
1 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

[MS-MQRR-Diff]:

Message Queuing (MSMQ): Queue Manager Remote Read
Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit

www.microsoft.com/trademarks.
▪ Fictitious Names. The example companies, organizations, products, domain names, email

addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other

than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

Revision Summary

Date
Revision
History

Revision
Class Comments

2/22/2007 0.01 New Version 0.01 release

6/1/2007 1.0 Major Updated and revised the technical content.

7/3/2007 1.0.1 Editorial Changed language and formatting in the technical content.

7/20/2007 1.0.2 Editorial Changed language and formatting in the technical content.

8/10/2007 2.0 Major Updated and revised the technical content.

9/28/2007 2.0.1 Editorial Changed language and formatting in the technical content.

10/23/2007 2.0.2 Editorial Changed language and formatting in the technical content.

11/30/2007 2.0.3 Editorial Changed language and formatting in the technical content.

1/25/2008 2.0.4 Editorial Changed language and formatting in the technical content.

3/14/2008 2.0.5 Editorial Changed language and formatting in the technical content.

5/16/2008 2.0.6 Editorial Changed language and formatting in the technical content.

6/20/2008 2.1 Minor Clarified the meaning of the technical content.

7/25/2008 2.1.1 Editorial Changed language and formatting in the technical content.

8/29/2008 3.0 Major Updated and revised the technical content.

10/24/2008 4.0 Major Updated and revised the technical content.

12/5/2008 5.0 Major Updated and revised the technical content.

1/16/2009 5.1 Minor Clarified the meaning of the technical content.

2/27/2009 6.0 Major Updated and revised the technical content.

4/10/2009 6.0.1 Editorial Changed language and formatting in the technical content.

5/22/2009 7.0 Major Updated and revised the technical content.

7/2/2009 7.1 Minor Clarified the meaning of the technical content.

8/14/2009 8.0 Major Updated and revised the technical content.

9/25/2009 9.0 Major Updated and revised the technical content.

11/6/2009 9.1 Minor Clarified the meaning of the technical content.

12/18/2009 10.0 Major Updated and revised the technical content.

1/29/2010 11.0 Major Updated and revised the technical content.

3/12/2010 11.1 Minor Clarified the meaning of the technical content.

4/23/2010 11.1.1 Editorial Changed language and formatting in the technical content.

6/4/2010 11.2 Minor Clarified the meaning of the technical content.

7/16/2010 11.2 None No changes to the meaning, language, or formatting of the

3 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

Date
Revision
History

Revision
Class Comments

technical content.

8/27/2010 12.0 Major Updated and revised the technical content.

10/8/2010 13.0 Major Updated and revised the technical content.

11/19/2010 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 14.0 Major Updated and revised the technical content.

2/11/2011 15.0 Major Updated and revised the technical content.

3/25/2011 16.0 Major Updated and revised the technical content.

5/6/2011 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 16.1 Minor Clarified the meaning of the technical content.

9/23/2011 17.0 Major Updated and revised the technical content.

12/16/2011 18.0 Major Updated and revised the technical content.

3/30/2012 19.0 Major Updated and revised the technical content.

7/12/2012 19.1 Minor Clarified the meaning of the technical content.

10/25/2012 20.0 Major Updated and revised the technical content.

1/31/2013 20.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 21.0 Major Updated and revised the technical content.

11/14/2013 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 22.0 Major Significantly changed the technical content.

10/16/2015 22.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 22.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 22.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 23.0 Major Significantly changed the technical content.

9/12/2018 24.0 Major Significantly changed the technical content.

4/7/2021 25.0 Major Significantly changed the technical content.

6/25/2021 26.0 Major Significantly changed the technical content.

4 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

Date
Revision
History

Revision
Class Comments

4/23/2024 27.0 Major Significantly changed the technical content.

7/9/2024 28.0 Major Significantly changed the technical content.

5 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

Table of Contents

1 Introduction .. 8
1.1 (Updated Section) Glossary ... 8
1.2 References .. 10

1.2.1 Normative References ... 10
1.2.2 Informative References ... 11

1.3 Overview .. 11
1.3.1 Messages ... 12
1.3.2 Queues.. 12
1.3.3 Queue Operations ... 12
1.3.4 Access Patterns .. 13
1.3.5 Transactions .. 13

1.4 Relationship to Other Protocols .. 14
1.5 Prerequisites/Preconditions ... 14
1.6 Applicability Statement ... 14
1.7 Versioning and Capability Negotiation ... 14
1.8 Vendor-Extensible Fields ... 15
1.9 Standards Assignments ... 15

2 Messages ... 16
2.1 Transport .. 16
2.2 Common Data Types .. 16

2.2.1 HRESULT ... 16
2.2.2 GUID .. 16
2.2.3 QUEUE_FORMAT ... 16
2.2.4 Queue Context Handles ... 17

2.2.4.1 QUEUE_CONTEXT_HANDLE_NOSERIALIZE ... 17
2.2.4.2 QUEUE_CONTEXT_HANDLE_SERIALIZE ... 17

2.2.5 Message Packet Structure .. 18
2.2.5.1 UserMessage .. 19

2.2.5.1.1 Binary Message ... 22
2.2.5.1.2 SRMP Message .. 22

2.2.5.1.2.1 SRMPEnvelopeHeader ... 22
2.2.5.1.2.2 CompoundMessageHeader .. 22

2.2.5.2 ExtensionHeader ... 23
2.2.5.3 SubqueueHeader .. 24
2.2.5.4 DeadLetterHeader ... 25
2.2.5.5 ExtendedAddressHeader .. 26

2.2.6 SectionBuffer ... 27
2.2.7 SectionType ... 27
2.2.8 XACTUOW .. 28

2.3 Directory Service Schema Elements ... 28

3 Protocol Details ... 29
3.1 RemoteRead Server Details ... 29

3.1.1 Abstract Data Model .. 29
3.1.1.1 Shared Data Elements ... 29
3.1.1.2 PendingRequestEntry... 29
3.1.1.3 PendingRequestTable .. 30
3.1.1.4 Message .. 30

3.1.2 Timers .. 30
3.1.2.1 RPC Call Timeout Timer ... 30
3.1.2.2 Pending Request Cleanup Timer .. 30

3.1.3 Initialization ... 31
3.1.4 Message Processing Events and Sequencing Rules .. 31

3.1.4.1 R_GetServerPort (Opnum 0) .. 32

6 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

3.1.4.2 R_OpenQueue (Opnum 2) .. 32
3.1.4.3 R_CloseQueue (Opnum 3) .. 35
3.1.4.4 R_CreateCursor (Opnum 4) .. 36
3.1.4.5 R_CloseCursor (Opnum 5).. 36
3.1.4.6 R_PurgeQueue (Opnum 6) ... 37
3.1.4.7 R_StartReceive (Opnum 7)... 38
3.1.4.8 R_CancelReceive (Opnum 8) .. 46
3.1.4.9 R_EndReceive (Opnum 9) .. 47
3.1.4.10 (Updated Section) R_MoveMessage (Opnum 10) 49
3.1.4.11 (Updated Section) R_OpenQueueForMove (Opnum 11) 51
3.1.4.12 R_QMEnlistRemoteTransaction (Opnum 12) ... 53
3.1.4.13 R_StartTransactionalReceive (Opnum 13) .. 54
3.1.4.14 R_SetUserAcknowledgementClass (Opnum 14) ... 63
3.1.4.15 R_EndTransactionalReceive (Opnum 15) .. 64

3.1.5 Timer Events .. 66
3.1.5.1 Pending Request Cleanup Timer Event ... 66

3.1.6 Other Local Events .. 66
3.1.6.1 RPC Failure Event.. 66
3.1.6.2 Queue Context Handles Rundown Routine .. 67

3.2 RemoteRead Client Details .. 68
3.2.1 Abstract Data Model .. 68
3.2.2 Timers .. 68
3.2.3 Initialization ... 68
3.2.4 Message Processing Events and Sequencing Rules .. 68

3.2.4.1 Opening a Queue .. 68
3.2.4.2 Enlisting in a Transaction ... 69
3.2.4.3 Peek a Message .. 69
3.2.4.4 Receive a Message .. 70

3.2.4.4.1 Receive a Message Without a Transaction ... 70
3.2.4.4.2 Receive a Message with a Transaction .. 71

3.2.4.5 Reject a Message .. 72
3.2.4.6 Move a Message ... 72
3.2.4.7 Purging a Queue ... 73
3.2.4.8 Creating a Cursor .. 73
3.2.4.9 Peek a Message by Using a Cursor .. 73
3.2.4.10 Receive a Message by Using a Cursor .. 74

3.2.4.10.1 Receive a Message by Using a Cursor Without a Transaction 74
3.2.4.10.2 Receive a Message by Using a Cursor with a Transaction 75

3.2.4.11 Cancel a Pending Peek or Receive ... 75
3.2.4.12 Closing a Cursor ... 76
3.2.4.13 Closing a Queue .. 76

3.2.5 Timer Events .. 76
3.2.6 Other Local Events .. 76

4 Protocol Examples ... 77
4.1 Binding to a Server and Purging a Queue .. 77
4.2 Receiving a Message .. 78
4.3 Receiving a Message in a Transaction ... 79

5 Security ... 82
5.1 Security Considerations for Implementers ... 82
5.2 Index of Security Parameters .. 82

6 Appendix A: Full IDL .. 83

7 Appendix B: Product Behavior ... 86

8 Change Tracking .. 93

9 Index ... 94

7 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

8 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

1 Introduction

This document specifies the Message Queuing (MSMQ): Queue Manager Remote Read Protocol, a
remote procedure call (RPC)-based protocol that is used by Microsoft Message Queuing (MSMQ) clients
to read or reject a message from a queue, to move a message between queues, and to purge all
messages from a queue.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 (Updated Section) Glossary

This document uses the following terms:

authentication level: A numeric value indicating the level of authentication or message protection

that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS-RPCE].

Coordinated Universal Time (UTC): A high-precision atomic time standard that approximately
tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones
around the world are expressed as positive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all

references to UTC refer to the time at UTC-0 (or GMT).

cursor: A data structure providing sequential access over a message queue. A cursor has a current
pointer that lies between the head and tail pointer of the queue. The pointer can be moved
forward or backward through an operation on the cursor (Next). A message at the current
pointer can be accessed through a nondestructive read (Peek) operation or a destructive read
(Receive) operation.

dead-letter queue: A queue that contains messages that were sent from a host with a request for

negative source journaling and that could not be delivered. Message Queuing provides a
transactional dead-letter queue and a non-transactional dead-letter queue.

direct format name: A name that is used to reference a public queue or a private queue without
accessing the MSMQ Directory Service. Message Queuing can use the physical, explicit location
information provided by direct format names to send messages directly to their destinations. For
more information, see [MS-MQMQ] section 2.1.

directory: The database that stores information about objects such as users, groups, computers,
printers, and the directory service that makes this information available to users and
applications.

dynamic endpoint: A network-specific server address that is requested and assigned at run time.

For more information, see [C706].

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol

sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.

Specifically, the use of this term does not imply or require that the algorithms described in

9 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

[RFC4122] or [C706] musthave to be used for generating the GUID.GUID. See also universally

unique identifier (UUID).universally unique identifier (UUID).

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see

[C706] section 4.

Kerberos: An authentication system that enables two parties to exchange private information
across an otherwise open network by assigning a unique key (called a ticket) to each user that
logs on to the network and then embedding these tickets into messages sent by the users. For
more information, see [MS-KILE].

message: A data structure representing a unit of data transfer between distributed applications. A
message has message properties, which maycan include message header properties, a message

body property, and message trailer properties.

message body: A distinguished message property that represents the application payload.

message header: See message packet header.

message packet: A byte buffer that is the physical representation of the message in the queue
manager and on the wire.

message packet header: The set of message properties in a message packet that precedes the

message body property. Also called a message header.

message packet trailer: The set of message properties in a message packet that follows the
message body property. Also called a message trailer.

message property: A data structure that contains a property identifier and a value, and that is
associated with a message.

message queuing: A communications service that provides asynchronous and reliable message
passing between distributed client applications. In message queuing, clients send messages to

message queues and consume messages from message queues. The message queues provide
persistence of the messages, which enables the sending and receiving client applications to
operate asynchronously from each other.

message trailer: See message packet trailer.

Microsoft Message Queuing (MSMQ): A communications service that provides asynchronous
and reliable message passing between distributed applications. In Message Queuing,
applications send messages to queues and consume messages from queues. The queues provide

persistence of the messages, enabling the sending and receiving applications to operate
asynchronously from one another.

MSMQ routing server: A role played by an MSMQ queue manager. An MSMQ routing server
implements store and forward messaging. A routing server can provide connectivity between
different connected networks within a site or can provide session concentration between sites.

Network Data Representation (NDR): A specification that defines a mapping from Interface

Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

NT LAN Manager (NTLM) Authentication Protocol: A protocol using a challenge-response
mechanism for authentication in which clients are able to verify their identities without sending a
password to the server. It consists of three messages, commonly referred to as Type 1
(negotiation), Type 2 (challenge) and Type 3 (authentication).

10 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

queue: An object that holds messages passed between applications or messages passed between

Message Queuing and applications. In general, applications can send messages to queues and
read messages from queues.

queue manager (QM): A message queuing service that manages queues deployed on a

computer. A queue manager can also provide asynchronous transfer of messages to queues
deployed on other queue managers.

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

remote queue: For a queue manager, a queue that is hosted by a remote queue manager. For an
application, a queue hosted by a queue manager other than the one with which the application

communicates.

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

subqueue: A message queue that is logically associated, through a naming hierarchy, with a
parent message queue. Subqueues can be used to partition messages within the queue. For
example, a queue journal can be a subqueue that holds a copy of each message consumed from
its parent queue.

transactional queue: A queue that contains only transactional messages.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]

provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the

Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706]
musthas to be used for generating the UUID.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

11 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

https://publications.opengroup.org/c706

Note Registration is required to download the document.

[MC-MQSRM] Microsoft Corporation, "Message Queuing (MSMQ): SOAP Reliable Messaging Protocol
(SRMP)".

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-DTCO] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transaction Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-MQDMPR] Microsoft Corporation, "Message Queuing (MSMQ): Common Data Model and
Processing Rules".

[MS-MQMQ] Microsoft Corporation, "Message Queuing (MSMQ): Data Structures".

[MS-MQQB] Microsoft Corporation, "Message Queuing (MSMQ): Message Queuing Binary Protocol".

[MS-MQQP] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager to Queue Manager
Protocol".

[MS-MQRR] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager Remote Read
Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MSDN-MQEIC] Microsoft Corporation, "Message Queuing Error and Information Codes",
http://msdn.microsoft.com/en-us/library/ms700106.aspx

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc-editor.org/info/rfc2119

[RFC2553] Gilligan, R., Thomson, S., Bound, J., and Stevens, W., "Basic Socket Interface Extensions
for IPv6", RFC 2553, March 1999, https://www.rfc-editor.org/info/rfc2553

1.2.2 Informative References

[MS-MQBR] Microsoft Corporation, "Message Queuing (MSMQ): Binary Reliable Message Routing
Algorithm".

[MS-MQDSSM] Microsoft Corporation, "Message Queuing (MSMQ): Directory Service Schema
Mapping".

[MS-MQOD] Microsoft Corporation, "Message Queuing Protocols Overview".

[MSDN-MMSCH] Microsoft Corporation, "Mixed Mode Serialization of Context Handles",
http://msdn.microsoft.com/en-us/library/aa367098(VS.85).aspx

1.3 Overview

Microsoft Message Queuing (MSMQ) is a communications service that provides asynchronous and
reliable message passing between client applications running on different hosts. In MSMQ, clients send
application messages to a queue and/or consume application messages from a queue. The queue
provides persistence of the messages, enabling them to survive across application restarts and

12 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

allowing the sending and receiving client applications to send and receive messages asynchronously

from each other.

Queues are typically hosted by a communications service called a queue manager. By hosting the
queue manager in a separate service from the client applications, applications can communicate even

if they never execute at the same time by exchanging messages via a queue hosted by the queue
manager.

The queue manager can execute on a different node than the client applications. When this scenario
occurs, a protocol is required to insert messages into the queue, and another protocol is needed to
consume messages from the queue. The Message Queuing (MSMQ): Queue Manager Remote Read
Protocol provides a protocol for consuming messages from a remote queue.

1.3.1 Messages

Each message exchanged in an MSMQ system typically has a set of message properties that contain
metadata about the message and a distinguished property called a message body that contains the
application payload. Message properties that are serialized in front of the message body are referred

to as message headers, and message properties serialized after the message body property are
referred to as message trailers.

Messages carried by this protocol are treated as payload. The format and structure of the application
messages are generally opaque to the protocol. However, the protocol assumes that such messages
map to the abstractions of message header, message body, and message trailer. This mapping
enables a consumer to request that a subset of the message body be returned while allowing all the
message headers and message trailers to be returned. For more details, see the

SectionBuffer (section 2.2.6) structure.

The protocol also assumes that each message has a lookup identifier that is unique within the queue.
This identifier is not part of the message but is instead assigned by the server.

1.3.2 Queues

A queue is a logical data structure that contains an ordered list of zero or more messages. Queues,
like files, have names. This protocol uses the QUEUE_FORMAT (section 2.2.3) structure to identify
queues.

This protocol provides a mechanism to open a queue. Opening provides an opportunity to check for
the existence of the queue and to perform authorization checks. The protocol provides for the return
of an RPC context handle that is used by the client to specify the queue to operate on in subsequent

requests. The use of an RPC context handle provides a mechanism to ensure that server state is
cleaned up if the connection between the client and server is lost.

When opening a queue, the client can specify an access mode that determines the operations (Peek,

Receive, Move, Reject, and Purge) for which the returned handle can subsequently be used. The client
can specify a sharing mode that either allows other clients to concurrently access the queue or
ensures that the client has exclusive access to the queue. The latter can be used to avoid race
conditions caused by other clients operating on the queue at the same time.

1.3.3 Queue Operations

The protocol provides mechanisms for the following operations against an open queue.

A message can be consumed from an open queue through a destructive read operation referred to as

a Receive operation, which atomically reads the message and removes it from the queue. Because
this operation removes a message from a queue, a loss of network connection during this operation
could result in permanent loss of the message. To guard against this situation, the protocol provides a
mechanism for the client to positively or negatively acknowledge receipt of the message. Upon receipt

13 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

of positive acknowledgment from the client, the server can remove the message from the queue.

While the server is awaiting acknowledgment from the client, access to the message by other clients is
prevented.

A message can be read from an open queue through a nondestructive read operation referred to as a

Peek operation, which reads the message but does not remove it from the queue.

For both Receive and Peek operations, the client can limit the amount of the message body payload
returned. This functionality enables efficient use of network resources when the client requires only a
portion of the message body or when the client needs just the message properties.

All the messages can be removed from a queue through a Purge mechanism. The messages removed
through this mechanism are not returned to the client.

A message can be moved from one queue to another queue hosted at the same server through an

atomic Move mechanism.

A client can inform the server that it has no need for a message via a Reject operation. The server
can use this indication to inform the sender that the client did not consume the message. How a
server does this task is not addressed in this specification.

1.3.4 Access Patterns

Messages in a queue can be consumed in a first-in, first-out (FIFO) access pattern. Because messages
in a queue are ordered, there is a head that represents the front of the queue and a tail that
represents the end of the queue.

The protocol provides mechanisms to Peek or Receive the first message in the queue.

The protocol also allows the client to specify exactly which message to Peek or Receive, regardless of

its position in the queue, through a unique lookup identifier assigned to each message by the server.
A message can also be specified relative to the message identified by the lookup identifier: for
example, the message immediately preceding or following the message identified by the lookup
identifier.

Finally, the protocol provides a mechanism, referred to as a cursor, for sequential forward access
through the queue. A cursor logically represents a current pointer that lies between the head and tail

of the queue. A cursor can be specified to the Peek or Receive operation, which Peeks or Receives
the message at the current pointer represented by the cursor. The cursor current pointer can be
moved forward through a modified Peek operation called PeekNext. A Receive operation intrinsically
moves the cursor forward.

Because cursors are stateful, the protocol provides mechanisms to create a cursor, to return a cursor
handle to the client, and to close a cursor. Because a cursor represents a position within a queue, the
protocol logically relates the cursor to the context handle associated with an open queue. The protocol

places no limit on the number of concurrent cursors associated with a queue context handle.

1.3.5 Transactions

The protocol allows the queue operations Receive or Move to be performed within the context of a
distributed atomic transaction, as specified in [MS-DTCO]. When this is done, the state changes that

are related to the queue associated with the operation are performed provisionally, awaiting
asynchronous notification of the outcome of the transaction. If the transaction outcome is Commit,
the state changes become permanent. If the transaction outcome is Abort, the state changes are
rolled back.

The protocol does not require that all queues support this atomic transaction behavior. A queue that
supports transactional Receive is also required to support nontransactional Receive. The protocol

returns an error if a transacted operation is attempted against a non-transactional queue. The protocol

14 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

does not provide any other mechanism for determining whether a queue supports transactional

behavior.

1.4 Relationship to Other Protocols

This protocol is dependent upon RPC for its transport, as specified in section 2.1.

The protocol functionality is a superset of the functionality as specified in [MS-MQQP]. Implementers
are advised to choose this protocol over [MS-MQQP] except where compatibility necessitates using
it.<1>

This protocol carries Propagation Tokens ([MS-DTCO] section 2.2.5.4) to orchestrate transactional
scenarios.

This protocol is capable of carrying the layout and internal structure of the message in the queue, as
specified in [MS-MQQP].

1.5 Prerequisites/Preconditions

The Message Queuing (MSMQ): Queue Manager Remote Read Protocol is an RPC interface and, as a
result, has prerequisites, as specified in [MS-RPCE], that are common to RPC interfaces.

It is assumed that the protocol client has obtained the name of a remote computer that supports this
protocol before this protocol is invoked.

This protocol uses authentication through RPC. The client has previously acquired valid credentials
recognized by the server. The server has to be started and fully initialized before the protocol can

start.

1.6 Applicability Statement

This protocol provides functionality related to consumption of messages from a queue hosted at a

queue manager running on a remote computer. It does not provide functionality related to inserting
messages into a queue.

The server side of this protocol is applicable for implementation by a queue manager that provides
message queuing communication services to clients. The client side of this protocol is applicable for
implementation by client libraries that provide message queuing services to applications or by a client
queue manager that delegates requests on behalf of a client application.

This protocol could be used to reliably transfer messages from a queue hosted at one queue manager

(the server) to a queue hosted at another queue manager (the client). However, there are other
protocols that are more suited to providing such reliable message transfer between queues. The
Message Queuing (MSMQ): Binary Reliable Messaging protocol described in [MS-MQBR] is one such

protocol that provides message transfer functionality more efficiently and in a manner that provides
end-to-end reliability through intermediate store-and-forward hops.

1.7 Versioning and Capability Negotiation

Supported transports: This protocol uses the RPC over TCP/IP protocol sequence. However, it supports
a mechanism for explicitly negotiating the RPC endpoint to be used. Details are specified in section
3.1.4.1.

Protocol versions: This protocol uses a single version of the RPC interface, but that interface has been

extended by adding the following additional methods at the end:

▪ R_MoveMessage (Opnum 10) (section 3.1.4.10)

15 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ R_OpenQueueForMove (Opnum 11) (section 3.1.4.11)

▪ R_QMEnlistRemoteTransaction (Opnum 12) (section 3.1.4.12)

▪ R_StartTransactionalReceive (Opnum 13) (section 3.1.4.13)

▪ R_SetUserAcknowledgementClass (Opnum 14) (section 3.1.4.14)

▪ R_EndTransactionalReceive (Opnum 15) (section 3.1.4.15)

Capability Negotiation: This protocol is used for receiving messages from a remote queue
manager.<2> The queue manager can implement a capability negotiation mechanism as specified in
the processing rules for Opening a Queue (section 3.2.4.1) to determine whether this protocol is
supported by the remote queue manager.

Security and authentication methods: This protocol supports the NT LAN Manager (NTLM)

Authentication Protocol and Kerberos authentication methods.<3>

1.8 Vendor-Extensible Fields

This protocol uses HRESULT values as defined in [MS-ERREF] section 2.1. Vendors can define their
own HRESULT values provided that they set the C bit (0x20000000) for each vendor-defined value,

indicating that the value is a customer code.

1.9 Standards Assignments

This protocol uses the standard interfaces that are listed in the following table.

 Parameter Value Reference

RPC interface Universally Unique Identifier (UUID) 1A9134DD-7B39-45BA-AD88-44D01CA47F28 [C706] A.2.5

Interface version 1.0 [C706] A.2.5

16 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

2 Messages

2.1 Transport

This protocol MUST use the following RPC protocol sequence: RPC over TCP/IP (ncacn_ip_tcp), as

specified in [MS-RPCE]. This protocol uses RPC dynamic endpoints as specified in [C706] section 4.
This protocol MAY<4> use an RPC static endpoint as specified in [C706] section 4.

This protocol allows any user to establish a connection to the RPC server. For each connection, the
server uses the underlying RPC protocol to retrieve the identity of the invoking client, as specified in
[MS-RPCE] section 3.3.3.4.3. The server SHOULD use this identity to perform method-specific access
checks.

2.2 Common Data Types

This protocol references commonly used data types as defined in [MS-DTYP].

This protocol MUST indicate to the RPC runtime that it is to support both the Network Data
Representation (NDR) and NDR64 transfer syntaxes and MUST provide a negotiation mechanism for

determining which transfer syntax will be used, as specified in [MS-RPCE] (section 3).

In addition to the RPC base types and definitions, as specified in [C706] and [MS-RPCE], this
specification supports the following data types:

▪ HRESULT

▪ GUID

▪ QUEUE_FORMAT ([MS-MQMQ] section 2.2.7)

▪ Queue Context Handles (section 2.2.4)

▪ Message Packet Structure (section 2.2.5)

▪ SectionBuffer (section 2.2.6)

▪ SectionType (section 2.2.7)

2.2.1 HRESULT

This specification uses the HRESULT ([MS-ERREF] section 2.1) type.

2.2.2 GUID

This specification uses a globally unique identifier (GUID). Unless otherwise qualified, instances of

GUID in sections 2 and 3 refer to [MS-DTYP] section 2.3.4.

2.2.3 QUEUE_FORMAT

This structure is used to identify a queue. This structure is common to many Microsoft Message

Queuing (MSMQ) protocols. For more details, see [MS-MQMQ] section 2.2.7. Only a subset of the
QUEUE_FORMAT_TYPE ([MS-MQMQ] section 2.2.6) enumeration is supported by this protocol. This
subset is:

▪ QUEUE_FORMAT_TYPE_UNKNOWN

▪ QUEUE_FORMAT_TYPE_PUBLIC

17 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ QUEUE_FORMAT_TYPE_PRIVATE

▪ QUEUE_FORMAT_TYPE_DIRECT

▪ QUEUE_FORMAT_TYPE_MACHINE

▪ QUEUE_FORMAT_TYPE_SUBQUEUE

In addition, this protocol supports only a subset of the Protocol Address Specifications defined for
QUEUE_FORMAT in [MS-MQMQ] section 2.1.2 when the m_qft member of this structure is set to
QUEUE_FORMAT_TYPE_DIRECT. This subset is:

▪ TCP

▪ OS

2.2.4 Queue Context Handles

A queue context handle is an RPC context handle corresponding to an open queue. A client MUST call
the R_OpenQueue (Opnum 2) (section 3.1.4.2) method or the R_OpenQueueForMove (Opnum
11) (section 3.1.4.11) method to create a queue context handle and the R_CloseQueue (Opnum
3) (section 3.1.4.3) method to delete a queue context handle.

Two IDL types are defined to represent these queue context handles, namely
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) and
QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2). These two types are identical on the wire,
but are defined separately so as to allow the serialization mode to be configured. Refer to [MSDN-
MMSCH] for details on modes of the context handles.

2.2.4.1 QUEUE_CONTEXT_HANDLE_NOSERIALIZE

QUEUE_CONTEXT_HANDLE_NOSERIALIZE is an RPC context handle representing an open queue.
Refer to [MSDN-MMSCH] for details on modes of the context handles. For the
QUEUE_CONTEXT_HANDLE_NOSERIALIZE context handle, there can be more than one pending RPC
call on the server. On the wire it is identical to

QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2).

This type is declared as follows:

 typedef [context_handle] void* QUEUE_CONTEXT_HANDLE_NOSERIALIZE;

The context handle MUST NOT be type_strict, but it MUST be strict. More details on RPC context
handles are specified in [C706] sections 4.2.16.6, 5.1.6, and 6.1 and [MS-RPCE] sections

3.1.1.5.3.2.2.2 and 3.3.1.4.1.

2.2.4.2 QUEUE_CONTEXT_HANDLE_SERIALIZE

QUEUE_CONTEXT_HANDLE_SERIALIZE is an RPC context handle representing an open queue. Refer to

[MSDN-MMSCH] for details on modes of the context handles. For this context handle, there can be no
more than one pending RPC call on the server. On the wire it is identical to
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1).

This type is declared as follows:

 typedef [context_handle] QUEUE_CONTEXT_HANDLE_NOSERIALIZE QUEUE_CONTEXT_HANDLE_SERIALIZE;

18 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

The context handle MUST NOT be type_strict, but it MUST be strict. More details on RPC context

handles are specified in [C706] sections 4.2.16.6, 5.1.6, and 6.1 and [MS-RPCE] sections
3.1.1.5.3.2.2.2 and 3.3.1.4.1.

2.2.5 Message Packet Structure

The Message Packet Structure is the data structure that contains the UserMessage and other
headers that represent the payload that is transferred across the wire as a result of a remote read
operation. More details are specified in R_StartReceive (Opnum 7) (section 3.1.4.7) and

R_StartTransactionalReceive (Opnum 13) (section 3.1.4.13).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

UserMessage (variable)

...

ExtensionHeader

...

...

SubqueueHeader (148 bytes)

...

...

DeadLetterHeader (variable)

...

ExtendedAddressHeader (28 bytes)

...

...

UserMessage (variable): A UserMessage (section 2.2.5.1) structure.

ExtensionHeader (12 bytes): An ExtensionHeader (section 2.2.5.2) structure.

SubqueueHeader (148 bytes): A SubqueueHeader (section 2.2.5.3) structure.

DeadLetterHeader (variable): A DeadLetterHeader (section 2.2.5.4) structure.

ExtendedAddressHeader (28 bytes): An ExtendedAddressHeader (section 2.2.5.5) structure.

19 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

2.2.5.1 UserMessage

The UserMessage structure can be either a Binary Message (section 2.2.5.1.1) or an SRMP
Message (section 2.2.5.1.2), depending on the transport over which the message was originally sent.

A Binary Message is sent over the MSMQ: Binary Reliable Messaging Protocol [MS-MQQB], while an
SRMP Message is sent over HTTP. The message type is indicated by the UserHeader.Flags.AH bit
field, which is set for SRMP Messages as specified in the definition of the UserHeaderEnd field in
this section.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BaseHeader (16 bytes)

...

...

UserHeader (variable)

...

TransactionHeader (variable)

...

SecurityHeader (variable)

...

MessagePropertiesHeader (variable)

...

DebugHeader (variable)

...

SRMPEnvelopeHeader (variable)

...

CompoundMessageHeader (variable)

...

SoapHeader (variable)

...

MultiQueueFormatHeader (variable)

20 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

...

SessionHeader (16 bytes, optional)

...

...

BaseHeader (16 bytes): A BaseHeader ([MS-MQMQ] section 2.2.19.1). The TimeToReachQueue
field has the same length and format as that specified in [MS-MQMQ] but differs in that it
represents the absolute expiration time of the message as the number of seconds elapsed since

midnight (00:00:00), January 1, 1970 Coordinated Universal Time (UTC).

UserHeader (variable): A UserHeader ([MS-MQMQ] section 2.2.19.2) with the following field

overlays, which pertain when the UserHeader specifies that the destination queue is a direct
format name. In this case, the QueueManagerAddress field specifies the host address from
which a message was received. If the UserHeader specifies that the destination queue is
anything other than a direct format name, the 16 bytes after the SourceQueueManager field are

set to the GUID of the host from which the message was received, as specified in [MS-MQMQ]
section 2.2.19.2.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SourceQueueManager (16 bytes)

...

...

AddressLength AddressType

AddressScope

Address

...

UserHeaderEnd (variable)

...

SourceQueueManager (16 bytes): A GUID ([MS-DTYP] section 2.3.4.1) that identifies the
sender of the message.

AddressLength (2 bytes): A USHORT ([MS-DTYP] section 2.2.58) that MUST be the actual
address length in the Address field.

AddressType (2 bytes): A USHORT that MUST be set to one of the following values.

Value Meaning

IP_ADDRESS_TYPE The address specified in the Address field is an IPv4 address.

21 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

Value Meaning

0x0001

IPV6_ADDRESS_TYPE

0x0006

The address specified in the Address field is an IPv6 address.

AddressScope (4 bytes): A ULONG ([MS-DTYP] section 2.2.51) that MUST be set either to the
IPv6 address scope if the AddressType field is IPV6_ADDRESS_TYPE or otherwise to

0x00000000. More details are specified in [RFC2553] section 3.3.

Address (8 bytes): An 8-byte array of UCHAR ([MS-DTYP] section 2.2.45) that MUST contain
the address of the host from which the message was received. The field MUST contain as
much of the address as can fit in the field. More details are specified in [RFC2553] section 3.3.

UserHeaderEnd (variable): A variable-length buffer mapped by a UserHeader beginning with

the TimeToBeReceived field. Within the Flags field, the AH bit field MUST be set only if both
the SOAPEnvelope and the SOAPCompoundMessage ADM attributes of the Message

([MS-MQDMPR] section 3.1.1.12) ADM element are populated.

TransactionHeader (variable): A TransactionHeader ([MS-MQMQ] section 2.2.20.5).

SecurityHeader (variable): A SecurityHeader ([MS-MQMQ] section 2.2.20.6).

MessagePropertiesHeader (variable): A MessagePropertiesHeader ([MS-MQMQ] section
2.2.19.3).

DebugHeader (variable): A DebugHeader [MS-MQMQ] section 2.2.20.8).

SRMPEnvelopeHeader (variable): An SRMPEnvelopeHeader (section 2.2.5.1.2.1).

CompoundMessageHeader (variable): A CompoundMessageHeader (section 2.2.5.1.2.2).

SoapHeader (variable): A SoapHeader ([MS-MQMQ] section 2.2.20.7).

MultiQueueFormatHeader (variable): A MultiQueueFormatHeader ([MS-MQMQ] section
2.2.20.1).

SessionHeader (16 bytes): A SessionHeader ([MS-MQMQ] section 2.2.20.4). The SessionHeader
is used to acknowledge express and recoverable UserMessage Packets ([MS-MQMQ] section

2.2.20) when they are sent on a session. This header MUST be present if and only if the
BaseHeader.Flags.SH bit field of the UserMessage Packet is set. This bit is set when the
SessionHeader is piggy-backed onto a UserMessage Packet instead of sending it in a stand-
alone SessionAck Packet ([MS-MQQB] section 2.2.6).

More details about the following individual headers, with the exceptions of

SRMPEnvelopeHeader (section 2.2.5.1.2.1) and CompoundMessageHeader (section 2.2.5.1.2.2), are
specified in [MS-MQQB] section 2.2.20.

In addition, the following exceptions also exist on the field attributes as specified in [MS-MQQB]. The
overall structure of the data is the same; however, particular fields have been overridden or have
different meanings in this protocol. The size of each overridden field is the same size as the original
field.

UserMessage.BaseHeader.TimeToReachQueue

The definition for TimeToReachQueue differs from what is specified in [MS-MQQB] section 2.2.20 in
the following manner:

▪ In [MS-MQQB], this field indicates the length of time, in seconds, that a UserMessage Packet
has to reach its destination queue manager.

22 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ In [MS-MQRR], this field indicates the absolute expiration time of the message defined as the

number of seconds elapsed since midnight (00:00:00), January 1, 1970 UTC.

2.2.5.1.1 Binary Message

A binary message represents a message being received that was originally sent over the MSMQ:
Binary Reliable Messaging Protocol [MS-MQQB]. The UserHeader.Flags.AH bit field MUST NOT be
set, and the SRMPEnvelopeHeader (section 2.2.5.1.2.1) and the
CompoundMessageHeader (section 2.2.5.1.2.2) MUST NOT be present in the
UserMessage (section 2.2.5.1).

2.2.5.1.2 SRMP Message

An SRMP message represents a message being received that was originally sent over HTTP. The
UserHeader.Flags.AH bit field MUST be set, and the SRMPEnvelopeHeader (section 2.2.5.1.2.1) and

the CompoundMessageHeader (section 2.2.5.1.2.2) MUST be present in the
UserMessage (section 2.2.5.1).

2.2.5.1.2.1 SRMPEnvelopeHeader

The SRMPEnvelopeHeader contains information about the SOAP envelope used to send the original

message over HTTP. This header MUST be present only if the UserHeader.Flags.AH bit field is set.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HeaderId Reserved

DataLength

Data (variable)

...

HeaderId (2 bytes): A USHORT ([MS-DTYP] section 2.2.58) that specifies the identification number
of the header.

Reserved (2 bytes): A USHORT that MUST be ignored.

DataLength (4 bytes): A ULONG ([MS-DTYP] section 2.2.51), that MUST be the length of the data

in the Data field.

Data (variable): Specifies the data in WCHAR ([MS-DTYP] section 2.2.60) format, including the

NULL terminator. The data is formatted as an SRMP Message Structure ([MC-MQSRM] section
2.2.2).

2.2.5.1.2.2 CompoundMessageHeader

The CompoundMessageHeader contains information about the SRMP compound message, as specified

in [MC-MQSRM] section 2.2.2. This header MUST be present only if the UserHeader.Flags.AH bit
field is set.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HeaderId Reserved

23 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

HTTPBodySize

MsgBodySize

MsgBodyOffset

Data (variable)

...

HeaderId (2 bytes): A USHORT ([MS-DTYP] section 2.2.58) that specifies the identification number
of the header.

Reserved (2 bytes): A USHORT that MUST be ignored.

HTTPBodySize (4 bytes): A ULONG ([MS-DTYP] section 2.2.51) that MUST be the size of the Data
field in bytes.

MsgBodySize (4 bytes): A ULONG that MUST be the size, in bytes, of the message body within the
Data field.

MsgBodyOffset (4 bytes): A ULONG that MUST be set to the offset of the message body within the
Data field.

Data (variable): Specifies an array of bytes that contains the SRMP message, including the HTTP
POST message that carried the SRMP message. More details are specified in [MC-MQSRM] section
4.1.

2.2.5.2 ExtensionHeader

The ExtensionHeader contains information about the presence and size of other headers in the
Message Packet Structure (section 2.2.5), such as DeadLetterHeader (section 2.2.5.4),
SubqueueHeader (section 2.2.5.3), and ExtendedAddressHeader (section 2.2.5.5).<5>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HeaderSize

RemainingHeadersSize

Flags Reserved

HeaderSize (4 bytes): A ULONG ([MS-DTYP] section 2.2.51) that specifies the size in bytes of the
ExtensionHeader.

RemainingHeadersSize (4 bytes): A ULONG that MUST be the sum of sizes in bytes of all headers

that follow the ExtensionHeader.

Flags (1 byte): Indicates the presence or absence of other headers in the Message Packet
Structure. Any combination of the following values is acceptable.

24 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

0

1

2

3

4

5

6

7

D

L

S

Q

X

2

D

I

E

A

X

5

X

6

X

7

Where the bits are defined as:

Value Description

DL

MUST be set to 1 if the Message Packet Structure contains the DeadLetterHeader. MUST be
set to 0 otherwise.

SQ

Indicates whether the Message Packet Structure contains a SubqueueHeader. MUST be set to
1.

X2

Unused bit field. MUST be ignored.

DI

MUST be set to 1 if the dead-letter queue as specified by the DeadLetterHeader is invalid. MUST
be set to 0 otherwise. If the DeadLetterHeader is not included, this field MUST be ignored when
reading the message packet.

EA

Indicates whether the Message Packet Structure contains an ExtendedAddressHeader. MUST
be set to 1.

X5

Unused bit field. MUST be ignored.

X6

Unused bit field. MUST be ignored.

X7

Unused bit field. MUST be ignored.

Reserved (3 bytes): MUST be ignored when reading the Message Packet Structure.

2.2.5.3 SubqueueHeader

The SubqueueHeader encapsulates information about the message as specified following.<6> This

header MUST be ignored if its SubqueueName field is an empty string.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HeaderSize

A AcknowledgementClass Reserved

AbortCounter

MoveCounter

LastMoveTime

25 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

SubqueueName (64 bytes)

...

...

TargetSubqueueName (64 bytes)

...

...

HeaderSize (4 bytes): A ULONG ([MS-DTYP] section 2.2.51) that specifies the size in bytes of the

SubqueueHeader.

A - TM (1 bit): A one-bit ([MS-DTYP] section 2.1.1) flag that MUST be set to 0.

AcknowledgementClass (2 bytes): A USHORT ([MS-DTYP] section 2.2.58) that MUST specify the
acknowledgment class of the message. See [MS-MQQB] section 2.2.18.1.6.

Reserved (15 bits): MUST be ignored.

AbortCounter (4 bytes): A ULONG that specifies the number of sequentially failed attempts to read
the message or to move the message. See sections 3.1.4.13, 3.1.4.10, and 3.1.6.1.

MoveCounter (4 bytes): A ULONG that specifies the number of times that the message has been

moved. See section 3.1.4.10.

LastMoveTime (4 bytes): A ULONG that specifies the local time of the most recent move of the
message. The time is specified as the number of milliseconds elapsed since midnight of January 1,
1970. If the message has never been moved, this value is 0x00000000. See section 3.1.4.10.

SubqueueName (64 bytes): If the message belongs to a subqueue, the value MUST contain the
null-terminated Unicode string that specifies the subqueue name. If the subqueue name is shorter
than the field size, the remaining bytes MUST be set to 0x00. If the message does not belong to

the subqueue, all bytes MUST be set to 0x00.

TargetSubqueueName (64 bytes): If the message is participating in the transacted Move operation
that is not yet committed or aborted, this field MUST contain the null-terminated Unicode string
that specifies the target subqueue name. If the subqueue name is shorter than the field size, the
remaining bytes MUST be set to 0x00. If the message is not part of a transacted Move operation,
all bytes MUST be set to 0x00.

2.2.5.4 DeadLetterHeader

The DeadLetterHeader specifies the path of an application-specified dead-letter queue.<7>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HeaderSize

DeadLetterPathName (variable)

...

26 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

HeaderSize (4 bytes): A ULONG ([MS-DTYP] section 2.2.51) that MUST be set to the total size in

bytes of the DeadLetterHeader.

DeadLetterPathName (variable): MUST contain a null-terminated Unicode string that specifies the
application-specified dead-letter queue. The array MUST be aligned up to the next 4-byte

boundary by adding padding zeros if necessary.

2.2.5.5 ExtendedAddressHeader

The ExtendedAddressHeader specifies the host address from which a message was received.<8>

This header MUST be ignored if the AddressType field is 0x0000.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HeaderSize

AddressLength AddressType

AddressScope

Address (16 bytes)

...

...

HeaderSize (4 bytes): A ULONG ([MS-DTYP] section 2.2.51) that specifies the size, in bytes, of the
ExtendedAddressHeader.

AddressLength (2 bytes): A USHORT ([MS-DTYP] section 2.2.58) that MUST be the actual address
length in the Address field.

AddressType (2 bytes): A USHORT that MUST be set to one of the following values.

Value Meaning

0x0000 This header MUST be ignored.

IP_ADDRESS_TYPE

0x0001

The address specified in the Address field is an IPv4 address.

IPV6_ADDRESS_TYPE

0x0006

The address specified in the Address field is an IPv6 address.

AddressScope (4 bytes): A ULONG that MUST be set either to the IPv6 address scope if the
AddressType field is IPV6_ADDRESS_TYPE or otherwise to 0x00000000. See [RFC2553] section

3.3.

Address (16 bytes): An array of UCHAR ([MS-DTYP] section 2.2.45) that MUST contain the host
address from which the message was received. If the AddressType field is IP_ADDRESS_TYPE,
the address MUST be in IPv4 address format. If the AddressType field is IPV6_ADDRESS_TYPE,
the address MUST be in IPv6 address format. See [RFC2553] section 3.3.

27 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

2.2.6 SectionBuffer

A SectionBuffer represents a fragment or section of a Message Packet (section 2.2.5). Operations
R_StartReceive (Opnum 7) (section 3.1.4.7) and R_StartTransactionalReceive (Opnum

13) (section 3.1.4.13) fragment a Message Packet into an array of one or more SectionBuffer
structures. The client concatenates these fragments to reconstruct a valid Message Packet. There
can be up to two sections per message. A Message Packet is split into two sections only when a
subset of the distinguished message body property is returned. The first section always contains the
message body property up to the size requested.

 typedef struct _SectionBuffer {
 SectionType SectionBufferType;
 DWORD SectionSizeAlloc;
 DWORD SectionSize;
 [unique, size_is(SectionSize)] byte* pSectionBuffer;
 } SectionBuffer;

SectionBufferType: MUST specify a type for the SectionBuffer structure that indicates whether the

pSectionBuffer member contains the whole Message Packet or MUST indicate which section is
contained. The SectionType (section 2.2.7) enumeration lists possible values. More details are
specified in 2.2.7.

SectionSizeAlloc: MUST specify the original size (in bytes) of the part of the Message Packet that
this SectionBuffer represents. When the SectionBuffer represents the first section of the
message, this field specifies the size that the SectionBuffer would have been if the entire

message body property were included. The difference between the values of the
SectionSizeAlloc member and the SectionSize member represents the size of the message
body that was not transferred.

If the SectionBufferType member value is stFullPacket, stBinarySecondSection, or

stSrmpSecondSection, then the SectionSizeAlloc member value MUST be equal to the
SectionSize member value.

If the SectionBufferType member value is stBinaryFirstSection or stSrmpFirstSection, then the

SectionSizeAlloc member value MUST be equal to or greater than the SectionSize member
value.

SectionSize: MUST be the size (in bytes) of the buffer pointed to by the pSectionBuffer member.
The SectionSize member specifies the size of the part of the Message Packet contained in the
pSectionBuffer member.

pSectionBuffer: MUST be a pointer to an array of bytes containing a section of the Message
Packet.

2.2.7 SectionType

The SectionType enumeration defines the available SectionBuffer (section 2.2.6) types.

 typedef enum
 {
 stFullPacket = 0,
 stBinaryFirstSection = 1,
 stBinarySecondSection = 2,
 stSrmpFirstSection = 3,
 stSrmpSecondSection = 4
 } SectionType;

28 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

stFullPacket: The pSectionBuffer member of the SectionBuffer structure contains a complete

Message Packet Structure (section 2.2.5). The UserMessage (section 2.2.5.1) is either that
specified in section 2.2.5.1.1 or in section 2.2.5.1.2.

stBinaryFirstSection: The pSectionBuffer member of the SectionBuffer structure contains the

first section of the Binary Message (section 2.2.5.1.1) packet up to, but not beyond, the
MessagePropertiesHeader ([MS-MQMQ] section 2.2.19.3) in the UserMessage.

stBinarySecondSection: The pSectionBuffer member of the SectionBuffer structure contains the
second section of the Binary Message packet from beyond the end of the
MessagePropertiesHeader in the UserMessage to the end of the packet.

stSrmpFirstSection: The pSectionBuffer member of the SectionBuffer structure contains the first
section of the SRMP Message packet up to, but not beyond, the

CompoundMessageHeader (section 2.2.5.1.2.2) in the UserMessage.

stSrmpSecondSection: The pSectionBuffer member of the SectionBuffer structure contains the
second section of the SRMP Message packet from beyond the end of the
CompoundMessageHeader in the UserMessage to the end of the packet.

2.2.8 XACTUOW

The XACTUOW ([MS-MQMQ] section 2.2.18.1.8) structure uniquely identifies the unit of work (UOW)
for a transactional operation. For an external transaction, this value MUST be acquired from the
transaction coordinator. For an internal transaction, a client MUST create a unique random value for
each transaction.<9>

2.3 Directory Service Schema Elements

This protocol uses ADM elements specified in section 3.1.1. A subset of these elements can be
published in a directory. This protocol accesses the directory using the algorithm specified in [MS-
MQDSSM] and using LDAP [MS-ADTS]. The Directory Service schema elements for ADM elements

published in the directory are defined in [MS-MQDSSM] section 2.4.

29 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

3 Protocol Details

3.1 RemoteRead Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

 The abstract data model for this protocol comprises elements that are private to this protocol and
others that are shared between multiple MSMQ protocols that are co-located at a common queue

manager. The shared abstract data model is defined in [MS-MQDMPR] section 3.1.1, and the
relationship between this protocol, a queue manager, and other protocols that share a common queue
manager is described in [MS-MQOD].

 Section 3.1.1.1 specifies the abstract data model (ADM) elements from the shared data model that
are manipulated by this protocol, and sections 3.1.1.2 through 3.1.1.4 specify the ADM elements that
are private to this protocol.

3.1.1.1 Shared Data Elements

This protocol manipulates the following ADM elements from the shared abstract data model.

Cursor: [MS-MQDMPR] section 3.2.

Message: [MS-MQDMPR] section 3.1.1.12.

MessagePosition: [MS-MQDMPR] section 3.1.1.11

OpenQueueDescriptor: [MS-MQDMPR] section 3.1.1.16.

OpenQueueDescriptorCollection: [MS-MQDMPR] section 3.1.1.2.

Queue: [MS-MQDMPR] section 3.1.1.2.

QueueManager: [MS-MQDMPR] section 3.1.1.1.

Transaction: [MS-MQDMPR] section 3.1.1.14.

3.1.1.2 PendingRequestEntry

The PendingRequestEntry ADM element encapsulates a pending request to peek or receive a
message from an open queue and specifies the following ADM attributes:

RequestId: The request ID supplied by the client.

LookupIdentifier: The LookupIdentifier ADM attribute of a Message ([MS-MQDMPR] section
3.1.1.12) ADM element instance associated with the request.

QueueContextHandle: An RPC context handle corresponding to an open queue, as defined by

QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1).

TimeStamp: A 32-bit unsigned integer that represents the time, in milliseconds, at which the
client request was received.

30 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

3.1.1.3 PendingRequestTable

The PendingRequestTable ADM element represents a hash table that contains references to
PendingRequestEntry (section 3.1.1.2) ADM element instances keyed on

{PendingRequestEntry.RequestId, PendingRequestEntry.QueueContextHandle}.

3.1.1.4 Message

The local Message ADM element extends the base Message ([MS-MQDMPR] section 3.1.1.10) ADM
element.

The server MUST maintain private state for each local Message ADM element instance in addition to
the state specified by the Message ([MS-MQDMPR] section 3.1.1.10) ADM element. The following
additional ADM attributes are specified to reference this private state:

Type: The type of the message packet, either binary or SRMP.

Offset: The offset and byte size of the message headers, message body, and message trailers.

3.1.2 Timers

The Message Queuing (MSMQ): Queue Manager Remote Read protocol MUST maintain the following
timers:

▪ RPC Call Timeout Timer (section 3.1.2.1)

▪ Pending Request Cleanup Timer (section 3.1.2.2)

3.1.2.1 RPC Call Timeout Timer

This protocol uses nondefault behavior for the RPC Call Timeout Timer, as specified in [MS-RPCE]
section 3.3.2.2.2. This protocol uses a timer value of 300,000 milliseconds<10>, which applies to the

following method calls:

▪ R_OpenQueue (Opnum 2) (section 3.1.4.2)

▪ R_OpenQueueForMove (Opnum 11) (section 3.1.4.11)

▪ R_QMEnlistRemoteTransaction (Opnum 12) (section 3.1.4.12)

The server MUST maintain a per-call timer for each call to the R_StartReceive (Opnum
7) (section 3.1.4.7) method or the R_StartTransactionalReceive (Opnum 13) (section 3.1.4.13)
method in which the dwTimeout parameter is nonzero. The timer MUST be set to the dwTimeout

parameter that is specified on the call.

3.1.2.2 Pending Request Cleanup Timer

This timer regulates the amount of time that the protocol waits before removing expired entries from
the PendingRequestTable (section 3.1.1.3) ADM element. The server MUST maintain a per-call timer

for each call to the R_StartReceive (Opnum 7) (section 3.1.4.7) method or the
R_StartTransactionalReceive (Opnum 13) (section 3.1.4.13) method. This timer is set when a
PendingRequestEntry (section 3.1.1.2) ADM element instance is added to the PendingRequestTable
ADM element. The duration of this timer MUST be set based on the system configuration, which is
implementation-dependent.<11>

31 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

3.1.3 Initialization

The server MUST listen on the RPC protocols, as specified in section 2.1.

3.1.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency
check at target level 6.0, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to reject a NULL unique or full pointer with
nonzero conformant value, as specified in [MS-RPCE] section 3.

The RemoteRead interface includes the following methods.

Methods in RPC Opnum Order

Method Description

R_GetServerPort (Opnum 0) (section 3.1.4.1) Returns an RPC endpoint port number to use in
subsequent calls on the interface.

Opnum: 0

Opnum1NotUsedOnWire Reserved for local use.

Opnum: 1

R_OpenQueue (Opnum 2) (section 3.1.4.2) Opens a queue.

Opnum: 2

R_CloseQueue (Opnum 3) (section 3.1.4.3) Closes a queue.

Opnum: 3

R_CreateCursor (Opnum 4) (section 3.1.4.4) Opens a cursor on a queue.

Opnum: 4

R_CloseCursor (Opnum 5) (section 3.1.4.5) Closes a cursor.

Opnum: 5

R_PurgeQueue (Opnum 6) (section 3.1.4.6) Deletes all messages in a queue.

Opnum: 6

R_StartReceive (Opnum 7) (section 3.1.4.7) Initiates a Receive or Peek request on the queue.

Opnum: 7

R_CancelReceive (Opnum 8) (section 3.1.4.8) Cancels a pending Receive request.

Opnum: 8

R_EndReceive (Opnum 9) (section 3.1.4.9) Finishes a Receive request.

Opnum: 9

R_MoveMessage (Opnum 10) (section 3.1.4.10) Moves a message between two queues.

Opnum: 10

R_OpenQueueForMove (Opnum
11) (section 3.1.4.11)

Opens a queue to be a destination for a move operation.

Opnum: 11

R_QMEnlistRemoteTransaction (Opnum
12) (section 3.1.4.12)

Enlists in a transaction on a remote machine.

Opnum: 12

R_StartTransactionalReceive (Opnum Initiates a transactional receive request on the queue.

32 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

Method Description

13) (section 3.1.4.13) Opnum: 13

R_SetUserAcknowledgementClass (Opnum
14) (section 3.1.4.14)

Changes the acknowledgment class for a message in a
queue.

Opnum: 14

R_EndTransactionalReceive (Opnum
15) (section 3.1.4.15)

Finishes a transactional receive request.

Opnum: 15

Note In the preceding table, the term "Reserved for local use" means that the client MUST NOT send
the opnum and the server behavior is undefined since it does not affect interoperability.<12>

3.1.4.1 R_GetServerPort (Opnum 0)

The R_GetServerPort method returns the RPC endpoint port for the client to use in subsequent
method calls on the RemoteRead interface.

The server MUST return the TCP port number for the RemoteRead RPC interface. The default port
number used is 2103. If this port is already in use, the server SHOULD increment the port number by
11 until an unused port is found.

The client MAY call this method prior to calling any other method on the protocol. The client MAY use
the returned value to obtain another RPC binding handle to use with the remaining methods on the

protocol.<13>

 DWORD R_GetServerPort(
 [in] handle_t hBind
);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

Return Values: On success, this method MUST return a nonzero TCP port value for the RPC interface.

If an error occurs, the server MUST return 0x00000000.

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-
RPCE].

As specified in section 3.1.3, this protocol configures a fixed listening endpoint at an RPC port number
that can vary. This method returns the RPC port number determined at server initialization time.

3.1.4.2 R_OpenQueue (Opnum 2)

The R_OpenQueue method opens a queue in preparation for subsequent operations against it. This
method MUST be called prior to calling any of the following operations:

▪ R_CreateCursor (Opnum 4) (section 3.1.4.4)

▪ R_CloseCursor (Opnum 5) (section 3.1.4.5)

▪ R_PurgeQueue (Opnum 6) (section 3.1.4.6)

▪ R_StartReceive (Opnum 7) (section 3.1.4.7)

▪ R_CancelReceive (Opnum 8) (section 3.1.4.8)

33 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ R_EndReceive (Opnum 9) (section 3.1.4.9)

▪ R_MoveMessage (Opnum 10) (section 3.1.4.10) for the source queue only.

▪ R_StartTransactionalReceive (Opnum 13) (section 3.1.4.13)

▪ R_SetUserAcknowledgementClass (Opnum 14) (section 3.1.4.14)

▪ R_EndTransactionalReceive (Opnum 15) (section 3.1.4.15)

This method returns a QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2) handle value, which is
required as input in the operations listed preceding.

 void R_OpenQueue(
 [in] handle_t hBind,
 [in] QUEUE_FORMAT* pQueueFormat,
 [in] DWORD dwAccess,
 [in] DWORD dwShareMode,
 [in] GUID* pClientId,
 [in] LONG fNonRoutingServer,
 [in] unsigned char Major,
 [in] unsigned char Minor,
 [in] USHORT BuildNumber,
 [in] LONG fWorkgroup,
 [out] QUEUE_CONTEXT_HANDLE_SERIALIZE* pphContext
);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

pQueueFormat: MUST be a pointer to a QUEUE_FORMAT ([MS-MQMQ] section 2.2.7) structure that
identifies the queue to open. NULL is invalid for this parameter. The valid values for the m_qft
member are QUEUE_FORMAT_TYPE_PUBLIC, QUEUE_FORMAT_TYPE_PRIVATE,

QUEUE_FORMAT_TYPE_DIRECT, QUEUE_FORMAT_TYPE_MACHINE, and

QUEUE_FORMAT_TYPE_SUBQUEUE.

dwAccess: Specifies the requested type of access to the queue. The required dwAccess parameter
value for each event is specified in each of the corresponding events. If no requirement is listed,
any dwAccess parameter value is accepted.

Value Meaning

RECEIVE_ACCESS

0x00000001

The returned QUEUE_CONTEXT_HANDLE_SERIALIZE handle can be used in the
R_StartReceive or R_StartTransactionalReceive methods with the ulAction parameter
set to either a Peek or Receive action type as defined in the table under the ulAction
parameter in the R_StartReceive method.

PEEK_ACCESS

0x00000020

The returned QUEUE_CONTEXT_HANDLE_SERIALIZE handle can be used in the
R_StartReceive method with the ulAction parameter set only to a Peek action type as
defined in the table under the ulAction parameter in the R_StartReceive method.

dwShareMode: Specifies whether the client needs exclusive access to the queue. The following
values are valid for this parameter:

Value Meaning

MQ_DENY_NONE

0x00000000

Permits multiple QUEUE_CONTEXT_HANDLE_SERIALIZE handles to the queue to be
opened concurrently.

MQ_DENY_SHARE

0x00000001

Permits a single QUEUE_CONTEXT_HANDLE_SERIALIZE handle to the queue at a time,
providing exclusive access to the queue.

34 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

pClientId: MUST be set by the client to a pointer to a valid GUID that uniquely identifies the client.

When the queue manager acts as the client, the queue manager sets this value to the Identifier
ADM attribute of the local QueueManager ADM element instance. The server SHOULD ignore this
parameter. The server MAY<14> use this parameter to impose a limit on the number of unique

callers. NULL is invalid for this parameter.

fNonRoutingServer: If the client is configured to operate in the role of an MSMQ routing server, this
parameter MUST be set to FALSE (0x00000000); otherwise, it MUST be set to TRUE
(0x00000001).<15> If the value of the fNonRoutingServer parameter is FALSE (0x00000000), the
server MUST ignore the pClientId parameter.

Name Value

False 0x00000000

True 0x00000001

Major: MUST be set by the client to an implementation-specific Major Version number of the client.
SHOULD<16> be ignored by the server.

Minor: MUST be set by the client to an implementation-specific Minor Version number of the client.
SHOULD<17> be ignored by the server.

BuildNumber: MUST be set by the client to an implementation-specific Build Number of the client.
SHOULD<18> be ignored by the server.

fWorkgroup: MUST be set to TRUE (0x00000001) by the client if the client machine is not a member

of a Windows domain; otherwise, it MUST be set to FALSE (0x00000000). The RPC authentication
level required by the server MAY<19> be based on this value in subsequent calls on the interface.

Name Value

False 0x00000000

True 0x00000001

pphContext: MUST be set by the server to a QUEUE_CONTEXT_HANDLE_SERIALIZE handle.

Return Values: The method has no return values. If the method fails, an RPC exception is thrown.

Exceptions Thrown:

In addition to the exceptions thrown by the underlying RPC protocol, as specified in [MS-RPCE], the
method throws HRESULT failure codes as RPC exceptions. The client MUST treat all thrown HRESULT
codes identically. The client MUST disregard all output parameter values when any failure HRESULT is

thrown.

When processing this call, the server MUST do the following:

▪ If any of the input parameter values is invalid, throw MQ_ERROR_INVALID_PARAMETER

(0xC00E0006).

▪ Look up the queue name in the QueueCollection ADM attribute of the local QueueManager ADM
element instance. If not found, throw MQ_ERROR_QUEUE_NOT_FOUND (0xC00E0003).

▪ Generate an Open Queue ([MS-MQDMPR] section 3.1.7.1.5) event with the following inputs:

▪ iFormatName := pQueueFormat

35 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ iRequiredAccess := If the dwAccess parameter is RECEIVE_ACCESS then

QueueAccessType.ReceiveAccess else QueueAccessType.PeekAccess.

▪ iSharedMode := If the dwShareMode parameter is MQ_DENY_NONE then
QueueShareMode.DenyNone else QueueShareMode.DenyReceive.

▪ If rStatus is MQ_OK (0x00000000):

▪ Set the pphContext parameter to rOpenQueueDescriptor.Handle

3.1.4.3 R_CloseQueue (Opnum 3)

The R_CloseQueue method closes a QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2) handle
that was previously opened by using a call to the R_OpenQueue (Opnum 2) (section 3.1.4.2) method
or the R_OpenQueueForMove (Opnum 11) (section 3.1.4.11) method.

 HRESULT R_CloseQueue(
 [in] handle_t hBind,
 [in, out] QUEUE_CONTEXT_HANDLE_SERIALIZE* pphContext
);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

pphContext: MUST be set by the client to the QUEUE_CONTEXT_HANDLE_SERIALIZE handle to
be closed. The handle MUST have been returned by the server in the pphContext parameter of a
prior call to the R_OpenQueue method or the R_OpenQueueForMove method and MUST NOT

have been closed through a prior call to R_CloseQueue. This value MUST NOT be NULL. If the
server returns MQ_OK, it MUST set this value to NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT, and the client MUST treat all failure
HRESULTs identically.

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-
RPCE].

When processing this call, the server MUST:

▪ Find the corresponding OpenQueueDescriptor ADM element instance by comparing the
pphContext parameter with the Handle ADM attribute for all OpenQueueDescriptor ADM
element instances maintained by the local QueueManager ADM element instance.

▪ If not found, return a failure HRESULT.

▪ Generate a Close Queue ([MS-MQDMPR] section 3.1.7.1.6) event with the following inputs:

▪ iQueueDesc := The found OpenQueueDescriptor ADM element instance.

▪ Find all entries in the PendingRequestTable (section 3.1.1.3) ADM element that contain the
pphContext parameter, and remove these entries.

▪ Set the pphContext parameter to NULL.

▪ Return MQ_OK (0x00000000).

36 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

3.1.4.4 R_CreateCursor (Opnum 4)

The R_CreateCursor method creates a cursor and returns a handle to it. The handle can be used in
subsequent calls to the R_StartReceive (Opnum 7) (section 3.1.4.7) method or the

R_StartTransactionalReceive (Opnum 13) (section 3.1.4.13) method to specify a relative location in
the queue from which to receive a message.

 HRESULT R_CreateCursor(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,
 [out] DWORD* phCursor
);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

phContext: MUST be set by the client to the
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle with which to associate the
cursor. The handle MUST have been returned by the server in the pphQueue output parameter of
a prior call to the R_OpenQueue (Opnum 2) (section 3.1.4.2) method and MUST NOT have been
closed through a prior call to the R_CloseQueue (Opnum 3) (section 3.1.4.3) method. This value
MUST NOT be NULL.

phCursor: MUST be set by the server to a handle for the created cursor.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure, and the client MUST treat all failure HRESULTs
identically.

The client MUST disregard all out-parameter values when any failure HRESULT is returned.

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-

RPCE].

When processing this call, the server MUST:

▪ Find the corresponding OpenQueueDescriptor ADM element instance by comparing the
pphContext parameter with the Handle ADM attribute for all OpenQueueDescriptor ADM
element instances maintained by the local QueueManager ADM element instance.

▪ If not found, return a failure HRESULT.

▪ Generate an Open Cursor ([MS-MQDMPR] section 3.1.7.1.1) event with the following inputs:

▪ iQueueDesc := The found OpenQueueDescriptor ADM element instance.

▪ Set the phCursor parameter to rCursor.Handle.

▪ Return MQ_OK (0x00000000).

3.1.4.5 R_CloseCursor (Opnum 5)

The R_CloseCursor method closes the handle for a previously created cursor. The client MUST call this
method to reclaim resources on the server allocated by the R_CreateCursor (Opnum
4) (section 3.1.4.4) method.

 HRESULT R_CloseCursor(

37 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,
 [in] DWORD hCursor
);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

phContext: MUST be set by the client to the
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle with which the cursor was
associated in a call to the R_CreateCursor method. The handle MUST have been returned by the
server in the pphQueue output parameter of a prior call to the R_OpenQueue (Opnum
2) (section 3.1.4.2) method and MUST NOT have been closed through a prior call to the

R_CloseQueue (Opnum 3) (section 3.1.4.3) method. This value MUST NOT be NULL.

hCursor: MUST be set by the client to the handle of the cursor to be closed. The handle MUST have
been obtained by a prior call to the R_CreateCursor method and MUST NOT have been closed

through a prior call to the R_CloseCursor method.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT and the client MUST treat all failure

HRESULTs identically.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, as specified in
[MS-RPCE].

When processing this call, the server MUST:

▪ Find the corresponding OpenQueueDescriptor ADM element instance fOpenQueueDescriptor by

comparing the phContext parameter with the Handle ADM attribute for all

OpenQueueDescriptor ADM element instances maintained by the local QueueManager ADM
element instance.

▪ If fOpenQueueDescriptor is found, then find the corresponding Cursor ADM element instance
fCursor by comparing the hCursor parameter with the Handle ADM attribute of each Cursor ADM
element instance in fOpenQueueDescriptor.CursorCollection.

▪ If not found, return a failure HRESULT.

▪ Generate a Close Cursor ([MS-MQDMPR] section 3.1.7.1.2) event with the following input:

▪ iCursor := fCursor

▪ Return MQ_OK (0x00000000).

3.1.4.6 R_PurgeQueue (Opnum 6)

The R_PurgeQueue method removes all messages from the queue.

 HRESULT R_PurgeQueue(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext
);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

38 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

phContext: MUST be set by the client to a

QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle of the queue to be purged. The
handle MUST have been returned by the server in the pphQueue output parameter of a prior call
to the R_OpenQueue (Opnum 2) (section 3.1.4.2) method with the dwAccess parameter set to

RECEIVE_ACCESS and MUST NOT have been closed through a prior call to the R_CloseQueue
(Opnum 3) (section 3.1.4.3) method. This value MUST NOT be NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT, and the client MUST treat all failure
HRESULTs identically.

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-

RPCE].

When processing this call, the server MUST:

▪ Find the corresponding OpenQueueDescriptor ADM element instance by comparing the
phContext parameter with the Handle ADM attribute for all OpenQueueDescriptor ADM element
instances maintained by the local QueueManager ADM element instance.

▪ If not found, return a failure HRESULT, and perform no further actions. Otherwise, assign the

found OpenQueueDescriptor ADM element instance to the local variable queueDesc.

▪ If queueDesc.AccessType is QueueAccessType.ReceiveAccess:

▪ Generate a Purge Queue ([MS-MQDMPR] section 3.1.7.1.7) event with the following inputs:

▪ iQueue := queueDesc.QueueReference

▪ Return MQ_OK (0x00000000), and perform no further actions.

▪ Return STATUS_ACCESS_DENIED (0xC0000022).

3.1.4.7 R_StartReceive (Opnum 7)

The R_StartReceive method peeks or receives a message from an open queue.

If the R_StartReceive method is invoked with a Peek action type, as specified in the ulAction
parameter, the operation completes when the R_StartReceive method returns.

If the R_StartReceive method is invoked with a Receive action type, as specified in the ulAction
parameter, the client MUST pair each call to the R_StartReceive method with a call to the
R_EndReceive (Opnum 9) (section 3.1.4.9) method to complete the operation, or to the

R_CancelReceive (Opnum 8) (section 3.1.4.8) method to cancel the operation. The call to the
R_EndReceive method or the R_CancelReceive method is correlated to a call to the
R_StartReceive method through matching dwRequestId parameters.

If the client specifies a nonzero ulTimeout parameter, and a message is not available in the queue at

the time of the call, the server waits up to the specified time-out for a message to become available in
the queue before responding to the call. The client can call the R_CancelReceive method with a
matching dwRequestId parameter to cancel the pending R_StartReceive method request.

The message to be returned can be specified in one of three ways:

▪ LookupId: A nonzero LookupId parameter value specifies the unique identifier for the message to
be returned. The ulAction parameter further specifies whether the message to be returned is the

39 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

one identified by the LookupId parameter or the first unlocked message immediately preceding or

following it. For more details, see the description of the ulAction parameter.

▪ Cursor: A nonzero cursor handle specifies the cursor to be used to identify the message to be
returned. The cursor specifies a location in the queue. The ulAction parameter further specifies

whether the message to be returned is the one identified by the cursor or the first unlocked
message immediately following it. For more details, see the description of the ulAction parameter.

▪ First: if the LookupId parameter is set to zero and the hCursor parameter is set to zero, the first
unlocked message in the queue can be returned. The ulAction parameter further specifies whether
the first message is to be received or peeked.

The ppPacketSections parameter is the address of one or more pointers to one or more
SectionBuffer (section 2.2.6) structures. The pSectionBuffer member of the first SectionBuffer

structure points to the beginning of the message packet. If more than one SectionBuffer structure is
present, the packet sections are concatenated in the order in which they appear in the array to form

the entire packet. The size of each section is stored in the SectionSizeAlloc member of the
SectionBuffer structure.

 HRESULT R_StartReceive(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,
 [in] ULONGLONG LookupId,
 [in] DWORD hCursor,
 [in] DWORD ulAction,
 [in] DWORD ulTimeout,
 [in] DWORD dwRequestId,
 [in] DWORD dwMaxBodySize,
 [in] DWORD dwMaxCompoundMessageSize,
 [out] DWORD* pdwArriveTime,
 [out] ULONGLONG* pSequenceId,
 [out] DWORD* pdwNumberOfSections,
 [out, size_is(, *pdwNumberOfSections)]
 SectionBuffer** ppPacketSections
);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

phContext: MUST be set by the client to a
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle of the queue from which to
read a message. The handle MUST have been returned by the server in the pphQueue output
parameter of a prior call to the R_OpenQueue (Opnum 2) (section 3.1.4.2) method and MUST NOT
have been closed through a call prior to the R_CloseQueue (Opnum 3) (section 3.1.4.3) method.
This value MUST NOT be NULL.

The handle MUST have been opened with a dwAccess parameter value that permits the operation

specified by the ulAction parameter. For more details, see the dwAccess parameter in the
R_OpenQueue method.

LookupId: If nonzero, specifies the lookup identifier of the message to be acted on.

If the client sets the LookupId parameter to a nonzero value, the valid values for other parameters
are as follows:

▪ ulTimeout set to 0x00000000.

▪ hCursor set to 0x00000000.

▪ ulAction set to one of the following:

▪ MQ_LOOKUP_PEEK_PREV

40 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ MQ_LOOKUP_PEEK_CURRENT

▪ MQ_LOOKUP_PEEK_NEXT

▪ MQ_LOOKUP_RECEIVE_PREV

▪ MQ_LOOKUP_RECEIVE_CURRENT

▪ MQ_LOOKUP_RECEIVE_NEXT

If the client sets the LookupId parameter to 0x0000000000000000, all of the preceding values
of the ulAction parameter are invalid.

hCursor: If nonzero, specifies a handle to a cursor that MUST have been obtained from a prior call to
the R_CreateCursor (Opnum 4) (section 3.1.4.4) method. The handle MUST NOT have been closed
through a prior call to the R_CloseCursor (Opnum 5) (section 3.1.4.5) method.

If the client sets the hCursor parameter to a nonzero value, the valid values for other parameters

are as follows:

▪ LookupId set to 0x0000000000000000

▪ ulAction set to one of the following:

▪ MQ_ACTION_RECEIVE

▪ MQ_ACTION_PEEK_CURRENT

▪ MQ_ACTION_PEEK_NEXT

ulAction: Specifies the action to perform on the message. The following table lists possible actions.

Type / Value Meaning

MQ_ACTION_RECEIVE

0x00000000

If the hCursor parameter is nonzero, read and remove the message for the
current cursor location, and advance the cursor to the next position.

If the hCursor parameter is 0x00000000, read and remove the message from
the front of the queue.

The valid values for other parameters are as follows:

▪ LookupId set to 0x0000000000000000.

MQ_ACTION_PEEK_CURRENT

0x80000000

If the hCursor parameter is nonzero, read the message at the current cursor
location, but do not remove it from the queue.

If the hCursor parameter is 0x00000000, read the message at the front of
the queue, but do not remove it from the queue.

The valid values for other parameters are as follows:

▪ LookupId set to 0x0000000000000000.

MQ_ACTION_PEEK_NEXT

0x80000001

If the hCursor parameter is nonzero, advance the cursor to the next position
and read the message, but do not remove it from the queue.

The valid values for other parameters are as follows:

▪ LookupId set to 0x0000000000000000.

▪ hCursor set to a nonzero cursor handle obtained from the
R_CreateCursor method.

MQ_LOOKUP_PEEK_CURRENT Read the message specified by the LookupId parameter, but do not remove it

41 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

Type / Value Meaning

0x40000010 from the queue.

The valid values for other parameters are as follows:

▪ LookupId set to a nonzero value.

▪ hCursor set to 0x00000000.

▪ ulTimeout set to 0x00000000.

MQ_LOOKUP_PEEK_NEXT

0x40000011

Read the message following the message specified by the LookupId
parameter, but do not remove it.

The valid values for other parameters are as follows:

▪ LookupId set to a nonzero value.

▪ hCursor set to 0x00000000.

▪ ulTimeout set to 0x00000000.

MQ_LOOKUP_PEEK_PREV

0x40000012

Read the message preceding the message specified by the LookupId
parameter, but do not remove it from the queue.

The valid values for other parameters are as follows:

▪ LookupId set to a nonzero value.

▪ hCursor set to 0x00000000.

▪ ulTimeout set to 0x00000000.

MQ_LOOKUP_RECEIVE_CURRENT

0x40000020

Read the message specified by the LookupId parameter, and remove it from
the queue.

The valid values for other parameters are as follows:

▪ LookupId set to a nonzero value.

▪ hCursor set to 0x00000000.

▪ ulTimeout set to 0x00000000.

MQ_LOOKUP_RECEIVE_NEXT

0x40000021

Read the message following the message specified by the LookupId
parameter, and remove it from the queue.

The valid values for other parameters are as follows:

▪ LookupId set to a nonzero value.

▪ hCursor set to 0x00000000.

▪ ulTimeout set to 0x00000000.

MQ_LOOKUP_RECEIVE_PREV

0x40000022

Read the message preceding the message specified by the LookupId
parameter, and remove it from the queue.

The valid values for other parameters are as follows:

▪ LookupId set to 0x0000000000000000.

▪ hCursor set to 0x00000000.

▪ ulTimeout set to 0x00000000.

42 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

If the hCursor parameter is 0x00000000 and the LookupId parameter is 0x0000000000000000, the

valid values for the ulAction parameter are as follows:

▪ MQ_ACTION_RECEIVE

▪ MQ_ACTION_PEEK_CURRENT

ulTimeout: Specifies the time-out, in milliseconds, to wait for a message to become available in the
queue. The valid value for this parameter is 0x00000000 if the LookupId parameter value is
nonzero or if the action is not MQ_ACTION_RECEIVE, MQ_ACTION_PEEK_CURRENT, or
MQ_ACTION_PEEK_NEXT.

dwRequestId: MUST be set by the client to a unique correlation identifier for the receive request.
This value MUST be used in a subsequent call to the R_EndReceive method or the
R_CancelReceive method to correlate that call with the call to the R_StartReceive method. The

value MUST NOT be used in another R_StartReceive method call on the same

QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle until a call to either the R_EndReceive
method or the R_CancelReceive method with the same dwRequestId parameter value has been
completed.

dwMaxBodySize: MUST be set by the client to the maximum size, in bytes, of the message body to
be returned. The server SHOULD ignore this parameter when the message is not a Binary

Message (section 2.2.5.1.1).

dwMaxCompoundMessageSize: MUST be set by the client to the maximum size, in bytes, of the
CompoundMessageHeader (section 2.2.5.1.2.2). The server SHOULD ignore this parameter when
the message is not an SRMP Message (section 2.2.5.1.2).

pdwArriveTime: The server MUST set this value to the time that the message was added to the
queue ([MS-MQDMPR] section 3.1.7.3.1), expressed as the number of seconds elapsed since
midnight 00:00:00.0, January 1, 1970 UTC.

pSequenceId: The server MUST set this parameter to the least significant 7 bytes of the
Message.LookupIdentifier of the message that is received by this request.

pdwNumberOfSections: The server MUST set this parameter to the number of entries in the array
pointed to by the ppPacketSections parameter.

ppPacketSections: The server MUST set this parameter to an array of pointers to SectionBuffer
structures. The server MUST fill this array in the following manner:

▪ Create two local variables of type DWORD called maxMessageSize and actualMessageSize.

Assign the following values to these variables:

If the message is a Binary Message (section 2.2.5.1.1):

▪ maxMessageSize := dwMaxBodySize

▪ actualMessageSize := message packet body size

If the message is an SRMP Message (section 2.2.5.1.2):

▪ maxMessageSize := dwMaxCompoundMessageSize

▪ actualMessageSize := size in bytes of CompoundMessageHeader

▪ If the value of maxMessageSize is greater than or equal to actualMessageSize, the
ppPacketSections parameter MUST contain a single entry as follows:

▪ SectionType (section 2.2.7) MUST be set to stFullPacket (0x00000000).

43 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ The SectionSize and SectionSizeAlloc elements MUST be set to the message packet

size.

▪ The pSectionBuffer member MUST contain the entire message packet.

▪ If the value of maxMessageSize is less than actualMessageSize, the array MUST contain a first

entry as follows:

▪ SectionType MUST be set to one of the following:

▪ stBinaryFirstSection if the message packet is a binary packet.

▪ stSrmpFirstSection if the message packet is an SRMP packet.

▪ The pSectionBuffer member MUST contain the message packet headers concatenated
with the first maxMessageSize bytes of the message body.

▪ The SectionSizeAlloc member MUST be set to the message packet header size plus

actualMessageSize.

▪ The SectionSize member MUST be set to the size of the pSectionBuffer member.

▪ If the value of maxMessageSize is less than actualMessageSize and the message packet
trailers are not empty, the array MUST contain a second entry as follows:

▪ SectionType MUST be set to one of the following:

▪ stBinarySecondSection if the message packet is a binary packet.

▪ stSrmpSecondSection if the message packet is an SRMP packet.

▪ The pSectionBuffer member MUST contain the message packet trailers.

▪ The SectionSize member and the SectionSizeAlloc member MUST be equal and set to
the message packet trailers size.

▪ For the first entry in this array, the pSectionBuffer member points to a Message Packet
Structure (section 2.2.5). Within this structure, set
UserMessage.BaseHeader.TimeToReachQueue to UserHeader.SentTime +

UserMessage.BaseHeader.TimeToReachQueue.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT, and the client MUST treat all failure
HRESULTs identically. The client MUST disregard all output parameter values when any failure
HRESULT is returned. For descriptions of the following error codes, see [MS-MQMQ] section 2.4. For
error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

Return value/code Description

0x00000000

MQ_OK

0xC00E0007

MQ_ERROR_INVALID_HANDLE

0xC00E001B

MQ_ERROR_IO_TIMEOUT

0xC00E0088

MQ_ERROR_MESSAGE_NOT_FOUND

44 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

Return value/code Description

0xC00E001D

MQ_ERROR_MESSAGE_ALREADY_RECEIVED

0xC00E0008

MQ_ERROR_OPERATION_CANCELLED

0xC00E0006

MQ_ERROR_INVALID_PARAMETER

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-
RPCE].

While processing this method, the server MUST:

▪ If any of the input parameter values is invalid, return MQ_ERROR_INVALID_PARAMETER
(0xC00E0006).

▪ Find the corresponding OpenQueueDescriptor ADM element instance by comparing the
phContext parameter with the Handle ADM attribute for all OpenQueueDescriptor ADM element
instances maintained by the local QueueManager ADM element instance.

▪ If not found, return a failure HRESULT, and perform no further actions; otherwise, assign the
found OpenQueueDescriptor ADM element instance to the local variable queueDesc.

▪ If the hCursor parameter is a nonzero value, find the corresponding Cursor ADM element instance
by comparing the hCursor parameter with the Handle ADM attribute for all Cursor ADM element

instances maintained by the local QueueManager ADM element instance. If not found, or the
Cursor ADM element instance has previously been closed by a call to the R_CloseCursor
method, return STATUS_INVALID_HANDLE (0xC0000008); otherwise, assign the found Cursor
ADM element instance to the local variable localCursor.

▪ If the ulAction parameter is MQ_ACTION_RECEIVE, perform the following steps:

▪ Create a new PendingRequestEntry (section 3.1.1.2) ADM element instance with:

▪ The RequestId ADM attribute set to the dwRequestId parameter.

▪ The QueueContextHandle ADM attribute set to the phContext parameter.

▪ The LookupIdentifier ADM attribute set to zero.

▪ The TimeStamp ADM attribute set to the current system time, in milliseconds, since the
operating system was started.

▪ The server MUST create a new instance of the Pending Request Cleanup
Timer (section 3.1.2.2) associated with the new PendingRequestEntry ADM element

instance and MUST start it.

▪ Add the new PendingRequestEntry ADM element instance to the
PendingRequestTable (section 3.1.1.3) ADM element.

▪ Generate a Dequeue Message Begin ([MS-MQDMPR] section 3.1.7.1.11) event with the
following inputs:

▪ iQueueDesc := queueDesc

45 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ iTimeout := ulTimeout

▪ iCursor := localCursor only if the hCursor parameter is a nonzero value

▪ iTag := dwRequestId

▪ If the rStatus value returned from the Dequeue Message Begin event is MQ_OK

(0x00000000), the server MUST set the LookupIdentifier ADM attribute of the new
PendingRequestEntry ADM element instance to rMessage.LookupIdentifier.

▪ If the ulAction parameter is MQ_ACTION_PEEK_CURRENT, generate a Peek Message ([MS-
MQDMPR] section 3.1.7.1.15) event with the following inputs:

▪ iQueueDesc := queueDesc

▪ iTimeout := ulTimeout

▪ iCursor := localCursor only if the hCursor parameter is a nonzero value

▪ If the ulAction parameter is MQ_ACTION_PEEK_NEXT, generate a Peek Next Message ([MS-
MQDMPR] section 3.1.7.1.14) event with the following inputs:

▪ iQueueDesc := queueDesc

▪ iTimeout := ulTimeout

▪ iCursor := localCursor

▪ If the ulAction parameter is MQ_LOOKUP_PEEK_CURRENT, generate a Read Message By Lookup

Identifier ([MS-MQDMPR] section 3.1.7.1.13) event with the following inputs:

▪ iQueueDesc := queueDesc

▪ iLookupId := LookupId

▪ iPeekOperation := True

▪ iLookupOperation := MessageSeekAction.SeekCurrent

▪ If the ulAction parameter is MQ_LOOKUP_PEEK_NEXT, generate a Read Message By Lookup
Identifier event with the following inputs:

▪ iQueueDesc := queueDesc

▪ iLookupId := LookupId

▪ iPeekOperation := True

▪ iLookupOperation := MessageSeekAction.SeekNext

▪ If the ulAction parameter is MQ_LOOKUP_PEEK_PREV, generate a Read Message By Lookup
Identifier event with the following inputs:

▪ iQueueDesc := queueDesc

▪ iLookupId := LookupId

▪ iPeekOperation := True

▪ iLookupOperation := MessageSeekAction.SeekPrev

▪ If the ulAction parameter is MQ_LOOKUP_RECEIVE_CURRENT, generate a Read Message By

Lookup Identifier event with the following inputs:

46 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ iQueueDesc := queueDesc

▪ iLookupId := LookupId

▪ iPeekOperation := False

▪ iLookupOperation := MessageSeekAction.SeekCurrent

▪ iTwoPhaseRead := True

▪ If the ulAction parameter is MQ_LOOKUP_RECEIVE_NEXT, generate a Read Message By Lookup
Identifier event with the following inputs:

▪ iQueueDesc := queueDesc

▪ iLookupId := LookupId

▪ iPeekOperation := False

▪ iLookupOperation := MessageSeekAction.SeekNext

▪ iTwoPhaseRead := True

▪ If the ulAction parameter is MQ_LOOKUP_RECEIVE_PREV, generate a Read Message By Lookup
Identifier event with the following inputs:

▪ iQueueDesc := queueDesc

▪ iLookupId := LookupId

▪ iPeekOperation := False

▪ iLookupOperation := MessageSeekAction.SeekPrev

▪ iTwoPhaseRead := True

If the rStatus value returned from the preceding events is MQ_OK (Ox00000000), the server MUST:

▪ Use rMessage to fill the ppPacketSections array as specified in the ppPacketSections parameter
description. If the ulAction type, as defined in the table under the ulAction parameter, is Receive,
the server MUST do the following:

▪ Set the pdwArriveTime parameter to rMessage.ArrivalTime.

Return rStatus.

3.1.4.8 R_CancelReceive (Opnum 8)

The R_CancelReceive method cancels a pending call to the R_StartReceive (Opnum

7) (section 3.1.4.7) method or the R_StartTransactionalReceive (Opnum 13) (section 3.1.4.13)
method. Each of those methods takes a time-out parameter that can cause the server to not return a
response until a message becomes available or the time-out expires. The R_CancelReceive method
provides a way for the client to cancel a blocked request.

 HRESULT R_CancelReceive(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,
 [in] DWORD dwRequestId
);

47 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

hBind: MUST be an RPC binding handle parameter as specified in [MS-RPCE] section 2.

phContext: MUST be set by the client to the
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle used in the corresponding call
to the R_StartReceive method that is to be canceled. The handle MUST have been returned by

the server in the pphQueue output parameter of a prior call to the R_OpenQueue (Opnum
2) (section 3.1.4.2) method and MUST NOT have been previously closed through a call to the
R_CloseQueue (Opnum 3) (section 3.1.4.3) method. This value MUST NOT be NULL.

dwRequestId: MUST be set by the client to the same value as the dwRequestId parameter in the
corresponding call to the R_StartReceive method or the R_StartTransactionalReceive
method. This parameter acts as an identifier to correlate an R_CancelReceive method call to an
R_StartReceive or an R_StartTransactionalReceive method call.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT, and the client MUST treat all failure
HRESULTs identically.

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-
RPCE].

When processing this call, the server MUST:

▪ Find the corresponding OpenQueueDescriptor ADM element instance by comparing the
phContext parameter with the Handle ADM attribute for all OpenQueueDescriptor ADM element
instances maintained by the local QueueManager ADM element instance.

▪ If not found, return a failure HRESULT, and perform no further actions; otherwise, assign the

found OpenQueueDescriptor ADM element instance to the local variable queueDesc.

▪ Generate a Cancel Waiting Message Read Request ([MS-MQDMPR] section 3.1.7.1.17) event with

the following inputs:

▪ iQueue := queueDesc.QueueReference

▪ iTag := dwRequestId

▪ If the Cancel Waiting Message Read Request event returns an error, return a failure HRESULT,
and perform no further actions.

▪ Remove the PendingRequestEntry (section 3.1.1.2) ADM element instance referenced by the
{phContext, dwRequestId} key pair from the PendingRequestTable (section 3.1.1.3) ADM

element.

▪ Respond to the pending R_StartReceive or R_StartTransactionalReceive method request with
MQ_ERROR_OPERATION_CANCELLED (0xC00E0008).

3.1.4.9 R_EndReceive (Opnum 9)

The client MUST invoke the R_EndReceive method to advise the server that the message packet
returned by the R_StartReceive (Opnum 7) (section 3.1.4.7) method has been received.

The combination of the R_StartReceive method and the positive acknowledgment of the
R_EndReceive method ensures that a message packet is not lost in transit from the server to the
client due to a network outage during the call sequence.

48 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

Note that a call to the R_StartTransactionalReceive (Opnum 13) (section 3.1.4.13) method is ended

through a corresponding call to the R_EndTransactionalReceive (Opnum 15) (section 3.1.4.15)
method, not through a call to this method.

 HRESULT R_EndReceive(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,
 [in, range(1,2)] DWORD dwAck,
 [in] DWORD dwRequestId
);

hBind: MUST be an RPC binding handle parameter for use by the server=, as specified in [MS-RPCE]
section 2.

phContext: MUST be set by the client to the

QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle used in the corresponding call
to the R_StartReceive method. The handle MUST have been returned by the server in the
pphQueue output parameter of a prior call to the R_OpenQueue (Opnum 2) (section 3.1.4.2)
method and MUST NOT have been closed through a prior call to the R_CloseQueue (Opnum

3) (section 3.1.4.3) method. This value MUST NOT be NULL.

dwAck: MUST be set to an Acknowledgment (ACK) or a Negative Acknowledgment (NACK) for the
message packet received from the server in an R_StartReceive method request. The following
table lists possible values.

Value Meaning

RR_ACK

0x00000002

The client acknowledges that the message packet was received successfully.

The server MUST remove the message from the queue and make it unavailable for subsequent
consumption.

RR_NACK

0x00000001

The client acknowledges that the message packet was not received successfully.

The server MUST keep the message in the queue and make it available for subsequent
consumption.

dwRequestId: MUST be set by the client to the same value as the dwRequestId parameter in the
corresponding call to the R_StartReceive method. This parameter acts as an identifier to
correlate an R_EndReceive method call to an R_StartReceive method call.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT, and the client MUST treat all failure
HRESULTs identically.

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol [MS-RPCE].

When processing this call, the server MUST:

▪ If the queue referenced by the phContext parameter handle has no
PendingRequestEntry (section 3.1.1.2) ADM element instance in its
PendingRequestTable (section 3.1.1.3) ADM element, return MQ_ERROR_INVALID_HANDLE
(0xC00E0007).

▪ Look up the PendingRequestEntry ADM element instance referenced by the {phContext,

dwRequestId} key pair in the PendingRequestTable ADM element. If a match is not found on
the {phContext, dwRequestId} key pair, return MQ_ERROR_INVALID_PARAMETER (0xC00E0006).
Otherwise, remove the PendingRequestEntry ADM element instance from the

49 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

PendingRequestTable ADM element, and cancel the associated instance of the Pending Request

Cleanup Timer (section 3.1.2.2).

▪ Find the corresponding OpenQueueDescriptor ADM element instance by comparing the
phContext parameter with the Handle ADM attribute for all OpenQueueDescriptor ADM element

instances maintained by the local QueueManager ADM element instance.

▪ If not found, return a failure HRESULT, and perform no further actions; otherwise, assign the
found OpenQueueDescriptor ADM element instance to the local variable queueDesc.

▪ Find the corresponding Message ADM element instance by searching
OpenQueueDescriptor.QueueReference.MessagePositionCollection for a MessagePosition
ADM element instance where MessagePosition.MessageReference.LookupIdentifier equals
the LookupIdentifier ADM attribute of the PendingRequestEntry ADM element instance

referenced by {phContext, dwRequestId}. The corresponding Message ADM element instance is
referred to by the MessageReference ADM attribute of the MessagePosition ADM element

instance where the match was found.

▪ If not found, return MQ_ERROR_MESSAGE_NOT_FOUND (0xC00E0088).

▪ Set rStatus to the result of a Dequeue Message End ([MS-MQDMPR] section 3.1.7.1.12) event with
the following inputs:

▪ iQueueDesc := queueDesc.

▪ iMessage := The found Message ADM element instance.

▪ iDeleteMessage := True if the dwAck parameter is equal to RR_ACK and false if the dwAck
parameter is equal to RR_NACK.

▪ Return rStatus.

3.1.4.10 (Updated Section) R_MoveMessage (Opnum 10)

The R_MoveMessage method moves a message from one queue to another.<20> The source and
destination queues MUST be related as follows:

▪ The source is a queue, and the destination is a subqueue of the source queue, or

▪ The destination is a queue, and the source is a subqueue of the destination queue, or

▪ The source and destination are two subqueues of the same queue.

 HRESULT R_MoveMessage(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContextFrom,
 [in] ULONGLONG ullContextTo,
 [in] ULONGLONG LookupId,
 [in] XACTUOW* pTransactionId
);

hBind: MUST be an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

phContextFrom: MUST be set by the client to a

QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle representing the source queue.
The handle MUST have been returned by the server in the pphQueue output parameter of a prior
call to the R_OpenQueue (Opnum 2) (section 3.1.4.2) method with the dwAccess parameter set to
RECEIVE_ACCESS and MUST NOT have been closed through a prior call to the R_CloseQueue
(Opnum 3) (section 3.1.4.3) method. This value MUST NOT be NULL.

50 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

ullContextTo: MUST be set by the client to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle

representing the destination queue. The handle MUST have beenthe value returned by the server
in the pMoveContext output parameter of a prior call to the R_OpenQueueForMove (Opnum
11) (section 3.1.4.11) method and MUST NOT have been closed through a prior call to the

R_CloseQueue method. This value MUST NOT be NULL.

LookupId: MUST be set by the client to the lookup identifier of the message to be moved.

pTransactionId: MUST be set by the client as a pointer to a transaction identifier or to a zero value
XACTUOW ([MS-MQMQ] section 2.2.18.1.8) structure. If the destination queue is not a
transactional queue, this value MUST be a pointer to a zero value XACTUOW structure. If the
value of the field is not zero, the transaction identifier MUST have been registered with the server
through a prior call to the R_QMEnlistRemoteTransaction (Opnum 12) (section 3.1.4.12) method

and MUST NOT be NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT, and the client treat all failure
HRESULTs identically.

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-

RPCE].

The R_MoveMessage method provides both transactional and non-transactional operations. When
using a transaction identifier, this method provisionally moves a message from the source queue to
the destination queue, pending notification of the transaction outcome. See section 3.1.6. The non-
transactional operation moves a message from the source queue to the destination queue without
enlisting in a transaction.

When processing this call, the server MUST:

▪ Find the corresponding OpenQueueDescriptor ADM element instance for the source queue by
comparing the phContextFrom parameter with the Handle ADM attribute for all
OpenQueueDescriptor ADM element instances maintained by the local QueueManager ADM
element instance, and then declare and set iSourceQueueDescriptor to the instance.

▪ If not found, return a failure HRESULT.

▪ Find the corresponding OpenQueueDescriptor ADM element instance for the destination queue
by comparing the ullContextTo parameter with the Handle ADM attribute for all

OpenQueueDescriptor ADM element instances maintained by the local QueueManager ADM
element instance, and then declare and set iDestinationQueueDescriptor to that instance.

▪ If not found or if iDestinationQueueDescriptor.AccessType is not

QueueAccessType.MoveAccess, then return MQ_ERROR_INVALID_HANDLE (0xC00E0007).

▪ If none of the following conditions is met, return STATUS_INVALID_PARAMETER (0xC000000D):

▪ iSourceQueueDescriptor is part of the collection

iDestinationQueueDescriptor.QueueReference.SubqueueCollection.

▪ iDestinationQueueDescriptor is part of the collection
iSourceQueueDescriptor.QueueReference.SubqueueCollection.

▪ iSourceQueueDescriptor.QueueReference.Pathname and
iDestinationQueueDescriptor.QueueReference.Pathname have the same parent queue
pathname. The parent queue pathname MUST be formed by removing the subqueue portion
from the pathname and the preceding ";", as specified in [MS-MQMQ] section 2.1.1.

51 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ If the method is provided with a nonzero pTransactionId parameter and if

iDestinationQueueDescriptor.QueueReference.Transactional is False, return
MQ_ERROR_TRANSACTION USAGE (0xC00E0050).

▪ Find the corresponding Message ADM element instance by comparing

PendingRequestEntry.LookupIdentifier with
MessagePosition.MessageReference.Identifier in the
iSourceQueueDescriptor.QueueReference.MessagePositionCollection, and then declare and
set iFoundMessage to that instance.

▪ If not found, then return MQ_ERROR_MESSAGE_NOT_FOUND (0xC00E0088).

▪ If the message is already part of another transaction, return
MQ_ERROR_MESSAGE_LOCKED_UNDER_TRANSACTION (0xC00E009C).

▪ If the method is provided with a nonzero pTransactionId parameter, find the corresponding

Transaction ADM element instance by comparing the pTransactionId parameter with the
Identifier ADM attribute for all Transaction ADM element instances in the
TransactionCollection ADM attribute of the local QueueManager ADM element instance, and
then declare and set iFoundTransaction to that instance.

▪ If not found, return MQ_ERROR_TRANSACTION_SEQUENCE (0xC00E0051).

▪ Generate a Move Message ([MS-MQDMPR] section 3.1.7.1.16) event with the following inputs:

▪ iMessagePos := iFoundMessage.MessagePositionReference.

▪ iTargetQueue := iDestinationQueueDescriptor.QueueReference.

▪ If there is a transaction, iTransaction := iFoundTransaction.

▪ Return MQ_OK (0x00000000).

3.1.4.11 (Updated Section) R_OpenQueueForMove (Opnum 11)

The R_OpenQueueForMove method opens the queue and returns a
QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2) handle that can subsequently be used as the
ullContextTo (destination queue) parameter of a call to the R_MoveMessage (Opnum
10) (section 3.1.4.10) method. This method MUST be called before the R_MoveMessage

method.<21>

 void R_OpenQueueForMove(
 [in] handle_t hBind,
 [in] QUEUE_FORMAT* pQueueFormat,
 [in] DWORD dwAccess,
 [in] DWORD dwShareMode,
 [in] GUID* pClientId,
 [in] LONG fNonRoutingServer,
 [in] unsigned char Major,
 [in] unsigned char Minor,
 [in] USHORT BuildNumber,
 [in] LONG fWorkgroup,
 [out] ULONGLONG* pMoveContext,
 [out] QUEUE_CONTEXT_HANDLE_SERIALIZE* pphContext
);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

pQueueFormat: MUST be a pointer to a QUEUE_FORMAT ([MS-MQMQ] section 2.2.7) structure that
identifies the queue to open. This value MUST NOT be NULL. The value of the m_qft member

52 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

MUST be one of QUEUE_FORMAT_TYPE_PUBLIC, QUEUE_FORMAT_TYPE_PRIVATE,

QUEUE_FORMAT_TYPE_DIRECT, QUEUE_FORMAT_TYPE_MACHINE, or
QUEUE_FORMAT_TYPE_SUBQUEUE.

dwAccess: Specifies the required type of access to the queue. MUST be set by the client to

MQ_MOVE_ACCESS (0x00000004).

dwShareMode: Specifies whether the client needs exclusive access to the queue. MUST be set by the
client to MQ_DENY_NONE (0x00000000), which permits multiple
QUEUE_CONTEXT_HANDLE_SERIALIZE handles to the queue to be opened concurrently.

pClientId: MUST be set by the client to a pointer to a valid GUID that uniquely identifies the client.
When the queue manager acts as the client, the queue manager sets this value to the Identifier
ADM attribute of the local QueueManager ADM element instance. The server SHOULD ignore this

parameter. This value MUST NOT be NULL.

fNonRoutingServer: If the client is configured to operate in the role of an MSMQ routing server, this
parameter MUST be set to FALSE (0x00000000); otherwise, it MUST be set to TRUE
(0x00000001).<22> If the value of the fNonRoutingServer parameter is FALSE (0x00000000), the
server MUST ignore the pClientId parameter.

Name Value

FALSE 0x00000000

TRUE 0x00000001

Major: MUST be set by the client to an implementation-specific Major Version number of the client.
SHOULD<23> be ignored by the server.

Minor: MUST be set by the client to an implementation-specific Minor Version number of the client.
SHOULD<24> be ignored by the server.

BuildNumber: MUST be set by the client to an implementation-specific Build Number of the client.
SHOULD<25> be ignored by the server.

fWorkgroup: MUST be set to TRUE (0x00000001) by the client if the client machine is not a member
of a Windows domain; otherwise, it MUST be set to FALSE (0x00000000). The RPC authentication
level required by the server MAY be based on this value in subsequent calls on the interface.<26>

Name Value

FALSE 0x00000000

TRUE 0x00000001

pMoveContext: The server MUST set this parameter to a pointer to a
QUEUE_CONTEXT_HANDLE_SERIALIZE handle and MUST set the value of this parameter to the

same value as the contents of the pphContext parameter. The server MUST set this value to a
contextto a random value that can be used as the dwContextTo parameter in a subsequent call to
the R_MoveMessage method. Logically, it represents a reference to the
QUEUE_CONTEXT_HANDLE_SERIALIZE handle returned in the pphContext parameter.

pphContext: MUST be set by the server to a QUEUE_CONTEXT_HANDLE_SERIALIZE handle. A
QUEUE_CONTEXT_HANDLE_SERIALIZE handle opened through a call to this method can be closed
through a subsequent call to the R_CloseQueue (Opnum 3) (section 3.1.4.3) method.

Return Values: The method has no return values. If the method fails, an RPC exception is thrown.

Exceptions Thrown:

53 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

In addition to the exceptions thrown by the underlying RPC protocol [MS-RPCE], the method throws

HRESULT failure codes as RPC exceptions. The client MUST treat all thrown HRESULT codes
identically.

The client MUST disregard all out-parameter values when any failure HRESULT is thrown.

When processing this call, the server MUST do the following:

▪ Look up the queue name in the QueueCollection ADM attribute of the local QueueManager ADM
element instance. If not found, throw MQ_ERROR_QUEUE_NOT_FOUND (0xC00E0003).

▪ Generate an Open Queue ([MS-MQDMPR] section 3.1.7.1.5) event with the following inputs:

▪ iFormatName := pQueueFormat

▪ iRequiredAccess := QueueAccessType.MoveAccess

▪ iSharedMode := If dwShareMode is MQ_DENY_NONE then QueueShareMode.DenyNone

else QueueShareMode.DenyReceive.

▪ If rStatus is MQ_OK (0x00000000) then

▪ Set the pphContext parameter to rOpenQueueDescriptor.Handle.

▪ Set the pMoveContext parameter to a random value that logically references the handle value
returned in the pphContext parameter.

3.1.4.12 R_QMEnlistRemoteTransaction (Opnum 12)

The R_QMEnlistRemoteTransaction method propagates a distributed atomic transaction context to the
server. The server MUST enlist in the transaction context. The client MUST call this method prior to

the R_StartTransactionalReceive (Opnum 13) (section 3.1.4.13) method or the R_MoveMessage
(Opnum 10) (section 3.1.4.10) method calls.<27> Subsequent calls to the

R_StartTransactionalReceive method and the R_MoveMessage method that use the same
transaction identifier are coordinated such that either all occur or none occurs, depending on whether
the transaction outcome is Commit or Rollback.

 HRESULT R_QMEnlistRemoteTransaction(
 [in] handle_t hBind,
 [in] XACTUOW* pTransactionId,
 [in, range(0, 131072)] DWORD cbPropagationToken,
 [in, size_is(cbPropagationToken)]
 unsigned char* pbPropagationToken,
 [in] QUEUE_FORMAT* pQueueFormat
);

hBind: MUST be an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

pTransactionId: MUST be a pointer to a transaction identifier obtained as specified in [MS-DTCO]

section 3.3.4.1. This value MUST NOT be NULL.

cbPropagationToken: MUST be the size, in bytes, of the pbPropagationToken parameter.

pbPropagationToken: MUST be a transaction propagation token, as specified in [MS-DTCO] section
2.2.5.4, that represents the transaction identified by the pTransactionId parameter. This
parameter MUST NOT be NULL.

pQueueFormat: MUST be a pointer to a QUEUE_FORMAT ([MS-MQMQ] section 2.2.7) structure that
identifies the queue to be passed to the R_StartTransactionalReceive method. SHOULD<28>

be ignored by the server.

54 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT, and the client MUST treat all failure
HRESULTs identically.

MQ_OK (0x00000000)

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, as specified in
[MS-RPCE].

While processing this operation, the server MUST:

▪ Enlist into the transaction as specified in [MS-DTCO] section 3.5.4.3.

▪ Generate a Create Transaction ([MS-MQDMPR] section 3.1.7.1.8) event with the following inputs:

▪ iTransactionIdentifier := pTransactionId

▪ Return MQ_OK (0x00000000).

3.1.4.13 R_StartTransactionalReceive (Opnum 13)

The R_StartTransactionalReceive method peeks or receives a message from the opened

queue.<29> If a transaction identifier is provided, a message is received inside the specified
transaction.

If the R_StartTransactionalReceive method is invoked with a Peek action type, as specified in the
ulAction parameter, the operation completes when the R_StartTransactionalReceive method
returns.

If the R_StartTransactionalReceive method is invoked with a Receive action type, as specified in
the ulAction parameter, the client MUST pair each call to the R_StartTransactionalReceive method

with a call to the R_EndTransactionalReceive (Opnum 15) (section 3.1.4.15) method to complete the
operation or to the R_CancelReceive (Opnum 8) (section 3.1.4.8) method to cancel the operation. The
call to the R_EndTransactionalReceive method or the R_CancelReceive method is correlated to a
call to the R_StartTransactionalReceive method through matching dwRequestId parameters.

If the client specifies a nonzero ulTimeout parameter and a message is not available in the queue at
the time of the call, the server waits up to the specified time-out for a message to become available in

the queue before responding to the call. The client can call the R_CancelReceive method with a
matching dwRequestId parameter to cancel the pending R_StartTransactionalReceive method
request.

The message to be returned can be specified in one of three ways:

▪ LookupId: A nonzero LookupId parameter value that specifies the unique identifier for the
message to be returned. The ulAction parameter further specifies whether the message to be
returned is the one identified by the LookupId parameter or the first unlocked message

immediately preceding or following it. For more details, see the description of the ulAction
parameter.

▪ Cursor: A nonzero cursor handle that specifies the cursor to be used to identify the message to be
returned. The cursor specifies a location in the queue. The ulAction parameter further specifies
whether the message to be returned is the one identified by the cursor or the first unlocked
message immediately following it. For more details, see the description of the ulAction parameter.

55 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ First: If the LookupId parameter is set to 0x0000000000000000 and hCursor is set to

0x00000000, the first unlocked message in the queue can be returned. For more details, see the
description of the ulAction parameter.

The ppPacketSections parameter is the address of one or more pointers to one or more

SectionBuffer (section 2.2.6) structures. The pSectionBuffer member of the first SectionBuffer
structure points to the beginning of the message packet. If more than one SectionBuffer structure is
present, the packet sections are concatenated in the order in which they appear in the array to form
the entire packet. The size of each section is stored in the SectionSizeAlloc member of the
SectionBuffer structure.

 HRESULT R_StartTransactionalReceive(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,
 [in] ULONGLONG LookupId,
 [in] DWORD hCursor,
 [in] DWORD ulAction,
 [in] DWORD ulTimeout,
 [in] DWORD dwRequestId,
 [in] DWORD dwMaxBodySize,
 [in] DWORD dwMaxCompoundMessageSize,
 [in] XACTUOW* pTransactionId,
 [out] DWORD* pdwArriveTime,
 [out] ULONGLONG* pSequenceId,
 [out] DWORD* pdwNumberOfSections,
 [out, size_is(, *pdwNumberOfSections)]
 SectionBuffer** ppPacketSections
);

hBind: MUST be an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

phContext: MUST be set by the client to a

QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle of the queue from which to
read a message. The handle MUST have been returned by the server in the pphQueue output
parameter of a prior call to the R_OpenQueue (Opnum 2) (section 3.1.4.2) method with the
dwAccess parameter set to RECEIVE_ACCESS and MUST NOT have been closed through a prior
call to the R_CloseQueue (Opnum 3) (section 3.1.4.3) method. NULL is invalid for this parameter.

LookupId: If nonzero, specifies the lookup identifier of the message to be acted on.

If the client sets the LookupId parameter to a nonzero value, the valid values for other parameters

are as follows:

▪ ulTimeout set to 0x00000000

▪ hCursor set to 0x00000000

▪ ulAction set to one of the following:

▪ MQ_LOOKUP_PEEK_PREV (pTransactionId set to NULL)

▪ MQ_LOOKUP_PEEK_CURRENT (pTransactionId set to NULL)

▪ MQ_LOOKUP_PEEK_NEXT (pTransactionId set to NULL)

▪ MQ_LOOKUP_RECEIVE_PREV

▪ MQ_LOOKUP_RECEIVE_CURRENT

▪ MQ_LOOKUP_RECEIVE_NEXT

56 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

If the client sets the LookupId parameter to 0x0000000000000000, all of the preceding values

of the ulAction parameter are invalid.

hCursor: If nonzero, specifies a handle to a cursor that MUST have been obtained from a prior call to
the R_CreateCursor (Opnum 4) (section 3.1.4.4) method. The handle MUST NOT have been closed

through a prior call to the R_CloseCursor (Opnum 5) (section 3.1.4.5) method.

If the client sets the hCursor parameter to a nonzero value, the valid values for other parameters
are as follows:

▪ LookupId set to 0x0000000000000000.

▪ ulAction set to one of the following:

▪ MQ_ACTION_RECEIVE

▪ MQ_ACTION_PEEK_CURRENT (pTransactionId set to NULL)

▪ MQ_ACTION_PEEK_NEXT (pTransactionId set to NULL)

ulAction: Specifies the action to perform on the message. The following table lists possible actions.

Type / Value Meaning

MQ_ACTION_RECEIVE

0x00000000

If the hCursor parameter is nonzero, read and remove the message at the
current cursor location from the queue, and advance the cursor.

If the hCursor parameter is 0x00000000, read and remove the message from
the front of the queue.

The valid values for other parameters are as follows:

▪ LookupId set to 0x0000000000000000.

MQ_ACTION_PEEK_CURRENT

0x80000000

If the hCursor parameter is nonzero, read the message at the current cursor
location, but do not remove it from the queue.

If the hCursor parameter is 0x00000000, read the message at the front of
the queue, but do not remove it from the queue.

The valid values for other parameters are as follows:

▪ LookupId set to 0x0000000000000000.

▪ pTransactionId set to NULL.

MQ_ACTION_PEEK_NEXT

0x80000001

If the hCursor parameter is nonzero, advance the cursor to the next position,
and read the message, but do not remove it from the queue.

The valid values for other parameters are as follows:

▪ LookupId set to 0x0000000000000000.

▪ hCursor set to a nonzero cursor handle obtained from the
R_CreateCursor method.

▪ pTransactionId set to NULL.

MQ_LOOKUP_PEEK_CURRENT

0x40000010

Read the message specified by the LookupId parameter, but do not remove it
from the queue.

The valid values for other parameters are as follows:

57 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

Type / Value Meaning

▪ LookupId set to a nonzero value.

▪ hCursor set to 0x00000000.

▪ ulTimeout set to 0x00000000.

▪ pTransactionId set to NULL.

MQ_LOOKUP_PEEK_NEXT

0x40000011

Read the message following the message specified by the LookupId
parameter, but do not remove it.

The valid values for other parameters are as follows:

▪ LookupId set to a nonzero value.

▪ hCursor set to 0x00000000.

▪ ulTimeout set to 0x00000000.

▪ pTransactionId set to NULL.

MQ_LOOKUP_PEEK_PREV

0x40000012

Read the message preceding the message specified by the LookupId
parameter, but do not remove it from the queue.

The valid values for other parameters are as follows:

▪ LookupId set to a nonzero value.

▪ hCursor set to 0x00000000.

▪ ulTimeout set to 0x00000000.

▪ pTransactionId set to NULL.

MQ_LOOKUP_RECEIVE_CURRENT

0x40000020

Read the message specified by the LookupId parameter, and remove it from
the queue.

The valid values for other parameters are as follows:

▪ LookupId set to a nonzero value.

▪ hCursor set to 0x00000000.

▪ ulTimeout set to 0x00000000.

MQ_LOOKUP_RECEIVE_NEXT

0x40000021

Read the message following the message specified by the LookupId
parameter, and remove it from the queue.

The valid values for other parameters are as follows:

▪ LookupId set to a nonzero value.

▪ hCursor set to 0x00000000.

▪ ulTimeout set to 0x00000000.

MQ_LOOKUP_RECEIVE_PREV

0x40000022

Read the message preceding the message specified by the LookupId
parameter, and remove it from the queue.

The valid values for other parameters are as follows:

▪ LookupId set to a nonzero value.

58 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

Type / Value Meaning

▪ hCursor set to 0x00000000.

▪ ulTimeout set to 0x00000000.

If the hCursor parameter is 0x00000000 and the LookupId parameter is 0x0000000000000000,
the valid values for the ulAction parameter are as follows:

▪ MQ_ACTION_RECEIVE

▪ MQ_ACTION_PEEK_CURRENT (pTransactionId set to NULL)

ulTimeout: Specifies the time-out, in milliseconds, to wait for a message to become available in the

queue. The valid value for this parameter is 0x00000000 if the LookupId parameter value is
nonzero or if the action is not MQ_ACTION_RECEIVE, MQ_ACTION_PEEK_CURRENT, or

MQ_ACTION_PEEK_NEXT.

dwRequestId: MUST be set by the client to a unique correlation identifier for the receive request.
This value MUST be used in a subsequent call to the R_EndTransactionalReceive method or the
R_CancelReceive method to correlate that call with the call to the

R_StartTransactionalReceive method. The value MUST NOT be used in another
R_StartTransactionalReceive method call on the same
QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle until a call to either the
R_EndTransactionalReceive method or the R_CancelReceive method with the same
dwRequestId parameter value has been completed.

dwMaxBodySize: MUST be set by the client to the maximum size, in bytes, of the message body to
be returned. The server SHOULD ignore this parameter when the message is not a Binary

Message (section 2.2.5.1.1).

dwMaxCompoundMessageSize: MUST be set by the client to the maximum size, in bytes, of the
CompoundMessageHeader (section 2.2.5.1.2.2). The server SHOULD ignore this parameter when
the message is not an SRMP Message (section 2.2.5.1.2).

pTransactionId: Set to NULL or set by the client to a transaction identifier that was registered with
the server through a prior call to the R_QMEnlistRemoteTransaction (Opnum
12) (section 3.1.4.12) method.

pdwArriveTime: The server MUST set this value to the time that the message was added to the
queue ([MS-MQDMPR] section 3.1.7.3.1), expressed as the number of seconds elapsed since
midnight 00:00:00.0, January 1, 1970 UTC.

pSequenceId: The server MUST set this parameter to the lower 7 bytes of the
Message.LookupIdentifier of the message that is received by this request.

pdwNumberOfSections: MUST be set by the server to the number of entries in the array that are

pointed to by the ppPacketSections parameter.

ppPacketSections: MUST be set by the server to an array of pointers to SectionBuffer (section 2.2.6)
structures. The server MUST fill this array in the following manner:

▪ Create two local variables of type DWORD called maxMessageSize and actualMessageSize.
Assign the following values to these variables:

If the message is a Binary Message:

▪ maxMessageSize := dwMaxBodySize

▪ actualMessageSize := message packet body size

59 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

If the message is an SRMP Message:

▪ maxMessageSize := dwMaxCompoundMessageSize

▪ actualMessageSize := size in bytes of CompoundMessageHeader

▪ If the value of maxMessageSize is greater than or equal to actualMessageSize, the

ppPacketSections parameter MUST contain a single entry as follows:

▪ The SectionBufferType member MUST be set to stFullPacket (0x00000000).

▪ The SectionSize and SectionSizeAlloc members MUST be set to the message packet
size.

▪ The pSectionBuffer member MUST contain the entire message packet.

▪ If the value of maxMessageSize is less than actualMessageSize, the array MUST contain a first

entry as follows:

The SectionBufferType member MUST be set to one of the following:

▪ stBinaryFirstSection if the message packet is a binary packet.

▪ stSrmpFirstSection if the message packet is an SRMP packet.

▪ The pSectionBuffer member MUST contain the message packet headers concatenated
with the first maxMessageSize bytes of the message body.

▪ The SectionSizeAlloc member MUST be set to the message packet headers plus

actualMessageSize.

▪ The SectionSize member MUST be set to the size of the pSectionBuffer member.

▪ If the value of maxMessageSize is less than actualMessageSize and the message packet
trailers are not empty, the array MUST contain a second entry as follows:

The SectionBufferType member MUST be set to one of the following:

▪ stBinarySecondSection if the message packet is a binary packet.

▪ stSrmpSecondSection if the message packet is an SRMP packet.

▪ The pSectionBuffer member MUST contain the message packet trailers.

▪ The SectionSize and the SectionSizeAlloc members MUST be equal and MUST be set to
the message packet trailers size.

▪ For the first entry in this array, the pSectionBuffer member points to a Message Packet
Structure (section 2.2.5). Within this structure, set
UserMessage.BaseHeader.TimeToReachQueue to UserHeader.SentTime +
UserMessage.BaseHeader.TimeToReachQueue.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT, and the client MUST treat all failure
HRESULTs identically. The client MUST disregard all output parameter values when any failure
HRESULT is returned.

Return value/code Description

0x00000000

60 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

Return value/code Description

MQ_OK

0xC00E0007

MQ_ERROR_INVALID_HANDLE

0xC00E0088

MQ_ERROR_MESSAGE_NOT_FOUND

0xC00E001B

MQ_ERROR_IO_TIMEOUT

0xC00E0050

MQ_ERROR_TRANSACTION_USAGE

0xC00E0008

MQ_ERROR_OPERATION_CANCELLED

0xC00E0006

MQ_ERROR_INVALID_PARAMETER

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-
RPCE].

While processing this method, the server MUST:

▪ If any of the input parameter values is invalid, return MQ_ERROR_INVALID_PARAMETER

(0xC00E0006).

▪ If the pTransactionId parameter is NULL:

▪ Call the R_StartReceive (Opnum 7) (section 3.1.4.7) method with the following parameters:

▪ hBind := hBind

▪ phContext := phContext

▪ LookupId := LookupId

▪ hCursor := hCursor

▪ ulAction := ulAction

▪ ulTimeout := ulTimeout

▪ dwRequestId := dwRequestId

▪ dwMaxBodySize := dwMaxBodySize

▪ dwMaxCompoundMessageSize := dwMaxCompoundMessageSize

▪ pdwArriveTime := pdwArriveTime

▪ pSequenceId := pSequenceId

▪ pdwNumberOfSections := pdwNumberOfSections

▪ ppPacketSections := ppPacketSections

61 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ Return the result from the R_StartReceive method, and take no further action.

▪ Find the corresponding OpenQueueDescriptor ADM element instance by comparing the
phContext parameter with the Handle ADM attribute for all OpenQueueDescriptor ADM element
instances maintained by the local QueueManager ADM element instance.

▪ If not found, return a failure HRESULT, and perform no further actions; otherwise, assign the
found OpenQueueDescriptor ADM element instance to the local variable queueDesc.

▪ If the hCursor parameter is a nonzero value, find the corresponding Cursor ADM element instance
by comparing the hCursor parameter with the Handle ADM attribute for all Cursor ADM element
instances maintained by the local QueueManager ADM element instance. If not found, or the
Cursor ADM element instance has previously been closed by a call to the R_CloseCursor
method, return STATUS_INVALID_HANDLE (0xC0000008).

▪ If queueDesc.QueueReference.Transactional is FALSE, the queue does not support

transactional operations. Return MQ_ERROR_TRANSACTION_USAGE (0xC00E0050).

▪ If the ulAction parameter is MQ_ACTION_PEEK_CURRENT, MQ_ACTION_PEEK_NEXT,
MQ_LOOKUP_PEEK_CURRENT, MQ_LOOKUP_PEEK_NEXT, or MQ_LOOKUP_PEEK_PREV, return
MQ_ERROR_TRANSACTION_USAGE.

▪ Find the corresponding Transaction ADM element instance, referred to as lpTransaction, by

comparing the pTransactionId parameter with the Identifier ADM attribute for all Transaction
ADM element instances in the TransactionCollection ADM attribute of the local QueueManager
ADM element instance.

▪ If a Transaction ADM element instance cannot be found:

▪ Generate a Create Transaction ([MS-MQDMPR] section 3.1.7.1.8) event with the following
input:

▪ iTransactionIdentifier := NULL

▪ On return, set lpTransaction to rTransaction.

▪ If the ulAction parameter is MQ_ACTION_RECEIVE, perform the following steps:

▪ Create a new PendingRequestEntry (section 3.1.1.2) ADM element instance with:

▪ The RequestId ADM attribute set to the dwRequestId parameter.

▪ The QueueContextHandle ADM attribute set to the phContext parameter.

▪ The LookupIdentifier ADM attribute set to zero.

▪ The TimeStamp ADM attribute set to the current system time, in milliseconds, since the

operating system was started.

▪ The server MUST create a new instance of the Pending Request Cleanup
Timer (section 3.1.2.2) associated with the new PendingRequestEntry ADM element
instance and MUST start it.

▪ Add the new PendingRequestEntry ADM element instance to the
PendingRequestTable (section 3.1.1.3) ADM element.

▪ Generate a Dequeue Message Begin ([MS-MQDMPR] section 3.1.7.1.11) event with the
following inputs:

▪ iQueueDesc := queueDesc

62 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ iTimeout := ulTimeout

▪ iCursor := Cursor only if hCursor is a nonzero value

▪ iTag := dwRequestId

▪ iTransaction := lpTransaction

▪ If the rStatus value returned from the Dequeue Message Begin event is MQ_OK
(0x00000000), the server MUST set the LookupIdentifier ADM attribute of the new
PendingRequestEntry ADM element instance to rMessage.LookupIdentifier.

▪ If the ulAction parameter is MQ_LOOKUP_RECEIVE_CURRENT, generate a Read Message By
Lookup Identifier ([MS-MQDMPR] section 3.1.7.1.13) event with the following inputs:

▪ iQueueDesc := queueDesc

▪ iLookupId := LookupId

▪ iPeekOperation := False

▪ iLookupOperation := MessageSeekAction.SeekCurrent

▪ iTransaction := lpTransaction

▪ iTwoPhaseRead := True

▪ If the ulAction parameter is MQ_LOOKUP_RECEIVE_NEXT, generate a Read Message By Lookup
Identifier event with the following inputs:

▪ iQueueDesc := queueDesc

▪ iLookupId := LookupId

▪ iPeekOperation := False

▪ iLookupOperation := MessageSeekAction.SeekNext

▪ iTransaction := lpTransaction

▪ iTwoPhaseRead := True

▪ If the ulAction parameter is MQ_LOOKUP_RECEIVE_PREV, generate a Read Message By Lookup

Identifier event with the following inputs:

▪ iQueueDesc := queueDesc

▪ iLookupId := LookupId

▪ iPeekOperation := False

▪ iLookupOperation := MessageSeekAction.SeekPrev

▪ iTransaction := lpTransaction

▪ iTwoPhaseRead := True

▪ If the rStatus value returned from the preceding events is MQ_OK (Ox00000000), the server
MUST:

▪ Use rMessage to fill the ppPacketSections parameter array as specified in the
ppPacketSections parameter description.

63 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ Set the pdwArriveTime parameter to Message.ArrivalTime.

▪ Return rStatus.

3.1.4.14 R_SetUserAcknowledgementClass (Opnum 14)

The R_SetUserAcknowledgementClass method sets the acknowledgment class property of a
message in the queue. This allows marking the message as rejected.<30> This method MUST be
called subsequent to calls to R_StartTransactionalReceive and R_EndTransactionalReceive (Opnum
15) (section 3.1.4.15) and before the transaction is committed or aborted.

 HRESULT R_SetUserAcknowledgementClass(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,
 [in] ULONGLONG LookupId,
 [in] USHORT usClass
);

hBind: MUST be an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

phContext: MUST be set by the client to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle
representing the queue containing the message on which to set the acknowledgment class. The
handle MUST have been returned by the server in the pphQueue output parameter of a prior call
to the R_OpenQueue (Opnum 2) (section 3.1.4.2) method with the dwAccess parameter set to
MQ_RECEIVE_ACCESS and MUST NOT have been closed through a prior call to the R_CloseQueue

(Opnum 3) (section 3.1.4.3) method. This value MUST NOT be NULL.

LookupId: MUST be set by the client to the lookup identifier of the message on which to set the
acknowledgment class.

usClass: The acknowledgment class to set. It MUST be set by the client to one of the following values.

Value Meaning

0x0000 No-op. No change is made to the acknowledgment class.

MQMSG_CLASS_NACK_RECEIVE_REJECTED

0xC004

Marks the message as rejected.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT, and the client MUST treat all failure
HRESULTs identically.

MQ_OK (0x00000000)

MQ_ERROR_INVALID_HANDLE (0xC00E0007)

MQ_ERROR_TRANSACTION_USAGE (0xC00E0050)

MQ_ERROR_MESSAGE_NOT_FOUND (0xC00E0088)

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-
RPCE].

When processing this call, the server MUST do the following:

64 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ Find the corresponding OpenQueueDescriptor ADM element instance fOpenQueueDescriptor by

comparing the phContext parameter with the Handle ADM attribute for all
OpenQueueDescriptor ADM element instances maintained by the local QueueManager ADM
element instance.

▪ If not found, return a failure HRESULT.

▪ Find the corresponding MessagePosition ([MS-MQDMPR] section 3.1.1.11) ADM element
instance fMessagePosition by comparing the LookupId parameter with
rMessagePosition.MessageReference.Identifier for each MessagePosition ADM element
instance rMessagePosition in the fOpenQueueDescriptor.QueueReference.MessagePositionList.

▪ If not found, then return MQ_ERROR_MESSAGE_NOT_FOUND (0xC00E0088).

▪ Find the corresponding TransactionOperation ADM element instance fTransactionOperation by

comparing the MessagePosition ADM element instance fMessagePosition with

rTransaction.TransactionalOperationCollection.MessagePositionReference for each
Transaction ADM element instance rTransaction in the TransactionCollection ADM attribute of
the local QueueManager ADM element instance.

▪ If not found, then return MQ_ERROR_TRANSACTION_USAGE (0xC00E0050).

▪ If the usClass parameter is not 0x0000, set the DequeueReason ADM attribute of the

TransactionOperation ADM element instance fTransactionOperation to NackReceiveRejected,
as specified in [MS-MQDMPR] section 3.1.1.12.

▪ Return MQ_OK (0x00000000).

3.1.4.15 R_EndTransactionalReceive (Opnum 15)

The client MUST invoke the R_EndTransactionalReceive method to advise the server that the
message packet returned by the R_StartTransactionalReceive (Opnum 13) (section 3.1.4.13) method
has been received by the client.<31>

The combination of the R_StartTransactionalReceive method and the positive acknowledgment of
the R_EndTransactionalReceive method ensures that a message packet is not lost in transit from
the server to the client due to a network outage during the call sequence.

 HRESULT R_EndTransactionalReceive(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,
 [in, range(1,2)] DWORD dwAck,
 [in] DWORD dwRequestId
);

hBind: MUST be an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

phContext: MUST be set by the client to the QUEUE_CONTEXT_HANDLE_NOSERIALIZE structure
used in the corresponding call to the R_StartTransactionalReceive method. The handle MUST
have been returned by the server in the pphQueue output parameter of a prior call to the
R_OpenQueue (Opnum 2) (section 3.1.4.2) method and MUST NOT have been closed through a
prior call to the R_CloseQueue (Opnum 3) (section 3.1.4.3) method. This value MUST NOT be

NULL.

dwAck: MUST be set to an Acknowledgment (ACK) or a Negative Acknowledgment (NACK) for the
message packet received from the server in an R_StartTransactionalReceive method request.
The following table lists possible values.

65 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

Value Meaning

RR_ACK

0x00000002

The client acknowledges that the message packet was received successfully.

The server MUST NOT remove the packet from the queue. The server removes the packet from
the queue when the transaction is committed.

RR_NACK

0x00000001

The client acknowledges that the message packet was not received successfully.

The server MUST keep the message packet and make it available for subsequent consumption.

dwRequestId: MUST be set by the client to the same value as the dwRequestId parameter in the
corresponding call to the R_StartTransactionalReceive method. This parameter acts as an

identifier to correlate an R_EndTransactionalReceive method call to an
R_StartTransactionalReceive method call.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT, and the client MUST treat all failure
HRESULTs identically.

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-

RPCE].

When processing this call, the server MUST do the following:

▪ If the queue referenced by the phContext parameter handle has no
PendingRequestEntry (section 3.1.1.2) ADM element instance in its
PendingRequestTable (section 3.1.1.3) ADM element, return MQ_ERROR_INVALID_HANDLE
(0xC00E0007).

▪ Look up the PendingRequestEntry ADM element instance referenced by the {phContext,
dwRequestId} key pair in the PendingRequestTable ADM element. If a match is not found on
the {phContext, dwRequestId} key pair, return MQ_ERROR_INVALID_PARAMETER (0xC00E0006).
Otherwise, remove the PendingRequestEntry ADM element instance from the
PendingRequestTable ADM element, and cancel the associated instance of Pending Request
Cleanup Timer (section 3.1.2.2).

▪ Find the corresponding OpenQueueDescriptor ADM element instance by comparing the

phContext parameter with the Handle ADM attribute for all OpenQueueDescriptor ADM element
instances maintained by the local QueueManager ADM element instance.

▪ If not found, return a failure HRESULT, and perform no further actions; otherwise, assign the
found OpenQueueDescriptor ADM element instance to the local variable queueDesc.

▪ Find the corresponding Message ADM element instance fMessage by searching
queueDesc.QueueReference.MessagePositionCollection for a MessagePosition ADM element
instance fMessagePosition where fMessagePosition.MessageReference.LookupIdentifier equals

the LookupIdentifier ADM attribute of the PendingRequestEntry ADM element instance
referenced by {phContext, dwRequestId}. The corresponding Message ADM element instance
fMessage is referenced by the MessageReference ADM attribute of the matching
MessagePosition ADM element instance fMessagePosition.

▪ If not found, return MQ_ERROR_MESSAGE_NOT_FOUND (0xC00E0088).

▪ Set rStatus to the result of a Dequeue Message End ([MS-MQDMPR] section 3.1.7.1.12) event with

the following inputs:

▪ iQueueDesc := queueDesc.

66 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ iMessage := fMessage.

▪ iDeleteMessage := True if the dwAck parameter is equal to RR_ACK and false if the dwAck
parameter is equal to RR_NACK.

▪ iTransactional := True.

▪ Return rStatus.

3.1.5 Timer Events

3.1.5.1 Pending Request Cleanup Timer Event

When the Pending Request Cleanup Timer (section 3.1.2.2) expires, for the
PendingRequestEntry (section 3.1.1.2) ADM element instance iPendingRequestEntry associated with

this timer, the server MUST:

▪ Find the OpenQueueDescriptor ADM element instance fOpenQueueDescriptor by comparing

iPendingRequestEntry.QueueContextHandle with the Handle ADM attribute for all
OpenQueueDescriptor ADM element instances maintained by the local QueueManager ADM
element instance.

▪ Find the corresponding Message ADM element instance fMessage by comparing
iPendingRequestEntry.LookupIdentifier with the MessageReference.Identifier ADM attribute
of all MessagePosition ADM element instances in
fOpenQueueDescriptor.QueueReference.MessagePositionCollection.

▪ Generate a Dequeue Message End ([MS-MQDMPR] section 3.1.7.1.12) event with the following
inputs:

▪ iQueueDesc := fOpenQueueDescriptor.

▪ iMessage := fMessage.

▪ iDeleteMessage := false.

▪ Remove the PendingRequestEntry ADM element instance iPendingRequestEntry from the

PendingRequestTable (section 3.1.1.3) ADM element, and cancel the timer.

3.1.6 Other Local Events

3.1.6.1 RPC Failure Event

The event is received when RPC detects a connection failure with a client identified by a specific
QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2) handle.

While processing this event, the server MUST:

▪ Find the corresponding OpenQueueDescriptor ADM element instance fOpenQueueDescriptor by
comparing the QUEUE_CONTEXT_HANDLE_SERIALIZE handle with the Handle ADM attribute for

all OpenQueueDescriptor ADM element instances maintained by the local QueueManager ADM
element.

▪ If found then:

▪ Find all Cursor ADM element instances maintained by the local QueueManager ADM element
instance where Cursor.OpenQueueDescriptorReference equals the found
OpenQueueDescriptor ADM element instance fOpenQueueDescriptor.

67 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ For each found Cursor ADM element instance fCursor:

▪ Generate a Close Cursor ([MS-MQDMPR] section 3.1.7.1.2) event with the following
inputs:

▪ iCursor :=fCursor.

▪ Generate a Close Queue ([MS-MQDMPR] section 3.1.7.1.6) event with the following inputs:

▪ iQueueDesc := fOpenQueueDescriptor.

3.1.6.2 Queue Context Handles Rundown Routine

This event occurs on rundown of queue context handles of type
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) and
QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2), as specified in [C706] section 5.1.6. The

queue context handle being run down is referred to as lpQueueContextHandle.

When processing this event, the server MUST:

▪ Find the corresponding OpenQueueDescriptor ADM element instance fOpenQueueDescriptor by
comparing the lpQueueContextHandle being run down with the Handle ADM attribute for all

OpenQueueDescriptor ADM element instances maintained by the local QueueManager ADM
element instance.

▪ If not found, then return a failure HRESULT.

▪ Generate a Close Queue ([MS-MQDMPR] section 3.1.7.1.6) event with the following inputs:

▪ iQueueDesc := fOpenQueueDescriptor.

▪ For each PendingRequestEntry (section 3.1.1.2) ADM element instance iPendingRequestEntry in
the PendingRequestTable (section 3.1.1.3) ADM element where

iPendingRequestEntry.QueueContextHandle is equal to the lpQueueContextHandle being run
down:

▪ Search fOpenQueueDescriptor.QueueReference.MessagePositionCollection for a
MessagePosition ADM element instance fMessagePosition where
fMessagePosition.MessageReference.Identifier equals
iPendingRequestEntry.LookupIdentifier.

▪ Generate a Dequeue Message End ([MS-MQDMPR] section 3.1.7.1.12) event with the following
inputs:

▪ iQueueDesc := fOpenQueueDescriptor.

▪ iMessage := the Message ADM element instance referenced by
fMessagePosition.MessageReference.

▪ iDeleteMessage := false.

▪ Remove the PendingRequestEntry ADM element instance iPendingRequestEntry from the

PendingRequestTable ADM element.

▪ Set lpQueueContextHandle to NULL.

▪ Return MQ_OK (0x00000000).

68 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

3.2 RemoteRead Client Details

3.2.1 Abstract Data Model

Clients MUST maintain the following ADM elements:

▪ A QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2) handle associated with a queue.

▪ A table of cursor handles associated with a
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle.

3.2.2 Timers

No protocol timers are required except those that are used internally by RPC to implement resiliency
to network outages, as specified in [MS-RPCE].

3.2.3 Initialization

The client MUST create an RPC connection to the remote computer by using the details specified in
section 2.1.

3.2.4 Message Processing Events and Sequencing Rules

The operation of the protocol is initiated and subsequently driven by the following higher-layer
triggered events.

▪ The message queuing application opens a queue.

▪ The message queuing application enlists in a transaction.

▪ The message queuing application Peeks or Receives a message.

▪ The message queuing application rejects a received message.

▪ The message queuing application cancels a pending Peek or Receive.

▪ The message queuing application moves a message between the queue and its subqueue or
between two subqueues of the same queue.

▪ The message queuing application purges a queue.

▪ The message queuing application creates a cursor.

▪ The message queuing application uses the cursor to Peek or Receive messages.

▪ The message queuing application closes the cursor.

▪ The message queuing application closes the queue.

3.2.4.1 Opening a Queue

The client MUST supply a queue name, an access mode, and a share mode. Opening a queue consists
of the following sequence of operations:

▪ The client MUST construct an RPC binding handle to the server, as specified in [C706] section 2.3.

69 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ The client MAY<32> call the R_GetServerPort (Opnum 0) (section 3.1.4.1) method by using the

RPC handle from the previous step. This method returns the RPC endpoint port on which
subsequent method calls to this interface are to be invoked.

▪ The client MAY<33> construct a new RPC binding handle to the server by using the RPC endpoint

port determined in the previous step and replacing it with it the initial RPC binding handle to the
server.

▪ The client MUST call the R_OpenQueue (Opnum 2) (section 3.1.4.2) method and MUST specify the
following parameter values:

▪ The RPC binding handle constructed in previous steps.

▪ pQueueFormat set to the queue format name.

▪ dwAccess mode set to the access mode.

▪ dwShareMode set to the share mode.

▪ Other parameters are as specified in section 3.1.4.2.

▪ If the previous step returns an error code of EPT_S_NOT_REGISTERED (0x000006D9), the client
SHOULD try instead to use the Message Queuing (MSMQ): Queue Manager to Queue Manager
Protocol specified in [MS-MQQP].

▪ The client MUST record the returned QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2)

handle.

3.2.4.2 Enlisting in a Transaction

The message queuing application MUST generate an Enlisting in a Transaction event before generating

a Receive a Message (section 3.2.4.4) event, Move a Message (section 3.2.4.6) event, or Receive a

Message by Using a Cursor (section 3.2.4.10) event, if the message is to be received or moved in a
transaction context.

The message queuing application MUST specify the transaction identifier, and subsequent invocations
of the Receive a Message event, Move a Message event, or Receive a Message by Using a Cursor
event MUST be generated with the same transaction identifier.

▪ The client MUST enlist the server in the transaction through a call to the

R_QMEnlistRemoteTransaction (Opnum 12) (section 3.1.4.12) method with:

▪ The pTransactionId parameter set to the transaction identifier.

▪ The pQueueFormat parameter set to the queue format name.

▪ A transaction propagation token, obtained as specified in [MS-DTCO] section 3.3.4.3.

3.2.4.3 Peek a Message

The message queuing application MUST specify the
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) RPC context handle of the queue from
which to be read, the time-out parameter for the operation, a LookupId, a maximum message body
size, and an action from the table in the description of the ulAction parameter of the R_StartReceive
(Opnum 7) (section 3.1.4.7) method with action type of Peek.

▪ The client MUST call the R_StartReceive method and MUST specify the following parameter

values:

70 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ phContext set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle that has been

returned by the server in the pphQueue output parameter of a prior call to the R_OpenQueue
(Opnum 2) (section 3.1.4.2) method and that MUST NOT have been previously closed through
a call to the R_CloseQueue (Opnum 3) (section 3.1.4.3) method. This value MUST NOT be

NULL.

▪ hCursor set to NULL.

▪ LookupId set to the value specified by the message queuing application.

▪ ulAction set to the action specified by the message queuing application.

▪ ulTimeout set to the time-out value specified by the message queuing application.

▪ dwMaxBodySize set to the value specified by the message queuing application.

▪ A dwRequestId value that uniquely identifies this call from all other pending calls to this

protocol.

▪ The client MUST reconstruct the message from the SectionBuffers (section 2.2.6) structure
received in the ppPacketSections parameter, as specified in section 3.1.4.7.

▪ The client MUST return the message to the message queuing application.

3.2.4.4 Receive a Message

The message queuing application MUST specify the
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle of the queue from which to be
read, a transaction identifier, the time-out parameter for the operation, a LookupId, a maximum
message body size, and an action from the table in the description of the ulAction parameter in the
R_StartReceive (Opnum 7) (section 3.1.4.7) method with action type of Receive.

▪ If the transaction identifier specified by the message queuing application is NULL, follow the
sequencing rules as specified in section 3.2.4.4.1.

▪ If the transaction identifier specified by the message queuing application is non-NULL, follow the
sequencing rules as specified in section 3.2.4.4.2.

3.2.4.4.1 Receive a Message Without a Transaction

▪ The client MUST call the R_StartReceive (Opnum 7) (section 3.1.4.7) method and MUST specify

the following parameter values:

▪ phContext set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) RPC context
handle that has been returned by the server in the pphQueue output parameter of a prior call

to the R_OpenQueue (Opnum 2) (section 3.1.4.2) method and that MUST NOT have been
previously closed through a call to the R_CloseQueue (Opnum 3) (section 3.1.4.3) method.
This value MUST NOT be NULL.

▪ hCursor set to NULL.

▪ ulAction set to the value specified by the message queuing application.

▪ LookupId set to the value specified by the message queuing application.

▪ ulTimeout set to the time-out value specified by the message queuing application.

▪ dwMaxBodySize set to the value specified by the message queuing application.

71 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ dwRequestId set to a value that uniquely identifies this call from all other pending calls to this

protocol.

▪ Let readAck be a DWORD value initialized to RR_ACK (0x00000002).

▪ The client MUST reconstruct the message from the SectionBuffers (section 2.2.6) structure

received in the ppPacketSections parameter, as specified in section 3.1.4.7. If the message cannot
be reconstructed, the client MUST set readAck to RR_NACK (0x00000001).

▪ If the R_StartReceive method was invoked with a Receive action type, as specified in the
ulAction parameter, then the client MUST advise the server that the message has been received
by the client by calling the R_EndReceive (Opnum 9) (section 3.1.4.9) method with the following
parameter values.

▪ phContext as in the call to the R_StartReceive method.

▪ dwAck := readAck

▪ dwRequestId set to the same value as in the call to the R_StartReceive method.

▪ If MQ_OK (0x00000000) is returned

▪ The client MUST return the reconstructed message to the message queuing application.

▪ Else if the return value is not MQ_OK

▪ The client MAY<34> return MQ_OK to the message queuing application.

3.2.4.4.2 Receive a Message with a Transaction

▪ The message queuing application MUST specify a transaction identifier for a Receive a Message

With a Transaction event. If the message queuing application has not previously done so, it MUST
enlist the server in a transaction by generating an Enlisting in a Transaction (section 3.2.4.2)
event.

▪ The client MUST call the R_StartTransactionalReceive (Opnum 13) (section 3.1.4.13) method and

MUST specify the following parameter values:

▪ phContext set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) RPC context
handle that has been returned by the server in the pphQueue output parameter of a prior call
to the R_OpenQueue (Opnum 2) (section 3.1.4.2) method and that MUST NOT have been
previously closed through a call to the R_CloseQueue (Opnum 3) (section 3.1.4.3) method.
This value MUST NOT be NULL.

▪ hCursor set to NULL.

▪ ulAction set to the value specified by the message queuing application.

▪ LookupId set to the value specified by the message queuing application.

▪ ulTimeout set to the time-out value specified by the message queuing application.

▪ dwMaxBodySize set to the value specified by the message queuing application.

▪ dwRequestId set to a value that uniquely identifies this call from all other pending calls to this
protocol.

▪ pTransactionId set to the transaction identifier specified by the message queuing application.

▪ Let readAck be a DWORD value initialized to RR_ACK (0x00000002).

72 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ The client MUST reconstruct the message from the SectionBuffers (section 2.2.6) structure

received in the ppPacketSections parameter, as specified in the R_StartTransactionalReceive
method. If the message cannot be reconstructed, the client MUST set readAck to RR_NACK
(0x00000001).

▪ If the R_StartTransactionalReceive method was invoked with a Receive action type, as
specified in the ulAction parameter, then the client MUST advise the server that the message has
been received by the client by calling the R_EndTransactionalReceive (Opnum
15) (section 3.1.4.15) method with:

▪ The same phContext parameter as in the call to the R_StartTransactionalReceive method.

▪ dwAck := readAck.

▪ The same dwRequestId parameter as in the call to the R_StartTransactionalReceive

method.

▪ If MQ_OK (0x00000000) is returned:

▪ The client MUST return the reconstructed message to the message queuing application.

▪ Else if the return value is not MQ_OK:

▪ The client MUST return the value to the message queuing application.

3.2.4.5 Reject a Message

The message queuing application MUST specify the
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle and the LookupId of the message
to be rejected.

▪ The client MUST call the R_SetUserAcknowledgementClass (Opnum 14) (section 3.1.4.14) method

and MUST specify the following parameter values:

▪ phContext set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle that has been
returned by the server in the pphQueue output parameter of a prior call to the R_OpenQueue
(Opnum 2) (section 3.1.4.2) method and MUST NOT have been previously closed through a
call to the R_CloseQueue (Opnum 3) (section 3.1.4.3) method. This value MUST NOT be NULL.

▪ LookupId set to the value passed by the client.

▪ ulClass set to MQMSG_CLASS_NACK_RECEIVE_REJECTED.

3.2.4.6 Move a Message

The message queuing application MUST specify the
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle of the source queue and the

QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle of the destination queue. The message queuing
application MUST specify the LookupId of the message to be moved. The message queuing application
MUST specify the transaction identifier if the destination queue is a transactional queue.

▪ If the destination queue is a transactional queue, the message queuing application MUST have
enlisted the server in the transaction as specified in section 3.2.4.2, and it MUST specify the same
transaction identifier for the Move a Message event.

▪ The client MUST call the R_MoveMessage (Opnum 10) (section 3.1.4.10) method and MUST

specify the following parameter values:

▪ phContextFrom set to the QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle of the source
queue that was returned by the server in the pphQueue output parameter of a prior call to the

73 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

R_OpenQueue (Opnum 2) (section 3.1.4.2) method and that MUST NOT have been previously

closed through a call to the R_CloseQueue (Opnum 3) (section 3.1.4.3) method. This value
MUST NOT be NULL.

▪ ulContextTo set to the QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle of the destination

queue that was returned by the server in the pphQueue output parameter of a prior call to the
R_OpenQueue method and that MUST NOT have been previously closed through a call to the
R_CloseQueue method. This value MUST NOT be NULL.

▪ pTransactionId set to the transaction identifier specified by the message queuing application if
the destination queue is a transactional queue; otherwise, to a zero-value XACTUOW ([MS-
MQMQ] section 2.2.18.1.8) structure.

▪ LookupId set to the value specified by the message queuing application.

3.2.4.7 Purging a Queue

The message queuing application MUST specify the
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle of the queue. The client MUST call

the R_PurgeQueue (Opnum 6) (section 3.1.4.6) method with the phContext parameter set to a
QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle that has been returned by the server in the
pphQueue output parameter of a prior call to the R_OpenQueue (Opnum 2) (section 3.1.4.2) method
and that MUST NOT have been previously closed through a call to the R_CloseQueue (Opnum
3) (section 3.1.4.3) method. This value MUST NOT be NULL.

3.2.4.8 Creating a Cursor

The message queuing application MUST specify the
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle to associate with the created

cursor. The client MUST call the R_CreateCursor (Opnum 4) (section 3.1.4.4) method with the
phContext parameter set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle that has been

returned by the server in the pphQueue output parameter of a prior call to the R_OpenQueue (Opnum
2) (section 3.1.4.2) method and that MUST NOT have been previously closed through a call to the
R_CloseQueue (Opnum 3) (section 3.1.4.3) method. This value MUST NOT be NULL. The client MUST
record the returned cursor handle and return it to the message queuing application.

3.2.4.9 Peek a Message by Using a Cursor

The message queuing application MUST specify the
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) RPC context handle of the queue to be
read from, the cursor handle, the time-out parameter for the operation, a maximum message body
size, and an action from the table in the description of the ulAction parameter of the R_StartReceive
(Opnum 7) (section 3.1.4.7) method with an action type of Peek.

▪ The client MUST call the R_StartReceive method and MUST specify the following parameter

values:

▪ hCursor set to the value specified by the message queuing application.

▪ LookupId set to NULL.

▪ ulAction set to the action specified by the message queuing application.

▪ ulTimeout set to the time-out value specified by the message queuing application.

▪ dwMaxBodySize set to the value specified by the message queuing application.

74 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ dwRequestId set to a value that uniquely identifies this call from all other pending calls to this

protocol.

▪ The client MUST reconstruct the message from the SectionBuffers (section 2.2.6) structure
received in the ppPacketSections parameter, as specified in section 3.1.4.7.

▪ The client MUST return the message to the message queuing application.

3.2.4.10 Receive a Message by Using a Cursor

The message queuing application MUST specify the

QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle of the queue to be read from, the
cursor handle, a transaction identifier, the time-out parameter for the operation, a maximum message
body size, and an action from the table in the description of the ulAction parameter with action type of
Receive, as specified in section 3.1.4.7.

If the transaction identifier specified by the message queuing application is NULL, follow the
sequencing rules specified in section 3.2.4.10.1.

If the transaction identifier specified by the message queuing application is non-NULL, follow the

sequencing rules specified in section 3.2.4.10.2.

3.2.4.10.1 Receive a Message by Using a Cursor Without a Transaction

▪ The client MUST call the R_StartReceive (Opnum 7) (section 3.1.4.7) method and MUST specify
the following parameter values:

▪ phContext set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle that has
been returned by the server in the pphQueue output parameter of a prior call to the

R_OpenQueue (Opnum 2) (section 3.1.4.2) method and that MUST NOT have been previously

closed through a call to the R_CloseQueue (Opnum 3) (section 3.1.4.3) method. This value
MUST NOT be NULL.

▪ hCursor set to the value specified by the message queuing application.

▪ ulAction set to the value specified by the message queuing application.

▪ ulTimeout set to the time-out value.

▪ dwMaxBodySize set to the value specified by the message queuing application.

▪ dwRequestId set to a value that uniquely identifies this call from all other pending calls to this
protocol.

▪ LookupId set to 0x0000000000000000.

▪ The client MUST reconstruct the message from the SectionBuffers (section 2.2.6) received in the
ppPacketSections parameter, as specified in section 3.1.4.7.

▪ The client MUST advise the server that the message was received by the message queuing

application by calling the R_EndReceive (Opnum 9) (section 3.1.4.9) method with:

▪ The same phContext parameter as in the call to the R_StartReceive method.

▪ The same dwRequestId parameter as in the call to the R_StartReceive method.

▪ If MQ_OK (0x00000000) is returned:

▪ The client MUST return the reconstructed message to the message queuing application.

▪ Else if the return value is not MQ_OK

75 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ The client MAY<35> return MQ_OK to the message queuing application.

3.2.4.10.2 Receive a Message by Using a Cursor with a Transaction

▪ The message queuing application MUST have previously enlisted the server in the transaction as

specified in section 3.2.4.2.

▪ The client MUST call the R_StartTransactionalReceive (Opnum 13) (section 3.1.4.13) method and
MUST specify the following parameter values:

▪ phContext set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle that
was returned by the server in the pphQueue output parameter of a prior call to the
R_OpenQueue (Opnum 2) (section 3.1.4.2) method and that MUST NOT have been previously
closed through a call to the R_CloseQueue (Opnum 3) (section 3.1.4.3) method. This value

MUST NOT be NULL.

▪ The hCursor parameter set to the cursor handle specified by the message queuing application.

▪ The ulAction parameter set to the value specified by the message queuing application.

▪ The ulTimeout parameter set to the time-out value.

▪ The dwMaxBodySize parameter set to the value specified by the message queuing application.

▪ A dwRequestId parameter value that uniquely identifies this call from all other pending calls to

this protocol.

▪ The pTransactionId parameter set to the transaction identifier specified by the message
queuing application.

▪ The LookupId parameter set to 0x0000000000000000.

▪ The client MUST reconstruct the message from the SectionBuffers (section 2.2.6) received in the
ppPacketSections parameter, as specified in section 3.1.4.7.

▪ The client MUST advise the server that the message was received by the message queuing

application by calling the R_EndTransactionalReceive (Opnum 15) (section 3.1.4.15) method with:

▪ The same phContext parameter as in the call to the R_StartTransactionalReceive method.

▪ The same dwRequestId parameter as in the call to the R_StartTransactionalReceive
method.

▪ If MQ_OK (0x00000000) is returned:

▪ The client MUST return the reconstructed message to the message queuing application.

▪ Else if the return value is not MQ_OK:

▪ The client MUST return the value to the message queuing application.

3.2.4.11 Cancel a Pending Peek or Receive

The message queuing application MUST specify the

QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle and the dwRequestId parameter of
the operation to be canceled.

▪ The client MUST call the R_CancelReceive (Opnum 8) (section 3.1.4.8) method and MUST specify
the following parameter values:

76 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ The phContext parameter set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle that

has been returned by the server in the pphQueue output parameter of a prior call to the
R_OpenQueue (Opnum 2) (section 3.1.4.2) method and that MUST NOT have been previously
closed through a call to the R_CloseQueue (Opnum 3) (section 3.1.4.3) method. This value

MUST NOT be NULL.

▪ The dwRequestId parameter set to the dwRequestId parameter passed by the message
queuing application.

3.2.4.12 Closing a Cursor

The message queuing application MUST specify the
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle and the cursor handle to be closed.

▪ If there are any pending requests associated with the cursor handle, the client SHOULD<36>

cancel them as specified in section 3.2.4.11.

▪ The client MUST call the R_CloseCursor (Opnum 5) (section 3.1.4.5) method with the following:

▪ The phContext parameter set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle that

has been returned by the server in the pphQueue output parameter of a prior call to the
R_OpenQueue (Opnum 2) (section 3.1.4.2) method and that MUST NOT have been previously
closed through a call to the R_CloseQueue (Opnum 3) (section 3.1.4.3) method. This value
MUST NOT be NULL.

▪ The phCursor parameter set to the cursor handle.

▪ The client MUST remove the cursor handle from its state.

3.2.4.13 Closing a Queue

The message queuing application MUST specify the
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle that is to be closed, that has been
returned by the server in the pphQueue output parameter of a prior call to the R_OpenQueue (Opnum

2) (section 3.1.4.2) method, and that MUST NOT have been previously closed through a call to the
R_CloseQueue (Opnum 3) (section 3.1.4.3) method. This value MUST NOT be NULL. If there are any
pending requests associated with the QUEUE_CONTEXT_HANDLE_SERIALIZE handle, the client
SHOULD cancel them as specified in section 3.2.4.11. If any open cursor handles are associated with
the QUEUE_CONTEXT_HANDLE_SERIALIZE handle, the client SHOULD close them as specified in
section 3.2.4.12. The client MUST call the R_CloseQueue method with the pphContext parameter set
to the QUEUE_CONTEXT_HANDLE_SERIALIZE handle. The client MUST remove the

QUEUE_CONTEXT_HANDLE_SERIALIZE handle from its state.<37>

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

77 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

4 Protocol Examples

The following sections describe several operations that are used in common scenarios in order to
illustrate the function of the Message Queuing (MSMQ): Queue Manager Remote Read Protocol.

4.1 Binding to a Server and Purging a Queue

The sequence diagram that follows illustrates a scenario when the client purges a queue. In addition,
it shows how the static RPC endpoint port is acquired by the client to create an RPC binding handle.

1. The client begins the sequence by creating an RPC binding for the server. Next, the client calls the
R_GetServerPort (Opnum 0) (section 3.1.4.1) method, which returns an RPC endpoint port
number with which the client creates a new binding. The client uses the new binding for all

subsequent calls to the server.

2. Using the binding from the previous step, the client calls the R_OpenQueue (Opnum
2) (section 3.1.4.2) method, requesting the MQ_RECEIVE_ACCESS (0x00000001) access mode
and a share mode, in addition to client-specific values for the pClientId, fNonRoutingServer, Major,
Minor, BuildNumber, and fWorkgroup parameters. On success, the server returns a new
QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2) handle.

3. The client calls the R_PurgeQueue (Opnum 6) (section 3.1.4.6) method. The server confirms that

the queue was opened with the MQ_RECEIVE_ACCESS (0x00000001) access mode and then
removes all messages from the queue.

4. Finally, the client closes the QUEUE_CONTEXT_HANDLE_SERIALIZE handle with a call to the
R_CloseQueue (Opnum 3) (section 3.1.4.3) method.

78 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

Figure 1: The client binds to a server and purges a queue.

4.2 Receiving a Message

This sequence diagram illustrates a client receiving a message from a queue at the server. The call to
the R_StartReceive (Opnum 7) (section 3.1.4.7) method includes a ulAction parameter value of
MQ_ACTION_RECEIVE (0x00000000) and a unique dwRequestId parameter value chosen by the
client. In response, the server associates a pending request with the passed dwRequestId parameter,
which is used to correlate a subsequent call to the R_EndReceive (Opnum 9) (section 3.1.4.9) method
or the R_CancelReceive (Opnum 8) (section 3.1.4.8) method with the same value for the dwRequestId
parameter. Additionally, the server returns a SectionBuffer (section 2.2.6) array that contains the

message.

Next, the client indicates that the message was successfully received by calling the R_EndReceive

method, specifying RR_ACK (0x00000002) for the dwAck parameter. The server completes the

79 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

corresponding pending request created by the call to the R_StartReceive method and, because

RR_ACK is specified, removes the message from the queue.

Figure 2: The client receives a message.

4.3 Receiving a Message in a Transaction

This sequence diagram demonstrates a scenario in which a client receives a message from a queue
within the context of a transaction. Although four roles are used to illustrate the participants in this
scenario, the protocol that is described by this specification is used only between the client and server

roles. The "Client Distributed Transaction Coordinator (DTC)" role (as specified in [MS-DTCO]) and the
"Server DTC" role are included to illustrate a typical end-to-end sequence of a transactional receive
request.

The diagram includes reference numbers on the left side that identify operations of interest, which are
explained in detail following.

80 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

Figure 3: The client receives a message within a transaction.

1. The client communicates with the local DTC to create a new transaction, as specified in [MS-
DTCO] section 3.3.4.1.

2. The client constructs a propagation token to be marshaled to the server's transaction manager, as
specified in [MS-DTCO] section 2.2.5.4.

3. The client calls the R_QMEnlistRemoteTransaction (Opnum 12) (section 3.1.4.12) method,
specifying the transaction identifier and the transaction propagation token.

4. The server marshals the transaction propagation token to its local transaction manager and enlists
its local resource manager in the transaction, as specified in [MS-DTCO] sections 3.3.4.12 and
3.5.4.3.

5. The client calls the R_StartTransactionalReceive (Opnum 13) (section 3.1.4.13) method to receive
a message in the context of the transaction. The client specifies the transaction identifier to

81 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

associate the receive operation with the transaction enlisted in the prior steps. The server returns

a message in the SectionBuffer (section 2.2.6) array.

6. The client advises the server that the message was received correctly by calling the
R_EndTransactionalReceive (Opnum 15) (section 3.1.4.15) method, specifying RR_ACK

(0x00000002) for the dwAck parameter.

7. The client commits the transaction, as specified in [MS-DTCO] section 3.3.4.8.2. The client DTC
transaction manager notifies the server DTC transaction manager of the commit request.

8. After receiving notification of the commit from the server DTC via the DTC Transaction Commit
([MS-MQDMPR] section 3.1.4.7) event, the server deletes the message from the queue.

82 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

5 Security

The following sections specify security considerations for implementers of the Message Queuing
(MSMQ): Queue Manager Remote Read Protocol.

5.1 Security Considerations for Implementers

In addition to imposing the minimum RPC authentication level on the RPC handle for incoming calls,
the server might require a different minimum RPC authentication level from the client, depending on
whether the client is a member of a Windows domain, as specified by the fWorkgroup parameter in
the R_OpenQueue (Opnum 2) (section 3.1.4.2) and the R_OpenQueueForMove (Opnum
11) (section 3.1.4.11) methods.<38>

5.2 Index of Security Parameters

 Security parameter Section

fWorkgroup R_OpenQueue (Opnum 2) (section 3.1.4.2)

R_OpenQueueForMove (Opnum 11) (section 3.1.4.11)

83 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided in this section, where "ms-dtyp.idl" is the IDL as
specified in [MS-DTYP] Appendix A, and "ms-mqmq.idl" is the IDL as specified in [MS-MQMQ]
Appendix A.

 import "ms-dtyp.idl";
 import "ms-mqmq.idl";

 [
 uuid(1a9134dd-7b39-45ba-ad88-44d01ca47f28),
 version(1.0),
 pointer_default(unique)
]
 interface RemoteRead
 {
 typedef [context_handle] void* QUEUE_CONTEXT_HANDLE_NOSERIALIZE;

 typedef [context_handle]
 QUEUE_CONTEXT_HANDLE_NOSERIALIZE QUEUE_CONTEXT_HANDLE_SERIALIZE;

 typedef enum
 {
 stFullPacket = 0,
 stBinaryFirstSection = 1,
 stBinarySecondSection = 2,
 stSrmpFirstSection = 3,
 stSrmpSecondSection = 4
 } SectionType;

 typedef struct _SectionBuffer {
 SectionType SectionBufferType;
 DWORD SectionSizeAlloc;
 DWORD SectionSize;
 [unique, size_is(SectionSize)] byte* pSectionBuffer;
 } SectionBuffer;

 DWORD R_GetServerPort(
 [in] handle_t hBind
);

 void Opnum1NotUsedOnWire(void);

 void R_OpenQueue(
 [in] handle_t hBind,
 [in] QUEUE_FORMAT* pQueueFormat,
 [in] DWORD dwAccess,
 [in] DWORD dwShareMode,
 [in] GUID* pClientId,
 [in] LONG fNonRoutingServer,
 [in] unsigned char Major,
 [in] unsigned char Minor,
 [in] USHORT BuildNumber,
 [in] LONG fWorkgroup,
 [out] QUEUE_CONTEXT_HANDLE_SERIALIZE* pphContext
);

 HRESULT R_CloseQueue(
 [in] handle_t hBind,
 [in, out] QUEUE_CONTEXT_HANDLE_SERIALIZE* pphContext
);

 HRESULT R_CreateCursor(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

84 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

 [out] DWORD* phCursor
);

 HRESULT R_CloseCursor(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,
 [in] DWORD hCursor
);

 HRESULT R_PurgeQueue(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext
);

 HRESULT R_StartReceive(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,
 [in] ULONGLONG LookupId,
 [in] DWORD hCursor,
 [in] DWORD ulAction,
 [in] DWORD ulTimeout,
 [in] DWORD dwRequestId,
 [in] DWORD dwMaxBodySize,
 [in] DWORD dwMaxCompoundMessageSize,
 [out] DWORD* pdwArriveTime,
 [out] ULONGLONG* pSequenceId,
 [out] DWORD* pdwNumberOfSections,
 [out, size_is(, *pdwNumberOfSections)]
 SectionBuffer** ppPacketSections
);

 HRESULT R_CancelReceive(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,
 [in] DWORD dwRequestId
);

 HRESULT R_EndReceive(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,
 [in, range(1,2)] DWORD dwAck,
 [in] DWORD dwRequestId
);

 HRESULT R_MoveMessage(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContextFrom,
 [in] ULONGLONG ullContextTo,
 [in] ULONGLONG LookupId,
 [in] XACTUOW *pTransactionId
);

 void R_OpenQueueForMove(
 [in] handle_t hBind,
 [in] QUEUE_FORMAT* pQueueFormat,
 [in] DWORD dwAccess,
 [in] DWORD dwShareMode,
 [in] GUID* pClientId,
 [in] LONG fNonRoutingServer,
 [in] unsigned char Major,
 [in] unsigned char Minor,
 [in] USHORT BuildNumber,
 [in] LONG fWorkgroup,
 [out] ULONGLONG *pMoveContext,
 [out] QUEUE_CONTEXT_HANDLE_SERIALIZE* pphContext
);

 HRESULT R_QMEnlistRemoteTransaction(
 [in] handle_t hBind,
 [in] XACTUOW* pTransactionId,

85 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

 [in, range(0, 131072)] DWORD cbPropagationToken,
 [in, size_is (cbPropagationToken)]
 unsigned char* pbPropagationToken,
 [in] QUEUE_FORMAT* pQueueFormat
);

 HRESULT R_StartTransactionalReceive(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,
 [in] ULONGLONG LookupId,
 [in] DWORD hCursor,
 [in] DWORD ulAction,
 [in] DWORD ulTimeout,
 [in] DWORD dwRequestId,
 [in] DWORD dwMaxBodySize,
 [in] DWORD dwMaxCompoundMessageSize,
 [in] XACTUOW* pTransactionId,
 [out] DWORD* pdwArriveTime,
 [out] ULONGLONG* pSequenceId,
 [out] DWORD* pdwNumberOfSections,
 [out, size_is(, *pdwNumberOfSections)]
 SectionBuffer** ppPacketSections
);

 HRESULT R_SetUserAcknowledgementClass(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,
 [in] ULONGLONG LookupId,
 [in] USHORT usClass
);

 HRESULT R_EndTransactionalReceive(
 [in] handle_t hBind,
 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,
 [in, range(1,2)] DWORD dwAck,
 [in] DWORD dwRequestId
);
 }

86 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

Windows Client

▪ Windows NT Workstation operating system

▪ Windows 2000 Professional operating system

▪ Windows XP operating system

▪ Windows Vista operating system

▪ Windows 7 operating system

▪ Windows 8 operating system

▪ Windows 8.1 operating system

▪ Windows 10 operating system

▪ Windows 11 operating system

Windows Server

▪ Windows NT Server operating system

▪ Windows 2000 Server operating system

▪ Windows Server 2003 operating system

▪ Windows Server 2008 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows Server 2012 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows Server 2016 operating system

▪ Windows Server operating system

▪ Windows Server 2019 operating system

▪ Windows Server 2022 operating system

▪ Windows Server 2025 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the

product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

87 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 1.4: If the originating MSMQ application receives messages from a remote queue through
a supporting server, the queue manager on the supporting server uses the protocol described in [MS-

MQQP] but does not support this protocol.

<2> Section 1.7: Windows NT operating system, Windows 2000 operating system, and the Windows
XP operating system do not support this protocol.

<3> Section 1.7: Windows Vista and later client operating systems and Windows Server 2003 and
later server operating systems use Kerberos when the computer is a member of a Windows domain;
otherwise, they use NTLM.

<4> Section 2.1: The Windows Server 2003 protocol client uses RPC dynamic endpoints to obtain the

initial RPC binding handle. The client calls the R_GetServerPort (Opnum 0) (section 3.1.4.1) method

with the initial RPC binding handle and uses the returned value to obtain a new RPC binding handle to
be used for all subsequent RPC method calls on the protocol. When acting as protocol clients, Windows
Vista and later client operating systems and Windows Server 2008 and later server operating systems
use RPC dynamic endpoints to obtain the RPC binding handle. This handle is used for all RPC method
calls on the protocol. The R_GetServerPort method is not called by the Windows Vista and later

client operating systems and the Windows Server 2008 and later server operating systems when
acting as protocol clients.

<5> Section 2.2.5.2: The ExtensionHeader (section 2.2.5.2) is not supported on Windows Server
2003.

<6> Section 2.2.5.3: The SubqueueHeader (section 2.2.5.3) is not supported on Windows Server
2003.

<7> Section 2.2.5.4: The DeadLetterHeader (section 2.2.5.4) is not supported on Windows Server

2003.

<8> Section 2.2.5.5: The ExtendedAddressHeader (section 2.2.5.5) is not supported on Windows
Server 2003.

<9> Section 2.2.8: All Windows clients produce new XACTUOW ([MS-MQMQ] section 2.2.18.1.8)
structure values by calling the Windows RPC function UuidCreate.

<10> Section 3.1.2.1: If the registry key
HKLM\SOFTWARE\Microsoft\MSMQ\Parameters\RpcCancelTimeout is defined and is set to a nonzero

DWORD value, Windows Vista and later client operating systems and Windows Server 2003 and later
server operating systems, when acting as protocol servers, interpret this value as the RPC Call
Timeout value in minutes.

<11> Section 3.1.2.2: The Windows default timeout is 5 * 60 * 1000 milliseconds (5 minutes). This

default value can be overridden by setting the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters\RpcCancelTimeout to the desired

value, in minutes. This value cannot be set to zero.

<12> Section 3.1.4: Opnums reserved for local use apply to Windows as follows.

Opnum Description

1 Not used by Windows

<13> Section 3.1.4.1: The Windows Server 2003 protocol client uses RPC dynamic endpoints to
obtain the initial RPC binding handle. The client calls the R_GetServerPort (Opnum 0) (section 3.1.4.1)

88 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

method with the initial RPC binding handle and uses the returned value to obtain a new RPC binding

handle to be used for all subsequent RPC method calls on the protocol.

When acting as protocol clients, Windows Vista and later client operating systems and Windows Server
2008 and later server operating systems use RPC dynamic endpoints to obtain the RPC binding

handle. This handle is used for all RPC method calls on the protocol. The R_GetServerPort method is
not called by the Windows Vista and later client operating systems and the Windows Server 2008 and
later server operating systems when acting as protocol clients.

<14> Section 3.1.4.2: Windows Server 2003 protocol servers limit the number of unique concurrent
clients if the following DWORD registry key exists and its value is 0x00000001:
HKLM\SYSTEM\CurrentControlSet\Services\LicenseInfo\FilePrint. The maximum number of unique
concurrent clients permitted is taken from the DWORD registry key

HKLM\System\CurrentControlSet\Services\LicenseInfo\FilePrint\ConcurrentLimit. If the number of
existing unique callers is equal to this value, the R_OpenQueue (Opnum 2) (section 3.1.4.2) method
throws an RPC exception MQ_ERROR_DEPEND_WKS_LICENSE_OVERFLOW (0xc00e0067).

When acting as protocol servers, Windows Vista and later client operating systems and Windows
Server 2008 and later server operating systems do not enforce limits on the number of unique
concurrent clients. The pClientId parameter is ignored.

<15> Section 3.1.4.2: When acting as protocol clients, Windows Vista and later client operating
systems and Windows Server 2003 and later server operating systems set the fNonRoutingServer
parameter value based on the registry key
HKLM\Software\Windows\MSMQ\Parameters\MachineCache\MQS_Routing.

If this key exists and is set to the DWORD value 0x00000001, the parameter is set to FALSE
(0x00000000); otherwise, it is set to TRUE (0x00000001).

<16> Section 3.1.4.2: When acting as a protocol client, Windows Server 2003 sets the message

queuing Major Version to 5. Windows Vista and later client operating systems and Windows Server

2008 and later server operating systems protocol clients set the message queuing Major Version to 6.

When acting as protocol servers, Windows Vista and later client operating systems and Windows
Server 2003 and later server operating systems ignore the message queuing Major Version
parameter.

<17> Section 3.1.4.2: The Windows Server 2003 protocol client sets the message queuing Minor
Version to 2.

When acting as protocol clients, Windows Vista and Windows Server 2008 set the message queuing
Minor Version to 0, while Windows 7 and later client operating systems and Windows Server 2008 R2
and later server operating systems set the message queuing Minor Version to 1.

When acting as protocol servers, the Windows Vista and later client operating systems and Windows

Server 2003 and later server operating systems ignore the message queuing Minor Version parameter.

<18> Section 3.1.4.2: When acting as protocol clients, Windows Vista and later client operating

systems and Windows Server 2003 and later server operating systems set the message queuing
BuildNumber to a build-specific number.

When acting as protocol servers, Windows Vista and later client operating systems and Windows
Server 2003 and later server operating systems ignore the message queuing BuildNumber parameter.

<19> Section 3.1.4.2: The Windows Server 2003 protocol server minimum RPC authentication level is
determined as follows:

▪ RPC_C_AUTHN_LEVEL_NONE, if any of the following conditions is true

▪ The fWorkgroup parameter is TRUE.

89 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ The registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerAllowNoneSecuri
tyClient exists and is set to any DWORD value other than 0x00000000, and the Anonymous
Logon account is granted Peek or Receive permissions on the queue being accessed.

▪ The registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerDenyWorkgroup
Client is set to the DWORD value 0x00000000 or does not exist.

▪ RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, if the registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\DebugRpc exists and is set to any DWORD
value other than 0x00000000.

▪ RPC_C_AUTHN_LEVEL_PKT_PRIVACY otherwise.

When acting as protocol servers, Windows Vista and later client operating systems and Windows

Server 2008 and later server operating systems have their minimum RPC authentication level
determined as follows:

▪ RPC_C_AUTHN_LEVEL_NONE, if the registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\AllowNonauthenticatedRpc exists and is set
to any DWORD value other than 0x00000000 and any of the following conditions is true:

▪ The fWorkgroup parameter is TRUE.

▪ The registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerDenyWorkgroup
Client is set to the DWORD value 0x00000000 or does not exist.

▪ RPC_C_AUTHN_LEVEL_NONE, if the registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerAllowNoneSecurityCli

ent exists and is set to any DWORD value other than 0x00000000, and the Anonymous Logon

account is granted Peek or Receive permissions on the queue being accessed.

▪ RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, if the registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\DebugRpc exists and is set to any DWORD
value other than 0x00000000.

▪ RPC_C_AUTHN_LEVEL_PKT_PRIVACY otherwise.

<20> Section 3.1.4.10: R_MoveMessage (Opnum 10) (section 3.1.4.10) is not implemented on
Windows Server 2003.

<21> Section 3.1.4.11: The R_OpenQueueForMove (Opnum 11) (section 3.1.4.11) method is not
implemented on Windows Server 2003.

<22> Section 3.1.4.11: When acting as protocol clients, Windows Vista and later client operating
systems and Windows Server 2003 and later server operating systems set the fNonRoutingServer
parameter value based on the registry key
HKLM\Software\Windows\MSMQ\Parameters\MachineCache\MQS_Routing.

If this key exists and is set to the DWORD value 0x00000001, the parameter is set to FALSE
(0x00000000); otherwise, it is set to TRUE (0x00000001).

<23> Section 3.1.4.11: The Windows Server 2003 protocol client sets the message queuing Major
Version to 5. When acting as protocol clients, Windows Vista and later client operating systems and
Windows Server 2008 and later server operating systems set the message queuing Major version to 6.

When acting as protocol servers, Windows Vista and later client operating systems and Windows
Server 2003 and later server operating systems ignore the message queuing Major Version

parameter.

90 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

<24> Section 3.1.4.11: The Windows Server 2003 protocol client sets the message queuing Minor

Version to 2.

The Windows Vista and Windows Server 2008 protocol clients set the message queuing Minor Version
to 0.

When acting as protocol clients, Windows 7 and later client operating systems and Windows Server
2008 R2 and later server operating systems set the message queuing Minor Version to 1.

When acting as protocol servers, Windows Vista and later client operating systems and Windows
Server 2003 and later server operating systems ignore the message queuing Minor Version parameter.

<25> Section 3.1.4.11: When acting as protocol clients, Windows Vista and later client operating
systems and Windows Server 2003 and later server operating systems set the message queuing
BuildNumber to a build-specific number.

When acting as protocol servers, Windows Vista and later client operating systems and Windows
Server 2003 and later server operating systems ignore the message queuing BuildNumber parameter.

<26> Section 3.1.4.11: The Windows Server 2003 protocol server minimum RPC authentication level
is determined as follows:

▪ RPC_C_AUTHN_LEVEL_NONE, if any of the following conditions is true.

▪ The fWorkgroup parameter is TRUE.

▪ The registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerAllowNoneSecuri
tyClient exists and is set to any DWORD value other than 0x00000000, and the Anonymous
Logon account is granted Peek or Receive permissions on the queue being accessed.

▪ The registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerDenyWorkgroup
Client is set to the DWORD value 0x00000000 or does not exist.

▪ RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, if the registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\DebugRpc exists and is set to any DWORD
value other than 0x00000000.

▪ RPC_C_AUTHN_LEVEL_PKT_PRIVACY otherwise.

When acting as protocol servers, the minimum RPC authentication level for Windows Vista and later
client operating systems and Windows Server 2008 and later server operating systems is determined
as follows:

▪ RPC_C_AUTHN_LEVEL_NONE, if the registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\AllowNonauthenticatedRpc exists and is set
to any DWORD value other than 0x00000000 and any of the following conditions is true:

▪ The fWorkgroup parameter is TRUE.

▪ The registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerDenyWorkgroup

Client is set to the DWORD value 0x00000000 or does not exist.

▪ RPC_C_AUTHN_LEVEL_NONE, if the registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerAllowNoneSecurityCli
ent exists and is set to any DWORD value other than 0x00000000, and the Anonymous Logon
account is granted Peek or Receive permissions on the queue being accessed.

91 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, if the registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\DebugRpc exists and is set to any DWORD
value other than 0x00000000.

▪ RPC_C_AUTHN_LEVEL_PKT_PRIVACY otherwise.

<27> Section 3.1.4.12: The R_QMEnlistRemoteTransaction (Opnum 12) (section 3.1.4.12) method is
not implemented on Windows Server 2003.

<28> Section 3.1.4.12: A server running Windows Vista and later client operating systems or
Windows Server 2008 and later server operating systems ignores the pQueueFormat parameter.

<29> Section 3.1.4.13: The R_StartTransactionalReceive (Opnum 13) (section 3.1.4.13) method is
not implemented on Windows Server 2003.

<30> Section 3.1.4.14: R_SetUserAcknowledgementClass (Opnum 14) (section 3.1.4.14) is not

implemented on Windows Server 2003.

<31> Section 3.1.4.15: The R_EndTransactionalReceive (Opnum 15) (section 3.1.4.15) method is not
implemented on Windows Server 2003.

<32> Section 3.2.4.1: The Windows Server 2003 protocol client uses RPC dynamic endpoints to
obtain the initial RPC binding handle. The client calls the R_GetServerPort (Opnum 0) (section 3.1.4.1)
method with the initial RPC binding handle and uses the returned value to obtain a new RPC binding

handle to be used for all subsequent RPC method calls on the protocol. The Windows Vista and
Windows Server 2008 protocol clients use RPC dynamic endpoints to obtain the RPC binding handle.
This handle is used for all RPC method calls on the protocol. The R_GetServerPort method is not
called by the Windows Vista or Windows Server 2008 client.

<33> Section 3.2.4.1: The Windows Server 2003 protocol client uses RPC dynamic endpoints to
obtain the initial RPC binding handle. The client calls the R_GetServerPort (Opnum 0) (section 3.1.4.1)

method with the initial RPC binding handle and uses the returned value to obtain a new RPC binding

handle to be used for all subsequent RPC method calls on the protocol. The Windows Vista and
Windows Server 2008 clients use RPC dynamic endpoints to obtain the RPC binding handle. This
handle is used for all RPC method calls on the protocol. The R_GetServerPort method is not called
by the Windows Vista or Windows Server 2008 client.

<34> Section 3.2.4.4.1: When acting as protocol clients, Windows Vista and later client operating
systems and Windows Server 2003 and later server operating systems return the message to the
message queuing application with an MQ_OK (0x00000000) status even if the call to the

R_EndReceive (Opnum 9) (section 3.1.4.9) method fails.

<35> Section 3.2.4.10.1: When acting as protocol clients, Windows Vista and later client operating
systems and Windows Server 2003 and later server operating systems return the message to the
message queuing application with an MQ_OK (0x00000000) status even if the call to the

R_EndReceive (Opnum 9) (section 3.1.4.9) method fails.

<36> Section 3.2.4.12: When acting as protocol clients, Windows Vista and later client operating

systems and Windows Server 2003 and later server operating systems do not cancel pending requests
associated with open cursor handles.

<37> Section 3.2.4.13: When acting as protocol clients, Windows Vista and later client operating
systems and Windows Server 2003 and later server operating systems do not cancel pending requests
or close associated cursor handles.

<38> Section 5.1: The minimum RPC authentication level for Windows Server 2003 protocol server is
determined as follows:

▪ RPC_C_AUTHN_LEVEL_NONE, if any of the following conditions is true.

92 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

▪ The fWorkgroup parameter is TRUE.

▪ The registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerAllowNoneSecuri
tyClient exists and is set to any DWORD value other than 0x00000000, and the Anonymous

Logon account is granted Peek or Receive permissions on the queue being accessed.

▪ The registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerDenyWorkgroup
Client is set to the DWORD value 0x00000000 or does not exist.

▪ RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, if the registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\DebugRpc exists and is set to any DWORD
value other than 0x00000000.

▪ RPC_C_AUTHN_LEVEL_PKT_PRIVACY otherwise.

When acting as protocol servers, the minimum RPC authentication level for Windows Vista and later
client operating systems and Windows Server 2008 and later server operating systems is determined
as follows:

▪ RPC_C_AUTHN_LEVEL_NONE, if the registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\AllowNonauthenticatedRpc exists and is set

to any DWORD value other than 0x00000000 and any of the following conditions is true.

▪ The fWorkgroup parameter is TRUE.

▪ The registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerDenyWorkgroup
Client is set to the DWORD value 0x00000000 or does not exist.

▪ RPC_C_AUTHN_LEVEL_NONE, if the registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerAllowNoneSecurityCli

ent exists and is set to any DWORD value other than 0x00000000, and the Anonymous Logon
account is granted Peek or Receive permissions on the queue being accessed.

▪ RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, if the registry key
HKLM\Software\Microsoft\MSMQ\Parameters\security\DebugRpc exists and is set to any DWORD
value other than 0x00000000.

▪ RPC_C_AUTHN_LEVEL_PKT_PRIVACY otherwise.

93 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

3.1.4.10 R_MoveMessage
(Opnum 10)

11749 : In the ullContextTo field: Changed set to
QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle to the value
returned by the server in the pMoveContext output parameter.

Major

3.1.4.11
R_OpenQueueForMove
(Opnum 11)

11749 : In the pMoveContext field: Changed
QUEUE_CONTEXT_HANDLE_SERIALIZE handle to a random value.
In processing steps changed pMoveContext parameter setting to a
random value that logically references pphContext parameter.

Major

94 / 96

[MS-MQRR-Diff] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

9 Index
A

Abstract data model
 client 67
 server 28
Access patterns 12
Applicability 13

B

Binding to a server and purging a queue example 76
Binding to server and purging queue example 76

C

Cancel a Pending Peek or Receive method 74
Capability negotiation 13
Change tracking 92
Client
 abstract data model 67
 Cancel a Pending Peek or Receive method 74
 Closing a Cursor method 75
 Closing a Queue method 75
 Creating a Cursor method 72
 Enlisting in a Transaction method 68
 initialization 67
 local events 75
 message processing 67
 Move a Message method 71
 Opening a Queue method 67
 Peek a Message by Using a Cursor method 72
 Peek a Message method 68
 Purging a Queue method 72
 Receive a Message by Using a Cursor method 73
 Receive a Message method 69
 Reject a Message method 71
 sequencing rules 67
 timer events 75
 timers 67
Closing a Cursor method 75
Closing a Queue method 75
Common data types 15
CompoundMessageHeader packet 21
Creating a Cursor method 72

D

Data model - abstract
 client 67
 server 28
Data types 15

 common - overview 15
DeadLetterHeader packet 24
Directory service schema elements 27

E

Elements - directory service schema 27
Enlisting in a Transaction method 68
Events
 local - client 75

 timer - client 75
Examples
 binding to a server and purging a queue 76
 binding to server and purging queue example 76
 overview 76
 receiving a message 77
 receiving a message in a transaction 78
 receiving message example 77
 receiving message in transaction example 78
ExtendedAddressHeader packet 25
ExtensionHeader packet 22

F

Fields - vendor-extensible 14
Full IDL 82

G

Glossary 7

I

IDL 82
Implementer - security considerations 81
Implementers - security considerations 81
Index of security parameters 81
Informative references 10
Initialization
 client 67
 server 30
Introduction 7

L

Local events
 client 75
 server 65

M

Message processing
 client 67
 server 30
Message_Packet_Structure packet 17

Messages
 common data types 15
 transport 15
Messages - transport 15
Methods
 Cancel a Pending Peek or Receive 74
 Closing a Cursor 75
 Closing a Queue 75
 Creating a Cursor 72
 Enlisting in a Transaction 68
 Move a Message 71
 Opening a Queue 67
 Peek a Message 68
 Peek a Message by Using a Cursor 72
 Purging a Queue 72
 R_CancelReceive (Opnum 8) 45

95 / 96

[MS-MQRR] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

 R_CloseCursor (Opnum 5) 36
 R_CloseQueue (Opnum 3) 34
 R_CreateCursor (Opnum 4) 35
 R_EndReceive (Opnum 9) 47
 R_EndTransactionalReceive (Opnum 15) 63
 R_GetServerPort (Opnum 0) 31
 R_MoveMessage (Opnum 10) 48
 R_OpenQueue (Opnum 2) 31
 R_OpenQueueForMove (Opnum 11) 50
 R_PurgeQueue (Opnum 6) 36
 R_QMEnlistRemoteTransaction (Opnum 12) 52
 R_SetUserAcknowledgementClass (Opnum 14) 62
 R_StartReceive (Opnum 7) 37
 R_StartTransactionalReceive (Opnum 13) 53
 Receive a Message 69
 Receive a Message by Using a Cursor 73
 Reject a Message 71
Move a Message method 71

N

Normative references 9

O

Opening a Queue method 67
Overview (synopsis) 10
 access patterns 12
 messages 11
 overview 10
 queue operations 11
 queues 11
 transactions 12

P

Parameters - security 81
Parameters - security index 81
Peek a Message by Using a Cursor method 72
Peek a Message method 68
Preconditions 13
Prerequisites 13
Product behavior 85
Purging a Queue method 72

Q

Queue operations 11
Queues 11

R

R_CancelReceive (Opnum 8) method 45
R_CancelReceive method 45
R_CloseCursor (Opnum 5) method 36
R_CloseCursor method 36
R_CloseQueue (Opnum 3) method 34
R_CloseQueue method 34
R_CreateCursor (Opnum 4) method 35
R_CreateCursor method 35
R_EndReceive (Opnum 9) method 47
R_EndReceive method 47
R_EndTransactionalReceive (Opnum 15) method 63
R_EndTransactionalReceive method 63

R_GetServerPort (Opnum 0) method 31
R_GetServerPort method 31
R_MoveMessage (Opnum 10) method 48
R_MoveMessage method 48
R_OpenQueue (Opnum 2) method 31
R_OpenQueue method 31
R_OpenQueueForMove (Opnum 11) method 50
R_OpenQueueForMove method 50
R_PurgeQueue (Opnum 6) method 36
R_PurgeQueue method 36
R_QMEnlistRemoteTransaction (Opnum 12) method

52
R_QMEnlistRemoteTransaction method 52
R_SetUserAcknowledgementClass (Opnum 14)

method 62
R_SetUserAcknowledgementClass method 62
R_StartReceive (Opnum 7) method 37
R_StartReceive method 37
R_StartTransactionalReceive (Opnum 13) method 53
R_StartTransactionalReceive method 53
Receive a Message by Using a Cursor method 73
Receive a Message method 69
Receiving a message example 77

Receiving a message in a transaction example 78
Receiving message example 77
Receiving message in transaction example 78
References 9
 informative 10
 normative 9
Reject a Message method 71
Relationship to other protocols 13

S

Schema elements - directory service 27
SectionBuffer structure 26
SectionType enumeration 26
Security 81
 implementer considerations 81
 parameter index 81
Sequencing rules
 client 67
 server 30
Server
 abstract data model 28
 initialization 30
 local events 65
 message processing 30
 R_CancelReceive (Opnum 8) method 45
 R_CloseCursor (Opnum 5) method 36
 R_CloseQueue (Opnum 3) method 34
 R_CreateCursor (Opnum 4) method 35
 R_EndReceive (Opnum 9) method 47
 R_EndTransactionalReceive (Opnum 15) method

63
 R_GetServerPort (Opnum 0) method 31
 R_MoveMessage (Opnum 10) method 48
 R_OpenQueue (Opnum 2) method 31
 R_OpenQueueForMove (Opnum 11) method 50
 R_PurgeQueue (Opnum 6) method 36
 R_QMEnlistRemoteTransaction (Opnum 12)

method 52

 R_SetUserAcknowledgementClass (Opnum 14)
method 62

 R_StartReceive (Opnum 7) method 37

96 / 96

[MS-MQRR] - v20240709
Message Queuing (MSMQ): Queue Manager Remote Read Protocol
Copyright © 2024 Microsoft Corporation
Release: July 9, 2024

 R_StartTransactionalReceive (Opnum 13) method
53

 sequencing rules 30
 timers 29
SRMPEnvelopeHeader packet 21
Standards assignments 14
SubqueueHeader packet 23

T

Timer events
 client 75
Timer events - client 75
Timers
 client 67
 server 29
Tracking changes 92

Transactions 12
Transport 15
Transport - message 15

U

UserMessage packet 18

V

Vendor-extensible fields 14
Versioning 13

	1 Introduction
	1.1 (Updated Section) Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Messages
	1.3.2 Queues
	1.3.3 Queue Operations
	1.3.4 Access Patterns
	1.3.5 Transactions

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 HRESULT
	2.2.2 GUID
	2.2.3 QUEUE_FORMAT
	2.2.4 Queue Context Handles
	2.2.4.1 QUEUE_CONTEXT_HANDLE_NOSERIALIZE
	2.2.4.2 QUEUE_CONTEXT_HANDLE_SERIALIZE

	2.2.5 Message Packet Structure
	2.2.5.1 UserMessage
	2.2.5.1.1 Binary Message
	2.2.5.1.2 SRMP Message
	2.2.5.1.2.1 SRMPEnvelopeHeader
	2.2.5.1.2.2 CompoundMessageHeader

	2.2.5.2 ExtensionHeader
	2.2.5.3 SubqueueHeader
	2.2.5.4 DeadLetterHeader
	2.2.5.5 ExtendedAddressHeader

	2.2.6 SectionBuffer
	2.2.7 SectionType
	2.2.8 XACTUOW

	2.3 Directory Service Schema Elements

	3 Protocol Details
	3.1 RemoteRead Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Shared Data Elements
	3.1.1.2 PendingRequestEntry
	3.1.1.3 PendingRequestTable
	3.1.1.4 Message

	3.1.2 Timers
	3.1.2.1 RPC Call Timeout Timer
	3.1.2.2 Pending Request Cleanup Timer

	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 R_GetServerPort (Opnum 0)
	3.1.4.2 R_OpenQueue (Opnum 2)
	3.1.4.3 R_CloseQueue (Opnum 3)
	3.1.4.4 R_CreateCursor (Opnum 4)
	3.1.4.5 R_CloseCursor (Opnum 5)
	3.1.4.6 R_PurgeQueue (Opnum 6)
	3.1.4.7 R_StartReceive (Opnum 7)
	3.1.4.8 R_CancelReceive (Opnum 8)
	3.1.4.9 R_EndReceive (Opnum 9)
	3.1.4.10 (Updated Section) R_MoveMessage (Opnum 10)
	3.1.4.11 (Updated Section) R_OpenQueueForMove (Opnum 11)
	3.1.4.12 R_QMEnlistRemoteTransaction (Opnum 12)
	3.1.4.13 R_StartTransactionalReceive (Opnum 13)
	3.1.4.14 R_SetUserAcknowledgementClass (Opnum 14)
	3.1.4.15 R_EndTransactionalReceive (Opnum 15)

	3.1.5 Timer Events
	3.1.5.1 Pending Request Cleanup Timer Event

	3.1.6 Other Local Events
	3.1.6.1 RPC Failure Event
	3.1.6.2 Queue Context Handles Rundown Routine

	3.2 RemoteRead Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Opening a Queue
	3.2.4.2 Enlisting in a Transaction
	3.2.4.3 Peek a Message
	3.2.4.4 Receive a Message
	3.2.4.4.1 Receive a Message Without a Transaction
	3.2.4.4.2 Receive a Message with a Transaction

	3.2.4.5 Reject a Message
	3.2.4.6 Move a Message
	3.2.4.7 Purging a Queue
	3.2.4.8 Creating a Cursor
	3.2.4.9 Peek a Message by Using a Cursor
	3.2.4.10 Receive a Message by Using a Cursor
	3.2.4.10.1 Receive a Message by Using a Cursor Without a Transaction
	3.2.4.10.2 Receive a Message by Using a Cursor with a Transaction

	3.2.4.11 Cancel a Pending Peek or Receive
	3.2.4.12 Closing a Cursor
	3.2.4.13 Closing a Queue

	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Binding to a Server and Purging a Queue
	4.2 Receiving a Message
	4.3 Receiving a Message in a Transaction

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

