
1 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-MQQP]:

Message Queuing (MSMQ): Queue Manager to Queue
Manager Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of

this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,

person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

5/11/2007 0.1 New Version 0.1 release

8/10/2007 1.0 Major Updated and revised the technical content.

9/28/2007 1.0.1 Editorial Changed language and formatting in the technical content.

10/23/2007 1.0.2 Editorial Changed language and formatting in the technical content.

11/30/2007 1.0.3 Editorial Changed language and formatting in the technical content.

1/25/2008 1.0.4 Editorial Changed language and formatting in the technical content.

3/14/2008 1.0.5 Editorial Changed language and formatting in the technical content.

5/16/2008 1.0.6 Editorial Changed language and formatting in the technical content.

6/20/2008 1.0.7 Editorial Changed language and formatting in the technical content.

7/25/2008 1.0.8 Editorial Changed language and formatting in the technical content.

8/29/2008 2.0 Major Updated and revised the technical content.

10/24/2008 3.0 Major Updated and revised the technical content.

12/5/2008 4.0 Major Updated and revised the technical content.

1/16/2009 4.1 Minor Clarified the meaning of the technical content.

2/27/2009 4.2 Minor Clarified the meaning of the technical content.

4/10/2009 4.2.1 Editorial Changed language and formatting in the technical content.

5/22/2009 4.2.2 Editorial Changed language and formatting in the technical content.

7/2/2009 5.0 Major Updated and revised the technical content.

8/14/2009 6.0 Major Updated and revised the technical content.

9/25/2009 7.0 Major Updated and revised the technical content.

11/6/2009 8.0 Major Updated and revised the technical content.

12/18/2009 9.0 Major Updated and revised the technical content.

1/29/2010 10.0 Major Updated and revised the technical content.

3/12/2010 10.0.1 Editorial Changed language and formatting in the technical content.

4/23/2010 10.0.2 Editorial Changed language and formatting in the technical content.

6/4/2010 11.0 Major Updated and revised the technical content.

7/16/2010 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 12.0 Major Updated and revised the technical content.

10/8/2010 13.0 Major Updated and revised the technical content.

11/19/2010 13.0 None No changes to the meaning, language, or formatting of the

3 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

technical content.

1/7/2011 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 14.0 Major Updated and revised the technical content.

3/25/2011 15.0 Major Updated and revised the technical content.

5/6/2011 16.0 Major Updated and revised the technical content.

6/17/2011 16.1 Minor Clarified the meaning of the technical content.

9/23/2011 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 17.0 Major Updated and revised the technical content.

3/30/2012 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 17.1 Minor Clarified the meaning of the technical content.

10/25/2012 18.0 Major Updated and revised the technical content.

1/31/2013 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 19.0 Major Updated and revised the technical content.

11/14/2013 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 20.0 Major Significantly changed the technical content.

10/16/2015 20.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 20.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 8

1.2.1 Normative References ... 8
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.3.1 Messages ... 9
1.3.2 Queues.. 9
1.3.3 Queue Operations ... 9
1.3.4 Access Patterns .. 10

1.4 Relationship to Other Protocols .. 10
1.5 Prerequisites/Preconditions ... 11
1.6 Applicability Statement ... 11
1.7 Versioning and Capability Negotiation ... 11
1.8 Vendor-Extensible Fields ... 12
1.9 Standards Assignments ... 12

2 Messages ... 13
2.1 Transport .. 13
2.2 Common Data Types .. 13

2.2.1 Data Types .. 14
2.2.1.1 PCTX_RRSESSION_HANDLE_TYPE ... 14
2.2.1.2 PCTX_REMOTEREAD_HANDLE_TYPE .. 14
2.2.1.3 REMOTEREADACK ... 14

2.2.2 Structures ... 14
2.2.2.1 REMOTEREADDESC ... 14
2.2.2.2 REMOTEREADDESC2 ... 16

2.3 Directory Service Schema Elements ... 16

3 Protocol Details ... 17
3.1 qm2qm Server Details .. 17

3.1.1 Abstract Data Model .. 17
3.1.1.1 Shared Data Elements ... 17
3.1.1.2 RemoteReadEntry ... 17
3.1.1.3 RemoteReadEntryCollection .. 18
3.1.1.4 OpenQueueEntry... 18
3.1.1.5 OpenQueueEntryCollection ... 18

3.1.2 Timers .. 18
3.1.3 Initialization ... 18
3.1.4 Message Processing Events and Sequencing Rules .. 18

3.1.4.1 RemoteQMStartReceive (Opnum 0) ... 19
3.1.4.2 RemoteQMEndReceive (Opnum 1) ... 22
3.1.4.3 RemoteQMOpenQueue (Opnum 2) .. 24
3.1.4.4 RemoteQMCloseQueue (Opnum 3) .. 25
3.1.4.5 RemoteQMCloseCursor (Opnum 4) .. 26
3.1.4.6 RemoteQMCancelReceive (Opnum 5) ... 27
3.1.4.7 RemoteQMPurgeQueue (Opnum 6) .. 28
3.1.4.8 RemoteQMGetQMQMServerPort (Opnum 7) .. 29
3.1.4.9 RemoteQmGetVersion (Opnum 8) ... 30
3.1.4.10 RemoteQMStartReceive2 (Opnum 9) ... 30
3.1.4.11 RemoteQMStartReceiveByLookupId (Opnum 10) 33

3.1.5 Timer Events .. 36
3.1.6 Other Local Events .. 37

3.1.6.1 PCTX_RRSESSION_HANDLE_TYPE Rundown ... 37
3.1.6.2 PCTX_REMOTEREAD_HANDLE_TYPE Rundown .. 37

5 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2 qm2qm Client Details ... 37
3.2.1 Abstract Data Model .. 37

3.2.1.1 PendingRemoteReadEntry .. 37
3.2.1.2 PendingRemoteReadEntryCollection... 37
3.2.1.3 RemoteOpenQueueEntry .. 38
3.2.1.4 RemoteOpenQueueEntryCollection .. 38

3.2.2 Timers .. 38
3.2.3 Initialization ... 38
3.2.4 Message Processing Events and Sequencing Rules .. 38

3.2.4.1 Opening a Queue .. 38
3.2.4.2 Peeking a Message .. 39
3.2.4.3 Receiving a Message ... 41
3.2.4.4 Purging a Queue ... 42
3.2.4.5 Peeking a Message by Using a Cursor .. 43
3.2.4.6 Receiving a Message by Using a Cursor.. 44
3.2.4.7 Canceling a Pending Peek or Receive ... 46
3.2.4.8 Closing a Cursor ... 46
3.2.4.9 Closing a Queue .. 46

3.2.5 Timer Events .. 47
3.2.6 Other Local Events .. 47

4 Protocol Examples ... 48
4.1 Receive Example .. 48
4.2 Purge Example... 49

5 Security ... 50
5.1 Security Considerations for Implementers ... 50
5.2 Index of Security Parameters .. 50

6 Appendix A: Full IDL .. 51

7 Appendix B: Product Behavior ... 53

8 Change Tracking .. 56

9 Index ... 57

6 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

This document specifies the Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol.
The Queue Manager to Queue Manager Protocol is an RPC-based protocol used by the queue
manager and runtime library to read and purge messages from a remote queue.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

authentication level: A numeric value indicating the level of authentication or message protection

that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS-RPCE].

cursor: A data structure providing sequential access over a message queue. A cursor has a current
pointer that lies between the head and tail pointer of the queue. The pointer can be moved
forward or backward through an operation on the cursor (Next). A message at the current
pointer can be accessed through a nondestructive read (Peek) operation or a destructive read
(Receive) operation.

dynamic endpoint: A network-specific server address that is requested and assigned at run time.
For more information, see [C706].

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more

information, see [C706].

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique

identifier (UUID).

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

message: A data structure representing a unit of data transfer between distributed applications. A
message has message properties, which may include message header properties, a message
body property, and message trailer properties.

message body: A distinguished message property that represents the application payload.

message header: See message packet header.

message property: A data structure that contains a property identifier and a value, and that is
associated with a message.

message queuing: A communications service that provides asynchronous and reliable message
passing between distributed client applications. In message queuing, clients send messages to
message queues and consume messages from message queues. The message queues provide

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
http://go.microsoft.com/fwlink/?LinkId=90460

7 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

persistence of the messages, which enables the sending and receiving client applications to
operate asynchronously from each other.

message trailer: See message packet trailer.

Microsoft Message Queuing (MSMQ): A communications service that provides asynchronous

and reliable message passing between distributed applications. In Message Queuing,
applications send messages to queues and consume messages from queues. The queues
provide persistence of the messages, enabling the sending and receiving applications to
operate asynchronously from one another.

MQMP application: An application that communicates with an MSMQ supporting server using the
[MS-MQMP] protocol.

Network Data Representation (NDR): A specification that defines a mapping from Interface

Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

purge: In the context of a queue, to delete all messages from the queue.

queue: An object that holds messages passed between applications or messages passed
between Message Queuing and applications. In general, applications can send messages to

queues and read messages from queues.

queue manager (QM): A message queuing service that manages queues deployed on a
computer. A queue manager can also provide asynchronous transfer of messages to queues
deployed on other queue managers.

remote procedure call (RPC): A context-dependent term commonly overloaded with three
meanings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three definitions: (*) The

runtime environment providing remote procedure call facilities. The preferred usage for this
meaning is "RPC runtime". (*) The pattern of request and response message exchange between

two parties (typically, a client and a server). The preferred usage for this meaning is "RPC
exchange". (*) A single message from an exchange as defined in the previous definition. The
preferred usage for this term is "RPC message". For more information about RPC, see [C706].

remote queue: For a queue manager, a queue that is hosted by a remote queue manager.
For an application, a queue hosted by a queue manager other than the one with which the

application communicates.

remote read: The act of reading (receiving) messages from a remote queue.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also

known as globally unique identifiers (GUIDs) and these terms are used interchangeably in
the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does

not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9
http://go.microsoft.com/fwlink/?LinkId=90317

8 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MC-MQAC] Microsoft Corporation, "Message Queuing (MSMQ): ActiveX Client Protocol".

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-MQDMPR] Microsoft Corporation, "Message Queuing (MSMQ): Common Data Model and
Processing Rules".

[MS-MQDSSM] Microsoft Corporation, "Message Queuing (MSMQ): Directory Service Schema
Mapping".

[MS-MQDS] Microsoft Corporation, "Message Queuing (MSMQ): Directory Service Protocol".

[MS-MQMP] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager Client Protocol".

[MS-MQMQ] Microsoft Corporation, "Message Queuing (MSMQ): Data Structures".

[MS-MQRR] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager Remote Read
Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-MQOD] Microsoft Corporation, "Message Queuing Protocols Overview".

1.3 Overview

Message queuing is a communications service that provides asynchronous and reliable message
passing between client applications, including those client applications running on different hosts. In
message queuing, clients send messages to a queue and consume application messages from a
queue. The queue provides persistence of the messages, enabling them to survive across application

restarts, and allowing the sending and receiving client applications to operate asynchronously from
each other.

http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMC-MQAC%5d.pdf#Section_5ed096a9b6414a5ab7497e6937d20f4d
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-MQDMPR%5d.pdf#Section_5eafe0a6a22f436ba0d94cbc25c52b47
%5bMS-MQDMPR%5d.pdf#Section_5eafe0a6a22f436ba0d94cbc25c52b47
%5bMS-MQDSSM%5d.pdf#Section_ca3981fd8f4f4637938e8b50dae9308b
%5bMS-MQDSSM%5d.pdf#Section_ca3981fd8f4f4637938e8b50dae9308b
%5bMS-MQDS%5d.pdf#Section_1c8a4041846e487ea4b76051b9774247
%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9
%5bMS-MQMQ%5d.pdf#Section_b7cc2590a61745dfb6a31f31102b36fb
%5bMS-MQRR%5d.pdf#Section_9edbc8fa02ad4c79804f6bb8f430aac1
%5bMS-MQRR%5d.pdf#Section_9edbc8fa02ad4c79804f6bb8f430aac1
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-MQOD%5d.pdf#Section_644be85f7a784bccb8a1389e4b24b2cc

9 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Queues are typically hosted by a communications service called a queue manager. By hosting the
queue manager in a separate service from the client applications, applications can communicate by

exchanging messages via a queue hosted by the queue manager, even if the client applications never
execute at the same time.

The queue manager can perform operations on a remote queue. When this scenario occurs, a protocol
is required to insert messages into the remote queue, and another protocol is required to consume
messages from the remote queue. The Message Queuing (MSMQ): Queue Manager to Queue Manager
Protocol provides a protocol for consuming messages from a remote queue.

The Queue Manager to Queue Manager Protocol is used only to read messages from a queue or to
purge messages from the queue. Reading a message also implies deleting the message after it is
read, as specified in Queue Operations (section 1.3.3).

1.3.1 Messages

Each message that is exchanged in a message queuing system typically has a set of message
properties that contain metadata about the message and a distinguished property, called a message

body, that contains the application payload.

Message properties that are serialized in front of the message body are referred to as message
headers, and message properties that are serialized after the message body property are referred to
as message trailers.

Messages that are carried by this protocol are treated as payload. The format and structure of the
application messages are opaque to the protocol.

The protocol also requires that each message have a lookup identifier that is unique in the queue. This

identifier is not part of the message but is instead assigned by the server.

1.3.2 Queues

A queue is a logical data structure containing an ordered first-in-first-out (FIFO) list of zero or more

messages.

This protocol provides a mechanism to open a queue. Opening provides an opportunity to check for
the existence of the queue and to perform authorization checks. The protocol provides for the return
of an RPC context handle that is used by the client to specify the queue to operate on in subsequent
requests. The use of an RPC context handle provides a mechanism to ensure that server state is
cleaned up if the connection between the client and server is lost.

When opening a queue, the client can specify an access mode that determines the operations (Peek,

Receive, CancelReceive, and Purge) for which the returned handle can subsequently be used. The
client can specify a sharing mode that either allows other clients to access the queue concurrently or
ensures that the client has exclusive access to the queue. The exclusive access sharing mode can be
used to avoid race conditions caused by other clients operating on the queue at the same time. This
sharing mode is specified when opening a remote queue, as specified in [MS-MQMP] section 3.1.4.2.

1.3.3 Queue Operations

The protocol provides mechanisms for the following operations against an open queue.

A message can be consumed from an open queue through a destructive read operation referred to as
Receive. This operation atomically reads the message and removes it from the queue. Since this
operation removes a message from a queue, losing a network connection during this operation could

result in permanent loss of the message.

%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9

10 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

To guard against this situation, the protocol provides a mechanism for the client to either positively or
negatively acknowledge receipt of the message. On receipt of positive acknowledgment from the

client, the server can remove the message from the queue. While the server is awaiting
acknowledgment from the client, access to the message by other clients is prevented.

A message can be read from an open queue through a nondestructive read operation referred to as
Peek. This operation reads the message but does not remove it from the queue.

All the messages can be removed from a queue through a Purge mechanism. The messages removed
through this mechanism are not returned to the client.

A client can inform the server that it has no need of a message via a CancelReceive operation. The
server can use this indication to inform the sender that the client did not consume the message. How
a server implements this notification functionality is not addressed in this specification.

When a client does a destructive read, the message is not deleted from the queue until the client
acknowledges receipt of the message via an EndReceive operation.

1.3.4 Access Patterns

Messages in a queue can be consumed in a FIFO access pattern. Because messages in a queue are
ordered, there is a head, representing the front of the queue, and a tail, representing the end of the
queue.

The protocol provides mechanisms to Peek or Receive the first message or the last message in the
queue.

The protocol also allows the client to specify exactly which message to Peek or Receive, regardless of
its position in the queue, through a unique lookup identifier assigned to each message by the server.

A message can also be specified relative to the message identified by the lookup identifier, that is, the
message immediately preceding or following the message identified by the lookup identifier.

Finally, the protocol provides a mechanism, referred to as a cursor, for sequential forward access
through the queue. A cursor logically represents a current pointer that lies between the head and the

tail of the queue. A cursor can be specified to the Peek or Receive operation, which Peek or Receive
the message at the current pointer represented by the cursor. The cursor's current pointer can be

used, through a modified Peek operation called PeekNext, to do a Peek on the next message in the
queue without moving the cursor's current position. A Receive operation intrinsically moves the cursor
forward.

Because cursors are stateful, the protocol provides mechanisms to close a cursor opened as specified
in [MS-MQMP] section 3.1.4.4. Because a cursor represents a position within a queue, the protocol
logically relates the cursor to the context handle associated with an open queue. The protocol places
no limit on the number of concurrent cursors associated with a queue context handle.

1.4 Relationship to Other Protocols

This protocol is dependent on RPC for its transport. This protocol uses RPC, as specified in section 2.1.

This protocol is tightly coupled with the Message Queuing (MSMQ): Queue Manager Client Protocol
[MS-MQMP] and therefore if one protocol is implemented, the other one also has to be implemented.

The methods of this protocol are invoked only by the processing rules of Message Queuing (MSMQ):
Queue Manager Client Protocol. The functionalities of this protocol coupled with the functionalities of
Message Queuing (MSMQ): Queue Manager Client Protocol together provide the ability for reading and
browsing messages from a remote queue. Furthermore, the arguments required for these methods
are obtained from the qmcomm RPC interface, as specified in [MS-MQMP]. The following diagram
illustrates the protocol layering for this protocol.

%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9
%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9

11 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 1: Protocol relationships

This protocol has been deprecated by the RemoteRead RPC interface, as specified in [MS-MQRR].

This protocol uses shared state and processing rules defined in [MS-MQDMPR].

1.5 Prerequisites/Preconditions

The Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol is an RPC interface and,
as a result, has prerequisites, as specified in [MS-RPCE], that are common to RPC interfaces.

1.6 Applicability Statement

This protocol provides functionality related to consumption of messages from a queue hosted at a
queue manager running on a remote computer.<1> It does not provide functionality related to
inserting messages into a queue.

The server side of the Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol is
applicable for implementation by a queue manager providing message queuing communication

services to clients. The client side of this protocol is applicable for implementation by client libraries
providing message queuing services to applications or by a client queue manager delegating requests
on behalf of client applications.

1.7 Versioning and Capability Negotiation

Supported Transports: This protocol uses the RPC over TCP/IP protocol sequence, as specified in
section 2.1. However, it supports a mechanism for explicitly negotiating the RPC endpoint to be used.
For more information, see RemoteQMGetQMQMServerPort.

Protocol Versions: This protocol uses a single version of the RPC interface, but that interface has
been extended by adding the following methods at the end:<2>

 RemoteQmGetVersion (section 3.1.4.9)

 RemoteQMStartReceive2 (section 3.1.4.10)

 RemoteQMStartReceiveByLookupId (section 3.1.4.11)

%5bMS-MQRR%5d.pdf#Section_9edbc8fa02ad4c79804f6bb8f430aac1
%5bMS-MQDMPR%5d.pdf#Section_5eafe0a6a22f436ba0d94cbc25c52b47
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

12 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.8 Vendor-Extensible Fields

This protocol uses HRESULTs, as specified in [MS-DTYP] section 2.2.18. Vendors can define their own
HRESULT values, provided that they set the C bit (0x20000000) for each vendor-defined value,

indicating that the value is a customer code.

1.9 Standards Assignments

This protocol uses the standard interfaces that are listed in the following table.

Parameter Value Reference

RPC interface UUID {1088a980-eae5-11d0-8d9b-00a02453c337} As specified in [C706].

Interface version 1.0 As specified in [C706].

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
http://go.microsoft.com/fwlink/?LinkId=89824

13 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

The following sections specify how Message Queuing (MSMQ): Queue Manager to Queue Manager
Protocol messages are transported and the common data types for this protocol.

2.1 Transport

This protocol SHOULD use the RPC protocol sequence RPC over TCP/IP (ncacn_ip_tcp), as specified in
[MS-RPCE].<3> This protocol MAY use the RPC over SPX (ncacn_spx) protocol sequence if TCP/IP is
unavailable.<4>

This protocol SHOULD use RPC dynamic endpoints, as specified in [C706], Part 4. This protocol MAY
use an RPC static endpoint, as specified in RemoteQMGetQMQMServerPort, section 3.1.4.8.<5>

This protocol allows any user to establish a connection to the RPC server. This protocol depends on the
qmcomm interface, as specified in [MS-MQMP], to use the underlying RPC protocol to retrieve the
identity of the invoking client, as specified in [MS-RPCE], section 3.3.3.4.3. The qmcomm server uses

this identity to perform method-specific access checks as specified in [MS-MQMP], section 3.1.4.

2.2 Common Data Types

This protocol MUST indicate to the RPC runtime that it is to support both the Network Data
Representation (NDR) and NDR64 transfer syntaxes, and it MUST provide a negotiation mechanism
for determining which transfer syntax will be used, as specified in [MS-RPCE] section 3.

HRESULT: This specification uses the HRESULT type, as specified in [MS-ERREF] section 2.1.1. Note:
Throughout this specification, the phrase "a failure HRESULT" means any HRESULT where the Severity
(S) bit is set, as specified by [MS-ERREF]. When this specification mandates the return of "a failure

HRESULT" from a method, the specific error code is not relevant to the protocol, as long as the
Severity bit is set. In this circumstance, the server MAY return MQ_ERROR (0xC00E0001), or any
other HRESULT value where the Severity bit is set, such as a context-specific message queuing error
code, as specified in [MS-MQMQ] section 2.4.

In addition to the RPC base types and definitions, as specified in [C706] and [MS-RPCE], additional
data types are defined as follows.

 The following table summarizes the types defined in this specification.

Data type name Description

PCTX_RRSESSION_HANDLE_TYPE A context handle representing an open queue.

PCTX_REMOTEREAD_HANDLE_TYPE A context handle representing a read session.

REMOTEREADACK An enumeration that represents an acknowledgment (ACK) or a negative
acknowledgment (NACK).

REMOTEREADDESC A structure used for receiving messages from a queue.

REMOTEREADDESC2 A structure containing the REMOTEREADDESC structure and defining an
additional element for tracking transaction-related information.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-MQMQ%5d.pdf#Section_b7cc2590a61745dfb6a31f31102b36fb
http://go.microsoft.com/fwlink/?LinkId=89824

14 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.1 Data Types

2.2.1.1 PCTX_RRSESSION_HANDLE_TYPE

The PCTX_RRSESSION_HANDLE_TYPE is a data type that defines an RPC context handle
corresponding to an open queue handle. A client MUST call RemoteQMOpenQueue to create a
PCTX_RRSESSION_HANDLE_TYPE and RemoteQMCloseQueue to delete a
PCTX_RRSESSION_HANDLE_TYPE.

This type is declared as follows:

 typedef [context_handle] void* PCTX_RRSESSION_HANDLE_TYPE;

2.2.1.2 PCTX_REMOTEREAD_HANDLE_TYPE

The PCTX_REMOTEREAD_HANDLE_TYPE is a data type that defines an RPC context handle

corresponding to an open read session. A client MUST call RemoteQMStartReceive,
RemoteQMStartReceive2, or RemoteQMStartReceiveByLookupId to create a
PCTX_REMOTEREAD_HANDLE_TYPE context handle and call RemoteQMEndReceive to delete the
PCTX_REMOTEREAD_HANDLE_TYPE handle.

This type is declared as follows:

 typedef [context_handle] void* PCTX_REMOTEREAD_HANDLE_TYPE;

2.2.1.3 REMOTEREADACK

The REMOTEREADACK enumeration represents an acknowledgment (ACK) or a negative
acknowledgment (NACK), indicating a successfully or an unsuccessfully delivered packet, respectively.

 typedef enum _REMOTEREADACK {
 RR_UNKNOWN,
 RR_NACK,
 RR_ACK
 } REMOTEREADACK ;

RR_UNKNOWN: No acknowledgment.

RR_NACK: Negative acknowledgment for a packet.

RR_ACK: Acknowledgment for a packet.

2.2.2 Structures

2.2.2.1 REMOTEREADDESC

This structure is used to encapsulate the information necessary to perform operations

RemoteQMStartReceive, RemoteQMStartReceive2, and RemoteQMStartReceiveByLookupId.

 typedef struct _REMOTEREADDESC {
 DWORD hRemoteQueue;
 DWORD hCursor;
 DWORD ulAction;
 DWORD ulTimeout;

15 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [range(0, 4325376)] DWORD dwSize;
 DWORD dwQueue;
 DWORD dwRequestID;
 DWORD Reserved;
 DWORD dwArriveTime;
 REMOTEREADACK eAckNack;
 [unique, size_is(dwSize), length_is(dwSize)]
 byte* lpBuffer;
 } REMOTEREADDESC;

hRemoteQueue: A handle to the queue as obtained from the phQueue parameter of the
qmcomm:R_QMOpenRemoteQueue method, as specified in [MS-MQMP] section 3.1.4.2. This
value is set by the client.

hCursor: If nonzero, specifies a handle to a cursor that MUST have been obtained from the phCursor
parameter of the qmcomm:R_QMCreateRemoteCursor method, as specified in [MS-MQMP]
section 3.1.4.4. This value is set by the client.

ulAction: The following table describes possible actions. The Peek and Receive operations both
enable access to the contents of a message. This value is set by the client.

Value Type/Meaning

MQ_ACTION_RECEIVE

0x00000000

Type = Receive

Reads and removes a message from the current cursor location if hCursor is
nonzero or from the front of the queue if hCursor is set to zero.

MQ_ACTION_PEEK_CURRENT

0x80000000

Type = Peek

Reads a message from the current cursor location if hCursor is nonzero or
from the front of the queue if hCursor is set to zero but does not remove it
from the queue.

MQ_ACTION_PEEK_NEXT

0x80000001

Type = Peek

Reads a message following the message at the current cursor location but
does not remove it from the queue.

MQ_LOOKUP_PEEK_CURRENT

0x40000010

Type = Peek

Reads the message specified by a lookup identifier but does not remove it
from the queue.

MQ_LOOKUP_PEEK_NEXT

0x40000011

Type = Peek

Reads the message following the message specified by a lookup identifier but
does not remove it from the queue.

MQ_LOOKUP_PEEK_PREV

0x40000012

Type = Peek

Reads the message preceding the message specified by a lookup identifier
but does not remove it from the queue.

MQ_LOOKUP_RECEIVE_CURRENT

0x40000020

Type = Receive

Reads the message specified by a lookup identifier and removes it from the
queue.

MQ_LOOKUP_RECEIVE_NEXT

0x40000021

Type = Receive

Reads the message following the message specified by a lookup identifier and
removes it from the queue.

MQ_LOOKUP_RECEIVE_PREV

0x40000022

Type = Receive

Reads the message preceding the message specified by a lookup identifier
and removes it from the queue.

%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9

16 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ulTimeout: Specifies a time-out in milliseconds for the server to wait for a message to become
available in the queue. This value is set by the client. To specify an infinite time-out, the client

MUST set this field to 0xFFFFFFFF.

dwSize: Specifies the size, in bytes, of lpBuffer. The valid range is 0 to 0x00420000. This value is

set by the server and MUST be set to 0 by the client.

dwQueue: A DWORD pointed to by the dwpQueue parameter of the
qmcomm:R_QMOpenRemoteQueue method, as specified in [MS-MQMP] section 3.1.4.2. This
value is set by the client.

dwRequestID: The client MUST set this member to a unique identifier for the receive request, which
could later be used to identify and cancel the receive request. This value is set by the client. The
client SHOULD NOT<6> reuse this identifier until a call to the RemoteQMEndReceive (Opnum 1)

method or to the RemoteQMCancelReceive (Opnum 5) method has been made for that receive
request.

Reserved: This is a reserved field of type DWORD that MUST be ignored.

Value Meaning

0x00000000 Returned by client.

0x00000001 Returned by server.

dwArriveTime: The server MUST set this value to the time that the message was added to the
queue. The time MUST be expressed as the number of seconds elapsed since 00:00:00.0, January

1, 1970 Coordinated Universal Time (UTC).

eAckNack: This is a reserved field and MUST be ignored by the client and the server.

lpBuffer: This field represents a pointer to a buffer containing the UserMessage Packet ([MS-MQMQ]
section 2.2.20). The size of this field is specified by dwSize. This value is set by the server and
MUST be set to NULL by the client.

2.2.2.2 REMOTEREADDESC2

This structure is used by RemoteQMStartReceive2 and RemoteQMStartReceiveByLookupId to
encapsulate the parameters necessary for execution of these operations.

 typedef struct _REMOTEREADDESC2 {
 REMOTEREADDESC* pRemoteReadDesc;
 ULONGLONG SequentialId;
 } REMOTEREADDESC2;

pRemoteReadDesc: A pointer to a REMOTEREADDESC structure, as specified in section 2.2.2.1.

SequentialId: This field is set by the server to the value of a unique message identifier that
corresponds to a received message.

2.3 Directory Service Schema Elements

This protocol uses ADM elements specified in section 3.1.1. A subset of these elements can be

published in a directory. This protocol SHOULD<7> access the directory using the algorithm specified
in [MS-MQDSSM] and using LDAP [MS-ADTS]. The Directory Service schema elements for ADM
elements published in the directory are defined in [MS-MQDSSM] section 2.4.<8>

%5bMS-MQMQ%5d.pdf#Section_b7cc2590a61745dfb6a31f31102b36fb
%5bMS-MQDSSM%5d.pdf#Section_ca3981fd8f4f4637938e8b50dae9308b
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a

17 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

The following sections specify details of the Message Queuing (MSMQ): Queue Manager to Queue
Manager Protocol including the abstract data model, interface method syntax, and message processing
rules.

3.1 qm2qm Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The abstract data model for this protocol comprises elements that are private to this protocol and
others that are shared between multiple MSMQ protocols that are colocated at a common queue

manager. The shared abstract data model is defined in [MS-MQDMPR] section 3.1.1 and the
relationship between this protocol, a queue manager, and other protocols which share a common
queue manager, is described in [MS-MQOD].

 Section 3.1.1.1 details the elements from the shared data model that are manipulated by this
protocol, and sections 3.1.1.2 through 3.1.1.5 detail the data model elements that are private to this
protocol.

3.1.1.1 Shared Data Elements

 This protocol manipulates the following abstract data model elements from the shared abstract data
model defined in [MS-MQDMPR] section 3.1.1.

QueueManager: Defined in [MS-MQDMPR] section 3.1.1.1.

Queue: Defined in [MS-MQDMPR] section 3.1.1.2.

Message: Defined in [MS-MQDMPR] section 3.1.1.12.

Cursor: Defined in [MS-MQDMPR] section 3.2.

OpenQueueDescriptor: Defined in [MS-MQDMPR] section 3.1.1.16.

3.1.1.2 RemoteReadEntry

 The RemoteReadEntry is an ADM element that encapsulates an initialized, pending, or completed
remote read operation. This element has the following attributes:

OpenQueueDescriptorHandle: The OpenQueueDescriptor.Handle for the queue being read

from.

Timeout: Time-out associated with the read request.

Action (peek/receive): The type of read operation performed.

RequestId: A unique DWORD value that identifies the pending read request. This value is
generated by the client and passed to the server in a REMOTEREADDESC (section 2.2.2.1)
structure.

%5bMS-MQDMPR%5d.pdf#Section_5eafe0a6a22f436ba0d94cbc25c52b47
%5bMS-MQOD%5d.pdf#Section_644be85f7a784bccb8a1389e4b24b2cc
%5bMS-MQDMPR%5d.pdf#Section_5eafe0a6a22f436ba0d94cbc25c52b47

18 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

UserMessagepacket: The message.

This element is referenced by means of a PCTX_REMOTEREAD_HANDLE_TYPE value.

3.1.1.3 RemoteReadEntryCollection

 The RemoteReadEntryCollection represents a collection of RemoteReadEntry elements, each of
which represents a pending request to PEEK or receive a message from a queue. The server MUST
maintain an instance of this element referred to as rRemoteReadEntryCollection. The server MUST
serialize concurrent read, write, and iteration operations to rRemoteReadEntryCollection. For

iterations, the serialization MUST include the processing of each element, if any, in the loop.

3.1.1.4 OpenQueueEntry

 The OpenQueueEntry is an ADM element that encapsulates an initialized, pending, or completed
remote open queue operation. This element has the following attributes:

OpenQueueDescriptorHandle: OpenQueueDescriptor.Handle for the queue.

ClientId: A GUID that uniquely identifies the client opening the queue.

This element is referenced by means of a PCTX_RRSESSION_HANDLE_TYPE value.

3.1.1.5 OpenQueueEntryCollection

The OpenQueueEntryCollection represents a collection of OpenQueueEntry elements, each of which
represents a remote queue opened by a client. The server MUST maintain an instance of this element
referred to as rOpenQueueEntryCollection. The server MUST serialize concurrent read, write, and
iteration operations to the rOpenQueueEntryCollection. For iterations, the serialization MUST
include the processing of each element, if any, in the loop.

3.1.2 Timers

Beyond protocol timers used internally by RPC to implement resiliency to network outages (for more
information, see [MS-RPCE]), the server MUST maintain the following timers:

Call Timer: The server MUST maintain a per-call timer for each call to RemoteQMStartReceive or
RemoteQMStartReceive2 in which the REMOTEREADDESC.ulTimeout parameter is nonzero. The

timer MUST be set to the REMOTEREADDESC.ulTimeout parameter that is specified on the call.

3.1.3 Initialization

The server MUST listen on the RPC protocol, as specified in section 2.1.

3.1.4 Message Processing Events and Sequencing Rules

This protocol SHOULD <9> indicate to the RPC runtime that it is to perform a strict NDR data

consistency check at target level 6.0, as specified in [MS-RPCE] section 3.

The qm2qm interface includes the following methods.

Methods in RPC Opnum Order

Method Description

RemoteQMStartReceive Initiates a Receive or Peek request on the queue.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

19 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Method Description

Opnum: 0

RemoteQMEndReceive Finishes a Receive request.

Opnum: 1

RemoteQMOpenQueue Opens a queue.

Opnum: 2

RemoteQMCloseQueue Closes a queue.

Opnum: 3

RemoteQMCloseCursor Closes a cursor.

Opnum: 4

RemoteQMCancelReceive Cancels a pending Receive request.

Opnum: 5

RemoteQMPurgeQueue Deletes all messages in a queue.

Opnum: 6

RemoteQMGetQMQMServerPort Returns an RPC endpoint port number to use in subsequent calls on the
interface.

Opnum: 7

RemoteQmGetVersion Returns the server version.

Opnum: 8

RemoteQMStartReceive2 Initiates a Receive or Peek request on the queue by using a sequential ID.

Opnum: 9

RemoteQMStartReceiveByLookupId Initiates a Receive or Peek request on the queue by using a lookup ID.

Opnum: 10

3.1.4.1 RemoteQMStartReceive (Opnum 0)

The RemoteQMStartReceive method peeks or receives a message from an open queue.

If RemoteQMStartReceive is invoked with a Peek action type, as specified in the ulAction member of
the lpRemoteReadDesc parameter, the operation completes when RemoteQMStartReceive returns.

If RemoteQMStartReceive is invoked with a Receive action type, as specified in the ulAction member of
the lpRemoteReadDesc parameter, the client MUST pair each call to RemoteQMStartReceive with a call
to RemoteQMEndReceive to complete the operation, or to RemoteQMCancelReceive to cancel the
operation.

For each call to RemoteQMCancelReceive, the dwRequestID parameter MUST match the dwRequestID

member of the lpRemoteReadDesc parameter in a previous call to RemoteQMStartReceive.

If the client specifies a nonzero value for the ulTimeout member of the lpRemoteReadDesc
parameter, and a message is not available in the queue at the time of the call, the server waits up to
the specified time-out for a message to become available in the queue before responding to the call.
The client can call RemoteQMCancelReceive with a matching REMOTEREADDESC.dwRequestID to
cancel the pending RemoteQMStartReceive request.

Before calling this method, the client MUST have already called RemoteQMOpenQueue.

20 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 HRESULT RemoteQMStartReceive(
 [in] handle_t hBind,
 [out] PCTX_REMOTEREAD_HANDLE_TYPE* pphContext,
 [in, out] REMOTEREADDESC* lpRemoteReadDesc
);

hBind: An RPC binding handle parameter, as specified in [MS-RPCE] section 2, that MUST be
specified.

pphContext: The server MUST return a non-NULL value for this handle upon success for receive calls.
This handle will be used by the client in subsequent calls to RemoteQMEndReceive. This handle
MUST NOT be set upon failure, or for peek calls. If this method returns an error, pphContext is
undefined and MUST NOT be used as an argument for a call to RemoteQMEndReceive.

lpRemoteReadDesc: A pointer to an instance of a REMOTEREADDESC (section 2.2.2.1) structure.

In addition, the ulAction member of the lpRemoteReadDesc parameter MUST be one of the following
values.

Value of ulAction Meaning

MQ_ACTION_RECEIVE

0x00000000

If hCursor is nonzero, read and remove the first message available at the current
cursor's location walking towards the end of the queue.

If hCursor is zero, read and remove the message from the front of the queue.

MQ_ACTION_PEEK_CURRENT

0x80000000

If hCursor is nonzero, read the message at the current cursor location, but do not
remove it from the queue. The cursor location does not change after the
operation.

If hCursor is zero, read the message at the front of the queue, but do not remove
it from the queue.

MQ_ACTION_PEEK_NEXT

0x80000001

Read the message following the message at the current cursor location, but do
not remove it. The cursor location will then change to the next available
message, walking towards the end of the queue.

The hCursor parameter MUST be set to a nonzero cursor handle.

The hCursor member of lpRemoteReadDesc specifies a handle to an opened cursor. A value of zero
indicates that a cursor is not used for this operation.

The dwRequestID member of the lpRemoteReadDesc parameter is used in a subsequent call to
RemoteQMCancelReceive to correlate that call with the call to RemoteQMStartReceive.

Return Values: The method MUST return MQ_OK (0x00000000) on success; otherwise, it MUST
return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.

MQ_OK (0x00000000)

MQ_ERROR_INVALID_HANDLE (0xC00E0007)

MQ_ERROR_INVALID_PARAMETER (0xC00E0006)

STATUS_INVALID_PARAMETER (0xC000000D)

Exceptions Thrown: None except those thrown by the underlying RPC protocol, as specified in [MS-
RPCE].

While processing this method, the server MUST:

 Return MQ_ERROR_INVALID_HANDLE (0xC00E0007) if lpRemoteReadDesc is NULL.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

21 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Return MQ_ERROR_INVALID_PARAMETER (0xC00E0006) if lpRemoteReadDesc.dwQueue is set to
0x00000000 or lpRemoteReadDesc.dwQueue is not equal to

lpRemoteReadDesc.hRemoteQueue.

 The server SHOULD return MQ_ERROR_INVALID_PARAMETER (0xC00E0006) if the

lpRemoteReadDesc.dwRequestID does not uniquely identify the receive request. This duplicate
detection is performed by searching for a RemoteReadEntry (section 3.1.1.2) ADM element
instance, referred to as rRemoteReadEntry, in rRemoteReadEntryCollection such that
rRemoteReadEntry.OpenQueueDescriptorHandle = lpRemoteReadDesc.hRemoteQueue
and rRemoteReadEntry.RequestId = lpRemoteReadDesc.dwRequestID.<10>

 Return STATUS_INVALID_PARAMETER (0xC000000D) if lpRemoteReadDesc.hCursor is set to
0x00000000 and the lpRemoteReadDesc.ulAction is set to MQ_ACTION_PEEK_NEXT.

 Search the rOpenQueueEntryCollection where
OpenQueueEntry.OpenQueueDescriptorHandle = lpRemoteReadDesc.hRemoteQueue.

 If the OpenQueueDescriptorHandle is not found, return MQ_ERROR_INVALID_PARAMETER

(0xc00e0006).

 Find the OpenQueueDescriptor, referred to as rOpenQueueDescriptor, in the
Queue.OpenQueueDescriptorCollection of each queue object in

QueueManager.QueueCollection such that rOpenQueueDescriptor.Handle =
lpRemoteReadDesc.hRemoteQueue.

 If lpRemoteReadDesc.hCursor is not 0x00000000, find the cursor object, referred to as rCursor,
in the rOpenQueueDescriptor.CursorCollection with a Handle property equal to
lpRemoteReadDesc.hCursor.

 If no cursor object is found, return STATUS_INVALID_PARAMETER.

 If lpRemoteReadDesc.hCursor is 0x00000000, set rCursor to NULL.

 Create a new RemoteReadEntry ADM element instance, referred to as rrEntry, with the following
attributes:

 OpenQueueDescriptorHandle = lpRemoteReadDesc.hRemoteQueue

 Timeout = lpRemoteReadDesc.ulTimeout

 UserMessagePacket = lpRemoteReadDesc.lpBuffer

 Action = lpRemoteReadDesc.ulAction

 RequestId = lpRemoteReadDesc.dwRequestID

 Add rrEntry to rRemoteReadEntryCollection.

 If the ulAction member of the lpRemoteReadDesc parameter is MQ_ACTION_RECEIVE, generate
a Dequeue Message Begin event ([MS-MQDMPR] section 3.1.7.1.11) with the following inputs:

 iQueueDesc := reference to OpenQueueDescriptor obtained earlier.

 iTimeout := lpRemoteReadDesc.ulTimeout

 iTag := lpRemoteReadDesc.dwRequestID

 iCursor := rCursor

 If the ulAction member of the lpRemoteReadDesc parameter is MQ_ACTION_PEEK_CURRENT,
generate a Peek Message event with the following inputs:

%5bMS-MQDMPR%5d.pdf#Section_5eafe0a6a22f436ba0d94cbc25c52b47

22 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 iQueueDesc := reference to OpenQueueDescriptor obtained earlier.

 iTimeout := lpRemoteReadDesc.ulTimeout

 iCursor := rCursor

 If the ulAction member of the lpRemoteReadDesc parameter is MQ_ACTION_PEEK_NEXT,

generate a Peek Next Message event with the following inputs:

 iQueueDesc := reference to OpenQueueDescriptor obtained earlier.

 iTimeout := lpRemoteReadDesc.ulTimeout

 iCursor := rCursor

 If the rStatus value returned from the preceding events is MQ_OK (0x00000000), the server
MUST process the returned rMessage as follows:

 Generate a Construct a UserMessage Packet ([MS-MQDMPR] section 3.1.7.1.30) event with

the following argument:

 iMessage := rMessage

 Generate a Serialize Message to Buffer ([MS-MQDMPR] section 3.1.7.1.32) event with the
following arguments:

 iMessage := rMessage

 iBuffer := rUserMessage returned by the Construct a UserMessage Packet event.

 Assign rUserMessage to the lpBuffer member of the lpRemoteReadDesc parameter.

 Assign rUserMessage.BaseHeader.PacketSize to lpRemoteReadDesc.dwSize.

 Remove the RemoteReadEntry ADM element instance from rRemoteReadEntryCollection for
which RemoteReadEntry.RequestId equals lpRemoteReadDesc.dwRequestID and

RemoteReadEntry.OpenQueueDescriptorHandle equals lpRemoteReadDesc.hRemoteQueue.

 If rStatus is MQ_OK (0x00000000) and lpRemoteReadDesc.ulAction is MQ_ACTION_RECEIVE, set
pphContext to rrEntry; otherwise, delete rrEntry.

 Return rStatus.

3.1.4.2 RemoteQMEndReceive (Opnum 1)

The client MUST invoke the RemoteQMEndReceive method to advise the server that the message

packet returned by the RemoteQMStartReceive, RemoteQMStartReceive2, or
RemoteQMStartReceiveByLookupId method has been received.

The combination of the RemoteQMStartReceive, RemoteQMStartReceive2, or
RemoteQMStartReceiveByLookupId method and the positive acknowledgment of the

RemoteQMEndReceive method ensures that a message packet is not lost in transit from the server to
the client due to a network outage during the call sequence.

Before calling this method, the following methods MUST be called:

 RemoteQMOpenQueue

 RemoteQMStartReceive, RemoteQMStartReceive2, or RemoteQMStartReceiveByLookupId

 HRESULT RemoteQMEndReceive(

23 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [in] handle_t hBind,
 [in, out] PCTX_REMOTEREAD_HANDLE_TYPE* pphContext,
 [in, range(1, 2)] DWORD dwAck
);

hBind: MUST be an RPC binding handle parameter for use by the server, as specified in [MS-RPCE]
section 2.

pphContext: A pointer to a context handle of a pending remote read operation.

dwAck: An ACK or NACK about the status of the message packet of the pending remote read
operation.

Value Meaning

RR_NACK

0x00000001

The client acknowledges that the message packet was not delivered successfully.

The server MUST keep the message in the queue and make it available for subsequent
consumption.

RR_ACK

0x00000002

The client acknowledges that the message packet was delivered successfully.

The server MUST remove the message from the queue and make it unavailable for subsequent
consumption.

Return Values: The method MUST return MQ_OK (0x00000000) on success; otherwise, it MUST
return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.

MQ_OK (0x00000000)

MQ_ERROR_INVALID_HANDLE (0xC00E0007)

MQ_ERROR_INVALID_PARAMETER (0xC00E0006)

MQ_ERROR_TRANSACTION_SEQUENCE (0xC00E0051)

Exceptions Thrown: No exceptions are thrown except those thrown by the underlying RPC protocol,
[MS-RPCE].

When processing this call, the server MUST:

 Return MQ_ERROR_INVALID_HANDLE (0xc00e0007) if pphContext is NULL.

 Use pphContext as RemoteReadEntry.

 The server MAY search rRemoteReadEntryCollection where OpenQueueDescriptorHandle =
RemoteReadEntry.OpenQueueDescriptorHandle and return
MQ_ERROR_INVALID_PARAMETER (0xC00E0006) if the OpenQueueDescriptorHandle is not
found.<11>

 Within the OpenQueueDescriptorCollection properties of all queues present in

QueueManager.QueueCollection, find the OpenQueueDescriptor where

OpenQueueDescriptor.Handle = RemoteReadEntry.OpenQueueDescriptorHandle and
generate a Dequeue Message End event with the following inputs:

 iQueueDesc:= reference to OpenQueueDescriptor obtained.

 iMessage:= RemoteReadEntry.UserMessagePacket.

 iDeleteMessage:= true if dwAck is equal to RR_ACK, and false if dwAck is equal to RR_NACK.

 Delete the RemoteReadEntry, and set pphContext to NULL.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

24 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Return rStatus.

3.1.4.3 RemoteQMOpenQueue (Opnum 2)

The RemoteQMOpenQueue method opens a queue in preparation for subsequent operations against it.
This method assumes that the client has called qmcomm:R_QMOpenRemoteQueue to obtain a queue
handle; for more information, see [MS-MQMP] section 3.1.4.2. This method is called as part of the
sequence of events involved in opening a remote queue by an MQMP application as described in
[MS-MQMP] section 4.2. This method MUST be called prior to calling any of the following operations:

 RemoteQMStartReceive

 RemoteQMEndReceive

 RemoteQMCloseQueue

 RemoteQMCloseCursor

 RemoteQMCancelReceive

 RemoteQMPurgeQueue

 RemoteQMStartReceive2

 RemoteQMStartReceiveByLookupId

 HRESULT RemoteQMOpenQueue(
 [in] handle_t hBind,
 [out] PCTX_RRSESSION_HANDLE_TYPE* phContext,
 [in] GUID* pLicGuid,
 [in, range(0, 16)] DWORD dwMQS,
 [in] DWORD hQueue,
 [in] DWORD pQueue,
 [in] DWORD dwpContext
);

hBind: MUST be set to an RPC binding handle, as specified in [MS-RPCE] section 2.

phContext: A pointer to a context handle that contains the information about the opened queue,
which corresponds to the abstract data model's OpenQueueEntry. The server MUST set this
value; it gets deleted on a call to RemoteQMCloseQueue.

pLicGuid: A pointer to a valid GUID ([MS-DTYP] section 2.3.4) that uniquely identifies the client. This
value is set to the QueueManager.Identifier ADM element of the queue manager at the client
end.

dwMQS: This value MAY be used by the server to impose an implementation-specific limit on the

number of concurrent callers.<12>

hQueue: A queue identifier. This value SHOULD be ignored by the server.<13>

pQueue: A DWORD that references an OpenQueueDescriptor of a remote opened queue.

dwpContext: A DWORD that references an OpenQueueDescriptor of a remote opened queue.

Return Values: The method MUST return MQ_OK (0x00000000) on success; otherwise, it MUST
return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.

MQ_OK (0x00000000)

MQ_ERROR_INVALID_PARAMETER (0xC00E0006)

%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

25 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol (see [MS-RPCE]).

When processing this call, the server MUST do the following:

 Return MQ_ERROR_INVALID_PARAMETER (0xc00e0006) if pLicGuid is NULL or if pQueue or

dwpContext is equal to zero.

 The server SHOULD return MQ_ERROR_INVALID_PARAMETER (0xc00e0006) if pQueue is not
equal to dwpContext.<14>

 Create a new OpenQueueEntry:

 The server SHOULD set OpenQueueDescriptorHandle to dwpContext.<15>

 Set ClientId to the pLicGuid parameter.

 Add the OpenQueueEntry to the rOpenQueueEntryCollection.

 Set phContext to the OpenQueueEntry value, and return MQ_OK (0x00000000).

3.1.4.4 RemoteQMCloseQueue (Opnum 3)

The RemoteQMCloseQueue method closes a PCTX_RRSESSION_HANDLE_TYPE that was previously

opened by using a call to the RemoteQMOpenQueue method. The client MUST call this method to
reclaim resources on the server allocated by the RemoteQMOpenQueue method.

 HRESULT RemoteQMCloseQueue(
 [in] handle_t hBind,
 [in, out] PCTX_RRSESSION_HANDLE_TYPE* pphContext
);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

pphContext: A PCTX_RRSESSION_HANDLE_TYPE to a remote opened queue.

Return Values: The method MUST return MQ_OK (0x00000000) on success; otherwise, it MUST
return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.

MQ_OK (0x00000000)

MQ_ERROR_INVALID_HANDLE (0xC00E0007)

MQ_ERROR_INVALID_PARAMETER (0xC00E0006)

Exceptions Thrown: No exceptions are thrown except those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

When processing this call, the server MUST:

 If pphContext is NULL, return MQ_ERROR_INVALID_HANDLE(0xC00E0007).

 Use pphContext as the OpenQueueEntry.

 The server MAY search the rOpenQueueEntryCollection for OpenQueueDescriptorHandle=
OpenQueueEntry.OpenQueueDescriptorHandle and return MQ_ERROR_INVALID_PARAMETER
(0xC00E0006) if the OpenQueueDescriptorHandle is not found.

<16>

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

26 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Remove OpenQueueEntry from rOpenQueueEntryCollection.

 Loop over rRemoteReadEntryCollection, and for each entry where

OpenQueueDescriptorHandle = OpenQueueEntry.OpenQueueDescriptorHandle:

 Cancel the operation, as specified in RemoteQMCancelReceive.

 For each queue present in the QueueManager.QueueCollection:

 For each OpenQueueDescriptor in Queue.OpenQueueDescriptorCollection:

 If OpenQueueDescriptor.Handle= OpenQueueEntry.OpenQueueDescriptorHandle, use
that OpenQueueDescriptor for processing.

 Generate a Close Queue event with the following parameters:

 iQueueDesc:= reference to OpenQueueDescriptor obtained earlier.

 Delete the OpenQueueEntry.

 Set pphContext to NULL.

 Return MQ_OK (0x00000000).

3.1.4.5 RemoteQMCloseCursor (Opnum 4)

The RemoteQMCloseCursor method closes the handle for a previously created cursor. The client MUST
call this method to reclaim resources on the server allocated by the
qmcomm:R_QMCreateRemoteCursor method, as specified in [MS-MQMP] section 3.1.4.4.

 HRESULT RemoteQMCloseCursor(
 [in] handle_t hBind,
 [in] DWORD hQueue,
 [in] DWORD hCursor
);

hBind: MUST be set to an RPC binding handle, as specified in [MS-RPCE] section 2.

hQueue: A queue handle value upon which the cursor operates.

hCursor: Specifies the cursor handle to be closed.

Return Values: The method MUST return MQ_OK (0x00000000) on success; otherwise, it MUST
return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.

MQ_OK (0x00000000)

MQ_ERROR_INVALID_HANDLE (0xC00E0007)

Exceptions Thrown: No exceptions are thrown except those thrown by the underlying RPC protocol,

as specified in [MS-RPCE].

When processing this call, the server MUST:

 For each queue present in the QueueManager.QueueCollection:

 For each OpenQueueDescriptor in Queue.OpenQueueDescriptorCollection:

 If OpenQueueDescriptor.Handle= hQueue, use that OpenQueueDescriptor for

processing.

%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

27 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 For each cursor in OpenQueueDescriptor.CursorCollection:

 If Cursor.Handle= hCursor, use that cursor object for processing.

 If hQueue or hCursor is not found, return MQ_ERROR_INVALID_HANDLE(0xc00e0007).

 Generate a Close Cursor event with the following inputs:

 iCursor:= reference to cursor object obtained earlier.

 Return MQ_OK (0x00000000).

3.1.4.6 RemoteQMCancelReceive (Opnum 5)

The RemoteQMCancelReceive method cancels a pending call to RemoteQMStartReceive and provides a
way for the client to cancel a blocked request.

Before calling this method, the following methods MUST be called:

 RemoteQMOpenQueue

 RemoteQMStartReceive or RemoteQMStartReceive2

 HRESULT RemoteQMCancelReceive(
 [in] handle_t hBind,
 [in] DWORD hQueue,
 [in] DWORD pQueue,
 [in] DWORD dwRequestID
);

hBind: MUST be set to an RPC binding handle, as specified in [MS-RPCE] section 2.

hQueue: Queue identifier to cancel receive. Its value is validated in the method's processing rules.

pQueue: Queue descriptor to cancel receive. Its value is validated in the method's processing rules.

dwRequestID: A unique value that identifies a pending remote read operation.

Return Values: The method MUST return MQ_OK (0x00000000) on success; otherwise, it MUST
return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.

MQ_OK (0x00000000)

MQ_ERROR (0xC00E0001)

MQ_ERROR_INVALID_PARAMETER (0xC00E0006)

MQ_ERROR_INVALID_HANDLE (0xC00E0007)

STATUS_NOT_FOUND (0xC0000225)

Exceptions Thrown: No exceptions are thrown except those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

When processing this call, the server MUST do the following:

 Return MQ_ERROR_INVALID_PARAMETER (0xc00e0006) if pQueue is equal to zero or not equal to

hQueue. <17>

 Find the subset of RemoteReadEntry elements in rRemoteReadEntryCollection where hQueue
= RemoteReadEntry.OpenQueueDescriptorHandle.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

28 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If no such entry is found, return MQ_ERROR_INVALID_HANDLE(0xc00e0007).

 Find RemoteReadEntry from the collection preceding where

RemoteReadEntry.RequestId=dwRequestID.

 If no such entry is found, return MQ_ERROR(0xC00E0001).

 For each queue in the QueueManager.QueueCollection:

 For each OpenQueueDescriptor in Queue.OpenQueueDescriptorCollection:

 Find the OpenQueueDescriptor where
OpenQueueDescriptor.Handle=RemoteReadEntry.OpenQueueDescriptorHandle.

 Generate a Cancel Waiting Message Read Request ([MS-MQDMPR] section 3.1.7.1.17) event with
the following inputs:

 iQueue:=QueueReference member of the OpenQueueDescriptor obtained earlier.

 iTag:= dwRequestID.

 iStatus:= MQ_INFORMATION_REMOTE_CANCELED_BY_CLIENT (0x400E03E9).

 Delete the RemoteReadEntry.

 Return rStatus of the Cancel Waiting Message Read Request event.

3.1.4.7 RemoteQMPurgeQueue (Opnum 6)

The RemoteQMPurgeQueue method removes all messages from the queue.

Before calling this method, the RemoteQMOpenQueue method MUST be called.

 HRESULT RemoteQMPurgeQueue(
 [in] handle_t hBind,
 [in] DWORD hQueue
);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

hQueue: A queue handle value acquired from the phQueue parameter of the

qmcomm:R_QMOpenRemoteQueue method as specified in [MS-MQMP] section 3.1.4.2.

Return Values: The method MUST return MQ_OK (0x00000000) on success; otherwise, it MUST
return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.

MQ_OK (0x00000000)

MQ_ERROR_INVALID_HANDLE (0xC00E0007)

Exceptions Thrown: Failure HRESULTs returned by this method MAY<18> be thrown as exceptions
as well as those thrown by the underlying RPC protocol, as specified in [MS-RPCE].

When processing this call, the server MUST:

 Look up OpenQueueEntry in the rOpenQueueEntryCollection where
OpenQueueEntry.OpenQueueDescriptorHandle= hQueue.

 If no such entry is found, return MQ_ERROR_INVALID_HANDLE (0xC00E0007).

%5bMS-MQDMPR%5d.pdf#Section_5eafe0a6a22f436ba0d94cbc25c52b47
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9

29 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 For each queue present in the QueueManager.QueueCollection:

 For each OpenQueueDescriptor in Queue.OpenQueueDescriptorCollection:

 IfOpenQueueDescriptor.Handle=RemoteReadEntry.OpenQueueDescriptorHandle,
use that OpenQueueDescriptor for processing.

 Generate a Purge Queue event ([MS-MQDMPR] section 3.1.7.1.7) with the following inputs:

 iQueue:=QueueReference member of the OpenQueueDescriptor obtained earlier.

 Return MQ_OK (0x00000000).

3.1.4.8 RemoteQMGetQMQMServerPort (Opnum 7)

The RemoteQMGetQMQMServerPort method returns an RPC port number (see [MS-RPCE]) for the
requested combination of interface and protocol.

 DWORD RemoteQMGetQMQMServerPort(
 [in] handle_t hBind,
 [in, range(0, 3)] DWORD dwPortType
);

hBind: MUST be set to an RPC binding handle, as specified in [MS-RPCE] section 2.

dwPortType: Specifies the interface for which a port value is to be returned. One of the following
values MUST be specified; otherwise, this method MUST return 0x00000000 to indicate failure.

Value Meaning

 IP_HANDSHAKE

0x00000000

 Requests that the server return the RPC port number for the qmcomm and qmcomm2
interfaces bound to TCP/IP. For more information on the qmcomm and qmcomm2 interfaces,
see [MS-MQMP]. The default port number is 2103.

 IP_READ

0x00000001

 Requests that the server return the RPC port number for the qm2qm interface bound to

TCP/IP. For more information on the qm2qm interface, see section 3.1.4. The default port
number is 2105.

IPX_HANDSHAKE

0x00000002

 Requests that the server return the RPC port number for the qmcomm and qmcomm2
interfaces bound to SPX.<19> For more information on the qmcomm and qmcomm2
interfaces, see [MS-MQMP]. The default port number is 2103.

 IPX_READ

0x00000003

Requests that the server return the RPC port number for the qm2qm interface bound to
SPX.<20> For more information on the qm2qm interface, see section 3.1.4. The default port
number is 2105.

Return Values: On success, this method returns a nonzero IP port value for the RPC interface
specified by the dwPortType parameter. If an invalid value is specified for dwPortType, or if the
requested interface is otherwise unavailable, or if any other error is encountered, this method MUST
return 0x00000000.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
(see [MS-RPCE]).

As specified in section 3.1.3, this protocol configures a fixed listening endpoint at an RPC port number,
which can vary. For the interface and protocol specified by the dwPortType parameter, this method
returns the RPC port number determined at server initialization time. If the default port is already in
use, the server SHOULD increment the port number by 11 until an unused port is found.

%5bMS-MQDMPR%5d.pdf#Section_5eafe0a6a22f436ba0d94cbc25c52b47
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9

30 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.4.9 RemoteQmGetVersion (Opnum 8)

The RemoteQmGetVersion method retrieves the Message queuing version of the server; this method
is called before the RemoteQMOpenQueue method.<21>

 void RemoteQmGetVersion(
 [in] handle_t hBind,
 [out] unsigned char* pMajor,
 [out] unsigned char* pMinor,
 [out] unsigned short* pBuildNumber
);

hBind: MUST be set to an RPC binding handle, as specified in [MS-RPCE] section 2.

pMajor: A pointer to an unsigned character. The server SHOULD<22> set this parameter to 0x06.

pMinor: A pointer to an unsigned character. The server SHOULD<23> set this parameter to 0x01.

pBuildNumber: A pointer to an unsigned short. The server SHOULD<24> set this parameter to an
implementation-specific build number.

Return Values: This method has no return values.

Exceptions Thrown: No exceptions are thrown except those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

3.1.4.10 RemoteQMStartReceive2 (Opnum 9)

The RemoteQMStartReceive2 method functions in the same way as
RemoteQMStartReceive (section 3.1.4.1), except that it returns a structure that contains the
SequentialId of the message.<25>

 HRESULT RemoteQMStartReceive2(
 [in] handle_t hBind,
 [out] PCTX_REMOTEREAD_HANDLE_TYPE* pphContext,
 [in, out] REMOTEREADDESC2* lpRemoteReadDesc2
);

hBind: MUST be set to an RPC binding handle, as specified in [MS-RPCE] section 2.

pphContext: The server MUST return a non-NULL value for this handle upon success for receive calls.
This handle will be used by the client in subsequent calls to
RemoteQMEndReceive (section 3.1.4.2). This handle MUST NOT be set upon failure or for peek
calls. If this method returns an error, pphContext is undefined and MUST NOT be used as an
argument for a call to RemoteQMEndReceive.

lpRemoteReadDesc2: A pointer to an instance of a REMOTEREADDESC2 (section 2.2.2.2) structure.

The SequentialId member MUST be set to the least significant 7 bytes of the
Message.LookupIdentifier ([MS-MQDMPR] section 3.1.1.12) of the message that is returned by

this method.

The client MUST provide all parameters of lpRemoteReadDesc2.pRemoteReadDesc that are
marked as to be set by the client in section 2.2.2.1.

The lpRemoteReadDesc2.pRemoteReadDesc.ulAction parameter MUST be one of the following

values.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-MQDMPR%5d.pdf#Section_5eafe0a6a22f436ba0d94cbc25c52b47

31 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value of ulAction Meaning

MQ_ACTION_RECEIVE

0x00000000

If hCursor is nonzero, read and remove the first message available at the current
cursor location walking toward the end of the queue.

If hCursor is zero, read and remove the message from the front of the queue.

MQ_ACTION_PEEK_CURRENT

0x80000000

If hCursor is nonzero, read the message at the current cursor location, but do not
remove it from the queue. The cursor location does not change after the
operation.

If hCursor is zero, read the message at the front of the queue, but do not remove
it from the queue.

MQ_ACTION_PEEK_NEXT

0x80000001

Read the message following the message at the current cursor location, but do
not remove it. The cursor location will then change to the next available
message, walking toward the end of the queue.

The hCursor parameter MUST be set to a nonzero cursor handle.

The hCursor member of lpRemoteReadDesc specifies a handle to an opened cursor. A value of

zero indicates that a cursor is not used for this operation.

The dwRequestID member of the lpRemoteReadDesc parameter is used in a subsequent call to
RemoteQMEndReceive or RemoteQMCancelReceive to correlate that call with the call to
RemoteQMStartReceive2.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT, and the client MUST treat all failure
HRESULTs identically.

Exceptions Thrown: No exceptions are thrown except those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

While processing this method, the server MUST:

 Return MQ_ERROR_INVALID_HANDLE (0xC00E0007) if lpRemoteReadDesc2 is NULL.

 Return MQ_ERROR_INVALID_HANDLE (0xC00E0007) if lpRemoteReadDesc2.pRemoteReadDesc is
NULL.

 Return MQ_ERROR_INVALID_PARAMETER (0xC00E0006) if
lpRemoteReadDesc2.pRemoteReadDesc.dwQueue is set to 0x00000000 or
lpRemoteReadDesc2.pRemoteReadDesc.dwQueue is not equal to
lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue.

 The server SHOULD return MQ_ERROR_INVALID_PARAMETER (0xC00E0006) if the

lpRemoteReadDesc2.pRemoteReadDesc.dwRequestID does not uniquely identify the receive
request. This duplicate detection is performed by searching for a RemoteReadEntry, referred to
as rRemoteReadEntry, in rRemoteReadEntryCollection such that
rRemoteReadEntry.OpenQueueDescriptorHandle =
lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue and rRemoteReadEntry.RequestId =

lpRemoteReadDesc2.pRemoteReadDesc.dwRequestID.<26>

 Return STATUS_INVALID_PARAMETER (0xC000000D) if
lpRemoteReadDesc2.pRemoteReadDesc.hCursor is set to 0x00000000 and the
lpRemoteReadDesc2.pRemoteReadDesc.ulAction is set to MQ_ACTION_PEEK_NEXT.

 Search the rOpenQueueEntryCollection where
OpenQueueEntry.OpenQueueDescriptorHandle =
lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue.

32 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the OpenQueueDescriptorHandle is not found, return MQ_ERROR_INVALID_PARAMETER
(0xC00E0006).

 Find the OpenQueueDescriptor, referred to as rOpenQueueDescriptor, in the
Queue.OpenQueueDescriptorCollection of each queue object in

QueueManager.QueueCollection such that rOpenQueueDescriptor.Handle =
lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue.

 If lpRemoteReadDesc2.pRemoteReadDesc.hCursor is not 0x00000000, find the cursor object,
referred to by rCursor, in the rOpenQueueDescriptor.CursorCollection with a Handle property
equal to lpRemoteReadDesc2.pRemoteReadDesc.hCursor.

 If no cursor object is found, return STATUS_INVALID_PARAMETER.

 If lpRemoteReadDesc2.pRemoteReadDesc.hCursor is 0x00000000, set rCursor to NULL.

 Create a new RemoteReadEntry, referred to as rrEntry, with the following attributes:

 OpenQueueDescriptorHandle = lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue

 Timeout = lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout

 UserMessagePacket = lpRemoteReadDesc2.pRemoteReadDesc.lpBuffer

 Action = lpRemoteReadDesc2.pRemoteReadDesc.ulAction

 RequestId = lpRemoteReadDesc2.pRemoteReadDesc.dwRequestID

 Add rrEntry to rRemoteReadEntryCollection.

 If the ulAction member of the lpRemoteReadDesc2.pRemoteReadDesc parameter is
MQ_ACTION_RECEIVE, generate a Dequeue Message Begin event ([MS-MQDMPR] section
3.1.7.1.11) with the following inputs:

 iQueueDesc := rOpenQueueDescriptor obtained in a preceding step.

 iTimeout := lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout.

 iTag := lpRemoteReadDesc2.pRemoteReadDesc.dwRequestID.

 iCursor := rCursor.

 If the ulAction member of the lpRemoteReadDesc2.pRemoteReadDesc parameter is
MQ_ACTION_PEEK_CURRENT, generate a Peek Message ([MS-MQDMPR] section 3.1.7.1.15) event
with the following inputs:

 iQueueDesc := rOpenQueueDescriptor obtained in a preceding step.

 iTimeout := lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout.

 iCursor := rCursor.

 If the ulAction member of the lpRemoteReadDesc2.pRemoteReadDesc parameter is
MQ_ACTION_PEEK_NEXT, generate a Peek Next Message ([MS-MQDMPR] section 3.1.7.1.14)
event with the following inputs:

 iQueueDesc := rOpenQueueDescriptor obtained in a preceding step.

 iTimeout := lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout.

 iCursor := rCursor.

33 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the rStatus value returned from the preceding events is MQ_OK (0x00000000), the server
MUST process the returned rMessage as follows:

 Generate a Construct a UserMessage Packet ([MS-MQDMPR] section 3.1.7.1.30) event with
the following argument:

 iMessage := rMessage

 Generate a Serialize Message to Buffer ([MS-MQDMPR] section 3.1.7.1.32) event with the
following arguments:

 iMessage := rMessage

 iBuffer := rUserMessage returned by the Construct a UserMessage Packet event.

 Assign rUserMessage to lpRemoteReadDesc2.pRemoteReadDesc.lpBuffer.

 Assign rUserMessage.BaseHeader.PacketSize to

lpRemoteReadDesc2.pRemoteReadDesc.dwSize

 Assign the least significant seven bytes of rMessage.LookupIdentifier to the SequentialId
member of lpRemoteReadDesc2.

 Remove the RemoteReadEntry ADM element instance from rRemoteReadEntryCollection for
which RemoteReadEntry.RequestId equals
lpRemoteReadDesc2.pRemoteReadDesc.dwRequestID and

RemoteReadEntry.OpenQueueDescriptorHandle equals
lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue.

 If rStatus is MQ_OK (0x00000000) and lpRemoteReadDesc2.pRemoteReadDesc.ulAction is
MQ_ACTION_RECEIVE, set pphContext to rrEntry; otherwise, delete rrEntry.

 Return rStatus.

3.1.4.11 RemoteQMStartReceiveByLookupId (Opnum 10)

The RemoteQMStartReceiveByLookupId method reads a message from the opened remote queue by
using the lookup identifier.<27>

 HRESULT RemoteQMStartReceiveByLookupId(
 [in] handle_t hBind,
 [in] ULONGLONG LookupId,
 [out] PCTX_REMOTEREAD_HANDLE_TYPE* pphContext,
 [in, out] REMOTEREADDESC2* lpRemoteReadDesc2
);

hBind: MUST be set to an RPC binding handle, as specified in [MS-RPCE] section 2.

LookupId: Lookup identifier of the message to be returned.

pphContext: The server MUST return a non-NULL value for this handle, on success for receive calls.
This handle is used by the client in subsequent calls to RemoteQMEndReceive. This handle MUST
NOT be set on failure, or for peek calls. If this method returns an error, pphContext is undefined
and MUST NOT be used as an argument for a call to RemoteQMEndReceive.

lpRemoteReadDesc2: A REMOTEREADDESC2 (section 2.2.2.2) instance that contains the remote
description accompanied by a sequential ID. The members of the pRemoteReadDesc member of

the lpRemoteReadDesc2 parameter MUST be assigned in the same manner as that specified in
RemoteQMStartReceive and section 2.2.2.1. In addition, the SequentialId member MUST be set

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

34 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

to the least significant 7 bytes of the Message.LookupIdentifier ([MS-MQDMPR] section
3.1.1.12) of the message that is returned by this method.

The client must provide all parameters of lpRemoteReadDesc2.pRemoteReadDesc that are marked
as to be set by the client in section 2.2.2.1.

lpRemoteReadDesc2.pRemoteReadDesc.ulAction MUST be set to one of the following values.

Value of ulAction Meaning

MQ_LOOKUP_PEEK_CURRENT

0x40000010

Read the message that is specified by the LookupId parameter, but do not
remove it from the queue.

The lpRemoteReadDesc2.pRemoteReadDesc.hCursor parameter MUST be set
to zero.

The LookupId parameter MUST NOT be set to 0.

The lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout parameter MUST be
set to 0x00000000.

MQ_LOOKUP_PEEK_NEXT

0x40000011

If LookupId is 0, read the first message. Otherwise, read the message
following the message that is specified by LookupId. In either case, do not
remove the message.

The lpRemoteReadDesc2.pRemoteReadDesc.hCursor parameter MUST be set
to zero.

The lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout parameter MUST be
set to 0x00000000.

MQ_LOOKUP_PEEK_PREV

0x40000012

If LookupId is 0xFFFFFFFFFFFFFFFF, read the last message. Otherwise, read
the message preceding the message that is specified by the LookupId
parameter. In either case, do not remove the message from the queue.

The lpRemoteReadDesc2.pRemoteReadDesc.hCursor parameter MUST be set
to zero.

The LookupId parameter MUST NOT be set to 0.

The lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout parameter MUST be
set to 0x00000000.

MQ_LOOKUP_RECEIVE_CURRENT

0x40000020

Read the message that is specified by the LookupId parameter, and remove it
from the queue.

The lpRemoteReadDesc2.pRemoteReadDesc.hCursor parameter MUST be set
to zero.

The LookupId parameter MUST NOT be set to 0.

The lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout parameter MUST be
set to 0x00000000.

MQ_LOOKUP_RECEIVE_NEXT

0x40000021

If LookupId is 0, read the first message. Otherwise, read the message
following the message that is specified by the LookupId parameter. Remove
the message from the queue.

The lpRemoteReadDesc2.pRemoteReadDesc.hCursor parameter MUST be set
to zero.

The lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout parameter MUST be
set to 0x00000000.

MQ_LOOKUP_RECEIVE_PREV

0x40000022

If LookupId is 0xFFFFFFFFFFFFFFFF, read the last message. Otherwise, read
the message preceding the message that is specified by the LookupId
parameter. Remove the message from the queue.

The lpRemoteReadDesc2.pRemoteReadDesc.hCursor parameter MUST be set
to zero.

The LookupId parameter MUST NOT be set to 0.

The lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout parameter MUST be
set to 0x00000000.

%5bMS-MQDMPR%5d.pdf#Section_5eafe0a6a22f436ba0d94cbc25c52b47

35 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Return Values: The method MUST return MQ_OK (0x00000000) on success; otherwise, it MUST
return a failure HRESULT and the client MUST treat all failure HRESULTs identically.

MQ_OK (0x00000000)

MQ_ERROR_INVALID_HANDLE (0xC00E0007)

MQ_ERROR_INVALID_PARAMETER (0xC00E0006)

MQ_ERROR_IO_TIMEOUT ((0xC00E001B))

MQ_ERROR_MESSAGE_ALREADY_RECEIVED ((0xC00E001D))

Exceptions Thrown: No exceptions are thrown except those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

While processing this method, the server MUST:

 Return MQ_ERROR_INVALID_HANDLE (0xC00E0007) if lpRemoteReadDesc2 is NULL.

 Return MQ_ERROR_INVALID_PARAMETER (0xC00E0006) if:

 lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue is set to 0.

 lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout is not set to 0.

 lpRemoteReadDesc2.pRemoteReadDesc.hCursor is not set to 0.

 Search the rOpenQueueEntryCollection where
OpenQueueEntry.OpenQueueDescriptorHandle=

lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue.

 If the OpenQueueDescriptorHandle is not found, return MQ_ERROR_INVALID_PARAMETER
(0xC00E0006).

 For each queue present in the QueueManager.QueueCollection:

 For each OpenQueueDescriptor in Queue.OpenQueueDescriptorCollection:

 If OpenQueueDescriptor.Handle=
lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue, use that OpenQueueDescriptor

for processing.

 Create a new RemoteReadEntry, referred to as rrEntry, with the following attributes:

 OpenQueueDescriptorHandle= lpRemoteReadDesc2.lpRemoteReadDesc.hRemoteQueue

 Timeout= lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout

 UserMessagePacket= lpRemoteReadDesc2.pRemoteReadDesc.lpBuffer

 Action= lpRemoteReadDesc2.pRemoteReadDesc.ulAction

 RequestId= lpRemoteReadDesc2.pRemoteReadDesc.dwRequestID

 Add rrEntry to rRemoteReadEntryCollection.

 Generate a Read Message By Lookup Identifier event with the following inputs ('*' is used as a
wildcard for possible symbolic names of lpRemoteReadDesc2.pRemoteReadDesc.ulAction as
specified in the preceding Value of ulAction table):

 iQueueDesc:=QueueReference member of the OpenQueueDescriptor obtained earlier

36 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 iLookupId:= LookupId

 iPeekOperation:= true if the value for lpRemoteReadDesc2.pRemoteReadDesc.ulAction is

MQ_LOOKUP_PEEK_*; otherwise, false

 iLookupOperation:=

 SeekFirst, if lpRemoteReadDesc2.pRemoteReadDesc.ulAction is MQ_LOOKUP_*_NEXT, and
LookupId is 0.

 SeekLast, if lpRemoteReadDesc2.pRemoteReadDesc.ulAction is MQ_LOOKUP_*_PREV, and
LookupId is 0xFFFFFFFFFFFFFFFF.

 SeekPrevious, if lpRemoteReadDesc2.pRemoteReadDesc.ulAction is MQ_LOOKUP_*_PREV,
and LookupId does not equal 0xFFFFFFFFFFFFFFFF.

 SeekCurrent, if lpRemoteReadDesc2.pRemoteReadDesc.ulAction is

MQ_LOOKUP_*_CURRENT.

 SeekNext, if lpRemoteReadDesc2.pRemoteReadDesc.ulAction is MQ_LOOKUP_*_NEXT,
and LookupId does not equal 0.

 If the rStatus value returned from the Read Message By Lookup Identifier event is MQ_OK
(0x00000000), the server MUST process the returned rMessage as follows:

 Generate a Construct a UserMessage Packet ([MS-MQDMPR] section 3.1.7.1.30) event with

the following argument:

 iMessage := rMessage

 Generate a Serialize Message to Buffer ([MS-MQDMPR] section 3.1.7.1.32) event with the
following arguments:

 iMessage := rMessage

 iBuffer := rUserMessage returned by the Construct a UserMessage Packet event.

 Assign rUserMessage to lpRemoteReadDesc2.pRemoteReadDesc.lpBuffer.

 Assign rUserMessage.BaseHeader.PacketSize to
lpRemoteReadDesc2.pRemoteReadDesc.dwSize.

 Assign the least significant 7 bytes of rMessage.LookupIdentifier to the SequentialId member
of lpRemoteReadDesc2.

 Remove the RemoteReadEntry ADM element instance from rRemoteReadEntryCollection for
which RemoteReadEntry.RequestId equals
lpRemoteReadDesc2.pRemoteReadDesc.dwRequestID and

RemoteReadEntry.OpenQueueDescriptorHandle equals
lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue.

 If rStatus is MQ_OK (0x00000000) and lpRemoteReadDesc2.pRemoteReadDesc.ulAction is
MQ_LOOKUP_RECEIVE_*, set pphContext to rrEntry; otherwise, delete rrEntry.

 Return rStatus.

3.1.5 Timer Events

None.

37 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.6 Other Local Events

The following local events trigger operations on the server:

 PCTX_RRSESSION_HANDLE_TYPE rundown.

 PCTX_REMOTEREAD_HANDLE_TYPE rundown.

3.1.6.1 PCTX_RRSESSION_HANDLE_TYPE Rundown

This event occurs when a PCTX_RRSESSION_HANDLE_TYPE context handle has been established
between a client and server through a call to RemoteQMOpenQueue, and the connection between the

client and server is severed before the context handle is closed via a call to RemoteQMCloseQueue.

The server MUST use the context handle supplied as an event argument to RemoteQMCloseQueue to
look up the context handle in the OpenSessionHandle table and close the OpenSessionHandle, as
specified in RemoteQMCloseQueue.

3.1.6.2 PCTX_REMOTEREAD_HANDLE_TYPE Rundown

This event occurs when PCTX_REMOTEREAD_HANDLE_TYPE context handle has been established
between a client and server through a call to RemoteQMStartReceive, and the connection between the
client and server is severed before the context handle is closed via a call to RemoteQMEndReceive.

The server MUST use the context handle supplied as an event argument to look up the context handle
in the RemoteReadEntry and close it, as specified in RemoteQMEndReceive. The server MUST set

the dwAck parameter to RR_NACK in this case to RemoteQMEndReceive.

3.2 qm2qm Client Details

3.2.1 Abstract Data Model

3.2.1.1 PendingRemoteReadEntry

The PendingRemoteReadEntry is an ADM element that encapsulates a pending remote read operation.
This element has the following attributes:

OpenQueueDescriptorHandle: The OpenQueueDescriptor.Handle for the queue being read
from.

RequestId: A unique DWORD value that identifies the pending read request. This value is used to
correlate calls to the server. It is initially generated when peeking or receiving a message and is
subsequently used to advise the server that the message was received, or to cancel the pending

peek or receive.

RemoteReadHandle: A PCTX_REMOTEREAD_HANDLE_TYPE value.

3.2.1.2 PendingRemoteReadEntryCollection

The PendingRemoteReadEntryCollection represents a collection of PendingRemoteReadEntry, each of
which represents a pending request to receive a message from a queue. The client MUST maintain an
instance of this collection, referred to as rPendingRemoteReadEntryCollection, to keep track of all
pending receive requests made by the client.

38 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.1.3 RemoteOpenQueueEntry

The RemoteOpenQueueEntry is an ADM element that encapsulates a remote open queue. This
element has the following attributes:

OpenQueueDescriptorHandle: The OpenQueueDescriptor.Handle for the queue being read
from.

RRSessionHandle: A PCTX_RRSESSION_HANDLE_TYPE value.

3.2.1.4 RemoteOpenQueueEntryCollection

The RemoteOpenQueueEntryCollection represents a collection of RemoteOpenQueueEntry elements,
each of which represents a remote opened queue. The client MUST maintain an instance of this
collection, referred to as rRemoteOpenQueueEntryCollection, to keep track of all remote queues
opened by the client.

3.2.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages. For more information, see [MS-RPCE].

3.2.3 Initialization

None.

3.2.4 Message Processing Events and Sequencing Rules

The operation of the protocol is initiated and subsequently driven by the following higher-layer
triggered events.

A message queuing application:

 Opens a queue.

 Peeks or Receives a message.

 Cancels a pending Peek or Receive.

 Purges a queue.

 Uses a cursor to Peek or Receive messages.

 Closes a cursor.

 Closes a queue.

3.2.4.1 Opening a Queue

To open a queue, the following inputs are expected:

 RemoteServer: the name or network address that identifies the machine where the queue resides.

 QueueHandle: A value returned in the phQueue parameter by the remote server when the
qmcomm:R_QMOpenRemoteQueue method is called ([MS-MQMP] section 3.1.4.2) by the MQMP
application.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9

39 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 QueueDescriptor: A value returned in the dwpQueue parameter by the remote server when the
qmcomm:R_QMOpenRemoteQueue method is called ([MS-MQMP] section 3.1.4.2) by the MQMP

application.

 OpenContext: A value returned in the pdwContext parameter by the remote server when the

qmcomm:R_QMOpenRemoteQueue method is called ([MS-MQMP] section 3.1.4.2) by the MQMP
application.

The supporting server MUST perform the following actions to process this event:

 Construct an RPC binding handle to the qm2qm interface on the remote server identified by
RemoteServer, as specified in [C706] section 2.3.

 Call the RemoteQMGetQMQMServerPort method using the RPC handle from the previous step. This
method returns the RPC endpoint port on which subsequent method calls to this interface are to

be invoked.

 Construct a new RPC binding handle to the remote server using the RPC endpoint port determined
in the previous step and close the initial RPC binding handle to the remote server. Any subsequent

calls to the remote server require the new RPC binding handle to be successfully created. The new
handle is closed when the queue is closed as specified in section 3.2.4.9.

 Call the RemoteQMOpenQueue method and specify the following parameter values:

 The RPC binding handle constructed in previous steps.

 pLicGuid set to the QueueManager.Identifier of the queue manager.

 If QueueManager.RoutingServer is True or QueueManager.DirectoryServer is True, set
dwMQS to 0x00000001; otherwise set dwMQS to 0x00000000.

 hQueue set to QueueHandle.

 pQueue set to QueueDescriptor.

 dwContext set to OpenContext.

 The time-out for the RemoteQMOpenQueue method SHOULD be five minutes, and if the RPC call
does not complete within this time, the call is canceled with the cancel time-out of zero minutes.
For details on canceling an RPC call, refer to [C706] section 6.1.8.

 Create a new RemoteOpenQueueEntry using the following:

 OpenQueueDescriptorHandle = QueueHandle

 RRSessionHandle = the returned phContext

 Add the RemoteOpenQueueEntry to rRemoteOpenQueueEntryCollection.

3.2.4.2 Peeking a Message

To peek a message, the following inputs are expected:

QueueHandle: Handle of the queue to be read from.

TimeOut: Set to the time-out in milliseconds.

Action: Set to MQ_ACTION_PEEK_CURRENT or MQ_ACTION_PEEK_NEXT as described in section
3.1.4.1.

The client MUST perform the following actions to process this event:

http://go.microsoft.com/fwlink/?LinkId=89824

40 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Create a PendingRemoteReadEntry (section 3.2.1.1), referred to as rPendingRemoteReadEntry,
and do the following:

 Set rPendingRemoteReadEntry.OpenQueueDescriptorHandle equal to QueueHandle.

 Set rPendingRemoteReadEntry.RequestId equal to a value that uniquely identifies this call

from all other pending calls to this protocol. This value MUST NOT be equal to the RequestId
of any other PendingRemoteReadEntry in rPendingRemoteReadEntryCollection.

 Add rPendingRemoteReadEntry to rPendingRemoteReadEntryCollection.

After creating a PendingRemoteReadEntry, the client SHOULD<28> call the RemoteQmGetVersion
method to determine the capabilities of the server. The client SHOULD check for the following
conditions:

 pMajor is less than 5.

 pMajor is equal to 5, and pMinor is less than 1.

 pMajor is equal to 5, and pMinor is less than 1, and pBuildNumber is less than 951.

If any of the above conditions are satisfied, the client MUST:

 Call the RemoteQMStartReceive method and MUST specify the following parameter values for
the REMOTEREADDESC structure (lpRemoteReadDesc):

 hRemoteQueue set to the phQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

 dwQueue set to the DWORD pointed to by the dwpQueue out parameter of the
qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

 dwSize set to 0.

 lpBuffer set to NULL.

 hCursor set to NULL.

 ulAction set to Action.

 ulTimeout set to TimeOut.

 dwRequestID set to rPendingRemoteReadEntry.RequestId.

Else if none of the above conditions are satisfied, the client MUST:

 Call the RemoteQMStartReceive2 method and MUST specify the following parameter values for
the REMOTEREADDESC2 structure (lpRemoteReadDesc2):

 hRemoteQueue set to the phQueue out parameter of the
qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

 dwQueue set to the DWORD pointed to by the dwpQueue out parameter of the
qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

 dwSize set to 0.

 lpBuffer set to NULL.

 hCursor set to NULL.

 ulAction set to Action.

%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9

41 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ulTimeout set to TimeOut.

 dwRequestID set to rPendingRemoteReadEntry.RequestId.

 SequentialId set to 0.

The client MUST then perform the following actions to process this event:

 Set rPendingRemoteReadEntry.RemoteReadHandle to the returned pphContext.

 Reconstruct the message, as specified in [MS-MQMQ] section 2.2.18, from the returned lpBuffer
element of the REMOTEREADDESC structure (lpRemoteReadDesc), which contains a UserMessage
Packet ([MS-MQMQ] section 2.2.20).

 Remove the rPendingRemoteReadEntry element from
rPendingRemoteReadEntryCollection.

3.2.4.3 Receiving a Message

To receive a message, the following inputs are expected:

QueueHandle: Handle of the queue to be read from.

TimeOut: Set to the time-out in milliseconds.

The client MUST perform the following actions to process this event:

 Create a PendingRemoteReadEntry (section 3.2.1.1), referred to as rPendingRemoteReadEntry,
and do the following:

 Set rPendingRemoteReadEntry.OpenQueueDescriptorHandle equal to QueueHandle.

 Set rPendingRemoteReadEntry.RequestId equal to a value that uniquely identifies this call
from all other pending calls to this protocol. This value MUST NOT be equal to the RequestId
of any other PendingRemoteReadEntry in rPendingRemoteReadEntryCollection.

 Add rPendingRemoteReadEntry to rPendingRemoteReadEntryCollection.

After creating a PendingRemoteReadEntry, the client SHOULD<29> call the RemoteQmGetVersion
method to determine the capabilities of the server. The client SHOULD check for the following
conditions:

 pMajor is less than 5.

 pMajor is equal to 5, and pMinor is less than 1.

 pMajor is equal to 5, and pMinor is less than 1, and pBuildNumber is less than 951.

If any of the above conditions are satisfied, the client MUST:

 Call the RemoteQMStartReceive method and MUST specify the following parameter values for

the REMOTEREADDESC structure (lpRemoteReadDesc):

 hRemoteQueue set to the phQueue out parameter of the
qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

 dwQueue set to the DWORD pointed to by the dwpQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

 hCursor set to NULL.

%5bMS-MQMQ%5d.pdf#Section_b7cc2590a61745dfb6a31f31102b36fb
%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9

42 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 dwSize set to 0.

 lpBuffer set to NULL.

 ulAction set to MQ_ACTION_RECEIVE.

 ulTimeout set to TimeOut.

 dwRequestID set to rPendingRemoteReadEntry.RequestId.

Else if none of the above conditions are satisfied, the client MUST:

 Call the RemoteQMStartReceive2 method and MUST specify the following parameter values for
the REMOTEREADDESC2 structure (lpRemoteReadDesc2):

 hRemoteQueue set to the phQueue out parameter of the
qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

 dwQueue set to the DWORD pointed to by the dwpQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

 hCursor set to NULL.

 dwSize set to 0.

 lpBuffer set to NULL.

 ulAction set to MQ_ACTION_RECEIVE.

 ulTimeout set to TimeOut.

 dwRequestID set to rPendingRemoteReadEntry.RequestId.

 SequentialId set to 0.

The client MUST then perform the following actions to process this event:

 Set rPendingRemoteReadEntry.RemoteReadHandle to the returned pphContext.

 Reconstruct the message, as specified in [MS-MQMQ] section 2.2.18, from the returned lpBuffer
element of the REMOTEREADDESC structure (lpRemoteReadDesc), which contains a UserMessage
Packet ([MS-MQMQ] section 2.2.20).

 Advise the server that the message was received by calling the RemoteQMEndReceive method
with the following parameter values:

 pphContext set to the rPendingRemoteReadEntry.RemoteReadHandle.

 dwAck set to 0x00000002 (RR_ACK).

 Remove the rPendingRemoteReadEntry element from
rPendingRemoteReadEntryCollection.

3.2.4.4 Purging a Queue

To purge a queue, the following input is expected:

QueueHandle: Handle of the queue to be purged.

The client MUST perform the following actions to process this event:

 Call the RemoteQMPurgeQueue method with the hQueue parameter set to QueueHandle.

%5bMS-MQMQ%5d.pdf#Section_b7cc2590a61745dfb6a31f31102b36fb

43 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.4.5 Peeking a Message by Using a Cursor

To peek a message by using a cursor, the following inputs are expected:

QueueHandle: Handle of the queue to be peeked from.

TimeOut: Set to the time-out in milliseconds.

Action: Set to MQ_ACTION_PEEK_CURRENT or MQ_ACTION_PEEK_NEXT, as described in section
3.1.4.1.

The client MUST perform the following actions to process this event:

 Create a PendingRemoteReadEntry (section 3.2.1.1), referred to as rPendingRemoteReadEntry,
and do the following:

 Set rPendingRemoteReadEntry.OpenQueueDescriptorHandle equal to QueueHandle.

 Set rPendingRemoteReadEntry.RequestId equal to a value that uniquely identifies this call

from all other pending calls to this protocol. This value MUST NOT be equal to the RequestId
of any other PendingRemoteReadEntry in rPendingRemoteReadEntryCollection.

 Add rPendingRemoteReadEntry to rPendingRemoteReadEntryCollection.

After creating a PendingRemoteReadEntry, the client SHOULD<30> call the RemoteQmGetVersion
method to determine the capabilities of the server. The client SHOULD check for the following

conditions:

 pMajor is less than 5.

 pMajor is equal to 5, and pMinor is less than 1.

 pMajor is equal to 5, and pMinor is less than 1, and pBuildNumber is less than 951.

If any of the above conditions are satisfied, the client MUST:

 Call the RemoteQMStartReceive method and MUST specify the following parameter values for
the REMOTEREADDESC structure (lpRemoteReadDesc):

 hRemoteQueue set to the phQueue out parameter of the
qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

 dwQueue set to the DWORD pointed to by the dwpQueue out parameter of the
qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

 hCursor set to the cursor handle obtained from qmcomm:R_QMCreateRemoteCursor, as
specified in [MS-MQMP] section 3.1.4.4.

 dwSize set to 0.

 lpBuffer set to NULL.

 ulAction set to Action.

 ulTimeout set to TimeOut.

 dwRequestID set to rPendingRemoteReadEntry.RequestId.

Else if none of the above conditions are satisfied, the client MUST:

 Call the RemoteQMStartReceive2 method and MUST specify the following parameter values for

the REMOTEREADDESC2 structure (lpRemoteReadDesc2):

%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9

44 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 hRemoteQueue set to the phQueue out parameter of the
qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

 dwQueue set to the DWORD pointed to by the dwpQueue out parameter of the
qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

 hCursor set to the cursor handle obtained from qmcomm:R_QMCreateRemoteCursor, as
specified in [MS-MQMP] section 3.1.4.4.

 dwSize set to 0.

 lpBuffer set to NULL.

 ulAction set to Action.

 ulTimeout set to TimeOut.

 dwRequestID set to rPendingRemoteReadEntry.RequestId.

 SequentialId set to 0.

The client MUST then perform the following actions to process this event:

 Set rPendingRemoteReadEntry.RemoteReadHandle to the returned pphContext.

 Reconstruct the message, as specified in [MS-MQMQ] section 2.2.18, from the returned lpBuffer
element of the REMOTEREADDESC structure (lpRemoteReadDesc), which contains a UserMessage
Packet ([MS-MQMQ] section 2.2.20).

 Remove the rPendingRemoteReadEntry element from
rPendingRemoteReadEntryCollection.

3.2.4.6 Receiving a Message by Using a Cursor

To receive a message by using a cursor, the following inputs are expected:

QueueHandle: Handle of the queue to be read from.

TimeOut: Set to the time-out in milliseconds.

The client MUST perform the following actions to process this event:

 Create a PendingRemoteReadEntry (section 3.2.1.1), referred to as rPendingRemoteReadEntry,
and do the following:

 Set rPendingRemoteReadEntry.OpenQueueDescriptorHandle equal to QueueHandle.

 Set rPendingRemoteReadEntry.RequestId equal to a value that uniquely identifies this call
from all other pending calls to this protocol. This value MUST NOT be equal to the RequestId
of any other PendingRemoteReadEntry in rPendingRemoteReadEntryCollection.

 Add rPendingRemoteReadEntry to rPendingRemoteReadEntryCollection.

After creating a PendingRemoteReadEntry, the client SHOULD<31> call the RemoteQmGetVersion
method to determine the capabilities of the server. The client SHOULD check for the following
conditions:

 pMajor is less than 5.

 pMajor is equal to 5, and pMinor is less than 1.

%5bMS-MQMQ%5d.pdf#Section_b7cc2590a61745dfb6a31f31102b36fb

45 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 pMajor is equal to 5, and pMinor is less than 1, and pBuildNumber is less than 951.

If any of the above conditions are satisfied, the client MUST:

 Call the RemoteQMStartReceive method and MUST specify the following parameter values for
the REMOTEREADDESC structure (lpRemoteReadDesc):

 hRemoteQueue set to the phQueue out parameter of the
qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

 dwQueue set to the DWORD pointed to by the dwpQueue out parameter of the
qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

 hCursor set to the cursor handle obtained from qmcomm:R_QMCreateRemoteCursor, as
specified in [MS-MQMP] section 3.1.4.4.

 dwSize set to 0.

 lpBuffer set to NULL.

 ulAction set to MQ_ACTION_RECEIVE.

 ulTimeout set to TimeOut.

 dwRequestID set to rPendingRemoteReadEntry.RequestId.

Else if none of the above conditions is satisfied, the client MUST:

 Call the RemoteQMStartReceive2 method and MUST specify the following parameter values for

the REMOTEREADDESC2 structure (lpRemoteReadDesc2):

 hRemoteQueue set to the phQueue out parameter of the
qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

 dwQueue set to the DWORD pointed to by the dwpQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

 hCursor set to the cursor handle obtained from qmcomm:R_QMCreateRemoteCursor, as
specified in [MS-MQMP] section 3.1.4.4.

 dwSize set to 0.

 lpBuffer set to NULL.

 ulAction set to MQ_ACTION_RECEIVE.

 ulTimeout set to TimeOut.

 dwRequestID set to rPendingRemoteReadEntry.RequestId.

 SequentialId set to 0.

The client MUST then perform the following actions to process this event:

 Set rPendingRemoteReadEntry.RemoteReadHandle to the returned pphContext.

 Reconstruct the message, as specified in [MS-MQMQ] section 2.2.18, from the returned lpBuffer
element of the REMOTEREADDESC structure (lpRemoteReadDesc), which contains a UserMessage
Packet ([MS-MQMQ] section 2.2.20).

 Advise the server that the message was received by calling the RemoteQMEndReceive method
with the following parameter values:

%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9
%5bMS-MQMQ%5d.pdf#Section_b7cc2590a61745dfb6a31f31102b36fb

46 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 pphContext set to the rPendingRemoteReadEntry.RemoteReadHandle.

 dwAck set to 0x00000002 (RR_ACK).

 Remove the rPendingRemoteReadEntry element from
rPendingRemoteReadEntryCollection.

3.2.4.7 Canceling a Pending Peek or Receive

The client MAY trigger this event while processing the Closing a Queue event as specified in section
3.2.4.9, to explicitly cancel all pending peek and receive operations on the queue, prior to closing the

queue.

To cancel a pending peek or receive, the following inputs are expected:

A queue handle value acquired from the phQueue out parameter of the
qmcomm:R_QMOpenRemoteQueue method, as specified in [MS-MQMP] section 3.1.4.2.

RequestId: The requestId that uniquely identifies the pending remote read operation.

The client MUST perform the following actions to process this event:

 Find the PendingRemoteReadEntry, referred to as rPendingRemoteReadEntry, in the

rPendingRemoteReadEntryCollection, where
rPendingRemoteReadEntry.OpenQueueDescriptorHandle = QueueHandle, and
rPendingRemoteReadEntry.RequestId = RequestId.

 Call the RemoteQMCancelReceive method with the following:

 hQueue set to QueueHandle.

 pQueue set to the dwpQueue out parameter of the qmcomm:R_QMOpenRemoteQueue
method, as specified in [MS-MQMP] section 3.1.4.2.

 dwRequestID set to RequestId.

 Remove the rPendingRemoteReadEntry element from
rPendingRemoteReadEntryCollection.

3.2.4.8 Closing a Cursor

To close a cursor, the following inputs are expected:

CursorHandle: Handle of the cursor obtained in a previous call to
qmcomm:R_QMCreateRemoteCursor, as specified in [MS-MQMP] section 3.1.4.4.

The client MUST perform the following actions to process this event:

 Call the RemoteQMCloseCursor method with the following:

 hQueue set to the phQueue out parameter of qmcomm:R_QMOpenRemoteQueue method, as

specified in [MS-MQMP].

 hCursor set to CursorHandle.

3.2.4.9 Closing a Queue

To close a queue, the following inputs are expected:

QueueHandle: Handle of the queue to be closed.

%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9
%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9

47 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

RequestId: The requestId that uniquely identifies the pending remote read operation.

The client MUST perform the following actions to process this event:

 Find the RemoteOpenQueueEntry, referred to as rRemoteOpenQueueEntry, in the
rRemoteOpenQueueEntryCollection, where

rRemoteOpenQueueEntry.OpenQueueDescriptorHandle = QueueHandle.

 The client MAY explicitly cancel all pending peek or receive operations on the queue by finding all
PendingRemoteReadEntry elements from rPendingRemoteReadEntryCollection, where
PendingRemoteReadEntry.OpenQueueDescriptorHandle = QueueHandle, and for each such
element, raise the Canceling a Pending Peek or Receive (section 3.2.4.7) event with the following:

 QueueHandle set to PendingRemoteReadEntry.OpenQueueDescriptorHandle.

 RequestId set to PendingRemoteReadEntry.RequestId.

 Call the RemoteQMCloseQueue (section 3.1.4.4) method with the following:

 pphContext set to rRemoteOpenQueueEntry.RRSessionHandle.

 Remove the rRemoteOpenQueueEntry element from rPendingRemoteReadEntryCollection.

3.2.5 Timer Events

There are no timer events.

3.2.6 Other Local Events

There are no local events.

48 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of the Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol.

4.1 Receive Example

The following sequence diagram illustrates a supporting server receiving a message from a queue on a
remote queue manager on behalf of an MQMP application. It is closely related to the example in
section 4.2 of [MS-MQMP] and represents an expansion of step 12 of that example. This example
assumes that steps 1-11 of that example have been executed prior to the beginning of the following
sequence diagram, and that steps 13 and 14 of that example will be executed after the end of the

following sequence diagram.

Figure 2: Client receive

In response to the MQMP application invoking the rpc_ACReceiveMessageEx method of [MS-MQMP],
the supporting server invokes methods on the remote queue manager on the MQMP application's
behalf:

1. The supporting server calls RemoteQMStartReceive on the remote queue manager with a ulAction

value of MQ_ACTION_RECEIVE (0x00000000) and a unique dwRequestID value chosen by the
client.

2. The remote queue manager associates a pending request with the passed dwRequestID, which will
be used to correlate a subsequent call to RemoteQMEndReceive or RemoteQMCancelReceive with
the same value for dwRequestID. In addition, the remote queue manager returns the message
and MQ_OK (0x00000000) to indicate success.

%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9

49 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3. The supporting server indicates that the message was successfully received by calling
RemoteQMEndReceive, specifying RR_ACK (0x00000002) for dwAck.

4. The remote queue manager completes the corresponding pending request created by the call to
RemoteQMStartReceive and, because RR_ACK is specified, removes the message from the queue.

It also returns MQ_OK (0x00000000) to indicate success.

4.2 Purge Example

The following sequence diagram illustrates a supporting server purging a queue on a remote queue

manager on behalf of an MQMP application. It is closely related to the example in section 4.2 of [MS-
MQMP] and represents an expansion of step 12 of that example. This example assumes that steps 1-
11 of that example have been executed prior to the beginning of the following sequence diagram, and
that steps 13 and 14 of that example will be executed after the end of the following sequence
diagram.

Figure 3: Purging a queue

In response to the MQMP application invoking the rpc_ACPurgeQueue method of [MS-MQMP], the

supporting server invokes methods on the remote queue manager on the MQMP application's behalf:

1. The supporting server calls RemoteQMPurgeQueue on the remote queue manager.

2. The remote queue manager removes all messages from the queue and returns MQ_OK
(0x00000000) to indicate success.

%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9
%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9

50 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

Clients can invoke methods of this interface at the "none" authentication level, depending on the
network environment. Implementers need to consider carefully the security implications of accepting
method calls from unauthenticated clients. Server implementations that are designed with these
considerations in mind might reject methods invoked by unauthenticated clients by returning
MQ_ERROR_ACCESS_DENIED (0xC00E0025).

This protocol depends on security checks being done when the queue is opened by using the
qmcomm:R_QMOpenRemoteQueue method, as specified in [MS-MQMP] section 3.1.4.2.

The RemoteQMGetQMQMServerPort method is an exception to this consideration because, depending
on the network environment, clients might invoke RemoteQMGetQMQMServerPort prior to configuring
security for the RPC binding. For this reason, server implementations do not restrict access to the
RemoteQMGetQMQMServerPort method.

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9

51 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided below, where "ms-dtyp.idl" is the IDL found in
[MS-DTYP] Appendix A (section 5) and "ms-mqmq.idl" is the IDL found in [MS-MQMQ] Appendix
A (section 5).

 import "ms-dtyp.idl";
 import "ms-mqmq.idl";

 [
 uuid(1088a980-eae5-11d0-8d9b-00a02453c337),
 version(1.0),
 pointer_default(unique)
]
 interface qm2qm
 {
 typedef [context_handle] void *PCTX_RRSESSION_HANDLE_TYPE;

 typedef [context_handle] void *PCTX_REMOTEREAD_HANDLE_TYPE;

 typedef enum _REMOTEREADACK {
 RR_UNKNOWN,
 RR_NACK,
 RR_ACK
 } REMOTEREADACK ;

 typedef struct _REMOTEREADDESC {
 DWORD hRemoteQueue ;
 DWORD hCursor ;
 DWORD ulAction ;
 DWORD ulTimeout ;
 [range (0, 4325376)] DWORD dwSize ;
 DWORD dwQueue ;
 DWORD dwRequestID;
 DWORD Reserved;
 DWORD dwArriveTime ;
 REMOTEREADACK eAckNack ;
 [unique, size_is(dwSize), length_is(dwSize)] byte *lpBuffer ;
 } REMOTEREADDESC ;

 HRESULT
 RemoteQMStartReceive(
 [in] handle_t hBind,
 [out] PCTX_REMOTEREAD_HANDLE_TYPE *pphContext,
 [in, out] REMOTEREADDESC* lpRemoteReadDesc
);

 HRESULT
 RemoteQMEndReceive(
 [in] handle_t hBind,
 [in, out] PCTX_REMOTEREAD_HANDLE_TYPE *pphContext,
 [in, range(1, 2)] DWORD dwAck
);

 HRESULT
 RemoteQMOpenQueue (
 [in] handle_t hBind,
 [out] PCTX_RRSESSION_HANDLE_TYPE *phContext,
 [in] GUID *pLicGuid,
 [in, range(0, 16)] DWORD dwMQS,
 [in] DWORD hQueue,
 [in] DWORD pQueue,
 [in] DWORD dwpContext
);

 HRESULT

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-MQMQ%5d.pdf#Section_b7cc2590a61745dfb6a31f31102b36fb

52 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 RemoteQMCloseQueue (
 [in] handle_t hBind,
 [in, out] PCTX_RRSESSION_HANDLE_TYPE *pphContext
);

 HRESULT
 RemoteQMCloseCursor (
 [in] handle_t hBind,
 [in] DWORD hQueue,
 [in] DWORD hCursor
);

 HRESULT
 RemoteQMCancelReceive (
 [in] handle_t hBind,
 [in] DWORD hQueue,
 [in] DWORD pQueue,
 [in] DWORD dwRequestID
);

 HRESULT
 RemoteQMPurgeQueue (
 [in] handle_t hBind,
 [in] DWORD hQueue
);

 DWORD
 RemoteQMGetQMQMServerPort (
 [in] handle_t hBind,
 [in, range(0, 3)] DWORD dwPortType
);

 typedef struct _REMOTEREADDESC2 {
 REMOTEREADDESC * pRemoteReadDesc;
 ULONGLONG SequentialId;
 } REMOTEREADDESC2;

 void
 RemoteQmGetVersion(
 [in] handle_t hBind,
 [out] unsigned char * pMajor,
 [out] unsigned char * pMinor,
 [out] unsigned short * pBuildNumber
);

 HRESULT
 RemoteQMStartReceive2(
 [in] handle_t hBind,
 [out] PCTX_REMOTEREAD_HANDLE_TYPE *pphContext,
 [in, out] REMOTEREADDESC2* lpRemoteReadDesc2
);

 HRESULT
 RemoteQMStartReceiveByLookupId(
 [in] handle_t hBind,
 [in] ULONGLONG LookupId,
 [out] PCTX_REMOTEREAD_HANDLE_TYPE *pphContext,
 [in, out] REMOTEREADDESC2* lpRemoteReadDesc2
);
 }

53 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows NT operating system

 Windows 2000 operating system

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies

to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 1.6: This protocol is used only when an application is receiving messages from a remote

queue using the [MS-MQMP] protocol through an MSMQ supporting server. The supporting server uses
this protocol regardless of the Windows version on the destination machine of the queue. Only
Windows NT, Windows 2000, or Windows XP 32-bit and Windows Server 2003 32-bit on domain joined
machines can be configured to support such applications. Applications can also receive messages from
a remote queue using the [MC-MQAC] protocol. In such case, the [MC-MQAC] protocol server uses the
RemoteRead [MS-MQRR] protocol for equivalent functionality.

<2> Section 1.7: These methods are not implemented by Windows NT or Windows 2000. All other
versions of Windows implement these methods.

<3> Section 2.1: The ncacn_spx protocol sequence is supported only by Windows NT and Windows
2000. Support for IPX and the ncacn_spx protocol sequence is deprecated on Windows XP, Windows
Server 2003, Windows Vista, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server
2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 2016.

<4> Section 2.1: The ncacn_spx protocol sequence is supported only by Windows NT and Windows

2000. Support for IPX and the ncacn_spx protocol sequence is deprecated on Windows XP, Windows

%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9
%5bMC-MQAC%5d.pdf#Section_5ed096a9b6414a5ab7497e6937d20f4d
%5bMS-MQRR%5d.pdf#Section_9edbc8fa02ad4c79804f6bb8f430aac1

54 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Server 2003, Windows Vista, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server
2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 2016.

<5> Section 2.1: Windows NT, Windows 2000, Windows XP, and Windows Server 2003 clients use
RPC dynamic endpoints to obtain the initial RPC binding handle. These clients make the

RemoteQMGetQMQMServerPort call as specified in section 3.1.4.8 with the initial binding handle and
use the returned value to obtain a new RPC binding handle to be used for all subsequent RPC method
calls on the protocol. On all other versions of the Windows operating system, the protocol clients do
not call the RemoteQMGetQMQMServerPort method; instead, the clients use RPC dynamic endpoints to
obtain the RPC binding handle and use this handle for all subsequent RPC method calls on the
protocol.

<6> Section 2.2.2.1: The server returns an error if the receive request identifier supplied by the client

is currently in use, as described in sections 3.1.4.1 and 3.1.4.10. Windows NT, Windows 2000, and
Windows XP do not perform this validation.

<7> Section 2.3: For Windows NT and Windows 2000, this protocol uses the Message Queuing
(MSMQ): Directory Service Protocol [MS-MQDS].

<8> Section 2.3: For the Message Queuing (MSMQ): Directory Service Protocol [MS-MQDS], the
Directory Service schema elements are described in [MS-MQDS] sections 2.2.10 and 3.1.4.21.1

through 3.1.4.21.4.

<9> Section 3.1.4: Windows 2000, Windows XP, and Windows Server 2003 use target level 5.0.
Windows NT disables strict NDR data consistency checks.

<10> Section 3.1.4.1: Windows NT, Windows 2000, and Windows XP do not perform this validation.

<11> Section 3.1.4.2: On Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7,
Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,
Windows 10, and Windows Server 2016, the server does not perform this search.

<12> Section 3.1.4.3: On Windows NT, Windows 2000, Windows XP, and Windows Server 2003, if the
value of this parameter is 0x00000000, the server enforces the client access licensing restrictions; if it

is nonzero, the server does not enforce the restrictions. This parameter is ignored by Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 2016.

<13> Section 3.1.4.3: In Windows NT and Windows 2000 the hQueue parameter is required to be set
to the same value as the phQueue out parameter of qmcomm:R_QMOpenRemoteQueue, as specified

in [MS-MQMP] section 3.1.4.2. If an OpenQueueDescriptor whose Handle equals hQueue does not
exist in the OpenQueueDescriptorCollection of any queue in QueueManager.QueueCollection,
the server returns MQ_ERROR_INVALID_PARAMETER (0xC00E0006) when it starts processing the call.

<14> Section 3.1.4.3: Windows NT, Windows 2000, and Windows XP do not perform this validation.

<15> Section 3.1.4.3: Windows NT and Windows 2000 set OpenQueueDescriptorHandle to
hQueue.

<16> Section 3.1.4.4: On Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7,

Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,
Windows 10, and Windows Server 2016, the server does not perform this search.

<17> Section 3.1.4.6: In Windows NT and Windows 2000, MQ_ERROR_INVALID_HANDLE
(0xc00e0007) is returned if pQueue or hQueue is NULL

<18> Section 3.1.4.7: All Windows implementations of this method other than Windows NT, Windows
2000 and Windows XP throw an exception instead of returning the mentioned error codes in case of

failure. The exception code contains the specific error code.

%5bMS-MQDS%5d.pdf#Section_1c8a4041846e487ea4b76051b9774247

55 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<19> Section 3.1.4.8: RPC over SPX is supported only by Windows NT and Windows 2000. Windows
XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008

R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and
Windows Server 2016 do not support this value, and the MQQP server returns 0x00000000 to indicate

failure.

<20> Section 3.1.4.8: RPC over SPX is supported only by Windows NT and Windows 2000. Windows
XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008
R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and
Windows Server 2016 do not support this value, and the MQQP server returns 0x00000000 to indicate
failure.

<21> Section 3.1.4.9: This method is not implemented by Windows NT or Windows 2000. All other

versions of Windows implement this method.

<22> Section 3.1.4.9: Microsoft implementations of MQQP server on Windows set this value to the
major version number of the underlying Windows operating system. The major version number is
0x05 for Windows XP or Windows Server 2003 and 0x06 for Windows Vista, Windows Server 2008,

Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows
Server 2012 R2, Windows 10, or Windows Server 2016.

<23> Section 3.1.4.9: Microsoft implementations of MQQP server on Windows set this value to the
minor version number of the underlying Windows operating system. The minor version number is
0x01 for Windows XP; 0x02 for Windows Server 2003; 0x00 for Windows Vista or Windows Server
2008; and 0x1 for Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows
8.1, Windows Server 2012 R2, Windows 10, or Windows Server 2016.

<24> Section 3.1.4.9: Microsoft implementations of MQQP server on Windows set this value to the
specific build number of the underlying Windows operating system. The initial build numbers for

Windows 2000, Windows XP, Windows Server 2003, Windows Vista, and Windows Server 2008 are
645, 1020, 1716, 6000, and 6001 respectively. The build number is 6531 or greater if the MQQP
server is running on Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, Windows Server 2012 R2, Windows 10, or Windows Server 2016. The build number is
updated with each service pack or hot fix release of the operating system.

<25> Section 3.1.4.10: This method is not implemented by Windows NT or Windows 2000. All other
versions of Windows implement this method.

<26> Section 3.1.4.10: Windows NT, Windows 2000, and Windows XP do not perform this validation.

<27> Section 3.1.4.11: This method is not implemented by Windows NT or Windows 2000. All other
versions of Windows implement this method.

<28> Section 3.2.4.2: Windows NT and Windows 2000 clients do not make a call to
RemoteQmGetVersion, and always call RemoteQMStartReceive rather than RemoteQMStartReceive2.

<29> Section 3.2.4.3: Windows NT and Windows 2000 clients do not make a call to

RemoteQmGetVersion, and always call RemoteQMStartReceive rather than RemoteQMStartReceive2.

<30> Section 3.2.4.5: Windows NT and Windows 2000 clients do not make a call to

RemoteQmGetVersion, and always call RemoteQMStartReceive rather than RemoteQMStartReceive2.

<31> Section 3.2.4.6: Windows NT and Windows 2000 clients do not make a call to
RemoteQmGetVersion, and always call RemoteQMStartReceive rather than RemoteQMStartReceive2.

56 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

57 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

9 Index

A

Abstract data model
 client 37
 server 17
Access patterns - overview 10
Applicability 11

C

Canceling
 pending peek 46
 pending receive 46
Canceling a Pending Peek or Receive method 46
Capability negotiation 11
Change tracking 56
Client
 abstract data model 37

 Canceling a Pending Peek or Receive method 46
 Closing a Cursor method 46
 Closing a Queue method 46
 initialization 38
 local events 47
 message processing 38
 Opening a Queue method 38
 Peeking a Message by Using a Cursor method 43
 Peeking a Message method 39
 Purging a Queue method 42
 Receiving a Message by Using a Cursor method 44
 Receiving a Message method 41
 sequencing rules 38
 timer events 47
 timers 38
Closing
 cursor 46
 queue 46
Closing a Cursor method 46
Closing a Queue method 46
Common data types 13
Cursor
 closing 46
 peeking messages 43
 receiving messages 44
 state diagram 17

D

Data model - abstract
 client 37
 server 17
Data types 14
 common - overview 13
Directory service schema elements 16

E

Elements - directory service schema 16
Events
 local - client 47
 local - server 37
 timer - client 47
 timer - server 36

Examples
 overview 48
 purge example 49
 receive example 48

F

Fields - vendor-extensible 12
Full IDL 51

G

Glossary 6

I

IDL 51
Implementer - security considerations 50
Implementers - security considerations 50
Index of security parameters 50
Informative references 8
Initialization
 client 38
 server 18
Introduction 6

L

Local events
 client 47
 server 37

M

Message processing
 client 38
 server 18
Messages
 common data types 13
 overview (section 1.3.1 9, section 2 13)
 peeking - canceling pending 46
 peeking - cursor 43
 peeking - overview 39
 receiving 48
 receiving - canceling 46

 receiving - cursor 44
 receiving - overview 41
 transport 13
Methods
 Canceling a Pending Peek or Receive 46
 Closing a Cursor 46
 Closing a Queue 46
 Opening a Queue 38
 Peeking a Message 39
 Peeking a Message by Using a Cursor 43
 Purging a Queue 42
 Receiving a Message 41
 Receiving a Message by Using a Cursor 44
 RemoteQMCancelReceive (Opnum 5) 27
 RemoteQMCloseCursor (Opnum 4) 26
 RemoteQMCloseQueue (Opnum 3) 25
 RemoteQMEndReceive (Opnum 1) 22

58 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 RemoteQMGetQMQMServerPort (Opnum 7) 29
 RemoteQmGetVersion (Opnum 8) 30
 RemoteQMOpenQueue (Opnum 2) 24
 RemoteQMPurgeQueue (Opnum 6) 28
 RemoteQMStartReceive (Opnum 0) 19
 RemoteQMStartReceive2 (Opnum 9) 30
 RemoteQMStartReceiveByLookupId (Opnum 10)

33

N

Normative references 8

O

Opening a Queue method 38
Opening queue 38
Overview 8
Overview (synopsis) 8

P

Parameters - security 50
Parameters - security index 50
PCTX_REMOTEREAD_HANDLE_TYPE 37
PCTX_RRSESSION_HANDLE_TYPE 37
Peeking a Message by Using a Cursor method 43
Peeking a Message method 39
Peeking messages
 canceling pending 46
 cursor 43
 overview 39
Preconditions 11
Prerequisites 11
Product behavior 53
Protocol Details
 overview 17
Purge example example 49
Purging a Queue method 42
Purging queue (section 3.2.4.4 42, section 4.2 49)

Q

Queue operations - overview 9
Queues

 closing 46
 opening 38
 overview 9
 purging (section 3.2.4.4 42, section 4.2 49)
 state diagram 17

R

Receive example example 48
Receiving a Message by Using a Cursor method 44
Receiving a Message method 41
Receiving messages 48
 canceling pending 46
 cursor 44
 overview 41
References 8
 informative 8
 normative 8
Relationship to other protocols 10

RemoteQMCancelReceive (Opnum 5) method 27
RemoteQMCancelReceive method 27
RemoteQMCloseCursor (Opnum 4) method 26
RemoteQMCloseCursor method 26
RemoteQMCloseQueue (Opnum 3) method 25
RemoteQMCloseQueue method 25
RemoteQMEndReceive (Opnum 1) method 22
RemoteQMEndReceive method 22
RemoteQMGetQMQMServerPort (Opnum 7) method

29
RemoteQMGetQMQMServerPort method 29
RemoteQmGetVersion (Opnum 8) method 30
RemoteQmGetVersion method 30
RemoteQMOpenQueue (Opnum 2) method 24
RemoteQMOpenQueue method 24
RemoteQMPurgeQueue (Opnum 6) method 28
RemoteQMPurgeQueue method 28
RemoteQMStartReceive (Opnum 0) method 19
RemoteQMStartReceive method 19
RemoteQMStartReceive2 (Opnum 9) method 30
RemoteQMStartReceive2 method 30
RemoteQMStartReceiveByLookupId (Opnum 10)

method 33

RemoteQMStartReceiveByLookupId method 33
REMOTEREADACK enumeration 14
REMOTEREADDESC structure 14
REMOTEREADDESC2 structure 16

S

Schema elements - directory service 16
Security 50
 implementer considerations 50
 parameter index 50
Sequencing rules
 client 38
 server 18
Server
 abstract data model 17
 initialization 18
 local events 37
 message processing 18
 RemoteQMCancelReceive (Opnum 5) method 27
 RemoteQMCloseCursor (Opnum 4) method 26
 RemoteQMCloseQueue (Opnum 3) method 25
 RemoteQMEndReceive (Opnum 1) method 22
 RemoteQMGetQMQMServerPort (Opnum 7) method

29
 RemoteQmGetVersion (Opnum 8) method 30
 RemoteQMOpenQueue (Opnum 2) method 24
 RemoteQMPurgeQueue (Opnum 6) method 28
 RemoteQMStartReceive (Opnum 0) method 19
 RemoteQMStartReceive2 (Opnum 9) method 30
 RemoteQMStartReceiveByLookupId (Opnum 10)

method 33
 sequencing rules 18
 timer events 36
 timers 18
Standards assignments 12
Structures 14

T

Timer events
 client 47

59 / 59

[MS-MQQP] - v20160714
Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 server 36
Timers
 client 38
 server 18
Tracking changes 56
Transport 13
Transport - message 13

V

Vendor-extensible fields 12
Versioning 11

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Messages
	1.3.2 Queues
	1.3.3 Queue Operations
	1.3.4 Access Patterns

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Data Types
	2.2.1.1 PCTX_RRSESSION_HANDLE_TYPE
	2.2.1.2 PCTX_REMOTEREAD_HANDLE_TYPE
	2.2.1.3 REMOTEREADACK

	2.2.2 Structures
	2.2.2.1 REMOTEREADDESC
	2.2.2.2 REMOTEREADDESC2

	2.3 Directory Service Schema Elements

	3 Protocol Details
	3.1 qm2qm Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Shared Data Elements
	3.1.1.2 RemoteReadEntry
	3.1.1.3 RemoteReadEntryCollection
	3.1.1.4 OpenQueueEntry
	3.1.1.5 OpenQueueEntryCollection

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 RemoteQMStartReceive (Opnum 0)
	3.1.4.2 RemoteQMEndReceive (Opnum 1)
	3.1.4.3 RemoteQMOpenQueue (Opnum 2)
	3.1.4.4 RemoteQMCloseQueue (Opnum 3)
	3.1.4.5 RemoteQMCloseCursor (Opnum 4)
	3.1.4.6 RemoteQMCancelReceive (Opnum 5)
	3.1.4.7 RemoteQMPurgeQueue (Opnum 6)
	3.1.4.8 RemoteQMGetQMQMServerPort (Opnum 7)
	3.1.4.9 RemoteQmGetVersion (Opnum 8)
	3.1.4.10 RemoteQMStartReceive2 (Opnum 9)
	3.1.4.11 RemoteQMStartReceiveByLookupId (Opnum 10)

	3.1.5 Timer Events
	3.1.6 Other Local Events
	3.1.6.1 PCTX_RRSESSION_HANDLE_TYPE Rundown
	3.1.6.2 PCTX_REMOTEREAD_HANDLE_TYPE Rundown

	3.2 qm2qm Client Details
	3.2.1 Abstract Data Model
	3.2.1.1 PendingRemoteReadEntry
	3.2.1.2 PendingRemoteReadEntryCollection
	3.2.1.3 RemoteOpenQueueEntry
	3.2.1.4 RemoteOpenQueueEntryCollection

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Opening a Queue
	3.2.4.2 Peeking a Message
	3.2.4.3 Receiving a Message
	3.2.4.4 Purging a Queue
	3.2.4.5 Peeking a Message by Using a Cursor
	3.2.4.6 Receiving a Message by Using a Cursor
	3.2.4.7 Canceling a Pending Peek or Receive
	3.2.4.8 Closing a Cursor
	3.2.4.9 Closing a Queue

	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Receive Example
	4.2 Purge Example

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

