[MS-LSAD-Diff]:

Local Security Authority (Domain Policy) Remote Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

* Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

* Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

* No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

* Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

* License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

* Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

* Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

1/254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

Revision Summary

Revision Revision
Date History Class Comments
2/22/2007 0.01 New Version 0.01 release
6/1/2007 1.0 Major Updated and revised the technical content.
7/3/2007 2.0 Major Updated and revised the technical content.
7/20/2007 3.0 Major Added new content.
8/10/2007 4.0 Major New content added.
9/28/2007 5.0 Major Updated and revised the technical content.
10/23/2007 | 5.1 Minor Clarified the meaning of the technical content.
11/30/2007 | 5.1.1 Editorial Changed language and formatting in the technical content.
1/25/2008 6.0 Major Updated and revised the technical content.
3/14/2008 7.0 Major Updated and revised the technical content.
5/16/2008 8.0 Major Updated and revised the technical content.
6/20/2008 9.0 Major Updated and revised the technical content.
7/25/2008 9.0.1 Editorial Changed language and formatting in the technical content.
8/29/2008 10.0 Major Updated and revised the technical content.
10/24/2008 | 11.0 Major Updated and revised the technical content.
12/5/2008 12.0 Major Updated and revised the technical content.
1/16/2009 13.0 Major Updated and revised the technical content.
2/27/2009 14.0 Major Updated and revised the technical content.
4/10/2009 15.0 Major Updated and revised the technical content.
5/22/2009 16.0 Major Updated and revised the technical content.
7/2/2009 17.0 Major Updated and revised the technical content.
8/14/2009 18.0 Major Updated and revised the technical content.
9/25/2009 19.0 Major Updated and revised the technical content.
11/6/2009 20.0 Major Updated and revised the technical content.
12/18/2009 | 21.0 Major Updated and revised the technical content.
1/29/2010 22.0 Major Updated and revised the technical content.
3/12/2010 23.0 Major Updated and revised the technical content.
4/23/2010 23.1 Minor Clarified the meaning of the technical content.
6/4/2010 24.0 Major Updated and revised the technical content.
7/16/2010 25.0 Major Updated and revised the technical content.

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

2/ 254

Revision Revision

Date History Class Comments

8/27/2010 26.0 Major Updated and revised the technical content.

10/8/2010 27.0 Major Updated and revised the technical content.

11/19/2010 | 28.0 Major Updated and revised the technical content.

1/7/2011 29.0 Major Updated and revised the technical content.

2/11/2011 30.0 Major Updated and revised the technical content.

3/25/2011 31.0 Major Updated and revised the technical content.

5/6/2011 32.0 Major Updated and revised the technical content.

6/17/2011 33.0 Major Updated and revised the technical content.

9/23/2011 33.0 None It\:e?:r?:iiglgiz;?e:f meaning, language, or formatting of the
12/16/2011 | 34.0 Major Updated and revised the technical content.

3/30/2012 35.0 Major Updated and revised the technical content.

7/12/2012 35.0 None It\:e?:r?:iiglgiz;?e:f meaning, language, or formatting of the
10/25/2012 | 36.0 Major Updated and revised the technical content.

1/31/2013 36.0 None It\lec;rc]::ie;glgizrfge:wtte meaning, language, or formatting of the
8/8/2013 37.0 Major Updated and revised the technical content.

11/14/2013 | 37.0 None l%fsﬂg?izﬁgem? meaning, language, or formatting of the
2/13/2014 37.0 None It\:a?:}?:iacg?izrfgemé meaning, language, or formatting of the
5/15/2014 37.0 None It\gzzﬁ:ig?izrfgem.e meaning, language, or formatting of the
6/30/2015 38.0 Major Significantly changed the technical content.

10/16/2015 | 38.0 None It\:acj:r?:;g?iz;?emc‘a meaning, language, or formatting of the
7/14/2016 39.0 Major Significantly changed the technical content.

6/1/2017 40.0 Major Significantly changed the technical content.

9/15/2017 41.0 Major Significantly changed the technical content.

12/1/2017 41.0 None l%ﬁ:ig?izﬁgem? meaning, language, or formatting of the
3/16/2018 42.0 Major Significantly changed the technical content.

9/12/2018 43.0 Major Significantly changed the technical content.

4/7/2021 44.0 Major Significantly changed the technical content.

[MS-LSAD-Diff] - v20240423

3/ 254

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Revision Revision
Date History Class Comments
6/25/2021 45.0 Major Significantly changed the technical content.
4/29/2022 46.0 Major Significantly changed the technical content.
9/20/2023 47.0 Major Significantly changed the technical content.
Majon

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4 /254

Table of Contents

B I 115 o Yo [T ot f ' Y 1 RS 10
1.1 (8] o)s =10 =Te IST=ToluTo] o) I €I (o 11T 1 oV PP 10
1.2] =] =] g ol T PP 15

1.2.1 (Updated Section) Normative ReferenCes......cccvviiiiiiiiiiiii i i 15

1.2.2 (Updated Section) Informative ReferencCesocveveieieiiiiiiiiiiiii e 16
1.3 L Y] YT 17
1.4 Relationship to Other ProtoCoIS ..uvuiiui i e e 22
1.5 Prerequisites/Preconditionsovieiiiiiiii e 24
1.6 Applicability StatemMENt ... e 24
1.7 Versioning and Capability Negotiation ..o 24
1.8 Vendor-EXtensible Fieldso.viieiiiiii i e e 24
1.9 Standards ASSIGNMENTS. 24

A 1 LT =T T e 1= 26
2.1 (Updated Section) TransSpOrt. . .cii it e e ne e anens 26
2.2 COMMON DAta TYPES uuuitiiiiiiiitie it e st e e e e e e s e e rnenes 26

2.2.1 Constant Value Definitions ... e e a 30
2.2.1.1 ACCESS_MASK et ii it e e e 30
2.2.1.1.1 ACCESS_MASK fOr All ObJeCES ...uviviiiiiiiiiiiiiiii i aaeeas 30
2.2.1.1.2 ACCESS_MASK for Policy ObJECtS ...uvuviieieiiiiieeeeeeie e 32
2.2.1.1.3 ACCESS_MASK for AccoUNt ObJECES ...vuvuiiieieiiiiiie e 33
2.2.1.1.4 ACCESS_MASK for Secret ObjJects ..ovviiiiiiiiiiiiiiici e 33
2.2.1.1.5 ACCESS_MASK for Trusted Domain Objects........cooviviiiiiiiiiiiiiieeenes 33
2.2.1.2 POLICY_SYSTEM_ACCESS_MODE......iititiitiiiiiieiiiii et seneeenesneneeenes 34
2.2.1.3 SECURITY_INFORMATION ...cutitieieiniieeee e e e s eeeaeneneeeen e neneserasnenenenenes 35
2.2.1.4 AEAD-AES-256-CBC-HMAC-SHAS512 Constantsccvovvvviiiiiiiiiiiieinnneenaeens 36
2.2.1.5 (Updated Section) LSA Trust Record Flags......c.covvviiiiiiiiiiiiiiiinnenee e 37
2.2.2 BaSiC Data TYPES tueiutitiiiiite i e 38
2.2.2.1 LSAPR _HANDLE ..ttt et et et e e e e s e e s e e e e e e e e e aeaes 38
2.2.2.2 PLSAPR _HANDLE ..ottt e et et e e e e e 38
2.2.2.3 LSA_UNICODE_STRING .tutiutitititiitinititentinanesensssaesensssassnenssnsansennenenes 38
2.2.2.4 LSAPR_OBJECT_ATTRIBUTEScuiiiititiieiieer e et e e eenene e e e aenenenenes 38
2.2.2.5 LSAPR_SR_SECURITY_DESCRIPTORcitiititiiiiieiiiiii it ne e ene e 39
2.2.2.6 (Updated Section) LSAPR_REVISION_INFO_V1cooiiiiiiiiiiiiiiiiieece e 39
2.2.2.7 LSAPR_REVISION _INFO .. ittt st et e s e e e e s e e e ees 40
2.2.3 Data Types Referenced by Basic Data Typescciviiiiiiiiiiiiii i 40
2.2.3.1 ST RING Lottt ettt ettt et 40
2.2.3.2 LS APR A C L 1ttt ettt et 41
2.2.3.3 SECURITY_DESCRIPTOR_CONTROL ...uuiuiiiieeaeeeeeeteneneeeenenenenenenaenenenenes 41
2.2.3.4 LSAPR_SECURITY_DESCRIPTOR ...ttt s e e e e enee e 41
2.2.3.5 SECURITY_IMPERSONATION_LEVEL ..cuviuiitiiiiiie it e e e 42
2.2.3.6 SECURITY_CONTEXT_TRACKING_MODEciiiiiiiiiiiieieieiere e eee e 42
2.2.3.7 SECURITY_QUALITY_OF _SERVICE ...ttt e e e s e e ees 43
2.2.4 Policy QUEry/Set Data TYPeS ...t e e e e 43
2.2.4.1 POLICY_INFORMATION _CLASS ...ttt ettt e e e e e e e enes 43
2.2.4.2 LSAPR_POLICY_INFORMATION ...ttt eie e eenesenesenesneneenenes 44
2.2.4.3 POLICY_AUDIT_LOG_INFO ...uiiiiiiiieieieiee it e e e e e e ae e e 45
2.2.4.4 LSAPR_POLICY_AUDIT_EVENTS_INFO ..ctiitiiiiiiiiiiiii i sene e ene e 46
2.2.4.5 LSAPR_POLICY_PRIMARY_DOM_INFOiuiiiiiiiininennineeeienene e nenesennenenenss 46
2.2.4.6 LSAPR_POLICY_ACCOUNT_DOM_INFO. ...ttt e e 47
2.2.4.7 LSAPR_POLICY_PD_ACCOUNT_INFO ..uitiuiiiiiiiiene e e e ieenenenenenaeaenenenes 47
2.2.4.8 POLICY_LSA_SERVER_ROLEcitiitiiiiiiii i et e e e e e 47
2.2.4.9 POLICY_LSA_SERVER_ROLE_INFO ...civiiiiiiiiiiiienieeee e e e eenen e e naraeaenenenes 48
2.2.4.10 LSAPR_POLICY_REPLICA_SRCE_INFO ...iiiiiitiiiiii et nee e aae e 48
2.2.4.11 POLICY_MODIFICATION_INFO .ttt aees e saeaeeaaenaaneaaaneneas 48
2.2.4.12 POLICY_AUDIT_FULL_SET_INFO .iutuiititiiititiiieieieieaere e ee e e aeaenenenenaeeees 49

5/254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

2.2.4.13 POLICY_AUDIT_FULL_QUERY_INFO....cciiiiiiiiiiiii e 49

2.2.4.14 LSAPR_POLICY_DNS_DOMAIN_INFO ...iiitiiiitiiiiiieie i nesaeeesesesneeasnenens 49
2.2.4.15 POLICY_DOMAIN_INFORMATION_CLASS ...t eee e e 50
2.2.4.16 LSAPR_POLICY_DOMAIN_INFORMATIONcitiiiitiieieiiiinnieinsieensiereeneannneens 50
2.2.4.17 POLICY_DOMAIN_QUALITY_OF_SERVICE_INFOcciviiiiriiiiiiiiiieieeieeaeens 50
2.2.4.18 LSAPR_POLICY_DOMAIN_EFS_INFOcitiiitiiiieeieie e e eeeeene e e e 51
2.2.4.19 POLICY_DOMAIN_KERBEROS_TICKET_INFO....cciiiiiiiiiiiiiiiiiiienieineiennaneens 51
2.2.4.20 POLICY_AUDIT_EVENT _TYPE ... it re e e e e e e e e e 52
2.2.4.21 LSAPR_POLICY_MACHINE_ACCT_INFO ..iitiiitiiiiriieieiiienieiesnreasnenesneannneens 52
2.2.5 Account Query/Set Data Ty PeS ... 53
2.2.5.1 LSAPR_ACCOUNT_INFORMATION .. .ciuiititiitiiit it eeneernesenesnnesnennsnenes 53
2.2.5.2 LSAPR_ACCOUNT_ENUM_BUFFERctitiitiiiiiieiiiii st e e senesnene e 53
2.2.5.3 LSAPR_USER _RIGHT _SET ..uiiiiiiiie it aee et e e e e e e e eeae e e reea e nenenenes 53
2.2.5.4 LSAPR_LUID_AND_ATTRIBUTES ... ittt e e e e snen e e e 53
2.2.5.5 LSAPR_PRIVILEGE _SET ...uuiuiiieieie it aeeee e e e e e e e eeeae e renaenenenenenes 54
2.2.6 Secret QUENY/Set Data Ty DS « vttt ittt ae s 54
2.2.6.1 LSAPR_CR_CIPHER_VALUE ...t e e e e e e e e ne e 54
2.2.6.2 (Added Section) LSAPR_AES_CIPHER_VALUEccciiiiiiiiiiiiinere e 55
2.2.7 Trusted Domain Query/Set Data TYPeS..ciiiiiiiii i e 55
2.2.7.1 LSAPR_TRUST_INFORMATION ...cucieeieieineieeeneaeneeneneneneeeneneresesnrnenenensn 55
2.2.7.2 TRUSTED_INFORMATION _CLASS ..ttt ne s e naa e ase e 56
2.2.7.3 LSAPR_TRUSTED_DOMAIN_INFO ...cutititieiiiiiaeeeeeeeeeeeeeenenenenesaenenenenes 57
2.2.7.4 LSAPR_TRUSTED_DOMAIN_NAME_INFO ...ciuiiiiiiiiiiiiieniiiinnieneenenesenenenes 58
2.2.7.5 LSAPR_TRUSTED_CONTROLLERS_INFO ...cuiuiiieieieieeeeeene e e e eeeaeneaenes 59
2.2.7.6 TRUSTED_POSIX_OFFSET_INFO ...uiuiiiiieieie it e e eneraeaeneeeeeeens 59
2.2.7.7 LSAPR_TRUSTED_PASSWORD_INFO ...citiiiiiiiiiiiitiiiie i seneennesneneenenes 59
2.2.7.8 LSAPR_TRUSTED_DOMAIN_INFORMATION_BASICiviiiiieeieieeeeeeeenenenes 59
2.2.7.9 LSAPR_TRUSTED_DOMAIN_INFORMATION_EX ..iitiiiiiiiiiiiiiiei e 60
2.2.7.10 LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2....ccititiuieininiiiiienenenennnnnns 61
2.2.7.11 (Updated Section) LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION........... 62
2.2.7.12 LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNALc.cccvenernnene. 63
2.2.7.13 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATIONcocitieinininiiienenenennnnns 63
2.2.7.14 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNALcovvviiinnnnens 63
2.2.7.15 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATIONZ2ccitiriuiniiiieeneneannns 64
2.2.7.16 LSAPR_TRUSTED_DOMAIN_AUTH_BLOB ...ttt neeneeaae e 64
2.2.7.17 LSAPR_AUTH_INFORMATIONiuiuiuieeininetenaeeee e e e eeeeeneeeeeeenenneees 66
2.2.7.18 TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPEScciiiiiiieiiiieainnennns 67
2.2.7.19 LSAPR_TRUSTED_ENUM_BUFFER ... ettt e e e aa e e 68
2.2.7.20 LSAPR_TRUSTED_ENUM_BUFFER_EXititiuiiiiiieieieeeeeieeeeeeeaenenenaeenes 68
2.2.7.21 (Updated Section) LSA_FOREST_TRUST_RECORDcocvviviiiiiiiinineanan 69
2.2.7.22 LSA_FOREST_TRUST_RECORD_TYPE......itititiiieieieieie e reeeeeeaeeneeneeaeees 69
2.2.7.23 LSA_FOREST_TRUST_BINARY _DATA .ttt irea e e areaaereeneananenens 70
2.2.7.24 LSA_FOREST_TRUST_DOMAIN_INFOccititiiiiieieie et eeaeaeeneneeaeees 70
2.2.7.25 LSA_FOREST_TRUST_INFORMATION . .utitititiiietie it ieea e e neeaaeneeneananenens 70
2.2.7.26 LSA_FOREST_TRUST_COLLISION_RECORD_TYPE ...cciitiiiiiiiiiiiieineieenaeens 71
2.2.7.27 LSA_FOREST_TRUST_COLLISION_RECORDc.ciiiiieinieieiniaeeaeenenenennnnnns 71
2.2.7.28 LSA_FOREST_TRUST_COLLISION_INFORMATION ...cciiiiiiiiiniiiniiieineiennanennns 71
2.2.7.29 (Updated Section)
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL_AES.............. 72
2.2.7.30 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL_AES............... 72
2.2.7.31 (Updated Section) LSA_FOREST_TRUST_SCANNER_INFOcccoivieiinnnnnne. 73
2.2.7.32 LSA_FOREST_TRUST_RECORDZ2......ctitiiiiiiiiiiieieie e e 73
2.2.7.33 LSA_FOREST_TRUST_INFORMATIONZ ...citititiieineneieneneeeeneeenenenenenennnnnes 74
2.2.8 Privilege Data Ty PES .iuiuiiiiie it e et eens 74
2.2.8.1 LSAPR_POLICY_PRIVILEGE_DEF ...uvitiiiiiiiiiiiiiieee e e e e ae e 74
2.2.8.2 LSAPR_PRIVILEGE_ENUM_BUFFER ...ttt e 74
2.3 Directory Service Schema Elementscoiiiiiiiiiiii e 74
6/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

1 I = o 1 oo YooY I 0 2= - 1 76

3.1 Server DetailS...o.iuiiiiiii 76
3.1.1 AbStract Data MOAEl.......ciiiiiii i 76
3.1.1.1 Policy Object Data MOdel......coiiiiiiiiiiiii i e e aea 76
3.1.1.2 Accounts Rights Data Modelooiiiiiii i 78
3.1.1.2.1 Privilege Data Modelooiiiiiiii 78
3.1.1.2.2 System Access Rights Data Model........ccooiiiiiiiiic e 81
3.1.1.3 Account Object Data Modelcooviiiiiiiiii 82
3.1.1.4 Secret Object Data Model......coiiiiiiiiii 82
3.1.1.5 Trusted Domain Object Data Modelccocoviiiiiiiiii e 84
3.1.1.6 Configuration SettingsS ..ovviiiiiii i 85
3.1.1.6.1 Block Anonymous Access to Objects ..oovvviiiiiiiiiiicic i 85
3.1.1.7 LsaContextHandle Data Modelc.cooeiiiiiiiiii e 85
3.1.1.8 ALErDULE LiStiNg cuiiriii i s 86
3.1.1.9 Object Class LiStingciuiiieiiiiiiii s e 87
3.1.1.10 Access for Public Abstract Data Model Elements..........coovviiiiiiiiiiiiinnnennns 87
3.1.1.10.1 Example Patterns for Direct Access of Policy Object ADM Elements........ 87
3.1.1.10.1.1 Query Pattern for Policy Object ADMc.cooiiiiiiiiiiiiiiiieeeeeneens 87
3.1.1.10.1.2 Set Pattern for Policy Object ADMccciiiiiiiiiiiiiicici s 88
3.1.2 LT 88
3.1.3 | F= 4= | o] o PP 88
3.1.4 (Updated Section) Message Processing Events and Sequencing Rules................ 88
3.1.4.1 Obtaining Handlesco i 95
3.1.4.2 Access Rights and Access CheCKSo.viiiiiiiiiiiiiiii e 96
3.1.4.2.1 Access Checks Applied on Handle Open.......cccoceiiiiiiiiiiiiii e 97
3.1.4.2.2 Access Checks Applied for Object Operationscccocviiiiiiiiiiiiiiinene, 99
3.1.4.2.3 Determining If Requestors Are ANONYMOUScuveeererernenrrreenerereannns 99
3.1.4.3 (@1 Lo Y] o Yol 5 F= 1 To | 1= PP 99
3.1.4.4 (Updated Section) Policy Object Methodsccvviviiiiiiiiii e 99
3.1.4.4.1 LsarOpenPolicy2 (OpNUM 44) ...ttt e e ae e as 100
3.1.4.4.2 LsarOpenPolicy (OPNUM 6) .o.uiuiieiiieiiie it st e e e e e 101
3.1.4.4.3 LsarQueryInformationPolicy2 (OpnumM 46)ccovveieieininiiiiiiieienenenaans 102
3.1.4.4.4 LsarQueryInformationPolicy (OpnuUM 7). ccciiiiiiiiiiiiiiiicie i aas 104
3.1.4.4.5 LsarSetInformationPolicy2 (Opnum 47)oieiiiiiiiiiiii e 105
3.1.4.4.6 LsarSetInformationPolicy (Opnum 8) ...c.iiiiiiiiiiiiiiiiiiici e 107
3.1.4.4.7 LsarQueryDomainInformationPolicy (Opnum 53)coiviiiiiiiiiiiiieininenn. 107
3.1.4.4.8 LsarSetDomainInformationPolicy (Opnum 54)cciciiiiiiiiiiiiiiiiiiiians 109
3.1.4.4.9 (Updated Section) LsarOpenPolicy3 (Opnum 130) ..oovvviiiiiiinninineinennns, 110
3.1.4.4.10 (Added Section) LsarOpenPolicyWithCreds (Opnum 135)........cccvcevuvnens 112
3.1.4.5 Account Object Methodscciviiiiiiii 112
3.1.4.5.1 LsarCreateAccount (OpnumM 10) ..ouieiniieiiiiiiiii et e e aeees 113
3.1.4.5.2 LsarEnumerateAccounts (OpnumM 11) .iiiiiiiiiiiiiii i e 114
3.1.4.5.3 LsarOpenAccount (OpNUM 17) .o et ae e 116
3.1.4.5.4 LsarEnumeratePrivilegesAccount (Opnum 18) ...ocvvviiiiiiiiiiiiiniiiieienenn, 117
3.1.4.5.5 LsarAddPrivilegesToAccount (OpnumM 19)...c.iiiiiiiiiiiiiiiiii e aeenn, 118
3.1.4.5.6 LsarRemovePrivilegesFromAccount (Opnum 20)cccevviiiiiiniininennnnens. 119
3.1.4.5.7 LsarGetSystemAccessAccount (OpNUM 23) cuiiiiiiiiiiiiiiiiiii i iieaaans 119
3.1.4.5.8 LsarSetSystemAccessAccount (OpnumM 24)ooviiiiiiiiiiiiiieiiee e 120
3.1.4.5.9 LsarEnumerateAccountsWithUserRight (Opnum 35)cooiiiiiiiiiiiinnnnns 121
3.1.4.5.10 LsarEnumerateAccountRights (Opnum 36).......ccccviiiiiiiiiiiiiiiieens 122
3.1.4.5.11 LsarAddAccountRights (OpnumM 37)....cciiiiiiiiiiiiiiiieee e 123
3.1.4.5.12 LsarRemoveAccountRights (Opnum 38).....ccccvviiiiiiiiiiiiiiiiii e, 124
3.1.4.6 Secret Object Methods. ... 125
3.1.4.6.1 LsarCreateSecret (OpNUM 16)...ccciuieiiiiiiiiiiiiiie e e enee e 126
3.1.4.6.2 LsarOpenSecret (OpnUM 28) ..uvviiieiiiiiiiiie e e e 127
3.1.4.6.3 LsarSetSecret (OPNUM 29) .. e eea e 129
3.1.4.6.4 LsarQuerySecret (OpnuUM 30) ..oviiieiiiiiiiiie e e e e e e 130
3.1.4.6.5 LsarStorePrivateData (OpnumM 42) ... 131
7/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

3.1.4.6.6 LsarRetrievePrivateData (Opnum 43)iiiiiiiiieiiiiiiiee e eneeaaas 132
3.1.4.6.7 (Added Section) LsarOpenSecret2 (Opnum 136) ...cocvvivviiiiieiiiieiiennnns 133
3.1.4.6.8 (Added Section) LsarCreateSecret2 (Opnum 137)....ciuiiiiiiiiiiieninennnnns 133
3.1.4.6.9 (Added Section) LsarSetSecret2 (Opnum 138) ...cvvviiviiiiiiiiiiiiiiiiennns 134
3.1.4.6.10 (Added Section) LsarQuerySecret2 (Opnum 139) ...ccvviiiiiiiiiiiiiiinnnnns. 134
3.1.4.6.11 (Added Section) LsarStorePrivateData2 (Opnum 140)c.cocvvveinnnnnnn. 135
3.1.4.6.12 (Added Section) LsarRetrievePrivateData2 (Opnum 141)..........cccevuene. 135
3.1.4.7 Trusted Domain Object Methodsocviiiiiiiiii e 136
3.1.4.7.1 (Updated Section) LsarOpenTrustedDomain (Opnum 25).....c.cccvvvieinnnns 137
3.1.4.7.2 LsarQueryTrustedDomainInfo (Opnum 39)cccivieiiiiiiiiiiiiiieieeeeeeens 138
3.1.4.7.3 LsarSetTrustedDomainInfo (Opnum 40) ...ccvviiiiiiiiiiiiiiici e aaas 139
3.1.4.7.4 LsarDeleteTrustedDomain (Opnum 41) ..oiiiiiiiiiiiiiiiiici e 141
3.1.4.7.5 LsarQueryTrustedDomainInfoByName (Opnum 48)cccviiiiiiiininnnnnnns 143
3.1.4.7.6 LsarSetTrustedDomainInfoByName (Opnum 49)......ccocviiiiiiiiiiieiinnnnns 143
3.1.4.7.7 LsarEnumerateTrustedDomainsEx (Opnum 50)ccovviiiiiiiiiiiniinnnnn, 144
3.1.4.7.8 LsarEnumerateTrustedDomains (Opnum 13)...ccciiiiiiiiiiiiiiiiiiiiieeaas 146
3.1.4.7.9 LsarOpenTrustedDomainByName (Opnum 55)cooviiiiiiiiiiiiiiinnnn, 147
3.1.4.7.10 (Updated Section) LsarCreateTrustedDomainEx2 (Opnum 59).............. 148
3.1.4.7.11 LsarCreateTrustedDomainEx (Opnum 51) ...ccciiiiiiiiiiiiiiiiiicii e 151
3.1.4.7.12 LsarCreateTrustedDomain (Opnum 12)cceiuiiiiiiiiiiiiiiiieiiieeeeeaeaens 152
3.1.4.7.13 LsarQueryInfoTrustedDomain (OpnumM 26) ...ccivviiiiiiiiiiiiiiiiiieiieeieans 154
3.1.4.7.14 LsarSetInformationTrustedDomain (Opnum 27)coiviiiiiiieininrnnnnnannn. 156
3.1.4.7.15 LsarQueryForestTrustInformation (Opnum 73) ...iciiiiiiiiiiiiiiiiiie e 159
3.1.4.7.16 LsarSetForestTrustInformation (OpnuUM 74)cooiiiiiiiiiiie e, 160
3.1.4.7.16.1 Forest Trust Collision Generationc.cooiiiiiiiiiiii e 162
3.1.4.7.17 (Updated Section) LsarCreateTrustedDomainEx3 (Opnum 129)............ 163
3.1.4.7.18 (Updated Section) LsarQueryForestTrustInformation2 (Opnum 132)..... 164
3.1.4.7.19 LsarSetForestTrustInformation2 (Opnum 133) ..iciiiiiiiiiiiiiiiiiie e 165
3.1.4.8 Privilege Methodscoviiiiii e 167
3.1.4.8.1 LsarEnumeratePrivileges (OpNUM 2) .i.viuiiiiiiiiiiiiiiii e eeees 168
3.1.4.8.2 LsarLookupPrivilegeValue (Opnum 31) ...ociiviiiiiiiiiiiiiii e 169
3.1.4.8.3 LsarLookupPrivilegeName (Opnum 32)ciuiiieiiiiiiiiiiiie e seenn 170
3.1.4.8.4 LsarLookupPrivilegeDisplayName (Opnum 33)...ccviviiiiiiiiiinenniineinenenn, 171
3.1.4.9 Common Object MethodSiuiiiiiiii e 172
3.1.4.9.1 LsarQuerySecurityObject (OpnuUM 3) .. .ciuiiiieiiieiiiiiieieiieie e eeneaeees 172
3.1.4.9.2 LsarSetSecurityObject (Opnum 4) ..o e 174
3.1.4.9.3 LsarDeleteObject (OpnNUM 34) ..ciuiiieiiii i e ee e 175
3.1.49.4 LsarClose (OPNUM 0) ciuuiieiiii i i a e aa s e e eaeaaaans 176
3.1.4.10 Data Validation ..o e 177
3.1.5 LI L L= =2 =T L 182
3.1.6 Other LoCal EVENES ..ttt e e e e s 182
3.1.6.1 LSAPR_HANDLE_FUNAOWN 1.ttt e e e e e e e e s en s nenenaeneeneens 182
4 Protocol EXamples ..cciciicirimserimssisesnss s sassassssssassa s sas s aa s n s anannnnnnnnnn 183
4.1 Manipulating ACCOUNT ObJECES .. uivirii i e 183
4.2 Manipulating Secret ObJeCS ..viiiiiii i 186
4.3 Manipulating Trusted Domain Objects......c.covviiiiii e 189
4.4 Structure Example of LSAPR_TRUSTED_DOMAIN_AUTH_BLOB......ccocvvvviiiiiiinanns 191
L <Y oL 1 o 1 195
5.1 Security Considerations for IMplementersoiuiiiiiiiii e 195
5.1.1 N O @1 o] a1 gl U L= T = PP 195
5.1.2 Secret Encryption and Decryplionoveieieieiiiiiiei e 195
5.1.3 DES-ECB-LM Cipher Definitionouieiiiiiiiie et eees 197
5.1.4 Encryption and Decrypltion EXamples......ccoiiiieiiiiiiiii s 197
5.1.4.1 ENCryption EXample.. ... 198
5.1.4.2 Decryption EXample ... 198
5.1.5 AES Cipher USAgecuee ettt e e e e s e e e e e e e e e e 199
5.2 Index of Security Parameters ..o ieiiiiiii e 199
8/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

6 (Updated Section) Appendix A: FUll IDLcccicicirarsisimiasasasmsasasassssssnsnsnsasasasasasass 201
7 (Updated Section) Appendix B: Product Behavior.......c.cuiciimiemisnssnsmsssssssassassannes 223
2 J 1 3 - 1 4 T« [I 3= T ol] o T 247
2 N 3 T 1= G 249
9/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

1 Introduction

The Local Security Authority (Domain Policy) Remote Protocol is used to manage various machine and
domain security policies. All versions of Windows NT operating system-based products, in all
configurations, implement and listen on the server side of this protocol. However, not all operations
are meaningful in all configurations.

This protocol, with minor exceptions, enables remote policy-management scenarios. Therefore, the
majority of this interface does not need to be implemented to achieve Windows client-to-server
(domain controller configuration and otherwise) interoperability, as defined by the ability for Windows
clients to retrieve policy settings from servers.

Policy settings controlled by this protocol relate to the following:
= Account objects: The rights and privileges that security principals have on the server.
= Secret objects: Mechanisms that securely store data on the server.

= Trusted domain objects: Mechanisms that the Windows operating system uses for describing
trust relationships between domains and forests.

= Other miscellaneous settings, such as lifetimes of Kerberos tickets, states of domain controller
(backup or primary), and other unrelated pieces of policy.

All of these types of policy are addressed in sections of this document that specify the server data
model.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 (Updated Section) Glossary
This document uses the following terms:

64-bit Network Data Representation (NDR64): A specific instance of a remote procedure call
(RPC) transfer syntax. For more information about RPC transfer syntax, see [C706] section 14.

access control list (ACL): A list of access control entries (ACEs) that collectively describe the
security rules for authorizing access to some resource; for example, an object or set of objects.

account domain: A domain, identified by a security identifier (SID), that is the SID namespace for
which a given machine is authoritative. The account domain is the same as the primary domain
for a domain controller (DC) and is its default domain. For a machine that is joined to a domain,
the account domain is the SID namespace defined by the local Security Accounts Manager [MS-
SAMR].

account object: An element of a Local Security Authority (LSA) policy database that describes the
rights and privileges granted by the server to a security principal. The security identifier (SID) of
the security principal matches that of the account object.

ACID: A term that refers to the four properties that any database system faesiErRes achieve in
order to be considered transactional: Atomicity, Consistency, Isolation, and Durabilitym

Active Directory: The Windows implementation of a general-purpose directory service, which uses
LDAP as its primary access protocol. Active Directory stores information about a variety of
objects in the network such as user accounts, computer accounts, groups, and all related
credential information used by Kerberos [MS-KILE]. Active Directory is either deployed as Active
Directory Domain Services (AD DS) or Active Directory Lightweight Directory Services (AD LDS),
which are both described in [MS-ADOD]: Active Directory Protocols Overview.

10/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

backup domain controller (BDC): A domain controller (DC) that receives a copy of the domain
directory database from the primary domain controller (PDC). This copy is synchronized
periodically and automatically with the primary domain controller (PDC). BDCs also authenticate
user logons and can be promoted to function as the PDC. There is only one PDC or PDC
emulator in a domain, and the rest are backup domain controllers.

content encryption key: A cryptographic key that is used to encrypt data. Content encryption
keys are used not only to encrypt content, but also to encrypt other secrets, such as the
proximity detection nonce.

Coordinated Universal Time (UTC): A high-precision atomic time standard that approximately
tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones
around the world are expressed as positive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all
references to UTC refer to the time at UTC-0 (or GMT).

directory: The database that stores information about objects such as users, groups, computers,
printers, and the directory service that makes this information available to users and
applications.

directory service (DS): A service that stores and organizes information about a computer
network's users and network shares, and that allows network administrators to manage users'
access to the shares. See also Active Directory.

discretionary access control list (DACL): An access control list (ACL) that is controlled by the
owner of an object and that specifies the access particular users or groups can have to the
object.

DNS name: A fully qualified domain name (FQDN).

domain: A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set M@ act as a domain controller
(DC) and host a member list that identifies all members of the domain, as well as optionally
hosting the Active Directory service. The domain controller provides authentication of members,
creating a unit of trust for its members. Each domain has an identifier that is shared among its
members. For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

domain controller (DC): The service, running on a server, that implements Active Directory, or
the server hosting this service. The service hosts the data store for objects and interoperates
with other DCs to ensure that a local change to an object replicates correctly across all DCs.
When Active Directory is operating as Active Directory Domain Services (AD DS), the DC
contains full NC replicas of the configuration naming context (config NC), schema naming
context (schema NC), and one of the domain NCs in its forest. If the AD DS DC is a global
catalog server (GC server), it contains partial NC replicas of the remaining domain NCs in its
forest. For more information, see [MS-AUTHSOD] section 1.1.1.5.2 and [MS-ADTS]. When
Active Directory is operating as Active Directory Lightweight Directory Services (AD LDS),
several AD LDS DCs can run on one server. When Active Directory is operating as AD DS, only
one AD DS DC can run on one server. However, several AD LDS DCs can coexist with one AD DS
DC on one server. The AD LDS DC contains full NC replicas of the config NC and the schema NC
in its forest. The domain controller is the server side of Authentication Protocol Domain Support
[MS-APDS].

domain member (member machine): A machine that is joined to a domain by sharing a secret
between the machine and the domain.

domain name: A domain name or a NetBIOS name that identifies a domain.

domain naming context (domain NC): A specific type of naming context (NC), or an instance of
that type, that represents a domain. A domain NC can contain security principal objects; no
other type of NC can contain security principal objects. Domain NCs appear in the global catalog

11/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

(GC). A domain NC is hosted by one or more domain controllers (DCs) operating as AD DS. In
AD DS, a forest has one or more domain NCs. A domain NC cannot exist in AD LDS. The root of
a domain NC is an object of class domainDNS; for directory replication [MS-DRSR], see
domainDNS.

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

forest: One or more domains that share a common schema and trust each other transitively. An
organization can have multiple forests. A forest establishes the security and administrative
boundary for all the objects that reside within the domains that belong to the forest. In contrast,
a domain establishes the administrative boundary for managing objects, such as users, groups,
and computers. In addition, each domain has individual security policies and trust relationships
with other domains.

forest functional level: A specification of functionality available in a forest. It must be less than
or equal to the domain controller (DC) functional level of every DC in the forest. See [MS-ADTS]
section 6.1.4.4 for information on how the forest functional level is determined.

forest trust: A type of trust where the trusted party is a forest, which means that all domains in
that forest are trusted.

forest trust information: Information about namespaces, domain names, and security identifiers
(SIDs) owned by a trusted forest.

FSMO role: A set of objects that can be updated in only one naming context (NC) replica (the
FSMO role owner's replica) at any given time. For more information, see [MS-ADTS] section
3.1.1.1.11. See also FSMO role owner.

global catalog server (GC server): A domain controller (DC) that contains a naming context
(NC) replica (one full, the rest partial) for each domain naming context in the forest.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

interdomain trust account: An account that stores information associated with a domain trust in
the domain controllers (DCs) of the domain that is trusted to perform authentication.

local account domain: A domain, identified by a security identifier (SID), that is a SID
namespace for which a given machine is authoritative. The local account domain is the same as
the account domain for any non-domain controller (DC). On a DC, the local account domain is
an account domain local to the DC.

locally unique identifier (LUID): A 64-bit value guaranteed to be unique within the scope of a
single machine.

Network Data Representation (NDR): A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

12 /254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS-RPCE].

original equipment manufacturer (OEM) code page: A code page used to translate between
non-Unicode encoded strings and UTF-16 encoded strings.

primary domain: A domain (identified by a security identifier (SID)) that the server is joined to.
For a domain controller (DC), the primary domain is that of the domain itself.

primary domain controller (PDC): A domain controller (DC) designated to track changes made
to the accounts of all computers on a domain. It is the only computer to receive these changes
directly, and is specialized so as to ensure consistency and to eliminate the potential for
conflicting entries in the Active Directory database. A domain has only one PDC.

primary domain controller (PDC) role owner: The domain controller (DC) that hosts the
primary domain controller emulator FSMO role for a given domain naming context (NC).

privilege: The capability of a security principal to perform a type of operation on a computer
system regardless of restrictions placed by discretionary access control.

RC4: A variable key-length symmetric encryption algorithm. For more information, see
[SCHNEIER] section 17.1.

read-only domain controller (RODC): A domain controller (DC) that does not accept originating
updates. Additionally, an RODC does not perform outbound replication. An RODC cannot be the
primary domain controller (PDC) for its domain.

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

root domain: The unique domain naming contexts (domain NCs) of an Active Directory forest that
is the parent of the forest's config NC. The config NC's relative distinguished name (RDN) is
"cn=Configuration" relative to the root object of the root domain. The root domain is the domain
that is created first in a forest.

RPC client: A computer on the network that sends messages using remote procedure call (RPC) as
its transport, waits for responses, and is the initiator in an RPC exchange.

RPC context handle: A representation of state maintained between a remote procedure call (RPC)
client and server. The state is maintained on the server on behalf of the client. An RPC context
handle is created by the server and given to the client. The client passes the RPC context handle
back to the server in method calls to assist in identifying the state. For more information, see
[C706].

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

RPC server: A computer on the network that waits for messages, processes them when they
arrive, and sends responses using RPC as its transport acts as the responder during a remote
procedure call (RPC) exchange.

RPC transport: The underlying network services used by the remote procedure call (RPC) runtime
for communications between network nodes. For more information, see [C706] section 2.

13 /254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

secret object: An element of the Local Security Authority (LSA) Policy Database, which contains a
value that is secret in that access to it is strictly controlled through cryptographic protections
and restrictive access control mechanisms.

security descriptor: A data structure containing the security information associated with a
securable object. A security descriptor identifies an object's owner by its security identifier
(SID). If access control is configured for the object, its security descriptor contains a
discretionary access control list (DACL) with SIDs for the security principals who are allowed or
denied access. Applications use this structure to set and query an object's security status. The
security descriptor is used to guard access to an object as well as to control which type of
auditing takes place when the object is accessed. The security descriptor format is specified in
[MS-DTYP] section 2.4.6; a string representation of security descriptors, called SDDL, is
specified in [MS-DTYP] section 2.5.1.

security identifier (SID): An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a smaller integer representing an identity relative to the account authority, termed
the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a string
representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section 1.1.1.2.

security principal: A unique entity, also referred to as a principal, that can be authenticated by
Active Directory. It frequently corresponds to a human user, but also can be a service that offers
a resource to other security principals. Other security principals might be a group, which is a set
of principals. Groups are supported by Active Directory.

Server Message Block (SMB): A protocol that is used to request file and print services from
server systems over a network. The SMB protocol extends the CIFS protocol with additional
security, file, and disk management support. For more information, see [CIFS] and [MS-SMB].

server role: The state of a domain controller (DC), which can be one of two values--primary DC or
backup DC.

service: A process or agent that is available on the network, offering resources or services for
clients. Examples of services include file servers, web servers, and so on.

system access control list (SACL): An access control list (ACL) that controls the generation of
audit messages for attempts to access a securable object. The ability to get or set an object's
SACL is controlled by a privilege typically held only by system administrators.

trust: To accept another authority's statements for the purposes of authentication and
authorization, especially in the case of a relationship between two domains. If domain A trusts
domain B, domain A accepts domain B's authentication and authorization statements for
principals represented by security principal objects in domain B; for example, the list of groups
to which a particular user belongs. As a noun, a trust is the relationship between two domains
described in the previous sentence.

trust attributes: A collection of attributes that define different characteristics of a trust within a
domain or a forest.

trusted domain: A domain that is trusted to make authentication decisions for security principals
in that domain.

trusted domain object (TDO): A collection of properties that define a trust relationship with
another domain, such as direction (outbound, inbound, or both), trust attributes, name, and
security identifier of the other domain. For more information, see [MS-ADTS].

trusted forest: A forest that is trusted to make authentication statements for security principals in
that forest. Assuming forest A trusts forest B, all domains belonging to forest A will trust all
domains in forest B, subject to policy configuration.

14 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 (Updated Section) Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[AES-CBC] McGrew, D. and Foley, J., "Authenticated Encryption with AES-CBC and HMAC-SHA",
https://tools.ietf.org/id/draft-mcgrew-aead-aes-cbc-hmac-sha2-03.html

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[FIPS81] FIPS PUBS, "DES Modes of Operation", December 1980,
https://csrc.nist.gov/csrc/media/publications/fips/81/archive/1980-12-02/documents/fips81.pdf

[GRAY] Gray, J., and Reuter, A., "Transaction Processing: Concepts and Techniques", The Morgan
Kaufmann Series in Data Management Systems, San Francisco: Morgan Kaufmann Publishers, 1992,
Hardcover ISBN: 9781558601901.

[MS-ADA1] Microsoft Corporation, "Active Directory Schema Attributes A-L".

[MS-ADA2] Microsoft Corporation, "Active Directory Schema Attributes M".

[MS-ADA3] Microsoft Corporation, "Active Directory Schema Attributes N-Z".

[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes".

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-GPEF] Microsoft Corporation, "Group Policy: Encrypting File System Extension".

[MS-GPSB] Microsoft Corporation, "Group Policy: Security Protocol Extension".

15/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-LSAT] Microsoft Corporation, "Local Security Authority (Translation Methods) Remote Protocol".
[MS-NRPC] Microsoft Corporation, "Netlogon Remote Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SAMR] Microsoft Corporation, "Security Account Manager (SAM) Remote Protocol (Client-to-
Server)".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".
[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".
[MS-WKST] Microsoft Corporation, "Workstation Service Remote Protocol".

[MSKB-3149090] Microsoft Corporation, "MS16-047: Description of the security update for SAM and
LSAD remote protocols", April 2016, https://support.microsoft.com/en-us/kb/3149090

[MSKB-3155495] Microsoft Corporation, "You can't use the Active Directory shadow principal groups
feature for groups that are always filtered out in Windows", revision 2.0, May 2016,
https://support.microsoft.com/en-us/kb/3155495

[RFC1088] McLaughlin III, L., "A Standard for the Transmission of IP Datagrams over NetBIOS
Networks", RFC 1088, February 1989, m://www..org/ rfclOBB@

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc-editor.org/info/rfc2119

[RFC3961] Raeburn, K., "Encryption and Checksum ecifications for Kerberos 5", RFC 3961,

February 2005, RSO //www.] .org/ rfc396 10

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network Authentication
Service (V5)", RFC 4120, July 2005, https://www.rfc-editor.org/rfc/rfc4120

[RFC4757] Jaganathan, K., Zhu, L., and Brezak, J., "The RC4-HMAC Kerberos Encryption Types Used
by Microsoft Windows", RFC 4757, December 2006, https://www.rfc-editor.org/| rfc4757

1.2.2 (Updated Section) Informative References

[MS-DRSR] Microsoft Corporation, "Directory Replication Service (DRS) Remote Protocol".

MSDN RPCDB] Microsoft Corporation, "The RPC Name Service Database"

[MSFT-CVE-2022-21857] Microsoft Corporation, "Active Directory Domain Services Elevation of
Privilege Vulnerability", CVE-2022-21857, January 11, 2022, https://msrc.microsoft.com/update-
guide/vulnerability/CVE-2022-21857

[MSFT-CVE-2022-21913] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote
Protocol Security Feature Bypass", CVE-2022-21913, January 11, 2022,
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21913

16 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

[MSFT-LSA-IDL] Microsoft Corporation, "Local Security Authority Merged IDL File", March 2018,
https://www.microsoft.com/en-us/download/details.aspx?id=3367

[SCHNEIER] Schneier, B., "Applied Cryptography, Second Edition", John Wiley and Sons, 1996, ISBN:
0471117099, http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471117099.html

1.3 Overview

The Local Security Authority (Domain Policy) Remote Protocol provides a remote procedure call (RPC)
interface used for providing remote management for policy settings related to account objects, secret
objects, trusted domain objects (TDOs), and other miscellaneous security-related policy settings. The
client end of the Local Security Authority (Domain Policy) Remote Protocol is an application that issues
method calls on the RPC interface. The server end of the Local Security Authority (Domain Policy)
Remote Protocol is a service that implements support for this RPC interface.

The following represent primary use cases for remote management:
= Creating, deleting, enumerating, and modifying trusts, account objects, and secret objects.

= Querying and modifying policy settings unrelated to TDOs, account objects or secret objects, such
as lifetimes of Kerberos tickets.

This protocol is used by Windows clients for the "domain join" operation (as specified in [MS-ADTS]
section 6.4) as an implementation choice to achieve the end state, as specified in [MS-ADTS]. The
specific profile of the Local Security Authority (Domain Policy) Remote Protocol for the "domain join"
scenario is specified in section 1.6 as "Retrieval of policy settings by clients".

The server end of the Local Security Authority (Domain Policy) Remote Protocol can be implemented
on a domain controller (DC), including primary domain controllers (PDCs), backup domain controllers
(BDCs), global catalog servers (GC servers), and read-only domain controllers (RODCs), or on a non-
domain controller. In the case of a DC, including PDCs, BDCs, GC servers, and RODCs, the server end
of this protocol can be in one of the forest functional levels. The behavior of the server end of the
Local Security Authority (Domain Policy) Remote Protocol is the same in these cases, except when
noted in the message processing descriptions for the methods of this protocol. See sections 3.1.4.4.1,
3.1.4.4.3,3.1.4.4.5,3.1.4.7,3.1.4.7.3, 3.1.4.7.4, 3.1.4.7.10, 3.1.4.7.14, and 3.1.4.7.16 for details.

This protocol is a simple request/response-based RPC protocol. Typically, there are no long-lived
sessions, although clients can cache the RPC connection and reuse it over time. A sample sequence of
requests and responses is specified in section 4.

It is helpful to consider two perspectives when understanding and implementing this protocol: an
object-based perspective and a method-based perspective.

The object-based perspective shows that the protocol exposes four main object abstractions: a policy
object, an account object, a secret object, and a trusted domain object. A requester obtains a "handle"
(an RPC context handle) to one of these objects and then performs one or more actions on the object.
The following is a brief listing of methods that operate on each of the respective object types.

Policy object:

= LsarOpenPolicy3

= LsarOpenPolicy2

» LsarQueryInformationPolicy2
» LsarSetInformationPolicy2

= |sarClose

17/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

» LsarQueryDomainInformationPolicy
= LsarEnumeratePrivileges

» LsarLookupPrivilegeName

» LsarLookupPrivilegeValue

= LsarLookupPrivilegeDisplayName
= LsarSetDomainInformationPolicy
= LsarQuerySecurityObject

= LsarSetSecurityObject

Account object:

= LsarCreateAccount

= LsarOpenAccount

= LsarEnumerateAccounts

= LsarClose

= LsarDeleteObject

= LsarSetSystemAccessAccount

= LsarQuerySecurityObject

= LsarAddAccountRights

= LsarRemoveAccountRights

»= LsarAddPrivilegesToAccount

»= LsarRemovePrivilegesFromAccount
» LsarEnumerateAccountsWithUserRight
= LsarGetSystemAccessAccount

= LsarSetSecurityObject

» LsarEnumeratePrivilegesAccount
= LsarEnumerateAccountRights
Secret object:

= LsarCreateSecret

= LsarOpenSecret

» LsarClose

= LsarDeleteObject

= LsarRetrievePrivateData

= |sarStorePrivateData

18/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

LsarSetSecret
LsarQuerySecret
LsarQuerySecurityObject

LsarSetSecurityObject

Trusted domain object:

LsarCreateTrustedDomainEx3
LsarCreateTrustedDomainEx2
LsarOpenTrustedDomain
LsarClose

LsarDeleteObject
LsarOpenTrustedDomainByName
LsarDeleteTrustedDomain
LsarEnumerateTrustedDomainsEx
LsarQueryInfoTrustedDomain
LsarSetInformationTrustedDomain
LsarQueryForestTrustInformation
LsarSetForestTrustInformation
LsarQueryTrustedDomainlInfo
LsarSetTrustedDomainInfo
LsarQueryTrustedDomainInfoByName

LsarSetTrustedDomainInfoByName

For example, to set a policy that controls the lifetime of Kerberos tickets, a requester opens a handle
to the Policy object and updates the maximum service ticket age policy setting via a parameter called
MaxServiceTicketAge. The call sequence from the requester appears as follows (with the parameter
information removed for brevity):

1.
2.

3.
4.

Send LsarOpenPolicy3 request; receive LsarOpenPolicy3 reply.

Send LsarQueryDomainInformationPolicy request; receive LsarQueryDomainInformationPolicy
reply.

Send LsarSetDomainInformationPolicy request; receive LsarSetDomainInformationPolicy reply.

Send LsarClose request; receive LsarClose reply.

The following is a brief explanation of the call sequence:

1.

Using the network address of a responder that implements this protocol, a requester makes an
LsarOpenPolicy3 request to obtain a handle to the policy object. This handle is necessary to
examine and manipulate domain policy information.

19/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

2. Using the handle returned from LsarOpenPolicy3, the requester makes an
LsarQueryDomainInformationPolicy request to retrieve the current policy settings that affect
Kerberos tickets.

3. After modifying the portions of the Kerberos ticket policy information to suit the requester, the
requester makes the LsarSetDomainInformationPolicy request to set the policy to the new values.

4. The requester closes the policy handle returned from LsarOpenPolicy3. This releases responder
resources associated with the handle.

In the method-based perspective, there is a common set of operations for each object type. The
operations fall into patterns. The following is a list of the patterns and associated methods, along with
a description of the pattern.

= Open pattern: This pattern returns an RPC context handle that references a specific object type.
A requester uses this pattern by specifying a specific access for the handle in the request and
using the returned handle to call other methods that require the returned handle and the
associated access. For example, calling the LsarSetSecret method requires a secret object handle
that has been opened with SECRET_WRITE access.

LsarOpenPolicy3 is distinguished from the other methods in this pattern in two ways. First, the
requestor calls this method before calling any other handle-based methods. Second, a network
address, rather than a context handle, is required to indicate the responder.

The following are the methods that follow the open pattern:
= LsarOpenPolicy3

= LsarOpenPolicy2

= LsarOpenPolicy

= LsarOpenAccount

= LsarOpenSecret

= LsarOpenTrustedDomain

= LsarOpenTrustedDomainByName

= Enumerate pattern: This pattern enables a requester to obtain a complete listing of all objects of
a certain type (account or trusted domain) or to get all values of a certain type out of an object
(for example, privileges known to the server).

The following are the methods that follow the enumerate pattern:
» LsarEnumerateTrustedDomainsEx

*» LsarEnumerateAccounts

= LsarEnumeratePrivileges

= LsarEnumeratePrivilegesAccount

» LsarEnumerateAccountRights

» LsarEnumerateAccountsWithUserRight

= Create pattern: Methods in this pattern enable specified objects to be created. A handle to the
newly created object is also returned.

The following are the methods that follow the create pattern:

20/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

» LsarCreateAccount

» LsarCreateSecret

» LsarCreateTrustedDomainEx2
» LsarCreateTrustedDomainEx3

= Query pattern: This pattern enables specified attributes of an object to be returned. The
requester indicates which attributes to return by specifying an "information class". This is an
enumeration that the responder understands and translates to a specific structure to return (the
structure contains the attributes indicated by the information class).

For example, to retrieve the name of a trusted domain, a requester would specify the information
level "TrustedDomainNamelnformation" to the LsarQueryTrustedDomainInfo method.

The following are the methods that follow the query pattern:
= LsarQueryDomainInformationPolicy

= LsarQueryForestTrustInformation

= LsarQueryInformationPolicy2

= LsarQuerySecret

= LsarQueryTrustedDomainInfo

= LsarQueryTrustedDomainInfoByName

= LsarQueryInfoTrustedDomain

= Set pattern: This pattern enables specified object attributes to be set. The requester makes a
request for which attributes to update by specifying an "information class". Similar to the Query
pattern, this information level allows the caller to specify to the responder which attributes are
being sent in the request.

The following are the methods that follow the set pattern:
= LsarSetDomainInformationPolicy
» LsarSetForestTrustInformation
= LsarSetInformationPolicy2
= LsarSetSecret
»= LsarAddPrivilegesToAccount
»= LsarRemovePrivilegesFromAccount
= LsarAddAccountRights
= LsarRemoveAccountRights
= Delete pattern: This pattern enables a requester to delete a specified object.
The following are the methods that follow the delete pattern:
= LsarDeleteObject

= |sarDeleteTrustedDomain

21/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

= Lookup pattern: This pattern enables a caller to translate between different representations of
an entity (in the case of this protocol, names and identifiers of privileges).

The following are the methods that follow the lookup pattern:
= LsarLookupPrivilegeName
» LsarLookupPrivilegeValue

= LsarLookupPrivilegeDisplayName

= Security pattern: This pattern enables a caller to specify or query the access control at the level

of individual objects.

The following are the methods that follow the security pattern:
= LsarSetSecurityObject

= LsarQuerySecurityObject

= Miscellaneous: The following method does not fall into a general pattern. A brief description is
given here. See the message processing section for details.

LsarClose: This method releases responder resources associated with the RPC context handle that

is passed as a parameter.

1.4 Relationship to Other Protocols

The Local Security Authority (Domain Policy) Remote Protocol is composed of a subset of opnums in
an interface that also includes the Local Security Authority (Translation Methods) Remote Protocol
[MS-LSAT].

The Local Security Authority (Domain Policy) Remote Protocol is dependent on RPC, which is used for

communication between domain members and domain controllers.

This protocol shares the Domain Name field of the abstract data Account Domain Information, as
specified in section 3.1.1.1 of this specification, with the Workstation Service Remote Protocol [MS-
WKST].

This protocol depends on Server Message Block (SMB) protocols for sending messages on the wire.

Authentication protocols like the Kerberos Protocol Extensions [MS-KILE] and translation protocols like

the Directory Replication Service (DRS) Remote Protocol [MS-DRSR] and Local Security Authority
(Translation Methods) Remote Protocol [MS-LSAT] depend on the abstract data model introduced by
this protocol in section 3.1.1. These protocols use the information in the Local Security Authority
(Domain Policy) Remote Protocol to locate a domain that can process further requirements on that
protocol.

The Active Directory Technical Specification [MS-ADTS] discusses Active Directory, which is used by
this protocol when running on a domain controller.

The server-side protocol relationships for non-domain controller and domain controller configurations

are illustrated in the following diagrams.

22 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Local Security &uthoriby

[M5-L5AD]

!

Remote Procedure Call
Protocol Extensions
[MS-RPCE]

'

Server Message
Block Protocol
[MS-SMB]

(Damain Policy) Remote Protoco] p—

Local Security Authority
{Domain Policy) Remote Protocol
[M5-LSAD]

Security Account Manager (SAM)
Remote Protocol Specification
[Client-to-Server)
[MS-SAMR]

Figure 1: Server-side protocol relationships for a non-domain controller configuration

'

Active Directory
Technical Specification
[MS-ADTS]

Remote Procedure Call
Protocol Extensions
[MS-RPCE]

'

Security Account Manager (SAM)
Remate Protocol Specification
(Client-to-Server)
[MS-SAMR]

Server Message
Block Protocol
[MS-SMBE]

Figure 2: Server-side protocol relationships for a domain controller configuration

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol

Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

23/ 254

1.5 Prerequisites/Preconditions

This protocol has the prerequisites specified in [MS-RPCE] as being common to protocols that depend
on RPC.

1.6 Applicability Statement
This protocol is applicable to the following two high-level scenarios:

1. Remote management of trusted domains, account objects or secret objects, or other
miscellaneous machine and domain policy settings controlled by the protocol.

2. Retrieval of policy settings by clients.
To achieve the first scenario, this entire specification has to be implemented.

To achieve the second scenario, only RPC methods LsarOpenPolicy2 (section 3.1.4.4.1) or
LsarOpenPolicy3, LsarOpenPolicy (section 3.1.4.4.2), LsarQueryInformationPolicy2 (section 3.1.4.4.3),
LsarQueryInformationPolicy (section 3.1.4.4.4), and LsarClose (section 3.1.4.9.4) (and associated
data structures specified in these method definitions) have to be implemented by a listener of this
protocol.

Although significant protocol functionality is not dependent on server configuration, some functionality
might depend on server configuration. Certain aspects of this protocol might depend on the server
being a DC, including PDCs, BDCs, GC servers, and RODCs, or on being a non-DC, and also on the
server reaching a certain forest functional level. These requirements are explained in their respective
message processing sections.

1.7 Versioning and Capability Negotiation

= Supported transports: The protocol runs over RPC-named pipes and TCP/IP, as specified in
section 2.1.

= Protocol version: This protocol's RPC interface has a single version number, but the interface
has been extended by placing additional methods at the end. The use of these methods is
specified in section 3.1.

= Structure version: LSAPR_ACL (section 2.2.3.2) structures are versioned using the first field in
the structure. Only one version of those structures is used in this protocol.

= Localization: This protocol uses text strings in various functions. Localization considerations for
such strings are specified in section 3.1.1.2.1.

1.8 Vendor-Extensible Fields

This protocol uses NTSTATUS values as specified in [MS-ERREF] section 2.3. Vendors are free to
choose their own values for this field, provided that the C bit (0x20000000) is set, which indicates that
it is a customer code.

1.9 Standards Assignments

This protocol has no standards assignments. It uses private allocations for the RPC interface
universally unique identifier (UUID) and the RPC endpoint.

Parameter Value Reference

Isarpc Interface UUID | {12345778-1234-ABCD-EF00-0123456789AB} | [C706] section A.2.5.

24 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Parameter

Value

Reference

RPC endpoint

\PIPE\Isarpc

section 2.1

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

25/ 254

2 Messages

This section describes the supported transports and details of the messages defined for this protocol.

2.1 (Updated Section) Transport
This protocol MUST use Server Message Block (SMB) RPC protocol sequences.

This protocol MUST use "\PIPE\Isarpc" as the RPC endpoint when using RPC over SMB.<1>

RPC clients MUST use RPC over TCP/IP for the LsarOpenPolicyWithCreds method (section
3.1.4.4.10). <2 >N

3.1.4.4.10).<2>

For authentication and authorization services, both the requester and responder of this protocol MUST
use the SMB transport to communicate the identity of the requester, as specified in [MS-SMB] section
3.2.4.2.4 and [MS-SMB2] section 3.2.4.2.3.

For confidentiality and tamper resistance services, the requester and responder MAY use the
functionality provided by the SMB transport, as specified in [MS-SMB] sections 2.2.3.1 and 2.2.4.5.2.1
and [MS-SMB2] sections 2.2.3 and 2.2.4.<3>

The requester MUST NOT use the RPC-provided security-support-provider mechanisms (for
authentication, authorization, confidentiality, or tamper-resistance services).<4>

The responder MAY use the RPC-provided security-support-provider mechanisms as specified in [MS-
RPCE] section 3.2.1.4.1.1.<5>

The server SHOULD<6> reject calls that do not use an authentication level of
RPC_C_AUTHN_LEVEL_NONE, RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, or
RPC_C_AUTHN_LEVEL_PKT_PRIVACY ([MS-RPCE] section 2.2.1.1.8).

Cryptographic operations (as specified in section 5.1) MUST utilize a session key obtained from the
SMB session on the client or server.

This protocol MUST use the UUID and version number as follows:
= UUID: See Standards Assignments in section 1.9.
= Version number: 0.0.

The security settings used in this protocol vary depending on the role of the RPC client and RPC
server, the function being used, and the specific parameters being used. Security settings are
therefore specified in message processing sections for each message.

This protocol SHOULD<7> configure RPC to enforce Maximum Server Input Data Size of 1 MB.
Additional details are available in [MS-RPCE] section 3.3.3.5.4. This configuration introduces additional
restrictions on the upper limits for the sizes of data types defined under section 2.2 when those data
types are used in RPC messages.

2.2 Common Data Types

This protocol MUST indicate to the RPC runtime that it is to support both the NDR and NDR64 transfer
syntaxes and provide a negotiation mechanism for determining which transfer syntax will be used, as
specified in [C706] section 12 and in [MS-RPCE] section 3.3.1.5.6.

This protocol contains messages with parameters that do not have any effect on message processing
in any environment; however, the parameters remain for backward compatibility of the interfaces.
These will be called out as ignored in sections on data type definition, message definition, and

26 / 254

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

message processing. These values MUST be ignored on receipt and SHOULD be set to zero when sent,
unless specified otherwise.

In addition to RPC base types and definitions specified in [C706] and [MS-DTYP], other data types are
defined in this specification.<8>

The following lists summarize the types defined in this specification.

Note LUID, NTSTATUS, RPC_SID, and RPC_UNICODE_STRING are specified in [MS-DTYP] sections
2.3.7,2.2.38, 2.4. 2.4.2.3, and 2.3.10, respectively.

Note The LARGE INTEGER structure, when it represents time in this protocol, is used as a 64-bit
value that represents the number of 100-nanosecond intervals since January 1, 1601, Coordinated
Universal Time (UTC).

Constant value definitions:

ACCESS_MASK (section 2.2.1.1)

POLICY_SYSTEM_ACCESS_MODE (section 2.2.1.2)
SECURITY_INFORMATION (section 2.2.1.3)
AEAD-AES-256-CBC-HMAC-SHA512 Constants (section 2.2.1.4)<9>

Basic data types:

LSAPR_HANDLE (section 2.2.2.1)

PLSAPR_HANDLE (section 2.2.2.2)
LSA_UNICODE_STRING (section 2.2.2.3)
LSAPR_OBJECT_ATTRIBUTES (section 2.2.2.4)
LSAPR_SR_SECURITY_DESCRIPTOR (section 2.2.2.5)

Data types referenced by basic data types:

STRING (section 2.2.3.1)

LSAPR_ACL (section 2.2.3.2)
SECURITY_DESCRIPTOR_CONTROL (section 2.2.3.3)
LSAPR_SECURITY_DESCRIPTOR (section 2.2.3.4)
SECURITY_IMPERSONATION_LEVEL (section 2.2.3.5)
SECURITY_CONTEXT_TRACKING_MODE (section 2.2.3.6)
SECURITY_QUALITY_OF_SERVICE (section 2.2.3.7)

Policy query/set data types:

POLICY_INFORMATION_CLASS (section 2.2.4.1)
LSAPR_POLICY_INFORMATION (section 2.2.4.2)
POLICY_AUDIT_LOG_INFO (section 2.2.4.3)
LSAPR_POLICY_AUDIT_EVENTS_INFO (section 2.2.4.4)

27/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

= LSAPR_POLICY_PRIMARY_DOM_INFO (section 2.2.4.5)

= LSAPR_POLICY_ACCOUNT_DOM_INFO (section 2.2.4.6)

= LSAPR_POLICY_PD_ACCOUNT_INFO (section 2.2.4.7)

= POLICY_LSA_SERVER_ROLE (section 2.2.4.8)

= POLICY_LSA_SERVER_ROLE_INFO (section 2.2.4.9)

= LSAPR_POLICY_REPLICA_SRCE_INFO (section 2.2.4.10)

= POLICY_MODIFICATION_INFO (section 2.2.4.11)

= POLICY_AUDIT_FULL_SET_INFO (section 2.2.4.12)

= POLICY_AUDIT_FULL_QUERY_INFO (section 2.2.4.13)

= LSAPR_POLICY_DNS_DOMAIN_INFO (section 2.2.4.14)

= POLICY_DOMAIN_INFORMATION_CLASS (section 2.2.4.15)
= LSAPR_POLICY_DOMAIN_INFORMATION (section 2.2.4.16)
= POLICY_DOMAIN_QUALITY_OF_SERVICE_INFO (section 2.2.4.17)
= LSAPR_POLICY_DOMAIN_EFS_INFO (section 2.2.4.18)

= LSAPR_DOMAIN_KERBEROS_TICKET_INFO (section 2.2.4.19)
= LSAPR_POLICY_MACHINE_ACCT_INFO (section 2.2.4.21)
Account query/set data types:

= LSAPR_ACCOUNT_INFORMATION (section 2.2.5.1)

= LSAPR_ACCOUNT_ENUM_BUFFER (section 2.2.5.2)

= LSAPR_USER_RIGHT_SET (section 2.2.5.3)

= LSAPR_LUID_AND_ATTRIBUTES (section 2.2.5.4)

= LSAPR_PRIVILEGE_SET (section 2.2.5.5)

Secret query/set data types:

= LSAPR_CR_CIPHER_VALUE (section 2.2.6.1)

Trusted domain query/set data types:

= LSAPR_TRUST_INFORMATION (section 2.2.7.1)

= TRUSTED_INFORMATION_CLASS (section 2.2.7.2)

= LSAPR_TRUSTED_DOMAIN_INFO (section 2.2.7.3)

= LSAPR_TRUSTED_DOMAIN_NAME_INFO (section 2.2.7.4)
= LSAPR_TRUSTED_CONTROLLERS_INFO (section 2.2.7.5)

= TRUSTED_POSIX_OFFSET_INFO (section 2.2.7.6)

= LSAPR_TRUSTED_PASSWORD_INFO (section 2.2.7.7)

28/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC (section 2.2.7.8)
LSAPR_TRUSTED_DOMAIN_INFORMATION_EX (section 2.2.7.9)
LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2 (section 2.2.7.10)
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION (section 2.2.7.11)
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL (section 2.2.7.12)
LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION (section 2.2.7.13)
LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL (section 2.2.7.14)
LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2 (section 2.2.7.15)
LSAPR_TRUSTED_DOMAIN_AUTH_BLOB (section 2.2.7.16)
LSAPR_AUTH_INFORMATION (section 2.2.7.17)
TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES (section 2.2.7.18)
LSAPR_TRUSTED_ENUM_BUFFER (section 2.2.7.19)
LSAPR_TRUSTED_ENUM_BUFFER_EX (section 2.2.7.20)
LSA_FOREST_TRUST_RECORD (section 2.2.7.21)
LSA_FOREST_TRUST_RECORD_TYPE (section 2.2.7.22)
LSA_FOREST_TRUST_BINARY_DATA (section 2.2.7.23)
LSA_FOREST_TRUST_DOMAIN_INFO (section 2.2.7.24)
LSA_FOREST_TRUST_INFORMATION (section 2.2.7.25)
LSA_FOREST_TRUST_RECORD?2 (section 2.2.7.32)
LSA_FOREST_TRUST_INFORMATION2 (section 2.2.7.33)
LSA_FOREST_TRUST_COLLISION_RECORD_TYPE (section 2.2.7.26)
LSA_FOREST_TRUST_COLLISION_RECORD (section 2.2.7.27)
LSA_FOREST_TRUST_COLLISION_INFORMATION (section 2.2.7.28)
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL_AES (section 2.2.7.29)
LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL_AES (section 2.2.7.30)

Privilege data types:

LSAPR_POLICY_PRIVILEGE_DEF (section 2.2.8.1)
LSAPR_PRIVILEGE_ENUM_BUFFER (section 2.2.8.2)

The following citation contains a timeline of when each structure, data type, or enumeration was
introduced.<10>

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

29/ 254

2.2.1 Constant Value Definitions

2.2.1.1 ACCESS_MASK

The ACCESS_MASK data type is a bitmask that defines the user rights that an object is to be granted.
Access types are reconciled with the discretionary access control list (DACL) of the object to determine
whether the access requested is assigned or denied.

The ACCESS_MASK data type is defined in [MS-DTYP] section 2.4.3. The following declaration is an
alternative definition.

This type is declared as follows:

typedef unsigned long ACCESS MASK;

2.2.1.1.1 ACCESS_MASK for All Objects

Certain ACCESS_MASK flags apply equally to all types of objects. These flags are described in the
following table.

Value Meaning

DELETE Delete object.

0x00010000

READ_CONTROL The read value of a DACL and owner in a security descriptor.
0x00020000

WRITE_DAC The write value of a DACL in a security descriptor.
0x00040000

WRITE_OWNER The write value of the owner in a security descriptor.
0x00080000

MAXIMUM_ALLOWED | Used in requesting access; get as much access as the server will allow.
0x02000000

The four high-order bits in ACCESS_MASK values are translated by the responder into specific
ACCESS_MASK values using the following tables, depending on the type of the object that the
operation is performed on. For numeric values of the symbolic names used in these tables, refer to
section 2.2.1.1.2 for policy objects, section 2.2.1.1.3 for account objects, section 2.2.1.1.4 for secret
objects, and section 2.2.1.1.5 for trusted domain objects. In the following tables, the symbol '|' is
used to indicate that the value represented by the symbol is to be logically combined by using the
bitwise OR operation with the other operant.

ACCESS_MASK

value to be

translated Translated to when used with policy object

0x80000000 POLICY_VIEW_AUDIT_INFORMATION | POLICY_GET_PRIVATE_INFORMATION |
READ_CONTROL
0x00020006

0x40000000 POLICY_TRUST_ADMIN | POLICY_CREATE_ACCOUNT | POLICY_CREATE_SECRET |

POLICY_CREATE_PRIVILEGE | POLICY_SET_DEFAULT_QUOTA_LIMITS |
POLICY_SET_AUDIT_REQUIREMENTS | POLICY_AUDIT_LOG_ADMIN |
POLICY_SERVER_ADMIN | READ_CONTROL

30/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

ACCESS_MASK

value to be

translated Translated to when used with policy object
0x000207F8

0x20000000 POLICY_VIEW_LOCAL_INFORMATION | POLICY_LOOKUP_NAMES | READ_CONTROL
0x00020801

0x10000000 POLICY_VIEW_LOCAL_INFORMATION | POLICY_VIEW_AUDIT_INFORMATION |

POLICY_GET_PRIVATE_INFORMATION | POLICY_TRUST_ADMIN |
POLICY_CREATE_ACCOUNT | POLICY_CREATE_SECRET | POLICY_CREATE_PRIVILEGE |
POLICY_SET_DEFAULT_QUOTA_LIMITS | POLICY_SET_AUDIT_REQUIREMENTS |
POLICY_AUDIT_LOG_ADMIN | POLICY_SERVER_ADMIN | POLICY_LOOKUP_NAMES |
DELETE | READ_CONTROL | WRITE_DAC | WRITE_OWNER

0x000FOFFF

to be translated

ACCESS_MASK value

Translated to when used with account object

0x80000000 ACCOUNT_VIEW | READ_CONTROL
0x00020001
0x40000000 ACCOUNT_ADJUST_PRIVILEGES | ACCOUNT_ADJUST_QUOTAS |
ACCOUNT_ADJUST_SYSTEM_ACCESS | READ_CONTROL
0x0002000E
0x20000000 READ_CONTROL
0x00020000
0x10000000 ACCOUNT_VIEW | ACCOUNT_ADJUST_PRIVILEGES | ACCOUNT_ADJUST_QUOTAS |

ACCOUNT_ADJUST_SYSTEM_ACCESS | DELETE | READ_CONTROL | WRITE_DAC |
WRITE_OWNER

0x000F000F

ACCESS_MASK value to be

translated Translated to when used with secret object
0x80000000 SECRET_QUERY_VALUE | READ_CONTROL
0x00020002
0x40000000 SECRET_SET_VALUE | READ_CONTROL
0x00020001
0x20000000 READ_CONTROL
0x00020000
0x10000000 SECRET_QUERY_VALUE | SECRET_SET_VALUE | DELETE | READ_CONTROL

| WRITE_DAC | WRITE_OWNER
0x000F0003

31/ 254

[MS-LSAD-DIff] - v20240423
Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

ACCESS_MASK

value to be

translated Translated to when used with trusted domain object

0x80000000 TRUSTED_QUERY_DOMAIN_NAME | READ_CONTROL
0x00020001

0x40000000 TRUSTED_SET_CONTROLLERS | TRUSTED_SET_POSIX | READ_CONTROL
0x00020014

0x20000000 TRUSTED_QUERY_CONTROLLERS | TRUSTED_QUERY_POSIX | READ_CONTROL
0x0002000A

0x10000000 TRUSTED_QUERY_DOMAIN_NAME | TRUSTED_QUERY_CONTROLLERS |
TRUSTED_SET_CONTROLLERS | TRUSTED_QUERY_POSIX | TRUSTED_SET_POSIX |
TRUSTED_SET_AUTH | TRUSTED_QUERY_AUTH | DELETE | READ_CONTROL |
WRITE_DAC | WRITE_OWNER
0x000F007F

2.2.1.1.2 ACCESS_MASK for Policy Objects

The following ACCESS_MASK flags apply to policy objects.

Value

Meaning

0x00000000

No access.

POLICY_VIEW_LOCAL_INFORMATION
0x00000001

Access to view local information.

POLICY_VIEW_AUDIT_INFORMATION
0x00000002

Access to view audit information.

0x00000004

POLICY_GET_PRIVATE_INFORMATION

Access to view private information.

POLICY_TRUST_ADMIN
0x00000008

Access to administer trust relationships.

POLICY_CREATE_ACCOUNT
0x00000010

Access to create account objects.

POLICY_CREATE_SECRET
0x00000020

Access to create secret objects.

POLICY_CREATE_PRIVILEGE
0x00000040

Access to create privileges.

Note New privilege creation is not currently a part of the protocol,
so this flag is not actively used.

0x00000080

POLICY_SET_DEFAULT_QUOTA_LIMITS

Access to set default quota limits.

Note Quota limits are not currently a part of the protocol, so this
flag is not actively used.

POLICY_SET_AUDIT_REQUIREMENTS
0x00000100

Access to set audit requirements.

POLICY_AUDIT_LOG_ADMIN

Access to administer the audit log.

[MS-LSAD-Diff] - v20240423

32 /254

Local Security Authority (Domain Policy) Remote Protocol

Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value

Meaning

0x00000200

POLICY_SERVER_ADMIN
0x00000400

Access to administer policy on the server.

POLICY_LOOKUP_NAMES
0x00000800

Access to translate names and security identifiers (SIDs).

POLICY_NOTIFICATION
0x00001000

Access to be notified of policy changes.<11>

2.2.1.1.3 ACCESS_MASK for Account Objects

The following ACCESS_MASK flags apply to account objects.

Value

Meaning

ACCOUNT_VIEW
0x00000001

View account information.

ACCOUNT_ADJUST_PRIVILEGES
0x00000002

Change privileges on an account.

ACCOUNT_ADJUST_QUOTAS
0x00000004

Change quotas on an account.

0x00000008

ACCOUNT_ADJUST_SYSTEM_ACCESS

Change system access.

2.2.1.1.4 ACCESS_MASK for Secret Objects

The following ACCESS_MASK flags apply to secret objects.

Value Meaning
SECRET_SET_VALUE Set secret value.
0x00000001

0x00000002

SECRET_QUERY_VALUE | Query secret value.

2.2.1.1.5 ACCESS_MASK for Trusted Domain Objects

The following ACCESS_MASK flags apply to trusted domain objects.<12>

Value

Meaning

0x00000001

TRUSTED_QUERY_DOMAIN_NAME | View domain name information.

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol

Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

33/ 254

Value Meaning
TRUSTED_QUERY_CONTROLLERS | View "Domain Controllers" information.
0x00000002

TRUSTED_SET_CONTROLLERS Change "Domain Controllers" information.
0x00000004

TRUSTED_QUERY_POSIX View POSIX information.

0x00000008

TRUSTED_SET_POSIX Change POSIX information.
0x00000010

TRUSTED_SET_AUTH Change authentication information.
0x00000020

TRUSTED_QUERY_AUTH View authentication information.
0x00000040

2.2.1.2 POLICY_SYSTEM_ACCESS_MODE

The POLICY_SYSTEM_ACCESS_MODE data type determines the way in which a user (member of a
group or alias) is allowed to access the system. All values can be combined in any way by using

bitwise OR operations.

Value

Meaning

0x00000000

No access
The user is not granted any access to the system.

POLICY_MODE_INTERACTIVE
0x00000001

The user can logon locally to the system.

POLICY_MODE_NETWORK
0x00000002

The user can logon to the system over the network.

POLICY_MODE_BATCH
0x00000004

The user can logon to the system as a batch job.

0x00000008

Reserved

POLICY_MODE_SERVICE
0x00000010

The user can logon to the system as a service.

0x00000020

Reserved

POLICY_MODE_DENY_INTERACTIVE
0x00000040

The user is denied the right to interactively logon to the
system. This setting supersedes POLICY_MODE_INTERACTIVE.

POLICY_MODE_DENY_NETWORK
0x00000080

The user is denied the right to logon to the system from the
network. This setting supersedes POLICY_MODE_NETWORK.

POLICY_MODE_DENY_BATCH
0x00000100

The user is denied the right to logon to the system as a batch
job. This setting supersedes POLICY_MODE_BATCH.

[MS-LSAD-Diff] - v20240423

34 /254

Local Security Authority (Domain Policy) Remote Protocol

Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

POLICY_MODE_DENY_SERVICE The user is denied the right to logon to the system as a
0x00000200 service. This setting supersedes POLICY_MODE_SERVICE.
POLICY_MODE_REMOTE_INTERACTIVE The user can logon to the system as a Remote Desktop client.
0x00000400

POLICY_MODE_DENY_REMOTE_INTERACTIVE | The user is denied the right to logon to the system as a
0x00000800 Remote Desktop client.

POLICY_MODE_ALL This flag indicates all allowed bits.<13>

0x00000FF7

POLICY_MODE_ALL_NT4 This flag indicates all allowed bits.<14>

0x00000037

The following citation contains a timeline of when each mode was introduced.<15>

2.2.1.3 SECURITY_INFORMATION

The SECURITY_INFORMATION type is used to specify which portions of a security descriptor the caller
would like to retrieve or set on an object.

The SECURITY_INFORMATION data type is defined in [MS-DTYP] section 2.4.7. The following
declaration is an alternative definition.

This type is declared as follows:

typedef unsigned long SECURITY INFORMATION;

The following table defines the bits that are relevant to the Local Security Authority (Domain Policy)
Remote Protocol.

Value Meaning

OWNER_SECURITY_INFORMATION | Return the Owner portion of the security descriptor.
0x00000001

GROUP_SECURITY_INFORMATION | Return the Group portion of the security descriptor.
0x00000002

DACL_SECURITY_INFORMATION Return the DACL portion of the security descriptor.
0x00000004

SACL_SECURITY_INFORMATION Return the SACL portion of the security descriptor.
0x00000008

Other values SHOULD NOT be set.

The server honors the request to set or retrieve security information only if the caller has the
appropriate rights to the object.

The following table lists the SECURITY_INFORMATION bits and the corresponding user rights required
of the caller requesting to query information.

35/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Security information access
requested

Rights required of caller on
server

Privileges required of caller
on server

OWNER_SECURITY_INFORMATION READ_CONTROL Does not apply.

GROUP_SECURITY_INFORMATION READ_CONTROL Does not apply.

DACL_SECURITY_INFORMATION READ_CONTROL Does not apply.

SACL_SECURITY_INFORMATION

Does not apply. Security privilege.

The following table lists the SECURITY_INFORMATION bits and the corresponding user rights required
of the caller requesting to set information.

Security information access
requested

Rights required of

caller on server Privileges required of caller on server

OWNER_SECURITY_INFORMATION WRITE_OWNER Take ownership privilege.

Note Either the access bit or the privilege
is sufficient; the caller does not need both.

GROUP_SECURITY_INFORMATION WRITE_OWNER Take-ownership privilege.

DACL_SECURITY_INFORMATION WRITE_DAC Does not apply.

SACL_SECURITY_INFORMATION Does not apply. Security privilege.

2.2.1.4 AEAD-AES-256-CBC-HMAC-SHA512 Constants

The following constants are used for wire encryption of sensitive data with the AEAD-AES-256-CBC-
HMAC-SHA512 cipher<16>, as specified in [AES-CBC] and in section 5.1.5.

Value

Meaning

Versionbyte
0x01

Version identifier.

versionbyte_length
1

Version identifier length.

LSAD_AES_256_ALG
"AEAD-AES-256-CBC-HMAC-SHA512"

A NULL terminated ANSI string.

LSAD_AES256_ENC_KEY_STRING

"Microsoft LSAD encryption key AEAD-AES-256-CBC-
HMAC-SHA512 16"

A NULL terminated ANSI string.

LSAD_AES256_MAC_KEY_STRING

"Microsoft LSAD MAC key AEAD-AES-256-CBC-HMAC-
SHA512 16"

A NULL terminated ANSI string.

LSAD_AES256_ENC_KEY_STRING_LENGTH
sizeof(LSAD_AES256_ENC_KEY_STRING)

(62)

The length of LSAD_AES256_ENC_KEY_STRING,
including the null terminator.

LSAD_AES256_MAC_KEY_STRING_LENGTH
sizeof(LSAD_AES256_MAC_KEY_STRING)

The length of LSAD_AES256_MAC_KEY_STRING,
including the null terminator.

36 /254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Value Meaning

(33)

2.2.1.5 (Updated Section) LSA Trust Record Flags

This section provides a cross reference of Flag values with associated descriptions of the Forest record
types that use such Flag values.<17>

Note Some flag values are reused for different forest record types. See the Meaning column for
more information.

Value

LSA_TLN_DISABLED_NEW
0x00000001

The top-level name trust record is disabled
during initial creation.

Note This flag MUST be used with forest trust
records of type ForestTrustTopLevelName or
ForestTrustTopLevelNameEx only (section
2.2.7.21).

LSA_TLN_DISABLED_ADMIN
0x00000002

The top-level name trust record is disabled by
the Domain administrator.

Note This flag MUST be used with forest trust
records of type ForestTrustTopLevelName or
ForestTrustTopLevelNameEx only (section
2.2.7.21).

LSA_TLN_DISABLED_CONFLICT
0x00000004

The top-level name trust record is disabled due
to a conflict.

Note This flag MUST be used with forest trust
records of type ForestTrustTopLevelName or
ForestTrustTopLevelNameEx only (section
2.2.7.21).

LSA_SID_DISABLED_ADMIN
0x00000001

The Domain information trust record is
disabled by the domain administrator.

Note This flag MUST be used with a forest
trust record of type ForestTrustDomainInfo
only (section 2.2.7.24).

LSA_SID_DISABLED_CONFLICT
0x00000002

The domain information trust record is disabled
due to a conflict.

Note This flag MUST be used with a forest
trust record of type ForestTrustDomainInfo
only (section 2.2.7.24).

LSA_NB_DISABLED_ADMIN
0x00000004

The domain information trust record is disabled
by the domain administrator.

Note This flag MUST be used with a forest
trust record of type ForestTrustDomainInfo
only (section 2.2.7.24).

LSA_NB_DISABLED_CONFLICT
0x00000008

The domain information trust record is disabled
due to a conflict.

Note This flag MUST be used with a forest
trust record of type ForestTrustDomainInfo
only (section 2.2.7.24).

37/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Value Meaning

LSA_FTRECORD_DISABLED_REASONS The domain information trust record is

0X0000FFFF disabled.
Note This set of flags is reserved; for current
and future reasons, the trust is disabled.

LSA_SCANNER_INFO_DISABLE_AUTH_TARGET_VALIDATION | Domain name validation during NTLM pass-
(0x00000001) through authentication is disabled.

his flag can be set and queried on|
ForestTrustScannerInfo records (sections

2.2.7.22 and 2.2.7.31), but otherwise MUST be
ignored. NG

2.2.2 Basic Data Types

2.2.2.1 LSAPR_HANDLE

The LSAPR_HANDLE type defines a context handle (as specified in [C706] section 6) to the target
server.

This type is declared as follows:

typedef [context handle] void* LSAPR HANDLE;

Note For information about the relevance of the context_handle attribute in this data type, see
section 3.1.1.7.

2.2.2.2 PLSAPR_HANDLE
The PLSAPR_HANDLE type defines a pointer to a context handle (as specified in [C706] section 6).

This type is declared as follows:

typedef LSAPR HANDLE* PLSAPR HANDLE;

2.2.2.3 LSA_UNICODE_STRING

The LSA_UNICODE_STRING type is identical to RPC_UNICODE_STRING, as specified in [MS-DTYP]
section 2.3.10.

This type is declared as follows:

typedef RPC_UNICODE STRING LSA UNICODE STRING, *PLSA UNICODE STRING;

2.2.2.4 LSAPR_OBJECT_ATTRIBUTES

The LSAPR_OBIJECT_ATTRIBUTES structure specifies an object and its properties. This structure MUST
be ignored except for the RootDirectory field, which MUST be NULL.<18>

38/ 254

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

typedef struct LSAPR _OBJECT_ ATTRIBUTES {

unsigned long Length;

unsigned char* RootDirectory;

PSTRING ObjectName;

unsigned long Attributes;

PLSAPR SECURITY DESCRIPTOR SecurityDescriptor;

PSECURITY QUALITY OF SERVICE SecurityQualityOfService;
} LSAPR OBJECT ATTRIBUTES,

*PLSAPR _OBJECT ATTRIBUTES;

Length: The length of the structure, in bytes. This field is not used and MUST be ignored.
RootDirectory: This field is not used and MUST be NULL.

ObjectName: A pointer to a STRING structure that contains the object name. This field MUST be
ignored. The content is unspecified and no requirements are placed on its value because it is
never used.

Attributes: This field MUST be ignored. The content is unspecified and no requirements are placed
on its value because it is never used.

SecurityDescriptor: This field contains the security attributes of the object. This field MUST be
ignored. The content is unspecified and no requirements are placed on its value because it is
never used.

SecurityQualityOfService: This field MUST be ignored. The content is unspecified and no
requirements are placed on its value because it is never used.

2.2.2.5 LSAPR_SR_SECURITY_DESCRIPTOR

The LSAPR_SR_SECURITY_DESCRIPTOR structure is used to communicate a self-relative security
descriptor, as specified in [MS-DTYP] section 2.4.6.

typedef struct LSAPR SR_SECURITY DESCRIPTOR {
[range (0, 262144)] unsigned long Length;
[size is(Length)] unsigned char* SecurityDescriptor;
} LSAPR_SR SECURITY DESCRIPTOR,
*PLSAPRﬁSRﬁSECURITYiDESCRIPTOR;

Length: The count of bytes in SecurityDescriptor.<19>

SecurityDescriptor: The contiguous buffer containing the self-relative security descriptor. This field
MUST contain the Length number of bytes. If the Length field has a value other than 0, this field
MUST NOT be NULL.

2.2.2.6 (Updated Section) LSAPR_REVISION_INFO_V1

The LSAPR_REVISION_INFO_V1 structure is used to communicate the revision and capabilities of
client and server. For related information, see LsarOpenPolicy3 (section 3.1.4.4.9).

typedef struct LSAPR REVISION INFO VI1{
ULONG Revision;
ULONG SupportedFeatures;
} LSAPR_REVISION INFO V1, *PLSAPR REVISION INFO_VI1;

Revision: The revision of the client or server side of this protocol (depending on which side sends the
structure). Upon sending, the value MUST be set to 1 and MUST be ignored upon receipt.

39/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

SupportedFeatures (4 bytes): A bit field. When sent from the client, this field MUST be zero and
ignored upon receipt by the server. When returned from the server, the following fields are
handled by the client; all other bits are ignored by the client and MUST be zero when returned
from the server.

Value

Meaning

0x00000001

Upon receipt by the client, this value, when set, indicates that the client SHOULD use AES
P i the
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL_AES structure (section 2.2.7.29)

to encrypt password buffers when sent over the wire. Also see AES Cipher Usage (section
5.1.5).

0x00000002

lUpon receipt by the client, this value, when set, indicates that the client may call
LsarLookupNames4 and LsarLookupSids3 ([MS-LSAT] sections 3.1.4.5 and 3.1.4.
authentication other than the RPC C AUTHN NETLOGON security provider.

that the server supports the method LsarOpenPolicyWithCreds (section

t also indicates pports the method LsarOpenPolicyWithCreds (section|
3.1.4.4.10).<20>

0x00000004

Upon receipt by the client, this value, when set, indicates that the client SHOULD use AES]

encryption with the LSAPR AES CIPHER VALUE structure (section 2.2.6.2) to encryj

data when sent over the wire. Also see AES Cipher Usage (section 5.1.5).<21> -

2.2.2.7 LSAPR_REVISION_INFO

The LSAPR_REVISION_INFO union holds revision information structures that are used in the
LsarOpenPolicy3 method (section 3.1.4.4.9).

typedef [switch type (ULONG)] union {
[case(1)] LSAPR REVISION INFO V1 VI1;
} LSAPR REVISION INFO, *PLSAPR REVISION INFO;

V1: Version 1 revision information, as described in LSAPR_REVISION_INFO_V1 (section 2.2.2.6).

2.2.3 Data Types Referenced by Basic Data Types

2.2.3.1 STRING

The STRING structure holds a counted string encoded in the OEM code page.

This structure has no effect on message processing in any environment.

typedef struct _STRING {
unsigned short Length;
unsigned short MaximumLength;
[size is(MaximumLength), length is(Length)]
char* Buffer;

} STRING,
*PSTRING;

Length: The length, in bytes, of the string pointed to by the Buffer member, not including the
terminating null character (if any).

MaximumLength: This field contains the total number of bytes in the Buffer field.

40/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Buffer: A pointer to the actual string. If Length is greater than 0, this field MUST contain a non-
NULL value. If Length is 0, this field MUST be ignored.
2.2.3.2 LSAPR_ACL

The LSAPR_ACL structure defines the header of an access control list (ACL) that specifies a list of
security protections applied to an object.

This structure has no effect on message processing in any environment.

typedef struct _LSAPR ACL ({
unsigned char AclRevision;
unsigned char Sbzl;
unsigned short AclSize;
[size is(AclSize - 4)] unsigned char Dummyl[*];
} LSAPR ACL,
*PLSAPR ACL;

AclRevision: The revision level of the LSAPR_ACL structure. This field MUST be ignored. The content
is unspecified, and no requirements are placed on its value because it is never used.

Sbz1: This field is used for alignment. This field MUST be ignored. The content is unspecified, and no
requirements are placed on its value because it is never used.

AclSize: The size of this structure in bytes, including the size of the variable sized Dummy1 field.

Dummyl: This field MUST be ignored. The content is unspecified, and no requirements are placed on
its value because it is never used.

The ACL structure is specified in [MS-DTYP] section 2.4.5.

2.2.3.3 SECURITY_DESCRIPTOR_CONTROL

The SECURITY_DESCRIPTOR_CONTROL type contains a set of bit flags that qualify the meaning of a
security descriptor or its components.

This type has no effect on message processing in any environment.

This type is declared as follows:

typedef unsigned short SECURITY DESCRIPTOR CONTROL, *PSECURITY DESCRIPTOR CONTROL;

The flags that are used with this type are as specified in [MS-DTYP] section 2.4.6, under the Control
member of the SECURITY_DESCRIPTOR structure.

2.2.3.4 LSAPR_SECURITY_DESCRIPTOR
The LSAPR_SECURITY_DESCRIPTOR structure defines an object's security descriptor.

This structure has no effect on message processing in any environment.

typedef struct LSAPR SECURITY DESCRIPTOR ({
unsigned char Revision;
unsigned char Sbzl;
SECURITY DESCRIPTOR CONTROL Control;
PRPC_SID Owner;
PRPC_SID Group;
PLSAPR ACL Sacl;

41/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

PLSAPR ACL Dacl;
} LSAPR _SECURITY DESCRIPTOR,
*PLSAPR SECURITY DESCRIPTOR;

Revision: The security descriptor revision level. This field MUST be ignored. The content is
unspecified, and no requirements are placed on its value because it is never used.

Sbz1: This field is used for alignment. This field MUST be ignored. The content is unspecified, and no
requirements are placed on its value because it is never used.

Control: A set of flags (as specified in section 2.2.3.3) that qualify the meaning of the security
descriptor or its individual fields.

Owner: A pointer to the RPC_SID structure that represents an object's owner as a SID.
Group: A pointer to the RPC_SID structure that represents an object's primary group as a SID.

Sacl: A pointer to an ACL structure (as specified in 2.2.3.2) that contains a system access control list
(SACL).

Dacl: A pointer to an ACL structure that contains a discretionary access control list (DACL).

The SECURITY_DESCRIPTOR structure is specified in [MS-DTYP] section 2.4.6.

2.2.3.5 SECURITY_IMPERSONATION_LEVEL

The SECURITY_IMPERSONATION_LEVEL enumeration defines a set of values that specifies security
impersonation levels. These levels govern the degree to which a server process can act on behalf of a
client process.

This enumeration has no effect on message processing in any environment.

typedef enum _SECURITY IMPERSONATION LEVEL
{

SecurityAnonymous = O,
SecurityIdentification = 1,
SecurityImpersonation = 2,
SecurityDelegation = 3
} SECURITY IMPERSONATION LEVEL,
*PSECURITY IMPERSONATION_ LEVEL;

SecurityAnonymous: The server cannot obtain information about the client and cannot impersonate
the client.

SecurityIdentification: The server can obtain information such as security identifiers and privileges,
but the server cannot impersonate the client.

SecurityImpersonation: The server can impersonate the client's security context on its local
system, but cannot impersonate the client when communicating with services on remote systems.

SecurityDelegation: The server can impersonate the client's security context when communicating
with services on remote systems.

2.2.3.6 SECURITY_CONTEXT_TRACKING_MODE

The SECURITY_CONTEXT_TRACKING_MODE type specifies whether the server is to be given a
snapshot of the client's security context (called "static tracking") or is to be continually updated to
track changes to the client's security context (called "dynamic tracking").

42 /254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

This structure has no effect on message processing in any environment and SHOULD be ignored.

This type is declared as follows:

typedef unsigned char SECURITY CONTEXT TRACKING MODE, *PSECURITY CONTEXT TRACKING MODE;

The following values are possible.

Value | Meaning

0x00 The server is given a snapshot of the client's security context.

0x01 The server is continually updated with changes.

All other values SHOULD be ignored.

2.2.3.7 SECURITY_QUALITY_OF_SERVICE

The SECURITY_QUALITY_OF_SERVICE structure defines information used to support client
impersonation.

This structure has no effect on message processing in any environment.

typedef struct SECURITY QUALITY OF SERVICE {
unsigned long Length;
SECURITY IMPERSONATION LEVEL ImpersonationLevel;
SECURITY CONTEXT TRACKING MODE ContextTrackingMode;
unsigned char EffectiveOnly;

} SECURITY QUALITY OF SERVICE,
*PSECURITY QUALITY OF SERVICE;

Length: This value MUST be ignored. No requirements are placed on its value because it is never
used.

ImpersonationLevel: This field contains information (as specified in section 2.2.3.5) given to the
server about the client that describes how the server can represent, or impersonate, the client.

ContextTrackingMode: This field specifies how the server tracks changes to the client's security
context (as specified in section 2.2.3.6).

EffectiveOnly: This field specifies whether the server can enable or disable privileges and groups
that the client's security context might include. This value MUST be TRUE (nonzero) if the server
has this right; otherwise, it MUST be FALSE (0).

2.2.4 Policy Query/Set Data Types

2.2.4.1 POLICY_INFORMATION_CLASS

The POLICY_INFORMATION_CLASS enumeration type contains values that specify the type of policy
being queried or set by the client.

typedef enum POLICY INFORMATION CLASS
{
PolicyAuditLogInformation = 1,
PolicyAuditEventsInformation,
PolicyPrimaryDomainInformation,
PolicyPdAccountInformation,

43/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

PolicyAccountDomainInformation,

PolicyLsaServerRoleInformation,

PolicyReplicaSourcelInformation,

PolicyInformationNotUsedOnWire,

PolicyModificationInformation,

PolicyAuditFullSetInformation,

PolicyAuditFullQueryInformation,

PolicyDnsDomainInformation,

PolicyDnsDomainInformationInt,

PolicyLocalAccountDomainInformation,

PolicyMachineAccountInformation,

PolicyLastEntry

} POLICY INFORMATION CLASS,
*PPOLICY INFORMATION CLASS;

PolicyAuditLogInformation: Information about audit log.
PolicyAuditEventsInformation: Auditing options.
PolicyPrimaryDomainInformation: Primary domain information.
PolicyPdAccountInformation: Obsolete information class.
PolicyAccountDomainInformation: Account domain information.
PolicyLsaServerRoleInformation: Server role information.
PolicyReplicaSourceInformation: Replica source information.
PolicyInformationNotUsedOnWire: This enumeration value does not appear on the wire.
PolicyModificationInformation: Obsolete information class.
PolicyAuditFullSetInformation: Obsolete information class.
PolicyAuditFullQueryInformation: Audit log state.
PolicyDnsDomainInformation: DNS domain information.
PolicyDnsDomainInformationInt: DNS domain information.
PolicyLocalAccountDomainInformation: Local account domain information.
PolicyMachineAccountInformation: Machine account information.
PolicyLastEntry: Not used in this protocol. Present to mark the end of the enumeration.
The following citation contains a timeline of when each enumeration value was introduced.<22>

The values in this enumeration are used to define the contents of the
LSAPR_POLICY_INFORMATION (section 2.2.4.2) union, where the structure associated with each
enumeration value is specified. The structure associated with each enumeration value defines the
meaning of that value to this protocol.

2.2.4.2 LSAPR_POLICY_INFORMATION

The LSAPR_POLICY_INFORMATION union is defined as follows, where the structure depends on the
POLICY_INFORMATION_CLASS specified in this message.

typedef
[Switch_type(POLICY_INFORMATION_CLASS)]

44 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

union LSAPR POLICY INFORMATION {

[case (PolicyAuditLogInformation)]

POLICY AUDIT LOG INFO PolicyAuditLogInfo;
[case (PolicyAuditEventsInformation)]

LSAPR _POLICY AUDIT EVENTS INFO PolicyAuditEventsInfo;
[case (PolicyPrimaryDomainInformation)]

LSAPR_POLICY PRIMARY DOM INFO PolicyPrimaryDomainInfo;
[case (PolicyAccountDomainInformation)]

LSAPR_POLICY ACCOUNT DOM INFO PolicyAccountDomainInfo;
[case (PolicyPdAccountInformation)]

LSAPR _POLICY PD ACCOUNT_ INFO PolicyPdAccountInfo;
[case (PolicyLsaServerRoleInformation)]

POLICY_ LSA_ SERVER_ROLE_INFO PolicyServerRolelInfo;
[case (PolicyReplicaSourceInformation)]

LSAPR _POLICY REPLICA SRCE INFO PolicyReplicaSourcelInfo;
[case (PolicyModificationInformation)]

POLICY MODIFICATION_ INFO PolicyModificationInfo;
[case (PolicyAuditFullSetInformation)]

POLICY AUDIT FULL_ SET INFO PolicyAuditFullSetInfo;
[case (PolicyAuditFullQueryInformation)]

POLICY AUDIT FULL QUERY INFO PolicyAuditFullQueryInfo;
[case (PolicyDnsDomainInformation)]

LSAPR _POLICY DNS DOMAIN INFO PolicyDnsDomainInfo;
[case (PolicyDnsDomainInformationInt)]

LSAPR POLICY DNS DOMAIN INFO PolicyDnsDomainInfoInt;
[case (PolicyLocalAccountDomainInformation)]

LSAPR _POLICY ACCOUNT DOM INFO PolicyLocalAccountDomainInfo;
[case (PolicyMachineAccountInformation)]

LSAPR POLICY MACHINE ACCT INFO PolicyMachineAccountInfo;

} LSAPR_POLICY INFORMATION,
*PLSAPR POLICY INFORMATION;

2.2.4.3 POLICY_AUDIT_LOG_INFO

The POLICY_AUDIT_LOG_INFO structure contains information about the state of the audit log.

following structure corresponds to the PolicyAuditLogInformation information class.

typedef struct POLICY AUDIT LOG INFO ({
unsigned long AuditLogPercentFull;
unsigned long MaximumLogSize;
LARGE INTEGER AuditRetentionPeriod;
unsigned char AuditLogFullShutdownInProgress;
LARGE_INTEGER TimeToShutdown;
unsigned long NextAuditRecordId;

} POLICY AUDIT LOG_INFO,
*PPOLICY_ AUDIT LOG_INFO;

AuditLogPercentFull: A measure of how full the audit log is, as a percentage.

MaximumLogSize: The maximum size of the auditing log, in kilobytes (KB).

The

AuditRetentionPeriod: The auditing log retention period (64-bit signed integer), a 64-bit value that
represents the number of 100-nanosecond intervals since January 1, 1601, UTC. An audit record

can be discarded if its time stamp predates the current time minus the retention period.

AuditLogFullShutdownInProgress: A Boolean flag; indicates whether or not a system shutdown is
being initiated due to the security audit log becoming full. This condition occurs only if the system

is configured to shut down when the log becomes full.

After a shutdown has been initiated, this flag MUST be set to TRUE (nonzero). If an administrator
can correct the situation before the shutdown becomes irreversible, this flag MUST be reset to

FALSE (0).

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

45/ 254

This field MUST be ignored for set operations.

TimeToShutdown: A 64-bit value that represents the number of 100-nanosecond intervals since
January 1, 1601, UTC. If the AuditLogFullShutdownInProgress flag is set, this field MUST contain
the time left before the shutdown becomes irreversible.

NextAuditRecordId: Not in use. This field SHOULD be set to zero when sent, and MUST be ignored
on receipt.

2.2.4.4 LSAPR_POLICY_AUDIT_EVENTS_INFO

The LSAPR_POLICY_AUDIT_EVENTS_INFO structure contains auditing options on the server.

typedef struct LSAPR POLICY AUDIT EVENTS INFO {
unsigned char AuditingMode;
[size is(MaximumAuditEventCount)]
unsigned long* EventAuditingOptions;
[range (0,1000)] unsigned long MaximumAuditEventCount;
} LSAPR POLICY AUDIT EVENTS INFO,
*PLSAPR POLICY AUDIT EVENTS INFO;

AuditingMode: 0 indicates that auditing is disabled. All other values indicate that auditing is
enabled.

EventAuditingOptions: An array of values specifying the auditing options for a particular audit type.
The auditing type of an element is represented by its index in the array, which is identified by the
POLICY_AUDIT_EVENT_TYPE enumeration (see section 2.2.4.20). Each element MUST contain one
or more of the values in the table below.

If the MaximumAuditEventCount field has a value other than 0, this field MUST NOT be NULL.

Value Meaning

POLICY_AUDIT_EVENT_UNCHANGED | Leave existing auditing options unchanged for events of this type;
0x00000000 used only for set operations. This value cannot be combined with
values in this table.

POLICY_AUDIT_EVENT_NONE Upon updates, this value causes the existing auditing options for
0x00000004 events of this type to be deleted and replaced with any other new
values specified. If specified by itself, this value cancels all
auditing options for events of this type. This value is used only for
set operations.

POLICY_AUDIT_EVENT_SUCCESS When auditing is enabled, audit all successful occurrences of
0x00000001 events of the given type.

POLICY_AUDIT_EVENT_FAILURE When auditing is enabled, audit all unsuccessful occurrences of
0x00000002 events of the given type.

MaximumAuditEventCount: The number of entries in the EventAuditingOptions array.<23>

2.2.4.5 LSAPR_POLICY_PRIMARY_DOM_INFO
The LSAPR_POLICY_PRIMARY_DOM_INFO structure defines the server's primary domain.

The following structure corresponds to the PolicyPrimaryDomainInformation information class.

typedef struct LSAPR POLICY PRIMARY DOM INFO {
RPC_UNICODE STRING Name;

46 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

PRPC_SID Sid;
} LSAPR POLICY PRIMARY DOM INFO,
*PLSAPR POLICY PRIMARY DOM INFO;

Name: This field contains a name for the primary domain that is subject to the restrictions of a
NetBIOS name, as specified in [RFC1088]. The value SHOULD be used (by implementations
external to this protocol) to identify the domain via the NetBIOS API, as specified in [RFC1088].

Sid: The SID of the primary domain.

2.2.4.6 LSAPR_POLICY_ACCOUNT_DOM_INFO

The LSAPR_POLICY_ACCOUNT_DOM_INFO structure contains information about the server's account
domain. The following structure corresponds to the PolicyAccountDomainInformation and
PolicyLocalAccountDomainInformation information classes.

typedef struct _LSAPR_POLICY ACCOUNT_DOM INFO {
RPC_UNICODE STRING DomainName;
PRPC_SID DomainSid;

} LSAPR POLICY ACCOUNT_DOM INFO,

*PLSAPR POLICY ACCOUNT DOM INFO;

DomainName: This field contains a hame for the account domain that is subjected to the restrictions
of a NetBIOS name, as specified in [RFC1088]. This value SHOULD be used (by implementations
external to this protocol) to identify the domain via the NetBIOS API, as specified in [RFC1088].

DomainSid: The SID of the account domain. This field MUST NOT be NULL.

2.2.4.7 LSAPR_POLICY_PD_ACCOUNT_INFO

The LSAPR_POLICY_PD_ACCOUNT_INFO structure is obsolete and exists for backward compatibility
purposes only.

Name: Represents the name of an account in the domain that is to be used for authentication and
name/ID lookup requests.

typedef struct LSAPR POLICY PD ACCOUNT INFO {
RPC_UNICODE STRING Name;

} LSAPR_POLICY PD ACCOUNT INFO,
*PLSAPR_POLICY PD ACCOUNT INFO;

2.2.4.8 POLICY_LSA_SERVER_ROLE

The POLICY_LSA_SERVER_ROLE enumeration takes one of two possible values, depending on which
capacity the account domain database is in: primary or backup. Certain operations of the protocol are
allowed only against a primary account database. On non-domain controller machines, the account
domain database is in primary state. On domain controllers, if the machine is the primary domain
controller (PDC) role owner, then the account domain database is in primary state; otherwise, it is in
backup state.

typedef enum POLICY LSA SERVER ROLE
{
PolicyServerRoleBackup = 2,
PolicyServerRolePrimary
} POLICY LSA SERVER ROLE,

47/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

*PPOLICY LSA SERVER ROLE;

PolicyServerRoleBackup: A backup account database.

PolicyServerRolePrimary: A primary account database.

2.2.4.9 POLICY_LSA_SERVER_ROLE_INFO

The POLICY_LSA_SERVER_ROLE_INFO structure is used to allow callers to query and set whether the
account domain database acts as the primary copy or backup copy. The following structure
corresponds to the PolicyLsaServerRoleInformation information class.

typedef struct _POLICY LSA SERVER ROLE_INFO {
POLICY LSA SERVER ROLE LsaServerRole;

} POLICY_ LSA SERVER ROLE_INFO,
*PPOLICY_LSA_SERVER_ROLE_INFO;

LsaServerRole: One of the values of the POLICY_LSA_SERVER_ROLE enumeration on return.

2.2.4.10 LSAPR_POLICY_REPLICA_SRCE_INFO

The LSAPR_POLICY_REPLICA_SRCE_INFO structure corresponds to the
PolicyReplicaSourcelnformation information class.

typedef struct LSAPR_POLICY REPLICA_ SRCE_INFO ({
RPC_UNICODE_STRING ReplicaSource;
RPC_UNICODE STRING ReplicaAccountName;

} LSAPR_POLICY_ REPLICA_ SRCE_INFO,
*PLSAPR_POLICY REPLICA_ SRCE_INFO;

ReplicaSource: A string.

ReplicaAccountName: A string.

2.2.4.11 POLICY_MODIFICATION_INFO

The POLICY_MODIFICATION_INFO structure is obsolete and exists for backward compatibility
purposes only. Callers of this protocol MUST NOT be able to set or retrieve this structure.

typedef struct _POLICY MODIFICATION_ INFO {
LARGE INTEGER ModifiedId;
LARGE_INTEGER DatabaseCreationTime;

} POLICY MODIFICATION_INFO,
*PPOLICY_MODIFICATION_INFO;

ModifiedId: A 64-bit unsigned integer that is incremented each time anything in the Local Security
Authority (LSA) database is modified.

DatabaseCreationTime: The date and time when the LSA database was created. It is a 64-bit value
that represents the number of 100-nanosecond intervals since January 1, 1601, UTC.

48/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

2.2.4.12 POLICY_AUDIT_FULL_SET_INFO

The POLICY_AUDIT_FULL_SET_INFO structure contains information to set on the server that is
controlling audit log behavior. The following structure corresponds to the PolicyAuditFullSetInformation
information class. This information class is not supported.

typedef struct POLICY AUDIT FULL SET INFO ({
unsigned char ShutDownOnFull;

} POLICY AUDIT FULL_SET INFO,
*PPOLICY AUDIT FULL SET INFO;

ShutDownOnFull: A nonzero value means that the system MUST shut down when the event log is
full, while zero means that the system MUST NOT shut down when the event log is full.

2.2.4.13 POLICY_AUDIT_FULL_QUERY_INFO

The POLICY_AUDIT_FULL_QUERY_INFO structure is used to query information about the state of the
audit log on the server. The following structure corresponds to the PolicyAuditFullQueryInformation
information class.

This information class is obsolete and exists for backward compatibility purposes only.

typedef struct POLICY AUDIT FULL QUERY INFO {
unsigned char ShutDownOnFull;
unsigned char LogIsFull;

} POLICY AUDIT FULL QUERY INFO,
*PPOLICY AUDIT FULL_QUERY INFO;

ShutDownOnFull: This field indicates whether the system MUST shut down when the event log is
full.

LogIsFull: This field indicates whether the event log is full or not.

2.2.4.14 LSAPR_POLICY_DNS_DOMAIN_INFO

The LSAPR_POLICY_DNS_DOMAIN_INFO structure is used to allow callers to query and set the
server's primary domain.<24>

The following structure corresponds to the PolicyDnsDomainInformation and
PolicyDnsDomainInformationInt information classes.

typedef struct LSAPR POLICY DNS DOMAIN INFO ({
RPC_UNICODE_STRING Name;
RPC_UNICODE_STRING DnsDomainName;
RPC_UNICODE_ STRING DnsForestName;
GUID DomainGuid;
PRPC_SID Sid;

} LSAPR_POLICY DNS DOMAIN_ INFO,

*PLSAPR POLICY DNS DOMAIN INFO;

Name: This field contains a name for the domain that is subject to the restrictions of a NetBIOS
name, as specified in [RFC1088]. This value SHOULD be used (by implementations external to this
protocol) to identify the domain via the NetBIOS API, as specified in [RFC1088].

DnsDomainName: The fully qualified DNS name of the domain.

DnsForestName: The fully qualified DNS name of the forest containing this domain.

49/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

DomainGuid: The globally unique identifier (GUID), as specified in [MS-DTYP] section 2.3.4.1, of the
domain.

Sid: The SID of the domain.

2.2.4.15 POLICY_DOMAIN_INFORMATION_CLASS

The POLICY_DOMAIN_INFORMATION_CLASS enumeration type contains values that specify the type
of policy being queried or set by the client.

typedef enum POLICY DOMAIN INFORMATION CLASS
{
PolicyDomainQualityOfServiceInformation = 1,
PolicyDomainEfsInformation = 2,
PolicyDomainKerberosTicketInformation = 3
} POLICY DOMAIN INFORMATION CLASS,
*PPOLICY DOMAIN INFORMATION CLASS;

The values in this enumeration are used in defining the contents of the
LSAPR_POLICY_DOMAIN_INFORMATION union.

2.2.4.16 LSAPR_POLICY_DOMAIN_INFORMATION

The LSAPR_POLICY_DOMAIN_INFORMATION union is defined as follows, where the structure depends
on the POLICY_DOMAIN_INFORMATION_CLASS that is specified in the message.

typedef
[switch type (POLICY DOMAIN INFORMATION CLASS)]
union LSAPR POLICY DOMAIN INFORMATION ({
[case (PolicyDomainQualityOfServiceInformation)]
POLICY DOMAIN QUALITY OF SERVICE INFO PolicyDomainQualityOfServicelInfo;
[case (PolicyDomainEfsInformation)]
LSAPR _POLICY DOMAIN EFS INFO PolicyDomainEfsInfo;
[case (PolicyDomainKerberosTicketInformation)]
POLICY DOMAIN KERBEROS TICKET INFO PolicyDomainKerbTicketInfo;
} LSAPR POLICY DOMAIN INFORMATION,
*PLSAPR_POLICY DOMAIN_ INFORMATION;

PolicyDomainQualityOfServiceInfo: The complete description is as specified in section
2.2.4.17.<25>

PolicyDomainEfsInfo: The complete description is as specified in section 2.2.4.18.

PolicyDomainKerbTicketInfo: The complete description is as specified in section 2.2.4.19.

2.2.4.17 POLICY_DOMAIN_QUALITY_OF_SERVICE_INFO

The POLICY_DOMAIN_QUALITY_OF_SERVICE_INFO structure is obsolete and exists for backward
compatibility purposes only.

typedef struct POLICY DOMAIN QUALITY OF SERVICE INFO {
unsigned long QualityOfService;

} POLICY DOMAIN QUALITY OF SERVICE INFO,

*PPOLICY DOMAIN QUALITY OF SERVICE INFO;

QualityOfService: Quality of service of the responder. MUST be set to zero when sent and MUST be
ignored on receipt.

50/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

2.2.4.18 LSAPR_POLICY_DOMAIN_EFS_INFO

The LSAPR_POLICY_DOMAIN_EFS_INFO structure communicates a counted binary byte array.

typedef struct LSAPR POLICY DOMAIN EFS_INFO {
unsigned long Infolength;
[size is(InfolLength)] unsigned char* EfsBlob;
} LSAPR POLICY DOMAIN EFS INFO,
*PLSAPR POLICY DOMAIN EFS_INFO;

InfoLength: The count of bytes in the EfsBlob.

EfsBlob: An array of bytes, of size InfoLength bytes. If the value of InfoLength is other than O,
this field MUST NOT be NULL. The syntax of this blob SHOULD<26> conform to the layout
specified in [MS-GPEF] section 2.2.1.2.1.

2.2.4.19 POLICY_DOMAIN_KERBEROS_TICKET_INFO

The POLICY_DOMAIN_KERBEROS_TICKET_INFO structure communicates policy information about the
Kerberos security provider.

typedef struct POLICY DOMAIN KERBEROS TICKET INFO {
unsigned long AuthenticationOptions;
LARGE INTEGER MaxServiceTicketAge;
LARGE INTEGER MaxTicketAge;
LARGE _INTEGER MaxRenewAge;
LARGE INTEGER MaxClockSkew;
LARGE_INTEGER Reserved;
} POLICY DOMAIN KERBEROS TICKET INFO,
*PPOLICY DOMAIN KERBEROS TICKET INFO;

AuthenticationOptions: Optional flags that affect validations performed during authentication.

-
N
w

Where the bits are defined as:

Value Description

VC This is the only flag that is currently defined. When this bit is set, the
POLICY KERBEROS VALIDATE CLIENT AuthenticationOptions flag of the Key Distribution Center (KDC)
(OXOOOC_)OOSO) - - configuration setting will be set to

POLICY_KERBEROS_VALIDATE_CLIENT (as described in [MS-KILE]
section 3.3.1). All other bits SHOULD be set to 0 and ignored upon
receipt.

MaxServiceTicketAge: This is in units of 10" (-7) seconds. It corresponds to Maximum ticket
lifetime (as specified in [RFC4120] section 8.2) for service tickets only. The default value of this
setting is 10 hours.

MaxTicketAge: This is in units of 10~(-7) seconds. It corresponds to the Maximum ticket lifetime (as
specified in [RFC4120] section 8.2) for ticket-granting ticket (TGT) only. The default value of this
setting is 10 hours.

51 /254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

MaxRenewAge: This is in units of 10~ (-7) seconds. It corresponds to the Maximum renewable
lifetime, as specified in [RFC4120] section 8.2. The default value of this setting is one week.

MaxClockSkew: This is in units of 10~ (-7) seconds. It corresponds to the Acceptable clock skew, as
specified in [RFC4120] section 8.2. The default value of this setting is five minutes.

Reserved: The value of this field SHOULD be set to zero when sent or on receipt.

2.2.4.20 POLICY_AUDIT_EVENT_TYPE

typedef enum POLICY AUDIT EVENT TYPE

{
AuditCategorySystem = O,
AuditCategoryLogon,
AuditCategoryObjectAccess,
AuditCategoryPrivilegeUse,
AuditCategoryDetailedTracking,
AuditCategoryPolicyChange,
AuditCategoryAccountManagement,
AuditCategoryDirectoryServiceAccess,
AuditCategoryAccountLogon

} POLICY AUDIT EVENT TYPE,
*PPOLICY AUDIT EVENT TYPE;

AuditCategorySystem: Manages auditing of system-related events

AuditCategoryLogon: Manages auditing of account logon events
AuditCategoryObjectAccess: Manages auditing of object access events
AuditCategoryPrivilegeUse: Manages auditing of privilege use events
AuditCategoryDetailedTracking: Manages detailed auditing
AuditCategoryPolicyChange: Manages auditing of policy change events
AuditCategoryAccountManagement: Manages auditing of account management events
AuditCategoryDirectoryServiceAccess: Manages auditing of Active Directory access events
AuditCategoryAccountLogon: Manages auditing of account logon events

The values in this enumeration are used as indices into the EventAuditingOptions field of the
LSAPR_POLICY_AUDIT_EVENTS_INFO structure (see section 2.2.4.4).

2.2.4.21 LSAPR_POLICY_MACHINE_ACCT_INFO

The LSAPR_POLICY_MACHINE_ACCT_INFO structure is used to identify the machine account whose
security policy is to be queried or set.

typedef struct LSAPR POLICY MACHINE ACCT INFO {
unsigned long Rid;
PRPC_SID Sid;
} LSAPR POLICY MACHINE ACCT INFO,
*PLSAPR POLICY MACHINE ACCT INFO;

Rid: The RID of the machine account.

Sid: The SID of the machine account.

52 /254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.5 Account Query/Set Data Types

2.2.5.1 LSAPR_ACCOUNT_INFORMATION

The LSAPR_ACCOUNT_INFORMATION structure specifies a security principal security identifier (SID).

typedef struct LSAPR ACCOUNT INFORMATION ({
PRPC SID Sid;

} LSAPR ACCOUNT INFORMATION,

*PLSAPR ACCOUNT INFORMATION;

Sid: This field contains the SID of the security principal. This field MUST NOT be NULL.

2.2.5.2 LSAPR_ACCOUNT_ENUM_BUFFER

The LSAPR_ACCOUNT_ENUM_BUFFER structure specifies a collection of security principal SIDs
represented in an array of structures of type LSAPR_ACCOUNT_INFORMATION.

typedef struct LSAPR ACCOUNT ENUM BUFFER {
unsigned long EntriesRead;
[size is(EntriesRead)] PLSAPR ACCOUNT_ INFORMATION Information;
} LSAPR ACCOUNT ENUM BUFFER,
*PLSAPR_ACCOUNT_ENUM_BUFFER;

EntriesRead: This field contains the number of security principals.

Information: This field contains a set of structures that define the security principal SID, as specified
in section 2.2.5.1. If the EntriesRead field has a value other than 0, this field MUST NOT be NULL.

2.2.5.3 LSAPR_USER_RIGHT_SET

The LSAPR_USER_RIGHT_SET structure specifies a collection of user rights.

typedef struct LSAPR _USER RIGHT SET {
[range (0,256)] unsigned long Entries;
[size is(Entries)] PRPC UNICODE STRING UserRights;
} LSAPR USER RIGHT SET,
*PLSAPR _USER RIGHT SET;

Entries: This field contains the number of rights.<27>

UserRights: An array of strings specifying the rights. These can be string names corresponding to
either privilege names or system access names, as specified in section 3.1.1.2. If the Entries field
has a value other than 0, this field MUST NOT be NULL.

2.2.5.4 LSAPR_LUID_AND_ATTRIBUTES

The LSAPR_LUID_AND_ATTRIBUTES structure is a tuple defining a locally unique identifier (LUID) and
a field defining the attributes of the LUID.

typedef struct LSAPR LUID AND ATTRIBUTES {
LUID Luid;
unsigned long Attributes;

} LSAPR _LUID_AND ATTRIBUTES,
*PLSAPR LUID AND ATTRIBUTES;

53/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Luid: The locally unique identifier.

Attributes: This field contains bitmapped values that define the properties of the privilege set. One
or more of the following flags can be set.

1 2 3}
0 0 0

D: The privilege is enabled by default.
E: The privilege is enabled.

All other bits SHOULD be 0 and ignored upon receipt.

2.2.5.5 LSAPR_PRIVILEGE_SET

The LSAPR_PRIVILEGE_SET structure defines a set of privileges that belong to an account.

typedef struct _LSAPR_PRIVILEGE SET ({

[range (0,1000)] unsigned long PrivilegeCount;

unsigned long Control;

[size is(PrivilegeCount)] LSAPR LUID AND ATTRIBUTES Privilege[*];
} LSAPR PRIVILEGE SET,
*PLSAPR PRIVILEGE SET;

PrivilegeCount: This field contains the number of privileges.<28>

Control: This field contains bitmapped values that define the properties of the privilege set.

1 2
0 0 0

w

ojo0j0/0|0j0|0|j0|0O|O|O|O|OfO|O|O|O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O]|O

0O: Valid for a set operation indicating that all specified privileges that are not already assigned are
to be assigned.

All other bits SHOULD be set to zero when sent, and ignored on receipt.

Privilege: An array of LSAPR_LUID_AND_ATTRIBUTES structures. If the PrivilegeCount field has a
value different than 0, this field MUST NOT be NULL.

2.2.6 Secret Query/Set Data Types

2.2.6.1 LSAPR_CR_CIPHER_VALUE

The LSAPR_CR_CIPHER_VALUE structure is a counted buffer of bytes containing a secret object.

typedef struct _LSAPR CR_CIPHER VALUE ({
[range (0,131088)] unsigned long Length;
[range (0,131088)] unsigned long MaximumLength;
[size is(MaximumLength), length is(Length)]
unsigned char* Buffer;
} LSAPR CR CIPHER VALUE,

54 /254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

*PLSAPR CR CIPHER VALUE;

Length: This field contains the number of valid bytes in the Buffer field.<29>
MaximumLength: This field contains the number of allocated bytes in the Buffer field.<30>

Buffer: This field contains the actual secret data. If the value of the MaximumLength field is
greater than 0, this field MUST contain a non-NULL value. This field is always encrypted using
algorithms as specified in section 5.1.2.

2.2.6.2 (Added Section) B\ 1@V =50e {215 [S @A/ BUT S
he LSAPR AES CIPHER VALUE structure is a buffer used to carry AES encrypted secret data and
secret names. <31 > NNEENEGEG

secret names.<31>

typedef struct LSAPR AES CIPHER VALUE ({

(section 5.1.5) .|
Salt: An array containing the random number used by the client to encrypt the data stored in the

Ci pher |location with AES. -

cbCipher: The size of the Cipher buffer in bytes.

field must contain a non-NULL value.

2.2.7 Trusted Domain Query/Set Data Types

2.2.7.1 LSAPR_TRUST_INFORMATION

The LSAPR_TRUST_INFORMATION structure identifies a domain.

typedef struct _LSAPR_TRUST_ INFORMATION {
RPC_UNICODE_STRING Name;
PRPC_SID Sid;

} LSAPR_TRUST_ INFORMATION,
*PLSAPR TRUST INFORMATION;

Name: This field contains a name for the domain that is subject to the restrictions of a NetBIOS
name, as specified in [RFC1088]. This value SHOULD be used (by implementations external to this
protocol) to identify the domain via the NetBIOS, as specified in [RFC1088].

Sid: The SID of the domain. This field MUST NOT be NULL.

55 /254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

2.2.7.2 TRUSTED_INFORMATION_CLASS

The TRUSTED_INFORMATION_CLASS enumeration type contains values that specify the type of
trusted domain information queried or set by the client.

typedef enum TRUSTED INFORMATION CLASS

{
TrustedDomainNameInformation = 1,
TrustedControllersInformation,
TrustedPosixOffsetInformation,
TrustedPasswordInformation,
TrustedDomainInformationBasic,
TrustedDomainInformationEx,
TrustedDomainAuthInformation,
TrustedDomainFullInformation,
TrustedDomainAuthInformationInternal,
TrustedDomainFullInformationInternal,
TrustedDomainInformationEx2Internal,
TrustedDomainFullInformation2Internal,
TrustedDomainSupportedEncryptionTypes,
TrustedDomainAuthInformationInternalAes,
TrustedDomainFullInformationInternalAes

} TRUSTED_ INFORMATION_ CLASS,

* PTRUSTED INFORMATION CLASS;

TrustedDomainNamelInformation: The trusted domain information contains the
LSAPR_TRUSTED_DOMAIN_NAME_INFO structure specified in section 2.2.7.4.

TrustedControllersInformation: The trusted domain information contains the
LSAPR_TRUSTED_CONTROLLERS_INFO structure specified in section 2.2.7.5.

TrustedPosixOffsetInformation: The trusted domain information contains the
TRUSTED_POSIX_OFFSET_INFO structure specified in section 2.2.7.6.

TrustedPasswordInformation: The trusted domain information contains the
LSAPR_TRUSTED_PASSWORD_INFO structure specified in section 2.2.7.7.

TrustedDomainInformationBasic: The trusted domain information contains the
LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC structure specified in section 2.2.7.8.

TrustedDomainInformationEx: The trusted domain information contains the LSAPR_TRUSTED_
DOMAIN_INFORMATION_EX structure specified in section 2.2.7.9.

TrustedDomainAuthInformation: The trusted domain information contains the
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION structure specified in section 2.2.7.11.

TrustedDomainFullInformation: The trusted domain information contains the
LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION structure specified in section 2.2.7.13.

TrustedDomainAuthInformationInternal: The trusted domain information contains the
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL structure specified in section
2.2.7.12.

TrustedDomainFullInformationInternal: The trusted domain information contains the
LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL structure specified in section
2.2.7.14.

TrustedDomainInformationEx2Internal: The trusted domain information contains the
LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2 structure specified in section 2.2.7.10.

TrustedDomainFullInformation2Internal: The trusted domain information contains the
LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2 structure specified in section 2.2.7.15.

56 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

TrustedDomainSupportedEncryptionTypes: The trusted domain information contains the
TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES structure specified in section 2.2.7.18.

TrustedDomainAuthInformationInternalAes: The trusted domain information contains the
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL_AES structure specified in section
2.2.7.29.

TrustedDomainFullInformationInternalAes: The trusted domain information contains the
LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL_AES structure specified in section
2.2.7.30.

The following citation contains a timeline of when each enumeration value was introduced.<32>

The values in this enumeration are used in defining the contents of the
LSAPR_TRUSTED_DOMAIN_INFO union.

2.2.7.3 LSAPR_TRUSTED_DOMAIN_INFO

The LSAPR_TRUSTED_DOMAIN_INFO union is defined as follows, where the structure depends on the
TRUSTED_INFORMATION_CLASS that is specified in the message.

typedef
[Switchitype(TRUSTEDilNFORMATION7CLASS)]
union _LSAPR TRUSTED DOMAIN INFO ({
[case (TrustedDomainNameInformation)]
LSAPR TRUSTED DOMAIN NAME INFO TrustedDomainNameInfo;
[case (TrustedControllersInformation)]
LSAPR _TRUSTED CONTROLLERS INFO TrustedControllersInfo;
[case (TrustedPosixOffsetInformation)]
TRUSTED POSIX OFFSET INFO TrustedPosixOffsetInfo;
[case (TrustedPasswordInformation)]
LSAPR _TRUSTED PASSWORD INFO TrustedPasswordInfo;
[case (TrustedDomainInformationBasic)]
LSAPR TRUSTED DOMAIN INFORMATION BASIC TrustedDomainInfoBasic;
[case (TrustedDomainInformationEx)]
LSAPR_TRUSTED_ DOMAIN INFORMATION EX TrustedDomainInfoEx;
[case (TrustedDomainAuthInformation)]
LSAPR TRUSTED DOMAIN AUTH INFORMATION TrustedAuthInfo;
[case (TrustedDomainFullInformation)]
LSAPR_TRUSTED_ DOMAIN FULL_ INFORMATION TrustedFullInfo;
[case (TrustedDomainAuthInformationInternal)]
LSAPR _TRUSTED DOMAIN AUTH INFORMATION INTERNAL TrustedAuthInfolInternal;
[case (TrustedDomainFullInformationInternal)]
LSAPR_TRUSTED_DOMAIN FULL INFORMATION INTERNAL TrustedFullInfoInternal;
[case (TrustedDomainInformationEx2Internal)]
LSAPRﬁTRUSTEDiDOMAINilNFORMATIONiEXZ TrustedDomainInfoEx2;
[case (TrustedDomainFullInformation2Internal)]
LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2 TrustedFullInfo2;
[case (TrustedDomainSupportedEncryptionTypes)]
TRUSTED DOMAIN SUPPORTED ENCRYPTION TYPES TrustedDomainSETs;
[case (TrustedDomainAuthInformationInternalAes)]
LSAPR TRUSTED DOMAIN AUTH INFORMATION INTERNAL AES TrustedAuthInfoInternalAes;
[case (TrustedDomainFullInformationInternalles)]
LSAPR_TRUSTED_DOMAIN FULL_ INFORMATION_ INTERNAL AES TrustedFullInfoInternalAes
} LSAPR TRUSTED DOMAIN INFO,
*PLSAPR_TRUSTED_DOMAIN_INFO;

TrustedDomainNamelInfo: An instance of the LSAPR_TRUSTED_DOMAIN_NAME_INFO structure
specified in section 2.2.7.4.

TrustedControllersInfo: An instance of the LSAPR_TRUSTED_CONTROLLERS_INFO structure
specified in section 2.2.7.5.

57/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

TrustedPosixOffsetInfo: An instance of the TRUSTED_POSIX_OFFSET_INFO structure specified in
section 2.2.7.6.

TrustedPasswordInfo: An instance of the LSAPR_TRUSTED_PASSWORD_INFO structure specified in
section 2.2.7.7.

TrustedDomainInfoBasic: An instance of the LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC
structure specified in section 2.2.7.8.

TrustedDomainInfoEx: An instance of the LSAPR_TRUSTED_DOMAIN_INFORMATION_EX structure
specified in section 2.2.7.9.

TrustedAuthInfo: An instance of the LSAPR_TRUSTED_ DOMAIN_AUTH_INFORMATION structure
specified in section 2.2.7.11.

TrustedFullInfo: An instance of the LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION structure
specified in section 2.2.7.13.

TrustedAuthInfoInternal: An instance of the
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL structure specified in section
2.2.7.12.

TrustedFullInfoInternal: An instance of the
LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL structure specified in section
2.2.7.14.

TrustedDomainInfoEx2: An instance of the LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2
structure specified in section 2.2.7.10.

TrustedFullInfo2: An instance of the LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2 structure
specified in section 2.2.7.15.

TrustedDomainSETs: An instance of the TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES
structure specified in section 2.2.7.18.

TrustedAuthInfolnternalAes: An instance of the
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL_AES structure specified in section
2.2.7.29.

TrustedFullInfoInternalAes: An instance of the [case(TrustedDomainFullInformationInternalAes)]
LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL_AES structure specified in section
2.2.7.30.

2.2.7.4 LSAPR_TRUSTED_DOMAIN_NAME_INFO

The LSAPR_TRUSTED_DOMAIN_NAME_INFO structure is used to communicate the name of a trusted
domain. The following structure corresponds to the TrustedDomainNamelnformation information class.

typedef struct LSAPR TRUSTED DOMAIN NAME INFO ({
RPC_UNICODE STRING Name;

} LSAPR TRUSTED DOMAIN NAME INFO,
*PLSAPR_TRUSTED DOMAIN NAME INFO;

Name: This field contains a name for the domain that is subject to the restrictions of a NetBIOS
name, as specified in [RFC1088]. This field SHOULD be used (by implementations external to this
protocol) to identify the domain via the NetBIOS API, as specified in [RFC1088].

58/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.7.5 LSAPR_TRUSTED_CONTROLLERS_INFO

The LSAPR_TRUSTED_CONTROLLERS_INFO structure is used to communicate a set of names of
domain controllers (DCs) in a trusted domain. The following structure corresponds to the
TrustedControllersInformation information class.

typedef struct LSAPR TRUSTED CONTROLLERS INFO {
[range (0,5)] unsigned long Entries;
[size is(Entries)] PRPC_UNICODE STRING Names;
} LSAPR _TRUSTED_ CONTROLLERS_ INFO,
*PLSAPR _TRUSTED CONTROLLERS INFO;

Entries: The count of names.<33>

Names: This field contains an array of DC names that are subject to the restrictions of a NetBIOS
name, as specified in [RFC1088]. This field SHOULD be used (by implementations external to this
protocol) to identify the DCs via the NetBIOS API, as specified in [RFC1088]. If the Entries field
has a value other than 0, this field MUST NOT be NULL.

2.2.7.6 TRUSTED_POSIX_OFFSET_INFO

The TRUSTED_POSIX_OFFSET_INFO structure communicates any offset necessary for POSIX
compliance. The following structure corresponds to the TrustedPosixOffsetInformation information
class.

typedef struct TRUSTED POSIX OFFSET INFO ({
unsigned long Offset;
} TRUSTED POSIX OFFSET_INFO,
*PTRUSTED POSIX OFFSET_ INFO;

Offset: The offset to use for the generation of POSIX IDs for users and groups, as specified in
"trustPosixOffset" in [MS-ADTS] section 6.1.6.7.14.

2.2.7.7 LSAPR_TRUSTED_PASSWORD_INFO

The LSAPR_TRUSTED_ PASSWORD_INFO structure is used to communicate trust-authentication
material. The following structure corresponds to the TrustedPasswordInformation information class.

typedef struct LSAPR TRUSTED PASSWORD INFO {
PLSAPR CR CIPHER VALUE Password;
PLSAPR CR CIPHER VALUE OldPassword;

} LSAPR TRUSTED PASSWORD INFO,

*PLSAPR TRUSTED PASSWORD INFO;

Password: The current authentication material. See section 2.2.6.1.

OldPassword: The version prior to the current version of the authentication material. See section
2.2.6.1.

2.2.7.8 LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC

The LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC type is identical to the
LSAPR_TRUST_INFORMATION structure. This type corresponds to the TrustedDomainInformationBasic
information class.

This type is declared as follows:

59/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

typedef LSAPR TRUST INFORMATION LSAPR TRUSTED DOMAIN INFORMATION BASIC;

2.2.7.9 LSAPR_TRUSTED_DOMAIN_INFORMATION_EX

The LSAPR_TRUSTED_DOMAIN_INFORMATION_EX structure communicates properties of a trusted
domain. The following structure corresponds to the TrustedDomainInformationEx information class.
Domain trusts are specified in [MS-ADTS] section 6.1.6.

typedef struct LSAPR TRUSTED DOMAIN INFORMATION EX {
RPC_UNICODE_STRING Name;
RPC_UNICODE_ STRING FlatName;
PRPC_SID Sid;
unsigned long TrustDirection;
unsigned long TrustType;
unsigned long TrustAttributes;
} LSAPR TRUSTED DOMAIN INFORMATION EX,
*PLSAPR _TRUSTED DOMAIN INFORMATION EX;

Name: The DNS name of the domain. Maps to the Name field, as specified in section 3.1.1.5.

FlatName: The NetBIOS name of the trusted domain, as specified in [RFC1088]. Maps to the Flat
Name field, as specified in section 3.1.1.5.

Sid: The domain SID. Maps to the Security Identifier field, as specified in section 3.1.1.5.

TrustDirection: This field contains bitmapped values that define the properties of the direction of
trust between the local domain and the named domain. One or more of the valid flags can be set.
If all bits are 0, the trust is said to be disabled.

N
w

1
0 0 0

I: The trust is inbound.

O: The trust is outbound.

All other bits SHOULD be 0 and ignored upon receipt.

Maps to the Trust Direction field, as specified in section 3.1.1.5.

TrustType: This field specifies the type of trust between the local domain and the named domain.

Value Meaning

0x00000001 | Trust with a Windows domain that is not running Active Directory.

0x00000002 | Trust with a Windows domain that is running Active Directory.

0x00000003 | Trust with a non-Windows-compliant Kerberos distribution, as specified in [RFC4120].

0x00000004 | Trust with a distributed computing environment (DCE) realm. This is a historical reference
and is not used.

Note Other values SHOULD NOT be set.

Maps to the Trust Type field, as specified in section 3.1.1.5.

60/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

TrustAttributes: This field contains bitmapped values that define the attributes of the trust.<34>

-
N

o)

o w

4o >H
02> -

0Ox > -
m- >+
nmE >
on>r -

—“ >
To >
ocx»H
“z>H

TrustAttribute values are described in section 3.1.1.5. The following table shows how these values

map to the Trust Attributes field in section 3.1.1.5.

Value

Mapping

TANT (TRUST_ATTRIBUTE_NON_TRANSITIVE)

Trust Attributes:

Non-transitive

TAUO (TRUST_ATTRIBUTE_UPLEVEL_ONLY)

Trust Attributes:

Uplevel only

TAQD (TRUST_ATTRIBUTE_QUARANTINED_DOMAIN)

Trust Attributes:

Quarantined

TAFT (TRUST_ATTRIBUTE_FOREST_TRANSITIVE)

Trust Attributes:

Forest trust

TACO (TRUST_ATTRIBUTE_CROSS_ORGANIZATION)

Trust Attributes:
organization

Cross

TAWF (TRUST_ATTRIBUTE_WITHIN_FOREST)

Trust Attributes:

Within forest

TATE (TRUST_ATTRIBUTE_TREAT_AS_EXTERNAL)

Trust Attributes:

Treat as

external

TARC (TRUST_ATTRIBUTE_USES_RC4_ENCRYPTION) Trust Attributes: Use RC4
Encryption (for more information
about RC4, see [SCHNEIER]

section 17.1).

TANC
(TRUST_ATTRIBUTE_CROSS_ORGANIZATION_NO_TGT_DELEGATION)

Trust Attributes: Tokens must
not be trusted for delegation.

TAPT (TRUST_ATTRIBUTE_PIM_TRUST) Trust Attributes:
PrivilegedIdentityManagement

(PIM) trust.

(0] Obsolete. SHOULD be set to 0.
R Reserved for future use. SHOULD
be set to zero.
2.2.7.10 LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2

The LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2 structure communicates properties of a trusted
domain. The following structure corresponds to the TrustedDomainInformationEx2Internal information
class. Domain trusts are specified in [MS-ADTS] section 6.1.6.

typedef struct _LSAPR_TRUSTED_DOMAIN_INFORMATION_EXZ {
RPC_UNICODE STRING Name;
RPC_UNICODE STRING FlatName;
PRPC_SID Sid;
unsigned long TrustDirection;

61 /254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

unsigned long TrustType;
unsigned long TrustAttributes;
unsigned long ForestTrustLength;
[size_is(ForestTrustLength)] unsigned char* ForestTrustInfo;
} LSAPR TRUSTED DOMAIN INFORMATION EX2Z,
*PLSAPR TRUSTED DOMAIN INFORMATION EX2;

Name: The DNS name of the domain. Maps to the Name field, as specified in section 3.1.1.5.

FlatName: The NetBIOS name of the trusted domain, as specified in [RFC1088]. Maps to the Flat
Name field, as specified in section 3.1.1.5.

Sid: The domain SID. Maps to the Security Identifier field, as specified in section 3.1.1.5.

TrustDirection: This field contains bitmapped values that define the properties of the direction of
trust between the local domain and the named domain. See section 2.2.7.9 for valid values and a
description of each flag. Maps to the Trusted Direction field, as specified in section 3.1.1.5.

TrustType: This field specifies the type of trust between the local domain and the named domain.
See section 2.2.7.9 for valid values and a description of each value. Maps to the Trusted Type
field, as specified in section 3.1.1.5.

TrustAttributes: This field contains bitmapped values that define the attributes of the trust. See
section 2.2.7.9 for valid values and a description of each flag. Maps to the Trusted Attributes field,
as specified in section 3.1.1.5.

ForestTrustLength: The count of bytes in ForestTrustInfo.

ForestTrustInfo: Binary data for the forest trust. For more information, see "Trust Objects" in [MS-
ADTS] section 6.1.6. Maps to the Forest Trust Information field, as specified in section 3.1.1.5.
Conversion from this binary format to the LSA_FOREST_TRUST_INFORMATION format is specified
in [MS-ADTS] section 6.1.6.9.3. If the ForestTrustLength field has a value other than 0, this
field MUST NOT be NULL.

2.2.7.11 (Updated Section) LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION

The LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION structure communicates authentication material.
The following structure corresponds to the TrustedDomainAuthInformation information class. Domain
trust authentication is specified in [MS-ADTS] section 6.1.6.9.1. This structure maps to the Incoming
and Outgoing Trust Password fields, as specified in section 3.1.1.5.

typedef struct LSAPR TRUSTED DOMAIN AUTH INFORMATION {
[range (0,1)] unsigned long IncomingAuthInfos;
PLSAPR AUTH INFORMATION IncomingAuthenticationInformation;
PLSAPR AUTH INFORMATION IncomingPreviousAuthenticationInformation;
[range (0,1)] unsigned long OutgoingAuthInfos;
PLSAPR AUTH INFORMATION OutgoingAuthenticationInformation;
PLSAPR AUTH INFORMATION OutgoingPreviousAuthenticationInformation;
} LSAPR_TRUSTED DOMAIN_ AUTH INFORMATION,
*PLSAPR TRUSTED DOMAIN AUTH INFORMATION;

IncomingAuthInfos: The count of LSAPR_AUTH_INFORMATION entries (section 2.2.7.17) in the
IncomingAuthenticationInformation field.<35>

IncomingAuthenticationInformation: An array of LSAPR_AUTH_INFORMATION structures. The
values are used to compute keys used in inbound trust validation, as specified in [MS-ADTS]
section 6.1.6.9.1.

62 /254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

IncomingPreviousAuthenticationInformation: Same as IncomingAuthenticationInformation,
but the data is the previous version of the authentication information.

OutgoingAuthInfos: The count of LSAPR_AUTH_INFORMATION entries in the
OutgoingAuthenticationInformation fieldEREENEls >

OutgoingAuthenticationInformation: An array of LSAPR_AUTH_INFORMATION structures. The
values are used to compute keys used in outbound trust validation, as specified in [MS-ADTS]
section 6.1.6.9.1.

OutgoingPreviousAuthenticationInformation: Same as OutgoingAuthenticationInformation,
but the data is the previous version of the authentication information.

2.2.7.12 LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL

The LSAPR_TRUSTED_ DOMAIN_AUTH_INFORMATION_INTERNAL structure communicates
authentication material. The following structure corresponds to the
TrustedDomainAuthInformationInternal information class. For more information about domain trust
authentication material, see [MS-ADTS] section 6.1.6.9.1.

typedef struct LSAPR TRUSTED DOMAIN AUTH INFORMATION INTERNAL {
LSAPR TRUSTED DOMAIN AUTH BLOB AuthBlob;

} LSAPR TRUSTED DOMAIN AUTH INFORMATION INTERNAL,

*PLSAPR TRUSTED DOMAIN AUTH INFORMATION INTERNAL;

AuthBlob: An LSAPR_TRUSTED_DOMAIN_AUTH_BLOB.

2.2.7.13 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION

The LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION structure communicates identification, POSIX
compatibility, and authentication information for a trusted domain. The following structure
corresponds to the TrustedDomainFullInformation information class.

typedef struct LSAPR TRUSTED DOMAIN FULL INFORMATION {
LSAPR_TRUSTED DOMAIN INFORMATION EX Information;
TRUSTED POSIX OFFSET INFO PosixOffset;
LSAPR TRUSTED DOMAIN AUTH INFORMATION AuthInformation;
} LSAPR_TRUSTED DOMAIN FULL_ INFORMATION,
*PLSAPR TRUSTED DOMAIN FULL INFORMATION;

Information: A structure containing name, SID, and trust attributes, as specified in section 2.2.7.9.

PosixOffset: Any offset required for POSIX compliance, as specified in section 2.2.7.6.

AuthInformation: Authentication material, as specified in section 2.2.7.11.

2.2.7.14 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL

The LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL structure communicates identification
and authentication information for a trusted domain. The following structure corresponds to the
TrustedDomainFullInformationInternal information class.

typedef struct LSAPR TRUSTED DOMAIN FULL INFORMATION INTERNAL {
LSAPR TRUSTED DOMAIN INFORMATION EX Information;
TRUSTED POSIX OFFSET INFO PosixOffset;
LSAPR_TRUSTED DOMAIN AUTH INFORMATION INTERNAL AuthInformation;
} LSAPR TRUSTED DOMAIN FULL INFORMATION INTERNAL,

63/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

*PLSAPR TRUSTED DOMAIN FULL INFORMATION INTERNAL;

Information: A structure containing name, SID, and trust attributes, as specified in section 2.2.7.9.
PosixOffset: Any offset required for POSIX compliance, as specified in section 2.2.7.6.

AuthInformation: Authentication material, as specified in section 2.2.7.12.

2.2.7.15 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2

The LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2 structure is used to communicate identification,
POSIX compatibility, and authentication information for a trusted domain. The following structure
corresponds to the TrustedDomainFullInformation2Internal information class.

typedef struct LSAPR TRUSTED DOMAIN FULL INFORMATIONZ {
LSAPR TRUSTED DOMAIN INFORMATION EX2 Information;
TRUSTED POSIX OFFSET INFO PosixOffset;
LSAPR TRUSTED DOMAIN AUTH INFORMATION AuthInformation;
} LSAPR TRUSTED DOMAIN FULL INFORMATIONZ,
*PLSAPR TRUSTED DOMAIN FULL INFORMATIONZ;

Information: A structure containing name, SID, and trust attributes, as specified in section 2.2.7.10.
PosixOffset: Any offset required for POSIX compliance, as specified in section 2.2.7.6.

AuthInformation: Authentication material, as specified in section 2.2.7.11.

2.2.7.16 LSAPR_TRUSTED_DOMAIN_AUTH_BLOB

The LSAPR_TRUSTED_ DOMAIN_AUTH_BLOB structure contains a counted buffer of authentication
material. Domain trust authentication is specified in [MS-ADTS] section 6.1.6.9.1.

typedef struct _LSAPR TRUSTED DOMAIN AUTH BLOB {
[range (0, 65536)] unsigned long AuthSize;
[size is(AuthSize)] unsigned char* AuthBlob;
} LSAPR _TRUSTED DOMAIN AUTH BLOB,
*PLSAPR_TRUSTED DOMAIN AUTH BLOB;

AuthSize: The count of bytes in AuthBlob.<37>

AuthBlob: An array of bytes containing the authentication material. If the AuthSize field has a value
other than 0, this field MUST NOT be NULL. Always encrypted using algorithms, as specified in
section 5.1.1. The plaintext layout is in the following format.

The incoming and outgoing authentication information buffer size included at the end of the
LSAPR_TRUSTED_DOMAIN_AUTH_BLOB can be used to extract the incoming and outgoing
authentication information buffers from the LSAPR_TRUSTED_ DOMAIN_AUTH_BLOB. Each of these
buffers contains the byte offset to both the current and the previous authentication information.
This information can be used to extract current and (if any) previous authentication information.

1 2 3
0 0 0

512 bytes of random data (512 bytes)

64 /254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

CountOutgoingAuthInfos

ByteOffsetCurrentOutgoingAuthInfo

ByteOffsetPreviousOutgoingAuthInfo

CurrentOutgoingAuthInfos (variable)

PreviousOutgoingAuthlInfos (variable)

CountIncomingAuthInfos

ByteOffsetCurrentIncomingAuthInfo

ByteOffsetPreviousIncomingAuthInfo

CurrentIncomingAuthInfos (variable)

PreviousIncomingAuthInfos (variable)

OutgoingAuthInfoSize

IncomingAuthInfoSize

CountOutgoingAuthInfos (4 bytes): Specifies the count of entries present in the
CurrentOutgoingAuthlnfos field. If optional field PreviousOutgoingAuthlInfos is present, the number

of entries in PreviousOutgoingAuthInfos is also equal to CountOutgoingAuthInfos.

65/ 254

[MS-LSAD-Diff] - v20240423
Local Security Authority (Domain Policy) Remote Protocol

Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

ByteOffsetCurrentOutgoingAuthInfo (4 bytes): Specifies the byte offset from the beginning
of CountOutgoingAuthInfos to the start of the CurrentOutgoingAuthlnfos field. If
CountOutgoingAuthlnfos is 0, this field MUST be ignored.

ByteOffsetPreviousOutgoingAuthInfo (4 bytes): Specifies the byte offset from the beginning
of CountOutgoingAuthlInfos to the start of the PreviousOutgoingAuthInfos field. If the difference
between ByteOffsetPreviousOutgoingAuthInfo and OutgoingAuthlInfoSize is 0, the
PreviousOutgoingAuthInfos field has zero entries.

CurrentOutgoingAuthInfos: Contains an array of CountOutgoingAuthInfos of
LSAPR_AUTH_INFORMATION (section 2.2.7.17) entries in self-relative format. Each
LSAPR_AUTH_INFORMATION entry in the array MUST be 4-byte aligned. When it is necessary to
insert unused padding bytes into a buffer for data alignment, such bytes MUST be set to 0.

PreviousOutgoingAuthInfos: Contains an array of CountOutgoingAuthInfos
LSAPR_AUTH_INFORMATION entries in self-relative format. See the comments for the
ByteOffsetPreviousOutgoingAuthlInfo field to determine when this field is present. Each
LSAPR_AUTH_INFORMATION entry in the array MUST be 4-byte aligned. When it is necessary to
insert unused padding bytes into a buffer for data alignment, such bytes MUST be set to 0.

CountIncomingAuthInfos (4 bytes): Specifies the count of entries present in the
CurrentIncomingAuthlInfos field. If optional field PreviousIncomingAuthlInfos is present, the
number of entries in PreviousIncomingAuthlInfos is also equal to CountIncomingAuthInfos.

ByteOffsetCurrentIncomingAuthInfo (4 bytes): Specifies the byte offset from the beginning
of CountIncomingAuthInfos to the start of the CurrentIncomingAuthInfos field. If
CountIncomingAuthlInfos is 0, this field MUST be ignored.

ByteOffsetPreviousIncomingAuthInfo (4 bytes): Specifies the byte offset from the beginning
of CountIncomingAuthInfos to the start of the PreviousIncomingAuthInfos field. If the
difference between ByteOffsetPreviousIncomingAuthInfo and IncomingAuthInfoSize is 0,
the PreviousIncomingAuthlInfos field has zero entries.

CurrentIncomingAuthInfos: Contains an array of CountIncomingAuthInfos
LSAPR_AUTH_INFORMATION entries in self-relative format. Each LSAPR_AUTH_INFORMATION
entry in the array MUST be 4-byte aligned. When it is necessary to insert unused padding bytes
into a buffer for data alignment, such bytes MUST be set to 0.

PreviousIncomingAuthInfos: Contains an array of CountIncomingAuthInfos
LSAPR_AUTH_INFORMATION entries in self-relative format. See the comments for the
ByteOffsetPreviousIncomingAuthlInfo field to determine when this field is present. Each
LSAPR_AUTH_INFORMATION entry in the array MUST be 4-byte aligned. When it is necessary to
insert unused padding bytes into a buffer for data alignment, such bytes MUST be set to 0.

OutgoingAuthInfoSize (4 bytes): Specifies the size, in bytes, of the subportion of the structure
from the beginning of the CountOutgoingAuthInfos field through the end of the of the
PreviousOutgoingAuthInfos field.

IncomingAuthInfoSize (4 bytes): Specifies the size, in bytes, of the sub-portion of the
structure from the beginning of the CountIncomingAuthInfos field through the end of the of the
PreviousIncomingAuthInfos field.

2.2.7.17 LSAPR_AUTH_INFORMATION

The LSAPR_AUTH_INFORMATION structure communicates information about authentication between
trusted domains. Domain trust authentication is specified in [MS-ADTS] section 6.1.6.9.1.

typedef struct LSAPR AUTH INFORMATION {
LARGE INTEGER LastUpdateTime;

66 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

unsigned long AuthType;
[range (0, 65536)] unsigned long AuthInfolength;
[size is(AuthInfolLength)] unsigned char* AuthInfo;
} LSAPR AUTH INFORMATION,
*PLSAPR AUTH INFORMATION;

LastUpdateTime: The date and time when this authentication information was last updated. It is a
64-bit value that represents the number of 100-nanosecond intervals since January 1, 1601, UTC.

AuthType: A type for the Authlnfo, as specified in the following table.

Value Meaning

0x00000000 | This type MUST be ignored.

0x00000001 | Derived RC4HMAC key. For more information, see [RFC4757].

0x00000002 | A plaintext password. Indicates that the information stored in the attribute is a Unicode
plaintext password. If this AuthType is present, Kerberos can then use this password to
derive additional key types that are needed to encrypt and decrypt cross-realm TGTs.

0x00000003 | A plaintext password version number that is a single, unsigned long integer consisting of
32 bits.

AuthInfoLength: The count of bytes in AuthInfo buffer.<38>
AuthlInfo: Authentication data that depends on the AuthType.

The self-relative form of the LSAPR_AUTH_INFORMATION structure is used in
LSAPR_TRUSTED_DOMAIN_AUTH_BLOB; in that case, the structure memory layout looks like the
following.

01234567893123456789312345678931
LastUpdateTime
AuthType
AuthInfoLength
AuthInfo [1 ... AuthInfoLength]

2.2.7.18 TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES

The TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES structure is used to present the encryption
types that are allowed through a trust.

typedef struct TRUSTED DOMAIN SUPPORTED_ENCRYPTION TYPES ({
unsigned long SupportedEncryptionTypes;
} TRUSTED_DOMAIN_ SUPPORTED ENCRYPTION TYPES,

67/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

*PTRUSTED DOMAIN SUPPORTED ENCRYPTION TYPES;

SupportedEncryptionTypes: This field contains bitmapped values that define the encryption types
supported by this trust relationship. The flags can be set in any combination.

1 2
0 0 0

w

oj0j0/0|0j0|0|j0|0O|O|O|O|OfO|O|O|O|O|O|O|O|O|O|O|O|O|O|S|A|[R|M|C

C: Supports CRC32, as specified in [RFC3961] page 31.

M: Supports RSA-MD5, as specified in [RFC3961] page 31.

R: Supports RC4-HMAC-MD5, as specified in [RFC4757].

A: Supports HMAC-SHA1-96-AES128, as specified in [RFC3961] page 31.
S: Supports HMAC-SHA1-96-AES256, as specified in [RFC3961] page 31.

All other bits SHOULD be 0 and ignored upon receipt.

2.2.7.19 LSAPR_TRUSTED_ENUM_BUFFER

The LSAPR_TRUSTED_ENUM_BUFFER structure specifies a collection of trust information structures of
type LSAPR_TRUST_INFORMATION.

typedef struct _LSAPR_TRUSTED ENUM BUFFER {
unsigned long EntriesRead;
[size is(EntriesRead)] PLSAPR TRUST INFORMATION Information;
} LSAPR TRUSTED ENUM BUFFER,
*PLSAPR TRUSTED ENUM BUFFER;

EntriesRead: This field contains the number of trust information structures.

Information: This field contains a set of structures that define the trust information, as specified in
section 2.2.7.1. If the EntriesRead field has a value other than 0, this field MUST NOT be NULL.

2.2.7.20 LSAPR_TRUSTED_ENUM_BUFFER_EX

The LSAPR_TRUSTED_ENUM_BUFFER_EX structure specifies a collection of trust information structures
of type LSAPR_TRUSTED_DOMAIN_INFORMATION_EX.

typedef struct LSAPR TRUSTED ENUM BUFFER EX {
unsigned long EntriesRead;
[size_is(EntriesRead)] PLSAPR TRUSTED DOMAIN INFORMATION EX EnumerationBuffer;
} LSAPR TRUSTED ENUM BUFFER EX,
*PLSAPR_TRUSTED ENUM BUFFER EX;

EntriesRead: This field contains the number of trust information structures.

EnumerationBuffer: This field contains a set of structures that define the trust information, as
specified in section 2.2.7.9. If the EntriesRead field has a value other than 0, this field MUST
NOT be NULL.

68/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.7.21 (Updated Section) LSA_FOREST_TRUST_RECORD

The LSA_FOREST_TRUST_RECORD structure is used to communicate the type, creation time, and data
for a forest trust record. The data is determined by the trust type as follows in the definition of the
contained union.

typedef struct _LSA FOREST TRUST RECORD {
unsigned long Flags;
LSA FOREST TRUST RECORD_TYPE ForestTrustType;
LARGE INTEGER Time;
[switch type (LSA FOREST TRUST RECORD TYPE), switch is(ForestTrustType)]
union {
[case (ForestTrustTopLevelName, ForestTrustTopLevelNameEx)]
LSA UNICODE STRING TopLevelName;
[case (ForestTrustDomainInfo)]
LSA FOREST TRUST DOMAIN INFO DomainInfo;
[case (ForestTrustScannerInfo)]
[default] LSA FOREST TRUST BINARY DATA Data;
} ForestTrustData;
} LSA_FOREST_ TRUST RECORD,
*PLSA FOREST TRUST RECORD;

Flags: Contains zero or more flags from LSA Trust Record Flags (section 2.2.1.5). See the Meaning
column in the table of that section for related information.

ForestTrustType: This value is one of LSA_FOREST_TRUST_RECORD_TYPE.

Time: The date and time when this entry was created. It is a 64-bit value that represents the nhumber
of 100-nanosecond intervals since January 1, 1601, UTC.

ForestTrustData: An LSA_UNICODE_STRINGREANIFe =1 i i mple) VNI ERi\Ee} or
LSA_FOREST_TRUST_ SISl iV SI®AN NS INFO structure, depending on the vaIueLﬁi

ForestTrustType as specified in the structure definition for LSA_FOREST_TRUST_RECORD.

2.2.7.22 LSA_FOREST_TRUST_RECORD_TYPE

The LSA_FOREST_TRUST_RECORD_TYPE enumeration specifies a type of forest trust record.

typedef enum LSA FOREST TRUST RECORD TYPE

{
ForestTrustTopLevelName
ForestTrustTopLevelNameE
ForestTrustDomainInfo ,
ForestTrustBinaryInfo B
ForestTrustScannerInfo = 4,
ForestTrustRecordTypelLast = ForestTrustScannerInfo

} LSA FOREST TRUST RECORD TYPE;

=0,
x =1,
2
3

ForestTrustTopLevelName: The DNS name of the trusted forest. The structure used for this record
type is equivalent to LSA_UNICODE_STRING (section 2.2.2.3).

ForestTrustTopLevelNameEx: The DNS name of the trusted forest. This is the same as
ForestTrustTopLevelName. The structure used for this record type is equivalent to
LSA_UNICODE_STRING.

ForestTrustDomainInfo: This field specifies a record containing identification and name
information.

ForestTrustBinaryInfo: This field specifies an opaque record.

69/ 254

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

ForestTrustScannerInfo: This field specifies a record containing identification and name information
created by the PDC FSMO Role DC (see [MS-ADTS] section 3.1.1.6.4).

ForestTrustRecordTypelLast: The highest record value for this type is equal to the
ForestTrustScannerInfo enum value (4).

2.2.7.23 LSA_FOREST_TRUST_BINARY_DATA

The LSA_FOREST_TRUST_BINARY_DATA structure is used to communicate a forest trust record. This
structure is not used in the current version of the protocol.

typedef struct LSA FOREST TRUST BINARY DATA {
[range (0,131072)] unsigned long Length;
[size is(Length)] unsigned char* Buffer;
} LSA FOREST TRUST BINARY DATA,
*PLSA_FOREST TRUST BINARY DATA;

Length: The count of bytes in Buffer.<39>
Buffer: The trust record. If the Length field has a value other than 0, this field MUST NOT be NULL.

2.2.7.24 LSA_FOREST_TRUST_DOMAIN_INFO

The LSA_FOREST_TRUST_DOMAIN_INFO structure is used to communicate a forest trust record
corresponding to the LSA_FOREST_TRUST_DOMAIN_INFO value of ForestTrustDomainInfo.

typedef struct _LSA FOREST TRUST DOMAIN_ INFO ({
PRPC_SID Sid;
LSA UNICODE STRING DnsName;
LSA UNICODE STRING NetbiosName;

} LSA_FOREST TRUST DOMAIN INFO,
*PLSA_FOREST TRUST DOMAIN INFO;

Sid: Domain SID for the trusted domain.

DnsName: The DNS name of the trusted domain.

NetbiosName: The NetBIOS name of the trusted domain, as specified in [RFC1088].

2.2.7.25 LSA_FOREST_TRUST_INFORMATION

The LSA_FOREST_TRUST_INFORMATION structure is a collection of
LSA_FOREST_TRUST_RECORD (section 2.2.7.21) structures.

typedef struct LSA FOREST TRUST INFORMATION ({
[range (0,4000)] unsigned long RecordCount;
[size_is(RecordCount)] PLSA FOREST TRUST RECORD* Entries;
} LSA_FOREST TRUST_ INFORMATION,
*PLSA_FOREST_TRUST_INFORMATION;

RecordCount: A count of elements in the Entries array.<40>

Entries: An array of LSA_FOREST_TRUST_RECORD structures. If the RecordCount field has a value
other than 0, this field MUST NOT be NULL.

70/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.7.26 LSA_FOREST_TRUST_COLLISION_RECORD_TYPE

The LSA_FOREST_TRUST_COLLISION_RECORD_TYPE type specifies the type of a collision record in
the message.

typedef enum LSA FOREST TRUST COLLISION RECORD TYPE
{

CollisionTdo = 0,

CollisionXref,

CollisionOther
} LSA FOREST TRUST COLLISION RECORD TYPE;

CollisionTdo: A forest trust record that a caller attempted to set on a trusted domain object has
suffered a collision with another trusted domain object in Active Directory, as specified in [MS-
ADTS], section 6.1.6.

CollisionXref: A forest trust record that a caller attempted to set on a trusted domain object has
suffered a collision with a cross-reference object belonging to the forest to which the server
belongs, as specified in [MS-ADTS], section 6.1.6.

CollisionOther: A forest trust record that a caller attempted to set on a trusted domain object has
suffered a collision for an unknown reason.

2.2.7.27 LSA_FOREST_TRUST_COLLISION_RECORD

The LSA_FOREST_TRUST_COLLISION_RECORD structure is used to communicate forest trust collision
information. For more information about trusted domain objects, see [MS-ADTS] section 6.1.6.

typedef struct LSA FOREST TRUST COLLISION RECORD {
unsigned long Index;
LSA FOREST TRUST COLLISION RECORD TYPE Type;
unsigned long Flags;
LSA_UNICODE STRING Name;

} LSA FOREST TRUST COLLISION_ RECORD,

*PLSA_ FOREST TRUST COLLISION RECORD;

Index: An ordinal number of a forest trust record in the forest trust information supplied by the caller
that suffered a collision. For rules about collisions, see sections 3.1.4.7.16 and 3.1.4.7.16.1.

Type: The type of collision record, as specified in section 2.2.7.26.

Flags: A set of bits specifying the nature of the collision. These flags and the rules for generating
them are specified in sections 3.1.4.7.16 and 3.1.4.7.16.1.

Name: The name of the existing entity (a top-level name entry, a domain information entry, or a
top-level name exclusion entry) that caused the collision.

2.2.7.28 LSA_FOREST_TRUST_COLLISION_INFORMATION

The LSA_FOREST_TRUST_COLLISION_INFORMATION structure is used to communicate a set of
LSA_FOREST_TRUST_COLLISION_RECORD structures.

typedef struct LSA FOREST TRUST COLLISION_ INFORMATION {
unsigned long RecordCount;
[size is(RecordCount)] PLSA FOREST TRUST COLLISION RECORD* Entries;
} LSA FOREST TRUST COLLISION INFORMATION,
*PLSA_FOREST TRUST COLLISION_ INFORMATION;

71/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

RecordCount: The count of elements in the Entries array.
Entries: An array of LSA_FOREST_TRUST_COLLISION_RECORD (section 2.2.7.27) structures. If the
RecordCount field has a value other than zero, this field MUST NOT be NULL.

2.2.7.29 (Updated Section)
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL_AES

The LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL_AES structure communicates
ESpElgldles dlels M Eiv=lsEIMThe cleartext password data is in the form of a
(BN RO C SN = R n 0] VAN N VAN O s B =T o) s =T dlo] s WA AWAR NI T he following structure corresponds to the

TrustedDomainAuthInformationInternalAes information class (section 2.2.7.2).

For more information about domain trust authentication material, see [MS-ADTS] section 6.1.6.9.1.

typedef struct LSAPR TRUSTED DOMAIN AUTH INFORMATION INTERNAL AES {

UCHAR AuthData[64];
UCHAR Salt[l6];
[range (0, MAX AUTHBLOB_ SIZE)] ULONG cbCipher;
[size is(cbCipher)] PUCHAR Cipher;

} LSAPR TRUSTED DOMAIN AUTH INFORMATION INTERNAL AES,
*PLSAPR _TRUSTED DOMAIN AUTH INFORMATION INTERNAL AES;

AuthData: An authentication signature HMAC-SHA-512 hash of the value of
Cipher+versionbyte+versionbyte length as specified in AES Cipher Usage (section 5.1.5).

Salt: A random number used by the client to encrypt the data stored in the Cipher location with AES.
cbCipher: The size of Cipher in bytes.

Cipher: A pointer to a UCHAR buffer to carry encrypted cleartext password data. The encryption key
is method-specific, while the algorithm is specified in AES Cipher Usage (section 5.1.5) and is
common for all methods that use this structure.

2.2.7.30 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL_AES

The LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL_AES structure communicates
identification and authentication information for a trusted domain. The following structure corresponds
to the TrustedDomainFullInformationInternalAes information class (section 2.2.7.2).

typedef struct LSAPR TRUSTED DOMAIN FULL INFORMATION INTERNAL AES (
LSAPR TRUSTED DOMAIN INFORMATION EX Information;
TRUSTED POSIX OFFSET INFO PosixOffset;
LSAPR_TRUSTED DOMAIN AUTH INFORMATION INTERNAL AES AuthInformation;

} LSAPR TRUSTED DOMAIN FULL INFORMATION INTERNAL AES,

*PLSAPR_TRUSTED DOMAIN FULL INFORMATION INTERNAL AES;

Information: A structure containing Name, Sid, and TrustAttributes, as specified in section
2.2.7.9.
PosixOffset: Consists of any offset required for POSIX compliance, as specified in section 2.2.7.6.

AuthInformation: Contains authentication material, as specified in section 2.2.7.29.

72 /254

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.7.31 (Updated Section) LSA_FOREST_TRUST_SCANNER_INFO

The LSA_FOREST_TRUST_SCANNER_INFO structure is used to communicate a scanner information
record corresponding to the LSA_FOREST_TRUST_SCANNER_INFO value of ForestTrustScannerInfo
(persisted in ForestTrustScannerInfo records in the msdsForestTrustInfo attribute of the trust object
for each respective forest trust; see [MS-ADTS] section 3.1.1.6.4.1).

typedef struct LSA FOREST TRUST_ SCANNER INFO ({
PRPC_SID DomainSid;
LSA UNICODE STRING DnsName;
LSA_UNICODE_STRING NetbiosName;

} LSA_FOREST TRUST [EEesy 3 INFO,

*PLSA FOREST TRUST EENFesuONN @y INFO;

DomainSid: Domain SID for the domain. Can be NULL.
DnsName: The DNS name of the domain.
NetbiosName: The NetBIOS name of the domain.

For more information, see [MS-ADTS] section 3.1.1.6.4, PDC Forest Trust Update.

2.2.7.32 LSA_FOREST_TRUST_RECORD2

The LSA_FOREST_TRUST_RECORD?2 structure is used to communicate the type, creation time, and
data for a forest trust record. The data is determined by the trust type in the union definition that is
contained in this structure.

typedef struct LSA FOREST TRUST RECORD2 {
unsigned long Flags;
LSA FOREST TRUST RECORD TYPE ForestTrustType;
LARGE INTEGER Time;
[switch type (LSA FOREST TRUST RECORD TYPE), switch is(ForestTrustType)]
union {
[case (ForestTrustTopLevelName, ForestTrustTopLevelNameEx)]
LSA_UNICODE_ STRING TopLevelName;
[case (ForestTrustDomainInfo)]
LSA_FOREST TRUST DOMAIN INFO DomainInfo;
[case(ForestTrustBinaryInfo)]
LSA_FOREST_ TRUST BINARY DATA BinaryData;
[case (ForestTrustScannerInfo)]
LSA FOREST TRUST SCANNER INFO ScannerInfo;
} ForestTrustData;
} LSA_FOREST_TRUST_RECORD2,
*PLSA_FOREST_TRUST_RECORD2;

Flags: Contains zero or more flags from LSA Trust Record Flags (section 2.2.1.5). For more
information, see the Meaning column in the table of that section.

ForestTrustType: This value is one of LSA_FOREST_TRUST_RECORD_TYPE (section 2.2.7.22).

Time: The date and time when this entry was created. It is a 64-bit value that represents the
number of 100-nanosecond intervals since January 1, 1601, UTC.

ForestTrustData: A LSA_UNICODE_STRING, LSA_FOREST_TRUST_DOMAIN_INFO,
LSA_FOREST_TRUST_BINARY_DATA, or LSA_FOREST_TRUST_SCANNER_INFO structure,
depending on the value of ForestTrustType, as specified in the structure definition for
LSA_FOREST_TRUST_RECORD (section 2.2.7.21).

73/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

2.2.7.33 LSA_FOREST_TRUST_INFORMATION2

The LSA_FOREST_TRUST_INFORMATION?2 structure is a collection of LSA_FOREST_TRUST_RECORD?2
(section 2.2.7.32) structures.

typedef struct LSA FOREST TRUST INFORMATION2 {
[range (0,4000)] unsigned long RecordCount;
[size_is(RecordCount)] PLSA FOREST TRUST RECORD2* Entries;
} LSA FOREST_ TRUST INFORMATIONZ,
*PLSA FOREST TRUST INFORMATION2;

RecordCount: The count of elements in the Entries array.
Entries: An array of LSA_FOREST_TRUST_RECORD?2 structures (section 2.2.7.32). If the
RecordCount field has a value other than 0, it MUST NOT be NULL.

2.2.8 Privilege Data Types

2.2.8.1 LSAPR_POLICY_PRIVILEGE_DEF

The LSAPR_POLICY_PRIVILEGE_DEF structure specifies a privilege definition, which consists of a
pairing of a human-readable name with a locally unique identifier (LUID).

typedef struct LSAPR POLICY PRIVILEGE DEF {
RPC_UNICODE STRING Name;
LUID LocalValue;

} LSAPR POLICY PRIVILEGE DEF,
*PLSAPR_POLICY_PRIVILEGE_DEF;

Name: An RPC_UNICODE_STRING that contains the privilege name.

LocalValue: This field contains the LUID value assigned locally for efficient representation of the
privilege. This value is meaningful only on the system where it was assigned.

2.2.8.2 LSAPR_PRIVILEGE_ENUM_BUFFER

The LSAPR_PRIVILEGE_ENUM_BUFFER structure specifies a collection of privilege definitions of type
LSAPR_POLICY_PRIVILEGE_DEF.

typedef struct LSAPR PRIVILEGE ENUM BUFFER {
unsigned long Entries;
[size_is(Entries)] PLSAPR POLICY PRIVILEGE DEF Privileges;
} LSAPR_PRIVILEGE_ ENUM BUFFER,
*PLSAPR PRIVILEGE ENUM BUFFER;

Entries: This field contains the number of privileges in the structure.

Privileges: This field contains a set of structures that define the privileges, as specified in section
2.2.8.1. If the Entries field has a value other than 0, this field MUST NOT be NULL.

2.3 Directory Service Schema Elements

This protocol is part of the Active Directory core family of protocols. In order to be fully compliant with
Active Directory, an implementation of this protocol must be used in conjunction with the full Active

74 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Directory schema, containing all the schema attributes and classes specified in [MS-ADA1], [MS-
ADA2], [MS-ADA3], and [MS-ADSC].

75/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

3 Protocol Details

The client side of this protocol is a pass-through; that is, the client side requires no additional timers
or other state. Calls made by the higher-layer protocol or application are passed directly to the
transport, and the results returned by the transport are passed directly back to the higher-layer
protocol or application.

3.1 Server Details

The Local Security Authority (Domain Policy) Remote Protocol server handles client requests for any of
the messages described in section 3.1.4, and operates on the security policy settings stored on the
server. For each message, the behavior of the server while processing messages is described in
section 3.1.4.

3.1.1 Abstract Data Model

The Local Security Authority (Domain Policy) Remote Protocol defines an abstract data model that
contains information about three types of objects: account objects, secret objects, and trusted domain
objects. In addition, this abstract data model contains the policy object that holds miscellaneous policy
settings that are unrelated to any of these three types of objects, but apply to the operation of the
host of the server implementation of the protocol. Each object contains a few fields; operations on
these fields MUST satisfy the ACID properties [GRAY]. Thus, if fields are defined by structures, it is
expected that the entire structure be operated on as a unit.

This data model MUST consist of variables whose values are maintained across system restarts and
RPC method invocations and that store those values for retrieval and update, unless otherwise
specified.

Note The abstract notation (Public) indicates that this Abstract Data Model element can be directly
accessed from outside this protocol, for the purpose of documentary convenience. Such direct access
MUST NOT be construed as a relaxation of the security constraints specified within this document;
rather, the same authorization decisions that are applied when clients access such data elements
using protocol primitives MUST also be applied during direct access of the elements. See section
3.1.1.10 for more details.

3.1.1.1 Policy Object Data Model

The policy object contains miscellaneous policy settings. There is one object of this type on the server.
This object cannot be deleted, and a new object of this type cannot be created. Its fields, however,
can be changed when they adhere to the rules in the specification. The data model is presented here
as a collection of structures defined in section 2.2 to ensure that syntax and other consistency rules
are met in the data model.<41>

Name Type

Auditing Log Information POLICY_AUDIT_LOG_INFO

Audit Full Information POLICY_AUDIT_FULL_QUERY_INFO
Event Auditing Options LSAPR_POLICY_AUDIT_EVENTS_INFO
Primary Domain Information LSAPR_POLICY_PRIMARY_DOM_INFO
DNS Domain Information (Public)<42> LSAPR_POLICY_DNS_DOMAIN_INFO
Account Domain Information LSAPR_POLICY_ACCOUNT_DOM_INFO
Server Role Information POLICY_LSA_SERVER_ROLE_INFO

76 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Name Type

Replica Source Information LSAPR_POLICY_REPLICA_SRCE_INFO

* Kerberos Policy Information<43> POLICY_DOMAIN_KERBEROS_TICKET_INFO

Encrypting File System (EFS) Policy Information<44> | LSAPR_POLICY_DOMAIN_EFS_INFO

Quality of Service Information<45> POLICY_DOMAIN_QUALITY_OF_SERVICE_INFO
Security Descriptor LSAPR_SR_SECURITY_DESCRIPTOR
Machine Account Information LSAPR_POLICY_MACHINE_ACCT_INFO

* The Kerberos Policy Information abstract data contains the following public ADM elements (whose
meaning is described in section 2.2.4.19):

= AuthenticationOptions (Public): Optional flags that affect validations.

= MaxServiceTicketAge (Public): The maximum ticket lifetime for a service ticket.
= MaxTicketAge (Public): The maximum ticket lifetime for a ticket-granting ticket.
= MaxRenewAge (Public): The maximum renewable lifetime.

= MaxClockSkew (Public): The acceptable clock skew.

= Reserved: Reserved for future use.

The server MUST notify the Kerberos protocol [MS-KILE] when any field of the Kerberos Policy
Information ADM element is changed; see section 3.1.4.4.8 for more details.

The following element also pertains to the Policy Object data model:

= ComputerNetBIOSName: This ADM element represents the NetBIOS name of the computer. It
is shared with the ComputerName.NetBIOS element from [MS-WKST] section 3.2.1.2.

Auditing Log Information is constant information about the state of the auditing system. The server
MUST store the following constant information.

= MaximumLogSize = 8192 for non-domain controllers (DCs)
= MaximumLogSize = 20480 for domain controllers

= AuditLogPercentFull = 0

» AuditRetentionPeriod = 8533315

= AuditLogFullShutdownInProgress = FALSE

= TimeToShutdown = 288342

= NextAuditRecordld = 0

Account Domain Information stores information about the local account domain of the machine. Note
that Primary Domain Information is returned to clients who issue LsarQueryInformationPolicy2
messages (section 3.1.4.4.3) with PolicyAccountDomainInformation to a domain controller.

For domain-joined machines, Primary Domain Information and DNS Domain Information store
information about the domain to which the machine is joined. If the machine is not joined to a
domain, these abstract data elements store information about the workgroup the machine is in.

77 /254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

The value of the Server Role Information ADM element is determined by the following series of calls to
the local SAM Remote Protocol implementation:

1. Invoke SamrConnect ([MS-SAMR] section 3.1.5.1.4), specifying SAM_SERVER_CONNECT for the
DesiredAccess parameter.

2. Invoke SamrLookupDomainInSamServer ([MS-SAMR] section 3.1.5.11.1), specifying the
Name field of the Primary Domain Information ADM element for the Name parameter

3. Invoke SamrOpenDomain ([MS-SAMR] section 3.1.5.1.5), specifying the ServerHandle that was
obtained in step 1, DOMAIN_ALL_ACCESS for the DesiredAccess parameter, and the Domainld
that was obtained in step 2.

4. Invoke SamrQueryInformationDomain2 ([MS-SAMR] section 3.1.5.5.1), specifying the
DomainHandle that was obtained in step 3, and DomainServerRolelnformation for the
DomainInformationClass parameter.

5. The value obtained in step 4 is then used for the Server Role Information ADM element. If
DomainServerRolePrimary is returned, then PolicyServerRolePrimary is used; if
DomainServerRoleBackup is returned, PolicyServerRoleBackup is used.

6. Call SamrCloseHandle ([MS-SAMR] section 3.1.5.13.1) on the handle from step 3.
7. Call SamrCloseHandle on the handle from step 1.

Replica Source Information and Encrypting File System (EFS) Policy Information are obsolete abstract
data in this version of the protocol. However, an implementation SHOULD support this data for
compatibility with previous versions of this protocol.

Audit Full Information and Quality of Service Information are obsolete abstract data in this version of
the protocol. An implementation SHOULD choose not to implement this abstract data model.

A security descriptor is used during handle open for access check. The content of this security
descriptor is implementation-specific, but a server MUST assign a default security descriptor.<46>

If the responder for this protocol is a domain controller, the values of the implementation-specific
instantiation of Event Auditing Options and Kerberos Policy Information abstract data MUST converge
between the domain controllers in the same domain.<47> There is no requirement on the length of
time to reach convergence.

For domain-joined machines, the Machine Account Information abstract data contains information
about the account object in the domain to which the machine is joined.

3.1.1.2 Accounts Rights Data Model

Account Rights is composed of two submodels, Privilege and System Access Rights. When used with
account objects, they can be used separately in messages, as in LsarEnumeratePrivileges and
LsarGetSystemAccessAccount, or together, as in LsarAddAccountRights. The Name fields in the
following data models are used to identify the privilege or system access right uniquely.

3.1.1.2.1 Privilege Data Model

The server MUST maintain a list of privileges that it recognizes. A privilege is defined by a language-
independent human-readable name, a locally unique identifier (LUID), and a language-dependent
description of the privilege. Two different privileges MUST have different names as well as different
LUIDs. The list of privileges known by the server SHOULD NOT change unless a major event, such as
an operating system upgrade, takes place. The set of names identifying privileges and their LUIDs
MUST be the same across all servers running the same revision of the operating system.

78/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Name Type

Name RPC_UNICODE_STRING

Locally Unique Identifier LUID

Privilege descriptions in different languages | An array of RPC_UNICODE_STRINGs

The Name and Locally Unique Identifier pair are communicated by the Local Security Authority
(Domain Policy) Remote Protocol via the LSAPR_PRIVILEGE_ENUM_BUFFER structure.

Privilege Description is communicated by the Local Security Authority (Domain Policy) Remote Protocol
via the LsarLookupPrivilegeDisplayName method.

The data model in this version of the protocol defines the privileges described in the table below. The
descriptions that are provided are in English.<48>

Name LUID Privilege description

SE_ASSIGNPRIMARYTOKEN_NAME {0,3} Replace a process-level token.
"SeAssignPrimaryTokenPrivilege"

SE_AUDIT_NAME {0,21} | Generate security audits.
"SeAuditPrivilege"

SE_BACKUP_NAME {0,173} | Back up files and directories.
"SeBackupPrivilege"

SE_CHANGE_NOTIFY_NAME {0,23} | Bypass traverse checking.
"SeChangeNotifyPrivilege"

SE_CREATE_GLOBAL_NAME {0,30} Create global objects.
"SeCreateGlobalPrivilege"

SE_CREATE_PAGEFILE_NAME {0,15} | Create a page file.
"SeCreatePagefilePrivilege"

SE_CREATE_PERMANENT_NAME {0,16} Create permanent shared objects.
"SeCreatePermanentPrivilege"

SE_CREATE_TOKEN_NAME {0,2} Create a token object.
"SeCreateTokenPrivilege"

SE_DEBUG_NAME {0,20} Debug programs.

"SeDebugPrivilege"

SE_ENABLE_DELEGATION_NAME {0,273} | Enable computer and user accounts to be trusted for
"SeEnableDelegationPrivilege" delegation.

SE_IMPERSONATE_NAME {0,293} | Impersonate a client after authentication.

"SelmpersonatePrivilege"

SE_INC_BASE_PRIORITY_NAME {0,14} Increase scheduling priority.
"SelncreaseBasePriorityPrivilege"

SE_INCREASE_QUOTA_NAME {0,5} Adjust memory quotas for a process.
"SelncreaseQuotaPrivilege"

SE_LOAD_DRIVER_NAME {0,10} | Load and unload device drivers.

79/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Name LUID Privilege description
"SelLoadDriverPrivilege"

SE_LOCK_MEMORY_NAME {0,4} Lock pages in memory.
"SeLockMemoryPrivilege"

SE_MACHINE_ACCOUNT_NAME {0,6} Add workstations to domain.
"SeMachineAccountPrivilege"

SE_MANAGE_VOLUME_NAME {0,283} Manage the files on a volume.
"SeManageVolumePrivilege"

SE_PROF_SINGLE_PROCESS_NAME {0,13} Profile single process.
"SeProfileSingleProcessPrivilege"

SE_REMOTE_SHUTDOWN_NAME {0,24%} Force shutdown from a remote system.
"SeRemoteShutdownPrivilege"

SE_RESTORE_NAME {0,18%} Restore files and directories.
"SeRestorePrivilege"

SE_SECURITY_NAME {0,8} Manage auditing and security log.
"SeSecurityPrivilege"

SE_SHUTDOWN_NAME {0,19} Shut down the system.
"SeShutdownPrivilege"

SE_SYNC_AGENT_NAME {0,263} | Synchronize directory service data.
"SeSyncAgentPrivilege"

SE_SYSTEM_ENVIRONMENT_NAME {0,22} Modify firmware environment values.
"SeSystemEnvironment"

SE_SYSTEM_PROFILE_NAME {0,11} Profile system performance.
"SeSystemProfilePrivilege"

SE_SYSTEMTIME_NAME {0,12} | Change system time.
"SeSystemtimePrivilege"

SE_TAKE_OWNERSHIP_NAME {0,9} Take ownership of files or other objects.
"SeTakeOwnershipPrivilege"

SE_TCB_NAME {0,7} Act as part of the operating system.
"SeTcbPrivilege"

SE_UNDOCK_NAME {0,25} | Remove computer from docking station.
"SeUndockPrivilege"

SE_CREATE_SYMBOLIC_LINK_NAME {0,35} Create symbolic links.
"SeCreateSymbolicLinkPrivilege"

SE_INC_WORKING_SET_NAME {0,33} | Increase a process working set.
"SelncreaseWorkingSetPrivilege"

SE_RELABEL_NAME {0,323} | Modify an object label.
"SeRelabelPrivilege"

SE_TIME_ZONE_NAME {0,34} | Change time zone.

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol

Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

80/ 254

Name LUID Privilege description

"SeTimeZonePrivilege"

SE_TRUSTED_CREDMAN_ACCESS_NAME | {0,31} | Access Credential Manager as a trusted caller.
"SeTrustedCredManAccessPrivilege"

3.1.1.2.2 System Access Rights Data Model

The server MUST maintain a list of system access rights that it recognizes. A system access right is
identified by a bit flag and a name. The name is a human-readable form of a system access right. The
flag is a representation of the same system access right for data representation.

Fields:
. Name
= Flag

Two different system accesses MUST have different names and different bit flags.
The list of system access rights that MUST be supported are specified in section 2.2.1.2.<49>

The following table contains the string name that is associated with each system access right. The
string name is used in methods that associate a system access with a particular account and that also
specify the system access not by a POLICY_SYSTEM_ACCESS_MODE, but by the string specified in this
table.

Name Flag

SelnteractiveLogonRight POLICY_MODE_INTERACTIVE
0x00000001

SeNetworkLogonRight POLICY_MODE_NETWORK
0x00000002

SeBatchLogonRight POLICY_MODE_BATCH
0x00000004

SeServiceLogonRight POLICY_MODE_SERVICE
0x00000010

SeDenylnteractiveLogonRight POLICY_MODE_DENY_INTERACTIVE
0x00000040

SeDenyNetworkLogonRight POLICY_MODE_DENY_NETWORK
0x00000080

SeDenyBatchLogonRight POLICY_MODE_DENY_BATCH
0x00000100

SeDenyServiceLogonRight POLICY_MODE_DENY_SERVICE
0x00000200

SeRemotelnteractiveLogonRight POLICY_MODE_REMOTE_INTERACTIVE
0x00000400

81 /254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Name Flag

SeDenyRemotelnteractiveLogonRight | POLICY_MODE_DENY_REMOTE_INTERACTIVE
0x00000800

3.1.1.3 Account Object Data Model

Inside the Local Security Authority (Domain Policy) Remote Protocol database, the account object
MUST be represented by four pieces of data as follows.

Name Type

Security Identifier (Public) | RPC_SID

Security Descriptor LSAPR_SR_SECURITY_DESCRIPTOR
Privileges (Public) LSAPR_PRIVILEGE_SET
System Access Rights unsigned int with combination of POLICY_SYSTEM_ACCESS_MODE flags

The Security Identifier field identifies the account object and MUST be present. Two different
account objects MUST NOT have the same security identifier (SID). The Security Identifier field
MUST be read-only. Any valid SID can be used to identify an account object.

The Security Descriptor field controls access to the account object. Every account object in the Local
Security Authority (Domain Policy) Remote Protocol database MUST have a valid security descriptor.
The security descriptor can be queried by calling the LsarQuerySecurityObject method and changed by
calling the LsarSetSecurityObject method. The server MUST assign a default security descriptor to
every newly created account object, even if the client did not specify a default value.<50>

The Privileges field is a potentially empty set of "global" rights granted to the account by the server.
Every "right" in the set is a pair of a LUIDs and a bitmask of attributes. The right can be controlled by
calling the LsarAddAccountRights, LsarAddPrivilegesToAccount, LsarRemoveAccountRights, and
LsarRemovePrivilegesFromAccount methods. Because there are no "negative" rights, the order of
rights in the set is not relevant and the server MUST NOT associate any special semantics with the
order of rights.

The System Access Rights field is a bitmask of flags indicating the system access of the account.
This field can be set to 0.

If the responder for this protocol is a domain controller, the values of the implementation-specific
instantiation of this abstract data model MUST converge between the domain controller in the same
domain.<51> There is no requirement on the length of time to reach convergence.

3.1.1.4 Secret Object Data Model

Inside the Local Security Authority (Domain Policy) Remote Protocol database, a secret object is
represented by the following pieces of data.

Name Type Attribute name

Name RPC_UNICODE_STRING IdapDisplayName ([MS-ADA1] section 2.356)

Security Descriptor | LSAPR_SR_SECURITY_DESCRIPTOR | securityldentifier ([(MS-ADA3] section 2.237)

82 /254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Name

Type

Attribute name

Old Set Time

LARGE_INTEGER

priorSetTime ([MS-ADA3] section 2.159)

Old Value

binary data

priorValue ([MS-ADA3] section 2.160)

New Set Time

LARGE_INTEGER

lastSetTime ([MS-ADA1] section 2.353)

New Value

binary data

currentValue ([MS-ADA1] section 2.139)

The Name field uniquely identifies the secret by using a Unicode string. Two different secrets MUST
have different names (the comparison is case-sensitive). The Name field MUST be read-only. To be
considered valid, the length of the name in bytes MUST be even; it MUST be greater than 0 and less
than 0x101. The secret name MUST NOT contain the "\" character. Special values of the Name field
indicate secret types. The different secret types are as follows:

= Global
= Local
= Trusted Domain

= System

The following rules govern secret type assignments.

The term "starts with" literally means "must have a nonzero number of characters following the
prefix". Names consisting of only a reserved prefix are invalid.

The following table indicates the secret name pattern and the associated secret type.

Secret name or name pattern

Type of secret

Starts with "G$$"

Trusted domain

Starts with "G$" Global
Starts with "L$" Local
Starts with "M$" System
Starts with "_sc_" System
Starts with "NL$" System
Starts with "RasDialParams” Local
Starts with "RasCredentials" Local
Equal to "$MACHINE.ACC" System
Equal to "SAC" Local
Equal to "SAI" Local
Equal to "SANSC" Local

The type of a secret defines the access and availability boundary for a given secret object.
System Secret: Cannot be accessed by any clients.

Local Secret: Can be accessed only by a client that is on the same machine as the server.

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol

Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

83/ 254

Global Secret: Replicates between domain controllers in the same domain, allowing each domain
controller to be able to respond to secret requests of this type.

Trusted Domain Secret: Used with trusted domain objects to store trust passwords. Trusted domain
secrets also replicate between domain controllers in the same domain.<52>

The security descriptor field controls access to the secret object. Every secret object in the Local
Security Authority (Domain Policy) Remote Protocol database that has Local Secret type MUST have a
valid security descriptor. The security descriptor of Local Secret objects can be queried by calling the
LsarQuerySecurityObject (section 3.1.4.9.1) method and changed by calling the
LsarSetSecurityObject (section 3.1.4.9.2) method. The server MUST assign a default security
descriptor to every newly created secret object, even if the client did not specify a default value.<53>

The value of a secret is a byte BLOB. Depending on the caller's choices, the server stores 0, 1, or 2
values for the secret, the 2 values being "current"” and "previous" and 1 value being either "current" or
"previous". Both versions of the secret's value are accompanied by a 64-bit time stamp in Coordinated
Universal Time (UTC), sometimes referred to as Greenwich Mean Time, in units of 100 nanoseconds
since January 1, 1601.

3.1.1.5 Trusted Domain Object Data Model

An implementer must read [MS-ADTS] section 6.1.6 to understand the role of trusts in Active
Directory and to understand the data model in this specification.

Inside the Local Security Authority (Domain Policy) Remote Protocol database, a trusted domain
object (TDO) is represented by the following table. Each abstract data field listed in the Name column
of the table contains a link to the appropriate section in [MS-ADTS] section 6.1.6.7. See these sections
for detailed information, including how each abstract data field is mapped to an Active Directory
attribute. The Type column lists the data type for its corresponding abstract data field. The Attribute
Name column lists the IdapDisplayName and a link to the appropriate section in [MS-ADA1], [MS-
ADAZ2], or [MS-ADA3] for the corresponding abstract data field stored in Active Directory.

Name Type Attribute name

Name ([MS-ADTS] | RPC_UNICODE_STRING trustPartner ([MS-ADA3]
section section 2.325)

6.1.6.7.13)

Flat Name ([MS- RPC_UNICODE_STRING flatName ([MS-ADA1] section
ADTS] section 2.232)

6.1.6.7.1)

Security Identifier RPC_SID securityldentifier ([MS-ADA3]
([MS-ADTS] section 2.237)

section 6.1.6.7.8)

Trust Type ([MS- unsigned int (as specified in section 2.2.7.9 TrustType) | trustType ([MS-ADA3] section

ADTS] section 2.327)

6.1.6.7.15)

Trust Direction unsigned int (as specified in section 2.2.7.9 trustDirection ([MS-ADA3]
([MS-ADTS] TrustDirection) section 2.323)

section

6.1.6.7.12)

Trust Attributes unsigned int (as specified in section 2.2.7.9 trustAttributes ([MS-ADA3]
(IMS-ADTS] TrustAttributes) section 2.320)

section 6.1.6.7.9)

84 /254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Name Type Attribute name

Posix Offset ([MS- | TRUSTED_POSIX_OFFSET_INFO trustPosixOffset ([MS-ADA3]
ADTS] section section 2.326)

6.1.6.7.14)

Trust Incoming Array of LSAPR_AUTH_INFORMATION trustAuthIncoming ([MS-ADA3]
Passwords ([MS- section 2.321)

ADTS] section

6.1.6.7.10)

Trust Outgoing Array of LSAPR_AUTH_INFORMATION trustAuthOutgoing ([MS-ADA3]
Passwords ([MS- section 2.322)

ADTS] section

6.1.6.7.11)

Supported TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES msDS-

Encryption Types SupportedEncryptionTypes
([MS-ADTS] (IMS-ADAZ2] section 2.481)
section 6.1.6.7.3)

Forest Trust LSA_FOREST_TRUST_INFORMATION2 msDS-TrustForestTrustInfo
Information ([MS- ([IMS-ADAZ2] section 2.496)
ADTS] section

6.1.6.7.4)

Security LSAPR_SR_SECURITY_DESCRIPTOR nTSecurityDescriptor ([MS-
Descriptor ([MS- ADA3] section 2.37)

ADTS] section

6.1.6.7.5)

The following citation contains a timeline of when each information value was introduced.<54>

3.1.1.6 Configuration Settings

3.1.1.6.1 Block Anonymous Access to Objects

Name Type

LsaRestrictAnonymous | Boolean

The LsaRestrictAnonymous setting is used to restrict the ability of anonymous requestors to query or
modify security-sensitive data.<55> See sections 3.1.4.4.1, 3.1.4.5.1, 3.1.4.5.2, 3.1.4.5.3,
3.1.4.5.10, 3.1.4.5.12, 3.1.4.6.1, 3.1.4.6.2, and 3.1.4.6.6 for information on how message processing
is affected with this setting. The server message-processing behavior MUST always reflect the current
value of this setting.

This setting MUST be persisted across protocol and system restarts.

3.1.1.7 LsaContextHandle Data Model

This protocol is based largely on the use of RPC context handles to maintain session state between the
client and the server. The basic context-handle programming model is described in [C706] section
6.1.6. Also see sections 3.2.3.1.9 and 3.3.1.4.1 in [MS-RPCE].

The server MUST maintain the following data elements for each context handle that is returned to a
client.

85/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Name Type

GrantedAccess | ACCESS_MASK

HandleType HandleType MUST be one of the following:
. Policy
= Account
= Secret

. Trusted Domain

Object A reference to an object in the database that has the type specified in HandleType.

3.1.1.8 Attribute Listing

The following attributes are referenced by this protocol (listed by IdapDisplayName). For a normative
description of the syntax, see [MS-ADA1], [MS-ADA2], and [MS-ADA3].

= currentValue

= flatName

= |astSetTime

= |dapDisplayName

= msDS-AllUsersTrustQuota

= msDS-PerUserTrustQuota

= msDS-PerUserTrustTombstonesQuota
= msDS-SupportedEncryptionTypes
= msDS-TrustForestTrustInfo

= priorSetTime

= priorValue

= securityldentifier

»= trustAuthIncoming

» trustAuthOutgoing

= trustDirection

= trustPartner

= trustPosixOffset

= trustType

= unicodePwd

86 /254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

3.1.1.9 Object Class Listing

The following classes are referenced by this protocol (listed by IdapDisplayName). For a normative
description of these classes, see [MS-ADSC].

. secret

= trustedDomain

3.1.1.10 Access for Public Abstract Data Model Elements

As described in section 3.1.1, direct access (query or set) of data elements tagged as "(Public)" MUST
use the same authorization policies, enforced as if the elements were being accessed via the RPC-
based protocol methods in this document. The calling patterns described in section 1.3 provide an
overview for understanding the basic flow of the query and set patterns. Section 3.1.1.10.1 provides
detailed examples for the Policy Object Data Model (section 3.1.1.1); the other object types use
similar patterns.

The following table describes the level of access that MUST be enforced during direct access of the
described public ADM elements.

DesiredAccess required for Query

Object type pattern DesiredAccess required for Set pattern

Policy (section POLICY_VIEW_AUDIT_INFORMATION | POLICY_TRUST_ADMIN |

3.1.1.1) POLICY_GET_PRIVATE_INFORMATION | POLICY_CREATE_ACCOUNT |
POLICY_VIEW_LOCAL_INFORMATION | POLICY_CREATE_SECRET |
READ_CONTROL POLICY_CREATE_PRIVILEGE |

POLICY_SET_DEFAULT_QUOTA_LIMITS |
POLICY_SET_AUDIT_REQUIREMENTS |
POLICY_AUDIT_LOG_ADMIN |
POLICY_SERVER_ADMIN | READ_CONTROL

Account ACCOUNT_VIEW | READ_CONTROL ACCOUNT_ADJUST_PRIVILEGES |

(section ACCOUNT_ADJUST_QUOTAS |

3.1.1.3) ACCOUNT_ADJUST_SYSTEM_ACCESS |
READ_CONTROL

Secret (section | SECRET_QUERY_VALUE | SECRET_SET_VALUE | READ_CONTROL

3.1.1.4) READ_CONTROL

TrustedDomain | TRUSTED_QUERY_DOMAIN_NAME | TRUSTED_SET_CONTROLLERS |

(section READ_CONTROL TRUSTED_SET_POSIX | READ_CONTROL

3.1.1.5)

3.1.1.10.1 Example Patterns for Direct Access of Policy Object ADM Elements

3.1.1.10.1.1 Query Pattern for Policy Object ADM

Direct querying of any of the (Public) ADM elements listed in section 3.1.1 MUST be performed as
follows:

1. The client MUST invoke LsarOpenPolicy2 (section 3.1.4.4.1), specifying NULL for the SystemName
parameter and POLICY_VIEW_AUDIT_INFORMATION | POLICY_VIEW_LOCAL_INFORMATION |
POLICY_GET_PRIVATE_INFORMATION | READ_CONTROL for the DesiredAccess parameter.

87/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

2. The client MUST invoke LsarQueryInformationPolicy2 (section 3.1.4.4.3), specifying the policy
handle obtained in step 1 for the PolicyHandle parameter and PolicyDnsDomainInformation for the
InformationClass parameter.

3. The client MUST invoke LsarClose (section 3.1.4.9.4), specifying the policy handle obtained in step
1 for the ObjectHandle parameter.

4. The ADM elements of interest are then read from the
LSAPR_POLICY_INFORMATION.PolicyDnsDomainInfo structure (section 2.2.4.14) that was
returned in step 2.

3.1.1.10.1.2 Set Pattern for Policy Object ADM

Direct setting of any of the (Public) ADM elements listed in section 3.1.1 MUST be performed as
follows:

1. The client MUST invoke LsarOpenPolicy2 (section 3.1.4.4.1), specifying NULL for the SystemName
parameter and POLICY_TRUST_ADMIN | POLICY_CREATE_ACCOUNT | POLICY_CREATE_SECRET |
POLICY_CREATE_PRIVILEGE | POLICY_SET_DEFAULT_QUOTA_LIMITS |
POLICY_SET_AUDIT_REQUIREMENTS | POLICY_AUDIT_LOG_ADMIN | POLICY_SERVER_ADMIN |
READ_CONTROL for the DesiredAccess parameter.

2. The client MUST invoke LsarQueryInformationPolicy2 (section 3.1.4.4.3), specifying the policy
handle obtained in step 1 for the PolicyHandle parameter and PolicyDnsDomainInformation for the
InformationClass parameter.

3. The client MUST set the ADM elements of interest in the
LSAPR_POLICY_INFORMATION.PolicyDnsDomainInfo structure (section 2.2.4.14) that was
returned in step 2 to the desired new values, leaving the remaining elements unmodified.

4. The client MUST invoke LsarSetInformationPolicy2 (section 3.1.4.4.5), specifying the policy handle
obtained in step 1 for the PolicyHandle parameter.

5. The client MUST invoke LsarClose (section 3.1.4.9.4), specifying the policy handle obtained in step
1 for the ObjectHandle parameter.

3.1.2 Timers

No protocol timers are required other than those internal ones used in RPC to implement resiliency to
network outages, as specified in [MS-RPCE].

3.1.3 Initialization

The server MUST start listening on the well-known named pipe for the RPC interface, as specified in
section 2.1.

The ComputerNetBIOSName element (specified in section 3.1.1.1) MUST be copied into the
DomainName field in Account Domain Information (also specified in section 3.1.1.1).
3.1.4 (Updated Section) Message Processing Events and Sequencing Rules

This section contains detailed information about each protocol message and the steps taken by the
server to process caller requests.<56> <57> <58>

Methods in RPC Opnum Order

88/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Method

Description

LsarClose This method closes an open handle.
Opnum: 0
Opnum1NotUsedOnWire Opnum: 1

LsarEnumeratePrivileges

This method is invoked to enumerate all privileges known to the
system.

Opnum: 2

LsarQuerySecurityObject

This method is invoked to query security information that is assigned
to a database object. It returns the security descriptor of the object.

Opnum: 3

LsarSetSecurityObject

This method is invoked to set a security descriptor on an object.
Opnum: 4

Opnum5NotUsedOnWire

Opnum: 5

LsarOpenPolicy

This method is exactly the same as LsarOpenPolicy2, except that the
SystemName parameter in this function, because of its syntactic
definition, contains only one character instead of a full string.

Opnum: 6

LsarQueryInformationPolicy

This method is invoked to query values representing the server's
information policy.

Opnum: 7

LsarSetInformationPolicy

This method is invoked to set some policy on the server.
Opnum: 8

Opnum9NotUsedOnWire

Opnum: 9

LsarCreateAccount

This method is invoked to create a new account object in the server's
database.

Opnum: 10

LsarEnumerateAccounts

This method is invoked to request a list of account objects in the
server's database.

Opnum: 11

LsarCreateTrustedDomain

This method is invoked to create an object of type trusted domain in
the server's database.

Opnum: 12

LsarEnumerateTrustedDomains

This method is invoked to request a list of TDOs in the server's
database.

Opnum: 13
Lsar_LSA_TM_14 Opnum: 14
Lsar_LSA_TM_15 Opnum: 15

LsarCreateSecret This method is invoked to create a new secret object in the server's
database.
Opnum: 16

LsarOpenAccount This method is invoked to obtain a handle to an account object.

Opnum: 17

[MS-LSAD-Diff] - v20240423

89 /254

Local Security Authority (Domain Policy) Remote Protocol

Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Method Description

LsarEnumeratePrivilegesAccount This method is invoked to retrieve a list of privileges granted to an
account on the server.

Opnum: 18

LsarAddPrivilegesToAccount This method is invoked to add new privileges to an existing account
object.

Opnum: 19

LsarRemovePrivilegesFromAccount This method is invoked to remove privileges from an account object.
Opnum: 20

Opnum21NotUsedOnWire Opnum: 21

Opnum22NotUsedOnWire Opnum: 22

LsarGetSystemAccessAccount This method is invoked to retrieve system access account flags for an
account object.

Opnum: 23

LsarSetSystemAccessAccount This method is invoked to set system access account flags for an
account object.

Opnum: 24

LsarOpenTrustedDomain This method is invoked to obtain a handle to a TDO.
Opnum: 25

LsarQueryInfoTrustedDomain This method is invoked to retrieve information on a TDO.
Opnum: 26

LsarSetInformationTrustedDomain This method is invoked to set information on a TDO.
Opnum: 27

LsarOpenSecret This method is invoked to obtain a handle to an existing secret object.
Opnum: 28

LsarSetSecret This method is invoked to set the current and old values of the secret
object.

Opnum: 29

LsarQuerySecret This method is invoked to retrieve the current and old (or previous)
value of the secret object.

Opnum: 30

LsarLookupPrivilegeValue This method is invoked to map the name of a privilege into the LUID
by which the privilege is known on the server.

Opnum: 31

LsarLookupPrivilegeName This method is invoked to map the LUID of a privilege into the string
name by which the privilege is known on the server.

Opnum: 32

LsarLookupPrivilegeDisplayName This method is invoked to map the name of a privilege into a display
text string in the caller's language.

Opnum: 33

LsarDeleteObject This method is invoked to delete an open account, secret, or TDO.
Opnum: 34

90/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Method

Description

LsarEnumerateAccountsWithUserRight

This method is invoked to return a list of account objects that have
the user right equal to the passed-in value.

Opnum: 35

LsarEnumerateAccountRights

This method is invoked to retrieve a list of rights that are associated
with an existing account.

Opnum: 36

LsarAddAccountRights

This method is invoked to add new rights to an account object.
Opnum: 37

LsarRemoveAccountRights

This method is invoked to remove rights from an account object.
Opnum: 38

LsarQueryTrustedDomainInfo

This method is invoked to retrieve information on a TDO.
Opnum: 39

LsarSetTrustedDomainInfo

This method is invoked to set information on a TDO.
Opnum: 40

LsarDeleteTrustedDomain

This method is invoked to delete a TDO.
Opnum: 41

LsarStorePrivateData

This method is invoked to store a secret value.
Opnum: 42

LsarRetrievePrivateData

This method is invoked to retrieve a secret value.
Opnum: 43

LsarOpenPolicy2

This method opens a context handle to the RPC server.
Opnum: 44

Lsar_LSA_TM_45

Opnum: 45

LsarQueryInformationPolicy2

This method is identical to LsarQueryInformationPolicy.
Opnum: 46

LsarSetInformationPolicy2

This method is identical to LsarSetInformationPolicy.
Opnum: 47

LsarQueryTrustedDomainInfoByName

This method is invoked to retrieve information on a TDO by its string
name.

Opnum: 48

LsarSetTrustedDomainInfoByName

This method is invoked to set information on a TDO by its string
name.

Opnum: 49

LsarEnumerateTrustedDomainsEx

This method is invoked to enumerate TDOs in the server's database.
Opnum: 50

LsarCreateTrustedDomainEx

This method is invoked to create a new TDO.
Opnum: 51

Opnum52NotUsedOnWire

Opnum: 52

LsarQueryDomainInformationPolicy

This method is invoked to retrieve policy settings pertaining to the
current domain.

91/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Method

Description

Opnum: 53

LsarSetDomainInformationPolicy

This method is invoked to change policy settings pertaining to the
current domain.

Opnum: 54

LsarOpenTrustedDomainByName

This method is invoked to open a TDO handle by supplying the name
of the trusted domain.

Opnum: 55
Opnum56NotUsedOnWire Opnum: 56
Lsar_LSA_TM_57 Opnum: 57
Lsar_LSA_TM_58 Opnum: 58

LsarCreateTrustedDomainEx2

This method is invoked to create a new TDO.

Opnum: 59
Opnum60NotUsedOnWire Opnum: 60
Opnum61NotUsedOnWire Opnum: 61
Opnum62NotUsedOnWire Opnum: 62
Opnum63NotUsedOnWire Opnum: 63
Opnum64NotUsedOnWire Opnum: 64
Opnum65NotUsedOnWire Opnum: 65
Opnum66NotUsedOnWire Opnum: 66
Opnum67NotUsedOnWire Opnum: 67
Lsar_LSA_TM_68 Opnum: 68
Opnum69NotUsedOnWire Opnum: 69
Opnum70NotUsedOnWire Opnum: 70
Opnum71NotUsedOnWire Opnum: 71
Opnum72NotUsedOnWire Opnum: 72

LsarQueryForestTrustInformation

This method is invoked to retrieve information on a trust relationship
with another forest.

Opnum: 73

LsarSetForestTrustInformation

This method is invoked to establish a trust relationship with another
forest by attaching a set of records called the forest trust
information to the TDO.

Opnum: 74
Opnum75NotUsedOnWire Opnum: 75
LsarLookupSids3 Opnum: 76
LsarLookupNames4 Opnum: 77
Opnum78NotUsedOnWire Opnum: 78

[MS-LSAD-Diff] - v20240423
Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

92 /254

Method Description
Opnum79NotUsedOnWire Opnum: 79
Opnum80NotUsedOnWire Opnum: 80
Opnum81NotUsedOnWire Opnum: 81
Opnum82NotUsedOnWire Opnum: 82
Opnum83NotUsedOnWire Opnum: 83
Opnum84NotUsedOnWire Opnum: 84
Opnum85NotUsedOnWire Opnum: 85
Opnum86NotUsedOnWire Opnum: 86
Opnum87NotUsedOnWire Opnum: 87
Opnum88NotUsedOnWire Opnum: 88
Opnum89NotUsedOnWire Opnum: 89
Opnum90NotUsedOnWire Opnum: 90
Opnum91NotUsedOnWire Opnum: 91
Opnum92NotUsedOnWire Opnum: 92
Opnum93NotUsedOnWire Opnum: 93
Opnum94NotUsedOnWire Opnum: 94
Opnum95NotUsedOnWire Opnum: 95
Opnum96NotUsedOnWire Opnum: 96
Opnum97NotUsedOnWire Opnum: 97
Opnum98NotUsedOnWire Opnum: 98
Opnum99NotUsedOnWire Opnum: 99
Opnum100NotUsedOnWire Opnum: 100
Opnum101NotUsedOnWire Opnum: 101
Opnum102NotUsedOnWire Opnum: 102
Opnum103NotUsedOnWire Opnum: 103
Opnum104NotUsedOnWire Opnum: 104
Opnum105NotUsedOnWire Opnum: 105
Opnum106NotUsedOnWire Opnum: 106
Opnum107NotUsedOnWire Opnum: 107
Opnum108NotUsedOnWire Opnum: 108
Opnum109NotUsedOnWire Opnum: 109
Opnum110NotUsedOnWire Opnum: 110

93/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Method Description
Opnum111NotUsedOnWire Opnum: 111
Opnum112NotUsedOnWire Opnum: 112
Opnum113NotUsedOnWire Opnum: 113
Opnum114NotUsedOnWire Opnum: 114
Opnum115NotUsedOnWire Opnum: 115
Opnum116NotUsedOnWire Opnum: 116
Opnum117NotUsedOnWire Opnum: 117
Opnum118NotUsedOnWire Opnum: 118
Opnum119NotUsedOnWire Opnum: 119
Opnum120NotUsedOnWire Opnum: 120
Opnum121NotUsedOnWire Opnum: 121
Opnum122NotUsedOnWire Opnum: 122
Opnum123NotUsedOnWire Opnum: 123
Opnum124NotUsedOnWire Opnum: 124
Opnum125NotUsedOnWire Opnum: 125
Opnum126NotUsedOnWire Opnum: 126
Opnum127NotUsedOnWire Opnum: 127
Opnum128NotUsedOnWire Opnum: 128

LsarCreateTrustedDomainEx3

his method creates a new trusted domain object (TDO).|

Opnum: 129

LsarOpenPolicy3

This method opens a context handle to the RPC server.
Opnum: 130

[Opnum131NotUsedOnWire

Opnum: 131

LsarQueryForestTrustInformation2|

his method retrieves information about a trust relationsh
another forest.
Opnum: 132

LsarSetForestTrustInformation2

This method is invoked to establish a trust relationship with another
forest by attaching a set of records known as forest trust information
to a trusted domain object (TDO).

Opnum: 133
[Opnum: 135

Opnum: 136

[MS-LSAD-DIff] - v20240423

94 / 254

Local Security Authority (Domain Policy) Remote Protocol

Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Method Description

LsarCreateSecret2 his method is invoked to create a hew secret object in the server's
databasc. |

database.
phum: 13

LsarSetSecret?| his method is invoked to set the current and old values of the secret
obiect [NNENEG

i
N

LsarQuerySecret2| his method is invoked to retrieve the current and old (or previous)

<
N
C
©
o
S,
(=
-
)
(2
0]
(@}
3
o]
(s
o
(ox
‘m
(@}
e

Opnum: 139

LsarStorePrivateData2] his method is invoked to store a secret value.

phum: 140

O

LsarRetrievePrivateData?2 his method is invoked to retrieve a secret value.

Opnum: 141

The following citation contains a timeline of when each method value was introduced.<59>

Note Gaps in the opnum numbering sequence represent opnums of methods that are specified in
[MS-LSAT], or opnums that MUST NOT be used over the wire.<60>

Note Exceptions MUST NOT be thrown beyond those thrown by the underlying RPC protocol (as
specified in [MS-RPCE]), unless otherwise specified.

The return values of all methods MUST conform to the specification of NTSTATUS, as specified in [MS-
ERREF] section 2.3. Specific return values for normative processing conditions are specified in this
document in the subsections of this section.

Unless otherwise specified, all negative values returned by an implementation are treated equivalently
by the client as a message processing error. Unless otherwise specified, all non-negative values
returned by an implementation are treated equivalently by the client as a success (of message
processing).

Return values for implementation-specific conditions are left to the implementer's discretion, subject
to the constraints specified in [MS-ERREF]. For example, an implementation can re-use an existing
value in [MS-ERREF], such as 0xC0000017 (no memory).

All methods in this protocol MUST perform data validation (as specified in section 3.1.4.10) for all
parameters that are specified as input parameters. If data validation fails for some reason, processing
MUST end, and the server MUST respond back with a failure.

In the following sections, the first general idea behind the common operations is explained in sections
3.1.4.1, 3.1.4.2, and 3.1.4.3. The methods are grouped by functionality: policies, accounts, secrets,
trusted domains, privileges, and common object methods. Section 3.1.4.10 explains the data
validation rules.

3.1.4.1 Obtaining Handles

The Local Security Authority (Domain Policy) Remote Protocol recognizes four types of handles: Policy,
Account, Secret, and Trusted Domain. A handle of each type can be obtained only by calling one of a
well-defined set of methods. These handles are listed in the following table.

95/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Handle type Methods that return this type of handle

Policy LsarOpenPolicy
LsarOpenPolicy2

Account LsarCreateAccount
LsarOpenAccount

Secret LsarCreateSecret
LsarOpenSecret

Trusted Domain | LsarCreateTrustedDomain
LsarOpenTrustedDomain
LsarCreateTrustedDomainEx
LsarOpenTrustedDomainByName
LsarCreateTrustedDomainEx2

The server MUST keep track of all handles of each type that every caller opens, from the moment of
creation until the handle has been closed (by calling LsarClose or LsarDeleteObject) or until the client
disconnects.

Upon receipt of a handle parameter, the server MUST check to see that the handle is one of the valid
handles of a type relevant for that operation; if the handle is not valid, the server MUST fail the
request by returning STATUS_INVALID_HANDLE.

The RPC protocol provides a mechanism to clean up any resources related to a context handle if a
client that is holding the context handle exits, dies, disconnects, or reboots. See section 3.1.6.1 for
this protocol's context handle rundown specification.

3.1.4.2 Access Rights and Access Checks

Methods in this protocol perform one or more of the access checks that are specified in the following
sections.

Access check (section) | Methods that use it

3.1.4.2.1 LsarOpenPolicy
LsarOpenPolicy2
LsarCreateAccount
LsarOpenAccount
LsarCreateSecret
LsarOpenSecret
LsarCreateTrustedDomain
LsarOpenTrustedDomain
LsarCreateTrustedDomainEx
LsarOpenTrustedDomainByName
LsarCreateTrustedDomainEx2

3.1.4.2.2 LsarQueryInformationPolicy2
LsarQueryInformationPolicy
LsarSetInformationPolicy2
LsarSetInformationPolicy
LsarQueryDomainInformationPolicy
LsarSetDomainInformationPolicy

96 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Access check (section) | Methods that use it

LsarCreateAccount
LsarEnumerateAccounts
LsarEnmeratePrivilegesAccount
LsarAddPrivilegesToAccount
LsarRemovePrivilegesFromAccount
LsarGetSystemAccessAccount
LsarSetSystemAccessAcount
LsarEnumerateAccountsWithUserRight
LsarEnumerateAccountRights
LsarAddAccountRights
LsarRemoveAccountRights
LsarCreateSecret

LsarSetSecret

LsarQuerySecret
LsarStorePrivateData
LsarRetrievePrivateData
LsarQueryTrustedDomainInfo
LsarDeleteTrustedDomain
LsarQueryTrustedDomainInfoByName
LsarEnumerateTrustedDomainsEx
LsarEnumerateTrustedDomains
LsarQueryInfoTrustedDomain
LsarSetInformationTrustedDomain
LsarEnumeratePrivileges
LsarLookupPrivilegeValue
LsarLookupPrivilegeName
LsarLookupPrivilegeDisplayName
LsarQuerySecurityObject
LsarSetSecurityObject
LsarDeleteObject

3.1.4.2.3 LsarOpenPolicy2
LsarOpenPolicy
LsarCreateAccount
LsarEnumerateAccounts
LsarOpenAccount
LsarEnumerateAccountRights
LsarRemoveAccountRights
LsarCreateSecret
LsarOpenSecret
LsarRetrievePrivateData

3.1.4.2.1 Access Checks Applied on Handle Open

When opening a handle, the server MUST associate with it a set of ACCESS_MASK bits, as defined in
section 2.2.1.1. These access bits control which type of subsequent operations the caller can perform
with this handle.

97/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

All methods that open handles (as specified in section 3.1.4.1) allow the caller to specify a "desired
access" bitmask. The meaning of the bits within this bitmask depends on the type of object. The bits
are documented in sections 2.2.1.1.1, 2.2.1.1.2, 2.2.1.1.3, 2.2.1.1.4, and 2.2.1.1.5. All methods that
open handles (as specified in section 3.1.4.1) perform an access check based on the desired access
mask, whose general form is:

IF (method specific check fails) THEN
Return STATUS ACCESS DENIED

END IF

IF (security descriptor check fails) THEN
Return STATUS ACCESS DENIED

END IF

The method-specific checks are detailed in the sections for individual methods that open handles. The
security-descriptor check is performed by using the Access Check Algorithm Pseudocode ([MS-DTYP]
section 2.5.3.2). For this protocol, the input parameters of that algorithm are mapped as follows:

= SecurityDescriptor: The security descriptor of the object to which the handle is being opened, as
specified in section 3.1.1.

= Token: This MUST be the token ([MS-DTYP] section 2.5.2) of the client, obtained by invoking
GetRpcImpersonationAccessToken(NULL). The GetRpcImpersonationAccessToken interface is
specified in [MS-RPCE] section 3.3.3.4.3.1.

= Access Request mask: The DesiredAccess parameter of the method being invoked, or the
DesiredAccess value specified in the method description.

= Object Tree: This parameter MUST be NULL.
= PrincipalSelfSubst SID: This parameter MUST be NULL.

= GrantedAccess: The value returned by this parameter MUST be stored in a local variable
LocalGrantedAccess (of type ACCESS_MASK).

In the case that the access check is successful, the server MUST NOT grant more access bits than the
caller has asked for, but MUST grant only those access bits that the client has explicitly requested. The
caller is permitted to request the maximum access permitted by the server by specifying the special
constant MAXIMUM_ALLOWED, as specified in section 2.2.1.1.1.

If DesiredAccess contains the MAXIMUM_ALLOWED bit, the server MUST create and return an
LsaContextHandle (section 3.1.1.7) via the method's LSAPR_HANDLE* output parameter, with its
fields initialized as follows:

= LsaContextHandle.HandleType = "Policy", "Account", "Secret", or "Trusted Domain", depending on
the type of the database object

= LsaContextHandle.Object = the database object
= |saContextHandle.GrantedAccess = LocalGrantedAccess

If DesiredAccess does not contain the MAXIMUM_ALLOWED bit, the following constraint MUST be
satisfied:

= If DesiredAccess contains bits that are not in GrantedAccess, the server MUST return
STATUS_ACCESS_DENIED. Otherwise, the server MUST create and return an LsaContextHandle
(section 3.1.1.7) via the method's LSAPR_HANDLE* output parameter, with its fields initialized as
follows:

= LsaContextHandle.HandleType = "Policy", "Account", "Secret", or "Trusted Domain",
depending on the type of the database object

98/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

» LsaContextHandle.Object = the database object
= LsaContextHandle.GrantedAccess = DesiredAccess

The server MUST NOT allow the caller to add more access bits to the handle in a subsequent
operation. In order to obtain more access, a new handle must be obtained.

3.1.4.2.2 Access Checks Applied for Object Operations

Each method that consumes a handle requires that certain access bits be set on the handle, which is
defined as RequiredAccess for the purposes of this specification, and returns
STATUS_ACCESS_DENIED according to the pseudocode shown below, if necessary. The required bits
vary on a per-method basis and might depend on method arguments. Therefore, the value of
RequiredAccess is specified on a per-method basis in sections 3.1.4.4, 3.1.4.5, 3.1.4.6, 3.1.4.7,
3.1.4.8, and 3.1.4.9.

IF (any bit set in RequiredAccess is not set in LsaContextHandle.GrantedAccess) THEN
Return STATUS ACCESS DENIED
END IF

For example, if a method-processing rule specifies a required access bit of
POLICY_VIEW_LOCAL_INFORMATION, the server MUST check that this bit is set in the granted access
field on the context handle. If the check is unsuccessful, the server MUST return
STATUS_ACCESS_DENIED.

3.1.4.2.3 Determining If Requestors Are Anonymous

procedure IsRequestorAnonymous () : boolean

The IsRequestorAnonymous procedure returns TRUE if the requestor is anonymous. On entrance:
* AnonymousSid: This MUST be the ANONYMOUS SID as specified in [MS-DTYP] section 2.4.2.4.

= RpcImpersonationAccessToken: This MUST be the token ([MS-DTYP] section 2.5.2) of the client,
obtained by invoking the GetRpcImpersonationAccessToken interface as specified in [MS-
RPCE] section 3.3.3.4.3.1, specifying NULL for Input Parameter.

Return RpcImpersonationAccessToken.Sids[RpcImpersonationAccessToken.UserIndex] equals
AnonymousSid

3.1.4.3 Closing Handles

A handle of any type can be closed by calling LsarClose. Successful calls to LsarDeleteObject, which
deletes an object to which the caller has an open handle, MUST also close the handle. The fact that a
handle is closed is communicated to the RPC transport by returning a NULL value in the handle
parameter, as specified in [C706] section 5.1.6.

Closing one handle MUST NOT affect any other handle on the server; that is, handles obtained using a
policy handle MUST continue to be valid after that policy handle is closed.

3.1.4.4 (Updated Section) Policy Object Methods

The message processing of methods in this section MUST use the abstract data model defined in
section 3.1.1.1.

99/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Method (opnum)

Summary

LsarOpenPolicy2 (opnum 44)

Opens a context handle to the RPC server.

LsarOpenPolicy (opnum 6)

Superseded by LsarOpenPolicy2.

LsarQueryInformationPolicy2 (opnum
46)

Obtains information from the policy object.

LsarQueryInformationPolicy (opnum 7)

Obtains information from the policy object.

LsarSetInformationPolicy2 (opnum 47)

Sets information on the policy object.

LsarSetInformationPolicy (opnum 8)

Sets information on the policy object.

LsarQueryDomainInformationPolicy
(opnum 53)

Obtains information from the policy object pertaining to the domain.

LsarSetDomainInformationPolicy

Sets information on the policy object pertaining to the domain.

(opnum 54)
LsarOpenPolicy3 (opnum 130

LSAD) Remote Protocol database.

Opens a context handle to the RPC server using the credentials in
the provided RPC binding handle.

3.1.4.4.1 LsarOpenPolicy2 (Opnum 44)

The LsarOpenPolicy2 method opens a context handle to the RPC server. This is the first function that
MUST be called to contact the Local Security Authority (Domain Policy) Remote Protocol database.

NTSTATUS LsarOpenPolicy2 (
[in, unique, string] wchar t* SystemName,
] PLSAPR OBJECT ATTRIBUTES ObjectAttributes,
] ACCESS MASK DesiredAccess,
out] LSAPR_HANDLE* PolicyHandle

in
in

[

[

[

)i

SystemName: This parameter does not have any effect on message processing in any environment.
It MUST be ignored on receipt.

ObjectAttributes: This parameter does not have any effect on message processing in any
environment. All fields MUST<61> be ignored except RootDirectory which MUST be NULL.

DesiredAccess: An ACCESS_MASK value that specifies the requested access rights that MUST be
granted on the returned PolicyHandle if the request is successful.

PolicyHandle: An RPC context handle (as specified in section 2.2.2.1) that represents a reference to
the abstract data model of a policy object, as specified in section 3.1.1.1.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing below.

Return value/code Description

0x00000000

The request was successfully completed.

100 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC000000D One of the supplied parameters is incorrect. For example, this can
STATUS INVALID PARAMETER | happen when ObjectAttributes is NULL or DesiredAccess is zero.

Processing:

DesiredAccess: A bitmask specifying the access that the caller attempts to obtain on the policy object,
which is access-checked according to section 3.1.4.2.1. The method-specific portion of the check is
the following:

LET serverInfo be a SERVER INFO 101 structure

CALL ServerGetInfo (101, &serverInfo)

LET isDomainController be a boolean initialized to FALSE

IF (serverInfo.svl0l version type & (SV_TYPE DOMAIN CTRL | SV_TYPE DOMAIN BAKCTRL)) THEN
Set isDomainController equal to TRUE

END IF

IF ((isDomainController equals FALSE) and (IsRequestorAnonymous () and LsaRestrictAnonymous is
set to TRUE)) THEN

Return STATUS_ ACCESS_DENIED
END IF

SERVER_INFO_101, SV_TYPE_DOMAIN_CTRL, and SV_TYPE_DOMAIN_BACKCTRL are specified in
[MS-DTYP] section 2.3.12. The ServerGetInfo procedure is specified in [MS-DTYP] section 2.6. The
valid account-rights bits are specified in section 2.2.1.1.2, and the security descriptor is specified in
section 3.1.1.1. The IsRequestorAnonymous procedure is specified in section 3.1.4.2.3.

PolicyHandle: If the request is successful, the server MUST create and return a context handle (section
3.1.1.7) via PolicyHandle, with its fields initialized as follows:

= LsaContextHandle.HandleType = "Policy"

= LsaContextHandle.Object = the policy object

= LsaContextHandle.GrantedAccess = as specified in section 3.1.4.2.1
The return value MUST be set to STATUS_SUCCESS in this case.

The LsarOpenPolicy3 method supersedes this message and MUST be used whenever possible.

3.1.4.4.2 LsarOpenPolicy (Opnum 6)

The LsarOpenPolicy method is exactly the same as LsarOpenPolicy2, except that the SystemName
parameter in this function, because of its syntactic definition, contains only one character instead of a
full string. This SystemName parameter does not have any effect on message processing in any
environment. It MUST be ignored.

NTSTATUS LsarOpenPolicy (
[in, unique] wchar t* SystemName,
[in] PLSAPR OBJECT ATTRIBUTES ObjectAttributes,
[in] ACCESS MASK DesiredAccess,
[out] LSAPR_HANDLE* PolicyHandle

101 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

SystemName: This parameter does not have any effect on message processing in any environment.
It MUST be ignored on receipt.

ObjectAttributes: This parameter does not have any effect on message processing in any
environment. All fields MUST<62> be ignored except RootDirectory, which MUST be NULL.

DesiredAccess: An ACCESS_MASK value that specifies the requested access rights that MUST be
granted on the returned PolicyHandle, if the request is successful.

PolicyHandle: An RPC context handle (as specified in section 2.2.2.1) that represents a reference to
the abstract data model of a policy object, as specified in section 3.1.1.1.

Processing:

The processing is the same as for LsarOpenPolicy2. LsarOpenPolicy2 supersedes this message and
MUST be used when possible.

3.1.4.4.3 LsarQueryInformationPolicy2 (Opnum 46)

The LsarQueryInformationPolicy2 method is invoked to query values that represent the server's
security policy.

NTSTATUS LsarQueryInformationPolicy2 (
[in] LSAPR HANDLE PolicyHandle,
[in] POLICY INFORMATION CLASS InformationClass,
[out, switch is(InformationClass)]
PLSAPR POLICY INFORMATION* PolicyInformation
)

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
InformationClass: A parameter that specifies what type of information the caller is requesting.

PolicyInformation: A parameter that references policy information structure on return.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing below.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC000009%A There are insufficient resources to complete the request.
STATUS_INSUFFICIENT_RESOURCES

0xC0000022 The caller does not have the permissions to perform the
STATUS_ACCESS_DENIED operation.

0xC000000D One of the parameters is incorrect. For instance, this can happen
STATUS INVALID PARAMETER if InformationClass is out of range or if PolicyInformation is NULL.
0xC0000008 PolicyHandle is not a valid handle.

STATUS_INVALID_HANDLE

Processing:

PolicyHandle MUST be a handle to an open policy object, and PolicyHandle.HandleType MUST equal
"Policy"; otherwise, STATUS_INVALID_HANDLE MUST be returned.

102 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

The server MUST verify that PolicyHandle grants access as specified in section 3.1.4.2.2. The following
table specifies the RequiredAccess value to use in this access check for each InformationClass value or
indicates if no processing is supported, regardless of access granted.

InformationClass value RequiredAccess value

PolicyAuditLogInformation POLICY_VIEW_AUDIT_INFORMATION

PolicyAuditEventsInformation POLICY_VIEW_AUDIT_INFORMATION

PolicyPrimaryDomainInformation POLICY_VIEW_LOCAL_INFORMATION

PolicyPdAccountInformation POLICY_GET_PRIVATE_INFORMATION

PolicyAccountDomainInformation POLICY_VIEW_LOCAL_INFORMATION

PolicyLsaServerRoleInformation POLICY_VIEW_LOCAL_INFORMATION

PolicyReplicaSourceInformation POLICY_VIEW_LOCAL_INFORMATION

PolicyModificationInformation Not applicable: This information class cannot be queried. The request

MUST fail with STATUS_INVALID_PARAMETER.

PolicyAuditFullSetInformation Not applicable: This information class cannot be queried. The request

MUST fail with STATUS_INVALID_PARAMETER.

PolicyAuditFullQueryInformation POLICY_VIEW_AUDIT_INFORMATION

PolicyDnsDomainInformation POLICY_VIEW_LOCAL_INFORMATION

PolicyDnsDomainInformationInt POLICY_VIEW_LOCAL_INFORMATION

PolicyLocalAccountDomainInformation | POLICY_VIEW_LOCAL_INFORMATION

PolicyMachineAccountInformation POLICY_VIEW_LOCAL_INFORMATION

The InformationClass parameter can take on any value in the POLICY_INFORMATION_CLASS
enumeration range. For all values outside this range, the server MUST return a
STATUS_INVALID_PARAMETER error code.

PolicyInformation is an output parameter. The server MUST fill it in with the information requested by
the client, based on the value of the InformationClass parameter and the abstract data model
specified in section 3.1.1.1, as follows.

Value of InformationClass

parameter

Information returned to caller from abstract data model

PolicyAuditLogInformation

Auditing Log Information

PolicyAuditEventsInformation

Event Auditing Options

PolicyPrimaryDomainInformation

Primary Domain Information

PolicyPdAccountInformation

MUST return an LSAPR_POLICY_PD_ACCOUNT_INFO information
structure, its Name member being an RPC_UNICODE_STRING with
Length set to 0 and Buffer initialized to NULL.

PolicyAccountDomainInformation

On non-domain controllers: Account Domain
On domain controller: Primary Domain Information

PolicyLsaServerRoleInformation

Server Role Information

PolicyReplicaSourceInformation

Replica Source Information

103/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Value of InformationClass

parameter Information returned to caller from abstract data model
PolicyModificationInformation MUST return STATUS_INVALID_PARAMETER
PolicyAuditFullSetInformation MUST return STATUS_INVALID_PARAMETER
PolicyAuditFullQueryInformation Audit Full Information<63>

PolicyDnsDomainInformation DNS Domain Information<64>
PolicyDnsDomainInformationInt DNS Domain Information
PolicyLocalAccountDomainInformation Account Domain Information
PolicyMachineAccountInformation Machine Account Information

3.1.4.4.4 LsarQueryInformationPolicy (Opnum 7)

The LsarQueryInformationPolicy method is invoked to query values that represent the server's
information policy.

NTSTATUS LsarQueryInformationPolicy (
[in] LSAPR HANDLE PolicyHandle,
[in] POLICY INFORMATION CLASS InformationClass,
[out, switch is(InformationClass)]
PLSAPR POLICY INFORMATION* PolicyInformation
)i

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
InformationClass: A parameter that specifies what type of information the caller is requesting.

PolicyInformation: A parameter that references policy information structure on return.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing below.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xCO00009A There are insufficient resources to complete the request.
STATUS_INSUFFICIENT_RESOURCES

0xC0000022 The caller does not have the permissions to perform the
STATUS_ACCESS_DENIED operation.

0xC000000D One of the parameters is incorrect. For instance, this can happen
STATUS INVALID PARAMETER if InformationClass is out of range or if PolicyInformation is NULL.
0xC0000008 PolicyHandle is not a valid handle.

STATUS_INVALID_HANDLE

Processing:

104 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

This message MUST be processed in an identical manner to LsarQueryInformationPolicy2.

3.1.4.4.5 LsarSetInformationPolicy2 (Opnum 47)

The LsarSetInformationPolicy2 method is invoked to set a policy on the server.

NTSTATUS LsarSetInformationPolicy?2 (
[in] LSAPR HANDLE PolicyHandle,
[in] POLICY INFORMATION CLASS InformationClass,
[in, switch is(InformationClass)]
PLSAPR POLICY INFORMATION PolicyInformation
)

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
InformationClass: A parameter that specifies what type of information the caller is setting.

PolicyInformation: Data that represents policy being set.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC000000D One of the parameters is incorrect. For instance, this can happen if

STATUS INVALID PARAMETER | InformationClass is not supported or some of the supplied policy data is
- - invalid.

0xC0000002 This information class cannot be set.

STATUS_NOT_IMPLEMENTED

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:

PolicyHandle MUST reference a context that was granted an access commensurate with the
InformationClass value requested. If PolicyHandle is not a valid context handle or
PolicyHandle.HandleType does not equal "Policy", the server MUST return STATUS_INVALID_HANDLE.
If the context does not have sufficient access, the server MUST return STATUS_ACCESS_DENIED.

The server MUST verify that PolicyHandle grants access as specified in section 3.1.4.2.2. The following
table specifies the RequiredAccess value to use in this access check for each InformationClass value or
indicates if no processing is supported, regardless of access granted.

InformationClass value RequiredAccess value
PolicyAuditLogInformation POLICY_AUDIT_LOG_ADMIN
PolicyAuditEventsInformation POLICY_SET_AUDIT_REQUIREMENTS
PolicyPrimaryDomainInformation POLICY_TRUST_ADMIN

105/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

InformationClass value RequiredAccess value

PolicyPdAccountInformation Not applicable: This information class cannot be set; the request

MUST fail with STATUS_INVALID_PARAMETER.

PolicyAccountDomainInformation Not applicable: This information class cannot be set; the request

MUST fail with STATUS_INVALID_PARAMETER.

PolicyLsaServerRoleInformation POLICY_SERVER_ADMIN

PolicyReplicaSourceInformation POLICY_SERVER_ADMIN

PolicyModificationInformation Not applicable: This information class cannot be set; the request

MUST fail with STATUS_INVALID_PARAMETER.

PolicyAuditFullSetInformation Not applicable: This information class cannot be set; the request

MUST fail with STATUS_INVALID_PARAMETER.

PolicyAuditFullQueryInformation Not applicable: This information class cannot be set; the request

MUST fail with STATUS_INVALID_PARAMETER.

PolicyDnsDomainInformation POLICY_TRUST_ADMIN

PolicyDnsDomainInformationInt POLICY_TRUST_ADMIN

PolicyLocalAccountDomainInformation | POLICY_TRUST_ADMIN

PolicyMachineAccountInformation POLICY_TRUST_ADMIN

The InformationClass parameter can take on any value in the POLICY_INFORMATION_CLASS
enumeration range. For all values outside this range, the server MUST return the
STATUS_INVALID_ PARAMETER error code.

The PolicyInformation parameter contains the data that the caller wishes to set, based on the value of
the InformationClass parameter. The server MUST update its abstract data model, specified in section
3.1.1.1, as follows.

Value of InformationClass

parameter

Information updated in abstract data model

PolicyAuditLogInformation

Server MUST return the STATUS_NOT_IMPLEMENTED error code
because this is not a policy element that can be set.

PolicyAuditEventsInformation

Event Auditing Options.

PolicyPrimaryDomainInformation

Primary Domain Information.

PolicyPdAccountInformation

Server MUST return STATUS_INVALID_PARAMETER because this is
not a policy element that can be set.

PolicyAccountDomainInformation

On a domain controller, the server MUST fail this request with the
STATUS_INVALID_PARAMETER.

On non-domain controllers: Account Domain Information.

PolicyLsaServerRoleInformation

Server Role Information.

PolicyReplicaSourceInformation

Replica Source Information.

PolicyModificationInformation

Server MUST return STATUS_INVALID_PARAMETER because this is
not a policy element that can be set.

PolicyAuditFullSetInformation

ShutDownOnNFull field of Audit Full Information.<65>

106 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Value of InformationClass

parameter Information updated in abstract data model

PolicyAuditFullQueryInformation Server MUST record STATUS_INVALID_PARAMETER because this is
not a policy element that can be set.

PolicyDnsDomainInformation DNS Domain Information.<66>

PolicyDnsDomainInformationInt DNS Domain Information.

PolicyLocalAccountDomainInformation Account Domain Information.

PolicyMachineAccountInformation Machine Account Information.

3.1.4.4.6 LsarSetInformationPolicy (Opnum 8)

The LsarSetInformationPolicy method is invoked to set a policy on the server.

NTSTATUS LsarSetInformationPolicy (
[in] LSAPR HANDLE PolicyHandle,
[in] POLICY INFORMATION CLASS InformationClass,
[in, switch is(InformationClass)]
PLSAPR POLICY INFORMATION PolicyInformation

)i
PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
InformationClass: A parameter that specifies what type of information the caller is setting.
PolicyInformation: Data that represents the policy being set.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC000000D One of the parameters is incorrect. For instance, this can happen if

STATUS INVALID PARAMETER | InformationClass is not supported or some of the supplied policy data is
- - invalid.

0xC0000002 This information class cannot be set.

STATUS_NOT_IMPLEMENTED

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:

This message MUST be processed in an identical manner to LsarSetInformationPolicy2.

3.1.4.4.7 LsarQueryDomainInformationPolicy (Opnum 53)

107 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

The LsarQueryDomainInformationPolicy method is invoked to retrieve policy settings in addition to
those exposed through LsarQueryInformationPolicy and LsarSetInformationPolicy2. Despite the term
"Domain" in the name of the method, processing of this message occurs with local data, and
furthermore, there is no requirement that this data have any relationship with the LSA information in
the domain to which the machine is joined.

NTSTATUS LsarQueryDomainInformationPolicy (
[in] LSAPR HANDLE PolicyHandle,
[in] POLICY DOMAIN INFORMATION CLASS InformationClass,
[out, switch is(InformationClass)]
PLSAPR_POLICY DOMAIN_ INFORMATION* PolicyDomainInformation

)i
PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
InformationClass: A parameter that specifies what type of information the caller is requesting.
PolicyDomainInformation: A parameter that references policy information structure on return.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this
STATUS_ACCESS_DENIED operation.
0xC000000D One of the supplied arguments was invalid.

STATUS_INVALID_PARAMETER

0xC0000034 No value has been set for this policy.
STATUS_OBJECT_NAME_NOT_FOUND

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:

If the InformationClass parameter is PolicyDomainEfsInformation, and the responder does not support
Encrypting File System (EFS) Policy Information as specified in section 3.1.1.1, the request MUST fail
with STATUS_OBJECT_NAME_NOT_FOUND.

If the InformationClass parameter is PolicyDomainQualityOfServicelnformation, and the responder
implementation does not support Quality Of Service Information as specified in section 3.1.1.1, the
request MUST fail with STATUS_INVALID_PARAMETER.

If PolicyHandle is not a valid context handle or PolicyHandle.HandleType does not equal "Policy", the
server MUST return STATUS_INVALID_HANDLE.

The server MUST verify that PolicyHandle grants access as specified in section 3.1.4.2.2. The following
table specifies the RequiredAccess value to use in this access check for each InformationClass value.

InformationClass value RequiredAccess value

PolicyDomainQualityOfServicelnformation | POLICY_VIEW_AUDIT_INFORMATION

108 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

InformationClass value RequiredAccess value

PolicyDomainEfsInformation POLICY_VIEW_LOCAL_INFORMATION

PolicyDomainKerberosTicketInformation POLICY_VIEW_LOCAL_INFORMATION

The InformationClass parameter can take on any value in the POLICY_DOMAIN_INFORMATION_CLASS
enumeration range. For all values outside this range, the server MUST return the
STATUS_INVALID_PARAMETER error code.

PolicyDomainInformation is an output parameter. The server MUST fill it with the information
requested by the client, based on the value of the InformationClass parameter and the abstract data
model specified in section 3.1.1.1. If the information has not been set before, the request MUST fail
with STATUS_OBJECT_NAME_NOT_FOUND.

Value of InformationClass parameter | Information returned to caller from abstract data model

PolicyDomainQualityOfServicelnformation | Quality Of Service Information

PolicyDomainEfsInformation EFS Policy Information

PolicyDomainKerberosTicketInformation Kerberos Policy Information

3.1.4.4.8 LsarSetDomainInformationPolicy (Opnum 54)

The LsarSetDomainInformationPolicy method is invoked to change policy settings in addition to those
exposed through LsarQueryInformationPolicy and LsarSetInformationPolicy2. Despite the term
"Domain" in the name of the method, processing of this message occurs with local data. Also, there is
no requirement that this data have any relationship with the LSA information in the domain in which
the machine is joined.

NTSTATUS LsarSetDomainInformationPolicy (
[in] LSAPR HANDLE PolicyHandle,
[in] POLICY DOMAIN_ INFORMATION_CLASS InformationClass,
[in, unique, switch is(InformationClass)]
PLSAPR POLICY DOMAIN INFORMATION PolicyDomainInformation
)i

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
InformationClass: A parameter that specifies what type of information the caller is setting.

PolicyDomainInformation: Data representing policy being set.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the following message processing.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC000000D One of the supplied arguments was invalid.

109 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

STATUS_INVALID_PARAMETER

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:

If the InformationClass parameter is PolicyDomainEfsInformation, and the responder implementation
does not support Encrypting File System (EFS) Policy Information as specified in section 3.1.1.1, the
request MUST fail with STATUS_INVALID_PARAMETER.

If the InformationClass parameter is PolicyDomainQualityOfServicelnformation, and the responder
implementation does not support Quality Of Service Information as specified in section 3.1.1.1, the
request MUST fail with an RPC exception RPC_S_INVALID_TAG.

If PolicyHandle is not a valid context handle or PolicyHandle.HandleType does not equal "Policy", the
server MUST return STATUS_INVALID_HANDLE.

The server MUST verify that PolicyHandle grants access as specified in section 3.1.4.2.2. The following
table specifies the RequiredAccess value to use in this access check for each InformationClass value.

InformationClass value RequiredAccess value

PolicyDomainQualityOfServiceInformation | POLICY_SERVER_ADMIN

PolicyDomainEfsInformation POLICY_SERVER_ADMIN

PolicyDomainKerberosTicketInformation POLICY_SERVER_ADMIN

The InformationClass parameter can take on any value in the POLICY_DOMAIN_INFORMATION_CLASS
enumeration range. For all values outside this range, the server MUST return the
STATUS_INVALID_PARAMETER error code.

The PolicyDomainInformation parameter contains the data that the caller needs to set, based on the
value of the InformationClass parameter. The server MUST update its abstract data model, specified in
section 3.1.1.1, as follows.

Value of InformationClass parameter | Information returned to caller from abstract data model

PolicyDomainQualityOfServicelnformation | Quality Of Service Information

PolicyDomainEfsInformation EFS Policy Information

PolicyDomainKerberosTicketInformation Kerberos Policy Information

If the abstract data model update succeeds and the InformationClass parameter is
PolicyDomainKerberosTicketInformation, the server MUST invoke the KDC ConfigurationChange event
(see [MS-KILE] section 3.3.4.1) and MUST ignore any errors that are returned.

3.1.4.4.9 (Updated Section) LsarOpenPolicy3 (Opnum 130)

The LsarOpenPolicy3 method, as specified below, opens a context handle to the RPC server. This is
the first function that MUST be called to contact the Local Security Authority (Domain Policy) (LSAD)
Remote Protocol database.

NTSTATUS
LsarOpenPolicy3 (

110/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

in,unique, string] PLSAPR_SERVER_ NAME SystemName,

[

[in] PLSAPR OBJECT ATTRIBUTES ObjectAttributes,
[in] ACCESS_MASK DesiredAccess,
[in] ULONG InVersion,

[in] [switch is(InVersion)] LSAPR REVISION INFO* InRevisionInfo,
[out] ULONG* OutVersion,

[out] [switch is(*OutVersion)] LSAPR REVISION_ INFO* OutRevisionInfo,
[out] LSAPR HANDLE* PolicyHandle

)i
SystemName: This parameter has no effect on message processing in any environment. It MUST be
ignored on receipt.

ObjectAttributes: This parameter has no effect on message processing in any environment. All fields
MUST<67> be ignored except RootDirectory, which MUST be NULL.

DesiredAccess: An ACCESS_MASK value (section 2.2.1.1) that specifies the requested access rights
that MUST be granted on the returned PolicyHandle, if the request is successful.

InVersion: Indicates which field of the InRevisionInfo union is used.

InRevisionInfo: Revision information. For details, see the definition of the
LSAPR_REVISION_INFO_V1 structure (section 2.2.2.6), which is contained in the
LSAPR_REVISION_INFO union (section 2.2.2.7).

OutVersion: Indicates which field of the OutRevisionInfo union is used.

OutRevisionInfo: Revision information. For details, see the definition of the
LSAPR_REVISION_INFO_V1 structure (section 2.2.2.6), which is contained in the
LSAPR_REVISION_INFO union (section 2.2.2.7).

PolicyHandle: An RPC context handle (section 2.2.2.1) that represents a reference to the abstract
data model of a policy object, as specified in section 3.1.1.1.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing below.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC000000D One of the supplied parameters is incorrect. For example, this can
STATUS INVALID PARAMETER | happen when ObjectAttributes is NULL or DesiredAccess is zero.

0xC00000BB The operation is not supported for this object.
STATUS_NOT_SUPPORTED

Server processing instructions upon receiving this message are the same as LsarOpenPolicy2 with
exception of the following:

= If InVersion is not equal to 1, the server MUST return STATUS_NOT_SUPPORTED (0xC0O0000BB).

= The server MUST set OutVersion to 1 and OutRevisionInfo.Revision to 1.

= To indicate support for AES encryptiongleiiidat e 18idal=lalater= alelal|alioldnat=1ulo]a W (I=loia o) I NPAVAVAVA N 1als)
PAVAVAE)] the OutRevisionInfo.SupportedFeatures field MUST be set to 1.

111/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

To indicate support for name lookups with authentication other than RPC C AUTHN_ NETLOGON
security provider, the OutRevisionInfo.SupportedFeatures field MUST be set to 2.<68>

To indicate support for AES encryption of secrets (section 2.2.6.2), the
OutRevisionInfo.SupportedFeatures field MUST be set to 4.

Note: LsarOpenPolicy3 supersedes LsarOpenPolicy2 and MUST be used whenever possible.

3.1.4.4.10 (Added Section) [E==Tde)s1=Th] o] [To A" A1 (o =T R0 515 1 1107 1 Be i3

he LsarOpenPolicyWithCreds method, as specified below, opens a context handle to the RPC serve

using the credentials in the provided BindingHandle.<69>

[in] ACCESS MASK DesiredAccess,
[in] ULONG InVersion,
[in] [switch is(InVersion)] LSAPR REVISION INFO* InRevisionInfo,

BindingHandle: An RPC binding handle, as specified in

internally and are not transmitted over the network

DesiredAccess: An ACCESS MASK value (section 2.2.1.1) that specifies the requested access ri

that MUST be granted on the returned PolicyHandle, if the request is successful -

InVersion: Indicates which field of the InRevisionInfo union is used.

InRevisionInfo: Revision information. For details, see the definition of the
LSAPR REVISION INFO V1 structure (section 2.2.2.6), which is contained in the
LSAPR REVISION INFO union (section 2.2.2.7)]

LSAPR REVISION INFO V1 structure (section 2.2.2.6), which is contained in the
LSAPR REVISION INFO union (section 2.2.2.7

RevisionInfo: Revision information. For details, see the definition of the

3.1.4.5 Account Object Methods

The message processing of methods in this section MUST use the abstract data model, as specified in
section 3.1.1.3.

112/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Method (opnum)

Summary

LsarCreateAccount (opnum 10)

Creates a new account object in the policy database.

LsarEnumerateAccounts (opnum 11)

Enumerates all account objects in the policy database.

LsarOpenAccount (opnum 17)

Opens a handle to an existing account object.

LsarEnumeratePrivilegesAccount (opnum 18)

Enumerates all rights and privileges of an account.

LsarAddPrivilegesToAccount (opnum 19)

Adds new privileges to an existing account object.

LsarRemovePrivilegesFromAccount (opnum
20)

Removes privileges from an existing account object.

LsarGetSystemAccessAccount (opnum 23)

Retrieves system access flags from the account object.

LsarSetSystemAccessAccount (opnum 24)

Sets system access flags on the account object.

LsarEnumerateAccountsWithUserRight
(opnum 35)

Enumerates all account objects in the server's policy database
that match a given user right.

LsarEnumerateAccountRights (opnum 36)

Enumerates all rights of an account object in the server's
policy database.

LsarAddAccountRights (opnum 37)

Adds new rights to an account object in the server's policy
database.

LsarRemoveAccountRights (opnum 38)

Removes rights from an account object in the server's policy
database.

NTSTATUS LsarCreateAccount (
[in] LSAPR_HANDLE PolicyHandle,
[in] PRPC_SID Accountsid,
[in] ACCESS MASK DesiredAccess,
[out] LSAPR HANDLE* AccountHandle

)i

3.1.4.5.1 LsarCreateAccount (Opnum 10)

The LsarCreateAccount method is invoked to create a new account object in the server's database.

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
AccountSid: The security identifier (SID) of the account to be created.

DesiredAccess: A bitmask specifying accesses to be granted to the newly created and opened
account at this time.

AccountHandle: Used to return a handle to the newly created account object.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000
STATUS_SUCCESS

The request was successfully completed.

113/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC0000035 An account with this SID already exists.
STATUS_OBJECT_NAME_COLLISION

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

0xC000000D Some of the parameters supplied were invalid.
STATUS_INVALID_PARAMETER

Processing:
This message takes four arguments:

PolicyHandle: A handle to an open policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_CREATE_ACCOUNT.

AccountSid: The SID of the account to be created. The server MUST validate that AccountSid
represents a valid SID and fail the request with STATUS_INVALID_PARAMETER if it is not.<70>

DesiredAccess: A set of access bits that the caller attempts to receive from the account object after it
has been created, which is access-checked according to section 3.1.4.2.2. The method-specific portion
of the check is the following.

IF (IsRequestorAnonymous () and LsaRestrictAnonymous is set to TRUE) THEN
Return STATUS OBJECT NAME NOT FOUND
END IF

The valid account-rights bits are specified in section 2.2.1.1.3, and the security descriptor is specified
in section 3.1.1.3. The IsRequestorAnonymous procedure is specified in section 3.1.4.2.3.

AccountHandle: If the request is successful, the server MUST create and return a context handle
(section 3.1.1.7) via AccountHandle, with its fields initialized as follows:

= LsaContextHandle.HandleType = "Account"
= LsaContextHandle.Object = the account object
» LsaContextHandle.GrantedAccess = as specified in section 3.1.4.2.1

This mechanism allows the caller to skip the additional step of opening the account object after
creating it.

The server MUST check whether another account object already exists in its policy database with the
same SID, and fail the request with STATUS_OBJECT_NAME_COLLISION if it does.

The server MUST associate a security descriptor with a newly created account object. See section
3.1.1.3 for the data model of this object type.

3.1.4.5.2 LsarEnumerateAccounts (Opnum 11)

The LsarEnumerateAccounts method is invoked to request a list of account objects in the server's
database. The method can be called multiple times to return its output in fragments.

114 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

NTSTATUS LsarEnumerateAccounts (
[in] LSAPR HANDLE PolicyHandle,
[in] [out] unsigned long *EnumerationContext,
[out] PLSAPR ACCOUNT ENUM BUFFER EnumerationBuffer,
[in] unsigned long PreferedMaximumLength
)i

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
EnumerationContext: A pointer to a context value that is used to resume enumeration, if necessary.
EnumerationBuffer: A pointer to a structure that will contain the results of the enumeration.

PreferedMaximumLength: A value that indicates the approximate size of the data to return.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0x00000105 More information is available to successive calls.
STATUS_MORE_ENTRIES

0x8000001A No more entries are available from the enumeration.
STATUS_NO_MORE_ENTRIES

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes four arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_VIEW_LOCAL_INFORMATION. If
IsRequestorAnonymous() returns TRUE (section 3.1.4.2.3) and LsaRestrictAnonymous is set to TRUE,
the call MUST fail with STATUS_ACCESS_DENIED.

EnumerationContext: A number that indicates a starting index at which to begin the enumeration. The
server MUST always return all account objects in the same order, starting at the object whose index is
EnumerationContext. To initiate a new enumeration, the client sets EnumerationContext to zero;
otherwise, the client sets EnumerationContext to a value returned by a previous call to the method.

The server MUST return STATUS_INVALID_PARAMETER if the EnumerationContext parameter is NULL.

EnumerationBuffer: Used to return the results of enumeration. The server MUST fill EnumerationBuffer
with as many account objects as possible, as determined by PreferedMaximumLength. If the size of all
remaining objects is less than or equal to PreferedMaximumLength, the server MUST fill
EnumerationBuffer with all objects. If the size of all remaining objects is greater than
PreferedMaximumLength, the server MUST fill EnumerationBuffer with objects such that the size of the
account objects returned is greater than or equal to PreferedMaximumLength, but would be less than

115/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

PreferedMaximumLength if the last object had not been added to EnumerationBuffer. If there are no
more objects than are returned in EnumerationBuffer, the server MUST return
STATUS_NO_MORE_ENTRIES. If there are more database objects than are returned in
EnumerationBuffer, the server MUST set the EnumerationContext value to the index value that would
allow it to resume enumeration correctly when this method is called again, and the server MUST
return STATUS_MORE_ENTRIES. Note that this return value is not an error status.

PreferedMaximumLength: An indication about the approximate size, in bytes, of the data to return.
Any unsigned 32-bit value is valid for the PreferedMaximumLength parameter.

3.1.4.5.3 LsarOpenAccount (Opnum 17)

The LsarOpenAccount method is invoked to obtain a handle to an account object.

NTSTATUS LsarOpenAccount (

[in] LSAPR HANDLE PolicyHandle,
[in] PRPC_SID Accountsid,
[in] ACCESS MASK DesiredAccess,
[out] LSAPR HANDLE* AccountHandle
)i

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
AccountSid: A SID of the account to be opened.
DesiredAccess: A bitmask specifying accesses to be granted to the opened account at this time.

AccountHandle: Used to return a handle to the opened account object.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this
STATUS_ACCESS_DENIED operation.

0xC000000D Some of the parameters supplied are incorrect. For instance, this
STATUS INVALID PARAMETER can happen when AccountSid is NULL.

0xC0000034 An account with this SID does not exist in the server's database.

STATUS_OBJECT_NAME_NOT_FOUND

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes four arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. PolicyHandle.GrantedAccess MUST NOT be considered for this call,
because the access check MUST happen on the account object.

116 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

AccountSid: The SID of the account to be opened. The server MUST verify that the SID is valid and fail
the request with STATUS_INVALID_PARAMETER otherwise. The server MUST verify that the account
object with this SID exists in its policy database and fail the request with
STATUS_OBJECT_NAME_NOT_FOUND otherwise.

DesiredAccess: A bitmask specifying the type of access the caller attempts to obtain from the account
object, which is access-checked according to section 3.1.4.2.1. The method-specific portion of the
check is the following.

IF (IsRequestorAnonymous () and LsaRestrictAnonymous is set to TRUE) THEN
Return STATUS OBJECT NAME NOT_ FOUND
END IF

The valid account rights bits are specified in section 2.2.1.1.3, and the security descriptor is specified
in section 3.1.1.3. The IsRequestorAnonymous procedure is specified in section 3.1.4.2.3.

AccountHandle: If the request is successful, this parameter is used to return a handle (section
3.1.1.7) to the opened account object with its fields initialized as follows:

» LsaContextHandle.HandleType = "Account"
= LsaContextHandle.Object = the account object

= LsaContextHandle.GrantedAccess = as specified in section 3.1.4.2.1

3.1.4.5.4 LsarEnumeratePrivilegesAccount (Opnum 18)

The LsarEnumeratePrivilegesAccount method is invoked to retrieve a list of privileges granted to an
account on the server.

NTSTATUS LsarEnumeratePrivilegesAccount (
[in] LSAPR HANDLE AccountHandle,
[out] PLSAPR PRIVILEGE SET* Privileges
)7

AccountHandle: An open account object handle obtained from either
LsarCreateAccount (section 3.1.4.5.1) or LsarOpenAccount (section 3.1.4.5.3).
Privileges: Used to return a list of privileges granted to the account.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC000009A There are insufficient resources to complete the request.
STATUS_INSUFFICIENT_RESOURCES

0xC0000022 The caller does not have the permissions to perform this
STATUS_ACCESS_DENIED operation.
0xC0000008 AccountHandle is not a valid handle.

STATUS_INVALID_HANDLE

117/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Processing:
This message takes two arguments:

AccountHandle: An open handle to an account object. If the handle is not a valid context handle to an
account object or AccountHandle.HandleType does not equal "Account", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that AccountHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to ACCOUNT_VIEW.

Privileges: Used to return a set of privileges associated with the account. It is valid for the set of
privileges to be empty.

The server MUST return STATUS_INSUFFICIENT_RESOURCES if it runs out of memory while
processing this request.

3.1.4.5.5 LsarAddPrivilegesToAccount (Opnum 19)

The LsarAddPrivilegesToAccount method is invoked to add new privileges to an existing account
object.

NTSTATUS LsarAddPrivilegesToAccount (
[in] LSAPR HANDLE AccountHandle,
[in] PLSAPR PRIVILEGE SET Privileges

)i

AccountHandle: An open account object handle obtained from either
LsarCreateAccount (section 3.1.4.5.1) or LsarOpenAccount (section 3.1.4.5.3).
Privileges: Contains a list of privileges to add to the account.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC000000D Some of the parameters supplied were invalid.
STATUS_INVALID_PARAMETER

0xC0000008 AccountHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes two arguments:

AccountHandle: An open handle to an account object. If the handle is not a valid context handle to an
account object or AccountHandle.HandleType does not equal "Account", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that AccountHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to ACCOUNT_ADJUST_PRIVILEGES.

Privileges: A set of privileges to add to an account. Each privilege is a LUID-Attributes pair where the
Luid field MUST match a LUID of a privilege on the server. The attributes replace any attributes of the

118/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

privilege if one was associated with the account previously. Any LUID not recognized as valid by the
server SHOULD cause the message to be rejected with STATUS_INVALID_PARAMETER.<71>

3.1.4.5.6 LsarRemovePrivilegesFromAccount (Opnum 20)

The LsarRemovePrivilegesFromAccount method is invoked to remove privileges from an account
object.

NTSTATUS LsarRemovePrivilegesFromAccount (

[in] LSAPR_HANDLE AccountHandle,

[in] unsigned char AllPrivileges,

[in, unique] PLSAPR PRIVILEGE SET Privileges
)

AccountHandle: An open account object handle obtained from either
LsarCreateAccount (section 3.1.4.5.1) or LsarOpenAccount (section 3.1.4.5.3).

AllPrivileges: If this parameter is not FALSE (0), all privileges will be stripped from the account
object.

Privileges: Contains a (possibly empty) list of privileges to remove from the account object.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC000000D Some of the parameters supplied were invalid.
STATUS_INVALID_PARAMETER

0xC0000008 AccountHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes three arguments:

AccountHandle: An open handle to an account object. If the handle is not a valid context handle to an
account object or AccountHandle.HandleType does not equal "Account”, the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that AccountHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to ACCOUNT_ADJUST_PRIVILEGES.

AllPrivileges: A Boolean value; if not FALSE (0), all privileges associated with the account are
removed. In this case, the server MUST check that the Privileges parameter is NULL, and fail the
request with STATUS_INVALID_PARAMETER otherwise.

Privileges: If AllPrivileges is FALSE (0), this parameter cannot be NULL. It will be used to remove
Privileges from the account object. The server MUST verify that Privileges is not NULL and fail the
request with STATUS_INVALID_PARAMETER otherwise.<72>

3.1.4.5.7 LsarGetSystemAccessAccount (Opnum 23)

119/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

The LsarGetSystemAccessAccount method is invoked to retrieve system access account flags for an
account object. System access account flags are described as part of the account object data model,
as specified in section 3.1.1.3.

NTSTATUS LsarGetSystemAccessAccount (
[in] LSAPR_HANDLE AccountHandle,
[out] unsigned long* SystemAccess

)i
AccountHandle: An open account object handle obtained from either
LsarCreateAccount (section 3.1.4.5.1) or LsarOpenAccount (section 3.1.4.5.3).
SystemAccess: Used to return a bitmask of access flags associated with the account.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC0000008 AccountHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes two arguments:

AccountHandle: An open handle to an account object. If the handle is not a valid context handle to an
account object or AccountHandle.HandleType does not equal "Account”, the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that AccountHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to ACCOUNT_VIEW.

SystemAccess: Used to return a bitmask of system access bits.

3.1.4.5.8 LsarSetSystemAccessAccount (Opnum 24)

The LsarSetSystemAccessAccount method is invoked to set system access account flags for an
account object.

NTSTATUS LsarSetSystemAccessAccount (
[in] LSAPR_HANDLE AccountHandle,
[in] unsigned long SystemAccess

)i
AccountHandle: An open account object handle obtained from either
LsarCreateAccount (section 3.1.4.5.1) or LsarOpenAccount (section 3.1.4.5.3).
SystemAccess: A bitmask containing the account flags to be set on the account.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

120/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC000000D One of the supplied parameters was invalid.
STATUS_INVALID_PARAMETER

0xC0000008 AccountHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes two arguments:

AccountHandle: An open handle to an account object. If the handle is not a valid context handle to an
account object or AccountHandle.HandleType does not equal "Account", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that AccountHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to ACCOUNT_ADJUST_SYSTEM_ACCESS.

SystemAccess: Specifies the set of access bits to be added to account's system access. The server
MUST verify that the bits do not fall outside the set of system access rights defined on the system,
and fail the request with STATUS_INVALID_PARAMETER otherwise. The new system access bits
replace the old ones.

3.1.4.5.9 LsarEnumerateAccountsWithUserRight (Opnum 35)

The LsarEnumerateAccountsWithUserRight method is invoked to return a list of account objects that
have the user right equal to the passed-in value.

NTSTATUS LsarEnumerateAccountsWithUserRight (

[in] LSAPR HANDLE PolicyHandle,

[in, unique] PRPC_UNICODE_ STRING UserRight,

[out] PLSAPR_ACCOUNT_ ENUM BUFFER EnumerationBuffer
)i

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
UserRight: The name of the right to use in enumeration.

EnumerationBuffer: Used to return the list of account objects that have the specified right.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

121/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0xC0000060 The supplied name is not recognized by the server.
STATUS_NO_SUCH_PRIVILEGE

0xC000000D One of the supplied arguments is invalid.
STATUS_INVALID_PARAMETER

0x8000001A No account was found with the specified privilege.
STATUS_NO_MORE_ENTRIES

Processing:
This message takes three arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_VIEW_LOCAL_INFORMATION.<73>

UserRight: A string representation of an account right. If the server does not recognize the account
right, it MUST return STATUS_NO_SUCH_PRIVILEGE.

The server executes the request by going through all accounts in its policy database and returning a
set of all account object SIDs that have that right or privilege.

EnumerationBuffer: Used to return a set of account SIDs that have the specified UserRight.

3.1.4.5.10 LsarEnumerateAccountRights (Opnum 36)

The LsarEnumerateAccountRights method is invoked to retrieve a list of rights associated with an
existing account.

NTSTATUS LsarEnumerateAccountRights (
[in] LSAPR HANDLE PolicyHandle,
[in] PRPC_SID Accountsid,
[out] PLSAPR USER _RIGHT_ SET UserRights
)i

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
AccountSid: A SID of the account object that the caller is inquiring about.

UserRights: Used to return a list of right names associated with the account.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this
STATUS_ACCESS_DENIED operation.
0xC000000D One or more of the supplied parameters was invalid.

STATUS_INVALID_PARAMETER

122 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0xC0000034 The specified account object does not exist.
STATUS_OBJECT_NAME_NOT_FOUND

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes two arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to ACCOUNT_VIEW.

AccountSid: A SID of the account to query. The server MUST verify that the SID pointed to by
AccountSid is valid and fail the request with STATUS_INVALID_PARAMETER otherwise. If
IsRequestorAnonymous() returns TRUE (section 3.1.4.2.3) and LsaRestrictAnonymous is set to TRUE,
the call MUST fail with STATUS_OBJECT_NAME_NOT_FOUND. The server MUST verify that such an
account exists in its database and fail the request with STATUS_OBJECT_NAME_NOT_FOUND
otherwise.

The server MUST return the string names of all the system access rights and privileges associated with
the account. It is valid for the server to return an empty set if the account object does not contain any
rights.

3.1.4.5.11 LsarAddAccountRights (Opnum 37)

The LsarAddAccountRights method is invoked to add new rights to an account object. If the account
object does not exist, the system will attempt to create one.

NTSTATUS LsarAddAccountRights (

[in] LSAPR HANDLE PolicyHandle,

[in] PRPC_SID Accountsid,

[in] PLSAPR USER _RIGHT_ SET UserRights
)i

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
AccountSid: A security identifier of an account to add the rights to.

UserRights: A set of right names to add to the account.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC000000D One or more of the supplied parameters was invalid.
STATUS_INVALID_PARAMETER

123/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0xC0000060 The rights supplied were not recognized.
STATUS_NO_SUCH_PRIVILEGE

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes three arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with:

= RequiredAccess set to POLICY_CREATE_ACCOUNT if the account identified by the AccountSid
parameter does not exist in the server's database, or

= RequiredAccess set to ACCOUNT_ADJUST_PRIVILEGES | ACCOUNT_ADJUST_SYSTEM_ACCESS |
ACCOUNT_VIEW if the account identified by the AccountSid parameter exists in the server's
database

AccountSid: A security identifier of the account object. The server MUST create the account object if
one does not exist.

UserRights: A set of system access rights and privileges to be added to the account. If the server does
not recognize any of the rights, it MUST return STATUS_NO_SUCH_PRIVILEGE.

3.1.4.5.12 LsarRemoveAccountRights (Opnum 38)

The LsarRemoveAccountRights method is invoked to remove rights from an account object.

NTSTATUS LsarRemoveAccountRights (

[in] LSAPR_HANDLE PolicyHandle,

[in] PRPC_SID AccountSid,

[in] unsigned char AllRights,

[in] PLSAPR USER _RIGHT_ SET UserRights
)i

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
AccountSid: A security descriptor of an account object.
AllRights: If this field is not set to 0, all rights will be removed.

UserRights: A set of rights to remove from the account.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this
operation.

124 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

STATUS_ACCESS_DENIED

0xC000000D One or more of the supplied parameters was invalid.
STATUS_INVALID_PARAMETER

0xC0000060 The rights supplied were not recognized.
STATUS_NO_SUCH_PRIVILEGE

0xC0000034 An account with this SID does not exist.
STATUS_OBJECT_NAME_NOT_FOUND

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

0xC00000BB The operation is not supported by the server.
STATUS_NOT_SUPPORTED

Processing:
This message takes four arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to ACCOUNT_ADJUST_PRIVILEGES |
ACCOUNT_ADJUST_SYSTEM_ACCESS | ACCOUNT_VIEW | DELETE.

If IsRequestorAnonymous() returns TRUE (section 3.1.4.2.3) and LsaRestrictAnonymous is set to
TRUE, the call MUST fail with STATUS_OBJECT_NAME_NOT_FOUND.

AccountSid: The security identifier of the account to modify. The server MUST verify that such an
account exists in its database and fail the request with STATUS_OBJECT_NAME_NOT_FOUND
otherwise.

AllRights: If nonzero, all system access rights and privileges will be stripped from the account.

UserRights: A set of rights and privileges to remove from the account. If the server does not recognize
any of the rights, server MUST return STATUS_NO_SUCH_PRIVILEGE.

The server MUST NOT allow removal of "SeAuditPrivilege", "SeChangeNotifyPrivilege",
"SelmpersonatePrivilege", and "SeCreateGlobalPrivilege" from accounts represented with SIDs "S-1-5-
19" and "S-1-5-20". The request MUST be rejected with STATUS_NOT_SUPPORTED.<74>

If the resulting set of access rights and privileges is empty, the server MUST delete the account object
from its database.

3.1.4.6 Secret Object Methods

The message processing of methods in this section MUST use the abstract data model defined in
section 3.1.1.4.

Method (opnum) Summary
LsarCreateSecret (opnum 16) Creates a new secret object in the policy database.
LsarOpenSecret (opnum 28) Opens a handle to an existing secret object.

125/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Method (opnum) Summary

LsarSetSecret (opnum 29) Sets the value of the secret object.

LsarQuerySecret (opnum 30) Retrieves the value of the secret object.

LsarStorePrivateData (opnum 42) Stores private data in the server's policy database as a secret object.
LsarRetrievePrivateData (opnum Retrieves private data from a secret object in the server's policy

43) database.

The server SHOULD<75> support the following methods:
= LsarSetSecret

= LsarQuerySecret

= LsarStorePrivateData

= LsarRetrievePrivateData

If the server does not support these methods, the server MUST respond with an RPC exception. If the
server supports these methods, the server MUST perform the operations in the message processing
section for each method.

3.1.4.6.1 LsarCreateSecret (Opnum 16)

The LsarCreateSecret method is invoked to create a new secret object in the server's database.

NTSTATUS LsarCreateSecret (

[in] LSAPR HANDLE PolicyHandle,
in] PRPC_UNICODE_STRING SecretName,
in] ACCESS MASK DesiredAccess,

[
[
[out] LSAPR HANDLE* SecretHandle

)7
PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

SecretName: The name of the secret object to be created.

DesiredAccess: A bitmask that specifies accesses to be granted to the newly created and opened
secret object at this time.

SecretHandle: Used to return a handle to the newly created secret object.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC000000D One of the supplied parameters is invalid. This can happen, for
STATUS INVALID PARAMETER example, if SecretHandle is NULL or if SecretName is not a valid
- - name for a secret object. Secret naming rules are specified in the
processing rules shown below for the SecretName parameter.

126 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0xC0000035 The secret object by the specified name already exists.
STATUS_OBJECT_NAME_COLLISION

0xC0000106 The length of specified secret name exceeds the maximum set by
STATUS_NAME_TOO_LONG the server.

0xC0000008 PolicyHandle is not a valid handle.

STATUS_INVALID_HANDLE

Processing:
This message takes four arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_CREATE_SECRET.

SecretName: Name of the secret object to be created. The server MUST verify that the string satisfies
the RPC_UNICODE_STRING syntax restrictions specified in section 3.1.4.10, and fail the request with
STATUS_INVALID_PARAMETER otherwise. The server MUST also check that the following constraints
are satisfied by SecretName, and fail the request with STATUS_INVALID_PARAMETER if the name
does not check out:

= Must not be empty.
= Must not contain the "\" character.<76><77><78>

DesiredAccess: Contains the access bits that the caller is asking to receive for the handle returned in
SecretHandle. DesiredAccess is access-checked according to section 3.1.4.2.1. The method-specific
portion of the check is the following.

IF (IsRequestorAnonymous () and LsaRestrictAnonymous is set to TRUE) THEN
Return STATUS OBJECT NAME NOT FOUND
END IF

The valid secret-rights bits are specified in section 2.2.1.1.4, and the security descriptor is specified in
section 3.1.1.4. The IsRequestorAnonymous procedure is specified in section 3.1.4.2.3.

SecretHandle: If the request is successful, this parameter is used to return a handle (section 3.1.1.7)
to the newly created secret object with its fields initialized as follows:

= LsaContextHandle.HandleType = "Secret"
= LsaContextHandle.Object = the secret object
» LsaContextHandle.GrantedAccess = as specified in section 3.1.4.2.1

Both "current time" and "old time" attributes of a secret will be set to the server's current time at the
instance of creation. Both "old value" and "current value" will be set to NULL until they are modified by
the LsarSetSecret message.

The server MUST check that the secret by the name SecretName does not already exist and fail the
request with STATUS_OBJECT_NAME_COLLISION otherwise.<79>

3.1.4.6.2 LsarOpenSecret (Opnum 28)

127 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

The LsarOpenSecret method is invoked to obtain a handle to an existing secret object.

NTSTATUS LsarOpenSecret (
[in] LSAPR HANDLE PolicyHandle,
[in] PRPC_UNICODE STRING SecretName,
[in] ACCESS_MASK DesiredAccess,
[out] LSAPR HANDLE* SecretHandle

)

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
SecretName: The name of the secret object to open.
DesiredAccess: The requested type of access.

SecretHandle: Used to return the handle to the opened secret object.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this
STATUS_ACCESS_DENIED operation.
0xC0000034 The secret with the specified name was not found.

STATUS_OBJECT_NAME_NOT_FOUND

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

0xC000000D Some of the parameters supplied were invalid.
STATUS_INVALID_PARAMETER

Processing:
This message takes four arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. PolicyHandle.GrantedAccess MUST NOT be considered for this call because
the access check MUST happen on the secret object.

SecretName: The name of the secret to be opened. The server MUST verify that the name syntax
restrictions on secrets specified in section 3.1.4.6.1 are satisfied, and fail the request with
STATUS_INVALID_PARAMETER otherwise. The server MUST verify that the secret object with this
name exists in its policy database and fail the request with STATUS_OBJECT_NAME_NOT_FOUND
otherwise.<80>

DesiredAccess: A bitmask specifying the type of access that the caller attempts to obtain from the
secret object, which is access-checked according to section 3.1.4.2.1. The method-specific portion of
the check is as follows:

IF (IsRequestorAnonymous () and LsaRestrictAnonymous is set to TRUE) THEN
Return STATUS OBJECT NAME NOT FOUND

128 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

END IF

The valid secret-rights bits are specified in section 2.2.1.1.4 and the security descriptor is specified in
section 3.1.1.4. The IsRequestorAnonymous procedure is specified in section 3.1.4.2.3.

SecretHandle: If the request is successful, this parameter is used to return a handle (section 3.1.1.7)
to the opened secret object with its fields initialized as follows:

= LsaContextHandle.HandleType = "Secret"
= LsaContextHandle.Object = the secret object

= LsaContextHandle.GrantedAccess = as specified in section 3.1.4.2.1

3.1.4.6.3 LsarSetSecret (Opnum 29)

The LsarSetSecret method is invoked to set the current and old values of the secret object.

NTSTATUS LsarSetSecret (
[in] LSAPR HANDLE SecretHandle,
[in, unique] PLSAPR CR CIPHER VALUE EncryptedCurrentValue,
[in, unique] PLSAPR CR CIPHER VALUE EncryptedOldvalue

)i

SecretHandle: An open secret object handle.
EncryptedCurrentValue: A binary large object (BLOB) representing a new encrypted cipher value. It
is valid for this parameter to be NULL, in which case the value is deleted from the server's policy

database.

EncryptedOldValue: A BLOB representing the encrypted old value. It is valid for this parameter to be
NULL, in which case the current value in the policy database is copied.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC000000D One or more of the supplied parameters was invalid.
STATUS_INVALID_PARAMETER

0xC0000008 SecretHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message contains three input parameters:

SecretHandle: An open handle to a secret object. If the handle is not a valid context handle to a secret
object or SecretHandle.HandleType does not equal "Secret"”, the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that SecretHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to SECRET_SET_VALUE.<81>

129 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

EncryptedCurrentValue: The version of the new secret value that is being set, encrypted as specified
in section 5.1.2. It is valid for this parameter to be NULL, in which case the server MUST delete the
current value in its database. If decryption fails, the server must return an implementation-specific
error.<82>

EncryptedOldValue: The version of the old secret value that is being set, encrypted as specified in
section 5.1.2. It is valid for this parameter to be NULL, in which case the server MUST delete the old
value in its database and replace it with the previous version of "CurrentValue". If decryption fails, the
server must return an implementation-specific error.<83>

The server MUST also maintain "time stamp" values for current and old values of the secret object.
The following table lists the rules by which the time stamps are computed.

Old secret value | New secret value | Effect on old time Effect on new time
NULL NULL Old value of "new secret time" | Current server time
NULL Non-NULL Old value of "new secret time" | Current server time
Non-NULL NULL Current server time Current server time
Non-NULL Non-NULL Current server time Current server time

3.1.4.6.4 LsarQuerySecret (Opnum 30)

The LsarQuerySecret method is invoked to retrieve the current and old (or previous) value of the
secret object.

NTSTATUS LsarQuerySecret (
[in] LSAPR HANDLE SecretHandle,
in, out, unique] PLSAPR CR CIPHER VALUE* EncryptedCurrentValue,
in, out, unique] PLARGE INTEGER CurrentValueSetTime,
in, out, unique] PLSAPR CR CIPHER VALUE* EncryptedOldvalue,
in, out, unique] PLARGE INTEGER OldValueSetTime
)i

SecretHandle: An open secret object handle.
EncryptedCurrentValue: Used to return the encrypted current value of the secret object.

CurrentValueSetTime: Used to return the time when the current value was set.

EncryptedOldValue: A BLOB representing the encrypted old value. It is valid for this parameter to be
NULL, in which case the current value in the policy database is copied.

OldValueSetTime: The time corresponding to the instant that the old value was last changed.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

130/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0xC0000008 SecretHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes five arguments:

SecretHandle: An open handle to a secret object. If the handle is not a valid context handle to a secret
object or SecretHandle.HandleType does not equal "Secret"”, the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that SecretHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to SECRET_QUERY_VALUE.<84>

EncryptedCurrentValue: Used to return the current value of the secret, encrypted as specified in
section 5.1.2. This parameter can be NULL if the caller is not interested in this information.<85>

CurrentValueSetTime: The time corresponding to the instant that the current value was last changed.
This parameter can be NULL if the caller is not interested in this information.

EncryptedOldValue: Used to return the old value of the secret, encrypted as specified in section 5.1.2.
This parameter can be NULL if the caller is not interested in this information.<86>

OldValueSetTime: The time corresponding to the instance that the old value was last changed. This
parameter can be NULL if the caller is not interested in this information.

3.1.4.6.5 LsarStorePrivateData (Opnum 42)

The LsarStorePrivateData method is invoked to store a secret value.

NTSTATUS LsarStorePrivateData (

[in] LSAPR HANDLE PolicyHandle,

[in] PRPC_UNICODE STRING KeyName,

[in, unique] PLSAPR CR _CIPHER VALUE EncryptedData
)i

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
KeyName: The name under which private data will be stored.

EncryptedData: The secret value to be stored.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

0xC000000D One or more of the supplied parameters was invalid.
STATUS_INVALID_PARAMETER

131/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Processing:
This message takes three arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_CREATE_SECRET.

KeyName: A string identifying the name of the secret object under which the private data would be
stored. The server MUST verify that KeyName is syntactically valid and reject the request with
STATUS_INVALID_PARAMETER otherwise. If a secret object by this name does not exist and the
EncryptedData parameter is not NULL, the server MUST verify that the caller has
POLICY_CREATE_SECRET access. If the secret does exist and the EncryptedData parameter is not
NULL, the access check is performed for the SECRET_SET_VALUE right against the secret's security
descriptor. If the access check fails, the server MUST return STATUS_ACCESS_DENIED. If the
EncryptedData parameter is NULL, the server MUST check that the caller has DELETE access to the
secret object and, if so, delete the secret object from the policy database.

EncryptedData: The value of the secret to be stored. This value is encrypted as specified in section
5.1.2. As mentioned already, a caller that wants the secret to be deleted simply passes NULL for this
value. If decryption fails, the server must return an implementation-specific error.<87>

3.1.4.6.6 LsarRetrievePrivateData (Opnum 43)

The LsarRetrievePrivateData method is invoked to retrieve a secret value.

NTSTATUS LsarRetrievePrivateData (

[in] LSAPR HANDLE PolicyHandle,

[in] PRPC_UNICODE STRING KeyName,

[in, out] PLSAPR CR CIPHER VALUE* EncryptedData
)i

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
KeyName: The name identifying the secret value to be retrieved.

EncryptedData: Receives the encrypted value of the secret object.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this
STATUS_ACCESS_DENIED operation.
0xC000000D One of the supplied parameters was invalid.

STATUS_INVALID_PARAMETER

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

0xC0000034 The key with the specified name was not found.
STATUS_OBJECT_NAME_NOT_FOUND

132 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Processing:
This message takes three arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to SECRET_QUERY_VALUE.

KeyName: A string identifying the name of the secret object to be queried. If
IsRequestorAnonymous() returns TRUE (section 3.1.4.2.3) and LsaRestrictAnonymous is set to TRUE,
the call MUST fail with STATUS_OBIJECT_NAME_NOT_FOUND. If a secret object by this name does not
exist, the server MUST return STATUS_OBJECT_NAME_NOT_FOUND.

EncryptedData: Used to return an encrypted version of the secret value. This value is encrypted as
specified in section 5.1.2.

,

Processing

OpenSecret with the exception that the encrypted secret name is

he processing is the same as Lsar
first decrypted.| ypted.
3.1.4.6.8 (Added Section) [E=Te f=F1 (= =Te[f=1 A (0] 513 (1171 B/

he LsarCreateSecret2 method is invoked to create a new secret object in the server's database.<89>

,

Cipher Usage (section 5.1.5).

133/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

3.1.4.6.9 (Added Section) [E=ETT= =Tl (=1 r (01513 1110y W0 Be e

he LsarSetSecret2 method is invoked to set the current and old values of the secret object.<90>

,

SecretHandle: A handle to an open secret object.

server's policy database

3.1.4.6.10 (Added Section) [E=T0 = a =Tl f=1 P (0] 1o 10 5y I fei*)

he LsarQuerySecret2 method is invoked to retrieve the current and old (or previous) value of the
secret object. <9 1> NNNG

secret object.<91> -

)

,

SecretHandle: A handle to an open secret object.

134/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Processing:|

he processing is the same as LsarQuerySecret with the exception that, when non-NULL, the)

rypted Encrypted

e
3.1.4.6.11 (Added Section) [E=ETaS (= il El (=] = P pnum 140)

he LsarStorePrivateData2 method is invoked to store a secret value.<92>

[in] PLSAPR AES CIPHER VALUE EncryptedKeyName,
[in,unique] PLSAPR AES CIPHER VALUE EncryptedData

EncryptedData: The secret value to be stored. This is encrypted to specification
Usasection 5.1.5)]

Return Values: The return values are the same as specified for LsarStorePrivateData (section

. <65

Processing

he processing is the same as LsarStorePrivateData with the exception that the encrypted

3.1.4.6.12 (Added Section) [EETa 1 E A L\ ETE Ao [W 25

he LsarRetrievePrivateData2 method is invoked to retrieve a secret value.<93>

INTSTATUS LsarRetrievePrivateData? (

,

ptedKeyName: The name identifying the secret value to be retrieved. This is encrypted to
specification per AES Cipher Usage (section 5.1.5).

135/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

EncryptedData: Receives the encrypted value of the secret ob

e : i
per AES Cipher Usage (section 5.1.5).

3.1.4.7 Trusted Domain Object Methods

Trusted domain objects SHOULD be created only on a server implementation that is in the domain
controller configuration.<94>

The message processing of methods in this section MUST use the abstract data model as specified in
section 3.1.1.5.

Method (opnum)

Summary

LsarCreateTrustedDomainEx2 (opnum 59)

Creates a new trusted domain object in the server's policy
database.

LsarCreateTrustedDomainEx (opnum 51)

Superseded by LsarCreateTrustedDomainEx2.

LsarCreateTrustedDomain (opnum 12)

Superseded by LsarCreateTrustedDomainEx2.

LsarOpenTrustedDomain (opnum 25)

Opens a handle to an existing trusted domain object that
matches the given domain security identifier.

LsarOpenTrustedDomainByName (opnum
55)

Opens a handle to an existing trusted domain object that
matches the given DNS or NetBIOS name.

LsarQueryTrustedDomainInfo (opnum 39)

Obtains information about a trusted domain object.

LsarSetTrustedDomainInfo (opnum 40)

Sets information on a trusted domain object.

LsarSetTrustedDomainInfoByName (opnum
49)

Sets information on a trusted domain object without having to
first open a handle to it.

LsarSetInformationTrustedDomain (opnum
27)

Sets information on a trusted domain object.

LsarQueryTrustedDomainInfoByName
(opnum 48)

Obtains information about a trusted domain object without
having to first open a handle to it.

LsarQueryInfoTrustedDomain (opnum 26)

Obtains information about a trusted domain object.

LsarDeleteTrustedDomain (opnum 41)

Removes a trusted domain object from the server's policy
database.

LsarEnumerateTrustedDomainsEx (opnum
50)

Enumerates all trusted domain objects in the server's policy
database.

LsarEnumerateTrustedDomains (opnum
13)

Enumerates trusted domain objects in the server's policy
database.

LsarQueryForestTrustInformation (opnum
73)

Obtains information from a trusted domain object corresponding
to a forest trust relationship.

LsarSetForestTrustInformation (opnum 74)

Sets information on a trusted domain object corresponding to a
cross-forest trust relationship.

136 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

3.1.4.7.1 (Updated Section) LsarOpenTrustedDomain (Opnum 25)

The LsarOpenTrustedDomain method is invoked to obtain a handle to a trusted domain object.

NTSTATUS LsarOpenTrustedDomain (
[in] LSAPR HANDLE PolicyHandle,

in] PRPC_SID TrustedDomainSid,

in] ACCESS MASK DesiredAccess,

[
[
[out] LSAPR HANDLE* TrustedDomainHandle

)
PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
TrustedDomainSid: A security identifier of the trusted domain that is being opened.
DesiredAccess: A bitmask of access rights to open the object with.

TrustedDomainHandle: Used to return the trusted domain object handle.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code

Description

0x00000000
STATUS_SUCCESS

The request was successfully completed.

0xC0000022
STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this
operation.

0xC000000D
STATUS_INVALID_PARAMETER

One of the supplied parameters is invalid. For instance, this
can happen if the security identifier TrustedDomainSid is not
a valid domain security identifier. Section 3.1.4.10 specifies

data validation rules, including what constitutes a valid
domain security identifier.

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

0xC00000DF The specified trusted domain object does not exist.
STATUS_NO_SUCH_DOMAIN

0xC00002B1 The Active Directory service was not available on the server.
STATUS_DIRECTORY_SERVICE_REQUIRED

Processing:

If Active Directory is not running on this machine, the server MUST return
STATUS_DIRECTORY_SERVICE_REQUIRED.

This message takes four arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. PolicyHandle.GrantedAccess MUST NOT be considered for this call because
the access check MUST happen on the trusted domain object.

137/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

TrustedDomainSid: A SID of the trusted domain object. The server MUST verify that the SID is a valid
domain SID and reject the request with STATUS_INVALID_PARAMETER otherwise. If the trusted
domain object with this SID does not exist, the server MUST fail the request with
STATUS_NO_SUCH_DOMAIN error code.

DesiredAccess: A bitmask specifying the type of access the caller attempts to obtain from the trusted
domain object, which is access-checked according to section 3.1.4.2.1. There is no method-specific
portion of the check. The valid trusted-domain-rights bits are specified in section 2.2.1.1.5, and the
security descriptor is specified in section 3.1.1.5.

TrustedDomainHandle: If the request is successful, this parameter is used to return a handle ésection
3.1.1.7) to the opened trusted domain object with its fields initialized as follows: <{& 84 >

» LsaContextHandle.HandleType = "Trusted Domain"
= LsaContextHandle.Object = the trusted domain object

= LsaContextHandle.GrantedAccess = as specified in section 3.1.4.2.1

3.1.4.7.2 LsarQueryTrustedDomainInfo (Opnum 39)

The LsarQueryTrustedDomainInfo method is invoked to retrieve information on a trusted domain
object.

NTSTATUS LsarQueryTrustedDomainInfo (
[in] LSAPR HANDLE PolicyHandle,
in] PRPC_SID TrustedDomainSid,
in] TRUSTED_ INFORMATION CLASS InformationClass,
out, switch is(InformationClass)]
PLSAPR TRUSTED DOMAIN INFO* TrustedDomainInformation

[
[
[

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
TrustedDomainSid: A security descriptor of the trusted domain object.
InformationClass: Identifies the type of information the caller is interested in.

TrustedDomainInformation: Used to return the information on the trusted domain object to the
caller.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this
STATUS_ACCESS_DENIED operation.
0xC000000D One or more of the supplied parameters was invalid.

STATUS_INVALID_PARAMETER

0xC0000002 The specified information class is not supported.

STATUS_NOT_IMPLEMENTED

0xC0000003 The InformationClass argument is outside the allowed range.
138 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

STATUS_INVALID_INFO_CLASS

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

0xCO00000DF The specified trusted domain object does not exist.
STATUS_NO_SUCH_DOMAIN

0xC00002B1 The Active Directory service was not available on the server.
STATUS_DIRECTORY_SERVICE_REQUIRED

Processing:

If Active Directory is not running on this machine, the server MUST return
STATUS_DIRECTORY_SERVICE_REQUIRED.

This message takes four arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set as specified in section 3.1.4.7.13.

TrustedDomainSid: The SID of the trusted domain object to query. The server MUST verify that the
caller has supplied a valid domain SID for this parameter and fail the request with
STATUS_INVALID_PARAMETER if the check fails. The server MUST verify that a trusted domain object
with this SID exists in its policy database and fail the request with STATUS_NO_SUCH_DOMAIN
otherwise.

InformationClass: A value from the TRUSTED_INFORMATION_CLASS enumeration that specifies which
type of information the caller is requesting. Not all values are valid. For values outside the
TRUSTED_INFORMATION_CLASS enumeration range, the server MUST reject the request with
STATUS_INVALID_PARAMETER. For InformationClass values TrustedControllersInformation,
TrustedDomainAuthInformationInternal, TrustedDomainFulllnformationInternal, and for any values
that would be rejected by an LsarQueryInfoTrustedDomain call, the server MUST reject the request
with an implementation-specific error. For all other InformationClass values, the server MUST behave
as if it is processing an LsarQueryInfoTrustedDomain call with a trusted domain handle to the trusted
domain identified by the TrustedDomainSid parameter.

TrustedDomainInformation: Used to return the requested information.

3.1.4.7.3 LsarSetTrustedDomainInfo (Opnum 40)

The LsarSetTrustedDomainInfo method is invoked to set information on a trusted domain object. In
some cases, if the trusted domain object does not exist, it will be created.

NTSTATUS LsarSetTrustedDomainInfo (
[in] LSAPR HANDLE PolicyHandle,
in] PRPC_SID TrustedDomainSid,
in] TRUSTED INFORMATION CLASS InformationClass,
in, switch is(InformationClass)]
PLSAPR TRUSTED DOMAIN_ INFO TrustedDomainInformation

[
[
[
)i

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainSid: A SID of the trusted domain object to be modified.

139/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

InformationClass: Identifies the type of information to be set on the trusted domain object.
TrustedDomainInformation: Information to be set on the trusted domain object.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this
STATUS_ACCESS_DENIED operation.
0xC000000D One or more of the supplied parameters was invalid.

STATUS_INVALID_PARAMETER

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

0xC00000DF The specified trusted domain object does not exist.
STATUS_NO_SUCH_DOMAIN

0xC00002B1 The Active Directory service was not available on the server.
STATUS_DIRECTORY_SERVICE_REQUIRED

Processing:

If Active Directory is not running on this machine, the server MUST return
STATUS_DIRECTORY_SERVICE_REQUIRED.

This method is similar to the LsarSetInformationTrustedDomain method, with some important
differences. For one, this method takes a policy object handle instead of a trusted domain object
handle. Another important distinction is that for some information classes this method, unlike
LsarSetInformationTrustedDomain, will create a trusted domain object if one does not exist already.

This message takes four arguments:

PolicyHandle: An open handle to the policy object. The access rights required to perform the operation
depend on the value of the InformationClass parameter. The access bits required for each information
class are specified in section 3.1.4.7.14. If the handle is not a valid context handle to the policy object
or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. PolicyHandle.GrantedAccess MUST NOT be considered for this call because
the access check MUST happen on the trusted domain object. If the server is a read-only domain
controller, it MUST return an error.<97>

TrustedDomainSid: A SID of the trusted domain object to modify. The server MUST verify that the
caller has supplied a valid domain SID for this parameter and fail the request with
STATUS_INVALID_PARAMETER if the check fails.

InformationClass: A value from the TRUSTED_INFORMATION_CLASS enumeration that specifies which
type of information the caller is setting. Not all InformationClass values are valid. The valid
InformationClass values for this method are as follows:

» TrustedDomainNamelnformation: The server MUST act as if an LsarCreateTrustedDomain
message came in with its TrustedDomainInformation.Name parameter as the name passed in the
TrustedDomainInformation parameter, its TrustedDomainInformation.Sid parameter as the SID
passed in the TrustedDomainSid parameter, and its DesiredAccess parameter set to zero.

140 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

» TrustedPosixOffsetInformation: The server MUST verify that a trusted domain object with this SID
exists in its policy database. If the object does not exist, the call MUST fail with
STATUS_NO_SUCH_DOMAIN. Otherwise, the server MUST verify that the caller has access to the
trusted domain object as specified in section 3.1.4.2.1 with DesiredAccess set to
TRUSTED_SET_POSIX. There is no method-specific portion of this check.

Then the server MUST act as if an LsarSetInformationTrustedDomain message is being processed.

The server MAY support the following InformationClass values.<98> If the server does not support
these values, it MUST return STATUS_INVALID_PARAMETER. If the server supports these values, it
MUST perform the corresponding operations:

= TrustedDomainInformationEx: The server MUST check that a trusted domain object with this SID
exists in its policy database. If the object does not exist, the server MUST create a new trusted
domain object using the same processing rules as LsarCreateTrustedDomainEx2, and using the
following parameters for the LsarCreateTrustedDomainEx2 processing rules:

= PolicyHandle set to the same PolicyHandle in the original message.

= TrustedDomainInformation set to the same TrustedDomainInformation in the original
message.

= AuthenticationInformation set to NULL.
= DesiredAccess set to zero.

If the object does exist, the server MUST set the trusted domain information using the same
processing rules as LsarSetInformationTrustedDomain, and using the following parameters for the
LsarSetInformationTrustedDomain processing rules:

= TrustDomainHandle set to the handle to the trusted domain object.
= InformationClass set to the same InformationClass in the original message.

= TrustedDomainInformation set to the same TrustedDomainInformation in the original
message.

= TrustedPasswordInformation: The server MUST verify that a trusted domain object with this SID
exists in its policy database. If the object does not exist, the call MUST fail with
STATUS_NO_SUCH_DOMAIN. Otherwise, the server MUST open the secret object, as defined in
section 3.1.1.4, (or create a secret object, if one does not already exist) with "Name" set to
"G$$<Trusted Domain Name>". The server MUST then set "Old Value" of the secret object to the
"OldPassword" value in TrustedDomainInformation and set "New Value" of the secret object to the
"Password" value in TrustedDomainInformation, similar to the processing when an LsarSetSecret
request has been made.

The server MUST return STATUS_INVALID_PARAMETER for all other InformationClass arguments.

TrustedDomainInformation: Contains the data supplied by the caller to be set on the trusted domain
object.

3.1.4.7.4 LsarDeleteTrustedDomain (Opnum 41)

The LsarDeleteTrustedDomain method is invoked to delete a trusted domain object (TDO).

NTSTATUS LsarDeleteTrustedDomain (
[in] LSAPR HANDLE PolicyHandle,
[in] PRPC_SID TrustedDomainSid

)i

141 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
TrustedDomainSid: A security descriptor of the TDO to be deleted.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000
STATUS_SUCCESS

The request was successfully completed.

0xC0000022
STATUS_ACCESS_DENIED

The caller does not have the permissions to perform
this operation.

0xCO0000DF
STATUS_NO_SUCH_DOMAIN

The specified TDO does not exist.

0xC000000D
STATUS_INVALID_PARAMETER

One or more of the supplied parameters was
invalid.

0xC0000008
STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC00002B1
STATUS_DIRECTORY_SERVICE_REQUIRED

The Active Directory service was not available on
the server.

0xC0000403
STATUS_USER_DELETE_TRUST_QUOTA_EXCEEDED

The caller's quota for the maximum allowed number
of deleted TDOs is exceeded.

Processing:

If Active Directory is not running on this machine, the server MUST return
STATUS_DIRECTORY_SERVICE_REQUIRED.

If the number of deleted TDOs that were created by the caller through the control access right Create-
Inbound-Trust (defined in [MS-ADTS] section 5.1.3.2.1) exceeds the value in the msDS-
PerUserTrustTombstonesQuota attribute of the domain naming context (domain NC) root object
(defined in [MS-ADTS] section 6.1.1.1.4), the server MUST return
STATUS_USER_DELETE_TRUST_QUOTA_EXCEEDED. For the syntax of the msDS-
PerUserTrustTombstonesQuota attribute, refer to [MS-ADA2] section 2.424. The server MUST enforce
the quota check only for the TDOs created by control access right Create-Inbound-Trust and if the
caller is the creator of that TDO.

This message takes two arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to TRUSTED_QUERY_DOMAIN_NAME | DELETE.

TrustedDomainSid: The SID of a TDO to be deleted. The server MUST verify that the caller has
supplied a valid domain SID for this parameter and fail the request with
STATUS_INVALID_PARAMETER if the check fails. The server MUST verify that a TDO with this SID
exists in its policy database and fail the request with STATUS_NO_SUCH_DOMAIN otherwise.

If the server is a read-only domain controller, it MUST return an error.<99>

The server MUST also check whether a secret with name "G$$<Trusted Domain Name>" exists or not.
If it exists, the server MUST delete that secret along with the trusted domain.

142 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

The server MUST also check whether an interdomain trust account with name "<Trusted Domain
NetBIOS Name>$" exists. If it exists, the server MUST delete that account along with the trusted
domain.

3.1.4.7.5 LsarQueryTrustedDomainInfoByName (Opnum 48)

The LsarQueryTrustedDomainInfoByName method is invoked to retrieve information about a trusted
domain object by its string name.

NTSTATUS LsarQueryTrustedDomainInfoByName (
[in] LSAPR HANDLE PolicyHandle,
] PRPC_UNICODE STRING TrustedDomainName,
] TRUSTED INFORMATION CLASS InformationClass,
out, switch is(InformationClass)]
PLSAPR_TRUSTED DOMAIN_ INFO* TrustedDomainInformation

in
in

[
[
[
)

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
TrustedDomainName: The name of the trusted domain object to query.

InformationClass: One of the TRUSTED_INFORMATION_CLASS values identifying the type of
information the caller is interested in.

TrustedDomainInformation: Used to return the information requested by the caller.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this
STATUS_ACCESS_DENIED operation.
0xC000000D One of the supplied parameters was invalid.

STATUS_INVALID_PARAMETER

0xC0000034 The trusted domain object with the specified name could not be
STATUS_OBJECT_NAME_NOT_FOUND | found.

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:

This message is identical in its operation to LsarQueryInfoTrustedDomain; the only exception is that
the TrustedDomainName parameter is used to locate the trusted domain object, rather than having
the caller supply the trusted domain object handle.

The trusted domain object is located by matching the TrustedDomainName parameter against the
trusted domain object in the server's policy database. The trailing period on DNS names is ignored for
the purposes of comparison.

3.1.4.7.6 LsarSetTrustedDomainInfoByName (Opnum 49)

143 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

The LsarSetTrustedDomainInfoByName method is invoked to set information about a trusted domain
object by its string name.

NTSTATUS LsarSetTrustedDomainInfoByName (
[in] LSAPR HANDLE PolicyHandle,
[in] PRPC_UNICODE STRING TrustedDomainName,
[in] TRUSTED INFORMATION CLASS InformationClass,
[in, switch is(InformationClass)]
PLSAPR_TRUSTED DOMAIN_ INFO TrustedDomainInformation

)i
PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
TrustedDomainName: The name of the trusted domain object to set information on.

InformationClass: One of the TRUSTED_INFORMATION_CLASS values indicating the type of
information the caller is trying to set.

TrustedDomainInformation: The data being set.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this
STATUS_ACCESS_DENIED operation.
0xC000000D One of the supplied arguments is invalid.

STATUS_INVALID_PARAMETER

0xC0000034 The trusted domain object with the specified hame could not be
STATUS_OBJECT_NAME_NOT_FOUND found.

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:

This message is identical in its operation to LsarSetInformationTrustedDomain; the only exception is
that the TrustedDomainName parameter is used to locate the trusted domain object, rather than
having the caller supply the trusted domain object handle.

The trusted domain object is located by matching the TrustedDomainName parameter against the
trusted domain object in the server's policy database. The trailing period on DNS names is ignored for
the purposes of comparison.

3.1.4.7.7 LsarEnumerateTrustedDomainsEx (Opnum 50)

The LsarEnumerateTrustedDomainsEx method is invoked to enumerate trusted domain objects in the
server's database. The method is designed to be invoked multiple times to retrieve the data in
fragments.

NTSTATUS LsarEnumerateTrustedDomainsEx (
[in] LSAPR HANDLE PolicyHandle,
[in, out] unsigned long* EnumerationContext,

144 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

[out] PLSAPR TRUSTED ENUM BUFFER EX EnumerationBuffer,
[in] unsigned long PreferedMaximumLength
)i
PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

EnumerationContext: Used to keep track of the state of the enumeration in cases where the caller
obtains its information in several fragments.

EnumerationBuffer: Contains a fragment of requested information.
PreferedMaximumLength: A value that indicates the approximate size of the data to be returned.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0x8000001A No more information is available.
STATUS_NO_MORE_ENTRIES

0x00000105 More information is available by calling this method again.
STATUS_MORE_ENTRIES

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes four arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_VIEW_LOCAL_INFORMATION.

EnumerationContext: A number that indicates a starting index at which to begin the enumeration. The
server MUST always return all trusted domain objects in the same order, starting at the object whose
index is EnumerationContext. To initiate a new enumeration, the client sets EnumerationContext to
zero; otherwise, the client sets EnumerationContext to a value returned by a previous call to the
method.

The server MUST return STATUS_INVALID_PARAMETER if the EnumerationContext parameter is NULL.

EnumerationBuffer: Used to return the results of enumeration. The server MUST fill EnumerationBuffer
with as many trusted domain objects as possible, as determined by PreferedMaximumLength. If the
size of all remaining objects is less than or equal to PreferedMaximumLength, the server MUST fill
EnumerationBuffer with all objects. If the size of all remaining objects is greater than
PreferedMaximumLength, the server MUST fill EnumerationBuffer with objects such that the size of the
trusted domain objects returned is greater than or equal to PreferedMaximumLength, but would be
less than PreferedMaximumLength if the last object had not been added to EnumerationBuffer. If there
are no more objects than are returned in EnumerationBuffer, the server MUST return

145/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

STATUS_NO_MORE_ENTRIES. If there are more database objects than are returned in
EnumerationBuffer, the server MUST set the EnumerationContext value to the index value that would
allow it to resume enumeration correctly when this method is called again, and the server MUST
return STATUS_MORE_ENTRIES. Note that this return value is not an error status.

PreferedMaximumLength: An indication about the approximate size, in bytes, of the data to be
returned. Any unsigned 32-bit value is valid for the PreferedMaximumLength parameter.

If Active Directory is not running on this machine, the server MUST fill 0 objects in EnumerationBuffer,
and return STATUS_NO_MORE_ENTRIES.

3.1.4.7.8 LsarEnumerateTrustedDomains (Opnum 13)

The LsarEnumerateTrustedDomains method is invoked to request a list of trusted domain objects in
the server's database. The method can be called multiple times to return its output in fragments.

NTSTATUS LsarEnumerateTrustedDomains (
[in] LSAPR HANDLE PolicyHandle,
[in] [out] unsigned long *EnumerationContext,
[out] PLSAPR TRUSTED ENUM BUFFER EnumerationBuffer,
[in] unsigned long PreferedMaximumLength

)i
PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
EnumerationContext: A pointer to a context value that is used to resume enumeration, if necessary.
EnumerationBuffer: A pointer to a structure that will contain the results of the enumeration.

PreferedMaximumLength: A value that indicates the approximate size of the data to be returned.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC0000105 More information is available to successive calls.
STATUS_MORE_ENTRIES

0xC000001A No more entries are available from the enumeration.
STATUS_NO_MORE_ENTRIES

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes four arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_VIEW_LOCAL_INFORMATION.

146 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

EnumerationContext: A number that indicates a starting index at which to begin the enumeration. The
server MUST always return all trusted domain objects in the same order, starting at the object whose
index is EnumerationContext. To initiate a new enumeration, the client sets EnumerationContext to
zero; otherwise, the client sets EnumerationContext to a value returned by a previous call to the
method.

The server MUST return STATUS_INVALID_PARAMETER if the EnumerationContext parameter is NULL.

This method differs from the LsarEnumerateTrustedDomainsEx method in one significant way-in
mixed-mode forests, this method returns to the caller an entire set of domains within the forest by
enumerating all the cross-referenced objects in Active Directory in addition to domains that are
trusted explicitly.

EnumerationBuffer: Used to return the results of enumeration. The server MUST fill EnumerationBuffer
with as many trusted domain objects as possible, as determined by PreferedMaximumLength. If the
size of all remaining objects is less than or equal to PreferedMaximumLength, the server MUST fill
EnumerationBuffer with all objects. If the size of all remaining objects is greater than
PreferedMaximumLength, the server MUST fill EnumerationBuffer with objects such that the size of the
trusted domain objects returned is greater than or equal to PreferedMaximumLength, but would be
less than PreferedMaximumLength if the last object had not been added to EnumerationBuffer. If there
are no more objects than are returned in EnumerationBuffer, the server MUST return
STATUS_NO_MORE_ENTRIES. If there are more database objects than are returned in
EnumerationBuffer, the server MUST set the EnumerationContext value to the index value that would
allow it to resume enumeration correctly when this method is called again, and the server MUST
return STATUS_MORE_ENTRIES. Note that this return value is not an error status.

When enumerating trusted domain objects for this message, the server MUST limit the trusted domain
objects returned to the following subset only:

= Qutbound Trusts: The trust direction has the TRUST_DIRECTION_OUTBOUND bit set.

= Uplevel or Downlevel Trusts: The trust type is TRUST_TYPE_DOWNLEVEL or
TRUST_TYPE_UPLEVEL.

= Non-uplevel-only Trusts: The Trust Attributes field does not have the
TRUST_ATTRIBUTE_UPLEVEL_ONLY bit set.

Trust types and attributes are specified in [MS-ADTS] section 6.1.6.

PreferedMaximumLength: An indication about the approximate size, in bytes, of the data to be
returned. Any unsigned 32-bit value is valid for the PreferedMaximumLength parameter.

If Active Directory is not running on this machine, the server MUST fill 0 objects in EnumerationBuffer,
and return STATUS_NO_MORE_ENTRIES.

3.1.4.7.9 LsarOpenTrustedDomainByName (Opnum 55)

The LsarOpenTrustedDomainByName method is invoked to open a trusted domain object handle by
supplying the name of the trusted domain.

NTSTATUS LsarOpenTrustedDomainByName (
[in] LSAPR HANDLE PolicyHandle,
[in] PRPC UNICODE STRING TrustedDomainName,
[in] ACCESS MASK DesiredAccess,
[out] LSAPR_HANDLE* TrustedDomainHandle

)

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

147 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

TrustedDomainName: The name of the trusted domain object.
DesiredAccess: The type of access requested by the caller.
TrustedDomainHandle: Used to return the opened trusted domain handle.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this
STATUS_ACCESS_DENIED operation.
0xC000000D One of the supplied arguments was invalid.

STATUS_INVALID_PARAMETER

0xC0000034 A trusted domain object by this name was not found.
STATUS_OBJECT_NAME_NOT_FOUND

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes four arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. PolicyHandle.GrantedAccess MUST NOT be considered for this call because
the access check MUST happen on the trusted domain object.

TrustedDomainName: Contains the name of the trusted domain to be opened. This can be a DNS or a
NetBIOS name. If the server cannot locate a trusted domain object by this name in its policy
database, the server MUST return STATUS_OBJECT_NAME_NOT_FOUND. The same status code MUST
be returned by the server if Active Directory is not running on this machine.

DesiredAccess: The set of rights that the caller attempts to obtain from the trusted domain object,
which is access-checked according to section 3.1.4.2.1. There is ho method-specific portion of the
check. The valid trusted-domain-rights bits are specified in section 2.2.1.1.5, and the security
descriptor is specified in section 3.1.1.5.

TrustedDomainHandle: If the request is successful, this parameter is used to return a handle (section
3.1.1.7) to the opened trusted domain object with its fields initialized as follows:

» LsaContextHandle.HandleType = "Trusted Domain"
= LsaContextHandle.Object = the trusted domain object

= LsaContextHandle.GrantedAccess = as specified in section 3.1.4.2.1

3.1.4.7.10 (Updated Section) LsarCreateTrustedDomainEx2 (Opnum 59)

The LsarCreateTrustedDomainEx2 method is invoked to create a new trusted domain object
(TDO).<100>

148 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

NTSTATUS LsarCreateTrustedDomainEx2 (
[in] LSAPR HANDLE PolicyHandle,
in]
in]

in] ACCESS MASK DesiredAccess,
out] LSAPR HANDLE* TrustedDomainHandle

)i

PLSAPR TRUSTED DOMAIN INFORMATION EX TrustedDomainInformation,
PLSAPR TRUSTED DOMAIN AUTH INFORMATION INTERNAL AuthenticationInformation,

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainInformation: Information about the new TDO to be created.

AuthenticationInformation: Encrypted authentication information for the new TDO.

DesiredAccess: An access mask specifying desired access to the TDO handle.

TrustedDomainHandle: Used to return the handle for the newly created TDO.

Return Values: The following is a summary of the

return values that an implementation MUST return,

as specified by the message processing that follows.

Return value/code

Description

0x00000000
STATUS_SUCCESS

The request was successfully completed.

0xC0000022
STATUS_ACCESS_DENIED

The caller does not have the permissions to perform
this operation.

0xC000000D
STATUS_INVALID_PARAMETER

One of the supplied arguments is invalid.

0xC0000300
STATUS_NOT_SUPPORTED_ON_SBS

The operation is not supported on a particular
product.<101>

0xC00000DD
STATUS_INVALID_DOMAIN_STATE

The operation cannot complete in the current state of
the domain.

0xC00002B1
STATUS_DIRECTORY_SERVICE_REQUIRED

The Active Directory service was not available on the
server.

0xC0000078
STATUS_INVALID_SID

The security identifier of the trusted domain is not
valid.

0xC00002E9
STATUS_CURRENT_DOMAIN_NOT_ALLOWED

Trust cannot be established with the current domain.

0xC0000035
STATUS_OBJECT_NAME_COLLISION

Another TDO already exists that matches some of the
identifying information of the supplied information.

0xC0000008
STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC0000401
STATUS_PER_USER_TRUST_QUOTA_EXCEEDED

The caller's quota for maximum number of TDOs that
can be created by control access right Create-Inbound-
Trust is exceeded.

0xC0000402
STATUS_ALL_USER_TRUST_QUOTA_EXCEEDED

The combined users' quota for maximum number of
TDOs that can be created by control access right
Create-Inbound-Trust is exceeded.

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

149 / 254

Processing:

If Active Directory is not running on this machine, the server MUST return
STATUS_DIRECTORY_SERVICE_REQUIRED.<102> If the server is a read-only domain controller, it
MUST return an error.<103>

If the caller is not a member of the Domain Admins group, the server MUST return
STATUS_ACCESS_DENIED for policy handle access checking.

If the TDO creation failed due to the caller not having standard access rights to create the TDO, then
the server MUST check the caller's control access right (defined in [MS-ADTS] section 5.1.3.2.1). The
TDO creation by control access right is allowed if:

= The trust is an inbound-only forest trust. The server MUST return STATUS_ACCESS_DENIED if the
trust to be created is not an inbound-only forest trust.

= The caller has the control access right to create an inbound trust on the domain object.

= The caller's quota for trust object creations has not been exceeded. If the number of TDOs that
have been created by the caller through control access right Create-Inbound-Trust exceeds the
value in the msDS-PerUserTrustQuota attribute of the domain NC root object, then the server
MUST return STATUS_PER_USER_TRUST_QUOTA_EXCEEDED. For the syntax of the msDS-
PerUserTrustQuota attribute, refer to [MS-ADA2] section 2.423.

= The combined users' quota for trust object creations has not been exceeded. If the number of
TDOs that have been created through control access right Create-Inbound-Trust exceeds the value
in the msDS-AllUsersTrustQuota attribute of the domain NC root object (defined in [MS-ADTS]
section 6.1.1.1.4), then the server MUST return STATUS_ALL_USER_TRUST_QUOTA_EXCEEDED.
For the syntax of the msDS-AllUsersTrustQuota attribute, refer to [MS-ADA2] section 2.220.

This message takes five arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. PolicyHandle.GrantedAccess MUST NOT be considered for this call because
the access check MUST happen on the TDO.

TrustedDomainInformation: A structure containing most components of a TDO makeup. The data
provided in this parameter MUST be checked for validity in accordance with rules for TDO consistency
specified in "Trust Objects" in [MS-ADTS] section 6.1.6. The server MUST reject invalid input with
STATUS_INVALID_PARAMETER. The server MUST return STATUS_INVALID_DOMAIN_STATE in the
following cases:

= The TrustAttributes TRUST_ATTRIBUTE_FOREST_TRANSITIVE flag is set and the
forestFunctionality specified in [MS-ADTS] section 3.1.1.3.2.27 is DS_BEHAVIOR_WIN2003 or
higher.

= The TrustAttributes TRUST_ATTRIBUTE_FOREST_TRANSITIVE flag is set and the DnsForestName
and DnsDomainName fields in DNS Domain Information (see section 3.1.1.1) do not contain the
same value.

= The TrustAttributes TRUST_ATTRIBUTE_CROSS_ORGANIZATION flag is set and the
forestFunctionality specified in [MS-ADTS] section 3.1.1.3.2.27 is DS_BEHAVIOR_WIN2003 or
higher.

If one or more properties in TrustedDomainInformation points to the current domain (such as the
domain that the server is a part of), the server MUST return
STATUS_CURRENT_DOMAIN_NOT_ALLOWED. If there is another domain that claims the same
properties, the server MUST return STATUS_OBJECT_NAME_COLLISION. Each field in this structure

150 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

maps to a field in the TDO model, as specified in section 3.1.1.5. If the operation succeeds, the server
MUST update its database with a new TDO field populated from this input parameter.

AuthenticationInformation: A structure containing Elal=lalela%si={s|

LSAPR TRUSTED DOMAIN AUTH BLOB (section 2.2.7.16) which specifies the E]iidal=lald{e]udle]g]
information for the trusted domain. The server first MUST decrypt this data structure using an
algorithm (as specified in section 5.1.1) with the key being the session key negotiated by the
transport. The server then MUST unmarshal the data inside this structure and then store it into a
structure whose format is specified in section 2.2.7.11. This structure MUST then be stored on Trust
Incoming and Outgoing Password properties.

DesiredAccess: A bitmask containing a set of access rights that the caller attempts to obtain from the
TDO, which is access-checked as specified in section 3.1.4.2.1. Whatever the set of access rights
requested by the caller, the server MUST also set the TRUSTED_SET_AUTH bit inside DesiredAccess
before performing the security descriptor check. There is no method-specific portion of the check.

The valid trusted-domain-rights bits are specified in section 2.2.1.1.5, and the security descriptor is
specified in section 3.1.1.5.

TrustedDomainHandle: If the request is successful, this parameter is used to return a handle (section
3.1.1.7) to the newly created TDO with its fields initialized as follows:

= LsaContextHandle.HandleType = "Trusted Domain"
= LsaContextHandle.Object = the TDO
= LsaContextHandle.GrantedAccess = as specified in section 3.1.4.2.1

New TDOs are always created without forest trust information. The ForestTrustInfo and
ForestTrustLength fields of the TDO are thus set to NULL and O, respectively.

If the trust being created is inbound or bidirectional as defined in the TrustDirection field of the
TrustedDomainInformation parameter, then the server MUST also update its database with a new
interdomain trust account populated as specified in [MS-ADTS] section 6.1.6.8.

3.1.4.7.11 LsarCreateTrustedDomainEx (Opnum 51)

The LsarCreateTrustedDomainEx method is invoked to create a new trusted domain object (TDO).

NTSTATUS LsarCreateTrustedDomainEx (
[in] LSAPR HANDLE PolicyHandle,
[in] PLSAPR TRUSTED DOMAIN INFORMATION EX TrustedDomainInformation,
[in] PLSAPR TRUSTED DOMAIN AUTH_ INFORMATION AuthenticationInformation,
[in] ACCESS MASK DesiredAccess,
[out] LSAPR HANDLE* TrustedDomainHandle

)i

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
TrustedDomainInformation: Information about the new TDO to be created.
AuthenticationInformation: Encrypted authentication information for the new TDO.
DesiredAccess: An access mask that specifies desired access to the TDO handle.

TrustedDomainHandle: Used to return the handle for the newly created TDO.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

151 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code

Description

0x00000000
STATUS_SUCCESS

The request was successfully completed.

0xC0000022
STATUS_ACCESS_DENIED

The caller does not have the permissions to perform
this operation.

0xC000000D
STATUS_INVALID_PARAMETER

One of the supplied arguments is invalid.

0xC0000300
STATUS_NOT_SUPPORTED_ON_SBS

The operation is not supported on a particular
product.<104>

0xC00000DD
STATUS_INVALID_DOMAIN_STATE

The operation cannot complete in the current state of
the domain.

0xC00002B1
STATUS_DIRECTORY_SERVICE_REQUIRED

The Active Directory service was not available on the
server.

0xC0000078
STATUS_INVALID_SID

The security identifier of the trusted domain is not
valid.

0xC00002E9
STATUS_CURRENT_DOMAIN_NOT_ALLOWED

Trust cannot be established with the current domain.

0xC0000035
STATUS_OBJECT_NAME_COLLISION

Another TDO already exists that matches some of the
identifying information of the supplied information.

0xC0000008
STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC0000401
STATUS_PER_USER_TRUST_QUOTA_EXCEEDED

The caller's quota for the maximum number of TDOs
that can be created by control access right Create-
Inbound-Trust is exceeded.

0xC0000402
STATUS_ALL_USER_TRUST_QUOTA_EXCEEDED

The combined users' quota for the maximum number of
TDOs that can be created by control access right
Create-Inbound-Trust is exceeded.

Processing:

This message MUST be processed in an identical manner to LsarCreateTrustedDomainEx2, with the

following exceptions.

AuthenticationInformation is a structure containing

authentication information for the trusted domain.

The authentication information is not encrypted, which makes this an insecure message to call. As a
result, callers SHOULD NOT invoke this message and SHOULD instead call

LsarCreateTrustedDomainEx2.

3.1.4.7.12

LsarCreateTrustedDomain (Opnum 12)

The LsarCreateTrustedDomain method is invoked to create an object of type trusted domain in the

server's database.

NTSTATUS LsarCreateTrustedDomain (
[in] LSAPR HANDLE PolicyHandle,

[in

[in] ACCESS MASK DesiredAccess,

[LSAPR HANDLE* TrustedDomainHandle

out]

] PLSAPR_TRUST_ INFORMATION TrustedDomainInformation,

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

152 / 254

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainInformation: Information about the new trusted domain object (TDO) to be created.

DesiredAccess: An access mask that specifies the

desired access to the TDO handle.

TrustedDomainHandle: Used to return the handle for the newly created TDO.

Return Values: The following is a summary of the

return values that an implementation MUST return,

as specified by the message processing that follows.

Return value/code

Description

0x00000000
STATUS_SUCCESS

The request was successfully completed.

0xC0000022
STATUS_ACCESS_DENIED

The caller does not have the permissions to perform
this operation.

0xC000000D
STATUS_INVALID_PARAMETER

One of the supplied arguments is invalid.

0xC0000300
STATUS_NOT_SUPPORTED_ON_SBS

The operation is not supported on a particular
product.<105>

0xC00002B1
STATUS_DIRECTORY_SERVICE_REQUIRED

The Active Directory service was not available on the
server.

0xC0000078
STATUS_INVALID_SID

The security identifier of the trusted domain is not
valid.

0xC00002E9
STATUS_CURRENT_DOMAIN_NOT_ALLOWED

Trust cannot be established with the current domain.

0xC0000035
STATUS_OBJECT_NAME_COLLISION

Another TDO already exists that matches some of the
identifying information of the supplied information.

0xC0000008
STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC0000401
STATUS_PER_USER_TRUST_QUOTA_EXCEEDED

The caller's quota for the maximum number of TDOs
that can be created by control access right Create-
Inbound-Trust is exceeded.

0xC0000402
STATUS_ALL_USER_TRUST_QUOTA_EXCEEDED

The combined users' quota for the maximum number of
TDOs that can be created by control access right
Create-Inbound-Trust is exceeded.

Processing:

This message MUST be processed in an identical manner to LsarCreateTrustedDomainEx with the

following mapping as input parameters.
PolicyHandle: Same.

TrustedDomainInformation:

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

153 / 254

= Name: Comes from TrustedDomainInformation. Name input parameter.

= FlatName: Comes from TrustedDomainInformation. Name input parameter.

= SID: Comes from TrustedDomainInformation. Security identifier (SID) input parameter.
= TrustDirection: TRUST_DIRECTION_OUTBOUND.

* TrustType: TRUST_TYPE_DOWNLEVEL.

* TrustAttributes: 0.

AuthenticationInformation: NULL.

DesiredAccess: Same.

TrustedDomainHandle: Same.

3.1.4.7.13 LsarQueryInfoTrustedDomain (Opnum 26)

The LsarQuerylInfoTrustedDomain method is invoked to retrieve information about the trusted domain
object.

NTSTATUS LsarQueryInfoTrustedDomain (
[in] LSAPR HANDLE TrustedDomainHandle,
[in] TRUSTED INFORMATION CLASS InformationClass,
[out, switch is(InformationClass)]
PLSAPR TRUSTED DOMAIN INFO* TrustedDomainInformation
)i

TrustedDomainHandle: An open trusted domain object handle.

InformationClass: One of the TRUSTED_INFORMATION_CLASS values indicating the type of
information the caller is interested in.

TrustedDomainInformation: Used to return requested information about the trusted domain object.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC000000D One of the arguments supplied to the function was invalid.
STATUS_INVALID_PARAMETER

0xC0000003 The InformationClass argument is outside the allowed range.
STATUS_INVALID_INFO_CLASS

0xC0000008 TrustedDomainHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:

This message takes three arguments:

154 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

TrustedDomainHandle: An open handle to a trusted domain object. If the handle is not a valid context
handle to a trusted domain object or TrustedDomainHandle.HandleType does not equal "Trusted
Domain", the server MUST return STATUS_INVALID_HANDLE. The server MUST verify that
TrustedDomainHandle grants access as specified in section 3.1.4.2.2. The following table specifies the
RequiredAccess value to use in this access check for each InformationClass value, or indicates if no
processing is supported, regardless of access granted. There are several methods in the Local Security
Authority (Domain Policy) Remote Protocol that query trusted domain information. All of them enforce
the same rights assignments based on information class as described in the following table.

Value of InformationClass parameter | RequiredAccess value

TrustedDomainNamelnformation TRUSTED_QUERY_DOMAIN_NAME
TrustedDomainInformationBasic
TrustedDomainInformationEx
TrustedDomainInformationEx2Internal

TrustedControllersInformation Does not apply: This information class is obsolete and cannot be
set or queried. The server MUST return
STATUS_INVALID_PARAMETER.

TrustedPosixOffsetInformation TRUSTED_QUERY_POSIX
TrustedDomainSupportedEncryptionTypes

TrustedPasswordInformation TRUSTED_QUERY_AUTH
TrustedDomainAuthInformation
TrustedDomainAuthInformationInternal

TrustedDomainFullInformation TRUSTED_QUERY_DOMAIN_NAME | TRUSTED_QUERY_POSIX |
TrustedDomainFullInformationInternal TRUSTED_QUERY_AUTH
TrustedDomainFullInformation2Internal

InformationClass: A value from the TRUSTED_INFORMATION_CLASS enumeration specifying what
type of information the caller is requesting. Not all values are valid. For values outside the
TRUSTED_INFORMATION_CLASS range, the server MUST reject the request with
STATUS_INVALID_PARAMETER. Information class values TrustedDomainAuthInformationInternal and
TrustedDomainFullInformationInternal MUST be rejected with STATUS_INVALID_INFO_CLASS.

TrustedDomainInformation: Used to return the data requested by the caller, in a structure form
corresponding to the InformationClass parameter. Information MUST be collected from the abstract
data model specified in section 3.1.1.5.

Value of InformationClass parameter | Information to return

TrustedDomainNamelnformation Flat Name
TrustedPosixOffsetInformation Posix Offset
TrustedDomainInformationEx Name

Flat Name

Security Identifier
Posix Offset

Trust Type

Trust Direction
Trust Attributes

TrustedDomainAuthInformation Not applicable: This information class cannot be queried. Server
TrustedDomainAuthInformationInternal MUST return STATUS_INVALID_INFO_CLASS.

155/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Value of InformationClass parameter | Information to return

TrustedDomainFullInformationInternal

TrustedDomainFullInformation Name

Flat Name

Security Identifier

Posix Offset

Trust Type

Trust Direction

Trust Attributes

Trust Incoming and Outgoing Password values MUST be set to 0.

TrustedDomainFullInformation2Internall Name

Flat Name
Security Identifier
Posix Offset

Trust Type

Trust Direction
Trust Attributes

Forest Trust Attributes, as stored in Active Directory under the
msDs-TrustForestTrustInfo attribute ([MS-ADTS] section
6.1.6.9.3).

Trust Incoming and Outgoing Password values MUST be set to 0.

TrustedDomainSupportedEncryptionTypes | Supported Encryption Types

Other values Server MUST return STATUS_INVALID_PARAMETER.

If the server is not at DS_BEHAVIOR_WIN2003 forest functional level, the presence of the
TRUST_ATTRIBUTE_FOREST_TRANSITIVE bit in the Trust Attributes field of a trusted domain object
MUST NOT be returned by the server.<106>

3.1.4.7.14 LsarSetInformationTrustedDomain (Opnum 27)

The LsarSetInformationTrustedDomain method is invoked to set information on a trusted domain
object.

NTSTATUS LsarSetInformationTrustedDomain (
[in] LSAPR HANDLE TrustedDomainHandle,
[in] TRUSTED_INFORMATION_ CLASS InformationClass,
[in, switch_is(InformationClass)]
PLSAPR TRUSTED DOMAIN INFO TrustedDomainInformation
)i

TrustedDomainHandle: A handle to a trusted domain object.
InformationClass: A value indicating the type of information requested by the caller.

TrustedDomainInformation: Used to supply the information to be set.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

156 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC000000D One of the arguments supplied to the function was invalid.
STATUS_INVALID_PARAMETER

0xC00000DD The domain is in the wrong state to perform the stated operation.
STATUS_INVALID_DOMAIN_STATE

0xC0000008 TrustedDomainHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes three arguments:

TrustedDomainHandle: An open handle to a trusted domain object. If the handle is not a valid context
handle to a trusted domain object or TrustedDomainHandle.HandleType does not equal "Trusted
Domain", the server MUST return STATUS_INVALID_HANDLE. The server MUST verify that
TrustedDomainHandle grants access as specified in section 3.1.4.2.2. The following table specifies the
RequiredAccess value to use in this access check for each InformationClass value, or indicates if no
processing is supported, regardless of access granted. There are several methods in the Local Security
Authority (Domain Policy) Remote Protocol that set trusted domain information. All of them enforce
the same rights assignments based on information class.

Value of InformationClass parameter | RequiredAccess value

TrustedPosixOffsetInformation TRUSTED_SET_POSIX
TrustedDomainInformationEx

TrustedDomainFullInformation TRUSTED_SET_POSIX | TRUSTED_SET_AUTH
TrustedDomainFullInformationInternal

TrustedDomainAuthInformation TRUSTED_SET_AUTH
TrustedDomainAuthInformationInternal

TrustedDomainSupportedEncryptionTypes | TRUSTED_SET_POSIX

InformationClass: A value from the TRUSTED_INFORMATION_CLASS enumeration specifying what
type of information the caller is setting. Not all values are valid. For values outside the
TRUSTED_INFORMATION_CLASS range, the server MUST reject the request with
STATUS_INVALID_PARAMETER. Information class values other than the following set SHOULD<107>
be rejected with STATUS_INVALID_PARAMETER. The set of allowed information class values is:

» TrustedPosixOffsetInformation
» TrustedDomainInformationEx

= TrustedDomainAuthInformation
* TrustedDomainFullInformation

= TrustedDomainAuthInformationInternal

157 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

= TrustedDomainFullInformationInternal
» TrustedDomainSupportedEncryptionTypes

TrustedDomainInformation: Contains information to be set, appropriate for the InformationClass
parameter. The server MUST validate the TrustedDomainInformation parameter according to
information class—specific rules. The rules for internal consistency checking of trusted domain objects
are specified in [MS-ADTS] section 6.1.6.

Information in the abstract data model specified in section 3.1.1.5 MUST be updated using
TrustedDomainInformation and InformationClass parameters as follows:

Value of InformationClass parameter | Information to set

TrustedPosixOffsetInformation Posix Offset

TrustedDomainInformationEx Trust Type
Trust Direction
Trust Attributes

Forest Trust Attributes MUST be set to 0 if new trust attributes do
not contain TRUST_ATTRIBUTE_FOREST_TRANSITIVE flag.

TrustedDomainAuthInformation Trust Incoming Password
TrustedDomainAuthInformationInternal Trust Outgoing Password
TrustedDomainFullInformation Posix Offset
TrustedDomainFullInformationInternal Trust Type

Trust Direction
Trust Attributes
Trust Incoming Password
Trust Outgoing Password

Forest Trust Attributes MUST be set to 0 if new trust attributes do
not contain TRUST_ATTRIBUTE_FOREST_TRANSITIVE flag.

TrustedDomainSupportedEncryptionTypes | Supported Encryption Types

Other values Server MUST return STATUS_INVALID_PARAMETER.

The server MUST return STATUS_INVALID_DOMAIN_STATE in the following cases:

= The TrustAttributes TRUST_ATTRIBUTE_FOREST_TRANSITIVE flag is set and the
forestFunctionality specified in [MS-ADTS] section 3.1.1.3.2.27 is DS_BEHAVIOR_WIN2003 or
higher.

= The TrustAttributes TRUST_ATTRIBUTE_FOREST_TRANSITIVE flag is set and the DnsForestName
and DnsDomainName fields in DNS Domain Information (see section 3.1.1.1) do not contain the
same value.

= The TrustAttributes TRUST_ATTRIBUTE_CROSS_ORGANIZATION flag is set and the
forestFunctionality specified in [MS-ADTS] section 3.1.1.3.2.27 is DS_BEHAVIOR_WIN2003 or
higher.

If the server is a read-only domain controller, it MUST return an error.<108>

If the trust direction is being set to incoming or bidirectional, then the server MUST create an
interdomain trust account for this trust, if such an account does not yet exist, and populate it as
specified in [MS-ADTS] section 6.1.6.8. The unicodePwd attribute of the account is updated (as
specified in [MS-SAMR] section 3.1.1.8.7) with the clear text password (that is, the password value
with AuthType being equal to 0x2) in the "Trust Incoming Passwords" information provided.

158 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

3.1.4.7.15 LsarQueryForestTrustInformation (Opnum 73)

The LsarQueryForestTrustInformation method is invoked to retrieve information about a trust
relationship with another forest.

NTSTATUS LsarQueryForestTrustInformation (

[in] LSAPR HANDLE PolicyHandle,
[in] PLSA UNICODE STRING TrustedDomainName,
[in] LSA FOREST TRUST RECORD_TYPE HighestRecordType,
[out] PLSA FOREST TRUST_ INFORMATION* ForestTrustInfo
)

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainName: The name of the trusted domain to query.

HighestRecordType: The highest ordinal number of forest trust record type that the caller
understands.

ForestTrustInfo: Used to return the forest trust information.

Return Values: The following is a summary of the return values that an implementation MUST return,

as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

STATUS_ACCESS_DENIED

0xC0000022 The caller does not have the permissions to perform this operation.

0xC000000D One of the supplied arguments was invalid.
STATUS_INVALID_PARAMETER

0xC00000DD The domain is in the wrong state of this operation.
STATUS_INVALID_DOMAIN_STATE

0xCO00000DF The TrustedDomainName is not a recognized domain name.
STATUS_NO_SUCH_DOMAIN

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE
0xC0000225 Forest trust information does not exist for this trusted domain
STATUS_NOT_FOUND object.

Processing:

This message takes four arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the

policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return

STATUS_INVALID_HANDLE. PolicyHandle.GrantedAccess MUST NOT be considered for this call because

the access check MUST happen on the trusted domain object.

TrustedDomainName: The name of the trusted domain object to query.

The server MUST return STATUS_INVALID_DOMAIN_STATE if any of the following conditions is TRUE:

159 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

= The DnsForestName and DnsDomainName fields in DNS Domain Information (see section
3.1.1.1) do not contain the same value.

= The forestFunctionality specified in [MS-ADTS] section 3.1.1.3.2.27 is not
DS_BEHAVIOR_WIN2003 or higher.

= Active Directory is not running on this machine.

If a trusted domain object by the name TrustedDomainName does not exist, the server MUST return
STATUS_NO_SUCH_DOMAIN.

HighestRecordType: The caller sets this argument to the highest LSA_FOREST_TRUST_RECORD_TYPE
enum value recognized by the caller. This parameter is ignored by the server.

ForestTrustInfo: Used to return the forest trust information associated with the trusted domain object.
This corresponds to the Forest Trust Information abstract data model specified in section 3.1.1.5. Any

records of type ForestTrustBinaryInfo and later must be returned to the caller as ForestTrustBinaryInfo
type records (sections 2.2.7.21 and 2.2.7.22).

If the trusted domain object is not of the type that supports a forest trust (as determined by the
presence or absence of the TRUST_ATTRIBUTE_FOREST_TRANSITIVE attribute), the server MUST
return STATUS_INVALID_PARAMETER. If the forest trust information does not exist on a trusted
domain object that otherwise can support a forest trust, the server MUST return
STATUS_NOT_FOUND.

The server MUST verify that the caller has access to the trusted domain object as specified in section
3.1.4.2.1 with DesiredAccess set to TRUSTED_QUERY_AUTH. There is no method-specific portion of
this check.

3.1.4.7.16 LsarSetForestTrustInformation (Opnum 74)

The LsarSetForestTrustInformation method is invoked to establish a trust relationship with another
forest by attaching a set of records called the forest trust information to the trusted domain object.

NTSTATUS LsarSetForestTrustInformation (
[in] LSAPR_HANDLE PolicyHandle,
] PLSA UNICODE STRING TrustedDomainName,
] LSA FOREST TRUST RECORD TYPE HighestRecordType,
] PLSA_FOREST_TRUST INFORMATION ForestTrustInfo,
] unsigned char CheckOnly,
t] PLSA FOREST TRUST COLLISION INFORMATION* CollisionInfo

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainName: The name of the trusted domain object on which to set the forest trust
information.

HighestRecordType: The highest ordinal forest trust record type that the caller understands.

ForestTrustInfo: The forest trust information that the caller is trying to set on the trusted domain
object.

CheckOnly: If not 0, the operation is read-only and does not alter the state of the server's database.

CollisionInfo: Used to return information about collisions between different sets of forest trust
information in the server's database.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

160/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC00000DD The domain is not the root domain of the forest, or the forest is not
STATUS INVALID DOMAIN STATE at DS_BEHAVIOR_WIN2003 forest functional level.

0xC00000DE The server is not the primary domain controller.
STATUS_INVALID_DOMAIN_ROLE

0xCO00000DF The trusted domain object with the name in the
STATUS NO SUCH DOMAIN TrustedDomainName parameter does not exist.
0xC0000008 PolicyHandle is not a valid handle.

STATUS_INVALID_HANDLE

0xC000000D Some of the parameters supplied were invalid.
STATUS_INVALID_PARAMETER

Processing instructions:
This message takes six arguments:

PolicyHandle: Open handle to the policy object. If the handle is not a valid context handle to the policy
object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. PolicyHandle.GrantedAccess MUST NOT be considered for this call because
the access check MUST happen on the trusted domain object.

TrustedDomainName: The name of the trusted domain object to set forest trust information on.
The server MUST return STATUS_INVALID_DOMAIN_STATE if any of the following conditions is TRUE.

= The DnsForestName and DnsDomainName fields in DNS Domain Information (see section
3.1.1.1) do not contain the same value.

= Active Directory is not running on this machine.

The server MUST return STATUS_INVALID DOMAIN_ROLE if the IsEffectiveRoleOwner function
specified in [MS-ADTS] section 3.1.1.5.1.8 returns FALSE with the roleObject parameter set to default
NC.

If a trusted domain object by the name TrustedDomainName does not exist, the server MUST return
STATUS_NO_SUCH_DOMAIN.

The server MUST verify that the caller has access to the trusted domain object as specified in section
3.1.4.2.1 with DesiredAccess set to TRUSTED_SET_AUTH. There is no method-specific portion of this
check.

The server MUST also make sure that the trust attributes associated with the trusted domain object
referenced by the TrustedDomainName parameter has the TRUST_ATTRIBUTE_FOREST_TRANSITIVE
set. If the attribute is not present, the server MUST return STATUS_INVALID_PARAMETER.

HighestRecordType: The caller sets this argument to the highest LSA_FOREST_TRUST_RECORD_TYPE
enumeration value recognized by the caller. If this argument is greater in value than the highest
record type recognized by the server, the server MUST return STATUS_INVALID_PARAMETER.

161/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

ForestTrustinfo: A collection of forest trust records identifying the topology of the trusted forest. The
server MUST verify that the forest trust information supplied by the caller is valid by performing a
consistency check, as specified in [MS-ADTS] section 6.1.6. Note that "consistent" does not
necessarily mean "collision-free". The method for determining collisions is specified in section
3.1.4.7.16.1.

Records supplied by the caller in the Data field (section 2.2.7.21), using the opaque
LSA_FOREST_TRUST_BINARY_DATA structure (section 2.2.7.23), MUST be parsed using the
SubRecordType field. If SubRecordType ([MS-ADTS] section 6.1.6.9.3) is a known record type, the
record MUST be validated\persisted as that record type (section 3.1.1.5).

ForestTrustScannerInfo (section 2.2.7.31) records MUST contain DnsName and NetbiosName data, but
are not otherwise validated. Note that collision name checking is not done on ForestTrustScannerInfo
records.

CheckOnly: Perform a read-only probing operation. The results will not be persisted in the Local
Security Authority (Domain Policy) database, but the set of collision records returned in CollisionInfo
will be accurate as though the information was persisted.

CollisionInfo: A list of collision records. The request is considered successful even if a non-empty set of
collisions is returned. The rules for generating collision information are specified in section
3.1.4.7.16.1.

The server MUST store the generated ForestTrustInfo in the Forest Trust Information attribute
specified in section 3.1.1.5.

3.1.4.7.16.1 Forest Trust Collision Generation

This section describes the rules that the server MUST follow to compute a set of collisions when setting
forest trust information on a trusted domain object.

Forest trust information across all trusted forests is always internally consistent. This is an invariant
that the server MUST enforce. When new forest trust information is added to the server's policy
database, the server MUST ensure that the overall forest trust information remains consistent. The
server does so by disabling the entries in the new forest trust information structure that would violate
this internal consistency. The server communicates the entries that are inconsistent with existing
forest trust information back to the client by computing and returning a set of "collision entries".

The rules that govern consistency of forest trust information are specified in [MS-ADTS] section 6.1.6
and are listed here for convenience. To be exact, there are two sets of rules, one for top-level name
entries, and one for domain information entries.

The rules for top-level name entries are as follows:

= An enabled (that is, non-conflict) top-level name record must not be equal to an enabled top-level
name for another trusted domain object or to any of the DNS tree names within the current forest.
Equality is computed using case-insensitive string comparison. If the strings differ only by one
trailing '.' character, the difference is ignored.

= The top-level name must not be subordinate to an enabled top-level name for another trusted
domain object, unless the other trusted domain object has a corresponding exclusion record.

= A top-level name must not be superior to an enabled top-level name for another trusted domain
object, unless the current trusted domain object has a corresponding exclusion record.

If any of these rules are violated, a top-level name is considered in conflict. In this case, a collision
record is generated with the following values:

Index: Ordinal number of a forest trust record supplied by the caller that generated the collision.

162 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Type: CollisionTdo or CollisionXref, depending on whether the collision was caused by an external-to-
forest domain or an internal-to-forest domain.

Flags: LSA_TLN_DISABLED_CONFLICT

Name: DNS name of the TDO that contained the forest trust information with which this entry has
collided.

The rules for domain information entries are as follows:

= The security identifier of this entry must not be equal to that of an enabled domain information
entry belonging to a different forest or any of the domains that comprise the current forest.

= The NetBIOS name of this entry must not be claimed by any other forest with which this forest
has a trust relationship or by any domain within the current forest.

= The DNS name of this entry must not be claimed by any other forest with which this forest has a
trust relationship or by the current forest.

If any of these rules are violated, a domain information entry is considered to be in conflict. In this
case, a collision record is generated with the following values:

Index: Ordinal number of a forest trust record supplied by the caller that generated the collision.

Type: CollisionTdo or CollisionXref, depending on whether the collision was caused by an external-to-
forest or internal-to-forest domain.

Flags: LSA_SID_DISABLED_CONFLICT if the collision was caused by a security identifier component
of the record. LSA_NB_DISABLED_CONFLICT if the collision was caused by a NetBIOS name
component of the record.

Entries that have been disabled by administrative action or through conflict are not considered in
computing consistency checks.

3.1.4.7.17 (Updated Section) LsarCreateTrustedDomainEx3 (Opnum 129)

The LsarCreateTrustedDomainEx3 method is invoked to create a new TDO.<109>

NTSTATUS
LsarCreateTrustedDomainEx3 (
[in] LSAPR HANDLE PolicyHandle,
[in] PLSAPR TRUSTED DOMAIN INFORMATION EX TrustedDomainInformation,
[in] PLSAPR _TRUSTED DOMAIN_ AUTH INFORMATION_ INTERNAL AES AuthenticationInformation,
[in] ACCESS_MASK DesiredAccess,
[out] LSAPR HANDLE* TrustedDomainHandle

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy3 (section 3.1.4.4.9),
LsarOpenPolicy2 (section 3.1.4.4.1), or LsarOpenPolicy (section 3.1.4.4.2).
TrustedDomainInformation: Information about the new TDO to be created.

AuthenticationInformation: Encrypted authentication information for the new TDO encrypted to
specification per AES Cipher Usage (section 5.1.5).

DesiredAccess: An access mask (section 2.2.1.1) specifying the desired access to the TDO handle.
TrustedDomainHandle: Used to return the handle for the newly created TDO.

Return Values: The same as LsarCreateTrustedDomainEx2 (section 3.1.4.7.10).

163/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Processing instructions:

The processing is the same as LsarCreateTrustedDomainEx2 (section 3.1.4.7.10) with the following
exception:

AuthenticationInformation: A structure containing [Slalela%sid={s B ESYN SN N 0IST N =R pI0) VAN N BVAN O A = =1 He) =)

(EXedlelaiViVAsIS)Nauthentication information for the trusted domain.

If the length of cbCipher in AuthenticationInformation is less than (512 + IncomingAuthInfoS
OutgoingAuthInfoSize) the server MUST return STATUS INVALID PARAMETER.

The server MUST first decrypt this data structure using the algorithm specified in AES Cipher Usage
(section 5.1.5) with the key being the session key negotiated by the transport. Next, the server MUST
unmarshal the data inside this structure and store it in a structure, the format of which is specified in

section 2.2.7.11. This structure MUST then be stored in Trust Incoming and Outgoing Password
properties (section 3.1.1.5).

3.1.4.7.18 (Updated Section) LsarQueryForestTrustInformation2 (Opnum 132)

The LsarQueryForestTrustInformation2 method is invoked to retrieve information about a trust
relationship with another forest.<110>

NTSTATUS
OuvervEore A oR

LsarQueryForestTrustInformation?2 (

[in] LSAPR HANDLE PolicyHandle,

[in] PLSA UNICODE STRING TrustedDomainName,

[in] LSA FOREST TRUST RECORD TYPE HighestRecordType,
[out] PLSAiFORESTiTRUSTiINFORMATION2* ForestTrustInfo?2

PolicyHandle: An RPC context handle obtained from either the LsarOpenPolicy (section 3.1.4.4.2) or
LsarOpenPolicy2 (section 3.1.4.4.1) method.

TrustedDomainName: The name of the trusted domain to query.

HighestRecordType: The highest ordinal number of forest trust record type that the caller
understands.

ForestTrustInfo2: Used to return the forest trust information.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform
STATUS_ACCESS_DENIED this operation.
0xC000000D One of the supplied arguments was invalid.

STATUS_INVALID_PARAMETER

0xC00000DD The domain is in the wrong state for this operation.
STATUS_INVALID_DOMAIN_STATE

164 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0xCO00000DF The TrustedDomainName is not a recognized domain
STATUS_NO_SUCH_DOMAIN name.

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

0xC0000225 Forest trust information does not exist for this trusted
STATUS_NOT_FOUND domain object.

Processing instructions:
This message takes four arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. PolicyHandle.GrantedAccess MUST NOT be considered for this call because
the access check MUST happen on the trusted domain object.

TrustedDomainName: The name of the trusted domain object to query.

The server MUST return STATUS_INVALID_DOMAIN_STATE if any of the following conditions are
TRUE:

= The DnsForestName and DnsDomainName fields in DNS Domain Information (section 3.1.1.1)
do not contain the same value.

= The forestFunctionality specified in [MS-ADTS] section 3.1.1.3.2.27 is not
DS_BEHAVIOR_WIN2003 or higher.

= Active Directory is not running on this machine.

If a trusted domain object named TrustedDomainName does not exist, the server MUST return
STATUS_NO_SUCH_DOMAIN.

HighestRecordType: The caller sets this argument to the highest LSA_FOREST_TRUST_RECORD_TYPE
enum value (section 2.2.7.22) recognized by the caller.

ForestTrustInfo2: Used to return the forest trust information associated with the trusted domain
object. This corresponds to the Forest Trust Information abstract data model specified in section
3.1.1.5. If any of the forest trust info records in the data model are of a type that is greater than
HighestRecordType, these records MUST be returned to the caller as ForestTrustBinaryInfo
records.

If the trusted domain object is not of the type that supports a forest trust (as determined by the
presence or absence of the TRUST_ATTRIBUTE_FOREST_TRANSITIVE attribute), the server MUST
return STATUS_INVALID_PARAMETER. If the forest trust information does not exist on a trusted
domain object that otherwise can support a forest trust, the server MUST return
STATUS_NOT_FOUND.

The server MUST verify that the caller has access to the trusted domain object as specified in section
3.1.4.2.1 with DesiredAccess set to TRUSTED_QUERY_AUTH (section 2.2.1.1.5). There is no method-
specific portion of this check.

3.1.4.7.19 LsarSetForestTrustInformation2 (Opnum 133)

165/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

The LsarSetForestTrustInformation2 method is invoked to establish a trust relationship with another
forest by attaching a set of records known as forest trust information to the trusted domain
object.<111>

NTSTATUS LsarSetForestTrustInformation?2 (
[in] LSAPR HANDLE PolicyHandle,
] PLSA UNICODE STRING TrustedDomainName,
] LSA_FOREST TRUST RECORD TYPE HighestRecordType,
] PLSAfFORESTiTRUSTilNFORMATIONZ ForestTrustInfo2,
] unsigned char CheckOnly,
t] PLSA FOREST TRUST COLLISION INFORMATION* CollisionInfo

)i
PolicyHandle: An RPC context handle obtained from either the LsarOpenPolicy (section 3.1.4.4.2) or
LsarOpenPolicy2 (section 3.1.4.4.1) method.

TrustedDomainName: The name of the trusted domain object on which to set the forest trust
information.

HighestRecordType: The highest ordinal forest trust record type that the caller understands.

ForestTrustInfo2: The forest trust information that the caller is trying to set on the trusted domain
object.

CheckOnly: If not 0, the operation is read-only and does not alter the state of the server’s database.

CollisionInfo: Used to return information about collisions between different sets of forest trust
information in the server’s database.

Return Values: The following is a summary of the return values that an implementation MUST return,
as appropriate, as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC00000DD The domain is not the root domain of the forest, or the forest is not at
STATUS INVALID DOMAIN STATE DS_BEHAVIOR_WIN2003 forest functional level.

0xCO00000DE The server is not the primary domain controller
STATUS_INVALID_DOMAIN_ROLE

0xCO00000DF The trusted domain object with the name in the TrustedDomainName
STATUS NO SUCH DOMAIN parameter does not exist.
0xC0000008 PolicyHandle is not a valid handle.

STATUS_INVALID_HANDLE

0xC000000D Some of the parameters supplied were invalid.
STATUS_INVALID_PARAMETER

Processing instructions:

This message takes six arguments:

166 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

PolicyHandle: Open handle to the policy object. If the handle is not a valid context handle to the policy
object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. PolicyHandle.GrantedAccess MUST NOT be considered for this call because
the access check MUST happen on the trusted domain object.

TrustedDomainName: The name of the trusted domain object on which to set forest trust information.

The server MUST return STATUS_INVALID_DOMAIN_STATE if any of the following conditions are
TRUE.

= The DnsForestName and DnsDomainName fields in DNS Domain Information (section 3.1.1.1)
do not contain the same value.

= Active Directory is not running on this machine.

The server MUST return STATUS_INVALID_DOMAIN_ROLE if the IsEffectiveRoleOwner function
specified in [MS-ADTS] section 3.1.1.5.1.8 returns FALSE with the roleObject parameter set to default
NC.

If a trusted domain object named TrustedDomainName does not exist, the server MUST return
STATUS_NO_SUCH_DOMAIN.

The server MUST verify that the caller has access to the trusted domain object as specified in section
3.1.4.2.1 with DesiredAccess set to TRUSTED_SET_AUTH. There is no method-specific portion of this
check.

The server MUST also make sure that the trust attributes associated with the trusted domain object
referenced by the TrustedDomainName parameter has the TRUST_ATTRIBUTE_FOREST_TRANSITIVE
set. If the attribute is not present, the server MUST return STATUS_INVALID_PARAMETER.

HighestRecordType: The caller sets this argument to the highest LSA_FOREST_TRUST_RECORD_TYPE
enumeration value (section 2.2.7.22) recognized by the caller. If this argument is greater in value
than the highest record type recognized by the server, the server MUST return
STATUS_INVALID_PARAMETER.

ForestTrustInfo: A collection of forest trust records identifying the topology of the trusted forest. The
server MUST verify that the forest trust information supplied by the caller is valid by performing a
consistency check, as specified in [MS-ADTS] section 6.1.6. Note that "consistent" does not
necessarily mean "collision-free". The method for determining collisions is specified in section
3.1.4.7.16.1.

ForestTrustScannerInfo records must contain DnsName and NetbiosName data but are not otherwise
validated. No collision name checking is done on ForestTrustScannerInfo records.

CheckOnly: Perform a read-only probing operation. The results will not be persisted in the Local
Security Authority (Domain Policy) database, but the set of collision records returned in CollisionInfo
will be accurate as though the information was persisted.

CollisionInfo: A list of collision records. The request is considered successful even if a non-empty set of
collisions is returned. The rules for generating collision information are specified in section
3.1.4.7.16.1.

The server MUST store the generated ForestTrustInfo in the Forest Trust Information attribute
specified in section 3.1.1.5.

3.1.4.8 Privilege Methods

The message processing of methods in this section MUST use the abstract data model specified in
section 3.1.1.2.1.

167 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Method (opnum) Summary

LsarEnumeratePrivileges (opnum 2) Enumerates all privileges known to the server.

LsarLookupPrivilegeValue (opnum 31) Maps the well-known name of a privilege into the server-specific
locally unique identifier (LUID).

LsarLookupPrivilegeName (opnum 32) Maps the server-specific LUID of a privilege into a well-known
privilege name.

LsarLookupPrivilegeDisplayName Maps the well-known name of a privilege into a human-readable
(opnum 33) name in the caller's language.

3.1.4.8.1 LsarEnumeratePrivileges (Opnum 2)

The LsarEnumeratePrivileges method is invoked to enumerate all privileges known to the system. This
method can be called multiple times to return its output in fragments.

NTSTATUS LsarEnumeratePrivileges (
[in] LSAPR HANDLE PolicyHandle,
[in, out] unsigned long* EnumerationContext,
[out] PLSAPR PRIVILEGE ENUM BUFFER EnumerationBuffer,
[in] unsigned long PreferedMaximumLength
)i

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
EnumerationContext: A pointer to a context value that is used to resume enumeration, if necessary.
EnumerationBuffer: A pointer to a structure that will contain the results of the enumeration.

PreferedMaximumLength: A value that indicates the approximate size of the data to be returned.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0x00000105 More information is available to successive calls.
STATUS_MORE_ENTRIES

0x8000001A No more entries are available from the enumeration.
STATUS_NO_MORE_ENTRIES

0xC000000D One of the parameters supplied was invalid. This can happen if
STATUS INVALID PARAMETER EnumerationBuffer is NULL or EnumerationContext is NULL.

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:

168 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

This method takes four arguments:

PolicyHandle: Open handle to the policy object. If the handle is not a valid context handle to the policy
object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_VIEW_LOCAL_INFORMATION.

EnumerationContext: A number that indicates a starting index at which to begin the enumeration. The
server MUST always return all privileges in the same order, starting at the object whose index is
EnumerationContext. To initiate a new enumeration, the client sets EnumerationContext to zero;
otherwise, the client sets EnumerationContext to a value returned by a previous call to the method.

The server MUST return STATUS_INVALID_PARAMETER if the EnumerationContext parameter is NULL.

EnumerationBuffer: Used to return the results of enumeration. The server MUST fill EnumerationBuffer
with as many privilege objects as possible, as determined by PreferedMaximumLength. If the size of
all remaining objects is less than or equal to PreferedMaximumLength, the server MUST fill
EnumerationBuffer with all objects. If the size of all remaining objects is greater than
PreferedMaximumLength, the server MUST fill EnumerationBuffer with objects such that the size of the
privilege objects returned is greater than or equal to PreferedMaximumLength, but would be less than
PreferedMaximumLength if the last object had not been added to EnumerationBuffer. If there are no
more objects than are returned in EnumerationBuffer, the server MUST return
STATUS_NO_MORE_ENTRIES. If there are more database objects than are returned in
EnumerationBuffer, the server MUST set the EnumerationContext value to the index value that would
allow it to resume enumeration correctly when this method is called again, and the server MUST
return STATUS_MORE_ENTRIES. Note that this return value is not an error status.

PreferedMaximumLength: An indication about the approximate size, in bytes, of the data to return.
Any unsigned 32-bit value is valid for the PreferedMaximumLength parameter.

3.1.4.8.2 LsarLookupPrivilegeValue (Opnum 31)

The LsarLookupPrivilegeValue method is invoked to map the name of a privilege into a locally unique
identifier (LUID) by which the privilege is known on the server. The locally unique value of the
privilege can then be used in subsequent calls to other methods, such as LsarAddPrivilegesToAccount.

NTSTATUS LsarLookupPrivilegeValue (
[in] LSAPR_HANDLE PolicyHandle,
[in] PRPC_UNICODE_STRING Name,
[out] PLUID Value

)7

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
Name: A string containing the name of a privilege.

Value: Used to return a LUID assigned by the server to the privilege by this name.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

169 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0xC000000D One or more of the supplied parameters was invalid.
STATUS_INVALID_PARAMETER

0xC0000060 The privilege name is not recognized by the server.
STATUS_NO_SUCH_PRIVILEGE

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes three arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_LOOKUP_NAMES.

Name: The string name of the privilege.
Value: Used to return the LUID corresponding to the Name argument.

If the value in the Name argument is not recognized by the server, the server MUST fail the request
with STATUS_NO_SUCH_PRIVILEGE. The privileges recognized by the server are specified in section
3.1.1.2.1.

3.1.4.8.3 LsarLookupPrivilegeName (Opnum 32)

The LsarLookupPrivilegeName method is invoked to map the LUID of a privilege into a string hame by
which the privilege is known on the server.

NTSTATUS LsarLookupPrivilegeName (
[in] LSAPR HANDLE PolicyHandle,
[in] PLUID Value,

[out] PRPC_UNICODE_STRING* Name

)7

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
Value: A LUID that the caller wishes to map to a string name.

Name: Used to return the string name corresponding to the supplied LUID.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC0000060 The supplied LUID is not recognized by the server.
STATUS_NO_SUCH_PRIVILEGE

170/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes three arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_LOOKUP_NAMES.

Value: The LUID of the privilege.
Name: Used to return the name corresponding to the LUID contained in the Value argument.

If the LUID in the Value argument is not recognized by the server, the server MUST fail the request
with STATUS_NO_SUCH_PRIVILEGE. The privileges recognized by the server are specified in section
3.1.1.2.1.

3.1.4.8.4 LsarLookupPrivilegeDisplayName (Opnum 33)

The LsarLookupPrivilegeDisplayName method is invoked to map the name of a privilege into a display
text string in the caller's language.

NTSTATUS LsarLookupPrivilegeDisplayName (
[in] LSAPR HANDLE PolicyHandle,

[in] PRPC_UNICODE_ STRING Name,

[in] short ClientLanguage,

[in] short ClientSystemDefaultLanguage,

[out] PRPC UNICODE STRING* DisplayName,

[out] unsigned short* LanguageReturned

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.
Name: A string containing the name of a privilege.

ClientLanguage: An identifier of the client's language.

ClientSystemDefaultLanguage: An identifier of the default language of the caller's machine.

DisplayName: Used to return the display name of the privilege in the language pointed to by the
LanguageReturned value.

LanguageReturned: An identifier of the language in which DisplayName was returned.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

171/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0xC000000D One or more of the supplied parameters was invalid.
STATUS_INVALID_PARAMETER

0xC0000060 The supplied LUID is not recognized by the server.
STATUS_NO_SUCH_PRIVILEGE

0xC0000008 PolicyHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This method takes six arguments:

PolicyHandle: An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle.HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_LOOKUP_NAMES.

Name: A string name of the privilege. The server MUST attempt to locate the entry with the same
name in the data store specified in section 3.1.1.2.1. If the entry cannot be located, the server MUST
return STATUS_NO_SUCH_PRIVILEGE.

ClientLanguage: A numerical identifier of the language in which the caller wishes to receive the display
name. The server MUST try to locate the privilege description in the language that is identified by this
parameter. If the data store does not have this language, the server MUST try the next parameter.

ClientSystemDefaultLanguage: An identifier of the default language of the caller. This might be
different than the ClientLanguage parameter. If the data store does not have the description in the
previous language, the server MUST try to find the description in this language.

DisplayName: Used to return the description of the privilege. If neither ClientLanguage nor
ClientSystemDefaultLanguage can be found, the server MUST return the description in the server's
own language.

LanguageReturned: Used to return the language ID of DisplayName. This might be different from the
language ID that was requested.
3.1.4.9 Common Object Methods

The message processing of methods in this section MUST use the abstract data model defined in
section 3.1.1.

Method (Opnum) Summary

LsarQuerySecurityObject (opnum 3) | Retrieves the security descriptor associated with an object.

LsarSetSecurityObject (opnum 4) Sets a security descriptor on an object.
LsarDeleteObject (opnum 34) Deletes an object from the policy database.
LsarClose (opnum 0) Closes an open handle.

3.1.4.9.1 LsarQuerySecurityObject (Opnum 3)

172 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

The LsarQuerySecurityObject method is invoked to query security information that is assigned to a
database object. It returns the security descriptor of the object.

NTSTATUS LsarQuerySecurityObject (

[in] LSAPR HANDLE ObjectHandle,

[in] SECURITY INFORMATION SecurityInformation,

[out] PLSAPR SR SECURITY DESCRIPTOR* SecurityDescriptor
)

ObjectHandle: An open object handle of any type.

SecurityInformation: A bitmask specifying which portions of the security descriptor the caller is
interested in.

SecurityDescriptor: Used to return the security descriptor containing the elements requested by the
caller.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC00000BB The request is not supported.
STATUS_NOT_SUPPORTED

0xC0000008 ObjectHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes three arguments:

ObjectHandle: Can be an open handle of any type. If the handle is not a valid context handle to an
object or ObjectHandle.PolicyType is not one of the following:

= "Policy" for handles to policy objects

= "Account" for handles to account objects

"Secret" for handles to secret objects
= "Trusted Domain" for handles to trusted domain objects

The server MUST return STATUS_INVALID_HANDLE. The access required for a successful completion
of this request depends on the SecurityInformation parameter. The server MUST verify that
ObjectHandle grants access as specified in section 3.1.4.2.2. The following pseudocode specifies the
RequiredAccess value to use in this access check.

Set RequiredAccess equal to 0

IF ((SecurityInformation & OWNER SECURITY INFORMATION) || (SecurityInformation &

GROUP_SECURITY_INFORMATION) || (SecurityInformation & DACL_SECURITY_INFORMATION)) THEN
RequiredAccess |= READ CONTROL

END IF

IF (SecurityInformation & SACL SECURITY INFORMATION) THEN

173/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

RequiredAccess |= ACCESS SYSTEM SECURITY
END IF

SecurityInformation: A set of bits specifying which portions of the security descriptor the caller is
interested in retrieving. The various bits and the associated access rights are specified in section
2.2.1.3.

SecurityDescriptor: An output parameter. If access checks pass, the server MUST fill this information
with a valid self-relative security descriptor containing only the fields requested by the caller. The
server MUST NOT put information into the security descriptor that the caller did not request.

It is valid for the server to not support this method for all object types. If an object does not support
this method, the server MUST return STATUS_NOT_SUPPORTED.<112>

3.1.4.9.2 LsarSetSecurityObject (Opnum 4)

The LsarSetSecurityObject method is invoked to set a security descriptor on an object.

NTSTATUS LsarSetSecurityObject (

[in] LSAPR HANDLE ObjectHandle,

[in] SECURITY INFORMATION SecurityInformation,

[in] PLSAPR SR SECURITY DESCRIPTOR SecurityDescriptor
)i

ObjectHandle: An open handle to an existing object.
SecurityInformation: A bitmask specifying which portions of the security descriptor are to be set.

SecurityDescriptor: The security descriptor to be set.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xCO00009A There are insufficient resources to complete the request.
STATUS_INSUFFICIENT_RESOURCES

0xC0000022 The caller does not have the permissions to perform this
STATUS_ACCESS_DENIED operation.

0xC0000079 The supplied security descriptor is invalid.
STATUS_INVALID_SECURITY_DESCR

0xC000000D One of the parameters supplied was invalid. For instance,
STATUS_INVALID_ PARAMETER SecurityDescriptor is NULL.

0xC00000BB The operation is not supported for this object.

STATUS_NOT_SUPPORTED

0xC0000008 ObjectHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:

174 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

This message takes three arguments:

ObjectHandle: Can be an open handle of any type. If the handle is not a valid context handle to an
object or ObjectHandle.PolicyType is not one of the following:

= "Policy" for handles to policy objects

= "Account" for handles to account objects

= "Secret" for handles to secret objects

= "Trusted Domain" for handles to trusted domain objects

The server MUST return STATUS_INVALID_HANDLE. The access required for a successful completion
of this request depends on the SecurityInformation parameter. The server MUST verify that
ObjectHandle grants access as specified in section 3.1.4.2.2. The following pseudocode specifies the
RequiredAccess value to use in this access check.

Set RequiredAccess equal to 0

IF ((SecurityInformation & OWNER SECURITY INFORMATION) || (SecurityInformation &

GROUP_SECURITY INFORMATION) || (SecurityInformation & DACL SECURITY INFORMATION)) THEN
RequiredAccess |= READ CONTROL

END IF

IF (SecurityInformation & SACL SECURITY INFORMATION) THEN
RequiredAccess |= ACCESS_SYSTEM SECURITY

END IF

SecurityInformation: A set of bits specifying which portions of the security descriptor the caller is
interested in setting. The various bits and the associated access rights are specified in section 2.2.1.3.

SecurityDescriptor: Expects a valid self-relative security descriptor that the caller is trying to set. If
this security descriptor is invalid, the server MUST return the STATUS_INVALID_SECURITY_DESCR
status code. If the security descriptor is NULL, the server MUST return STATUS_INVALID_PARAMETER.

It is valid for the server to not support this method for all object types.<113>

The server MUST return STATUS_INSUFFICIENT_RESOURCES if it runs out of memory while servicing
the request.

3.1.4.9.3 LsarDeleteObject (Opnum 34)

The LsarDeleteObject method is invoked to delete an open account object, secret object, or trusted
domain object.

NTSTATUS LsarDeleteObject (
[in, out] LSAPR HANDLE* ObjectHandle
)i

ObjectHandle: A handle to an open object of the correct type to be deleted. After successful
completion of the call, the handle value cannot be reused.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

175/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0xC0000022 The caller does not have the permissions to perform this operation.
STATUS_ACCESS_DENIED

0xC000000D One or more of the supplied parameters was invalid.
STATUS_INVALID_PARAMETER

0xC0000008 ObjectHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:
This message takes one input parameter.

ObjectHandle: An open handle to an object that is to be deleted. If the handle is not a valid context
handle to an object or ObjectHandle.PolicyType is not one of the following:

= "Policy" for handles to policy objects

= "Account" for handles to account objects

= "Secret" for handles to secret objects

= "Trusted Domain" for handles to trusted domain objects

The server MUST return STATUS_INVALID_HANDLE. Policy objects cannot be deleted. Attempts to
delete policy objects MUST fail with STATUS_INVALID_PARAMETER. For other object types, the server
MUST verify that ObjectHandle grants access as specified in section 3.1.4.2.2 with RequiredAccess set
to DELETE.

The server MUST make all subsequent requests to deleted objects through already opened handles fail
with STATUS_INVALID_HANDLE. The deleted handle MUST be automatically closed by the server; the
caller need not close it.

If the object being deleted is a trusted domain, then the server MUST also check whether an
interdomain trust account with name "<Trusted Domain NetBIOS Name>$" exists. If it exists, the
server MUST delete that account along with the trusted domain.

The server MUST free any resources associated with the LsaContextHandle element (section 3.1.1.7)
that is represented by ObjectHandle, as specified in section 3.1.6.1, LSAPR_HANDLE_rundown.

The fact that a handle is no longer usable is communicated to the RPC transport by returning a NULL
value in the handle parameter, as specified in [C706] section 5.1.6.

3.1.4.9.4 LsarClose (Opnum 0)

The LsarClose method frees the resources held by a context handle that was opened earlier. After
response, the context handle will no longer be usable, and any subsequent uses of this handle will fail.

NTSTATUS LsarClose (
[in, out] LSAPR HANDLE* ObjectHandle

)i
ObjectHandle: The context handle to be freed. On response, it MUST be set to 0.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

176 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0x00000000 The request was successfully completed.
STATUS_SUCCESS

0xC0000008 ObjectHandle is not a valid handle.
STATUS_INVALID_HANDLE

Processing:

A handle of any type can be closed by calling LsarClose. Successful calls to LsarDeleteObject, which
deletes an object to which the caller has an open handle, will also close the handle.

If ObjectHandle is invalid, the server MUST return STATUS_INVALID_HANDLE.

The server MUST free any resources associated with the LsaContextHandle element (section 3.1.1.7)
that is represented by ObjectHandle, as specified in section 3.1.6.1, LSAPR_HANDLE_rundown.

The fact that a handle is closed is communicated to the RPC transport by returning a NULL value in the
handle parameter, as specified in [C706] section 5.1.6.

Closing one handle MUST NOT affect any other handle on the server; that is, handles obtained using a
policy handle MUST continue to be valid after that policy handle is closed.

3.1.4.10 Data Validation

Data types defined in section 2.2 are subject to a set of validation rules, in addition to any already
noted. For structures that contain other structures or sets of other structures, the validation for those
structures MUST be enforced when validating the containing structure. All constraints in the following
tables MUST be satisfied; on failure, an error NTSTATUS code MUST be returned.

Data type Validations

LSA_UNICODE_STRING
RPC_UNICODE_STRING

LSAPR_CR_CIPHER_VALUE . Length MUST be less than or equal to
MaximumLength.

= Length MUST be a multiple of 2.<114>

= If Length is not 0, Buffer MUST NOT be NULL.

= The Buffer field MUST NOT contain any NULL
Unicode characters in the first Length bytes.<115>

RPC_SID . Revision MUST be 1.

= SubAuthorityCount MUST be less than or equal to 15.

Additionally, if the security identifier (SID) is a domain
SID:

= IdentifierAuthority MUST be {0,0,0,0,0,5}.
= SubAuthorityCount MUST be greater than 3.

= SubAuthority[0] MUST be 0x15.

LSAPR_SR_SECURITY_DESCRIPTOR
S —SR_SECU ~DESC © . Revision MUST be 1.

177 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Data type

Validations

The security descriptor must conform to the definition
for self-relative security descriptor in [MS-DTYP]
section 2.4.6.

LSAPR_LUID_AND_ATTRIBUTES

Luid.HighPart SHOULD NOT be 0.<116>

Luid.LowPart SHOULD be less than or equal to
35.<117>

Attributes SHOULD have only combinations of bits
(0x00000001 & 0x00000002) set.<118>

LSAPR_PRIVILEGE_SET

If PrivilegeCount is not 0, Privilege MUST NOT be
NULL.

Each Privilege MUST pass validation for
LSAPR_LUID_AND_ATTRIBUTES.

There MUST be no duplicate elements in the Privilege
array.

LSAPR_OBJECT_ATTRIBUTES

RootDirectory MUST be NULL.

ACCESS_MASK

SHOULD conform to the defined bits for ACCESS_MASK.

POLICY_INFORMATION_CLASS

MUST be greater than or equal to one and MUST be less
than the PolicyLastEntry enumeration value (section
2.2.4.1).

POLICY_AUDIT_LOG_INFO

No additional validation.

LSAPR_POLICY_AUDIT_EVENTS_INFO

MaximumAuditEventCount MUST NOT be 0.

MaximumAuditEventCount MUST be less than or
equal to 8.

EventAuditingOptions MUST NOT be NULL.

EventAuditingOptions and OxFFFFFFF8 MUST be 0.

LSAPR_POLICY_ACCOUNT_DOM_INFO

DomainName MUST satisfy RPC_UNICODE_STRING
validations.

DomainSid MUST satisfy RPC_SID validations,
including those for domain SIDs.

LSAPR_POLICY_PRIMARY_DOM_INFO

Name MUST satisfy RPC_UNICODE_STRING
validations.

Name.Length MUST be less than or equal 30.

SID MUST either be NULL or satisfy RPC_SID
validations, including those for domain SIDs.

LSAPR_POLICY_DNS_DOMAIN_INFO

Name MUST pass RPC_UNICODE_STRING validations.

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol

Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

178 / 254

Data type Validations

* Name.Length MUST be less than or equal to 30.

= DnsDomainName MUST satisfy
RPC_UNICODE_STRING validations.

. DnsForestName MUST satisfy RPC_UNICODE_STRING
validations.

= SID MUST either be NULL or satisfy RPC_SID
validations, including those for domain SID.

LSAPR_POLICY_PD_ACCOUNT_INFO Name MUST satisfy RPC_UNICODE_STRING validations.
POLICY_LSA_SERVER_ROLE_INFO LsaServerRole MUST be 2 OR 3.
LSAPR_POLICY_MACHINE_ACCT_INFO = Rid MUST be 0 or greater than 0x000003E?7.

= IfRidis 0, Sid MUST be NULL.

= If Rid is not 0, Sid MUST NOT be NULL. In this case,
Rid MUST equal the last sub-authority of Sid.

. If Sid is not NULL, it MUST satisfy RPC_SID
validations, including those for domain SID.

LSAPR_CR_CIPHER_VALUE MaximumLength MUST be greater than or equal to
Length.

LSAPR_POLICY_REPLICA_SRCE_INFO
- - - - . ReplicaSource MUST satisfy RPC_UNICODE_STRING

validation.

= ReplicaAccountName must satisfy
RPC_UNICODE_STRING validation.

POLICY_MODIFICATION_INFO ModifiedId MUST not be 0.

POLICY_AUDIT_FULL_SET_INFO No validation.

LSAPR_POLICY_DOMAIN_EFS_INFO If InfoLength is not 0, EfsBlob MUST NOT be NULL.

TRUSTED_INFORMATION_CLASS It\/IUIS; be greater than or equal to 1 and less than or equal
0 13.

LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION . .
= If IncomingAuthInfos is not O,

IncomingAuthenticationInformation MUST NOT be
NULL.

= IncomingAuthInfos MUST be O or 1.

= If OutgoingAuthInfos is not O,
OutgoingAuthenticationInformation MUST NOT be
NULL.

= OutgoingAuthInfos MUST be 0 or 1.

= Each IncomingPreviousAuthenticationInformation
MUST satisfy validation for
LSAPR_AUTH_INFORMATION.

= Each IncomingAuthenticationInformation MUST
satisfy validation for LSAPR_AUTH_INFORMATION.

179 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Data type Validations

L] Each OutgoingPreviousAuthenticationInformation
MUST satisfy validation for
LSAPR_AUTH_INFORMATION.

L] Each OutgoingAuthenticationInformation MUST
satisfy validation for LSAPR_AUTH_INFORMATION.

LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION
- - - - = Information MUST satisfy

LSAPR_TRUSTED_DOMAIN_INFORMATION_EX
validation.

= AuthInformation MUST satisfy
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION
validation.

LSAPR_TRUSTED_DOMAIN_FULL_INFORMATIONZ2
- - - - = Information MUST satisfy

LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2
validation.

- FlatName MUST satisfy RPC_UNICODE_STRING
validation.

. SID MUST be NULL or satisfy RPC_SID validation,
including domain SID validation.

. If ForestTrustLength is not 0, ForestTrustInfo MUST
NOT be NULL.

LSAPR_AUTH_INFORMATION If AuthInfoLength is not 0, AuthInfo MUST NOT be NULL.

LSA_FOREST_TRUST_DOMAIN_INFO
- - - - = SID MUST satisfy RPC_SID validation, including

domain SID validation.

- DnsName MUST satisfy RPC_UNICODE_STRING
validation.

. NetbiosName MUST satisfy RPC_UNICODE_STRING
validation.

LSA_FOREST_TRUST_BINARY_DATA If Length is not 0, Buffer MUST NOT be NULL.

LSA_FOREST_TRUST_RECORD
- - - L] For ForestTrustType = ForestTrustTopLevelName or

ForestTrustTopLevelNameEx,
ForestTrustData.TopLevelName MUST satisfy
RPC_UNICODE_STRING validation.

. For ForestTrustType = ForestTrustDomainlInfo,
ForestTrustData.DomainInfo MUST satisfy
LSA_FOREST_TRUST_DOMAIN_INFO validation.

LSA_FOREST_TRUST_INFORMATION
- - - = If RecordCount is not 0, Entries MUST NOT be NULL.

. Each one of Entries MUST satisfy
LSA_FOREST_TRUST_RECORD validation.

LSA_FOREST_TRUST_COLLISION_RECORD Name MUST satisfy RPC_UNICODE_STRING validation.

180/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Data type

Validations

LSA_FOREST_TRUST_COLLISION_INFORMATION

= If RecordCount is not 0, Entries MUST NOT be NULL.

] Each one of Entries MUST satisfy
LSA_FOREST_TRUST_COLLISION_RECORD validation.

LSAPR_HANDLE

MUST not be NULL.

LSAPR_ACCOUNT_INFORMATION

SID MUST satisfy RPC_SID validation.

LSAPR_ACCOUNT_ENUM_BUFFER

= If EntriesRead is not 0, Information MUST NOT be
NULL.

] Each Information element MUST satisfy
LSAPR_ACCOUNT_INFORMATION validation.

LSAPR_POLICY_PRIVILEGE_DEF

Name MUST satisfy RPC_UNICODE_STRING validation.

LSAPR_PRIVILEGE_ENUM_BUFFER

. If Entries is not 0, Privileges MUST NOT be NULL.

= Each element in Entries MUST satisfy
LSAPR_POLICY_PRIVILEGE_DEF validation.

LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC

] Name MUST satisfy RPC_UNICODE_STRING
validation.

= SID MUST be NULL or MUST satisfy RPC_SID
validation including domain SID validation.

LSAPR_TRUSTED_ENUM_BUFFER

. If EntriesRead is not 0, Information MUST NOT be
NULL.

= Each element in Information MUST satisfy
LSAPR_TRUST_INFORMATION validation.

LSAPR_TRUSTED_PASSWORD_INFO

OldPassword and Password MUST satisfy
LSAPR_CR_CIPHER_VALUE validation.

LSAPR_TRUSTED_DOMAIN_NAME_INFO

Name MUST satisfy RPC_UNICODE_STRING validation.

LSAPR_USER_RIGHT_SET

= If Entries is not 0, UserRights MUST NOT be NULL.

= Each element in UserRights MUST satisfy
RPC_UNICODE_STRING validation.

LSAPR_TRUSTED_DOMAIN_INFORMATION_EX

- Name MUST satisfy RPC_UNICODE_STRING
validation.

. FlatName MUST satisfy RPC_UNICODE_STRING
validation.

= SID MUST be NULL or MUST satisfy RPC_SID
validation including domain SID validation.

[MS-LSAD-Diff] - v20240423

181/ 254

Local Security Authority (Domain Policy) Remote Protocol

Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.5 Timer Events

No protocol timer events are required on the RPC server other than the timers required in the
underlying RPC transport.

3.1.6 Other Local Events

No additional local events are used on the RPC server other than the events maintained in the
underlying RPC transport.

3.1.6.1 LSAPR_HANDLE_rundown

This function implements the RPC context handle rundown routine for the LsaContextHandle context
handle type (section 3.1.1.7). When invoked, the LSAPR_HANDLE_rundown procedure MUST free all
server resources associated with LsaContextHandle.Object. The server MUST then set
LsaContextHandle.Object to 0.

For more information, see [C706] section 5.1.6. An implementation of this protocol SHOULD use this
functionality.

182 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

4 Protocol Examples
The following sections describe several common scenarios from the client's perspective to illustrate the

function of the Local Security Authority (Domain Policy) Remote Protocol. "Send" implies that the
direction is from client to server, and "Receive" implies the opposite direction.

4.1 Manipulating Account Objects
This section illustrates a message exchange pertaining to account objects.

1. Message 1: Open the policy object.

Direction and Parameter
method field Parameter value
Send SystemName "Arbitrary String"

LsarOpenPolicy2

Send ObjectAttributes | Ignored, except for the RootDirectory field, which is NULL.
LsarOpenPolicy2

Send DesiredAccess POLICY_VIEW_LOCAL_INFORMATION | POLICY_CREATE_ACCOUNT |
LsarOpenPolicy2 POLICY_LOOKUP_NAMES

2. Message 2: Success; return the policy object handle.

Direction and method | Parameter field | Parameter value

Receive Status STATUS_SUCCESS
LsarOpenPolicy2

Receive PolicyHandle [Implementation-specific value]
LsarOpenPolicy2

3. Message 3: Attempt to create an account object with security identifier (SID) S-1-5-21-123-123-
123-1005.

Direction and Parameter

method field Parameter value

Send PolicyHandle [Implementation-specific value returned in Step 2.]
LsarCreateAccount

Send AccountSid "S-1-5-21-123-123-123-1005"

LsarCreateAccount

Send DesiredAccess READ_CONTROL | WRITE_DAC | ACCOUNT_ADJUST_PRIVILEGES |
LsarCreateAccount ACCOUNT_ADJUST_SYSTEM_ACCESS | ACCOUNT_VIEW

4. Message 4: Failure: Account already exists.

Direction and method | Parameter field | Parameter value

Receive Status STATUS_OBJECT_NAME_COLLISION
LsarCreateAccount
Receive AccountHandle NULL

183/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

5.

Direction and method

Parameter field

Parameter value

LsarCreateAccount

Message 5: Attempt to open the account object with SID S-1-5-21-123-123-123-1005.

Direction and Parameter

method field Parameter value

Send PolicyHandle [Implementation-specific value]

LsarOpenAccount

Send AccountSid "S-1-5-21-123-123-123-1005"

LsarOpenAccount

Send DesiredAccess READ_CONTROL | WRITE_DAC | ACCOUNT_ADJUST_PRIVILEGES |
LsarOpenAccount ACCOUNT_ADJUST_SYSTEM_ACCESS | ACCOUNT_VIEW

6. Message 6: Success: Return the account object handle.

7.

Direction and method

Parameter field

Parameter value

Receive Status STATUS_SUCCESS
LsarOpenAccount

Receive AccountHandle [Implementation-specific value]
LsarOpenAccount

Message 7: Retrieve the security descriptor of the account object.

Direction and method

Parameter field

Parameter value

Send
LsarQuerySecurityObject

ObjectHandle

[Implementation-specific value returned in Step 6.]

Send
LsarQuerySecurityObject

SecurityInformation

DACL_SECURITY_INFORMATION

8. Message 8: Success: Return the security descriptor.

9.

Direction and method

Parameter field

Parameter value

Receive
LsarQuerySecurityObject

Status

STATUS_SUCCESS

Receive
LsarQuerySecurityObject

SecurityDescriptor

Security descriptor of the account object in self-relative form.

Message 9: Update the discretionary access control list (DACL) on the account object.

Direction and

method Parameter field Parameter value

Send ObjectHandle [Implementation-specific value returned in Step 6.]
LsarSetSecurityObject

Send SecurityInformation | DACL_SECURITY_INFORMATION

[MS-LSAD-Diff] - v20240423
Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

184 / 254

Direction and

method Parameter field Parameter value

LsarSetSecurityObject

Send SecurityDescriptor Security descriptor representation of the DACL in self-relative
LsarSetSecurityObject form.

10. Message 10: Success: Security descriptor of the account object has been updated.

Direction and method | Parameter field | Parameter value

Receive Status STATUS_SUCCESS
LsarSetSecurityObject

11. Message 11: Retrieve the Locally Unique Identifier (LUID) that the server assigns to the
"SeTcbPrivilege" privilege.

Direction and method Parameter field | Parameter value

Send PolicyHandle [Implementation-specific value returned in Step 2.]
LsarLookupPrivilegeValue

Send Name "SeTcbPrivilege"
LsarLookupPrivilegeValue

12. Message 12: Success: Return the LUID of SeTcbPrivilege.

Direction and method Parameter field | Parameter value

Receive Status STATUS_SUCCESS
LsarLookupPrivilegeValue

Receive Value The LUID assigned by the server to SeTcbPrivilege.
LsarLookupPrivilegeValue

13. Message 13: Add a privilege to the account object.

Parameter
Direction and method field Parameter value
Send AccountHandle [Implementation-specific value returned in Step 6.]
LsarAddPrivilegesToAccount
Send Privileges A LSAPR_PRIVILEGE_SET structure containing one privilege (the
LsarAddPrivilegesToAccount LUID of which was returned in Step 12).

14. Message 14: Success: Privilege has been added to the account object.

Direction and method Parameter field | Parameter value

Receive Status STATUS_SUCCESS
LsarAddPrivilegesToAccount

15. Message 15: Add a system access right to the account object.

185/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

16.

17.

18.

19.

20.

Direction and method

Parameter
field

Parameter value

Send

LsarSetSystemAccessAccount

AccountHandle

Send

LsarSetSystemAccessAccount

SystemAccess

flag set

Message 16: Success: Access

right has been recorded.

Direction and method

Parameter field

Parameter value

Receive

LsarSetSystemAccessAccount

Status

STATUS_SUCCESS

Message 17: Done with this account object: Close the handle.

Direction and method

Parameter field

Parameter value

Send
LsarClose

ObjectHandle

[Implementation-specific value returned in Step 6.]

Message 18: Success: Account objects handle has been closed.

Direction and method

Parameter field

Parameter value

Receive
LsarClose

Status

STATUS_SUCCESS

Message 19: Done with the policy object: Close the handle.

Direction and method

Parameter field

Parameter value

Send
LsarClose

ObjectHandle

[Implementation-specific value returned in Step 2.]

Message 20: Success: Policy object has been closed.

Direction and method

Parameter field

Parameter value

Receive
LsarClose

Status

STATUS_SUCCESS

4.2 Manipulating Secret Objects

This section illustrates a message exchange pertaining to secret objects.

1.

Message 1: Open the policy object.

Direction and method

Parameter field

Parameter value

Send

SystemName

"Arbitrary String"

[MS-LSAD-Diff] - v20240423
Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[Implementation-specific value returned in Step 6.]

An unsigned long value with the POLICY_MODE_NETWORK

Direction and method | Parameter field | Parameter value

LsarOpenPolicy2

Send ObjectAttributes Ignored, except for the RootDirectory field, which is NULL.
LsarOpenPolicy?2

Send DesiredAccess POLICY_VIEW_LOCAL_INFORMATION | POLICY_CREATE_SECRET
LsarOpenPolicy?2

2. Message 2: Success: Policy object opened successfully.

Direction and method | Parameter field | Parameter value

Receive Status STATUS_SUCCESS
LsarOpenPolicy2

Receive PolicyHandle [Implementation-specific value]
LsarOpenPolicy2

3. Message 3: Attempt to create a secret objects with name "NL$".

Direction and method | Parameter field | Parameter value

Send PolicyHandle [Implementation-specific value returned in Step 2.]
LsarCreateSecret

Send Secretname "NL$"

LsarCreateSecret

Send DesiredAccess SECRET_SET_VALUE

LsarCreateSecret

4. Message 4: Failure: Secret name "NL$" is a reserved prefix name and cannot be used.

Direction and method | Parameter field | Parameter value

Receive Status STATUS_INVALID_PARAMETER
LsarCreateSecret

Receive SecretHandle NULL

LsarCreateSecret

5. Message 5: Attempt to create a secret object with name "MyBigSecret".

Direction and method | Parameter field | Parameter value

Send PolicyHandle [Implementation-specific value returned in Step 2.]
LsarCreateSecret

Send Secretname "MyBigSecret"

LsarCreateSecret

Send DesiredAccess SECRET_SET_VALUE

LsarCreateSecret

6. Message 6: Success: Secret created.

187/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Direction and method | Parameter field | Parameter value
Receive Status STATUS_SUCCESS
LsarCreateSecret
Receive SecretHandle [Implementation-specific value]
LsarCreateSecret
7. Message 7: Set the value of the secret object.
Direction and method | Parameter field Parameter value
Send SecretHandle [Implementation-specific value returned in Step 6.]
LsarSetSecret
Send EncryptedCurrentValue | Byte BLOB value encrypted with session key.
LsarSetSecret
Send EncryptedOldValue NULL
LsarSetSecret
8. Message 8: Success: Secret value set.
Direction and method | Parameter field | Parameter value
Receive Status STATUS_SUCCESS
LsarSetSecret
9. Message 9: Done with this secret; close the handle.
Direction and method | Parameter field | Parameter value
Send ObjectHandle [Implementation-specific value returned in Step 6.]
LsarClose
10. Message 10: Success: Secret handle has been closed.
Direction and method | Parameter field | Parameter value
Receive Status STATUS_SUCCESS
LsarClose
11. Message 11: Done with the policy handle; close the handle.
Direction and method | Parameter field | Parameter value
Send ObjectHandle [Implementation-specific value returned in Step 2.]
LsarClose
12. Message 12: Success: Policy handle has been closed.

Direction and method

Parameter field

Parameter value

Receive
LsarClose

Status

STATUS_SUCCESS

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

188 / 254

4.3 Manipulating Trusted Domain Objects

This section illustrates a message exchange pertaining to trusted domain objects.

1.

Message 1: Open the policy object.

LsarOpenPolicy?2

Direction and Parameter
method field Parameter value
Send SystemName "Arbitrary String"

Send
LsarOpenPolicy2

ObjectAttributes

NULL.

Ignored, except for the RootDirectory field, which is

Send
LsarOpenPolicy2

DesiredAccess

POLICY_VIEW_LOCAL_INFORMATION

2. Message 2: Success; return the policy object handle.

3.

Direction and method

Parameter field

Parameter value

LsarOpenPolicy2

Receive Status STATUS_SUCCESS
LsarOpenPolicy2
Receive PolicyHandle [Implementation-specific value]

Message 3: Enumerate trusted domain objects.

Direction and method

Parameter field

Parameter value

Send
LsarEnumerateTrustedDomainsEx

PolicyHandle

[Implementation-specific value returned in Step
2.]

LsarEnumerateTrustedDomainsEx

Send EnumerationContext 0
LsarEnumerateTrustedDomainsEx
Send PreferredMaximumLength | 0x100

4. Message 4: Success; return some trusted domain objects, with more to come.

Direction and method

Parameter field

Parameter value

Receive
LsarEnumerateTrustedDomainsEx

Status

STATUS_MORE_ENTRIES

Receive
LsarEnumerateTrustedDomainsEx

EnumerationContext

[Implementation-specific value]

Receive
LsarEnumerateTrustedDomainsEx

TrustedDomainInformation

EntriesRead: 2

EnumerationBuffer: Contains information about
two different trusted domain objects.

[MS-LSAD-Diff] - v20240423
Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

189 / 254

5. Message 5: Finish enumerating the trusted domain objects.

Direction and method Parameter field Parameter value

Send PolicyHandle [Implementation-specific value returned in Step
LsarEnumerateTrustedDomainsEx 2.]

Send EnumerationContext [Value returned in Step 4.]

LsarEnumerateTrustedDomainsEx

Send PreferredMaximumLength | 0x10000
LsarEnumerateTrustedDomainsEx

6. Message 6: Success; all trusted domain objects have been enumerated.

Direction and method Parameter field Parameter value

Receive Status STATUS_NO_MORE_ENTRIES
LsarEnumerateTrustedDomainsEx

Receive EnumerationContext [Implementation-specific value]
LsarEnumerateTrustedDomainsEx

Receive TrustedDomainInformation | EntriesRead: 3

LsarEnumerateTrustedDomainsEx EnumerationBuffer: Contains information about
three different trusted domain objects.

7. Message 7: Open a trusted domain object by name.

Direction and method Parameter field Parameter value

Send PolicyHandle [Implementation-specific value returned in Step 2.]
LsarOpenTrustedDomainByName

Send TrustedDomainName | [One of the DNS names returned in Step 4 or Step 6.]
LsarOpenTrustedDomainByName

Send DesiredAccess POLICY_TRUST_ADMIN
LsarOpenTrustedDomainByName

8. Message 8: Success; the trusted domain object has been opened successfully.

Direction and method Parameter field Parameter value

Receive Status STATUS_SUCCESS
LsarOpenTrustedDomainByName

Receive TrustedDomainHandle | [Implementation-specific value]
LsarOpenTrustedDomainByName

9. Message 9: Done with this trusted domain object: Close the handle.

Direction and method | Parameter field | Parameter value

Send ObjectHandle [Implementation-specific value returned in Step 8.]

LsarClose

190 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

10. Message 10: Success: Trusted domain object has been closed.

Direction and method

Parameter field

Parameter value

Receive
LsarClose

Status

STATUS_SUCCESS

11. Message 11: Done with the policy object: Close the handle.

Direction and method

Parameter field

Parameter value

Send
LsarClose

ObjectHandle

[Implementation-specific value returned in Step 2.]

12. Message 12: Success: Policy object has been closed.

Direction and method

Parameter field

Parameter value

Receive
LsarClose

Status

STATUS_SUCCESS

4.4 Structure Example of LSAPR_TRUSTED_DOMAIN_AUTH_BLOB

The following is an annotated dump of LSAPR_TRUSTED_DOMAIN_AUTH_BLOB.

00000000 93 1le 54 57 83
00000010 b4 eb ee 6b fa
00000020 b6 38 0f 6¢c 4d
00000030 fc 40 b4 fd e2
00000040 2f 3d 69 a3 54
00000050 93 fb 56 0b db
00000060 Dbb 5a 2d aa e3
00000070 9f 57 b2 89 be
00000080 27 15 20 01 c2
00000090 6a dc 9b 3e 09
000000a0 82 ab d4 81 07
0000000 81 6f 11 37 el
000000cO 79 45 04 0Oe 59
000000d0 46 35 7c 1f 01
000000e0 bl 18 43 2f 27
000000f0 b9 b2 43 81 f0
00000100 fa 5f 37 0a 9f
00000110 dc 4f 28 fa 18
00000120 da a4 3d cb 0b
00000130 92 20 8f ac 2f
00000140 e6 94 34 8e 29
00000150 3f df 9a 6f 4f
00000160 aa 59 88 96 47
00000170 03 07 43 bf 8a
00000180 a0 35 75 71 d5
00000190 02 e7 aa 96 43
000001a0 3c 19 5f f6 1d
000001b0 5d 74 7e 33 d8
000001cO ¢33 a7 ef 40 82
000001d0 87 a3 ed 20 ff
000001e0 bc 5b 5e 17 52
000001f0 69 95 6¢ 78 22
00000200 01 00 00 00 Oc
00000210 b4 55 c9 01 02
00000220 6f 69 6e 67 41

78 c6 cl 15 f1
79 £5 2e 8d cb
6b 2b 36 4f ab
71 78 95 f4 d5
cd 47 79 ca 3f
84 9e bb da c4
26 23 a5 12 bl
37 ec 32 83 25
7a d3 2a el eb5
43 5a 66 8e 17
83 78 98 78 al
e5 90 4b 47 b4
07 67 ea f2 ea
e4 89 d9 1b 9d
a7 f1 0a ff 1d
ed 22 2d e0 a0
58 90 77 eb 0a
d7 22 23 9b 54
£f3 5a ce e9 dd
bc be 11 55 bl
09 ef b5 2e 36
3c 3e la 11 e7
0b f0 6d 29 27
96 80 30 b9 1c
ac f1 a3 1c d4
c2 46 1d cd £3
lc 11 42 ff 3e
cd 58 20 20 38
11 4c dc 2b 7e
50 4f ee 6c c3
do 92 9e 11 70
34 70 03 75 77
00 00 00 30 00
00 00 00 11 00
75 74 68 49 6e

13 85 3d 93 18 1d ..TW.X...... =...
b4 e3 e3 54 8a 81 ...k.y....... T..
ce d8 82 44 52 23 .8.1Mk+60....DR#
29 el 11 7a 8c 67 .@...gx...)..z.g
a8 a9 4f 08 85 9d /=i.T.Gy.?..0...
fd 58 3d 88 55 ¢7 ..V........ X=.U.

lc 23 la aa 72 26 .Z-..&#....#..rs&
oc fe 7c ae 09 2b .W...7.2.%1.|..+
5¢ 0c 16 17 10 4d '. ..z.*.."....M
4c 27 dl1 40 9o 19 j..>.czf..L'.@

f8 2a b2 9b 7c 5f X.X. 5]
0d 9a ac 3b 35 40 .o0.7...KG....;
57 c2 5d 25 03 94 yE..Y.g...W.1%..

fe 94 e8 9e 3f 4e FS5|........... ?N
42 e2 ce 54 f9 2a ..C/'..... B..T.*
37 2a ¢l 19 67 £f0 ..C..."-..7*..g.
95 1c fe 5f a0 e7 . 7..X.w..... _

e7 fd e5 ed 67 a2 .O(..."#.T. g

de Ob d6 €7 e5 91 ..=...Z.........
5¢ 0a 79 ed 00 4a . ../...U.".y..J
62 73 84 4d 4a 77 ..4.)....6bs.MJw
lc 8d 84 43 2e la ?2..00<>...... C..
7o 68 c2 7b 2e be .Y..G..m)'{h.{..
le 36 e4 c0 dl a6 ..C....0...6....
29 ee 40 50 68 93 .5ug......) .@Ph.
ba 9¢c 94 ff f6 74C.F........ t
34 0b 94 48 dc de <.B.>4..H..

la d5 e4 b6 fd 1d 1t~3..X 8......
b4 ea la 85 ce f8 ...@

bl 4c 2a 17 96 61PO.1..L*..a
do 1d 98 a7 56 fa .[".R....p....V.
60 c5 3b 2f 42 e0 1i.lx"4p.uw .;/B.
00 00 49 42 b8 1c +v.vuvn.. 0...IB..
00 00 4f 75 74 67 .U...ueneen.. Outg
66 6f 00 00 00 00 oingAuthInfo....

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

191 / 254

00000230
00000240
00000250
00000260
00000270
00000280
00000290
00000220
000002b0

49
4f
41
Oc
02
41
b4
6d
49

42
75
75
00
00
75

69
6e

b8
74
74
00
00
74
c9
6e
66

lc
67
68
00
00
68
01
67
6f

b4
6f
49
30
11
49
02
50
00

55

6e
00
00
6e

72
00

c9
6e
66
00
00
66

65
00

01
67
6f
00
00
6f

76
00

02
50
00
49
49
00
19
69
5c

00
72
00
42
6e
00

6f
00

00
65
00
b8
63
00

75
00

00
76
00
lc
6f
00

73
00

19

01
b4
6d
49
49
41
5c

00
6f
00
55
69
42
6e
75
00

00
75
00
c9
6e
b8

74
00

00
73
00
01
67
lc
6f
68
00

IB...U..oviinnn
OutgoingPrevious
AuthInfo........
..0...IB...U..
........ Incoming
AuthInfo....IB..
Uivvvvvinn Inco
mingPreviousAuth
Info....\...\...

The LSAPR_TRUSTED_DOMAIN_AUTH_BLOB leads with 512 bytes of random data:

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
000000a0
000000b0O
000000cO
000000d0
000000e0
000000f0
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
00000120
000001b0
000001cO
000001d0
000001e0
000001f0

93
b4
b6
fc
2f
93
bb
9f
27
6a
82
81
79
46
bl
b9
fa
dc
da
92
eb
3f
aa
03
a0
02
3c
5d
c3
87
bc
69

le
eb
38
40
3d
fb
5a
57
15
dc
ab
6f
45
35
18
b2
5f
4f
a4
20
94
df
59
07
35
e’
19
74
a7
a3
5b
95

54
ee
0f
b4
69
56
2d
b2
20
9b
d4
11
04
Tc
43
43
37
28
3d
8f
34
9a
88
43
75
aa
5f
Te
ef
ed
Se
6¢C

57
6b
6¢C
fd
a3
O0b
aa
89
01
3e
81
37
Oe
1f
2f
81
Oa
fa
cb
ac
8e
6f
96
bf
71
96
f6
33
40
20
17
78

83
fa
4d
ez
54
db
e3
be
c2
09
07
el
59
01
27
f0
9f
18
0b
2f
29
4f
47
8a
ds
43
1d
ds
82
ff
52
22

78
79
6b
71
cd
84
26
37
Ta
43
83
eb
07
ed
a7
ed
58
d7
£3
bc
09
3c
O0b
96
ac
c2
1lc
cd
11
50
do
34

c6
£5
2b
78
47
9e
23
ec
d3
5a
78
90
67
89
f1
22
90
22
5a
be
ef
3e
f0
80
f1
46
11
58
4c
4f
92
70

cl
2e
36
95
79
bb
ab
32
2a
66
98
4b
ea
ds
Oa
2d
77
23
ce
11
b5
la
6d
30
a3
1d
42
20
dc
ee
9e
03

15
8d
4f
f4
ca
da
12
83
el
8e
78
47
f2
1b
ff
el
eb
9b
e9
55
2e
11
29
b9
1lc
cd
ff
20
2b
6¢C
11
75

f1
cb
ab
ds
3f
c4
bl
25
eb
17
al
b4
ea
9d
1d
a0
Oa
54
dd
bl
36
e’
27
lc
d4
£3
3e
38
Te
c3
70
77

13
b4
ce
29
a8
fd
lc
6c
Se
4c
£8
0d
57
fe
42
37
95
e’
de
5e
62
lc
To
le
29
ba
34
la
b4
bl
do
60

85
e3
ds
el
a9
58
23
fe
Oc
27
2a
9a
c2
94
ez
2a
lc
fd
0b
O0a
73
8d
68
36
ee
9c
O0b
ds
ea
4c
1d
cb

3d
e3
82
11
4f
3d
la
Tc
16
dl
b2
ac
5d
e8
ce
cl
fe
eb
de
79
84
84
c2
ed
40
94
94
ed
la
2a
98
3b

93
54
44
Ta
08
88
aa
ae
17
40
9b
3b
25
9e
54
19
5f
ed
e’
ed
4d
43
To
cO
50
ff
48
b6
85
17
a7
2f

The data following that is for CountOutgoingAuthInfos,

00000200

This indicates that there is one entry present in the CurrentOutgoingAuthInfos field.

01 00 00 00

18
8a
52
8c
85
55
72
09
10
9b
Tc
35
03
3f
£9
67
a0
67
eb
00
4a
2e
2e
dl
68
f6
dc
fd
ce
96
56
42

in little-endian byte order:

1d
81
23
67
9d
c7
26
2b
4d
19
5f
40
94
de
2a
f0
e’7
az
91
4a
77
la
be
a6
93
74
de
1d
£8
61
fa
el

Q...gx...) . .z.g

?2..00<>. ..., C.

JfNReLLpe. WV

The data following that is for ByteOffsetCurrentOutgoingAuthInfo, in little-endian byte order:

00000204

Oc 00 00 00

This means that the byte offset from the beginning of CountOutgoingAuthInfos to the start of the
CurrentOutgoingAuthlInfos field is 0x0000000c.

The data following that is for ByteOffsetPreviousOutgoingAuthInfo, in little-endian byte order:

[MS-LSAD-DIff] - v20240423
Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

192 / 254

00000208 30 00 00 00 O...

This means that the byte offset from the beginning of CountOutgoingAuthlInfos to the start of the
PreviousOutgoingAuthInfos field is 0x00000030, so the size of CurrentOutgoingAuthInfos is
0x30 - Oxc = 0x24 bytes.

The data following that is for CurrentOutgoingAuthInfos; the last 3 padding bytes are for data
alignment purposes:

0000020c 49 42 b8 1lc IB..
00000210 b4 55 c9 01 02 00 00 00 11 00 OO0 00 4f 75 74 67 .U.......... Outg
00000220 6f 69 6e 67 41 75 74 68 49 6e 66 6f 00 00 00 00 oingAuthInfo....

This is an array of CountOutgoingAuthInfos of LSAPR_AUTH_INFORMATION (section 2.2.7.17)
entries in self-relative format.

The data following that is for PreviousOutgoingAuthInfos; the last 3 padding bytes are for data
alignment purposes:

00000230 49 42 b8 1c b4 55 c9 01 02 00 00 00 19 00 00 00O IB...U..........
00000240 4f 75 74 67 6f 69 6e 67 50 72 65 76 69 6f 75 73 OutgoingPrevious
00000250 41 75 74 68 49 6e 66 6f 00 00 00 00 AuthInfo....

This is an array of CountOutgoingAuthInfos of LSAPR_AUTH_INFORMATION entries in self-relative
format.

The data following that is for CountIncomingAuthlInfos, in little-endian byte order:

0000025¢ 01 00 00 00

This means there is one entry present in the CountIncomingAuthInfos field.

The data following that is for ByteOffsetCurrentIncomingAuthlInfo, in little-endian byte order:

00000260 0Oc 00 00 00
This means that the byte offset from the beginning of CountIncomingAuthInfos to the start of the

CurrentIncomingAuthInfos field is 0x0000000c.

The data following that is for ByteOffsetPreviousIncomingAuthInfo, in little-endian byte order:

00000264 30 00 00 00 O...

This means that the byte offset from the beginning of CountIncomingAuthInfos to the start of the
PreviousIncomingAuthInfos field is 0x00000030, so the size of CurrentIncomingAuthlInfos is
0x30 - Oxc = 0x24 bytes.

The data following that is for CurrentIncomingAuthlInfos; the last 3 padding bytes are for data
alignment purposes:

00000268 49 42 b8 1lc b4 55 c9 01 IB...U..
00000270 02 00 00 00 11 00 00 00 49 6e 63 6f 6d 69 6e 67 Incoming

193/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

00000280 41 75 74 68 49 6e 66 6f 00 00 00 00 AuthInfo....
This is an array of CountIncomingAuthInfos of LSAPR_AUTH_INFORMATION entries in self-relative
format.

The data following that is for PreviousIncomingAuthInfos; the last 3 padding bytes are for data
alignment purposes:

0000028c 49 42 b8 1lc IB..
00000290 b4 55 c9 01 02 00 00 00 19 00 OO0 OO0 49 6e 63 6f .U.......... Inco
000002a0 6d 69 6e 67 50 72 65 76 69 6f 75 73 41 75 74 68 mingPreviousAuth
0000020 49 6e 66 6f 00 00 00 00 Info....

This is an array of CountIncomingAuthInfos of LSAPR_AUTH_INFORMATION entries in self-relative
format.

The data following that is for OutgoingAuthInfoSize, in little-endian byte order:

000002b8 5c 00 00 00 \...

This means that the size, in bytes, of the sub-portion of the structure from the beginning of the
CountOutgoingAuthInfos field through the end of the of the PreviousOutgoingAuthInfos field is
0x0000005c.

The data following that is for IncomingAuthInfoSize, in little-endian byte order:

000002bc 5c 00 00 00 \...

This means that the size, in bytes, of the sub-portion of the structure from the beginning of the
CountIncomingAuthlInfos field through the end of the of the PreviousIncomingAuthInfos field is
0x0000005c.

194 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

5 Security

5.1 Security Considerations for Implementers

Usage of RC4 is specified in section 5.1.1. This protocol employs an implementation that reuses RC4
key stream, which subjects it to Xor and other cryptanalysis attacks. This vulnerability is applicable
when multiple RC4-encrypted opnum requests are made over the same transport session, as specified
in section 2.1.

Usage of Data Encryption Standard (DES) in Electronic Code Book (ECB) mode is specified in section
5.1.2. This algorithm is considered inadequate for maintaining confidentiality considering the efficiency
of brute-force and cryptanalysis attacks that are enabled by using year 2006, off-the-shelf computer
hardware.

The session key for sections 5.1.1 and 5.1.2 is obtained from the SMB transport, as specified in
section 2.1. The session key is obtained from the SMB transport every time a message that needs
encryption is to be sent or a message that needs decryption is to be received.

5.1.1 RC4 Cipher Usage

Implementations of this protocol protect the LSAPR_TRUSTED_DOMAIN_AUTH_BLOB structure by
encrypting the data referenced by that structure's AuthBlob field. The RC4 algorithm is used to
encrypt the data on request (and reply) and decrypt the data on receipt. The key, required during
runtime by the RC4 algorithm, is the 16-byte key specified by the method that uses this structure (for
example, see section 3.1.4.7.10). The size of data (the AuthSize field of
LSAPR_TRUSTED_DOMAIN_AUTH_BLOB) must remain unencrypted.

5.1.2 Secret Encryption and Decryption
This cipher is used to provide confidentiality of wire traffic for operations that reference this section.

The encrypt_secret routine is used to encrypt a cleartext value into ciphertext prior to transmission.
The decrypt_secret routine is used to decrypt a ciphertext value into cleartext after receipt. The
appropriate mode is selected based on the requirements of the interface.

The definitions of des_ecb_Im_dec and des_ecb_Im_enc are specified in section 5.1.3.

encrypt secret (input : LSA UNICODE STRING, sessionkey : byte[l6],
output : LSA UNICODE STRING)
{

LET blocklen be 8

LET keyindex be 0

// Set version, length

// temporary buffer.

LET buffer be an array of blocklen bytes
DECLEARE Version as ULONG

SET Version to 1

SET buffer to input->length

SET (buffer + 4) to Version

CALL des _ecb 1lm enc(buffer, sessionkey[keyindex],
output->buffer)

INCREMENT output->buffer by blocklen
INCREMENT output->length by blocklen

SET keyindex to AdvanceKey (keyindex)

LET remaining be input->length
WHILE remaining > blocklen

195/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

CALL des_ecb Im enc(input->buffer,
sessionkey[keyindex], output->buffer)

INCREMENT input->buffer by blocklen
INCREMENT output->buffer by blocklen
INCREMENT output->length by blocklen

SET keyindex to AdvanceKey (keyindex)

DECREMENT remaining by blocklen
ENDWHILE

IF (remaining > 0) THEN
// zero pad the last block.
SET bytes in buffer to 0
COPY remaining bytes from input->buffer to buffer

CALL des_ecb Im enc(buffer, sessionkeylkeyindex],
output->buffer)

INCREMENT output->length by blocklen
ENDIF

decrypt secret (input : LSA UNICODE STRING, sessionkey : byte[l6],
output : LSA UNICODE STRING)

{
LET keyindex be 0
LET blocklen be 8

// Check version, get clear length.
CALL des _ecb 1lm dec(input->buffer, sessionkey[keyindex],
output->buffer)

LET outputlength be output[0]
LET version be output[1l]

IF (version # 1) THEN // version check
FAIL
ENDIF
INCREMENT input->buffer by blocklen
SET keyindex to AdvanceKey (keyindex)
LET remaining be outputlength
WHILE remaining > blocklen
CALL des_ecb Im dec (input->buffer,

sessionkey[keyindex], output->buffer)

INCREMENT input->buffer by blocklen
INCREMENT output->buffer by blocklen

SET keyindex to AdvanceKey (keyindex)

DECREMENT remaining by blocklen
ENDWHILE

IF (remaining > 0) THEN
CALL des_ecb Im dec(input->buffer,
sessionkey[keyindex], output->buffer)
ENDIF

SET output->length to outputlength

196 / 254

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

ULONG AdvanceKey (pos
{
LET KeyBlockLen
DECLARE overrun
DECLARE currpos
DECLARE nextpos

LET pos = pos +
LET currpos = po
LET nextpos po

IF (nextpos > si

LET overrun =
LET currpos

ULONG)

be
as
as
as

7;
ULONG
ULONG;
ULONG;

KeyBlockLen;
s;
s + KeyBlockLen;

zeof (sessionKey)) THEN
nextpos- sizeof (sessionKey) ;
(KeyBlockLen - overrun);

ENDIF
RETURN currpos;

5.1.3 DES-ECB-LM Cipher Definition

des_ecb_Im_dec utilizes DES-ECB-LM in cipher-mode decryption.

des_ecb_Im_enc utilizes DES-ECB-LM in cipher-mode encryption.

DES-ECB-LM is defined as follows.

des ecb Im(input:byte[8],
output:byte([8])

InputKey:byte[7]

OutputKey:byte[8]

encryptionKey: byte[8],

Let InputKey be the first 7 bytes of encryptionKey [0-6]
OutputKey[0] = InputKey[0] >> 0x01;
OutputKey[1l] = ((InputKey[0]&0x01)<<6) | (InputKey[1l]>>2);
OutputKey[2] = ((InputKey[l]&0x03)<<5) | (InputKey[2]>>3);
OutputKey[3] = ((InputKey[2]&0x07)<<4) | (InputKey[3]>>4);
OutputKey[4] = ((InputKey[3]&0x0F)<<3) | (InputKey[4]>>5);
OutputKey[5] = ((InputKey[4]&0x1F)<<2) | (InputKey[5]>>6);
OutputKey[6] = ((InputKey[5]&0x3F)<<1l) | (InputKey[6]>>7);
OutputKey[7] = InputKey[6] & O0x7F;
((unsigned long*)OutputKey)[] <<= 1;
((unsigned long*)OutputKey) [1] <<= 1;
((unsigned long*)OutputKey) [0] &= Oxfefefefe;
((unsigned long*)OutputKey) [1] = Oxfefefefe;

Let the left-most bit of OutputKey be the parity bit. That is,

if the sum of the other 7 bits is odd, the parity bit is zero;

otherwise the parity bit is one.
left-most bit of OutputKey.
des_ecb(input, OutputKey,
END

output)

The processing starts at the

The algorithm des_ecb is the Data Encryption Standard (DES) encryption in Electronic Code Book

(ECB) mode, as specified in [FIPS81].

5.1.4 Encryption and Decryption Examples

This section provides an encryption and decryption example of the algorithms specified in section

5.1.2.

[MS-LSAD-Diff] - v20240423

197 / 254

Local Security Authority (Domain Policy) Remote Protocol

Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

5.1.4.1 Encryption Example

This section provides an example of how the encrypt_secret routine defined in section 5.1.2 encrypts a
given cleartext value into a ciphertext using a session key, and given the following parameters:

Parameters | Value

input 50 00 61 00 73 00 73 00 77 00 6f 00 72 00 64 00 31 00 32 00 33 00

sessionkey 4e 98 c9 10 b2 a9 88 d7 92 fb 5a a3 3e 8e f7 86

The following table describes the values keyindex (defined in encrypt_secret) and input, InputKey,
OutputKey, and output (defined in des_ecb_Im) after successive calls to des_ecb_Im_enc.

keyindex | input InputKey OutputKey output

0 16 00 00 00 01 00 00 00 | 4e 98 c9 10 b2 a9 88 | 4f 4c 32 23 0b 94 a7 10 | af 78 44 03
fb a0 92 27

7 50 00 61 00 73 00 73 00 | d7 92 fb 5a a3 3e 8e | d6 c8 bf 6b ab 19 fb 1c 8c 95 fc 7e
88 56 4c cd

2 77 00 6f 00 72 00 64 00 | c9 10 b2 a9 88 d7 92 | c8 89 2c 54 98 46 5e 25 | 7c d0 c2 41
da 6f 14 41

9 31 00 320033000000 | fb 5a a3 3e 8ef7 86 fb ad a8 67 €9 76 df 0d 56 26 cd a5
81 e9 22 3d

—

he output variable fields are:

Parameters Value

output->buffer | af 78 44 03 fb a0 92 27 8c 95 fc 7e 88 56 4c cd 7c dO c2 41 da 6f 14 41 56 26 cd a5 81 €9
22 3d

output- 0x20
>length

5.1.4.2 Decryption Example

This section provides an example of how the decrypt_secret routine defined in section 5.1.2 decrypts
a given ciphertext value into cleartext using a session key, and given the following parameters:

Parameters | Value

Input af 78 44 03 fb a0 92 27 8¢ 95 fc 7e 88 56 4c cd 7c dO c2 41 da 6f 14 41 56 26 cd a5 81 €9 22
3d

sessionkey 4e 98 c9 10 b2 a9 88 d7 92 fb 5a a3 3e 8e f7 86

The following table describes the values keyindex (defined in decrypt_secret) and input, InputKey,
OutputKey, and output (defined in des_ecb_Im) after successive calls to des_ecb_Im_dec.

198 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

keyindex | input InputKey OutputKey output

0 af 7844 03 fba0 9227 | 4698 c9 10b2 a9 88 | 4f4c 3223 0b94 a7 10 | 16 00 00 00
01 00 00 00

7 8c 95 fc 7e 88 56 4c cd d7 92 fb 5a a3 3e 8e | d6 c8 bf 6b ab 19 fb 1c 50 00 61 00
73 00 73 00

2 7cd0c241da6f1441 | c910b2a988d7 92 | c8 89 2c 54 98 46 5e 25 | 77 00 6f 00
72 00 64 00

9 56 26 cd a5 81 €9 22 3d | fb 5a a3 3e 8e f7 86 fb ad a8 67 €9 76 df 0d 3100 3200
33 00 00 00

—

he output variable fields are:

Parameters Value

output->buffer | 50 00 61 00 73 00 73 00 77 00 6f 00 72 00 64 00 31 00 32 00 33 00 00 00

output->length | 0x16

5.1.5 AES Cipher Usage

Advanced Encryption Standard (AES) encryption is achieved in this protocol by using the AEAD-
AES-256-CBC-HMAC-SHA512 cipher<119>, as specified in [AES-CBC]. In order to use an
encryption key, AES encryption requires a shared secret between the server and the client - a
Content Encryption key. The Content Encryption key used is the session key negotiated by the
transport. In this case, it is a 16-byte SMB session key.

The data MUST be encrypted and decrypted using AEAD-AES-256-CBC-HMAC-SHA512, as follows:
= LetIV be arandom 16-byte number.
= Let CEK be the shared secret.
= Encryption is then completed as follows:
= Let enc_key ::= HMAC-SHA-512(CEK, LSAD_AES256_ENC_KEY_STRING)
= Let mac_key ::= HMAC-SHA-512(CEK, LSAD_AES256_MAC_KEY_STRING)
= Let Cipher ::= AES-CBC(enc_key, 1V, secret_plaintext)

» Let AuthData ::= HMAC-SHA-512(mac_key, versionbyte + IV + Cipher +
versionbyte_length)

Note that enc_key is truncated to 32-bytes and the entire 64-byte mac_key is used.

5.2 Index of Security Parameters

Security parameter Section
Usage of RC4 stream cipher 5.1.1
Usage of DES_ECB_LM 5.1.3

199 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Security parameter

Section

Usage of AES cipher AEAD-AES-256-CBC-HMAC-SHA512

5.1.5

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

200/ 254

6 (Updated Section) Appendix A: Full IDL

For ease of implementation, the full IDL is provided, where ms-dtyp.idl is the IDL specified in [MS-
DTYP] Appendix A.

Note The Isarpc interface is shared between this protocol and the Local Security Authority
(Translation Methods) Remote Protocol [MS-LSAT]. For convenience, the IDL definitions that appear
below and the IDL definitions in [MS-LSAT] section 6 have been merged and are available for
download. For more information, see [MSFT-LSA-IDL].

import "ms-dtyp.idl";

[
uuid(12345778-1234-ABCD-EF00-0123456789AB) ,
version(0.0),
ms_union,
pointer default (unique)

]

interface lsarpc

{

//
// Type definitions.
//

//
// Start of common types.
//

#define MAX CIPHER SIZE (2 * ((64 * 1024) + 8))

typedef [context handle] void * LSAPR HANDLE;

typedef unsigned char SECURITY CONTEXT TRACKING MODE,
*PSECURITY CONTEXT TRACKING MODE;

typedef unsigned short SECURITY DESCRIPTOR_CONTROL,
*PSECURITY DESCRIPTOR_CONTROL;

typedef struct STRING {
unsigned short Length;
unsigned short MaximumLength;
[size is(MaximumLength), length is(Length)]
char * Buffer;
} STRING, *PSTRING;

typedef struct LSAPR ACL {

unsigned char AclRevision;

unsigned char Sbzl;

unsigned short AclSize;

[size is(AclSize - 4)] unsigned char Dummyl[*];
} LSAPR ACL, *PLSAPR ACL;

typedef struct LSAPR SECURITY DESCRIPTOR ({
unsigned char Revision;
unsigned char Sbzl;
SECURITY DESCRIPTOR CONTROL Control;
PRPC_SID Owner;
PRPC_SID Group;
PLSAPR_ACL Sacl;
PLSAPR ACL Dacl;
} LSAPR_SECURITY DESCRIPTOR, *PLSAPR_SECURITY_DESCRIPTOR;

typedef enum SECURITY IMPERSONATION LEVEL {

201 / 254

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

SecurityAnonymous = 0,
SecurityIdentification = 1,
SecurityImpersonation = 2,
SecurityDelegation = 3
} SECURITY IMPERSONATION LEVEL, * PSECURITY IMPERSONATION LEVEL;

typedef struct SECURITY QUALITY OF SERVICE {
unsigned long Length;
SECURITY IMPERSONATION LEVEL ImpersonationLevel;
SECURITY CONTEXT TRACKING MODE ContextTrackingMode;
unsigned char EffectiveOnly;

} SECURITY QUALITY OF SERVICE, * PSECURITY QUALITY OF SERVICE;

typedef struct LSAPR OBJECT ATTRIBUTES {

unsigned long Length;

unsigned char * RootDirectory;

PSTRING ObjectName;

unsigned long Attributes;

PLSAPR SECURITY DESCRIPTOR SecurityDescriptor;

PSECURITY QUALITY OF SERVICE SecurityQualityOfService;
} LSAPR OBJECT ATTRIBUTES, *PLSAPR OBJECT ATTRIBUTES;

typedef struct LSAPR TRUST INFORMATION {
RPC UNICODE STRING Name;
PRPC_SID Sid;
} LSAPR TRUST INFORMATION, *PLSAPR TRUST INFORMATION;

//
// End of common types.
//

typedef enum POLICY INFORMATION CLASS {
PolicyAuditLogInformation = 1,
PolicyAuditEventsInformation,
PolicyPrimaryDomainInformation,
PolicyPdAccountInformation,
PolicyAccountDomainInformation,
PolicyLsaServerRoleInformation,
PolicyReplicaSourceInformation,
PolicyInformationNotUsedOnWire,
PolicyModificationInformation,
PolicyAuditFullSetInformation,
PolicyAuditFullQueryInformation,
PolicyDnsDomainInformation,
PolicyDnsDomainInformationInt,
PolicyLocalAccountDomainInformation,
PolicyMachineAccountInformation,
PolicyLastEntry

} POLICY_ INFORMATION CLASS, *PPOLICY INFORMATION CLASS;

typedef enum POLICY AUDIT EVENT TYPE ({
AuditCategorySystem = 0,
AuditCategoryLogon,
AuditCategoryObjectAccess,
AuditCategoryPrivilegeUse,
AuditCategoryDetailedTracking,
AuditCategoryPolicyChange,
AuditCategoryAccountManagement,
AuditCategoryDirectoryServiceAccess,
AuditCategoryAccountLogon

} POLICY AUDIT EVENT TYPE, *PPOLICY AUDIT EVENT_ TYPE;

typedef RPC_UNICODE STRING LSA UNICODE STRING,
*PLSA_UNICODE STRING;

typedef struct POLICY AUDIT LOG INFO ({
unsigned long AuditLogPercentFull;
unsigned long MaximumLogSize;

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

202 / 254

LARGE INTEGER AuditRetentionPeriod;
unsigned char AuditLogFullShutdownInProgress;
LARGE INTEGER TimeToShutdown;
unsigned long NextAuditRecordId;
} POLICY AUDIT LOG_INFO, *PPOLICY AUDIT LOG_INFO;

typedef enum POLICY LSA SERVER ROLE {
PolicyServerRoleBackup = 2,
PolicyServerRolePrimary

} POLICY LSA SERVER ROLE, *PPOLICY LSA SERVER ROLE;

typedef struct POLICY LSA SERVER ROLE INFO {
POLICY LSA SERVER ROLE LsaServerRole;
} POLICY LSA SERVER ROLE INFO, *PPOLICY LSA SERVER ROLE INFO;

typedef struct POLICY MODIFICATION INFO {
LARGE INTEGER ModifiedId;
LARGE INTEGER DatabaseCreationTime;
} POLICY MODIFICATION_ INFO, *PPOLICY MODIFICATION_ INFO;

typedef struct POLICY AUDIT FULL SET INFO ({
unsigned char ShutDownOnFull;

} POLICY AUDIT FULL SET INFO,

*PPOLICY AUDIT FULL SET INFO;

typedef struct POLICY AUDIT FULL QUERY INFO {
unsigned char ShutDownOnFull;
unsigned char LogIsFull;
} POLICY AUDIT FULL QUERY INFO,
*PPOLICY AUDIT FULL QUERY INFO;

typedef enum POLICY DOMAIN INFORMATION CLASS {
PolicyDomainQualityOfServiceInformation = 1,
PolicyDomainEfsInformation = 2,
PolicyDomainKerberosTicketInformation = 3

} POLICY DOMAIN INFORMATION CLASS,

*PPOLICY DOMAIN INFORMATION CLASS;

typedef struct POLICY DOMAIN KERBEROS TICKET INFO {
unsigned long AuthenticationOptions;
LARGE_INTEGER MaxServiceTicketAge;
LARGE_INTEGER MaxTicketAge;
LARGE INTEGER MaxRenewAge;
LARGE INTEGER MaxClockSkew;
LARGE_INTEGER Reserved;
} POLICY DOMAIN_ KERBEROS_TICKET INFO,
*PPOLICY DOMAIN KERBEROS TICKET INFO;

typedef struct TRUSTED POSIX OFFSET INFO ({
unsigned long Offset;

} TRUSTED POSIX OFFSET_INFO,

*PTRUSTED POSIX OFFSET INFO;

typedef enum _TRUSTED INFORMATION_ CLASS {
TrustedDomainNameInformation = 1,
TrustedControllersInformation,
TrustedPosixOffsetInformation,
TrustedPasswordInformation,
TrustedDomainInformationBasic,
TrustedDomainInformationEx,
TrustedDomainAuthInformation,
TrustedDomainFullInformation,
TrustedDomainAuthInformationInternal,
TrustedDomainFullInformationInternal,
TrustedDomainInformationEx2Internal,
TrustedDomainFullInformation2Internal,
TrustedDomainSupportedEncryptionTypes,
TrustedDomainAuthInformationInternalAes,
TrustedDomainFullInformationInternalAes

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

203 / 254

} TRUSTED_INFORMATION CLASS,
*PTRUSTED_INFORMATION CLASS;

ForestTrustTopLevelName = 0,
ForestTrustTopLevelNameEx =
ForestTrustDomainInfo = 2,
ForestTrustBinaryInfo = 3,
ForestTrustScannerInfo = 4,
ForestTrustRecordTypelast = ForestTrustDomainInfo

} LSA FOREST_TRUST RECORD_TYPE;

typedef struct LSA FOREST TRUST BINARY DATA {
[range (0, 131072)] unsigned long Length;
[size is(Length)] unsigned char * Buffer;

} LSA FOREST TRUST BINARY DATA,

*PLSA FOREST TRUST BINARY DATA;

typedef struct LSA FOREST TRUST DOMAIN INFO ({
PRPC_SID Sid;
LSA UNICODE_ STRING DnsName;
LSA UNICODE STRING NetbiosName;
} LSA FOREST TRUST DOMAIN INFO,
*PLSA_FOREST TRUST DOMAIN INFO;

} LSA FOREST TRUST SCANNER INFO, * PLSA FOREST TRUST SCANNER INFO;

(53

typedef struct LSA FOREST TRUST RECORD {
unsigned long Flags;
LSA_FOREST_TRUST_RECORD_TYPE ForestTrustType;
LARGE_INTEGER Time;
[switch_type(LSA FOREST TRUST RECORD _TYPE),
switch is(ForestTrustType)]
union
{
[case(ForestTrustTopLevelName,
ForestTrustTopLevelNameEx)]
LSA UNICODE STRING TopLevelName;
[case(ForestTrustDomainInfo)]
LSA FOREST TRUST DOMAIN INFO DomainInfo;
[case (ForestTrustScannerInfo)]
LSA FOREST TRUST SCANNER INFO ScannerInfo;
[default] LSA _FOREST TRUST_ BINARY DATA Data;
} ForestTrustData;
} LSA_FOREST_ TRUST_RECORD, *PLSA_FOREST_TRUST_RECORD;

typedef struct LSA FOREST TRUST RECORD2 ({
unsigned long Flags;
LSA FOREST TRUST RECORD TYPE ForestTrustType;
LARGE INTEGER Time;

[switch type (LSA FOREST TRUST RECORD TYPE), switch is(ForestTrustType)]

[case (ForestTrustTopLevelName, ForestTrustTopLevelNameEx)]

LSA UNICODE STRING TopLevelName;

[case (ForestTrustDomai]

A N. DATA BinaryData;

} LSA FOREST TRUST RECORD2, * PLSA FOREST TRUST RECORD2;

204 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

typedef struct LSA FOREST TRUST INFORMATION ({

[range (0,4000)] unsigned long RecordCount;

[size_is(RecordCount)] PLSA FOREST_TRUST_RECORD * Entries;
} LSA FOREST TRUST INFORMATION, *PLSA FOREST TRUST INFORMATION;

typedef struct LSA FOREST TRUST INFORMATIONZ2 ({
[range (0, 4000)] unsigned long RecordCount;
[size is (RecordCount)] PLSA FOREST TRUST RECORD2* Entries;

} LSA FOREST TRUST INFORMATIONZ2, * PLSA FOREST TRUST INFORMATIONZ;

typedef enum LSA FOREST TRUST COLLISION RECORD TYPE ({
CollisionTdo = 0,
CollisionXref,
CollisionOther

} LSA FOREST TRUST COLLISION RECORD TYPE;

typedef struct LSA FOREST TRUST COLLISION RECORD {
unsigned long Index;
LSA FOREST TRUST COLLISION RECORD TYPE Type;
unsigned long Flags;
LSA UNICODE_STRING Name;
} LSA_FOREST_ TRUST COLLISION_RECORD,
*PLSA FOREST_TRUST_ COLLISION_ RECORD;

typedef struct LSA FOREST TRUST COLLISION INFORMATION {
unsigned long RecordCount;
[size_is(RecordCount)]
PLSA FOREST TRUST COLLISION RECORD * Entries;
} LSA FOREST TRUST COLLISION_ INFORMATION,
*PLSA FOREST_TRUST_COLLISION_ INFORMATION;

typedef LSAPR HANDLE *PLSAPR HANDLE;

typedef struct LSAPR ACCOUNT INFORMATION {
PRPC_SID Sid;
} LSAPR ACCOUNT INFORMATION, *PLSAPR ACCOUNT INFORMATION;

typedef struct LSAPR ACCOUNT ENUM BUFFER {
unsigned long EntriesRead;
[size_is(EntriesRead)] PLSAPR ACCOUNT_INFORMATION Information;
} LSAPR ACCOUNT ENUM BUFFER, *PLSAPR ACCOUNT ENUM BUFFER;

typedef struct _LSAPR_ SR _SECURITY DESCRIPTOR {
[range (0,262144)] unsigned long Length;
[size is(Length)] unsigned char * SecurityDescriptor;
} LSAPR SR SECURITY DESCRIPTOR, *PLSAPR SR SECURITY DESCRIPTOR;

typedef struct LSAPR _LUID AND ATTRIBUTES ({
LUID Luid;
unsigned long Attributes;
} LSAPR_LUID_AND ATTRIBUTES, * PLSAPR LUID AND ATTRIBUTES;

typedef struct LSAPR PRIVILEGE SET {

[range (0,1000)] unsigned long PrivilegeCount;

unsigned long Control;

[Size_is(PrivilegeCount)] LSAPR_LUID AND ATTRIBUTES Privilege[*];
} LSAPR PRIVILEGE SET, *PLSAPRﬁPRIVILEGEisET;

typedef struct LSAPR POLICY PRIVILEGE DEF {
RPC_UNICODE STRING Name;
LUID LocalValue;
} LSAPR POLICY PRIVILEGE DEF, *PLSAPRﬁPOLICYiPRIVILEGEiDEF;

typedef struct LSAPR PRIVILEGE ENUM BUFFER {

unsigned long Entries;

[size is(Entries)] PLSAPR POLICY PRIVILEGE DEF Privileges;
} LSAPR PRIVILEGE ENUM BUFFER, *PLSAPR PRIVILEGE ENUM BUFFER;

205 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

typedef struct LSAPR CR CIPHER VALUE ({
[range (0, 131088)] unsigned long Length;
[range (0, 131088)] unsigned long MaximumLength;
[size is(MaximumLength), length is(Length)]
unsigned char *Buffer;
} LSAPR CR CIPHER VALUE, *PLSAPR CR CIPHER VALUE;

typedef struct LSAPR AES CIPHER VALUE ({

[range (0, MAX CIPHER SIZE)] ULONG cbCipher;
[size is(cbCipher)] PUCHAR Cipher;

} LSAPR AES CIPHER VALUE, *PLSAPR AES CIPHER VALUE;

typedef struct LSAPR _TRUSTED ENUM BUFFER (

unsigned long EntriesRead;

[size is(EntriesRead)] PLSAPR TRUST INFORMATION Information;
} LSAPR TRUSTED ENUM BUFFER, *PLSAPR TRUSTED ENUM BUFFER;

typedef struct _LSAPR_POLICY_ ACCOUNT_DOM INFO {
RPC_UNICODE STRING DomainName;
PRPC_SID DomainSid;
} LSAPR_POLICY_ ACCOUNT_DOM INFO, *PLSAPR POLICY_ ACCOUNT_DOM_ INFO;

typedef struct LSAPR POLICY PRIMARY DOM INFO {
RPC_UNICODE STRING Name;
PRPC_SID Sid;
} LSAPR POLICY PRIMARY DOM INFO, *PLSAPR POLICY PRIMARY DOM INFO;

typedef struct _LSAPR POLICY DNS_DOMAIN INFO {
RPC_UNICODE_STRING Name;
RPC_UNICODE STRING DnsDomainName;
RPC_UNICODE_ STRING DnsForestName;
GUID DomainGuid;
PRPC_SID Sid;
} LSAPR POLICY DNS_DOMAIN INFO, *PLSAPR_POLICY DNS DOMAIN INFO;

typedef struct LSAPR POLICY PD ACCOUNT INFO ({
RPC_UNICODE_STRING Name;
} LSAPR POLICY PD ACCOUNT INFO, *PLSAPR POLICY PD ACCOUNT INFO;

typedef struct LSAPR POLICY REPLICA SRCE INFO {
RPC_UNICODE STRING ReplicaSource;
RPC_UNICODE_STRING ReplicaAccountName;
} LSAPR POLICY REPLICA SRCE INFO, *PLSAPR POLICY REPLICA SRCE INFO;

typedef struct _LSAPR POLICY AUDIT EVENTS_ INFO {
unsigned char AuditingMode;
[size is(MaximumAuditEventCount)]
unsigned long *EventAuditingOptions;
[range (0,1000)] unsigned long MaximumAuditEventCount;
} LSAPR_POLICY AUDIT EVENTS_ INFO, *PLSAPR_POLICY_AUDIT_EVENTS_INFO;

typedef struct LSAPR POLICY MACHINE ACCT INFO {
unsigned long Rid;
PRPC_SID sid;
} LSAPR POLICY MACHINE ACCT INFO, *PLSAPR POLICY MACHINE ACCT INFO;

typedef [switch type (POLICY INFORMATION CLASS)]
union LSAPR POLICY INFORMATION {
[case (PolicyAuditLogInformation)]
POLICY AUDIT LOG INFO PolicyAuditLogInfo;
[case (PolicyAuditEventsInformation)]
LSAPR POLICY AUDIT EVENTS INFO PolicyAuditEventsInfo;
[case (PolicyPrimaryDomainInformation)]
LSAPR_POLICY PRIMARY DOM INFO PolicyPrimaryDomainInfo;
[case (PolicyAccountDomainInformation)]
LSAPR_POLICY ACCOUNT DOM INFO PolicyAccountDomainInfo;

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

206 / 254

[case (PolicyPdAccountInformation)]
LSAPR POLICY PD ACCOUNT_ INFO PolicyPdAccountInfo;
[case (PolicyLsaServerRoleInformation)]
POLICY LSA SERVER_ROLE_INFO PolicyServerRolelInfo;
[case (PolicyReplicaSourceInformation)]
LSAPR _POLICY REPLICA SRCE INFO PolicyReplicaSourcelnfo;
[case (PolicyModificationInformation)]
POLICY MODIFICATION_ INFO PolicyModificationInfo;
[case (PolicyAuditFullSetInformation)]
POLICY AUDIT FULL_ SET INFO PolicyAuditFullSetInfo;
[case (PolicyAuditFullQueryInformation)]
POLICY AUDIT FULL QUERY INFO PolicyAuditFullQueryInfo;
[case (PolicyDnsDomainInformation)]
LSAPR _POLICY DNS DOMAIN INFO PolicyDnsDomainInfo;
[case (PolicyDnsDomainInformationInt)]
LSAPR_POLICY DNS DOMAIN INFO PolicyDnsDomainInfolnt;
[case (PolicyLocalAccountDomainInformation)]
LSAPR _POLICY ACCOUNT DOM INFO PolicyLocalAccountDomainInfo;
[case (PolicyMachineAccountInformation)]
LSAPR_POLICY MACHINE ACCT_ INFO PolicyMachineAccountInfo;
} LSAPR POLICY INFORMATION, *PLSAPR POLICY INFORMATION;

typedef struct POLICY DOMAIN QUALITY OF SERVICE INFO {
unsigned long QualityOfService;

} POLICY DOMAIN QUALITY OF SERVICE INFO,

*PPOLICY DOMAIN QUALITY OF SERVICE INFO;

typedef struct LSAPR POLICY DOMAIN EFS INFO {
unsigned long Infolength;
[size is(InfolLength)] unsigned char * EfsBlob;
} LSAPR POLICY DOMAIN EFS INFO, *PLSAPR POLICY DOMAIN EFS INFO;

typedef [Switchftype(POLICYiDOMAINilNFORMATION7CLASS)]
union LSAPR_POLICY DOMAIN INFORMATION {
[case (PolicyDomainQualityOfServiceInformation)]
POLICY DOMAIN QUALITY OF SERVICE INFO
PolicyDomainQualityOfServiceInfo;
[case (PolicyDomainEfsInformation)]
LSAPR POLICY DOMAIN EFS INFO PolicyDomainEfsInfo;
[case (PolicyDomainKerberosTicketInformation)]
POLICY DOMAIN KERBEROS TICKET INFO
PolicyDomainKerbTicketInfo;
} LSAPR _POLICY DOMAIN INFORMATION, *PLSAPRﬁPOLICYiDOMAINilNFORMATION;

typedef struct LSAPR TRUSTED DOMAIN NAME INFO ({
RPC_UNICODE STRING Name;
} LSAPR TRUSTED DOMAIN NAME INFO, *PLSAPR TRUSTED DOMAIN NAME INFO;

typedef struct _LSAPR TRUSTED CONTROLLERS_ INFO {
[range (0,5)] unsigned long Entries;
[size is(Entries)] PRPC UNICODE STRING Names;
} LSAPR_TRUSTED_CONTROLLERS_INFO, *PLSAPR_TRUSTED_CONTROLLERS_INFO;

typedef struct LSAPR TRUSTED PASSWORD INFO {
PLSAPR CR CIPHER VALUE Password;
PLSAPR CR CIPHER VALUE OldPassword;

} LSAPR_TRUSTED PASSWORD INFO, *PLSAPR TRUSTED PASSWORD INFO;

typedef struct LSAPR TRUSTED DOMAIN INFORMATION EX {
RPC_UNICODE STRING Name;
RPC_UNICODE_STRING FlatName;
PRPC_SID sSid;
unsigned long TrustDirection;
unsigned long TrustType;
unsigned long TrustAttributes;
} LSAPR_TRUSTED_DOMAIN INFORMATION EX,
*PLSAPR TRUSTED DOMAIN INFORMATION EX;

207 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

typedef struct LSAPR AUTH INFORMATION ({
LARGE INTEGER LastUpdateTime;
unsigned long AuthType;
[range (0, 65536)] unsigned long AuthInfolength;
[size is(AuthInfolength)] unsigned char * AuthInfo;
} LSAPR_AUTH INFORMATION, *PLSAPR AUTH INFORMATION;

typedef struct LSAPR TRUSTED DOMAIN AUTH INFORMATION {
[range (0,1)] unsigned long IncomingAuthInfos;
PLSAPR AUTH INFORMATION IncomingAuthenticationInformation;
PLSAPR _AUTH INFORMATION
IncomingPreviousAuthenticationInformation;
[range (0,1)] unsigned long OutgoingAuthInfos;
PLSAPR AUTH INFORMATION OutgoingAuthenticationInformation;
PLSAPR _AUTH INFORMATION
OutgoingPreviousAuthenticationInformation;
} LSAPR TRUSTED DOMAIN AUTH INFORMATION,
*PLSAPR _TRUSTED DOMAIN AUTH INFORMATION;

typedef struct LSAPR TRUSTED DOMAIN FULL INFORMATION ({
LSAPR TRUSTED DOMAIN INFORMATION EX Information;
TRUSTED POSIX OFFSET INFO PosixOffset;
LSAPR TRUSTED DOMAIN AUTH INFORMATION AuthInformation;
} LSAPR_TRUSTED DOMAIN FULL INFORMATION,
*PLSAPR_TRUSTED DOMAIN FULI, INFORMATION;

typedef LSAPR TRUST INFORMATION
LSAPR TRUSTED DOMAIN INFORMATION BASIC;

typedef struct _LSAPR_TRUSTED DOMAIN AUTH BLOB ({
[range (0, 65536)] unsigned long AuthSize;
[size is(AuthSize)] unsigned char * AuthBlob;
} LSAPR TRUSTED DOMAIN AUTH BLOB, *PLSAPR TRUSTED DOMAIN AUTH BLOB;

typedef struct LSAPR TRUSTED DOMAIN AUTH INFORMATION INTERNAL {
LSAPR TRUSTED DOMAIN AUTH BLOB AuthBlob;
} LSAPR_TRUSTED DOMAIN AUTH INFORMATION INTERNAL,
*PLSAPR_TRUSTED DOMAIN AUTH INFORMATION INTERNAL;

typedef struct LSAPR TRUSTED DOMAIN FULL INFORMATION INTERNAL {
LSAPR TRUSTED DOMAIN INFORMATION EX Information;
TRUSTED POSIX OFFSET INFO PosixOffset;
LSAPR TRUSTED DOMAIN AUTH INFORMATION INTERNAL AuthInformation;
} LSAPR TRUSTED DOMAIN FULL INFORMATION INTERNAL,
*PLSAPR TRUSTED DOMAIN FULL INFORMATION INTERNAL;

#define MAX AUTHBLOB SIZE (64 * 1024)

typedef struct _LSAPR _TRUSTED DOMAIN AUTH_ INFORMATION_ INTERNAL AES {
UCHAR AuthData[64];
UCHAR Salt[l6];
[range (0, MAX AUTHBLOB_SIZE)] ULONG cbCipher;
[size_is(cbCipher)] PUCHAR Cipher;
} LSAPR TRUSTED DOMAIN AUTH INFORMATION INTERNAL AES,
*PLSAPRﬁTRUSTEDiDOMAINiAUTHilNFORMATIONilNTERNALiAES;

typedef struct LSAPR _TRUSTED DOMAIN FULL_INFORMATION_ INTERNAL AES {
LSAPR_TRUSTED_ DOMAIN INFORMATION EX Information;
TRUSTED POSIX OFFSET INFO PosixOffset;
LSAPR TRUSTED DOMAIN AUTH INFORMATION INTERNAL AES AuthInformation;

} LSAPR_TRUSTED_ DOMAIN FULL INFORMATION INTERNAL AES,
*PLSAPR_TRUSTED DOMAIN FULL INFORMATION INTERNAL_ AES;

typedef struct LSAPR TRUSTED DOMAIN INFORMATION EX2 {
RPC_UNICODE STRING Name;
RPC_UNICODE STRING FlatName;
PRPC SID Sid;

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

208 / 254

unsigned long TrustDirection;
unsigned long TrustType;
unsigned long TrustAttributes;
unsigned long ForestTrustLength;
[size is(ForestTrustLength)] unsigned char * ForestTrustInfo;
} LSAPR TRUSTED DOMAIN INFORMATION EX2Z,
*PLSAPR TRUSTED DOMAIN INFORMATION EX2;

typedef struct LSAPR TRUSTED DOMAIN FULL INFORMATION2 {
LSAPR_TRUSTED DOMAIN INFORMATION EX2 Information;
TRUSTED POSIX OFFSET INFO PosixOffset;
LSAPR TRUSTED DOMAIN AUTH INFORMATION AuthInformation;
} LSAPR TRUSTED DOMAIN FULL INFORMATIONZ,
*PLSAPR TRUSTED DOMAIN FULL INFORMATION2;

typedef struct TRUSTED DOMAIN SUPPORTED ENCRYPTION TYPES {
unsigned long SupportedEncryptionTypes;

} TRUSTED_DOMAIN SUPPORTED ENCRYPTION TYPES,
*PTRUSTED_DOMAIN SUPPORTED ENCRYPTION TYPES;

typedef [switch type (TRUSTED INFORMATION CLASS)]
union LSAPR_TRUSTED DOMAIN INFO {
[case (TrustedDomainNameInformation)]
LSAPR TRUSTED DOMAIN NAME INFO TrustedDomainNameInfo;
[case (TrustedControllersInformation)]
LSAPR _TRUSTED CONTROLLERS INFO TrustedControllersInfo;
[case (TrustedPosixOffsetInformation)]
TRUSTED POSIX OFFSET INFO TrustedPosixOffsetInfo;
[case (TrustedPasswordInformation)]
LSAPR TRUSTED PASSWORD INFO TrustedPasswordInfo;
[case (TrustedDomainInformationBasic)]
LSAPR TRUSTED DOMAIN INFORMATION BASIC TrustedDomainInfoBasic;
[case (TrustedDomainInformationEx)]
LSAPR TRUSTED DOMAIN INFORMATION EX TrustedDomainInfoEx;
[case (TrustedDomainAuthInformation)]
LSAPR_TRUSTED_DOMAIN AUTH INFORMATION TrustedAuthInfo;
[case (TrustedDomainFullInformation)]
LSAPR TRUSTED DOMAIN FULL INFORMATION TrustedFullInfo;
[case (TrustedDomainAuthInformationInternal)]
LSAPR _TRUSTED DOMAIN AUTH INFORMATION INTERNAL
TrustedAuthInfoInternal;
[case (TrustedDomainFullInformationInternal)]
LSAPR _TRUSTED_ DOMAIN FULL INFORMATION INTERNAL
TrustedFullInfoInternal;
[case (TrustedDomainInformationEx2Internal)]
LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2 TrustedDomainInfoEx2;
[case (TrustedDomainFullInformation2Internal)]
LSAPRﬁTRUSTEDiDOMAINiFULLilNFORMATION2 TrustedFullInfo2;
[case (TrustedDomainSupportedEncryptionTypes)]
TRUSTED DOMAIN_ SUPPORTED ENCRYPTION_ TYPES TrustedDomainSETs;
[case (TrustedDomainAuthInformationInternalAes)]
LSAPR TRUSTED DOMAIN AUTH INFORMATION INTERNAL AES TrustedAuthInfoInternalAes;
[case (TrustedDomainFullInformationInternalAes)]
LSAPR_TRUSTED_DOMAIN FULL INFORMATION_ INTERNAL AES TrustedFullInfoInternalAes;
} LSAPR TRUSTED DOMAIN INFO, *PLSAPR TRUSTED DOMAIN INFO;

typedef struct LSAPR USER RIGHT SET ({

[range (0,256)] unsigned long Entries;

[size is(Entries)] PRPC_UNICODE STRING UserRights;
} LSAPR USER RIGHT SET, *PLSAPR USER RIGHT SET;

typedef struct LSAPR TRUSTED ENUM BUFFER EX {
unsigned long EntriesRead;
[size is(EntriesRead)]
PLSAPR TRUSTED DOMAIN INFORMATION EX EnumerationBuffer;
} LSAPR _TRUSTED_ENUM BUFFER EX, *PLSAPR TRUSTED_ENUM BUFFER EX;

//

209 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

// Methods
//
//
// The following notation conventions are used for some IDL methods:
//
// void
// Lsar LSA TM XX(void);
//
// (where XX represents the opnum.)
//
// This notation indicates that the method is defined in this
// interface but is described in the
// Local Security Authority (Translation Methods) protocol
// specification.
//
// void OpnumXxXNotUsedOnWire (void) ;
//
// (where XX represents the opnum.)
//
// This notation indicates that the method is defined in this
// interface but is not seen on the wire.
//
// Opnum 0
NTSTATUS
LsarClose (
[in,out] LSAPR HANDLE *ObjectHandle
)i
// Opnum 1
void OpnumlNotUsedOnWire (void) ;
// Opnum 2
NTSTATUS

LsarEnumeratePrivileges (

//

[in] LSAPR HANDLE PolicyHandle,
[in, out] unsigned long *EnumerationContext,

[out] PLSAPR PRIVILEGE ENUM BUFFER EnumerationBuffer,
[in] unsigned long PreferedMaximumLength

)i

Opnum 3

NTSTATUS
LsarQuerySecurityObject (

//

[in] LSAPR_HANDLE ObjectHandle,

[in] SECURITY INFORMATION SecurityInformation,

[out] PLSAPR SR SECURITY DESCRIPTOR *SecurityDescriptor
)

’

Opnum 4

NTSTATUS
LsarSetSecurityObject (

//

[in] LSAPR_HANDLE ObjectHandle,

[in] SECURITY INFORMATION SecurityInformation,

[in] PLSAPR SR SECURITY DESCRIPTOR SecurityDescriptor
) .

’

Opnum 5

void OpnumbNotUsedOnWire (void) ;

//

Opnum 6

NTSTATUS
LsarOpenPolicy (

[in,unique] wchar t *SystemName,

in] PLSAPR OBJECT ATTRIBUTES ObjectAttributes,
in] ACCESS_MASK DesiredAccess,

out] LSAPR_HANDLE *PolicyHandle

’

[
[
[
)

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

210/ 254

// Opnum 7
NTSTATUS
LsarQueryInformationPolicy (
[in] LSAPR HANDLE PolicyHandle,
[in] POLICY INFORMATION CLASS InformationClass,
[out, switch is(InformationClass)]
PLSAPR_POLICY INFORMATION *PolicyInformation
)i

// Opnum 8
NTSTATUS
LsarSetInformationPolicy (
[in] LSAPR HANDLE PolicyHandle,
[in] POLICY INFORMATION CLASS InformationClass,
[in, switch is(InformationClass)]
PLSAPR_POLICY INFORMATION PolicyInformation
)i

// Opnum 9
void Opnum9NotUsedOnWire (void) ;

// Opnum 10
NTSTATUS
LsarCreateAccount (

[in] LSAPR HANDLE PolicyHandle,
in] PRPC_SID AccountSid,
in] ACCESS MASK DesiredAccess,
out] LSAPR HANDLE *AccountHandle

// Opnum 11
NTSTATUS
LsarEnumerateAccounts (
[in] LSAPR HANDLE PolicyHandle,
[in] [out] unsigned long *EnumerationContext,
[out] PLSAPR ACCOUNT ENUM BUFFER EnumerationBuffer,
[in] unsigned long PreferedMaximumLength
)

// Opnum 12
NTSTATUS
LsarCreateTrustedDomain (
[in] LSAPR HANDLE PolicyHandle,
in] PLSAPR TRUST INFORMATION TrustedDomainInformation,
in] ACCESS_MASK DesiredAccess,
out] LSAPR_HANDLE *TrustedDomainHandle

[
[
[
)
// Opnum 13
NTSTATUS
LsarEnumerateTrustedDomains (

[in] LSAPR HANDLE PolicyHandle,
in] [out] unsigned long *EnumerationContext,
out] PLSAPR _TRUSTED ENUM BUFFER EnumerationBuffer,
in] unsigned long PreferedMaximumLength

[
[
[
)

// Opnum 14
void
Lsar LSA TM 14(void);

// Opnum 15
void
Lsar LSA TM 15(void);

// Opnum 16
NTSTATUS
LsarCreateSecret (
[in] LSAPR HANDLE PolicyHandle,

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

211/ 254

[in] PRPC_UNICODE_STRING SecretName,
[in] ACCESS MASK DesiredAccess,
[out] LSAPR HANDLE *SecretHandle
)

7

// Opnum 17
NTSTATUS
LsarOpenAccount (
[in] LSAPR HANDLE PolicyHandle,
] PRPC_SID Accountsid,
] ACCESS MASK DesiredAccess,
ut] LSAPR HANDLE *AccountHandle

[in
[in
[o
) .

7

// Opnum 18
NTSTATUS
LsarEnumeratePrivilegesAccount (
[in] LSAPR_HANDLE AccountHandle,
[out] PLSAPR PRIVILEGE SET *Privileges
)

7

// Opnum 19

NTSTATUS

LsarAddPrivilegesToAccount (
[in] LSAPR HANDLE AccountHandle,
[in] PLSAPR PRIVILEGE SET Privileges
)i

// Opnum 20
NTSTATUS
LsarRemovePrivilegesFromAccount (
[in] LSAPR HANDLE AccountHandle,
[in] unsigned char AllPrivileges,
[in, unique] PLSAPR PRIVILEGE SET Privileges
)

’

// Opnum 21
void Opnum2lNotUsedOnWire (void) ;

// Opnum 22
void Opnum22NotUsedOnWire (void) ;

// Opnum 23

NTSTATUS

LsarGetSystemAccessAccount (
[in] LSAPR_HANDLE AccountHandle,
[out] unsigned long *SystemAccess

)i

// Opnum 24
NTSTATUS
LsarSetSystemAccessAccount (
[in] LSAPR_HANDLE AccountHandle,
[in] unsigned long SystemAccess

)i

// Opnum 25
NTSTATUS
LsarOpenTrustedDomain (
[in] LSAPR HANDLE PolicyHandle,
in] PRPC_SID TrustedDomainSid,
in] ACCESS _MASK DesiredAccess,
out] LSAPR_HANDLE *TrustedDomainHandle

[
[
[
)
// Opnum 26
NTSTATUS
LsarQueryInfoTrustedDomain (

[in] LSAPR HANDLE TrustedDomainHandle,

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

212 / 254

[in] TRUSTED INFORMATION CLASS InformationClass,

[out, switch is(InformationClass)]
PLSAPR_TRUSTED DOMAIN_ INFO *TrustedDomainInformation

)i

// Opnum 27
NTSTATUS
LsarSetInformationTrustedDomain (
[in] LSAPR HANDLE TrustedDomainHandle,
[in] TRUSTED INFORMATION CLASS InformationClass,
[in, switch is(InformationClass)]
PLSAPR_TRUSTED DOMAIN_ INFO TrustedDomainInformation
)i

// Opnum 28
NTSTATUS
LsarOpenSecret (
[in] LSAPR_HANDLE PolicyHandle,
in] PRPC_UNICODE_STRING SecretName,
in] ACCESS_MASK DesiredAccess,
out] LSAPR HANDLE *SecretHandle

’

[
[
[
)
// Opnum 29
NTSTATUS
LsarSetSecret (

[in] LSAPR HANDLE SecretHandle,
[in, unique] PLSAPR CR_CIPHER VALUE EncryptedCurrentValue,
[in, unique] PLSAPR CR CIPHER VALUE EncryptedOldvValue
)

’

// Opnum 30

NTSTATUS

LsarQuerySecret (
[in] LSAPR_HANDLE SecretHandle,
[in, out, unique] PLSAPR CR CIPHER VALUE *EncryptedCurrentValue,
[in, out, unique] PLARGE INTEGER CurrentValueSetTime,
[in, out, unique] PLSAPR CR CIPHER VALUE *EncryptedOldvalue,
[in, out, unique] PLARGE INTEGER OldValueSetTime

)

// Opnum 31
NTSTATUS
LsarLookupPrivilegeValue (

[in] LSAPR_HANDLE PolicyHandle,
[in] PRPC_UNICODE_STRING Name,
[out] PLUID Value
) .

’

// Opnum 32
NTSTATUS
LsarLookupPrivilegeName (
[in] LSAPR_HANDLE PolicyHandle,
[in] PLUID Value,
[out] PRPC UNICODE STRING *Name
)

’

// Opnum 33
NTSTATUS
LsarLookupPrivilegeDisplayName (
[in] LSAPR HANDLE PolicyHandle,
in] PRPC_UNICODE_STRING Name,
in] short ClientLanguage,
in] short ClientSystemDefaultLanguage,
out] PRPC UNICODE STRING *DisplayName,
out] unsigned short *LanguageReturned

// Opnum 34

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

213/ 254

NTSTATUS

LsarDeleteObject (
[in,out] LSAPR HANDLE *ObjectHandle
)i

// Opnum 35
NTSTATUS
LsarEnumerateAccountsWithUserRight (
[in] LSAPR HANDLE PolicyHandle,
[in,unique] PRPC_UNICODE_ STRING UserRight,
[out] PLSAPR ACCOUNT ENUM BUFFER EnumerationBuffer
)

7

// Opnum 36
NTSTATUS
LsarEnumerateAccountRights (
[in] LSAPR HANDLE PolicyHandle,
[in] PRPC_SID Accountsid,
[out] PLSAPR USER RIGHT SET UserRights
)

7

// Opnum 37
NTSTATUS
LsarAddAccountRights (
[in] LSAPR HANDLE PolicyHandle,
[in] PRPC_SID Accountsid,
[in] PLSAPR USER_RIGHT SET UserRights
)

7

// Opnum 38
NTSTATUS
LsarRemoveAccountRights (
[in] LSAPR HANDLE PolicyHandle,

[in] PRPC_SID AccountSid,

[in] unsigned char AllRights,

[in] PLSAPR USER_RIGHT SET UserRights
)

// Opnum 39
NTSTATUS
LsarQueryTrustedDomainInfo (
[in] LSAPR_HANDLE PolicyHandle,
[in] PRPC_SID TrustedDomainSid,
[in] TRUSTED INFORMATION CLASS InformationClass,
[out, switch is(InformationClass)]

PLSAPR _TRUSTED DOMAIN INFO * TrustedDomainInformation

)i

// Opnum 40
NTSTATUS
LsarSetTrustedDomainInfo (

[in] LSAPR HANDLE PolicyHandle,
] PRPC_SID TrustedDomainSid,
] TRUSTED_INFORMATION_ CLASS InformationClass,
in, switch is(InformationClass)]

PLSAPR TRUSTED DOMAIN INFO TrustedDomainInformation

in
in

[
[
[
)i

// Opnum 41

NTSTATUS

LsarDeleteTrustedDomain (
[in] LSAPR HANDLE PolicyHandle,
[in] PRPC_SID TrustedDomainSid
)i

// Opnum 42
NTSTATUS
LsarStorePrivateData (
[in] LSAPR HANDLE PolicyHandle,

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

214 / 254

[in] PRPC_UNICODE_STRING KeyName,
[in,unique] PLSAPR CR CIPHER VALUE EncryptedData
) .

7

// Opnum 43
NTSTATUS
LsarRetrievePrivateData (
[in] LSAPR HANDLE PolicyHandle,
[in] PRPC_UNICODE STRING KeyName,
[in, out] PLSAPR CR CIPHER VALUE *EncryptedData
)

’

// Opnum 44
NTSTATUS
LsarOpenPolicy2 (
[in,unique, string] wchar t *SystemName,
in] PLSAPR OBJECT ATTRIBUTES ObjectAttributes,
in] ACCESS MASK DesiredAccess,
out] LSAPR HANDLE *PolicyHandle

7

n
n

[
[
[
)

// Opnum 45
void
Lsar LSA TM 45(void);

// Opnum 46
NTSTATUS
LsarQueryInformationPolicy2 (
[in] LSAPR HANDLE PolicyHandle,
[in] POLICY INFORMATION CLASS InformationClass,
[out, switch is(InformationClass)]
PLSAPR POLICY INFORMATION *PolicyInformation
)i

// Opnum 47
NTSTATUS
LsarSetInformationPolicy2 (
[in] LSAPR HANDLE PolicyHandle,
[in] POLICY INFORMATION CLASS InformationClass,
[in, switch is(InformationClass)]
PLSAPR POLICY INFORMATION PolicyInformation
)7

// Opnum 48
NTSTATUS
LsarQueryTrustedDomainInfoByName (
[in] LSAPR HANDLE PolicyHandle,
[in] PRPC_UNICODE STRING TrustedDomainName,
[in] TRUSTED_INFORMATION_ CLASS InformationClass,
[out, switch is(InformationClass)]
PLSAPR TRUSTED DOMAIN INFO *TrustedDomainInformation
)i

// Opnum 49
NTSTATUS
LsarSetTrustedDomainInfoByName (
[in] LSAPR HANDLE PolicyHandle,

] PRPC_UNICODE_STRING TrustedDomainName,
] TRUSTED_ INFORMATION_ CLASS InformationClass,
in, switch is(InformationClass)]

PLSAPR_TRUSTED DOMAIN_ INFO TrustedDomainInformation

in
in

[
[
[
)i

// Opnum 50
NTSTATUS
LsarEnumerateTrustedDomainsEx (
[in] LSAPR HANDLE PolicyHandle,
[in, out] unsigned long *EnumerationContext,
[out] PLSAPR TRUSTED ENUM BUFFER EX EnumerationBuffer,

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

215/ 254

[in] unsigned long PreferedMaximumLength

)i

// Opnum 51
NTSTATUS
LsarCreateTrustedDomainEx (
[in] LSAPR HANDLE PolicyHandle,
[in] PLSAPR TRUSTED DOMAIN INFORMATION EX
TrustedDomainInformation,
[in] PLSAPR TRUSTED DOMAIN AUTH INFORMATION
AuthenticationInformation,
[in] ACCESS_MASK DesiredAccess,
[out] LSAPR HANDLE *TrustedDomainHandle
)i

// Opnum 52
void Opnum52NotUsedOnWire (void) ;

// Opnum 53
NTSTATUS
LsarQuerybDomainInformationPolicy (
[in] LSAPR HANDLE PolicyHandle,
[in] POLICY DOMAIN INFORMATION CLASS InformationClass,
[out, switch is(InformationClass)]
PLSAPR POLICY DOMAIN INFORMATION *PolicyDomainInformation
)i

// Opnum 54
NTSTATUS
LsarSetDomainInformationPolicy (
[in] LSAPR HANDLE PolicyHandle,
[in] POLICY DOMAIN INFORMATION CLASS InformationClass,
[in, unique, switch is(InformationClass)]
PLSAPR POLICY DOMAIN INFORMATION PolicyDomainInformation
)i

// Opnum 55
NTSTATUS
LsarOpenTrustedDomainByName (
[in] LSAPR HANDLE PolicyHandle,
[in] PRPC_UNICODE_STRING TrustedDomainName,
[in] ACCESS MASK DesiredAccess,
[out] LSAPR HANDLE *TrustedDomainHandle
) .

’

// Opnum 56
void Opnumb56NotUsedOnWire (void) ;

// Opnum 57
void
Lsar LSA TM 57(void);

// Opnum 58
void
Lsar LSA TM 58 (void);

// Opnum 59
NTSTATUS
LsarCreateTrustedDomainEx2 (
[in] LSAPR HANDLE PolicyHandle,
[in] PLSAPR TRUSTED DOMAIN INFORMATION EX
TrustedDomainInformation,
[in] PLSAPR TRUSTED DOMAIN AUTH_ INFORMATION_ INTERNAL
AuthenticationInformation,
[in] ACCESS_MASK DesiredAccess,
[out] LSAPR_HANDLE *TrustedDomainHandle
)7

// Opnum 60

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

216 / 254

void Opnum60NotUsedOnWire (void) ;

// Opnum 61
void Opnum61NotUsedOnWire (void) ;

// Opnum 62
void Opnum62NotUsedOnWire (void) ;

// Opnum 63
void Opnum63NotUsedOnWire (void) ;

// Opnum 64
void Opnum64NotUsedOnWire (void) ;

// Opnum 65
void Opnum65NotUsedOnWire (void) ;

// Opnum 66
void Opnum66NotUsedOnWire (void) ;

// Opnum 67
void Opnum67NotUsedOnWire (void) ;

// Opnum 68
void
Lsar LSA TM 68(void);

// Opnum 69
void Opnum69NotUsedOnWire (void) ;

// Opnum 70
void Opnum70NotUsedOnWire (void) ;

// Opnum 71
void Opnum71NotUsedOnWire (void) ;

// Opnum 72
void Opnum72NotUsedOnWire (void) ;

// Opnum 73

NTSTATUS

LsarQueryForestTrustInformation (
[in] LSAPR HANDLE PolicyHandle,

[in] PLSA UNICODE STRING TrustedDomainName,

[in] LSA FOREST TRUST RECORD TYPE HighestRecordType,

[out] PLSA _FOREST_ TRUST_ INFORMATION * ForestTrustInfo

)

’

// Opnum 74
NTSTATUS
LsarSetForestTrustInformation (

[in] LSAPR HANDLE PolicyHandle,

[in] PLSA_UNICODE_STRING TrustedDomainName,

[in] LSA FOREST TRUST RECORD TYPE HighestRecordType,

[in] PLSA FOREST TRUST INFORMATION ForestTrustInfo,

[in] unsigned char CheckOnly,

[out] PLSA FOREST TRUST COLLISION INFORMATION * CollisionInfo
)

// Opnum 75
void Opnum75NotUsedOnWire (void) ;

// Opnum 76
void Opnum76NotUsedOnWire (void) ;

// Opnum 77
void Opnum77NotUsedOnWire (void) ;

// Opnum 78

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

217/ 254

void Opnum78NotUsedOnWire (void) ;

// Opnum 79
void Opnum79NotUsedOnWire (void) ;

// Opnum 80
void Opnum80NotUsedOnWire (void) ;

// Opnum 81
void Opnum8l1NotUsedOnWire (void) ;

// Opnum 82
void Opnum82NotUsedOnWire (void) ;

// Opnum 83
void Opnum83NotUsedOnWire (void) ;

// Opnum 84
void Opnum84NotUsedOnWire (void) ;

// Opnum 85
void Opnum85NotUsedOnWire (void) ;

// Opnum 86
void Opnum86NotUsedOnWire (void) ;

// Opnum 87
void Opnum87NotUsedOnWire (void) ;

// Opnum 88
void Opnum88NotUsedOnWire (void) ;

// Opnum 89
void Opnum89NotUsedOnWire (void) ;

// Opnum 90
void Opnum90NotUsedOnWire (void) ;

// Opnum 91
void Opnum91NotUsedOnWire (void) ;

// Opnum 92
void Opnum92NotUsedOnWire (void) ;

// Opnum 93
void Opnum93NotUsedOnWire (void) ;

// Opnum 94
void Opnum94NotUsedOnWire (void) ;

// Opnum 95
void Opnum95NotUsedOnWire (void) ;

// Opnum 96
void Opnum96NotUsedOnWire (void) ;

// Opnum 97
void Opnum97NotUsedOnWire (void) ;

// Opnum 98
void Opnum98NotUsedOnWire (void) ;

// Opnum 99
void Opnum99NotUsedOnWire (void) ;

// Opnum 100
void OpnumlOO0NotUsedOnWire (void) ;

// Opnum 101

218/ 254

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

void OpnumlOlNotUsedOnWire (void) ;

// Opnum 102
void Opnuml02NotUsedOnWire (void) ;

// Opnum 103
void Opnuml03NotUsedOnWire (void) ;

// Opnum 104
void Opnuml04NotUsedOnWire (void) ;

// Opnum 105
void Opnuml05NotUsedOnWire (void) ;

// Opnum 106
void Opnuml06NotUsedOnWire (void) ;

// Opnum 107
void OpnumlO07NotUsedOnWire (void) ;

// Opnum 108
void Opnuml08NotUsedOnWire (void) ;

// Opnum 109
void Opnuml09NotUsedOnWire (void) ;

// Opnum 110
void OpnumllONotUsedOnWire (void) ;

// Opnum 111
void OpnumlllNotUsedOnWire (void) ;

// Opnum 112
void Opnumll2NotUsedOnWire (void) ;

// Opnum 113
void Opnumll3NotUsedOnWire (void) ;

// Opnum 114
void Opnumll4NotUsedOnWire (void) ;

// Opnum 115
void Opnumll5NotUsedOnWire (void) ;

// Opnum 116
void Opnumll6NotUsedOnWire (void) ;

// Opnum 117
void Opnumll7NotUsedOnWire (void) ;

// Opnum 118
void Opnumll8NotUsedOnWire (void) ;

// Opnum 119
void Opnumll9NotUsedOnWire (void) ;

// Opnum 120
void Opnuml20NotUsedOnWire (void) ;

// Opnum 121
void Opnuml21NotUsedOnWire (void) ;

// Opnum 122
void Opnuml22NotUsedOnWire (void) ;

// Opnum 123
void Opnuml23NotUsedOnWire (void) ;

// Opnum 124

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol

Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

219/ 254

void Opnuml24NotUsedOnWire (void) ;

// Opnum 125
void Opnuml25NotUsedOnWire (void) ;

// Opnum 126
void Opnuml26NotUsedOnWire (void) ;

// Opnum 127
void Opnuml27NotUsedOnWire (void) ;

~

/ Opnum 128
void Opnuml28NotUsedOnWire (void) ;

// Opnum 129

NTSTATUS

LsarCreateTrustedDomainEx3 (
[in] LSAPR_HANDLE PolicyHandle,
[in] PLSAPR _TRUSTED DOMAIN INFORMATION EX TrustedDomainInformation,
[in] PLSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL_AES AuthenticationInformation,
[in] ACCESS MASK DesiredAccess,
[out] LSAPR HANDLE* TrustedDomainHandle
) .

7

// Opnum 130
typedef [handle] LPWSTR PLSAPR SERVER NAME, *PPLSAPR SERVER NAME;

typedef struct LSAPR REVISION INFO V1

—_~

ULONG Revision;
ULONG SupportedFeatures;

} LSAPR REVISION INFO V1, *PLSAPR REVISION INFO V1;

typedef [switch type (ULONG)] union

_~—

[case(1l)] LSAPR REVISION INFO V1 V1;

} LSAPR REVISION INFO, *PLSAPR REVISION INFO;

NTSTATUS

LsarOpenPolicy3(
[in,unique, string] PLSAPR SERVER NAME SystemName,
[in] PLSAPR OBJECT_ ATTRIBUTES ObjectAttributes,
[in] ACCESS_MASK DesiredAccess,
[in] ULONG InVersion,
[in] [switch is(InVersion)] LSAPR REVISION INFO* InRevisionInfo,
[out] ULONG* OutVersion,
[out] [switch is(*OutVersion)] LSAPR REVISION INFO* OutRevisionInfo,
[out] LSAPR HANDLE* PolicyHandle
)i

void Opnuml31NotUsedOnWire (void) ;

// Opnum 132

TSTATUS|
sarQueryForestTrustInformation?2
[in] LSAPR HANDLE PolicyHandle,
in] PLSA UNICODE STRING TrustedDomainName,
in] LSA FOREST TRUST RECORD TYPE HighestRecordType,
ut] PLSA FOREST TRUST INFORMATIONZ* ForestTrustInfo?2

I I
i o o ol o

// Opnum 133
INTSTATUS LsarSetForestTrustInformation?2 (
[in] LSAPR HANDLE PolicyHandle,
[in] PLSA UNICODE STRING TrustedDomainName,

220 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

// Opnum 135

LsarOpenPolicyWithCreds (
[in] PLSAPR OBJECT ATTRIBUTES ObjectAttributes,
[in] [switch is(InVersion)] LSAPR REVISION INFO* InRevisionInfo,
[in] ACCESS MASK DesiredAccess,
[in] PLSAPR AES CIPHER VALUE EncryptedSecretName,
[out] LSAPR HANDLE *SecretHandle]

INTSTATUS

LsarSetSecret?2 (
[in] LSAPR HANDLE SecretHandle,

in, unique] PLSAPR AES CIPHER VALUE EncryptedCurrentValue,
in, unique] PLSAPR AES CIPHER VALUE EncryptedOldValue

INTSTATUS
LsarQuerySecret?2 (
[in] LSAPR HANDLE SecretHandle,
[in, out, unique] PLARGE INTEGER CurrentValueSetTime,
[in, out, unique] PLSAPR AES CIPHER VALUE *EncryptedOldValue,
[in, out, unique] PLARGE INTEGER OldvValueSetTime|
INTSTATUS
LsarStorePrivateData? (
[in] LSAPR HANDLE PolicyHandle,

in] PLSAPR AES CIPHER VALUE EncryptedKeyName,
in,unique] PLSAPR AES CIPHER VALUE EncryptedDatal

~

/ Opnum 141

221 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

INTSTATUS

sarRetrievePrivateData?2 (
[in] LSAPR HANDLE PolicyHandle,
[in] PLSAPR AES CIPHER VALUE EncryptedKeyName,

[in, out, unique] PLSAPR AES CIPHER VALUE *EncryptedData

=

I

222 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

7 (Updated Section) Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

The following tables show the relationships between Microsoft product versions or supplemental
software and the roles they perform.

Windows Client releases Client role Server role
Windows NT operating system Yes Yes
Windows 2000 Professional operating system Yes Yes
Windows XP operating system Yes Yes
Windows Vista operating system Yes Yes
Windows 7 operating system Yes Yes
Windows 8 operating system Yes Yes
Windows 8.1 operating system Yes Yes
Windows 10 operating system Yes Yes
Windows 11 operating system Yes Yes
Windows Server releases Client role Server role
Windows NT Yes Yes
Windows 2000 Server operating system Yes Yes
Windows Server 2003 operating system Yes Yes
Windows Server 2003 for Small Business Server 2003 Yes Yes
Windows Server 2003 R2 operating system Yes Yes
Windows Server 2008 operating system Yes Yes
Windows Server 2008 R2 operating system Yes Yes
Windows Server 2012 operating system Yes Yes
Windows Server 2012 R2 operating system Yes Yes
Windows Server 2016 operating system Yes Yes
Windows Server operating system Yes Yes
Windows Server 2019 operating system Yes Yes
Windows Server 2022 operating system Yes Yes
= =

223/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.1: By default, the "\PIPE\Isarpc" endpoint allows anonymous access on Windows NT
3.1 operating system, Windows NT 3.5 operating system, Windows NT 3.51 operating system,
Windows NT 4.0 operating system, Windows 2000 operating system, Windows XP, Windows Server
2003, Windows Server 2003 R2, and Windows Vista RTM. Anonymous access to this pipe is removed
by default on Windows Vista operating system with Service Pack 1 (SP1) and later and Windows
Server 2008 and later in both the non-domain controller configuration and the read-only domain
controller configuration. The pipe access check happens before any other access check; therefore, it
overrides any other access.

> Section 2.1: Windows implementations of the client and server role for this protocol use the
tamper-resistance functionality provided by SMB transport on the products that are available, and are
enabled as specified in [MS-SMB] section 3.1.1.1 (the MessageSigningPolicy parameter), and [MS-
SMB2] section 3.1.1.1 (the RequireMessageSigning parameter).

<4> Section 2.1: If an implementation of the client role violates this specification and uses the RPC-
provided security-support-provider mechanism for the RPC connection to a Windows implementation,
Windows processes all messages as specified in section 3.1 (that is, there is no change in message
processing behavior), except for the messages that use encryption specified in section 5.1. During
encryption and decryption, Windows implementations for the server role use a hard-coded key instead
of the SMB transport-provided session key. The hard-coded key is represented below as bytes in
hexadecimal form.

"53 79 73 74 65 6d 4c 69-62 72 61 72 79 44 54 43"

<5> Section 2.1: The Windows implementation of the server role for this protocol supports the RPC-
provided security-support-provider mechanisms, as specified in [MS-RPCE] section 3.2.1.4.1. The
following security-support providers are registered by the responder.

Windows version Security support provider registered

Windows NT and Windows 2000 Professional and later RPC_C_AUTHN_WINNT

Windows 2000 Server, Windows Server 2003, and RPC_C_AUTHN_WINNT

Windows Server 2003 R2 and later On the domain controllers the following are also
supported:
RPC_C_AUTHN_GSS_KERBEROS
RPC_C_AUTHN_GSS_NEGOTIATE

<6> Section 2.1: Servers running Windows 2000, Windows XP, and Windows Server 2003 accept calls
at any authentication level. Without [MSKB-3149090] installed, servers running Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,

224 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Windows 8.1, Windows Server 2012 R2, Windows 10 v1507 operating system, or Windows 10 v1511
operating system also accept calls at any authentication level.

<7> Section 2.1: The server implementation of this protocol in Windows 2000 and earlier does not
enforce a limit. The limit in Windows XP and Windows Server 2003 is 4 MB.

<8> Section 2.2: Data type fields that are described as "Reserved" or "MUST be ignored" are sent as
0 (or NULL in the case of pointers) by the Windows implementation of the protocol client, and are
ignored upon receipt by the Windows implementation of the protocol server.

<9> Section 2.2: Windows operating systems that support the current security updates to this
protocol via the installation of KB articles are specified in [MSFT-CVE-2022-21913], immediately
following its publication.

<10> Section 2.2: The following table is a timeline of when each structure, data type, or enumeration
was introduced. All structures, data types, and enumerations listed in the table continue to be
available in subsequent versions of Windows according to the applicability lists at the beginning of this
section.

Data type Product

LSAPR_HANDLE (section 2.2.2.1) Windows NT 3.1
STRING (section 2.2.3.1) Windows NT 3.1
LSAPR_ACL (section 2.2.3.2) Windows NT 3.1
SECURITY_DESCRIPTOR_CONTROL (section 2.2.3.3) Windows NT 3.1
LSAPR_SECURITY_DESCRIPTOR (section 2.2.3.4) Windows NT 3.1
SECURITY_IMPERSONATION_LEVEL (section 2.2.3.5) Windows NT 3.1
SECURITY_CONTEXT_TRACKING_MODE (section 2.2.3.6) Windows NT 3.1
SECURITY_QUALITY_OF_SERVICE (section 2.2.3.7) Windows NT 3.1
LSAPR_OBJECT_ATTRIBUTES (section 2.2.2.4) Windows NT 3.1
ACCESS_MASK (section 2.2.1.1) Windows NT 3.1
SECURITY_INFORMATION (section 2.2.1.3) Windows NT 3.1
LSAPR_POLICY_PRIVILEGE_DEF (section 2.2.8.1) Windows NT 3.1
LSAPR_PRIVILEGE_ENUM_BUFFER (section 2.2.8.2) Windows NT 3.1
LSAPR_ACCOUNT_INFORMATION (section 2.2.5.1) Windows NT 3.1
LSAPR_ACCOUNT_ENUM_BUFFER (section 2.2.5.2) Windows NT 3.1
POLICY_SYSTEM_ACCESS_CODE (section 2.2.1.2) Windows NT 3.1
LSA_UNICODE_STRING (section 2.2.2.3) Windows NT 3.1
LSAPR_TRUST_INFORMATION (section 2.2.7.1) Windows NT 3.1
LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC (section 2.2.7.8) Windows NT 3.1
LSAPR_SR_SECURITY_DESCRIPTOR (section 2.2.2.5) Windows NT 3.1
POLICY_INFORMATION_CLASS (section 2.2.4.1) Windows NT 3.1

225/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Data type

Product

POLICY_AUDIT_LOG_INFO (section 2.2.4.3)

Windows NT 3.1

LSAPR_POLICY_AUDIT_EVENTS_INFO (section 2.2.4.4)

Windows NT 3.1

LSAPR_POLICY_PRIMARY_DOM_INFO (section 2.2.4.5)

Windows NT 3.1

LSAPR_POLICY_ACCOUNT_DOM_INFO (section 2.2.4.6)

Windows NT 3.1

LSAPR_POLICY_PD_ACCOUNT_INFO (section 2.2.4.7)

Windows NT 3.1

POLICY_LSA_SERVER_ROLE (section 2.2.4.8)

Windows NT 3.1

POLICY_LSA_SERVER_ROLE_INFO (section 2.2.4.9)

Windows NT 3.1

LSAPR_POLICY_REPLICA_SRCE_INFO (section 2.2.4.10)

Windows NT 3.1

POLICY_MODIFICATION_INFO (section 2.2.4.11)

Windows NT 3.1

POLICY_AUDIT_FULL_SET_INFO (section 2.2.4.12)

Windows NT 3.1

POLICY_AUDIT_FULL_QUERY_INFO (section 2.2.4.13)

Windows NT 3.1

LSAPR_POLICY_DNS_DOMAIN_INFO (section 2.2.4.14)

Windows NT 3.1

LSAPR_POLICY_INFORMATION (section 2.2.4.2)

Windows 2000

LSAPR_TRUSTED_ENUM_BUFFER (section 2.2.7.19)

Windows NT 3.1

LSAPR_PRIVILEGE_SET (section 2.2.5.5)

Windows NT 3.1

TRUSTED_INFORMATION_CLASS (section 2.2.7.2)

Windows NT 3.1

LSAPR_TRUSTED_DOMAIN_INFO (section 2.2.7.3)

Windows NT 3.1

LSAPR_TRUSTED_DOMAIN_NAME_INFO (section 2.2.7.4)

Windows NT 3.1

LSAPR_TRUSTED_CONTROLLERS_INFO (section 2.2.7.5)

Windows NT 3.1

TRUSTED_POSIX_OFFSET_INFO (section 2.2.7.6)

Windows NT 3.1

LSAPR_TRUSTED_PASSWORD_INFO (section 2.2.7.7)

Windows NT 3.1

LSAPR_CR_CIPHER_VALUE (section 2.2.6.1)

Windows NT 3.51

LSAPR_USER_RIGHT_SET (section 2.2.5.3)

Windows NT 3.1

POLICY_DOMAIN_INFORMATION_CLASS (section 2.2.4.15)

Windows NT 3.51

LSAPR_POLICY_DOMAIN_INFORMATION (section 2.2.4.16)

Windows 2000

LSAPR_POLICY_DOMAIN_EFS_INFO (section 2.2.4.18)

Windows 2000

LSAPR_DOMAIN_KERBEROS_TICKET_INFO (section 2.2.4.19)

Windows 2000

LSAPR_TRUSTED_DOMAIN_INFORMATION_EX (section 2.2.7.9)

Windows 2000

LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2 (section 2.2.7.10)

Windows 2000

LSAPR_AUTH_INFORMATION (section 2.2.7.17)

Windows XP and Windows
Server 2003

LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION (section 2.2.7.11)

Windows 2000

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

226 / 254

Data type

Product

LSAPR_TRUSTED_DOMAIN_AUTH_BLOB (section 2.2.7.16)

Windows 2000

LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL (section 2.2.7.12)

Windows 2000

LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION (section 2.2.7.13)

Windows 2000

LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL (section 2.2.7.14)

Windows 2000

LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2 (section 2.2.7.15)

Windows XP and Windows
Server 2003

LUID ([MS-DTYP] section 2.3.7)

Windows NT 3.1

TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES (section 2.2.7.18)

Windows Vista and Windows
Server 2008

LSAPR_LUID_AND_ATTRIBUTES (section 2.2.5.4)

Windows NT 3.1

LSA_FOREST_TRUST_RECORD_TYPE (section 2.2.7.22)

Windows XP and Windows
Server 2003

LSA_FOREST_TRUST_BINARY_DATA (section 2.2.7.23)

Windows XP and Windows
Server 2003

LSA_FOREST_TRUST_DOMAIN_INFO (section 2.2.7.24)

Windows XP and Windows
Server 2003

LSA_FOREST_TRUST_RECORD (section 2.2.7.21)

Windows XP and Windows
Server 2003

LSA_FOREST_TRUST_INFORMATION (section 2.2.7.25)

Windows XP and Windows
Server 2003

LSA_FOREST_TRUST_COLLISION_RECORD_TYPE (section 2.2.7.26)

Windows XP and Windows
Server 2003

LSA_FOREST_TRUST_COLLISION_RECORD (section 2.2.7.27)

Windows XP and Windows
Server 2003

LSA_FOREST_TRUST_COLLISION_INFORMATION (section 2.2.7.28)

Windows XP and Windows
Server 2003

LSAPR_POLICY_MACHINE_ACCT_INFO (section 2.2.4.21)

Windows 10 v1803 operating
system and Windows Server
v1803 operating system

<11> Section 2.2.1.1.2: The following is a timeline of when each access mask was introduced. All
access masks continue to be available in subsequent versions of Windows according to the

applicability lists at the beginning of this section.

Value Product

0x00000000 Windows NT 3.1

POLICY_VIEW_LOCAL_INFORMATION Windows NT 3.1

0x00000001

POLICY_VIEW_AUDIT_INFORMATION
0x00000002

Windows NT 3.1

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

227/ 254

Value

Product

POLICY_GET_PRIVATE_INFORMATION
0x00000004

Windows NT 3.

POLICY_TRUST_ADMIN
0x00000008

Windows NT 3.

POLICY_CREATE_ACCOUNT
0x00000010

Windows NT 3.

POLICY_CREATE_SECRET
0x00000020

Windows NT 3.

POLICY_CREATE_PRIVILEGE
0x00000040

Windows NT 3.

0x00000080

POLICY_SET_DEFAULT_QUOTA_LIMITS

Windows NT 3.

POLICY_SET_AUDIT_REQUIREMENTS
0x00000100

Windows NT 3.

POLICY_AUDIT_LOG_ADMIN
0x00000200

Windows NT 3.

POLICY_SERVER_ADMIN
0x00000400

Windows NT 3.

POLICY_LOOKUP_NAMES
0x00000800

Windows NT 3.

POLICY_NOTIFICATION
0x00001000

Windows 2000

<12> Section 2.2.1.1.5: The following is a timeline of when each access mask was introduced. All

access masks continue to be available in subsequent versions of Windows according to the

applicability lists at the beginning of this section.

Value Product

0x00000001

TRUSTED_QUERY_DOMAIN_NAME | Windows NT 3.1

0x00000002

TRUSTED_QUERY_CONTROLLERS | Windows NT 3.1

0x00000004

TRUSTED_SET_CONTROLLERS Windows NT 3.1

0x00000008

TRUSTED_QUERY_POSIX Windows NT 3.1

0x00000010

TRUSTED_SET_POSIX Windows NT 3.1

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol

Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

228 / 254

Value

Product

TRUSTED_SET_AUTH
0x00000020

Windows 2000

TRUSTED_QUERY_AUTH
0x00000040

Windows 2000

<13> Section 2.2.1.2: The POLICY_MODE_ALL flag applies to Windows 2000 and later.

<14> Section 2.2.1.2: The POLICY_MODE_ALL_NT4 flag applies to Windows NT 3.1 through Windows

NT 4.0.

<15> Section 2.2.1.2: The following is a timeline of when each mode was introduced. All modes
continue to be available in subsequent versions of Windows according to the applicability lists at the

beginning of this section.

POLICY_MODE_INTERACTIVE

Value Product
0x00000000 Windows NT 3.1
No access

0x00000001 Windows NT 3.1

0x00000002
POLICY_MODE_NETWORK

Windows NT 3.1

0x00000004
POLICY_MODE_BATCH

Windows NT 3.1

0x00000010
POLICY_MODE_SERVICE

Windows NT 3.1

0x00000020
POLICY_MODE_PROXY

Windows NT 3.1

0x00000040
POLICY_MODE_DENY_INTERACTIVE

Windows 2000

0x00000080
POLICY_MODE_DENY_NETWORK

Windows 2000

0x00000100
POLICY_MODE_DENY_BATCH

Windows 2000

0x00000200
POLICY_MODE_DENY_SERVICE

Windows 2000

0x00000400

POLICY_MODE_REMOTE_INTERACTIVE

Windows XP and Windows Server 2003

0x00000800

POLICY_MODE_DENY_REMOTE_INTERACTIVE

Windows XP and Windows Server 2003

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol

Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

229 / 254

<16> Section 2.2.1.4: The AES cipher AEAD-AES-256-CBC-HMAC-SHA512 and supporting methods,
structures, and processing details that enable AES wire encryption protections of sensitive data with
this protocol are supported on the operating systems specified in [MSFT-CVE-2022-21913], each with
its related KB article download installed.

<17> Section 2.2.1.5: Information records for Active Directory domains in trusted forests that are
queried and set in this protocol are supported by the operating systems specified in [MSFT-CVE-2022-
21857], each with its related KB article download installed.

<18> Section 2.2.2.4: The Windows implementation of the RPC client for this protocol leaves this
structure to be filled by a higher-layer application and does not verify the structure's contents except
for RootDirectory, which must be NULL.

<19> Section 2.2.2.5: In Windows NT, Windows 2000, Windows XP, and Windows XP operating
system Service Pack 1 (SP1), the Windows RPC server and RPC client do not enforce restrictions on
the Length field of this structure (using the range primitive specified in [MS-RPCE]).

system, server versions later than Windows Server 2022, 23H2 operating system, and versions 7

updated with [MSFT-CVE-2024-20692

EP¥)> Section 2.2.4.1: The following is a timeline of when each enumeration value was introduced. All
enumeration values continue to be available in subsequent versions of Windows according to the
applicability lists at the beginning of this section.

Value Product

PolicyAuditLogInformation Windows NT 3.1
PolicyAuditEventsInformation Windows NT 3.1
PolicyPrimaryDomainInformation Windows NT 3.1
PolicyPdAccountInformation Windows NT 3.1
PolicyAccountDomainInformation Windows NT 3.1
PolicyLsaServerRoleInformation Windows NT 3.1
PolicyReplicaSourceInformation Windows NT 3.1
PolicyInformationNotUsedOnWire Windows NT 3.1
PolicyModificationInformation Windows NT 3.1
PolicyAuditFullSetInformation Windows NT 3.1
PolicyAuditFullQueryInformation Windows NT 3.1
PolicyDnsDomainInformation Windows 2000
PolicyDnsDomainInformationInt Windows 2000
PolicyLocalAccountDomainInformation | Windows Vista and Windows Server 2008
PolicyMachineAccountInformation Windows 10 v1803 and Windows Server v1803

230 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

<23> Section 2.2.4.4: In Windows NT, Windows 2000, Windows XP, and Windows XP SP1, the
Windows RPC server and RPC client do not enforce restrictions on the MaximumAuditEventCount
field of this structure (using the range primitive, as specified in [MS-RPCE]).

<24> Section 2.2.4.14: The following applies to Windows 2000 Professional and later and to Windows
2000 Server, Windows Server 2003, and Windows Server 2003 R2 and later.

The Windows RPC server always throws an RPC_S_PROCNUM_OUT_OF_RANGE exception for the
message processing of LsarQueryInformationPolicy, LsarQueryInformationPolicy2,
LsarSetInformationPolicy, and LsarSetInformationPolicy2, if the server is configured to emulate
Windows NT 4.0 for PolicyDnsDomainInformation information level.

<25> Section 2.2.4.16% The PolicyDomainQualityOfServicelnformation
enumeration value and corresponding POLICY_DOMAIN_QUALITY_OF_SERVICE_INFO structure are

parts of LSAPR_POLICY_DOMAIN_INFORMATION only in the Windows 2000 Server implementation of
this protocol.

<26> Section 2.2.4.18: Microsoft implementations of the Local Security Authority (Domain Policy)
Remote Protocol do not enforce data in EfsBlob to conform to the layout specified in [MS-GPEF]
section 2.2.1.2.1.

<27> Section 2.2.5.3: In Windows NT, Windows 2000, Windows XP, and Windows XP SP1, the
Windows RPC server and RPC client do not enforce restrictions on the Entries field of this structure
(using the range primitive defined in [MS-RPCE]).

<28> Section 2.2.5.5: In Windows NT, Windows 2000, Windows XP, and Windows XP SP1, the
Windows RPC server and RPC client do not enforce restrictions on the PrivilegeCount field of this
structure (using the range primitive specified in [MS-RPCE]).

<29> Section 2.2.6.1: In Windows NT, Windows 2000, Windows XP, and Windows XP SP1, the
Windows RPC server and RPC client do not enforce restrictions on the Length field of this structure
(using the range primitive as specified in [MS-RPCE]).

el s =lelufe) WAV AI Y In Windows NT, Windows 2000, Windows XP, and Windows XP SP1, the
Windows RPC server and RPC client do not enforce restrictions on the MaximumLength field of this
structure (using the range primitive defined in [MS-RPCE]).

EEF)> Section 2.2.7.2: The following is a timeline of when each enumeration value was introduced. All
enumeration values continue to be available in subsequent versions of Windows according to the
applicability lists at the beginning of this section.

Value Product
TrustedDomainNamelnformation Windows NT 3.1
TrustedControllersInformation Windows NT 3.1
TrustedPosixOffsetInformation Windows NT 3.1
TrustedPasswordInformation Windows NT 3.51
TrustedDomainInformationBasic Windows 2000
TrustedDomainInformationEx Windows 2000
TrustedDomainAuthInformation Windows 2000
TrustedDomainFullInformation Windows 2000

231/ 254

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Value Product

TrustedDomainAuthInformationInternal Windows 2000

TrustedDomainFulllInformationInternal Windows 2000

TrustedDomainInformationEx2Internal

Windows XP and Windows Server 2003

TrustedDomainFullInformation2Internal

Windows XP and Windows Server 2003

TrustedDomainSupportedEncryptionTypes

Windows Vista and Windows Server 2008

TrustedDomainAuthInformationInternalAes

Windows Server 2008 with [MSFT-CVE-2022-21913]

TrustedDomainFulllInformationInternalAes

Windows Server 2008 with [MSFT-CVE-2022-21913]

<33> Section 2.2.7.5: In Windows NT, Windows 2000, Windows XP, and Windows XP SP1, the
Windows RPC server and RPC client do not enforce restrictions on the Entries field of this structure

(using the range primitive defined in [MS-RPCE]).

<34> Section 2.2.7.9: The following is a timeline of when each flag value was introduced. Unless
otherwise specified, all flag values continue to be available in subsequent versions of Windows

according to the applicability lists at the beginning of this section.

Possible value Value Product

TANT (TRUST_ATTRIBUTE_NON_TRANSITIVE) 0x00000001 | Windows 2000

TAUO (TRUST_ATTRIBUTE_UPLEVEL_ONLY) 0x00000002 | Windows 2000

TAQD (TRUST_ATTRIBUTE_QUARANTINED_DOMAIN) 0x00000004 | Windows 2000
operating system
Service Pack 2 (SP2)
and Windows XP

TAFT (TRUST_ATTRIBUTE_FOREST_TRANSITIVE) 0x00000008 | Windows XP and
Windows Server 2003

TACO (TRUST_ATTRIBUTE_CROSS_ORGANIZATION) 0x00000010 | Windows Server 2003
and Windows Vista

TAWF (TRUST_ATTRIBUTE_WITHIN_FOREST) 0x00000020 | Windows Server 2003
and Windows Vista

TATE (TRUST_ATTRIBUTE_TREAT_AS_EXTERNAL) 0x00000040 | Windows Server 2003
and Windows Vista

TANC 0x00000200 | Windows 8 and

(TRUST_ATTRIBUTE_CROSS_ORGANIZATION_NO_TGT_DELEGATION) Windows Server 2012
operating system

TAPT (TRUST_ATTRIBUTE_PIM_TRUST) 0x00000400 | Windows 10 and

Windows Server 2016

(Also supported on
Windows 8.1 and
Windows Server 2012
R2 if [MSKB-
3155495] is
installed.)

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

232 / 254

Possible value Value Product

Obsolete 0x00400000 | Introduced in
Windows 2000 RTM.
Became obsolete in
Windows 2000
operating system
Service Pack 4 (SP4).

Obsolete 0x00800000 | Introduced in

Windows 2000 RTM.
Became obsolete in
Windows 2000 SP4.

<35> Section 2.2.7.11: In Windows NT, Windows 2000, Windows XP, Windows Server 2003, Windows
Server 2003 R2, Windows Vista, and Windows Server 2008, the Windows RPC server and RPC client
do not enforce restrictions on the IncomingAuthInfos field of this structure (using the range
primitive defined in [MS-RPCE]).

<36> Section 2.2.7.11: In Windows NT, Windows 2000, Windows XP, Windows Server 2003, Windows
Server 2003 R2, Windows Vista, and Windows Server 2008, the Windows RPC server and RPC client
do not enforce restrictions on the OutgoingAuthlInfos field of this structure (using the range
primitive defined in [MS-RPCE]).

<37> Section 2.2.7.16: In Windows NT, Windows 2000, Windows XP, and Windows XP SP1, the
Windows RPC server and RPC client do not enforce restrictions on the AuthSize field of this structure
(using the range primitive defined in [MS-RPCE]).

<38> Section 2.2.7.17: In Windows NT, Windows 2000, Windows XP, and Windows XP SP1, the
Windows RPC server and RPC client do not enforce restrictions on the AuthInfoLength field of this
structure (using the range primitive defined in [MS-RPCE]).

<39> Section 2.2.7.23: In Windows NT, Windows 2000, Windows XP, and Windows XP SP1, the
Windows RPC server and RPC client do not enforce restrictions on the Length field of this structure
(using the range primitive defined in [MS-RPCE]).

<40> Section 2.2.7.25: In Windows NT, Windows 2000, Windows XP, and Windows XP SP1, the
Windows RPC server and RPC client do not enforce restrictions on the RecordCount field of this
structure (using the range primitive defined in [MS-RPCE]).

<41> Section 3.1.1.1: A Windows responder for this protocol contains the following values for the
policy object after setup.

Name Value
Auditing Windows maintains the following hard-coded information about the state of the audit log:
II_Ofg . MaximumLogSize = 8192
nforma
ion AuditLogPercentFull = 0
AuditRetentionPeriod = 8533315
AuditLogFullShutdownInProgress = FALSE
TimeToShutdown = 288342
NextAuditRecordId = 0
Audit Windows XP and later, and Windows Server 2003 and Windows Server 2003 R2 and later return
Full STATUS_INVALID_PARAMETER for this information class.
Informat
ion

233/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Name Value

Event On Windows 2000 and Windows XP:

Auditing | AyditingMode = FALSE

Options . .
MaximumAuditEventCount = 9
EventAuditingOptions ={0,0,0,0,0,0,0,0,0}
On Windows Server 2003 and Windows Server 2003 R2:
AuditingMode = TRUE
MaximumAuditEventCount = 9
EventAuditingOptions ={0,1,0,0,0,0,0,0,1}
On Windows Vista and later and Windows Server 2008 and later:
AuditingMode = TRUE
MaximumAuditEventCount = 9
EventAuditingOptions = { 0,0,0,0,0,0,0,0,0 }

Primary Name = <Workgroup Name>

Domain | gjq = NULL

Informat

ion

DNS Name = <Workgroup Name>

Domain DnsDomainName = <Empty String>

Informat)

ion DnsForestName = <Empty String>
DomainGuid = { 0 }
Sid = NULL

Account DomainName = <Machine Netbios name> DomainSid = < S-1-5-21-X-Y-Z> where X, Y, Z are

Domain random numbers

Informat

ion

Server LsaServerRole = PolicyServerRolePrimary

Role

Informat

ion

Replica ReplicaSource=<Empty String>

Source ReplicaAccountName=<Empty String>

Informat

ion

Kerberos | <No value>

Policy

Informat

ion

Encrypti <No value>

ng File

System

(EFS)

Policy

Informat

ion

Security | The security descriptor in Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows NT 4.0,

Descript | and Windows 2000 can be expressed in Security Description Definition Language (SDDL), as

or specified in [MS-DTYP] section 2.5.1, as follows:
0:BAG:SYD:(A;;GA;;;BA)(A;;GX;;;WD)

234 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Name Value

In Windows XP and in Windows Server 2003 and Windows Server 2003 R2 and later, the security
descriptor can be expressed in SDDL as follows:
0:BAG:SYD:(A;;GA;;;BA)(A;;GX;;;WD)(A;;0x0000801;;;AN)(A;;0x00001000;;;LS)(A;;0x0000100
0;;/NS)

In Windows Vista and later, the security descriptor can be expressed in SDDL as follows:
0O:BAG:SYD:(A;;GA;;;BA)(A;;GX;;;WD)(A;;0x0000801;;;AN)(A;;0x00001000;;;LS)(A;;0x0000100
0;;;NS)(A;;0x00001000;;;S-1-5-17)

See sections 2.2.1.1.1 and 2.2.1.1.2 for the definitions of the generic and object-specific access
rights, respectively, that are included in these security descriptors.

Machine Rid =0

Account | gjg = NULL
Informat

ion

EPE!> Section 3.1.1.1: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, and Windows NT 4.0 do
not store this information.

<44> Section 3.1.1.1: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, and Windows NT 4.0 do
not store this information.

BVERPL > Section 3.1.1.1: Only the Windows 2000 implementation of this protocol stores quality of
service information.

<46> Section 3.1.1.1: The security descriptor in Windows NT 3.1, Windows NT 3.5, Windows NT 3.51,
Windows NT 4.0, and Windows 2000 can be expressed in Security Description Definition Language
(SDDL), as specified in [MS-DTYP] section 2.5.1, as follows:

0:BAG:SYD:(A;;GA;;;BA)(A;;GX;;;WD)
In Windows XP, Windows Server 2003, and Windows Server 2003 R2, the security descriptor can be

expressed in SDDL as follows:

0:BAG:SYD:(A;;GA;;;BA)(A;;GX;;;WD)(A;;0x0000801;;;AN)(A;;0x00001000;;;LS)
(A;;0x00001000;;;NS)

In Windows Vista and later and in Windows Server 2008 and later, the security descriptor can be
expressed in SDDL as follows:

0:BAG:SYD:(A;;GA;;;BA)(A;;GX;;;WD)(A;;0x0000801;;;AN)(A;;0x00001000;;;LS)
(A;;0x00001000;;;NS) (A;;0x00001000;;;S-1-5-17)

See sections 2.2.1.1.1 and 2.2.1.1.2 for the definitions of the generic and object-specific access
rights, respectively, that are included in these security descriptors.

<47> Section 3.1.1.1: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, and Windows NT 4.0
domain controllers use the Netlogon Remote Protocol, as specified in [MS-NRPC] section 1.3.3, to
converge Event Auditing Options abstract data. These versions of Windows do not implement Kerberos
Policy Information abstract data.

235/ 254

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Windows 2000 Server, Windows Server 2003, and Windows Server 2003 R2 and later domain
controllers use the Group Policy: Security Protocol Extension, as specified in [MS-GPSB] section 2.2.2
to converge Kerberos Policy Information abstract data and [MS-GPSB] section 2.2.4 to converge Event

Auditing Options abstract data.

<48> Section 3.1.1.2.1: The following is a timeline of when each privilege value was introduced. All
privilege values continue to be supported in all subsequent versions of Windows according to the

applicability lists at the beginning of this section.

Name

Product

SE_ASSIGNPRIMARYTOKEN_NAME
"SeAssignPrimaryTokenPrivilege"

Windows NT 3.1

SE_AUDIT_NAME
"SeAuditPrivilege"

Windows NT 3.1

SE_BACKUP_NAME
"SeBackupPrivilege"

Windows NT 3.1

SE_CHANGE_NOTIFY_NAME
"SeChangeNotifyPrivilege"

Windows NT 3.1

SE_CREATE_GLOBAL_NAME
"SeCreateGlobalPrivilege"

Windows 2000 SP4, Windows XP operating system
Service Pack 2 (SP2), and Windows Server 2003

SE_CREATE_PAGEFILE_NAME
"SeCreatePagefilePrivilege"

Windows NT 3.1

SE_CREATE_PERMANENT_NAME
"SeCreatePermanentPrivilege"

Windows NT 3.1

SE_CREATE_TOKEN_NAME
"SeCreateTokenPrivilege"

Windows NT 3.1

SE_DEBUG_NAME
"SeDebugPrivilege"

Windows NT 3.1

SE_ENABLE_DELEGATION_NAME
"SeEnableDelegationPrivilege"

Windows 2000

SE_IMPERSONATE_NAME
"SelmpersonatePrivilege"

Windows 2000 SP4, Windows XP SP2, and
Windows Server 2003

SE_INC_BASE_PRIORITY_NAME
"SelncreaseBasePriorityPrivilege"

Windows NT 3.1

SE_INCREASE_QUOTA_NAME
"SelncreaseQuotaPrivilege"

Windows NT 3.1

SE_LOAD_DRIVER_NAME
"SeLoadDriverPrivilege"

Windows NT 3.1

SE_LOCK_MEMORY_NAME
"SeLockMemoryPrivilege"

Windows NT 3.1

SE_MACHINE_ACCOUNT_NAME
"SeMachineAccountPrivilege"

Windows NT 3.5

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

236 / 254

Name Product

SE_MANAGE_VOLUME_NAME Windows 2000 SP4 and Windows XP
"SeManageVolumePrivilege"

SE_PROF_SINGLE_PROCESS_NAME Windows NT 3.1
"SeProfileSingleProcessPrivilege"

SE_REMOTE_SHUTDOWN_NAME Windows NT 3.1
"SeRemoteShutdownPrivilege"

SE_RESTORE_NAME Windows NT 3.1
"SeRestorePrivilege"

SE_SECURITY_NAME Windows NT 3.1
"SeSecurityPrivilege"

SE_SHUTDOWN_NAME Windows NT 3.1
"SeShutdownPrivilege"

SE_SYNC_AGENT_NAME Windows 2000
"SeSyncAgentPrivilege"

SE_SYSTEM_ENVIRONMENT_NAME Windows NT 3.1
"SeSystemEnvironment"

SE_SYSTEM_PROFILE_NAME Windows NT 3.1
"SeSystemProfilePrivilege"

SE_SYSTEMTIME_NAME Windows NT 3.1
"SeSystemtimePrivilege"

SE_TAKE_OWNERSHIP_NAME Windows NT 3.1
"SeTakeOwnershipPrivilege"

SE_TCB_NAME Windows NT 3.1
"SeTcbPrivilege"

SE_UNDOCK_NAME Windows NT 3.1
"SeUndockPrivilege"

SE_CREATE_SYMBOLIC_LINK_NAME Windows Vista and Windows Server 2008
"SeCreateSymbolicLinkPrivilege"

SE_INC_WORKING_SET_NAME Windows Vista and Windows Server 2008
"SelncreaseWorkingSetPrivilege"

SE_RELABEL_NAME Windows Vista and Windows Server 2008
"SeRelabelPrivilege"

SE_TIME_ZONE_NAME "SeTimeZonePrivilege" Windows Vista and Windows Server 2008

SE_TRUSTED_CREDMAN_ACCESS_NAME Windows Vista and Windows Server 2008
"SeTrustedCredManAccessPrivilege"

<49> Section 3.1.1.2.2: Windows products implement the exact set of system access rights that the
protocol supports for a given version. See the Windows behavior note in section 2.2.1.2 for a timeline
of the system access introduction.

237/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

pees10e Sl (o a e BN NEH The default security descriptor that is assigned to newly created account
objects can be expressed in Security Description Definition Language (SDDL) as
0:BAG:SYD:(A;;GA;;;BA)(A;;GX;;;WD).

See section 2.2.1.1.1 for the definitions of the generic access rights that are included in this security
descriptor.

<51> Section 3.1.1.3: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, and Windows NT 4.0
domain controllers use the Netlogon Remote Protocol, as specified in [MS-NRPC] section 1.3.3.

Windows 2000 Server, Windows Server 2003, and Windows Server 2003 R2 and later domain
controllers use the Group Policy: Security Protocol Extension, as specified in [MS-GPSB] section 2.2.6.

<52> Section 3.1.1.4: The following is a timeline of when each secret nhame or name pattern was
introduced. All secret names and name patterns continue to be available in subsequent versions of
Windows according to the applicability lists at the beginning of this section.

Secret name or name pattern | Product

Starts with "G$$" Windows NT 3.1
Starts with "G$" Windows NT 3.1
Starts with "L$" Windows 2000
Starts with "M$" Windows 2000
Starts with "_sc_" Windows 2000
Starts with "NL$" Windows 2000
Starts with "RasDialParams" Windows 2000
Starts with "RasCredentials" Windows 2000
Equal to "$MACHINE.ACC" Windows NT 3.1
Equal to "SAC" Windows 2000
Equal to "SAI" Windows 2000
Equal to "SANSC" Windows 2000

The Trusted Domain Secret type is used only in Windows NT 3.1, Windows NT 3.5, Windows NT 3.51,
and Windows NT 4.0.

For replication of secrets, Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, and Windows NT 4.0
use Netlogon-based replication, while Windows 2000 Server, Windows Server 2003, and Windows
Server 2003 R2 and later use Active Directory replication.

<53> Section 3.1.1.4: By default, the security descriptor assigned to newly created secret objects of
type Local Secret can be expressed in Security Description Definition Language (SDDL) as
0:BAG:SYD:(A;;GA;;;BA)(A;;GX;;;WD). This security descriptor implies that the secrets are shared
between users by default, which means that a secret object created by an administrator is available to
another administrator. An implementation can disallow this behavior by assigning a different security
descriptor.

See section 2.2.1.1.1 for the definitions of the generic access rights that are included in this security
descriptor.

238/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

<54> Section 3.1.1.5: The following is a timeline of when each information value was introduced. All
information values continue to be available in subsequent versions of Windows according to the
applicability lists at the beginning of this section.

Name Product

Name Windows NT 3.1

Flat Name Windows 2000

Security Identifier Windows NT 3.1

Trust Type Windows 2000

Trust Direction Windows 2000

Trust Attributes Windows 2000

Posix Offset Windows NT 3.1

Trust Incoming Passwords Windows NT 3.51

Trust Outgoing Passwords Windows NT 3.51

Forest Trust Information Windows XP, Windows Server 2003
Supported Encryption Types | Windows Vista, Windows Server 2008
Security Descriptor Windows NT 3.1

<55> Section 3.1.1.6.1: The default setting value is FALSE for Windows NT, Windows 2000, and
Windows XP. The default setting value is TRUE for Windows Server 2003 and Windows Server 2003 R2
and later and for Windows Vista and later.

This setting can be set to FALSE on Windows Server 2003 and Windows Server 2003 R2 and later and
on Windows Vista and later by setting a "non-0" value on the following REG_DWORD registry value:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\TurnOffAnonymousBlock
Changes made to this setting must take effect immediately.

Note that the Boolean meaning of the TurnOffAnonymousBlock registry value is reversed from that of
the LsaRestrictAnonymous setting in section 3.1.1.6.1.

<56> Section 3.1.4: The Windows implementation of this protocol asks the RPC engine to perform a
strict Network Data Representation (NDR) data consistency check at target level 5.0 (as specified in
[MS-RPCE] section 3) in Windows 2000 Professional and later and in Windows 2000 Server, Windows
Server 2003, and Windows Server 2003 R2 and later.

<57> Section 3.1.4: The Windows implementation of this protocol asks the RPC engine to include
support for both NDR and NDR64 transfer syntaxes, in addition to the negotiation mechanism for
determining what transfer syntax will be used (as specified in [MS-RPCE] section 3) in Windows XP
and later and in Windows Server 2003 and Windows Server 2003 R2 and later.

<58> Section 3.1.4: The Windows implementation of this protocol asks the RPC engine via the
strict_context_handle attribute to reject use of context handles created by a method of a different RPC
interface from this one, as specified in [MS-RPCE] section 3.

239/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

<59> Section 3.1.4: The following is a timeline of when each method was introduced. All methods
continue to be available in subsequent versions of Windows according to the applicability list at the

beginning of this section.

Method

Product

LsarClose (section 3.1.4.9.4)

Windows NT 3.1

LsarEnumeratePrivileges (section 3.1.4.8.1)

Windows NT 3.1

LsarQuerySecurityObject (section 3.1.4.9.1)

Windows NT 3.1

LsarSetSecurityObject (section 3.1.4.9.2)

Windows NT 3.1

LsarOpenPolicy (section 3.1.4.4.2)

Windows NT 3.1

LsarQueryInformationPolicy (section 3.1.4.4.4)

Windows NT 3.1

LsarSetInformationPolicy (section 3.1.4.4.6)

Windows NT 3.1

LsarCreateAccount (section 3.1.4.5.1)

Windows NT 3.1

LsarEnumerateAccounts (section 3.1.4.5.2)

Windows NT 3.1

LsarCreateTrustedDomain (section 3.1.4.7.12)

Windows NT 3.1

LsarEnumerateTrustedDomains (section 3.1.4.7.8)

Windows NT 3.1

LsarCreateSecret (section 3.1.4.6.1)

Windows NT 3.1

LsarOpenAccount (section 3.1.4.5.3)

Windows NT 3.1

LsarEnumeratePrivilegesAccount (section 3.1.4.5.4)

Windows NT 3.1

LsarAddPrivilegesToAccount (section 3.1.4.5.5)

Windows NT 3.1

LsarRemovePrivilegesFromAccount (section 3.1.4.5.6)

Windows NT 3.1

LsarGetSystemAccessAccount (section 3.1.4.5.7)

Windows NT 3.1

LsarSetSystemAccessAccount (section 3.1.4.5.8)

Windows NT 3.1

LsarOpenTrustedDomain (section 3.1.4.7.1)

Windows NT 3.1

LsarQueryInfoTrustedDomain (section 3.1.4.7.13)

Windows NT 3.1

LsarSetInformationTrustedDomain (section 3.1.4.7.14)

Windows NT 3.1

LsarOpenSecret (section 3.1.4.6.2)

Windows NT 3.1

LsarSetSecret (section 3.1.4.6.3)

Windows NT 3.1

LsarQuerySecret (section 3.1.4.6.4)

Windows NT 3.1

LsarLookupPrivilegeValue (section 3.1.4.8.2)

Windows NT 3.1

LsarLookupPrivilegeName (section 3.1.4.8.3)

Windows NT 3.1

LsarLookupPrivilegeDisplayName (section 3.1.4.8.4)

Windows NT 3.1

LsarDeleteObject (section 3.1.4.9.3)

Windows NT 3.1

LsarEnumerateAccountsWithUserRight (section 3.1.4.5.9)

Windows NT 3.51

LsarEnumerateAccountRights (section 3.1.4.5.10)

Windows NT 3.51

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

240/ 254

Method

Product

LsarAddAccountRights (section 3.1.4.5.11)

Windows NT 3.51

LsarRemoveAccountRights (section 3.1.4.5.12)

Windows NT 3.51

LsarQueryTrustedDomainInfo (section 3.1.4.7.2)

Windows NT 3.51

LsarSetTrustedDomainInfo (section 3.1.4.7.3)

Windows NT 3.51

LsarDeleteTrustedDomain (section 3.1.4.7.4)

Windows NT 3.51

LsarStorePrivateData (section 3.1.4.6.5)

Windows NT 3.51

LsarRetrievePrivateData (section 3.1.4.6.6)

Windows NT 3.51

LsarOpenPolicy2 (section 3.1.4.4.1)

Windows NT 3.51

LsarQueryInformationPolicy2 (section 3.1.4.4.3)

Windows 2000

LsarSetInformationPolicy2 (section 3.1.4.4.5)

Windows 2000

LsarQueryTrustedDomainInfoByName (section 3.1.4.7.5)

Windows 2000

LsarSetTrustedDomainInfoByName (section 3.1.4.7.6)

Windows 2000

LsarEnumerateTrustedDomainsEx (section 3.1.4.7.7)

Windows 2000

LsarCreateTrustedDomainEx (section 3.1.4.7.11)

Windows 2000

LsarQueryDomainInformationPolicy (section 3.1.4.4.7)

Windows 2000

LsarSetDomainInformationPolicy (section 3.1.4.4.8)

Windows 2000

LsarOpenTrustedDomainByName (section 3.1.4.7.9)

Windows 2000

LsarCreateTrustedDomainEx2 (section 3.1.4.7.10)

Windows 2000

LsarQueryForestTrustInformation (section 3.1.4.7.15)

Windows XP, Windows Server 2003

LsarSetForestTrustInformation (section 3.1.4.7.16)

Windows XP, Windows Server 2003

LsarOpenPolicy3 (section 3.1.4.4.9)

Windows Server 2008 with [MSFT-CVE-2022-

21913]

LsarCreateTrustedDomainEx3 (section 3.1.4.7.17)

Windows Server 2008 with [MSFT-CVE-2022-

21913]

<60> Section 3.1.4: Some gaps in the opnum numbering sequence correspond to opnums that are
specified in [MS-LSAT]. All other gaps in the opnum numbering sequence apply to Windows as follows.

Opnum | Description

1 Used only locally by Windows, never remotely.
5 Not used by Windows.

9 Not used by Windows.

21 Not used by Windows.

22 Not used by Windows.

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

241 / 254

Opnum | Description

52 Not used by Windows.

56 Used only locally by Windows, never remotely.
60 Used only locally by Windows, never remotely.
61 Used only locally by Windows, never remotely.
62 Used only locally by Windows, never remotely.
63 Used only locally by Windows, never remotely.
64 Used only locally by Windows, never remotely.
65 Used only locally by Windows, never remotely.
66 Used only locally by Windows, never remotely.
67 Used only locally by Windows, never remotely.
69 Used only locally by Windows, never remotely.
70 Used only locally by Windows, never remotely.
71 Used only locally by Windows, never remotely.
72 Used only locally by Windows, never remotely.
75 Used only locally by Windows, never remotely.

<61> Section 3.1.4.4.1: The Windows RPC server for this protocol ignores this parameter except for
the RootDirectory field. It verifies whether the value is NULL and returns
STATUS_INVALID_PARAMETER if it is not.

<62> Section 3.1.4.4.2: The Windows RPC server for this protocol ignores this parameter except for
the RootDirectory field. It verifies whether the value is NULL and returns
STATUS_INVALID_PARAMETER if it is not.

<63> Section 3.1.4.4.3: Windows XP and later, and Windows Server 2003 and Windows Server 2003
R2 and later return STATUS_INVALID_ PARAMETER for this information class.

<64> Section 3.1.4.4.3: In the case of Windows 2000 Professional and later, and Windows 2000
Server, Windows Server 2003, and Windows Server 2003 R2 and later, the Windows RPC server
always throws an RPC_NT_PROCNUM_OUT_OF_RANGE exception if the server is configured to emulate
NT4 for PolicyDnsDomainInformation information level.

<65> Section 3.1.4.4.5: Windows XP and later, and Windows Server 2003 and Windows Server 2003
R2 and later return STATUS_INVALID_PARAMETER for this information class.

<66> Section 3.1.4.4.5: Windows 2000 Professional and later, and Windows 2000 Server, Windows
Server 2003, and Windows Server 2003 R2 and later behavior: The Windows RPC server always
throws an RPC_NT_PROCNUM_OUT_OF_RANGE exception if the server is configured to emulate NT4
for PolicyDnsDomainInformation information level.

<67> Section 3.1.4.4.9: The Windows RPC server for this protocol ignores this parameter except for
the RootDirectory field. It verifies whether the value is NULL and returns
STATUS_INVALID_PARAMETER if it is not NULL.

242 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

BFI)> Section 3.1.4.5.1: Windows checks whether the SID is valid, but does not validate the structure
of the SID.

<71> Section 3.1.4.5.5: Windows 2000, Windows XP, Windows Server 2003, and Windows Server
2003 R2 ignore invalid LUIDs and return STATUS_SUCCESS instead of STATUS_INVALID_PARAMETER.

<72> Section 3.1.4.5.6: Windows Vista and later do not allow removal of "SeAuditPrivilege",
"SeChangeNotifyPrivilege", "SeImpersonatePrivilege", and "SeCreateGlobalPrivilege" from accounts
represented with SIDs "S-1-5-19" and "S-1-5-20". Such requests are rejected with
STATUS_NOT_SUPPORTED.

<73> Section 3.1.4.5.9: Furthermore, Windows checks that the caller is a member of Builtin
Administrators.

<74> Section 3.1.4.5.12: Windows Vista and later and Windows Server 2008 and later do not allow
removal of "SeAuditPrivilege", "SeChangeNotifyPrivilege", "SelmpersonatePrivilege", and
"SeCreateGlobalPrivilege" from accounts represented with SIDs "S-1-5-19" and "S-1-5-20". Such
requests are rejected with STATUS_NOT_SUPPORTED.

<75> Section 3.1.4.6: Windows 2000 Server, Windows XP, Windows Server 2003, Windows Server
2003 R2, Windows Vista, and Windows Server 2008 support these methods. Windows 7 and later and
Windows Server 2008 R2 and later support these methods by default, but can be configured not to
support them.

<76> Section 3.1.4.6.1: Windows NT 4.0 and Windows 2000 Professional and later, and Windows NT
4.0, Windows 2000 Server, Windows Server 2003, and Windows Server 2003 R2 and later limit the
secret name length to 128 characters. Windows NT 4.0, Windows 2000, Windows XP, Windows Server
2003, and Windows Server 2003 R2 return STATUS_NAME_TOO_LONG for lengths that are greater
than 128 characters. Windows Vista and later and Windows Server 2008 and later return
STATUS_INVALID_PARAMETER for lengths that are greater than 128 characters.

<77> Section 3.1.4.6.1: Windows 2000 Professional and later, and Windows 2000 Server, Windows
Server 2003, and Windows Server 2003 R2 and later do not allow a secret whose name is prefixed by
"G4" to be created, and return STATUS_INVALID_PARAMETER to indicate this constraint failure to
the caller.

<78> Section 3.1.4.6.1: Windows Server 2003 and Windows Server 2003 R2 and later, and Windows
Vista and later do not allow the secret name to be "G$$", "G$", "L$", "M$", "_sc_", "NL$",
"RasDialParams" or "RasCredentials". They return STATUS_INVALID_PARAMETER to indicate this
constraint failure to the caller.

<79> Section 3.1.4.6.1: Global secrets (those that are prefixed with "G$") cannot be created on
domain controllers on which the directory service is stopped. A request to create a global secret on a
domain controller on which the directory service is stopped fails with status code
STATUS_DIRECTORY_SERVICE_REQUIRED.

<80> Section 3.1.4.6.2: Windows 2000 Server, Windows Server 2003, and Windows Server 2003 R2
and later have a special case for secret name search for downlevel compatibility with Windows NT 3.1,
Windows NT 3.5, and Windows NT 3.51. If the secret name is in the form "G$$<NAME>", where
"<NAME>" matches the name of a trusted domain, the response is STATUS_SUCCESS. In this case,
secret information is Authentication Information of type TRUST_AUTH_TYPE_CLEAR ([MS-ADTS]
section 6.1.6.9.1.1, the AuthType field) from the trusted domain object.

243/ 254

[MS-LSAD-DIff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

<81> Section 3.1.4.6.3: Windows 2000 Server, Windows Server 2003, and Windows Server 2003 R2
and later have a special case for secret set operation for downlevel compatibility with Windows NT 3.1,
Windows NT 3.5, and Windows NT 3.51. If the secret name is in the form "G$$<NAME>", where
"<NAME>" matches the name of a trusted domain, the result is that the set request writes the secret
value into the authentication information section of the trusted domain object. The access check in
this case is identical to that required for setting authentication information on a trusted domain object,
rather than that pertaining to changing a secret value.

<82> Section 3.1.4.6.3: If decryption of EncryptedCurrentValue fails, Windows NT 4.0, Windows
2000, Windows XP, Windows Server 2003, Windows Server 2003 R2, and Windows Vista return
STATUS_UNKNOWN_REVISION (0xC0000058); Windows Server 2008 and later and Windows 7 and
later return STATUS_INVALID_PARAMETER_1 (OxCOOQOOOQEF).

<83> Section 3.1.4.6.3: If decryption of EncryptedOldValue fails, Windows NT 4.0, Windows 2000,
Windows XP, Windows Server 2003, Windows Server 2003 R2, and Windows Vista return
STATUS_UNKNOWN_REVISION (0xC0000058); Windows Server 2008 and later and Windows 7 and
later return STATUS_INVALID_PARAMETER_1 (OxCOOQOOQEF).

<84> Section 3.1.4.6.4: Windows rejects the secret query requests of type "system" by returning
STATUS_ACCESS_DENIED. Windows also rejects the secret query requests of type "local" from
network clients with STATUS_ACCESS_DENIED.

<85> Section 3.1.4.6.4: If Windows 2000 Server, Windows Server 2003, or Windows Server 2003 R2
process a global secret with a value that has its Length field set to 0, they fill in the
EncryptedCurrentValue with the following values before encryption.

Length = 0
MaximumLength = 0
Windows Server 2008 and later set the value of EncryptedCurrentValue to NULL.

<86> Section 3.1.4.6.4 If Windows 2000 Server, Windows Server 2003, or
Windows Server 2003 R2 process a global secret with a value that has its Length field set to 0, they
fill in the EncryptedOldValue with the following values before encryption.

Length = 0
MaximumLength = 0

Windows Server 2008 and later set the value of EncryptedOldValue to NULL.

<87> Section 3.1.4.6.5: If decryption of EncryptedData fails, Windows NT 4.0, Windows 2000,
Windows XP, Windows Server 2003, Windows Server 2003 R2, and Windows Vista return
STATUS_UNKNOWN_REVISION (0xC0000058); Windows Server 2008 and later and Windows 7 and
later return STATUS_INVALID_PARAMETER_1 (0xCOOO0OQEF).

244 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

> Section 3.1.4.7: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, and Windows NT 4.0 use
trusted domain objects on non-domain controllers to join a machine to a domain. Therefore, trusted
domain object methods are allowed on these products even when the machine is not a domain
controller. There is, however, one extra check in this case, which is that the trusted domain object's
security identifier has to be the same as the security identifier in Primary Domain Information. This
also artificially limits the number of trusted domain objects on such systems to one.

<95> Section 3.1.4.7.1: Windows Server 2003 and Windows Server 2003 R2 and later disallow callers
that do not have the AuthenticatedUsers SID in their token from accessing trusted domain objects.
Requests by such users are rejected with STATUS_ACCESS_DENIED.

<96> Section 3.1.4.7.1: On Windows 2000 Server, Windows Server 2003, and Windows Server 2003
R2 and later, Active Directory has to be running on the server in order for this request to succeed.
Failing that, the STATUS_DIRECTORY_SERVICE_REQUIRED status code is returned.

<97> Section 3.1.4.7.3: Read-only domain controllers are supported on servers running Windows
Server 2008 and later. They return the STATUS_OBJECT_NAME_NOT_FOUND error.

<98> Section 3.1.4.7.3: Windows 2000 Server, Windows Server 2003, and Windows Server 2003 R2
support these InformationClass values.

<99> Section 3.1.4.7.4: Read-only domain controllers are supported on servers running Windows
Server 2008 and later. They return the STATUS_OBJECT_NAME_NOT_FOUND error.

<100> Section 3.1.4.7.10: Windows Server 2003 for Small Business Server 2003 does not support
this message. Attempts to create a TDO in this environment causes the server to return
STATUS_NOT_SUPPORTED_ON_SBS.

<101> Section 3.1.4.7.10: The operation is not supported on Windows Server 2003 for Small
Business Server 2003.

<102> Section 3.1.4.7.10: Servers running Windows Server 2003, Windows Server 2003 R2,
Windows Server 2008, or Windows Server 2008 R2 return the STATUS_INVALID_DOMAIN_STATE
error when the TRUST_ATTRIBUTE_FOREST_TRANSITIVE or the
TRUST_ATTRIBUTE_CROSS_ORGANIZATION bit is set in the TrustAttributes field of the
TrustedDomainInformation input parameter.

<103> Section 3.1.4.7.10: Read-only domain controllers are supported on servers running Windows
Server 2008 and later. They return the STATUS_OBJECT_NAME_NOT_FOUND error.

<104> Section 3.1.4.7.11: The operation is not supported on Windows Server 2003 for Small
Business Server 2003.

<105> Section 3.1.4.7.12: The operation is not supported on Windows Server 2003 for Small
Business Server 2003.

e 0[S =T fe]a eI B IVANEH When not at DS_BEHAVIOR_WIN2003 forest functional level, Windows
Server 2003 and Windows Server 2003 R2 and later hide the presence of the
TRUST_ATTRIBUTE_FOREST_TRANSITIVE bit in the Trust Attributes field of a trusted domain object.

<107> Section 3.1.4.7.14: Servers running Windows 2000 Server, Windows Server 2003, and
Windows Server 2003 R2 return the STATUS_INVALID_INFO_CLASS error when the information class
is TrustedDomainInformationBasic.

245 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

<108> Section 3.1.4.7.14: Servers running Windows Server 2008 and later return the
STATUS_OBJECT_NAME_NOT_FOUND error.

<109> Section 3.1.4.7.17: Windows Server 2003 for Windows Small Business Server 2003 (Windows
SBS) server software does not support this message. Attempts to create a TDO in this environment
causes the server to return STATUS_NOT_SUPPORTED_ON_SBS (0xC0000300), as specified in Return
Values of section 3.1.4.7.12.

<110> Section 3.1.4.7.18: Retrieving information about a trust relationship with another forest is
supported by the operating systems specified in [MSFT-CVE-2022-21857], each with its related KB
article download installed.

<111> Section 3.1.4.7.19: The manipulation of forest trust information is supported by the operating
systems specified in [MSFT-CVE-2022-21857], each with its related KB article download installed.

<112> Section 3.1.4.9.1: The server will not return the security descriptor of objects that it stores in
Active Directory. It will return the security descriptor of objects in its local policy only. The objects
stored in Active Directory include Global Secrets and trusted domain objects in Windows 2000 Server,
Windows Server 2003, and Windows Server 2003 R2 and later. For objects that fall into this category,
the server will return the STATUS_NOT_SUPPORTED status code.

<113> Section 3.1.4.9.2: The server will not return the security descriptor of objects that it stores in
Active Directory. It will return the security descriptor of objects in its local policy only. The objects
stored in Active Directory include Global Secrets and trusted domain objects. For objects that fall into
this category, the server returns the STATUS_NOT_SUPPORTED status code.

<114> Section 3.1.4.10: On Windows Server 2008 and later, when processing the

LsarOpenSecret (section 3.1.4.6.2) and LsarCreateSecret (section 3.1.4.6.1) methods, the length of
the string is allowed to not be a multiple of 2. If Length is not a multiple of 2, the length of the
Unicode string will be assumed to be Length - 1.

<115> Section 3.1.4.10: Windows NT, Windows 2000, Windows XP, Windows Server 2003, and
Windows Server 2003 R2 do not perform this check. On Windows Server 2008 and later, when
processing the LsarOpenSecret and LSarCreateSecret methods, the Buffer field is allowed to contain
zero or many NULL Unicode characters at the end of the string.

<116> Section 3.1.4.10: Windows 2000, Windows XP, Windows Server 2003, and Windows Server
2003 R2 implementations of this protocol do not validate the Luid.HighPart field.

<117> Section 3.1.4.10: Windows 2000, Windows XP, Windows Server 2003, and Windows Server
2003 R2 implementations of this protocol do not validate the Luid.LowPart field.

<118> Section 3.1.4.10: Windows 2000, Windows XP, Windows Server 2003, and Windows Server
2003 R2 implementations of this protocol do not validate the Attributes field.

<119> Section 5.1.5: The AES cipher AEAD-AES-256-CBC-HMAC-SHA512 and supporting methods,
structures, and processing details that enable AES wire encryption protections of sensitive data with
this protocol are supported on the operating systems specified in [MSFT-CVE-2022-21913], each with
its related KB article download installed.

246 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

= A document revision that incorporates changes to interoperability requirements.
= A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last
released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Revisi
Section Description on
class
Updated for Windows 11 v24H2 and
Windows Server 2025. Added requirement .
2.1 Transport Major

that TCP/IP must be used in order to use the
LsarOpenPolicyWithCreds method.

11702 : Added note to ignore the
2.2.1.5 LSA Trust Record Flags LSA_SCANNER_INFO_DISABLE_AUTH_TARG | Major
ET_VALIDATION flag.

Added new supported feature value to

2.2.2.6 LSAPR_REVISION_INFO_V1 indicate that AES encryption should be used.

Major

Added a flag value to indicate the client

2.2.2.6 LSAPR_REVISION_INFO_V1 should use AES encryption.

Major

Updated for Windows 11 v24H2 and

Windows Server 2025. Added a value to
2.2.2.6 LSAPR_REVISION_INFO_V1 SupportedFeatures to indicate that client Major
may use additional methods, and that the
server supports LsarOpenPolicyWithCreds.

Added data type for using AES encryption

2.2.6.2 LSAPR_AES_CIPHER_VALUE with secret handling. Major
2.2.7.29 11622 : Clarified that the cleartext password
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATIO data is in the form of a Major
N_INTERNAL_AES LSAPR_TRUSTED_DOMAIN_AUTH_BLOB.

Updated for Windows 11 v24H2 and
3.1.4 Message Processing Events and Windows Server 2025. Added protocol Maior
Sequencing Rules message entry (Opnum 135) to the Methods]

table.

Updated for Windows 11 v24H2 and

. Windows Server 2025. Added server .

3.1.4.4.9 LsarOpenPolicy3 (Opnum 130) processing rules related to AES encryption Major

and name lookups with authentication.

247 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Revisi

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Section Description on
class
Updated for Windows 11 v24H2 and
3.1.4.4.10 LsarOpenPolicyWithCreds (Opnum Windows Server 2025. Added a new method Maior
135) which opens a context handle to the RPC)
server using provided credentials.
3.1.4.6.7 LsarOpenSecret2 (Opnum 136) Added method using AES encryption. Major
3.1.4.6.8 LsarCreateSecret2 (Opnum 137) Added method using AES encryption. Major
3.1.4.6.9 LsarSetSecret2 (Opnum 138) Added method using AES encryption. Major
3.1.4.6.10 LsarQuerySecret2 (Opnum 139) Added method using AES encryption. Major
3.1.4.6.11 LsarStorePrivateData2 (Opnum 140) Added method using AES encryption. Major
i‘ll.;l.G.lZ LsarRetrievePrivateData2 (Opnum Added method using AES encryption. Major
. 11667 : Added information about the data
?(')1 .:dz]%lgggsarCreateTrustedDomalnEx2 type of the AuthenticationInformation Major
P parameter.
11622 : Added information for the
AuthenticationInformation parameter,
3.1.4.7.17 LsarCreateTrustedDomainEx3 clarifying that it has the form of an Maior
(Opnum 129) LSAPR_TRUSTED_DOMAIN_AUTH_BLOB and .
that the server returns an error if the
cbCipher field is too small.
Added Windows Server 2025 to the Windows
7 Appendix B: Product Behavior Server releases role table list of applicable Major
products.
248 / 254

9 Index
A

Abstract data model 76

server 76
Access

checks 96

rights 96
Access Rights and Access Checks method 96
Account Object Methods method 112
Account objects

data model 82

example 183

methods 112
Accounts Rights data model 78
Applicability 24

C

Capability negotiation 24

Change tracking 247

Closing handles 99

Closing Handles method 99

Common data types 26

Common object methods 172
Common Object Methods method 172

D

Data model - abstract 76
server 76
Data types 26
common - overview 26
Data validation 177
Data Validation method 177
Decryption - secret 195
DES-ECB-LM cipher definition 197
Directory service schema elements 74

Elements - directory service schema 74
Encryption - secret 195
Events
local - server 182
timer - server 182
Examples 183
manipulating account objects 183
manipulating secret objects 186
manipulating trusted domain objects 189
overview 183
structure example of Isapr_trusted_domain_auth_blob 191

F

Fields - vendor-extensible 24
Full IDL 201

G

Glossary 10

H

249 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Handles
closing 99
obtaining 95

I

IDL 201
Implementer - security considerations 195
Implementers - security considerations 195
Index of security parameters 199
Informative references 16
Initialization 88

server 88
Introduction 10

L

Local events

LSAPR_HANDLE_rundown 182

overview 182

server 182
LSA_FOREST_TRUST_BINARY_DATA structure 70
LSA_FOREST_TRUST_COLLISION_INFORMATION structure 71
LSA_FOREST_TRUST_COLLISION_RECORD structure 71
LSA_FOREST_TRUST_COLLISION_RECORD_TYPE enumeration 71
LSA_FOREST_TRUST_DOMAIN_INFO structure 70
LSA_FOREST_TRUST_INFORMATION structure 70
LSA_FOREST_TRUST_RECORD structure 69
LSA_FOREST_TRUST_RECORD_TYPE enumeration 69
LSAPR_ACCOUNT_ENUM_BUFFER structure 53
LSAPR_ACCOUNT_INFORMATION structure 53
LSAPR_ACL structure 41
LSAPR_AUTH_INFORMATION structure 66
LSAPR_CR_CIPHER_VALUE structure 54
LSAPR_LUID_AND_ATTRIBUTES structure 53
LSAPR_OBJECT_ATTRIBUTES structure 38
LSAPR_POLICY_ACCOUNT_DOM_INFO structure 47
LSAPR_POLICY_AUDIT_EVENTS_INFO structure 46
LSAPR_POLICY_DNS_DOMAIN_INFO structure 49
LSAPR_POLICY_DOMAIN_EFS_INFO structure 51
LSAPR_POLICY_PD_ACCOUNT_INFO structure 47
LSAPR_POLICY_PRIMARY_DOM_INFO structure 46
LSAPR_POLICY_PRIVILEGE_DEF structure 74
LSAPR_POLICY_REPLICA_SRCE_INFO structure 48
LSAPR_PRIVILEGE_ENUM_BUFFER structure 74
LSAPR_PRIVILEGE_SET structure 54
LSAPR_SECURITY_DESCRIPTOR structure 41
LSAPR_SR_SECURITY_DESCRIPTOR structure 39
LSAPR_TRUST_INFORMATION structure 55
LSAPR_TRUSTED_CONTROLLERS_INFO structure 59
LSAPR_TRUSTED_DOMAIN_AUTH_BLOB structure 64
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION structure 62
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL structure 63
LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION structure 63
LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL structure 63
LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION?2 structure 64
LSAPR_TRUSTED_DOMAIN_INFORMATION_EX structure 60
LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2 structure 61
LSAPR_TRUSTED_DOMAIN_NAME_INFO structure 58
LSAPR_TRUSTED_ENUM_BUFFER structure 68
LSAPR_TRUSTED_ENUM_BUFFER_EX structure 68
LSAPR_TRUSTED_PASSWORD_INFO structure 59
LSAPR_USER_RIGHT_SET structure 53
LsarAddAccountRights method 123

250/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

LsarAddPrivilegesToAccount method 118
LsarClose method 176

LsarCreateAccount method 113
LsarCreateSecret method 126
LsarCreateTrustedDomain method 152
LsarCreateTrustedDomainEx method 151
LsarCreateTrustedDomainEx2 method 148
LsarDeleteObject method 175
LsarDeleteTrustedDomain method 141
LsarEnumerateAccountRights method 122
LsarEnumerateAccounts method 114
LsarEnumerateAccountsWithUserRight method 121
LsarEnumeratePrivileges method 168
LsarEnumeratePrivilegesAccount method 117
LsarEnumerateTrustedDomains method 146
LsarEnumerateTrustedDomainsEx method 144
LsarGetSystemAccessAccount method 119
LsarLookupPrivilegeDisplayName method 171
LsarLookupPrivilegeName method 170
LsarLookupPrivilegeValue method 169
LsarOpenAccount method 116

LsarOpenPolicy method 101

LsarOpenPolicy2 method 100

LsarOpenSecret method 127
LsarOpenTrustedDomain method 137
LsarOpenTrustedDomainByName method 147
LsarQueryDomainInformationPolicy method 107
LsarQueryForestTrustInformation method 159
LsarQueryInformationPolicy method 104
LsarQueryInformationPolicy2 method 102
LsarQueryInfoTrustedDomain method 154
LsarQuerySecret method 130
LsarQuerySecurityObject method 172
LsarQueryTrustedDomainInfo method 138
LsarQueryTrustedDomainInfoByName method 143
LsarRemoveAccountRights method 124
LsarRemovePrivilegesFromAccount method 119
LsarRetrievePrivateData method 132
LsarSetDomainInformationPolicy method 109
LsarSetForestTrustInformation method 160
LsarSetInformationPolicy method 107
LsarSetInformationPolicy2 method 105
LsarSetInformationTrustedDomain method 156
LsarSetSecret method 129
LsarSetSecurityObject method 174
LsarSetSystemAccessAccount method 120
LsarSetTrustedDomainInfo method 139
LsarSetTrustedDomainInfoByName method 143
LsarStorePrivateData method 131

M

Manipulating account objects example 183
Manipulating secret objects example 186
Manipulating trusted domain objects example 189
Message processing 88

server 88
Messages

common data types 26

overview 26

transport 26
Methods

Access Rights and Access Checks 96

account object 112

Account Object Methods 112

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol

Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

251/ 254

Closing Handles 99

common object 172

Common Object Methods 172
Data Validation 177
Obtaining Handles 95

policy object 99

Policy Object Methods 99
privilege 167

Privilege Methods 167

secret object 125

Secret Object Methods 125
trusted domain object 136
Trusted Domain Object Methods 136

N
Normative references 15
(o]

Obtaining handles 95
Obtaining Handles method 95
Overview (synopsis) 17

P

Parameters - security 199

Parameters - security index 199
PLSA_FOREST_TRUST_BINARY_DATA 70
PLSA_FOREST_TRUST_COLLISION_INFORMATION 71
PLSA_FOREST_TRUST_COLLISION_RECORD 71
PLSA_FOREST_TRUST_DOMAIN_INFO 70
PLSA_FOREST_TRUST_INFORMATION 70
PLSA_FOREST_TRUST_RECORD 69
PLSAPR_ACCOUNT_ENUM_BUFFER 53
PLSAPR_ACCOUNT_INFORMATION 53

PLSAPR_ACL 41

PLSAPR_AUTH_INFORMATION 66
PLSAPR_CR_CIPHER_VALUE 54
PLSAPR_LUID_AND_ATTRIBUTES 53
PLSAPR_OBJECT_ATTRIBUTES 38
PLSAPR_POLICY_ACCOUNT_DOM_INFO 47
PLSAPR_POLICY_AUDIT_EVENTS_INFO 46
PLSAPR_POLICY_DNS_DOMAIN_INFO 49
PLSAPR_POLICY_DOMAIN_EFS_INFO 51
PLSAPR_POLICY_PD_ACCOUNT_INFO 47
PLSAPR_POLICY_PRIMARY_DOM_INFO 46
PLSAPR_POLICY_PRIVILEGE_DEF 74
PLSAPR_POLICY_REPLICA_SRCE_INFO 48
PLSAPR_PRIVILEGE_ENUM_BUFFER 74
PLSAPR_PRIVILEGE_SET 54
PLSAPR_SECURITY_DESCRIPTOR 41
PLSAPR_SR_SECURITY_DESCRIPTOR 39
PLSAPR_TRUST_INFORMATION 55
PLSAPR_TRUSTED_CONTROLLERS_INFO 59
PLSAPR_TRUSTED_DOMAIN_AUTH_BLOB 64
PLSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION 62
PLSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL 63
PLSAPR_TRUSTED_DOMAIN_FULL_INFORMATION 63
PLSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL 63
PLSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2 64
PLSAPR_TRUSTED_DOMAIN_INFORMATION_EX 60
PLSAPR_TRUSTED_DOMAIN_INFORMATION_EX2 61
PLSAPR_TRUSTED_DOMAIN_NAME_INFO 58
PLSAPR_TRUSTED_ENUM_BUFFER 68

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

252 / 254

PLSAPR_TRUSTED_ENUM_BUFFER_EX 68
PLSAPR_TRUSTED_PASSWORD_INFO 59
PLSAPR_USER_RIGHT_SET 53
Policy object

data model 76

methods 99
Policy Object Methods method 99
POLICY_AUDIT_EVENT_TYPE enumeration 52
POLICY_AUDIT_FULL_QUERY_INFO structure 49
POLICY_AUDIT_FULL_SET_INFO structure 49
POLICY_AUDIT_LOG_INFO structure 45
POLICY_DOMAIN_INFORMATION_CLASS enumeration 50
POLICY_DOMAIN_KERBEROS_TICKET_INFO structure 51
POLICY_DOMAIN_QUALITY_OF_SERVICE_INFO structure 50
POLICY_INFORMATION_CLASS enumeration 43
POLICY_LSA_SERVER_ROLE enumeration 47
POLICY_LSA_SERVER_ROLE_INFO structure 48
POLICY_MODIFICATION_INFO structure 48
PPOLICY_AUDIT_FULL_QUERY_INFO 49
PPOLICY_AUDIT_FULL_SET_INFO 49
PPOLICY_AUDIT_LOG_INFO 45
PPOLICY_DOMAIN_KERBEROS_TICKET_INFO 51
PPOLICY_DOMAIN_QUALITY_OF_SERVICE_INFO 50
PPOLICY_LSA_SERVER_ROLE_INFO 48
PPOLICY_MODIFICATION_INFO 48
Preconditions 24
Prerequisites 24
Privilege

data model 78

methods 167
Privilege Methods method 167
Product behavior 223
Protocol Details

overview 76
PSECURITY_QUALITY_OF_SERVICE 43
PSTRING 40
PTRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES 67
PTRUSTED_POSIX_OFFSET_INFO 59

R

RC4 cipher usage 195
References 15
informative 16
normative 15
Relationship to other protocols 22

S

Schema elements - directory service 74
Secret

decryption 195

encryption 195
Secret Object Methods method 125
Secret objects

data model 82

example 186

methods 125
Security 195

implementer considerations 195

parameter index 199
SECURITY_IMPERSONATION_LEVEL enumeration 42
SECURITY_QUALITY_OF_SERVICE structure 43
Sequencing rules 88

server 88

253/ 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Server
abstract data model 76
Access Rights and Access Checks method 96
Account Object Methods method 112
Closing Handles method 99
Common Object Methods method 172
Data Validation method 177
initialization 88
local events 182
message processing 88
Obtaining Handles method 95
Policy Object Methods method 99
Privilege Methods method 167
Secret Object Methods method 125
sequencing rules 88
timer events 182
timers 88
Trusted Domain Object Methods method 136
Server - overview 76
Standards assignments 24
STRING structure 40
Structure example of Isapr_trusted_domain_auth_blob example 191
System access rights data model 81

T

Timer events 182

server 182
Timers 88

server 88
Tracking changes 247
Transport 26
Transport - message 26
Trusted Domain Object Methods method 136
Trusted domain objects

data model 84

example 189

methods 136
TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES structure 67
TRUSTED_INFORMATION_CLASS enumeration 56
TRUSTED_POSIX_OFFSET_INFO structure 59

\"
Validation - data 177

Vendor-extensible fields 24
Versioning 24

254 / 254

[MS-LSAD-Diff] - v20240423

Local Security Authority (Domain Policy) Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

	1 Introduction
	1.1 (Updated Section) Glossary
	1.2 References
	1.2.1 (Updated Section) Normative References
	1.2.2 (Updated Section) Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 (Updated Section) Transport
	2.2 Common Data Types
	2.2.1 Constant Value Definitions
	2.2.1.1 ACCESS_MASK
	2.2.1.1.1 ACCESS_MASK for All Objects
	2.2.1.1.2 ACCESS_MASK for Policy Objects
	2.2.1.1.3 ACCESS_MASK for Account Objects
	2.2.1.1.4 ACCESS_MASK for Secret Objects
	2.2.1.1.5 ACCESS_MASK for Trusted Domain Objects

	2.2.1.2 POLICY_SYSTEM_ACCESS_MODE
	2.2.1.3 SECURITY_INFORMATION
	2.2.1.4 AEAD-AES-256-CBC-HMAC-SHA512 Constants
	2.2.1.5 (Updated Section) LSA Trust Record Flags

	2.2.2 Basic Data Types
	2.2.2.1 LSAPR_HANDLE
	2.2.2.2 PLSAPR_HANDLE
	2.2.2.3 LSA_UNICODE_STRING
	2.2.2.4 LSAPR_OBJECT_ATTRIBUTES
	2.2.2.5 LSAPR_SR_SECURITY_DESCRIPTOR
	2.2.2.6 (Updated Section) LSAPR_REVISION_INFO_V1
	2.2.2.7 LSAPR_REVISION_INFO

	2.2.3 Data Types Referenced by Basic Data Types
	2.2.3.1 STRING
	2.2.3.2 LSAPR_ACL
	2.2.3.3 SECURITY_DESCRIPTOR_CONTROL
	2.2.3.4 LSAPR_SECURITY_DESCRIPTOR
	2.2.3.5 SECURITY_IMPERSONATION_LEVEL
	2.2.3.6 SECURITY_CONTEXT_TRACKING_MODE
	2.2.3.7 SECURITY_QUALITY_OF_SERVICE

	2.2.4 Policy Query/Set Data Types
	2.2.4.1 POLICY_INFORMATION_CLASS
	2.2.4.2 LSAPR_POLICY_INFORMATION
	2.2.4.3 POLICY_AUDIT_LOG_INFO
	2.2.4.4 LSAPR_POLICY_AUDIT_EVENTS_INFO
	2.2.4.5 LSAPR_POLICY_PRIMARY_DOM_INFO
	2.2.4.6 LSAPR_POLICY_ACCOUNT_DOM_INFO
	2.2.4.7 LSAPR_POLICY_PD_ACCOUNT_INFO
	2.2.4.8 POLICY_LSA_SERVER_ROLE
	2.2.4.9 POLICY_LSA_SERVER_ROLE_INFO
	2.2.4.10 LSAPR_POLICY_REPLICA_SRCE_INFO
	2.2.4.11 POLICY_MODIFICATION_INFO
	2.2.4.12 POLICY_AUDIT_FULL_SET_INFO
	2.2.4.13 POLICY_AUDIT_FULL_QUERY_INFO
	2.2.4.14 LSAPR_POLICY_DNS_DOMAIN_INFO
	2.2.4.15 POLICY_DOMAIN_INFORMATION_CLASS
	2.2.4.16 LSAPR_POLICY_DOMAIN_INFORMATION
	2.2.4.17 POLICY_DOMAIN_QUALITY_OF_SERVICE_INFO
	2.2.4.18 LSAPR_POLICY_DOMAIN_EFS_INFO
	2.2.4.19 POLICY_DOMAIN_KERBEROS_TICKET_INFO
	2.2.4.20 POLICY_AUDIT_EVENT_TYPE
	2.2.4.21 LSAPR_POLICY_MACHINE_ACCT_INFO

	2.2.5 Account Query/Set Data Types
	2.2.5.1 LSAPR_ACCOUNT_INFORMATION
	2.2.5.2 LSAPR_ACCOUNT_ENUM_BUFFER
	2.2.5.3 LSAPR_USER_RIGHT_SET
	2.2.5.4 LSAPR_LUID_AND_ATTRIBUTES
	2.2.5.5 LSAPR_PRIVILEGE_SET

	2.2.6 Secret Query/Set Data Types
	2.2.6.1 LSAPR_CR_CIPHER_VALUE
	2.2.6.2 (Added Section) LSAPR_AES_CIPHER_VALUE

	2.2.7 Trusted Domain Query/Set Data Types
	2.2.7.1 LSAPR_TRUST_INFORMATION
	2.2.7.2 TRUSTED_INFORMATION_CLASS
	2.2.7.3 LSAPR_TRUSTED_DOMAIN_INFO
	2.2.7.4 LSAPR_TRUSTED_DOMAIN_NAME_INFO
	2.2.7.5 LSAPR_TRUSTED_CONTROLLERS_INFO
	2.2.7.6 TRUSTED_POSIX_OFFSET_INFO
	2.2.7.7 LSAPR_TRUSTED_PASSWORD_INFO
	2.2.7.8 LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC
	2.2.7.9 LSAPR_TRUSTED_DOMAIN_INFORMATION_EX
	2.2.7.10 LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2
	2.2.7.11 (Updated Section) LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION
	2.2.7.12 LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL
	2.2.7.13 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION
	2.2.7.14 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL
	2.2.7.15 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2
	2.2.7.16 LSAPR_TRUSTED_DOMAIN_AUTH_BLOB
	2.2.7.17 LSAPR_AUTH_INFORMATION
	2.2.7.18 TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES
	2.2.7.19 LSAPR_TRUSTED_ENUM_BUFFER
	2.2.7.20 LSAPR_TRUSTED_ENUM_BUFFER_EX
	2.2.7.21 (Updated Section) LSA_FOREST_TRUST_RECORD
	2.2.7.22 LSA_FOREST_TRUST_RECORD_TYPE
	2.2.7.23 LSA_FOREST_TRUST_BINARY_DATA
	2.2.7.24 LSA_FOREST_TRUST_DOMAIN_INFO
	2.2.7.25 LSA_FOREST_TRUST_INFORMATION
	2.2.7.26 LSA_FOREST_TRUST_COLLISION_RECORD_TYPE
	2.2.7.27 LSA_FOREST_TRUST_COLLISION_RECORD
	2.2.7.28 LSA_FOREST_TRUST_COLLISION_INFORMATION
	2.2.7.29 (Updated Section) LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL_AES
	2.2.7.30 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL_AES
	2.2.7.31 (Updated Section) LSA_FOREST_TRUST_SCANNER_INFO
	2.2.7.32 LSA_FOREST_TRUST_RECORD2
	2.2.7.33 LSA_FOREST_TRUST_INFORMATION2

	2.2.8 Privilege Data Types
	2.2.8.1 LSAPR_POLICY_PRIVILEGE_DEF
	2.2.8.2 LSAPR_PRIVILEGE_ENUM_BUFFER

	2.3 Directory Service Schema Elements

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Policy Object Data Model
	3.1.1.2 Accounts Rights Data Model
	3.1.1.2.1 Privilege Data Model
	3.1.1.2.2 System Access Rights Data Model

	3.1.1.3 Account Object Data Model
	3.1.1.4 Secret Object Data Model
	3.1.1.5 Trusted Domain Object Data Model
	3.1.1.6 Configuration Settings
	3.1.1.6.1 Block Anonymous Access to Objects

	3.1.1.7 LsaContextHandle Data Model
	3.1.1.8 Attribute Listing
	3.1.1.9 Object Class Listing
	3.1.1.10 Access for Public Abstract Data Model Elements
	3.1.1.10.1 Example Patterns for Direct Access of Policy Object ADM Elements
	3.1.1.10.1.1 Query Pattern for Policy Object ADM
	3.1.1.10.1.2 Set Pattern for Policy Object ADM

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 (Updated Section) Message Processing Events and Sequencing Rules
	3.1.4.1 Obtaining Handles
	3.1.4.2 Access Rights and Access Checks
	3.1.4.2.1 Access Checks Applied on Handle Open
	3.1.4.2.2 Access Checks Applied for Object Operations
	3.1.4.2.3 Determining If Requestors Are Anonymous

	3.1.4.3 Closing Handles
	3.1.4.4 (Updated Section) Policy Object Methods
	3.1.4.4.1 LsarOpenPolicy2 (Opnum 44)
	3.1.4.4.2 LsarOpenPolicy (Opnum 6)
	3.1.4.4.3 LsarQueryInformationPolicy2 (Opnum 46)
	3.1.4.4.4 LsarQueryInformationPolicy (Opnum 7)
	3.1.4.4.5 LsarSetInformationPolicy2 (Opnum 47)
	3.1.4.4.6 LsarSetInformationPolicy (Opnum 8)
	3.1.4.4.7 LsarQueryDomainInformationPolicy (Opnum 53)
	3.1.4.4.8 LsarSetDomainInformationPolicy (Opnum 54)
	3.1.4.4.9 (Updated Section) LsarOpenPolicy3 (Opnum 130)
	3.1.4.4.10 (Added Section) LsarOpenPolicyWithCreds (Opnum 135)

	3.1.4.5 Account Object Methods
	3.1.4.5.1 LsarCreateAccount (Opnum 10)
	3.1.4.5.2 LsarEnumerateAccounts (Opnum 11)
	3.1.4.5.3 LsarOpenAccount (Opnum 17)
	3.1.4.5.4 LsarEnumeratePrivilegesAccount (Opnum 18)
	3.1.4.5.5 LsarAddPrivilegesToAccount (Opnum 19)
	3.1.4.5.6 LsarRemovePrivilegesFromAccount (Opnum 20)
	3.1.4.5.7 LsarGetSystemAccessAccount (Opnum 23)
	3.1.4.5.8 LsarSetSystemAccessAccount (Opnum 24)
	3.1.4.5.9 LsarEnumerateAccountsWithUserRight (Opnum 35)
	3.1.4.5.10 LsarEnumerateAccountRights (Opnum 36)
	3.1.4.5.11 LsarAddAccountRights (Opnum 37)
	3.1.4.5.12 LsarRemoveAccountRights (Opnum 38)

	3.1.4.6 Secret Object Methods
	3.1.4.6.1 LsarCreateSecret (Opnum 16)
	3.1.4.6.2 LsarOpenSecret (Opnum 28)
	3.1.4.6.3 LsarSetSecret (Opnum 29)
	3.1.4.6.4 LsarQuerySecret (Opnum 30)
	3.1.4.6.5 LsarStorePrivateData (Opnum 42)
	3.1.4.6.6 LsarRetrievePrivateData (Opnum 43)
	3.1.4.6.7 (Added Section) LsarOpenSecret2 (Opnum 136)
	3.1.4.6.8 (Added Section) LsarCreateSecret2 (Opnum 137)
	3.1.4.6.9 (Added Section) LsarSetSecret2 (Opnum 138)
	3.1.4.6.10 (Added Section) LsarQuerySecret2 (Opnum 139)
	3.1.4.6.11 (Added Section) LsarStorePrivateData2 (Opnum 140)
	3.1.4.6.12 (Added Section) LsarRetrievePrivateData2 (Opnum 141)

	3.1.4.7 Trusted Domain Object Methods
	3.1.4.7.1 (Updated Section) LsarOpenTrustedDomain (Opnum 25)
	3.1.4.7.2 LsarQueryTrustedDomainInfo (Opnum 39)
	3.1.4.7.3 LsarSetTrustedDomainInfo (Opnum 40)
	3.1.4.7.4 LsarDeleteTrustedDomain (Opnum 41)
	3.1.4.7.5 LsarQueryTrustedDomainInfoByName (Opnum 48)
	3.1.4.7.6 LsarSetTrustedDomainInfoByName (Opnum 49)
	3.1.4.7.7 LsarEnumerateTrustedDomainsEx (Opnum 50)
	3.1.4.7.8 LsarEnumerateTrustedDomains (Opnum 13)
	3.1.4.7.9 LsarOpenTrustedDomainByName (Opnum 55)
	3.1.4.7.10 (Updated Section) LsarCreateTrustedDomainEx2 (Opnum 59)
	3.1.4.7.11 LsarCreateTrustedDomainEx (Opnum 51)
	3.1.4.7.12 LsarCreateTrustedDomain (Opnum 12)
	3.1.4.7.13 LsarQueryInfoTrustedDomain (Opnum 26)
	3.1.4.7.14 LsarSetInformationTrustedDomain (Opnum 27)
	3.1.4.7.15 LsarQueryForestTrustInformation (Opnum 73)
	3.1.4.7.16 LsarSetForestTrustInformation (Opnum 74)
	3.1.4.7.16.1 Forest Trust Collision Generation

	3.1.4.7.17 (Updated Section) LsarCreateTrustedDomainEx3 (Opnum 129)
	3.1.4.7.18 (Updated Section) LsarQueryForestTrustInformation2 (Opnum 132)
	3.1.4.7.19 LsarSetForestTrustInformation2 (Opnum 133)

	3.1.4.8 Privilege Methods
	3.1.4.8.1 LsarEnumeratePrivileges (Opnum 2)
	3.1.4.8.2 LsarLookupPrivilegeValue (Opnum 31)
	3.1.4.8.3 LsarLookupPrivilegeName (Opnum 32)
	3.1.4.8.4 LsarLookupPrivilegeDisplayName (Opnum 33)

	3.1.4.9 Common Object Methods
	3.1.4.9.1 LsarQuerySecurityObject (Opnum 3)
	3.1.4.9.2 LsarSetSecurityObject (Opnum 4)
	3.1.4.9.3 LsarDeleteObject (Opnum 34)
	3.1.4.9.4 LsarClose (Opnum 0)

	3.1.4.10 Data Validation

	3.1.5 Timer Events
	3.1.6 Other Local Events
	3.1.6.1 LSAPR_HANDLE_rundown

	4 Protocol Examples
	4.1 Manipulating Account Objects
	4.2 Manipulating Secret Objects
	4.3 Manipulating Trusted Domain Objects
	4.4 Structure Example of LSAPR_TRUSTED_DOMAIN_AUTH_BLOB

	5 Security
	5.1 Security Considerations for Implementers
	5.1.1 RC4 Cipher Usage
	5.1.2 Secret Encryption and Decryption
	5.1.3 DES-ECB-LM Cipher Definition
	5.1.4 Encryption and Decryption Examples
	5.1.4.1 Encryption Example
	5.1.4.2 Decryption Example

	5.1.5 AES Cipher Usage

	5.2 Index of Security Parameters

	6 (Updated Section) Appendix A: Full IDL
	7 (Updated Section) Appendix B: Product Behavior
	8 Change Tracking
	9 Index

