

1 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-MQBR-Diff]:

Message Queuing (MSMQ): Binary Reliable Message
Routing Algorithm

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
as well as overviews of the interaction among each of these technologiessupport. Additionally,
overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you maycan make copies of it in order to develop implementations of the
technologies that are described in the Open Specifications this documentation and maycan
distribute portions of it in your implementations usingthat use these technologies or in your
documentation as necessary to properly document the implementation. You maycan also distribute
in your implementation, with or without modification, any schema, IDL'sschemas, IDLs, or code

samples that are included in the documentation. This permission also applies to any documents
that are referenced in the Open Specifications. documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that maymight cover your implementations of the technologies
described in the Open Specifications. documentation. Neither this notice nor Microsoft's delivery of
thethis documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specification maySpecifications document might be covered by the
Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a

written license, or if the technologies described in the Open Specificationsthis documentation are
not covered by the Open Specifications Promise or Community Promise, as applicable, patent

licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation maymight
be covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mailemail

addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications dodocumentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available
standardstandards specifications and network programming art, and assumes, as such, assume that
the reader either is familiar with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

7/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

9/28/2007 1.0 Major Updated and revised the technical content.

10/23/2007 1.0.1 Editorial Changed language and formatting in the technical content.

11/30/2007 2.0 Major Updated and revised the technical content.

1/25/2008 2.0.1 Editorial Changed language and formatting in the technical content.

3/14/2008 2.1 Minor Clarified the meaning of the technical content.

5/16/2008 2.1.1 Editorial Changed language and formatting in the technical content.

6/20/2008 2.1.2 Editorial Changed language and formatting in the technical content.

7/25/2008 2.1.3 Editorial Changed language and formatting in the technical content.

8/29/2008 3.0 Major Updated and revised the technical content.

10/24/2008 3.0.1 Editorial Changed language and formatting in the technical content.

12/5/2008 3.0.2 Editorial Changed language and formatting in the technical content.

1/16/2009 3.0.3 Editorial Changed language and formatting in the technical content.

2/27/2009 3.0.4 Editorial Changed language and formatting in the technical content.

4/10/2009 3.0.5 Editorial Changed language and formatting in the technical content.

5/22/2009 4.0 Major Updated and revised the technical content.

7/2/2009 4.1 Minor Clarified the meaning of the technical content.

8/14/2009 4.1.1 Editorial Changed language and formatting in the technical content.

9/25/2009 4.2 Minor Clarified the meaning of the technical content.

11/6/2009 5.0 Major Updated and revised the technical content.

12/18/2009 5.0.1 Editorial Changed language and formatting in the technical content.

1/29/2010 5.1 Minor Clarified the meaning of the technical content.

3/12/2010 5.1.1 Editorial Changed language and formatting in the technical content.

4/23/2010 5.1.2 Editorial Changed language and formatting in the technical content.

6/4/2010 5.1.3 Editorial Changed language and formatting in the technical content.

7/16/2010 6.0 Major Updated and revised the technical content.

8/27/2010 7.0 Major Updated and revised the technical content.

10/8/2010 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

1/7/2011 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 8.0 Major Updated and revised the technical content.

3/25/2011 9.0 Major Updated and revised the technical content.

5/6/2011 10.0 Major Updated and revised the technical content.

6/17/2011 10.1 Minor Clarified the meaning of the technical content.

9/23/2011 10.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 10.1 None
No changes to the meaning, language, or formatting of the
technical content.

3/30/2012 10.1 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 10.2 Minor Clarified the meaning of the technical content.

10/25/2012 11.0 Major Updated and revised the technical content.

1/31/2013 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 12.0 Major Updated and revised the technical content.

11/14/2013 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 13.0 Major Significantly changed the technical content.

10/16/2015 13.0
No

ChangeNone

No changes to the meaning, language, or formatting of the

technical content.

4 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.3.1 Direct Connection ... 8
1.3.2 Intra-Site Routing ... 8
1.3.3 Inter-Site Routing ... 9

1.4 Relationship to Other Protocols .. 10
1.5 Prerequisites/Preconditions ... 11
1.6 Applicability Statement ... 11
1.7 Versioning and Capability Negotiation ... 11
1.8 Vendor-Extensible Fields ... 11
1.9 Standards Assignments ... 11

2 Messages ... 12
2.1 Transport .. 12
2.2 Message Syntax ... 12
2.3 Directory Service Schema Elements ... 12

3 Protocol Details ... 13
3.1 Algorithm Details ... 13

3.1.1 Abstract Data Model .. 13
3.1.1.1 Shared Data Elements ... 14
3.1.1.2 Routing Table ... 14

3.1.2 Timers .. 14
3.1.2.1 QueueManager Query Timer ... 14

3.1.3 Initialization ... 14
3.1.3.1 RoutingTable Initialization .. 14

3.1.4 Higher-Layer Triggered Events ... 15
3.1.5 Message Processing Events and Sequencing Rules .. 15

3.1.5.1 GetNextHops .. 15
3.1.5.2 GetNextHopsForRouter .. 16
3.1.5.3 GetNextHopsForSiteGate.. 17
3.1.5.4 GetQueueManager .. 17
3.1.5.5 GetRoutingServer ... 18
3.1.5.6 GetSiteGate ... 19
3.1.5.7 GetSiteGateForSite.. 19
3.1.5.8 IsSiteGate .. 20
3.1.5.9 GetDirectoryData .. 20

3.1.6 Timer Events .. 21
3.1.6.1 QueueManager Query Timer Event .. 21

3.1.7 Other Local Events .. 21

4 Protocol Examples ... 22

5 Security ... 23
5.1 Security Considerations for Implementers ... 23
5.2 Index of Security Parameters .. 23

6 Appendix A: Product Behavior ... 24

7 Change Tracking .. 25

8 Index ... 26

5 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

The Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm is used by Message
Queuing (also known as MSMQ) to determine the next hop when routing a message.

The document describes intra-site routing, inter-site routing and direct connection between
source and destination MSMQ queue managers where it is possible, as described in section 1.3.

For more information on MSMQ, see [MSDN-MSMQ].

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative and can contain the terms MAY,
SHOULD, MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

TheThis document uses the following terms are specific to this document:

administrator: A user who has complete and unrestricted access to the computer or domain.

connected network: A network of computers in which any two computers can communicate
directly through a common transport protocol (for example, TCP/IP or SPX/IPX). A computer can
belong to multiple connected networks.

directory: The database that stores information about objects such as users, groups, computers,
printers, and the directory service that makes this information available to users and
applications.

enterprise: A unit of administration of a network of MSMQ queue managers. An enterprise
consists of an MSMQ Directory Service, one or more connected networks, and one or more
MSMQ sites.

format name: A name that is used to reference a queue when making calls to API functions.

in-routing server: An MSMQ routing server that receives all messages on behalf of a particular
client and forwards those messages to that client.

inter-site routing: The process of routing a message between different MSMQ sites within an
enterprise.

intra-site routing: The process of routing a message within a single MSMQ site.

message: A data structure representing a unit of data transfer between distributed applications. A

message has message properties, which may include message header properties, a message
body property, and message trailer properties.

message packet: A byte buffer that is the physical representation of the message in the queue
manager and on the wire.

Microsoft Message Queuing (MSMQ): A communications service that provides asynchronous
and reliable message passing between distributed applications. In Message Queuing,
applications send messages to queues and consume messages from queues. The queues

provide persistence of the messages, enabling the sending and receiving applications to
operate asynchronously from one another.

MSMQ queue manager: An MSMQ service hosted on a machine that provides queued messaging
services. Queue managers manage queues deployed on the local computer and provide

7 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

asynchronous transfer of messages to queues located on other computers. A queue manager
is identified by a globally unique identifier (GUID).

MSMQ routing link: A communication link between two sites. A routing link is represented by a
routing link object in the directory service. Routing links maycan have associated link costs.

Routing links with their associated costs can be used to compute lowest-cost routing paths for
store-and-forward messaging.

MSMQ routing server: A role played by an MSMQ queue manager. An MSMQ routing server
implements store and forward messaging. A routing server maycan provide connectivity
between different connected networks within a site or maycan provide session concentration
between sites.

MSMQ site: A network of computers, typically physically collocated, that have high connectivity as

measured in terms of latency (low) and throughput (high). A site is represented by a site object
in the directory service. An MSMQ site maps one-to-one with an Active Directory site when
Active Directory provides directory services to MSMQ.

MSMQ site gate: An MSMQ routing server through which all intersite messaging traffic flows.

out-routing server: An MSMQ routing server that receives all messages sent by a particular
client and routes those messages on behalf of that client.

queue: An object that holds messages passed between applications or messages passed
between Message Queuing and applications. In general, applications can send messages to
queues and read messages from queues.

routing link cost: A value that models the relative cost of direct communication between two
MSMQ sites.

routing table: A table maintained by each MSMQ site gate for inter-site routing. For each MSMQ
site in an enterprise, the table specifies the MSMQ site to which a message should be

forwarded in order to minimize the total routing link cost for that message.

server: A computer on which the remote procedure call (RPC) server is executing.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-MQDMPR] Microsoft Corporation, "Message Queuing (MSMQ): Common Data Model and

Processing Rules".

8 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-MQDSSM] Microsoft Corporation, "Message Queuing (MSMQ): Directory Service Schema
Mapping".

[MS-MQQB] Microsoft Corporation, "Message Queuing (MSMQ): Message Queuing Binary Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-MQDS] Microsoft Corporation, "Message Queuing (MSMQ): Directory Service Protocol".

[MS-MQOD] Microsoft Corporation, "Message Queuing Protocols Overview".

[MSDN-MSMQ] Microsoft Corporation, "Message Queuing (MSMQ)", http://msdn.microsoft.com/en-
us/library/ms711472.aspx

1.3 Overview

The Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm describes message routing
within an enterprise network.

Message queuing clients transfer messages either by direct connection with the destination or by
sending them to an MSMQ Routing Server.<1> If a direct connection is not possible or the client is

configured to use a routing service, MSMQ routing servers can temporarily store messages and
subsequently forward them to the destination MSMQ queue manager or to another MSMQ routing
server.

Message routing occurs when at least one of the following conditions exists.

 The source MSMQ queue manager and the destination MSMQ queue manager belong to different
MSMQ sites.

 The source MSMQ queue manager and the destination MSMQ queue manager do not share a

connected network.

 The source MSMQ queue manager is configured to use an out-routing server. Every outgoing
message from the source MSMQ queue manager is routed through the configured out-routing
server.

 The destination MSMQ queue manager is configured to use an in-routing server. Every incoming
message to the destination MSMQ queue manager is routed through the configured in-routing
server.

More information on queuing messages is specified in [MS-MQQB].

1.3.1 Direct Connection

A direct connection between two MSMQ queue managers that share a connected network is possible

when the source MSMQ queue manager is not configured to use one or more out-routing server(s),
and the destination MSMQ queue manager is not configured to use one or more in-routing server(s). A
MSMQ queue manager maycan belong to more than one connected network.

1.3.2 Intra-Site Routing

If a source MSMQ queue manager is configured to use an out-routing server, every outgoing message
is routed through that out-routing server. Similarly, if a destination MSMQ queue manager is
configured to use an in-routing server, every incoming message is routed through that in-routing

9 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

server. Using in-routing and out-routing servers to route messages within an MSMQ site maycan
reduce network bandwidth consumption by providing session concentration.

An MSMQ routing server maycan also be used to exchange messages between two MSMQ queue
managers within an MSMQ site that do not share a common connected network.

An MSMQ routing server maycan also be used to exchange messages between two MSMQ queue
managers within an MSMQ site when direct connection between those MSMQ queue managers fails.

1.3.3 Inter-Site Routing

Administrators can model the physical topology of an enterprise as properties in the directory. The
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm uses this model to make
routing decisions.

MSMQ sites represent a grouping of MSMQ queue managers in the enterprise network according to
physical location. MSMQ queue managers in one MSMQ site use MSMQ site gates within the same
MSMQ site to route messages to MSMQ queue managers in other MSMQ sites. An MSMQ site gate can

route a message to another MSMQ site by sending that message to another MSMQ site gate.

Routing inter-site traffic only through MSMQ site gates often results in session concentration, which
can reduce network bandwidth consumption between physically distant nodes.

If an enterprise network has more than one MSMQ site, an administrator creates MSMQ routing
links to allow messages to be routed between those MSMQ sites. MSMQ routing links identify
neighboring MSMQ sites whose MSMQ site gates can communicate directly. Each MSMQ routing link
includes a routing link cost that represents how expensive it is to transfer messages directly
between the two sites.

A message maycan be transferred through multiple MSMQ sites on the way to the destination MSMQ
site. Each MSMQ site gate along the way uses a routing table to find the next hop in a least-cost
path to the destination MSMQ site.

To build the routing table, MSMQ site gates consider the enterprise as a graph with vertices as MSMQ

sites and bidirectional nonnegative edge weights as the routing link costs. An MSMQ site gate builds a
least-cost spanning tree using its MSMQ site as the root and uses this tree to populate its routing

table.

10 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 1: Enterprise as a set of MSMQ sites and MSMQ routing links

Routing link cost provides a mechanism for administrators to enforce one route over another in cases
where multiple routes exist.

As described in section 3.1.6.1, each MSMQ queue manager that runs MSMQ within an enterprise
periodically queries the directory to determine whether it should actacts as an MSMQ site gate, and to
build a routing table if the querying MSMQ queue manager is an MSMQ site gate.

1.4 Relationship to Other Protocols

The Message Queuing (MSMQ): Binary Reliable Messaging Protocol, as specified in [MS-MQQB], may
relyrelies upon the Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm to
determine the next hop when messages are sent using public and private format names.

 The algorithm uses shared state and processing rules defined in Message Queuing (MSMQ): Common

Data Model and Processing Rules.

11 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 2: MS-MQQB uses the MS-MQBR algorithm when message routing is required

1.5 Prerequisites/Preconditions

If an enterprise has more than one MSMQ site, each MSMQ site has one or more MSMQ site gates
assigned to it.

The following are the requirements for an MSMQ queue manager to be an MSMQ site gate:

 The MSMQ queue manager musthas to belong to the MSMQ site for which it is an MSMQ site gate.

 The MSMQ queue manager musthas to be able to connect directly to each MSMQ site gate in each

neighboring MSMQ site.

MSMQ routing servers within an MSMQ site musthave to be able to communicate on all connected
networks used by the MSMQ queue managers within that MSMQ site.

1.6 Applicability Statement

The Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm is applicable when a public
or private format name message shouldhas to be routed within an enterprise.

1.7 Versioning and Capability Negotiation

None.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

12 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

2.1 Transport

None.

2.2 Message Syntax

None.

2.3 Directory Service Schema Elements

This algorithm uses abstract data model (ADM) elements specified in section 3.1.1. A subset of these
elements can be published in a directory. This algorithm SHOULD<2> access the directory using the
algorithm specified in [MS-MQDSSM] and using LDAP [MS-ADTS]. The Directory Service schema
elements for ADM elements published in the directory are defined in [MS-MQDSSM] section 2.4.<3>

13 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

3.1 Algorithm Details

 This section describes a conceptual model of possible data organization that an implementation

maintains to implement in this algorithm. The described organization is provided to facilitate the
explanation of how the algorithm behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Figure 3: Message Routing

This diagram represents all possible paths that a message maycan take through an MSMQ enterprise.

Each box represents a class of MSMQ queue manager participating in message transfer. Each arrow
represents a transfer of a message from an MSMQ queue manager in the class at the tail of the arrow
to an MSMQ queue manager in the class at the head of the arrow. In this diagram, the only arrow that
represents a message transfer between MSMQ queue managers in different MSMQ sites is the inter-
site routing arrow between two MSMQ site gates. All other arrows represent message transfer

between MSMQ queue managers within the same MSMQ site.

The Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm determines the path that a
message traverses between MSMQ queue managers. The path computed by this algorithm is agnostic
of message or queue priorities.

3.1.1 Abstract Data Model

The abstract data model for the Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
comprises elements that are private to this algorithm and others that are shared between multiple

MSMQ protocols that are co-located at a common MSMQ queue manager. The shared abstract data
model is defined in [MS-MQDMPR] section 3.1.1, and the relationship between Message Queuing
(MSMQ): Binary Reliable Message Routing Algorithm and other protocols that share a common MSMQ

queue manager is described in [MS-MQOD].

Section 3.1.1.1 details the elements from the shared data model that are manipulated by this
algorithm, and section 3.1.1.2 details the data model element that is private to Message Queuing
(MSMQ): Binary Reliable Message Routing Algorithm.

14 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.1.1 Shared Data Elements

 This algorithm manipulates the following abstract data model elements from the shared abstract data
model defined in [MS-MQDMPR] section 3.1.1.

DirectoryObject: As defined in [MS-MQDMPR] section 3.1.1.

QueueManager: As defined in [MS-MQDMPR] section 3.1.1.1.

Site: As defined in [MS-MQDMPR] section 3.1.1.7.

RoutingLink: As defined in [MS-MQDMPR] section 3.1.1.8.

3.1.1.2 Routing Table

The RoutingTable contains records of mappings from the unique identifier of the destination Site to the
unique identifier of the next-hop Site on the least-cost path to the destination Site.

DestinationSiteID: Site.Identifier that is the unique identifier of the destination Site.

NextHopSiteID: Site.Identifier that is the unique identifier of the next-hop Site.

3.1.2 Timers

The Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm SHOULD maintain the
following timer.

3.1.2.1 QueueManager Query Timer

This timer regulates the amount of time that the protocol waits before updating the information in the
RoutingTable. This timer fires the QueueManager Query Timer Event, as described in section 3.1.6.1.

3.1.3 Initialization

The QueueManager Query Timer SHOULD be started and SHOULD be initialized internally to 3,600
seconds.

3.1.3.1 RoutingTable Initialization

If IsSiteGate returns 0 when called with the QueueManager.Identifier initializing its RoutingTable,
the RoutingTable is initialized to be empty.

To create a collection of Sites that belong to the enterprise, the GetDirectoryData (section 3.1.5.9)
method MUST be called, where the DataElementType parameter is the string "Site", and the
FilterArray parameter has no elements.

To create a collection of RoutingLinks that belong to the enterprise, the GetDirectoryData method

MUST be called, where the DataElementType parameter is the string "RoutingLink", and the FilterArray

parameter has no elements.

If the collection of Sites or the collection of RoutingLinks is empty when initializing the
RoutingTable, the RoutingTable is initialized to be empty.

Otherwise, to populate the RoutingTable, consider an enterprise as a connected, nonnegative,
weighted, directed graph E with vertices S and directed edges L, as follows:

E = (S, L).

15 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Each vertex in S represents a Site. Each edge in L represents one direction of a RoutingLink
between two Sites. That is, for any two Sitesx and y, the directed edge (x, y) exists if and only if a

RoutingLink exists where x is equal to the RoutingLink.Site1Identifier and y is equal to the
RoutingLink.Site2Identifier or where x is equal to the RoutingLink.Site2Identifier and y is equal

to the RoutingLink.Site1Identifier.

Associated with each edge (x, y) is a weight that is equal to the RoutingLink.ActualCost value of
the corresponding RoutingLink.

The cost of a path between two vertices from S in graph E is a sum of costs of all of the edges in that
path. The least-cost path between any two vertices from S in graph E is the path with the lowest cost.

Given such a mapping of an enterprise to a directed graph, discovering the least-cost path between
two Sites corresponds exactly to finding the least-cost path through a directed graph. Dijkstra's

algorithm SHOULD be used to find least-cost paths (as described in [RFC1]) to each destination site by
finding a spanning tree that covers the graph. The Message Queuing (MSMQ): Binary Reliable Message
Routing Algorithm populates the RoutingTable with a row for each site in the enterprise. To initialize
the row for a given site S, the DestinationSiteId property contains the Site.Identifier of S, and the

NextHopSiteId contains the Site.Identifier of the next-hop site on the path in the spanning tree
from the current site to S.

When for a given pair of source and destination vertices there are two or more routes with equal cost,
the algorithm selects one of them.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Message Processing Events and Sequencing Rules

This section describes how the Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
uses QueueManager, Site, RoutingLink (section 3.1.1 of [MS-MQDMPR]), and

RoutingTable (section 3.1.1.2) data elements to determine the next hop for a message.

3.1.5.1 GetNextHops

GetNextHops defines the algorithm that a QueueManager ADM element uses to determine the next
possible hops for a message to get from the current QueueManager ADM element (identified by the

SourceID parameter) to the ultimate destination (identified by the DestinationID parameter). The
return value is the list of identifiers of the QueueManager ADM elements that can be used as the
possible next hop.

 GetNextHops(SourceID of type GUID, DestinationID of type GUID)

 ;SourceID - QueueManager.Identifier that identifies the source
 ;DestinationID - QueueManager.Identifier that identifies the destination

 INIT NextHops of type List of GUID ;Next hop QueueManager.Identifier
 INIT SourceMachine of type QueueManager
 INIT DestinationMachine of type QueueManager

 SET NextHops to an empty list
 SET SourceMachine to result of CALL GetQueueManager(SourceID)
 SET DestinationMachine to result of
 CALL GetQueueManager(DestinationID)

 IF SourceMachine <> Nothing AND DestinationMachine <> Nothing THEN
 IF SourceMachine.RoutingServer = True THEN
 SET NextHops to result of GetNextHopsForRouter(SourceMachine,
 DestinationMachine)

16 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ELSE
 IF SourceMachine.OutRoutingServerIdentifierList is not empty THEN
 SET NextHops to SourceMachine.OutRoutingServerIdentifierList
 ELSE
 IF intersection of SourceMachine.SiteIdentifierList AND
 DestinationMachine.SiteIdentifierList is not empty THEN
 IF DestinationMachine.InRoutingServerIdentifierList is not empty THEN
 SET NextHops to Destination.InRoutingServerIdentifierList
 ELSE
 ADD DestinationID to NextHops
 ENDIF
 ELSE

 ADD the result of CALL GetRoutingServer(SourceID) to NextHops
 ENDIF
 ENDIF
 ENDIF
 ENDIF

 IF NextHops = Nothing
 Raise Exception ; Routing Attempt Fails
 ENDIF

 RETURN with NextHops

3.1.5.2 GetNextHopsForRouter

GetNextHopsForRouter defines the algorithm that a QueueManager ADM element uses to determine
the next hops for a message to get from the source QueueManager ADM element (identified by the
SourceMachine parameter) to the ultimate destination (identified by the DestinationMachine
parameter), and the source queue manager is an MSMQ Routing Server. The return value is the list of
identifiers of the QueueManager ADM elements that can be used as the possible next hop. It returns

Nothing on failure.

 GetNextHopsForRouter(SourceMachine of type QueueManager,
 DestinationMachine of type QueueManager)

 INIT NextHops of type List of GUID ;Next hop QueueManager.Identifier
 INIT IsSourceSiteGate of type Boolean

 SET NextHops to an empty list

 SET IsSourceSiteGate to result of
 CALL IsSiteGate(SourceMachine.Identifier)

 IF IsSourceSiteGate = 1 THEN
 SET NextHops to result of
 CALL GetNextHopsForSiteGate(SourceMachine, DestinationMachine)
 ELSE IF SourceMachine.Identifier is one of
 DestinationMachine.InRoutingServerIdentifierList THEN
 ADD DestinationMachine.Identifier to NextHops
 ELSE IF intersection of SourceMachine.SiteIdentifierList AND
 DestinationMachine.SiteIdentifierList is not empty THEN
 IF DestinationMachine.InRoutingServerIdentifierList is not
 empty THEN
 SET NextHops to DestinationMachine.InRoutingServerIdentifierList
 ELSE
 ADD DestinationMachine.Identifier to NextHops
 ENDIF
 ELSE
 ADD the return of
 CALL GetSiteGate(SourceMachine.Identifier) to NextHops
 ENDIF

17 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 RETURN with NextHops

3.1.5.3 GetNextHopsForSiteGate

GetNextHopsForSiteGate defines the algorithm that a QueueManager ADM element uses to

determine the next possible hops for a message to get from the source QueueManager (identified by
the SourceMachine parameter) to the ultimate destination (identified by the DestinationMachine
parameter), and the source queue manager is an MSMQ Site Gate. The return value is the list of
identifiers of the QueueManager ADM elements that can be used as the possible next hop. It returns
Nothing on failure.

 GetNextHopsForSiteGate(SourceMachine of type QueueManager,
 DestinationMachine of type QueueManager)

 INIT NextHops of type List of GUID ;Next hop QueueManager.Identifier
 SET NextHops to an empty list

 IF SourceMachine.Identifier
 is one of DestinationMachine.InRoutingServerIdentifierList
 THEN
 ADD DestinationMachine.Identifier to NextHops
 ELSE IF intersection of SourceMachine.SiteIdentifierList AND
 DestinationMachine.SiteIdentifierList in not empty THEN
 IF DestinationMachine.InRoutingServerIdentifierList is not empty THEN
 SET NextHops to DestinationMachine.InRoutingServerIdentifierList
 ELSE
 ADD DestinationMachine.Identifier to NextHops
 ENDIF
 ELSE
 INIT NextSite of type GUID
 INIT Entry of type RECORD of RoutingTable

 SET NextSite to Nothing

 FOREACH Entry FROM RoutingTable DO
 IF Entry.DestinationSiteID in
 DestinationMachine.SiteIdentifierList THEN
 SET NextSite = Entry.NextHopSiteID
 ENDIF
 END FOREACH

 IF NextSite <> Nothing THEN

 ADD the return of CALL GetSiteGateForSite(NextSite) to NextHops

 ENDIF

 ENDIF

 RETURN with NextHops

3.1.5.4 GetQueueManager

GetQueueManager returns the QueueManager record from the directory identified by the MachineID
parameter. If no such record is found, it returns Nothing.

 GetQueueManager(MachineID of type GUID)

18 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ;MachineID - QueueManager.Identifier
 ;corresponding to the requested QueueManager

 INIT Machine of type QueueManager
 INIT ArrayQM of type vector of QueueManager
 INIT StrMachineID of type string

 SET Machine to Nothing

 SET StrMachineID to MachineID as string

 SET ArrayQM to return of CALL GetDirectoryData ("QueueManager",
 one-element array: "Identifier" EQUALS StrMachineID)
 IF ArrayQM <> Nothing THEN
 SET Machine to the first element of ArrayQM
 ENDIF

 RETURN with Machine

3.1.5.5 GetRoutingServer

GetRoutingServer returns the QueueManager.Identifier of the MSMQ Routing Server for a given
QueueManager identified by the input parameter MachineID. If there is no MSMQ Routing Server

within the Site for the given QueueManager, this method returns Nothing.

 GetRoutingServer(MachineID of type GUID)
 ;MachineID - QueueManager.Identifier that identifies the QueueManager that
 ;requested an MSMQ routing server

 INIT SourceMachine of type QueueManager
 INIT MachineTemp of type QueueManager
 INIT Router type of GUID
 INIT ArrayQM of type vector of QueueManager

 SET SourceMachine to result of CALL GetQueueManager(MachineID)
 IF SourceMachine = Nothing THEN
 RETURN with Nothing
 ENDIF

 SET Router to Nothing

 SET ArrayQM to result of CALL GetDirectoryData("QueueManager", Nothing)

 IF ArrayQM = Nothing THEN
 RETURN with Router
 ENDIF

 FOREACH MachineTemp FROM ArrayQM DO
 IF (intersection MachineTemp.SiteIdentifierList AND
 SourceMachine.SiteIdentifierList is not empty) AND
 MachineTemp.RoutingServer = True THEN
 SET Router to MachineTemp.Identifier
 BREAK FOREACH
 ENDIF
 END FOREACH

 RETURN with Router

19 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.6 GetSiteGate

GetSiteGate returns the QueueManager.Identifier of an MSMQ Site Gate for a given
QueueManager identified by the MachineID parameter. If no MSMQ Site Gate is found within the Site

to which the QueueManager belongs, this method returns Nothing.

 GetSiteGate(MachineID of type GUID)

 ;MachineID – QueueManager.Identifier that identifies the machine

 INIT SourceMachine of type QueueManager
 INIT SiteGate of type GUID
 INIT SiteTemp of type Site
 INIT ArraySite of type vector of Site

 SET SourceMachine to result of CALL GetQueueManager(MachineID)
 IF SourceMachine = Nothing THEN
 RETURN with Nothing
 ENDIF

 SET SiteGate to Nothing

 SET ArraySite to result of CALL GetDirectoryData("Site", Nothing)

 IF ArraySite = Nothing THEN
 RETURN with SiteGate
 ENDIF

 FOREACH SiteTemp FROM ArraySite DO
 IF SiteTemp.Identifier in
 SourceMachine.SiteIdentifierList THEN
 SET SiteGate to one of SiteTemp.SiteGateCollection
 BREAK FOREACH
 ENDIF
 END FOREACH

 RETURN with SiteGate

3.1.5.7 GetSiteGateForSite

GetSiteGateForSite returns the QueueManager.Identifier of the MSMQ site gate for a given MSMQ
site identified by the SiteID parameter. If no MSMQ site gate is found within the Site, this method
returns Nothing.

 GetSiteGateForSite(SiteID of type GUID)

 ;SiteID - Site.Identifier that identifies Site

 INIT SiteGate of type GUID
 INIT SiteTemp of type Site
 INIT ArraySite of type vector of Site
 INIT StrSiteID of type string

 SET SiteGate to Nothing
 SET StrSiteID to SiteID as string

 SET ArraySite to result of GetDirectoryData("Site", one-element array: "Identifier" EQUALS
StrSiteID)

 IF ArraySite = Nothing THEN
 RETURN with SiteGate
 ENDIF

20 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 SET SiteTemp to one of ArraySite

 SET SiteGate to one of SiteTemp.SiteGateCollection

 RETURN with SiteGate

3.1.5.8 IsSiteGate

IsSiteGate returns 1 if a given QueueManager identified by the MachineID parameter is an MSMQ

Site Gate. Otherwise this method returns 0.

 IsSiteGate(MachineID of type GUID)

 ;MachineID – QueueManager.Identifier

 INIT Machine of type QueueManager
 INIT Site of type Site
 INIT ArraySite of type vector of Site

 SET Machine to result of CALL GetQueueManager(MachineID)
 IF Machine = Nothing THEN
 RETURN with 0
 ENDIF

 IF Machine.RoutingServer = False THEN
 RETURN with 0
 ENDIF

 SET ArraySite to result of GetDirectoryData("Site", Nothing)
 IF ArraySite = Nothing THEN
 RETURN with 0
 ENDIF

 FOREACH Site FROM ArraySite DO
 IF (Site.Identifier = in Machine.SiteIdentifierList) THEN
 FOREACH SiteGate in Site.SiteGateCollection DO
 IF (MachineID = SiteGate.Identifier) THEN
 RETURN with 1
 ENDIF
 END FOREACH
 ENDIF
 END FOREACH

 RETURN with 0

3.1.5.9 GetDirectoryData

The GetDirectoryData method returns a vector of DirectoryObject. It accepts two parameters. The
DataElementType parameter is a string that specifies the type of the DirectoryObject. The
FilterArray parameter is an array of attribute-filter expressions, as specified in [MS-MQDMPR]

section 3.1.7.1.20. Each element in the FilterArray parameter specifies a query constraint that MUST
be satisfied by all DirectoryObject(s) corresponding to the object type specified in the
DataElementType parameter. This method generates Read Directory Begin, Read Directory Next, and
Read Directory End events as specified in [MS-MQDMPR] section 3.1.7.1.21, 3.1.7.1.22, and
3.1.7.1.23 respectively, by using the data type HANDLE as specified in [MS-DTYP] section 2.2.16. This
method uses the DirectoryOperationResult enumeration as specified in [MS-MQDMPR] section
3.1.1.17, to determine the outcome of these events.

21 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 GetDirectoryData(DataElementType of type string,
 FilterArray of type array of string)

 ;DataElementType - identifies the type of the Directory's data element to be requested
 ;FilterArray - identifies constraints for reading data from the Directory

 INIT Result of type DirectoryOperationResult
 INIT DataTemp of type DirectoryObject
 INIT RequestedData of type vector of DirectoryObject
 INIT Handle of type HANDLE

 SET RequestedData to Nothing
 SET Handle to Nothing

 SET (Result, Handle) to result of RAISE Read Directory Begin event with
 (iDirectoryObjectType = DataElementType, iFilter = FilterArray)

 IF Result <> DirectoryOperationResult.Success THEN
 RETURN with RequestedData
 ENDIF

 ReadLoop:

 SET (Result, DataTemp) to result of RAISE Read Directory Next event with
 (Handle)
 IF Result = DirectoryOperationResult.Success THEN
 Add DataTemp to RequestedData
 GOTO ReadLoop

 ENDIF
 IF Result <> DirectoryOperationResult.EndOfData THEN
 SET RequestedData to Nothing
 ENDIF

 SET Result to result of RAISE Read Directory End event with (Handle)

 RETURN with RequestedData

3.1.6 Timer Events

3.1.6.1 QueueManager Query Timer Event

When this timer fires, a QueueManager reinitializes its RoutingTable, as specified in section 3.1.3.1.

3.1.7 Other Local Events

None.

22 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

The Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm calculates inter-site routing
based on the routing link costs.

Figure 4: Enterprise example

If the cost associated with the MSMQ routing link A-B is 3 and the cost associated with the other three

MSMQ routing links B-C, B-D, and C-D is 1, then messages routed by the Message Queuing (MSMQ):
Binary Reliable Messaging Protocol from A to C always travel from A to B and then from B to C.
However, if the cost associated with MSMQ routing links A-B and B-C is 3 and the cost associated with
MSMQ routing links C-D and B-D is 1, then messages routed from A to C always travel from A to B,

from B to D, and then from D to C.

 For more details on message packet sequence see [MS-MQQB] section 4.

23 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

24 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

Note: Some of the information in this section is subject to change because it applies to a preliminary
product version, and thus may differ from the final version of the software when released. All behavior
notes that pertain to the preliminary product version contain specific references to it as an aid to the

reader.

 Windows NT operating system

 Windows 2000 operating system

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 Technical Preview operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 1.3: Only server versions of Windows can be configured as MSMQ routing servers.

<2> Section 2.3: For Windows NT and Windows 2000, this protocol uses the Message Queuing

(MSMQ): Directory Service Protocol [MS-MQDS].

<3> Section 2.3: For the Message Queuing (MSMQ): Directory Service Protocol [MS-MQDS], the
Directory Service schema elements are described in [MS-MQDS] sections 2.2.10 and 3.1.4.21.1
through 3.1.4.21.4.

25 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

26 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Index

A

Abstract data model
 overview 13
 routing table 14
 shared data elements 14
Algorithm
 abstract data model
 overview 13
 routing table 14
 shared data elements 14
 higher-layer triggered events 15
 initialization
 overview 14
 RoutingTable 14
 local events 21
 message processing 15
 overview 13
 sequencing rules 15
 timer events - QueueManager query 21
 timers
 overview 14
 QueueManager query 14

Applicability 11

C

Capability negotiation 11
Change tracking 25

D

Data model - abstract
 overview 13
 routing table 14
 shared data elements 14
Direct connection 8
Directory service schema elements 12

E

Elements - directory service schema 12
Examples - overview 22

F

Fields - vendor-extensible 11

G

GetDirectoryData 20
GetNextHops 15
GetNextHopsForRouter 16
GetNextHopsForSiteGate 17
GetQueueManager 17
GetRoutingServer 18
GetSiteGate 19
GetSiteGateForSite 19
Glossary 6

H

27 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Higher-layer triggered events 15

I

Implementer - security considerations 23
Index of security parameters 23
Informative references 8
Initialization
 overview 14
 RoutingTable 14
Inter-site routing 9
Intra-site routing 8
Introduction 6
IsSiteGate 20

L

Local events 21

M

Message processing 15
Messages
 Directory Service schema elements 12
 syntax 12
 transport 12

N

Normative references 7

O

Overview (synopsis) 8

P

Parameters - security index 23
Preconditions 11
Prerequisites 11
Product behavior 24

R

References 7
 informative 8
 normative 7
Relationship to other protocols 10

S

Schema elements - directory service 12
Security
 implementer considerations 23
 parameter index 23
Sequencing rules 15
Standards assignments 11
Syntax 12

T

Timer events - QueueManager query 21
Timers
 overview 14

28 / 28

[MS-MQBR-Diff] - v20160714
Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 QueueManager query 14
Tracking changes 25
Transport 12
Triggered events - higher-layer 15

V

Vendor-extensible fields 11
Versioning 11

