

1 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

[MS-MQMQ]:
Message Queuing (MSMQ):
Data Structures

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise. If you would prefer a written license, or if the technologies described in the Open

Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

05/11/2007 0.1 MCPP Milestone 4 Initial Availability

08/10/2007 1.0 Major Updated and revised the technical content.

09/28/2007 1.0.1 Editorial Revised and edited the technical content.

10/23/2007 1.0.2 Editorial Revised and edited the technical content.

11/30/2007 1.0.3 Editorial Revised and edited the technical content.

01/25/2008 1.0.4 Editorial Revised and edited the technical content.

03/14/2008 2.0 Major Updated and revised the technical content.

05/16/2008 2.0.1 Editorial Revised and edited the technical content.

06/20/2008 3.0 Major Updated and revised the technical content.

07/25/2008 3.0.1 Editorial Revised and edited the technical content.

08/29/2008 4.0 Major Updated and revised the technical content.

10/24/2008 5.0 Major Updated and revised the technical content.

12/05/2008 6.0 Major Updated and revised the technical content.

01/16/2009 6.1 Minor Updated the technical content.

02/27/2009 7.0 Major Updated and revised the technical content.

04/10/2009 7.1 Minor Updated the technical content.

05/22/2009 7.2 Minor Updated the technical content.

07/02/2009 7.3 Minor Updated the technical content.

08/14/2009 7.4 Minor Updated the technical content.

09/25/2009 8.0 Major Updated and revised the technical content.

11/06/2009 9.0 Major Updated and revised the technical content.

12/18/2009 10.0 Major Updated and revised the technical content.

01/29/2010 11.0 Major Updated and revised the technical content.

03/12/2010 11.1 Minor Updated the technical content.

04/23/2010 11.1.1 Editorial Revised and edited the technical content.

06/04/2010 11.2 Minor Updated the technical content.

3 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Date

Revision

History

Revision

Class Comments

07/16/2010 12.0 Major Significantly changed the technical content.

08/27/2010 13.0 Major Significantly changed the technical content.

10/08/2010 13.1 Minor Clarified the meaning of the technical content.

11/19/2010 14.0 Major Significantly changed the technical content.

01/07/2011 15.0 Major Significantly changed the technical content.

02/11/2011 16.0 Major Significantly changed the technical content.

03/25/2011 17.0 Major Significantly changed the technical content.

05/06/2011 17.1 Minor Clarified the meaning of the technical content.

06/17/2011 17.2 Minor Clarified the meaning of the technical content.

09/23/2011 18.0 Major Significantly changed the technical content.

12/16/2011 19.0 Major Significantly changed the technical content.

03/30/2012 19.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 19.1 Minor Clarified the meaning of the technical content.

10/25/2012 19.2 Minor Clarified the meaning of the technical content.

01/31/2013 19.2 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 20.0 Major Significantly changed the technical content.

11/14/2013 20.0 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Contents

1 Introduction ... 10
1.1 Glossary ... 10
1.2 References .. 16

1.2.1 Normative References ... 16
1.2.2 Informative References ... 18

1.3 Structure Overview .. 18
1.4 Relationship to Protocols and Other Structures .. 18
1.5 Applicability Statement ... 18
1.6 Versioning and Localization ... 18
1.7 Vendor-Extensible Fields ... 19

2 Definitions and Structures .. 20
2.1 MSMQ Queue Names .. 20

2.1.1 Path Names ... 20
2.1.2 Direct Format Names .. 21
2.1.3 Public Format Names .. 22
2.1.4 Private Format Names .. 22
2.1.5 Distribution List Format Names .. 23
2.1.6 Machine, Connector, and Multicast Format Names .. 23
2.1.7 Multiple-Element Format Names ... 24

2.2 Structures... 24
2.2.1 MQDSPUBLICKEY ... 24
2.2.2 MQDSPUBLICKEYS ... 25
2.2.3 SECURITY_INFORMATION ... 26
2.2.4 TA_ADDRESS ... 26

2.2.4.1 IP Address ... 27
2.2.4.2 IPX Address ... 27

2.2.5 SEQUENCE_INFO ... 28
2.2.5.1 SEQUENCE_INFO (Packet) ... 28

2.2.6 QUEUE_FORMAT_TYPE .. 29
2.2.7 QUEUE_FORMAT .. 29
2.2.8 OBJECTID.. 31
2.2.9 DL_ID ... 32
2.2.10 MULTICAST_ID... 32
2.2.11 QUEUE_SUFFIX_TYPE ... 32
2.2.12 PROPVARIANT Type Constants ... 33

2.2.12.1 VARTYPE .. 34
2.2.13 PROPVARIANT .. 34

2.2.13.1 tag_inner_PROPVARIANT ... 34
2.2.13.2 PROPVARIANT .. 36

2.2.14 VARIANT_BOOL .. 36
2.2.15 BLOB .. 36
2.2.16 COUNTEDARRAY ... 36

2.2.16.1 CAUB .. 36
2.2.16.2 CAUI ... 37
2.2.16.3 CAL ... 37
2.2.16.4 CAUL ... 37
2.2.16.5 CAUH .. 37
2.2.16.6 CACLSID .. 38
2.2.16.7 CALPWSTR ... 38

5 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.16.8 CAPROPVARIANT .. 38
2.2.17 ULARGE_INTEGER .. 39
2.2.18 Common Packet Syntax... 39

2.2.18.1 Packet Data Types .. 39
2.2.18.1.1 GUID ... 39
2.2.18.1.2 TxSequenceID... 39
2.2.18.1.3 MessageIdentifier .. 39
2.2.18.1.4 MQFFormatNameElement ... 40

2.2.18.1.4.1 MQFDirectQueueFormatName .. 41
2.2.18.1.4.2 MQFDistributionQueueFormatName .. 41

2.2.18.1.5 Queue Format Type ... 41
2.2.18.1.5.1 PrivateQueueFormatNameId ... 42
2.2.18.1.5.2 DirectQueueFormatName .. 42

2.2.18.1.6 Message Class Identifiers ... 42
2.2.18.1.7 Common Queue Formats .. 44

2.2.18.1.7.1 PublicQueueFormatName .. 44
2.2.18.1.7.2 PrivateQueueFormatName .. 44

2.2.18.1.8 XACTUOW .. 45
2.2.19 Common Headers ... 45

2.2.19.1 BaseHeader.. 45
2.2.19.2 UserHeader .. 47
2.2.19.3 MessagePropertiesHeader .. 52

2.2.20 UserMessage Packet ... 56
2.2.20.1 MultiQueueFormatHeader... 58
2.2.20.2 MQFAddressHeader ... 59
2.2.20.3 MQFSignatureHeader ... 60
2.2.20.4 SessionHeader.. 60
2.2.20.5 TransactionHeader .. 62
2.2.20.6 SecurityHeader ... 64
2.2.20.7 SoapHeader ... 68
2.2.20.8 DebugHeader ... 69

2.2.21 MQUSERSIGNCERTS ... 71
2.2.22 MQUSERSIGNCERT ... 71
2.2.23 MQQMACCESSMASK ... 72
2.2.24 MQQUEUEACCESSMASK .. 74
2.2.25 MQSITEACCESSMASK ... 75
2.2.26 MQENTACCESSMASK .. 76
2.2.27 MQCNACCESSMASK .. 78

2.3 PROPID .. 79
2.3.1 Queue Property Identifiers ... 79

2.3.1.1 PROPID_Q_INSTANCE ... 79
2.3.1.2 PROPID_Q_TYPE ... 79
2.3.1.3 PROPID_Q_PATHNAME .. 79
2.3.1.4 PROPID_Q_JOURNAL... 80
2.3.1.5 PROPID_Q_QUOTA ... 80
2.3.1.6 PROPID_Q_BASEPRIORITY .. 80
2.3.1.7 PROPID_Q_JOURNAL_QUOTA ... 80
2.3.1.8 PROPID_Q_LABEL ... 80
2.3.1.9 PROPID_Q_CREATE_TIME .. 81
2.3.1.10 PROPID_Q_MODIFY_TIME .. 81
2.3.1.11 PROPID_Q_AUTHENTICATE .. 81
2.3.1.12 PROPID_Q_PRIV_LEVEL ... 81
2.3.1.13 PROPID_Q_TRANSACTION ... 82

6 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.1.14 PROPID_Q_SCOPE .. 82
2.3.1.15 PROPID_Q_QMID .. 82
2.3.1.16 PROPID_Q_PARTITIONID ... 82
2.3.1.17 PROPID_Q_SEQNUM ... 82
2.3.1.18 PROPID_Q_HASHKEY .. 83
2.3.1.19 PROPID_Q_LABEL_HASHKEY .. 83
2.3.1.20 PROPID_Q_FULL_PATH .. 83
2.3.1.21 PROPID_Q_NAME_SUFFIX .. 83
2.3.1.22 PROPID_Q_PATHNAME_DNS .. 83
2.3.1.23 PROPID_Q_MULTICAST_ADDRESS .. 83
2.3.1.24 PROPID_Q_ADS_PATH ... 84
2.3.1.25 PROPID_Q_SECURITY.. 84
2.3.1.26 PROPID_Q_OBJ_SECURITY .. 84
2.3.1.27 PROPID_Q_SECURITY_INFORMATION ... 84

2.3.2 Machine Property Identifiers .. 85
2.3.2.1 PROPID_QM_SITE_ID.. 85
2.3.2.2 PROPID_QM_MACHINE_ID ... 85
2.3.2.3 PROPID_QM_PATHNAME .. 85
2.3.2.4 PROPID_QM_ENCRYPTION_PK.. 85
2.3.2.5 PROPID_QM_ADDRESS ... 85
2.3.2.6 PROPID_QM_CNS ... 85
2.3.2.7 PROPID_QM_OUTFRS .. 86
2.3.2.8 PROPID_QM_INFRS .. 86
2.3.2.9 PROPID_QM_SERVICE ... 86
2.3.2.10 PROPID_QM_QUOTA ... 86
2.3.2.11 PROPID_QM_PARTITIONID .. 86
2.3.2.12 PROPID_QM_HASHKEY .. 87
2.3.2.13 PROPID_QM_SEQNUM ... 87
2.3.2.14 PROPID_QM_JOURNAL_QUOTA ... 87
2.3.2.15 PROPID_QM_MACHINE_TYPE ... 87
2.3.2.16 PROPID_QM_CREATE_TIME .. 87
2.3.2.17 PROPID_QM_MODIFY_TIME ... 87
2.3.2.18 PROPID_QM_FOREIGN .. 87
2.3.2.19 PROPID_QM_OS ... 88
2.3.2.20 PROPID_QM_FULL_PATH ... 88
2.3.2.21 PROPID_QM_SITE_IDS .. 88
2.3.2.22 PROPID_QM_OUTFRS_DN .. 89
2.3.2.23 PROPID_QM_INFRS_DN ... 89
2.3.2.24 PROPID_QM_SERVICE_ROUTING .. 89
2.3.2.25 PROPID_QM_SERVICE_DSSERVER .. 89
2.3.2.26 PROPID_QM_SERVICE_DEPCLIENTS.. 89
2.3.2.27 PROPID_QM_ENCRYPTION_PK_BASE .. 90
2.3.2.28 PROPID_QM_ENCRYPTION_PK_ENHANCED .. 90
2.3.2.29 PROPID_QM_PATHNAME_DNS .. 90
2.3.2.30 PROPID_QM_OBJ_SECURITY .. 90
2.3.2.31 PROPID_QM_SECURITY_INFORMATION ... 90
2.3.2.32 PROPID_QM_ENCRYPT_PKS ... 90
2.3.2.33 PROPID_QM_SIGN_PKS ... 91
2.3.2.34 PROPID_QM_OWNER_SID .. 91
2.3.2.35 PROPID_QM_GROUP_IN_CLUSTER .. 91
2.3.2.36 PROPID_QM_SECURITY ... 91
2.3.2.37 PROPID_QM_SIGN_PK ... 92
2.3.2.38 PROPID_QM_ENCRYPT_PK ... 92

7 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.2.39 PROPID_QM_UPGRADE_DACL .. 92
2.3.3 Site Property Identifiers .. 92

2.3.3.1 PROPID_S_PATHNAME .. 92
2.3.3.2 PROPID_S_SITEID .. 92
2.3.3.3 PROPID_S_GATES .. 92
2.3.3.4 PROPID_S_PSC .. 93
2.3.3.5 PROPID_S_INTERVAL1 .. 93
2.3.3.6 PROPID_S_INTERVAL2 .. 93
2.3.3.7 PROPID_S_PARTITIONID ... 93
2.3.3.8 PROPID_S_SEQNUM ... 93
2.3.3.9 PROPID_S_FULL_NAME ... 93
2.3.3.10 PROPID_S_NT4_STUB ... 94
2.3.3.11 PROPID_S_FOREIGN ... 94
2.3.3.12 PROPID_S_DONOTHING .. 94
2.3.3.13 PROPID_S_SECURITY .. 94
2.3.3.14 PROPID_S_PSC_SIGNPK .. 95
2.3.3.15 PROPID_S_SECURITY_INFORMATION .. 95

2.3.4 Connected Network Property Identifiers .. 95
2.3.4.1 PROPID_CN_PROTOCOLID ... 95
2.3.4.2 PROPID_CN_NAME .. 95
2.3.4.3 PROPID_CN_GUID .. 95
2.3.4.4 PROPID_CN_PARTITIONID ... 96
2.3.4.5 PROPID_CN_SEQNUM ... 96
2.3.4.6 PROPID_CN_SECURITY ... 96

2.3.5 Enterprise Object Property Identifiers ... 96
2.3.5.1 PROPID_E_NAME .. 96
2.3.5.2 PROPID_E_NAMESTYLE ... 96
2.3.5.3 PROPID_E_CSP_NAME... 97
2.3.5.4 PROPID_E_PECNAME .. 97
2.3.5.5 PROPID_E_S_INTERVAL1 .. 97
2.3.5.6 PROPID_E_S_INTERVAL2 .. 97
2.3.5.7 PROPID_E_PARTITIONID ... 97
2.3.5.8 PROPID_E_SEQNUM .. 97
2.3.5.9 PROPID_E_ID ... 98
2.3.5.10 PROPID_E_CRL ... 98
2.3.5.11 PROPID_E_CSP_TYPE .. 98
2.3.5.12 PROPID_E_ENCRYPT_ALG .. 98
2.3.5.13 PROPID_E_SIGN_ALG ... 98
2.3.5.14 PROPID_E_HASH_ALG ... 98
2.3.5.15 PROPID_E_LONG_LIVE .. 98
2.3.5.16 PROPID_E_VERSION ... 99
2.3.5.17 PROPID_E_SECURITY .. 99
2.3.5.18 PROPID_E_CIPHER_MODE ... 99

2.3.6 User Object Property Identifiers ... 99
2.3.6.1 PROPID_U_SID .. 99
2.3.6.2 PROPID_U_PARTITIONID ... 99
2.3.6.3 PROPID_U_SEQNUM .. 100
2.3.6.4 PROPID_U_SIGN_CERT .. 100
2.3.6.5 PROPID_U_DIGEST .. 100
2.3.6.6 PROPID_U_ID ... 100

2.3.7 Routinglink Property Identifiers ... 100
2.3.7.1 PROPID_L_NEIGHBOR1 .. 100
2.3.7.2 PROPID_L_NEIGHBOR2 .. 100

8 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.7.3 PROPID_L_COST ... 101
2.3.7.4 PROPID_L_PARTITIONID .. 101
2.3.7.5 PROPID_L_SEQNUM ... 101
2.3.7.6 PROPID_L_ID .. 101
2.3.7.7 PROPID_L_GATES_DN .. 101
2.3.7.8 PROPID_L_NEIGHBOR1_DN .. 101
2.3.7.9 PROPID_L_NEIGHBOR2_DN .. 102
2.3.7.10 PROPID_L_DESCRIPTION .. 102
2.3.7.11 PROPID_L_FULL_PATH ... 102
2.3.7.12 PROPID_L_ACTUAL_COST ... 102
2.3.7.13 PROPID_L_GATES .. 102

2.3.8 Settings Property Identifiers ... 102
2.3.8.1 PROPID_SET_NAME ... 103
2.3.8.2 PROPID_SET_SERVICE ... 103
2.3.8.3 PROPID_SET_QM_ID .. 103
2.3.8.4 PROPID_SET_FULL_PATH ... 103
2.3.8.5 PROPID_SET_NT4 .. 103
2.3.8.6 PROPID_SET_PARTITIONID .. 104
2.3.8.7 PROPID_SET_SITENAME ... 104
2.3.8.8 PROPID_SET_SERVICE_ROUTING .. 104
2.3.8.9 PROPID_SET_SERVICE_DSSERVER .. 104
2.3.8.10 PROPID_SET_SERVICE_DEPCLIENTS .. 105
2.3.8.11 PROPID_SET_OLDSERVICE ... 105

2.3.9 MQUser Property Identifiers .. 105
2.3.9.1 PROPID_MQU_SID ... 105
2.3.9.2 PROPID_MQU_SIGN_CERT .. 105
2.3.9.3 PROPID_MQU_DIGEST ... 106
2.3.9.4 PROPID_MQU_ID ... 106
2.3.9.5 PROPID_MQU_SECURITY .. 106

2.3.10 Computer Property Identifiers ... 106
2.3.10.1 PROPID_COM_FULL_PATH ... 106
2.3.10.2 PROPID_COM_SAM_ACCOUNT ... 106
2.3.10.3 PROPID_COM_ACCOUNT_CONTROL ... 107
2.3.10.4 PROPID_COM_DNS_HOSTNAME ... 107
2.3.10.5 PROPID_COM_SID ... 107
2.3.10.6 PROPID_COM_SIGN_CERT .. 107
2.3.10.7 PROPID_COM_DIGEST .. 107
2.3.10.8 PROPID_COM_ID ... 107

2.3.11 Management Machine Property Identifiers .. 108
2.3.11.1 PROPID_MGMT_MSMQ_ACTIVEQUEUES .. 108
2.3.11.2 PROPID_MGMT_MSMQ_PRIVATEQ.. 108
2.3.11.3 PROPID_MGMT_MSMQ_DSSERVER ... 108
2.3.11.4 PROPID_MGMT_MSMQ_CONNECTED .. 108
2.3.11.5 PROPID_MGMT_MSMQ_TYPE ... 109
2.3.11.6 PROPID_MGMT_MSMQ_BYTES_IN_ALL_QUEUES .. 109

2.3.12 Management Queue Property Identifiers ... 109
2.3.12.1 PROPID_MGMT_QUEUE_PATHNAME ... 109
2.3.12.2 PROPID_MGMT_QUEUE_FORMATNAME ... 109
2.3.12.3 PROPID_MGMT_QUEUE_TYPE .. 109
2.3.12.4 PROPID_MGMT_QUEUE_LOCATION .. 110
2.3.12.5 PROPID_MGMT_QUEUE_XACT ... 110
2.3.12.6 PROPID_MGMT_QUEUE_FOREIGN .. 110
2.3.12.7 PROPID_MGMT_QUEUE_MESSAGE_COUNT ... 111

9 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.12.8 PROPID_MGMT_QUEUE_BYTES_IN_QUEUE ... 111
2.3.12.9 PROPID_MGMT_QUEUE_JOURNAL_MESSAGE_COUNT 111
2.3.12.10 PROPID_MGMT_QUEUE_BYTES_IN_JOURNAL .. 111
2.3.12.11 PROPID_MGMT_QUEUE_STATE .. 111
2.3.12.12 PROPID_MGMT_QUEUE_NEXTHOPS .. 112
2.3.12.13 PROPID_MGMT_QUEUE_EOD_LAST_ACK ... 112
2.3.12.14 PROPID_MGMT_QUEUE_EOD_LAST_ACK_TIME .. 113
2.3.12.15 PROPID_MGMT_QUEUE_EOD_LAST_ACK_COUNT 113
2.3.12.16 PROPID_MGMT_QUEUE_EOD_FIRST_NON_ACK 113
2.3.12.17 PROPID_MGMT_QUEUE_EOD_LAST_NON_ACK .. 113
2.3.12.18 PROPID_MGMT_QUEUE_EOD_NEXT_SEQ .. 113
2.3.12.19 PROPID_MGMT_QUEUE_EOD_NO_READ_COUNT 113
2.3.12.20 PROPID_MGMT_QUEUE_EOD_NO_ACK_COUNT .. 114
2.3.12.21 PROPID_MGMT_QUEUE_EOD_RESEND_TIME ... 114
2.3.12.22 PROPID_MGMT_QUEUE_EOD_RESEND_INTERVAL 114
2.3.12.23 PROPID_MGMT_QUEUE_EOD_RESEND_COUNT .. 114
2.3.12.24 PROPID_MGMT_QUEUE_EOD_SOURCE_INFO ... 114
2.3.12.25 PROPID_MGMT_QUEUE_CONNECTION_HISTORY 115
2.3.12.26 PROPID_MGMT_QUEUE_SUBQUEUE_COUNT .. 117
2.3.12.27 PROPID_MGMT_QUEUE_SUBQUEUE_NAMES .. 117

2.3.13 Deletion Notification Property Identifiers ... 117
2.3.13.1 PROPID_D_SEQNUM .. 117
2.3.13.2 PROPID_D_PARTITIONID .. 117
2.3.13.3 PROPID_D_SCOPE ... 117
2.3.13.4 PROPID_D_OBJTYPE... 117
2.3.13.5 PROPID_D_IDENTIFIER .. 118

2.4 Error Codes .. 118
2.5 Message Properties for Digital Signatures .. 128

2.5.1 MSMQ 1.0 Digital Signature Properties ... 128
2.5.2 MSMQ 2.0 Digital Signature Properties ... 128
2.5.3 MSMQ 3.0 Digital Signature Properties ... 129

3 Structure Examples .. 130

4 Security Considerations .. 131

5 Appendix A: Full IDL ... 132

6 Appendix B: Product Behavior .. 136

7 Change Tracking... 141

8 Index ... 142

10 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

1 Introduction

Message Queuing (MSMQ): Data Structures contains common definitions and data structures that
are used in various protocols in the set of Microsoft Message Queuing protocols. The
documentation for individual protocols contains references to this document, as needed.

Sections 1.7 and 2 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. All other sections and examples in this
specification are informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

Active Directory

distinguished name (DN)
Domain Name System (DNS)
fully qualified domain name (FQDN) (1)

globally unique identifier (GUID)
Interface Definition Language (IDL)
Lightweight Directory Access Protocol (LDAP)
little-endian
Microsoft Interface Definition Language (MIDL)
NULL GUID

Remote Access Service (RAS) server
remote procedure call (RPC)
RPC protocol sequence
RPC transfer syntax
security descriptor
security identifier (SID)
Unicode

universally unique identifier (UUID)

The following terms are specific to this document:

active queue: A queue that contains messages or is currently opened by an application.
Active queues may be public queues, private queues, or outgoing queues.

administration queue: A messaging queue that receives Message Queuing (MSMQ) system-
generated acknowledgment messages. An administration queue is available to MSMQ
applications for checking message status.

application: See Message Queuing application.

application protocol: A protocol that is used by applications to communicate with queue
managers. Application protocols include the Message Queuing (MSMQ): Queue Manager
Client Protocol [MS-MQMP], the Message Queuing (MSMQ): Queue Manager Management

Protocol [MS-MQMR] and the Message Queuing (MSMQ): ActiveX Client Protocol [MC-MQAC].

Backup Site Controller (BSC): An MSMQ Directory Service role played by an MSMQ queue

manager. A BSC contains a read-only copy of the directory for a site. A BSC may satisfy
directory lookup requests but cannot satisfy directory change requests. There may be zero or
more BSCs in a site.

%5bMS-GLOS%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMR%5d.pdf
%5bMC-MQAC%5d.pdf

11 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

connected network: A network of computers in which any two computers can communicate
directly through a common transport protocol (for example, TCP/IP or SPX/IPX). A computer

can belong to multiple connected networks.

ConnectedNetworkID: A GUID that has been assigned to a particular MSMQ Connected

Network and that is unique to that Connected Network.

connector application: An application that runs on a connector server and translates both
outgoing and incoming messages sent between a Message Queuing computer and a foreign
messaging system.

connector queue: A queue used by a connector server. Messages sent to foreign queues
are temporarily stored in a connector queue before they are retrieved by the connector
application.

connector server: A Message Queuing routing server that is configured to send messages
between a Message Queuing site and one or more foreign sites. A connector server has a
connector application running on it and two connector queues for each foreign site: one

used for transactional messages and one used for nontransactional messages.

cursor: A data structure providing sequential access over a message queue. A cursor has a
current pointer that lies between the head and tail pointer of the queue. The pointer can be

moved forward or backward through an operation on the cursor (Next). A message at the
current pointer can be accessed through a nondestructive read (Peek) operation or a
destructive read (Receive) operation.

dead-letter queue: A queue that contains messages that were sent from a host with a
request for negative source journaling and that could not be delivered. Message Queuing
provides a transactional dead-letter queue and a non-transactional dead-letter queue.

direct format name: A name that is used to reference a public queue or a private queue

without accessing the MSMQ Directory Service. Message Queuing can use the physical,
explicit location information provided by direct format names to send messages directly to
their destinations. For more information, see section 2.1.

directory service: An entity that maintains a collection of objects. These objects can be
remotely manipulated either by the Message Queuing (MSMQ): Directory Service Protocol, as
specified in [MS-MQDS], or by the Lightweight Directory Access Protocol (v3), as specified in
[RFC2251].

distribution list: An Active Directory object that can contain explicit references only to
destinations published in Active Directory; that is, to public queues, queue aliases, and
other distribution lists, but not to private and URL-named queues.

enterprise: A unit of administration of a network of MSMQ queue managers. An enterprise
consists of an MSMQ Directory Service, one or more connected networks and one or
more MSMQ sites.

EnterpriseID: A GUID that has been assigned to a particular MSMQ enterprise and is unique
to that enterprise.

enterprise site: An MSMQ site that has a Primary Enterprise Controller as its Primary Site
Controller.

exactly once: A message delivery assurance that requires that the Message Queuing system
will deliver the message to the destination once and only once, such that each sent message
is either delivered once to the destination or an error is raised.

%5bMS-GLOS%5d.pdf
%5bMS-MQDS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

12 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

external transaction: An atomic transaction context dispensed by a transaction coordinator
other than an MSMQ queue manager, such as by a distributed transaction coordinator

(DTC), and used by an MSMQ queue manager to coordinate its state changes with state
changes in other resource managers. For more information, see [MS-DTCO].

foreign queue: A messaging queue that resides on a computer that does not run an MSMQ
messaging application.

foreign site: A site that contains messaging applications that are not based on MSMQ.

format name: A name used to reference a queue when making calls to API functions.

GUID_NULL: The GUID {00000000-0000-0000-0000-000000000000}.

internal transaction: An atomic transaction context dispensed by an MSMQ Queue Manager
instance that can be used to atomically commit or rollback state changes within that MSMQ

Queue Manager. The dispensing MSMQ Queue Manager instance is the transaction
coordinator and is also the only resource manager participant supported by the transaction

context. An internal transaction cannot, therefore, be used to coordinate state changes with
other resource managers, including other MSMQ Queue Manager instances.

local queue: For a queue manager, a queue hosted by the queue manager itself. For an
application, a queue hosted by the queue manager with which the application

communicates.

management application: An MSMQ application that performs management operations, as
specified in [MS-MQMR].

message: A data structure representing a unit of data transfer between distributed applications.
A message has message properties, which may include message header properties, a
message body property, and message trailer properties.

message body: A distinguished message property that represents the application payload.

message header: See message packet header.

message packet: A byte buffer that is the physical representation of the message in the
queue manager and on the wire.

message packet header: The set of message properties in a message packet that precedes
the message body property. Also called a message header.

message packet trailer: The set of message properties in a message packet that follows
the message body property. Also called a message trailer.

message property: A data structure that contains a property identifier and a value, and that
is associated with a message.

message queue: A data structure containing an ordered list of zero or more messages. A
queue has a head and a tail and supports a first in, first out (FIFO) access pattern. Messages

are appended to the tail through a write operation (Send) that appends the message and
increments the tail pointer. Messages are consumed from the head through a destructive

read operation (Receive) that deletes the message and increments the head pointer. A
message at the head may also be read through a nondestructive read operation (Peek).

message queuing: See Microsoft Message Queuing (MSMQ).

%5bMS-DTCO%5d.pdf
%5bMS-GLOS%5d.pdf

13 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Message Queuing application: An application that communicates with the queue manager
over one of the application protocols.

Message Queuing Information Store (MQIS): The directory service store used by MSMQ
Directory Service.

message trailer: See message packet trailer.

Message Transfer Protocol: A Message Transfer Protocol defines a mechanism for reliably
transferring messages between two message queues located on two different hosts.

Microsoft Message Queuing (MSMQ): A communications service that provides asynchronous
and reliable message passing between distributed applications. In Message Queuing,
applications send messages to queues and consume messages from queues. The
queues provide persistence of the messages, enabling the sending and receiving

applications to operate asynchronously from one another.

MSMQ: See Microsoft Message Queuing (MSMQ).

MSMQ 1.0 digital signature: A digital signature based on a hash of the MSMQ 1.0 Digital
Signature Properties (section 2.5.1). This signature type is supported by all versions of
Message Queuing.

MSMQ 2.0 digital signature: A digital signature that is more robust than the MSMQ 1.0

digital signature and is based on a hash of the MSMQ 2.0 Digital Signature Properties
(section 2.5.2). This signature type is not supported by MSMQ version 1.

MSMQ 3.0 digital signature: A digital signature that is used only for messages sent to
distribution lists or multiple-element format names and is based on a hash of the MSMQ 3.0
Digital Signature Properties (section 2.5.3). This signature type is not supported by MSMQ
version 1 nor MSMQ version 2.

MSMQ connector server: See connector server.

MSMQ Directory Service: A network directory service that provides directory information,
including key distribution, to MSMQ. It initially shipped in the Windows NT 4.0 Option Pack as
part of MSMQ. This directory service predates and is superseded by Active Directory (AD).

MSMQ Directory Service server: An MSMQ queue manager that provides MSMQ Directory
Service. The server can act in either of the MSMQ Directory Service roles: Primary Site
Controller (PSC) or Backup Site Controller (BSC).

MSMQ management server: A role played by an MSMQ queue manager. An MSMQ

management server enables management applications to perform management and
administrative operations on the Message Queuing System. The Management Server
operations are specified in [MS-MQMR] and [MS-MQCN].

MSMQ mixed-mode: When upgrading from MSMQ 1.0 in Windows NT 4.0 to MSMQ 2.0 in
Windows 2000, a transitional mode known as mixed-mode environment is supported.
Although not intended as a final deployment strategy, there is full support for this mixed-

mode, which allows MSMQ 1.0 controller servers to coexist in the same enterprise with
MSMQ 2.0 directory service servers, supporting both MSMQ 1.0 and MSMQ 2.0 directory
service clients. In mixed-mode, the MSMQ replication service is used to synchronize MQIS
with Active Directory (AD).

MSMQ object: Any one of the objects stored by MSMQ in its directory service. An object has a
class name and a set of properties.

%5bMS-GLOS%5d.pdf
%5bMS-MQCN%5d.pdf
%5bMS-GLOS%5d.pdf

14 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

MSMQ queue manager: An MSMQ service hosted on a machine that provides queued
messaging services. Queue managers manage queues deployed on the local computer and

provide asynchronous transfer of messages to queues located on other computers. A queue
manager is identified by a globally unique identifier (GUID).

MSMQ queue server: A role played by an MSMQ queue manager. An MSMQ queue server
hosts queues, accepts messages from applications, delivers messages to applications,
and transfers messages to other queue managers.

MSMQ routing link: A communication link between two sites. A routing link is represented by a
routing link object in the directory service. Routing links may have associated link costs.
Routing links with their associated costs can be used to compute lowest-cost routing paths for
store-and-forward messaging.

MSMQ routing server: A role played by an MSMQ queue manager. An MSMQ routing server
implements store and forward messaging. A routing server may provide connectivity between
different connected networks within a site or may provide session concentration between
sites.

MSMQ site: A network of computers, typically physically collocated, that have high connectivity
as measured in terms of latency (low) and throughput (high). A site is represented by a site

object in the directory service. An MSMQ site maps one-to-one with an Active Directory site
when Active Directory provides directory services to MSMQ.

MSMQ site gate: An MSMQ routing server through which all intersite messaging traffic flows.

MSMQ supporting server: A role played by an MSMQ queue manager. An MSMQ
supporting server supports applications to send and receive messages through the
Message Queuing (MSMQ): Queue Manager Client Protocol [MS-MQMP].

nontransactional message: A message that is sent outside of a transaction.

order acknowledgment: A special acknowledgment message that is generated by a receiving
queue manager to acknowledge receipt of a message in a transactional queue.

order queue: A messaging queue that is used to monitor the arrival order of messages that are
sent as part of a transaction.

outgoing queue: A temporary internal queue that holds messages for a remote destination
queue. The path name of an outgoing queue is identical to the path name of the
corresponding destination queue. An outgoing queue is distinguished from its corresponding

destination queue by the fact that the outgoing queue is located on the sending computer.
The format name of an outgoing queue is identical to the format name used by the
messages to reference the destination queue. Messages that reference the destination
queue using a different format name are placed in a different outgoing queue.

path name: The path name of a queue includes the name of the receiving computer where the
messages for the queue are stored, and an optional PRIVATE$ key word indicating whether

the queue is private, followed by the name of the queue. Path names can also refer to
subqueues; for more information, see section 2.1.

Primary Enterprise Controller (PEC): An MSMQ Directory Service role played by an MSMQ
queue manager. The PEC acts as the authority for the enterprise configuration information
stored in the directory. There is only one PEC in an enterprise. The PEC also acts in the role
of Primary Site Controller (PSC) for the site to which it belongs.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

15 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Primary Site Controller (PSC): An MSMQ Directory Service role played by an MSMQ queue
manager. The PSC acts as the authority for the directory information for the site to which it

belongs. The PSC may satisfy directory lookup requests and directory change requests. There
is only one PSC per site.

private queue: An application-defined message queue that is not registered in the MSMQ
Directory Service. A private queue is deployed on a particular queue manager.

property identifier: A DWORD value associated with an MSMQ object property that defines the
property type and its semantic meaning.

public queue: An application-defined message queue that is registered in the MSMQ
Directory Service. A public queue may be deployed at any queue manager.

queue: An object that holds messages passed between applications or messages passed

between Message Queuing and applications. In general, applications can send messages to
queues and read messages from queues.

queue alias: An Active Directory object used to reference queues that might not be listed in
Active Directory. Queue aliases are published in Active Directory.

queue journal: A queue that contains copies of the messages sent from a host when positive
source journaling is requested.

queue manager: A message queuing service that manages queues deployed on a computer. A
queue manager may also provide asynchronous transfer of messages to queues deployed on
other queue managers.

queue property: A data structure that contains a property identifier and a value, and is
associated with a message queue.

quota: The physical disk quota for messages in the queue.

remote queue: For a queue manager, a queue hosted by a remote queue manager. For an

application, a queue hosted by a queue manager other than the one with which the
application communicates.

remote read: The act of reading (receiving) messages from a remote queue.

routing link: See MSMQ routing link.

routing link cost: A value that models the relative cost of direct communication between two
MSMQ sites.

Secure Hash Algorithm (SHA): An algorithm that computes a fixed-length digital

representation of message properties of any length. Five algorithms are published by the
National Institute of Standards and Technology as Federal Information Processing Standards.

SiteID: A GUID that has been assigned to a particular MSMQ site and is unique to that site.

SOAP Reliable Messaging Protocol (SRMP): A published specification defining an open

general-purpose extension of WS-Routing that adds reliability to the Web Services Routing
Protocol (WS-Routing) and to SOAP. Message Queuing uses this protocol to format the

packets in messages sent over HTTP/HTTPS or to a multicast address.

subqueue: A message queue that is logically associated, through a naming hierarchy, with a
parent message queue. Subqueues may be used to partition messages within the queue.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

16 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

For example, a queue journal may be a subqueue that holds a copy of each message
consumed from its parent queue.

system queue: An internal queue that is used by the queue manager for a purpose other than
holding messages destined for a remote destination queue.

transactional message: A message sent as part of a transaction. Transaction messages must
be sent to transactional queues.

transactional queue: A queue that contains only transactional messages.

unit of work: A set of individual operations that MSMQ must successfully complete before any
of the individual MSMQ operations can be considered complete.

workgroup mode: The operation of message queuing without MSMQ Directory Service
(MQDS) integration.

XML digital signature: When authentication is requested for an HTTP message or a multicast

message, which is also sent in SRMP, it is automatically signed using an XML digital
signature. The signature value is calculated by using the SHA-1, SHA-256, or SHA-512
algorithms, encrypting the hash with the public key in the certificate attached to the
message, and converting the result to base64 encoding.<1>

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no

longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We

will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[FIPS180-2] FIPS PUBS, "Secure Hash Standard", FIPS PUB 180-2, August 2002,
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[FIPS197] FIPS PUBS, "Advanced Encryption Standard (AES)", FIPS PUB 197, November 2001,

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[IANAIMA] IANA, "Internet Multicast Addresses", March 2007,
http://www.iana.org/assignments/multicast-addresses

[MC-MQAC] Microsoft Corporation, "Message Queuing (MSMQ): ActiveX Client Protocol".

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89868
http://go.microsoft.com/fwlink/?LinkId=89870
http://go.microsoft.com/fwlink/?LinkId=90683
%5bMC-MQAC%5d.pdf
%5bMS-ADTS%5d.pdf

17 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-MQCN] Microsoft Corporation, "Message Queuing (MSMQ): Directory Service Change
Notification Protocol".

[MS-MQMP] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager Client Protocol".

[MS-MQMR] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager Management
Protocol".

[MS-MQRR] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager Remote Read
Protocol".

[MS-SAMR] Microsoft Corporation, "Security Account Manager (SAM) Remote Protocol (Client-to-
Server)".

[PKCS5] RSA Laboratories, "PKCS #5: Password-Based Cryptography Standard", PKCS #5, Version
2.0, March 1999, http://www.rsa.com/rsalabs/node.asp?id=2127

[RFC1319] Kaliski, B., "The MD2 Message-Digest Algorithm", RFC 1319, April 1992,
http://www.ietf.org/rfc/rfc1319.txt

[RFC1320] Rivest, R., "The MD4 Message-Digest Algorithm", RFC 1320, April 1992,
http://www.ietf.org/rfc/rfc1320.txt

[RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992,
http://www.ietf.org/rfc/rfc1321.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2268] Rivest, R., "A Description of the RC2(r) Encryption Algorithm", RFC 2268, March 1998,
http://www.ietf.org/rfc/rfc2268.txt

[RFC3110] Eastlake III, D., "RSA/SHA-1 SIGs and RSA KEYs in the Domain Name System (DNS)",

RFC 3110, May 2001, http://www.ietf.org/rfc/rfc3110.txt

[RFC3280] Housley, R., Polk, W., Ford, W., and Solo, D., "Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile", RFC 3280, April 2002,
http://www.ietf.org/rfc/rfc3280.txt

[RFC3447] Jonsson, J., and Kaliski, B., "Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1", RFC 3447, February 2003,
http://www.ietf.org/rfc/rfc3447.txt

[RFC3986] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (URI):
Generic Syntax", STD 66, RFC 3986, January 2005, http://www.ietf.org/rfc/rfc3986.txt

[RFC4514] Network Working Group, Zeilenga, K., Ed., "Lightweight Directory Access Protocol

(LDAP): String Representation of Distinguished Names", RFC 4514, June 2006,
http://www.ietf.org/rfc/rfc4514.txt

[RFC4516] Network Working Group, Smith, M., Ed., and Howes, T., "Lightweight Directory Access

Protocol (LDAP): Uniform Resource Locator", RFC 4516, June 2006,
http://www.ietf.org/rfc/rfc4516.txt

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-MQCN%5d.pdf
%5bMS-MQCN%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMR%5d.pdf
%5bMS-MQMR%5d.pdf
%5bMS-MQRR%5d.pdf
%5bMS-MQRR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90250
http://go.microsoft.com/fwlink/?LinkId=90273
http://go.microsoft.com/fwlink/?LinkId=90274
http://go.microsoft.com/fwlink/?LinkId=90275
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90330
http://go.microsoft.com/fwlink/?LinkId=90406
http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90422
http://go.microsoft.com/fwlink/?LinkId=90453
http://go.microsoft.com/fwlink/?LinkId=90719
http://go.microsoft.com/fwlink/?LinkId=90720

18 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

[RFC4757] Jaganathan, K., Zhu, L., and Brezak, J., "The RC4-HMAC Kerberos Encryption Types
Used by Microsoft Windows", RFC 4757, December 2006, http://www.ietf.org/rfc/rfc4757.txt

1.2.2 Informative References

This document references the following archived documents. For a list of archived documents, see
Windows Archived Protocols.

[MC-MQDSRP] Microsoft Corporation, Message Queuing (MSMQ): Directory Service Replication

Protocol

This document references the following documents:

[MS-DTCO] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transaction Protocol".

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-MQDS] Microsoft Corporation, "Message Queuing (MSMQ): Directory Service Protocol".

[MS-MQQB] Microsoft Corporation, "Message Queuing (MSMQ): Message Queuing Binary Protocol".

[MSDN-ACP] Microsoft Corporation, "Microsoft AES Cryptographic Provider",
http://msdn.microsoft.com/en-us/library/aa386979(VS.85).aspx

[MSDN-BCP] Microsoft Corporation, "Microsoft Base Cryptographic Provider",
http://msdn.microsoft.com/en-us/library/aa386980(VS.85).aspx

[MSDN-CSP] Microsoft Corporation, "Cryptographic Provider Names",
http://msdn.microsoft.com/en-us/library/aa380243.aspx

[MSDN-MQEIC] Microsoft Corporation, "Message Queuing Error and Information Codes",
http://msdn.microsoft.com/en-us/library/ms700106.aspx

If you have any trouble finding [MSDN-MQEIC], please check here.

[RFC2251] Wahl, M., Howes, T., and Kille, S., "Lightweight Directory Access Protocol (v3)", RFC
2251, December 1997, http://www.ietf.org/rfc/rfc2251.txt

1.3 Structure Overview

The common definitions, naming formats, structures, data types, and error codes defined in this
document are used by the member protocols of the Microsoft Message Queuing (MSMQ) protocol
set.

1.4 Relationship to Protocols and Other Structures

The data types in this document are used by protocols in the set of Microsoft Message Queuing
protocols.

1.5 Applicability Statement

None.

1.6 Versioning and Localization

None.

http://go.microsoft.com/fwlink/?LinkId=90488
http://go.microsoft.com/fwlink/?LinkId=311687
%5bMS-DTCO%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MQDS%5d.pdf
%5bMS-MQQB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=115470
http://go.microsoft.com/fwlink/?LinkId=115471
http://go.microsoft.com/fwlink/?LinkId=89985
http://go.microsoft.com/fwlink/?LinkId=90044
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=90325

19 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

1.7 Vendor-Extensible Fields

Some structures in this document use HRESULT values as defined in [MS-ERREF] section 2.1.
Vendors can define their own HRESULT values, provided that they set the C bit (0x20000000) for

each vendor-defined value, indicating that the value is a customer code.

%5bMS-ERREF%5d.pdf

20 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2 Definitions and Structures

This section discusses data structures that are used by various protocols in the set of Microsoft
Message Queuing protocols.

2.1 MSMQ Queue Names

The following sections describe the various ways to designate Message Queuing queues.

2.1.1 Path Names

The path of a public queue consists of the name of the computer hosting the queue and the name
of the queue separated by a backward slash in the form "ComputerName\QueueName". The names
of private queues are prefixed by the string "private$" separated by a backward slash. Thus, the
path of a private queues has the form "ComputerName\private$\QueueName". The names of system
queues are prefixed by the string "system$" separated by a semicolon. Thus, the path of a system
queue has the form "ComputerName\system$;QueueName".

A queue path name MUST conform to the following format in Augmented Backus-Naur Form

(ABNF) notation.

QueuePathName = (Computer "\" QueueName /

 Computer "\private$\" QueueName /

 Computer "\system$;" QueueName)

Computer = 1*256(VCHAR)VCHAR = %x21-7E

For MSMQ 1.0, the format is as follows.

QueueName = 1*124(%x21-3A / %x3C-5B / %x5D-7f)

 ; Exclude backslash and semicolon

For MSMQ 2.0–MSMQ 3.0, the format is as follows.

QueueName = 1*124(%x21 / %x23-2A / %x2D-3A / %x3C-5B / %x5D-7f)

 ; Exclude backslash, semicolon, plus, comma, double quote

For MSMQ 4.0–MSMQ 6.0, the format is as follows.

QueueName = 1*124(%x21 / %x23-2A / %x2D-3A / %x3C-5B / %x5D-7f)

 [";" Subqueue]

Subqueue = 1*32(%x21 / %x23-2A / %x2D-3A / %x3C-5B / %x5D-7f)

21 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.1.2 Direct Format Names

Direct format names are used to reference public or private queues without accessing the directory
service. Message Queuing can use the information provided by direct format names to send

messages directly to their destinations. Thus, direct format names can be used to send and receive
messages in workgroup mode, send messages to computers on the Internet, and send messages
directly to a computer.

A direct format name MUST conform to the following format in ABNF notation.

DirectName = PrivateQueuePath / PublicQueuePath / MachineQueuePath

PrivateQueuePath = "DIRECT=" Protocol ":"

 ProtocolAddressSpecification "\PRIVATE$\"

 QueueName [";JOURNAL"]

PublicQueuePath = "DIRECT=" Protocol ":"

 ProtocolAddressSpecification "\" QueueName

 [";JOURNAL"]

MachineQueuePath = "DIRECT=" Protocol ":"

 ProtocolAddressSpecification "\SYSTEM$;"

 ("JOURNAL" / "DEADLETTER" / "DEADXACT")

Subqueue=1*32(%x21 / %x23-2A / %x2D-3A / %x3C-5B / %x5D-7f)

Protocol = "TCP" / "OS" / "HTTP" / "HTTPS" / "IPX"

Where:

<QueueName> is a queue path name from Path names (section 2.1.1).

<ProtocolAddressSpecification> is the protocol-specific address format as defined in the following

table.

Protocol Description Protocol address specification

TCP Connection-oriented TCP over

IP

Internet address notation (IP address)

IPX Connection-oriented SPX over

IPX

Network number and host number (separated by a colon

":" character)

OS Connection using the native

computer-naming convention

Any computer name supported by the underlying operating

system

HTTP Connection over HTTP ProtocolAddressSpecification = "//" Host [":" Port] "/MSMQ"

Port = *(%x30-39)

Where:

<Host> is either a computer name supported by the

underlying operating system or an IP address.

If <Port> is unspecified, a default of 80 is assumed.

22 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Protocol Description Protocol address specification

HTTPS Connection over HTTPS ProtocolAddressSpecification = "//" Host [":" Port] "/MSMQ"

Port = *(%x30-39)

Where

<Host> is either a computer name supported by the

underlying operating system or an IP address.

If <Port> is unspecified, a default of 443 is assumed.

2.1.3 Public Format Names

Public format names and direct format names (section 2.1.2) are used to reference public queues.
When a public format name is used, Message Queuing uses its internal routing algorithm to define
the route to the destination queue.

Public format names contain the string "PUBLIC=" followed by the identifier assigned to the queue

when it was created. This identifier is the GUID listed for the queue object in Active Directory.

A public format name MUST conform to the following format in ABNF notation.

PublicName = "PUBLIC=" QueueGuid

QueueGuid = Guid

Guid = 8HexDig %x2D 3(4HexDig %x2D) 12HexDig

HexDig = Digit / "A" / "B" / "C" / "D" / "E" / "F"

Digit = %x30-39

2.1.4 Private Format Names

Private format names are used to reference private queues. When a private format name is used,
Message Queuing uses its internal routing algorithm to define the route to the destination queue.

When Message Queuing detects a private format name, it does not refer to the directory service for
information about the queue. However, it does use the directory service to look up information
about the computer for routing purposes.

Private format names contain the string "PRIVATE=" followed by the identifier of the computer
where the queue is registered and a hexadecimal number that identifies the queue.

A private format name MUST conform to the following format in ABNF notation.

PrivateName = "PRIVATE=" ComputerGuid "\" 1*8HEXDIG [";JOURNAL"]

ComputerGuid = Guid

Where:

%5bMS-GLOS%5d.pdf

23 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

<Guid> is a GUID, as specified in section 2.1.3.

2.1.5 Distribution List Format Names

Distribution list format names are used to reference distribution lists (group objects) stored in

Active Directory (as specified in [MS-ADTS]). Distribution list format names contain the string "DL="
followed by the distribution list identifier. This identifier is the GUID listed for the distribution list
(group) object in Active Directory. The following is the general format used to reference a
distribution list with optional inclusion of the Active Directory domain name.

The name MUST conform to the following format in ABNF notation.

DistributionListName = "DL=" DistributionListGuid ["@" DomainName]

DistributionListGuid = Guid

DomainName = 1*255(VCHAR)

VCHAR = %x21-7E

Where:

<Guid> is a GUID, as specified in section 2.1.3.

2.1.6 Machine, Connector, and Multicast Format Names

Machine format names are used to reference computer journals and dead-letter queues for a

specific computer (for MSMQ 2.0 and MSMQ 3.0, Direct Format Names (section 2.1.2) also can be
used for this purpose). Connector format names are used to reference the connector queues on a
connector server. Multicast address format names (introduced in MSMQ 3.0) reference multiple
destination queues that are addressed by an IPv4 Multicast address [IANAIMA].

These names MUST conform to the following format in ABNF notation.

Machine = "MACHINE=" Guid

Connector = "CONNECTOR=" Guid

Multicast = "MULTICAST=" Address

Address = dec-octet1 "." dec-octet "." dec-octet "." dec-octet ":" Port

dec-octet = Digit ; 0-9

 / %x31-39 Digit ; 10-99

 / "1" 2Digit ; 100-199

 / "2" %x30-34 Digit ; 200-249

 / "25" %x30-35 ; 250-255

dec-octet1 = "22" %x34-39 ; 224-229

 / "23" Digit ; 230-239

Port = Digit ; 0-9

 / "1" Digit ; 10-99

 / "1" 2Digit ; 100-999

 / "1" 3Digit ; 1000-9999

%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90683

24 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 / %x31-35 4Digit ; 10000-59999

 / "6" %x30-34 3Digit ; 60000-64999

 / "65" %x30-34 2Digit ; 65000-65499

 / "655" %x30-32 Digit ; 65500-65529

 / "6553" %x30-35 ; 65530-65535

Digit = %x30-39

Where:

<Guid> is a GUID, as specified in section 2.1.3.

2.1.7 Multiple-Element Format Names

A multiple-element format name is formed as a concatenation of one or more public (section 2.1.3),
private (section 2.1.4), direct (section 2.1.2), distribution list (section 2.1.5), connector (section

2.1.6), or multicast (section 2.1.6) format names, separated by commas. Thus, different kinds of

format names used in Message Queuing can be used together as elements of a multiple-element
format name.

The following example shows a multiple-element format name that contains a direct format name, a
public format name, and a distribution list format name.

DIRECT=ComputerAddress\QueueName,PUBLIC=QueueGUID,DL=DL_GUID

Note A multiple-element format name containing an element that is a public, private, or

distribution list format name cannot be used when there is no access to Active Directory.

Multiple-element format names cannot contain the format names of read-only queues, such as
queue journals, computer journals, or dead-letter queues. An error is returned if the format name

of a read-only queue is included in the multiple-element format name.

The name MUST conform to the following format in ABNF notation.

MultipleElementName = FormatName *("," FormatName)

FormatName = DirectName / PublicName / PrivateName /

 DistributionListName / Connector /

 Multicast

2.2 Structures

2.2.1 MQDSPUBLICKEY

The MQDSPUBLICKEY structure defines a public key certificate.

%5bMS-DTYP%5d.pdf

25 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ulKeyLen

ulProviderLen

ulProviderType

sProviderName (variable)

...

aBuf (variable)

...

ulKeyLen (4 bytes): An unsigned 32-bit integer that MUST contain the size, in bytes, of the
data in the aBuf field.

ulProviderLen (4 bytes): An unsigned 32-bit integer that MUST contain the size, in bytes, of
the provider name, including the terminating null character.

ulProviderType (4 bytes): An unsigned 32-bit integer that MUST contain an enumerated
constant for the provider-type code. The value MUST be either PROV_RSA_FULL
(0x00000001) or PROV_RSA_AES (0x00000018), indicating which provider was used to

generate the public key certificate stored in the aBuf field.

sProviderName (variable): A null-terminated Unicode string that contains the provider
name.

aBuf (variable): A buffer that MUST contain a BLOBHEADER ([MS-MQDS] section 2.2.19)
structure, with the aiKeyAlg field set to CALG_RSA_KEYX (0x0000a400), followed by the
public key certificate formatted as an RSAPUBKEY ([MS-MQDS] section 2.2.18) structure.

2.2.2 MQDSPUBLICKEYS

The MQDSPUBLICKEYS structure defines a set of MQDSPUBLICKEY (section 2.2.1) structures.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ulLen

cNumofKeys

aPublicKeys (variable)

...

%5bMS-GLOS%5d.pdf
%5bMS-MQDS%5d.pdf
%5bMS-MQDS%5d.pdf

26 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

ulLen (4 bytes): An unsigned 32-bit integer that MUST contain the size, in bytes, of the
MQDSPUBLICKEYS structure.

cNumofKeys (4 bytes): An unsigned 32-bit integer that MUST contain the count of
MQDSPUBLICKEY (section 2.2.1) structures in the array aPublicKeys.

aPublicKeys (variable): An array of MQDSPUBLICKEY (section 2.2.1) structures.

2.2.3 SECURITY_INFORMATION

A SECURITY_INFORMATION value applies to a SECURITY_DESCRIPTOR (as specified in [MS-
DTYP] section 2.4.6). The value is constructed from zero or more bit flags from the following table.

Value Meaning

OWNER_SECURITY_INFORMATION

0x00000001

Owner identifier of the object

GROUP_SECURITY_INFORMATION

0x00000002

Primary group identifier

DACL_SECURITY_INFORMATION

0x00000004

Discretionary access control list (DACL) of the object

SACL_SECURITY_INFORMATION

0x00000008

System ACL of the object

This type is declared as follows:

typedef DWORD SECURITY_INFORMATION;

2.2.4 TA_ADDRESS

The TA_ADDRESS structure defines a single transport address of a specific type.

typedef struct _TA_ADDRESS {

 USHORT AddressLength;

 USHORT AddressType;

 UCHAR Address[1];

} TA_ADDRESS,

 *PTA_ADDRESS;

AddressLength: An unsigned 16-bit integer that MUST contain the size, in bytes, of the

Address field. The value MUST be one of the following (by address type).

Address type prefix Value

IP_ 4

IPX_ 10

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

27 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Address type prefix Value

FOREIGN_ 16

AddressType: An unsigned 16-bit integer that MUST contain one of the values in the following
table.

Value Meaning

IP_ADDRESS_TYPE

0x0001

The Address field contains a 32-bit IP address.

IP_RAS_ADDRESS_TYPE

0x0002

The Address field contains a 32-bit IP address associated with a

connection that is established through a Remote Access Service

(RAS) server.

IPX_ADDRESS_TYPE

0x0003

The Address field contains a 4-byte netnum followed by a 6-byte

nodenum. The netnum identifies the IPX network. The nodenum

represents the IPX node address.

FOREIGN_ADDRESS_TYPE

0x0005

The Address field contains the GUID of a connected network

object.

Address: The array of bytes that contains the address value.

This MUST be one of the following:

An IP address (as specified in section 2.2.4.1).

An IPX address (as specified in section 2.2.4.2).

A FOREIGN address is a GUID object (as specified in [MS-DTYP] section 2.3.4).

2.2.4.1 IP Address

The IP Address packet is a numerical representation of an IPv4 address.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

IP_Address

IP_Address (4 bytes): A 32-bit unsigned integer.

2.2.4.2 IPX Address

The IPX Address packet identifies a remote destination on a Novell Netware network.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Netnum

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf

28 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

nodenum

...

2.2.5 SEQUENCE_INFO

The SEQUENCE_INFO structure stores the sequence information about the applicable message in a

message stream sent from a given sending computer to a given destination queue.

typedef struct tagSEQUENCE_INFO {

 LONGLONG SeqID;

 ULONG SeqNo;

 ULONG PrevNo;

} SEQUENCE_INFO;

SeqID: Specifies a sequence identifier.

SeqNo: Specifies the sequence number of a message within the sequence identified by the
SeqID member.

PrevNo: Specifies the sequence number of the message previous to the message indicated by
the SeqNo member within the sequence identified by the SeqID member.

2.2.5.1 SEQUENCE_INFO (Packet)

The SEQUENCE_INFO (Packet) stores the sequence information about the applicable message in a
message stream sent from a given sending computer to a given destination queue.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SeqID

...

SeqNo

PrevNo

SeqID (8 bytes): A 64-bit signed integer that specifies a sequence identifier.

SeqNo (4 bytes): A 32-bit unsigned integer that specifies the sequence number of a message
within the sequence identified by the SeqID field.

PrevNo (4 bytes): A 32-bit unsigned integer that specifies the sequence number of the
message previous to the message indicated by the SeqNo field within the sequence identified

by the SeqID field.

29 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.6 QUEUE_FORMAT_TYPE

The QUEUE_FORMAT_TYPE enumeration identifies the type of name format being used.

typedef enum __QUEUE_FORMAT_TYPE

{

 QUEUE_FORMAT_TYPE_UNKNOWN = 0,

 QUEUE_FORMAT_TYPE_PUBLIC = 1,

 QUEUE_FORMAT_TYPE_PRIVATE = 2,

 QUEUE_FORMAT_TYPE_DIRECT = 3,

 QUEUE_FORMAT_TYPE_MACHINE = 4,

 QUEUE_FORMAT_TYPE_CONNECTOR = 5,

 QUEUE_FORMAT_TYPE_DL = 6,

 QUEUE_FORMAT_TYPE_MULTICAST = 7,

 QUEUE_FORMAT_TYPE_SUBQUEUE = 8

} QUEUE_FORMAT_TYPE;

QUEUE_FORMAT_TYPE_UNKNOWN: The format type is unknown.

QUEUE_FORMAT_TYPE_PUBLIC: The QUEUE_FORMAT (section 2.2.7) structure contains a

GUID (as specified in [MS-DTYP] section 2.3.4) that identifies a queue.

QUEUE_FORMAT_TYPE_PRIVATE: The QUEUE_FORMAT (section 2.2.7) structure contains
an OBJECTID structure that identifies a queue.

QUEUE_FORMAT_TYPE_DIRECT: The QUEUE_FORMAT structure contains a direct format
name string that identifies a queue.

QUEUE_FORMAT_TYPE_MACHINE: The QUEUE_FORMAT structure contains a GUID (as

specified in [MS-DTYP] section 2.3.4) that identifies a queue.

QUEUE_FORMAT_TYPE_CONNECTOR: The QUEUE_FORMAT structure contains a GUID (as
specified in [MS-DTYP] section 2.3.4) that identifies a connector queue. This is not supported

by all protocols.

QUEUE_FORMAT_TYPE_DL: The QUEUE_FORMAT structure contains a GUID (as specified in
[MS-DTYP] section 2.3.4) that identifies a distribution list (DL). This is not supported by all
protocols.

QUEUE_FORMAT_TYPE_MULTICAST: The QUEUE_FORMAT structure contains a
MULTICAST_ID (section 2.2.10) that identifies a multicast address. This is not supported by
all protocols.

QUEUE_FORMAT_TYPE_SUBQUEUE: The QUEUE_FORMAT structure contains a direct name
string that identifies a subqueue.

Note QUEUE_FORMAT_TYPE_SUBQUEUE was introduced in MSMQ version 4.

2.2.7 QUEUE_FORMAT

The QUEUE_FORMAT structure describes the type of queue being managed and an identifier for
that queue.

typedef struct __QUEUE_FORMAT {

 unsigned char m_qft;

 unsigned char m_SuffixAndFlags;

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

30 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 unsigned short m_reserved;

 [switch_is(m_qft)] union {

 [case(QUEUE_FORMAT_TYPE_UNKNOWN)]

 ;

 [case(QUEUE_FORMAT_TYPE_PUBLIC)]

 GUID m_gPublicID;

 [case(QUEUE_FORMAT_TYPE_PRIVATE)]

 OBJECTID m_oPrivateID;

 [case(QUEUE_FORMAT_TYPE_DIRECT)]

 [string] wchar_t* m_pDirectID;

 [case(QUEUE_FORMAT_TYPE_MACHINE)]

 GUID m_gMachineID;

 [case(QUEUE_FORMAT_TYPE_CONNECTOR)]

 GUID m_GConnectorID;

 [case(QUEUE_FORMAT_TYPE_DL)]

 DL_ID m_DlID;

 [case(QUEUE_FORMAT_TYPE_MULTICAST)]

 MULTICAST_ID m_MulticastID;

 [case(QUEUE_FORMAT_TYPE_SUBQUEUE)]

 [string] wchar_t* m_pDirectSubqueueID;

 };

} QUEUE_FORMAT;

m_qft: The type of queue format name. It MUST be set to one of the values of
QUEUE_FORMAT_TYPE. It is used as a union discriminant in the QUEUE_FORMAT

structure.

m_SuffixAndFlags: This member is broken into two subfields: Suffix Type is located in the 4
least-significant bits, and Flags is located in the 4 most-significant bits.

0 1 2 3 4 5 6 7

Flags Suffix type

Flags Meaning

QUEUE_FORMAT_FLAG_NOT_SYSTEM

0x00

The specified queue is not a system queue.

QUEUE_FORMAT_FLAG_SYSTEM

0x80

The specified queue is a system queue.

Suffix type Meaning

QUEUE_SUFFIX_TYPE_NONE

0x00

No suffix is specified. The Flags subfield MUST be set to

0x00. The m_qft member MUST NOT be set to 0x04.

QUEUE_SUFFIX_TYPE_JOURNAL

0x01

A journal suffix. The Flags subfield MUST be set to 0x80.

The m_qft member MUST NOT be set to 0x05, 0x06, or

0x07.

31 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Suffix type Meaning

QUEUE_SUFFIX_TYPE_DEADLETTER

0x02

A dead-letter suffix. The Flags subfield MUST be set to

0x80. The m_qft member MUST NOT be set to 0x01, 0x02,

0x05, 0x06, or 0x07.

QUEUE_SUFFIX_TYPE_DEADXACT

0x03

A transacted dead-letter suffix. The Flags subfield MUST be

set to 0x80. The m_qft member MUST be set to 0x03 or

0x04.

QUEUE_SUFFIX_TYPE_XACTONLY

0x04

A transaction-only suffix. The m_qft member MUST be set

to 0x05.

QUEUE_SUFFIX_TYPE_SUBQUEUE

0x05

A subqueue suffix. The Flags subfield MUST be 0x00. The

m_qft member MUST be set to 0x08.

m_reserved: The integer value used for padding. The client SHOULD set this value to 0. The

server MUST not use it.

(unnamed union): Based on the value of m_qft.

m_gPublicID: A GUID (as specified in [MS-DTYP] section 2.3.4) of a public queue.
Selected when m_qft is set to 0x01.

m_oPrivateID: An OBJECTID of a private queue; members MUST be used as specified in
OBJECTID. Selected when m_qft is set to 0x02.

m_pDirectID: A direct format name (as specified in section 2.1.2) with the "DIRECT="
prefix removed. It is selected when m_qft is set to 0x03.

m_gMachineID: The GUID (as specified in [MS-DTYP] section 2.3.4) of a machine. It is
selected when m_qft is set to 0x04.

m_GConnectorID: The GUID (as specified in [MS-DTYP] section 2.3.4) of a connector

queue. It is selected when m_qft is set to 0x05.

m_DlID: The identifier of a distribution list. It is selected when m_qft is set to 0x06.

m_MulticastID: A MULTICAST_ID (section 2.2.10) which specifies a multicast address
and port. It is selected when m_qft is set to 0x07.

m_pDirectSubqueueID: The identifier of a subqueue. Selected when m_qft is set to
0x08.

The value MUST conform to the ABNF for DirectName and contain the optional
<Subqueue> element, as specified in section 2.1.

The full QUEUE_FORMAT IDL is specified in [MS-MQMR] Appendix A (section 6).

2.2.8 OBJECTID

The OBJECTID structure is used to uniquely distinguish objects of the same type within the
message queuing system. The structure has two identifiers: a group identifier and an object
identifier.

typedef struct _OBJECTID {

 GUID Lineage;

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQMR%5d.pdf
%5bMS-MQMR%5d.pdf
%5bMS-MQMR%5d.pdf
%5bMS-MQMR%5d.pdf

32 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 DWORD Uniquifier;

} OBJECTID;

Lineage: A GUID (as specified in [MS-DTYP] section 2.3.4) value that identifies the group to
which an object belongs. A group is a protocol-specific concept. For instance, it can be the

identifier of the object owner, or it can be the identifier of the source where the objects
originate.

Uniquifier: A DWORD value that identifies the object within the group.

2.2.9 DL_ID

The DL_ID structure defines a distribution list queue identifier.

typedef struct _DL_ID {

 GUID m_DlGuid;

 [string] wchar_t* m_pwzDomain;

} DL_ID;

m_DlGuid: The GUID (as specified in [MS-DTYP] section 2.3.4) of the distribution list queue.

m_pwzDomain: The Active Directory domain of the distribution list queue. This field MUST be a

null-terminated Unicode string.

2.2.10 MULTICAST_ID

The MULTICAST_ID structure defines a multicast queue identifier.

typedef struct _MULTICAST_ID {

 ULONG m_address;

 ULONG m_port;

} MULTICAST_ID;

m_address: The IP address of the queue.

m_port: The port to which the queue is attached.

2.2.11 QUEUE_SUFFIX_TYPE

The QUEUE_SUFFIX_TYPE enumeration defines which type of queue object is represented by the
QUEUE_FORMAT (section 2.2.7) structure. This suffix refers to the portion of the queue path
separated from the queue name by a semicolon, as specified in Path Names (section 2.1.1).

typedef enum

{

 QUEUE_SUFFIX_TYPE_NONE = 0,

 QUEUE_SUFFIX_TYPE_JOURNAL = 1,

 QUEUE_SUFFIX_TYPE_DEADLETTER = 2,

 QUEUE_SUFFIX_TYPE_DEADXACT = 3,

 QUEUE_SUFFIX_TYPE_XACTONLY = 4,

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

33 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 QUEUE_SUFFIX_TYPE_SUBQUEUE = 5

} QUEUE_SUFFIX_TYPE;

QUEUE_SUFFIX_TYPE_NONE: There is no suffix.

QUEUE_SUFFIX_TYPE_JOURNAL: Refers to the queue journal of the queue identified by the
unnamed union in the QUEUE_FORMAT (section 2.2.7) structure.

QUEUE_SUFFIX_TYPE_DEADLETTER: Refers to the nontransacted dead-letter queue of the
computer identified by the union in the QUEUE_FORMAT (section 2.2.7) structure.

QUEUE_SUFFIX_TYPE_DEADXACT: Refers to the transacted dead-letter queue of the
computer identified by the union in the QUEUE_FORMAT (section 2.2.7) structure.

QUEUE_SUFFIX_TYPE_XACTONLY: Refers to the transacted connector queue of the

connector identified by the union in the QUEUE_FORMAT (section 2.2.7) structure.

QUEUE_SUFFIX_TYPE_SUBQUEUE: Refers to the subqueue that is the direct name identified
by the union in the QUEUE_FORMAT (section 2.2.7) structure.

2.2.12 PROPVARIANT Type Constants

The following values are used in the discriminant field, vt, of the PROPVARIANT (section 2.2.13)
type.

The PROPVARIANT (section 2.2.13) type constants are defined in the VARENUM enumeration, as
follows:

typedef enum

{

 VT_EMPTY = 0,

 VT_NULL = 1,

 VT_I2 = 2,

 VT_I4 = 3,

 VT_BOOL = 11,

 VT_VARIANT = 12,

 VT_I1 = 16,

 VT_UI1 = 17,

 VT_UI2 = 18,

 VT_UI4 = 19,

 VT_I8 = 20,

 VT_UI8 = 21,

 VT_LPWSTR = 31,

 VT_BLOB = 65,

 VT_CLSID = 72,

 VT_VECTOR = 0x1000

} VARENUM;

VT_EMPTY: (0x0000): The type of the contained field is undefined. When this flag is specified,

the PROPVARIANT (section 2.2.13) MUST NOT contain a data field.

VT_NULL: (0x0001): The type of the contained field is NULL. When this flag is specified, the
PROPVARIANT (section 2.2.13) MUST NOT contain a data field.

VT_I2: (0x0002): The type of the contained field MUST be a 2-byte signed integer.

34 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

VT_I4: (0x0003): The type of the contained field MUST be a 4-byte signed integer.

VT_BOOL: (0x000B): The type of the contained field MUST be VARIANT_BOOL (section
2.2.14).

VT_VARIANT: (0x000C): The type of the contained field MUST be CAPROPVARIANT (section

2.2.16.8). It MUST appear with the bit flag VT_VECTOR.

VT_I1: (0x0010): The type of the contained field MUST be a 1-byte integer.

VT_UI1: (0x0011): The type of the contained field MUST be a 1-byte unsigned integer.

VT_UI2: (0x0012): The type of the contained field MUST be a 2-byte unsigned integer.

VT_UI4: (0x0013): The type of the contained field MUST be a 4-byte unsigned integer.

VT_I8: (0x0014): The type of the contained field MUST be an 8-byte signed integer.

VT_UI8: (0x0015): The type of the contained field MUST be an 8-byte unsigned integer.

VT_LPWSTR: (0x001F): The type of the contained field MUST be an LPWSTR (as specified in
[MS-DTYP] section 2.2.36), a null-terminated Unicode string.

VT_BLOB: (0x0041): The type of the contained field MUST be a binary large object (BLOB)
(section 2.2.15).

VT_CLSID: (0x0048): The type of the contained field MUST be a pointer to a GUID (as
specified in [MS-DTYP] section 2.3.4) value.

VT_VECTOR: (0x1000): The type of the contained field MUST be combined with other values by
using the bitwise OR operation to indicate a counted field. The type of the contained field
MUST be a COUNTEDARRAY (section 2.2.16).

2.2.12.1 VARTYPE

The VARTYPE holds VARENUM (section 2.2.12) enumerated values.

This type is declared as follows:

typedef unsigned short VARTYPE;

2.2.13 PROPVARIANT

The PROPVARIANT (section 2.2.13.2) is a container for a union that can hold many types of
data.

2.2.13.1 tag_inner_PROPVARIANT

typedef struct _tag_inner_PROPVARIANT {

 VARTYPE vt;

 UCHAR wReserved1;

 UCHAR wReserved2;

 ULONG wReserved3;

 [switch_is(vt)] union {

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

35 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [case(VT_EMPTY, VT_NULL)]

 ;

 [case(VT_I1)]

 CHAR cVal;

 [case(VT_UI1)]

 UCHAR bVal;

 [case(VT_I2)]

 SHORT iVal;

 [case(VT_UI2)]

 USHORT uiVal;

 [case(VT_I4)]

 LONG lVal;

 [case(VT_UI4)]

 ULONG ulVal;

 [case(VT_I8)]

 LARGE_INTEGER hVal;

 [case(VT_UI8)]

 ULARGE_INTEGER uhVal;

 [case(VT_BOOL)]

 VARIANT_BOOL boolVal;

 [case(VT_CLSID)]

 GUID* puuid;

 [case(VT_BLOB)]

 BLOB blob;

 [case(VT_LPWSTR)]

 [string] wchar_t* pwszVal;

 [case(VT_VECTOR|VT_UI1)]

 CAUB caub;

 [case(VT_VECTOR|VT_UI2)]

 CAUI caui;

 [case(VT_VECTOR|VT_I4)]

 CAL cal;

 [case(VT_VECTOR|VT_UI4)]

 CAUL caul;

 [case(VT_VECTOR|VT_UI8)]

 CAUH cauh;

 [case(VT_VECTOR|VT_CLSID)]

 CACLSID cauuid;

 [case(VT_VECTOR|VT_LPWSTR)]

 CALPWSTR calpwstr;

 [case(VT_VECTOR|VT_VARIANT)]

 CAPROPVARIANT capropvar;

 } _varUnion;

} tag_inner_PROPVARIANT;

vt: MUST be set to one of the values as specified in section 2.2.12.

wReserved1: MAY be set to 0x00 and MUST be ignored by the recipient.

wReserved2: MAY be set to 0x00 and MUST be ignored by the recipient.

wReserved3: MAY be set to 0x00000000 and MUST be ignored by the recipient.

_varUnion: MUST contain an instance of the type according to the value in the vt field.

36 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.13.2 PROPVARIANT

The following is the type definition for PROPVARIANT.

This type is declared as follows:

typedef tag_inner_PROPVARIANT PROPVARIANT;

2.2.14 VARIANT_BOOL

The VARIANT_BOOL type specifies Boolean values.

The values MUST be defined as follows.

Name/value Value Description

VARIANT_TRUE 0xFFFF MUST indicate a Boolean value of TRUE.

VARIANT_FALSE 0x0 MUST indicate a Boolean value of FALSE.

This type is declared as follows:

typedef short VARIANT_BOOL;

2.2.15 BLOB

The BLOB structure defines a counted array of unsigned characters.

typedef struct tagBLOB {

 unsigned long cbSize;

 [size_is(cbSize)] unsigned char* pBlobData;

} BLOB;

cbSize: A 32-bit unsigned integer that specifies the size of the array of unsigned characters
pointed to by pBlobData.

pBlobData: An array of 8-bit unsigned characters.

2.2.16 COUNTEDARRAY

A COUNTEDARRAY specifies a counted array of types.

2.2.16.1 CAUB

The CAUB structure defines a counted array of unsigned characters.

typedef struct tagCAUB {

 unsigned long cElems;

37 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [size_is(cElems)] unsigned char* pElems;

} CAUB;

cElems: MUST be set to the total number of elements of the array.

pElems: An array of unsigned characters.

2.2.16.2 CAUI

The CAUI structure defines a counted array of unsigned short integers.

typedef struct tagCAUI {

 unsigned long cElems;

 [size_is(cElems)] unsigned short* pElems;

} CAUI;

cElems: MUST be set to the total number of elements of the array.

pElems: An array of unsigned short integers.

2.2.16.3 CAL

The CAL structure defines a counted array of 32-bit unsigned integers.

typedef struct tagCAL {

 unsigned long cElems;

 [size_is(cElems)] long* pElems;

} CAL;

cElems: MUST be set to the total number of elements of the array.

pElems: An array of 32-bit unsigned integers.

2.2.16.4 CAUL

The CAUL structure defines a counted array of 32-bit unsigned integers.

typedef struct tagCAUL {

 unsigned long cElems;

 [size_is(cElems)] unsigned long* pElems;

} CAUL;

cElems: MUST be set to the total number of elements of the array.

pElems: An array of 32-bit unsigned integers.

2.2.16.5 CAUH

The CAUH structure defines a counted array of ULARGE_INTEGER (section 2.2.17) values.

38 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

typedef struct tagCAUH {

 unsigned long cElems;

 [size_is(cElems)] ULARGE_INTEGER* pElems;

} CAUH;

cElems: MUST be set to the total number of elements of the array.

pElems: An array of ULARGE_INTEGER (section 2.2.17) values.

2.2.16.6 CACLSID

The CACLSID structure defines a counted array of GUID (as specified in [MS-DTYP] section 2.3.4)
values.

typedef struct tagCACLSID {

 unsigned long cElems;

 [size_is(cElems)] GUID* pElems;

} CACLSID;

cElems: MUST be set to the total number of elements of the array.

pElems: An array of GUID (as specified in [MS-DTYP] section 2.3.4) values.

2.2.16.7 CALPWSTR

The CALPWSTR structure defines a counted array of wchar_t* values.

typedef struct tagCALPWSTR {

 unsigned long cElems;

 [size_is(cElems)] [string] wchar_t** pElems;

} CALPWSTR;

cElems: MUST be set to the total number of elements of the array.

pElems: An array of wchar_t* values.

2.2.16.8 CAPROPVARIANT

The CAPROPVARIANT structure defines a counted array of PROPVARIANT (section 2.2.13.2)
values.

typedef struct tagCAPROPVARIANT {

 unsigned long cElems;

 [size_is(cElems)] PROPVARIANT* pElems;

} CAPROPVARIANT;

cElems: MUST be set to the total number of elements of the array.

pElems: An array of PROPVARIANT (section 2.2.13.2) values.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

39 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.17 ULARGE_INTEGER

The ULARGE_INTEGER structure defines a large integer.

typedef struct _ULARGE_INTEGER {

 ULONGLONG QuadPart;

} ULARGE_INTEGER;

QuadPart: A ULONGLONG (as specified in [MS-DTYP] section 2.2.55) value.

2.2.18 Common Packet Syntax

Multiple MSMQ protocols share the packet syntax that is defined in the following sections.

The protocols that consume this packet syntax use little-endian byte order.

2.2.18.1 Packet Data Types

The following data types are used for describing the common packet syntax.

2.2.18.1.1 GUID

This specification uses the globally unique identifier data type (the GUID data type), as specified in
[MS-DTYP] section 2.3.4.

2.2.18.1.2 TxSequenceID

A TxSequenceID is a 64-bit value that identifies a sequence of transactional messages originated
from a queue manager. This structure contains two monotonically increasing numeric values.

When comparing ADM elements of type TxSequenceID, the structure is treated as a 64-bit unsigned

integer with Ordinal being the low-order bytes and Timestamp being the high-order bytes.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Ordinal

TimeStamp

Ordinal (4 bytes): A 32-bit unsigned integer field. This field has a valid range from
0x00000000 to 0xFFFFFFFF.

TimeStamp (4 bytes): A 32-bit unsigned integer field. This field has a valid range from

0x00000000 to 0xFFFFFFFF.

2.2.18.1.3 MessageIdentifier

A MessageIdentifier is a 20-byte identifier that uniquely identifies a message from a queue
manager.

%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf

40 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

QueueManagerGuid

...

...

...

Ordinal

QueueManagerGuid (16 bytes): A GUID, as specified in [MS-DTYP] section 2.3.4, that
contains the identifier of the sender queue manager. This value MUST be the same for

messages originating from the same queue manager.

Ordinal (4 bytes): A 32-bit unsigned integer ordinal value that identifies the message. This
value MUST be unique within messages originating from the same queue manager. This field
has a valid range from 0x00000000 to 0xFFFFFFFF.

2.2.18.1.4 MQFFormatNameElement

The MQFFormatNameElement specifies a queue format name.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

FormatType FormatName (variable)

...

FormatType (2 bytes): A 16-bit unsigned short integer field specifying the queue format name
type. The field MUST be set to one of the following values.

Value Meaning

0x0001 Public Format Name

0x0002 Private Format Name

0x0003 Direct Format Name

0x0006 Distribution List Format Name

FormatName (variable): A variable-length byte array that contains a queue format name. The
layout of this field depends on the value of the FormatType field. There are no restrictions on
the value of the padding bytes.<2> The following table lists the data structures that MUST be
used as the FormatName field for specific FormatType values.

%5bMS-DTYP%5d.pdf

41 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

FormatType Value Data Structure

0x0001 FormatName contains a PublicQueueFormatName structure.

0x0002 FormatName contains a PrivateQueueFormatName structure.

0x0003 FormatName contains an MQFDirectQueueFormatName structure.

0x0006 FormatName contains an MQFDistributionQueueFormatName structure.

2.2.18.1.4.1 MQFDirectQueueFormatName

If the FormatType field is set to 0x0003, the layout of the FormatName field MUST be as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

DirectFormatName (variable)

...

DirectFormatName (variable): A null-terminated WCHAR ([MS-DTYP] section 2.2.60) buffer
that MUST specify a queue using a direct format name. The size of the field is the WCHAR
string's length in bytes. The start of this field is rounded up to the next 2-byte boundary.

2.2.18.1.4.2 MQFDistributionQueueFormatName

If the FormatType field is set to 0x0006, then the layout of the FormatName field MUST be as
follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

DistributionListIdentifier

...

...

...

DistributionListIdentifier (16 bytes): A GUID, as specified in [MS-DTYP] section 2.3.4, that
MUST identify a distribution list. The start of this field is rounded up to the next 4-byte
boundary.

2.2.18.1.5 Queue Format Type

The Queue Format Type specifies the layout of the queue name as indicated by the
UserHeader.Flags.DQ, UserHeader.Flags.AQ, and UserHeader.Flags.RQ fields (section
2.2.19.2) and is one of the types specified in sections 2.2.18.1.5.1 and 2.2.18.1.5.2.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

42 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.18.1.5.1 PrivateQueueFormatNameId

The layout of the PrivateQueueFormatNameId queue format type MUST be as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

PrivateQueueIdentifier

PrivateQueueIdentifier (4 bytes): A 32-bit unsigned integer that identifies the private queue
on the host queue manager. This value MUST be unique for private queues hosted on the
same queue manager.

2.2.18.1.5.2 DirectQueueFormatName

The layout of the DirectQueueFormatName queue format type MUST be as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Count DirectFormatName (variable)

...

Count (2 bytes): A 16-bit unsigned integer that specifies the length, in bytes, of the following
null-terminated WCHAR buffer, DirectFormatName, up to and including the terminating null
character.

DirectFormatName (variable): A null-terminated WCHAR, as specified in [MS-DTYP] section
2.2.60, buffer that contains a direct format name. The end of this field is padded up to the

next 4-byte boundary relative to the start of the header that contains the queue format name.

The Count value does not include the padding bytes. There are no restrictions on the value of
the padding bytes.<3>

2.2.18.1.6 Message Class Identifiers

A message class identifier is used to indicate the type of a message. In some cases the class
identifier can also indicate that the message is generated as a response to an action on another

message such as its receipt by a higher-layer messaging application or a delivery failure. This other
message is referred to as the original message in the text that follows. The sender of the original
message is referred to as the original sender in the text that follows.

The MESSAGE_CLASS_VALUES enumeration identifies the predefined message types.

Alternatively, the sending application can set the type of a message to a custom value by setting

one or more bits of the mask 0xE1FF and by leaving the remaining bits as zero.

typedef enum

{

 MQMSG_CLASS_NORMAL = 0x0000,

 MQMSG_CLASS_REPORT = 0x0001,

 MQMSG_CLASS_ACK_REACH_QUEUE = 0x0002,

%5bMS-DTYP%5d.pdf

43 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 MQMSG_CLASS_ORDER_ACK = 0x00ff,

 MQMSG_CLASS_ACK_RECEIVE = 0x4000,

 MQMSG_CLASS_NACK_BAD_DST_Q = 0x8000,

 MQMSG_CLASS_NACK_DELETED = 0x8001,

 MQMSG_CLASS_NACK_REACH_QUEUE_TIMEOUT = 0x8002,

 MQMSG_CLASS_NACK_Q_EXCEED_QUOTA = 0x8003,

 MQMSG_CLASS_NACK_ACCESS_DENIED = 0x8004,

 MQMSG_CLASS_NACK_HOP_COUNT_EXCEEDED = 0x8005,

 MQMSG_CLASS_NACK_BAD_SIGNATURE = 0x8006,

 MQMSG_CLASS_NACK_BAD_ENCRYPTION = 0x8007,

 MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_Q = 0x8009,

 MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_MSG = 0x800A,

 MQMSG_CLASS_NACK_UNSUPPORTED_CRYPTO_PROVIDER = 0x800B,

 MQMSG_CLASS_NACK_Q_DELETED = 0xC000,

 MQMSG_CLASS_NACK_Q_PURGED = 0xC001,

 MQMSG_CLASS_NACK_RECEIVE_TIMEOUT = 0xC002,

 MQMSG_CLASS_NACK_RECEIVE_REJECTED = 0xC004

} MESSAGE_CLASS_VALUES;

MQMSG_CLASS_NORMAL: Indicates the original message sent on behalf of a higher-layer

messaging application.

MQMSG_CLASS_REPORT: Indicates a report message used to track delivery of sent messages.
For more information, see [MS-MQQB] section 3.1.5.8.9.

MQMSG_CLASS_ACK_REACH_QUEUE: The class is used by administration acknowledgment
messages.

Indicates that the original message was delivered to its destination queue.

MQMSG_CLASS_ORDER_ACK: The class is used to acknowledge in-order receipt of an original
transactional message. This acknowledgment MUST be sent from the final destination queue
manager to the original sender.

MQMSG_CLASS_ACK_RECEIVE: The class is used by administration acknowledgment
messages.

Indicates that the original message was retrieved by a receiving application from the
destination queue.

MQMSG_CLASS_NACK_BAD_DST_Q: Indicates that the destination queue is not available to
the original sender.

MQMSG_CLASS_NACK_DELETED: Indicates that the original message was deleted by an

administrative action before reaching the destination queue.

MQMSG_CLASS_NACK_REACH_QUEUE_TIMEOUT: Indicates that the original message did
not reach the destination queue. This message can be generated by expiration of either the
UserMessage.UserHeader.TimeToBeReceived time or
UserMessage.BaseHeader.TimeToReachQueue time before the original message reaches the

destination queue.

MQMSG_CLASS_NACK_Q_EXCEED_QUOTA: Indicates that the original message was rejected

by the destination queue manager because the destination queue exceeded Quota.

MQMSG_CLASS_NACK_ACCESS_DENIED: Indicates that the access rights for placing the
original message in the destination queue were not allowed for the sender.

%5bMS-MQQB%5d.pdf

44 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

MQMSG_CLASS_NACK_HOP_COUNT_EXCEEDED: Indicates that the original message was
rejected because it exceeded the maximum routing hop count.

MQMSG_CLASS_NACK_BAD_SIGNATURE: Indicates that the digital signature attached to the
original message is not valid.

MQMSG_CLASS_NACK_BAD_ENCRYPTION: Indicates that the destination queue manager
could not decrypt the original message.

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_Q: Indicates that the original transactional
message was sent to a nontransactional queue.

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_MSG: Indicates that the original
nontransactional message was sent to a transactional queue.

MQMSG_CLASS_NACK_UNSUPPORTED_CRYPTO_PROVIDER: Indicates that the encryption

provider requested in the original message is not supported by the destination.

MQMSG_CLASS_NACK_Q_DELETED: Indicates that the queue was deleted before the original
message could be read from the queue.

MQMSG_CLASS_NACK_Q_PURGED: Indicates that the queue was purged and the original
message no longer exists.

MQMSG_CLASS_NACK_RECEIVE_TIMEOUT: Indicates that the original message was placed

in the destination queue but was not retrieved from the queue before its time-to-be-received
timer expired.

MQMSG_CLASS_NACK_RECEIVE_REJECTED: Indicates that the message was rejected by a
receiving application.

2.2.18.1.7 Common Queue Formats

2.2.18.1.7.1 PublicQueueFormatName

The layout of a public queue format name MUST be as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

PublicQueueIdentifier

...

...

...

PublicQueueIdentifier (16 bytes): A GUID, as specified in [MS-DTYP] section 2.3.4, that
MUST be set to the identifier of the public queue.

2.2.18.1.7.2 PrivateQueueFormatName

The layout of a private queue format name MUST be as follows.

%5bMS-DTYP%5d.pdf

45 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SourceQueueManager

...

...

...

PrivateQueueIdentifier

SourceQueueManager (16 bytes): A GUID, as specified in [MS-DTYP] section 2.3.4, that
MUST specify the queue manager that hosts the private queue. The start of this field is

rounded up to the next 4-byte boundary.

PrivateQueueIdentifier (4 bytes): A 32-bit unsigned integer that MUST identify the private
queue on the source queue manager. This value MUST be unique for private queues hosted on
the same queue manager.

2.2.18.1.8 XACTUOW

An XACTUOW is a structure that serves as a unique identifier for a transactional unit of work. An
XACTUOW contains 16 unsigned single-byte characters representing a GUID ([MS-DTYP] section
2.3.4) and is defined as follows:

typedef struct {

 unsigned char rgb[16];

} XACTUOW;

rgb: An array of unsigned single-byte characters that contains a globally unique identifier
(GUID).

2.2.19 Common Headers

This section contains headers that are common to multiple packets.

2.2.19.1 BaseHeader

The BaseHeader is the first field of each packet described in this section. The BaseHeader contains
information to identify and manage protocol packets.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

VersionNumber Reserved Flags

Signature

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

46 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

PacketSize

TimeToReachQueue

VersionNumber (1 byte): An 8-bit unsigned integer that is the version of the packet format.
This field MUST be set to the value 0x10.

Reserved (1 byte): Reserved for future use. This field can be set to any arbitrary value when

sent and MUST be ignored on receipt.

Flags (2 bytes): A 16-bit unsigned short integer containing a set of options that provides
additional information about the packet. Any combination of these values is acceptable unless
otherwise noted in the following table.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

PR I

N

S

H

D

H

X

9

X

8

T

R

X

6

X

5

X

4

X

3

X

2

X

1

X

0

PR (3 bits): Specifies the priority of the message in the packet. This field has a valid

range from 0x0 to 0x7, with 0x7 being the highest priority. The default is 0x3. A
message with a higher priority MUST be placed closer to the front of the queue. This
field MUST be set to a value of 0x0 if the packet contains a transactional message. For
more details, see UserHeader.Flags.TH in section 2.2.19.2.

IN (1 bit): Indicates that the message within the packet is internal and used by message
transfer protocols for connection establishment and session acknowledgements. This
field MUST be set if the packet is an EstablishConnection Packet as defined in [MS-

MQQB] section 2.2.3, a ConnectionParameters Packet as defined in [MS-MQQB] section

2.2.2, or a SessionAck Packet as defined in [MS-MQQB] section 2.2.6. This field MUST
NOT be set if the packet is a OrderAck Packet as defined in [MS-MQQB] sections 2.2.4 or
a FinalAck Packet as defined in [MS-MQQB] section 2.2.5.

SH (1 bit): Specifies if a SessionHeader (section 2.2.20.4) is present in the packet. If set,
the packet MUST contain a SessionHeader.

DH (1 bit): Specifies if a DebugHeader (section 2.2.20.8) is present in the packet. This

field MUST NOT be set if the BaseHeader is part of a packet other than a UserMessage
Packet (section 2.2.20). If and only if set, MUST the packet include a DebugHeader.

X9 (1 bit): Reserved. This field SHOULD NOT be set when sent and MUST be ignored on
receipt.

X8 (1 bit): Reserved. This field SHOULD NOT be set when sent and MUST be ignored on
receipt.

TR (1 bit): Specifies whether message tracing is enabled for this packet. This field MUST
be set if message tracing is required for this message. If this field is set, the DH field
MUST also be set.

X6 (1 bit): Reserved. This field SHOULD NOT be set when sent and MUST be ignored on
receipt.

%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf

47 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

X5 (1 bit): Reserved. This field SHOULD NOT be set when sent and MUST be ignored on
receipt.

X4 (1 bit): Reserved. This field SHOULD NOT be set when sent and MUST be ignored on
receipt.

X3 (1 bit): Reserved. This field SHOULD NOT be set when sent and MUST be ignored on
receipt.

X2 (1 bit): Reserved. This field SHOULD NOT be set when sent and MUST be ignored on
receipt.

X1 (1 bit): Reserved. This field SHOULD NOT be set when sent and MUST be ignored on
receipt.

X0 (1 bit): Reserved. This field SHOULD NOT be set when sent and MUST be ignored on

receipt.

Signature (4 bytes): A 32-bit unsigned integer that is the packet signature value. This field
MUST be set to 0x524F494C.

PacketSize (4 bytes): A 32-bit unsigned integer that indicates the packet size. This field MUST
be set to the size, in bytes, of the entire packet including the base header and any padding
bytes used to align the various message headers on 4-byte boundaries, but MUST NOT

include the SessionHeader size when the SessionHeader is present. This field has a maximum
value of 0x00400000.

TimeToReachQueue (4 bytes): A 32-bit unsigned integer that indicates the length of time, in
seconds, that a UserMessage Packet has to reach its destination queue manager. This field
has a valid range from 0x00000000 to 0xFFFFFFFF. The value 0xFFFFFFFF indicates an infinite
time.

When a UserMessage Packet is sent or received, this value MUST be evaluated against the

current system time and the UserMessage.UserHeader.SentTime field. If CURRENT_TIME

- UserMessage.UserHeader.SentTime is greater than the value of this field, then the
UserMessage Packet has expired and MUST be deleted by a sender and ignored by a receiver.

When the BaseHeader is not part of a UserMessage Packet, this value MUST be set to
0xFFFFFFFF.

For the purpose of this section, CURRENT_TIME is defined as the number of seconds elapsed
since midnight (00:00:00), January 1, 1970 Coordinated Universal Time (UTC).

2.2.19.2 UserHeader

The UserHeader contains source and destination information for the message in a UserMessage
Packet.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SourceQueueManager

...

48 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

...

...

QueueManagerAddress

...

...

...

TimeToBeReceived

SentTime

MessageID

Flags

DestinationQueue (variable)

...

AdminQueue (variable)

...

ResponseQueue (variable)

...

ConnectorType (optional)

...

...

...

SourceQueueManager (16 bytes): A GUID, as specified in [MS-DTYP] section 2.3.4, that
MUST identify the original sender of the message.

QueueManagerAddress (16 bytes): A GUID, as specified in [MS-DTYP] section 2.3.4, that

MUST identify the destination queue manager.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

49 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If the message is sent to a public or private queue, this field MUST be set to the GUID of the
destination queue manager. If the message is sent to a queue that uses a direct format

name, then this field MUST contain a NULL GUID.

TimeToBeReceived (4 bytes): A 32-bit unsigned integer that indicates the length of time, in

seconds, that the message in the packet has before it expires. This field has a valid range
from 0x00000000 to 0xFFFFFFFF. The value 0xFFFFFFFF indicates an infinite time.

This time is measured from when the sending protocol receives the message. If the value is
exceeded, the message MUST be removed from the destination queue. For more details about
message expiration see [MS-MQQB] section 3.1.5.8.5.

SentTime (4 bytes): A 32-bit unsigned integer that MUST be set to the time when the packet
was sent. This value represents the number of seconds elapsed since midnight (00:00:00),

January 1, 1970 UTC.

MessageID (4 bytes): A 32-bit unsigned integer that is the message identifier specified by the
queue manager. The queue manager MUST generate a unique identifier for each message it

sends. For more details, see the MessageIdOrdinal value in [MS-MQQB] section 3.1.1.3.

Flags (4 bytes): A 32-bit unsigned integer that contains a set of options that provide additional
information about the packet. Any combination of these values is acceptable unless otherwise

noted below.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RC DM X

1

J

N

J

P

DQ AQ RQ S

H

T

H

M

P

C

Q

M

Q

X

2

A

H

X3 H

H

X4

RC (5 bits): The number of routing servers that have processed the UserMessage Packet.
The values in this field MUST be in the range from 0x00 to 0x1D. For more details, see

[MS-MQQB] section 3.1.5.8.2.

DM (2 bits): The delivery mode of the packet. The field MUST be set to one of the
following values.

Value Meaning

0x0 Express messaging. Express messages MUST NOT be required to be recoverable

after the queue manager restarts.

0x1 Recoverable messaging (including transactional). Recoverable messages MUST be

recovered after queue manager restarts.

Note a transactional message is a recoverable message that has
UserHeader.Flags.TH set to 0x1.

X1 (1 bit): Reserved bit field. This field SHOULD NOT be set when sent and MUST be

ignored on receipt.

JN (1 bit): Specifies if negative source journaling is enabled.<4> If set, the protocol
SHOULD log a record locally in the event of message delivery failure.<5>

%5bMS-GLOS%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf

50 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

JP (1 bit): Specifies if positive source journaling is enabled. If set, the protocol SHOULD
log a record locally if the message is successfully delivered.<6>

DQ (3 bits): Type of destination queue in UserHeader.DestinationQueue. The field
MUST be set to 0x0, 0x3, 0x5, or 0x7. The value in this field determines the layout of

the destination queue name in the UserHeader.DestinationQueue field.

AQ (3 bits): Type of administration queue in UserHeader.AdminQueue. The field
MUST be set to 0x0, 0x2, 0x3, 0x5, 0x6 or 0x7. The value in this field determines the
layout of the administration queue name in the UserHeader.AdminQueue field.

RQ (3 bits): Type of response queue in UserHeader.ResponseQueue. The field MUST
be set to 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, or 0x7. The value in this field determines
the layout of the response queue name in the UserHeader.ResponseQueue field.

SH (1 bit): Specifies if a SecurityHeader is present in the UserMessage Packet. If set, the
packet MUST contain a SecurityHeader; otherwise, it MUST NOT.

TH (1 bit): Specifies if a TransactionHeader is present in the UserMessage Packet. If set,
the packet MUST contain a TransactionHeader; otherwise, it MUST NOT. If this flag is set
the DM flag MUST NOT be 0x0.

MP (1 bit): Specifies if a MessagePropertiesHeader is present in the UserMessage Packet.

This flag MUST always be set.

CQ (1 bit): Specifies if the ConnectorType field is present in the packet. If set, the
packet MUST contain a ConnectorType field; otherwise, it MUST NOT.

MQ (1 bit): Specifies if a MultiQueueFormatHeader is present in the UserMessage Packet.
If set, the packet MUST contain a MultiQueueFormatHeader; otherwise, it MUST NOT.

X2 (1 bit): Reserved bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

AH (1 bit): Indicates if the packet being received was originally sent over HTTP, as
specified in [MS-MQRR] section 2.2.5.1. This field MUST NOT be set when sent.

X3 (2 bits): Reserved bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

HH (1 bit): Specifies if a SoapHeader is present in the packet. If set, the UserMessage
Packet MUST contain a SoapHeader; otherwise, it MUST NOT.

X4 (3 bits): Reserved bit field. This field SHOULD NOT be set when sent and MUST be

ignored on receipt.

DestinationQueue (variable): The destination queue specifies the final destination of the
message that is contained inside the UserMessage Packet. The queue type and data type of
the destination queue name vary depending on the value specified in the Flags.DQ field, as
described in the following table.

Flags.DQ Queue type Data type

0x0 None None

0x3 Private queue on destination host PrivateQueueFormatNameId

%5bMS-MQRR%5d.pdf

51 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Flags.DQ Queue type Data type

0x5 Public queue PublicQueueFormatName

0x7 Direct DirectQueueFormatName

When the Flags.DQ field is set to 0x03 or 0x5, the QueueManagerAddress field MUST be
set to the GUID of the destination queue manager.

Any value for Flags.DQ other than those specified in the preceding table MUST be treated as

an error by closing the session.

AdminQueue (variable): The name of the administration queue. This field specifies the
response queue where administration acknowledgment messages are sent. An administration
response queue MUST be specified if a MessagePropertiesHeader is included and any bits are
set in the MessagePropertiesHeader.Flags field; otherwise, this field MUST NOT be
specified. Details about administration acknowledgments are as specified in [MS-MQQB]

sections 1.3.5.2 and 3.1.5.8.10. The queue type and data type of the administration queue
name vary depending on the value specified in the Flags.AQ field, as described in the
following table. This field MUST be present when the Flags.AQ field is set to 0x2, 0x3, 0x5,
0x6, or 0x7. This field MUST NOT be present when the Flags.AQ field is set to 0x0.

Flags.AQ Queue type Data type

0x0 None None

0x2 Private queue on source host PrivateQueueFormatNameId

0x3 Private queue on destination host PrivateQueueFormatNameId

0x5 Public queue PublicQueueFormatName

0x6 Private queue on host other than the source or

destination host

PrivateQueueFormatName

0x7 Direct DirectQueueFormatName

Any value for the Flags.AQ field other than those specified in the preceding table MUST be
treated as an error by closing the session.

ResponseQueue (variable): A variable-length array of bytes containing the name of the
response queue. The response queue is an application-defined value that specifies a queue
that a receiving application could use to send a reply message. The queue type and data type
of the response queue name vary depending on the queue format type specified in the
Flags.RQ field, as described in the following table. This field MUST be present when the
Flags.RQ field is set to 0x1, 0x2, 0x3, 0x5, 0x6, or 0x7. This field MUST NOT be present
when the Flags.RQ field is set to 0x0 or 0x1. When the Flags.RQ flag is set to 0x1, the

response queue is the same as the administration queue. When the Flags.RQ field is set to
0x4, the PrivateQueueIdentifier in the queue format type MUST identify the private queue

on the queue manager that hosts the administration queue.

Flags.RQ Queue type Data type

0x0 None None

0x1 Same as the administration queue None

%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf

52 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Flags.RQ Queue type Data type

0x2 Private queue on source host PrivateQueueFormatNameId

0x3 Private queue on destination host PrivateQueueFormatNameId

0x4 Private queue on the same host as the administration

queue

PrivateQueueFormatNameId

0x5 Public queue PublicQueueFormatName

0x6 Private queue on a host other than the source queue,

destination queue, or administration queue host

PrivateQueueFormatName

0x7 Direct DirectQueueFormatName

ConnectorType (16 bytes): An optional field that represents an application-defined GUID, as

specified in [MS-DTYP] section 2.3.4. This field MUST be present if and only if the Flags.CQ

field is set. This field is used by higher-layer messaging applications. The server MUST NOT
process or interpret this field.

2.2.19.3 MessagePropertiesHeader

The MessagePropertiesHeader contains property information about a UserMessage Packet and the

application-defined message payload.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Flags LabelLength MessageClass

CorrelationID

...

...

...

...

BodyType

ApplicationTag

MessageSize

AllocationBodySize

PrivacyLevel

%5bMS-DTYP%5d.pdf

53 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

HashAlgorithm

EncryptionAlgorithm

ExtensionSize

Label (variable)

...

ExtensionData (variable)

...

MessageBody (variable)

...

Flags (1 byte): An 8-bit unsigned integer field that specifies administration acknowledgments.
Any combination of these values is acceptable unless otherwise noted in the following table.

For more details on administration acknowledgments, see [MS-MQQB] sections 3.1.7.2.1 and
3.1.5.8.10.

0

1

2

3

4

5

6

7

P

A

P

R

N

A

N

R

X X X X

Where the bits are defined as:

Value Description

PA If the message is delivered to the destination queue, the server MUST send a positive

acknowledgment.

PR If the message is retrieved from the destination queue by the application, the server

MUST send a positive acknowledgment.

NA If the message is not delivered to the destination queue, the server MUST send a negative

acknowledgment.

NR If the message is not retrieved from the destination queue by the application, the server

MUST send a negative acknowledgment.

X Unused bit field. This field SHOULD NOT be set when sent and MUST be ignored on

receipt.

X Unused bit field. This field SHOULD NOT be set when sent and MUST be ignored on

receipt.

%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf

54 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Description

X Unused bit field. This field SHOULD NOT be set when sent and MUST be ignored on

receipt.

X Unused bit field. This field SHOULD NOT be set when sent and MUST be ignored on

receipt.

LabelLength (1 byte): An 8-bit unsigned integer field that MUST be set to the number of

elements of WCHAR in the Label field. This field has a valid range from 0x00 to 0xFA. When
the value of this field is 0x00, the Label field MUST NOT be present after the ExtensionSize
field. When greater than 0x00, this value MUST include the terminating null character.

MessageClass (2 bytes): A 16-bit unsigned integer that specifies the class of the message in
the packet. The value MUST be set to a value of the MESSAGE_CLASS_VALUES
enumeration specified in section 2.2.18.1.6.

CorrelationID (20 bytes): If this header appears outside an administration acknowledgement
message, as specified in [MS-MQQB] section 3.1.5.8.10, then this field MUST be treated as an
application-defined buffer and the server MUST not process or interpret this field.

If this header appears inside an administration acknowledgment message, as specified in
[MS-MQQB] section 3.1.5.8.10, then this field MUST be set to a MessageIdentifier consisting
of UserMessage.UserHeader.MessageID and
UserMessage.UserHeader.SourceQueueManager of the message being acknowledged.

See section 2.2.18.1.3 for details of the MessageIdentifier type.

BodyType (4 bytes): A 32-bit unsigned integer that specifies the type of data that is contained
in the message body. This value MUST be set to a PROPVARIANT type constant as
specified in section 2.2.12.

ApplicationTag (4 bytes): A 32-bit unsigned integer that specifies an application-defined value
that can be used to organize messages and the server MUST not process or interpret this field.

MessageSize (4 bytes): A 32-bit unsigned integer that MUST be set to the size, in bytes, of

the MessageBody field. The field MUST be set to a value between 0x00000000 and the size
limit imposed by the value of BaseHeader.PacketSize.

AllocationBodySize (4 bytes): A 32-bit unsigned integer field that MUST be set to the size, in
bytes, of the data allocated for the MessageBody field. This size can be larger than the actual
message body size; for example, an encrypted message body might be larger than the
original unencrypted message body, up to the size limit imposed by the value of

BaseHeader.PacketSize.

PrivacyLevel (4 bytes): A 32-bit unsigned integer field that specifies the privacy level of the
message in the UserMessage Packet. The privacy level determines what part of the message is
encrypted. The field MUST be set to one of the following values.<7>

Value Meaning

0x00000000 No encryption. The MessageBody field is sent as clear text.

0x00000001 The MessageBody field is encrypted using 40-bit end-to-end encryption.

0x00000003 The MessageBody field is encrypted using 128-bit end-to-end encryption.

%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf

55 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x00000005 The MessageBody field is encrypted using Advanced Encryption Standard (AES).

Any value not specified in the preceding table MUST be treated as an authentication failure.

HashAlgorithm (4 bytes): A 32-bit unsigned integer that specifies the hashing algorithm that
is used when authenticating the message. The following table lists the allowed values for this
field.

Value Meaning

0x00008001 Specifies the MD2 hash algorithm, as specified in [RFC1319].

0x00008002 Specifies the MD4 hash algorithm, as specified in [RFC1320].

0x00008003 Specifies the MD5 hash algorithm, as specified in [RFC1321].

0x00008004 Specifies the SHA-1 hash algorithm, as specified in [RFC3110].

0x0000800C Specifies the SHA-256 hash algorithm [FIPS180-2].

0x0000800E Specifies the SHA-512 hash algorithm [FIPS180-2].

Any value not specified in the preceding table MUST be treated as an authentication failure
when the SecurityHeader is present in the UserMessage and the
SecurityHeader.SecurityData.Signature field is present. The SHA-512 hash algorithm
(0x0000800E) SHOULD be used to generate the message signature.<8>

EncryptionAlgorithm (4 bytes): A 32-bit unsigned integer that specifies the encryption

algorithm used to encrypt the MessageBody field. This field MUST be set to a value in the
following table.

Value Meaning

0x00006602 Specifies the RC2 algorithm, as specified in [RFC2268].

0x00006610 Specifies the AES 256 algorithm, as specified in [FIPS197].

0x0000660E Specifies the AES 128 algorithm, as specified in [FIPS197].

0x0000660F Specifies the AES 192 algorithm, as specified in [FIPS197].

0x00006801 Specifies the RC4 algorithm, as specified in [RFC4757].

Any value not specified in the preceding table MUST be treated as a failed decryption error
when the SecurityHeader is present in the UserMessage and the SecurityHeader.EB flag is
set.

This field MUST be set according to PrivacyLevel as specified in the following table.

PrivacyLevel Allowed encryption algorithms

0x00000001 RC2, RC4

http://go.microsoft.com/fwlink/?LinkId=90273
http://go.microsoft.com/fwlink/?LinkId=90274
http://go.microsoft.com/fwlink/?LinkId=90275
http://go.microsoft.com/fwlink/?LinkId=90406
http://go.microsoft.com/fwlink/?LinkId=89868
http://go.microsoft.com/fwlink/?LinkId=89868
http://go.microsoft.com/fwlink/?LinkId=90330
http://go.microsoft.com/fwlink/?LinkId=89870
http://go.microsoft.com/fwlink/?LinkId=89870
http://go.microsoft.com/fwlink/?LinkId=89870
http://go.microsoft.com/fwlink/?LinkId=90488

56 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

PrivacyLevel Allowed encryption algorithms

0x00000003 RC2, RC4

0x00000005 AES 128, AES 192, AES 256

When specifying AES or RC2, the initialization vector must be set to zero. The Padding used
with AES or RC2 is [PKCS5] padding.

ExtensionSize (4 bytes): A 32-bit unsigned integer field that MUST be set to the length, in

bytes, of the application-defined ExtensionData field. The field MUST be set to a value
between 0x00000000 and the size limit imposed by the value of BaseHeader.PacketSize.

Label (variable): The Label field is an application-defined Unicode string. This field can be
used by an application to assign a short descriptive string to the message. This field is of
length LabelLength * 2 bytes and MUST NOT be more than 500 bytes. If LabelLength is
nonzero, this field MUST be in the format specified by the following ABNF rule.

label = 0*249(%x0001-FFFF) 0x0000

If LabelLength is zero then this field MUST NOT be present.

Unlike the fields preceding and including the Label field, the ExtensionData and
MessageBody fields are not guaranteed to be on 4-byte boundaries.

ExtensionData (variable): This field is a buffer containing additional application-defined

information that is associated with the message. This field is of length ExtensionSize bytes.
If ExtensionSize is zero then this field MUST NOT be present.

MessageBody (variable): The MessageBody field is a buffer containing the application-
defined message payload. This field is of length MessageSize bytes. If MessageSize is zero
then this field MUST NOT be present.

The MessagePropertiesHeader packet MUST be a multiple of 4 bytes in length and MUST append

padding bytes needed to ensure this requirement. There are no restrictions on the value of the
padding bytes.<9>

2.2.20 UserMessage Packet

A UserMessage Packet always contains an entire message. The UserMessage Packet is used to
communicate application-defined and administration acknowledgment messages between a sender
and receiver.

A UserMessage Packet contains a number of required headers and can contain additional optional
headers. The required headers that MUST appear in all UserMessage Packets are: BaseHeader,
UserHeader, and MessagePropertiesHeader. Optional headers include: TransactionHeader,
SecurityHeader, DebugHeader, SoapHeader, MultiQueueFormatHeader, and SessionHeader.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

BaseHeader

http://go.microsoft.com/fwlink/?LinkId=90250

57 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

...

...

...

UserHeader (variable)

...

TransactionHeader (variable)

...

SecurityHeader (variable)

...

MessagePropertiesHeader (variable)

...

DebugHeader (variable)

...

SoapHeader (variable)

...

MultiQueueFormatHeader (variable)

...

SessionHeader (optional)

...

...

...

BaseHeader (16 bytes): A BaseHeader (section 2.2.19.1) packet that contains information to
identify and manage protocol packets. The BaseHeader.Flags.IN field MUST NOT be set.

UserHeader (variable): A UserHeader (section 2.2.19.2) packet that contains source and
destination queue information.

58 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

TransactionHeader (variable): A TransactionHeader (section 2.2.20.5) packet that contains
flags and sequence information for the packet. This header MUST be present when

UserHeader.Flags.TH is set and MUST NOT be present if it is clear.

SecurityHeader (variable): A SecurityHeader (section 2.2.20.6) packet that contains security

information. This header MUST be present when UserHeader.Flags.SH is set and MUST NOT
be present if it is clear.

MessagePropertiesHeader (variable): A MessagePropertiesHeader (section 2.2.19.3) packet
that contains property information about a UserMessage Packet and the application-defined
message payload. This header MUST be present.

DebugHeader (variable): A DebugHeader (section 2.2.20.8) packet that specifies the queue to
receive trace messages for this UserMessage Packet. This header specifies the queue where

trace messages are sent. This header MUST be present if and only if BaseHeader.Flags.DH
is set.

SoapHeader (variable): A SoapHeader (section 2.2.20.7) packet that contains application-

defined information. This header MUST be present if and only if UserHeader.Flags.HH is set.

MultiQueueFormatHeader (variable): A MultiQueueFormatHeader (section 2.2.20.1) packet
that is included when a message is destined for multiple queues. This header MUST be present

if and only if UserHeader.Flags.MQ is set.

SessionHeader (16 bytes): A SessionHeader (section 2.2.20.4) packet that is used to
acknowledge express and recoverable UserMessage Packets received by the message
transfer protocols. This header MUST be present if and only if BaseHeader.Flags.SH is set.

2.2.20.1 MultiQueueFormatHeader

The optional MultiQueueFormatHeader is used when a message is destined for multiple

queues.<10> When an application-layer message is sent using a multiple-element format name,
this header is added to the packet to list the destinations. The sending queue manager creates a
separate UserMessage Packet for each destination and specifies the packet address in the

UserHeader. The information in this header provides a list of all destinations that were sent the
message in addition to associated administration and response queues.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Destination (variable)

...

Administration (variable)

...

Response (variable)

...

59 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Signature (variable)

...

Destination (variable): An MQFAddressHeader that specifies the name of one or more
destination queues. This field MUST contain the list of all queues that were sent a copy of this
UserMessage Packet. The end of this field is rounded up to the next 4-byte boundary. There

are no restrictions on the value of the padding bytes.<11>

Administration (variable): An MQFAddressHeader that specifies the name of one or more
administration queues that can receive positive and negative acknowledgement messages.
The end of this field is rounded up to the next 4-byte boundary. There are no restrictions on
the value of the padding bytes.<12>

Response (variable): An MQFAddressHeader that specifies the name of one or more response

queues that can receive response messages from the receivers at the destinations. The end of

this field is rounded up to the next 4-byte boundary. There are no restrictions on the value of
the padding bytes.<13>

Signature (variable): An MQFSignatureHeader that specifies a signature for the packet.

2.2.20.2 MQFAddressHeader

The MQFAddressHeader is used to specify multiple destination queue format names.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

HeaderSize

HeaderID Reserved

ElementCount

FormatNameList (variable)

...

HeaderSize (4 bytes): A 32-bit unsigned integer that specifies the size of the header. This
value MUST contain the size, in bytes, of this header including the variable data. This field has
a valid range between 0x0000000C and the size limit imposed by the value of
BaseHeader.PacketSize.

HeaderID (2 bytes): A 16-bit unsigned integer that specifies an identifier for this header. This
field MUST be set to one of the following values based on the header designation:

Value Meaning

0x0064 Destination

0x00C8 Admin

60 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x012C Response

0x015E Signature

Reserved (2 bytes): A 16-bit unsigned integer field that is reserved for alignment. The sender
SHOULD set this field to 0x0000, and the receiver MUST ignore it on receipt.

ElementCount (4 bytes): A 32-bit unsigned integer field that MUST be set to the number of
elements in the FormatNameList field. This field has a valid range between 0x00000000 and
the size limit imposed by the value of BaseHeader.PacketSize.

FormatNameList (variable): An MQFFormatNameElement that contains a list of queue format
names. This field MUST contain a list of MQFFormatNameElement data structures. The array
MUST contain the number of elements specified by the ElementCount field. The end of this
field is rounded up to the next 4-byte boundary. Padding bytes in this field MAY be any

value.<14>

2.2.20.3 MQFSignatureHeader

The MQFSignatureHeader is a signature used in the MultiQueueFormatHeader.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ID Reserved

Size

Signature (variable)

...

ID (2 bytes): A 16-bit unsigned short integer value that MUST be set to 0x015E.

Reserved (2 bytes): A 16-bit unsigned short integer field that is reserved for alignment. The
sender SHOULD set this field to 0x0000, and the receiver MUST ignore it on receipt.

Size (4 bytes): A 32-bit unsigned integer field that MUST be set to the size, in bytes, of the
byte array to hold the Signature. This field has a valid range between 0x00000000 and the

size limit imposed by the value of BaseHeader.PacketSize.

Signature (variable): A byte array that contains the signature. The array MUST contain the
number of elements that are specified by the Size field. The Signature MUST be calculated in
the same way as the SecurityData.Signature as specified in section 2.2.20.6.

2.2.20.4 SessionHeader

The SessionHeader is used to acknowledge express and recoverable UserMessage Packets received

by the message transfer protocols. This header is present in stand-alone SessionAck Packet as
defined in [MS-MQQB] (section 2.2.6) and is optional in a UserMessage Packet.

%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf

61 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

This header contains a session acknowledgment. For more details, see [MS-MQQB] sections 3.1.1.7,
and 3.1.1.6.1.

The set of UserMessage Packets sent on a session represent a message sequence. There is a local-
to-remote and remote-to-local sequence. These message sequences exist for the lifetime of the

session. The local and remote protocols MUST maintain counts of the UserMessage Packets sent and
received. A message MUST be associated with a sequence number that corresponds to its position
within the sequence. Sequence numbers MUST begin with 1 and MUST increment by 1 with each
subsequent message. For example, the third message sent on a session has a sequence number of
3.

The protocols MUST also maintain a count of recoverable UserMessage Packets sent and associates
recoverable sequence numbers with those messages. For example, the fifth recoverable message

sent on a session has a sequence number of 5.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

AckSequenceNumber RecoverableMsgAckSeqNumber

RecoverableMsgAckFlags

UserMsgSequenceNumber RecoverableMsgSeqNumber

WindowSize Reserved

AckSequenceNumber (2 bytes): A 16-bit unsigned integer that specifies a count of messages
received. This field MUST be set to the count of UserMessage Packets received on this session.
This field acknowledges all messages up to and including the specified sequence number. This
field has a valid range from 0x0000 to 0xFFFF, inclusive.

RecoverableMsgAckSeqNumber (2 bytes): A 16-bit unsigned integer that specifies a

recoverable message sequence number. This field MUST be set to the lowest unacknowledged
recoverable message sequence number that has been persisted for reliable recovery. If no
recoverable messages have been received by the receiver since the last SessionHeader was
sent, this field MUST be set to 0. This field has a valid range from 0x0000 to 0xFFFF, inclusive.

RecoverableMsgAckFlags (4 bytes): A 32-bit unsigned integer bit field representing
messages. This bit field represents up to 32 recoverable UserMessage Packets that are being
acknowledged as written to disk. Bit 0 of this field represents the UserMessage Packet whose

sequence number is specified in the RecoverableMsgAckSeqNumber field. A given bit k of
this field represents a recoverable UserMessage Packet with a sequence number of
RecoverableMsgAckSeqNumber + k. The corresponding bit for a UserMessage Packet that
has been persisted for reliable recovery MUST be set in the bit field.

UserMsgSequenceNumber (2 bytes): A 16-bit unsigned integer that is the count of messages
sent. This field SHOULD<15> be set to the count of UserMessage Packets sent on this session.

When the UserMsgSequenceNumber is not set to the count of UserMessage Packets sent on

a session, the user message is sent to the destination queue, and the session is closed by the
receiver. This field has a valid range from 0x0000 to 0xFFFF, inclusive.

RecoverableMsgSeqNumber (2 bytes): A 16-bit unsigned integer that is the count of
recoverable messages sent. This field MUST be set to the count of recoverable UserMessage

%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf

62 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Packets sent on this session. This value MUST be 0 if no recoverable UserMessage Packets
have been sent. This field has a valid range from 0x0000 to 0xFFFF, inclusive.

WindowSize (2 bytes): A 16-bit unsigned integer field that specifies the acknowledgment
window size. The window size controls the frequency at which the message transfer protocols

send acknowledgment packets.<16> The value of this field SHOULD be set to 0x0040.<17>
This field has a valid range from 0x0001 to 0xFFFF, inclusive.<18>

Reserved (2 bytes): Reserved. Can be set to any arbitrary value when sent and MUST be
ignored on receipt.

2.2.20.5 TransactionHeader

The TransactionHeader packet contains sequence information for a transactional message. The

presence of this packet in a UserMessage Packet indicates that the message contained in the packet
is transactional.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Flags

TxSequenceID

...

TxSequenceNumber

PreviousTxSequenceNumber

ConnectorQMGuid (optional)

...

...

...

Flags (4 bytes): A 32-bit unsigned integer that contains a set of options that provide additional

information about the packet. Any combination of these values is acceptable unless otherwise
noted in the following table.

Any value not specified in the table MUST be treated as an error by closing the session.

The value SHOULD be set to a combination of the following values.<19>

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

C F F L ID X X X X X X X X

63 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

G A M M 1 2 3 4 5 6 7 8

CG (1 bit): A bit that specifies whether the ConnectorQMGuid field contains a connector
queue manager GUID. If set, the ConnectorQMGuid field MUST contain a GUID.

FA (1 bit): A bit that specifies whether a FinalAck Packet, as defined in [MS-MQQB]
section 2.2.5, is required. For more details see [MS-MQQB] section 3.1.7.2.2.

FM (1 bit): A bit that specifies whether the message is the first one sent within the
context of a transaction. This bit MUST be set if the message is the first one in a

transaction, otherwise it MUST be clear.

LM (1 bit): A bit that specifies whether the message is the last one sent within the
context of a transaction. This bit MUST be set if the message is the last one in a
transaction, otherwise it MUST be clear.

ID (20 bits): An array of 20 bits that specifies an identifier to correlate this packet to the
transaction under which it was captured. The message transfer protocols MUST generate

an identifier for the transaction and assign all packets captured under the transaction to

the value. This identifier MUST be unique across all such identifiers generated by the
sender queue manager.

X1 (1 bit): An unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X2 (1 bit): An unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X3 (1 bit): An unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X4 (1 bit): An unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X5 (1 bit): An unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X6 (1 bit): An unused bit field. This field SHOULD NOT be set when sent and MUST be

ignored on receipt.

X7 (1 bit): An unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X8 (1 bit): An unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

TxSequenceID (8 bytes): A transactional sequence identifier, as specified in TxSequenceID.
This value identifies the transactional sequence that the TxSequenceNumber and

PreviousTxSequenceNumber are within. For more details, see section 2.2.18.1.2.

TxSequenceNumber (4 bytes): A 32-bit unsigned integer that is the message sequence
number within the TxSequenceID sequence. This field MUST be set to the value that
represents the message position within the transactional sequence. The first message within a
sequence MUST be set to the value 1. This field has a valid range from 0x00000001 to
0xFFFFFFFF.

%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf

64 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

PreviousTxSequenceNumber (4 bytes): A 32-bit unsigned integer that is the sequence
number of the previous message in the TxSequenceID sequence. This field MUST be set to

the sequence number of the message that precedes this message in the transactional
sequence. This value MUST be set to 0x00000000 if there is no previous message. This field

has a valid range from 0x00000000 to 0xFFFFFFFE.

ConnectorQMGuid (16 bytes): An optional field containing an application-defined GUID, as
specified in [MS-DTYP] section 2.3.4. If Flags.CG is set, this field MUST be present;
otherwise, it MUST NOT. This field can be used by higher-layer messaging applications. The
server MUST NOT process or interpret this field.

2.2.20.6 SecurityHeader

The optional SecurityHeader contains security information.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Flags SenderIdSize

EncryptionKeySize SignatureSize

SenderCertSize

ProviderInfoSize

SecurityData (variable)

...

Flags (2 bytes): A 16-bit unsigned short integer that contains a set of options that provides
additional information about the packet. Any combination of these values is acceptable unless
otherwise noted in the following table.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ST A

U

E

B

D

E

A

I

AS X1

2

X1

3

X1

4

X1

5

ST (4 bits): Specifies the type of sender ID in the SecurityData field. This field MUST be

set to one of the following values.

Value Meaning

0x0 The SecurityData.SecurityID field is not present and the SenderIdSize field

MUST be set to 0x0000.

0x1 The SecurityData.SecurityID field MUST contain the sender application security

identifier (SID). The SID layout is specified in [MS-DTYP] section 2.4.2.2. The

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

65 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

SubAuthority field of the SID packet is a variable-length array of unsigned 32-bit

little-endian integers.

0x2 The SecurityData.SecurityID field MUST contain the queue manager GUID.

AU (1 bit): Indicates whether the message is authenticated. This field MUST be set to 0.

EB (1 bit): Indicates whether the body of the message is encrypted. If set, the
MessagePropertiesHeader.MessageBody field MUST be encrypted by the sender and

decrypted by the receiver.

For details about encryption on the sender side, see [MS-MQQB] section 3.1.7.1.5.

For details about decryption on the receiver side, see [MS-MQQB] section 3.1.5.8.3.

DE (1 bit): Indicates whether the default cryptographic provider is used.<20> When clear

and SignatureSize is nonzero, the SecurityData.ProviderName MUST specify the
name of the alternate provider.

AI (1 bit): Indicates whether the SecurityData field is present. If set, the header MUST
include a SecurityData field.

AS (4 bits): Indicates the authentication signature type. This field MUST be set to 0.

X12 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X13 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X14 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X15 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

SenderIdSize (2 bytes): A 16-bit unsigned integer that specifies the size of the
SecurityData.SecurityID field. This value MUST be set to the size, in bytes, of the security
identifier in the SecurityData.SecurityID field. This field has a valid range from 0x0000 to

0xFFFF, inclusive.

EncryptionKeySize (2 bytes): A 16-bit unsigned integer that specifies the size of the
SecurityData.EncryptionKey field. This value MUST be set to the size, in bytes, of the
encryption key in the SecurityData.EncryptionKey field. This field has a valid range from
0x0000 to 0xFFFF, inclusive.

SignatureSize (2 bytes): A 16-bit unsigned integer that specifies the size of the

SecurityData.Signature field. This value MUST be set to the size, in bytes, of the sender

signature in the SecurityData.Signature field. This field has a valid range from 0x0000 to
0xFFFF, inclusive.

SenderCertSize (4 bytes): A 32-bit unsigned integer that specifies the size of the
SecurityData.SenderCert field. This value MUST be set to the size, in bytes, of the sender
signature in the SecurityData.SenderCert field. This field has a valid range from
0x00000000 to a value 0x0000FFFF, inclusive.

%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf

66 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

ProviderInfoSize (4 bytes): A 32-bit unsigned integer that specifies the size of the
SecurityData.ProviderInfo field. This value MUST be set to the size, in bytes, of the

security provider information in the SecurityData.ProviderInfo field. This field has a valid
range between 0x00000000 and the size limit imposed by the value of

BaseHeader.PacketSize.

At least one of the fields SenderIdSize, EncryptionKeySize, SignatureSize,
SenderCertSize, and ProviderInfoSize MUST be nonzero.

SecurityData (variable): An optional variable-length array of bytes containing additional
security information. This field MUST contain the security information specified in the Flags
field.

The data appears in the order specified below. Each field MUST be aligned up to the next 4-

byte boundary. The size of each field is specified by the corresponding SenderIdSize,
EncryptionKeySize, SignatureSize, SenderCertSize, and ProviderInfoSize fields. An
item with a size of zero occupies no space in the SecurityData array.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SecurityID (variable)

...

EncryptionKey (variable)

...

Signature (variable)

...

SenderCert (variable)

...

ProviderInfo (variable)

...

SecurityID (variable): Contains the sender SID or the sending queue manager GUID.
This field MUST be set to the queue manager GUID when the packet is sent and signed
by the queue manager.

EncryptionKey (variable): Sender symmetrical encryption key.

Signature (variable): The packet digital signature. The type of signature is specified by
the MSMQ version as described in the following table and the hash algorithm is specified
by the MessagePropertiesHeader.HashAlgorithm field.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

67 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

MSMQ Version Signature Type

MSMQ 1.0 The SecurityData.Signature field is an MSMQ 1.0 digital signature.

If the SecurityData.Flags.ST field is set to 1, the

SecurityData.SecurityID field MUST contain the sender application

security identifier.

If the SecurityData.Flags.ST field is set to 2, it specifies that the

message is signed with Sender ID as the Signature. If set, the

SecurityData.SecurityID field MUST contain the queue manager

GUID.

The signature MUST be a hash of the MSMQ 1.0 Digital Signature

Properties (section 2.5.1).

MSMQ 2.0 The SecurityData.Signature field is an MSMQ 2.0 digital signature.

The signature MUST be a hash of the MSMQ 2.0 Digital Signature

Properties (section 2.5.2).

MSMQ 3.0, MSMQ

4.0, MSMQ 5.0,

or MSMQ 6.0

The SecurityData.Signature field is an MSMQ 3.0 digital signature.

The signature MUST be a hash of the MSMQ 3.0 Digital Signature

Properties (section 2.5.3).

The hash algorithm that is used to compute the SecurityData.Signature field is
specified by the MessagePropertiesHeader.HashAlgorithm field.

For details about signature and hash computations on the sender side, see [MS-MQQB]

section 3.1.7.1.4.

For details about authentication on the receiver side, see [MS-MQQB] section 3.1.5.8.3.

SenderCert (variable): Sender X.509 digital certificate. Details are as specified in
[RFC3280]. The public key that is contained in the certificate has the following structure.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

0x06 0x02 0x00 Key Type

... 0x52

0x53 0x41 0x31 Length in bits

... Public Exponent

... Modulus (variable)

...

Key Type (4 bytes): This MUST be set to 0x00002400 for RSA signing keys and 0x0000A400 for
RSA encryption keys.

Length in bits (4 bytes): This 32-bit unsigned number MUST be the length of the RSA modulus.
It MUST contain the length, in bits, of the Modulus field.

%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90414

68 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Public Exponent (4 bytes): This MUST be a 32-bit unsigned integer. It MUST be the public
exponent of the RSA key pair, referred to as e in [RFC3447] section 2.

Modulus (variable): This MUST be the RSA modulus, referred to as defined in [RFC3447] section
2. This field MUST be a multiple of 8 bits in length and MUST append padding bits needed to ensure

this requirement. Padding bits MUST be set to zero. The public key SHOULD<21> be stored in the
directory.

ProviderInfo (variable): Contains the information of the alternative provider used to
produce the signature.<22> If the Flags.DE bit is clear and the ProviderInfoSize is
nonzero, this field MUST be set; otherwise it MUST NOT be included in the
SecurityData field. The layout of this field is as follows.<23>

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ProviderType

ProviderName (variable)

...

ProviderType (4 bytes): A 32-bit unsigned integer that indicates the type of the alternative
provider used to produce the signature.

ProviderName (variable): A null-terminated Unicode string that contains the name of the
alternative provider used to produce the signature.

2.2.20.7 SoapHeader

The optional SoapHeader packet contains application-defined information.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

HeaderSectionID Reserved

HeaderDataLength

Header (variable)

...

BodySectionID Reserved1

BodyDataLength

Body (variable)

...

http://go.microsoft.com/fwlink/?LinkId=90422
http://go.microsoft.com/fwlink/?LinkId=90422

69 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

HeaderSectionID (2 bytes): A 16-bit unsigned short integer field that MUST be set to 0x0320.

Reserved (2 bytes): A 16-bit unsigned integer field that is reserved for future use. The sender
SHOULD set this field to 0x0000, and the receiver MUST ignore it on receipt.

HeaderDataLength (4 bytes): A 32-bit unsigned integer that specifies the length of the

Header field. This field MUST be set to the number of elements in the Unicode Header field,
including the terminating null character. This field has a valid range between 0x00000000 and
the size limit imposed by the value of BaseHeader.PacketSize.

Header (variable): A null-terminated Unicode string. This field contains an application-defined
string.

BodySectionID (2 bytes): A 16-bit unsigned short integer that MUST be set to 0x0384.

Reserved1 (2 bytes): A 16-bit unsigned short integer field reserved for future use. The sender

SHOULD set this field to 0x0000, and the receiver MUST ignore it on receipt.

BodyDataLength (4 bytes): A 32-bit unsigned integer that specifies the length of the Body
field. This field MUST be set to the number of elements in the Unicode Body field, including
the terminating null character. This field has a valid range between 0x00000000 and the size
limit imposed by the value of BaseHeader.PacketSize.

Body (variable): A null-terminated Unicode string. This field contains an application-defined

string.

2.2.20.8 DebugHeader

The DebugHeader specifies the queue to receive trace messages for this UserMessage Packet. For
details about how this header is used when tracing is enabled<24> see [MS-MQQB] section
3.1.5.8.9.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Flags Reserved

QueueIdentifier (optional)

...

...

...

Flags (2 bytes): A 16-bit unsigned short integer field that provides bit flags containing
additional information about the packet.

%5bMS-MQQB%5d.pdf

70 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

QT X

2

X

3

X

4

X

5

X

6

X

7

X

8

X

9

X

10

X

11

X

12

X

13

X

14

X

15

QT (2 bits): Specifies the queue type. This field MUST be set to one of the following
values.

Value Meaning

0x0 No queue. The QueueIdentifier field is not present.

0x1 Public queue. The QueueIdentifier field contains a 16-byte queue GUID, as

specified in [MS-DTYP] section 2.3.4.

X2 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X3 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X4 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X5 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X6 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X7 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X8 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be

ignored on receipt.

X9 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X10 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X11 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X12 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be

ignored on receipt.

X13 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

X14 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

%5bMS-DTYP%5d.pdf

71 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

X15 (1 bit): Unused bit field. This field SHOULD NOT be set when sent and MUST be
ignored on receipt.

Reserved (2 bytes): A 16-bit unsigned integer field that is reserved for future use. The sender
SHOULD set this field to 0x0000, and the receiver MUST ignore it on receipt.

QueueIdentifier (16 bytes): An optional field that contains a GUID, as specified in [MS-DTYP]
section 2.3.4, which is the identifier of the queue that is used to store trace messages. This
field MUST be present when DebugHeader.Flags.QT is set to 0x1; otherwise, it MUST NOT
be present.

2.2.21 MQUSERSIGNCERTS

The MQUSERSIGNCERTS structure defines a format for packing multiple MQUSERSIGNCERT

structures into a single BLOB (section 2.2.15).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

CertificateCount

Certificates (variable)

...

CertificateCount (4 bytes): A 32-bit unsigned integer that contains the count of
MQUSERSIGNCERT structures in the Certificates field.

Certificates (variable): A variable-length array of bytes that contains MQUSERSIGNCERT
structures.

2.2.22 MQUSERSIGNCERT

The MQUSERSIGNCERT structure defines one public key certificate stored in the user's signing
certificate list (MQUSERSIGNCERTS (section 2.2.21)).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Digest

...

...

...

Identifier

...

%5bMS-DTYP%5d.pdf

72 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

...

...

CertificateLength

Certificate (variable)

...

Digest (16 bytes): A 16-byte value that is computed as the MD5 hash of the user's X.509
certificate contained in the Certificate field, as defined in [RFC1321].

Identifier (16 bytes): A GUID, as specified in [MS-DTYP] section 2.3.4, that identifies the
certificate contained in the Certificate field. It is generated by the entity that registers the

certificate.

CertificateLength (4 bytes): A 32-bit unsigned integer that contains the size, in bytes, of the

Certificate field.

Certificate (variable): A variable length array of bytes that contains an X.509-encoded
certificate as defined in [RFC3280].

2.2.23 MQQMACCESSMASK

The MQQMACCESSMASK bitfield enumeration values can be used to set the value of an
ACCESS_MASK structure ([MS-DTYP] section 2.4.3), which is used to constrain the permissions for

a Queue Manager.

typedef enum

{

 MQSEC_DELETE_DEADLETTER_MESSAGE = 0x00000001,

 MQSEC_PEEK_DEADLETTER_MESSAGE = 0x00000002,

 MQSEC_CREATE_QUEUE = 0x00000004,

 MQSEC_SET_MACHINE_PROPERTIES = 0x00000010,

 MQSEC_GET_MACHINE_PROPERTIES = 0x00000020,

 MQSEC_DELETE_JOURNAL_QUEUE_MESSAGE = 0x00000040,

 MQSEC_PEEK_JOURNAL_QUEUE_MESSAGE = 0x00000080,

 MQSEC_DELETE_MACHINE = 0x00010000,

 MQSEC_GET_MACHINE_PERMISSIONS = 0x00020000,

 MQSEC_CHANGE_MACHINE_PERMISSIONS = 0x00040000,

 MQSEC_TAKE_MACHINE_OWNERSHIP = 0x00080000,

 MQSEC_RECEIVE_DEADLETTER_MESSAGE = (MQSEC_DELETE_DEADLETTER_MESSAGE

 + MQSEC_PEEK_DEADLETTER_MESSAGE),

 MQSEC_RECEIVE_JOURNAL_QUEUE_MESSAGE = (MQSEC_DELETE_JOURNAL_QUEUE_MESSAGE

 + MQSEC_PEEK_JOURNAL_QUEUE_MESSAGE),

 MQSEC_MACHINE_GENERIC_READ = (MQSEC_GET_MACHINE_PROPERTIES

 + MQSEC_GET_MACHINE_PERMISSIONS

 + MQSEC_RECEIVE_DEADLETTER_MESSAGE

 + MQSEC_RECEIVE_JOURNAL_QUEUE_MESSAGE),

 MQSEC_MACHINE_GENERIC_WRITE = (MQSEC_GET_MACHINE_PROPERTIES

 + MQSEC_GET_MACHINE_PERMISSIONS

 + MQSEC_CREATE_QUEUE),

 MQSEC_MACHINE_GENERIC_ALL = (MQSEC_RECEIVE_DEADLETTER_MESSAGE

http://go.microsoft.com/fwlink/?LinkId=90275
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90414
%5bMS-DTYP%5d.pdf

73 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 + MQSEC_RECEIVE_JOURNAL_QUEUE_MESSAGE

 + MQSEC_CREATE_QUEUE

 + MQSEC_SET_MACHINE_PROPERTIES

 + MQSEC_GET_MACHINE_PROPERTIES

 + MQSEC_DELETE_MACHINE

 + MQSEC_GET_MACHINE_PERMISSIONS

 + MQSEC_CHANGE_MACHINE_PERMISSIONS

 + MQSEC_TAKE_MACHINE_OWNERSHIP),

 MQSEC_MACHINE_WORLD_RIGHTS = (MQSEC_GET_MACHINE_PROPERTIES

 + MQSEC_GET_MACHINE_PERMISSIONS)

} MQQMACCESSMASK;

MQSEC_DELETE_DEADLETTER_MESSAGE: Specifies the permission required by a security

principal to delete messages from the system dead-letter queue.

MQSEC_PEEK_DEADLETTER_MESSAGE: Specifies the permission required by a security

principal to peek messages from the system dead-letter queue.

MQSEC_CREATE_QUEUE: Specifies the permission required by a security principal to create a
new queue.

MQSEC_SET_MACHINE_PROPERTIES: Specifies the permission required by a security
principal to change the properties of the queue manager.

MQSEC_GET_MACHINE_PROPERTIES: Specifies the permission required by a security
principal to read the properties of the queue manager.

MQSEC_DELETE_JOURNAL_QUEUE_MESSAGE: Specifies the permission required by a
security principal to delete a message from the system queue journal.

MQSEC_PEEK_JOURNAL_QUEUE_MESSAGE: Specifies the permission required by a security
principal to peek a message from the system queue journal.

MQSEC_DELETE_MACHINE: Specifies the permission required by a security principal to delete

the queue manager.

MQSEC_GET_MACHINE_PERMISSIONS: Specifies the permission required by a security

principal to get the security descriptor of the queue manager.

MQSEC_CHANGE_MACHINE_PERMISSIONS: Specifies the permission required by a security
principal to set or modify the security descriptor of the queue manager.

MQSEC_TAKE_MACHINE_OWNERSHIP: Specifies the permission required by a security
principal to change the owner of the queue manager.

MQSEC_RECEIVE_DEADLETTER_MESSAGE: Specifies the permission required by a security

principal to destructively read a message from the system dead-letter queue.

MQSEC_RECEIVE_JOURNAL_QUEUE_MESSAGE: Specifies the permission required by a
security principal to destructively read a message from the system queue journal.

MQSEC_MACHINE_GENERIC_READ: Specifies the permission required by a security principal
to read the queue manager properties, read the queue manager permissions, and
destructively read a message from the system dead-letter or system queue journal.

74 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

MQSEC_MACHINE_GENERIC_WRITE: Specifies the permission required by a security
principal to read the queue manager properties, read the queue manager permissions, and

create new queues.

MQSEC_MACHINE_GENERIC_ALL: Specifies the permission required by a security principal to

perform all of the operations listed previously.

MQSEC_MACHINE_WORLD_RIGHTS: Specifies the permission required by a security principal
to get queue manager properties or permissions.

2.2.24 MQQUEUEACCESSMASK

The MQQUEUEACCESSMASK bitfield enumeration values can be used to set the value of an
ACCESS_MASK structure ([MS-DTYP] section 2.4.3), which is used to constrain the permissions for

a Queue.

typedef enum

{

 MQSEC_DELETE_MESSAGE = 0x00000001,

 MQSEC_PEEK_MESSAGE = 0x00000002,

 MQSEC_WRITE_MESSAGE = 0x00000004,

 MQSEC_DELETE_JOURNAL_MESSAGE = 0x00000008,

 MQSEC_SET_QUEUE_PROPERTIES = 0x00000010,

 MQSEC_GET_QUEUE_PROPERTIES = 0x00000020,

 MQSEC_DELETE_QUEUE = 0x00010000,

 MQSEC_GET_QUEUE_PERMISSIONS = 0x00020000,

 MQSEC_CHANGE_QUEUE_PERMISSIONS = 0x00040000,

 MQSEC_TAKE_QUEUE_OWNERSHIP = 0x00080000,

 MQSEC_RECEIVE_MESSAGE = (MQSEC_DELETE_MESSAGE

 | MQSEC_PEEK_MESSAGE),

 MQSEC_RECEIVE_JOURNAL_MESSAGE = (MQSEC_DELETE_JOURNAL_MESSAGE

 | MQSEC_PEEK_MESSAGE),

 MQSEC_QUEUE_GENERIC_READ = (MQSEC_GET_QUEUE_PROPERTIES

 | MQSEC_GET_QUEUE_PERMISSIONS

 | MQSEC_RECEIVE_MESSAGE

 | MQSEC_RECEIVE_JOURNAL_MESSAGE),

 MQSEC_QUEUE_GENERIC_WRITE = (MQSEC_GET_QUEUE_PROPERTIES

 | MQSEC_GET_QUEUE_PERMISSIONS

 | MQSEC_WRITE_MESSAGE),

 MQSEC_QUEUE_GENERIC_ALL = (MQSEC_RECEIVE_MESSAGE

 | MQSEC_RECEIVE_JOURNAL_MESSAGE

 | MQSEC_WRITE_MESSAGE | MQSEC_SET_QUEUE_PROPERTIES

 | MQSEC_GET_QUEUE_PROPERTIES

 | MQSEC_DELETE_QUEUE

 | MQSEC_GET_QUEUE_PERMISSIONS

 | MQSEC_CHANGE_QUEUE_PERMISSIONS

 | MQSEC_TAKE_QUEUE_OWNERSHIP)

} MQQUEUEACCESSMASK;

MQSEC_DELETE_MESSAGE: Specifies the permission required by a security principal to delete

messages from the queue.

MQSEC_PEEK_MESSAGE: Specifies the permission required by a security principal to peek
messages from the queue.

MQSEC_WRITE_MESSAGE: Specifies the permission required by a security principal to insert

messages into the queue.

%5bMS-DTYP%5d.pdf

75 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

MQSEC_DELETE_JOURNAL_MESSAGE: Specifies the permission required by a security
principal to delete messages from the queue journal associated with the queue.

MQSEC_SET_QUEUE_PROPERTIES: Specifies the permission required by a security principal
to modify the properties of the queue.

MQSEC_GET_QUEUE_PROPERTIES: Specifies the permission required by a security principal
to read the properties of the queue.

MQSEC_DELETE_QUEUE: Specifies the permission required by a security principal to delete a
queue.

MQSEC_GET_QUEUE_PERMISSIONS: Specifies the permission required by a security principal
to read the permissions for the queue.

MQSEC_CHANGE_QUEUE_PERMISSIONS: Specifies the permission required by a security

principal to modify the permissions for the queue.

MQSEC_TAKE_QUEUE_OWNERSHIP: Specifies the permission required by a security principal
to change the owner for the queue.

MQSEC_RECEIVE_MESSAGE: Specifies the permission required by a security principal to
destructively read a message from the queue.

MQSEC_RECEIVE_JOURNAL_MESSAGE: Specifies the permission required by a security

principal to destructively read a message from the queue journal associated with the queue.

MQSEC_QUEUE_GENERIC_READ: Specifies the permission required by a security principal to
read the queue properties, read the queue permissions, and destructively receive messages
from the queue or the associated queue journal.

MQSEC_QUEUE_GENERIC_WRITE: Specifies the permission required by a security principal to
read the queue properties, read the queue permissions, and insert messages into the queue.

MQSEC_QUEUE_GENERIC_ALL: Specifies the permission required by a security principal to

perform all of the operations listed previously.

2.2.25 MQSITEACCESSMASK

The MQSITEACCESSMASK bitfield enumeration values can be used to set the value of an
ACCESS_MASK structure ([MS-DTYP] section 2.4.3), which is used to constrain the permissions for
a Site.

typedef enum

{

 MQSEC_CREATE_FRS = 0x00000001,

 MQSEC_CREATE_BSC = 0x00000002,

 MQSEC_CREATE_MACHINE = 0x00000004,

 MQSEC_SET_SITE_PROPERTIES = 0x00000010,

 MQSEC_GET_SITE_PROPERTIES = 0x00000020,

 MQSEC_DELETE_SITE = 0x00010000,

 MQSEC_GET_SITE_PERMISSIONS = 0x00020000,

 MQSEC_CHANGE_SITE_PERMISSIONS = 0x00040000,

 MQSEC_TAKE_SITE_OWNERSHIP = 0x00080000,

 MQSEC_SITE_GENERIC_READ = (MQSEC_GET_SITE_PROPERTIES

 + MQSEC_GET_SITE_PERMISSIONS),

 MQSEC_SITE_GENERIC_WRITE = (MQSEC_GET_SITE_PROPERTIES

%5bMS-DTYP%5d.pdf

76 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 + MQSEC_GET_SITE_PERMISSIONS

 + MQSEC_CREATE_MACHINE),

 MQSEC_SITE_GENERIC_ALL = (MQSEC_CREATE_FRS

 + MQSEC_CREATE_BSC

 + MQSEC_CREATE_MACHINE

 + MQSEC_SET_SITE_PROPERTIES

 + MQSEC_GET_SITE_PROPERTIES

 + MQSEC_DELETE_SITE

 + MQSEC_GET_SITE_PERMISSIONS

 + MQSEC_CHANGE_SITE_PERMISSIONS

 + MQSEC_TAKE_SITE_OWNERSHIP)

} MQSITEACCESSMASK;

MQSEC_CREATE_FRS: Specifies the permission required by a security principal to add a

routing server to the site.

MQSEC_CREATE_BSC: Specifies the permission required by a security principal to create a

Backup Site Controller (BSC) for the site.

MQSEC_CREATE_MACHINE: Specifies the permission required by a security principal to add a
queue manager to the site.

MQSEC_SET_SITE_PROPERTIES: Specifies the permission required by a security principal to
modify properties of the site.

MQSEC_GET_SITE_PROPERTIES: Specifies the permission required by a security principal to
read properties of the site.

MQSEC_DELETE_SITE: Specifies the permission required by a security principal to delete the

site.

MQSEC_GET_SITE_PERMISSIONS: Specifies the permission required by a security principal
to read permissions for the site.

MQSEC_CHANGE_SITE_PERMISSIONS: Specifies the permission required by a security
principal to modify permissions for the site.

MQSEC_TAKE_SITE_OWNERSHIP: Specifies the permission required by a security principal to
modify the owner of the site.

MQSEC_SITE_GENERIC_READ: Specifies the permission required by a security principal to
read the properties and permissions for the site.

MQSEC_SITE_GENERIC_WRITE: Specifies the permission required by a security principal to
read properties, read permissions, and add queue managers to the site.

MQSEC_SITE_GENERIC_ALL: Specifies the permission required by a security principal to
perform all of the operations listed previously.

2.2.26 MQENTACCESSMASK

The MQENTACCESSMASK bitfield enumeration values can be used to set the value of an
ACCESS_MASK structure ([MS-DTYP] section 2.4.3), which is used to constrain the permissions for
an Enterprise.

typedef enum

%5bMS-DTYP%5d.pdf

77 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

{

 MQSEC_CREATE_USER = 0x00000001,

 MQSEC_CREATE_SITE = 0x00000002,

 MQSEC_CREATE_CN = 0x00000004,

 MQSEC_SET_ENTERPRISE_PROPERTIES = 0x00000010,

 MQSEC_GET_ENTERPRISE_PROPERTIES = 0x00000020,

 MQSEC_DELETE_ENTERPRISE = 0x00010000,

 MQSEC_GET_ENTERPRISE_PERMISSIONS = 0x00020000,

 MQSEC_CHANGE_ENTERPRISE_PERMISSIONS = 0x00040000,

 MQSEC_TAKE_ENTERPRISE_OWNERSHIP = 0x00080000,

 MQSEC_ENTERPRISE_GENERIC_READ = (MQSEC_CREATE_USER

 + MQSEC_GET_ENTERPRISE_PROPERTIES

 + MQSEC_GET_ENTERPRISE_PERMISSIONS),

 MQSEC_ENTERPRISE_GENERIC_WRITE = (MQSEC_CREATE_USER

 + MQSEC_GET_ENTERPRISE_PROPERTIES

 + MQSEC_GET_ENTERPRISE_PERMISSIONS

 + MQSEC_CREATE_SITE

 + MQSEC_CREATE_CN),

 MQSEC_ENTERPRISE_GENERIC_ALL = (MQSEC_CREATE_USER

 + MQSEC_CREATE_CN

 + MQSEC_CREATE_SITE

 + MQSEC_SET_ENTERPRISE_PROPERTIES

 + MQSEC_GET_ENTERPRISE_PROPERTIES

 + MQSEC_DELETE_ENTERPRISE

 + MQSEC_GET_ENTERPRISE_PERMISSIONS

 + MQSEC_CHANGE_ENTERPRISE_PERMISSIONS

 + MQSEC_TAKE_ENTERPRISE_OWNERSHIP)

} MQENTACCESSMASK;

MQSEC_CREATE_USER: Specifies the permission required by a security principal to add a user

to the enterprise.

MQSEC_CREATE_SITE: Specifies the permission required by a security principal to create a
site in the enterprise.

MQSEC_CREATE_CN: Specifies the permission required by a security principal to create a
connected network in the enterprise.

MQSEC_SET_ENTERPRISE_PROPERTIES: Specifies the permission required by a security

principal to modify properties of the enterprise.

MQSEC_GET_ENTERPRISE_PROPERTIES: Specifies the permission required by a security
principal to read properties of the enterprise.

MQSEC_DELETE_ENTERPRISE: Specifies the permission required by a security principal to
delete the enterprise.

MQSEC_GET_ENTERPRISE_PERMISSIONS: Specifies the permission required by a security

principal to read permissions for the enterprise.

MQSEC_CHANGE_ENTERPRISE_PERMISSIONS: Specifies the permission required by a
security principal to modify permissions for the enterprise.

MQSEC_TAKE_ENTERPRISE_OWNERSHIP: Specifies the permission required by a security
principal to modify the owner of the enterprise.

78 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

MQSEC_ENTERPRISE_GENERIC_READ: Specifies the permission required by a security
principal to read the properties and permissions for the enterprise, and create users.

MQSEC_ENTERPRISE_GENERIC_WRITE: Specifies the permission required by a security
principal to read properties and permissions, and to add users, connected networks, and sites

to the enterprise.

MQSEC_ENTERPRISE_GENERIC_ALL: Specifies the permission required by a security
principal to perform all of the operations listed previously.

2.2.27 MQCNACCESSMASK

The MQCNACCESSMASK bitfield enumeration values can be used to set the value of an
ACCESS_MASK structure ([MS-DTYP] section 2.4.3), which is used to constrain the permissions for

a Connected Network.

typedef enum

{

 MQSEC_CN_OPEN_CONNECTOR = 0x00000001,

 MQSEC_SET_CN_PROPERTIES = 0x00000010,

 MQSEC_GET_CN_PROPERTIES = 0x00000020,

 MQSEC_DELETE_CN = 0x00010000,

 MQSEC_GET_CN_PERMISSIONS = 0x00020000,

 MQSEC_CHANGE_CN_PERMISSIONS = 0x00040000,

 MQSEC_TAKE_CN_OWNERSHIP = 0x00080000,

 MQSEC_CN_GENERIC_READ = (MQSEC_GET_CN_PROPERTIES

 + MQSEC_GET_CN_PERMISSIONS),

 SEC_CN_GENERIC_ALL = (MQSEC_CN_OPEN_CONNECTOR

 + MQSEC_SET_CN_PROPERTIES

 + MQSEC_GET_CN_PROPERTIES

 + MQSEC_DELETE_CN

 + MQSEC_GET_CN_PERMISSIONS

 + MQSEC_CHANGE_CN_PERMISSIONS

 + MQSEC_TAKE_CN_OWNERSHIP)

} MQCNACCESSMASK;

MQSEC_CN_OPEN_CONNECTOR: Specifies the permission required by a security principal to

open a connector queue in the connected network.

MQSEC_SET_CN_PROPERTIES: Specifies the permission required by a security principal to
modify properties of the connected network.

MQSEC_GET_CN_PROPERTIES: Specifies the permission required by a security principal to
read properties of the connected network.

MQSEC_DELETE_CN: Specifies the permission required by a security principal to delete the
connected network.

MQSEC_GET_CN_PERMISSIONS: Specifies the permission required by a security principal to

read permissions for the connected network.

MQSEC_CHANGE_CN_PERMISSIONS: Specifies the permission required by a security
principal to modify permissions for the site.

MQSEC_TAKE_CN_OWNERSHIP: Specifies the permission required by a security principal to

modify the owner of the connected network.

%5bMS-DTYP%5d.pdf

79 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

MQSEC_CN_GENERIC_READ: Specifies the permission required by a security principal to read
properties and permissions of the connected network.

SEC_CN_GENERIC_ALL: Specifies the permission required by a security principal to perform all
of the operations listed previously.

2.3 PROPID

When making MSMQ-related API function calls, object properties are specified by providing an array
of property identifiers (a unique PROPID value). The associated property values are specified (or
returned) in a related array of PROPVARIANT structures. The values (in decimal), their
PROPVARIANT types (as specified in section 2.2.12), and their associated symbolic names are listed
in the PROPID subsections. Related properties are grouped together within each PROPID

subsection.

A PROPID is an unsigned 32-bit value.

This type is declared as follows:

typedef unsigned long PROPID;

Each directory object type and management type has a set of properties associated with it. The
following sections define the property identifier ranges and the properties associated within each

range.

Unless otherwise specified, properties are valid for all MSMQ versions.

2.3.1 Queue Property Identifiers

Queue properties specify attributes of individual queue objects.

2.3.1.1 PROPID_Q_INSTANCE

Value: 101

Variant type: VT_CLSID

Description: GUID for the queue.

2.3.1.2 PROPID_Q_TYPE

Value: 102

Variant type: VT_CLSID

Description: A user-defined value that indicates the type of service that the queue provides. The

value is optionally specified at queue creation and can be changed after the queue has been created.

2.3.1.3 PROPID_Q_PATHNAME

Value: 103

Variant type: VT_LPWSTR

80 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Description: The path of the queue. The value is specified at queue creation and is immutable
thereafter. The value MUST conform to the ABNF rule QueuePathName, as specified in section 2.1.1.

2.3.1.4 PROPID_Q_JOURNAL

Value: 104

Variant type: VT_UI1

Description: A value that specifies how MSMQ tracks messages removed from the queue. This field
MUST be one of the following.

Value Constant Description

0 MQ_JOURNAL_NONE The default. Target journaling is not requested. Messages removed from

the destination queue are no longer available.

1 MQ_JOURNAL Target journaling is requested. Copies of messages are stored in the

journal of the queue whenever a receiving application removes a

message.

2.3.1.5 PROPID_Q_QUOTA

Value: 105

Variant type: VT_UI4

Description: Maximum size (in kilobytes) of a queue.<25>

2.3.1.6 PROPID_Q_BASEPRIORITY

Value: 106

Variant type: VT_I2

Description: Priority level of the queue. PROPID_Q_BASEPRIORITY applies only to public queues that
can be located through the directory service (using a public format name). The base priority of
private queues, as well as public queues accessed directly, is always 0x0000. Any attempt to create
this property and set its value or to set the value of an existing property for a private queue when
the queue is being created or after the queue is created will be ignored and will cause no change.
The value MUST be set to a valid priority level. Priority levels are integer values between -32768

(0x8000) and +32767 (0x7fff). The default priority level is 0x0000.

2.3.1.7 PROPID_Q_JOURNAL_QUOTA

Value: 107

Variant type: VT_UI4

Description: Maximum size (in kilobytes) of the queue journal. Value may be in the range 0 to
0xffffffff.<26>

2.3.1.8 PROPID_Q_LABEL

Value: 108

81 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Variant type: VT_LPWSTR

Description: A descriptive label (maximum 124 characters) for the queue.

2.3.1.9 PROPID_Q_CREATE_TIME

Value: 109

Variant type: VT_I4

Description: The time when the queue was created. Time is represented as the number of seconds
elapsed since midnight (00:00:00), January 1, 1970 UTC.

2.3.1.10 PROPID_Q_MODIFY_TIME

Value: 110

Variant type: VT_I4

Description: The time when the queue properties were last modified. The time is represented as the
number of seconds elapsed since midnight (00:00:00), January 1, 1970 UTC.

2.3.1.11 PROPID_Q_AUTHENTICATE

Value: 111

Variant type: VT_UI1

Description: Authentication level of the queue. MUST be one of the following values.

Value Constant

0x0 MQ_AUTHENTICATE_NONE

0x01 MQ_AUTHENTICATE

2.3.1.12 PROPID_Q_PRIV_LEVEL

Value: 112

Variant type: VT_UI4

Description: Privacy level of the queue. MUST be one of the following values.

Value Constant

0x00000000 MQ_PRIV_LEVEL_NONE

0x00000001 MQ_PRIV_LEVEL_OPTIONAL

0x00000002 MQ_PRIV_LEVEL_BODY

MQ_PRIV_LEVEL_NONE: The queue accepts only nonprivate (clear) messages.

MQ_PRIV_LEVEL_BODY: The queue accepts only private (encrypted) messages.

82 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

MQ_PRIV_LEVEL_OPTIONAL: The default. The queue does not enforce privacy. It accepts private
(encrypted) messages and nonprivate (clear) messages.

2.3.1.13 PROPID_Q_TRANSACTION

Value: 113

Variant type: VT_UI1

Description: Transaction level of the queue. MUST be one of the following values.

Value Constant

0x00 MQ_TRANSACTIONAL_NONE

0x01 MQ_TRANSACTIONAL

2.3.1.14 PROPID_Q_SCOPE

Value: 114

Variant type: VT_UI1

Description: A value that specifies the scope of a queue object. The value MUST be one of the
following.

Value Constant Description

0x00 MQDS_SITESCOPE Indicates a site scope.

0x01 MQDS_ENTERPRISESCOPE Indicates an enterprise scope.

2.3.1.15 PROPID_Q_QMID

Value: 115

Variant type: VT_CLSID

Description: Contains the GUID of the queue manager that hosts the queue.

2.3.1.16 PROPID_Q_PARTITIONID

Value: 116

Variant type: VT_CLSID

Description: This property MAY<27> be used to group MSMQ directory objects.

2.3.1.17 PROPID_Q_SEQNUM

Value: 117

Variant type: VT_BLOB

Description: Contains the sequence number of the queue object.

83 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.1.18 PROPID_Q_HASHKEY

Value: 118

Variant type: VT_UI4

Description: Reserved. The property value associated with this property identifier is undefined and
MUST NOT be interpreted by any protocol implementation.

2.3.1.19 PROPID_Q_LABEL_HASHKEY

Value: 119

Variant type: VT_UI4

Description: Reserved. The property value associated with this property identifier is undefined and

MUST NOT be interpreted by any protocol implementation.

2.3.1.20 PROPID_Q_FULL_PATH

Value: 121

Variant type: VT_LPWSTR

Description: Contains the distinguished name (DN) of the queue object in Active Directory (as
specified in [MS-ADTS]).

Note This property identifier was introduced in MSMQ 2.0.

2.3.1.21 PROPID_Q_NAME_SUFFIX

Value: 123

Variant type: VT_LPWSTR

Description: Contains the suffix of the queue name if the name exceeds 64 characters (the length of

the Common-Name attribute in Active Directory).

Note This property identifier was introduced in MSMQ 2.0.

2.3.1.22 PROPID_Q_PATHNAME_DNS

Value: 124

Variant type: VT_LPWSTR

Description: Contains the fully qualified domain name (FQDN) prefixed path of the queue. The

value MUST conform to the ABNF for QueuePathName (as specified in section 2.1.1), where the
computer name is the FQDN of the hosting computer.

Note This property identifier was introduced in MSMQ 2.0.

2.3.1.23 PROPID_Q_MULTICAST_ADDRESS

Value: 125

Variant type: VT_LPWSTR

%5bMS-ADTS%5d.pdf
%5bMS-GLOS%5d.pdf

84 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Description: IP multicast address associated with the queue. The property value MUST contain a
string that contains a valid multicast address conforming to the ABNF.

MulticastAddress = Address ":" Port

The ABNF rules for Address and Port are defined in section 2.1.6. The address MUST be in the class

D range from 224.0.0.0 to 239.255.255.255. However, only certain ranges of addresses in this
range are unreserved and available for sending multicast messages. For more information and the
current list of reserved multicast addresses, see [IANAIMA]. There are no restrictions on the port
number.

Note This property identifier was introduced in MSMQ 3.0.

2.3.1.24 PROPID_Q_ADS_PATH

Value: 126

Variant type: VT_LPWSTR

Description: Contains the Active Directory path to the public queue object stored in Active Directory.
The value MUST conform to the ABNF for ldapurl (as specified in [RFC4516]).

The following example shows a possible Active Directory path of the queue "MyComp\MyQueue".

LDAP://MyLDAPServer/CN=MyQueue,CN=msmq,CN=MyComp,CN=Computers,DC=MyDomain,DC=M
yCompany,DC=COM

Note This property identifier was introduced in MSMQ 3.0.

2.3.1.25 PROPID_Q_SECURITY

Value: 1101

Variant type: VT_BLOB

Description: Contains the security descriptor of the queue object. The BLOB layout is that of
SECURITY_DESCRIPTOR, as specified in [MS-DTYP] section 2.4.6.<28>

2.3.1.26 PROPID_Q_OBJ_SECURITY

Value: 1102

Variant type: VT_BLOB

Description: Contains the security descriptor of the queue object. The BLOB layout is that of
SECURITY_DESCRIPTOR (as specified in [MS-DTYP] section 2.4.6).

Note This property identifier was introduced in MSMQ 2.0.

2.3.1.27 PROPID_Q_SECURITY_INFORMATION

Value: 1103

Variant type: VT_UI4

http://go.microsoft.com/fwlink/?LinkId=90683
http://go.microsoft.com/fwlink/?LinkId=90720
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

85 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Description: Contains options related to setting or retrieving a security descriptor. It contains
SECURITY_INFORMATION (section 2.2.3).

2.3.2 Machine Property Identifiers

Machine object property identifiers describe a queue manager.

2.3.2.1 PROPID_QM_SITE_ID

Value: 201

Variant type: VT_CLSID

Description: Contains the site identifier GUID of the site in which the queue manager is located.

2.3.2.2 PROPID_QM_MACHINE_ID

Value: 202

Variant type: VT_CLSID

Description: A GUID that uniquely identifies the queue manager for the computer.

2.3.2.3 PROPID_QM_PATHNAME

Value: 203

Variant type: VT_LPWSTR

Description: The name of the computer where the queue manager is located.

2.3.2.4 PROPID_QM_ENCRYPTION_PK

Value: 205

Variant type: VT_UI1 | VT_VECTOR

Description: The public encryption key of the computer. This property is superseded by

PROPID_QM_ENCRYPTION_PK_BASE if present.

2.3.2.5 PROPID_QM_ADDRESS

Value: 206

Variant type: VT_BLOB

Description: The network address or addresses of the computer. The blob layout is a packed array of

TA_ADDRESS (section 2.2.4) structures.

2.3.2.6 PROPID_QM_CNS

Value: 207

Variant type: VT_CLSID | VT_VECTOR

Description: Contains an array of Connected Network identifiers for the connected networks that the
queue manager supports.

86 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.2.7 PROPID_QM_OUTFRS

Value: 208

Variant type: VT_CLSID | VT_VECTOR

Description: An array of GUIDs of routing servers that act as outgoing interfaces for all MSMQ
messages that a given machine sends.

2.3.2.8 PROPID_QM_INFRS

Value: 209

Variant type: VT_CLSID | VT_VECTOR

Description: An array of GUIDs of routing servers that act as incoming interfaces for all MSMQ

messages that a given machine receives.

2.3.2.9 PROPID_QM_SERVICE

Value: 210

Variant type: VT_UI4

Description: Indicates the type of service that a given machine supports. The possible values are as
follows.

Value Meaning

0x00000000 The machine does not support any service.

0x00000001 The machine is an MSMQ Routing Server.

0x00000002 The machine is a Backup Site Controller (BSC).

0x00000004 The machine is a Primary Site Controller (PSC).

0x00000008 The machine is a Primary Enterprise Controller (PEC).

0x00000010 The machine is a RAS server.

2.3.2.10 PROPID_QM_QUOTA

Value: 214

Variant type: VT_UI4

Description: The disk quota for all queues located at the queue manager. Valid range: 0 to max
unsigned 32-bit (0xffffffff).

2.3.2.11 PROPID_QM_PARTITIONID

Value: 211

Variant type: VT_CLSID

Description: This property MAY<29> be used to group MSMQ directory objects.

87 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.2.12 PROPID_QM_HASHKEY

Value: 212

Variant type: VT_UI4

Description: Reserved. The property value associated with this property identifier is undefined and
MUST NOT be interpreted by any protocol implementation.

2.3.2.13 PROPID_QM_SEQNUM

Value: 213

Variant type: VT_BLOB

Description: Contains the sequence number of the queue manager object.

2.3.2.14 PROPID_QM_JOURNAL_QUOTA

Value: 215

Variant type: VT_UI4

Description: Contains the systemwide journal storage quota, in kilobytes. Range restrictions are
identical to PROPID_QM_QUOTA (section 2.3.2.10).

2.3.2.15 PROPID_QM_MACHINE_TYPE

Value: 216

Variant type: VT_LPWSTR

Description: A description of the operating system version and the MSMQ version. MAY be an empty
string<30> or a version string<31>.

2.3.2.16 PROPID_QM_CREATE_TIME

Value: 217

Variant type: VT_I4

Description: The time when the directory object was created. Time is represented as the number of
seconds elapsed since midnight (00:00:00), January 1, 1970 UTC.

2.3.2.17 PROPID_QM_MODIFY_TIME

Value: 218

Variant type: VT_I4

Description: The time when the directory object was last modified. The time is represented as the
number of seconds elapsed since midnight (00:00:00), January 1, 1970 UTC.

2.3.2.18 PROPID_QM_FOREIGN

Value: 219

88 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Variant type: VT_UI1

Description: Indicates whether the queue manager is a foreign system that services foreign
queues. The value MUST be one of the following.

Constant Value

FOREIGN_MACHINE 0x01

MSMQ_MACHINE 0x00

2.3.2.19 PROPID_QM_OS

Value: 220

Variant type: VT_UI4

Description: A value indicating the operating system type of the queue manager. The value MUST be

one of the following.

String Value Description

MSMQ_OS_NONE 0x00000000 Unknown operating system type

MSMQ_OS_FOREIGN 0x00000100 Not a Windows operating system type

MSMQ_OS_95 0x00000200 Windows 95 operating system

MSMQ_OS_NTW 0x00000300 Windows Client

MSMQ_OS_NTS 0x00000400 Windows Server

MSMQ_OS_NTE 0x00000500 Windows Server 2003 Enterprise Edition operating system

2.3.2.20 PROPID_QM_FULL_PATH

Value: 221

Variant type: VT_LPWSTR

Description: The distinguishedName for the MSMQ Configuration object. The name MUST conform to
ABNF: distinguishedName, as specified in [RFC4514].

Note Not valid for MSMQ 1.0.

2.3.2.21 PROPID_QM_SITE_IDS

Value: 222

Variant type: VT_CLSID | VT_VECTOR

Description: Contains an array of site identifiers for sites to which the computer belongs.

Note Not valid for MSMQ 1.0.

http://go.microsoft.com/fwlink/?LinkId=90719

89 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.2.22 PROPID_QM_OUTFRS_DN

Value: 223

Variant type: VT_LPWSTR | VT_VECTOR

Description: An array of distinguished names for MSMQ routing servers through which all outgoing
traffic for this computer should be routed. Each name MUST conform to ABNF: distinguishedName,
as specified in [RFC4514].

Note Not valid for MSMQ 1.0.

2.3.2.23 PROPID_QM_INFRS_DN

Value: 224

Variant type: VT_LPWSTR | VT_VECTOR

Description: An array of distinguished names for MSMQ routing servers through which all incoming
traffic to this computer should be routed. Each name MUST conform to ABNF: distinguishedName, as
specified in [RFC4514].

Note Not valid for MSMQ 1.0.

2.3.2.24 PROPID_QM_SERVICE_ROUTING

Value: 227

Variant type: VT_UI1

Description: Indicates whether the queue manager is configured as a routing server. This value
SHOULD be settable only by the MSMQ installer. The value MUST be one of the following.

Value Meaning

0x00 The queue manager is NOT configured as a routing server.

0x01 The queue manager is configured as a routing server.

Note Not valid for MSMQ 1.0.

2.3.2.25 PROPID_QM_SERVICE_DSSERVER

Value: 228

Variant type: VT_UI1

Description: Indicates whether the installed version of Microsoft Message Queuing (MSMQ) provides
MSMQ Directory Service (MQDS) services. This property value is stored in Active Directory
(AD) as a Boolean.

2.3.2.26 PROPID_QM_SERVICE_DEPCLIENTS

Value: 229

Variant type: VT_UI1

http://go.microsoft.com/fwlink/?LinkId=90719
http://go.microsoft.com/fwlink/?LinkId=90719
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

90 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Description: Indicates whether the installed version of Microsoft Message Queuing (MSMQ) acts as
an MSMQ supporting server. This property value is stored in Active Directory as a Boolean.

2.3.2.27 PROPID_QM_ENCRYPTION_PK_BASE

Value: 231

Variant type: VT_UI1 | VT_VECTOR

Description: Contains the public encryption key of the computer.

Note Not valid for MSMQ 1.0.

2.3.2.28 PROPID_QM_ENCRYPTION_PK_ENHANCED

Value: 232

Variant type: VT_UI1 | VT_VECTOR

Description: Contains the enhanced (128-bit) public encryption key of the computer.

Note Not valid for MSMQ 1.0.

2.3.2.29 PROPID_QM_PATHNAME_DNS

Value: 233

Variant type: VT_LPWSTR

Description: Contains the FQDN of the computer.

Note Not valid for MSMQ 1.0.

2.3.2.30 PROPID_QM_OBJ_SECURITY

Value: 234

Variant type: VT_BLOB

Description: Contains the security descriptor of the MSMQ Configuration object. The BLOB layout is
that of SECURITY_DESCRIPTOR, as specified in [MS-DTYP] section 2.4.6.

Note Not valid for MSMQ 1.0.

2.3.2.31 PROPID_QM_SECURITY_INFORMATION

Value: 237

Variant type: VT_UI4

Description: Contains options related to setting or retrieving a security descriptor. The value MUST
conform to SECURITY_INFORMATION (section 2.2.3).

2.3.2.32 PROPID_QM_ENCRYPT_PKS

Value: 238

%5bMS-DTYP%5d.pdf

91 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Variant type: VT_BLOB

Description: The computer's public key certificates used for signing formatted as an
MQDSPUBLICKEYS (section 2.2.2) structure.

2.3.2.33 PROPID_QM_SIGN_PKS

Value: 239

Variant type: VT_BLOB

Description: The computer's public key certificates used for signing, formatted as an
MQDSPUBLICKEYS (section 2.2.2) structure.

2.3.2.34 PROPID_QM_OWNER_SID

Value: 241

Variant type: VT_BLOB

Description: Contains the SID of the user who ran the setup program. It is passed from the MSMQ
service that created the MSMQ Configuration object so that the server can add it with full control to
the DACL of the newly created object. The SID layout is specified in [MS-DTYP] section 2.4.2.2. The
SubAuthority field of the SID packet is a variable-length array of unsigned 32-bit little-endian

integers.

Note This property identifier was introduced in MSMQ 2.0.

2.3.2.35 PROPID_QM_GROUP_IN_CLUSTER

Value: 242

Variant type: VT_UI1

Description: Indicates that the MSMQ installation is in a group that is part of a cluster.

Used when creating the MSMQ Configuration objects. The value MUST be one of the following.

Constant Value

MSMQ_GROUP_NOT_IN_CLUSTER 0x00

MSMQ_GROUP_IN_CLUSTER 0x01

Note This property identifier was introduced in MSMQ 2.0.

2.3.2.36 PROPID_QM_SECURITY

Value: 1201

Variant type: VT_BLOB

Description: Contains the security descriptor of the machine object. The layout of the BLOB is
specified in [MS-DTYP] section 2.4.6.<32>

%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

92 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.2.37 PROPID_QM_SIGN_PK

Value: 1202

Variant type: VT_BLOB

Description: The computer's public key certificates used for signing, formatted as an
MQDSPUBLICKEYS (section 2.2.2) structure. This property can be specified only at object creation
time.

2.3.2.38 PROPID_QM_ENCRYPT_PK

Value: 1203

Variant type: VT_BLOB

Description: The computer's public key certificates used for encryption, formatted as an
MQDSPUBLICKEYS (section 2.2.2) structure. This property can be specified only at object creation

time.

2.3.2.39 PROPID_QM_UPGRADE_DACL

Value: 1205

Variant type: VT_BLOB

Description: A dummy PROPID. It is used only in a set property operation to request that the PEC
update the DACL of the calling computer. The BLOB MAY be empty. The server MUST ignore the
value.

2.3.3 Site Property Identifiers

Site property identifiers pertain to the site object.

2.3.3.1 PROPID_S_PATHNAME

Value: 301

Variant type: VT_LPWSTR

Description: Contains the name of the site.

2.3.3.2 PROPID_S_SITEID

Value: 302

Variant type: VT_CLSID

Description: Contains the identifier of the site.

2.3.3.3 PROPID_S_GATES

Value: 303

Variant type: VT_CLSID | VT_VECTOR

93 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Description: Contains the GUIDs of the MSMQ Configuration objects of the MSMQ queue
managers that are the gates for this site.

2.3.3.4 PROPID_S_PSC

Value: 304

Variant type: VT_LPWSTR

Description: Contains the computer name of the PSC for the site.

2.3.3.5 PROPID_S_INTERVAL1

Value: 305

Variant type: VT_UI2

Description: In MSMQ mixed-mode, the default replication time (in seconds) within an MSMQ Site.

The default is 2 seconds.

2.3.3.6 PROPID_S_INTERVAL2

Value: 306

Variant type: VT_UI2

Description: In MSMQ mixed-mode, the default replication time (in seconds) between MSMQ sites.

The default is 10 seconds.

2.3.3.7 PROPID_S_PARTITIONID

Value: 307

Variant type: VT_CLSID

Description: This property MAY <33> be used to group MSMQ directory objects.

2.3.3.8 PROPID_S_SEQNUM

Value: 308

Variant type: VT_BLOB

Description: Contains the sequence number of the site object.

2.3.3.9 PROPID_S_FULL_NAME

Value: 309

Variant type: VT_LPWSTR

Description: Contains the DN of the site in Active Directory. (The name format is specified in [MS-
ADTS].)

Note Not valid for MSMQ 1.0.

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf

94 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.3.10 PROPID_S_NT4_STUB

Value: 310

Variant type: VT_UI2

Description: Specifies whether the site was migrated from an MQIS database. The value MUST be
one of the following.

Value Description

0x01 Site was migrated from MQIS.

0x00 Site was not migrated.

Note Not valid for MSMQ 1.0.

2.3.3.11 PROPID_S_FOREIGN

Value: 311

Variant type: VT_UI1

Description: Specifies whether the site is used as a definition of an external messaging system. The
value MUST be one of the following.

Value Description

0x01 Site is an external system.

0x00 Site is not external.

Note Not valid for MSMQ 1.0.

2.3.3.12 PROPID_S_DONOTHING

Value: 312

Variant type: VT_UI1

Description: When operating in MSMQ mixed-mode, the MSMQ replication service uses this property
when replicating objects from MQIS to AD. Certain properties that are no longer used in MSMQ 2.0
and later are mapped to this property during replication, prior to creating the object in AD. The
value stored in this property is not used by MSMQ.

Note Not valid for MSMQ 1.0.

2.3.3.13 PROPID_S_SECURITY

Value: 1301

Variant type: VT_BLOB

Description: Contains the security descriptor of the site object. The BLOB layout is that of
SECURITY_DESCRIPTOR, as specified in [MS-DTYP] section 2.4.6.<34>

%5bMS-DTYP%5d.pdf

95 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.3.14 PROPID_S_PSC_SIGNPK

Value: 1302

Variant type: VT_BLOB

Description: Contains the signing key of the PSC formatted as an MQDSPUBLICKEYS (section 2.2.2)
structure.

2.3.3.15 PROPID_S_SECURITY_INFORMATION

Value: 1303

Variant type: VT_UI4

Description: The SECURITY_INFORMATION (section 2.2.3) associated with setting or retrieving

a security descriptor.

Note Not valid for MSMQ 1.0 or MSMQ 2.0.

2.3.4 Connected Network Property Identifiers

Connected Network object properties contain attributes of a connected network.

2.3.4.1 PROPID_CN_PROTOCOLID

Value: 501

Variant type: VT_UI1

Description: Indicates what network protocol is used on the connected network. This property MUST
have one of the values listed in the following table.

Value Meaning

IP_ADDRESS_TYPE

0x01

The connected network uses IP.

IPX_ADDRESS_TYPE

0x03

The connected network uses IPX.

FOREIGN_ADDRESS_TYPE

0x05

The connected network uses any other network protocol.

2.3.4.2 PROPID_CN_NAME

Value: 502

Variant type: VT_LPWSTR

Description: User-defined name for the connected network, formatted as a null-terminated Unicode
string.

2.3.4.3 PROPID_CN_GUID

Value: 503

96 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Variant type: VT_CLSID

Description: A GUID that uniquely identifies the connected network.

2.3.4.4 PROPID_CN_PARTITIONID

Value: 504

Variant type: VT_CLSID

Description: This property MAY<35> be used to group MSMQ directory objects.

2.3.4.5 PROPID_CN_SEQNUM

Value: 505

Variant type: VT_BLOB

Description: Contains the sequence number of the connected network object.

2.3.4.6 PROPID_CN_SECURITY

Value: 1501

Variant type: VT_BLOB

Description: Contains the security descriptor of the connected network object. The BLOB layout is
that of SECURITY_DESCRIPTOR, as specified in [MS-DTYP] section 2.4.6.<36>

2.3.5 Enterprise Object Property Identifiers

Enterprise object properties pertain to enterprise-wide settings.

2.3.5.1 PROPID_E_NAME

Value: 601

Variant type: VT_LPWSTR

Description: User-defined name for the enterprise, formatted as a null-terminated Unicode string.

2.3.5.2 PROPID_E_NAMESTYLE

Value: 602

Variant type: VT_UI1

Description: In MSMQ 1.0, this property is not used. In MSMQ 2.0 and up, this property indicates

whether weakened security is enabled. Value MUST be one of the following.

Value Description

0x00 Weakened security is not enabled.

0x01 Weakened security is enabled.

%5bMS-DTYP%5d.pdf

97 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Description

0x02 Use internal default.<37>

2.3.5.3 PROPID_E_CSP_NAME

Value: 603

Variant type: VT_LPWSTR

Description: The type of cryptographic provider used by MSMQ. The default value is "Microsoft
Enhanced RSA and AES Cryptographic Provider".

2.3.5.4 PROPID_E_PECNAME

Value: 604

Variant type: VT_LPWSTR

Description: Contains the machine name of the Primary Enterprise Controller, formatted as a null-
terminated Unicode string.

2.3.5.5 PROPID_E_S_INTERVAL1

Value: 605

Variant type: VT_UI2

Description: Reserved. The property value associated with this property identifier is undefined and
MUST NOT be interpreted by any protocol implementation.

2.3.5.6 PROPID_E_S_INTERVAL2

Value: 606

Variant type: VT_UI2

Description: Reserved. The property value associated with this property identifier is undefined and
MUST NOT be interpreted by any protocol implementation.

2.3.5.7 PROPID_E_PARTITIONID

Value: 607

Variant type: VT_CLSID

Description: This property MAY<38> be used to group MSMQ directory objects.

2.3.5.8 PROPID_E_SEQNUM

Value: 608

Variant type: VT_BLOB

Description: Contains the sequence number of the enterprise object.

98 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.5.9 PROPID_E_ID

Value: 609

Variant type: VT_CLSID

Description: The GUID identifier for the directory object instance.

2.3.5.10 PROPID_E_CRL

Value: 610

Variant type: VT_BLOB

Description: Reserved. The property value associated with this property identifier is undefined and
MUST NOT be interpreted by any protocol implementation.

2.3.5.11 PROPID_E_CSP_TYPE

Value: 611

Variant type: VT_UI4

Description: Reserved. The property value associated with this property identifier is undefined and
MUST NOT be interpreted by any protocol implementation.

2.3.5.12 PROPID_E_ENCRYPT_ALG

Value: 612

Variant type: VT_UI4

Description: Reserved. The property value associated with this property identifier is undefined and
MUST NOT be interpreted by any protocol implementation.

2.3.5.13 PROPID_E_SIGN_ALG

Value: 613

Variant type: VT_UI4

Description: Reserved. The property value associated with this property identifier is undefined and
MUST NOT be interpreted by any protocol implementation.

2.3.5.14 PROPID_E_HASH_ALG

Value: 614

Variant type: VT_UI4

Description: Reserved. The property value associated with this property identifier is undefined and
MUST NOT be interpreted by any protocol implementation.

2.3.5.15 PROPID_E_LONG_LIVE

Value: 616

99 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Variant type: VT_UI4

Description: The default value for the time, in seconds, that a message has to reach a queue when
sending MSMQ messages.

2.3.5.16 PROPID_E_VERSION

Value: 617

Variant type: VT_UI2

Description: The version number of MSMQ Directory Service (MQDS) information.

2.3.5.17 PROPID_E_SECURITY

Value: 1601

Variant type: VT_BLOB

Description: Contains the security descriptor of the enterprise object. The BLOB layout is that of
SECURITY_DESCRIPTOR, as specified in [MS-DTYP] section 2.4.6.<39>

2.3.5.18 PROPID_E_CIPHER_MODE

Value: 615

Variant type: VT_UI4

Description: Reserved. The property value associated with this property identifier is undefined and
MUST NOT be interpreted by any protocol implementation.

2.3.6 User Object Property Identifiers

User object properties are used by MSMQ during management of user certificates that are stored in

the MSMQ Directory Service.

2.3.6.1 PROPID_U_SID

Value: 701

Variant type: VT_BLOB

Description: Contains the user's SID. The SID layout is specified in [MS-DTYP] section 2.4.2.2. The
SubAuthority field of the SID packet is a variable-length array of unsigned 32-bit little-endian
integers.

2.3.6.2 PROPID_U_PARTITIONID

Value: 703

Variant type: VT_CLSID

Description: This property MAY<40> be used to group MSMQ directory objects.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

100 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.6.3 PROPID_U_SEQNUM

Value: 704

Variant type: VT_BLOB

Description: Contains the sequence number of the user object.

2.3.6.4 PROPID_U_SIGN_CERT

Value: 702

Variant type: VT_BLOB

Description: Contains an MQUSERSIGNCERTS structure that packs multiple X.509 encoded
certificates for the user object.

2.3.6.5 PROPID_U_DIGEST

Value: 705

Variant type: VT_CLSID | VT_VECTOR

Description: Contains an array of certificate digests. Each digest is computed as the MD5 hash of the
encoded certificate. Each array element MUST contain the 16-byte output of the MD5 algorithm, as
specified in [RFC1321].

2.3.6.6 PROPID_U_ID

Value: 706

Variant type: VT_CLSID

Description: The GUID identifying the user object.

2.3.7 Routinglink Property Identifiers

Routinglink properties define the cost of routing a message from one site to another.

2.3.7.1 PROPID_L_NEIGHBOR1

Value: 801

Variant type: VT_CLSID

Description: Contains the GUID of one of the routing sites.

2.3.7.2 PROPID_L_NEIGHBOR2

Value: 802

Variant type: VT_CLSID

Description: Contains the GUID of the other routing site.

http://go.microsoft.com/fwlink/?LinkId=90275

101 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.7.3 PROPID_L_COST

Value: 803

Variant type: VT_UI4

Description: Contains the cost of the link. Each routing link is assigned a relative cost, which may
reflect the speed or the monetary cost of the underlying physical communication link. The default
value is 1; and costs can range from 1 to 999999, inclusive.

2.3.7.4 PROPID_L_PARTITIONID

Value: 804

Variant type: VT_CLSID

Description: This property MAY<41> be used to group MSMQ directory objects.

2.3.7.5 PROPID_L_SEQNUM

Value: 805

Variant type: VT_BLOB

Description: Contains the sequence number of the routing link object.

2.3.7.6 PROPID_L_ID

Value: 806

Variant type: VT_CLSID

Description: Contains the GUID of the routing link object.

2.3.7.7 PROPID_L_GATES_DN

Value: 807

Variant type: VT_LPWSTR | VT_VECTOR

Description: Contains the distinguished names of the MSMQ Configuration object of the computers
that are site gates on the link. Each name MUST conform to ABNF: distinguishedName, as specified
in [RFC4514].

Note Not valid for MSMQ 1.0 or MSMQ 2.0.

2.3.7.8 PROPID_L_NEIGHBOR1_DN

Value: 808

Variant type: VT_LPWSTR

Description: Contains the distinguished name of one site on the link. The name MUST conform to
ABNF: distinguishedName, as specified in [RFC4514].

Note Not valid for MSMQ 1.0.

http://go.microsoft.com/fwlink/?LinkId=90719
http://go.microsoft.com/fwlink/?LinkId=90719

102 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.7.9 PROPID_L_NEIGHBOR2_DN

Value: 809

Variant type: VT_LPWSTR

Description: Contains the distinguished name of the other site on the link. The name MUST conform
to ABNF: distinguishedName, as specified in [RFC4514].

Note Not valid for MSMQ 1.0.

2.3.7.10 PROPID_L_DESCRIPTION

Value: 810

Variant type: VT_LPWSTR

Description: Contains the description of the routing link.

Note Not valid for MSMQ 1.0.

2.3.7.11 PROPID_L_FULL_PATH

Value: 811

Variant type: VT_LPWSTR

Description: Contains the distinguished name of the routing link object in the Active Directory. The

name MUST conform to ABNF: distinguishedName, as described in [RFC4514].

Note Not valid for MSMQ 1.0.

2.3.7.12 PROPID_L_ACTUAL_COST

Value: 812

Variant type: VT_UI4

Description: Contains the untranslated link cost. The value MUST be in the range from 1 to 999999,
inclusive.

Note Not valid for MSMQ 1.0.

2.3.7.13 PROPID_L_GATES

Value: 813

Variant type: VT_CLSID | VT_VECTOR

Description: Contains the GUIDs of the MSMQ Configuration objects of the computers that are site

gates on the link.

Note Not valid for MSMQ 1.0.

2.3.8 Settings Property Identifiers

Setting objects represent MSMQ Routing Servers or MSMQ Directory Service Servers.

http://go.microsoft.com/fwlink/?LinkId=90719
http://go.microsoft.com/fwlink/?LinkId=90719

103 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Note All Settings properties are not valid for MSMQ 1.0.

2.3.8.1 PROPID_SET_NAME

Value: 5101

Variant type: VT_LPWSTR

Description: Contains the Common-Name attribute, which MUST always be set to the string
"MSMQ Settings".

2.3.8.2 PROPID_SET_SERVICE

Value: 5102

Variant type: VT_UI4

Description: Contains a value that identifies the type of service. The value MUST be one of the

following.

Value Description

0x00000000 None

0x00000001 Routing server (SRV)

0x00000002 Backup Site Controller (BSC)

0x00000004 Primary Site Controller (PSC)

0x00000008 Primary Enterprise Controller (PEC)

2.3.8.3 PROPID_SET_QM_ID

Value: 5103

Variant type: VT_CLSID

Description: Contains the GUID of the computer's MSMQ Configuration object.

2.3.8.4 PROPID_SET_FULL_PATH

Value: 5105

Variant type: VT_LPWSTR

Description: Contains the distinguished name of the MSMQ Settings object in the Active Directory.

The name MUST conform to ABNF: distinguishedName, as specified in [RFC4514].

2.3.8.5 PROPID_SET_NT4

Value: 5106

Variant type: VT_UI1

Description: Specifies whether the server is MSMQ 1.0.

http://go.microsoft.com/fwlink/?LinkId=90719

104 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The value MUST be one of the following.

Value Description

0x01 Server is MSMQ 1.0.

0x00 Server is not MSMQ 1.0.

2.3.8.6 PROPID_SET_PARTITIONID

Value: 5107

Variant type: VT_CLSID

Description: This property MAY<42> be used to group MSMQ directory objects.

2.3.8.7 PROPID_SET_SITENAME

Value: 5108

Variant type: VT_LPWSTR

Description: Contains the site name.

2.3.8.8 PROPID_SET_SERVICE_ROUTING

Value: 5109

Variant type: VT_UI1

Description: Specifies whether the server is a routing server. The value MUST be one of the
following.

Value Description

0x01 Server is a routing server.

0x00 Server is not a routing server.

2.3.8.9 PROPID_SET_SERVICE_DSSERVER

Value: 5110

Variant type: VT_UI1

Description: Specifies whether the queue manager provides access to the Active Directory for MSMQ

2.0 directory service clients. The value MUST be set to one of the following.

Value Description

0x01 Server provides access to Active Directory.

0x00 Server does not provide access to Active Directory.

105 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.8.10 PROPID_SET_SERVICE_DEPCLIENTS

Value: 5111

Variant type: VT_UI1

Description: Specifies whether the server can be a supporting server for applications. The value
MUST be set to one of the following.

Value Description

0x01 Server can be a supporting server.

0x00 Server cannot be a supporting server.

2.3.8.11 PROPID_SET_OLDSERVICE

Value: 5112

Variant type: VT_UI4

Description: Contains a value that identifies the type of service. The value MUST be set to one of the
following.

Value Description

0x00000000 None

0x00000001 Routing server (SRV)

0x00000002 Backup Site Controller (BSC)

0x00000004 Primary Site Controller (PSC)

0x00000008 Primary Enterprise Controller (PEC)

2.3.9 MQUser Property Identifiers

These properties represent attributes of users who migrated to Active Directory from the Microsoft

MQIS.

Note These values are not valid for MSMQ 1.0.

2.3.9.1 PROPID_MQU_SID

Value: 5401

Variant type: VT_BLOB

Description: The migrated user's SID. The SID layout is specified in [MS-DTYP] section 2.4.2.2. The

SubAuthority field of the SID packet is a variable-length array of unsigned 32-bit little-endian
integers.

2.3.9.2 PROPID_MQU_SIGN_CERT

Value: 5402

%5bMS-DTYP%5d.pdf

106 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Variant type: VT_BLOB

Description: Contains an X.509 encoded certificate for the migrated user object as specified in
[RFC3280].

2.3.9.3 PROPID_MQU_DIGEST

Value: 5405

Variant type: VT_CLSID | VT_VECTOR

Description: Contains an array of certificate digests. Each digest is computed as the MD5 hash of the
encoded certificate. Each array element MUST contain the 16-byte output of the MD5 algorithm, as
specified in [RFC1321].

2.3.9.4 PROPID_MQU_ID

Value: 5406

Variant type: VT_CLSID

Description: Contains the GUID of the MQUser object.

2.3.9.5 PROPID_MQU_SECURITY

Value: 5407

Variant type: VT_BLOB

Description: Contains the security descriptor of the MQUser object. The BLOB layout is that of
SECURITY_DESCRIPTOR, as specified in [MS-DTYP] section 2.4.6.<43>

2.3.10 Computer Property Identifiers

Computer properties contain attributes of the computer object.

Note These values are not valid for MSMQ 1.0.

2.3.10.1 PROPID_COM_FULL_PATH

Value: 5201

Variant type: VT_LPWSTR

Description: Contains the distinguished name of the computer. The name MUST conform to ABNF:
distinguishedName, as specified in [RFC4514].

2.3.10.2 PROPID_COM_SAM_ACCOUNT

Value: 5202

Variant type: VT_LPWSTR

Description: Identifies a property that contains the name of the computer account in Active
Directory. Contains the name of the computer object. The value is represented as the computer
name (truncated to 19 characters) followed by a dollar sign "$" character. For example, the property

value for a computer with the name "MyComputer" is "MyComputer$".

http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90275
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90719

107 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.10.3 PROPID_COM_ACCOUNT_CONTROL

Value: 5204

Variant type: VT_UI4

Description: Contains user account control attributes, as specified in [MS-SAMR]. The value MUST
be a bitmask computed as a logical OR of a set of UF_FLAG codes, as specified in [MS-SAMR]
section 2.2.1.13.

2.3.10.4 PROPID_COM_DNS_HOSTNAME

Value: 5205

Variant type: VT_LPWSTR

Description: Contains the DNS host name attribute of the computer object. The value MUST contain
the FQDN of the computer.

2.3.10.5 PROPID_COM_SID

Value: 5206

Variant type: VT_BLOB

Description: Contains the SID of the computer object. This property is read from Active Directory

during creation of an MSMQ service Configuration object, and is used to add the computer SID to
the MSMQ service configuration DACL. The SID layout is specified in [MS-DTYP] section 2.4.2.2. The
SubAuthority field of the SID packet is a variable-length array of unsigned 32-bit little-endian
integers.

2.3.10.6 PROPID_COM_SIGN_CERT

Value: 5207

Variant type: VT_BLOB

Description: Contains an X.509 encoded certificate for the computer object. The X.509 encoded
certificate is specified in [RFC3280].

2.3.10.7 PROPID_COM_DIGEST

Value: 5208

Variant type: VT_CLSID | VT_VECTOR

Description: Contains an array of certificate digests. The digest is computed as the MD5 hash of the
encoded certificate. Each value MUST contain the 16-byte output of the MD5 algorithm, as specified
in [RFC1321].

2.3.10.8 PROPID_COM_ID

Value: 5209

Variant type: VT_CLSID

Description: Contains the GUID (as specified in [MS-DTYP] section 2.3.4) of the computer object.

%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90275
%5bMS-DTYP%5d.pdf

108 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.11 Management Machine Property Identifiers

Management machine property identifiers provide values that identify properties that describe local
administration of MSMQ machines.

2.3.11.1 PROPID_MGMT_MSMQ_ACTIVEQUEUES

Value: 1

Variant type: VT_LPWSTR | VT_VECTOR

Description: A list of all the active queue names on the computer. Each name MUST conform to the
ABNF for a format name, as specified in sections 2.1.2, 2.1.3, 2.1.4, and 2.1.6.

2.3.11.2 PROPID_MGMT_MSMQ_PRIVATEQ

Value: 2

Variant type: VT_LPWSTR | VT_VECTOR

Description: A list of the path names of all the private queues registered on the computer.

2.3.11.3 PROPID_MGMT_MSMQ_DSSERVER

Value: 3

Variant type: VT_LPWSTR

Description: The name of the current MSMQ Directory Service server for the computer. The pointer
to a null-terminated Unicode string that specifies the computer name of the discovered server. The
returned computer name is prefixed with "\\".

The format in ABNF notation is as follows.

DS = "\\" 1*NameChar EndList

R1 = %x01-2b ; Range 1

R2 = %x2c-2c ; Range 2 is x2c only

R3 = %x00-ff ; Range 3

R4 = %x01-ff ; Range 4

R5 = %x2d-ff ; Range 5

R6 = %x00-00 ; Range 6 is x00 only

X1 = R1 R3 ; Two hex digit range 1

X2 = R2 R4 ; Two hex digit range 2

X3 = R5 R3 ; Two hex digit range 3

X4 = R6 R4 ; Two hex digit range 4

NameChar = X1 / X2 / X3 / X4 ; Name character: no commas or nulls

EndList = %x00.00 ; Use null for end of string

2.3.11.4 PROPID_MGMT_MSMQ_CONNECTED

Value: 4

Variant type: VT_LPWSTR

109 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Description: The value that indicates whether the queue manager on the computer has been
disconnected from the network. The value MUST be one of the following strings.

Value Constant

"CONNECTED" MSMQ_CONNECTED

"DISCONNECTED" MSMQ_DISCONNECTED

2.3.11.5 PROPID_MGMT_MSMQ_TYPE

Value: 5

Variant type: VT_LPWSTR

Description: The version and build information for the computer operating system and MSMQ
installation.

2.3.11.6 PROPID_MGMT_MSMQ_BYTES_IN_ALL_QUEUES

Value: 6

Variant type: VT_I8

Description: The number of message bytes stored in all the queues on the computer.

Note Not valid for MSMQ 1.0 and MSMQ 2.0.

2.3.12 Management Queue Property Identifiers

Management queue property identifiers provide values that identify properties for monitoring the

MSMQ installation and the queues on a computer, which allows applications to manage these
resources programmatically.

2.3.12.1 PROPID_MGMT_QUEUE_PATHNAME

Value: 1

Variant type: VT_LPWSTR

Description: The path name of the queue. The path name format is specified in section 2.1.1.

2.3.12.2 PROPID_MGMT_QUEUE_FORMATNAME

Value: 2

Variant type: VT_LPWSTR

Description: The format name of the queue, as specified in section 2.1.

2.3.12.3 PROPID_MGMT_QUEUE_TYPE

Value: 3

Variant type: VT_LPWSTR

110 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Description: The type of the queue. The value MUST be one of the following strings.

Value Constant

"PUBLIC" MGMT_QUEUE_TYPE_PUBLIC

"PRIVATE" MGMT_QUEUE_TYPE_PRIVATE

"MACHINE" MGMT_QUEUE_TYPE_MACHINE

"CONNECTOR" MGMT_QUEUE_TYPE_CONNECTOR

"MULTICAST" MGMT_QUEUE_TYPE_MULTICAST

2.3.12.4 PROPID_MGMT_QUEUE_LOCATION

Value: 4

Variant type: VT_LPWSTR

Description: The value that indicates whether the queue is located on the computer. The value
MUST be one of the following strings.

Value Constant

"LOCAL" MGMT_QUEUE_LOCAL_LOCATION

"REMOTE" MGMT_QUEUE_REMOTE_LOCATION

2.3.12.5 PROPID_MGMT_QUEUE_XACT

Value: 5

Variant type: VT_LPWSTR

Description: The value that indicates whether the queue is transactional. The value MUST be one of
the following strings.

Value Constant

"UNKNOWN" MGMT_QUEUE_UNKNOWN_TYPE

"YES" MGMT_QUEUE_TRANSACTIONAL_TYPE

"NO" MGMT_QUEUE_NOT_TRANSACTIONAL_TYPE

2.3.12.6 PROPID_MGMT_QUEUE_FOREIGN

Value: 6

Variant type: VT_LPWSTR

Description: The string that indicates whether the queue is a foreign queue. The value MUST be one
of the following strings.

111 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Constant

"UNKNOWN" MGMT_QUEUE_UNKNOWN_TYPE

"YES" MGMT_QUEUE_FOREIGN_TYPE

"NO" MGMT_QUEUE_NOT_FOREIGN_TYPE

2.3.12.7 PROPID_MGMT_QUEUE_MESSAGE_COUNT

Value: 7

Variant type: VT_UI4

Description: The number of messages in the queue.

2.3.12.8 PROPID_MGMT_QUEUE_BYTES_IN_QUEUE

Value: 8

Variant type: VT_UI4

Description: The number of message bytes for all messages in the queue.

Note This property identifier is available only in MSMQ 3.0 and later versions. It replaces
PROPID_MGMT_QUEUE_JOURNAL_USED_QUOTA from MSMQ 1.0 and MSMQ 2.0.

2.3.12.9 PROPID_MGMT_QUEUE_JOURNAL_MESSAGE_COUNT

Value: 9

Variant type: VT_UI4

Description: The number of messages in the queue journal.

2.3.12.10 PROPID_MGMT_QUEUE_BYTES_IN_JOURNAL

Value: 10

Variant type: VT_UI4

Description: The number of message bytes for all messages in the queue journal.

Note This property identifier is available only in MSMQ 3.0 and later versions. It replaces
PROPID_MGMT_QUEUE_JOURNAL_USED_QUOTA from MSMQ 1.0 and MSMQ 2.0.

2.3.12.11 PROPID_MGMT_QUEUE_STATE

Value: 11

Variant type: VT_LPWSTR

Description: The connection state of the outgoing queue. The value MUST be one of the following
strings.

112 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Constant

"LOCAL CONNECTION" MGMT_QUEUE_STATE_LOCAL

"INACTIVE" MGMT_QUEUE_STATE_NONACTIVE

"WAITING" MGMT_QUEUE_STATE_WAITING

"NEED VALIDATION" MGMT_QUEUE_STATE_NEED_VALIDATE

"ONHOLD" MGMT_QUEUE_STATE_ONHOLD

"CONNECTED" MGMT_QUEUE_STATE_CONNECTED

"DISCONNECTING" MGMT_QUEUE_STATE_DISCONNECTING

"DISCONNECTED" MGMT_QUEUE_STATE_DISCONNECTED

2.3.12.12 PROPID_MGMT_QUEUE_NEXTHOPS

Value: 12

Variant type: VT_LPWSTR | VT_VECTOR

Description: The address, or a list of possible addresses, for routing messages to the destination
queue in the next hop. If the queue is in the process of being connected, a list of possible addresses
is returned. Each element conforms to the following ABNF.

Address = IPAddr/ForeignAddress/IPv6Addr

IPAddr = "IP=" IPv4address

ForeignAddress = "FOREIGN=" Guid

IPv6Addr = "IPv6=" IPv6address

Guid = 8HexDig %x2D 3(4HexDig %x2D) 12HexDig

HexDig = Digit / "A" / "B" / "C" / "D" / "E" / "F"

Digit = %x30-39

ABNF rules IPv4address and IPv6address are defined in [RFC3986] appendix A.

2.3.12.13 PROPID_MGMT_QUEUE_EOD_LAST_ACK

Value: 13

Variant type: VT_BLOB

Description: The sequence information about the last message sent from the computer to the queue
for which an order acknowledgment was received. The BLOB layout of the SEQUENCE_INFO
structure is specified in section 2.2.5.

http://go.microsoft.com/fwlink/?LinkId=90453

113 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.12.14 PROPID_MGMT_QUEUE_EOD_LAST_ACK_TIME

Value: 14

Variant type: VT_I4

Description: The date and time when the last order acknowledgment for a message sent from the
computer to the queue was received. Time is represented as the number of seconds elapsed since
midnight (00:00:00), January 1, 1970 UTC.

2.3.12.15 PROPID_MGMT_QUEUE_EOD_LAST_ACK_COUNT

Value: 15

Variant type: VT_UI4

Description: The number of times that the last order acknowledgment for a message sent from the
computer to the queue was received.

2.3.12.16 PROPID_MGMT_QUEUE_EOD_FIRST_NON_ACK

Value: 16

Variant type: VT_BLOB

Description: The sequence information about the first message sent from the computer to the queue

for which no order acknowledgment was received. The BLOB layout of the SEQUENCE_INFO
structure is specified in section 2.2.5.

2.3.12.17 PROPID_MGMT_QUEUE_EOD_LAST_NON_ACK

Value: 17

Variant type: VT_BLOB

Description: The sequence information about the last message that was sent from the computer to
the queue for which no order acknowledgment was received. The BLOB layout of the
SEQUENCE_INFO structure is specified in section 2.2.5.

2.3.12.18 PROPID_MGMT_QUEUE_EOD_NEXT_SEQ

Value: 18

Variant type: VT_BLOB

Description: The sequence information about the next message to be sent from the computer to the
queue. The BLOB layout of the SEQUENCE_INFO structure is specified in section 2.2.5.

2.3.12.19 PROPID_MGMT_QUEUE_EOD_NO_READ_COUNT

Value: 19

Variant type: VT_UI4

Description: The number of messages sent from the computer to the queue for which an order

acknowledgment was received but for which a receive acknowledgment message was not received.

114 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.12.20 PROPID_MGMT_QUEUE_EOD_NO_ACK_COUNT

Value: 20

Variant type: VT_UI4

Description: The number of messages sent from the computer to the queue for which no order
acknowledgment was received.

2.3.12.21 PROPID_MGMT_QUEUE_EOD_RESEND_TIME

Value: 21

Variant type: VT_I4

Description: The time at which MSMQ will attempt to send a message from the computer to the

queue again. Time is represented as the number of seconds elapsed since midnight (00:00:00),
January 1, 1970 UTC.

2.3.12.22 PROPID_MGMT_QUEUE_EOD_RESEND_INTERVAL

Value: 22

Variant type: VT_UI4

Description: The resend interval (in seconds) for the messages in the outgoing queue for which no

order acknowledgment was received.

2.3.12.23 PROPID_MGMT_QUEUE_EOD_RESEND_COUNT

Value: 23

Variant type: VT_UI4

Description: The number of times that the last message in the corresponding outgoing queue on the

computer was sent.

2.3.12.24 PROPID_MGMT_QUEUE_EOD_SOURCE_INFO

Value: 24

Variant type: VT_VARIANT | VT_VECTOR

Description: The array of information about the transactional messages sent from all source
computers to the queue on the target computer.

The array contains the following six items. Each item is an array; there is one entry in each array for
each message.

Format name

Variant type: VT_LPWSTR | VT_VECTOR

Description: Each entry is a format name of a queue, as specified in section 2.1.

Sender ID

115 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Variant type: VT_CLSID | VT_VECTOR

Description: Each entry is a GUID of the sender of the message.

Sequence ID

Variant type: VT_UI8 | VT_VECTOR

Description: Each entry is a number to distinguish a sequence from other sequences.

Sequence number

Variant type: VT_UI4 | VT_VECTOR

Description: Each entry is a sequence number.

Last access time

Variant type: VT_I4 | VT_VECTOR

Description: Each entry was the time when the queue was accessed. Time is represented as the
number of seconds elapsed since midnight (00:00:00), January 1, 1970 UTC.

Message reject count

Variant type: VT_UI4 | VT_VECTOR

Description: Each entry is the number of times that a message was rejected.

2.3.12.25 PROPID_MGMT_QUEUE_CONNECTION_HISTORY

Value: 25

Variant type: 12 | 0x1000 - VT_VARIANT | VT_VECTOR

Description: The array representing the queue connection state history information. The array
consists of the following four items, and each item is an array.

Status

Variant type: VT_UI4 | VT_VECTOR

Description: Each entry is the connection status and cause of the failure. The contents MUST be
one of the following values.

Value Description

0x00000000 Connection is in the process of establishment; no failures have occurred.

0x00000001 Connection establishment packet has been received.

0x00000002 Connection has been successfully established and is ready to send messages.

0x80000000 Exact reason for failure cannot be determined.

0x80000001 Ping failure.

0x80000002 Create socket failure.

116 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Description

0x80000003 Bind socket failure.

0x80000004 Connect socket failure.

0x80000005 TCP is not enabled.

0x80000006 Send operation on a socket failed.

0x80000007 Send operation failed because connection is not ready.

0x80000008 DNS failure.

0x80000009 Could not validate server certificate in HTTPS scenario.

0x8000000A Connection limit reached, cannot establish new session to a specific destination.

0x8000000B Connection refused by other side due to any reason (quota, invalid packet, connection limit

reached).

0x8000000C Absence of MSMQ Directory Service server connectivity prevents getting routing data.

0x8000000D Failure due to low memory.

Time at which the failure occurred

Variant type: VT_I4 | VT_VECTOR

Description: Each entry is the time is represented as the number of seconds elapsed since
midnight (00:00:00), January 1, 1970 UTC.

Error indicator

Variant type: VT_I4 | VT_VECTOR

Description: Each entry is a value; a non-zero value indicates an error.

List of addresses

Variant type: VT_LPWSTR | VT_VECTOR | VT_VECTOR

Description: Each entry is an address or a list of possible addresses for routing messages to the
destination queue in the next hop. Each element MUST conform to the following ABNF.

Address = Name / IPaddress

Name = "\\" 1*Alpha

Alpha = %x41-5A / %x61-7A

IPaddress = AddDigits 3("." AddDigits)

Digit = %x30-39

AddDigits = 1*3Digit

117 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.12.26 PROPID_MGMT_QUEUE_SUBQUEUE_COUNT

Value: 26

Variant type: VT_UI4

Description: The count of the number of subqueues for a given queue.

2.3.12.27 PROPID_MGMT_QUEUE_SUBQUEUE_NAMES

Value: 27

Variant type: VT_LPWSTR | VT_VECTOR

Description: The list of subqueue names (as specified in section 2.1) for a given queue.

2.3.13 Deletion Notification Property Identifiers

Deletion notification property identifiers provide values that identify properties in a directory service
object deletion notification.

2.3.13.1 PROPID_D_SEQNUM

Value: 1401

Variant type: VT_BLOB

Description: Contains the sequence number of the deleted object.

2.3.13.2 PROPID_D_PARTITIONID

Value: 1402

Variant type: VT_CLSID

Description: This property MAY<44> be used to group MSMQ directory objects.

2.3.13.3 PROPID_D_SCOPE

Value: 1403.

Variant type: VT_UI1.

Description: A value that specifies the scope of a deletion notification. The value MUST be one of the
following.

Value Constant Description

0 MQDS_SITESCOPE Indicates a site scope.

1 MQDS_ENTERPRISESCOPE Indicates an enterprise scope.

2.3.13.4 PROPID_D_OBJTYPE

Value: 1404.

118 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Variant type: VT_UI1.

Description: A value that specifies the type of a deleted object. The value MUST be one of the
following.

Value Constant Description

1 MQDS_QUEUE Object represents a message queue.

2 MQDS_MACHINE Object represents a queue manager.

3 MQDS_SITE Object represents a site.

4 MQDS_DELETEDOBJECT Object has been deleted.

5 MQDS_CN Object represents a connected network.

6 MQDS_ENTERPRISE Object represents an enterprise.

7 MQDS_USER Object represents a user.

8 MQDS_ROUTINGLINK Object represents a routing link.

2.3.13.5 PROPID_D_IDENTIFIER

Value: 1405

Variant type: VT_CLSID

Description: Contains the GUID of the deleted object.

2.4 Error Codes

The following table specifies MSMQ-specific HRESULT values. Not all methods of all protocols return

these error codes. Common HRESULT values are specified in [MS-ERREF] section 2.1.<45>

Return value/code Description

0x400E0001

MQ_INFORMATION_PROPERTY

One or more of the properties

passed resulted in a warning, but

the function completed.

0x400E0002

MQ_INFORMATION_ILLEGAL_PROPERTY

The property ID is invalid.

0x400E0003

MQ_INFORMATION_PROPERTY_IGNORED

The property specified was ignored

for this operation.

0x400E0004

MQ_INFORMATION_UNSUPPORTED_PROPERTY

The property specified is not

supported and was ignored for this

operation.

0x400E0005

MQ_INFORMATION_DUPLICATE_PROPERTY

The property specified is already in

the property identifier array. The

duplicate was ignored for this

operation.

0x400E0006 An asynchronous operation is

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

119 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

MQ_INFORMATION_OPERATION_PENDING currently pending.

0x400E0009

MQ_INFORMATION_FORMATNAME_BUFFER_TOO_SMALL

The format name buffer supplied

was too small to hold the format

name; however, the queue was

created successfully.

0x400E000A

MQ_INFORMATION_INTERNAL_USER_CERT_EXIST

An internal Message Queuing

certificate already exists for this

user.

0x400E000B

MQ_INFORMATION_OWNER_IGNORED

The queue owner was not set

during the processing of this call.

0xC00E0001

MQ_ERROR

Generic error code.

0xC00E0002

MQ_ERROR_PROPERTY

One or more of the properties

passed are invalid.

0xC00E0003

MQ_ERROR_QUEUE_NOT_FOUND

The queue does not exist or you

do not have sufficient permissions

to perform the operation.

0xC00E0004

MQ_ERROR_QUEUE_NOT_ACTIVE

The queue is not open or may not

exist.

0xC00E0005

MQ_ERROR_QUEUE_EXISTS

A queue with the same path name

already exists.

0xC00E0006

MQ_ERROR_INVALID_PARAMETER

An invalid parameter was passed

to a function.

0xC00E0007

MQ_ERROR_INVALID_HANDLE

An invalid handle was passed to a

function.

0xC00E0008

MQ_ERROR_OPERATION_CANCELLED

The operation was canceled before

it could be completed.

0xC00E0009

MQ_ERROR_SHARING_VIOLATION

There is a sharing violation. The

queue is already open for

exclusive retrieval.

0xC00E000B

MQ_ERROR_SERVICE_NOT_AVAILABLE

The Message Queuing service is

not available.

0xC00E000D

MQ_ERROR_MACHINE_NOT_FOUND

The computer specified cannot be

found.

0xC00E0010

MQ_ERROR_ILLEGAL_SORT

The sort operation specified is

invalid; for example, there are

duplicate columns.

0xC00E0011

MQ_ERROR_ILLEGAL_USER

The user specified is not a valid

user.

0xC00E0013 A connection with Active Directory

120 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

MQ_ERROR_NO_DS cannot be established. Verify that

there are sufficient permissions to

perform this operation.

0xC00E0014

MQ_ERROR_ILLEGAL_QUEUE_PATHNAME

The queue path name specified is

invalid.

0xC00E0018

MQ_ERROR_ILLEGAL_PROPERTY_VALUE

The property value specified is

invalid.

0xC00E0019

MQ_ERROR_ILLEGAL_PROPERTY_VT

The VARTYPE value specified is

invalid.

0xC00E001A

MQ_ERROR_BUFFER_OVERFLOW

The buffer supplied for message

property retrieval is too small.

The message was not removed

from the queue, but the part of

the message property that was in

the buffer was copied.

0xC00E001B

MQ_ERROR_IO_TIMEOUT

The time specified to wait for the

message elapsed.

0xC00E001C

MQ_ERROR_ILLEGAL_CURSOR_ACTION

The MQ_ACTION_PEEK_NEXT

value specified cannot be used

with the current cursor position.

0xC00E001D

MQ_ERROR_MESSAGE_ALREADY_RECEIVED

The message to which the cursor

is currently pointing was removed

from the queue by another

process or by another call without

the use of this cursor.

0xC00E001E

MQ_ERROR_ILLEGAL_FORMATNAME

The format name specified is

invalid.

0xC00E001F

MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL

The format name buffer supplied

to the API was too small to hold

the format name.

0xC00E0020

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION

Operations of the type requested

(for example, deleting a queue

using a direct format name) are

not supported for the format name

specified.

0xC00E0021

MQ_ERROR_ILLEGAL_SECURITY_DESCRIPTOR

The specified security descriptor is

invalid.

0xC00E0022

MQ_ERROR_SENDERID_BUFFER_TOO_SMALL

The size of the buffer for the user

ID property is too small.

0xC00E0023

MQ_ERROR_SECURITY_DESCRIPTOR_TOO_SMALL

The size of the buffer passed is too

small.

0xC00E0024

MQ_ERROR_CANNOT_IMPERSONATE_CLIENT

The security credentials cannot be

verified because the RPC server

%5bMS-GLOS%5d.pdf

121 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

cannot impersonate the client

application.

0xC00E0025

MQ_ERROR_ACCESS_DENIED

Access is denied.

0xC00E0026

MQ_ERROR_PRIVILEGE_NOT_HELD

The client does not have sufficient

security privileges to perform the

operation.

0xC00E0027

MQ_ERROR_INSUFFICIENT_RESOURCES

There are insufficient resources to

perform this operation.

0xC00E0028

MQ_ERROR_USER_BUFFER_TOO_SMALL

The request failed because the

user buffer is too small to hold the

information returned.

0xC00E002A

MQ_ERROR_MESSAGE_STORAGE_FAILED

A recoverable or journal message

could not be stored. The message

was not sent.

0xC00E002B

MQ_ERROR_SENDER_CERT_BUFFER_TOO_SMALL

The buffer for the user certificate

property is too small.

0xC00E002C

MQ_ERROR_INVALID_CERTIFICATE

The user certificate is invalid.

0xC00E002D

MQ_ERROR_CORRUPTED_INTERNAL_CERTIFICATE

The internal Message Queuing

certificate is corrupted.

0xC00E002E

MQ_ERROR_INTERNAL_USER_CERT_EXIST

An internal Message Queuing

certificate already exists for this

user.

0xC00E002F

MQ_ERROR_NO_INTERNAL_USER_CERT

No internal Message Queuing

certificate exists for the user.

0xC00E0030

MQ_ERROR_CORRUPTED_SECURITY_DATA

A cryptographic function failed.

0xC00E0031

MQ_ERROR_CORRUPTED_PERSONAL_CERT_STORE

The personal certificate store is

corrupted.

0xC00E0033

MQ_ERROR_COMPUTER_DOES_NOT_SUPPORT_ENCRYPTION

The computer does not support

encryption operations.

0xC00E0035

MQ_ERROR_BAD_SECURITY_CONTEXT

The security context is invalid.

0xC00E0036

MQ_ERROR_COULD_NOT_GET_USER_SID

The SID cannot be obtained from

the thread token.

0xC00E0037

MQ_ERROR_COULD_NOT_GET_ACCOUNT_INFO

The account information for the

user cannot be obtained.

0xC00E0038

MQ_ERROR_ILLEGAL_MQCOLUMNS

The MQCOLUMNS parameter is

invalid.

122 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

0xC00E0039

MQ_ERROR_ILLEGAL_PROPID

A property identifier is invalid.

0xC00E003A

MQ_ERROR_ILLEGAL_RELATION

A relationship parameter is invalid.

0xC00E003B

MQ_ERROR_ILLEGAL_PROPERTY_SIZE

The size of the buffer for the

message identifier or correlation

identifier is invalid.

0xC00E003C

MQ_ERROR_ILLEGAL_RESTRICTION_PROPID

A property identifier specified in

MQRESTRICTION is invalid.

0xC00E003D

MQ_ERROR_ILLEGAL_MQQUEUEPROPS

Either the pointer to the

MQQUEUEPROPS structure has a

null value or no properties are

specified in it.

0xC00E003E

MQ_ERROR_PROPERTY_NOTALLOWED

The property identifier specified is

invalid for the operation

requested.

0xC00E003F

MQ_ERROR_INSUFFICIENT_PROPERTIES

Not all the properties required for

the operation were specified for

the input parameters.

0xC00E0040

MQ_ERROR_MACHINE_EXISTS

The MSMQ Configuration (msmq)

object already exists in Active

Directory.

0xC00E0041

MQ_ERROR_ILLEGAL_MQQMPROPS

Either the pointer to the

MQQMPROPS structure has a null

value, or no properties are

specified in it.

0xC00E0042

MQ_ERROR_DS_IS_FULL

Valid for MSMQ 1.0 and MSMQ

2.0. Distinguished name (DS) is

full.

0xC00E0043

MQ_ERROR_DS_ERROR

There is an internal Active

Directory error.

0xC00E0044

MQ_ERROR_INVALID_OWNER

The object owner is invalid.

0xC00E0045

MQ_ERROR_UNSUPPORTED_ACCESS_MODE

The access mode specified is

unsupported.

0xC00E0046

MQ_ERROR_RESULT_BUFFER_TOO_SMALL

The result buffer specified is too

small.

0xC00E0048

MQ_ERROR_DELETE_CN_IN_USE

Valid for MSMQ 1.0 and MSMQ

2.0. The connected network

cannot be deleted; it is in use.

0xC00E0049

MQ_ERROR_NO_RESPONSE_FROM_OBJECT_SERVER

There was no response from the

object owner.

%5bMS-GLOS%5d.pdf

123 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

0xC00E004A

MQ_ERROR_OBJECT_SERVER_NOT_AVAILABLE

The object owner is not available.

0xC00E004B

MQ_ERROR_QUEUE_NOT_AVAILABLE

An error occurred while reading

from a queue located on a remote

computer.

0xC00E004C

MQ_ERROR_DTC_CONNECT

A connection cannot be

established with the Distributed

Transaction Coordinator.

0xC00E004E

MQ_ERROR_TRANSACTION_IMPORT

The transaction specified cannot

be imported.

0xC00E0050

MQ_ERROR_TRANSACTION_USAGE

An attempted action cannot be

performed within a transaction.

0xC00E0051

MQ_ERROR_TRANSACTION_SEQUENCE

The transaction's operation

sequence is incorrect.

0xC00E0055

MQ_ERROR_MISSING_CONNECTOR_TYPE

The connector type message

property is not specified. This

property is required for sending an

acknowledgment message or a

secure message.

0xC00E0056

MQ_ERROR_STALE_HANDLE

The Message Queuing service was

restarted. Any open queue handles

should be closed.

0xC00E0058

MQ_ERROR_TRANSACTION_ENLIST

The transaction specified cannot

be enlisted.

0xC00E005A

MQ_ERROR_QUEUE_DELETED

The queue was deleted. Messages

cannot be received anymore using

this queue handle. The handle

should be closed.

0xC00E005B

MQ_ERROR_ILLEGAL_CONTEXT

The context parameter is invalid.

0xC00E005C

MQ_ERROR_ILLEGAL_SORT_PROPID

An invalid property identifier is

specified in MQSORTSET.

0xC00E005D

MQ_ERROR_LABEL_TOO_LONG

The message label is too long. Its

length should be less than or

equal to

MQ_MAX_MSG_LABEL_LEN.

0xC00E005E

MQ_ERROR_LABEL_BUFFER_TOO_SMALL

The label buffer supplied to the

API is too small.

0xC00E005F

MQ_ERROR_MQIS_SERVER_EMPTY

Valid for MSMQ 1.0 and MSMQ

2.0. The list of MQIS servers (in

the registry) is empty.

0xC00E0060 Valid for MSMQ 1.0 and MSMQ

124 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

MQ_ERROR_MQIS_READONLY_MODE 2.0. The MQIS database is in read-

only mode.

0xC00E0061

MQ_ERROR_SYMM_KEY_BUFFER_TOO_SMALL

The buffer passed for the

symmetric key is too small.

0xC00E0062

MQ_ERROR_SIGNATURE_BUFFER_TOO_SMALL

The buffer passed for the

signature property is too small.

0xC00E0063

MQ_ERROR_PROV_NAME_BUFFER_TOO_SMALL

The buffer passed for the provider

name property is too small.

0xC00E0064

MQ_ERROR_ILLEGAL_OPERATION

The operation is invalid for a

foreign Message Queuing system.

0xC00E0065

MQ_ERROR_WRITE_NOT_ALLOWED

Another MQIS server is being

installed. Write operations to the

database are not allowed at this

stage.

0xC00E0066

MQ_ERROR_WKS_CANT_SERVE_CLIENT

The MSMQ service cannot be a

supporting server. A Message

Queuing supporting server is

required.

0xC00E0067

MQ_ERROR_DEPEND_WKS_LICENSE_OVERFLOW

The supporting server has reached

its limit for accepting application

connections.

0xC00E0068

MQ_CORRUPTED_QUEUE_WAS_DELETED

The corresponding file for the

designated queue in the Lqs folder

was deleted because it was

corrupted.

0xC00E0069

MQ_ERROR_REMOTE_MACHINE_NOT_AVAILABLE

The remote computer is not

available.

0xC00E006A

MQ_ERROR_UNSUPPORTED_OPERATION

This operation is not supported for

Message Queuing installed in

workgroup mode.

0xC00E006B

MQ_ERROR_ENCRYPTION_PROVIDER_NOT_SUPPORTED

The requested cryptographic

service provider is not supported

by Message Queuing.

0xC00E006C

MQ_ERROR_CANNOT_SET_CRYPTO_SEC_DESCR

The security descriptors for the

cryptographic keys cannot be set.

0xC00E006D

MQ_ERROR_CERTIFICATE_NOT_PROVIDED

A user attempted to send an

authenticated message without a

certificate.

0xC00E006E

MQ_ERROR_Q_DNS_PROPERTY_NOT_SUPPORTED

The column

PROPID_Q_PATHNAME_DNS is not

supported for the API.

0xC00E006F A certificate store cannot be

125 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

MQ_ERROR_CANNOT_CREATE_CERT_STORE created for the internal certificate.

0xC00E0070

MQ_ERROR_CANNOT_OPEN_CERT_STORE

The certificate store for the

internal certificate cannot be

opened.

0xC00E0071

MQ_ERROR_ILLEGAL_ENTERPRISE_OPERATION

This operation is invalid for an

MsmqServices object.

0xC00E0072

MQ_ERROR_CANNOT_GRANT_ADD_GUID

The Add GUID permission cannot

be granted to the current user.

0xC00E0073

MQ_ERROR_CANNOT_LOAD_MSMQOCM

Valid for MSMQ 1.0 and MSMQ

2.0. The dynamic-link library

Msmqocm.dll cannot be loaded.

0xC00E0074

MQ_ERROR_NO_ENTRY_POINT_MSMQOCM

An entry point cannot be located

in Msmqocm.dll.

0xC00E0075

MQ_ERROR_NO_MSMQ_SERVERS_ON_DC

Message Queuing servers cannot

be found on domain controllers.

0xC00E0076

MQ_ERROR_CANNOT_JOIN_DOMAIN

The computer joined the domain,

but Message Queuing will continue

to run in workgroup mode because

it failed to register itself in Active

Directory.

0xC00E0077

MQ_ERROR_CANNOT_CREATE_ON_GC

The object was not created on the

Global Catalog server specified.

0xC00E0078

MQ_ERROR_GUID_NOT_MATCHING

Valid for MSMQ 1.0 and MSMQ

2.0. Failed to create an

msmqConfiguration object with a

GUID that matches the computer

installation. MSMQ must be

uninstalled and then reinstalled.

0xC00E0079

MQ_ERROR_PUBLIC_KEY_NOT_FOUND

The public key for the designated

computer cannot be found.

0xC00E007A

MQ_ERROR_PUBLIC_KEY_DOES_NOT_EXIST

The public key for the designated

computer does not exist.

0xC00E007B

MQ_ERROR_ILLEGAL_MQPRIVATEPROPS

The parameters in

MQPRIVATEPROPS are invalid.

Either the pointer to the

MQPRIVATEPROPS structure has a

null value or no properties are

specified in it.

0xC00E007C

MQ_ERROR_NO_GC_IN_DOMAIN

Global Catalog servers cannot be

found in the domain specified.

0xC00E007D

MQ_ERROR_NO_MSMQ_SERVERS_ON_GC

No Message Queuing servers were

found on Global Catalog servers.

126 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

0xC00E007E

MQ_ERROR_CANNOT_GET_DN

Valid for MSMQ 1.0 and MSMQ

2.0. Failed to retrieve the

distinguished name of the local

computer.

0xC00E007F

MQ_ERROR_CANNOT_HASH_DATA_EX

Data for an authenticated

message cannot be hashed.

0xC00E0080

MQ_ERROR_CANNOT_SIGN_DATA_EX

Data cannot be signed before

sending an authenticated

message.

0xC00E0081

MQ_ERROR_CANNOT_CREATE_HASH_EX

A hash object cannot be created

for an authenticated message.

0xC00E0082

MQ_ERROR_FAIL_VERIFY_SIGNATURE_EX

The signature of the message

received is not valid.

0xC00E0083

MQ_ERROR_CANNOT_DELETE_PSC_OBJECTS

The delete operation against the

designated object failed because

the object is owned by a PSC. The

operation cannot be performed.

0xC00E0084

MQ_ERROR_NO_MQUSER_OU

There is no MSMQ Users

organizational unit object in Active

Directory for the domain. Please

create one manually.

0xC00E0085

MQ_ERROR_CANNOT_LOAD_MQAD

The dynamic-link library Mqad.dll

cannot be loaded.

0xC00E0086

MQ_ERROR_CANNOT_LOAD_MQDSSRV

Obsolete: not used in any version

of MSMQ.

0xC00E0087

MQ_ERROR_PROPERTIES_CONFLICT

Two or more of the properties

passed cannot coexist.

0xC00E0088

MQ_ERROR_MESSAGE_NOT_FOUND

The message does not exist or

was removed from the queue.

0xC00E0089

MQ_ERROR_CANT_RESOLVE_SITES

The sites in which the computer

resides cannot be resolved. Verify

that the subnets in the network

are configured correctly in Active

Directory and that each site is

configured with the appropriate

subnet.

0xC00E008A

MQ_ERROR_NOT_SUPPORTED_BY_DEPENDENT_CLIENTS

This operation is not supported for

communicating with a supporting

server.

0xC00E008B

MQ_ERROR_OPERATION_NOT_SUPPORTED_BY_REMOTE_COMPUTER

This operation is not supported by

the remote Message Queuing

service.

0xC00E008C The object for which properties

127 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

MQ_ERROR_NOT_A_CORRECT_OBJECT_CLASS were requested from Active

Directory does not belong to the

class requested.

0xC00E008D

MQ_ERROR_MULTI_SORT_KEYS

The value of cCol in MQSORTSET

cannot be greater than 1. Active

Directory supports only a single

sort key.

0xC00E008E

MQ_ERROR_GC_NEEDED

An MSMQ Configuration (msmq)

object with the GUID supplied

cannot be created.

0xC00E008F

MQ_ERROR_DS_BIND_ROOT_FOREST

Binding to the forest root failed.

This error usually indicates a

problem in the DNS configuration.

0xC00E0090

MQ_ERROR_DS_LOCAL_USER

A local user is authenticated as an

anonymous user and cannot

access Active Directory. The local

user must log on as a domain user

to access Active Directory.

0xC00E0091

MQ_ERROR_Q_ADS_PROPERTY_NOT_SUPPORTED

The column PROPID_Q_ADS_PATH

is not supported for the API.

0xC00E0092

MQ_ERROR_BAD_XML_FORMAT

The given property is not a valid

XML document.

0xC00E0093

MQ_ERROR_UNSUPPORTED_CLASS

The Active Directory object

specified is not an instance of a

supported class.

0xC00E0094

MQ_ERROR_UNINITIALIZED_OBJECT

The MSMQManagement object

must be initialized before it is

used.

0xC00E0095

MQ_ERROR_CANNOT_CREATE_PSC_OBJECTS

The create object operation cannot

be performed because the object

must be owned by a PSC.

0xC00E0096

MQ_ERROR_CANNOT_UPDATE_PSC_OBJECTS

The update operation cannot be

performed because the designated

object is owned by a PSC.

0xC00E0099

MQ_ERROR_RESOLVE_ADDRESS

Message Queuing is not able to

resolve the address specified by

the user. The address may be

wrong or DNS look-up for the

address failed.

0xC00E009A

MQ_ERROR_TOO_MANY_PROPERTIES

Too many properties passed to the

function. Message Queuing can

process up to 128 properties in

one call.

0xC00E009B The queue only accepts

%5bMS-GLOS%5d.pdf

128 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

MQ_ERROR_MESSAGE_NOT_AUTHENTICATED authenticated messages.

0xC00E009C

MQ_ERROR_MESSAGE_LOCKED_UNDER_TRANSACTION

The message is currently being

processed under a transaction.

Until the transaction outcome is

determined, the message cannot

be processed in any other

transaction.

0xC00E0504

MQDS_UNKNOWN_SOURCE

The specified MSMQ Directory

Service server in the directory

change is unknown.

2.5 Message Properties for Digital Signatures

2.5.1 MSMQ 1.0 Digital Signature Properties

The MSMQ 1.0 digital signature MUST be calculated using the values of the following fields in the
specified order:

MessagePropertiesHeader.CorrelationID

MessagePropertiesHeader.ApplicationTag

MessagePropertiesHeader.MessageBody

MessagePropertiesHeader.Label

UserHeader.ResponseQueue

UserHeader.AdminQueue

2.5.2 MSMQ 2.0 Digital Signature Properties

The MSMQ 2.0 digital signature MUST be calculated using the values of the following fields in the

specified order:

MessagePropertiesHeader.CorrelationID

MessagePropertiesHeader.ApplicationTag

MessagePropertiesHeader.MessageBody

MessagePropertiesHeader.Label

UserHeader.ResponseQueue

UserHeader.AdminQueue

UserHeader.SourceQueueManager

(BYTE)UserHeader.Flags.DM

(BYTE)BaseHeader.Flags.PR

((BYTE)UserHeader.Flags.JP) << 1 | ((BYTE)UserHeader.Flags.JN)

%5bMS-DTYP%5d.pdf

129 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

((BYTE)MessagePropertiesHeader.Flags) & 0x0F

(USHORT)MessagePropertiesHeader.MessageClass

(ULONG)MessagePropertiesHeader.BodyType

UserHeader.ConnectorType

UserHeader.DestinationQueue

2.5.3 MSMQ 3.0 Digital Signature Properties

The MSMQ 3.0 digital signature MUST be calculated using the values of the following fields in the

specified order:

MessagePropertiesHeader.CorrelationID

MessagePropertiesHeader.ApplicationTag

MessagePropertiesHeader.MessageBody

MessagePropertiesHeader.Label

UserHeader.ResponseQueue

UserHeader.AdminQueue

MessagePropertiesHeader.ExtensionData

MultiQueueFormatHeader.FormatNameList

UserHeader.SourceQueueManager

(BYTE)UserHeader.Flags.DM

(BYTE)BaseHeader.Flags.PR

((BYTE)UserHeader.Flags.JP) << 1 | ((BYTE)UserHeader.Flags.JN)

((BYTE)MessagePropertiesHeader.Flags) & 0x0F

(USHORT)MessagePropertiesHeader.MessageClass

(ULONG)MessagePropertiesHeader.BodyType

UserHeader.ConnectorType

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

130 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3 Structure Examples

None.

131 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

4 Security Considerations

None.

132 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

5 Appendix A: Full IDL

import "ms-dtyp.idl";

// forward declaration

typedef tag_inner_PROPVARIANT PROPVARIANT;

// basic type aliases

typedef unsigned long PROPID;

typedef short VARIANT_BOOL;

typedef struct {

 unsigned char rgb[16];

} XACTUOW;

typedef struct tagBLOB {

 unsigned long cbSize;

 [size_is(cbSize)]

 unsigned char *pBlobData;

} BLOB;

typedef struct tagCAUB

{

 unsigned long cElems;

 [size_is(cElems)]

 unsigned char * pElems;

} CAUB;

typedef struct tagCAUI

{

 unsigned long cElems;

 [size_is(cElems)]

 unsigned short * pElems;

} CAUI;

typedef struct tagCAL

{

 unsigned long cElems;

 [size_is(cElems)]

 long * pElems;

} CAL;

typedef struct tagCAUL

{

 unsigned long cElems;

 [size_is(cElems)]

 unsigned long * pElems;

} CAUL;

typedef struct tagCAUH

{

 unsigned long cElems;

 [size_is(cElems)]

 ULARGE_INTEGER * pElems;

} CAUH;

typedef struct tagCACLSID

133 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

{

 unsigned long cElems;

 [size_is(cElems)]

 GUID * pElems;

} CACLSID;

typedef struct tagCALPWSTR

{

 unsigned long cElems;

 [size_is(cElems)]

 [string] wchar_t ** pElems;

} CALPWSTR;

typedef struct tagCAPROPVARIANT

{

 unsigned long cElems;

 [size_is(cElems)]

 PROPVARIANT * pElems;

} CAPROPVARIANT;

typedef enum

{

 VT_EMPTY = 0,

 VT_NULL = 1,

 VT_I2 = 2,

 VT_I4 = 3,

 VT_BOOL = 11,

 VT_VARIANT = 12,

 VT_I1 = 16,

 VT_UI1 = 17,

 VT_UI2 = 18,

 VT_UI4 = 19,

 VT_I8 = 20,

 VT_UI8 = 21,

 VT_LPWSTR = 31,

 VT_BLOB = 65,

 VT_CLSID = 72,

 VT_VECTOR = 0x1000,

} VARENUM;

typedef unsigned short VARTYPE;

typedef struct _tag_inner_PROPVARIANT

{

 VARTYPE vt;

 UCHAR wReserved1;

 UCHAR wReserved2;

 ULONG wReserved3;

 [switch_is(vt)] union

 {

 [case (VT_EMPTY, VT_NULL)];

 [case (VT_I1)] CHAR cVal;

 [case (VT_UI1)] UCHAR bVal;

 [case (VT_I2)] SHORT iVal;

 [case (VT_UI2)] USHORT uiVal;

 [case (VT_I4)] LONG lVal;

 [case (VT_UI4)] ULONG ulVal;

 [case (VT_I8)] LARGE_INTEGER hVal;

134 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [case (VT_UI8)] ULARGE_INTEGER uhVal;

 [case (VT_BOOL)] VARIANT_BOOL boolVal;

 [case (VT_CLSID)] GUID * puuid;

 [case (VT_BLOB)] BLOB blob;

 [case (VT_LPWSTR)] [string] wchar_t * pwszVal;

 [case (VT_VECTOR|VT_UI1)] CAUB caub;

 [case (VT_VECTOR|VT_UI2)] CAUI caui;

 [case (VT_VECTOR|VT_I4)] CAL cal;

 [case (VT_VECTOR|VT_UI4)] CAUL caul;

 [case (VT_VECTOR|VT_UI8)] CAUH cauh;

 [case (VT_VECTOR|VT_CLSID)] CACLSID cauuid;

 [case (VT_VECTOR|VT_LPWSTR)] CALPWSTR calpwstr;

 [case (VT_VECTOR|VT_VARIANT)] CAPROPVARIANT capropvar;

 } _varUnion;

} tag_inner_PROPVARIANT;

typedef struct _DL_ID {

 GUID m_DlGuid;

 [string] wchar_t * m_pwzDomain;

} DL_ID;

typedef struct _MULTICAST_ID {

 ULONG m_address;

 ULONG m_port;

} MULTICAST_ID;

typedef struct _OBJECTID {

 GUID Lineage;

 DWORD Uniquifier;

} OBJECTID;

typedef enum __QUEUE_FORMAT_TYPE

{

 QUEUE_FORMAT_TYPE_UNKNOWN = 0,

 QUEUE_FORMAT_TYPE_PUBLIC = 1,

 QUEUE_FORMAT_TYPE_PRIVATE = 2,

 QUEUE_FORMAT_TYPE_DIRECT = 3,

 QUEUE_FORMAT_TYPE_MACHINE = 4,

 QUEUE_FORMAT_TYPE_CONNECTOR = 5,

 QUEUE_FORMAT_TYPE_DL = 6,

 QUEUE_FORMAT_TYPE_MULTICAST = 7,

 QUEUE_FORMAT_TYPE_SUBQUEUE = 8

} QUEUE_FORMAT_TYPE;

typedef struct __QUEUE_FORMAT {

 unsigned char m_qft;

 unsigned char m_SuffixAndFlags;

 unsigned short m_reserved;

 [switch_is(m_qft)] union {

 [case(QUEUE_FORMAT_TYPE_UNKNOWN)]

 ; // No member is set. Selected when an m_qft value

 // of 0 is returned.

 [case(QUEUE_FORMAT_TYPE_PUBLIC)]

 GUID m_gPublicID;

 [case(QUEUE_FORMAT_TYPE_PRIVATE)]

 OBJECTID m_oPrivateID;

 [case(QUEUE_FORMAT_TYPE_DIRECT)]

 [string] wchar_t* m_pDirectID;

 [case(QUEUE_FORMAT_TYPE_MACHINE)]

 GUID m_gMachineID;

135 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [case(QUEUE_FORMAT_TYPE_CONNECTOR)]

 GUID m_GConnectorID;

 [case(QUEUE_FORMAT_TYPE_DL)]

 DL_ID m_DlID;

 [case(QUEUE_FORMAT_TYPE_MULTICAST)]

 MULTICAST_ID m_MulticastID;

 [case(QUEUE_FORMAT_TYPE_SUBQUEUE)]

 [string] wchar_t* m_pDirectSubqueueID;

 };

} QUEUE_FORMAT;

136 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

6 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows NT operating system

Windows 2000 operating system

Windows XP operating system

Windows Server 2003 operating system

Windows Server 2008 operating system

Windows 7 operating system

Windows Server 2008 R2 operating system

Windows 8 operating system

Windows Server 2012 operating system

Windows 8.1 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.1: The SHA-1 algorithm is not supported by Windows NT and Windows 2000. The
SHA-256 and SHA-512 algorithms are not supported by Windows NT, Windows 2000, Windows XP,
and Windows Server 2003.

<2> Section 2.2.18.1.4: Padding bytes contain uninitialized values.

<3> Section 2.2.18.1.5.2: Padding bytes contain uninitialized values.

<4> Section 2.2.19.2: Negative source journaling is not supported by Windows NT. Windows
Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows
8.1, and Windows Server 2012 R2 do not perform source journaling for messages sent to
administration queues, notification queues, and order queues.

<5> Section 2.2.19.2: Windows stores a copy of the message in the local dead-letter queue on
failure to deliver. Transactional messages are copied to the local transactional dead-letter queue.
The dead-letter queue is a system-generated queue and is implementation-dependent. Windows
Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows
8.1, and Windows Server 2012 R2 do not perform source journaling for messages sent to
administration queues, notification queues, and order queues.

137 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

<6> Section 2.2.19.2: Windows copies the message to the system journal queue. The journal queue
is a system-generated queue and is implementation-dependent. Windows Server 2008, Windows 7,

Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server
2012 R2 do not perform source journaling for messages sent to administration queues, notification

queues, and order queues.

<7> Section 2.2.19.3: 40-bit and 128-bit encryption is not supported by Windows NT. AES
encryption is not supported by Windows XP, Windows Server 2003, Windows 2000, or Windows NT.

<8> Section 2.2.19.3: The SHA-1 hash algorithm is not supported by Windows NT and
Windows 2000. The SHA-256 and SHA-512 hash algorithms are not supported by Windows NT,
Windows 2000, Windows XP, and Windows Server 2003. As a security enhancement, the default
hash algorithm has been set to a stronger one, as described in the following list:

Windows NT and Windows 2000 default to MD5 (0x00008003).

Windows XP, Windows Server 2003, Windows Vista, and Windows Server 2008 default to SHA-1

(0x00008004).

Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and

Windows Server 2012 R2 default to SHA-512 (0x0000800E).

<9> Section 2.2.19.3: Windows pads the MessagePropertiesHeader packet with uninitialized data.

<10> Section 2.2.20.1: The MultiQueueFormatHeader is not supported by Windows 2000 or
Windows NT.

<11> Section 2.2.20.1: Padding bytes contain uninitialized values.

<12> Section 2.2.20.1: Padding bytes contain uninitialized values.

<13> Section 2.2.20.1: Padding bytes contain uninitialized values.

<14> Section 2.2.20.2: Padding bytes contain uninitialized values.

<15> Section 2.2.20.4: Coding errors present in Windows can prevent the
UserMsgSequenceNumber from being set to the count of UserMessage Packets sent on a session.

<16> Section 2.2.20.4: If a destination queue manager encounters a memory allocation error while
processing a message, it sets the window size to 1 in the outgoing SessionHeader header, which
causes the destination queue manager to reduce its window to the same size. The source queue
manager doubles the window size every 30 seconds until the window size returns to the default

value of 64.

<17> Section 2.2.20.4: The maximum allowed value of this field can be configured by setting a
value in the registry key
HKEY_LOCAL_MACHINE\software\microsoft\msmq\parameters\MaxUnackedPacket. When this key is
absent, the default maximum is 64.

<18> Section 2.2.20.4: The maximum allowed value of this field can be configured by setting a

value in the registry key

HKEY_LOCAL_MACHINE\software\microsoft\msmq\parameters\MaxUnackedPacket. When this key is
absent, the default maximum is 64.

<19> Section 2.2.20.5: The TransactionHeader.Flags.FM and TransactionHeader.Flags.LM
fields are not supported by Windows NT.

138 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

<20> Section 2.2.20.6: The default cryptographic provider for MSMQ on Windows XP and Windows
Server 2003 is "Microsoft Base Cryptographic Provider v1.0" as described in [MSDN-BCP]. The

default cryptographic provider for MSMQ on Windows Vista, Windows Server 2008, Windows 7,
Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server

2012 R2 is "Microsoft AES Cryptographic Provider" as described in [MSDN-ACP].

<21> Section 2.2.20.6: Windows stores the queue manager public key in the MSMQ-Encrypt-Key
attribute of the queue manager's MSMQ-Configuration object in Active Directory (AD). During the
queue manager startup, this value is queried once using the Lightweight Directory Access
Protocol (LDAP).

<22> Section 2.2.20.6: The application may choose any of the currently available Microsoft
cryptographic service providers (CSPs). The list of available Microsoft CSPs as well as the type and

the name of each CSP are described in [MSDN-CSP].

<23> Section 2.2.20.6: The application may choose any of the currently available Microsoft
cryptographic service providers (CSPs) listed in [MSDN-CSP].

<24> Section 2.2.20.8: To enable report messages, ensure that there is a registry key of type
DWORD called
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters\Security\EnableReportMessages

and that its value is set to 1.

<25> Section 2.3.1.5: When the property is not set, the storage size of a queue is limited only by
the available disk space on the local computer or the computer quota. For Windows XP Professional,
there is no default computer quota. For Windows 2000, the default computer quota is 2 gigabytes.
For the Windows Server 2003 family, the default computer quota is 8 gigabytes. For Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2, the default computer quota is 4 gigabytes.

<26> Section 2.3.1.7: When the property is not set, the storage size of a queue is limited only by
the available disk space on the local computer or by the journal quota. For Windows 2000, the
default journal quota is 2 gigabytes. For Windows XP Professional, there is no default journal quota.
For the Windows Server 2003 family, the default journal quota is 8 gigabytes. For Windows Vista,

Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2, the default journal quota is 4 gigabytes.

<27> Section 2.3.1.16: This property was used only by Windows NT and Windows 2000 operating in

MSMQ mixed-mode in the archived Message Queuing (MSMQ): Directory Service Replication Protocol
[MC-MQDSRP] and the collocated Message Queuing (MSMQ): Directory Service Protocol [MS-MQDS]
server for directory service replication among MSMQ Directory Service servers.

<28> Section 2.3.1.25: The security descriptor ACE AceType fields are limited to those supported
by Windows NT 4.0 ([MS-DTYP] section 2.4.4.1).

<29> Section 2.3.2.11: This property is used only by Windows NT and Windows 2000 operating in

MSMQ mixed-mode in the archived Message Queuing (MSMQ): Directory Service Replication Protocol
[MC-MQDSRP] and the collocated Message Queuing (MSMQ): Directory Service Protocol [MS-MQDS]
server for directory service replication among MSMQ Directory Service servers.

<30> Section 2.3.2.15: Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7,
Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server
2012 R2 accept an empty string.

<31> Section 2.3.2.15: Windows NT, Windows 95, Windows 98, and Windows 2000 require the

following format in ABNF notation.

http://go.microsoft.com/fwlink/?LinkId=115471
http://go.microsoft.com/fwlink/?LinkId=115470
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89985
http://go.microsoft.com/fwlink/?LinkId=89985
%5bMS-MQDS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDS%5d.pdf

139 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

MachineType = WindowsLiteral Space OSType Space UInt "."

 UInt Space "(" BuildLiteral Space UInt "," Space Platform ")"

 Space "-" Space MSMQLiteral Space UInt "." UInt Space

 "(" BuildLiteral Space UInt ")"

WindowsLiteral = %x57 %x69 %x6e %x64 %x6f %x77 %x73

BuildLiteral = %x42 %x75 %x69 %x6c %x64

MSMQLiteral = %x4d %x53 %x4d %x51

OSType = *(%x20-7E)

Platform = *(%x20-7E)

UInt = *(%x30-39)

Space = %x20

<32> Section 2.3.2.36: The security descriptor ACE AceType fields are limited to those supported

by Windows NT 4.0 ([MS-DTYP] section 2.4.4.1).

<33> Section 2.3.3.7: This property was used only by Windows NT and Windows 2000 operating in

MSMQ mixed-mode in the archived Message Queuing (MSMQ): Directory Service Replication Protocol

[MC-MQDSRP] for directory service replication among MSMQ Directory Service servers.

<34> Section 2.3.3.13: The security descriptor ACE AceType fields are limited to those supported
by Windows NT 4.0 ([MS-DTYP] section 2.4.4.1).

<35> Section 2.3.4.4: This property was used only by Windows NT and Windows 2000 operating in
MSMQ mixed-mode in the archived Message Queuing (MSMQ): Directory Service Replication Protocol
[MC-MQDSRP] for directory service replication among MSMQ Directory Service servers.

<36> Section 2.3.4.6: The security descriptor ACE AceType fields are limited to those supported by
Windows NT 4.0 ([MS-DTYP] section 2.4.4.1).

<37> Section 2.3.5.2: Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows
Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows
8.1, and Windows Server 2012 R2 use an internal default equivalent to setting this value to 0x00.

<38> Section 2.3.5.7: This property was used only by Windows NT and Windows 2000 operating in
MSMQ mixed-mode in the archived Message Queuing (MSMQ): Directory Service Replication Protocol

[MC-MQDSRP] for directory service replication among MSMQ Directory Service servers.

<39> Section 2.3.5.17: The security descriptor ACE AceType fields are limited to those supported
by Windows NT 4.0 ([MS-DTYP] section 2.4.4.1).

<40> Section 2.3.6.2: This property was used only by Windows NT and Windows 2000 operating in
MSMQ mixed-mode in the archived Message Queuing (MSMQ): Directory Service Replication Protocol
[MC-MQDSRP] for directory service replication among MSMQ Directory Service servers.

<41> Section 2.3.7.4: This property was used only by Windows NT and Windows 2000 operating in
MSMQ mixed-mode in the Message Queuing (MSMQ): Directory Service Replication Protocol [MC-
MQDSRP] for directory service replication among MSMQ Directory Service servers.

<42> Section 2.3.8.6: This property was used only by Windows NT and Windows 2000 operating in

MSMQ mixed-mode in the archived Message Queuing (MSMQ): Directory Service Replication Protocol
[MC-MQDSRP] for directory service replication among MSMQ Directory Service servers.

<43> Section 2.3.9.5: The security descriptor ACE AceType fields are limited to those supported by

Windows NT 4.0 ([MS-DTYP] section 2.4.4.1).

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

140 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

<44> Section 2.3.13.2: This property was used only by Windows NT and Windows 2000 operating in
MSMQ mixed-mode in the archived Message Queuing (MSMQ): Directory Service Replication Protocol

[MC-MQDSRP] for directory service replication among MSMQ Directory Service servers.

<45> Section 2.4: For more information about MSMQ-specific HRESULT values, see [MSDN-MQEIC].

http://go.microsoft.com/fwlink/?LinkId=90044

141 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

142 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

8 Index

A

Applicability 18

B

BaseHeader packet 45
BLOB structure 36

C

CACLSID structure 38
CAL structure 37
CALPWSTR structure 38
CAPROPVARIANT structure 38
CAUB structure 36
CAUH structure 37
CAUI structure 37
CAUL structure 37
Change tracking 141
Computer property identifiers 106
Connected network property identifiers 95
Connector format names 23
COUNTEDARRAY 36

D

DebugHeader packet 69

Definitions 20
Direct format names 21
DirectQueueFormatName packet 42
Distribution list format names 23
DL_ID structure 32

E

Enterprise object property identifiers 96
Error codes 118

F

Fields - vendor-extensible 19
Full IDL 132

G

Glossary 10

I

IDL 132
Informative references 18
Introduction 10
IP_Address packet 27
IPX_Address packet 27

L

Localization 18

M

Machine format names 23
Machine property identifiers 85
Management machine property identifiers 108
Management queue property identifiers 109
MESSAGE_CLASS_VALUES enumeration 42
MessageIdentifier packet 39
MessagePropertiesHeader packet 52
MQCNACCESSMASK enumeration 78
MQDSPUBLICKEY packet 24
MQDSPUBLICKEYS packet 25
MQENTACCESSMASK enumeration 76
MQFAddressHeader packet 59
MQFDirectQueueFormatName packet 41
MQFDistributionQueueFormatName packet 41
MQFFormatNameElement packet 40
MQFSignatureHeader packet 60
MQQMACCESSMASK enumeration 72
MQQUEUEACCESSMASK enumeration 74
MQSITEACCESSMASK enumeration 75
MQUser property identifiers 105
MQUSERSIGNCERT packet 71
MQUSERSIGNCERTS packet 71
Multicast format names 23
MULTICAST_ID structure 32
Multiple-element format names 24
MultiQueueFormatHeader packet 58

N

Normative references 16

O

OBJECTID structure 31

P

Path names 20
Private format names 22
PrivateQueueFormatName packet 44
PrivateQueueFormatNameId packet 42
Product behavior 136
Property identifiers

computer 106
connected network 95
enterprise object 96
machine 85
management machine 108
management queue 109
MQUser 105
queue 79
settings 102
site 92
sitelink 100
user object 99

PROPID _CN_ SECURITY 96

143 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

PROPID_ MQU_ID 106
PROPID_CN_GUID 95
PROPID_CN_NAME 95
PROPID_CN_PARTITIONID 96
PROPID_CN_PROTOCOLID 95
PROPID_CN_SEQNUM 96
PROPID_COM_ACCOUNT_CONTROL 107
PROPID_COM_DIGEST 107
PROPID_COM_DNS_HOSTNAME 107
PROPID_COM_FULL_PATH 106
PROPID_COM_ID 107
PROPID_COM_SAM_ACCOUNT 106
PROPID_COM_SID 107
PROPID_COM_SIGN_CERT 107
PROPID_D_IDENTIFIER 118
PROPID_D_PARTITIONID 117
PROPID_D_SEQNUM 117
PROPID_E_ ID 98
PROPID_E_CIPHER_MODE 99
PROPID_E_CRL 98
PROPID_E_CSP_NAME 97
PROPID_E_CSP_TYPE 98
PROPID_E_ENCRYPT_ALG 98

PROPID_E_HASH_ALG 98
PROPID_E_LONG_LIVE 98
PROPID_E_NAME 96
PROPID_E_NAMESTYLE 96
PROPID_E_PARTITIONID 97
PROPID_E_PECNAME 97
PROPID_E_S_INTERVAL1 97
PROPID_E_S_INTERVAL2 97
PROPID_E_SECURITY 99
PROPID_E_SEQNUM 97
PROPID_E_SIGN_ALG 98
PROPID_E_VERSION 99
PROPID_L_ACTUAL_COST 102
PROPID_L_COST 101
PROPID_L_DESCRIPTION 102
PROPID_L_FULL_PATH 102
PROPID_L_GATES 102
PROPID_L_GATES_DN 101
PROPID_L_ID 101
PROPID_L_NEIGHBOR1 100
PROPID_L_NEIGHBOR1_DN 101
PROPID_L_NEIGHBOR2 100
PROPID_L_NEIGHBOR2_DN 102
PROPID_L_PARTITIONID 101
PROPID_L_SEQNUM 101
PROPID_MGMT_MSMQ_ACTIVEQUEUES 108
PROPID_MGMT_MSMQ_BYTES_IN_ALL_QUEUES

109
PROPID_MGMT_MSMQ_CONNECTED 108
PROPID_MGMT_MSMQ_DSSERVER 108
PROPID_MGMT_MSMQ_PRIVATEQ 108
PROPID_MGMT_MSMQ_TYPE 109
PROPID_MGMT_QUEUE_ SUBQUEUE_COUNT 117
PROPID_MGMT_QUEUE_ SUBQUEUE_NAMES 117
PROPID_MGMT_QUEUE_BYTES_IN_JOURNAL 111
PROPID_MGMT_QUEUE_BYTES_IN_QUEUE 111
PROPID_MGMT_QUEUE_CONNECTION_HISTORY

115

PROPID_MGMT_QUEUE_EOD_FIRST_NON_ACK 113
PROPID_MGMT_QUEUE_EOD_LAST_ACK 112
PROPID_MGMT_QUEUE_EOD_LAST_ACK_COUNT

113
PROPID_MGMT_QUEUE_EOD_LAST_ACK_TIME 113
PROPID_MGMT_QUEUE_EOD_LAST_NON_ACK 113
PROPID_MGMT_QUEUE_EOD_NEXT_SEQ 113
PROPID_MGMT_QUEUE_EOD_NO_ACK_COUNT 114
PROPID_MGMT_QUEUE_EOD_NO_READ_COUNT

113
PROPID_MGMT_QUEUE_EOD_RESEND_COUNT 114
PROPID_MGMT_QUEUE_EOD_RESEND_INTERVAL

114
PROPID_MGMT_QUEUE_EOD_RESEND_TIME 114
PROPID_MGMT_QUEUE_EOD_SOURCE_INFO 114
PROPID_MGMT_QUEUE_FOREIGN 110
PROPID_MGMT_QUEUE_FORMATNAME 109
PROPID_MGMT_QUEUE_JOURNAL_MESSAGE_COUN

T 111
PROPID_MGMT_QUEUE_LOCATION 110
PROPID_MGMT_QUEUE_MESSAGE_COUNT 111
PROPID_MGMT_QUEUE_NEXTHOPS 112
PROPID_MGMT_QUEUE_PATHNAME 109

PROPID_MGMT_QUEUE_STATE 111
PROPID_MGMT_QUEUE_TYPE 109
PROPID_MGMT_QUEUE_XACT 110
PROPID_MQU_DIGEST 106
PROPID_MQU_SECURITY 106
PROPID_MQU_SID 105
PROPID_MQU_SIGN_CERT 105
PROPID_Q_ADS_PATH 84
PROPID_Q_AUTHENTICATE 81
PROPID_Q_BASEPRIORITY 80
PROPID_Q_CREATE_TIME 81
PROPID_Q_FULL_PATH 83
PROPID_Q_HASHKEY 83
PROPID_Q_INSTANCE 79
PROPID_Q_JOURNAL 80
PROPID_Q_JOURNAL_QUOTA 80
PROPID_Q_LABEL 80
PROPID_Q_LABEL_HASHKEY 83
PROPID_Q_MODIFY_TIME 81
PROPID_Q_MULTICAST_ADDRESS 83
PROPID_Q_NAME_SUFFIX 83
PROPID_Q_OBJ_SECURITY 84
PROPID_Q_PARTITIONID 82
PROPID_Q_PATHNAME 79
PROPID_Q_PATHNAME_DNS 83
PROPID_Q_PRIV_LEVEL 81
PROPID_Q_QMID 82
PROPID_Q_QUOTA 80
PROPID_Q_SCOPE 82
PROPID_Q_SECURITY 84
PROPID_Q_SECURITY_INFORMATION 84
PROPID_Q_SEQNUM 82
PROPID_Q_TRANSACTION 82
PROPID_Q_TYPE 79
PROPID_QM_ CNS 85
PROPID_QM_ CREATE_TIME 87
PROPID_QM_ FOREIGN 87
PROPID_QM_ FULL_PATH 88

144 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

PROPID_QM_ INFRS_DN 89
PROPID_QM_ JOURNAL_QUOTA 87
PROPID_QM_ MODIFY_TIME 87
PROPID_QM_ OS 88
PROPID_QM_ OUTFRS_DN 89
PROPID_QM_ QUOTA 86
PROPID_QM_ SERVICE_ROUTING 89
PROPID_QM_ SITE_IDS 88
PROPID_QM_ADDRESS 85
PROPID_QM_ENCRYPT_PK 92
PROPID_QM_ENCRYPT_PKS 90
PROPID_QM_ENCRYPTION_PK 85
PROPID_QM_ENCRYPTION_PK_BASE 90
PROPID_QM_ENCRYPTION_PK_ENHANCED 90
PROPID_QM_GROUP_IN_CLUSTER 91
PROPID_QM_HASHKEY 87
PROPID_QM_INFRS 86
PROPID_QM_MACHINE_ID 85
PROPID_QM_MACHINE_TYPE 87
PROPID_QM_OBJ_SECURITY 90
PROPID_QM_OUTFRS 86
PROPID_QM_OWNER_SID 91
PROPID_QM_PARTITIONID 86

PROPID_QM_PATHNAME 85
PROPID_QM_PATHNAME_DNS 90
PROPID_QM_SECURITY 91
PROPID_QM_SECURITY_INFORMATION 90
PROPID_QM_SEQNUM 87
PROPID_QM_SERVICE 86
PROPID_QM_SERVICE_DEPCLIENTS 89
PROPID_QM_SERVICE_DSSERVER 89
PROPID_QM_SIGN_PK 92
PROPID_QM_SIGN_PKS 91
PROPID_QM_SITE_ID 85
PROPID_QM_UPGRADE_DACL 92
PROPID_S_ SECURITY _ INFORMATION 95
PROPID_S_DONOTHING 94
PROPID_S_FOREIGN 94
PROPID_S_FULL_NAME 93
PROPID_S_GATES 92
PROPID_S_INTERVAL1 93
PROPID_S_INTERVAL2 93
PROPID_S_NT4_STUB 94
PROPID_S_PARTITIONID 93
PROPID_S_PATHNAME 92
PROPID_S_PSC 93
PROPID_S_PSC_SIGNPK 95
PROPID_S_SECURITY 94
PROPID_S_SEQNUM 93
PROPID_S_SITEID 92
PROPID_SET_FULL_PATH 103
PROPID_SET_NAME 103
PROPID_SET_NT4 103
PROPID_SET_OLDSERVICE 105
PROPID_SET_PARTITIONID 104
PROPID_SET_QM_ID 103
PROPID_SET_SERVICE 103
PROPID_SET_SERVICE_DEPCLIENTS 105
PROPID_SET_SERVICE_DSSERVER 104
PROPID_SET_SERVICE_ROUTING 104
PROPID_SET_SITENAME 104

PROPID_U_DIGEST 100
PROPID_U_ID 100
PROPID_U_PARTITIONID 99
PROPID_U_SEQNUM 100
PROPID_U_SID 99
PROPID_U_SIGN_CERT 100
PROPVARIANT 34
PTA_ADDRESS 26
Public format names 22
PublicQueueFormatName packet 44

Q

Queue names 20
Queue property identifiers 79
QUEUE_FORMAT structure 29
QUEUE_FORMAT_TYPE enumeration 29
QUEUE_SUFFIX_TYPE enumeration 32

R

References
informative 18
normative 16

Relationship to other protocols 18

S

SecurityHeader packet 64
SEQUENCE_INFO packet 28
SEQUENCE_INFO structure 28
SessionHeader packet 60
Settings property identifiers 102
Site property identifiers 92
Sitelink property identifiers 100
SoapHeader packet 68
Structures

discussed 24
overview 20

T

TA_ADDRESS structure 26
tag_inner_PROPVARIANT structure 34
Tracking changes 141
TransactionHeader packet 62
TxSequenceID packet 39

U

ULARGE_INTEGER structure 39
User object property identifiers 99
UserHeader packet 47
UserMessage packet 56

V

VARENUM enumeration 33
Vendor-extensible fields 19
Versioning 18

X

145 / 145

[MS-MQMQ] — v20131025
 Message Queuing (MSMQ): Data Structures

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

XACTUOW structure 45

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Structure Overview
	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.6 Versioning and Localization
	1.7 Vendor-Extensible Fields

	2 Definitions and Structures
	2.1 MSMQ Queue Names
	2.1.1 Path Names
	2.1.2 Direct Format Names
	2.1.3 Public Format Names
	2.1.4 Private Format Names
	2.1.5 Distribution List Format Names
	2.1.6 Machine, Connector, and Multicast Format Names
	2.1.7 Multiple-Element Format Names

	2.2 Structures
	2.2.1 MQDSPUBLICKEY
	2.2.2 MQDSPUBLICKEYS
	2.2.3 SECURITY_INFORMATION
	2.2.4 TA_ADDRESS
	2.2.4.1 IP Address
	2.2.4.2 IPX Address

	2.2.5 SEQUENCE_INFO
	2.2.5.1 SEQUENCE_INFO (Packet)

	2.2.6 QUEUE_FORMAT_TYPE
	2.2.7 QUEUE_FORMAT
	2.2.8 OBJECTID
	2.2.9 DL_ID
	2.2.10 MULTICAST_ID
	2.2.11 QUEUE_SUFFIX_TYPE
	2.2.12 PROPVARIANT Type Constants
	2.2.12.1 VARTYPE

	2.2.13 PROPVARIANT
	2.2.13.1 tag_inner_PROPVARIANT
	2.2.13.2 PROPVARIANT

	2.2.14 VARIANT_BOOL
	2.2.15 BLOB
	2.2.16 COUNTEDARRAY
	2.2.16.1 CAUB
	2.2.16.2 CAUI
	2.2.16.3 CAL
	2.2.16.4 CAUL
	2.2.16.5 CAUH
	2.2.16.6 CACLSID
	2.2.16.7 CALPWSTR
	2.2.16.8 CAPROPVARIANT

	2.2.17 ULARGE_INTEGER
	2.2.18 Common Packet Syntax
	2.2.18.1 Packet Data Types
	2.2.18.1.1 GUID
	2.2.18.1.2 TxSequenceID
	2.2.18.1.3 MessageIdentifier
	2.2.18.1.4 MQFFormatNameElement
	2.2.18.1.4.1 MQFDirectQueueFormatName
	2.2.18.1.4.2 MQFDistributionQueueFormatName

	2.2.18.1.5 Queue Format Type
	2.2.18.1.5.1 PrivateQueueFormatNameId
	2.2.18.1.5.2 DirectQueueFormatName

	2.2.18.1.6 Message Class Identifiers
	2.2.18.1.7 Common Queue Formats
	2.2.18.1.7.1 PublicQueueFormatName
	2.2.18.1.7.2 PrivateQueueFormatName

	2.2.18.1.8 XACTUOW

	2.2.19 Common Headers
	2.2.19.1 BaseHeader
	2.2.19.2 UserHeader
	2.2.19.3 MessagePropertiesHeader

	2.2.20 UserMessage Packet
	2.2.20.1 MultiQueueFormatHeader
	2.2.20.2 MQFAddressHeader
	2.2.20.3 MQFSignatureHeader
	2.2.20.4 SessionHeader
	2.2.20.5 TransactionHeader
	2.2.20.6 SecurityHeader
	2.2.20.7 SoapHeader
	2.2.20.8 DebugHeader

	2.2.21 MQUSERSIGNCERTS
	2.2.22 MQUSERSIGNCERT
	2.2.23 MQQMACCESSMASK
	2.2.24 MQQUEUEACCESSMASK
	2.2.25 MQSITEACCESSMASK
	2.2.26 MQENTACCESSMASK
	2.2.27 MQCNACCESSMASK

	2.3 PROPID
	2.3.1 Queue Property Identifiers
	2.3.1.1 PROPID_Q_INSTANCE
	2.3.1.2 PROPID_Q_TYPE
	2.3.1.3 PROPID_Q_PATHNAME
	2.3.1.4 PROPID_Q_JOURNAL
	2.3.1.5 PROPID_Q_QUOTA
	2.3.1.6 PROPID_Q_BASEPRIORITY
	2.3.1.7 PROPID_Q_JOURNAL_QUOTA
	2.3.1.8 PROPID_Q_LABEL
	2.3.1.9 PROPID_Q_CREATE_TIME
	2.3.1.10 PROPID_Q_MODIFY_TIME
	2.3.1.11 PROPID_Q_AUTHENTICATE
	2.3.1.12 PROPID_Q_PRIV_LEVEL
	2.3.1.13 PROPID_Q_TRANSACTION
	2.3.1.14 PROPID_Q_SCOPE
	2.3.1.15 PROPID_Q_QMID
	2.3.1.16 PROPID_Q_PARTITIONID
	2.3.1.17 PROPID_Q_SEQNUM
	2.3.1.18 PROPID_Q_HASHKEY
	2.3.1.19 PROPID_Q_LABEL_HASHKEY
	2.3.1.20 PROPID_Q_FULL_PATH
	2.3.1.21 PROPID_Q_NAME_SUFFIX
	2.3.1.22 PROPID_Q_PATHNAME_DNS
	2.3.1.23 PROPID_Q_MULTICAST_ADDRESS
	2.3.1.24 PROPID_Q_ADS_PATH
	2.3.1.25 PROPID_Q_SECURITY
	2.3.1.26 PROPID_Q_OBJ_SECURITY
	2.3.1.27 PROPID_Q_SECURITY_INFORMATION

	2.3.2 Machine Property Identifiers
	2.3.2.1 PROPID_QM_SITE_ID
	2.3.2.2 PROPID_QM_MACHINE_ID
	2.3.2.3 PROPID_QM_PATHNAME
	2.3.2.4 PROPID_QM_ENCRYPTION_PK
	2.3.2.5 PROPID_QM_ADDRESS
	2.3.2.6 PROPID_QM_CNS
	2.3.2.7 PROPID_QM_OUTFRS
	2.3.2.8 PROPID_QM_INFRS
	2.3.2.9 PROPID_QM_SERVICE
	2.3.2.10 PROPID_QM_QUOTA
	2.3.2.11 PROPID_QM_PARTITIONID
	2.3.2.12 PROPID_QM_HASHKEY
	2.3.2.13 PROPID_QM_SEQNUM
	2.3.2.14 PROPID_QM_JOURNAL_QUOTA
	2.3.2.15 PROPID_QM_MACHINE_TYPE
	2.3.2.16 PROPID_QM_CREATE_TIME
	2.3.2.17 PROPID_QM_MODIFY_TIME
	2.3.2.18 PROPID_QM_FOREIGN
	2.3.2.19 PROPID_QM_OS
	2.3.2.20 PROPID_QM_FULL_PATH
	2.3.2.21 PROPID_QM_SITE_IDS
	2.3.2.22 PROPID_QM_OUTFRS_DN
	2.3.2.23 PROPID_QM_INFRS_DN
	2.3.2.24 PROPID_QM_SERVICE_ROUTING
	2.3.2.25 PROPID_QM_SERVICE_DSSERVER
	2.3.2.26 PROPID_QM_SERVICE_DEPCLIENTS
	2.3.2.27 PROPID_QM_ENCRYPTION_PK_BASE
	2.3.2.28 PROPID_QM_ENCRYPTION_PK_ENHANCED
	2.3.2.29 PROPID_QM_PATHNAME_DNS
	2.3.2.30 PROPID_QM_OBJ_SECURITY
	2.3.2.31 PROPID_QM_SECURITY_INFORMATION
	2.3.2.32 PROPID_QM_ENCRYPT_PKS
	2.3.2.33 PROPID_QM_SIGN_PKS
	2.3.2.34 PROPID_QM_OWNER_SID
	2.3.2.35 PROPID_QM_GROUP_IN_CLUSTER
	2.3.2.36 PROPID_QM_SECURITY
	2.3.2.37 PROPID_QM_SIGN_PK
	2.3.2.38 PROPID_QM_ENCRYPT_PK
	2.3.2.39 PROPID_QM_UPGRADE_DACL

	2.3.3 Site Property Identifiers
	2.3.3.1 PROPID_S_PATHNAME
	2.3.3.2 PROPID_S_SITEID
	2.3.3.3 PROPID_S_GATES
	2.3.3.4 PROPID_S_PSC
	2.3.3.5 PROPID_S_INTERVAL1
	2.3.3.6 PROPID_S_INTERVAL2
	2.3.3.7 PROPID_S_PARTITIONID
	2.3.3.8 PROPID_S_SEQNUM
	2.3.3.9 PROPID_S_FULL_NAME
	2.3.3.10 PROPID_S_NT4_STUB
	2.3.3.11 PROPID_S_FOREIGN
	2.3.3.12 PROPID_S_DONOTHING
	2.3.3.13 PROPID_S_SECURITY
	2.3.3.14 PROPID_S_PSC_SIGNPK
	2.3.3.15 PROPID_S_SECURITY_INFORMATION

	2.3.4 Connected Network Property Identifiers
	2.3.4.1 PROPID_CN_PROTOCOLID
	2.3.4.2 PROPID_CN_NAME
	2.3.4.3 PROPID_CN_GUID
	2.3.4.4 PROPID_CN_PARTITIONID
	2.3.4.5 PROPID_CN_SEQNUM
	2.3.4.6 PROPID_CN_SECURITY

	2.3.5 Enterprise Object Property Identifiers
	2.3.5.1 PROPID_E_NAME
	2.3.5.2 PROPID_E_NAMESTYLE
	2.3.5.3 PROPID_E_CSP_NAME
	2.3.5.4 PROPID_E_PECNAME
	2.3.5.5 PROPID_E_S_INTERVAL1
	2.3.5.6 PROPID_E_S_INTERVAL2
	2.3.5.7 PROPID_E_PARTITIONID
	2.3.5.8 PROPID_E_SEQNUM
	2.3.5.9 PROPID_E_ID
	2.3.5.10 PROPID_E_CRL
	2.3.5.11 PROPID_E_CSP_TYPE
	2.3.5.12 PROPID_E_ENCRYPT_ALG
	2.3.5.13 PROPID_E_SIGN_ALG
	2.3.5.14 PROPID_E_HASH_ALG
	2.3.5.15 PROPID_E_LONG_LIVE
	2.3.5.16 PROPID_E_VERSION
	2.3.5.17 PROPID_E_SECURITY
	2.3.5.18 PROPID_E_CIPHER_MODE

	2.3.6 User Object Property Identifiers
	2.3.6.1 PROPID_U_SID
	2.3.6.2 PROPID_U_PARTITIONID
	2.3.6.3 PROPID_U_SEQNUM
	2.3.6.4 PROPID_U_SIGN_CERT
	2.3.6.5 PROPID_U_DIGEST
	2.3.6.6 PROPID_U_ID

	2.3.7 Routinglink Property Identifiers
	2.3.7.1 PROPID_L_NEIGHBOR1
	2.3.7.2 PROPID_L_NEIGHBOR2
	2.3.7.3 PROPID_L_COST
	2.3.7.4 PROPID_L_PARTITIONID
	2.3.7.5 PROPID_L_SEQNUM
	2.3.7.6 PROPID_L_ID
	2.3.7.7 PROPID_L_GATES_DN
	2.3.7.8 PROPID_L_NEIGHBOR1_DN
	2.3.7.9 PROPID_L_NEIGHBOR2_DN
	2.3.7.10 PROPID_L_DESCRIPTION
	2.3.7.11 PROPID_L_FULL_PATH
	2.3.7.12 PROPID_L_ACTUAL_COST
	2.3.7.13 PROPID_L_GATES

	2.3.8 Settings Property Identifiers
	2.3.8.1 PROPID_SET_NAME
	2.3.8.2 PROPID_SET_SERVICE
	2.3.8.3 PROPID_SET_QM_ID
	2.3.8.4 PROPID_SET_FULL_PATH
	2.3.8.5 PROPID_SET_NT4
	2.3.8.6 PROPID_SET_PARTITIONID
	2.3.8.7 PROPID_SET_SITENAME
	2.3.8.8 PROPID_SET_SERVICE_ROUTING
	2.3.8.9 PROPID_SET_SERVICE_DSSERVER
	2.3.8.10 PROPID_SET_SERVICE_DEPCLIENTS
	2.3.8.11 PROPID_SET_OLDSERVICE

	2.3.9 MQUser Property Identifiers
	2.3.9.1 PROPID_MQU_SID
	2.3.9.2 PROPID_MQU_SIGN_CERT
	2.3.9.3 PROPID_MQU_DIGEST
	2.3.9.4 PROPID_MQU_ID
	2.3.9.5 PROPID_MQU_SECURITY

	2.3.10 Computer Property Identifiers
	2.3.10.1 PROPID_COM_FULL_PATH
	2.3.10.2 PROPID_COM_SAM_ACCOUNT
	2.3.10.3 PROPID_COM_ACCOUNT_CONTROL
	2.3.10.4 PROPID_COM_DNS_HOSTNAME
	2.3.10.5 PROPID_COM_SID
	2.3.10.6 PROPID_COM_SIGN_CERT
	2.3.10.7 PROPID_COM_DIGEST
	2.3.10.8 PROPID_COM_ID

	2.3.11 Management Machine Property Identifiers
	2.3.11.1 PROPID_MGMT_MSMQ_ACTIVEQUEUES
	2.3.11.2 PROPID_MGMT_MSMQ_PRIVATEQ
	2.3.11.3 PROPID_MGMT_MSMQ_DSSERVER
	2.3.11.4 PROPID_MGMT_MSMQ_CONNECTED
	2.3.11.5 PROPID_MGMT_MSMQ_TYPE
	2.3.11.6 PROPID_MGMT_MSMQ_BYTES_IN_ALL_QUEUES

	2.3.12 Management Queue Property Identifiers
	2.3.12.1 PROPID_MGMT_QUEUE_PATHNAME
	2.3.12.2 PROPID_MGMT_QUEUE_FORMATNAME
	2.3.12.3 PROPID_MGMT_QUEUE_TYPE
	2.3.12.4 PROPID_MGMT_QUEUE_LOCATION
	2.3.12.5 PROPID_MGMT_QUEUE_XACT
	2.3.12.6 PROPID_MGMT_QUEUE_FOREIGN
	2.3.12.7 PROPID_MGMT_QUEUE_MESSAGE_COUNT
	2.3.12.8 PROPID_MGMT_QUEUE_BYTES_IN_QUEUE
	2.3.12.9 PROPID_MGMT_QUEUE_JOURNAL_MESSAGE_COUNT
	2.3.12.10 PROPID_MGMT_QUEUE_BYTES_IN_JOURNAL
	2.3.12.11 PROPID_MGMT_QUEUE_STATE
	2.3.12.12 PROPID_MGMT_QUEUE_NEXTHOPS
	2.3.12.13 PROPID_MGMT_QUEUE_EOD_LAST_ACK
	2.3.12.14 PROPID_MGMT_QUEUE_EOD_LAST_ACK_TIME
	2.3.12.15 PROPID_MGMT_QUEUE_EOD_LAST_ACK_COUNT
	2.3.12.16 PROPID_MGMT_QUEUE_EOD_FIRST_NON_ACK
	2.3.12.17 PROPID_MGMT_QUEUE_EOD_LAST_NON_ACK
	2.3.12.18 PROPID_MGMT_QUEUE_EOD_NEXT_SEQ
	2.3.12.19 PROPID_MGMT_QUEUE_EOD_NO_READ_COUNT
	2.3.12.20 PROPID_MGMT_QUEUE_EOD_NO_ACK_COUNT
	2.3.12.21 PROPID_MGMT_QUEUE_EOD_RESEND_TIME
	2.3.12.22 PROPID_MGMT_QUEUE_EOD_RESEND_INTERVAL
	2.3.12.23 PROPID_MGMT_QUEUE_EOD_RESEND_COUNT
	2.3.12.24 PROPID_MGMT_QUEUE_EOD_SOURCE_INFO
	2.3.12.25 PROPID_MGMT_QUEUE_CONNECTION_HISTORY
	2.3.12.26 PROPID_MGMT_QUEUE_SUBQUEUE_COUNT
	2.3.12.27 PROPID_MGMT_QUEUE_SUBQUEUE_NAMES

	2.3.13 Deletion Notification Property Identifiers
	2.3.13.1 PROPID_D_SEQNUM
	2.3.13.2 PROPID_D_PARTITIONID
	2.3.13.3 PROPID_D_SCOPE
	2.3.13.4 PROPID_D_OBJTYPE
	2.3.13.5 PROPID_D_IDENTIFIER

	2.4 Error Codes
	2.5 Message Properties for Digital Signatures
	2.5.1 MSMQ 1.0 Digital Signature Properties
	2.5.2 MSMQ 2.0 Digital Signature Properties
	2.5.3 MSMQ 3.0 Digital Signature Properties

	3 Structure Examples
	4 Security Considerations
	5 Appendix A: Full IDL
	6 Appendix B: Product Behavior
	7 Change Tracking
	8 Index

