the version of the service being
activated. The value MUST be nonzero; service activations containing a zero service version MUST
be ignored. The first version of all service protocols MUST be 1. A peer that supports version X of
a given service MUST support activations with versions 1 through X.

2.2.8 Service Descriptor Message

The Service Descriptor message MUST be published and subscribed at the following well-known
channel: "Windows.windows.com/SD".

The length of the Service Descriptor message MUST be provided by the transport layer in order to
allow the determination of the number of Service Descriptor (SD) structures (section 2.2.9)

contained within it. Each SD structure MUST be fully decoded before being accepted, and if a partial
structure occurs at the end of the Service Descriptor message, it MUST be ignored.

The Service Descriptor message format is specified as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ActivationChannelID

...

ServiceDescriptorArray (variable)

...

...

ActivationChannelID (8 bytes): The source identifier of the system that published the Service
Descriptor message. This value SHOULD be used as the reply ChannelID by the receiver for any

activation messages.

27 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

ServiceDescriptorArray (variable): Some number of SD structures. The SD structure format is
specified in section 2.2.9.

2.2.9 Service Descriptor Structure

The Service Descriptor (SD) structure specifies a service to be activated and provides for explicit
capability negotiation. An array of SD structures is specified in a Service Descriptor message
(section 2.2.8). The SD structure format is specified as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ServiceActivationUUID (16 bytes)

...

...

...

ExtendedInfo1 ServiceVersion

ExtendedInfo2 ExtendedPayloadLength

ExtendedPayload (variable, optional)

...

...

ServiceActivationUUID (16 bytes): The UUID of the specific service being activated.

ExtendedInfo1 (2 bytes): Service-specific extension information. Each service protocol SHOULD
define what this field is used for.

ServiceVersion (2 bytes): A positive integer that specifies the version of the service being
activated. The value SHOULD be nonzero; service activations containing a zero service version
MUST be ignored. The first version of all service protocols MUST be 1. A peer that claims to
support version X of a given service MUST support activations with versions 1 through X.

ExtendedInfo2 (2 bytes): Service-specific extension information. Each service protocol SHOULD
define what this field is used for.

ExtendedPayloadLength (2 bytes): The length in bytes of additional service-specific extension
information in the ExtendedPayload field. Each service protocol SHOULD define whether or not
the Extended Payload is used. If this field is nonzero, but there are not enough bytes left in this

message, then this last entry is ill-formed and MUST be ignored.

ExtendedPayload (variable, optional): Additional service-specific extension information. Each

service protocol defines whether or not this information is used, and if so, how it is used.

The service listed in the SD MUST have a positive integer ServiceVersion value associated with
it. If an implementation specifies a service with version X in its published SD, the implementation
MUST be compatible with all version numbers less than or equal to X. If an implementation cannot
support prior versions, it MUST specify a new ServiceActivationUUID, in effect creating a new

28 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

service. A Service Activation header (section 2.2.7) contains the UUID of the service to activate
and the service version number.

2.2.10 Session ACK Message

The Session ACK message is the acknowledgment/reply to the Session Activation message (section
2.2.11). The transport-provided length of this message MUST be used by the receiver in order to
determine the existence or number of extension structures that follow the non-optional portions of the
message. The publisher MUST NOT publish messages that are less than 75 bytes long to a Session

Activation message's ReplyChannelID. The subscriber MUST drop all Session ACK messages that
are less than 75 bytes long.

The Session ACK message format is specified as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ECDHPublicKeyMagicNumber

ECDHPublicKeyLength

ECDHXParam

ECDHYParam

TCPPort RFCOMMPort Reserved1 (optional)

Reserved2 (optional)

Reserved3 (optional)

Reserved4 (optional) ExtensionCount (optional)

ExtensionStructures (variable, optional)

...

ECDHPublicKeyMagicNumber (4 bytes): The 4-byte value 0x45, 0x43, 0x4B, and 0x31. This
indicates that the Elliptic Curve Diffie-Hellman (ECDH) key exchange follows the P256 convention
[NSA].

ECDHPublicKeyLength (4 bytes): A 32-bit, unsigned integer in little-endian format that specifies
the key length in bytes. This value MUST be 0x00000020.

ECDHXParam (4 bytes): A 32-bit, unsigned integer that specifies the X coordinate of a single-use,

generated ECDH public key. The private key portion MUST NOT be transmitted and is used in the
local Session object (section 3.1.1.4) with the ECDH Public Key received from the Session
Activation message (section 2.2.11).

ECDHYParam (4 bytes): A 32-bit, unsigned integer that specifies the Y coordinate of a single-use,

generated ECDH public key. The private key portion MUST NOT be transmitted and is used in the
local Session object with the ECDH Public Key received from the Session Activation message.

TCPPort (2 bytes): The TCP port that the publisher's session is listening on.

29 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

RFCOMMPort (1 byte): The RFCOMM port that the publisher's session is listening on.

Reserved1 (1 byte, optional): If present, this field MUST be set to zero when sent and MUST be

ignored when received.

Reserved2 (4 bytes, optional): If present, this field MUST be set to zero when sent and MUST be

ignored when received.

Reserved3 (4 bytes, optional): If present, this field MUST be set to zero when sent and MUST be
ignored when received.

Reserved4 (2 bytes, optional): If present, this field MUST be set to zero when sent and MUST be
ignored when received.

ExtensionCount (2 bytes, optional): The number of Extension structures (section 2.2.3) in the
ExtensionStructures field. Use of this field is platform specific. A subscriber MUST ignore

extensions that it does not process.

If this message is between 75 and 87 bytes long (inclusive), the value of this field is treated as

zero.

ExtensionStructures (variable, optional): Zero or more Extension structures. Any incorrectly
formatted Extension structures MUST be ignored by the subscriber.

2.2.11 Session Activation Message

The Session Activation message is a reply to the Session Factory Service Activation message
(section 2.2.12). It is used to establish a paired set of Session objects (section 3.1.1.4) between two
peers. For each active Session Factory object (section 3.1.1.3) on the receiver, a Session
Activation message MUST be published on the Session Factory Service Activation message's

ReplyChannelID, unless the Session object is already created and active.

The transport-provided length of this message MUST be used by the receiver in order to determine the
existence or number of extension structures that follow the non-optional portions of the message. The

publisher MUST NOT publish messages to a Session Factory Service Activation message's
ReplyChannelID that are less than 96 bytes long. The subscriber MUST drop all Session Activation
messages that are less than 96 bytes long.

The Session Activation message format is specified as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SourceID

...

ActivatedSessionFactoryID

...

ReplyChannelID

...

ECDHPublicKeyMagicNumber

30 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

ECDHPublicKeyLength

ECDHXParam

ECDHYParam

Reserved1

Reserved2

Reserved3 ExtensionCount

ExtensionStructures (variable)

...

...

SourceID (8 bytes): The publisher identification to the subscriber. The publisher of this message
MUST set this field to the value of the ActivationChannelID field specified in the Service
Descriptor message that is the source identifier of the publisher. This allows a created Session

object for the peers to reference an OOB Connector object (section 3.1.1.2) for the same two
peers.

ActivatedSessionFactoryID (8 bytes): The identifier of the active Session Factory object that
was activated by the Session Factory Service Activation message.

ReplyChannelID (8 bytes): The identifier of the newly created Session object. It MUST be
generated at random by the publisher. The publisher of this message MUST subscribe to the

ReplyChannelID prior to publishing this message to ensure that replies are not missed. The

publisher MUST handle Session ACK messages (section 2.2.10) on this channel.

ECDHPublicKeyMagicNumber (4 bytes): The 4-byte value 0x45, 0x43, 0x4B, and 0x31. This
indicates that the Elliptic Curve Diffie-Hellman (ECDH) key exchange follows the P256 convention
[NSA].

ECDHPublicKeyLength (4 bytes): A 32-bit, unsigned integer in little-endian format that specifies
the key length in bytes. This value MUST be 0x00000020.

ECDHXParam (4 bytes): A 32-bit, unsigned integer that specifies the X coordinate of a single-use,
generated ECDH public key. The private key portion MUST NOT be transmitted and is held in the
local Session object for later use when the Session ACK message is received.

ECDHYParam (4 bytes): A 32-bit, unsigned integer that specifies the Y coordinate of a single-use,
generated ECDH public key. The private key portion MUST NOT be transmitted and is held in the
local Session object for later use when the Session ACK message is received.

Reserved1 (4 bytes): This field MUST be set to zero when sent and MUST be ignored when received.

Reserved2 (4 bytes): This field MUST be set to zero when sent and MUST be ignored when received.

Reserved3 (2 bytes): This field MUST be set to zero when sent and MUST be ignored when received.

ExtensionCount (2 bytes): The number of Extension structures (section 2.2.3) in the
ExtensionStructures field. Use of this field is platform-specific. A subscriber MUST ignore
extensions that it does not process.

31 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

If this message is between 96 and 107 bytes long (inclusive), the value of this field is treated as
zero.

ExtensionStructures (variable, optional): Zero or more Extension structures. Any incorrectly
formatted Extension structures MUST be ignored by the subscriber.

If the Session Factory Service Activation message to which this Session Activation message
is a response contains a Role field, the following additional requirements for this message are
defined:<2>

▪ The input Role field value SHOULD be checked, as specified in section 3.1.5.6.

▪ The Extension structure in the ExtensionStructures field SHOULD be structured as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ExtensionType

...

ExtensionDataSize ExtensionData

ExtensionType (8 bytes): The value 0x89A14CC3AB4CF821.

ExtensionDataSize (1 byte): The value 0x01.

ExtensionData (1 byte): The compatible role value according to the Role Compatibility
constants (section 2.2.6).

2.2.12 Session Factory Service Activation Message

The Session Factory Service Activation message is a reply to the Service Descriptor message
(section 2.2.8). It is used to establish a paired set of Session objects (section 3.1.1.4) between two
peers. For each active Session Factory object (section 3.1.1.3) on the receiver, a Session
Activation message (section 2.2.11) MUST be published on the ReplyChannelID of the Session
Factory Service Activation message, unless the Session object is already created and active.

The Session Factory Service Activation message format is specified as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ServiceActivationHeader (28 bytes)

...

...

...

ReplyChannelID

...

32 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

ClientPreference

Reserved1 L Reserved2

B AppInfoStructures (variable)

...

...

Role

ServiceActivationHeader (28 bytes): A Service Activation header (section 2.2.7). The
ServiceActivationUUID value SHOULD<3> be {F1DEBC56-CFBA-4129-983B-7D79499D1A7D}
for a peer role or {DAA42D35-1323-485A-8B34-3B86E416E6EC} for a host or client role. If it is

the latter, the Role field MUST be included in this message, as specified later in this section.

The ServiceVersion value in the Service Activation header MUST be 1.

ReplyChannelID (8 bytes): This value is also the identifier of the Session Factory object (section
3.1.1.3). It MUST be generated at random by the publisher. The publisher of this message MUST
subscribe to the ReplyChannelID prior to publishing this message to ensure that replies are not
missed. The publisher MUST handle Session Activation messages on this channel.

ClientPreference (4 bytes): The preference of the sender to be the peer that actually sends the
subsequent Session Activation message. Values higher than 0x1000 indicate a preference to
have Session objects be the client role. Values lower than 0x1000 indicate a preference to have
Session objects be the server role.

Reserved1 (7 bits): This field MUST be set to zero by publishers and MUST be ignored by
subscribers.

L (1 bit): The Launch flag. The presence of this flag indicates the publisher's intent for the application

on the subscriber side to be launched or activated if it is not already. If this flag is not set, the
subscriber MUST NOT trigger the launching of the application specified in the AppInfo structure
(section 2.2.2).

Reserved2 (3 bytes): This field MUST be set to zero by publishers and MUST be ignored by
subscribers.

AppInfoCount (1 byte): The number of AppInfo structures that follow this field. The publisher
MUST provide 1 or more AppInfo structures. If this field is zero, the entire message MUST be

ignored by the subscriber.

AppInfoStructures (variable): An array of AppInfo structures. Typically the first one uniquely
refers to the application on the platform that published this message. The publisher can provide
application information that refers to the application on other platforms for the purposes of

interoperation.

Role (1 byte, optional): The session role of the application. This field SHOULD<4> be included in

this message if the application role is either host or client. The following values are valid.

Value Description

0x02 Host role

0x03 Client role

33 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

34 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3 Protocol Details

3.1 Peer Details

This section defines peer roles in the Near Field Proximity: Bidirectional Services Protocol.

In a socket-based connection between two peer applications, one peer has the role of client, and the
other peer has the role of server. The roles are distinguished as follows:

▪ The client is the peer that sends the Session Activation message (section 2.2.11) and waits for
the Session ACK message (section 2.2.10).

▪ The server is the peer that receives the Session Activation message and sends the Session
ACK message.

Possible states and state transitions of the client and server roles are described in section 3.1.1.4.

In an OOB connection between two peers, one peer has the role of connector, and the other peer has
the role of listener. The roles are distinguished as follows:

▪ The connector is the peer that sends the OOB Connector Service Activation message (section
2.2.5) and waits for the OOB Connector Service ACK message (section 2.2.4).

▪ The listener is the peer that receives the OOB Connector Service Activation message and
sends the OOB Connector Service ACK message.

Possible states and state transitions of the connector and listener roles are described in section
3.1.1.2.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The abstract data model defines OOB Connector objects, Session Factory objects, and Session
objects. When the underlying transport is triggered, an exchange is performed by peers that can

result in new instances of these objects: each peer can create an OOB Connector object, one in the
listener role and one in the connector role. If both sides have active Session Factory objects that are
compatible, then each peer creates a Session object, one in the client role and one in the server role.

Each Session object references one OOB Connector object in order to provide connectivity options
to higher-level protocols.

If there is only one peer with an active Session Factory object, but it specifies the L (Launch) flag in
the Session Factory Service Activation message (section 2.2.12), then the other peer can create a

Session Factory object on behalf of a soon-to-be-launched application. This provides for the ability to
establish OOB connections at the same time as launching an application.

Note that the abstract interface notation (Public) indicates that the abstract data model element can
be directly read or written from outside this protocol by higher-level protocols. For example, the Near
Field Proximity: Sharing Protocol [MS-NFPS] uses members of the Session and OOB Connector
objects to construct a socket for the purposes of sharing file(s).

35 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.1.1 NfpService

The Near Field Proximity service NfpService encapsulates the entire state for the protocols described
by this document.

SourceID (8 bytes): A random number that uniquely identifies the NfpService instance.

OOBConnectorList: A list of active OOB Connector objects.

SessionFactoryList (Public): A list of active Session Factory objects.

HandshakeData: The SessionID and ConnectionType handshake data from the Accept Header
(section 2.2.1) that was used to confirm the connection.

3.1.1.2 OOB Connector Object

An OOB Connector object encapsulates the state for an OOB connection between two peers.

Role: The role of the OOB Connector object. One peer is the connector, and the other peer is the
listener. The roles are distinguished as follows:

▪ The connector is the peer that sends the OOB Connector Service Activation message

(section 2.2.5) and waits for the OOB Connector Service ACK message (section 2.2.4).

▪ The listener is the peer that receives the OOB Connector Service Activation message and
sends the OOB Connector Service ACK message.

State: The current state of the OOB Connector object. The meaning of the state depends on the
object role; this allows an asymmetric client/server message exchange. For the connector role, the
state can be one of the following.

Value Meaning

WaitingForAck The object has published the OOB Connector Service Activation message (section
2.2.5) and is waiting to receive the OOB Connector Service ACK message (section
2.2.4).

Incomplete The OOB Connector protocol timed out. The object is still alive to facilitate object continuity
across multiple taps.

Ready The object has received the OOB Connector Service ACK message and has all the
information required to facilitate communications between the two peers.

The following is a diagram that shows the state transitions for the connector role of an OOB
Connector object.

36 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 4: OOB Connector state transitions: Connector role

For the listener role, the state can be one of the following.

Value Meaning

WaitingForTransmit The object has received the OOB Connector Service Activation message, has
published the OOB Connector Service ACK message to the transport, and is waiting
for the transport to indicate the ACK message has been transmitted to a remote peer

Incomplete The OOB Connector protocol timed out. The object is still alive to facilitate object
continuity across multiple taps.

Ready This object has received notification of successful transmission of the ACK message
and has all the information required to facilitate communication between two peers.

The following is a diagram that shows the state transitions for the listener role of an OOB
Connector object.

Figure 5: OOB Connector state transitions: Listener role

RemoteSourceID: This identifies the peer to which a given OOB Connector object is connected.
For the connector, this is copied from the ActivationChannelID field in the received Service
Descriptor message (section 2.2.8). For the listener, this is copied from the SourceID field in

37 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

the Service Activation header (section 2.2.7) of the received OOB Connector Service
Activation message.

OOBConnectorID: For the connector, this is randomly generated and used in the OOB
Connector Service Activation message. For the listener, this is copied from the received OOB

Connector Service Activation message.

WFDPeerConnected: A Boolean value that indicates whether the OOB Connector object has an
active Wi-Fi Direct (WFD) connection to the peer.

Figure 6: OOB Connector WFDPeerConnected transitions

LocalAddresses (Public Read): The list of local addresses collected by the OOB Connector
object from the local machine and sent to the remote machine via either the Activation or ACK
message.

RemoteAddresses (Public Read): The list of remote addresses received by the OOB Connector
object from the remote machine via either the Activation or ACK message.

ReferenceCount: A count of references to the OOB Connector object by either Session objects
or KeepAlive timers.

3.1.1.3 Session Factory Object

A Session Factory object encapsulates a factory for socket-based connections between set(s) of peer
applications.

SessionList: A list of Session objects (section 3.1.1.4) that are a part of this Session Factory
object.

AppID (Public Read/Write): A UTF-8 string that identifies the contract or interface for this

Session Factory object. This Session Factory will only create and link up Session objects
with other Session Factory objects that provide exactly the same AppID in the AppInfo field
of the Session Factory Service Activation message (section 2.2.12).

AlternateIDList (Public Read/Write): A list of alternate AppIDs for other platforms that the
Session Factory will also attempt to activate.

Launch (Boolean): TRUE if the L (Launch) flag SHOULD be set in the appropriate Session

Factory Service Activation message. FALSE if the flag SHOULD be cleared.

SessionFactoryID (8 bytes): A random number that uniquely identifies this instance of Session
Factory object.

TcpPort (Public Read): The TCP/IP Port on which the Session Factory is listening and can
accept Session sockets after a Session Activation (section 2.2.11)/ Session ACK (section
2.2.10) exchange.

RfcommPort (Public Read): The RFCOMM/Bluetooth Port on which the Session Factory is

listening and can accept Session sockets after a Session Activation/Session ACK exchange.

38 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

ReferenceCount (Public Write): A count of references to the Session Factory object by either
the client application or KeepAlive timers.

3.1.1.4 Session Object

A Session object encapsulates the state for a socket-based connection between two peer applications.

Role (Public Read): The role of the Session object. One peer is the client, and the other peer is the
server. The roles are distinguished as follows:

▪ The client is the peer that sends the Session Activation message (section 2.2.11) and waits

for the Session ACK message (section 2.2.10).

▪ The server is the peer that receives the Session Activation message and sends the Session
ACK message.

State (Public Read/Write): The current state of the Session object. The state can be one of the
following.

Value Meaning

WaitingForAck A client Session object transitions to this state immediately prior to publishing the
Session Activation message.

WaitingForTransmit A server Session object transitions to this state when beginning to publish the
Session ACK message.

Ready The Session object is ready to be used by an application for peer-to-peer
communication. A client Session object transitions to this state after receiving the
Session ACK message. A server Session object transitions to this state after
successfully transmitting the Session ACK message.

Terminated The Session object has been terminated by the application, or it timed out.

The following shows the possible state transitions for the client role of a Session object.

Figure 7: Session state transitions: Client role

The following shows the possible state transitions for the server role of a Session object.

Figure 8: Session state transitions: Server role

39 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

SessionID: For the client, this is randomly generated and used in the Session Activation message.
For the server, this is copied from the ReplyChannelID field of the received Session Activation

message. The server uses this ID to publish the Session ACK message.

RemoteSessionFactoryID (8 bytes): The SessionFactoryID of the remote peer this Session object

is connected to. For the client, this is copied from the ReplyChannelID field of the received
Session Factory Service Activation message (section 2.2.12). For the server, this is copied
from the ActivatedSessionFactoryID field of the received Session Activation message.

RemoteTcpPort (Public Read): The TCP/IP port on which the remote Session Factory is listening
and can accept Session sockets after a Session Activation/Session ACK exchange.

RemoteRfcommPort (Public Read): The RFCOMM/Bluetooth port on which the remote Session
Factory is listening and can accept Session sockets after a Session Activation/Session ACK

exchange.

PrivateKey: The private key used in an Elliptic Curve Diffie-Hellman (ECDH) exchange to derive a
shared key. The client and server have different private keys and do not share them with anyone.

PublicKey: The public key (linked with the PrivateKey) used in an Elliptic Curve Diffie-Hellman
(ECDH) exchange to derive a shared key. The client and the server have different public keys and
exchange them in the Session Activation and Session ACK messages.

SharedSecretKey (Public Read): The key derived from the ECDH key exchange. This key is not
published and SHOULD remain a shared secret between the server and clients. The key can be
provided to the application on each side so that it can provide a level of authentication/encryption
over the Session link.

ReferencedOOBConnector: A link to the OOB Connector object that holds OOB connection
information for the two peers linked by the Session object. When present, this represents a
reference count on the OOB Connector object.

3.1.2 Timers

The following timers are used by this protocol.

SessionProtocolTimer: An independent timer for each Session object (section 3.1.1.4), which

causes the Session object to time out if its State is not Ready.

The legal range for the SessionProtocolTimer timeout value is 8-60 seconds.<5>

OOBConnectorProtocolTimer: An independent timer for each OOB Connector object, which is
started each time an OOB Connector object State transitions into WaitingForTransmit or
WaitingForACK. If the timer fires before the object State transitions to Ready, the protocol is
incomplete and the object State transitions to Incomplete.

The legal range for the OOBConnectorProtocolTimer timeout value is 8-60 seconds.<6>

The following timers illustrate abstract data model object lifetime issues, but they are not
necessary in all implementations:

OOBConnectorKeepAliveTimer: An independent timer for each OOB Connector object (section
3.1.1.2), which is started each time an OOB Connector object State transitions into Incomplete.
If it fires before the object State transitions out of Incomplete, the initialization reference SHOULD
be released.<7> If there are no other references to the object, the object is destroyed.

SessionFactoryKeepAliveTimer: An independent timer for each Session Factory object (section

3.1.1.3), which is started when a Session Factory object is created. If it fires before a client
takes ownership of the object, the Session Factory object SHOULD BE deleted.<8>

40 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.3 Initialization

The NfpService MUST be initialized prior to being useful to any higher-level protocol; initializing at
system startup is sufficient. On initialization:

▪ A subscription MUST be made on a Service Descriptor message (section 2.2.8) well-known
channel.

▪ A SourceID MUST be randomly generated.

▪ A subscription for Session Activation messages (section 2.2.11) MUST be made by using the
SourceID as the ChannelID.

▪ A local Service Descriptor message MUST be constructed, which will be published as required,
based on higher-layer triggered events:

▪ The message MUST use the SourceID of the NfpService.

▪ The message MUST contain one Service Descriptor (SD) structure (section 2.2.9) for the

OOB Connector service with the following:

▪ ServiceActivationUUID: {E46EDA50-9B5D-41F1-B89E-327B5EA38B16}

▪ ServiceVersion: 1

▪ ExtendedInfo1: Zeros

▪ ExtendedInfo2: Zeros

▪ ExtendedPayloadLength: Zero

▪ The Service Descriptor message MUST contain one SD structure for Session Factory Service
Activation with the following values:

▪ ServiceActivationUUID: {F1DEBC56-CFBA-4129-983B-7D79499D1A7D}

▪ ServiceVersion: 1

▪ ExtendedInfo1: Zeros

▪ ExtendedInfo2: Zeros

▪ ExtendedPayloadLength: Zero

3.1.4 Higher-Layer Triggered Events

Higher-layer protocols use this protocol by creating Session Factory objects. When an active

Session Factory object is created, the NfpService MUST ensure that its local Service Descriptor
(section 2.2.9) is published to the transport. Higher-layer protocols like the Near Field Proximity:
Sharing Protocol [MS-NFPS] can also register to handle launching of applications that can use the
created socket connection. The implementation for this is not specified.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Service Descriptor Sequence

The following list defines the required actions of the NfpService if an incoming Service Descriptor

message (section 2.2.8) is received on a transport link:

41 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

▪ The local Service Descriptor (SD) structure (section 2.2.9) MUST be published, unless it has
already been sent on the current active transport link.

▪ The local SD MUST NOT be published twice on any one active transport link.

▪ If the incoming message contains an SD structure with an OOB Connector service UUID as

specified in section 2.2.9, the OOB Connector exchange MUST be followed as specified in section
3.1.5.2.

▪ If the incoming message contains an SD structure with a Session Factory service UUID and an
OOB Connector service UUID as specified in section 2.2.9, the Session Factory exchange MUST
be followed as specified in section 3.1.5.5.

3.1.5.2 OOB Connector Exchange

The following sequence defines the required actions of the NfpService if a Service Descriptor
message (section 2.2.8) received on the transport link contains an SD structure with a valid OOB
Connector service UUID as specified in section 2.2.9:

1. If the received ActivationChannelID is equal to the SourceID of the local NfpService, then this

sequence MUST be stopped: Steps 2 and later MUST NOT occur.

2. If the received ActivationChannelID is greater than or equal to the SourceID of the local
NfpService, then this sequence MUST be stopped: Steps 3 and later MUST NOT occur.

Note The remote peer is the one that continues the OOB Connector exchange.

3. A new OOB Connector object SHOULD be created in the NfpService list with the following
attributes, unless one already exists with a RemoteSourceID equal to the ActivationChannelID
field of the received Service Descriptor message:

1. Role: Connector

2. RemoteSourceID: The received ActivationChannelID

3. OOBConnectorID: This ID is randomly generated.

4. WFDPeerConnected: FALSE

4. If the OOB Connector object has the listener role, then this sequence MUST be stopped: Steps 5
and later MUST NOT occur.

5. Reset the following OOB Connector object variables:

1. State: WaitingForAck

2. LocalAddresses: The list of local addresses collected from the local machine.

6. If the OOB Connector object's WFDPeerConnected field is equal to FALSE, construct a new
WFD connect BLOB for the local machine.

7. Subscribe to the OOB Connector Service ACK message (section 2.2.4) on the OOB Connector
object's OOBConnectorID.

8. Construct an OOB Connector Service Activation message (section 2.2.5):

1. Set the ServiceActivationHeader, WiFiDirectConnectBlobLength, and
WiFiDirectConnectBlob fields.

2. Use the OOB Connector object's OOBConnectorID element to set the ReplyChannelID
field.

42 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3. Use the OOB Connector object's LocalAddresses element to set the various Address fields.

9. Publish the OOB Connector Service Activation message on the received

ActivationChannelID.

10. If the OOBConnectorProtocolTimer (section 3.1.2) has not yet fired for this OOB Connector

object, stop the timer and decrement the OOB Connector object's ReferenceCount element by
1.

11. Start the OOBConnectorProtocolTimer for this OOB Connector object.

12. Increment the OOB Connector object's ReferenceCount element by 1.

3.1.5.3 Handling OOB Connector Service Activation Messages

The following sequence defines the required actions of the NfpService if an OOB Connector Service
Activation message (section 2.2.5) is received on the transport link on the SourceID of the
NfpService.

1. A new OOB Connector object SHOULD be created in the NfpService's list with the following
attributes, unless one already exists with a RemoteSourceID equal to the SourceID field in the

Service Activation header (section 2.2.7) within the received message:

1. Role: Listener

2. RemoteSourceID: The SourceID field in the Service Activation header within the received
message.

3. WFDPeerConnected: FALSE

2. If the OOB Connector object has the connector role, then this sequence MUST be stopped: Steps
5 and later MUST NOT occur.

3. Reset the following OOB Connector object variables:

1. State: WaitingForTransmit

2. OOBConnectorID: Copy this value from the ReplyChannelID field of the received message.

3. LocalAddresses: The list of local addresses collected from the local machine.

4. RemoteAddresses: Copy this value from the various Address fields of the received
message.

4. If the OOB Connector object's WFDPeerConnected field is equal to FALSE, construct a new
WFD listen BLOB for the local machine.

5. If the OOB Connector object's WFDPeerConnected field is equal to FALSE, the NfpService can
attempt to use the WFD connect BLOB to start listening for WFD OOB pairing connections.

6. Construct an OOB Connector Service ACK message (section 2.2.4):

1. Set the WiFiDirectListenBlobLength and WiFiDirectListenBlob fields as specified in
section 2.2.4.

2. Use the OOB Connector object's LocalAddresses to set the various address fields.

7. Publish the OOB Connector Service ACK message on the received ReplyChannelID.

43 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

If the transport link indicates that this message is transmitted prior to the
OOBConnectorProtocolTimer expiring for this OOB Connector object, then the OOB Connector

object's State moves to Ready.

1. If the OOBConnectorProtocolTimer has not yet fired for this OOB Connector object, stop the

timer and decrement the OOB Connector ReferenceCount by 1.

2. Start the OOBConnectorProtocolTimer for this OOB Connector object.

3. Increment the OOB Connector ReferenceCount by 1.

3.1.5.4 Handling OOB Connector Service ACK Messages

The following sequence defines the required actions of the NfpService if an OOB Connector Service
ACK message (section 2.2.4) is received on the transport link on the OOBConnectorID ChannelID of
a specific OOB Connector object:

1. If the OOB Connector object's State is NOT WaitingForAck, then this sequence MUST be

stopped: Steps 2 and later MUST NOT occur.

2. Reset the following OOB Connector object variables:

1. State: Ready

2. RemoteAddresses: Copy this value from the various Address fields of the received
message.

3. If the OOB Connector object's WFDPeerConnected field is equal to FALSE, the NfpService can
attempt to use the received WFD listen BLOB and the previously sent WFD connector BLOB to
initiate a WFD OOB pairing connection.

3.1.5.5 Session Factory Exchange

The following sequence defines the required actions of the NfpService if a Service Descriptor

message (section 2.2.8) is received on the transport link with both a valid OOB Connector service
UUID and a valid Session Factory service UUID. Both MUST be present because the Session

Factory service relies on the OOB Connector exchange.

For each Session Factory object (section 3.1.1.3) in the NfpService SessionFactoryList where the
context of the system indicates that the user intends to use the Session Factory to link with the
Peer, the following can be performed:

1. Construct a Session Factory Service Activation message (section 2.2.12):

1. Set the Service Activation header (section 2.2.7), ClientPreference, and Reserved fields.

2. Use the Session Factory object's SessionFactoryID to set the ReplyChannelID field in the

message.

3. If the context of the system indicates that the user wants to have the peer launch and/or

acquire an application able to handle the Session connection, then the L (Launch) flag can be
set.

4. Use the Session Factory object's AppID and AlternateIDList to add one or more AppInfo
structures (section 2.2.2) to the message.

2. Ensure that a subscription is made on the ReplyChannelID (also known as the

SessionFactoryID) that handles Session Activation messages (section 2.2.11).

3. Publish the Session Factory Service Activation message on the lower layer transport.

44 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.5.6 Handling Session Factory Service Activation

The following sequence defines the required actions of the NfpService if a Session Factory Service
Activation message (section 2.2.12) is received on the transport link on the SourceID of the

NfpService. For each Session Factory object (section 3.1.1.3) in the NfpService
SessionFactoryList:

1. If the received message does not contain an AppInfo structure (section 2.2.2) with the local
platform qualifier and the Session Factory object's AppID field, then this sequence MUST be
aborted.

Note Although the AppID string is platform-dependent, a binary comparison can be performed.

1. If the received ClientPreference field is greater than the local client preference, then this

sequence MUST be aborted.

2. If the received ReplyChannelID field is greater than the Session Factory object's
SessionFactoryID, then this sequence MUST be aborted.

3. If a Session object (section 3.1.1.4) can be found in the Session Factory object's SessionList
with a State equal to Ready and a RemoteSessionFactoryID equal to the received
ReplyChannelID field, then this sequence MUST be aborted.

4. If the Session Factory Service Activation message that is received contains a Role field, its
value SHOULD<9> be checked for compatibility according to the Role Compatibility constants
(section 2.2.6). If the Role value is incompatible, then this sequence MUST be aborted.

5. A higher-level protocol can begin at this step.

6. Create a new Session object and add it to the Session Factory object's SessionList with the
following attributes:

1. Role: Client

2. State: WaitingForAck

3. SessionID: This is randomly generated.

4. RemoteSessionFactoryID: Set to the ReplyChannelID field of the received message.

5. PrivateKey/PublicKey: Generate 256-bit key pair using the Elliptic-Curve-Diffie-Hellman
(ECDH) P256 convention [NSA].

6. SharedSecretKey: Zeroed.

7. Attempt to get a reference link to the OOB Connector object indexed by the SourceID field in

the Service Activation header (section 2.2.7) within the received Session Factory Service
Activation message.

If this is not yet available, it MUST be set if it becomes available prior to the SessionProtocolTimer
expiration for this Session object.

1. Start the SessionProtocolTimer for this Session object.

2. Construct a Session Activation message (section 2.2.11):

1. Set the SourceID and various Reserved fields.

2. Set the ExtensionCount and ExtensionStructures fields. If the Session Factory Service
Activation message that is received contains a Role field, the Extension structure in the
ExtensionStructures field SHOULD be formatted as specified in section 2.2.11.

45 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3. Use the Session Factory object's SessionFactoryID to set the ActivatedSession
FactoryID field.

4. Use the Session object's SessionID to set the ReplyChannelID field.

5. Use the Session object's PublicKey to set the ECDHPublicKeyMagicNumber field.

3. Subscribe to Session ACK messages (section 2.2.10) using the Session object's SessionID as
the ChannelID.

4. Publish the Session Activation message to the received ReplyChannelID.

When the transport indicates that this message has been transmitted, the Session object's State
moves to Ready.

3.1.5.7 Handling Session Activation

The following sequence defines the required actions of the NfpService if a Session Activation

message (section 2.2.11) is received on the transport link on the ReplyChannelID of a specific
Session Factory object (section 3.1.1.3):

1. If a Session object (section 3.1.1.4) can be found in the Session Factory object's SessionList

with a State equal to Ready and a RemoteSessionFactoryID equal to the received
ActivatedSessionFactoryID field, then this sequence MUST be aborted.

2. Create a new Session object and add it to the Session Factory object's SessionList with the
following attributes:

1. Role: Server

2. State: WaitingForTransmit

3. SessionID: Set to the received ReplyChannelID

4. RemoteSessionFactoryID: Set to the ActivatedSessionFactoryID field of the received

message

5. PrivateKey/PublicKey: Generate 256-bit key pair using the Elliptic-Curve-Diffie-Hellman
(ECDH) P256 convention [NSA].

6. SharedSecretKey: Derive using the SHA256 key derivation algorithm with the above
PrivateKey and PublicKey pair and the ECDH Public Key field of the received message.

3. Start the SessionProtocolTimer for this Session object.

4. Construct a Session ACK message (section 2.2.10):

1. Set the Reserved and Extension fields.

2. Use the Session object's PublicKey to set the ECDH Public Key field.

3. Use the Session Factory object's TcpPort to set the TCP Port field.

4. Use the Session Factory object's RfcommPort to set the RFCOMM Port field.

5. Publish the Session ACK message to the received ReplyChannelID.

If the transport link indicates that this message is transmitted prior to the SessionProtocolTimer
expiring for this Session object, then the Session object's State moves to Ready.

The Session object can then be used by higher-level protocols to create connections to the peer.

46 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.5.8 Handling Session ACK Messages

The following sequence defines the required actions of the NfpService if a Session ACK message
(section 2.2.10) is received on the transport link on the SessionID ChannelID of a specific Session

object (section 3.1.1.4):

1. If the Session object's State is not WaitingForAck, then this sequence MUST be aborted.

2. Derive the SharedSecretKey using the SHA256 key derivation algorithm (see P256 curve in
[NSA]) with the Session object's PrivateKey and PublicKey pair and the
ECDHPublicKeyMagicNumber field of the received message.

3. The TCP Port field of the received message is copied to the Session object.

4. The RFCOMM Port field of the received message is copied to the Session object.

5. The Session object's State moves to Ready.

6. The Session object can be used by higher-level protocols to create connections to the peer.

3.1.5.9 Handling the Accept Header

The following sequence defines the required actions following the activation of the session:

1. The server MUST listen on transports according to information that was exchanged with the client
in earlier steps of the protocol.

2. The client MUST attempt to connect to the server on all the transports that the server is listening
on.

3. The server chooses the best connection and accepts it.

4. On connection establishment, the client MUST send an Accept Header (section 2.2.1) to the

server.

5. On receipt of the Accept Header, the server MUST validate the SessionID from the Accept
Header by comparing it to the ReplyChannelID that it received from the client in the Session
Activation message (section 2.2.11).

6. If the IDs match, the server MUST send the Accept Header back to the client. If the IDs do not
match, the server MUST abort the connection.

7. The client MUST validate the Accept Header received from the server by comparing it to the

Accept Header it sent before. If the Accept Headers match, the negotiation is complete;
otherwise, the client MUST abort the connection.

3.1.6 Timer Events

The following timer events are associated with the timers defined by this protocol (section 3.1.2).

SessionProtocolTimer: If this timer fires when the associated Session object (section 3.1.1.4)
State is WaitingForAck or WaitingForTransmit, the object transitions to the Terminated state.
This Session object is not usable by higher-level protocols. If this timer fires when the Session
object State is Ready, the timer is ignored.

OOBConnectorProtocolTimer: If this timer fires when the associated OOB Connector object
(section 3.1.1.2) State is WaitingForAck or WaitingForTransmit, the object State transitions to

Incomplete. If this timer fires when the OOB Connector object State is any other value, the
timer is ignored.

47 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

OOBConnectorKeepAliveTimer: If this timer fires before the associated OOB Connector object
State transitions out of Incomplete, the reference logged at initialization SHOULD be released.

If there are no other references to the object, the object SHOULD be destroyed.

SessionFactoryKeepAliveTimer: An independent timer for each Session Factory object

(section 3.1.1.3), which is started when a Session Factory object is created. If it fires before a
client takes ownership of the object, the Session Factory object SHOULD be deleted.

3.1.7 Other Local Events

None.

48 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4 Protocol Examples

The following scenario shows a successful real-time connection established between two peers, Peer A
and Peer B. The example demonstrates this through a hypothetical application called Adventure
Works, made by Contoso. This example assumes that the underlying transport works like Near Field
Communication (NFC), in that the transport is activated when two peers become proximate. Peer A
has the NfpService (section 3.1.1.1) initialized with an active Session Factory object (section

3.1.1.3) that is configured to establish a session when the transport is next activated. Peer A is
running on a platform called "Windows". Peer B merely has the NfpService initialized, and it is
running on a platform called "Android".

Peer A's NfpService happens to have a SourceID = 0x80, 0x29, 0x84, 0xF4, 0xD6, 0x0E, 0x8D,
0x2B. The base64 encoding for this SourceID is "gCmE9NYOjSs".

Peer B's NfpService happens to have a SourceID = 0xF3, 0x88, 0xC0, 0x6B, 0xE9, 0xCF, 0xD4,

0xDE. The base64 encoding for this SourceID is "84jAa+nP1N4".

In this example, the application is uniquely identified on each platform by the following IDs:

▪ "Android" – "Contoso-Adventure Works-3/6/2012"

▪ "Windows" – "Contoso%AdventureWorksApp"

▪ "WinPhone" – "{8342DF32-AD41-8993-927F-CACE4A295751}

Initially, Peer A's Session Factory object has the following abstract data model elements:

SessionList: Empty, no Session objects (section 3.1.1.4) that represent connections to Peer B.

AppID: "Windows" – "Contoso%AdventureWorksApp"

AlternateIDList: "Android" – "Contoso-Adventure Works-3/6/2012", "WinPhone" – "{8342DF32-
AD41-8993-927F-CACE4A295751}

Launch: TRUE.

SessionFactoryID: 0x6c331689, c15ca44b. This number is specified as random. However, for this
example, this number was specifically chosen to make it easy to recognize.

TcpPort: 55555.

RfcommPort: 5.

ReferenceCount: 1 (referenced by the running Adventure Works app).

4.1 Transport Activation and Initial Service Descriptor

When the underlying transport is activated, the protocol begins transmitting. Peer A begins by
publishing its pre-initialized Service Descriptor message (section 2.2.8) on the well-known channel:
"Windows.windows.com/SD". Length = 56 bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ActivationChannelID (the SourceID of Peer A's NfpService) =

0x80, 0x29, 0x84, 0xF4

0xD6, 0x0E, 0x8D, 0x2B

0xD6, 0x0E, 0x8D, 0x2B

0x80, 0x29, 0x84, 0xF4

49 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

...

OOB Connector ServiceActivationUUID = {E46EDA50-9B5D-41F1-B89E-327B5EA38B16}

0x50, 0xDA, 0x6E, 0xE4

0x5D, 0x9B, 0xF1, 0x41

0xB8, 0x9E, 0x32, 0x7B

0x5E, 0xA3, 0x8B, 0x16

...

...

ExtendedInfo1 = 0x00, 0x00 ServiceVersion = 0x00, 0x01

ExtendedInfo2 = 0x00, 0x00 ExtendedPayloadLength = 0x00, 0x00

Session Factory ServiceActivationUUID: {F1DEBC56-CFBA-4129-983B-7D79499D1A7D}

0x56, 0xBC, 0xDE, 0xF1

0xBA, 0xCF, 0x29, 0x41

0x98, 0x3B, 0x7D, 0x79

0x49, 0x9D, 0x1A, 0x7D

...

...

ExtendedInfo1 = 0x00, 0x00 ServiceVersion = 0x00, 0x01

ExtendedInfo2 = 0x00, 0x00 ExtendedPayloadLength = 0x00, 0x00

4.2 Peer A Service Descriptor Received by Peer B

When a valid Service Descriptor (SD) structure (section 2.2.9) is received by Peer B, it will
immediately respond with its own Service Descriptor message (section 2.2.8) on the same well-
known channel: "Windows.windows.com/SD". Length is equal to 56 bytes.

50 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ActivationChannelID (the SourceID of Peer B's NfpService) =

0xF3, 0x88, 0xC0, 0x6B

0xE9, 0xCF, 0xD4, 0xDE

...

Session Factory ServiceActivationUUID: {F1DEBC56-CFBA-4129-983B-7D79499D1A7D}

0x56, 0xBC, 0xDE, 0xF1

0xBA, 0xCF, 0x29, 0x41

0x98, 0x3B, 0x7D, 0x79

0x49, 0x9D, 0x1A, 0x7D

...

...

ExtendedInfo1 = 0x00, 0x00 ServiceVersion = 0x00, 0x01

ExtendedInfo2 = 0x00, 0x00 ExtendedPayloadLength = 0x00, 0x00

OOB Connector ServiceActivationUUID = {E46EDA50-9B5D-41F1-B89E-327B5EA38B16}

0x50, 0xDA, 0x6E, 0xE4

0x5D, 0x9B, 0xF1, 0x41

0xB8, 0x9E, 0x32, 0x7B

0x5E, 0xA3, 0x8B, 0x16

...

...

ExtendedInfo1 = 0x00, 0x00 ServiceVersion = 0x00, 0x01

ExtendedInfo2 = 0x00, 0x00 ExtendedPayloadLength = 0x00, 0x00

In this example, Peer B also responds to the SD with the OOB Connector Service Activation
message (section 2.2.5) on Peer A's Service Activation base64-encoded SourceID:
"Windows.gCmE9NYOjSs". Length is equal to 186 bytes.

51 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SourceID (of Peer B's NfpService) =

0xF3, 0x88, 0xC0, 0x6B

0xE9, 0xCF, 0xD4, 0xDE

...

OOB Connector ServiceActivationUUID = {E46EDA50-9B5D-41F1-B89E-327B5EA38B16}

0x50, 0xDA, 0x6E, 0xE4

0x5D, 0x9B, 0xF1, 0x41

0xB8, 0x9E, 0x32, 0x7B

0x5E, 0xA3, 0x8B, 0x16

...

...

ExtendedInfo = 0x00, 0x00 ServiceVersion = 0x00, 0x01

ReplyChannelID (the OOBConnectorID of the newly created OOB Connector object) = "bcso+pFofkc"

0x6D, 0xCB, 0x28, 0xFA

0x91, 0x68, 0x7E, 0x47

...

WiFiDirectAddress = fe80::c8:b1:5d9d:779e:81b2

0xFE, 0x80, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0xC8, 0xB1, 0x5D, 0x9D

0x77, 0x9E, 0x81, 0xB2

...

...

LinkLocalAddress = fe80::3858:bb83:6ca5:11b8

...

...

52 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

IPv4LinkLocalAddress = 172.31.233.146 (::ffff:ac1f:e992)

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0xFF, 0xFF

0xAC, 0x1F, 0xE9, 0x92

...

...

ProximityAddress = ::

...

...

GlobalAddress = 2001:4898:001a:0003:3858:bb83:6ca5:11b8

...

...

TeredoAddress (16 bytes)

...

...

...

Reserved =

0x00, 0x00, 0x00, 0x00

BluetoothMACAddress = e0:ca:94:49:33:34

0x34, 0x33, 0x49, 0x94

0xCA, 0xE0, 0x00, 0x00

...

WiFiDirectConnectBlobLength = 0x00, 0x28 WiFiDirectConnectBlob = 0x28, 0x00

53 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

WiFiDirectConnectBlob (continued) =

0x02, 0x00, 0x10, 0x02

0x01, 0x1F, 0x00, 0x12

0x0C, 0xE3, 0x6E, 0x57

0xE2, 0x01, 0x88, 0x00

0x01, 0x00, 0x50, 0xF2

0x00, 0x00, 0x00, 0x24

0x10, 0x11, 0x00, 0x0A

0x54, 0x52, 0x41, 0x56

0x4D, 0x2D, 0x4E, 0x49

0x4B, 0x45

...

4.3 Peer B Service Descriptor Received by Peer A

When Peer B's valid Service Descriptor (SD) structure (section 2.2.9) is received by Peer A, it
responds with a Session Factory Service Activation message (section 2.2.12) on Peer B's Service

Activation base64-encoded SourceID: "Windows.84jAa+nP1N4". Length is equal to 141 bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SourceID (of Peer A's NfpService) =

0x80, 0x29, 0x84, 0xF4

0xD6, 0x0E, 0x8D, 0x2B

...

Session Factory ServiceActivationUUID: {F1DEBC56-CFBA-4129-983B-7D79499D1A7D}

...

...

ExtendedInfo = 0x00, 0x00 ServiceVersion = 0x00, 0x01

54 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

ReplyChannelID (the SessionFactoryID of the Adventure Works App's Session Factory) = "bDMWicFcpEs"

0x6C, 0x33, 0x16, 0x89

0xC1, 0x5C, 0xA4, 0x4B

...

ClientPreference = 0x00, 0x01, 0x00, 0x00

AppInfoCount = 0x0003
PlatformQualifierSize =

0x07
PlatformQualifier = "Windows" 0x57, 0x69, 0x6E,

0x64, 0x6F, 0x77, 0x73

...

...

AppIDSize = 0x19 AppID = "Contoso%AdventureWorksApp"

...

...

PlatformQualifierSize =
0x07

PlatformQualifier = "Android"

...

...

AppIDSize = 0x20 AppID = "Contoso-Adventure Works-3/6/2012"

...

...

PlatformQualifierSize =
0x08

PlatformQualifier = "WinPhone"

...

...

AppIDSize = 0x26 AppID = "{8342DF32-AD41-8993-927F-CACE4A295751}"

...

...

55 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4.4 Peer A Receives OOB Connector Service Activation Message, Responds with OOB

Connector Service ACK

When Peer B's valid OOB Connector Service Activation message (section 2.2.5) is received by Peer
A, it responds with a OOB Connector Service ACK message (section 2.2.4) on the received
ReplyChannelID, which is the OOBConnectorID of Peer B's newly created OOB Connector object
(section 3.1.1.2): "Windows.bcso+pFofkc". Length is equal to 106 bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WiFiDirectAddress = fe80:0000:0000:0000:0dd5:fba4:be61:fedf

...

...

LinkLocalAddress = fe80:0000:0000:0000:a87f:8ed4:32c2:a4dd

...

...

IPv4LinkLocalAddress = 172.31.233.149 (0000:0000:0000:0000:0000:ffff:ac1f:e995)

...

...

ProximityAddress (16 bytes)

...

...

...

GlobalAddress (16 bytes)

...

...

...

TeredoAddress (16 bytes)

...

56 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

...

...

BluetoothMACAddress = (00:19:0e:08:6f:8f)

0x8F, 0x6F, 0x08, 0x0E

0x19, 0x00, 0x00, 0x00

...

WiFiDirectListenBlobLength = 0x0000

4.5 Peer A Session Factory Service Activation Received by Peer B, Responds with

Session Activation

When Peer A's valid Session Factory Service Activation message (section 2.2.12) is received by
Peer B, it responds by launching the Adventure Works App, creating a Session Factory object,
creating a Session object (section 3.1.1.4), and replying with a Session Activation message
(section 2.2.11) on the received ReplyChannelID, which is the SessionFactoryID of Peer A's

Session Factory object (section 3.1.1.3) for the Adventure Works application:
"Windows.bDMWicFcpEs". Length is equal to 96 bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SourceID (the SourceID of Peer B's NfpService) =

0xF3, 0x88, 0xC0, 0x6B

0xE9, 0xCF, 0xD4, 0xDE

...

ActivatedSessionFactoryID (newly created Session Factory object's SessionFactoryID) =

0x40, 0xCA, 0xDB, 0x31

0x50, 0x96, 0xD8, 0x32

...

ReplyChannelID (newly created Session object's SessionID) = "rhlJshr/7Ew"

0xAE, 0x19, 0x49, 0xB2

0x1A, 0xFF, 0xEC, 0x4C

...

ECDHPublicKeyMagicNumber = 0x45, 0x43, 0x4B, 0x31

57 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

ECDHPublicKeyLength (little-endian) = 0x20, 0x00, 0x00, 0x00

ECDHXParam

ECDHYParam

4.6 Peer B Session Activation Received by Peer A, Responds with Session ACK

When Peer B's valid Session Activation message (section 2.2.11) is received by Peer A, it responds
with a Session ACK message (section 2.2.10) on the received ReplyChannelID, which is the
SessionID of Peer B's newly created Session object (section 3.1.1.4): "Windows.rhlJshr/7Ew".
Length is equal to 76 bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ECDHPublicKeyMagicNumber = 0x45, 0x43, 0x4B, 0x31

...

ECDHPublicKeyLength (little-endian) = 0x20, 0x00, 0x00, 0x00

ECDHXParam

ECDHYParam

TCPPort = 51351 (0xC8, 0x97) RFCOMMPort = 0x01 Reserved1 = 0x00

4.7 Peer A Session ACK Received by Peer B, Begins Connection Validation

When Peer A's valid Session ACK message (section 2.2.10) is received by Peer B, it responds with an

Accept Header (section 2.2.1) on the SessionID of its Session object (section 3.1.1.4):
"Windows.rhlJshr/7Ew". The ConnectionType field indicates that this is an IPv4 connection. This
begins the connection validation handshake.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SessionID = "rhlJshr/7Ew"

0xAE, 0x19, 0x49, 0xB2

0x1A, 0xFF, 0xEC, 0x4C

...

58 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

ConnectionType = Link Local (IPv4)

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x02

4.8 Peer B Accept Header Received by Peer A, Completes Connection Validation

When Peer B's valid Accept Header (section 2.2.1) is received by Peer A, it responds by saving the
structure in its NfpService state element HandshakeData and returning the identical Accept

Header shown in section 4.7. This completes the connection validation handshake.

59 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

60 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

6 (Updated Section) Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

▪ Windows 8 operating system

▪ Windows Server 2012 operating system

▪ Windows 8.1 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows 10 operating system

▪ Windows Server 2016 operating system

▪ Windows Server 2019 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior

also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.2.6: Windows 8 and Windows Server 2012: Role compatibility checking is not

supported.

<2> Section 2.2.11: Windows 8 and Windows Server 2012: The Role field in the Session Factory
Service Activation message is not supported.

<3> Section 2.2.12: Windows 8 and Windows Server 2012: The host or client
ServiceActivationUUID value is not supported.

<4> Section 2.2.12: Windows 8 and Windows Server 2012: The Role field is not supported.

<5> Section 3.1.2: Windows: The default value is 10 seconds.

<6> Section 3.1.2: Windows: The default value is 10 seconds.

<7> Section 3.1.2: Windows: A timeout value of 10 minutes is used.

<8> Section 3.1.2: Windows: A timeout value of 6 minutes is used.

<9> Section 3.1.5.6: Windows 8 and Windows Server 2012: The Role field in the Session Factory
Service Activation message is not supported.

61 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

6 Appendix A: Product Behavior Added Windows Server 2019 to applicability list. Major

62 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

8 Index
A

Accept Header message 13
AppInfo Structure message 14
Applicability 11

C

Capability negotiation 11
Change tracking 61

E

Extension Structure message 15

G

Glossary 5

I

Implementer - security considerations 59
Index of security parameters 59
Informative references 8
Introduction 5

M

Messages
 Accept Header 13
 Accept Header message 13
 AppInfo Structure 14
 AppInfo Structure message 14
 Extension Structure 15
 Extension Structure message 15
 OOB Connector Service ACK Message 15
 Oob Connector Service ACK Message message 15
 OOB Connector Service Activation Message 22
 Oob Connector Service Activation Message message 22
 Role Compatibility Constants 25

 Role Compatibility Constants message 25
 Service Activation Header 25
 Service Activation Header message 25
 Service Descriptor Message 26
 Service Descriptor Message message 26
 Service Descriptor Structure 27
 Service Descriptor Structure message 27
 Session ACK Message 28
 Session ACK Message message 28
 Session Activation Message 29
 Session Activation Message message 29
 Session Factory Service Activation Message 31
 Session Factory Service Activation Message message 31
 transport 13

N

Normative references 7

O

63 / 63

[MS-NFPB-Diff] - v20180912
Near Field Proximity: Bidirectional Services Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

OOB Connector Service ACK Message message 15
OOB Connector Service Activation Message message 22
Overview (synopsis) 8

P

Parameters - security index 59
Preconditions 11
Prerequisites 11
Product behavior 60

R

References 7
 informative 8
 normative 7
Relationship to other protocols 10
Role Compatibility Constants message 25

S

Security
 implementer considerations 59
 parameter index 59
Service Activation Header message 25
Service Descriptor Message message 26
Service Descriptor Structure message 27
Session ACK Message message 28
Session Activation Message message 29
Session Factory Service Activation Message message 31
Standards assignments 12

T

Tracking changes 61
Transport 13

V

Versioning 11

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Session Factory Service Activation
	1.3.2 OOB Connector Service Activation
	1.3.3 Session Activation
	1.3.4 Connection Validation

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.8.1 Service Descriptor Entries
	1.8.2 AppInfo Platform Qualifiers
	1.8.3 Session Activation and Acknowledgment Extensions

	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Accept Header
	2.2.2 AppInfo Structure
	2.2.3 Extension Structure
	2.2.4 OOB Connector Service ACK Message
	2.2.4.1 OOB Attribute Header
	2.2.4.2 OOB Attribute Type Constants
	2.2.4.3 OOB Provisioning Settings Constants
	2.2.4.4 OOB Device Info Attribute Format
	2.2.4.5 OOB Provisioning Info Attribute Format
	2.2.4.6 OOB Configuration Timeout Attribute Format

	2.2.5 OOB Connector Service Activation Message
	2.2.6 Role Compatibility Constants
	2.2.7 Service Activation Header
	2.2.8 Service Descriptor Message
	2.2.9 Service Descriptor Structure
	2.2.10 Session ACK Message
	2.2.11 Session Activation Message
	2.2.12 Session Factory Service Activation Message

	3 Protocol Details
	3.1 Peer Details
	3.1.1 Abstract Data Model
	3.1.1.1 NfpService
	3.1.1.2 OOB Connector Object
	3.1.1.3 Session Factory Object
	3.1.1.4 Session Object

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Service Descriptor Sequence
	3.1.5.2 OOB Connector Exchange
	3.1.5.3 Handling OOB Connector Service Activation Messages
	3.1.5.4 Handling OOB Connector Service ACK Messages
	3.1.5.5 Session Factory Exchange
	3.1.5.6 Handling Session Factory Service Activation
	3.1.5.7 Handling Session Activation
	3.1.5.8 Handling Session ACK Messages
	3.1.5.9 Handling the Accept Header

	3.1.6 Timer Events
	3.1.7 Other Local Events

	4 Protocol Examples
	4.1 Transport Activation and Initial Service Descriptor
	4.2 Peer A Service Descriptor Received by Peer B
	4.3 Peer B Service Descriptor Received by Peer A
	4.4 Peer A Receives OOB Connector Service Activation Message, Responds with OOB Connector Service ACK
	4.5 Peer A Session Factory Service Activation Received by Peer B, Responds with Session Activation
	4.6 Peer B Session Activation Received by Peer A, Responds with Session ACK
	4.7 Peer A Session ACK Received by Peer B, Begins Connection Validation
	4.8 Peer B Accept Header Received by Peer A, Completes Connection Validation

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 (Updated Section) Appendix A: Product Behavior
	7 Change Tracking
	8 Index

