

1 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

[MS-LREC]:
Live Remote Event Capture (LREC) Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Revision Summary

Date

Revision

History

Revision

Class Comments

08/08/2013 1.0 New Released new document.

11/14/2013 1.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/13/2014 1.0 No change No changes to the meaning, language, or formatting of

the technical content.

3 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Contents

1 Introduction ... 5
1.1 Glossary ... 5
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 6

1.3 Overview .. 7
1.4 Relationship to Other Protocols .. 7
1.5 Prerequisites/Preconditions ... 8
1.6 Applicability Statement ... 8
1.7 Versioning and Capability Negotiation ... 8
1.8 Vendor Extensible Fields ... 9
1.9 Standards Assignments .. 9

2 Messages.. 10
2.1 Transport .. 10

2.1.1 RPC Server Settings ... 10
2.1.2 RPC Client Settings ... 10

2.2 Common Data Types .. 10
2.2.1 Data Types .. 10

2.2.1.1 PSESSION_HANDLE .. 11
2.2.2 Structures ... 11

2.2.2.1 EVENT_BUFFER .. 11
2.3 Message Syntax .. 11

2.3.1 Managed Object Format (MOF) Structures ... 11
2.3.1.1 MSFT_NetEventSession Class ... 11
2.3.1.2 MSFT_NetEventProvider Class .. 12

2.3.2 RPC Structures ... 14
2.3.2.1 EventRecord Structure .. 14
2.3.2.2 NET_EVENT_DATA_HEADER Structure ... 14
2.3.2.3 NET_EVENT_LOST Structure .. 15

3 Protocol Details .. 16
3.1 NetEventForwarder Server Details ... 16

3.1.1 Abstract Data Model ... 16
3.1.2 Timers .. 17
3.1.3 Initialization .. 17
3.1.4 Message Processing Events and Sequencing Rules .. 17

3.1.4.1 WS-Management Method Calls ... 17
3.1.4.1.1 MSFT_NetEventSession CreateInstance .. 17
3.1.4.1.2 MSFT_NetEventSession Start .. 17
3.1.4.1.3 MSFT_NetEventSession Stop .. 18
3.1.4.1.4 MSFT_NetEventSession DeleteInstance .. 18
3.1.4.1.5 MSFT_NetEventProvider CreateInstance ... 18
3.1.4.1.6 MSFT_NetEventProvider ModifyInstance ... 19
3.1.4.1.7 MSFT_NetEventProvider DeleteInstance ... 19

3.1.4.2 RPC Opnum Method Calls .. 19
3.1.4.2.1 RpcNetEventOpenSession (Opnum 0) .. 20
3.1.4.2.2 RpcNetEventReceiveData (Opnum 1) ... 21
3.1.4.2.3 RpcNetEventCloseSession (Opnum 2) .. 21

3.1.5 Timer Events ... 22

4 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.6 Other Local Events ... 22
3.1.6.1 RPC Connection Termination .. 22
3.1.6.2 Accumulating Events ... 22

4 Protocol Examples .. 24

5 Security .. 26
5.1 Security Considerations for Implementers ... 26
5.2 Index of Security Parameters .. 26

6 Appendix A: Full IDL ... 27

7 Appendix B: Full MOF ... 28

8 Appendix C: Product Behavior .. 29

9 Change Tracking... 30

10 Index ... 31

5 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1 Introduction

The Live Remote Event Capture (LREC) Protocol allows a management station to monitor events on
a target system across a network. The protocol consists of two components:

A WS-Management-based control channel for starting and stopping an event capture.

A remote procedure call (RPC)-based data channel for retrieving events as they are logged on

the remote system.

Together, these components can be used to support monitoring scenarios and provide a "first line of

defense" for troubleshooting scenarios, especially when the remote system does not support the
ability to locally log events.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are

informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

dynamic endpoint
endpoint
globally unique identifier (GUID)

GUID
IDL
Interface Definition Language (IDL)
little-endian
Managed Object Format (MOF)

opnum
remote procedure call (RPC)

RPC transport
security provider
security support provider (SSP)
Security Support Provider Interface (SSPI)
universally unique identifier (UUID)
UUID
XML

The following terms are specific to this document:

event: A discrete piece of historical information that might be of interest to administrators of a
computer system. An example of an event would be a particular user logging on to the
computer.

event provider: A component that is instrumented for reporting events. An event provider
defines a provider manifest and reports events in a format specified in the provider manifest.

event session: A user-configured group of event providers that can be started or stopped by a
client.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

6 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

event template: A portion of a provider manifest that defines event-specific data, if any,
included by the event provider with each event.

provider manifest: A set of metadata for an event provider that defines the events, event
filtering criteria, such as levels and keywords, and a unique ID of the event provider.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other

documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation

details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[DMTF-DSP0200] DMTF, "Specification for CIM Operations over HTTP", version 1.2, January 2007,
http://www.dmtf.org/sites/default/files/standards/documents/DSP200.html

[DMTF-DSP0226] Distributed Management Task Force, Inc., "Web Services for Management (WS-
Management) Specification", version 1.0.0, February 2008,

http://dmtf.org/sites/default/files/standards/documents/DSP0226_1.0.0.pdf

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-EVEN] Microsoft Corporation, "EventLog Remoting Protocol".

[MS-EVEN6] Microsoft Corporation, "EventLog Remoting Protocol Version 6.0".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN

Namespace", RFC 4122, July 2005, http://www.ietf.org/rfc/rfc4122.txt

1.2.2 Informative References

[MSDN-DefiningEventData] Microsoft Corporation, "Defining Event Data Templates",
http://msdn.microsoft.com/en-us/library/dd996913(v=vs.85).aspx

http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=299237
http://go.microsoft.com/fwlink/?LinkId=89849
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-EVEN%5d.pdf
%5bMS-EVEN6%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=299238

7 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

[MSDN-EVENT_HEADER] Microsoft Corporation, "EVENT_HEADER structure",
http://msdn.microsoft.com/en-us/library/aa363759(v=VS.85).aspx

[MSDN-EvntManifest] Microsoft Corporation, "EventManifest Schema",
http://msdn.microsoft.com/en-us/library/aa384043(v=vs.85).aspx

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

1.3 Overview

The Live Remote Event Capture (LREC) protocol allows a client to connect to a server to monitor
critical information and detect issues as they occur on the server. For example, to detect under-
provisioned servers, an administrator can use this protocol to remotely see the events that indicate
under-provisioning which are logged as high memory utilization. The remote visibility into the event

logging enables the administrator to re-balance the load on the server, immediately observe the fix,
and continue to make improvements as necessary.

In the LREC protocol, information is sent over the network to a client as a sequential stream of

records each of which is referred to as an event. Multiple software components and applications on
the server can report events using the protocol. These are referred to event providers. Each event
provider is identified by a unique "provider ID" and its event types are described in a provider

manifest organized in any implementation-specific way, such as the XML schema specified in
[MSDN-EvntManifest].

Event providers can define multiple kinds of events. For example, a user logging on could be one
kind of event and a user logging off could be another. When a provider reports an event, it specifies
an event provider-specific Event Type ID (referred to as an event ID) that indicates the specific kind
of event being reported. The event ID is reused whenever another event of the same type is
reported. Therefore, each event type is uniquely identified by a provider ID and an event ID.

Different server configurations and application workloads have varying requirements for monitoring
and troubleshooting. To ensure flexible support for these scenarios, multiple event providers can be
added into an event session to enable simultaneous event recording. When using multiple event

providers, two techniques in particular enable the broad coverage of a session containing many
event providers, yet narrow the number of observed events:

The server filters events based on the "error level" or criticality of the events.

The server filters events based on keywords, such as authentication, input/output, or user

interface.

In the LREC protocol, an event session is configured and started using a WS-Management-based
control channel. When the session is started, the server initializes an RPC endpoint and the client
connects to the server using the RPC endpoint to receive reported events. When the client is
finished observing reported events, the client stops the session using the WS-Management-based

control channel. When all event sessions are stopped, the RPC endpoint is removed.

1.4 Relationship to Other Protocols

The LREC protocol uses the WS-Management protocol [DMTF-DSP0226] as a transport for its control
channel for event session configuration. The LREC protocol uses RPC [MS-RPCE] as a transport for
its data channel for event data retrieval. The diagram below illustrates the relationship of the LREC
protocol to other protocols in the networking stack.

http://go.microsoft.com/fwlink/?LinkId=208337
http://go.microsoft.com/fwlink/?LinkId=299240
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=299240
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89849
%5bMS-RPCE%5d.pdf

8 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Figure 1: Relationship to other protocols

The LREC protocol is related to the EventLog Remoting Protocol [MS-EVEN] and EventLog Remoting
Protocol Version 6.0 [MS-EVEN6], but the LREC protocol is designed for a different purpose. The
event log protocols specified in [MS-EVEN] and [MS-EVEN6] are designed for accessing event log
files on a remote computer. The LREC protocol is designed for configuration and remote monitoring
of live event sessions.

1.5 Prerequisites/Preconditions

This protocol has the prerequisites specified in [MS-RPCE] which are common to protocols that
depend on RPC.

The prerequisites for the WS-Management protocol are specified in [DMTF-DSP0226]. In addition,
the LREC protocol requires the client to have the provider manifests available before attempting to
de-serialize event messages.

1.6 Applicability Statement

The LREC protocol is used for monitoring events on a remote computer. For example, for monitoring
service deployments to ensure administrators can immediately react to configuration errors, or for
troubleshooting time-critical service outages.

The LREC protocol is designed for monitoring events in real time and is not suitable for retrieving
events that have occurred in the past.

The LREC protocol is only applicable in scenarios where a given event session is controlled by a

single client. The protocol is not applicable in cases where multiple management stations require

simultaneous management of the same event stream.

1.7 Versioning and Capability Negotiation

Protocol Version: The RPC interface for the LREC protocol is version 1.0. The protocol can be
extended by adding RPC messages to the interface with opnums higher than those defined in

%5bMS-EVEN%5d.pdf
%5bMS-EVEN6%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89849
%5bMS-GLOS%5d.pdf

9 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

this specification. An RPC client determines whether a method is supported by attempting to
invoke the method. If the method is not supported, the RPC runtime returns an "opnum out of

range" error as specified in [C706] and [MS-RPCE]. RPC versioning and capacity negotiation in
these situations is as specified in [C706] and [MS-RPCE].

Security and Authentication Methods: The LREC protocol supports the following
authentication methods: NTLM and Kerberos as specified in [MS-RPCE] section 1.7.

1.8 Vendor Extensible Fields

The LREC protocol uses Win32 error codes as defined in [MS-ERREF] section 2.2 and Vendors
SHOULD reuse these values with their indicated meaning. Specifying any other value runs the risk of
a future collision.

1.9 Standards Assignments

The LREC protocol has no standards assignments. It uses private allocations for the RPC interface

universally unique identifier (UUID).

Parameter Value Reference

UUID for NetEventForwarder 22e5386d-8b12-4bf0-b0ec-6a1ea419e366 [C706]

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824

10 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2 Messages

2.1 Transport

All implementations MUST use the RPC over TCP protocol sequence (ncacn_ip_tcp), as specified in
[MS-RPCE] section 2.1.1.1, with dynamic endpoints.

The protocol MUST use the NetEventForwarder UUID: 22e5386d-8b12-4bf0-b0ec-6a1ea419e366.

The protocol MUST use an Interface Definition Language (IDL) version of 1.0.

WS-Management [DMTF-DSP0226] MUST be used as the transport provider for the LREC protocol

control channel.

2.1.1 RPC Server Settings

The LREC protocol uses Security Support Provider Interface (SSPI) security provided by RPC,
as specified in [MS-RPCE] section 3.3.1.5.2, for sessions using TCP as the transport protocol. The
server MUST register RPC_C_AUTHN_GSS_NEGOTIATE as the security provider.

The server MUST allow only authenticated access to RPC clients. The server MUST NOT allow

anonymous RPC clients.

The server MUST limit access only to clients that negotiate an authentication level equal or higher
than that of RPC_C_AUTHN_LEVEL_PKT (see [MS-RPCE] section 2.2.1.1.8).

2.1.2 RPC Client Settings

The RPC client MUST use security support provider (SSP) security provided over RPC as specified
in [MS-RPCE], for sessions using TCP as the RPC transport protocol. A client MUST authenticate

using RPC_C_AUTHN_GSS_NEGOTIATE.

A client MUST use TCP as the RPC transport.

A client SHOULD<1> request the RPC_C_AUTHN_LEVEL_PKT_PRIVACY authentication level. A client
MAY request RPC_C_AUTHN_LEVEL_PKT_INTEGRITY authentication level instead, when data
encryption is not required.

2.2 Common Data Types

In addition to the RPC-based data types and definitions specified in [C706], [MS-RPCE], and [MS-
DTYP], additional data types are defined below.

All multi-byte integer values in the messages declared in this section use little-endian byte order
unless otherwise noted.

2.2.1 Data Types

The LREC protocol defines the following data types.

DataType name Section Description

PSESSION_HANDLE 2.2.1.1 An RPC client context handle that identifies the current event session.

%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89849
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf

11 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.1.1 PSESSION_HANDLE

The PSESSION_HANDLE data type is an RPC client context handle that identifies the current event
session. A client receives this handle using the RpcNetEventOpenSession (section 3.1.4.2.1)

method.

typedef [context_handle] void* PSESSION_HANDLE;

2.2.2 Structures

The LREC protocol defines the following structures.

Structure name Section Description

EVENT_BUFFER 2.2.2.1 An event record from a server.

2.2.2.1 EVENT_BUFFER

The EVENT_BUFFER structure defines a data structure for transferring a generic payload. The LREC
protocol uses this structure to pass event records in the RpcNetEventReceiveData (section

3.1.4.2.2) method.

typedef struct _EVENT_BUFFER {

 unsigned long BufferLength;

 [size_is(BufferLength)] byte* Buffer;

} EVENT_BUFFER;

BufferLength: This property specifies the length, in bytes, of the data stored in the Buffer field.

Buffer: This property specifies a collection of one or more NET_EVENT_DATA_HEADER
(section 2.3.2.2) structures each followed by an event payload.

2.3 Message Syntax

2.3.1 Managed Object Format (MOF) Structures

The following sections specify the Managed Object Format (MOF) classes implemented by the
LREC protocol.

2.3.1.1 MSFT_NetEventSession Class

The MSFT_NetEventSession MOF class is used for configuring and starting an event session on a
remote computer. After an instance is created, all properties are read-only via WS-Management

[DMTF-DSP0226] and cannot be changed by a client.

class MSFT_NetEventSession {

 string Guid;

 string Name;

 uint8 CaptureMode;

 string LocalFilePath;

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89849

12 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 uint32 MaxFileSize;

 uint32 TraceBufferSize;

 uint8 MaxNumberOfBuffers;

 uint8 SessionStatus;

 uint8 Start();

 uint8 Stop();

};

Guid: This property specifies a globally unique identifier (GUID) for the session in curly

braced string representation, as defined in [MS-DTYP] section 2.3.4.3.

Name: This property specifies a friendly name for the event session that was assigned by the
client when the session was created.

CaptureMode: This property MUST be set to 0x02 (RealtimeRPC).

LocalFilePath: This property is reserved and MUST be set to an empty string.

MaxFileSize: This property is reserved and MUST be set to 0.

TraceBufferSize: This property specifies the amount of memory allocated for each event tracing
session buffer, in kilobytes. The maximum value is 0x00000400 (decimal 1024). A value of
zero (0x00000000) indicates that it is permissible for the server to specify a different value.

MaxNumberOfBuffers: This property specifies the maximum number of buffers allocated for
the event tracing session. A value of 0x00 indicates that it is permissible for the server to
specify a different value.

SessionStatus: This property indicates the current event session state which MUST be set to
one of the following values.

Value Meaning

Stopped

1

The event session is stopped.

Running

2

The event session is running.

Start: A method that is used to start an event session that has been previously associated with
at least one MSFT_NetEventProvider object (section 2.3.1.2). The method is defined in
section 3.1.4.1.2.

Stop: A method that is used to stop a previously started event session. The method is defined in
section 3.1.4.1.3.

2.3.1.2 MSFT_NetEventProvider Class

The MSFT_NetEventProvider MOF class is used for configuring an event session on a remote
computer. A client can add event providers to a session by creating MSFT_NetEventProvider objects
with the SessionGuid property equal to the GUID of an existing MSFT_NetEventSession object
(section 2.3.1.1).

After an instance is created, all properties are read-only via WS-Management [DMTF-DSP0226],

except the Level, MatchAnyKeyword, and MatchAllKeyword properties which are read-write.

%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89849

13 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

class MSFT_NetEventProvider {

 string Guid;

 string SessionGuid;

 string Name;

 string SessionName;

 uint8 Level;

 uint64 MatchAnyKeyword;

 uint64 MatchAllKeyword;

};

Guid: This property specifies a GUID for the provider ID from a provider manifest.

SessionGuid: This property specifies the identifier of an existing MSFT_NetEventSession
object (section 2.3.1.1). The value of this member corresponds to the
MSFT_NetEventSession.Guid property.

Name: This property specifies a unique provider name from the provider manifest.

SessionName: This property specifies a unique session name that corresponds to the value of
the MSFT_NetEventSession.Name member (see section 2.3.1.1).

Level: This property specifies the maximum level of events to include in the session, as shown in

the following table. A value of 0x00 indicates that all levels are to be included in the session.

Value Meaning

TRACE_LEVEL_CRITICAL

0x01

Only include abnormal exit or termination events.

TRACE_LEVEL_ERROR

0x02

Include all events corresponding to event level 1 and severe error

events.

TRACE_LEVEL_WARNING

0x03

Include all events corresponding to lower event levels 1 and 2 and

warning events, such as allocation failures.

TRACE_LEVEL_INFORMATION

0x04

Include all events corresponding to lower event levels 1 through 3

and non-error event, such as entry or exit events.

TRACE_LEVEL_VERBOSE

0x05

Include all events corresponding to lower event levels 1 through 4

and detailed trace events.

MatchAnyKeyword: This property specifies a bitmask of keywords that is used to determine the
category of events to include in the event session. The keyword values are event provider-
specific and defined in the provider manifest. When any keyword assigned to an event
matches any bit set in the MatchAnyKeyword property, then that event is included in the
event session. A value of zero is equivalent to 0xFFFFFFFFFFFFFFFF and indicates to include all
categories of events.

MatchAllKeyword: This property specifies a bitmask of keywords from the provider manifest

which is used to further restrict the categories of events to includ in the event session. When a
keyword for an event satisfies the conditions specified in the MatchAnyKeyword property, the
event is included in the event session only if all of the bits in the MatchAllKeyword mask exist
in the keyword. This mask is not used when the MatchAnyKeyword property is set to zero.

14 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.3.2 RPC Structures

The following sections specify the RPC structures implemented by the LREC protocol.

2.3.2.1 EventRecord Structure

The EventRecord structure provides the payload in an EVENT_BUFFER (section 2.2.2.1)
structure. The structure defines an event recorded by an event provider.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Header (80 bytes)

ProcessorId Reserved SessionId

ExtendedDataCount UserDataLength

ExtendedDataOffset UserDataOffset

UserData (variable)

Header (80 bytes): This field specifies an EVENT_HEADER structure as defined in [MS-DTYP]
section 2.3.2. For more information, see [MSDN-EVENT_HEADER].

ProcessorId (1 byte): This field specifies an implementation-specific identifier for the CPU on
which the event provider process was running at the time of the event recording.

Reserved (1 byte): This field is reserved and MUST be set to 0x08.

SessionId (2 bytes): This field specifies an identifier of the session that logged the event.

ExtendedDataCount (2 bytes): This field is reserved for future use. The field MUST be set to

zero when sent and ignored upon receipt.

UserDataLength (2 bytes): This field specifies the size, in bytes, of the UserData field.

ExtendedDataOffset (2 bytes): This field is reserved for future use. The field MUST be set to
zero when sent and ignored upon receipt.

UserDataOffset (2 bytes): This field specifies an offset, in bytes, from the beginning of the
structure to the UserData field. The field MUST be set to 0x0060 (96 bytes).

UserData (variable): This field contains data as specified in the event template that

corresponds to the event identified by the Header.EventDescriptor.Id field. The event
template is defined in the provider manifest corresponding to the provider ID from the
Header.ProviderId field.

2.3.2.2 NET_EVENT_DATA_HEADER Structure

The NET_EVENT_DATA_HEADER structure specifies the size and type of the message payload in
an EVENT_BUFFER (section 2.2.2.1) structure. The buffer contains one or more

NET_EVENT_DATA_HEADER structures.

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=208337

15 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

DataSize

DataType Reserved1 A Reserved2

DataSize (4 bytes): This field specifies the size, in bytes, of the NET_EVENT_DATA_HEADER
structure and the payload specified in the DataType field. The value MUST be greater than or
equal to 6 and less or equal to 65,535.

DataType (2 bytes): This field specifies the type of data that follows after the

NET_EVENT_DATA_HEADER structure. The field MUST be set to one of the following values.

Value Meaning

NetEventDataEventRecord

0x0001

The data is an EventRecord (section 2.3.2.1) structure.

NetEventDataLost

0x0002

The data is a NET_EVENT_LOST (section 2.3.2.3) structure.

Reserved1 (7 bits): This field MUST be set to zero when sent and ignored upon receipt.

A (1 bit): If set, this field indicates the last data item in the buffer.

Reserved2 (8 bits): This field MUST be set to zero when sent and ignored upon receipt.

2.3.2.3 NET_EVENT_LOST Structure

The NET_EVENT_LOST structure provides payload in an EVENT_BUFFER (section 2.2.2.1)

structure and contains the number of events lost due to slow event retrieval.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

LostEventCount

LostEventCount (4 bytes): This field specifies the number of lost events between two
sequential calls to the RpcNetEventReceiveData (section 3.1.4.2.2) method. If more than
2^32 (two to the thirty-second power) events are lost, the field MUST be set to the value

0xFFFFFFFF.

16 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3 Protocol Details

The LREC protocol is used for monitoring an event session on a remote computer over a network.
Therefore, a client configures and starts an event session by first creating an instance of the
MSFT_NetEventSession Class (section 2.3.1.1). After the object is created, the client can connect
to the newly created session using the RpcNetEventOpenSession (section 3.1.4.2.1) method and
start retrieving events from the session using the RpcNetEventReceiveData (section 3.1.4.2.2)
method.

3.1 NetEventForwarder Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of a possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

Provider Manifest Table: A set of provider manifests for available event providers that can be

added to a session. This metadata can be expressed in any implementation-dependent<2>
format.

Session Table: A set of event sessions, where each event session contains the following

properties:

Session ID: A GUID that uniquely identifies the event session.

Session Name: A human-readable event session name assigned by the client when the event

session was created.

Session State: The session's state, either Stopped or Running, where the initial value is

Stopped.

Associated Provider List: A list of event providers associated with the event session, where

each entry contains the following properties:

Event Provider: An event provider that has an entry in the provider manifest table.

Level: The maximum level (as defined in the associated provider manifest) of events to

include in the event session.

Match Any Keyword: A set of keywords defined in the associated provider manifest,

where at least one keyword is required to match a keyword of an event in order for the
event to be included in the event session.

Match All Keywords: A set of keywords defined in the associated provider manifest,

where all keywords are required to be present in an event in order for the event to be
included in the event session.

Session Handle: An RPC Session Handle allocated by the RpcNetEventOpenSession

(section 3.1.4.2.1) method.

Queued Event List: A list of events waiting to be returned by a call to the

RpcNetEventReceiveData (section 3.1.4.2.2) method.

17 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Lost Event Count: The number of events between two sequential calls to the

RpcNetEventReceiveData method that were lost due to overflow of the Queued Event List.

Outstanding RpcNetEventReceiveData Call: Either empty, or holds a pending call to the

RpcNetEventReceiveData method to be completed later.

3.1.2 Timers

Each event session contains the following:

Data Completion Timer: A timer that is used to control completion of the
RpcNetEventReceiveData (section 3.1.4.2.2) method. The exact value of the timeout is
implementation-specific, but it MUST be between 100 and 1000 milliseconds.

3.1.3 Initialization

None.

3.1.4 Message Processing Events and Sequencing Rules

3.1.4.1 WS-Management Method Calls

3.1.4.1.1 MSFT_NetEventSession CreateInstance

CreateInstance is an intrinsic method of the MSFT_NetEventSession Class (section 2.3.1.1)
that is used to create a new instance of an MSFT_NetEventSession object on the server. The
method returns the newly created instance. For more information, see [DMTF-DSP0200] section
2.3.2.6.

The client MUST specify the Name property for the newly created instance.

When the CreateInstance method is called, the server MUST check the Name value for
uniqueness in the Session Table and return a NULL object if a session with the same Name

already exists.

Otherwise, the server MUST attempt to create an event session entry in its Session Table and
assign a unique value to the Guid property, created as specified in [RFC4122]. If the entry cannot
be created, the server MUST return a NULL object. A server MAY<3> limit the number of available

entries in the Session Table.

When the server is able to create the entry, the Associated Provider List and Queued Event List
MUST be initialized as empty and the CreateInstance method MUST be completed successfully.

3.1.4.1.2 MSFT_NetEventSession Start

The client calls the Start method of an MSFT_NetEventSession object (section 2.3.1.1) to start an
event session that has been previously associated with at least one MSFT_NetEventProvider

object (section 2.3.1.2).

uint32 Start();

Return Values: The Start method MUST return ERROR_SUCCESS (0x00000000) on success or a
nonzero Win32 error code value if an error occurred. All error values MUST be treated the same.

http://go.microsoft.com/fwlink/?LinkId=299237
http://go.microsoft.com/fwlink/?LinkId=90460

18 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

When the Start method is called on an event session, the server MUST check the Associated
Provider List in the event session entry in the Session Table. The server MUST return a nonzero

error code when no event providers are associated with the event session.

Otherwise, the server MUST attempt to initialize the RPC endpoint if it is not already running. If the

server is unable to initialize the RPC endpoint, it MUST return a nonzero error code.

When the server is able to initialize the RPC endpoint, the Session State MUST be set to Running,
and the server MUST return success.

3.1.4.1.3 MSFT_NetEventSession Stop

The client calls the Stop method of an MSFT_NetEventSession object (section 2.3.1.1) to stop a
previously started event session.

uint32 Stop();

Return Values: The Stop method MUST return ERROR_SUCCESS (0x00000000) on success or a

nonzero Win32 error code value if an error occurred. All error values MUST be treated the same.

When the Stop method is called on an MSFT_NetEventSession object, the server MUST check

that the specified session is already in the Running state, and if it is not, return a nonzero error
code.

The server MUST set the Session State to Stopped.

When there are no event sessions present in the Session Table in the Running state, the server
MUST stop the RPC endpoint.

3.1.4.1.4 MSFT_NetEventSession DeleteInstance

DeleteInstance is an intrinsic method of the MSFT_NetEventSession Class (section 2.3.1.1) and

is used to delete an instance of an MSFT_NetEventSession object on the server. For more
information, see [DMTF-DSP0200] section 2.3.2.4.

When the DeleteInstance method is called, the server MUST first check if the event session state
is Running, and if it is, stop accumulating events.

The server MUST then remove the event session entry from its Session Table and free all

associated resources.

3.1.4.1.5 MSFT_NetEventProvider CreateInstance

CreateInstance is an intrinsic method of the MSFT_NetEventProvider Class (section 2.3.1.2)
and is used to create a new instance of a MSFT_NetEventProvider class on the server. This
method returns the newly created instance. For more information, see [DMTF-DSP0200] section
2.3.2.6.

The client MUST assign a valid value to the Guid property identifying one of the event providers on
the server.

The client MUST assign a valid value to the SessionGuid property. The value MUST identify an
existing MSFT_NetEventSession object.

http://go.microsoft.com/fwlink/?LinkId=299237
http://go.microsoft.com/fwlink/?LinkId=299237

19 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

When the CreateInstance method is called, the server MUST check that the event provider
identified in the Guid property and the MSFT_NetEventSession object identified in the

SessionGuid property are present on the system. If they are not present, the server MUST return a
NULL object.

Otherwise, the server MUST verify that the value of the Name property matches the name of the
event provider in the provider manifest, and that the value of the SessionName property matches
the Session Name field of the event session. If both values do not match, the server MUST return
a NULL object.

When both values do match, the server MUST attempt to create an entry in the Associated
Provider List of the event session, and if it cannot do so, return a NULL object.

On success, the server MUST return the resulting MSFT_NetEventProvider object.

3.1.4.1.6 MSFT_NetEventProvider ModifyInstance

ModifyInstance is an intrinsic method of the MSFT_NetEventProvider Class (section 2.3.1.2)

and is used to modify the Level, Match Any Keyword, and Match All Keywords properties of an
existing MSFT_NetEventProvider instance on the server. For more information, see [DMTF-
DSP0200] section 2.3.2.8.

When the ModifyInstance method is called, the server MUST check the Session State of the
associated event session and fail the call if the state is Running.

Otherwise, the server MUST update the properties of the entry in the Associated Provider List
and complete the call successfully.

3.1.4.1.7 MSFT_NetEventProvider DeleteInstance

DeleteInstance is an intrinsic method of the MSFT_NetEventProvider Class (section 2.3.1.2)

and is used to delete an instance of an MSFT_NetEventProvider object on the server. For more
information, see [DMTF-DSP0200] section 2.3.2.4.

When the DeleteInstance method is called, the server MUST first check the state of the associated
event session and fail the call if the state is Running.

Otherwise, the server MUST find the corresponding event session in the Session Table and remove
the provider from its Associated Provider List.

3.1.4.2 RPC Opnum Method Calls

The NetEventForwarder interface provides methods for remote monitoring of an event session.
The version for this interface is 1.0.

To receive incoming remote calls for this interface, the server MUST implement an RPC endpoint
using the UUID 22e5386d-8b12-4bf0-b0ec-6a1ea419e366.

Methods in RPC Opnum Order

Method Description

RpcNetEventOpenSession

(section 3.1.4.2.1)

This method opens a context handle to a running event session.

Opnum: 0

RpcNetEventReceiveData This method retrieves a buffer with one or more

http://go.microsoft.com/fwlink/?LinkId=299237
http://go.microsoft.com/fwlink/?LinkId=299237
http://go.microsoft.com/fwlink/?LinkId=299237

20 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Method Description

(section 3.1.4.2.2) NET_EVENT_DATA_HEADER structures (section 2.3.2.2) followed

by the event payload.

Opnum: 1

RpcNetEventCloseSession

(section 3.1.4.2.3)

This method closes the RPC binding handle returned by the

RpcNetEventOpenSession method.

Opnum: 2

3.1.4.2.1 RpcNetEventOpenSession (Opnum 0)

The RpcNetEventOpenSession method opens a context handle to a running event session.

DWORD RpcNetEventOpenSession (

 [in] handle_t BindingHandle,

 [in] [string] wchar_t* LoggerName,

 [out] PSESSION_HANDLE* SessionHandle

);

BindingHandle: An RPC binding handle to the server. Details concerning binding handles are

specified in [C706] section 2.3

LoggerName: The name of the current event session. The value of this field MUST correspond to
the Name property of a previously started MSFT_NetEventSession object (section 2.3.1.1).

SessionHandle: An out parameter that receives an RPC context handle (as specified in section

2.2.1.1) that represents a reference to an active event session on the server.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success or a
nonzero Win32 error code value if an error occurred. All error values MUST be treated the
same.

The opnum field value for this method is 0.

When processing this call, the server MUST do the following:

When the RpcNetEventOpenSession method is called, the server MUST check its

Session Table for an event session with a Session Name that matches the value
specified in the LoggerName member. When a match is not found, the server MUST
return an error.

When a match is found, the server MUST attempt to allocate a Session Handle for the

client and store it in its event session, and if it cannot perform the allocation, return an

error.

When the server can allocate the Session Handle for the client, the server MUST start

collecting events from the event providers and accumulate in the Queued Event List, all

events matching the event session object’s Level, Match Any Keyword, and Match All
Keywords filters.

The server MUST return the Session Handle to the caller and complete the call with

success.

Exceptions Thrown: Exceptions SHOULD NOT be thrown beyond those thrown by the
underlying RPC protocol specified in [MS-RPCE].

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

21 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.4.2.2 RpcNetEventReceiveData (Opnum 1)

The RpcNetEventReceiveData method retrieves a buffer with one or more
NET_EVENT_DATA_HEADER structures, followed by the event payload. The size of the buffer is

determined by the server.

DWORD RpcNetEventReceiveData (

 [in] PSESSION_HANDLE SessionHandle,

 [out] EVENT_BUFFER* EventBuffer

);

SessionHandle: Contains an RPC context handle (as specified in section 2.2.1.1) returned by

the RpcNetEventOpenSession (section 3.1.4.2.1) method.

EventBuffer: An out parameter that receives an EVENT_BUFFER (section 2.2.2.1).

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success or a

nonzero Win32 error code value if an error occurred. All error values MUST be treated the

same.

The opnum field value for this method is 1.

When processing this call, the server MUST do the following:

When the RpcNetEventReceiveData method is called, the server MUST first check its

Session Table for an event session object where the Session Handle matches the value
supplied in the SessionHandle member, and if a match cannot be found, fail the call.

When a match can be found, if the Outstanding RpcNetEventReceiveData Call of the

event session is not empty, the server MUST fail this call to RpcNetEventReceiveData.

When the Outstanding RpcNetEventReceiveData Call of the event session is empty,

the server MUST determine, in any implementation-specific manner, an appropriate

number of events to return. If enough events are already in the Queued Event List, the
events MUST be removed from the list and returned in the EventBuffer member. If the

Lost Event Count is nonzero, the server MUST also include a NET_EVENT_LOST
structure (section 2.3.2.3) at the end of the EventBuffer.

When the Outstanding RpcNetEventReceiveData Call of the event session is not

empty, the server MUST store the pending call in the Outstanding
RpcNetEventReceiveData Call of the event session to be completed later when enough
events are collected in the Queued Event List or the Data Completion Timer expires.

Exceptions Thrown: Exceptions SHOULD NOT be thrown beyond those thrown by the
underlying RPC protocol specified in [MS-RPCE].

3.1.4.2.3 RpcNetEventCloseSession (Opnum 2)

The RpcNetEventCloseSession method closes the RPC binding handle returned by the

RpcNetEventOpenSession (section 3.1.4.2.1) method.

void RpcNetEventCloseSession (

 [in, out] PSESSION_HANDLE* SessionHandle

);

%5bMS-RPCE%5d.pdf

22 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

SessionHandle: On input, this member contains an RPC context handle (as specified in section

2.2.1.1) returned by the RpcNetEventOpenSession method. On output, the member MUST

contain NULL.

The opnum field value for this method is 2.

When processing this call, the server MUST do the following:

When the RpcNetEventCloseSession method is called, the server MUST first check its

Session Table for an event session object where the Session Handle matches the value
supplied in the SessionHandle member, and if a match cannot be found, fail the call.

When a match can be found, the server MUST remove the Session Handle from the event

session and stop accumulating events from event providers.

Exceptions Thrown: Exceptions SHOULD NOT be thrown beyond those thrown by the
underlying RPC protocol specified in [MS-RPCE].

3.1.5 Timer Events

When a Data Completion Timer for the event session expires, the server MUST complete the
outstanding call to the RpcNetEventReceiveData (section 3.1.4.2.2) method stored in the

Outstanding RpcNetEventReceiveData Call for the event session. That is, the events MUST be
removed from the list and returned in the RpcNetEventReceiveData.EventBuffer member, and
the Outstanding RpcNetEventReceiveData Call MUST be cleared.

3.1.6 Other Local Events

3.1.6.1 RPC Connection Termination

The server MUST treat an RPC connection termination the same as a call to the
MSFT_NetEventSession Stop (section 3.1.4.1.3) method.

3.1.6.2 Accumulating Events

When an event provider provides an event, the server MUST, for each event session with that event
provider associated, check whether the event meets the filter criteria in the Level, Match Any
Keyword, and Match All Keywords properties of the Associated Provider List entry. If the

event matches the filter criteria, the server MUST do the following:

1. If the Queued Event List is considered full (according to some implementation-specific criteria),
then increment the Lost Event Count.

2. If the Queued Event List is not full, add the event to the Queued Event List. If the Queued
Event List is now considered full, and the Outstanding RpcNetEventReceiveData Call is not
empty, then complete the outstanding call as follows.

The events MUST be removed from the Queued Event List and returned in the EventBuffer

argument

The Outstanding RpcNetEventReceiveData Call property is cleared.

The Data Completion Timer (section 3.1.2) is stopped.

%5bMS-RPCE%5d.pdf

23 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3. If the Queued Event List is still not full or if the Outstanding RpcNetEventReceiveData Call
is empty, then if the new event is the only event in the Queued Event List, start the Data

Completion Timer.

24 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

4 Protocol Examples

In the following example, a client requests to receive critical events from two providers on a given
remote machine that queues a maximum of 10 events per session.

According to the provider manifests, the provider GUIDs are 080197d0-d2c7-4b03-a559-
aa63191c21a0 and f4fc081a-13f7-4979-b79f-9e9ce7873b18.

1. The client specifies a Session Name of "Example Session" and calls the
MSFT_NetEventSession CreateInstance (section 3.1.4.1.1) intrinsic method on the server.

2. The server verifies that the name "Example Session" is not already in use, and if it is not,

allocates a new GUID (120d3b52-1607-49cb-9d3f-5080002d0eaf) for the Session ID, creates an
event session entry with the Session ID and the client’s Session Name, and returns the object
reference to the client.

3. The client calls the MSFT_NetEventProvider CreateInstance (section 3.1.4.1.5) intrinsic

method on the server, passing the GUID of the first provider (080197d0-d2c7-4b03-a559-
aa63191c21a0) and the Session ID allocated in step 2.

4. The server locates the event session object in its Session Table, verifies that the provider GUID

matches a provider ID in a provider manifest, and adds an Event Provider entry to its
Associated Provider List for the first event provider.

5. The client calls the MSFT_NetEventProvider CreateInstance intrinsic method on the server,
passing the GUID of the second provider (f4fc081a-13f7-4979-b79f-9e9ce7873b18) and the
Session ID allocated in step 2.

6. The server locates the event session object in its Session Table, verifies that the provider GUID

matches a provider ID in a provider manifest, and adds an Event Provider entry to its
Associated Provider List for the second event provider.

7. The client calls the MSFT_NetEventSession Start (section 3.1.4.1.2) method.

8. The server verifies that the Associated Provider List is not empty, starts an RPC endpoint, and
changes the Session State to Running.

9. The client calls the RpcNetEventOpenSession (section 3.1.4.2.1) method, passing the name
from Session Name from step 1, "Example Session".

10.The server searches its Session Table for a session with a matching name, and when one is
located, allocates a Session Handle and stores it in the session entry. The server then begins
collecting events from the associated event providers into the event session entry’s Queued
Event List and returns the Session Handle to the client.

11.In this example, the server collects more events than the maximum amount specified for storage
in the Queued Event List. Therefore, after the Queued Event List is full, the server starts
incrementing the event session entry’s Lost Event Count.

12.The client calls the RpcNetEventReceiveData (section 3.1.4.2.2) method to retrieve the

events, passing in the Session Handle acquired in step 10.

13.The server locates the event session entry corresponding to the specified Session Handle and
determines that the Queued Event List is full. The server immediately completes the call to
RpcNetEventReceiveData with an EVENT_BUFFER (section 2.2.2.1) containing 11 structures.
The first ten structures are EventRecord structures (section 2.3.2.1) holding the 10 queued

events, and the last is a NET_EVENT_LOST structure (section 2.3.2.3) containing the number of

25 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

lost events. The events are removed from the Queued Event List, allowing more events to start
being queued for delivery in the next call from the client.

14.The client determines that the call to RpcNetEventReceiveData has completed and then calls
the MSFT_NetEventSession Stop (section 3.1.4.1.3) method.

15.The server stops the RPC endpoint, removes all state for the event session, including any queued
events, and completes the call to RpcNetEventReceiveData as successful.

In the example above, the client could have called the RpcNetEventCloseSession (section
3.1.4.2.3) method. However, calling this method was not necessary because the call to
MSFT_NetEventSession Stop removed all of the resources that this method would have removed.

26 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

5 Security

5.1 Security Considerations for Implementers

The LREC protocol allows a user to establish a connection to an RPC server. The LREC protocol uses
the underlying RPC protocol to retrieve the identity of the caller that made the method call as
specified in [MS-RPCE] section 3.3.3.4.3. Clients are required to create an authenticated RPC
connection and servers are required to use this identity to perform method-specific access checks.

The client can request data channel encryption by specifying the

RPC_C_AUTHN_LEVEL_PKT_PRIVACY RPC authentication level. When it is possible for events to
contain confidential information, it is important for clients to either access the server over a secure
network or use data channel encryption.

5.2 Index of Security Parameters

Security Parameter Section

RPC_C_AUTHN_GSS_NEGOTIATE section 2.1.1

%5bMS-RPCE%5d.pdf

27 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6 Appendix A: Full IDL

For ease of implementation the full IDL is provided below, where "ms-dtyp.idl" refers to the IDL
found in [MS-DTYP] Appendix A. The syntax uses the IDL syntax extensions defined in [MS-RPCE]
sections 2.2.4 and 3.1.1.5.1. For example, as noted in [MS-RPCE] section 2.2.4.9, a pointer_default
declaration is not required and pointer_default(unique) is assumed.

import "ms-dtyp.idl";

[uuid(22e5386d-8b12-4bf0-b0ec-6a1ea419e366)]

[version(1.0)]

interface NetEventForwarder {

 typedef [context_handle] void* PSESSION_HANDLE;

 typedef struct _EVENT_BUFFER {

 unsigned long BufferLength;

 [size_is(BufferLength)] byte* Buffer;

 } EVENT_BUFFER;

 DWORD RpcNetEventOpenSession(

 [in] handle_t BindingHandle,

 [in] [string] wchar_t* LoggerName,

 [out] PSESSION_HANDLE* SessionHandle

);

 DWORD RpcNetEventReceiveData(

 [in] PSESSION_HANDLE SessionHandle,

 [out] EVENT_BUFFER* EventBuffer

);

 void RpcNetEventCloseSession(

 [in, out] PSESSION_HANDLE* SessionHandle

);

};

%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

28 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

7 Appendix B: Full MOF

For ease of implementation, the following is the full MOF syntax for this protocol.

[

 ClassVersion("1.0"),

 Description("This class encapsulates event capture session on a host")

]

class MSFT_NetEventSession

{

 [Key, Description("GUID, the unique of the session, a read-only property")]

 string Guid;

 [Description("The friendly Name of the session")]

 string Name;

 [Description("Specifies event session mode (RealtimeRPC, SaveToFile)")]

 uint8 CaptureMode;

 [Description("Local filename. Only valid when CaptureMode is set toSaveToFile")]

 string LocalFilePath;

 [Description("Maximum file size in MB. Only valid when CaptureMode is set

toSaveToFile")]

 uint32 MaxFileSize;

 [Description("Specifies the trace buffer size in KB")]

 uint32 TraceBufferSize;

 [Description("Specifies the maximum number of trace buffers")]

 uint8 MaxNumberOfBuffers;

 [Description("Current Status of the Session")]

 uint8 SessionStatus;

 [Description("Starts the event capture on the host")]

 uint32 Start();

 [Description("Stops the event capture")]

 uint32 Stop();

};

[

 ClassVersion("1.0"),

 Description("This class encapsulates event provider on a host for the event capture")

]

class MSFT_NetEventProvider

{

 [Key, Description("Guid, the unique id of the provider installed on the system")]

 string Guid;

 [Key, Description("Guid, the unique id of the session, when part of a session.

NULL Guid otherwise.")]

 string SessionGuid;

 [Description("Name of the provider")]

 string Name;

 [Description("Name of the associated trace session")]

 string SessionName;

 [Description("Maximum event level for the event capture, when part of a session")]

 uint8 Level;

 [Description("MatchAnyKeyword mask specified for the event capture")]

 uint64 MatchAnyKeyword;

 [Description("MatchAllKeyword mask specified for the event capture")]

 uint64 MatchAllKeyword;

};

29 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

8 Appendix C: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 2.1.2: Windows requests RPC_C_AUTHN_LEVEL_PKT_PRIVACY by default.

<2> Section 3.1.1: Windows expresses a provider manifest in an XML file as described in [MSDN-
EvntManifest]. For more information on defining event templates in a provider manifest, see [MSDN-
DefiningEventData].

<3> Section 3.1.4.1.1: Windows supports only one event session.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=299240
http://go.microsoft.com/fwlink/?LinkId=299240
http://go.microsoft.com/fwlink/?LinkId=299238
http://go.microsoft.com/fwlink/?LinkId=299238

30 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

9 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

31 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

10 Index

A

Abstract data model
server

NetEventForwarder 16
Applicability 8

C

Capability negotiation 8
Change tracking 30
Common data types 10

structures 11

D

Data model - abstract
server

NetEventForwarder 16
Data types

common - overview 10

E

EVENT_BUFFERstructure 11
EventRecord Structurestructure 14
Events

timer

server
NetEventForwarder 22

Examples
overview 24

F

Fields - vendor extensible 9
Full IDL 27

G

Glossary 5

I

IDL 27
Implementer - security considerations 26
Index of security parameters 26
Informative references 6
Initialization

server
NetEventForwarder 17

Introduction 5

M

Messages
common data types 10
transport 10

Methods

RPC Opnum Method Calls 19
MSFT_NetEventProvider Classstructure 12
MSFT_NetEventSession Classstructure 11

N

NET_EVENT_DATA_HEADER Structurestructure 14
NET_EVENT_LOST Structurestructure 15
Normative references 6

O

Overview (synopsis) 7

P

Parameters - security index 26
Preconditions 8
Prerequisites 8
Product behavior 29

R

References
informative 6
normative 6

Relationship to other protocols 7
RPC Opnum Method Calls method 19

S

Security
implementer considerations 26
parameter index 26

Server
NetEventForwarder

abstract data model 16
initialization 17
RPC Opnum Method Calls method 19
timer events 22
timers 17

Standards assignments 9
Structures

EVENT_BUFFER 11
EventRecord Structure 14
MSFT_NetEventProvider Class 12
MSFT_NetEventSession Class 11
NET_EVENT_DATA_HEADER Structure 14
NET_EVENT_LOST Structure 15
overview 11

T

Timer events
server

NetEventForwarder 22
Timers

server
NetEventForwarder 17

32 / 32

[MS-LREC] — v20140124
 Live Remote Event Capture (LREC) Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Tracking changes 30
Transport 10

V

Vendor extensible fields 9
Versioning 8

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 RPC Server Settings
	2.1.2 RPC Client Settings

	2.2 Common Data Types
	2.2.1 Data Types
	2.2.1.1 PSESSION_HANDLE

	2.2.2 Structures
	2.2.2.1 EVENT_BUFFER

	2.3 Message Syntax
	2.3.1 Managed Object Format (MOF) Structures
	2.3.1.1 MSFT_NetEventSession Class
	2.3.1.2 MSFT_NetEventProvider Class

	2.3.2 RPC Structures
	2.3.2.1 EventRecord Structure
	2.3.2.2 NET_EVENT_DATA_HEADER Structure
	2.3.2.3 NET_EVENT_LOST Structure

	3 Protocol Details
	3.1 NetEventForwarder Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 WS-Management Method Calls
	3.1.4.1.1 MSFT_NetEventSession CreateInstance
	3.1.4.1.2 MSFT_NetEventSession Start
	3.1.4.1.3 MSFT_NetEventSession Stop
	3.1.4.1.4 MSFT_NetEventSession DeleteInstance
	3.1.4.1.5 MSFT_NetEventProvider CreateInstance
	3.1.4.1.6 MSFT_NetEventProvider ModifyInstance
	3.1.4.1.7 MSFT_NetEventProvider DeleteInstance

	3.1.4.2 RPC Opnum Method Calls
	3.1.4.2.1 RpcNetEventOpenSession (Opnum 0)
	3.1.4.2.2 RpcNetEventReceiveData (Opnum 1)
	3.1.4.2.3 RpcNetEventCloseSession (Opnum 2)

	3.1.5 Timer Events
	3.1.6 Other Local Events
	3.1.6.1 RPC Connection Termination
	3.1.6.2 Accumulating Events

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Full MOF
	8 Appendix C: Product Behavior
	9 Change Tracking
	10 Index

