
1 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

[MS-MCIS]:

Content Indexing Services Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for protocols,
file formats, languages, standards as well as overviews of the interaction among each of these
technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the

technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL's, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming
environments in order for you to develop an implementation. If you have access to Microsoft
programming tools and environments you are free to take advantage of them. Certain Open
Specifications are intended for use in conjunction with publicly available standard specifications and
network programming art, and assumes that the reader either is familiar with the aforementioned

material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Revision Summary

Date
Revision
History

Revision
Class Comments

3/2/2007 1.0 Version 1.0 release

4/3/2007 1.1 Version 1.1 release

5/11/2007 1.2 Version 1.2 release

6/1/2007 1.2.1 Editorial Changed language and formatting in the technical content.

7/3/2007 1.3 Minor Clarified the meaning of the technical content.

8/10/2007 1.3.1 Editorial Changed language and formatting in the technical content.

9/28/2007 1.4 Minor Made technical and editorial changes based on feedback.

10/23/2007 2.0 Major Converted document to unified format.

1/25/2008 3.0 Major Updated and revised the technical content.

3/14/2008 4.0 Major Updated and revised the technical content.

6/20/2008 5.0 Major Updated and revised the technical content.

7/25/2008 6.0 Major Updated and revised the technical content.

8/29/2008 7.0 Major Updated and revised the technical content.

10/24/2008 7.0.1 Editorial Changed language and formatting in the technical content.

12/5/2008 7.0.2 Editorial Changed language and formatting in the technical content.

1/16/2009 7.0.3 Editorial Changed language and formatting in the technical content.

2/27/2009 7.0.4 Editorial Changed language and formatting in the technical content.

4/10/2009 7.0.5 Editorial Changed language and formatting in the technical content.

5/22/2009 8.0 Major Updated and revised the technical content.

7/2/2009 8.0.1 Editorial Changed language and formatting in the technical content.

8/14/2009 8.0.2 Editorial Changed language and formatting in the technical content.

9/25/2009 8.1 Minor Clarified the meaning of the technical content.

11/6/2009 9.0 Major Updated and revised the technical content.

12/18/2009 9.0.1 Editorial Changed language and formatting in the technical content.

1/29/2010 10.0 Major Updated and revised the technical content.

3/12/2010 10.0.1 Editorial Changed language and formatting in the technical content.

4/23/2010 10.0.2 Editorial Changed language and formatting in the technical content.

6/4/2010 10.1 Minor Clarified the meaning of the technical content.

7/16/2010 10.1 None No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 11.0 Major Updated and revised the technical content.

3 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Date
Revision
History

Revision
Class Comments

10/8/2010 11.0 None No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 11.0 None No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 11.0 None No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 11.0 None No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 11.0 None No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 11.0 None No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 11.1 Minor Clarified the meaning of the technical content.

9/23/2011 11.1 None No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 11.1 None No changes to the meaning, language, or formatting of the
technical content.

3/30/2012 11.1 None No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 11.1 None No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 11.1 None No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 11.1 None No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 11.1 None No changes to the meaning, language, or formatting of the
technical content.

11/14/2013 11.1 None No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 11.1 None No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 11.1 None No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 11.1 No Change No changes to the meaning, language, or formatting of the
technical content.

4 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 8

1.2.1 Normative References ... 9
1.2.2 Informative References ... 9

1.3 Overview .. 9
1.3.1 Remote Administration Tasks ... 10
1.3.2 Remote Querying .. 10

1.4 Relationship to Other Protocols .. 11
1.5 Prerequisites/Preconditions ... 11
1.6 Applicability Statement ... 11
1.7 Versioning and Capability Negotiation ... 11
1.8 Vendor-Extensible Fields ... 11

1.8.1 Property IDs .. 11
1.9 Standards Assignments ... 11

2 Messages ... 12
2.1 Transport .. 12
2.2 Message Syntax ... 12

2.2.1 Structures ... 12
2.2.1.1 CBaseStorageVariant ... 13

2.2.1.1.1 CBaseStorageVariant Structures .. 17
2.2.1.1.1.1 DECIMAL .. 17
2.2.1.1.1.2 VT_VECTOR .. 17
2.2.1.1.1.3 SAFEARRAY ... 18
2.2.1.1.1.4 SAFEARRAYBOUND .. 19
2.2.1.1.1.5 SAFEARRAY2 ... 19

2.2.1.2 CFullPropSpec .. 20
2.2.1.3 CContentRestriction ... 21
2.2.1.4 CNatLanguageRestriction ... 22
2.2.1.5 CNodeRestriction .. 23
2.2.1.6 CPropertyRestriction .. 23
2.2.1.7 CScopeRestriction ... 26
2.2.1.8 CSort .. 27
2.2.1.9 CVectorRestriction ... 27
2.2.1.10 CRestriction.. 28
2.2.1.11 CColumnSet ... 29
2.2.1.12 CCategorizationSet .. 30
2.2.1.13 CCategorizationSpec ... 30
2.2.1.14 CDbColId ... 31
2.2.1.15 CDbProp .. 32

2.2.1.15.1 Database Properties ... 32
2.2.1.16 CDbPropSet .. 34
2.2.1.17 CPidMapper .. 35
2.2.1.18 CRowSeekAt ... 36
2.2.1.19 CRowSeekAtRatio ... 36
2.2.1.20 CRowSeekByBookmark .. 37
2.2.1.21 CRowSeekNext ... 38
2.2.1.22 CRowsetProperties .. 38
2.2.1.23 CRowVariant .. 39
2.2.1.24 CSortSet .. 40
2.2.1.25 CTableColumn .. 40
2.2.1.26 SERIALIZEDPROPERTYVALUE ... 42

2.2.2 Message Headers .. 42
2.2.3 Messages ... 44

5 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.3.1 CPMCiStateInOut .. 44
2.2.3.2 CPMSetCatStateIn ... 46
2.2.3.3 CPMSetCatStateOut ... 47
2.2.3.4 CPMUpdateDocumentsIn .. 48
2.2.3.5 CPMForceMergeIn ... 49
2.2.3.6 CPMConnectIn .. 49
2.2.3.7 CPMConnectOut .. 52
2.2.3.8 CPMCreateQueryIn .. 52
2.2.3.9 CPMCreateQueryOut .. 54
2.2.3.10 CPMGetQueryStatusIn ... 55
2.2.3.11 CPMGetQueryStatusOut ... 55
2.2.3.12 CPMGetQueryStatusExIn .. 56
2.2.3.13 CPMGetQueryStatusExOut .. 57
2.2.3.14 CPMSetBindingsIn ... 57
2.2.3.15 CPMGetRowsIn ... 58
2.2.3.16 CPMGetRowsOut ... 60
2.2.3.17 CPMRatioFinishedIn ... 63
2.2.3.18 CPMRatioFinishedOut ... 63
2.2.3.19 CPMFetchValueIn .. 64
2.2.3.20 CPMFetchValueOut .. 64
2.2.3.21 CPMGetNotify ... 65
2.2.3.22 CPMSendNotifyOut .. 65
2.2.3.23 CPMGetApproximatePositionIn .. 66
2.2.3.24 CPMGetApproximatePositionOut .. 66
2.2.3.25 CPMCompareBmkIn ... 67
2.2.3.26 CPMCompareBmkOut .. 67
2.2.3.27 CPMRestartPositionIn .. 68
2.2.3.28 CPMStopAsynchIn ... 68
2.2.3.29 CPMFreeCursorIn .. 69
2.2.3.30 CPMFreeCursorOut .. 69
2.2.3.31 CPMDisconnect ... 69

2.2.4 Errors.. 69
2.2.5 Standard Properties .. 69

2.2.5.1 Query Properties ... 70
2.2.5.2 Common Open Properties .. 70

3 Protocol Details ... 79
3.1 Server Details .. 80

3.1.1 Abstract Data Model .. 80
3.1.2 Timers .. 81
3.1.3 Initialization ... 81
3.1.4 Higher-Layer Triggered Events ... 81
3.1.5 Message Processing and Sequencing Rules .. 81

3.1.5.1 Remote Indexing Service Catalog Management ... 83
3.1.5.1.1 Receiving a CPMCiStateInOut Request ... 83
3.1.5.1.2 Receiving a CPMSetCatStateIn Request .. 83
3.1.5.1.3 Receiving a CPMUpdateDocumentsIn Request 84
3.1.5.1.4 Receiving a CPMForceMergeIn Request... 84

3.1.5.2 Remote Indexing Service Querying.. 84
3.1.5.2.1 Receiving a CPMConnectIn Request ... 84
3.1.5.2.2 Receiving a CPMCreateQueryIn Request ... 85
3.1.5.2.3 Receiving a CPMGetQueryStatusIn Request .. 85
3.1.5.2.4 Receiving a CPMGetQueryStatusExIn Request 86
3.1.5.2.5 Receiving a CPMRatioFinishedIn Request .. 86
3.1.5.2.6 Receiving a CPMSetBindingsIn Request .. 86
3.1.5.2.7 Receiving a CPMGetRowsIn Request .. 87
3.1.5.2.8 Receiving a CPMFetchValueIn Request ... 88
3.1.5.2.9 Receiving a CPMGetNotify Request .. 88

6 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.1.5.2.10 Receiving a CPMGetApproximatePositionIn Request 89
3.1.5.2.11 Receiving a CPMCompareBmkIn Request .. 89
3.1.5.2.12 Receiving a CPMRestartPositionIn Request .. 89
3.1.5.2.13 Receiving a CPMStopAsynchIn Request .. 90
3.1.5.2.14 Receiving a CPMFreeCursorIn Request ... 90
3.1.5.2.15 Receiving a CPMDisconnect Request .. 90

3.1.6 Timer Events .. 91
3.1.7 Other Local Events .. 91

3.2 Client Details ... 91
3.2.1 Abstract Data Model .. 91
3.2.2 Timers .. 91
3.2.3 Initialization ... 91
3.2.4 Higher-Layer Triggered Events ... 91

3.2.4.1 Remote Indexing Service Catalog Management ... 92
3.2.4.1.1 Sending a CPMCiStateInOut Request .. 92
3.2.4.1.2 Sending a CPMSetCatStateIn Request .. 92
3.2.4.1.3 Sending a CPMUpdateDocumentsIn Request 92
3.2.4.1.4 Sending a CPMForceMergeIn Request ... 92

3.2.4.2 Remote Indexing Service Catalog Query Messages 93
3.2.4.2.1 Sending a CPMConnectIn Request ... 93
3.2.4.2.2 Sending a CPMCreateQueryIn Request ... 93
3.2.4.2.3 Sending a CPMSetBindingsIn Request .. 94
3.2.4.2.4 Sending a CPMGetRowsIn Request .. 94
3.2.4.2.5 Sending a CPMFetchValueIn Request ... 95
3.2.4.2.6 Sending a CPMFreeCursorIn Request ... 95
3.2.4.2.7 Sending a CPMDisconnect Message .. 95

3.2.5 Message Processing and Sequencing Rules .. 96
3.2.5.1 Receiving a CPMCreateQueryOut Response .. 96
3.2.5.2 Receiving a CPMGetRowsOut Response .. 96
3.2.5.3 Receiving a CPMFetchValueOut Response ... 97
3.2.5.4 Receiving a CPMFreeCursorOut Response ... 97

3.2.6 Timer Events .. 97
3.2.7 Other Local Events .. 98

4 Protocol Examples ... 99
4.1 Example 1 ... 99
4.2 Example 2 .. 105

5 Security ... 107
5.1 Security Considerations for Implementers .. 107
5.2 Index of Security Parameters ... 107

6 Appendix A: Product Behavior ... 108

7 Change Tracking .. 110

8 Index ... 111

7 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

1 Introduction

This document is a specification of the Content Indexing Services Protocol. This protocol allows a client
to communicate with a server hosting an indexing service to issue queries. The protocol is primarily
geared toward full text queries. It also allows an administrator to remotely manage the indexing
service.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,

MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are specific to this document:

binding: A request to include a particular column in a returned rowset. The binding specifies a

property to be included in the search results.

bookmark: A marker that uniquely identifies a row within a set of rows.

catalog: The highest-level unit of organization in the indexing service. It represents a set of
indexed documents against which queries can be executed by using the [MS-MCIS].

chapter: A range of rows within a set of rows.

column: The container for a single type of information in a row. Columns map to property names
and specify what properties are used for the search query's command tree elements.

command tree: A combination of restrictions and sort orders that are specified for a search
query.

cursor: (1) An entity that is used as a mechanism to work with one row or a small block of rows

(at one time) in a set of data returned in a result set. A cursor is positioned on a single row

within the result set. After the cursor is positioned on a row, operations can be performed on
that row or on a block of rows starting at that position.

(2) The current position within a result set.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.

Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

handle: A token that can be used to identify and access cursors, chapters, and bookmarks.

HRESULT: An integer value that indicates the result or status of an operation. A particular

HRESULT can have different meanings depending on the protocol using it. See [MS-ERREF]
section 2.1 and specific protocol documents for further details.

indexing: The process of extracting text and properties from files and storing the extracted values
into the indexes (for text) and the property cache (for properties).

indexing service: A service that creates indexed catalogs for the contents and properties of file
systems. Applications can search the catalogs for information from the files on the indexed file
system.

http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-MCIS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf

8 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

inverted index: A persistent structure that contains the text content pulled out of files during
indexing. The text in an inverted index maps from a word in a property to a list of the

documents and locations within a document that contain that word.

locale: An identifier, as specified in [MS-LCID], that specifies preferences related to language.

These preferences indicate how dates and times are to be formatted, how items are to be sorted
alphabetically, how strings are to be compared, and so on.

named pipe: A named, one-way, or duplex pipe for communication between a pipe server and one
or more pipe clients.

natural language query: A query constructed using human language instead of query syntax.
The generic search service (GSS) is free to interpret the query in order to determine the best
results. The interpretation is explicitly not specified in order to allow improvements over time.

noise word: A word that is ignored by the Windows Search service (WSS) when present in the
restrictions specified for the search query, because it has little discriminatory value. English
examples include "a," "and," and "the." Implementers of a generic search service (GSS) MAY

choose to follow this guideline.

path: When referring to a file path on a file system, a hierarchical sequence of folders. When
referring to a connection to a storage device, a connection through which a machine can

communicate with the storage device.

property cache: A cache of file or object properties extracted during indexing.

restriction: A set of conditions that a file must meet to be included in the search results returned
by the indexing service in response to a search query. A restriction narrows the focus of a
search query, limiting the files that the indexing service includes in the search results only to
those files matching the conditions.

row: The collection of columns that contains the property values that describe a single file from the

set of files that matched the restriction specified in the search query submitted to the indexing
service

rowset: A set of rows returned in the search results.

sort order: A set of rules in a search query that defines the ordering of rows in the search result.
Each rule consists of a managed property, such as modified date or size, and a direction for
order, such as ascending or descending. Multiple rules are applied sequentially.

virtual root: An alternative path to a folder. A physical folder can have zero or more virtual roots.

Paths that begin with a virtual root are called virtual paths. For example, /server/vanityroot
might be a virtual root of C:\IIS\web\folder1. Then the file C:\IIS\web\folder1\default.htm
would have a virtual path of /server/vanityroot/default.htm.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

%5bMS-LCID%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx

9 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[IEEE754] IEEE, "IEEE Standard for Binary Floating-Point Arithmetic", IEEE 754-1985, October 1985,
http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-LCID] Microsoft Corporation, "Windows Language Code Identifier (LCID) Reference".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[SALTON] Salton, G., "Automatic Text Processing: The Transformation Analysis and Retrieval of
Information by Computer", 1988, ISBN: 0201122278.

[UNICODE] The Unicode Consortium, "The Unicode Consortium Home Page", 2006,
http://www.unicode.org/

1.2.2 Informative References

[MSDN-FULLPROPSPEC] Microsoft Corporation, "FULLPROPSPEC structure",

http://msdn.microsoft.com/en-us/library/ms690996.aspx

[MSDN-ISQL] Microsoft Corporation, "Indexing Service Query Language",
http://msdn.microsoft.com/en-us/library/ms690538.aspx

[MSDN-OLEDBP] Microsoft Corporation, "OLE DB Provider for Indexing Service",
http://msdn.microsoft.com/en-us/library/ms690319.aspx

[MSDN-PROPSET] Microsoft Corporation, "Property Sets", http://msdn.microsoft.com/en-

us/library/ms691041.aspx

[MSDN-QUERYERR] Microsoft Corporation, "Query-Execution Values", http://msdn.microsoft.com/en-
us/library/ms690617.aspx

1.3 Overview

A content indexing service helps efficiently organize the extracted features of a collection of
documents. The Content Indexing Services Protocol allows a client to communicate with a server
hosting an indexing service to issue queries and to allow an administrator to manage the indexing
server.

When processing files, an indexing service analyzes a set of documents, extracts useful information,
and then organizes the extracted information in such a way that properties of those documents can be
efficiently returned in response to queries. A collection of documents that can be queried constitutes a
catalog . A catalog may contain an inverted index (for quick word matching) and a property cache
(for quick retrieval of property values).

Conceptually, a catalog consists of a logical table of properties with the text or value and
corresponding locale stored in columns of the table. Each row of the table corresponds to a separate

document in the scope of the catalog, and each column of the table corresponds to a property.

mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-LCID%5d.pdf
%5bMS-SMB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90550
http://go.microsoft.com/fwlink/?LinkId=103235
http://go.microsoft.com/fwlink/?LinkId=101367
http://go.microsoft.com/fwlink/?LinkId=90055
http://go.microsoft.com/fwlink/?LinkId=101368
http://go.microsoft.com/fwlink/?LinkId=101368
http://go.microsoft.com/fwlink/?LinkId=90070
http://go.microsoft.com/fwlink/?LinkId=90070

10 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The specific tasks performed by the Content Indexing Services Protocol are grouped into two
functional areas:

 Remote administration of indexing service catalogs

 Remote querying of indexing service catalogs

1.3.1 Remote Administration Tasks

The Content Indexing Services Protocol enables the following indexing service catalog management
tasks from a client:

 Query the current state of an indexing service catalog on the server.

 Update the state of an indexing service catalog.

 Launch the indexing process for a particular set of files.

 Initiate optimization of an index to improve query performance.

All remote administration tasks follow a simple request/response model. No state is maintained on the
client for any administration call, and administrative calls can be made in any order.

1.3.2 Remote Querying

The Content Indexing Services Protocol enables clients to perform search queries against a remote
server hosting an indexing service. See [MSDN-ISQL] for more information about the Indexing Service
Query Language.

The client initiates a search query using the following steps:

1. The client requests a connection to a server hosting an indexing service.

2. The client sends the following parameters for the search query:

 Rowset properties like the catalog name and configuration information

 The restriction to specify what documents are to be included and/or excluded from the
search results

 The order in which the search results are to be returned

 The columns to be returned in the result set

 The maximum number of rows that should be returned for the query

 The maximum time for query execution

After the server has acknowledged the client's request to initiate the query, the client can request
status information on the query, but this is not a required step.

3. The client requests a result set from the server, and the server responds by sending the client the
property values for files that were included in the results for the client's search query. If the value

of a property is too large to fit in a single response buffer, the server will not send the property;
instead, it will set the property status to deferred.

4. After the client is finished with the search query, or no longer requires additional results, the client
contacts the server to release the query.

http://go.microsoft.com/fwlink/?LinkId=101367

11 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

5. After the server has released the query, the client may send a request to disconnect from the
server. The connection is then closed. Alternatively, the client may issue another query and repeat

the sequence from step 2.

1.4 Relationship to Other Protocols

The Content Indexing Services Protocol relies on the SMB protocol, as specified in [MS-SMB], for
message transport. No other protocol depends directly on the Content Indexing Services Protocol.<1>

1.5 Prerequisites/Preconditions

It is assumed that the client has obtained the name of the server and a catalog name before this
protocol is invoked. How a client does this is not addressed in this specification.

It is also assumed that the client and server have a security association that is usable with named
pipes, as specified in [MS-SMB].

1.6 Applicability Statement

The Content Indexing Services Protocol is designed for querying and managing catalogs on a remote
server from a client.<2>

1.7 Versioning and Capability Negotiation

This protocol has no versioning or capability negotiation mechanisms.

1.8 Vendor-Extensible Fields

This protocol uses HRESULTs that are vendor extensible. Vendors are free to choose their own values
for this field as long as the C bit (0x20000000) is set as specified in [MS-ERREF] section 2.1,
indicating that the value is a customer code.

This protocol also uses NTSTATUS values taken from the NTSTATUS number space specified in [MS-
ERREF]. Vendors SHOULD<3> reuse those values with their indicated meaning. Choosing any other

value runs the risk of a collision in the future.

1.8.1 Property IDs

Properties are represented by IDs known as property IDs. Each property MUST have a globally

unique identifier (GUID), as defined in [MS-DTYP] section 2.3.4.3. This identifier consists of a
GUID, representing a collection of properties called a property set plus either a string or a 32-bit
integer to identify the property within the set. If the integer form of ID is used, the values
0x00000000, 0xFFFFFFFF, and 0xFFFFFFFE are considered invalid.

Vendors can guarantee that their properties are uniquely defined by placing them in a property set
defined by their own GUIDs.<4>

1.9 Standards Assignments

This protocol has no standards assignments, only private assignments made by Microsoft using
allocation procedures specified in other protocols.

Microsoft has allocated this protocol a named pipe, as specified in [MS-SMB]. The pipe name is
\pipe\CISKADS. See [MS-SMB].

%5bMS-SMB%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-SMB%5d.pdf

12 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2 Messages

The following sections specify how Content Indexing Services Protocol messages are transported and
specify common Content Indexing Services Protocol data types. This protocol references commonly
used data types as defined in [MS-DTYP].

Note All 2-byte, 4-byte, and 8-byte signed and unsigned integers in the following structures and
messages MUST be transferred in little-endian byte order.

2.1 Transport

All messages MUST be transported using a named pipe, as specified in [MS-SMB]. The following pipe
name is used:

 \pipe\CI_SKADS

This protocol uses the underlying SMB named pipe protocol to retrieve the identity of the caller that

made the connection, as specified in [MS-SMB] section 2.2.4.9.1. The client MUST set
SECURITY_IDENTIFICATION as the ImpersonationLevel in the request to open the named pipe.

2.2 Message Syntax

Several structures and messages in the following sections refer to chapter or bookmark handles
(see 2.2.5.1). A handle is a 32-bit long opaque structure that uniquely identifies a chapter or
bookmark (1).

Typically, client applications receive handle values by way of method calls; however, there is one
value that does not need to be obtained from a server. DB_NULL_HCHAPTER (0x00000000) is a A
chapter handle to the unchaptered rowset that contains all query results.

2.2.1 Structures

This section details data structures that are defined and used by the Content Indexing Services
Protocol.

The following table summarizes the data structures defined in this section.

 Structure Description

CBaseStorageVariant Contains the value on which to perform a match operation for a property that is
specified in a CPropertyRestriction structure.

SAFEARRAY, SAFEARRAY2 Contains a multidimensional array.

SAFEARRAYBOUND Represents the bounds for a dimension of an array specified in a SAFEARRAY
structure.

CFullPropSpec Contains a property specification.

CContentRestriction Contains a string to match for a property value in the property cache.

CNatLanguageRestriction Contains a natural language query match for a property.

CNodeRestriction Contains an array of command tree nodes specifying the restrictions for a query.

CPropertyRestriction Contains a property value to match with an operation.

CScopeRestriction Contains arestriction on the files to be searched.

%5bMS-DTYP%5d.pdf
%5bMS-SMB%5d.pdf

13 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Structure Description

CSort Identifies a column to sort.

CVectorRestriction Contains an array of command tree nodes specifying the restrictions for a vector
space array query, as specified in [SALTON].

CRestriction A restriction node in a query command tree.

CColumnSet Describes the columns to return.

CCategorizationSet A set of CCategorizationSpecs where each CCategorizationSpec describes the
grouping property for one level in a hiearchical result set.

CCategorizationSpec Specifies the categorization property used to categorize results at one level in a
hierarchical result set.

CDbColId Contains a column identifier.

CDbProp Contains a rowset property.

CDbPropSet Contains a set of rowset properties.

CPidMapper Maps from message internal property IDs (PIDs) to full prop specs.

CRowSeekAt Contains the offset at which to retrieve rows in a CPMGetRowsIn message.

CRowSeekAtRatio Identifies the approximate point expressed as a ratio at which to begin retrieval
for a CPMGetRowsIn message.

CRowSeekByBookmark Identifies the bookmarks from which to retrieve rows for a CPMGetRowsIn
message.

CRowSeekNext Contains the number of rows to skip in a CPMGetRowsIn message.

CRowsetProperties Contains the configuration information for a query and is specified as OLE-DB
rowset properties.

CRowVariant Contains the fixed-size portion of a variable-length data type stored in the
CPMGetRowsOut message.

CSortSet Contains the sort orders for a query.

CTableColumn Contains a column for the CPMSetBindingsIn message.

SERIALIZEDPROPERTYVALUE Contains a serialized value.

2.2.1.1 CBaseStorageVariant

The CBaseStorageVariant structure contains the value on which to perform a match operation for a
property specified in the CPropertyRestriction structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

vType vData1 vData2

vValue (variable)

14 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

vType (2 bytes): A type indicator that indicates the type of vValue. It MUST be one of the values
specified in the following table.

Value Meaning

VT_EMPTY

0x0000

vValue is not present. VT_NULL (0x0001) also has the same meaning.

VT_I1

0x0010

A 1-byte signed integer.

VT_UI1

0x0011

A 1-byte unsigned integer.

VT_I2

0x0002

A 2-byte signed integer.

VT_UI2

0x0012

A 2-byte unsigned integer.

VT_BOOL

0x000B

A Boolean value; a 2-byte integer.

Note Contains 0x0000 (FALSE) or 0xFFFF (TRUE).

VT_I4

0x0003

A 4-byte signed integer.

VT_UI4

0x0013

A 4-byte unsigned integer.

VT_R4

0x0004

An IEEE 32-bit floating point number, as specified in [IEEE754].

VT_INT

0x0016

A 4-byte signed integer.

VT_UINT

0x0017

A 4-byte unsigned integer. Note that this is identical to VT_UI4 except that VT_UINT
cannot be used with VT_VECTOR (defined in the following table); the value chosen is a
choice made by the higher layer that provides it to the Content Indexing Services
Protocol, but the Content Indexing Services Protocol treats VT_UINT and VT_UI4 as
identical, with the exception noted earlier in this paragraph.

VT_ERROR

0x000A

A 4-byte unsigned integer containing an HRESULT value, as specified in [MS-ERREF]
section 2.1.

VT_I8

0x0014

An 8-byte signed integer.

VT_UI8

0x0015

An 8-byte unsigned integer.

VT_R8

0x0005

An IEEE 64-bit floating point number, as specified in [IEEE754].

VT_CY

0x0006

An 8-byte two's complement integer (scaled by 10,000).

http://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-ERREF%5d.pdf

15 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

VT_DATE

0x0007

A 64-bit floating point number, as specified in [IEEE754], representing the number of
days since 00:00:00 on December 31, 1899 (Coordinated Universal Time).

VT_FILETIME

0x0040

A 64-bit integer representing the number of 100-nanosecond intervals since 00:00:00
on January 1, 1601 (Coordinated Universal Time).

VT_DECIMAL

0x000E

A DECIMAL structure, as specified in section 2.2.1.1.1.1.

VT_CLSID

0x0048

A 16-byte binary value containing a GUID.

VT_BLOB

0x0041

A 4-byte unsigned integer count of bytes in the binary large object (BLOB) followed by
that many bytes of data.

VT_BLOB_OBJECT

0x0046

A 4-byte unsigned integer count of bytes in the binary large object (BLOB) followed by

that many bytes of data.

VT_BSTR

0x0008

A 4-byte unsigned integer count of bytes in the string followed by a string, as specified
in the vValue definition in this section.

VT_LPSTR

0x001E

A null-terminated ANSI string.

VT_LPWSTR

0x001F

A null-terminated Unicode (as specified in [UNICODE]) string.

VT_VARIANT

0x000C
1. When used in a CTableColumn description, a CRowVariant structure.

2. When not used in a CTableColumn description, a CBaseStorageVariant structure.
MUST be combined with a type modifier of VT_ARRAY or VT_VECTOR.

The following table specifies the type modifiers for vType. Type modifiers can be combined with
vType by using the bitwise OR operation to change the meaning of vValue to indicate that it is

one of two possible array types.

Value Meaning

VT_VECTOR

0x1000

If the type indicator is combined with VT_VECTOR by using an OR operator, vValue is a
counted array of values of the indicated type. See section 2.2.1.1.1.2.

This type modifier MUST NOT be combined with the following types: VT_INT, VT_UINT,
VT_DECIMAL, VT_BLOB, and VT_BLOB_OBJECT.

VT_ARRAY

0x2000

If the type indicator is combined with VT_ARRAY by an OR operator, the value is a
SAFEARRAY, containing values of the indicated type.

This type modifier MUST NOT be combined with the following types: VT_I8, VT_UI8,
VT_FILETIME, VT_CLSID, VT_BLOB, VT_BLOB_OBJECT, VT_LPSTR, and VT_LPWSTR.

When the VT_VARIANT vType is used in a CBaseStorageVariant structure, it MUST be combined
with a type modifier of VT_ARRAY or VT_VECTOR. There is no such limitation when the
VT_VARIANT vType is used in a CTableColumn structure, which specifies individual binding.

vData1 (1 byte): When vType is VT_DECIMAL, the value of this field is specified as the Scale field in
section 2.2.1.1.1.1. For all other vType fields, the value MUST be set to 0x00.

http://go.microsoft.com/fwlink/?LinkId=90550

16 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

vData2 (1 byte): When vType is VT_DECIMAL, the value of this field is specified as the Sign field in
section 2.2.1.1.1.1. For all other vType fields, the value MUST be set to 0x00.

vValue (variable): The value for the match operation. The syntax MUST be as indicated in the
vType field.

The following table summarizes sizes for the vValue field, dependent on the vType field for fixed-
length data types. The size is in bytes.

vType Size

VT_I1, VT_UI1 1

VT_I2, VT_UI2, VT_BOOL 2

VT_I4, VT_UI4, VT_R4, VT_INT, VT_UINT, VT_ERROR 4

VT_I8, VT_UI8, VT_R8, VT_CY, VT_DATE, VT_FILETIME 8

VT_DECIMAL, VT_CLSID 16

If vType is set to VT_BLOB or VT_BSTR, the structure of vValue is specified in the following diagram.

For vType set to VT_BLOB, this field is opaque binary BLOB data.

For vType set to VT_BSTR, this field is a set of characters in an OEM selected character set. The client

and server MUST be configured to have interoperable character sets (which is not addressed in this
protocol). There is no requirement that it be null-terminated.

For a vType set to either VT_LPSTR or VT_LPWSTR, the structure of vValue is shown in the following
diagram with the following caveats:

1. If vType is set to VT_LPSTR, cLen indicates the size of the string in system code page characters,
and string is a null-terminated string.

2. If vType is set to VT_LPWSTR, cLen indicates the size of the string in Unicode characters, and
string is a null-terminated Unicode string.

0 1 2 3 4 5 6 7 8 9 1 0 1 2 3 4 5 6 7 8 9 2 0 1 2 3 4 5 6 7 8 9 3 0 1

cbSize

blobData (variable, optional)

cbSize: A 32-bit unsigned integer. Indicates the size of the blobData field in bytes. If vType is set to

VT_BSTR, cbSize MUST be set to 0x00000000 when the string represented is an empty string.

blobData: MUST be of length cbSize, in bytes.

0 1 2 3 4 5 6 7 8 9 1 0 1 2 3 4 5 6 7 8 9 2 0 1 2 3 4 5 6 7 8 9 3 0 1

cLen

string (variable, optional)

cLen: A 32-bit unsigned integer, indicating the size of the string field including the terminating null. A

value of 0x00000000 indicates that no such string is present.

17 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

string: Null-terminated string. This field MUST be absent if cLen equals 0x00000000.

2.2.1.1.1 CBaseStorageVariant Structures

The following structures are used in the CBaseStorageVariant structure.

2.2.1.1.1.1 DECIMAL

The DECIMAL structure is used to represent an exact numeric value with a fixed precision and fixed
scale.

When vType is set to VT_DECIMAL (0x0000E), the vData1 and vData2 fields of CBaseStorageVariant
MUST be interpreted as follows.

vData1: The number of digits to the right of the decimal point. MUST be in the range 0 to 28.

vData2: The sign of the numeric value. Set to 0x00, if the sign is positive; set to 0x80, if the sign is
negative.

When vType is set to VT_DECIMAL, the format of the vValue field is specified in the following
diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hi32

Lo32

Mid32

Hi32 (4 bytes): The highest 32 bits of the 96-bit integer.

Lo32 (4 bytes): The lowest 32 bits of the 96-bit integer.

Mid32 (4 bytes): The middle 32 bits of the 96-bit integer.

2.2.1.1.1.2 VT_VECTOR

The VT_VECTOR structure is used to pass one-dimensional arrays.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

vVectorElements

vVectorData (variable)

...

vVectorElements (4 bytes): Unsigned 32-bit integer, indicating the number of elements in the

vVectorData field.

vVectorData (variable): An array of items that have a type indicated by vType with the 0x1000 bit
cleared. The size of an individual fixed-length item can be obtained from the fixed-length data
type table, as specified in section 2.2.1.1. The length of this field in bytes can be calculated by
multiplying vVectorElements by the size of an individual item.

18 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

For variable-length data types, vVectorData contains a sequence of consecutively marshaled
simple types in which the type is indicated by vType with the 0x1000 bit cleared. This includes a

special case indicated by vType VT_ARRAY | VT_VARIANT (that is, 0x100C).

The elements in the vVectorData field MUST be separated by 0 to 3 padding bytes such that each

element begins at an offset that is a multiple of 4 bytes from the beginning of the message that
contains this array. If padding bytes are present, the value that they contain is arbitrary. The
contents of the padding bytes MUST be ignored by the receiver.

For a vType set to VT_ARRAY | VT_VARIANT, the type for items in this sequence is
CBaseStorageVariant.

2.2.1.1.1.3 SAFEARRAY

The SAFEARRAY structure is used to pass multidimensional arrays. The structure contains array size
information as well as the data in the array.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cDims fFeatures

cbElements

Rgsabound (variable)

...

vData (variable)

...

cDims (2 bytes): Unsigned 16-bit integer, indicating the number of dimensions of the
multidimensional array.

fFeatures (2 bytes): A 16-bit bitfield. The values represent features defined by upper-layer

applications and MUST be ignored.

cbElements (4 bytes): A 32-bit value that MUST be ignored by the server.

Rgsabound (variable): An array that contains one SAFEARRAYBOUND structure per dimension in the
SAFEARRAY structure. This array has the leftmost dimension first and the rightmost dimension
last.

vData (variable): A vector of marshaled items of a particular type indicated by the vType field of the
containing CBaseStorageVariant with the bit 0x2000 cleared.

vData is marshaled similarly to VT_VECTOR, as specified in section 2.2.1.1.1.2, with the difference
that the number of items is not stored in front of the vector. Instead, the number of items is
calculated by multiplying the cElements value with all safe array bounds given in the Rgsabound
field. Elements are stored in a vector in order of dimensions, iterating beginning with the right-
most dimension.

The following diagram visually represents a sample two-dimensional array. The first dimension has
cElements equal to 4 (represented horizontally) and lLbound equal to 0, and the second dimension

has cElements equal to 2 (represented vertically) and lLbound equal to 0.

19 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 1: Two-dimensional array

Using the previous diagram, vData will contain the following sequence: 0x00000001,
0x00000007, 0x00000002, 0x00000011, 0x00000003, 0x00000013, 0x00000005, 0x00000017

(iterating through the rightmost dimension first, and then incrementing the next dimension). The
preceding Rgsabound (which records cElements and lLbound) would be the following:
0x00000004, 0x00000000, 0x00000002, and 0x00000000.

2.2.1.1.1.4 SAFEARRAYBOUND

The SAFEARRAYBOUND structure represents the bounds of one dimension of a SAFEARRAY or
SAFEARRAY2 structure. Its format is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cElements

lLbound

cElements (4 bytes): A 32-bit unsigned integer, specifying the number of elements in the
dimension.

lLbound (4 bytes): A 32-bit unsigned integer, specifying the lower bound of the dimension.

2.2.1.1.1.5 SAFEARRAY2

The SAFEARRAY2 structure is used to pass multidimensional arrays in SERIALIZEDPROPERTYVALUE.

The structure contains boundary information and the data above.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cDims

Rgsabound (variable)

...

vData (variable)

...

cDims (4 bytes): Unsigned 32-bit integer, indicating the number of dimensions of the SAFEARRAY2.

Rgsabound (variable): An array that contains one SAFEARRAYBOUND structure per dimension in the
SAFEARRAY2. This array has the leftmost dimension first and the rightmost dimension last.

20 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

vData (variable): A vector of marshaled items of a particular type indicated by the dwType of the
containing SERIALIZEDPROPERTYVALUE with bit 0x2000 cleared. The format of vData is the same

as that specified for the vData field of SAFEARRAY.

2.2.1.2 CFullPropSpec

The CFullPropSpec structure contains a property set GUID and a property identifier to uniquely identify
a property. A CFullPropSpec instance has a property set GUID and either an integer property ID or a
string property name. For properties to match, the CFullPropSpec structure must match the column

identifier in the index. There is no conversion between property IDs and property names. Property
names are case insensitive.

For more information, see the Indexing Service definition of FULLPROPSPEC in [MSDN-
FULLPROPSPEC].

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

paddingPropSet (variable)

...

_guidPropSet (16 bytes)

...

...

ulKind

PrSpec

Property name (variable)

...

paddingPropSet (variable): This field MUST be 0 to 7 bytes in length. The length of this field MUST
be such that the following field begins at an offset that is a multiple of 8 bytes from the beginning

of the message that contains this structure. If this field is present (that is, its length is nonzero),
the value that it contains is arbitrary. The content of this field MUST be ignored by the receiver.

_guidPropSet (16 bytes): The GUID of the property set to which the property belongs.

ulKind (4 bytes): A 32-bit unsigned integer. MUST be one of the following values that indicates the
content of PrSpec.

Value Meaning

PRSPEC_LPWSTR

0x00000000

The PrSpec field specifies the number of non-NULL Unicode characters in the Property
name field.

PRSPEC_PROPID

0x00000001

The PrSpec field specifies the property ID (PROPID).

PrSpec (4 bytes): A 32-bit unsigned integer with a meaning as indicated by the ulKind field.

http://go.microsoft.com/fwlink/?LinkId=103235
http://go.microsoft.com/fwlink/?LinkId=103235

21 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Property name (variable): If ulKind is set to PRSPEC_PROPID, this field MUST NOT be present. If
ulKind is set to PRSPEC_LPWSTR, this field MUST contain a case-insensitive array of PrSpec non-

null Unicode characters that contains the name of the property.

2.2.1.3 CContentRestriction

The CContentRestriction structure contains a word or phrase to match in the inverted index for a
specific property.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_Property (variable)

...

Padding1 (variable)

...

Cc

_pwcsPhrase (variable)

...

Padding2 (variable)

...

Lcid

_ulGenerateMethod

_Property (variable): A CFullPropSpec structure. This field indicates the property on which to
perform a match operation.

Padding1 (variable): This field MUST be 0 to 3 bytes in length. The length of this field MUST be such
that the following field begins at an offset that is a multiple of 4 bytes from the beginning of the
message that contains this structure. If this field is present (that is, its length is nonzero), the
value that it contains is arbitrary. The content of this field MUST be ignored by the receiver.

Cc (4 bytes): A 32-bit unsigned integer, specifying the number of characters in the _pwcsPhrase

field.

_pwcsPhrase (variable): A non-null-terminated Unicode string representing the word or phrase to
match for the property. This field MUST NOT be empty. The Cc field contains the length of the
string.

Padding2 (variable): This field MUST be 0 to 3 bytes in length. The length of this field MUST be such
that the following field begins at an offset that is a multiple of 4 bytes from the beginning of the
message that contains this structure. If this field is present (that is, its length is nonzero), the

value that it contains is arbitrary. The content of this field MUST be ignored by the receiver.

22 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Lcid (4 bytes): A 32-bit unsigned integer, indicating the locale of _pwcsPhrase, as specified in [MS-
LCID].

_ulGenerateMethod (4 bytes): A 32-bit unsigned integer, specifying the method to use when
generating alternative word forms.

Value Meaning

GENERATE_METHOD_EXACT

0x00000000

Exact match. Each word in the phrase must match exactly in the inverted
index.

GENERATE_METHOD_PREFIX

0x00000001

Prefix match. Each word in the phrase is considered a match if the word is a
prefix of an indexed string. For example, if the word "barking" is indexed,
then "bar" would match when performing a prefix match.

GENERATE_METHOD_INFLECT

0x00000002

Matches inflections of a word. An inflection of a word is a variant of the root
word in the same part of speech that has been modified, according to
linguistic rules of a given language. For example, inflections of the verb
swim in English include swim, swims, swimming, and swam.

2.2.1.4 CNatLanguageRestriction

The CNatLanguageRestriction structure contains a natural language query match for a property.
Natural language means that the string has no formal meaning. The indexing service is free to match
on the string in any way that it can. It can drop words, add alternative forms or make no changes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_Property (variable)

...

_padding_cc (variable)

...

Cc

_pwcsPhrase (variable)

...

_padding_lcid (variable)

...

Lcid

_Property (variable): A CFullPropSpec structure. This field indicates the property on which to
perform the match operation.

%5bMS-LCID%5d.pdf
%5bMS-LCID%5d.pdf

23 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

_padding_cc (variable): This field MUST be 0 to 3 bytes in length. The length of this field MUST be
such that the following field begins at an offset that is a multiple of 4 bytes from the beginning of

the message that contains this structure. If this field is present (that is, its length is nonzero), the
value that it contains is arbitrary. The content of this field MUST be ignored by the receiver.

Cc (4 bytes): A 32-bit unsigned integer, specifying the number of characters in the _pwcsPhrase
field.

_pwcsPhrase (variable): A non-null-terminated Unicode string with the text to be searched for
within the specific property. This string MUST NOT be empty. The Cc field contains the length of
the string.

_padding_lcid (variable): This field MUST be 0 to 3 bytes in length. The length of this field MUST be
such that the following field begins at an offset that is a multiple of 4 bytes from the beginning of

the message that contains this structure. If this field is present (that is, its length is nonzero), the
value that it contains is arbitrary. The content of this field MUST be ignored by the receiver.

Lcid (4 bytes): A 32-bit unsigned integer indicating the locale of _pwcsPhrase, as specified in [MS-

LCID].

2.2.1.5 CNodeRestriction

The CNodeRestriction structure contains an array of command tree restriction nodes for constraining
the results of a query.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_cNode

_paNode (variable)

...

_cNode (4 bytes): A 32-bit unsigned integer specifying the number of CRestriction structures
contained in the _paNode field.

_paNode (variable): An array of CRestriction structures. Structures in the array MUST be separated
by 0 to 3 padding bytes such that each structure begins at an offset that is a multiple of 4 bytes
from the beginning of the message that contains this array. If padding bytes are present, the
value that they contain is arbitrary. The content of the padding bytes MUST be ignored by the
receiver.

2.2.1.6 CPropertyRestriction

The CPropertyRestriction structure contains a property to get from each row, a comparison operator,
and a constant. For each row, the value returned by the specific property in the row is compared

against the constant to determine if it has the relationship specified by the _relop field. For the
comparison to be true, the data types of the values must match.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_relop

_Property (variable)

%5bMS-LCID%5d.pdf
%5bMS-LCID%5d.pdf

24 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

_prval (variable)

...

_relop (4 bytes): A 32-bit unsigned integer specifying the relation to perform on the property.
_relop MUST be one of the values in the following tables.

Value Meaning

PRLT

0x00000000

A less-than comparison.

PRLE

0x00000001

A less-than-or-equal-to comparison.

PRGT

0x00000002

A greater-than comparison.

PRGE

0x00000003

A greater-than-or-equal-to comparison.

PREQ

0x00000004

An equality comparison.

PRNE

0x00000005

A not-equal comparison.

PRRE

0x00000006

A regular expression comparison.

For PRRE relations, regular expressions are expressed with a string that contains special symbols.
Any character except an asterisk (*), period (.), question mark (?), or vertical bar (|) matches
itself. A regular expression can be enclosed in a pair of quotation marks ("…"), and MUST be
enclosed in quotation marks if the expression contains a space or a closing parenthesis.

The asterisk matches any number of characters. The period matches the end of a string. The
question mark matches any one character. The vertical bar (|) is an escape character, which

indicates special behavior for the characters shown in the following table. The following table
explains the meanings of special characters in regular expressions.

Character Meaning

(An opening parenthesis opens a group. It MUST be followed by a matching closing
parenthesis.

) A closing parenthesis closes a group. It MUST be preceded by a matching opening
parenthesis.

[An opening bracket preceded (escaped) by a vertical bar opens a character class. It MUST
be followed by a matching (nonescaped) closing square bracket.

{ An opening brace opens a counted match. It MUST be followed by a matching closing brace.

} A closing brace closes a counted match. It MUST be preceded by a matching opening brace.

, A comma separates OR clauses.

25 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Character Meaning

* An asterisk matches zero or more occurrences of the preceding expression.

? A question mark matches zero or one occurrence of the preceding expression.

+ A plus sign matches one or more occurrences of the preceding expression.

Other All other characters match themselves.

The following table describes characters which, when located between brackets ([]), have special
meanings.

Character Meaning

^ A caret matches everything but following classes. (It MUST be the first character in the
string.)

] A closing bracket matches another closing bracket. It MAY be preceded only by a caret (^);
otherwise, it closes the class.

- A hyphen is a range operator. It is preceded and followed by normal characters.

Other All other characters match themselves (or begin or end a range).

The following table describes the syntax used between braces ({ }).

Character Meaning

{m} Matches exactly m occurrences of the preceding expression (0 < m < 256).

{m,} Matches at least m occurrences of the preceding expression (1 < m < 256).

{m, n} Matches between m and n occurrences of the preceding expression, inclusive (0 < m < 256,
0 < n < 256).

To match the asterisk and question mark, enclose them in brackets. For example, [*]sample
matches "*sample".

Value Meaning

PRAllBits

0x00000007

A bitwise AND that returns the value equal to _prval.

PRSomeBits

0x00000008

A bitwise AND that returns a nonzero value.

For vector properties, the behavior of the relational operators depends on the result of a logical
OR using a mask and the relational operator.

If there is no mask, then the restriction is true if the relational operator holds between each
element of a property value and the corresponding element in the _prval field. If, in addition, the
two vectors have different lengths, then the vector lengths are compared using the relational
operator.

If there is a mask, the possible values are as follows.

26 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

PRAll

0x00000100

The restriction is true if every element in a property value has the relationship with some
element in the _prval field.

PRAny

0x00000200

The restriction is true if any element in the property value has the relationship with some
element in the _prval field.

_Property (variable): A CFullPropSpec structure indicating the property on which to perform a
match operation.

_prval (variable): A CBaseStorageVariant structure containing the value to relate to the property.

2.2.1.7 CScopeRestriction

The CScopeRestriction structure restricts the files to be returned to those that have a path that
matches the restriction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CcLowerPath

_lowerPath (variable)

...

_padding (variable)

...

_length

_fRecursive

_fVirtual

CcLowerPath (4 bytes): A 32-bit unsigned integer containing the number of Unicode characters in
the _lowerPath field.

_lowerPath (variable): A non-null-terminated Unicode string representing thepath to which the
query should be restricted. The CcLowerPath field contains the length of the string.

_padding (variable): This field MUST be 0 to 3 bytes in length. The length of this field MUST be such

that the following field begins at an offset that is a multiple of 4 bytes from the beginning of the

message that contains this structure. If this field is present (that is, its length is nonzero), the
value that it contains is arbitrary. The content of this field MUST be ignored by the receiver.

_length (4 bytes): A 32-bit unsigned integer containing the length of _lowerPath in Unicode
characters. This MUST be the same value as CcLowerPath.

_fRecursive (4 bytes): A 32-bit unsigned integer. MUST be set to one of the following values.

27 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

0x00000000 The server is not to examine any subdirectories.

0x00000001 The server is to recursively examine all subdirectories of the path contained in the
_lowerPath field.

_fVirtual (4 bytes): A 32-bit unsigned integer. MUST be set to one of the following values.

Value Meaning

0x00000000 _lowerPath is a file system path.

0x00000001 _lowerPath is a virtual path (the URL associated with a physical directory on the file system)
for a website.

2.2.1.8 CSort

The CSort structure identifies a column, direction, and locale to sort by.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pidColumn

dwOrder

locale

pidColumn (4 bytes): A 32-bit unsigned integer. This is the index in CPidMapper for the property to

sort by.

dwOrder (4 bytes): A 32-bit unsigned integer. MUST be one of the following values, specifying how
to sort based on the column.

Value Meaning

QUERY_SORTASCEND

0x00000000

The rows are to be sorted in ascending order based on the values in the column
specified.

QUERY_SORTDESCEND

0x00000001

The rows are to be sorted in descending order based on the values in the column
specified.

locale (4 bytes): A 32-bit unsigned integer indicating the locale (as specified in [MS-LCID]) of the
column. The locale determines the sorting rules to use when sorting textual values. An indexing

service SHOULD use the appropriate operating system facilities to do this.

2.2.1.9 CVectorRestriction

The CVectorRestriction structure contains a weighted OR operation over restriction nodes. Vector
restrictions represent queries using the full-text vector space model of ranking (as specified in
[SALTON]). In addition to the OR operation they also compute a rank depending on the ranking
algorithm.

%5bMS-LCID%5d.pdf

28 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_pres (variable)

...

_padding (variable)

...

_ulRankMethod

_pres (variable): A CNodeRestriction command tree on which a ranked OR operation is to be
performed.

_padding (variable): This field MUST be 0 to 3 bytes in length. The length of this field MUST be such

that the following field begins at an offset that is a multiple of 4 bytes from the beginning of the
message that contains this structure. If this field is present (that is, its length is nonzero), the
value that it contains is arbitrary. The content of this field MUST be ignored by the receiver.

_ulRankMethod (4 bytes): A 32-bit unsigned integer specifying a ranking algorithm that MUST be
set to one of the following values.

Value Meaning

VECTOR_RANK_MIN

0x00000000

Use the minimum algorithm as specified in [SALTON].

VECTOR_RANK_MAX

0x00000001

Use the maximum algorithm as specified in [SALTON].

VECTOR_RANK_INNER

0x00000002

Use the inner product algorithm as specified in [SALTON].

VECTOR_RANK_DICE

0x00000003

Use the Dice coefficient algorithm as specified in [SALTON].

VECTOR_RANK_JACCARD

0x00000004

Use the Jaccard coefficient algorithm as specified in [SALTON].

2.2.1.10 CRestriction

The CRestriction structure contains a restriction node in a query command tree.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_ulType

Weight

29 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Restriction (variable)

...

_ulType (4 bytes): A 32-bit unsigned integer indicating the restriction type used for the command
tree node. The type determines what is found in the Restriction field of the structure as
described in the following table. MUST be set to one of the following values.

Value Meaning

RTNone

0x00000000

The node represents a noise word in a vector query.

RTAnd

0x00000001

The node contains a CNodeRestriction structure on which a logical AND operation is to be
performed.

RTOr

0x00000002

The node contains a CNodeRestriction structure on which a logical OR operation is to be
performed.

RTNot

0x00000003

The node contains a CRestriction structure on which a NOT operation is to be performed.

RTContent

0x00000004

The node contains a CContentRestriction structure.

RTProperty

0x00000005

The node contains a CPropertyRestriction structure.

RTProximity

0x00000006

The node contains a CNodeRestriction structure with an array of CContentRestriction

structures. Any other kind of restriction is undefined. The restriction requires the words or
phrases found in the CContentRestriction structures to be within an indexing service
defined range in order to be a match. The indexing service can also compute a rank based
on how far apart the words or phrases are.

RTVector

0x00000007

The node contains a CVectorRestriction structure.

RTNatLanguage

0x00000008

The node contains a CNatLanguageRestriction structure.

RTScope

0x00000009

The node contains a CScopeRestriction structure.

RTPhrase

 0xFFFFFFFD

The node contains a CNodeRestriction structure on which a phrase match is to be
performed.

Weight (4 bytes): A 32-bit unsigned integer representing the weight of the node. Weight indicates
the node's importance relative to other nodes in the query command tree. Higher weight values

are more important.

Restriction (variable): The restriction type for the command tree node. The syntax MUST be as
indicated by the _ulType field.

2.2.1.11 CColumnSet

The CColumnSet structure specifies the column numbers to be returned. This structure is always used
in reference to a specific CPidMapper structure.

30 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

count

indexes (variable)

...

count (4 bytes): A 32-bit unsigned integer specifying the number of elements in the indexes array.

indexes (variable): An array of 4-byte unsigned integers representing zero-based indexes into the
aPropSpec array in the corresponding CPidMapper structure. The corresponding property values

are returned as columns in the result set.

2.2.1.12 CCategorizationSet

The CCategorizationSet structure contains information on the grouping is done at each level in a

hierarchical result set.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

count

categories (variable)

...

count (4 bytes): A 32-bit unsigned integer containing the number of elements in the categories

array.

categories (variable): Array of CCategorizationSpec structures specifying the grouping for each level
in a hierarchical query. The first structure specifies the top level.

2.2.1.13 CCategorizationSpec

The CCategorizationSpec structure specifies how grouping is done at one level in a hierarchical query.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_csColumns (variable)

...

_ulCategType

_csColumns (variable): A CColumnSet structure indicating the columns to return at that level in a

hierarchical result set.

_ulCategType (4 bytes): A 32-bit unsigned integer that MUST be set to 0x00000000.

31 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.1.14 CDbColId

The CDbColId structure contains an OLE-DB Column ID.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eKind

padding (variable)

...

GUID (16 bytes)

...

...

ulId

vString (variable)

...

eKind (4 bytes): MUST be set to one of the following values that indicates the contents of the GUID,
ulId, and vString fields.

Value Meaning

DBKIND_GUID_NAME

0x00000000

vString contains a property name.

DBKIND_GUID_PROPID

0x00000001

ulId contains a 4-byte integer indicating the property ID.

DBKIND_PGUID_NAME

 0x00000003

vString contains a property name. This value MUST be treated the same as
DBKIND_GUID_NAME.

DBKIND_PGUID_PROPID

 0x00000004

ulId contains a 4-byte integer indicating the property ID. This value MUST be
treated the same as DBKIND_GUID_PROPID.

padding (variable): This field MUST be 0 to 7 bytes in length. The length of this field MUST be such
that the following field begins at an offset that is a multiple of 8 bytes from the beginning of the
message that contains this structure. If this field is present (that is, its length is nonzero), the

value that it contains is arbitrary. The content of this field MUST be ignored by the receiver.

GUID (16 bytes): GUID which uniquely identifies the property set for the property.

ulId (4 bytes): If eKind is DBKIND_GUID_PROPID, this field contains an unsigned integer specifying
the property ID. If eKind is DBKIND_GUID_NAME, this field contains an unsigned integer
specifying the number of Unicode characters contained in the vString field.

vString (variable): A non-null-terminated Unicode string representing the property name. It MUST
be omitted unless the eKind field is set to DBKIND_GUID_NAME.

32 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.1.15 CDbProp

The CDbProp structure contains an OLE-DB DBPROP database property. These properties control how
queries are interpreted by the indexing service.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DBPROPID

DBPROPOPTIONS

DBPROPSTATUS

colid (variable)

...

_padding (variable)

...

vValue (variable)

...

DBPROPID (4 bytes): A 32-bit unsigned integer indicating the property ID. This field uniquely
identifies each property in a particular query, but has no other interpretation. In particular, it is
not a PROPID as found in the CDbColId structure.

DBPROPOPTIONS (4 bytes): Property options. This field MUST be set to 0x00000001 if the property
is optional and to 0x00000000 otherwise.

DBPROPSTATUS (4 bytes): Property status. This field MUST be set to 0x00000000.

colid (variable): A CDbColId structure that defines the database property being passed.

_padding (variable): This field MUST be 0 to 3 bytes in length. The length of this field MUST be such
that the following field begins at an offset that is a multiple of 4 bytes from the beginning of the
message that contains this structure. If this field is present (that is, its length is nonzero), the
value that it contains is arbitrary. The content of this field MUST be ignored by the receiver.

vValue (variable): A CBaseStorageVariant structure containing the property value.

2.2.1.15.1 Database Properties

This section details the properties that are used by the Content Indexing Services Protocol to control
the behavior of the indexing service. These properties are grouped into three property sets identified
in the guidPropertySet field of the CDbPropSet structure.

The following table lists the properties that are part of the DBPROPSET_FSCIFRMWRK_EXT property
set.

33 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Value Meaning

DBPROP_CI_CATALOG_NAME

0x00000002

Specifies the name of the catalog or catalogs to query. Value MUST be a
VT_LPWSTR or a VT_VECTOR | VT_LPWSTR.

DBPROP_CI_INCLUDE_SCOPES

0x00000003

Specifies one or more paths to be included in the query. Value MUST be a
VT_LPWSTR or a VT_VECTOR | VT_LPWSTR.

DBPROP_CI_SCOPE_FLAGS

0x00000004

Specifies how the paths specified by the DBPROP_CI_INCLUDE_SCOPES
property are to be treated. Value MUST be a VT_I4 or a VT_VECTOR | VT_I4.

DBPROP_CI_QUERY_TYPE

0x00000007

Specifies the type of query using a CDbColId structure. The structure MUST be
set such that the eKind field contains 0x00000001 and the GUID and ulID
fields are filled with zeros.

The following table lists the flags for the DBPROP_CI_SCOPE_FLAGS property.

 Value Meaning

QUERY_DEEP

0x01

If set, indicates that files in the scope directory and all subdirectories are included in
the results. If clear, only files in the scope directory are included in the results. MUST
NOT be combined with QUERY_DEEP.

QUERY_VIRTUAL_PATH

0x02

If set, indicates that the scope is a virtual path. If clear, indicates that the scope is a
physical directory.

The following table lists the query types for the DBPROP_CI_QUERY_TYPE property.

 Value Meaning

CiNormal

0x00000000

A regular query.

CiVirtualRoots

0x00000001

The query is requesting a list of the virtual roots of the catalog. This value requires
administrative privileges.

CiProperties

0x00000003

The query is requesting a list of all of the properties supported by the indexing service.

CiAdminOp

0x00000004

The query is an administrative operation. This value requires administrative privileges.

The following table lists the properties that are part of the DBPROPSET_QUERYEXT property set.

Value Meaning

DBPROP_USECONTENTINDEX

0x00000002

Use the inverted index to optimize the speed of evaluating content
restrictions at the cost of the index possibly being out of date.
Value MUST be a VT_BOOL. If TRUE, the server is allowed to fail
these queries.

DBPROP_DEFERNONINDEXEDTRIMMING
0x00000003

Some operations, such as filtering by scope or security, can be
expensive. This flag indicates that it is acceptable to defer this
filtering until the results are actually requested. Value MUST be a
VT_BOOL.

DBPROP_USEEXTENDEDDBTYPES
0x00000004

Indicates whether the client supports VT_VECTOR data types. If
TRUE, the client supports VT_VECTOR; if FALSE, the server is to
convert VT_VECTOR data types to VT_ARRAY data types. The value

34 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

MUST be a VT_BOOL.

DBPROP_FIRSTROWS

0x00000007

If TRUE, the indexing service should return the first rows that
match. If FALSE, then rows should by default be returned in order
of descending rank. Value MUST be a VT_BOOL.

The following table lists the properties that are part of the DBPROPSET_CIFRMWRKCORE_EXT property
set.

 Value Meaning

DBPROP_MACHINE

0x00000002

Specifies the names of the computers on which a query is to be processed. The value
MUST be either VT_BSTR or VT_ARRAY | VT_BSTR.

DBPROP_CLIENT_CLSID

0x00000003

Specifies a connection constant for the indexing service. The value may be a VT_CLSID
containing 0x2A4880706FD911D0A80800A0C906241A or VT_ARRAY of STRINGS with
value {2A488070-6FD9-11D0-A808-00A0C906241A}.

The following table lists properties that are part of the DBPROPSET_MSIDXS_ROWSETEXT property
set.

Value Meaning

MSIDXSPROP_ROWSETQUERYSTATUS

0x00000002

Specifies that the client is interested in rowset status. Value MUST
be set to 0.

MSIDXSPROP_COMMAND_LOCALE_STRING

0x00000003

Specifies locale ID string for the query.

MSIDXSPROP_QUERY_RESTRICTION

0x00000004

Ignored by the server. MUST be set to an empty BSTR.

2.2.1.16 CDbPropSet

The CDbPropSet structure contains a set of properties. The first field (guidPropertySet) is not
padded and will start where the previous structure in the message ended (as indicated by the
"previous structure" entry in the following diagram). The 1-byte length of "previous structure" is
arbitrary, and is not meant to suggest that guidPropertySet will begin on any particular boundary.
However, the cProperties field MUST be aligned to begin at a multiple of 4 bytes from the beginning
of the message, and hence, the format is depicted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

previous structure guidPropertySet (16 bytes)

...

...

... _padding (variable)

35 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

cProperties

aProps (variable)

...

guidPropertySet (16 bytes): A GUID identifying the property set. MUST be set to the binary form
corresponding to one of the following values (shown in string representation form), identifying the
property set of the properties contained in the aProps field.

Value/GUID Meaning

DBPROPSET_CIFRMWRKCORE_EXT

AFAFACA5-B5D1-11D0-8C62-00C04FC2DB8D

Content Index Framework Core Property Set.

DBPROPSET_FSCIFRMWRK_EXT

A9BD1526-6A80-11D0-8C9D-0020AF1D740E

File System Content Index Framework Property Set.

DBPROPSET_MSIDXS_ROWSETEXT

AA6EE6B0-E828-11D0-B23E-00AA0047FC01

Content Index Rowset Property Set.

DBPROPSET_QUERYEXT

A7AC77ED-F8D7-11CE-A798-0020F8008025

Query Extension Property Set.

_padding (variable): This field MUST be 0 to 3 bytes in length. The length of this field MUST be such
that the following field begins at an offset that is a multiple of 4 bytes from the beginning of the
message that contains this structure. If this field is present (that is, its length is nonzero), the
value that it contains is arbitrary. The content of this field MUST be ignored by the receiver.

cProperties (4 bytes): A 32-bit unsigned integer containing the number of elements in the aProps
array.

aProps (variable): An array of CDbProp structures containing properties. Structures in the array
MUST be separated by 0 to 3 padding bytes such that each structure begins at an offset that is a
multiple of 4 bytes from the beginning of the message that contains this array. If padding bytes
are present, the value that they contain is arbitrary. The content of the padding bytes MUST be
ignored by the receiver.

2.2.1.17 CPidMapper

The CPidMapper structure contains an array of property specifications and serves to map from a
property offset to a full property specification. The more compact property offsets are used to name
properties in other parts of the protocol. Because offsets are more compact, they allow shorter
property references in other parts of the protocol.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

count

paddingPropSpec (variable)

36 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

aPropSpec (variable)

...

count (4 bytes): A 32-bit unsigned integer containing the number of elements in the aPropSpec
array.

paddingPropSpec (variable): This field MUST be 0 to 4 bytes in length. The length of this field

MUST be such that the byte offset from the beginning of the message to the first structure
contained in the aPropSpec field is a multiple of 8. The value of the bytes can be any arbitrary
value and MUST be ignored by the receiver.

aPropSpec (variable): An array of CFullPropSpec structures.

2.2.1.18 CRowSeekAt

The CRowSeekAt structure contains the offset at which to retrieve rows for a CPMGetRowsIn message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_chapt

_bmkOffset

_cskip

_hRegion

_chapt (4 bytes): A 32-bit value representing the handle of the rowset chapter.

_bmkOffset (4 bytes): A 32-bit value representing the handle of the bookmark, indicating the
starting position from which to skip the number of rows specified in _cskip, before beginning

retrieval.

_cskip (4 bytes): A 32-bit unsigned integer containing the number of rows to skip in the rowset.

_hRegion (4 bytes): A 32-bit unsigned integer. This field MUST be set to 0x00000000 and MUST be
ignored.

2.2.1.19 CRowSeekAtRatio

The CRowSeekAtRatio structure identifies the point at which to begin retrieval for a CPMGetRowsIn

message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_chapt

_ulNumerator

37 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

_ulDenominator

_hRegion

_chapt (4 bytes): A 32-bit value representing the handle of the rowset chapter.

_ulNumerator (4 bytes): A 32-bit unsigned integer representing the numerator of the ratio of rows
in the chapter at which to begin retrieval.

_ulDenominator (4 bytes): A 32-bit unsigned integer representing the denominator of the ratio of
rows in the chapter at which to begin retrieval. This field MUST be greater than zero.

_hRegion (4 bytes): A 32-bit unsigned integer. This field MUST be set to 0x00000000 and MUST be
ignored.

2.2.1.20 CRowSeekByBookmark

The CRowSeekByBookmark structure identifies the bookmarks from which to begin retrieving rows for
a CPMGetRowsIn message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_chapt

_cBookmarks

_aBookmarks (variable)

...

_maxRet

_ascRet (variable)

...

_chapt (4 bytes): A 32-bit value representing the handle of the rowset chapter.

_cBookmarks (4 bytes): A 32-bit unsigned integer representing the number of elements in

_aBookmarks array.

_aBookmarks (variable): An array of bookmark handles (each represented by 4 bytes) as obtained
from a CPMGetRowsOut message.

_maxRet (4 bytes): A 32-bit unsigned integer representing the number of elements in the _ascRet
array.

_ascRet (variable): An array of HRESULT values. When the CRowSeekByBookmark structure is sent
as part of the CPMGetRowsIn request, the number of entries in the array MUST be equal to

_maxRet. When sent by the client, the values MUST be set to zero when sent and MUST be
ignored on receipt. When sent by the server (as part of the CPMGetRowsOut message), the values
in the array indicate the result status for each row retrieval.

38 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.1.21 CRowSeekNext

The CRowSeekNext structure contains the number of rows to skip for a CPMGetRowsIn message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_chapt

_cskip

_chapt (4 bytes): A 32-bit value representing the handle of the rowset chapter.

_cskip (4 bytes): A 32-bit unsigned integer representing the number of rows to skip in the rowset.

2.2.1.22 CRowsetProperties

The CRowsetProperties structure contains configuration information for a query.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_uBooleanOptions

_ulMaxOpenRows

_ulMemoryUsage

_cMaxResults

_cCmdTimeout

_uBooleanOptions (4 bytes): The least significant 3 bits of this field MUST contain one of the
following three values.

Value Meaning

eSequential

0x00000001

The cursor (1) can be moved only forward.

eLocatable

0x00000003

The cursor can be moved to any position.

eScrollable

0x00000007

The cursor can be moved to any position and fetch in any direction.

The remaining bits MAY either be clear or set to any combination of the following values by using
the bitwise OR operation.

Value Meaning

eAsynchronous

0x00000008

The client will not wait for execution completion.

39 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

eFirstRows

0x00000080

Return the first rows encountered, not the best matches.

eHoldRows

0x00000200

The server MUST NOT discard rows until the client is done with a query.

eChaptered

0x00000800

The rowset supports chapters.

eUseCI

0x00001000

Use the inverted index to evaluate content restrictions even though it may be out of
date. If not set, the indexing service can opt to execute the query by going directly
against the file system.

eDeferTrimming

0x00002000

Nonindexed trimming operations, like scoping or security checking, can be expensive.
This option gives the indexing service the option of deferring these operations until rows
are actually requested.

_ulMaxOpenRows (4 bytes): A 32-bit unsigned integer. MUST be set to 0x00000000. It is not used

and MUST be ignored.

_ulMemoryUsage (4 bytes): A 32-bit unsigned integer. MUST be set to 0x00000000. It is not used
and MUST be ignored.

_cMaxResults (4 bytes): A 32-bit unsigned integer, specifying the maximum number of rows that
are to be returned for the query. If _cMaxResults is set to 0x00000000, then the server assumes
all results are requested and behaves as if 0xFFFFFFFF was specified in _cMaxResults.

_cCmdTimeout (4 bytes): A 32-bit unsigned integer, specifying the number of seconds at which a

query is to time out and automatically terminate, counting from the time the query starts
executing on the server. A value of 0x00000000 means that the query is not to time out.

2.2.1.23 CRowVariant

The CRowVariant structure contains the fixed-size portion of a variable-length data type stored in the
CPMGetRowsOut message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

vType reserved1

reserved2

Offset (variable)

...

vType (2 bytes): A type indicator, indicating the type of vValue. It MUST be one of the values under
the vType field, as specified in section 2.2.1.1.

reserved1 (2 bytes): Not used. Can be set to any arbitrary value and MUST be ignored on receipt.

reserved2 (4 bytes): Not used. Can be set to any arbitrary value and MUST be ignored on receipt.

40 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Offset (variable): An offset to variable-length data (for example, a string). This MUST be a 32-bit
value (4 bytes long) if 32-bit offsets are being used (per the rules in section 2.2.3.16) or a 64-bit

value (8 bytes long) if 64-bit offsets are being used.

2.2.1.24 CSortSet

The CSortSet structure contains the sort order of the query.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

count

sortArray (variable)

...

count (4 bytes): A 32-bit unsigned integer specifying the number of elements in sortArray.

sortArray (variable): An array of CSort structures describing the order in which to sort the results of
the query. Structures in the array MUST be separated by 0 to 3 padding bytes such that each
structure has a 4-byte alignment from the beginning of a message. Such padding bytes can be set
to any arbitrary value and MUST be ignored on receipt.

2.2.1.25 CTableColumn

The CTableColumn structure contains a column of a CPMSetBindingsIn message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PropSpec (variable)

...

vType

ValueUsed _padding1 (optional) ValueOffset (optional)

ValueSize (optional) StatusUsed _padding2 (optional)

StatusOffset (optional) LengthUsed _padding3 (optional)

LengthOffset (optional)

PropSpec (variable): A CFullPropSpec structure.

vType (4 bytes): Specifies the type of data value contained in the column. For the list of values for
this field, see the vType field in section 2.2.1.1.

Note The vType values specified in section 2.2.1.1 are 16-bit values. Those values are padded with

zeros to 32-bit values for use in this field.

ValueUsed (1 byte): A 1-byte field that MUST be set to one of the following values.

41 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

0x00 The value of the column is not transferred in the row.

0x01 The value of the column is transferred within the row.

_padding1 (1 byte): A 1-byte field.

Note This field MUST be inserted before ValueOffset if, without it, ValueOffset would not begin at

an even offset from the beginning of the message. The value of this byte is arbitrary and MUST be
ignored. If ValueUsed is set to 0x00, this field MUST NOT be present.

ValueOffset (2 bytes): An unsigned 2-byte integer specifying the offset of the column value in the
row. If ValueUsed is set to 0x00, this field MUST NOT be present.

ValueSize (2 bytes): An unsigned 2-byte integer specifying the size of the column value in bytes. If
ValueUsed is set to 0x00, this field MUST NOT be present.

StatusUsed (1 byte): A 1-byte field that MUST be set to one of the following values.

Value Meaning

0x00 The status of the column is not transferred within the row.

0x01 The status of the column is transferred within the row.

_padding2 (1 byte): A 1-byte field.

Note This field MUST be inserted before StatusOffset if, without it, the StatusOffset field would not
begin at an even offset from the beginning of the message. The value of this byte is arbitrary and
MUST be ignored. If StatusUsed is set to 0x00, this field MUST NOT be present.

StatusOffset (2 bytes): An unsigned 2-byte integer. Specifies the offset of the column status in the

row. That is, the StatusOffset is relative to the beginning of each row.

If StatusUsed is set to 0x00, this field MUST NOT be present.

If StatusUsed is set to 0x01 in the request, Status is represented as one byte in the response by
the offset specified in the StatusOffset request field. The status byte MUST be equal to one of the
following values.

Value Meaning

0x00 StatusOK

0x01 StatusDeferred

0x02 StatusNull

If the property value is absent for this row, the server MUST set the status byte to StatusNull. If

the value is too big to be transferred in the CPMGetRowsOut message (greater than 2048 bytes),
the server MUST set the status byte to StatusDeferred. Otherwise, the server MUST set the status
byte to StatusOK.

LengthUsed (1 byte): A 1-byte field that MUST be set to one of the following values.

Value Meaning

0x00 The length of the column MUST NOT be transferred within the row.

42 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

0x01 The length of the column is transferred within the row.

_padding3 (1 byte): A 1-byte field.

Note This field MUST be inserted before LengthOffset if, without it, LengthOffset would not begin
at an even offset from the beginning of a message. The value of this byte is arbitrary, and MUST be
ignored. If LengthUsed is set to 0x00, this field MUST NOT be present.

LengthOffset (2 bytes): An unsigned 2-byte integer specifying the offset of the column length in

the row. In CPMGetRowsOut, length is represented by a 32-bit unsigned integer by the offset
specified in LengthOffset. If LengthUsed is set to 0x00, this field MUST NOT be present.

2.2.1.26 SERIALIZEDPROPERTYVALUE

The SERIALIZEDPROPERTYVALUE structure contains a serialized value.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwType

rgb (variable)

...

dwType (4 bytes): One of the variant types, as specified in section 2.2.1.1, that can be combined
with variant type modifiers. For all variant types, except those combined with VT_ARRAY,
SERIALIZEDPROPERTYVALUE has the same layout as CBaseStorageVariant. If the variant type is
combined with the VT_ARRAY type modifier, SAFEARRAY2 is used instead of SAFEARRAY in the

vValue field of CBaseStorageVariant.

rgb (variable): Serialized value. See serialization for vValue in section 2.2.1.1.

2.2.2 Message Headers

All Content Indexing Services Protocol messages have a 16-byte header.

The following diagram shows the Content Indexing Services Protocol message header format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_msg

_status

_ulChecksum

_ulReserved2

_msg (4 bytes): A 32-bit integer that identifies the type of message following the header. The
following table lists the Content Indexing Services Protocol messages and the integer values
specified for each message. As shown in the table, some values identify two messages in the

43 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

table. In those instances, the message following the header can be identified by the direction of
the message flow. If the direction is client to server, the message with "In" appended to the

message name is indicated. If the direction is server to client, the message with "Out" appended
to the message name is indicated.

Value Meaning

0x000000C8 CPMConnectIn or CPMConnectOut

0x000000C9 CPMDisconnect

0x000000CA CPMCreateQueryIn or CPMCreateQueryOut

0x000000CB CPMFreeCursorIn or CPMFreeCursorOut

0x000000CC CPMGetRowsIn or CPMGetRowsOut

0x000000CD CPMRatioFinishedIn or CPMRatioFinishedOut

0x000000CE CPMCompareBmkIn or CPMCompareBmkOut

0x000000CF CPMGetApproximatePositionIn or CPMGetApproximatePositionOut

0x000000D0 CPMSetBindingsIn

0x000000D1 CPMGetNotify

0x000000D2 CPMSendNotifyOut

0x000000D7 CPMGetQueryStatusIn or CPMGetQueryStatusOut

0x000000D9 CPMCiStateInOut

0x000000E1 CPMForceMergeIn

0x000000E4 CPMFetchValueIn or CPMFetchValueOut

0x000000E6 CPMUpdateDocumentsIn

0x000000E7 CPMGetQueryStatusExIn or CPMGetQueryStatusExOut

0x000000E8 CPMRestartPositionIn

0x000000E9 CPMStopAsynchIn

0x000000EC CPMSetCatStateIn or CPMSetCatStateOut

_status (4 bytes): An HRESULT value, indicating the status of the requested operation. When sent
by the client, can be set to any arbitrary value and MUST be ignored on receipt.<5>

_ulChecksum (4 bytes): The _ulChecksum MUST be calculated as specified in section 3.2.4 for the
following messages:

 CPMConnectIn

 CPMCreateQueryIn

 CPMSetBindingsIn

 CPMGetRowsIn

 CPMFetchValueIn

44 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Note For all other messages from the client, _ulChecksum MUST be set to 0x00000000. A client
MUST ignore the _ulChecksum field.

_ulReserved2 (4 bytes): If 32-bit offsets are being used, MUST be set to 0x00000000 and MUST be
ignored by the receiver. _ulReserved2 can be used in 64-bit scenarios, as specified in section

2.2.3.16.

2.2.3 Messages

The following sections specify Content Indexing Services Protocol messages.

2.2.3.1 CPMCiStateInOut

The CPMCiStateInOut message contains information on the state of the indexing service. All fields are
required whether this message is sent by the client or the server.

Note When the CPMCiStateInOut message is sent by the client, all fields except cbStruct MAY

contain any value, and the server MUST ignore all fields except cbStruct.

The format of the CPMCiStateInOut message that follows the header is shown in the following
diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbStruct

cWordList

cPersistentIndex

cQueries

cDocuments

cFreshTest

dwMergeProgress

eState

cFilteredDocuments

cTotalDocuments

cPendingScans

dwIndexSize

cUniqueKeys

cSecQDocuments

45 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

dwPropCacheSize

cbStruct (4 bytes): A 32-bit unsigned integer indicating the size, in bytes, of this message
(excluding the common header). MUST be set to 0x0000003C.

cWordList (4 bytes): A 32-bit unsigned integer indicating the number of in-memory indexes created

for recently indexed documents.

cPersistentIndex (4 bytes): A 32-bit unsigned integer indicating the number of persisted indexes.

cQueries (4 bytes): A 32-bit unsigned integer indicating a number of actively running queries.

cDocuments (4 bytes): A 32-bit unsigned integer indicating the total number of documents waiting
to be indexed.

cFreshTest (4 bytes): A 32-bit unsigned integer indicating the number of unique documents with

information in indexes that are not fully optimized for performance.

dwMergeProgress (4 bytes): A 32-bit unsigned integer specifying the completion percentage of
current, full optimization of indexes while optimization is in progress. MUST be less than or equal
to 100.

eState (4 bytes): A 32-bit unsigned integer indicating the state of content indexing. MUST be zero or
one or more of the CI_STATE_* constants defined in the following table.

Value Meaning

0x00000000 None of the following states apply.

CI_STATE_SHADOW_MERGE

0x00000001

The indexing service is in the process of optimizing some of the
indexes to reduce memory usage and improve query performance.

CI_STATE_MASTER_MERGE

0x00000002

The indexing service is in the process of full optimization for all
indexes.

CI_STATE_CONTENT_SCAN_REQUIRED

0x00000004

Some documents in the inverted index have changed and the
indexing service needs to determine what has been added,
changed, or deleted.

CI_STATE_ANNEALING_MERGE

0x00000008

The indexing service is in the process of optimizing indexes to
reduce memory usage and improve query performance. This
process is more comprehensive than the one identified by the
CI_STATE_SHADOW_MERGE value, but it is not as comprehensive
as specified by the CI_STATE_MASTER_MERGE value. Such
optimizations are implementation-specific because they depend on
the way that data is stored internally; the optimizations do not
affect the protocol in any way other than response time.

CI_STATE_SCANNING

0x00000010

The indexing service is examining a directory or a set of directories
to see if any files have been added, deleted, or updated since the
last time the directory was indexed.

CI_STATE_RECOVERING

0x00000020

The indexing service is starting from the last saved state and is in
the process of recovering.

CI_STATE_INDEX_MIGRATION_MERGE

0x00000040

The indexing service is backing up inverted indexes.

CI_STATE_LOW_MEMORY

0x00000080

Most of the virtual memory of the server is in use.

46 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

CI_STATE_HIGH_IO

0x00000100

The level of input/output (I/O) activity on the server is relatively
high.

CI_STATE_MASTER_MERGE_PAUSED

0x00000200

The process of full optimization (for all indexes) in progress has
been paused. This is given for informational purposes only and
does not affect the Content Indexing Services Protocol.

CI_STATE_READ_ONLY

0x00000400

The portion of the indexing service that picks up new documents to
index has been paused. This is given for informative purposes only
and does not affect the Content Indexing Services Protocol.

CI_STATE_BATTERY_POWER

0x00000800

The portion of the indexing service that picks up new documents to
index has been paused to conserve battery lifetime but still replies
to the queries. This is given for informative purposes only and
does not affect the Content Indexing Services Protocol.

CI_STATE_USER_ACTIVE

0x00001000

The portion of the indexing service that picks up new documents to
index has been paused due to high activity by the user (keyboard
or mouse) but still replies to the queries. This is given for
informative purposes only and does not affect the Content
Indexing Services Protocol.

CI_STATE_STARTING

0x00002000

The service is starting. Queries can be run, but scanning and
notification have not been enabled yet. This is given for
informative purposes only and does not affect the Content
Indexing Services Protocol.

CI_STATE_READING_USNS

0x00004000

The service has not read the log kept by the file system to keep
track of changes to files or directories in a volume, so the inverted
index might not be up to date.

cFilteredDocuments (4 bytes): A 32-bit unsigned integer indicating the number of documents

indexed since content indexing has been started.

cTotalDocuments (4 bytes): A 32-bit unsigned integer indicating the total number of documents in
the system.

cPendingScans (4 bytes): A 32-bit unsigned integer indicating the number of pending high-level
indexing operations. The meaning of this value is provider-specific, but larger numbers are
expected to indicate that more indexing remains.<6>

dwIndexSize (4 bytes): A 32-bit unsigned integer indicating the size, in megabytes, of the index

(excluding the property cache).

cUniqueKeys (4 bytes): A 32-bit unsigned integer indicating the approximate number of unique
keys in the catalog.

cSecQDocuments (4 bytes): A 32-bit unsigned integer indicating the number of documents that the
indexing service will attempt to index again because of a failure during the initial indexing
attempt.

dwPropCacheSize (4 bytes): A 32-bit unsigned integer indicating the size, in megabytes, of the

property cache.

2.2.3.2 CPMSetCatStateIn

The CPMSetCatStateIn message sets the state of a catalog. The format of the CPMSetCatStateIn

message that follows the header is as follows.

47 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_partID

_dwNewState

_CatName (variable)

...

_partID (4 bytes): MUST be set to 0x00000001.

_dwNewState (4 bytes): MUST be set to exactly one of the following values (that is, they cannot
be combined with an OR operator), indicating the new state of the catalog.

Value Meaning

CICAT_STOPPED

 0x00000001

The catalog is stopped. This state means that no new files are to be indexed, and no
search queries are to be processed.

CICAT_READONLY

 0x00000002

The catalog is read-only. No new files are to be indexed.

CICAT_WRITABLE

 0x00000004

The catalog is writable. New files can be indexed, and search queries are to be
processed.

CICAT_NO_QUERY

 0x00000008

The catalog is not available for querying.

CICAT_GET_STATE

 0x00000010

The state of the catalog is not to be changed, only retrieved.

CICAT_ALL_OPENED

 0x00000020

A check to see if all of the catalogs have been started. If so, the _dwOldState field
sent in the CPMSetCatStateOut reply to this message will be reported as nonzero.

_CatName (variable): The name of the catalog that is to have its state modified. The name MUST

be a null-terminated Unicode string. This field MUST be omitted if _dwNewState is set to
CICAT_ALL_OPENED.

2.2.3.3 CPMSetCatStateOut

The CPMSetCatStateOut message is a reply to a CPMSetCatStateIn message with the old state of the

catalog. The format of the CPMSetCatStateOut message that follows the header is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_dwOldState

_dwOldState (4 bytes): A 32-bit unsigned integer that MUST be one or more of the following flags,
indicating the old state of the catalog.

48 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

CI_NOT_ALL_STARTED

0x00000000

Not all catalogs are started; at least one catalog is stopped.

CICAT_STOPPED

0x00000001

The catalog is stopped. This value MUST NOT be combined with any other value.

CICAT_READONLY

0x00000002

The catalog is read-only. This value MUST NOT be combined with
CICAT_WRITABLE or CICAT_STOPPED.

CICAT_WRITABLE

0x00000004

The catalog is writable. This value MUST NOT be combined with CICAT_READONLY
or CICAT_STOPPED.

CICAT_NO_QUERY

0x00000008

The catalog is not available for querying. This value MUST NOT be combined with
CICAT_STOPPED.

2.2.3.4 CPMUpdateDocumentsIn

The CPMUpdateDocumentsIn message directs the server to index the specified path.

The server will reply with the message header of the CPMUpdateDocumentsIn message with the
results of the request contained in the _status field of the message header.

The format of the CPMUpdateDocumentsIn message that follows the header is shown in the following
diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_flag (optional)

_fRootPath (optional)

RootPath (variable)

...

_flag (4 bytes): A 32-bit unsigned integer indicating the type of update to be performed. This field
MUST be present when the message is sent by the client and MUST be absent when the message
is sent by the server. This field SHOULD<7> be set to one of the following values.

Value Meaning

UPD_INCREM

0x00000000

An incremental update is to be performed.

UPD_FULL

0x00000001

A full update is to be performed.

UPD_INIT

0x00000002

A new initialization is to be performed.

49 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

_fRootPath (4 bytes): A Boolean value indicating whether the RootPath field specifies a path on
which to perform the update.

Note This field MUST be present when the message is sent by the client and MUST be absent
when the message is sent by the server. This field MUST be set to 0x00000001 or 0x00000000. If

set to 0x00000001, a path on which to perform the update is included in RootPath. If set to
0x00000000, the update is to be performed on all indexed paths.

RootPath (variable): The name of the path to be updated.

Note This field MUST be present when the message is sent by the client and _fRootPath is not
set to 0x00000000. This field MUST be absent when the message is sent by the server. When
present, the name MUST be a null-terminated Unicode string.

2.2.3.5 CPMForceMergeIn

The CPMForceMergeIn message requests a server to perform any maintenance necessary to improve
query performance. The server will reply with the message header of the CPMForceMergeIn message

with the results of the request contained in the _status field.

The format of the CPMForceMergeIn message that follows the header is shown in the following
diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_partID (optional)

_partID (4 bytes): A 32-bit unsigned integer.

Note This field MUST be present when the message is sent by the client and MUST be absent
when the message is sent by the server. When this field is present, it MUST be set to
0x00000001.

2.2.3.6 CPMConnectIn

The CPMConnectIn message begins a session between the client and server.

The format of the CPMConnectIn message that follows the header is shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_iClientVersion

_fClientIsRemote

_cbBlob1

_paddingcbdBlob2 (variable)

...

_cbBlob2

50 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

_padding

...

...

MachineName (variable)

...

UserName (variable)

...

_paddingcPropSets (variable)

...

cPropSets

PropertySet1 (variable)

...

PropertySet2 (variable)

...

_paddingExtPropset (variable)

...

cExtPropSet

aPropertySets (variable)

...

_iClientVersion (4 bytes): A 32-bit integer indicating whether the server is to validate the
checksum value specified in the _ulChecksum field of the message headers for messages sent by
the client.

Note If the _iClientVersion field is set to 0x00000008 or greater, the server MUST validate the
_ulChecksum field value for the following messages:

 CPMConnectIn

 CPMCreateQueryIn

 CPMFetchValueIn

 CPMGetRowsIn

51 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 CPMSetBindingsIn

For how the server validates the value specified by the client in the _ulChecksum field for the

messages previously listed, see section 3.2.4.

If the value is greater than 0x00000008, the client is assumed capable of handling 64-bit offsets

in CPMGetRowsOut messages.<8>

_fClientIsRemote (4 bytes): A Boolean value indicating whether the client is running on a different
machine from the server.

Note MUST be set to 0x00000001.

_cbBlob1 (4 bytes): A 32-bit unsigned integer indicating the size, in bytes, of the cPropSet,
PropertySet1, and PropertySet2 fields, combined.

_paddingcbdBlob2 (variable): This field MUST be 0 to 4 bytes in length. The length of this field

MUST be such that the byte offset from the beginning of the message to the first structure
contained in the _cbBlob2 field is a multiple of 8. The value of the bytes can be any arbitrary

value, and MUST be ignored by the receiver.

_cbBlob2 (4 bytes): A 32-bit unsigned integer indicating the size, in bytes, of the cExPropSet and
aPropertySet fields combined.

_padding (12 bytes): Twelve bytes of padding that MAY contain arbitrary values, and MUST be

ignored.

MachineName (variable): The machine name of the client. The name string MUST be a null-
terminated array of fewer than 512 Unicode characters, including the NULL terminator.

UserName (variable): A string that represents the user name of the person who is running the
application that invoked this protocol. The name string MUST be a null-terminated array of fewer
than 512 Unicode characters when concatenated with MachineName.

_paddingcPropSets (variable): This field MUST be 0 to 7 bytes in length. The number of bytes

MUST be the number required to make the byte offset of the cPropSets field a multiple of 8 from
the beginning of the message that contains this structure. The value of the bytes can be any
arbitrary value and MUST be ignored by the receiver.

cPropSets (4 bytes): A 32-bit unsigned integer indicating the number of CDbPropSet structures
following this field.

Note This value MUST be set to 0x00000000, 0x00000001, or 0x0000002.

PropertySet1 (variable): A CDbPropSet structure with guidPropertySet containing

DBPROPSET_FSCIFRMWRK_EXT (see section 2.2.1.16). This field is not present when cPropSets
is 0x00000000.

PropertySet2 (variable): A CDbPropSet structure with guidPropertySet containing
DBPROPSET_CIFRMWRKCORE_EXT (see section 2.2.1.16). This field is not present when
cPropSets is 0x00000000 or 0x00000001.

_paddingExtPropset (variable): This field MUST be 0 to 7 bytes in length. The number of bytes

MUST be the number required to make the byte offset of the cExtPropSets field from the
beginning of the message that contains this structure equal a multiple of 8. The value of the bytes
can be any arbitrary value, and MUST be ignored by the receiver.

cExtPropSet (4 bytes): A 32-bit unsigned integer indicating the number of CDbPropSet structures
following this field.

52 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

aPropertySets (variable): An array of CDbPropSet structures specifying other properties. The
number of elements in this array MUST be equal to cExtPropSet. An example would be

DONOTCOMPUTEEXPENSIVEPROPERTIES(A7AC77ED-F8D7-11CE-A798-0020F8008025) which
prevents the computation of expensive properties.<9>

2.2.3.7 CPMConnectOut

The CPMConnectOut message contains a response to a CPMConnectIn message.

The format of the CPMConnectOut message that follows the header is shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_serverVersion

_reserved (variable)

...

_serverVersion (4 bytes): A 32-bit integer, indicating whether the server can support 64-bit
offsets, as specified in section 2.2.3.16.

Value Meaning

0x00000007 The server can send only 32-bit offsets.

0x00010007 The server can send 32-bit or 64-bit offsets.

_reserved (variable): Reserved. The server may send an arbitrary number of arbitrary values, and
the client MUST ignore these values, if they are present.

2.2.3.8 CPMCreateQueryIn

The CPMCreateQueryIn message creates a new query. The format of the CPMCreateQueryIn message
that follows the header is shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Size

CColumnSetPresent paddingCColumnSetPresent (variable)

ColumnSet (variable)

...

CRestrictionPresent paddingCRestrictionPresent (variable)

Restriction (variable)

...

53 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

CSortSetPresent paddingCSortSetPresent (variable)

SortSet (variable)

...

CCategorizationSetPresen
t

paddingCCategorizationSetPresent (variable)

CCategorizationSet (variable)

...

RowSetProperties (20 bytes)

...

...

PidMapper (variable)

...

Size (4 bytes): A 32-bit unsigned integer indicating the number of bytes from the beginning of this
field to the end of the message.

CColumnSetPresent (1 byte): A byte field indicating if the ColumnSet field is present. This field

MUST be set to one of the following values.

Value Meaning

0x00 The ColumnSet field MUST be absent.

0x01 The ColumnSet field MUST be present.

paddingCColumnSetPresent (variable): This field MUST be 0 to 3 bytes in length. The length of
this field MUST be such that the following field begins at an offset that is a multiple of 4 bytes
from the beginning of the message that contains this structure. If this field is present (that is, its
length is nonzero), the value that it contains is arbitrary. The content of this field MUST be ignored

by the receiver. This field MUST be absent in CColumnSetPresent is set to 0x00.

ColumnSet (variable): A CColumnSet structure containing the property offsets for properties in
CPidMapper that are returned as acolumn.

CRestrictionPresent (1 byte): A byte field indicating if the Restriction field is present.

Note If set to any nonzero value, the Restriction field MUST be present. If set to 0x00,
Restriction MUST be absent.

paddingCRestrictionPresent (variable): This field MUST be 0 to 3 bytes in length. The length of

this field MUST be such that the following field begins at an offset that is a multiple of 4 bytes
from the beginning of the message that contains this structure. If this field is present (that is, its
length is nonzero), the value that it contains is arbitrary. The content of this field MUST be ignored
by the receiver. This field MUST be absent in CRestrictionPresent is set to 0x00.

Restriction (variable): A CRestriction structure containing the command tree of the query.

54 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

CSortSetPresent (1 byte): A byte field indicating if the SortSet field is present.

Note If set to any nonzero value, the SortSet field MUST be present. If set to 0x00, SortSet

MUST be absent.

paddingCSortSetPresent (variable): This field MUST be 0 to 3 bytes in length. The length of this

field MUST be such that the following field begins at an offset that is a multiple of 4 bytes from the
beginning of the message that contains this structure. If this field is present (that is, the length is
nonzero), the value that it contains is arbitrary. The content of this field MUST be ignored by the
receiver. This field MUST be absent if CSortSetPresent is set to 0x00.

SortSet (variable): A CSortSet structure indicating the sort order of the query.

CCategorizationSetPresent (1 byte): A byte field indicating if the CCategorizationSet field is
present.

Note If set to any nonzero value, the CCategorizationSet field MUST be present. If set to 0x00,
CCategorizationSet MUST be absent.

paddingCCategorizationSetPresent (variable): This field MUST be 0 to 3 bytes in length. The
length of this field MUST be such that the following field begins at an offset that is a multiple of 4
bytes from the beginning of the message that contains this structure. If this field is present (that
is, the length is nonzero), the value that it contains is arbitrary. The content of this field MUST be

ignored by the receiver. This field MUST be absent if CCategorizationSetPresent is set to 0x00.

CCategorizationSet (variable): A CCategorizationSet structure that contains the groups for the
query.

RowSetProperties (20 bytes): A CRowsetProperties structure providing configuration information
for the query.

PidMapper (variable): A CPidMapper structure that maps from property offsets to full property
descriptions.

2.2.3.9 CPMCreateQueryOut

The CPMCreateQueryOut message contains a response to a CPMCreateQueryIn message.

The format of the CPMCreateQueryOut message that follows the header is shown in the following

diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_fTrueSequential

_fWorkIdUnique

aCursors (variable)

...

_fTrueSequential (4 bytes): A 32-bit unsigned integer. MUST be set to one of the following values.

Note An informative value indicating if the query can be expected to provide results faster.

55 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

0x00000000 For the query provided in CPMCreateQueryIn, there would be a bigger latency in delivering
query results.

0x00000001 For the query provided in CPMCreateQueryIn, the server can use the inverted index in such a
way that query results will likely be delivered faster.

_fWorkIdUnique (4 bytes): A Boolean value indicating if the document identifiers pointed to by the
cursors (2) are unique throughout query results. MUST be set to one of the following values.

Value Meaning

0x00000000 The document identifiers are unique only throughout the rowset.

0x00000001 The document identifiers are unique across multiple query results.

aCursors (variable): An array of 32-bit unsigned integers representing the handles to cursors with

the number of elements equal to the number of categories in the CategorizationSet field of the
CPMCreateQueryIn message, plus one element, which represents an uncategorized cursor.

2.2.3.10 CPMGetQueryStatusIn

The CPMGetQueryStatusIn message requests the status of a query. The format of the
CPMGetQueryStatusIn message that follows the header is shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_hCursor

_hCursor (4 bytes): A 32-bit unsigned integer representing the handle from the CPMCreateQueryOut

message identifying the query for which to retrieve status information.

2.2.3.11 CPMGetQueryStatusOut

The CPMGetQueryStatusOut message replies to a CPMGetQueryStatusIn message with the status of
the query. The format of the CPMGetQueryStatusOut message that follows the header is shown in the

following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_Status

_Status (4 bytes): A 32-bit unsigned integer. A bitmask of values defined in the following tables that
describe the query.

The following table lists STAT_* values obtained by performing a bitwise AND operation on
_Status with 0x00000007. The result MUST be one of the following.

Constant Meaning

STAT_BUSY

0x00000000

The asynchronous query is still running.

56 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Constant Meaning

STAT_ERROR

0x00000001

The query is in an error state.

STAT_DONE

0x00000002

The query is complete.

STAT_REFRESH

0x00000003

The query is complete, but updates are resulting in additional query computation.

The following table lists additional STAT_* bits that can be set independently.

Constant Meaning

STAT_NOISE_WORDS

0x00000010

Noise words were replaced by wildcard characters in the content
query.

STAT_CONTENT_OUT_OF_DATE

0x00000020

The results of the query might be incorrect because the query
involved modified but unindexed files.

STAT_REFRESH_INCOMPLETE

0x00000040

The results of the query might be incorrect because the query
involved modified and indexed files whose content was not
included.

STAT_CONTENT_QUERY_INCOMPLETE

0x00000080

The content query was too complex to complete or required
enumeration instead of use of the content index.

STAT_TIME_LIMIT_EXCEEDED

0x00000100

The results of the query might be incorrect because the query
execution reached the maximum allowable time.

2.2.3.12 CPMGetQueryStatusExIn

A client MAY use the CPMGetQueryStatusExIn message to request the status of a query and additional
information such as the number of documents that have been indexed and the number of documents
remaining to be indexed. The format of the CPMGetQueryStatusExIn message that follows the header
is shown in the following diagram.<10>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_hCursor

_bmk

_hCursor (4 bytes): A 32-bit value representing the handle from the CPMCreateQueryOut message
identifying the query for which to retrieve status information.

_bmk (4 bytes): A 32-bit value indicating the handle of a bookmark whose position should be
retrieved.

57 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.3.13 CPMGetQueryStatusExOut

When a CPMGetQueryStatusExIn message is received, the server SHOULD reply with a
CPMGetQueryStatusExOut with both the query status and other status information, as outlined in the

following format. The format of the CPMGetQueryStatusExOut message that follows the header is
shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_Status

_cFilteredDocuments

_cDocumentsToFilter

_dwRatioFinishedDenominator

_dwRatioFinishedNumerator

_iRowBmk

_cRowsTotal

Status (4 bytes): One of the STAT* values specified in section 2.2.3.11.

_cFilteredDocuments (4 bytes): A 32-bit unsigned integer indicating the number of documents that
have been indexed.

_cDocumentsToFilter (4 bytes): A 32-bit unsigned integer indicating the number of documents that

still remain to be indexed.

_dwRatioFinishedDenominator (4 bytes): A 32-bit unsigned integer indicating the denominator of
the ratio of documents that the query has finished processing. MUST be greater than zero.

_dwRatioFinishedNumerator (4 bytes): A 32-bit unsigned integer indicating the numerator of the
ratio of documents that the query has finished processing.

_iRowBmk (4 bytes): A 32-bit unsigned integer indicating the approximate position of the bookmark

in the rowset in terms of rows.

_cRowsTotal (4 bytes): A 32-bit unsigned integer specifying the total number of rows in the rowset.

2.2.3.14 CPMSetBindingsIn

The CPMSetBindingsIn message requests the binding of columns to a rowset. The server will reply to

the CPMSetBindingsIn request message using the header section of the CPMSetBindingsIn message

with the results of the request contained in the _status field. The format of the CPMSetBindingsIn
message that follows the header is shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_hCursor (optional)

58 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

_cbRow (optional)

_cbBindingDesc (optional)

_dummy (optional)

cColumns (optional)

aColumns (variable)

...

_hCursor (4 bytes): A 32-bit value representing the handle from the CPMCreateQueryOut message
that identifies the query for which to set bindings. This field MUST be present when the message is
sent by the client and MUST be absent when the message is sent by the server.

_cbRow (4 bytes): A 32-bit unsigned integer indicating the size, in bytes, of a row. This field MUST
be present when the message is sent by the client and MUST be absent when the message is sent
by the server.

_cbBindingDesc (4 bytes): A 32-bit unsigned integer indicating the length, in bytes, of the fields
following the _dummy field. This field MUST be present when the message is sent by the client
and MUST be absent when the message is sent by the server.

_dummy (4 bytes): This field is unused and MUST be ignored. It can be set to any arbitrary value.
This field MUST be present when the message is sent by the client and MUST be absent when the
message is sent by the server.

cColumns (4 bytes): A 32-bit unsigned integer indicating the number of elements in the aColumns
array. This field MUST be present when the message is sent by the client and MUST be absent
when the message is sent by the server.

aColumns (variable): An array of the CTableColumn structures describing the columns of a row in

the rowset. This field MUST be present when the message is sent by the client and MUST be
absent when the message is sent by the server. Structures in the array MUST be separated by 0
to 3 padding bytes such that each structure has a 4-byte alignment from the beginning of a
message. Such padding bytes can be set to any arbitrary value when sent and MUST be ignored
on receipt.

2.2.3.15 CPMGetRowsIn

The CPMGetRowsIn message requests rows from a query. The format of the CPMGetRowsIn message
that follows the header is shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_hCursor

_cRowsToTransfer

_cbRowWidth

_cbSeek

59 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

_cbReserved

_cbReadBuffer

_ulClientBase

_fBwdFetch

eType

SeekDescription (variable)

...

_hCursor (4 bytes): A 32-bit value representing the handle from the CPMCreateQueryOut message

identifying the query for which to retrieve rows.

_cRowsToTransfer (4 bytes): A 32-bit unsigned integer indicating the maximum number of rows

that the client requests to receive in response to this message.

_cbRowWidth (4 bytes): A 32-bit unsigned integer indicating the length of a row in bytes.

_cbSeek (4 bytes): A 32-bit unsigned integer indicating the size of the message, beginning with
eType.

_cbReserved (4 bytes): A 32-bit unsigned integer indicating the offset, in bytes, of the Rows field
in the CPMGetRowsOut response message. This offset begins from the first byte of the message

header and MUST be set such that the Rows field follows the SeekDescription field.

_cbReadBuffer (4 bytes): A 32-bit unsigned integer.

Note This field MUST be set to the maximum of the value of _cbRowWidth, or 1,000 times the
value of _cRowsToTransfer rounded up to the nearest 512-byte multiple. The value MUST NOT
exceed 0x00004000.

_ulClientBase (4 bytes): A 32-bit unsigned integer indicating the base value to use for pointer
calculations in the row buffer. If 64-bit offsets are being used, the _ulReserved2 field of the

message header is used as the upper 32 bits, and _ulClientBase is used as the lower 32 bits of a
64-bit value. See section 2.2.3.16.

_fBwdFetch (4 bytes): A 32-bit unsigned integer indicating the order in which to fetch the rows.

Note Rows can be fetched in an order different from that in which they are stored.

MUST be set to one of the following values.

Value Meaning

0x00000000 The rows are to be fetched in forward order from the bookmark.

0x00000001 The rows are to be fetched in reverse order from the bookmark.

eType (4 bytes): A 32-bit unsigned integer. MUST contain one of the following values indicating the
type of operation to perform.

60 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

eRowSeekNext

0x00000001

SeekDescription contains a CRowSeekNext structure.

eRowSeekAt

0x00000002

SeekDescription contains a CRowSeekAt structure.

eRowSeekAtRatio

0x00000003

SeekDescription contains a CRowSeekAtRatio structure.

eRowSeekByBookmark

0x00000004

SeekDescription contains a CRowSeekByBookmark structure.

SeekDescription (variable): This field MUST contain a structure of the type indicated by the eType
value.

2.2.3.16 CPMGetRowsOut

The CPMGetRowsOut message replies to a CPMGetRowsIn message with the rows of a query. Servers
MUST format offsets to variable-length data types in the Row field as follows.

 The client indicated that it was a 32-bit system (0x00000008 or less in the _iClientVersion field
of CPMConnectIn): Offsets are 32-bit integers.

 The client indicated that it was a 64-bit system (_iClientVersion > 0x00000008 in
CPMConnectIn), and the server indicated that it was a 32-bit system (_serverVersion set to
0x00000007 in CPMConnectOut): Offsets are 32-bit integers.

 The client indicated that it was a 64-bit system (_iClientVersion > 0x00000008 in
CPMConnectIn), and the server indicated that it was a 64-bit system (_serverVersion set to
0x00010007 in CPMConnectOut): Offsets are 64-bit integers.

The format of the CPMGetRowsOut message that follows the header is depicted in the diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_cRowsReturned

eType

SeekDescription (variable)

...

paddingRows (variable)

...

Rows (variable)

...

61 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

_cRowsReturned (4 bytes): A 32-bit unsigned integer indicating the number of rows returned in
the Rows field.

eType (4 bytes): A 32-bit unsigned integer. MUST contain one of the following values indicating the
type of rowseek operation to perform.

Value Meaning

eRowsSeekNone

0x00000000

The SeekDescription field is omitted from the message.

eRowSeekNext

0x00000001

SeekDescription contains a CRowSeekNext structure.

eRowSeekAt

0x00000002

SeekDescription contains a CRowSeekAt structure.

eRowSeekAtRatio

0x00000003

SeekDescription contains a CRowSeekAtRatio structure.

eRowSeekByBookmark

0x00000004

SeekDescription contains a CRowSeekByBookmark structure.

SeekDescription (variable): This field MUST contain a structure of the type indicated by the eType
field.

paddingRows (variable): This field MUST be of sufficient length (0 to _cbReserved-1 bytes) to pad
the Rows field to _cbReserved offset from the beginning of a message where _cbReserved is the

value in the CPMGetRowsIn message. Padding bytes used in this field can be any arbitrary value.
This field MUST be ignored by the receiver.

Rows (variable): Row data is formatted as prescribed by column information in the most recent
CPMSetBindingsIn message. Row order is defined by the query and MUST be stored in forward
order (for example, row 1 before row 2).

Fixed-sized columns MUST be stored at the offsets specified by the most recent CPMSetBindingsIn

message.

Variable-sized columns (for example, strings) MUST be stored as follows.

 The variable data is returned in reverse row/column order beginning at the end of the buffer.
For example, the collection of all variable data for row 1 is at the end, and row 2 is next
closest.

 The beginning of the row buffer MUST contain a CRowVariant for each column, stored at the
offset specified in the most recent CPMSetBindingsIn message. vType MUST contain the data

type (for example: VT_LPWSTR). If, as determined by the rules at the beginning of this
section, 32-bit offsets are being used, the Offset field in CRowVariant MUST contain a 32-bit
value that is the offset of the variable data from the beginning of the CPMGetRowsOut
message plus the value of _ulClientBase specified in the most recent CPMGetRowsIn

message. If 64-bit offsets are being used, the Offset field in CRowVariant MUST contain a 64-
bit value that is the offset from the beginning of the CPMGetRowsOut message added to a 64-
bit value composed by using _ulClientBase as the low 32-bit value and _ulReserved2 as

the high 32-bit value.

Note The beginning of the row buffer here refers to the actual offset of the beginning of the row
data. That in turn depends on the structure of the data specified by the most recent call to
CPMSetBindingsIn. CPMSetBindingsIn specifies the structure of the returned data with

62 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

CTableColumn structures. The calculation of the offsets is thus dependent on the structure
specified for the returned rows.

The buffer is filled in from both ends. CRowVariant structures, one for each row, are stored at the
beginning of the buffer. Each of these structures points to the row data which is stored starting at

the end of the buffer.

Figure 2: Structure of the row buffer

The following example presents a sample message beginning with the row buffer and formatted
using 32-bit offsets. If the CPMSetBindingsIn message specified two columns (Size (VT_I4) and

Title (VT_LPWSTR)), and _ulClientBase from CPMGetRowsIn was 0x10000, row data for two

rows would appear as follows.

Figure 3: Example of row data format using 32-bit offsets

At the beginning of the offset, 0x10000, there are two CRowVariants, one for each column of

variable data stored for each of the two rows returned. Each CRowVariant consists of the

following:

 A 4 byte row identifier in which the column belongs.

 8 unused bytes that can be set to an arbitrary value.

 A 4 byte offset into the row data where the column data can be located.

63 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The six bytes between the last CRowVariant and the beginning of the column data stored at
0x10026 are padding.

2.2.3.17 CPMRatioFinishedIn

The CPMRatioFinishedIn message requests the completion percentage of a query. The format of the
CPMRatioFinishedIn message that follows the header is shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_hCursor

_fQuick

_hCursor (4 bytes): The handle from the CPMCreateQueryOut message identifying the query for

which to request completion information.

_fQuick (4 bytes): This is unused and MUST be ignored by the server.

Note This field MUST be set to 0x00000001.

2.2.3.18 CPMRatioFinishedOut

The CPMRatioFinishedOut message replies to a CPMRatioFinishedIn message with the completion ratio
of a query. The format of the CPMRatioFinishedOut message that follows the header is shown in the
following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_ulNumerator

_ulDenominator

_cRows

_fNewRows

_ulNumerator (4 bytes): A 32-bit unsigned integer indicating the numerator of the completion ratio
in terms of rows.

_ulDenominator (4 bytes): A 32-bit unsigned integer indicating the denominator of the completion
ratio in terms of row. This field MUST be greater than zero.

_cRows (4 bytes): A 32-bit unsigned integer indicating the total number of rows for the query.

_fNewRows (4 bytes): A Boolean value indicating if there are new rows available. A value of
0x00000001 indicates that new rows are available in the rowset. A value of 0x00000000 indicates
that the rowset does not contain any new rows. This field MUST NOT be set to any other values.

64 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.3.19 CPMFetchValueIn

The CPMFetchValueIn message requests a property value. As specified in section 3.2.4.2.5, this
message is sent repeatedly to retrieve all bytes of the property, updating _cbSoFar for each, until the

_fMoreExists field of the CPMFetchValueOut message is set to FALSE.

The format of the CPMFetchValueIn message that follows the header is shown in the following
diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_wid

_cbSoFar

_cbPropSpec

_cbChunk

PropSpec (variable)

...

_padding (variable)

...

_wid (4 bytes): A 32-bit unsigned integer representing the document ID identifying the document
for which a property should be fetched.

_cbSoFar (4 bytes): A 32-bit unsigned integer containing the number of bytes previously transferred

for this property.

Note This field MUST be set to 0x00000000 in the first message.

_cbPropSpec (4 bytes): A 32-bit unsigned integer containing the size of the PropSpec field in
bytes.

_cbChunk (4 bytes): A 32-bit unsigned integer containing the maximum number of bytes that the
sender can accept in a CPMFetchValueOut message.<11>

PropSpec (variable): A CFullPropSpec structure specifying the property to retrieve.

_padding (variable): This field MUST be of the length necessary (0 to 3 bytes) to pad the message
out to a multiple of 4 bytes in length. The value of the padding bytes can be any arbitrary value.
This field MUST be ignored by the receiver.

2.2.3.20 CPMFetchValueOut

The CPMFetchValueOut message replies to a CPMFetchValueIn message with a property value from a
previous query. As specified in section 3.1.5.2.8, this message is sent after each CPMFetchValueIn
message until all bytes of the property are transferred.

The format of the CPMFetchValueOut message that follows the header is shown in the following
diagram.

65 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_cbValue

_fMoreExists

_fValueExists

vValue (variable)

...

_cbValue (4 bytes): A 32-bit unsigned integer containing the total size, in bytes, in vValue.

_fMoreExists (4 bytes): A Boolean value indicating whether there are additional CPMFetchValueOut

messages available.

Value Meaning

0x00000000 There are no additional data available.

0x00000001 There are additional data available.

_fValueExists (4 bytes): A Boolean value indicating whether there is a value for the property.

Value Meaning

0x00000000 A value for the property does not exist.

0x00000001 A value for the property exists.

vValue (variable): A portion of a byte array containing a SERIALIZEDPROPERTYVALUE where the
offset of the beginning of the portion is the value of _cbSoFar in CPMFetchValueIn. The length of

the portion, indicated by the _cbValue field, MUST be less than or equal to the valure of
_cbChunk in CPMFetchValueIn.

2.2.3.21 CPMGetNotify

The CPMGetNotify message MAY request that the client be notified of rowset changes.

The message MUST NOT include a body; only the message header (as specified in section 2.2.2) is to
be sent.

2.2.3.22 CPMSendNotifyOut

The CPMSendNotifyOut message SHOULD notify the client of a change to the results of a query.

This message is sent only when a change occurs and a CPMGetNotify message has been received. The
format of the CPMSendNotifyOut message that follows the header is shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_watchNotify

66 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

_watchNotify (4 bytes): A 32-bit unsigned integer representing the change to the query. It MUST
be one of the following values.

Value Meaning

DBWATCHNOTIFY_ROWSCHANGED

0x00000001

The number of rows in the query rowset has changed.

DBWATCHNOTIFY_QUERYDONE

0x00000002

The query has completed.

DBWATCHNOTIFY_QUERYREEXECUTED

0x00000003

The query has been executed again.

2.2.3.23 CPMGetApproximatePositionIn

The CPMGetApproximatePositionIn message requests the approximate position of a bookmark in a
chapter. The format of the CPMGetApproximatePositionIn message that follows the header is shown in
the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_hCursor

_chapt

_bmk

_hCursor (4 bytes): A 32-bit value representing the query cursor (1) obtained from
CPMCreateQueryOut for the rowset containing the bookmark.

_chapt (4 bytes): A 32-bit value representing the handle to the chapter containing the bookmark.

_bmk (4 bytes): A 32-bit value representing the handle to the bookmark for which to retrieve the
approximate position.

2.2.3.24 CPMGetApproximatePositionOut

The CPMGetApproximatePositionOut message replies to a CPMGetApproximatePositionIn message
describing the approximate position of the bookmark in the chapter. The format of the
CPMGetApproximatePositionOut message that follows the header is shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_numerator

_denominator

_numerator (4 bytes): A 32-bit unsigned integer containing the row number of the bookmark in the
rowset.

67 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

_denominator (4 bytes): A 32-bit unsigned integer containing the number of rows in the rowset.

2.2.3.25 CPMCompareBmkIn

The CPMCompareBmkIn message requests a comparison of two bookmarks in a chapter.

The format of the CPMCompareBmkIn message that follows the header is shown in the following
diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hCursor

chapt

bmkFirst

bmkSecond

hCursor (4 bytes): A 32-bit unsigned integer representing the handle from the CPMCreateQueryOut

message for the rowset containing the bookmarks.

chapt (4 bytes): A 32-bit unsigned integer representing the handle of the chapter containing the
bookmarks to compare.

bmkFirst (4 bytes): A 32-bit unsigned integer representing the handle to the first bookmark to
compare.

bmkSecond (4 bytes): A 32-bit unsigned integer representing the handle to the second bookmark to
compare.

2.2.3.26 CPMCompareBmkOut

The CPMCompareBmkOut message replies to a CPMCompareBmkIn message with the comparison of
the two bookmarks in the chapter. The format of the CPMCompareBmkOut message that follows the
header is shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_dwComparison

_dwComparison (4 bytes): A 32-bit unsigned integer. MUST be one of the following values,
indicating the relative positions of the two bookmarks in the chapter.

Value Meaning

DBCOMPARE_LT

0x00000000

The first bookmark is positioned before the second.

DBCOMPARE_EQ

0x00000001

The first bookmark has the same position as the second.

DBCOMPARE_GT The first bookmark is positioned after the second.

68 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

0x00000002

DBCOMPARE_NE

0x00000003

The first bookmark does not have the same position as the second.

DBCOMPARE_NOTCOMPARABLE

0x00000004

The first bookmark is not comparable to the second.

2.2.3.27 CPMRestartPositionIn

The CPMRestartPositionIn message moves the fetch position for a cursor (1) to the beginning of the

chapter. As specified in section 3.1.5.2.12, the server will reply using the same message with the
results of the request contained in the _status field of the Content Indexing Services Protocol header.

The format of the CPMRestartPositionIn message that follows the header is shown in the following
diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_hCursor (optional)

_chapt (optional)

_hCursor (4 bytes): A 32-bit value representing the handle, obtained from a CPMCreateQueryOut
message, that identifies the query for which to restart the position. This field MUST be present

when the message is sent by the client and MUST be absent when the message is sent by the
server.

_chapt (4 bytes): A 32-bit value representing the handle of a chapter from which to retrieve rows.
This field MUST be present when the message is sent by the client and MUST be absent when the
message is sent by the server.

2.2.3.28 CPMStopAsynchIn

The CPMStopAsynchIn message contains a cursor handle for which an asynchronous query SHOULD
be stopped.

The format of the CPMStopAsynchIn message that follows the header is shown in the following
diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_hCursor

_hCursor (4 bytes): The handle from the CPMCreateQueryOut message identifying the query for
which to stop asynchronous processing.

69 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.3.29 CPMFreeCursorIn

The CPMFreeCursorIn message requests the release of a cursor. The format of the CPMFreeCursorIn
message that follows the header is shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_hCursor

_hCursor (4 bytes): A 32-bit value representing the handle of the cursor from the
CPMCreateQueryOut message to release.

2.2.3.30 CPMFreeCursorOut

The CPMFreeCursorOut message replies to a CPMFreeCursorIn message with the results of freeing a
cursor. The format of the CPMFreeCursorOut message that follows the header is shown in the

following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

_cCursorsRemaining

_cCursorsRemaining (4 bytes): A 32-bit unsigned integer indicating the number of cursors still in
use for the query.

2.2.3.31 CPMDisconnect

The CPMDisconnect message SHOULD end the connection with the server.

The message MUST NOT include a body; only the message header (as specified in section 2.2.2) is to
be sent.

2.2.4 Errors

All Content Indexing Services Protocol messages MUST return 0x00000000 on success; otherwise,
they return a 32-bit nonzero error code that can be either an HRESULT value or an NTSTATUS value

(see section 1.8). If a buffer is too small to fit a result, a status code of
STATUS_INSUFFICIENT_RESOURCES (0xC0000009A) MUST be returned, and the failing operation
should be retried with a larger buffer.

All other error values MUST be treated the same; the error MUST be considered fatal and reported to
the higher-level caller. Future messages MAY be sent over the same pipe as if no error had
occurred.<12>

Note Currently, the HRESULT and NTSTATUS numbering spaces do not overlap except with values of

identical meaning; but, even if there were conflicts in the future, they would not cause any protocol
issues as long as the value for STATUS_INSUFFICIENT_RESOURCES remains unique because all other
error values are treated the same.

2.2.5 Standard Properties

 Properties in the indexing service are represented by the combination of a property set GUID and
either a string property name or an integer property ID. See CFullPropSpec for more details.

70 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

There are three classes of properties: database properties, query properties, and open properties.
Database properties help control the indexing service behavior and are as specified in section

2.2.1.15.1. Query properties can be used in a restriction and in some cases returned with every result.
They are special because they are built into the indexing service. Open properties are defined by

individual applications. There are a typical set of common properties in use, but there is no
requirement to use them.

2.2.5.1 Query Properties

Query Property Set

 #define QueryGuid
 {0x49691c90,0x7e17,0x101a,0xa9,0x1c,0x08,0x00,0x2b,0x2e,0xcd,0xa9}

Friendly
name/PropId Data type Description

RankVector

 0x00000002

VT_UI4|VT_VECTOR The 0-1000 rank computed for each element when performing vector
ranking.

Rank

0x00000003

VT_I4 The rank 0-1000 computed for this item. How rank is computed is
defined by the indexing service. Typically, content and proximity
restrictions influence the rank, while other comparison operators do
not.

HitCount

0x00000004

VT_I4 The number of words from the query found.

WorkId

 0x00000005

VT_I4 A unique identifier for each result found. Use value as a bookmark
handle.

All

0x00000006

VT_LPWSTR Allows a content restriction over all textual properties. Cannot be
retrieved.

VPath

0x00000009

VT_LPWSTR Full virtual path to file, including file name. If there is more than one
possible path, then the best match for the specific query is chosen.

Storage Property Set

 #define StorageGuid
 {0xb725f130,0x47ef,0x101a,0xa5,0xf1,0x02,0x60,0x8c,0x9e,0xeb,0xac}

The friendly name is Contents, the PropId is 0x00000013, the data type is VT_LPWSTR, and it
represents the main contents of a file; usually, this property cannot be retrieved.

2.2.5.2 Common Open Properties

An indexing service can allow querying and retrieval over any property. The following tables outline
some properties typically used.

Storage Property Set

 #define StorageGuid
 {0xb725f130,0x47ef,0x101a,0xa5,0xf1,0x02,0x60,0x8c,0x9e,0xeb,0xac}

71 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Friendly name/PropId Data type Description

Directory

0x00000002

VT_LPWSTR Physical path to file, not including file name.

ClassId

0x00000003

VT_CLSID Class ID of object, for example, WordPerfect and Word.

FileIndex

0x00000008

VT_UI8 Unique ID of file.

USN

0x00000009

VT_I8 Update Sequence Number. NTFS drives only.

Filename

0x0000000A

VT_LPWSTR Name of file.

Path

0x0000000B

VT_LPWSTR Full physical path to file, including file name.

Size

0x0000000C

VT_I8 Size of file, in bytes.

Attrib

0x0000000D

VT_UI4 File attributes. Documented in Win32 SDK.

Write

0x0000000E

VT_FILETIME Last time that file was written.

Create

0x0000000F

VT_FILETIME Time that file was created.

Access

0x00000010

VT_FILETIME Last time that file was accessed.

AllocSize

0x00000012

VT_I8 Size of disk allocation for file.

ShortFilename

0x00000014

 VT_LPWSTR Short (8.3) file name.

 The following table lists the attribute flag values for the Attrib property.

 Attribute/value Description

FILE_ATTRIBUTE_READONLY

0x00000001

The file or directory is read-only.

Applications can read the file but cannot write to it or delete it.

For a directory, applications cannot delete it.

FILE_ATTRIBUTE_HIDDEN

0x00000002

The file or directory is hidden.

It is not included in an ordinary directory listing.

FILE_ATTRIBUTE_SYSTEM

0x00000004

The file or directory is part of the operating system or is used exclusively by
the operating system.

FILE_ATTRIBUTE_DIRECTORY

0x00000010

The handle identifies a directory.

72 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Attribute/value Description

FILE_ATTRIBUTE_ARCHIVE

0x00000020

The file or directory is an archive file.

Applications use this attribute to mark files for backup or removal.

FILE_ATTRIBUTE_NORMAL

0x00000080

The file or directory does not have another attributes set.

This attribute is valid only if used alone.

FILE_ATTRIBUTE_TEMPORARY

0x00000100

The file is being used for temporary storage.

File systems avoid writing data back to mass storage if sufficient cache
memory is available, because often the application deletes the temporary
file shortly after the handle is closed. In that case, the system can entirely
avoid writing the data. Otherwise, the data is written after the handle is
closed.

FILE_ATTRIBUTE_SPARSE_FILE

0x00000200

The file is a sparse file.

FILE_ATTRIBUTE_REPARSE_POINT

0x00000400

The file or directory has an associated reparse point.

FILE_ATTRIBUTE_COMPRESSED

0x00000800

The file or directory is compressed.

For a file, this means that all of the data in the file is compressed.

For a directory, this means that compression is the default for newly created
files and subdirectories.

FILE_ATTRIBUTE_OFFLINE

0x00001000

The data of the file is not immediately available.

This attribute indicates that the file data has been physically moved to
offline storage.

This attribute is used by Remote Storage, the hierarchical storage
management software. Applications should not arbitrarily change this
attribute.

FILE_ATTRIBUTE_ENCRYPTED

0x00004000

The file or directory is encrypted.

For a file, this means that all data in the file is encrypted.

For a directory, this means that encryption is the default for newly created
files and subdirectories.

FILE_ATTRIBUTE_VIRTUAL

0x00010000

A file is a virtual file.

Property Sets for Documents

 #define DocPropSetGuid
 {0xf29f85e0,0x4ff9,0x1068,0xab,0x91,0x08,0x00,0x2b,0x27,0xb3,0xd9}

Friendly name/PropId Data type Description

DocTitle

0x00000002

VT_LPWSTR Title of document.

DocSubject

0x00000003

VT_LPWSTR Subject of document.

DocAuthor

0x00000004

VT_LPWSTR Author of document.

73 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Friendly name/PropId Data type Description

DocKeywords

0x00000005

VT_LPWSTR Document keywords.

DocComments

0x00000006

VT_LPWSTR Comments about document.

DocTemplate

0x00000007

VT_LPWSTR Name of template for document.

DocLastAuthor

0x00000008

VT_LPWSTR Most recent user who edited document.

DocRevNumber

0x00000009

VT_LPWSTR Current version number of document.

DocEditTime

0x0000000A

VT_FILETIME Total time spent editing document.

DocLastPrinted

0x0000000B

VT_FILETIME Time that document was last printed.

DocCreatedTm

0x0000000C

VT_FILETIME Time that document was created.

DocLastSavedTm

0x0000000D

VT_FILETIME Time that document was last saved.

DocPageCount

0x0000000E

VT_I4 Number of pages in document.

DocWordCount

0x0000000F

VT_I4 Number of words in document.

DocCharCount

0x00000010

VT_I4 Number of characters in document.

DocThumbnail

0x00000011

VT_CF Thumbnail of document in clipboard format.

DocAppName

0x00000012

VT_LPWSTR Name of application that created the file.

Property Sets for Documents

 #define DocPropSetGuid2
 {0xd5cdd502,0x2e9c,0x101b,0x93,0x97,0x08,0x00,0x2b,0x2c,0xf9,0xae}

Friendly
name/PropId Data type Description

DocCategory

0x00000002

VT_LPSTR Type of document, such as a memo, schedule, or white
paper.

DocPresentationTarget

0x00000003

VT_LPSTR Target format (35mm, printer, video, and so on) for a
presentation in PowerPoint.

74 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Friendly
name/PropId Data type Description

DocByteCount

0x00000004

VT_I4 Number of bytes in a document.

DocLineCount

0x00000005

VT_I4 Number of lines contained in a document.

DocParaCount

0x00000006

VT_I4 Number of paragraphs in a document.

DocSlideCount

0x00000007

VT_I4 Number of slides in a Microsoft PowerPoint presentation.

DocNoteCount

0x00000008

VT_I4 Number of pages with notes in a PowerPoint presentation.

DocHiddenCount

0x00000009

VT_I4 Number of hidden slides in a PowerPoint presentation.

DocPartTitles

0x0000000D

VT_LPWSTR|VT_VECTOR

Names of document parts. For example, in Excel, part titles
are the names of spread-sheets; in PowerPoint, part titles
are the names of slides; and in Word for Windows, part
titles are the names of the documents in the master
document.

DocManager

0x0000000E

VT_LPSTR Name of the manager of the document's author.

DocCompany

0x0000000F

VT_LPSTR Name of the company for which the document was written.

Document characterization

 #define DocCharacterGuid
 {0x560c36c0,0x503a,0x11cf,0xba,0xa1,0x00,0x00,0x4c,0x75,0x2a,0x9a}

The friendly name is Characterization, the PropId is 0x00000002, its data type is VT_LPWSTR, and it is
the characterization, or abstract, of a document; computed by the indexing service.

Music Property Set

 #define PSGUID_MUSIC
 {56A3372E-CE9C-11d2-9F0E-006097C686F6}

Friendly name/PropId Data type Description

MusicArtist

0x00000002

VT_LPWSTR Artist who recorded the song.

MusicAlbum

0x00000004

VT_LPWSTR Album that the song was released on.

MusicYear

0x00000005

VT_LPWSTR Year that the song was published.

75 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Friendly name/PropId Data type Description

MusicTrack

0x00000007

VT_UI4 Track number of the song.

MusicGenre

0x0000000B

VT_LPWSTR Genre of the song.

Digital Rights Management

 #define PSGUID_DRM
 {AEAC19E4-89AE-4508-B9B7-BB867ABEE2ED}

This property set contains properties that describe the digital rights associated with some media.

Friendly name/PropId Data type Description

DrmLicense

0x00000002

VT_BOOL TRUE if there is a license.

DrmDescription

0x00000003

VT_LPWSTR Description of the license.

DrmPlayCount

0x00000004

VT_UI4 Number of times that the item can be played.

DrmPlayStarts

0x00000005

VT_FILETIME Date play rights start.

DrmPlayExpires

0x00000006

VT_FILETIME Date rights expire.

Image Property Set

 #define PSGUID_IMAGESUMMARYINFORMATION
 {0x6444048f,0x4c8b,0x11d1,0x8b,0x70,0x8,0x00,0x36,0xb1,0x1a,0x03}

Friendly name/PropId Data type Description

ImageFileType

0x00000002

VT_LPWSTR Type of image file.

ImageCx

0x00000003

VT_UI4 Horizontal size in pixels.

ImageCy

0x00000004

VT_UI4 Vertical size in pixels.

ImageResolutionX

0x00000005

VT_UI4 Horizontal resolution in pixels per inch.

ImageResolutionY

0x00000006

VT_UI4 Vertical resolution in pixels per inch.

ImageBitDepth VT_UI4 Number of bits per pixel.

76 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Friendly name/PropId Data type Description

0x00000007

ImageColorSpace

0x00000008

VT_LPWSTR Description of image color space.

ImageCompression

0x00000009

VT_LPWSTR Description of image compression.

ImageTransparency

0x0000000A

VT_UI4 Degree of transparency from 0-100.

ImageGammaValue

0x0000000B

VT_UI4 Gamma correction value.

ImageFrameCount

0x0000000C

VT_UI4 Frame count for image.

ImageDimensions

0x0000000D

VT_LPWSTR Description of the image dimensions.

Audio Property Set

 #define PSGUID_AUDIO
 {64440490-4C8B-11D1-8B70-080036B11A03}

Audio-Related Properties

Friendly name/PropId Datatype Description

AudioFormat

0x00000002

VT_LPWSTR Format of audio.

AudioTimeLength

0x00000003

VT_UI8 Duration in 100-nanosecond units.

AudioAvgDataRate

0x00000004

VT_UI4 Average encoding rate in bits per second.

AudioSampleRate

0x00000005

VT_UI4 Sample rate in samples per second.

AudioSampleSize

0x00000006

VT_UI4 Sample size in bits per sample.

AudioChannelCount

0x00000007

VT_UI4 Number of channels of audio.

Video Property Set

 #define PSGUID_VIDEO
 {64440491-4C8B-11D1-8B70-080036B11A03}

77 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Friendly Name/PropId Datatype Description

VideoStreamName

0x00000002

VT_LPWSTR Name of the stream.

VideoFrameWidth

0x00000003

VT_UI4 Width of a frame in pixels.

VideoFrameHeight

0x00000004

VT_UI4 Height of a frame in pixels.

VideoTimeLength

0x00000005

VT_UI4 Duration in 100-nanosecond units.

VideoFrameCount

0x00000006

VT_UI4 Number of frames in video.

VideoFrameRate

0x00000007

VT_UI4 Frames per second.

VideoDataRate

0x00000008

VT_UI4 Bits per second.

VideoSampleSize

0x00000009

VT_UI4 Bits per sample.

VideoCompression

0x0000000A

VT_LPWSTR Description of video compression.

Mime Properties

 #define #define NNTPGuid
 {0xAA568EEC,0xE0E5,0x11CF,0x8F,0xDA,0x00,0xAA,0x00,0xA1,0x4F,0x93}

Friendly name/PropId Data type Description

MsgNewsgroup

0x00000002

VT_LPWSTR Newsgroup for the message.

MsgSubject

0x00000005

VT_LPWSTR Subject of the message.

MsgFrom

0x00000006

VT_LPWSTR Who sent the message.

MsgMessageID

0x00000007

VT_LPWSTR Unique ID for email message.

MsgDate

0x0000000C

VT_FILETIME When the message was sent.

MsgReceivedDate

 0x00000035

VT_FILETIME When the message was received.

MsgArticleID

 0x0000003C

VT_UI4 Unique identifier for the newsgroup article.

78 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

79 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3 Protocol Details

Content Indexing Services Protocol message requests require only minimal sequencing. A
CPMSetCatStateIn message MAY be called at any time. All other messages MUST be preceded by an
initial CPMConnectIn message (for example, at least one CPMConnectIn message for each named pipe
connection). Beyond the initial connection, there is no other sequencing required by the protocol.
However, it is advised that the higher layer adhere to a meaningful message sequence. Some

messages include data returned by previous messages. Even though it is legal to send messages in
any order, the server will return an error if the data in a particular message is invalid. Message
dependencies define only a partial order of message sequence - other messages can be interspersed.

The following figure shows how messages depend on the data from previous messages.

80 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 4: Typical message sequence for a simple query from client to remote computer

The messages represented in the preceding diagram represent a subset of all of the Content Indexing

Services Protocol messages used for querying a remote indexing service catalog.

3.1 Server Details

3.1.1 Abstract Data Model

The following section specifies data and state maintained by the Content Indexing Services Protocol
server. The data provided in this document explains how the protocol behaves. This section does not
mandate that implementations adhere to this model as long as their external behavior is consistent
with that described in this document.

An indexing service implementing the Content Indexing Services Protocol MUST maintain the following
abstract data elements:

 The list of clients connected to the server.

 Information about each client, which includes:

 Client's version (as indicated in the CPMConnectIn message specified in section 2.2.3.6).

 Catalog associated with the client (by a CPMConnectIn message).

 Additional client properties as specified in the Properties section.

 Client's search query.

 List of cursor (1) handles for the query, and position in result set for each handle.

 Current set of bindings.

 Current status of the query, which includes (for each cursor):

 Number of rows in query result.

 Numerator and denominator of query completion.

 Last number of rows, reported by most recent CPMRatioFinishedOut message for this
cursor.

 Whether the query is monitored by the server for changes in query results, and if it is
monitored, what changed in the query results since they were last reported to the client
by CPMSendNotifyOut.

 List of chapter handles, served by this query to a client.

 List of bookmark handles for each cursor, served by this query to a client.

 The current state of the indexing service, which may be "not initialized", "running", or "shutting
down". These states are logical only, and may only affect possible error messages received from
the service. Note that most of the time the server is in "running" state. The following is the state
machine diagram for the server.

81 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 5: State machine diagram for the server

 Per-catalog information: collection of indexed locations, number of documents indexed, size of

inverted index, number of unique keys, and so on (see section 2.2.3.1 for complete list), state
which corresponds to the values of dwOldState in section 2.2.3.3.<13>

 For each language supported, a database of word variations as discussed in
GENERATE_METHOD_INFLECT in section 2.2.1.3.

3.1.2 Timers

None.

3.1.3 Initialization

Upon initialization, the server MUST set its state to "not initialized" and start listening for messages on
the named pipe specified in section 1.9. After doing any other internal initialization, the server MUST

transition to the "running" state.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Message Processing and Sequencing Rules

Whenever an error occurs during the processing of a message sent by a client, the server MUST report

an error back to the client as follows:

 Stop processing the message sent by the client.

 Respond with the message header (only) of the message sent by the client, keeping _msg field
intact.

 Set the _status field to the error code value.

When a message arrives, the server MUST check the field value to determine whether it is a known
type (see section 2.2.2). If the type is not known, the server MUST report a

STATUS_INVALID_PARAMETER (0xC000000D) error.

The server MUST then validate the _ulChecksum field value if the message type is one of the
following:

 CPMConnectIn (0x000000C8)

 CPMCreateQueryIn (0x000000CA)

 CPMSetBindingsIn (0x000000D0)

 CPMGetRowsIn (0x000000CC)

 CPMFetchValueIn (0x000000E4)

To validate the _ulChecksum field value, the server MUST check the value that the client specified in
the _iClientVersion field in the CPMConnectIn message.

If the _iClientVersion field is less than 0x00000008 and the _ulChecksum field is not set to
0x00000000, the server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error. The
server MUST NOT validate the _ulChecksum field for clients that set the _iClientVersion field to a

value less than 0x00000008.

82 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the _iClientVersion field value is 0x00000008 or greater, the server MUST validate that the
_ulChecksum field was calculated as specified in section 3.2.4. If the _ulChecksum value is invalid,

the server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

Next, the server checks which state it is in. If its state is "not initialized", the server MUST report a

CI_E_NOT_INITIALIZED (0x8004180B) error. If its state is "shutting down", the server MUST report a
CI_E_SHUTDOWN (0x80041812) error.

After a header has been determined to be valid and after the server has been determined to be in
"running" state, further message-specific processing MUST be done as specified in the following
subsections.

Some messages are valid only after a previous message has been sent. Typically, an ID or handle
from the earlier message is required as input to the later message. These requirements are detailed in

the following sections. The following table summarizes the relationship between messages.

Figure 6: Relationship between messages

83 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.1.5.1 Remote Indexing Service Catalog Management

3.1.5.1.1 Receiving a CPMCiStateInOut Request

When the server receives a CPMCiStateInOut message request from the client, the server MUST first
check whether the client is in a list of connected clients. If the client is not in the list, the server MUST
report a STATUS_INVALID_PARAMETER (0xC000000D) error. Otherwise, the server MUST respond to
the client with a CPMCiStateInOut message, filling the message in with information about the client's
associated catalog, as specified in section 2.2.3.1.

3.1.5.1.2 Receiving a CPMSetCatStateIn Request

When the server receives a CPMSetCatStateIn message request from the client, the server MUST do
the following:

1. Check whether the client has administrative access. If the client does not have administrative
access, the server MUST report a STATUS_ACCESS_DENIED (0xC0000022) error.

2. If _dwNewState is not equal to CICAT_ALL_OPENED, locate a catalog with the name specified in
the _CatName field. If the server does not locate such a catalog or the value of _dwNewState is
not one of the values listed in section 2.2.3.2, the server MUST return a

STATUS_INVALID_PARAMETER (0xC000000D) error.

3. If _dwNewState is not CICAT_GET_STATE or CICAT_ALL_OPENED, change the state of the
catalog to the value specified in one of the figures below, where the following abbreviations are
used: STP (CICAT_STOPPED), RO (CICAT_READONLY), RW (CICAT_WRITABLE), and NQ
(CICAT_NOQUERY).

If the catalog exists on a read/write media, the following values are used.

Figure 7: Read/write catalog states

Note The state RO|NQ MUST NOT be used in this case.

If the catalog exists on read-only media such as a CD-ROM, the figure is the following values are

used.

Figure 8: Read-only catalog states

84 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Note The states RW and RW|NQ MUST NOT be used in this case.

4. Respond to the client with a CPMSetCatStateOut message, where _dwOldState MUST be set to

the previous state of the catalog if _dwNewState is CICAT_STOPPED, CICAT_READONLY,
CICAT_WRITABLE, CICAT_NO_QUERY or CICAT_GET_STATE. If _dwNewState is equal to

CICAT_ALL_OPENED, the server MUST check the status of all catalogs. If any catalog was started
since service start up, the server MUST set _dwOldState to 0x00000001. If no catalogs were
started, the server MUST set _dwOldState to 0x00000000.

Note It is very unusual to receive 0x00000000 in response to CICAT_ALL_OPENED.

3.1.5.1.3 Receiving a CPMUpdateDocumentsIn Request

When the server receives a CPMUpdateDocumentsIn message request, the server MUST do the

following:

1. Check whether the client is in a list of connected clients (which have an associated catalog). If the
client is not in the list, the server MUST report a STATUS_INVALID_PARAMETER (0xC000000D)

error.

2. Check whether the client has administrative access. If the client does not have administrative
access to the server, the server MUST report a STATUS_ACCESS_DENIED (0xC0000022) error.

3. Begin the process of indexing the path specified by the client by doing a full or incremental scan,
depending on the value of the _flag field in the CPMUpdateDocumentsIn message. If the path was
not previously indexed, it MUST be added to the collection of indexed locations and a full scan
MUST be performed. This operation MUST be performed in the catalog associated with the client.

4. Respond to the client with the message header for the CPMUpdateDocumentsIn message, and set
the _status field to the results of the request.

3.1.5.1.4 Receiving a CPMForceMergeIn Request

When the server receives a CPMForceMergeIn message request, the server MUST do the following:

1. Check whether the client is in a list of connected clients (which have a catalog associated). If the
client is not in the list, the server MUST report a STATUS_INVALID_PARAMETER (0xC000000D)
error.

2. Check whether the client has administrative access. If the client does not have administrative
access, the server MUST report a STATUS_ACCESS_DENIED (0xC0000022) error.

3. Begin any process of maintenance that is necessary to improve query performance on a catalog
associated with the client.

4. Respond to the client with a message header for the CPMForceMergeIn message, and set the
_status field to the results of the request.

Note The process of maintenance is asynchronous and can continue after the client receives
the response message. This process does not directly affect the protocol in any way (other than

response time).

3.1.5.2 Remote Indexing Service Querying

3.1.5.2.1 Receiving a CPMConnectIn Request

When the server receives a CPMConnectIn request from a client, the server MUST do the following:

85 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

1. Check whether the client is already on the list of connected clients. If this is the case, the server
MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check whether the specified catalog exists and is not in the stopped state. If this is not the case,
the server MUST report a CI_E_NO_CATALOG (0x8004181D) error.

3. Add the client to the list of connected clients.

4. Associate the catalog with the client.

5. Store the information passed in the CPMConnectIn message (such as catalog name or client
version) in the client state.

6. Respond to the client with a CPMConnectOut message.

3.1.5.2.2 Receiving a CPMCreateQueryIn Request

When the server receives a CPMCreateQueryIn message request from a client, the server MUST do the
following:

1. Check whether the client is in the list of connected clients. If this is not the case, the server MUST
report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check whether the client already has a query associated with it. If this is the case, the server
MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

3. Check whether the catalog associated with the client is in a state that allows a query to be
processed (CICAT_READONLY or CICAT_WRITABLE). If this is not the case, the server MUST
report a QUERY_S_NO_QUERY (0x8004160C) error.

4. Parse therestriction set, sort orders, and groupings that are specified in the query. If the server
encounters an error, it MUST report an appropriate error. If this step fails for any other reason,
the server MUST report the error encountered. For information about indexing service query
errors, see [MSDN-QUERYERR].

5. Save the search query in the state for the client.

6. Make any preparations needed to serve rows to a client and associate the query with appropriate
cursor (1) handles (depending on information passed in the CPMCreateQueryIn message).

7. Add those handles to the client's list of cursor handles, and create lists of chapter handles and
bookmarks.

8. Initialize the list of chapter handles for every cursor in this query to DB_NULL_HCHAPTER.

9. Mark the query as not monitored for changes.

10. Initialize the number of rows to the currently calculated number of rows (which can be 0 if a query
did not start to execute or some number if the query is in a process of execution), and initialize
the numerator and denominator of query completion.

11. Respond to the client with a CPMCreateQueryOut message.

3.1.5.2.3 Receiving a CPMGetQueryStatusIn Request

When the server receives a CPMGetQueryStatusIn message request from a client, the server MUST do
the following:

1. Check whether the client has a query associated with it. If this is not the case, the server MUST
report a STATUS_INVALID_PARAMETER (0xC000000D) error.

http://go.microsoft.com/fwlink/?LinkId=90070

86 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2. Check whether the cursor handle is in a list of the client's cursor handles. If this is not the case,
the server MUST report an E_FAIL (0x80004005) error.

3. Prepare a CPMGetQueryStatusOut message. The server MUST retrieve the current query status
and set it in the _Status field (see 2.2.3.11 for possible values). If this step fails for any reason,

the server MUST report an error.

4. Respond to the client with the CPMGetQueryStatusOut message.

3.1.5.2.4 Receiving a CPMGetQueryStatusExIn Request

If the server receives a CPMGetQueryStatusExIn message request from a client, the server MUST do
the following:

1. Check whether the client has a query associated with it. If this is not the case, the server MUST

report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check whether the cursor (1) handle passed is in a list of the client's cursor handles. If this is not

the case, the server MUST report an E_FAIL (0x80004005) error.

3. Prepare a CPMGetQueryStatusExOut message. The server MUST retrieve the current query status
and query progress and set _Status (see CPMGetQueryStatusOut for possible values),
_dwRatioFinishedDenominator, and _dwRatioFinishedNumerator respectively. The server

MUST then set the number of rows in the query results to _cRowsTotal. If this step fails for any
reason, the server MUST report that an error was encountered.

4. Retrieve information about the client's catalog and fill in _cFilteredDocuments and
_cDocumentsToFilter. If this step fails for any reason, the server MUST report that an error was
encountered.

5. Retrieve the position of the bookmark indicated by the handle in the _bmk field, and fill the
remaining _iRowBmk field in the CPMGetQueryStatusExOut message. If this step fails for any

reason, the server MUST report that an error was encountered.

6. Respond to the client with the CPMGetQueryStatusExOut message.

3.1.5.2.5 Receiving a CPMRatioFinishedIn Request

When the server receives a CPMRatioFinishedIn message request from a client, the server MUST do
the following:

1. Check whether the client has a query associated with it. If this is not the case, the server MUST

report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check whether the cursor handle passed is in the list of the client's cursor handles. If this is not
the case, the server MUST report an E_FAIL (0x80004005) error.

3. Prepare a CPMRatioFinishedOut message. The server MUST retrieve the client's query status and
fill in the _ulNumerator, _ulDenominator, and _cRows fields. If this step fails for any reason,
the server MUST report that an error was encountered.

4. If _cRows is equal to the last reported number of rows for this query, set _fNewRows to
0x00000000; otherwise, set it to 0x00000001.

5. Update the last reported number of rows for this query to the value of _cRows.

6. Respond to the client with the CPMRatioFinishedOut message.

3.1.5.2.6 Receiving a CPMSetBindingsIn Request

87 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

When the server receives a CPMSetBindingsIn message request from a client, the server MUST do the
following:

1. Check whether the client has a query associated with it. If this is not the case, the server MUST
report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check whether the cursor handle passed is in the list of the client's cursor handles. If this is not
the case, the server MUST report an E_FAIL (0x80004005) error.

3. Verify that binding information is valid (that is, the column at least specifies value, length, or
status to be returned; no overlap in bindings for value, length, or status; and value, length, and
status fit in the specified row size) and if not, report a DB_E_BADBINDINFO (0x80040E08) error.

4. Save the binding information associated with the columns specified in the aColumns field. If this
step fails for any reason, the server MUST report that an error was encountered.

5. Respond to the client with a message header (only) with _msg set to CPMSetBindingsIn, and
_status set to the results of the specified binding.

3.1.5.2.7 Receiving a CPMGetRowsIn Request

When the server receives a CPMGetRowsIn message request from a client, the server MUST do the
following:

1. Check whether the client has a query associated with it. If this is not the case, the server MUST
report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check whether the cursor handle passed is in the list of the client's cursor handles. If this is not
the case, the server MUST report an E_FAIL (0x80004005) error.

3. Check whether the client has a current set of bindings. If this is not the case, the server MUST
report an E_FAIL (0x80004005) error.

4. Prepare a CPMGetRowsOut message. The server MUST position the cursor in query results as

indicated by the seek description. If this step fails for any reason, the server MUST report that an

error was encountered.

5. Fetch as many rows as will fit in a buffer, the size of which is indicated by _cbReadBuffer, but
not more than indicated by _cRowsToTransfer. When fetching rows, the server MUST compare
each selected column's property value type to the type that is specified in the client's current set
of bindings (see section 3.1.1). If the type in the binding is not VT_VARIANT, the server MUST
attempt to convert the column's property value to that type. Otherwise, if the

DBPROP_USEEXTENDEDDBTYPES flag is set in the client's DBPROPSET_QUERYEXT property set, or
if the column's property value is not a VT_VECTOR type, the property value MUST be returned in
its normal type. If none of these are the case (that is, the server has a VT_VECTOR type, and the
client does not support VT_VECTOR), the server MUST attempt to convert it to a VT_ARRAY type
as follows:

 VT_I8, VT_UI8, VT_FILETIME, and VT_CLSID array elements cannot be converted and instead

fail.

 VT_LPSTR and VT_LPWSTR array elements MUST be converted to VT_BSTR.

 Array elements of all other types MUST remain unchanged.

Finally, if row columns contain chapter handles or bookmark handles, the server MUST update the
corresponding lists. If this step fails for any reason, the server MUST report that an error was
encountered.

6. Store the actual number of rows fetched in _cRowsReturned.

88 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

7. Store fetched rows in the Rows field (see note on the following status byte and section 2.2.3.16
on the structure of the Rows field).

8. Respond to the client with the CPMGetRowsOut message.

Note Regarding status byte field: If StatusUsed is set to 0x01 in the CTableColumn structure of

the CPMSetBindingsIn message for the column, the server MUST set the status byte according
the description specified in section 2.2.1.25.

If the property value is absent for this row, the server MUST set the status byte to StatusNull. If the
value is too big to be transferred in the CPMGetRowsOut message (greater than 2048 bytes), the
server MUST set the status byte to StatusDeferred. Otherwise, the server MUST set the status byte to
StatusOK.

3.1.5.2.8 Receiving a CPMFetchValueIn Request

When the server receives a CPMFetchValueIn message request from a client, the server MUST do the
following:

1. Check whether the client has a query associated with it. If this is not the case, the server MUST
report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Prepare a CPMFetchValueOut message. If this step fails for any reason, the server MUST report an

error.

3. Find the document indicated by the _wid field and check if this document is available for this
client and that this document has the property indicated by property ID in the CFullPropSpec
structure. In the case both conditions are true, the server MUST set _fValueExists to 0x00000000,
and otherwise set _fValueExists to 0x00000001. The value which is indicated by property ID in the
CFullPropSpec structure for that document is referred to later as the "property value". If this step
fails for any reason, the server MUST report an error.

4. If _fValueExists is equal to 0x00000001, the server MUST do the following:

1. Serialize the property value to a SERIALIZEDPROPERTYVALUE structure and copy, starting
from the _cbSoFar offset, at most _cbChunk bytes (but not past the end of the serialized
property) to vValue field. If this step fails for any reason, the server MUST report an error.

2. Set _cbValue to the number of bytes copied in the previous step.

3. If the length of serialized property is greater than _cbSoFar added to _cbValue, set
_fMoreExists to 0x00000001; otherwise, set it to 0x00000000.

5. Respond to the client with the CPMFetchValueOut message.

3.1.5.2.9 Receiving a CPMGetNotify Request

If the server SHOULD receive a CPMGetNotify message from a client, the server MUST do the
following:

1. Check whether the client has a query associated with it. If this is not the case, the server MUST

report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. If there were no changes in the query result set since the last CPMSendNotifyOut message for this
client, or if the query is not currently monitored for changes in the results set, the server MUST
respond with a CPMGetNotify message and start to monitor the query for changes in the results
set. If at a later time there is a change in the query results set, the server MUST send exactly one
CPMSendNotifyOut message to the client and MUST specify the change in the _watchNotify field.

89 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3. If there were changes to the query result set since the last CPMSendNotifyOut message, the
server MUST reply with CPMSendNotifyOut and MUST specify the change in the _watchNotify

field. Note, that in the case of many changes to the query results,
DBWATCHNOTIFY_ROWSCHANGED takes priority (that is, if the query was done and re-executed,

and then if the number of rows changed and the query was done again, then the event reported
would be DBWATCHNOTIFY_ROWSCHANGED).

3.1.5.2.10 Receiving a CPMGetApproximatePositionIn Request

When the server receives a CPMGetApproximatePositionIn message request from the client, the server
MUST do the following:

1. Check whether the client has a query associated with it. If this is not the case, the server MUST

report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check whether the cursor handle, chapter handle, and bookmark handle passed are in
corresponding lists. If this is not the case, the server MUST report an E_FAIL (0x80004005) error.

3. Find a row that is associated with the bookmark handle in the query results and approximate the
position of the row in the rowset, referred to by the chapter handle, and determine the numerator
and denominator for the position. Note that when the chapter handle is DB_NULL_HCHAPTER, the

corresponding chapter is the main rowset of the query. If this step fails for any reason, the server
MUST report an error.

4. Respond to the client with a CPMGetApproximatePositionOut message.

3.1.5.2.11 Receiving a CPMCompareBmkIn Request

When the server receives a CPMCompareBmkIn message request from the client, the server MUST do
the following:

1. Check whether the client has a query associated with it. If this is not the case, the server MUST
report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check whether the cursor handle, chapter handle, and bookmark handle passed are in
corresponding lists. If this is not the case, the server MUST report an E_FAIL (0x80004005) error.

3. Prepare a CPMCompareBmkOut message.

4. If bookmark handles are equal, _dwComparison MUST be set to DBCOMPARE_EQ.

5. Otherwise, the server MUST do the following:

1. Find rows that are referred to by each bookmark handle in the query results. If the server
cannot find one of the rows, DB_E_BADBOOKMARK (0x80040E0E) is returned.

2. If any one of the rows is not in the chapter indicated by the chapter handle in
CPMCompareBmkIn, then _dwComparison MUST be set to DBCOMPARE_NOTCOMPARABLE.

3. Otherwise, when both rows are in the same chapter, the server MUST approximate a position

of those rows in the rowset referred to by this chapter's handle. The server MUST then

compare position values and set _dwComparison to DBCOMPARE_LT if the position of the
first row is smaller than the position of the second row; otherwise, _dwComparison MUST be
set to DBCOMPARE_GT.

6. Respond to the client with filled CPMCompareBmkOut message.

3.1.5.2.12 Receiving a CPMRestartPositionIn Request

90 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

When the server receives the CPMRestartPositionIn message request from the client, the server MUST
do the following:

1. Check whether the client has a query associated with it. If this is not the case, the server MUST
report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check whether the cursor handle and chapter handle passed are in corresponding lists. If this is
not the case, the server MUST report an E_FAIL (0x80004005) error.

3. Move the cursor to the beginning of the chapter, identified by the chapter handle. Note that when
the chapter handle is DB_NULL_HCHAPTER, the corresponding chapter is the main rowset of the
query. If this step fails for any reason, the server MUST report an error.

4. Respond to the client with a CPMRestartPositionIn message.

3.1.5.2.13 Receiving a CPMStopAsynchIn Request

If the server SHOULD receive a CPMStopAsynchIn message request from the client, the server MUST

do the following:

1. Check whether the client has a query associated with it. If this is not the case, the server MUST
report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check whether the cursor handle passed is in the list of the client's cursor handles and the cursor

was created with the eAsynchronous flag (0x00000008) set. If this is not the case, the server
MUST report an E_FAIL (0x80004005) error.

3. Stop asynchronous query processing.

4. Respond to the client with the message header for the CPMStopAsynchIn message request, and
set the _status field to the result of step 3.

3.1.5.2.14 Receiving a CPMFreeCursorIn Request

When the server receives a CPMFreeCursorIn message request from the client, the server MUST do
the following:

1. Check whether the client has a query associated with it. If this is not the case, the server MUST
report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check whether the cursor handle passed is in the list of the client's cursor handles. If this is not
the case, the server MUST report an E_FAIL (0x80004005) error.

3. Release the cursor and associated resources (see section 3.1.1 for a complete list) for this cursor

handle.

4. Remove the cursor from the list of cursors for that client.

5. Respond with a CPMFreeCursorOut message, setting the _cCursorsRemaining field with the
number of cursors remaining in this client's list.

6. If there are no more cursors for this client, the server MUST release the query and associated
resources (see section 3.1.1).

3.1.5.2.15 Receiving a CPMDisconnect Request

If the server SHOULD receive a CPMDisconnect message request from the client, the server MUST
remove the client from the list of connected clients and release all resources associated with the client.

91 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.1.6 Timer Events

None.

3.1.7 Other Local Events

When the server is stopped, it MUST first transition to the "shutting down" state. It MUST then stop
listening to the pipe, perform any other implementation-specific shutdown tasks, and then transition
into the "stopped" state.

3.2 Client Details

3.2.1 Abstract Data Model

The following section specifies data and state maintained by the Content Indexing Services Protocol
client. The data is provided to help explain how the protocol behaves. This section does not mandate

that implementations adhere to this model as long as their external behavior is consistent with what is
described in this document.

A client has the following abstract state:

Last Message Sent: A copy of the last message sent to the server.

Current Property Value: A partial value of a deferred property, which is in the process of being
retrieved.

Current Bytes Received: The number of bytes received for Current Property Value so far.

Named Pipe Connection State: A connection to the server.

3.2.2 Timers

None.

3.2.3 Initialization

No actions are taken until a higher-layer request is received.

3.2.4 Higher-Layer Triggered Events

When a request is received from a higher layer, the client MUST create a named pipe connection to
the server, using the details specified in section 2.1. If the client is unable to do so, the higher-layer

request MUST be failed. That is, in case of a failure to connect, it is the responsibility of the higher
layer to retry if wanted.

A header MUST be pre-pended with fields set as specified in section 2.2.2.

For messages that are specified as requiring a nonzero checksum, the _ulChecksum value MUST be
calculated as follows:

1. The content of the message after the _ulReserved2 field in the message header MUST be

interpreted as a sequence of 32-bit integers. The client MUST calculate the sum of the numeric
values given by these integers.

2. Calculate the bitwise XOR of this value with 0x59533959.

3. Subtract the value given by _msg from the value that results from the bitwise XOR.

92 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.4.1 Remote Indexing Service Catalog Management

Each message is triggered by a request from the higher layer. There is no message sequence enforced
by the client for Content Indexing Services Protocol message requests for remotely managing

catalogs, but (with the exception of a CPMSetCatStateIn message) the server will reply with success
only if the client previously connected by means of a CPMConnectIn message.

3.2.4.1.1 Sending a CPMCiStateInOut Request

Typically, the higher layer asks the protocol client to send a CPMCiStateInOut message when it
requires information on indexing services on the server.

When requested to send this message, the client MUST do the following:

1. Send a CPMCiStateInOut message, as specified in section 2.2.3.1, to the server.

2. Wait to receive a CPMCiStateInOut message from the server, silently discarding all other
messages.

3. Report back the value of the _status field of the response (and, if it was successful, the
informational structure) to the higher layer.

3.2.4.1.2 Sending a CPMSetCatStateIn Request

Typically, the higher layer asks the protocol client to send a CPMSetCatStateIn message when it
requires information on a catalog or all catalogs. For this message, the higher layer needs to provide
the protocol client with a value for _dwNewState and, if required, the name of the catalog.

When requested to send this message, the client MUST do the following:

1. Send a CPMSetCatStateIn message, as specified in section 2.2.3.2, to the server.

2. Wait to receive a CPMSetCatStateOut message from the server, silently discarding all other

messages.

3. Report back the value of the _status field of the response (and, if it was successful, the
_dwOldState) to the higher layer.

3.2.4.1.3 Sending a CPMUpdateDocumentsIn Request

Typically, the higher layer asks to send this message when it needs to either update documents in an
existing path or add a new file path to the inverted index. Thus the higher layer is to provide the path

and type of a scan, as specified in section 2.2.3.4, where an incremental or full update is meant for
existing paths and new initialization is meant for new paths.

To serve the higher-layer request, the client MUST do the following:

1. Send a CPMUpdateDocumentsIn message to the server.

2. Wait to receive a CPMUpdateDocumentsIn message back from the server, silently discarding all

other messages.

3. Report back the value of the _status field of the response to the higher layer.

3.2.4.1.4 Sending a CPMForceMergeIn Request

Typically, the higher layer requests to send this message when there is a need to improve query
performance or when it is part of scheduled indexing service maintenance.

To serve the higher layer, the client MUST do the following:

93 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

1. Send a CPMForceMergeIn message to the server.

2. Wait to receive a CPMForceMergeIn message header back from the server, silently discarding all

other messages.

3. Report back the value of the _status field of the response to the higher layer.

3.2.4.2 Remote Indexing Service Catalog Query Messages

With the exception of CPMGetRowsIn/CPMGetRowsOut and CPMFetchValueIn/CPMFetchValueOut,
there is a one-to-one relationship between Content Indexing Services Protocol messages and higher-

layer requests. For the two exceptions previously mentioned, there can be multiple messages
generated by the client to either satisfy size requirements or retrieve a complete property. The higher
layer typically keeps track of all query-specific information (such as cursor handles opened, legal
values for bookmark and chapter handles, and _wid values for deferred property values) and also
tracks if the client is in a connected state, but this is not enforced in any way by the client.

The client portion of the diagram in section 3 illustrates this sequence for a simple indexing service

query.

3.2.4.2.1 Sending a CPMConnectIn Request

This message is typically the very first request from the higher layer (as if the client is not connected,
the server will fail most of the messages with the exception of CPMSetCatStateIn). The higher level
provides the protocol client with the information necessary to connect.

To serve the higher layer, the client MUST do the following:

1. Fill in the message, using information that the higher layer client provided (see section 2.2.3.6) in

_iClientVersion, MachineName, UserName, PropertySet1, PropertySet2, and
aPropertySet.

2. Set _fClientIsRemote, _cbBlob, _cbBlob2, cPropSet, and cExtPropSet, as specified in
section 2.2.3.6.

3. Set the checksum in the _ulChecksum field.

4. Send the CPMConnectIn message to the server.

5. Wait to receive a CPMConnectOut message back from the server, silently discarding all other

messages.

6. Report back the value of the _status field of the response (and, if it was successful, the
_serverVersion) to the higher layer.

For informative purposes, it is expected that higher layers will typically do the following actions on
successful connection, but these are not enforced by the Content Indexing Services Protocol client:

 Use remote indexing service catalog management messages for administrative tasks.

 Use a CPMCreateQueryIn request to create a search query with the purpose of retrieving results
from the catalog.

3.2.4.2.2 Sending a CPMCreateQueryIn Request

The higher layer will typically provide information for the query creation after the protocol client is
connected. The higher layer provides the client with a restrictions set, columns set, sort order rules
and categorization set (each of them can be omitted), rowset properties, and property ID mapper

structure.

94 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

When this request is received from a higher layer, the client MUST do the following:

1. Prepare a CPMCreateQueryIn request as follows.

1. If a columns set is present, set CColumnSetPresent to 0x01, and fill the ColumnsSet field.

2. If restrictions are present, set CRestrictionPresent to 0x01, and fill the Restriction field.

3. If a sort set is present, set CSortSetPresent to 0x01, and fill the SortSet field.

4. If a categorization set is present, set CCategorizationSetPresent to 0x01, and fill the
CategorizationSet field.

5. Set the rest of the fields as specified in section 2.2.3.8.

2. Calculate the _ulCheckSum field in the header.

3. Send the CPMCreateQueryIn message to the server.

4. Wait to receive the CPMCreateQueryOut message (see section 3.2.5.1), silently discarding all

other messages.

5. Report back the value of the _status field of the response (and, if it was successful, the array of
cursor handles and informative Boolean values, as specified in section 2.2.3.9) to the higher layer.

3.2.4.2.3 Sending a CPMSetBindingsIn Request

The higher layer will typically set bindings for each column to be returned in the rows when it already

has a valid cursor handle (after successfully receiving CPMCreateQueryOut, see section 3.2.5.1). The
higher layer is expected to provide an array of CTableColumn structures for the aColumns field and a
valid cursor handle.

When this request is received from the higher layer, the client MUST do the following:

1. Calculate the number of CTableColumn structures in the aColumns array and set the cColumns

field to this value.

2. Calculate the total size in bytes of the cColumns and aColumns fields and set the

_cbBindingDesc field to this value.

3. Set specified fields in the CPMSetBindingsIn message to the values provided by the higher
application layer. Set the ulChecksum field to the value calculated as specified in section 3.2.5.

4. Send the completed CPMSetBindingsIn message to the server.

5. Wait to receive a CPMSetBindingsIn message from the server, discarding other messages.

6. Indicate the status from the _status field of the response to the higher layer.

For informative purposes, it is expected that higher layers will typically request a client to send a

CPMGetRowsIn message, but this is not enforced by the Content Indexing Services Protocol.

3.2.4.2.4 Sending a CPMGetRowsIn Request

When the higher layer is about to receive rows data, it will provide the protocol client with a valid
cursor and chapter handle and give an appropriate seek description. Typically, a higher layer is
expected to do so when it has a valid cursor and/or chapter handle, and the bindings had been set

with a CPMSetBindingsIn message. To access the rowset in a chapter, the higher layer is to use the
chapter handle received from the server in a previous CPMGetRowsOut message.

When this request is received from the higher layer, the client MUST do the following:

95 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

1. Determine what unsigned integer value to specify for the _cbReadBuffer field. To determine this
value, the client MUST take the maximum value from the following:

 One thousand times the value of the _cRowsToTransfer field.

 Value of _cbRowWidth, rounded up to the nearest 512-byte multiple.

 Take the higher of these two values, up to the 16-kilobyte limit.

 In cases where a single row is larger than 16 kilobytes, the server cannot return results to this
query.

2. Specify a client base for variable-sized row data in the client address space in the _ulClientBase
field.<14>

3. Calculate the size of seek description, and set it in the _cbSeek field.

4. Set the value of _cbReserved (which would act as an offset for Rows start) to the value of

_cbSeek plus 0x14.

5. Send a CPMGetRowsIn message to the server.

3.2.4.2.5 Sending a CPMFetchValueIn Request

If the client receives a CPMGetRowsOut response from the server with the column's Status field set to
StatusDeferred (0x01), it means that the property value was not included in the Rows field of the

CPMGetRowsOut message. In this case, the higher layer typically asks the protocol client to retrieve
the value by means of a CPMFetchValueIn message and provides the PropSpec and _wid values for a
deferred property, which the protocol client MUST use in the first CPMFetchValueIn message.

If this is the first CPMFetchValueIn message that the client has sent to request the specified property,
the client MUST do the following:

1. Set all the fields in a message, as specified in section 2.2.3.19.

2. Set _cbSoFar to 0x00000000.

3. Set Current Bytes Received to 0.

4. Send the CPMFetchValueIn message to the server.

3.2.4.2.6 Sending a CPMFreeCursorIn Request

After the higher level is no longer using the search query, it can release the resources on the server
by asking the client to send a CPMFreeCursorIn message.

When this request is received, the client MUST send a CPMFreeCursorIn message to the server,

containing the handle specified by the upper layer.

 The client MUST do the following:

1. Send the completed CPMFreeCursorIn message to the server.

2. Wait to receive a CPMFreeCursorOut message from server, discarding other messages.

3.2.4.2.7 Sending a CPMDisconnect Message

If the higher layer has no more queries for the indexing service, the application may request that the

client send a CPMDisconnect message to the server in order to make more server resources available.
When the application makes the request, the client MUST send the message as requested. There is no
response to this message from the server.

96 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.5 Message Processing and Sequencing Rules

When the client receives a message response from the server, the client MUST use the Last Message
Sent state to determine whether the message received from the server is the one expected by the

client. All messages with the _msg field different from the one in Last Message Sent MUST be
ignored.

3.2.5.1 Receiving a CPMCreateQueryOut Response

When the client receives a CPMCreateQueryOut message response from the server, the client MUST

return back _status (and, if the status is successful, cursor handle values) to the higher layer. Any
further actions are determined by the higher layer.

Because the higher layer is aware of query structure, it will always expect the correct number of
cursor handles to be returned in the CPMCreateQueryOut message. The cursor handles are returned in
the following order: The first handle is returned to the unchaptered rowset, and the second is returned
to the first chaptered rowset (which is the grouping of results based on the first category specified in

the CategorizationSet field of the CPMCreateQueryIn message).

For informative purposes, it is expected that higher layers can do the following actions, but these are
not enforced by the Content Indexing Services Protocol client:

 Use CPMSetBindingsIn to set bindings for individual columns and to do any subsequent actions on
the querypath.

 Use CPMGetQueryStatusIn to check on the execution progress of a query.

 Use CPMRatioFinishedIn to request the completion percentage of the query.

3.2.5.2 Receiving a CPMGetRowsOut Response

When the client receives a CPMGetRowsOut message response from the server, the client MUST do
the following:

1. Check if the _status field in the header indicates success or failure.

2. If the _status value is STATUS_BUFFER_TOO_SMALL (0xC0000023), the client MUST check the
Last Message Sent state. If it does not contain a CPMGetRowsIn message, the received message
MUST be silently ignored. Otherwise, the client MUST send to the server a new CPMGetRowsIn
message with all fields identical to the stored one except that the _cbReadBuffer MUST be
increased by 512 (but not greater than 0x4000). If _status is STATUS_BUFFER_TOO_SMALL
(0xC0000023) and Last Message Sent already has _cbReadBuffer equal to 0x4000, the client

MUST report the error to the higher level.

3. If the _status value is any other error value, the client MUST indicate the failure to the higher
layer.

4. If the _status value indicates success, the results MUST be indicated to the higher layer
requesting the information, and further actions are determined by the higher layer.

For informative purposes, it is expected that higher layers will typically do the following actions, but
these are not enforced by the Content Indexing Services Protocol client:

 If the values in rows represent the document IDs, chapter, or bookmark handles, the higher layer
will typically store them for use in subsequent operations that involve valid document IDs,
chapter, or bookmark handles.

 The higher layer will typically store, display, or otherwise use the data from row values.

97 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 For the values that were marked as deferred, the higher layer will fetch the value using
CPMFetchValueIn messages.

 The seek description is returned back to the higher layer as well and can be reused or examined
by the higher layer.

For informative purposes, if the higher layer requested handles to chapters and bookmarks that were
received in the rows, it may do the following:

 Use CPMGetQueryStatusExIn to check on the execution progress of a query as well as additional
status information such as the number of filtered documents, documents remaining to be filtered,
the ratio of documents processed by the query, the total number of rows in the query, and the
position of the bookmark in the rowset.

 Use CPMGetNotify to request that the server notify the client of rowset changes.

 Use CPMGetApproximatePositionIn to request the approximate position of a bookmark in a
chapter.

 Use CPMCompareBmkIn to request a comparison of two bookmarks in a chapter.

 Use CPMRestartPositionIn to request the server to change the location of the cursor to the start of
the rowset.

3.2.5.3 Receiving a CPMFetchValueOut Response

When the client receives a CPMFetchValueOut message response from the server, the client MUST do
the following:

1. Check if the _status field in the header indicates success or failure. In case of failure, notify the
higher layer. Otherwise, continue to the next step.

2. Check _fValueExist, and, if set to 0x00000000, notify the higher layer that the value was not
found.

3. Otherwise, append _cbValue bytes from vValue to Current Property Value.

4. If _fMoreExists is set to 0x00000001, increment Current Bytes Received by _cbValue and send
a CPMFetchValueIn message to the server, setting _cbSoFar to the value of Current Bytes
Received, _cbPropSpec to zero, and _cbChunk to the buffer size required by the higher layer.

5. If _fMoreExists is set to 0x00000000, indicate the property value from Current Property Value to
the higher layer.

3.2.5.4 Receiving a CPMFreeCursorOut Response

When the client receives a successful CPMFreeCursorOut message response from the server, the client

MUST return the _cCursorsRemaining value to the higher layer.

The following information is given for informative purposes only and is not enforced by the Content

Indexing Services Protocol client. The higher layer is expected to keep track of cursor handles and to
not use ones that have already been freed. When the number of _cCursorsRemaining is equal to
0x00000000, the higher layer can use the connection to specify another query (using a
CPMCreateQueryIn message).

3.2.6 Timer Events

None.

98 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.7 Other Local Events

None.

99 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

4 Protocol Examples

4.1 Example 1

In the following example, consider a scenario in which the user JOHN on machine A wants to obtain

the sizes of files that contain the word "Microsoft" from the set of documents stored on server X in
catalog SYSTEM. Assume that machine A is running a 32-bit Windows XP operating system and
machine X is running a 32-bit Windows Server 2003 operating system.

1. The user launches a search application and enters the search query. The application, in turn,
passes the search query to the protocol client.

2. The protocol client establishes a connection with indexing server X. The protocol client uses the

named pipe \pipe\CI_SKADS to connect to the server X over SMB.

3. The protocol client then prepares a CPMConnectIn message with the following values.

The header of the message is populated as follows:

 _msg is set to 0x000000C8, indicating that this is a CPMConnectIn message.

 _status is set to 0x00000000.

 _ulChecksum contains the checksum, computed as specified in section 3.2.4.

 _ulReserved2 is set to 0x00000000.

The body of the message is populated as follows:

 _iClientVersion is set to 0x00000008, indicating that the server is to validate the checksum
field.

 _fClientIsRemote is set to 0x00000001, indicating that the server is a remote server.

 _cbBlob1 is set to the size in bytes of the cPropSet, PropertySet1, and PropertySet2 fields
combined.

 _cbBlob2 is set to 0x00000004 (meaning no extra property sets).

 MachineName is set to A.

 UserName is set to JOHN.

 cPropSets is set to 0x00000002.

The PropertySet1 field is of type CDbPropSet. The CDbPropSet structure constituting the
PropertySet1 field is populated as follows:

 The GuidPropSet field is set to A9BD1526-6A80-11D0-8C9D-0020AF1D740E

(DBPROPSET_FSCIFRMWRK_EXT).

 The cProperties field is set to 0x00000004.

 The aProps field is an array of CDbProp structures. For the aProps[0] element:

 PropId is set to 0x00000002 (DBPROP_CI_CATALOG_NAME).

 DBPROPOPTIONS is set to 0x0000000.

 DBPROPSTATUS is set to 0x00000000.

100 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 For the ColId element:

 eKind is set to 0x00000001 (DBKIND_GUID_PROPID).

 GUID is null (all zeros), meaning that the value applies to the query, not just a single
column.

 ulID is set to 0x00000000.

 For the vValue element:

 vType is set to 0x001F (VT_LPWSTR).

 vValue is set to "SYSTEM", the name of the wanted catalog.

 For the aProps[1] element:

 PropId is set to 0x00000007 (DBPROP_CI_QUERY_TYPE).

 DBPROPOPTIONS is set to 0x0000000.

 DBPROPSTATUS is set to0x00000000.

 For the ColId element:

 eKind is set to 0x00000001 (DBKIND_GUID_PROPID).

 GUID is null (all zeros), meaning that the value applies to the query, not just a single
column.

 ulID is set to 0x00000000.

 For the vValue element:

 vType is set to 0x0003 (VT_I4).

 vValue is set to 0x00000000 (CiNormal), meaning that it is a regular query.

 For the aProps[2] element:

 PropId is set to 0x00000004 (DBPROP_CI_SCOPE_FLAGS).

 DBPROPOPTIONS is set to 0x0000000.

 DBPROPSTATUS is set to 0x00000000.

 For the ColId element:

 eKind is set to 0x00000001 (DBKIND_GUID_PROPID).

 GUID is null (all zeros), meaning that the value applies to the query, not just a single
column.

 ulID is set to 0x00000000.

 For the vValue element:

 vType is set to 0x1003 (VT_VECTOR | VT_I4).

 vValue is set to 0x00000001 / 0x00000001 (one element with value 1), meaning
search subfolders.

 For the aProps[3] element:

101 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 PropId is set to 0x00000003 (DBPROP_CI_INCLUDE_SCOPES).

 DBPROPOPTIONS is set to 0x0000000.

 DBPROPSTATUS is set to 0x00000000.

 For the ColId element:

 eKind is set to 0x00000001 (DBKIND_GUID_PROPID).

 GUID is null (all zeros), meaning the value applies to the query, not just a single
column.

 ulID is set to 0x00000000.

 For the vValue element:

 vType is set to 0x101F (VT_VECTOR | VT_LPWSTR).

 vValue is set to 0x00000001 / 0x00000002 / "\". (one element with a two-character

null-terminated string), meaning the root scope.

The PropertySet2 field is of type CDbPropSet. The CDbPropSet structure comprising the
PropertySet1 field is populated as follows:

 GuidPropSet is set to AFAFACA5-B5D1-11D0-8C62-00C04FC2DB8D
(DBPROPSET_CIFRMWRKCORE_EXT).

 The cProperties field is set to 0x00000001.

 The aProps field is an array of CDbProp structures.

 For the aProps[0] element:

 PropId is set to 0x00000002 (DBPROP_MACHINE).

 DBPROPOPTIONS is set to 0x0000000.

 DBPROPSTATUS is set to 0x00000000.

 For the ColId element:

 eKind is set to 0x00000001 (DBKIND_GUID_PROPID).

 GUID is null (all zeros), meaning that the value applies to the query, not just a single
column.

 ulID is set to 0x00000000.

 For the vValue element:

 vType is set to 0x0008 (VT_BSTR).

 vValue is set to 0x04 / "X" (4 bytes / null-terminated Unicode string), meaning "X" –
name of a server.

 The cExtPropSet field is set to 0x00000000.

 The aPropertySets array does not exist.

Various padding fields are filled in as needed. The message is sent to the server.

102 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

4. The server verifies that the _ulChecksum is correct, verifies that the user is authorized to make
this request, and responds with a CPMConnectOut message.

The header of the message is populated as follows:

 _msg is set to 0x000000C8, indicating that this is a CPMConnectOut message.

 _status is set to 0x0000000 indicating SUCCESS.

 _ulChecksum is set to 0.

 _ulReserved2 is set to 0x00000000.

The body of the message is populated as follows:

 The _serverVersion field is set to 0x00000007 (32-bit Windows XP or 32-bit Windows Server
2003).

 The _reserved fields are filled with arbitrary data.

5. The client prepares a CPMCreateQueryIn message.

The header of the message is populated as follows:

 _msg is set to 0x000000CA, indicating that this is a CPMCreateQueryIn message.

 _status is set to 0x00000000.

 _ulChecksum contains the checksum, computed according to section 3.2.4.

 _ulReserved2 is set to 0x00000000.

The body of the message is populated as follows:

 The Size field is set to the size of the rest of the message.

 The CColumnSetPresent field is set to 0x01.

The ColumnSet field is of type CColumnSet. The CColumnSet structure comprising this field is set
as follows:

 The _count field is set to 0x00000001, indicating that one column is returned.

 The indexes array is 0x00000000, indicating the first entry in _aPropSpec.

 The CRestrictionPresent field is set to 0x01, indicating that the Restriction field is present.

 The Restriction field is of type CRestriction and is set as follows:

 _ulType is set to 0x00000004 (RTContent).

 _weight is set to 0x00000000.

 The rest of the field contains a CContentRestriction structure:

 _Property is set to GUID b725f130-47ef-101a-a5f1-02608c9eebac / 0x00000001 (for
PRSPEC_PROPID) / 0x13, which represents the document body.

 _Cc is set to 0x00000009.

 _pwcsphrase is set to the string "Microsoft".

 _lcid is set to 0x409 (for English).

103 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 _ulGenerateMethod is set to 0x00000000 (exact match).

 CSortPresent is set to 0x00.

 CCategorizationSetPresent is set to 0x00.

RowSetProperties is set as follows:

 _uBooleanOptions is set to 0x00000001 (sequential).

 _ulMaxOpenRows is set to 0x00000000.

 _ulMemoryUsage is set to 0x00000000.

 _cMaxResults is set to 0x00000100 (return at most 256 rows).

 _cCmdTimeOut is set to 0x00000000 (never time out).

PidMapper is set as follows:

 _count is set to 0x00000001.

 _aPropSpec is set to GUID b725f130-47ef-101a-a5-f1-02608c9eebac / 0x00000001 (for
PRSPEC_PROPID)/0x0000000c, which represents the Windows file size property.

6. The server processes it and responds with a CPMCreateQueryOut message.

The header of the message is populated as follows:

 _msg is set to 0x000000CA, indicating that this is a CPMCreateQueryOut message.

 _status is set to SUCCESS.

 _ulChecksum is set to 0x00000000 (or any other arbitrary value).

 _ulReserved2 is set to 0x00000000 (or any other arbitrary value).

The body of the message is populated as follows:

 _fTrueSequential is set to 0x00000000, indicating that the query can use an inverted index.

 _fWorkIdUnique is set to 0x00000001.

 The aCursors array contains only one element, representing a cursor handle to this query. The
value depends on the state of the server, assuming that the returned value is 0xAAAAAAAA.

7. The client issues a CPMSetBindingsIn request message to define the format of a row.

The header of the message is populated as follows:

 _msg is set to 0x000000D0, indicating that this is a CPMSetBindingsIn message.

 _status is set to SUCCESS.

 _ulChecksum contains the checksum, computed according to section 3.2.4.

 _ulReserved2 is set to 0x00000000 (or any other arbitrary value).

The body of the message is populated as follows:

 _hCursor is set to 0xAAAAAAAA.

 _cbRow is set to 0x10 (big enough to fit columns).

104 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 _cbBindingDesc is set to the size of the _cColumns and _aColumns fields combined.

 _dummy is omitted.

 _cColumns is set to 0x00000001.

 The _aColumns array is set to contain one CTableColumn structure containing the following:

 _PropSpec is set to GUID b725f130-47ef-101a-a5-f1-02608c9eebac / 0x00000001 (for
PRSPEC_PROPID) / 0x0000000c, which represents the Windows file size property.

 _vType is set to 0x0015 (VT_UI8).

 _ValueUsed is set to 0x01 (column transferred in row).

 _ValueOffset is set to 0x0002 (at beginning of row).

 _ValueSize is set to 0x08 (size of a VT_UI8).

 _StatusUsed is set to 0x01.

 _StatusOffset is set to 0x0A.

 _LengthUsed is set to 0x00.

8. The server processes it and responds with a CPMSetBindingsIn message.

The header of the message is populated as follows:

 _msg is set to 0x000000D0.

 _status is set to SUCCESS.

 _ulChecksum is set to 0x00000000 (or any other arbitrary value).

 _ulReserved2 is set to 0x00000000 (or any other arbitrary value).

9. The client issues a CPMGetRowsIn request message, assuming that the client is prepared to accept
100 rows at this point and wants them in ascending order.

The header of the message is populated as follows:

 _msg is set to 0x000000CC, indicating that this is a CPMGetRowsIn message.

 _status is set to 0x00000000.

 _ulChecksum contains the checksum, computed as specified in section 3.2.4.

 _ulReserved2 is set to 0x00000000.

The body of the message is populated as follows:

 _hCursor is set to 0xAAAAAAAA.

 _cRowsToTransfer is set to 0x00000064.

 _cRowWidth is set to 0x00000010 (from bindings).

 _cbSeek is set to 0x0C, which is the size of the eType and CRowSeekNext fields combined.

 _cbReserved is set to 0x20 (0x14 plus _cbSeek).

 _cbReadBuffer is set to 0x800 (0x64*0x10 rounded up to the next multiple of 0x200).

105 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 _ulClientBase is set to 0x00000000.

 _fBwdfetch is set to 0x00000000, indicating that the rows are to be fetched in forward order.

 eType is set to 0x0000001, indicating that the client wants the next rows.

 SeekDescription is set to CRowSeekNext. The CRowSeekNext structure contains the following

values:

 _cSkip is set to 0x00000000, indicating that the client does not want to skip rows.

10. The server processes it and responds with a CPMGetRowsOut message, assuming the server found
100 documents that contain the word "Microsoft".

The header of the message is populated as follows:

 _msg is set to 0x000000CC, indicating that this is a CPMGetRowsOut message.

 _status is set to SUCCESS.

 _ulChecksum is set to 0x00000000.

 _ulReserved2 is set to 0x00000000.

The body of the message is populated as follows:

 _CRowsReturned is set to 0x00000064.

 eType is set to 0x00000001.

SeekDescription contains a CRowSeekNext structure, populated as follows:

 _cSkip is set to 0x00000000, indicating that the client does not want to skip rows.

Rows contains the size of the 100 documents that contain the word "Microsoft". Because this is
fixed-size data, it is structured as a list of 100, 8-byte unsigned integers.

11. The client sends a CPMDisconnect message to end the connection.

The header of the message is populated as follows:

 _msg is set to 0x000000C9, indicating that this is a CPMDisconnect message.

 _status is set to 0x00000000.

 _ulChecksum is set to 0x00000000.

12. The server processes the message and removes all client states.

4.2 Example 2

In the previous example, the query was quite simple. Now consider a slightly more complex query,

assuming that the user wants to retrieve the size of the documents that contain the following words:
"Microsoft" and "Office". This is specified in the following steps.

Change the Restriction field contained in the CPMCreateQueryIn message sent in step 5 (example 1)
as follows:

 The Restriction field is of type CRestriction and is set as follows:

_ulType is set to 0x00000001 (RTAnd).

106 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

_weight is set to 0x00000000.

The rest of the field contains a CNodeRestriction structure:

 _cNode is set to 0x00000002, indicating that there are two nodes in the paNode array.

 The _paNode field is an array of two CRestriction structures.

_paNode[0] contains the following:

 _ulType is set to 0x00000004 (RTContent).

 _weight is set to 0x00000000.

 The rest of the field contains a CContentRestriction structure:

 _Property is set to GUID b725f130-47ef-101a-a5f1-02608c9eebac / 0x00000001 (for
PRSPEC_PROPID) / 0x13.

 _Cc is set to 0x00000009.

 _pwcsphrase is set to the string "Microsoft".

 _lcid is set to 0x409 (for English).

 _ulGenerateMethod is set to 0x00000000 (exact match).

_paNode[1] I contains the following:

 _ulType is set to 0x00000004 (RTContent).

 _weight is set to 0x00000000.

 The rest of the field contains a CContentRestriction structure:

 _Property is set to GUID b725f130-47ef-101a-a5f1-02608c9eebac / 0x00000001 (for

PRSPEC_PROPID) / 0x13.

 _Cc is set to 0x00000006.

 _pwcsphrase is set to the string "Windows".

 _lcid is set to 0x409 (for English).

 _ulGenerateMethod is set to 0x00000000 (exact match).

107 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

5 Security

5.1 Security Considerations for Implementers

Indexing implementations that index secure content should consider using the user context provided

by the server message block (SMB) protocol (as specified in [MS-SMB]) to trim search results and
return only those accessible to the caller.

5.2 Index of Security Parameters

The only security parameter is the impersonations level (see section 2.1).

%5bMS-SMB%5d.pdf

108 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows 2000 operating system

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies

to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 1.4: Applications typically interact with an OLE DB interface wrapper, such as a protocol

client, and not directly with the protocol. For more information, see [MSDN-OLEDBP].

<2> Section 1.6: This protocol is implemented on Windows 2000 Server operating system, Windows
XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server

2008 R2. However, the Content Indexing Services Protocol is deprecated on Windows Vista, Windows
Server 2008, Windows 7, and Windows Server 2008 R2. That is, the Windows implementation of the
Content Indexing Services Protocol is still available on Windows Vista, Windows Server 2008, Windows
7, and Windows Server 2008 R2, but is not installed by default and will not be available in future

releases after Windows 7 and Windows Server 2008 R2.

<3> Section 1.8: Windows uses only the values specified in [MS-ERREF].

<4> Section 1.8.1: See [MSDN-PROPSET] for a list of supported property sets.

<5> Section 2.2.2: The client always sets the _status field to 0x00000000.

<6> Section 2.2.3.1: This value is usually zero except immediately after indexing has been started or
after a notification queue overflows.

<7> Section 2.2.3.4: If a value other than UPD_INCREM (0x00000000), UPD_FULL (0x00000001) or

UPD_INIT (0x00000002) is set for the _flag field, the server acts as if the _flag field was set to
UPD_INIT (0x00000002) and perform a full scan.

<8> Section 2.2.3.6: On Windows clients, the _iClientVersion is set as follows.

Value Meaning

0x00000005 Client OS is Windows 2000 Server.

0x00000008 Client OS is 32-bit Windows XP, 32-bit Windows Server 2003, 32-bit Windows Vista, 32-bit

http://go.microsoft.com/fwlink/?LinkId=90055
%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=101368

109 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

Windows Server 2008, or 32-bit Windows 7.

0x00010008 Client OS is Windows XP 64-Bit Edition operating system, 64-bit Windows Server 2003, 64-bit
Windows Vista, 64-bit Windows Server 2008, 64-bit Windows 7, or 64-bit Windows Server 2008
R2.

<9> Section 2.2.3.6: OLE-DB properties are frequently used.

<10> Section 2.2.3.12: Windows does not use this message.

<11> Section 2.2.3.19: Windows sets this field to 0x00004000.

<12> Section 2.2.4: The same pipe connection is used for the following messages except when the
error is returned in a CPMConnectOut message. In the latter case, the pipe connection is terminated.

<13> Section 3.1.1: The catalog state begins in the CICAT_WRITABLE state. But when the catalog is
stored on a read-only media such as a CD-ROM, the catalog state begins in the CICAT_READONLY
state.

<14> Section 3.2.4.2.4: For a 32-bit client talking to a 32-bit server or a 64-bit client talking to a 64-
bit server, this value is set to a memory address of the receiving buffer in the application process. This
allows for pointers received in the Rows field of CPMGetRowsOut to be correct memory pointers in a
client application process. Otherwise, the value is set to 0x00000000.

110 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

111 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

8 Index

A

Abstract data model
 client 91
 server 80
Administration - remote 10
Applicability 11

C

Capability negotiation 11
Catalog management
 client 92
 server 83
CBaseStorageVariant packet 13
CBaseStorageVariant Structures 17
CCategorizationSet packet 30
CCategorizationSpec packet 30

CColumnSet packet 29
CContentRestriction packet 21
CDbColId packet 31
CDbProp packet 32
CDbProp properties 32
CDbPropSet packet 34
CFullPropSpec packet 20
Change tracking 110
Client
 abstract data model 91
 catalog management 92
 higher-layer triggered events 91
 initialization 91
 local events 98
 message processing 96
 other local events 98
 remote querying 93
 sequencing rules 96
 timer events 97
 timers 91
CNatLanguageRestriction packet 22
CNodeRestriction packet 23
CPidMapper packet 35
CPMCiStateInOut (section 3.1.5.1.1 83, section
3.2.4.1.1 92)
CPMCiStateInOut packet 44
CPMCompareBmkIn 89
CPMCompareBmkIn packet 67
CPMCompareBmkOut packet 67
CPMConnectIn (section 3.1.5.2.1 84, section
3.2.4.2.1 93)
CPMConnectIn packet 49
CPMConnectOut packet 52
CPMCreateQueryIn (section 3.1.5.2.2 85, section
3.2.4.2.2 93)
CPMCreateQueryIn packet 52
CPMCreateQueryOut 96
CPMCreateQueryOut packet 54
CPMDisconnect (section 3.1.5.2.15 90, section
3.2.4.2.7 95)

CPMFetchValueIn (section 3.1.5.2.8 88, section
3.2.4.2.5 95)
CPMFetchValueIn packet 64
CPMFetchValueOut 97
CPMFetchValueOut packet 64
CPMForceMergeIn (section 3.1.5.1.4 84, section
3.2.4.1.4 92)
CPMForceMergeIn packet 49
CPMFreeCursorIn (section 3.1.5.2.14 90, section
3.2.4.2.6 95)
CPMFreeCursorIn packet 69
CPMFreeCursorOut 97
CPMFreeCursorOut packet 69
CPMGetApproximatePositionIn 89
CPMGetApproximatePositionIn packet 66
CPMGetApproximatePositionOut packet 66
CPMGetNotify 88
CPMGetQueryStatusExIn 86
CPMGetQueryStatusExIn packet 56
CPMGetQueryStatusExOut packet 57
CPMGetQueryStatusIn 85
CPMGetQueryStatusIn packet 55
CPMGetQueryStatusOut packet 55
CPMGetRowsIn (section 3.1.5.2.7 87, section
3.2.4.2.4 94)
CPMGetRowsIn packet 58
CPMGetRowsOut 96
CPMGetRowsOut packet 60
CPMRatioFinishedIn 86

CPMRatioFinishedIn packet 63
CPMRatioFinishedOut packet 63
CPMRestartPositionIn 89
CPMRestartPositionIn packet 68
CPMSendNotifyOut packet 65
CPMSetBindingsIn (section 3.1.5.2.6 86, section
3.2.4.2.3 94)
CPMSetBindingsIn packet 57
CPMSetCatStateIn (section 3.1.5.1.2 83, section
3.2.4.1.2 92)
CPMSetCatStateIn packet 46
CPMSetCatStateOut packet 47
CPMStopAsynchIn 90
CPMStopAsynchIn packet 68
CPMUpdateDocumentsIn (section 3.1.5.1.3 84,
section 3.2.4.1.3 92)
CPMUpdateDocumentsIn packet 48
CPropertyRestriction packet 23
CRestriction packet 28
CRowSeekAt packet 36
CRowSeekAtRatio packet 36
CRowSeekByBookmark packet 37
CRowSeekNext packet 38
CRowsetProperties packet 38
CRowVariant packet 39
CScopeRestriction packet 26
CSort packet 27
CSortSet packet 40
CTableColumn packet 40
CVectorRestriction packet 27

D

112 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Data model - abstract
 client 91
 server 80
DECIMAL packet 17
Details 79

E

Errors 69
Errors message 69
Examples 99

F

Fields - vendor-extensible 11

G

Glossary 7

H

Headers 42
Higher-layer triggered events
 client 91
 server 81

I

Implementer - security considerations 107
Implementers - security considerations 107
Index of security parameters 107
Informative references 9
Initialization
 client 91
 server 81
Introduction 7

L

Local events
 client 98
 server 91

M

Message Headers message 42
Message processing
 client 96
 server 81

Message_Headers packet 42
Messages
 Errors 69
 headers 42
 Message Headers 42
 Messages 44
 overview 12
 Standard Properties 69
 Structures 12
 syntax 12
 transport 12
Messages message 44

N

Normative references 9

O

Other local events
 client 98
 server 91
Overview 9
Overview (synopsis) 9

P

Parameters - security 107
Parameters - security index 107
Preconditions 11
Prerequisites 11
Product behavior 108
Properties
 CDbProp 32
 standard 69
Property IDs 11
Protocol Details
 overview 79

Q

Querying - remote
 client 93
 overview 10
 server 84

R

References 8
 informative 9
 normative 9
Relationship to other protocols 11
Remote administration overview 10
Remote querying
 client 93

113 / 113

[MS-MCIS] - v20150630
Content Indexing Services Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 overview 10
 server 84

S

SAFEARRAY packet 18
SAFEARRAY2 packet 19
SAFEARRAYBOUND packet 19
Security 107
 implementer considerations 107
 parameter index 107
Sequencing rules
 client 96
 server 81
SERIALIZEDPROPERTYVALUE packet 42
Server
 abstract data model 80

 catalog management 83
 higher-layer triggered events 81
 initialization 81
 local events 91
 message processing 81
 other local events 91
 remote querying 84
 sequencing rules 81
 timer events 91
 timers 81
Standard properties 69
Standard Properties message 69
Standards assignments 11
Structures 12
Structures message 12
Syntax - message 12

T

Timer events
 client 97
 server 91
Timers
 client 91
 server 81
Tracking changes 110
Transport 12
Transport - message 12
Triggered events - higher-layer
 client 91
 server 81

V

Vendor-extensible fields 11
Versioning 11
VT_Vector packet 17

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Remote Administration Tasks
	1.3.2 Remote Querying

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.8.1 Property IDs

	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Structures
	2.2.1.1 CBaseStorageVariant
	2.2.1.1.1 CBaseStorageVariant Structures
	2.2.1.1.1.1 DECIMAL
	2.2.1.1.1.2 VT_VECTOR
	2.2.1.1.1.3 SAFEARRAY
	2.2.1.1.1.4 SAFEARRAYBOUND
	2.2.1.1.1.5 SAFEARRAY2

	2.2.1.2 CFullPropSpec
	2.2.1.3 CContentRestriction
	2.2.1.4 CNatLanguageRestriction
	2.2.1.5 CNodeRestriction
	2.2.1.6 CPropertyRestriction
	2.2.1.7 CScopeRestriction
	2.2.1.8 CSort
	2.2.1.9 CVectorRestriction
	2.2.1.10 CRestriction
	2.2.1.11 CColumnSet
	2.2.1.12 CCategorizationSet
	2.2.1.13 CCategorizationSpec
	2.2.1.14 CDbColId
	2.2.1.15 CDbProp
	2.2.1.15.1 Database Properties

	2.2.1.16 CDbPropSet
	2.2.1.17 CPidMapper
	2.2.1.18 CRowSeekAt
	2.2.1.19 CRowSeekAtRatio
	2.2.1.20 CRowSeekByBookmark
	2.2.1.21 CRowSeekNext
	2.2.1.22 CRowsetProperties
	2.2.1.23 CRowVariant
	2.2.1.24 CSortSet
	2.2.1.25 CTableColumn
	2.2.1.26 SERIALIZEDPROPERTYVALUE

	2.2.2 Message Headers
	2.2.3 Messages
	2.2.3.1 CPMCiStateInOut
	2.2.3.2 CPMSetCatStateIn
	2.2.3.3 CPMSetCatStateOut
	2.2.3.4 CPMUpdateDocumentsIn
	2.2.3.5 CPMForceMergeIn
	2.2.3.6 CPMConnectIn
	2.2.3.7 CPMConnectOut
	2.2.3.8 CPMCreateQueryIn
	2.2.3.9 CPMCreateQueryOut
	2.2.3.10 CPMGetQueryStatusIn
	2.2.3.11 CPMGetQueryStatusOut
	2.2.3.12 CPMGetQueryStatusExIn
	2.2.3.13 CPMGetQueryStatusExOut
	2.2.3.14 CPMSetBindingsIn
	2.2.3.15 CPMGetRowsIn
	2.2.3.16 CPMGetRowsOut
	2.2.3.17 CPMRatioFinishedIn
	2.2.3.18 CPMRatioFinishedOut
	2.2.3.19 CPMFetchValueIn
	2.2.3.20 CPMFetchValueOut
	2.2.3.21 CPMGetNotify
	2.2.3.22 CPMSendNotifyOut
	2.2.3.23 CPMGetApproximatePositionIn
	2.2.3.24 CPMGetApproximatePositionOut
	2.2.3.25 CPMCompareBmkIn
	2.2.3.26 CPMCompareBmkOut
	2.2.3.27 CPMRestartPositionIn
	2.2.3.28 CPMStopAsynchIn
	2.2.3.29 CPMFreeCursorIn
	2.2.3.30 CPMFreeCursorOut
	2.2.3.31 CPMDisconnect

	2.2.4 Errors
	2.2.5 Standard Properties
	2.2.5.1 Query Properties
	2.2.5.2 Common Open Properties

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing and Sequencing Rules
	3.1.5.1 Remote Indexing Service Catalog Management
	3.1.5.1.1 Receiving a CPMCiStateInOut Request
	3.1.5.1.2 Receiving a CPMSetCatStateIn Request
	3.1.5.1.3 Receiving a CPMUpdateDocumentsIn Request
	3.1.5.1.4 Receiving a CPMForceMergeIn Request

	3.1.5.2 Remote Indexing Service Querying
	3.1.5.2.1 Receiving a CPMConnectIn Request
	3.1.5.2.2 Receiving a CPMCreateQueryIn Request
	3.1.5.2.3 Receiving a CPMGetQueryStatusIn Request
	3.1.5.2.4 Receiving a CPMGetQueryStatusExIn Request
	3.1.5.2.5 Receiving a CPMRatioFinishedIn Request
	3.1.5.2.6 Receiving a CPMSetBindingsIn Request
	3.1.5.2.7 Receiving a CPMGetRowsIn Request
	3.1.5.2.8 Receiving a CPMFetchValueIn Request
	3.1.5.2.9 Receiving a CPMGetNotify Request
	3.1.5.2.10 Receiving a CPMGetApproximatePositionIn Request
	3.1.5.2.11 Receiving a CPMCompareBmkIn Request
	3.1.5.2.12 Receiving a CPMRestartPositionIn Request
	3.1.5.2.13 Receiving a CPMStopAsynchIn Request
	3.1.5.2.14 Receiving a CPMFreeCursorIn Request
	3.1.5.2.15 Receiving a CPMDisconnect Request

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Remote Indexing Service Catalog Management
	3.2.4.1.1 Sending a CPMCiStateInOut Request
	3.2.4.1.2 Sending a CPMSetCatStateIn Request
	3.2.4.1.3 Sending a CPMUpdateDocumentsIn Request
	3.2.4.1.4 Sending a CPMForceMergeIn Request

	3.2.4.2 Remote Indexing Service Catalog Query Messages
	3.2.4.2.1 Sending a CPMConnectIn Request
	3.2.4.2.2 Sending a CPMCreateQueryIn Request
	3.2.4.2.3 Sending a CPMSetBindingsIn Request
	3.2.4.2.4 Sending a CPMGetRowsIn Request
	3.2.4.2.5 Sending a CPMFetchValueIn Request
	3.2.4.2.6 Sending a CPMFreeCursorIn Request
	3.2.4.2.7 Sending a CPMDisconnect Message

	3.2.5 Message Processing and Sequencing Rules
	3.2.5.1 Receiving a CPMCreateQueryOut Response
	3.2.5.2 Receiving a CPMGetRowsOut Response
	3.2.5.3 Receiving a CPMFetchValueOut Response
	3.2.5.4 Receiving a CPMFreeCursorOut Response

	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	4.1 Example 1
	4.2 Example 2

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

