

1 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MS-LLTD-Diff]:

Link Layer Topology Discovery (LLTD) Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
.www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

12/18/2006 0.01 New Version 0.01 release

3/2/2007 1.0 Major Version 1.0 release

4/3/2007 1.1 Minor Version 1.1 release

5/11/2007 1.2 Minor Version 1.2 release

6/1/2007 1.2.1 Editorial Changed language and formatting in the technical content.

7/3/2007 1.2.2 Editorial Changed language and formatting in the technical content.

7/20/2007 1.2.3 Editorial Changed language and formatting in the technical content.

8/10/2007 1.2.4 Editorial Changed language and formatting in the technical content.

9/28/2007 1.2.5 Editorial Changed language and formatting in the technical content.

10/23/2007 1.2.6 Editorial Changed language and formatting in the technical content.

11/30/2007 1.3 Minor Added introduction.

1/25/2008 1.3.1 Editorial Changed language and formatting in the technical content.

3/14/2008 1.3.2 Editorial Changed language and formatting in the technical content.

5/16/2008 2.0 Major Updated and revised the technical content.

6/20/2008 2.1 Minor Clarified the meaning of the technical content.

7/25/2008 3.0 Major Updated and revised the technical content.

8/29/2008 3.1 Minor Clarified the meaning of the technical content.

10/24/2008 3.2 Minor Clarified the meaning of the technical content.

12/5/2008 4.0 Major Updated and revised the technical content.

1/16/2009 4.0.1 Editorial Changed language and formatting in the technical content.

2/27/2009 5.0 Major Updated and revised the technical content.

4/10/2009 6.0 Major Updated and revised the technical content.

5/22/2009 6.0.1 Editorial Changed language and formatting in the technical content.

7/2/2009 6.0.2 Editorial Changed language and formatting in the technical content.

8/14/2009 6.0.3 Editorial Changed language and formatting in the technical content.

9/25/2009 6.1 Minor Clarified the meaning of the technical content.

11/6/2009 6.1.1 Editorial Changed language and formatting in the technical content.

12/18/2009 6.1.2 Editorial Changed language and formatting in the technical content.

1/29/2010 6.1.3 Editorial Changed language and formatting in the technical content.

3/12/2010 6.1.4 Editorial Changed language and formatting in the technical content.

3 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Date
Revision
History

Revision
Class Comments

4/23/2010 6.1.5 Editorial Changed language and formatting in the technical content.

6/4/2010 7.0 Major Updated and revised the technical content.

7/16/2010 8.0 Major Updated and revised the technical content.

8/27/2010 9.0 Major Updated and revised the technical content.

10/8/2010 10.0 Major Updated and revised the technical content.

11/19/2010 11.0 Major Updated and revised the technical content.

1/7/2011 12.0 Major Updated and revised the technical content.

2/11/2011 13.0 Major Updated and revised the technical content.

3/25/2011 14.0 Major Updated and revised the technical content.

5/6/2011 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 14.1 Minor Clarified the meaning of the technical content.

9/23/2011 14.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 15.0 Major Updated and revised the technical content.

3/30/2012 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 16.0 Major Updated and revised the technical content.

11/14/2013 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 17.0 Major Significantly changed the technical content.

10/16/2015 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Table of Contents

1 Introduction .. 9
1.1 Glossary ... 9
1.2 References .. 11

1.2.1 Normative References ... 11
1.2.2 Informative References ... 12

1.3 Overview .. 12
1.3.1 Quick Discovery .. 13
1.3.2 Topology Discovery Tests .. 13
1.3.3 QoS Diagnostics: Network Test... 14
1.3.4 QoS Diagnostics: Cross-Traffic Analysis ... 14
1.3.5 Charge .. 15

1.3.5.1 Frame Summary ... 15
1.3.5.2 Tracking Charge ... 16
1.3.5.3 Accumulating Charge ... 16
1.3.5.4 Charge Requirements .. 16
1.3.5.5 Consuming Charge .. 17

1.4 Relationship to Other Protocols .. 17
1.5 Prerequisites/Preconditions ... 17
1.6 Applicability Statement ... 17
1.7 Versioning and Capability Negotiation ... 18
1.8 Vendor-Extensible Fields ... 18
1.9 Standards Assignments ... 18

2 Messages ... 19
2.1 Transport .. 19
2.2 Message Syntax ... 19

2.2.1 Common Data Types ... 19
2.2.1.1 Attributes ... 19

2.2.1.1.1 End-of-Property List Marker .. 20
2.2.1.1.2 Host ID .. 20
2.2.1.1.3 Characteristics .. 21
2.2.1.1.4 Physical Medium .. 21
2.2.1.1.5 Wireless Mode ... 22
2.2.1.1.6 802.11 BSSID ... 22
2.2.1.1.7 802.11 SSID ... 23
2.2.1.1.8 IPv4 Address .. 23
2.2.1.1.9 IPv6 Address .. 23
2.2.1.1.10 802.11 Maximum Operational Rate .. 24
2.2.1.1.11 Performance Counter Frequency .. 24
2.2.1.1.12 Link Speed ... 25
2.2.1.1.13 802.11 RSSI ... 25
2.2.1.1.14 Icon Image ... 25
2.2.1.1.15 Machine Name .. 26
2.2.1.1.16 Support Information .. 26
2.2.1.1.17 Friendly Name ... 27
2.2.1.1.18 Device UUID ... 27
2.2.1.1.19 Hardware ID ... 27
2.2.1.1.20 QoS Characteristics ... 28
2.2.1.1.21 802.11 Physical Medium ... 28
2.2.1.1.22 AP Association Table .. 29
2.2.1.1.23 Detailed Icon Image .. 29
2.2.1.1.24 Sees-List Working Set .. 29
2.2.1.1.25 Component Table .. 30
2.2.1.1.26 Repeater AP Lineage .. 30
2.2.1.1.27 Repeater AP Table ... 30

5 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2 Large Data Properties .. 31
2.2.2.1 Icon Image .. 31
2.2.2.2 Friendly Name .. 31
2.2.2.3 Hardware ID ... 31
2.2.2.4 AP Association Table .. 32
2.2.2.5 Detailed Icon Image .. 32
2.2.2.6 Component Table .. 32

2.2.2.6.1 Component Descriptors .. 33
2.2.2.6.1.1 Bridge Component Descriptor .. 33
2.2.2.6.1.2 802.11 Access Point Component Descriptor 33
2.2.2.6.1.3 Built-in Switch Component Descriptor ... 34

2.2.2.7 Repeater AP Table ... 34
2.2.3 Base Specification ... 35

2.2.3.1 Demultiplex Header Format .. 35
2.2.4 Topology Discovery Tests and Quick Discovery ... 36

2.2.4.1 Base Header Format .. 36
2.2.4.2 Discover Upper-Level Header Format ... 37
2.2.4.3 Hello Upper-Level Header Format .. 38
2.2.4.4 Emit Upper-Level Header Format .. 38
2.2.4.5 Train Upper-Level Header Format.. 39
2.2.4.6 Probe Upper-Level Header Format ... 39
2.2.4.7 Ack Upper-Level Header Format .. 39
2.2.4.8 Query Upper-Level Header Format .. 40
2.2.4.9 QueryResp Upper-Level Header Format ... 40
2.2.4.10 Reset Upper-Level Header Format ... 41
2.2.4.11 Charge Upper-Level Header Format ... 41
2.2.4.12 Flat Upper-Level Header Format ... 41
2.2.4.13 QueryLargeTlv Upper-Level Header Format .. 42
2.2.4.14 QueryLargeTlvResp Upper-Level Header Format 42

2.2.5 QoS Diagnostics Specification for Network Test .. 43
2.2.5.1 Base Header Format .. 43
2.2.5.2 QosInitializeSink Upper-Level Header Format ... 44
2.2.5.3 QosReady Upper-Level Header Format ... 44
2.2.5.4 QosProbe Upper-Level Header Format ... 44
2.2.5.5 QosQuery Upper-Level Header Format ... 46
2.2.5.6 QosQueryResp Upper-Level Header Format .. 46
2.2.5.7 QosReset Upper-Level Header Format ... 47
2.2.5.8 QosError Upper-Level Header Format .. 47
2.2.5.9 QosAck Upper-Level Header Format .. 47

2.2.6 QoS Diagnostics Specification for Cross-Traffic Analysis 47
2.2.6.1 Base Header Format .. 47
2.2.6.2 QosCounterSnapshot Upper-Level Header Format 48
2.2.6.3 QosCounterResult Upper-Level Header Format .. 48
2.2.6.4 QosCounterLease Upper-Level Header Format .. 49

3 Protocol Details ... 50
3.1 Enumerator Details .. 50

3.1.1 Abstract Data Model .. 51
3.1.2 Timers .. 52
3.1.3 Initialization ... 52
3.1.4 Higher-Layer Triggered Events ... 52

3.1.4.1 Quick Discovery Startup... 52
3.1.4.2 Quick Discovery Shutdown ... 53

3.1.5 Message Processing Events and Sequencing Rules .. 53
3.1.5.1 Receiving a Hello Frame ... 53

3.1.5.1.1 Enumerator Also Functioning in the Mapper Role 53
3.1.6 Timer Events .. 54

3.1.6.1 Block Timer Expiry .. 54

6 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.6.1.1 Enumerator Also Functioning in the Mapper Role 54
3.1.7 Resetting Quick Discovery ... 54
3.1.8 Shutting Down Quick Discovery and Returning Results 55
3.1.9 Other Local Events .. 55

3.1.9.1 Media Connect/Disconnect Event .. 55
3.2 Mapper Details ... 55

3.2.1 Abstract Data Model .. 56
3.2.2 Timers .. 56
3.2.3 Initialization ... 57
3.2.4 Higher-Layer Triggered Events ... 57

3.2.4.1 Startup Trigger ... 57
3.2.4.2 Retrieve a Large Data Property ... 57
3.2.4.3 Perform a Network Topology Test ... 57
3.2.4.4 Perform a Test Result Query ... 59
3.2.4.5 Query for Responder Charge .. 59
3.2.4.6 Shutdown Trigger ... 59

3.2.5 Message Processing Events and Sequencing Rules .. 60
3.2.5.1 Receiving an Ack Frame ... 60
3.2.5.2 Receiving a Flat Frame .. 60
3.2.5.3 Receiving a QueryResp Frame .. 60
3.2.5.4 Receiving a QueryLargeTlvResp Frame .. 61

3.2.6 Timer Events .. 62
3.2.6.1 Per-Responder Response Timer Expiry ... 62

3.2.7 Other Local Events .. 62
3.2.7.1 Enumerator Finishes Enumerating Responders .. 62
3.2.7.2 Media Connect/Disconnect Event .. 62

3.3 QoS Controller Details .. 62
3.3.1 Abstract Data Model .. 62
3.3.2 Timers .. 63
3.3.3 Initialization ... 64
3.3.4 Higher-Layer Triggered Events ... 64

3.3.4.1 Start Network Test Session .. 64
3.3.4.2 Stop Network Test Session ... 65

3.3.5 Message Processing Events and Sequencing Rules .. 65
3.3.5.1 Receiving a QosProbe Frame .. 65
3.3.5.2 Receiving a QosQueryResp Frame ... 66
3.3.5.3 Receiving a QosError Frame ... 66
3.3.5.4 Receiving a QosReady Frame .. 66
3.3.5.5 Receiving a QosAck Frame ... 66

3.3.6 Timer Events .. 66
3.3.6.1 Per-QosInitializeSink Response Timer Expiry .. 66
3.3.6.2 Per-QosProbe Response Timer Expiry .. 67
3.3.6.3 Per-QosQuery Response Timer Expiry .. 67
3.3.6.4 Per-QosReset Response Timer Expiry .. 67

3.3.7 Other Local Events .. 67
3.3.7.1 Media Connect/Disconnect Event .. 67

3.4 Cross-Traffic Analysis Initiator Details ... 67
3.4.1 Abstract Data Model .. 67
3.4.2 Timers .. 68
3.4.3 Initialization ... 68
3.4.4 Higher-Layer Triggered Events ... 68

3.4.4.1 Start Cross-Traffic Analysis .. 68
3.4.4.2 Request Counters.. 69
3.4.4.3 Stop Cross-Traffic Analysis ... 69

3.4.5 Message Processing Events and Sequencing Rules .. 69
3.4.5.1 Receiving a QosCounterResult Frame .. 69

3.4.6 Timer Events .. 69
3.4.6.1 Per-Interface Lease Renewal Timer Expiry .. 69

7 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.6.2 Per-Snapshot Response Timer Expiry .. 69
3.4.7 Other Local Events .. 70

3.4.7.1 Media Connect/Disconnect Event .. 70
3.5 Responder (Quick Discovery) Details .. 70

3.5.1 Abstract Data Model .. 72
3.5.2 Timers .. 73
3.5.3 Initialization ... 74
3.5.4 Higher-Layer Triggered Events ... 74
3.5.5 Message Processing Events and Sequencing Rules .. 74

3.5.5.1 Receiving a Discover Frame .. 74
3.5.5.1.1 Network Load Control .. 74

3.5.5.1.1.1 Load Initialization .. 75
3.5.5.1.1.2 Dynamic Behavior .. 75
3.5.5.1.1.3 Effect of Discover over Network Load Control 75

3.5.5.2 Receiving a Hello Frame ... 75
3.5.5.3 Receiving a Reset Frame .. 76
3.5.5.4 State Transition Rules .. 76

3.5.6 Timer Events .. 76
3.5.6.1 Session Inactivity Timer Expiry ... 76
3.5.6.2 Block Timer Expiry .. 76
3.5.6.3 Hello Timer Expiry ... 77

3.5.7 Other Local Events .. 77
3.5.7.1 Media Disconnect Event ... 77
3.5.7.2 Entering Quiescent State ... 77
3.5.7.3 Entering Pausing State .. 77
3.5.7.4 Entering Wait State ... 78

3.6 Responder (Topology Discovery) Details ... 78
3.6.1 Abstract Data Model .. 79
3.6.2 Timers .. 81
3.6.3 Initialization ... 81
3.6.4 Higher-Layer Triggered Events ... 82
3.6.5 Message Processing Events and Sequencing Rules .. 82

3.6.5.1 Receiving a Charge Frame .. 82
3.6.5.2 Receiving an Emit Frame ... 83
3.6.5.3 Receiving a Probe Frame .. 85
3.6.5.4 Receiving a Query Frame ... 85
3.6.5.5 Receiving a QueryLargeTlv Frame ... 86

3.6.6 Timer Events .. 86
3.6.6.1 Charge Timer Expiry .. 86
3.6.6.2 Emit Timer Expiry ... 87

3.6.7 Other Local Events .. 87
3.6.7.1 Media Disconnect Event ... 87
3.6.7.2 Entering Quiescent State ... 87
3.6.7.3 Entering Command State ... 87
3.6.7.4 Leaving Command State .. 87

3.7 QoS Sink Details .. 88
3.7.1 Abstract Data Model .. 88
3.7.2 Timers .. 89
3.7.3 Initialization ... 89
3.7.4 Higher-Layer Triggered Events ... 89
3.7.5 Message Processing Events and Sequencing Rules .. 89

3.7.5.1 Receiving a QosInitializeSink Frame .. 89
3.7.5.2 Receiving a QosProbe Frame .. 90
3.7.5.3 Receiving a QosQuery Frame .. 91
3.7.5.4 Receiving a QosReset Frame .. 91

3.7.6 Timer Events .. 92
3.7.6.1 Inactivity Timer Expiry ... 92

3.7.7 Other Local Events .. 92

8 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.7.7.1 Media Disconnect Event ... 92
3.8 Responder (QoS Cross-Traffic) Details .. 92

3.8.1 Abstract Data Model .. 92
3.8.2 Timers .. 93
3.8.3 Initialization ... 93
3.8.4 Higher-Layer Triggered Events ... 94
3.8.5 Message Processing Events and Sequencing Rules .. 94

3.8.5.1 Receiving a QosCounterLease Frame ... 94
3.8.5.2 Receiving a QosCounterSnapshot Frame .. 94

3.8.6 Timer Events .. 95
3.8.6.1 Lease Timer Expiry .. 95
3.8.6.2 Snapshot Timer Expiry ... 95

3.8.7 Other Local Events .. 95
3.8.7.1 Media Disconnect Event ... 95

4 Protocol Examples ... 96
4.1 Example 1: Mapping a Network .. 96
4.2 Example 2: Measuring Network Capacity ... 99
4.3 Example 3: Charging a Responder ... 102
4.4 Example 4: RepeatBAND Algorithm ... 103

4.4.1 Scenario 1: No Hello/Discover Frames Received After Initial Discover Frame Moves
Responder into the Pausing State .. 103

4.4.2 Scenario 2: Small Network - A Few Hello/Discover Frames Received During Each
Round .. 103

4.4.3 Scenario 3: Large Network - A Steady Flow of a Few Hello/Discover Frames

Received During Each Round ... 104

5 Security ... 105
5.1 Security Considerations for Implementers .. 105
5.2 Index of Security Parameters ... 105

6 Appendix A: Product Behavior ... 106

7 Change Tracking .. 108

8 Index ... 109

9 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 Introduction

This document specifies the Link Layer Topology Discovery (LLTD) Protocol, which an application or
higher-layer protocol can use to facilitate discovery of link-layer topology and to diagnose various
problems that are associated with a network's signal strength and bandwidth.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

access point: A network access server (NAS) that is implementing [IEEE802.11-2012], connecting

wireless devices to form a wireless network.

Authentication Protocol (AP) exchange: The Kerberos subprotocol called the "authentication

protocol", sometimes referred to as the "Client/Server Authentication Exchange", in which the
client presents a service ticket and an authenticator to a service to establish an authenticated
communication session with the service (see [RFC4120] section 3.2).

basic service set identifier (BSSID): A 48-bit structure that is used to identify an entity such as
the access point in a wireless network. This is typically a MAC address.

broadcast: The sending of a frame to the Ethernet broadcast domain by an LLTD-capable station.

charge: A mechanism used to prevent Denial of Service (DoS) attacks, as described in section
1.3.5.

controller: A station that initiates a network test request.

cross-traffic analysis: A technique used by Quality of Service (QoS) applications to understand
the nature of network activity, usually resulting in the identification of the hosts that are

responsible for most of this activity.

cross-traffic analysis initiator: A station that initiates a cross-traffic analysis request.

Current Transmit Credit (CTC): The charge available at a responder.

enumerator: A station that seeks all LLTD–capable stations on the link by using quick discovery.

error code: An integer that indicates success or failure. In Microsoft implementations, this is
defined as a Windows error code. A zero value indicates success; a nonzero value indicates
failure.

Ethernet broadcast domain: The portion of a network that can receive frames destined for the
special broadcast MAC address (that is, consisting of all binary 1s).

flooding: A switch's sending of a frame to all segments to which it is connected. A switch will flood
a frame containing a MAC address for which the switch does not know the corresponding

segment.

friendly name: A name for a user or object that can be read and understood easily by a human.

generation number: A number used by a mapper to generate fresh MAC addresses from a private

range.

hub: A data link-layer network device that acts as a shared bus. All stations that are connected to
a hub are on the same segment; therefore, each station that is connected to a hub sees all

10 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

frames that are sent to or from all other stations on that hub. Compare this term with router
and switch.

interrupt moderation: The process of delaying central processing unit (CPU) interrupts generated
by a local network interface. Delaying interrupts improves system efficiency by only generating

a single interrupt for multiple events instead of an individual interrupt per event. Although
desirable for improved system performance, delaying interrupts impacts the measurement
accuracy of timed events. The algorithm determining the length of delay is hardware specific,
therefore, not in scope of this specification.

mapper: A station that initiates a topology discovery test.

Media Access Control (MAC) address: A hardware address provided by the network interface
vendor that uniquely identifies each interface on a physical network for communication with

other interfaces, as specified in [IEEE802.3]. It is used by the media access control sublayer of
the data link layer of a network connection.

network test: Generic term to describe any technique (for example, probegap or timed probe)

that is used to estimate the throughput of a network.

probegap: A probing experiment that involves sending one or more probe packets from the
initiator to the sink and then back to the initiator. The intention is to gather a series of one-way

delay (OWD) samples. This technique is used to estimate the available bandwidth of the network
path between the initiator and sink devices. Probegap is synergistic to timed probe and packet
pair in the sense that the available bandwidth is calculated relative to the bottleneck bandwidth;
the former cannot be calculated without knowing the latter. For an example of how probegap
can be used by an application, see [ProbeGap].

Quality of Service (QoS): A set of technologies that do network traffic manipulation, such as
packet marking and reshaping.

quick discovery: The process of discovering responders on a network.

real MAC address: A MAC address provided by the network interface vendor to uniquely identify

the device on the network, as specified in [IEEE802.3].

RepeatBAND: A fast and scalable station enumeration algorithm as specified in section 3.5.6.2.

responder: An LLTD–capable station to which mappers and enumerators send LLTD commands.

segment: A set of stations that see each other's link-layer frames without being changed by any
device in the middle, such as a switch.

service set identifier (SSID): A sequence of characters that names a wireless local area network
(WLAN).

session: A context for managing communication over LLTD among stations.

sink: A responder that is the target of a network test session.

station: Any device that implements LLTD.

switch: A data link-layer device that propagates frames between segments and allows

communication among stations on different segments. Stations that are connected through a
switch see only those frames destined for their segments. Compare this term with hub and
router.

topology discovery test: A test that an application or higher-layer protocol can use to facilitate
discovering the link-layer topology of a single link in a network. That is, to facilitate discovering
the set of segments and switches, and determining which responders are on which segments.
Compare this term with quick discovery.

11 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

type-length-value (TLV): A method of organizing data that involves a Type code (16-bit), a
specified length of a Value field (16-bit), and the data in the Value field (variable).

UCS-2LE: A variation of the UCS-2 string encoding format. The specification of UCS-2 in [ISO/IEC-
10646] represents each code point in big-endian format. In UCS-2LE, each code point is

represented in little-endian format.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not

imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

wireless band: An IEEE 802.11 [IEEE802.11-2007] protocol family. For example, 802.11a is a

wireless band.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[IANAifType] IANA, "IANAifType-MIB Definitions", January 2007,
http://www.iana.org/assignments/ianaiftype-mib

[IEEE-EtherType] IEEE Standards Association, "IEEE EtherType Field Registration Authority", February
2007, http://standards.ieee.org/regauth/ethertype/eth.txt

[IEEE-OUI] IEEE Standards Association, "IEEE OUI Registration Authority", February 2007,
http://standards.ieee.org/regauth/oui/oui.txt

[IEEE802.11-2007] Institute of Electrical and Electronics Engineers, "Standard for Information
Technology - Telecommunications and Information Exchange Between Systems - Local and
Metropolitan Area Networks - Specific Requirements - Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications", ANSI/IEEE Std 802.11-2007,

http://standards.ieee.org/getieee802/download/802.11-2007.pdf

Note There is a charge to download this document.

[IEEE802.1Q] Institute of Electrical and Electronics Engineers, "IEEE Standard for Local and
Metropolitan Area Networks - Virtual Bridged Local Area Networks", IEEE Std 802.1Q, May 2003,
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1203093&isnumber=27089

12 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[IEEE802.3] Institute of Electrical and Electronics Engineers, "Part 3: Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications - Description",

IEEE Std 802.2, 2002, http://standards.ieee.org/getieee802/download/802.3-2002.pdf

[RFC1123] Braden, R., "Requirements for Internet Hosts - Application and Support", RFC 1123,
October 1989, http://www.ietf.org/rfc/rfc1123.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2461] Narten, T., Nordmark, E., and Simpson, W., "Neighbor Discovery for IP Version 6 (IPv6)",
RFC 2461, December 1998, http://www.ietf.org/rfc/rfc2461.txt

[RFC3022] Srisuresh, P., and Egevang, K., "Traditional IP Network Address Translator (Traditional
NAT)", RFC 3022, January 2001, http://www.ietf.org/rfc/rfc3022.txt

[RFC3513] Hinden, R. and Deering, S., "Internet Protocol Version 6 (IPv6) Addressing Architecture",
RFC 3513, April 2003, http://www.ietf.org/rfc/rfc3513.txt

[RFC826] Plummer, D., "An Ethernet Address Resolution Protocol - or - Converting Network Protocol
Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware", STD 37, RFC 826,
November 1982, http://www.ietf.org/rfc/rfc826.txt

[UPnP] UPnP Forum, "Standards", http://upnp.org/sdcps-and-certification/standards/sdcps/

1.2.2 Informative References

[BAND] Black, R., Donnelly, A., Gavrilescu, A., and Thaler, D., "Fast Scalable Robust Node

Enumeration", http://research.microsoft.com/~dthaler/BAND.pdf

[MSDN-ICO] Microsoft Corporation, "Icons in Win32", http://msdn.microsoft.com/en-
us/library/ms997538.aspx

[RALLY] Microsoft Corporation, "Windows Rally: Connectivity Technologies for Devices",
http://www.microsoft.com/whdc/connect/rally/default.mspx

1.3 Overview

This document specifies the Link Layer Topology Discovery (LLTD) Protocol, which operates over
Ethernet-like media, including both wired (802.3 Ethernet) and wireless (802.11) media. As the
protocol name suggests, its core functions enable applications to discover the link-layer topology of a
single link in a network. That is, it is used to facilitate discovering the set of switches and segments
that constitute the link. This protocol also has Quality of Service (QoS) extensions that applications
can use to diagnose problems, such as those problems that involve signal strength on wireless

networks or bandwidth constraints in home networks.

This protocol offers the following services, which operate independently on the network (except as
noted in this document):

▪ Quick discovery.

▪ Topology discovery test.

▪ QoS diagnostics for network tests.

▪ QoS diagnostics for cross-traffic analysis.

There are no dependencies or ordering restrictions between these services, except that the topology
discovery test requires that quick discovery is performed first.

13 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Additionally, the concept of charge is central to this protocol. Charge is described in section 1.3.5.

1.3.1 Quick Discovery

Quick discovery is the method of enumerating LLTD-capable stations on the network and their various
properties. Throughout this document, these LLTD-capable stations are referred to as responders.
That is, the roles of stations involved in the quick-discovery process are as the enumerator and the
responders. All responders that participate in quick discovery implement a distributed network load
balancing algorithm called RepeatBAND, as specified in section 3.5.6.2.

RepeatBAND is a scalable enumeration algorithm that allows responders to advertise their presence to
enumerators without overloading the network. In this scheme, each responder independently throttles
its outbound network traffic by counting the LLTD frames that it sees. Responders measure the
network load due to this protocol over a number of loosely synchronized rounds, also called blocks, of
approximately fixed duration. Each responder uses these load measurements to calculate a current
estimate of the number of responders that are active on the network. Each responder then sends a
frame in a block with a probability that depends on this estimate (for an analysis of an earlier version

of this algorithm which did not accommodate multiple simultaneous enumerators, see [BAND]). These
frames each contain a set of properties (or Type-Length-Values (TLVs)) that the responders are
advertising to the enumerator.

1.3.2 Topology Discovery Tests

In Topology Discovery Tests, the roles of stations are as the mapper and the responders. Topology
discovery tests are an extension of quick discovery, and they can only be performed after quick
discovery is complete. During quick discovery, a mapper temporarily fulfills the role of an enumerator
while negotiating its intention to perform topology discovery tests with all responders involved.

Each responder that participates in quick discovery associates itself with a mapper if it does not
already have an active association. It is only through this association that a responder accepts and

responds to the associated mapper's topology discovery test commands. This association is also
reported by each responder in all quick discovery packet exchanges. While it is the ultimate goal to
have only one mapper associated with all responders in a specific Ethernet broadcast domain, this

mechanism puts the onus on the mapper to ensure that it stops itself completely (and releases any
active associations) if it sees a quick discovery packet from any responder that is reporting an
association to another mapper.

The mapping session makes assumptions about the behavior of the network infrastructure that

interconnects the available responders, such as switches and hubs. Information about network
interfaces and results from particular operations on responders provide the mapper with information
to assess the network's topology. One key assumption made is that after a switch has learned a
responder's segment, it does not forward traffic destined to that responder's Ethernet address to other
segments.

After quick discovery, the mapper knows of available responders and the types of networks they are
connected to (such as Ethernet or 802.11 wireless). If the application or higher-layer protocol sees

two responders on Ethernet, it could direct this to request a responder to send Ethernet frames on the
wire by using different source and destination MAC addresses and ask the other responder which of

the Ethernet frames it received. The MAC addresses used are dedicated for use by this protocol.

The choice of which responder to use and the parameters of the topology discovery test are up to the
application or higher-layer protocol. An implementation of this protocol merely allows applications to
learn link details, with which they can construct topology maps using application-specific algorithms.

This protocol is used by such an application to request that a chosen responder send LLTD frames with
a specified source and destination MAC address, where the source MAC address might or might not be
the responder's own MAC address. To avoid interfering with other nodes' MAC addresses, this protocol

14 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

defines a reserved range of MAC addresses that applications can use when they request that a
responder use a source MAC address that it does not own.

This protocol is also used by such an application to ask other responders which test frames they have
seen. This information allows the application to infer the existence of switches and hubs. For example,

because a switch will remember a segment that it has seen, forwarding frames with the corresponding
MAC address to that segment and flooding all segments for frames with previously unseen MAC
addresses, applications can generate tests to determine whether a switch or a hub interconnects two
responders.

For example, the application using this protocol might do the following. The application might direct
one responder to use a specific LLTD MAC address and train a switch about the segment to which it is
connected by sending a frame from that MAC address. The application might then invoke this protocol

to request that a second responder send a frame to that MAC address. Finally, the application could
ask a third responder for the test frames that it saw. If the third responder did not see the test frame
(after multiple such tests to reduce the chance of packet loss), the application can conclude that the
first and third responders are on different segments; that is, that a switch separates them.

A responder has to perform both quick discovery and topology discovery tests with different stations,
where one is functioning as an enumerator and the other is functioning as a mapper.

In addition, this service also allows the mapper to ask a responder for additional property data that is
too large to fit into the quick discovery responses.

1.3.3 QoS Diagnostics: Network Test

QoS diagnostics for network tests facilitates the determination of a network path's bottleneck

bandwidth (or "capacity"), its available bandwidth, and the existence of a prioritization mechanism in
a network equipment over a network path. Each of these is a form of network test operation that can
be achieved by the use of two roles: a controller and a sink. The controller role is initiated by a local
application. The sink role is implemented in a responder.

The controller's job is to manage a network test session by initializing and resetting the sink, sending

test frames to the sink, and accepting test frames that the sink sends back.

For each network path (defined as the network link between a controller and a sink), a higher-layer
application can use the time stamp and success code that is returned via the controller to compute the
bandwidth. Applications can also learn about the existence of a prioritization mechanism by instructing
controllers to have sinks manipulate the 802.1q tag header for returning test frames (see the T-bit
and 802.1p value in the QosProbe frame defined in section 2.2.5.4). For more information on how the
tag header influences Ethernet frame routing, see [IEEE802.1Q].

1.3.4 QoS Diagnostics: Cross-Traffic Analysis

QoS diagnostics for cross-traffic analysis facilitates the detection of network traffic congestion by
means of analyzing network packet counters. An application can analyzes these packet counters by
invoking the role of the cross-traffic analysis initiator. The application explicitly identifies each
responder from which it wants to obtain the counters. (The application might have previously learned

the responders via quick discovery, or any other method. Hence, this service does not necessarily

require that quick discovery is performed first.) The initiator's role is simply to make these counters
available to the application, where possible.

Responders that support this feature maintain a history of the following counters:

▪ Number of bytes received.

▪ Number of bytes sent.

▪ Number of frames received.

15 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

▪ Number of frames sent.

Intermediate devices, such as access points (APs) and bridges, can make per-network interface

counters and aggregate link counters available through this protocol. These counters allow cross-
traffic detection even in the absence of responders on the segment. Examples of available network

interfaces on a typical AP device are:

▪ Basic service set identifier (BSSID) of a wireless band. Note that multiband APs use separate
BSSIDs for each band that they support.

▪ Wired Ethernet network interface that is usually connected to a built-in switch.

The aggregate (across all network interfaces on the same link) counters indicate the amount of traffic
that is entering and leaving the link, which enables consideration of the capacity of the uplink in QoS
wireless area network (WAN) admission decisions.

It is assumed that the bottleneck point for an AP is always the wireless link. As such, APs are not
required to provide the wired local area network (LAN) counters.

1.3.5 Charge

A mapper's requests have the potential to trigger non-trivial amounts of network traffic originating
from the responders. If the requests are carried out too frequently, they could contribute to network
congestion. Therefore, the mapper is required to charge the responder to enable it to send out
Ethernet frames at the mapper's request during topology discovery. The charge requirement spaces
out the requests, mitigating Denial of Service attacks or inadvertent flooding.

Charging involves sending special frames to the responder to build up the charge. Only after enough
charge has been accumulated can the mapper request the responder to carry out a topology test.

Once the responder has verified that it has enough charge, it consumes the charge and fulfills the
topology test.

Section 1.3.5.1 summarizes frames used during charging.

Section 1.3.5.2 summarizes how charge is tracked by responders.

Responders perform the following actions when receiving a Charge frame or Emit frame:

1) Accumulating charge from the frame (section 1.3.5.3).

2) Determining the charge requirements for the request (section 1.3.5.4).

3) Consuming charge (section 1.3.5.5).

4) Sending out frames.

1.3.5.1 Frame Summary

The frames described in this section convey or consume charge. Charge frames and Emit frames can
be unacknowledged or acknowledged. Charge frames and Emit frames are considered acknowledged if

they contain a nonzero sequence number (see section 2.2.4 for frame layout). Such frames are
intended to elicit a response from a responder indicating receipt and processing of the Charge frame
or Emit frame (using either a Flat frame or an Ack frame). Unacknowledged Charge frames and Emit
frames are those with sequence numbers of zero; they do not elicit a response indicating if or how the
frame was processed.

Charge frames: The primary purpose of the Charge frame is to transfer charge (see section 1.3.5.3)
to responders in preparation for an Emit frame containing one or more probe targets (EmiteeDesc

16 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

items in the Emit frame). Acknowledged Charge frames can also instruct a responder to report its
current charge using a Flat frame.

Emit frames: The primary purpose of an Emit frame is to request the sending of one or more Train or
Probe frames by the responder. Emit frames also carry charge, but such charge is immediately

consumed by fulfilling the Emit request. The only exception is when the responder does not have
enough charge to satisfy the request. If this is the case, and the Emit frame was acknowledged, a
Flat frame is sent to (1) notify the mapper that the request was not satisfied, and (2) report the
amount of charge on the responder.

Flat frames: Flat frames are sent by a responder back to a mapper to indicate the responder's
current charge. Flat frames are sent in response to acknowledged Charge frames or Emit frames.
The amount of charge reported in the Flat frame is the charge on the responder before

accumulating the charge of the Charge frame or Emit frame. Unacknowledged Charge frames or
Emit frames do not elicit a Flat frame response from a responder. Flat frames consume charge.
Emit frames always carry enough implicit charge to send one Flat frame, but Charge frames
(which are smaller than Flat frames) have to be padded in order to carry enough charge to send
the Flat frame response.

Ack frames: Ack frames are sent by a responder back to a mapper when it has finished processing all

of the commands in an acknowledged Emit frame. Ack frames consume charge; Emit frames
always carry enough implicit charge to send one Ack frame.

1.3.5.2 Tracking Charge

Charge is represented by using two counters:

▪ Frame Charge (FC): The number of frames the responder is capable of sending (unsigned 8-bit
number).

▪ Byte Charge (BC): The number of bytes the responder is capable of sending (unsigned 16-bit
number).

These counters are collectively referred to as the Current Transmit Credit (CTC).

1.3.5.3 Accumulating Charge

Charge is accumulated by responders on receipt of a Charge frame or Emit frame. The Frame Charge
(FC) is incremented by 1 (representing the 1 frame received). The Byte Charge (BC) is incremented
by the combined size, in bytes, of the Destination MAC, Source MAC, EtherType, and Payload fields of
the Ethernet frame encapsulating the Charge frame or Emit frame. This allows mappers to increase BC

artificially by padding the Ethernet payload beyond the size required to contain the Charge frame or
Emit frame being transmitted.

To limit the ability of a rogue mapper from accumulating dangerous amounts of charge (from which a
Denial-of-Service could be performed on a target), responders are responsible for implementing limits
on the amount of FC and BC which can be accumulated. For more information about the
implementation of these limits, see sections 3.6.5.1 and 3.6.5.2.

1.3.5.4 Charge Requirements

Charge requirements are based on how many frames are to be sent and how many bytes are in those
frames. Charge requirements for each frame are: one Frame Charge (FC), and Byte Charge (BC)
equivalent to the combined size, in bytes, of the Destination MAC, Source MAC, EtherType, and

Payload fields of the Ethernet frame.

The number of frames to be sent varies based on whether a Charge frame or an Emit frame is
received and whether that frame is unacknowledged or acknowledged. (For the definition of

17 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

unacknowledged and acknowledged Charge frames and Emit frames, see section 1.3.5.1. For further
details about determining charge requirements, see section 3.2.4.3.)

As an example, an acknowledged Emit frame containing 5 EmiteeDesc entries would elicit 5 Probe
frames and 1 Ack frame. Probe frames and Ack frames are both 32 bytes in size. Therefore, the

charge required would be 6 FC and 192 BC. (For details about how this example was calculated, see
section 4.3.)

1.3.5.5 Consuming Charge

If the responder is sending a Flat frame (which it does when failing an acknowledged Emit request or
responding to an acknowledged Charge request), the amount of charge consumed from the Current
Transmit Credit (CTC) is equivalent to the charge required for the outgoing Flat frame.

However, if the responder has accepted an Emit request, acknowledged or unacknowledged, the
responder clears the CTC of all charge, including any charge above and beyond that required for the
Emit frame. This forces the mapper to rebuild charge on the responder if any future Emit frames are
to be sent.

As noted in section 3.2.4.3, unacknowledged Charge frames elicit no response and consume no
charge.

1.4 Relationship to Other Protocols

This protocol operates directly over Ethernet (including media such as 802.11 that support Ethernet

encapsulation and hence appear as Ethernet to protocols) and is not used as a transport for other
protocols. Therefore, it is a stand-alone protocol.

HTTP is often used in parallel with this protocol because this protocol transfers information that can be
directly used by HTTP.

This protocol is part of the Windows Rally technologies for enhancing the user experience for computer
and device interaction (for more information about Vista Rally, see [RALLY]). This protocol does not

depend on any of the other Rally technologies, nor do other Rally technologies depend on it.

1.5 Prerequisites/Preconditions

This protocol requires that the implementation have a random number generator whose seed value
does not depend solely on the current time because the time could be synchronized on the network.

Indeed, for a computer with multiple network interfaces, the time is identical on each network
interface. An easily available alternate seed is to use the MAC address of the network interface.

This protocol requires access to counters for the total number of bytes and packets sent and received
(due to any network activity, not just the LLTD implementation) over each network interface.

1.6 Applicability Statement

This protocol operates at Layer 2 (the link-layer) in the OSI reference model and is therefore not

routable. The protocol is suitable only for discovering the link-layer topology of networks that
constitute a single link, such as a small office network or a home network. It is not applicable for
discovering the Layer 3 (network-layer) topology of a larger network, or for discovering the Layer 2
topology of a link to which the LLTD implementation is not directly attached.

LLTD is designed to scale up to 10,000 nodes on the same link.

However, LLTD assumes the total latency involved in the network and frame processing at the nodes
is less than the safeguards built into the protocol. For example, the timer periods of the reset

18 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

procedure as specified in section 3.1.7 or the timers of the RepeatBAND algorithm specified in section
3.5.6.2. If the latency is higher, unexpected results might occur.

1.7 Versioning and Capability Negotiation

This protocol has no capability negotiation or versioning aspects, except that messages include a
version number for future extensibility.

1.8 Vendor-Extensible Fields

This protocol defines a range of special MAC addresses that applications can use when they conduct
network topology tests. This range is 0x000D3AD7F140 through 0x000D3AFFFFFF. These MAC
addresses do not conflict with actual MAC addresses because the range is built from an assigned
Organizationally Unique Identifier (OUI), as described in section 1.9. To minimize the probability of
collisions between two such applications on the same link, while still allowing addresses that the same

application uses to be similar (simply for ease in debugging), applications using this protocol SHOULD
construct such MAC addresses by using the OUI, followed by a random number in the range 0xD7F2 to

0xFFFF, and leaving 8 bits that can be used to give 256 MAC addresses. This protocol contains a
generation number field that can be used as a seed in a pseudo-random number generator.

1.9 Standards Assignments

 Parameter Value Reference

Organizationally Unique Identifier (OUI) 0x000D3A [IEEE-OUI]

Ether type 0x88D9 [IEEE-EtherType]

19 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Messages

The following sections specify how messages associated with this protocol are encapsulated on the
wire, and common data types associated with this protocol.

2.1 Transport

Messages associated with this protocol MUST be transported over raw Ethernet, as specified in
[IEEE802.3], with the value of the Ethernet Header Ethertype field set to 0x88D9.

2.2 Message Syntax

The following diagram shows the position of each layer of header in this protocol.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Ethernet_Header (14 bytes)

...

...

... LLTD_Demultiplex_Header

... LLTD_Base_and_Upper_Layer_Header (variable)

...

Ethernet_Header (14 bytes): 802.3 defined frame format, as specified in [IEEE802.3], with
Ethertype value set to 0x88D9.

LLTD_Demultiplex_Header (4 bytes): Framing that indicates message types as specified in section
2.2.3.1.

LLTD_Base_and_Upper_Layer_Header (variable): Service and message-specific framing header
as specified in sections 2.2.4, 2.2.5, and 2.2.6.

2.2.1 Common Data Types

2.2.1.1 Attributes

Attributes are used in Hello frames (as specified in section 2.2.4.3) that responders send to
enumerators during quick discovery.

All attributes are TLVs and MUST comply with the following format, except when Type is 0x00.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length Value (variable)

...

20 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Type (1 byte): The Type field identifies each attribute. Legal values are specified in the following
table, and each attribute is specified in its own subsection.

Value Meaning

0x00 End-of-Property List marker (section 2.2.1.1.1).

0x01 Host ID (section 2.2.1.1.2) that uniquely identifies the host on which the responder is running.

0x02 Characteristics (section 2.2.1.1.3).

0x03 Physical Medium (section 2.2.1.1.4).

0x04 Wireless Mode (section 2.2.1.1.5).

0x05 802.11 Basic Service Set Identifier (BSSID) (section 2.2.1.1.6).

0x06 802.11 Service Set Identifier (SSID) (section 2.2.1.1.7).

0x07 IPv4 Address (section 2.2.1.1.8).

0x08 IPv6 Address (section 2.2.1.1.9).

0x09 802.11 Maximum Operational Rate (section 2.2.1.1.10).

0x0A Performance Counter Frequency (section 2.2.1.1.11).

0x0C Link Speed (section 2.2.1.1.12).

0x0D 802.11 Received Signal Strength Indication (RSSI) (section 2.2.1.1.13).

0x0E Icon Image (section 2.2.1.1.14).

0x0F Machine Name (section 2.2.1.1.15).

0x10 Support Information (section 2.2.1.1.16) that identifies the device manufacturer's support
information.

0x11 Friendly Name (section 2.2.1.1.17).

0x12 Device Universally Unique Identifier (UUID) (section 2.2.1.1.18).

0x13 Hardware ID (section 2.2.1.1.19).

0x14 QoS Characteristics (section 2.2.1.1.20).

0x15 802.11 Physical Medium (section 2.2.1.1.21).

0x16 AP Association Table (section 2.2.1.1.22).

0x18 Detailed Icon Image (section 2.2.1.1.23).

0x19 Sees-List Working Set (section 2.2.1.1.24).

0x1A Component Table (section 2.2.1.1.25).

0x1B Repeater AP Lineage (section 2.2.1.1.26).

0x1C Repeater AP Table (section 2.2.1.1.27).

Length (1 byte): This field specifies the length, in bytes, of the Value field.

Value (variable): This field specifies information that is specific to the attribute, as specified in the
corresponding subsection.

2.2.1.1.1 End-of-Property List Marker

The End-of-Property List Marker attribute signals the end of the TLV list. All responders MUST include
this marker in every Hello frame.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type

Type (1 byte): This field MUST be set to 0x00.

2.2.1.1.2 Host ID

21 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The Host ID attribute uniquely identifies the host on which the responder is running. All responders
MUST include this attribute in all Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length MAC_address

...

Type (1 byte): This field MUST be set to 0x01.

Length (1 byte): This field MUST be set to 0x06.

MAC_address (6 bytes): This field MUST be the MAC address of the host upon which the responder
is running. On a host with multiple network interfaces, this field SHOULD be the lowest MAC
address across the network interfaces.

2.2.1.1.3 Characteristics

The Characteristics attribute identifies various characteristics of the responder host and network

interface. This attribute is mandatory. All responders MUST include this attribute in all Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length P X F M L Reserved

Type (1 byte): This field MUST be set to 0x02.

Length (1 byte): This field MUST be set to 0x02.

P (1 bit): Network interface is the public side of a network address translation (NAT), as specified in
[RFC3022].

X (1 bit): Network interface is the private side of a NAT.

F (1 bit): Network interface is in full duplex mode.

M (1 bit): Responder MUST set this field if it has a management web page accessible via the HTTP
protocol. A management web page is optional. A responder MAY support it. The mapper SHOULD
construct a URL from the reported IPv6 address. If one is not available, the IPv4 address MUST be
used instead. The URL MUST be of the form: "http://<ip-address>/", where "<ip-address>" is
either an IPv6 address in IPv6 literal notation (as specified in [RFC3513] section 2.2) or an IPv4

address in four-part dotted decimal notation (as specified in [RFC1123] section 2.1).

L (1 bit): Network interface is looping back outbound packets; the outbound packet is sent over the
network interface and also looped back to the interface sending the packet (allowing other

protocols bound to the interface to receive the packet).

Reserved (11 bits): MUST be set to zero when sent and ignored on receipt.

2.2.1.1.4 Physical Medium

The Physical Medium attribute identifies the physical medium of a network interface by using one of
the IANA-published ifType object enumeration values. This attribute is mandatory. All responders
MUST include this attribute in all Hello frames.

22 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length Physical Medium

...

Type (1 byte): This field MUST be set to 0x03.

Length (1 byte): This field MUST be set to 0x04.

Physical Medium (4 bytes): This field MUST be set to the physical medium type of the network

interface that the responder is using. The values are published by the Internet Assigned Numbers
Authority (IANA) for the ifType object, as specified in [IANAifType].

2.2.1.1.5 Wireless Mode

The Wireless Mode attribute identifies how an Institute of Electrical and Electronics Engineers (IEEE)
802.11, as specified in [IEEE802.11-2007], network interface connects to the network.
Implementations with responders in 802.11 stations MUST include this attribute in all Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length Mode

Type (1 byte): This field MUST be set to 0x04.

Length (1 byte): This field MUST be set to 0x01.

Mode (1 byte): This field specifies the method by which a responder's IEEE 802.11 network interface
connects to the network. The following table shows valid values.

Value Meaning

0x00 802.11 IBSS or ad-hoc mode, as specified in [IEEE802.11-2007].

0x01 802.11 infrastructure mode, as specified in [IEEE802.11-2007].

2.2.1.1.6 802.11 BSSID

The 802.11 BSSID attribute specifies an IEEE 802.11 network interface's associated AP.
Implementations with responders in 802.11 stations MUST include this attribute in all Hello frames.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Length BSSID

...

Type (1 byte): This field MUST be set to 0x05.

Length (1 byte): This field MUST be set to 0x06.

23 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

BSSID (6 bytes): This field specifies the MAC address of the AP with which a wireless responder's
wireless network interface is associated.

2.2.1.1.7 802.11 SSID

The 802.11 SSID attribute specifies an IEEE 802.11 network interface's associated AP.
Implementations with responders in 802.11 stations MUST include this attribute in all Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length SSID_String (variable)

...

Type (1 byte): This field MUST be set to 0x06.

Length (1 byte): This field specifies the length in bytes of the SSID_String field.

SSID_String (variable): The ASCII representation of the SSID for the basic service set with which a
wireless responder's wireless network interface associates. Note that the string MUST NOT be null-

terminated and MUST be treated as case-sensitive. The maximum length of the string is 32
characters.

2.2.1.1.8 IPv4 Address

The IPv4 Address attribute specifies an IPv4 network address of the responder. This attribute is
optional; implementations SHOULD include it in Hello frames if they have an IPv4 address.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length IPv4 Address

...

Type (1 byte): This field MUST be set to 0x07.

Length (1 byte): This field MUST be set to 0x04.

IPv4 Address (4 bytes): This field specifies an IPv4 address of the responder. This field's value
MUST be an address of the network interface over which the frame is sent, if it has an IPv4
address. If there are multiple IPv4 addresses on the network interface, the device is free to
choose any one of them. If an IPv4 address is not available on the network interface over which

the frame is sent, the device MAY use an IPv4 address on a different network interface. However,
if the responder sets the M bit in the Characteristics attribute, the address MUST be one which is
reachable via the interface over which the frame is sent. If no such address exists, the responder

MUST NOT include the IPv4 Address attribute.

2.2.1.1.9 IPv6 Address

The IPv6 Address attribute specifies an IPv6 network address of the responder. This attribute is

optional; implementations SHOULD include it in all Hello frames if they have an IPv6 address.

24 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length IPv6 Address (16 bytes)

...

...

...

Type (1 byte): This field MUST be set to 0x08.

Length (1 byte): This field MUST be set to 0x10.

IPv6 Address (16 bytes): This field specifies an IPv6 address of the responder. This field's value

MUST be an address of the network interface over which the frame is sent, if it has an IPv6
address. If there are multiple IPv6 addresses on the network interface, the device is free to
choose any one of them. If an IPv6 address is not available on the network interface over which
the frame is sent, the device MAY use an IPv6 address on a different network interface. However,
if the responder sets the MW bit in the Characteristics attribute, the address MUST be one which is
reachable via the interface over which the frame is sent, and if there is no such address, the

responder MUST NOT include the IPv6 Address attribute.

2.2.1.1.10 802.11 Maximum Operational Rate

The 802.11 Maximum Operational Rate attribute specifies the maximum data rate at which the radio
can run. This attribute is optional; responders operating on 802.11 station network interfaces MAY
include it in Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length Rate

Type (1 byte): This field MUST be set to 0x08.

Length (1 byte): This field MUST be set to 0x02.

Rate (2 bytes): This field specifies the maximum data rate, in network byte order, at which the
802.11 interface can run, in units of 0.5 megabits per second (Mbps).

2.2.1.1.11 Performance Counter Frequency

The Performance Counter Frequency attribute specifies how fast the time stamp counters run in ticks

per second. This information is particularly useful for deciphering the results from timed probe and
probegap tests in the QoS diagnostics type of service. This attribute is optional; implementations

SHOULD include it in all Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length Perf Counter Frequency

...

25 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

...

Type (1 byte): This field MUST be set to 0x0A.

Length (1 byte): This field MUST be set to 0x08.

Perf Counter Frequency (8 bytes): This field specifies the number of ticks per second, in network

byte order, at which the responder's time stamp counters function.

2.2.1.1.12 Link Speed

The Link Speed attribute specifies the network interface's maximum speed in units of 100 bits per
second (bps). This attribute is optional; implementations SHOULD include it in all Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length Link_Speed

...

Type (1 byte): This field MUST be set to 0x0C.

Length (1 byte): This field MUST be set to 0x04.

Link_Speed (4 bytes): This field specifies the maximum speed, in network byte order, of the
sender's network interface, in units of 100 bps.

2.2.1.1.13 802.11 RSSI

The 802.11 RSSI attribute specifies an IEEE 802.11 network interface's RSSI, as specified in

[IEEE802.11-2007]. This attribute is optional; responders operating on 802.11 station network

interfaces Windows Server 2008 Datacenter operating system SHOULD<1> include it in all Hello
frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length RSSI

...

Type (1 byte): This field MUST be set to 0x0D.

Length (1 byte): This field MUST be set to 0x04.

RSSI (4 bytes): This field specifies an aligned integer that identifies the IEEE 802.11 network

interfaces' RSSI. If the actual RSSI value is available, this field MUST be a negative value (the
normal range for an RSSI value is -10 through -200), in decibels referenced to a milliwatt (dBm)
in network byte order.

If the actual RSSI value is not available, but the implementation has some other estimate of the
signal strength,<2> this field MUST be a value in the range 0 to 100, where a value of 50 means
an "average" link quality and a value of 100 means a "perfect" link.

2.2.1.1.14 Icon Image

26 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The Icon Image attribute specifies that the responder has an icon image that represents the host
running the responder and is willing to provide it if a QueryLargeTLV frame requests it. This attribute

is optional; implementations MAY include it in all Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length

Type (1 byte): This field MUST be set to 0x0E.

Length (1 byte): This field MUST be set to 0x00.

2.2.1.1.15 Machine Name

The Machine Name attribute specifies an unterminated UCS-2LE string that identifies the device's host
name. This attribute is mandatory; implementations MUST include it in Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length Device Host Name (variable)

...

Type (1 byte): This field MUST be set to 0x0F.

Length (1 byte): This field specifies the length of the Device Host Name field, in bytes. This field's
value MUST be in the range 2 to 32 (that is, 1 to 16 Unicode characters).

Device Host Name (variable): This field specifies a UCS-2LE string that specifies the device's host
name, where host name SHOULD be a non-fully qualified domain name. The string MUST NOT be

null-terminated.

2.2.1.1.16 Support Information

The Support Information attribute specifies the device manufacturer's support information (for
example, telephone number and support URL). This attribute is optional; implementations MAY include
it in Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length
Device manufacturer's support information

(variable)

...

Type (1 byte): This field MUST be set to 0x10.

Length (1 byte): This field MUST specify a length of 64 octets or less.

Device manufacturer's support information (variable): This field specifies a UCS-2LE string that
specifies the device manufacturer's support information (such as telephone number). The
maximum length of the string is 32 characters or 64 octets. Note that the string MUST NOT be
null-terminated.

27 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.1.1.17 Friendly Name

The Friendly Name attribute indicates that the device has a friendly name and is willing to provide it if
a QueryLargeTLV frame requests it. This attribute is optional; implementations MAY include it in Hello

frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length

Type (1 byte): This field MUST be set to 0x11.

Length (1 byte): This field MUST be set to 0x00.

2.2.1.1.18 Device UUID

The Device UUID attribute specifies a UUID and uniquely identifies a device that supports Universal

Plug and Play (UPnP) [UPnP]. This attribute is used to identify a responder residing on a UPnP device.
Devices that include UPnP functionality MAY include the Device UUID attribute in Hello frames in order
to identify themselves as UPnP-capable.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length Device UUID (16 bytes)

...

...

...

Type (1 byte): This field MUST be set to 0x12.

Length (1 byte): This field MUST be set to 0x16.

Device UUID (16 bytes): This field specifies the UUID that is found in the device unique service
name (USN) portion of an Simple Service Discovery Protocol (SSDP) discovery response (as
specified in [UPnP] section 1.2.3) in UUID binary format.

2.2.1.1.19 Hardware ID

The Hardware ID attribute is used by a responder to indicate that it has a Hardware ID property (see
section 2.2.2.3) and is willing to provide it if a QueryLargeTLV frame requests it. This attribute is

optional for responders in UPnP devices; that is, implementations that include UPnP functionality MAY
include it in Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length

Type (1 byte): This field MUST be set to 0x13.

Length (1 byte): This field MUST be set to 0x00.

28 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.1.1.20 QoS Characteristics

The QoS Characteristics attribute specifies various QoS–related characteristics of the responder host
and network interface. This attribute is mandatory for responders that support layer 2 forwarding,

VLAN tagging, or 802.1p priority tagging; implementations MUST include it in all Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length E Q P Reserved

Type (1 byte): This field MUST be set to 0x14.

Length (1 byte): This field MUST be set to 0x04.

E (1 bit): This field MUST be set if the responder is not providing any Layer 2 forwarding between
segments on this link.

Q (1 bit): This field MUST be set if the interface supports 802.1q virtual local area network (VLAN)

tagging, as specified in [IEEE802.1Q] section 9.

P (1 bit): This field MUST be set if the network interface supports setting the User Priority field in
the Tag Control Information of the tag header (802.1p priority tagging), as specified in
[IEEE802.1Q] section 9.3.2.1

Reserved (13 bits): MUST be set to zero when sent and MUST be ignored on receipt.

2.2.1.1.21 802.11 Physical Medium

The 802.11 Physical Medium attribute is sent by responders in 802.11 stations to indicate the wireless
physical medium used by the station; implementations MAY <3> include it in all Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length PHY_Type

Type (1 byte): This field MUST be set to 0x15.

Length (1 byte): This field MUST be set to 0x01.

PHY_Type (1 byte): A wireless responder MUST use this field to report the 802.11 physical medium

in use per dot11PHYType in 802dot11-MIB, as specified in [IEEE802.11-2007] Appendix D. The
following table shows the valid values.

Value Meaning

0x00 Unknown

0x01 FHSS 2.4 gigahertz (GHz)

0x02 DSSS 2.4 GHz

0x03 IR Baseband

0x04 OFDM 5 GHz

0x05 HRDSSS

0x06 ERP

0x07 — 0xFF Reserved for future use.

29 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.1.1.22 AP Association Table

The AP Association Table attribute indicates that the responder is an AP with an AP Association Table
that lists wireless hosts that are associated with it and is willing to provide it if a QueryLargeTLV frame

requests it. This attribute is mandatory for 802.11 access point responders; APs MUST include it in all
Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length

Type (1 byte): This field MUST be set to 0x16.

Length (1 byte): This field MUST be set to 0x00.

2.2.1.1.23 Detailed Icon Image

The presence of a Detailed Icon Image attribute indicates that the responder has a Detailed Icon
Image and is willing to provide it if a QueryLargeTLV requests it. A Detailed Icon Image is a high-
resolution graphical representation of the device running the responder, as opposed to an Icon Image
attribute, which is lower resolution. This attribute is optional; implementations MAY include it in Hello
frames.

If a responder includes this attribute, it SHOULD also include the smaller Icon Image attribute. If

space is restricted such that only one icon image is available in the responder, the responder MUST
return the Icon Image in the Hello frame if the image is less than or equal to 32,768 octets, or it
MUST return this Detailed Icon Image attribute in the Hello frame if the icon image is greater than
32,768 octets and less than or equal to 262,144 octets.

The Detailed Icon Image attribute MUST have the following format.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length

Type (1 byte): This field MUST be set to 0x18.

Length (1 byte): This field MUST be set to 0x00.

2.2.1.1.24 Sees-List Working Set

The Sees-List Working Set attribute specifies the maximum entry count in the responder's sees-list
database. This attribute is mandatory for responders that can only maintain a list of less than 2^16
entries; such implementations MUST include it in all Hello frames. Responders that have capacity to
maintain at least 2^16 entries SHOULD NOT include it. The absence of this attribute indicates that the

responder supports at least 2^16 entries.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length Max Entries

Type (1 byte): This field MUST be set to 0x19.

Length (1 byte): This field MUST be set to 0x02.

30 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Max Entries (2 bytes): The maximum count, in network byte order, of RecveeDesc entries (as
specified in section 2.2.4.9) that can be stored in its sees-list database.

2.2.1.1.25 Component Table

The presence of the Component Table attribute indicates that the responder has a Component Table
that specifies a responder's internal components, allowing the mapper to generate a more accurate
topology map, and that the responder is willing to provide it if a QueryLargeTLV requests it.
Responder implementations in multifunction devices MUST include this attribute in all Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length

Type (1 byte): This field MUST be set to 0x1A.

Length (1 byte): This field MUST be set to 0x00.

2.2.1.1.26 Repeater AP Lineage

The Repeater AP Lineage attribute specifies the address of the parent, and optionally holds the chain
of parents up to the root of the 802.11 Distribution System, as specified in [IEEE802.11-2007] section
5.2.2. A responder in an access point operating in repeater mode MUST use this attribute to provide
the address of the parent (which MUST be the same as the reported BSSID because this device is also

a client) and each subsequent parent toward the root, if available.

Responders in 802.11 access points MUST include this attribute in all Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length Address Path to Root (variable)

...

Type (1 byte): This field MUST be set to 0x1B.

Length (1 byte): This field MUST be set to a multiple of 6, with a maximum of 36.

6

12

18

24

30

36

Address Path to Root (variable): If the sender is the root of the 802.11 Distribution System, this
field MUST be empty (not present). Otherwise, it MUST contain a list of up to six MAC addresses,
where the first address is the parent AP address, the second address is that AP's parent, and so

forth until either the root MAC address is reached or six addresses have been included.

2.2.1.1.27 Repeater AP Table

31 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The Repeater AP Table attribute indicates that the responder has the routing table that a responder is
using for packets to addresses that are not directly associated, and that the responder is willing to

provide it if a QueryLargeTLV requests it. If the access point is a repeater AP as part of a Wireless
Distribution System, this information permits the mapper to generate a more accurate topology map.

This attribute is mandatory for responders in 802.11 repeater access points; such implementations
MUST include it in all Hello frames.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length

Type (1 byte): This field MUST be set to 0x1C.

Length (1 byte): This field MUST be set to 0x00.

2.2.2 Large Data Properties

The QueryLargeTlvResp frame, as specified in 2.2.4.14, is used to return (portions of) data
properties that are declared as zero length in Hello frames.

2.2.2.1 Icon Image

The property data MUST be an icon image, at most 32,768 bytes long. The image MUST be in any
image format that has a unique signature at the beginning, so that the receiver can detect the image
format purely by inspecting the image. There are many file formats that meet this requirement,
including GIF and JPEG. A responder supports this property MAY use any such format, and the mapper
MAY<4> recognize any such formats it chooses. If the image is not in a format that the mapper

recognizes, the mapper MUST use a default image that it has, in place of the one it received from the
responder.

2.2.2.2 Friendly Name

The Friendly Name property contains a non-NULL-terminated UCS-2LE string that identifies the
device's friendly name. This property's value MUST be between 2 and 64 bytes (1 and 32 characters)
in length.

2.2.2.3 Hardware ID

The Hardware ID property contains a non-NULL-terminated UCS-2LE string. This information MUST
come from the UPnP device description phase, as specified in [UPnP] section 2.1.<5>

The Hardware ID MUST follow these formatting rules:

▪ Characters with an ASCII value less than 0x20 are not allowed.

▪ Characters with an ASCII value greater than 0x80 are not allowed.

▪ Commas are not allowed.

▪ All spaces " " MUST be replaced with an underscore character "_".

Note that the string MUST NOT be null-terminated.

The maximum length of the string is 200 characters (400 octets) and MUST be provided in UCS-2LE
format.

32 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2.4 AP Association Table

A wireless access point responder uses this data object to report the wireless hosts that are associated
with it. This information is particularly useful for discovering legacy wireless devices that do not

implement the responder. Additionally, it allows the mapper to conclusively match wireless hosts that
are associated with the same access point via different BSSIDs (for example, one for each supported
band).

The table MUST contain 0 or more entries for associated stations, where each entry MUST have the
following format.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

MAC_address_of_wireless_host

... Max_Oper_Rate

PHY_type Reserved

MAC_address_of_wireless_host (6 bytes): MAC address of the particular 802.11 station that is

associated with the AP.

Max_Oper_Rate (2 bytes): The maximum operational data rate at which the selected radio can run
to the given host, in network byte order. The data rate MUST be encoded in units of 0.5 Mbps.

PHY_type (1 byte): The physical medium type for the given host. Valid values are defined in section
2.2.1.1.21.

Reserved (1 byte): MUST be set to zero when sent and MUST be ignored on receipt.

If the size of the actual AP Association Table exceeds 409 entries, the responder MUST make only
409 entries available in this data object. It is up to the implementer to choose which stations to

make available in that case.

2.2.2.5 Detailed Icon Image

 The Detailed Icon Image property's data MUST be a high-resolution icon image, at most 262,144
bytes in length. The image format requirements are the same as specified in section 2.2.2.1.

2.2.2.6 Component Table

The Component Tabledata object is used by multifunction devices such as APs to report their internal
components.

The table MUST be at most 4096 bytes in size and contain 0 or more entries for the sender's
components, where each entry MUST begin with a header that is 2 octets in length.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Version Reserved

Version (1 byte): This field MUST be set to 0x01.

Reserved (1 byte): MUST be set to zero when sent and MUST be ignored on receipt.

33 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2.6.1 Component Descriptors

The Component Table header MUST be followed by an arbitrary number of component descriptors,
each carrying a mandatory header.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length

Type (1 byte): This field is the component type. The following table shows the valid values.

Value Meaning

0x00 A bridge that interconnects all identified wireless local area network (WLAN) and LAN segments. It

is assumed that the responder reporting the Component Table attribute is connected directly into
this bridge.

0x01 This field is the 802.11 access point.

0x02 This field is a built-in switch. If a bridge component (type 0x00) also exists, it indicates that this
switch connects directly into the bridge. If a bridge component does not exist, it indicates that the
switch is connected directly to the built-in responder.

Length (1 byte): This field specifies the length (in octets) of the descriptor payload immediately
following this header.

2.2.2.6.1.1 Bridge Component Descriptor

A bridge component descriptor with Type value 0x00 MUST have the following format.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length Behavior

Type (1 byte): This field MUST be set to 0x00.

Length (1 byte): This field MUST be set to 0x01.

Behavior (1 byte): This field identifies the behavior of the bridge. Valid values are the following.

Value Meaning

Hub
0x00

All packets transitioning through the bridge are seen on the responder.

Switch
0x01

Packets from LAN or WLAN are seen only on the responder if they are broadcast or
explicitly targeted at the responder.

Internal_hub_switch
0x02

Packets transitioning through the bridge are seen on the responder; however, the
bridge learns addresses like a switch, provided that they initiate on components other
than the responder.

2.2.2.6.1.2 802.11 Access Point Component Descriptor

An 802.11 AP component descriptor with Type value 0x01 MUST have the following format.

34 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length Max_Oper_Rate

PHY_type Mode BSSID

...

Type (1 byte): This field MUST be set to 0x01.

Length (1 byte): This field MUST be set to 0x0A.

Max_Oper_Rate (2 bytes): The maximum operational data rate at which the radio can function,

encoded in units of 0.5 Mbps in network byte order.

PHY_type (1 byte): This field is the physical medium type. Valid values are defined in section

2.2.1.1.21.

Mode (1 byte): This field specifies how the radio connects to the wireless network. Valid values are
defined in section 2.2.1.1.5.

BSSID (6 bytes): The MAC address of the AP that is hosting the SSID.

2.2.2.6.1.3 Built-in Switch Component Descriptor

A built-in switch component descriptor with Type value 0x02 MUST have the following format.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Length Link_Speed

...

Type (1 byte): This field MUST be set to 0x01.

Length (1 byte): This field MUST be set to 0x04.

Link_Speed (4 bytes): The maximum speed of the switch, in units of 100 bps in network byte order.

2.2.2.7 Repeater AP Table

The Repeater AP Table data object is used by repeater access points to report station routing
information.

The table MUST contain a list of 0 or more entries where each entry represents a host and AP pair.

Each table entry is 12 octets in length, and the format MUST be the following.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

MAC_address_of_destination_host

... MAC_address_of_next_hop_access_point

35 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

...

MAC_address_of_destination_host (6 bytes): This field specifies the MAC address of the
particular 802.11 station that is associated with another AP.

MAC_address_of_next_hop_access_point (6 bytes): This field MUST be one of the BSSID

addresses that are listed in the AP Association Table through which the AP can reach the
destination host. The implementer is free to choose any such BSSID address.

If the size of the actual Repeater AP Table exceeds 256 entries, the responder MUST make only
256 entries available in this property. It is up to the implementer to choose which host and AP
pairs are made available in that case.

2.2.3 Base Specification

 All implementations of this protocol MUST use and accept the following base specification format.

2.2.3.1 Demultiplex Header Format

The Demultiplex header format is defined as follows.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Version Type_of_Service Reserved Function

Version (1 byte): This field specifies the version of the Demultiplex header. This field MUST be set to
0x01.

Type_of_Service (1 byte): This field specifies the intent of the sender. When a sender sends a

Discover frame with Type_of_Service set to Topology discovery (0x00) or Quick discovery (0x01),

any Hello frame sent by a responder in response MUST have the Type_of_Service field set to
either Topology discovery (0x00) or Quick discovery (0x01).

Value Meaning

0x00 Topology discovery

0x01 Quick discovery

0x02 QoS diagnostics (Network Test and Cross Traffic Analysis)

Reserved (1 byte): MUST be set to zero when sent and MUST be ignored on receipt.

Function (1 byte): This field is the type of message for a given type of service. The following
functions are valid for service type 0x00.

Value Meaning

0x00 Discover

0x01 Hello

0x02 Emit

0x03 Train

0x04 Probe

0x05 Ack

0x06 Query

0x07 QueryResp

0x08 Reset

36 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

0x09 Charge

0x0A Flat

0x0B QueryLargeTlv

0x0C QueryLargeTlvResp

The following functions are valid for service type 0x01.

Value Meaning

0x00 Discover

0x01 Hello

0x08 Reset

The following functions are valid for service type 0x02.

Value Meaning

0x00 QosInitializeSink

0x01 QosReady

0x02 QosProbe

0x03 QosQuery

0x04 QosQueryResp

0x05 QosReset

0x06 QosError

0x07 QosAck

0x08 QosCounterSnapshot

0x09 QosCounterResult

0x0A QosCounterLease

2.2.4 Topology Discovery Tests and Quick Discovery

2.2.4.1 Base Header Format

This base header MUST be used when the Type of Service value in the Demultiplex header is set to
0x00 (Topology discovery) or 0x01 (Quick discovery).

The Base header MUST be the following.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Real_Destination_Address

... Real_Source_Address

...

Sequence_Number_or_XID

Real_Destination_Address (6 bytes): This field specifies the intended destination's real MAC
address.

37 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Real_Source_Address (6 bytes): This field specifies the sender's real MAC address. A sender
MUST set the real source and destination MAC addresses to its own MAC address and its intended

destination MAC address, respectively. These fields are required because the source and
destination address fields of the Ethernet header are rewritten by some network devices and thus

might not survive an end-to-end transmission.

Sequence_Number_or_XID (2 bytes): If the frame is a Discover frame or a Reset frame, this field
MUST contain a transaction ID (XID). Otherwise, it MUST contain a sequence number.

A sequence number, in network byte order, correlates a response to a specific request and
increments using ones-complement arithmetic. The sequence number ensures reliability of
acknowledged request frames in the protocol, that is Emit, Charge, Query, and QueryLargeTlv
frames. Emit and Charge frames can be both acknowledged and unacknowledged. Acknowledged

frames MUST use nonzero sequence numbers. Unacknowledged frames, that is Emit, Charge,
Hello, Train, and Probe frames, are frames for which the protocol does not guarantee reliability
and MUST use a sequence number of zero.

An XID is used to uniquely identify the mapper or enumerator session. For a Discover Frame, the

mapper MUST randomly generate two XIDs at initialization: one MUST be used for topology
discovery tests, and one MUST be used for quick discovery.

With stable storage, a XID value for quick discovery SHOULD be sequential to the previous XID
value for quick discovery and a XID value for topology discovery SHOULD be sequential to the
previous XID value for topology discovery; without stable storage, XID values MAY be assigned at
random. For a Reset frame, the XID MUST be set to zero. Sequential XIDs are preferable, because
they reduce the probability of incorrect association with a previous session.

2.2.4.2 Discover Upper-Level Header Format

A Discover frame is broadcast by an enumerator to all responders to initiate quick discovery and cause
responders to start responding with Hello frames.

The Discover header MUST immediately follow the Base header.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Generation_Number Number_of_Stations

Station_List (variable)

...

Generation_Number (2 bytes): This field contains an unsigned integer in network byte order. This
field allows the mapper to negotiate a generation number with the responders that respond to a
Discover frame. The number allows the mapper to generate a unique range of MAC addresses that
falls between 00-0D-3A-D7-F1-40 and 00-0D-3A-FF-FF-FF (the topology discovery address pool
reserved for the Microsoft Corporation as specified in [IEEE-OUI]), that does not conflict with

those from a recent topology discovery test.

Number_of_Stations (2 bytes): This field specifies an unsigned integer. This field indicates the

number of station addresses that are present in the following station list.

Station_List (variable): This field MUST be a sequence of 6-octet MAC addresses where the
number of addresses in the sequence is given by the Number_of_Stations field.

38 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.4.3 Hello Upper-Level Header Format

Hello frames MUST be sent to the Ethernet all-ones broadcast address so all switches can learn the
source port of all responders. The Real Destination Address field in the Base header of the Hello

frame SHOULD be set to FF-FF-FF-FF-FF-FF.

The Hello header following a Base header MUST be the following.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Generation_Number Current_Mapper_Address

...

Apparent_Mapper_Address

... TLV_List (variable)

...

Generation_Number (2 bytes): This field specifies an unsigned integer that indicates the
responder's current generation number.

Current_Mapper_Address (6 bytes): The active mapper's real MAC address as given in the Real
Source Address field in the Base header of the Discover frame that initiated the active topology

mapping request. This field MUST be set to zero if there is no active topology mapping session.

Apparent_Mapper_Address (6 bytes): This field specifies the mapper's MAC address as given in
the Source Address field in the Ethernet header of the Discover frame that initiated the active
topology mapping request. This field MUST be set to zero if there is no active topology mapping
session.

TLV_List (variable): This field specifies properties (as specified in section 2.2.1.1) that the

responder knows about the network interface on which it is running. A TLV MUST NOT occur in the
list more than once.

2.2.4.4 Emit Upper-Level Header Format

A mapper sends an Emit frame to a responder to request that the responder transmit a set of Train or

Probe frames, each with specified source and destination MAC addresses, after a specified pause time,
and optionally that the responder immediately acknowledge the Emit frame with an Ack frame. The
pause is used because some switches require approximately 150 milliseconds to update their port
filtering databases, so back-to-back Train and Probe frames are not forwarded correctly.

Emit frames also carry inherent charge. See section 3.6.5.2 for details on how charge is accumulated
from Emit frames.

The Emit frame following a Base header MUST have the following format.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Num_Descs EmiteeDescs (variable)

...

39 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Num_Descs (2 bytes): This field specifies the unsigned integer count, in network byte order, of the
number of EmiteeDesc items in the EmiteeDescs field. This field's value MUST be in the range 1

to 105.

EmiteeDescs (variable): This field specifies a list of EmiteeDesc items, where each EmiteeDesc item

is a 14-octet structure.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Pause Source_Address

...

Destination_Address

...

Type (1 byte): This field specifies the type of packet to emit. The following table shows valid values.

Value Meaning

0x00 Train

0x01 Probe

Pause (1 byte): This field specifies the number of milliseconds to pause before the associated packet
is emitted. The sum of the Pause values in all EmiteeDesc entries in an Emit frame MUST NOT

exceed 1 second.

Source_Address (6 bytes): This field specifies the source MAC address of the packet to emit. The
source MAC address MUST be either the responder's real MAC address to which the frame is sent
or a MAC address from the special MAC address range 0x000D3AD7F140 to 0x000D3AFFFFFF that
is specific to this protocol.

Destination_Address (6 bytes): This field specifies the destination MAC address of the packet to
emit. The destination address MUST NOT be a multicast address because these addresses could

amplify traffic.

2.2.4.5 Train Upper-Level Header Format

A mapper sends an Emit request to a responder, sometimes commanding it to send the Train frame.

This Train frame is intended to allow a switch that is connected to the responder to learn the origin of
a MAC address. The Train frame is ignored by all responders on reception.

The Train frame has no upper-level header other than the Base header itself.

2.2.4.6 Probe Upper-Level Header Format

A mapper sends an Emit request to a responder, sometimes commanding it to send a Probe frame to
another responder. This Probe frame is meant to be seen and recorded by that responder.

The Probe frame has no upper-level header other than the Base header itself.

2.2.4.7 Ack Upper-Level Header Format

A responder sends an Ack frame to a mapper in response to an Emit request that contains a nonzero
sequence number.

40 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Ack frames are not acknowledged, but the Sequence Number field in the Base header MUST be
nonzero; that is, the sequence number of the request that is being acknowledged.

The Ack frame has no upper-level header other than the Base header itself.

2.2.4.8 Query Upper-Level Header Format

A mapper sends a Query frame to a responder to retrieve Probe events that the responder has
observed on the wire.

The Query frame has no upper-level header other than the Base header itself.

The sequence number in the base header MUST be nonzero for Query frames, because the purpose of
the Query frame is to elicit a QueryResp frame response from a responder. Responders ignore Query
frames with the sequence number set to zero.

2.2.4.9 QueryResp Upper-Level Header Format

A responder sends a QueryResp frame to a mapper in response to a Query request. It lists which
recordable events (such as Ethernet source and Ethernet destination addresses from Probe frames
that the responder has observed on the wire during a session) are available since the previous Query
frame. QueryResp frames are not acknowledged but MUST set the Base header's Sequence Number
field to match the Query frame to which they are generated in response.

The QueryResp frame that follows a Base header MUST have the following format.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

M E Num_Descs RecveeDescs (variable)

...

M (1 bit): This field MUST be set if there are more RecveeDescs than will fit in this frame.

E (1 bit): This field MUST be set if the responder is unable to store a RecveeDesc record due to lack
of memory.

Num_Descs (14 bits): This field specifies the count of returned RecveeDesc structures that are
included in the frame.

RecveeDescs (variable): This field specifies a list of RecveeDesc items, where each Recvee item is

formatted as specified in the following table. Responders that are sending this frame MUST NOT
merge identical recordable events (RecveeDescs items) even if they occur multiple times. The
ordering of RecveeDesc items in this frame MUST represent arrival-time ordering.

Each RecveeDesc item MUST have the following 20-octet structure.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Real_Source_Address

...

EthernetSource_Address

41 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

... Ethernet_Destination_Address

...

Type (2 bytes): This field specifies the recorded protocol type. The following table shows the valid
values.

Value Meaning

0x00 Probe

0x01 Address Resolution Protocol (ARP), as specified in [RFC826], or Internet Message Control
Protocol for the Internet Protocol Version 6 (ICMPv6) Neighbor Discovery, as specified in
[RFC2461].

Real_Source_Address (6 bytes): This field specifies the real source MAC address.

For ARP, this field corresponds to the ar$sha field in an ARP response packet, as specified in

[RFC826].

For ICMPv6, this corresponds to the optional target link-layer address option in a neighbor discovery
packet, as specified in [RFC2461] section 4.

EthernetSource_Address (6 bytes): This field specifies the source MAC address in the Ethernet

frame.

Ethernet_Destination_Address (6 bytes): This field specifies the destination MAC address in the
Ethernet frame.

2.2.4.10 Reset Upper-Level Header Format

A mapper broadcasts a Reset frame to all responders to abort a mapping generation either because
someone else is mapping or because mapping is over.

The Reset frame has no upper-level header other than the Base header itself.

2.2.4.11 Charge Upper-Level Header Format

A mapper sends a Charge frame to a responder to match the number of frames and amount of bytes
that is to be requested in an upcoming Emit frame. This action is intended to prevent bandwidth
amplification attacks. A charge frame is not required if the upcoming Emit frame has enough inherent
charge to satisfy its own request, for example, if the Emit frame requests that a single train/probe
frame be transmitted.

The Charge frame has no upper-level header other than the Base header itself.

2.2.4.12 Flat Upper-Level Header Format

A responder sends a Flat frame to a mapper in response to the following:

▪ An Emit frame that has a nonzero sequence number and requires more charges than the

responder has. The Flat frame tells the mapper to retry the Emit request, preceded by a fixed
count of Charge frames to build up the needed charge.

▪ A Charge frame that has a nonzero sequence number, which effectively forces the responder to
report its current charge count.

Such a charge frame MUST contain enough padding to satisfy the charge required for the responder to
send the Flat Frame response.

42 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The Flat frame following a Base header MUST have the following format.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Current_Transmit_Credit_in_Bytes

CTC_in_Packets

Current_Transmit_Credit_in_Bytes (4 bytes): (CTC) This field specifies the value of the CTC byte
counter at the responder, in network byte order.

CTC_in_Packets (1 byte): This field specifies the value of the CTC packet counter at the responder,
in network byte order.

2.2.4.13 QueryLargeTlv Upper-Level Header Format

The QueryLargeTlv frame allows the mapper to query a responder for TLV data that is too large to be
included in a Hello frame. The inclusion of a zero-length TLV in the Hello frame indicates that such
data is available and that the responder is willing to provide the data in a QueryLargeTlvResp
response. Each QueryLargeTlv request results in a maximum of one QueryLargeTlvResp response.
Repeated QueryLargeTlv requests have to be made for sufficiently large TLVs that do not fit in a single
QueryLargelvVResp response frame.

The sequence number in the base header MUST be nonzero for QueryLargeTlv frames, because the

purpose of the QueryLargeTlv frame is to elicit a QueryLargeTlvResp frame response from a
responder. Responders ignore QueryLargeTlv frames with the sequence number set to zero.

The QueryLargeTlv frame that follows a Base header MUST have the following format.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Type Offset

Type (1 byte): This field specifies the type of TLV that is requested. It MUST be one of the following
values.

Value Meaning

0x0E Icon image (section 2.2.2.1)

0x11 Friendly Name (section 2.2.2.2)

0x13 Hardware ID (section 2.2.2.3)

0x16 AP Association Table (section 2.2.2.4)

0x18 Detailed Icon Image (section 2.2.2.5)

0x1A Component Table (section 2.2.2.6)

0x1C Repeater AP Table (section 2.2.2.7)

Offset (3 bytes): This field specifies the offset in octets, in network byte order, within the TLV data

to query.

2.2.4.14 QueryLargeTlvResp Upper-Level Header Format

A responder sends the QueryLargeTlvResp frame to a mapper in response to a QueryLargeTlv request.

It returns up to the maximum number of octets that fit into a response frame over the Ethernet
media, starting from a requested offset.

43 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The QueryLargeTlvResp header MUST immediately follow the Base header and have the following
format.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

M R Length Data (variable)

...

M (1 bit): This field MUST be set if there is more data than will fit in this frame.

R (1 bit): MUST be set to zero when sent and MUST be ignored on receipt.

Length (14 bits): This field specifies the octet count, in network byte order, of data that is returned
in the QueryLargeTlvResp frame. This field MUST be set to 0x00 if the QueryLargeTlv request is
for an unsupported TLV type.

Value Meaning

QueryLargeTlv
0x00

An unsupported TLV type

Data (variable): This field specifies the information that was requested in the QueryLargeTlv frame.
The format of the data objects are specified in section 2.2.2. This field MUST contain a portion of
the requested data object, starting at the offset requested in the QueryLargeTlv frame, and

contain as many bytes of the data object as will fit in the frame.

2.2.5 QoS Diagnostics Specification for Network Test

2.2.5.1 Base Header Format

This Base header MUST be used when the Type of Service value in the Demultiplex header is set to

0x02 (QoS diagnostics) and the Function value is in the range 0x00 (QosInitializeSink) to 0x07
(QosAck).

The Base header format MUST be the following.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Real_Destination_Address

... Real_Source_Address

...

Sequence_Number

Real_Destination_Address (6 bytes): This field specifies the intended destination's real MAC
address.

Real_Source_Address (6 bytes): This field specifies the sender's real MAC address.

A sender MUST set the real source and destination MAC addresses to its own MAC address and its
intended destination MAC address, respectively. This field is required because some network

44 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

devices rewrite the Source Address and Destination Address fields of the Ethernet header and
thus might not survive an end-to-end transmission.

Sequence_Number (2 bytes): This field specifies the sequence number that correlates a response
(QosReady, QosQueryResp, QosError, or QosAck) to a specific request (QosInitializeSink,

QosProbe, QosQuery, or QosReset). The correlation provided by the sequence number enables
request senders to ensure a response is received for a given request.

2.2.5.2 QosInitializeSink Upper-Level Header Format

A controller sends the QosInitializeSink frame to a sink to set up a network test session.

The QosInitializeSink header that follows the Base header MUST have the following format.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Interrupt_Mod

Interrupt_Mod (1 byte): This field specifies the interrupt moderation requirement of a network test
session. The following table shows the possible values.

Value Meaning

0x00 Disable interrupt moderation.

0xFF Use the existing interrupt moderation setting.

2.2.5.3 QosReady Upper-Level Header Format

A sink sends a QosReady frame to a controller, in reply to a QosInitializeSink frame, to notify the
controller that a network test session is successfully established.

The QosReady header that follows a Base header MUST have the following format.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Sink_Link_Speed

Performance_Counter_Frequency

...

Sink_Link_Speed (4 bytes): This field specifies the responder's link speed in 100-bit-per-second
units in network byte order.

Performance_Counter_Frequency (8 bytes): This field allows a responder to identify how fast its
time stamp counters run in ticks per second in network byte order.

2.2.5.4 QosProbe Upper-Level Header Format

A controller sends a QosProbe frame to a sink and by a sink back to a controller. It carries time stamp
values that an application can use on the controller to calculate network bandwidth.

45 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The QosProbe header that follows the Base header MUST have the following format.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Controller_Transmit_Timestamp

...

Sink_Receive_Timestamp

...

Sink_Transmit_Timestamp

...

Test_Type Packet ID T 802.1p Value Payload

...

Controller_Transmit_Timestamp (8 bytes): This field specifies the time stamp, in network byte
order, of the controller on transmission, in units per Performance Counter Frequency (as specified

in section 2.2.1.1.11).

Sink_Receive_Timestamp (8 bytes): This field specifies the time stamp, in network byte order, of
the sink on receipt in units per Performance Counter Frequency (as specified in section
2.2.1.1.11). This field MUST be set to zero in a timed probe test. In a probegap test, this field
MUST be set to zero on transmission from the controller.

Sink_Transmit_Timestamp (8 bytes): This field specifies the time stamp, in network byte order, of

the sink on transmission in units per Performance Counter Frequency (as specified in section
2.2.1.1.11). This field MUST be set to zero in a timed probe test. In a probegap test, this field
MUST be set to zero on transmission from the controller.

Test_Type (1 byte): This field specifies the test type in which this packet is involved. The following
table shows the possible values.

Value Meaning

0x00 Timed probe.

0x01 probegap originating from the controller.

0x02 probegap originating from the sink.

Packet ID (1 byte): The controller MUST assign an ID to the packet so it can be uniquely identified
when it is returned in either a QoSProbe or QosQueryResp.

T (1 bit): This bit indicates whether or not the encapsulating Ethernet frame for the QueryProbe
frame returned by a sink contains a tag header as specified in [IEEE802.1Q] section 9. The Tag
Control Information portion of the tag header is set to all zeros except the user_priority field,

whose value is set from the 802.1p value. This value is only valid for probegap tests (Test_Type =
0x01), and otherwise MUST be set to zero when sent and ignored on receipt.

802.1p Value (7 bits): If the T flag is set, this field contains the value to be set as the user_priority
field of the Tag Contol Information portion of the tag header as specified in [IEEE802.1Q] section

46 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

9 for each QosProbe packet that is reflected to the controller in the case of a probegap test. If the
T flag is not set, this field MUST be set to zero when sent and MUST be ignored on receipt.

Payload (5 bytes): This field specifies arbitrary data that is used to pad the frame to the correct
frame size. In a probegap experiment, the payload content that a sink receives MUST be

duplicated on the sink's send path.

2.2.5.5 QosQuery Upper-Level Header Format

A controller sends a QosQuery frame to a sink following the last QosProbe frame in a timed probe test.

The QosQuery frame has no upper-level header other than the Base header itself. The sequence
number MUST be nonzero.

2.2.5.6 QosQueryResp Upper-Level Header Format

A sink sends the QosQueryResp frame to the controller, in response to a QosQuery frame. It lists

QosProbe events (also known as QosEventDesc structures) that have been observed since the
previous QosQuery frame. QosQueryResp frames MUST NOT be acknowledged. The Base header's
Identifier field of the QosQueryResp MUST match the QosQuery frame that is generated in response
to the QosQueryResp frame. The ordering of QosEventDesc items in this frame MUST represent the
ordering of the arrival time.

The QosQueryResp header that follows the Base header MUST have the following format.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

R E Num Events QosEventDesc list (variable)

...

R (1 bit): This field MUST be set to 0x00 and MUST be ignored upon receipt.

E (1 bit): This field MUST be set if the responder is unable to allocate enough memory for one or
more QosEventDesc structures.

Num Events (14 bits): This field specifies the count, in network byte order, of QosEventDesc items
that follow. If the E bit is set, this field MUST be zero.

QosEventDesc list (variable): This field specifies a set of QosEventDesc items, where each

QosEventDesc item is an 18-octet structure. If the Num Events field is zero, this field MUST
NOT be present.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Controller_Transmit_Timestamp

...

Sink_Receive_Timestamp

...

47 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Packet_ID Reserved

Controller_Transmit_Timestamp (8 bytes): This field specifies the time stamp, in network byte
order, of the controller on event transmission in units per Performance Counter Frequency.

Sink_Receive_Timestamp (8 bytes): This field specifies the time stamp, in network byte order, of

the sink on event reception in units per Performance Counter Frequency.

Packet_ID (1 byte): This field specifies the value of the Packet ID field from the QosProbe frame
that generated the event.

Reserved (1 byte): This field is not currently used, but it exists only to pad the structure to an even
size. This field MUST be set to 0 on transmit and ignored on receipt.

2.2.5.7 QosReset Upper-Level Header Format

A controller sends a QosReset frame to a sink to terminate a network test session.

The QosReset frame has no upper-level header other than the Base header itself.

2.2.5.8 QosError Upper-Level Header Format

A sink sends the QosError frame to notify a controller that a network test session cannot be initiated.

The QosError header that follows the Base header MUST have the following format.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Error_Code

Error_Code (2 bytes): This field specifies an error code that identifies the reason that a request

failed, resulting in this response. The following table shows valid error code values.

Value Meaning

0x00 Insufficient resources. The responder ran out of resources while attempting to set up the session.

0x01 Busy; try again later. The responder has reached its session limit.

0x02 Interrupt moderation not available. The interrupt moderation requirement cannot be satisfied, or
the ability to control it is not available.

2.2.5.9 QosAck Upper-Level Header Format

A sink sends the QosAck frame to a controller to notify it that a QosReset request has been processed.

The QosAck frame has no upper-level header other than the Base header itself.

2.2.6 QoS Diagnostics Specification for Cross-Traffic Analysis

2.2.6.1 Base Header Format

This Base header MUST be used when the Type of Service value in the Demultiplex header is set to
0x02 (QoS diagnostics) and the Function value is in the range 0x08 (QosCounterSnapshot) to 0x0A
(QosCounterLease).

48 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The Base header format MUST be the following.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Real_Destination_Address

... Real_Source_Address

...

Sequence Number

Real_Destination_Address (6 bytes): This field specifies the intended destination's real MAC
address. This field allows querying of per-network interface counters in wireless access points. For

these devices, this address field MUST identify the BSSID.

Real_Source_Address (6 bytes): This field specifies the sender's real MAC address. This field is
necessary because the Source Address field of the Ethernet header is translated by some
network devices and thus might not survive an end-to-end transmission.

Sequence Number (2 bytes): This field specifies the sequence number that correlates a response to
a specific request.

For function value 0x08, this field MUST be nonzero.

2.2.6.2 QosCounterSnapshot Upper-Level Header Format

A cross-traffic analysis initiator sends a QosCounterSnapshot frame to a responder to retrieve its
history of network performance counters.

The QosCounterSnapshot header MUST immediately follow the Base header, and it MUST have the

following format.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

History_Size

History_Size (1 byte): This field specifies the maximum number of most recent full 4-tuples to
return from the history.

2.2.6.3 QosCounterResult Upper-Level Header Format

A responder sends a QosCounterResult frame to a cross-traffic analysis initiator in response to a
QosCounterSnapshot frame.

At most, each QosCounterResult frame reports as many full 4-tuple snapshots (see Snapshot_List
definition following the QosCounterResult header illustration) as are requested in the preceding

QosCounterSnapshot request. The sub-second snapshot (section 3.8.5.2) is also returned in the
QosCounterResult frame.

The QosCounterResult header immediately follows the Base header, and it MUST have the following
format.

49 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Subsecond_Span Byte_Scale Packet_Scale History_Size

Snapshot_List (variable)

...

Subsecond_Span (1 byte): This field specifies the time span (expressed as 1/256ths of a second)
since the last sampling interval, taken at the time that the QosCounterSnapshot request is
received. A value of zero means that the time span is less than 1/256 of a second (approximately

3.9 milliseconds).

Byte_Scale (1 byte): This field's value MUST be in the range 0 to 255, where a value of n indicates
that all byte counters are expressed in units of (n+1) kilobytes.

Packet_Scale (1 byte): This field's value MUST be in the range 0 to 255, where a value of n
indicates that all packet counters are expressed in units of (n+1) packets.

History_Size (1 byte): This field specifies the number of full 4-tuples that the responder can return.

This number MUST NOT include the sub-second snapshot that is taken when the
QosCounterSnapshot request is received (section 3.8.5.2).

Snapshot_List (variable): This field MUST include the 4-tuple snapshots that were counted by the
History Size field, plus the sub-second snapshot. Entries in the snapshot list MUST be arranged
starting with the oldest 4-tuple snapshot and ending with the sub-second 4-tuple snapshot.

Each snapshot has the following format.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Bytes_Received Packets_Received

Bytes_Sent Packets_Sent

Note A 1,500-byte Ethernet frame is large enough to fit 184 entries, which is more than 3
minutes of historical data.

2.2.6.4 QosCounterLease Upper-Level Header Format

A cross-traffic analysis initiator broadcasts a QosCounterLease frame to all responders to request that

they start collecting the network performance counters that are returned in the QosCounterResult
frame.

The QosCounterLease frame has no upper-level header other than the Base header itself.

50 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Protocol Details

As described in section 1.3, this protocol defines the following roles:

▪ Enumerator: This role MAY<6> be supported by implementations of this protocol.

▪ Mapper: This role MAY<7> be supported by implementations of this protocol. If supported, the
implementation MUST also support the Enumerator role.

▪ QoS Controller: This role MAY<8> be supported by implementations of this protocol. If supported,

the implementation MUST also support the Enumerator role.

▪ Cross-Traffic Analysis Initiator: This role MAY<9> be supported by implementations of this
protocol. If supported, the implementation MUST also support the Enumerator role.

▪ Responder (Quick Discovery): This role MUST be supported by implementations of this protocol.

▪ Responder (Topology Discovery): This role MUST be supported by implementations of this

protocol.

▪ QoS Sink: This role MUST be supported by implementations of this protocol.

▪ Responder (QoS Cross-Traffic): This role MUST be supported by implementations of this protocol.

Each role is described in the following sections.

An implementation MUST be able to execute all roles that it supports at the same time, but only as
allowed by the following limitations and dependencies among the different roles:

▪ An initiator (enumerator, mapper, QoS controller, or Cross-Traffic Analysis initiator) MUST at the
same time act as responder (Quick Discovery, Topology Discovery, QoS Sink, or QoS Cross-

Traffic).

▪ All responder roles MUST be able to execute simultaneously, with the exception that the state

machine of the Quick Discovery responder impacts the Topology Discovery as specified in the
corresponding sections (see specification of Session Table in sections 3.5.1 and 3.6.1).
Specifically, the Topology Discovery responder is associated with the mapper that is selected by
the Quick Discovery responder as the current mapper (see section 3.5.5.1).

This specification covers processing rules for error conditions, such as out-of-memory conditions, to

ensure that all roles maintain a consistent state. However, error conditions in one role might impact
the functionality of other roles, including the ability to discover all LLTD-capable stations on the
network.

3.1 Enumerator Details

This section details the role of an enumerator that is used in quick discovery. An enumerator seeks to
discover all stations (responders) on the network that are capable of using this protocol. The
enumerator starts by broadcasting a Discover frame. This frame contains a set of responder MAC

addresses that the enumerator has seen (initially the empty set) and an XID value that helps all
responders detect an enumerator that has reset itself without notifying other responders via the Reset
frame. A station MUST NOT have more than one instance of an enumerator active at any time.

An important aspect of quick discovery is avoiding the network overload that is caused by either a
very large network or one of the more malicious mappers. The RepeatBAND algorithm (as specified in
section 3.5.6.2) is used for this purpose, and it forces responders to throttle their own transmissions
based on seeing other responders' frames.

51 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

An enumerator MAY support multiple network interfaces. Quick discovery is a networking protocol that
is bound to a specific network interface. If an enumerator supports multiple network interfaces, it

MUST create a separate protocol instance for each supported network interface and the higher-layer
protocol or application MUST specify the network interface to use for quick discovery. It is

recommended that the higher-layer protocol or application does not initiate quick discovery on
multiple network interfaces at the same time, because network interfaces might be connected to the
same network and there can only be one quick discovery running on a network at any point in time, as
specified in section 3.1.5.1.1.

Message request/response pairs that are sent during quick discovery are defined as follows.

 Sent by enumerator Sent by responder

Discover Hello

Reset N/A

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behaviors are consistent with those described in this
document.

The data elements required in any enumerator implementation are:

▪ Current Generation Number: This data element specifies the most recently accepted generation
number that a responder volunteered in the Hello frame. This data element is an unsigned 16-bit

value.

▪ Last-Seen Station List: This list holds all unique responder MAC addresses seen via Hello frames
since the enumerator sent the last Discover frame.

▪ Seen Station List: This list holds an entry for each unique responder that was seen since the start
of the quick discovery process. It is keyed by the responder's MAC address and also contains a list
of TLVs for the responder.

▪ DiscoveryInProgress Flag: This flag indicates whether quick discovery is currently in progress

(TRUE) or not (FALSE).

▪ DiscoveryFrameSent Flag: A flag indicating whether the enumerator has sent out a Discover
frame.

▪ Application Request List: A list of identifiers indicating the higher-layer protocols or applications
interested in the results of the quick discovery in progress, if any.

▪ Cancelled Flag: A flag indicating whether the quick discovery in progress, if any, has been
canceled.

▪ Network Medium Connected Flag: A flag indicating whether the network interface is connected to a
network medium.

▪ Network Interface Identifier: An identifier that uniquely identifies the network interface used by
the enumerator. It is set during initialization and does not change during the lifetime of the
enumerator instance.

Note The previous conceptual data can be implemented by using a variety of techniques. An

implementer can implement such data in any way it pleases.

52 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.2 Timers

The Enumerator role has the following timer:

▪ Block timer: This recurring timer is used to periodically broadcast Discover frames. The timer

SHOULD be set to fire at 300-millisecond intervals.

3.1.3 Initialization

 During initialization, the following conditions must be met:

▪ The Block timer MUST be stopped.

▪ The Application Request List MUST be empty.

▪ The Last-Seen Station List MUST be empty.

▪ The Current Generation Number MUST be set to zero.

▪ The DiscoveryInProgress flag MUST be FALSE.

▪ The DiscoveryFrameSent flag MUST be set to FALSE.

▪ The Cancelled flag MUST be set to FALSE.

▪ The Network Medium Connected Flag is set to TRUE if the network interface is currently
connected to a network medium; otherwise it is set to FALSE.

▪ The Network Interface Identifier is set to identify the network interface that the enumerator
instance is handling during its lifetime.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Quick Discovery Startup

When a higher-layer protocol or application requests startup of the quick discovery process, the

Network Medium Connected Flag is checked first. If the network is currently disconnected, the request
is rejected. Otherwise, the requesting higher-layer protocol or application MUST first be added to the
Application Request List.

If the DiscoveryInProgress flag is FALSE, carry out the following steps in order:

1. Set the DiscoveryInProgress flag to TRUE.

2. Set the Cancelled flag to FALSE.

3. Set the DiscoverFrameSent flag to FALSE.

4. Reset Quick Discovery as specified in section 3.1.7, which clears out the state for any previous
Quick Discovery.

5. Check the Cancelled flag (in case it changed during step 4):

▪ If TRUE, Quick Discovery shutdown MUST be initiated as specified in section 3.1.8.

▪ If FALSE, the Block timer MUST be started.

If the DiscoveryInProgress flag is TRUE, no additional steps need to be taken other than adding the
application to the Application Request List as explained above.

53 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.4.2 Quick Discovery Shutdown

When a higher-layer protocol requests a shutdown of the quick discovery process, and the Cancelled
flag is FALSE, the enumerator MUST set the Cancelled flag to TRUE and quick discovery shutdown

MUST be initiated as specified in section 3.1.8.

3.1.5 Message Processing Events and Sequencing Rules

The enumerator only processes messages received on the network interface identified by the
Network Interface Identifier. It ignores all other messages.

When an enumerator receives an LLTD frame, it MUST check the header of this protocol to determine
whether it is a valid Hello frame, and it must also check whether the DiscoverFrameSent flag is
TRUE, which indicates that the enumerator has solicited a response from responders. If either
condition is not met, the message MUST be ignored.

3.1.5.1 Receiving a Hello Frame

The source Ethernet MAC address of the Hello frame (that is, the responder's MAC address from the
Ethernet header) MUST first be recorded in the Last-Seen Station List, if it is not already listed.

Also, a similar check MUST be made on the Seen Station List. If there is no existing entry in this list,
the Hello frame MUST then be parsed for its TLV list (that is, the TLV_List field). If any entry in this
TLV list is malformed, the frame MUST be ignored and the corresponding entry removed from the

Last-Seen Station List. If the TLV list is valid, the enumerator MUST attempt to add a new entry
containing all of these newly-discovered details into the Seen Station List. If the enumerator cannot
allocate enough memory for this new entry, it MUST immediately shut down quick discovery as
specified in section 3.1.8.

Hello frames received by the enumerator while the block timer is not running MUST be ignored. Such
packets either do not belong to the current session (since a discover packet has not yet been sent by
the enumerator) or have arrived after the enumerator has stopped the discovery session.

3.1.5.1.1 Enumerator Also Functioning in the Mapper Role

If the enumerator is also functioning as a mapper, it MUST also do the following.

First, upon receipt of the Hello message, it MUST immediately check whether the Current Mapper
Address field in the Hello header is equal to the MAC address of the network interface that it received
the message about. In case of inequality, the mapper MUST immediately shut down quick discovery as

specified in section 3.1.8.

Next, after all of the normal enumerator tasks are performed, it MUST decide which generation
number (Generation Number field in Hello frame) to use for mapping, as follows. If the Current
Generation Number is zero, the generation number from the Hello frame MUST be incremented by
one using ones-complement arithmetic (that is, it MUST advance from 0xFFFF to 0x0001 and skip
0x0000) and stored as the current generation number. Otherwise, the current generation number
MUST be subtracted from the generation number in the Hello frame. If the resulting value is less than

or equal to 0x7FFF, the generation number from the Hello frame MUST be incremented by one and
stored as current generation number. If the resulting value is greater than 0x7FFF, the generation
number that the responder volunteers MUST be ignored.

If no responder volunteered a nonzero generation number, the mapper MUST select a new, nonzero
generation number at random and broadcast a final Discover frame to disseminate the generation
number to all responders.

54 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

This process permits a mapper to select a generation number before knowing that all possible
responders have sent a Hello frame. The mapper MUST follow this process because it cannot

determine when it will receive a late Hello frame.

For more information about generation numbers, see section 3.2.1.

3.1.6 Timer Events

3.1.6.1 Block Timer Expiry

When the Block timer fires, the enumerator MUST construct a Discover frame by filling the Station
List field with entries from the Last-Seen Station List. If there are more entries in the list than will
fit in the Discover frame, additional Discover frames MUST be created to hold these additional entries.
All Discover frames are then broadcast over the network. Finally, the Last-Seen Station List MUST
be cleared.

The DiscoverFrameSent flag MUST be set to TRUE after sending the Discover frames. This triggers

the sending of reset frames during shutdown to clean up responder state.

If the enumerator is not satisfied that it has given enough time for all responders to respond, the
timer MUST be restarted. How the enumerator determines whether or not enough time has passed
can be done in any implementation-specific<10> way. For example, the RepeatBAND algorithm (as
specified in section 3.5.6.2) predicts that if the Seen Station List does not grow for three consecutive
Block timer expirations, it can be assumed that all responders have reported.

If the enumerator is satisfied that it has given enough time for all responders to respond, it must shut
down quick discovery as specified in section 3.1.8.

The enumerator MUST set the Generation Number field in the Discover header to zero, unless the
enumerator is also functioning in the Mapper role (as specified in section 3.1.6.1.1).

3.1.6.1.1 Enumerator Also Functioning in the Mapper Role

If the enumerator is also functioning as a mapper, it MUST populate the Generation Number field in

the Discover header with the current generation number. Otherwise, the field MUST be set to zero.

3.1.7 Resetting Quick Discovery

Resetting quick discovery involves resetting session state on each responder. This is accomplished by

the enumerator broadcasting a Reset frame.

To reset quick discovery, the enumerator MUST broadcast a total of three Reset frames, one every
150 milliseconds. Although a single Reset frame is sufficient to reset state on any given responder,
three Reset frames are broadcasted to compensate for any packet loss due to network conditions.

Quick discovery MUST reset at the following times:

▪ When starting quick discovery, which clears out previous session state from responders if a reset

wasn't performed after the last quick discovery

▪ When quick discovery is aborted by a higher-layer application and the DiscoverFrameSent flag is
TRUE

▪ After quick discovery has completed (only for enumerators not functioning in the mapper role)

▪ After topology discovery has completed (only for enumerators functioning in the mapper role)

55 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.8 Shutting Down Quick Discovery and Returning Results

When Quick Discovery has finished (either success or failure) or has been aborted, the results need to
be communicated back to the higher-layer applications or protocols.

The Block timer MUST immediately be stopped if currently started.

If the DiscoverFrameSent flag is TRUE, the following needs to happen:

1. The DiscoverFrameSent flag MUST be set to FALSE.

2. Quick Discovery MUST be reset (see section 3.1.7) unless the enumerator is also functioning as a
mapper and Quick Discovery has not been canceled (Cancelled flag is FALSE).

If the Cancelled flag is TRUE, the enumerator SHOULD signal a failure to the applications identified in
the Application Request List.

If the Cancelled flag is FALSE, the enumerator SHOULD return the Seen Station List to the
applications identified in the Application Request List.

The Application Request List MUST be cleared after returning the results.

The DiscoveryInProgress flag MUST be set to FALSE.

3.1.9 Other Local Events

None.

3.1.9.1 Media Connect/Disconnect Event

When a Media Connect Event or Media Disconnect Event is received for the network interface
identified by the Network Interface Identifier, the Network Medium Connected Flag is set
accordingly.

3.2 Mapper Details

This section details the role of a mapper station that is used in topology discovery tests of this
protocol. A station MUST NOT have more than one instance of a mapper operational at any time. In
addition to performing the role of an enumerator, a mapper also seeks to achieve the following:

▪ Associate with all responders that are discovered via the Enumerator role.

▪ Negotiate a generation number with the responders.

▪ Determine if another mapper is active.

▪ Infer the network topology by sending zero or more Emit requests to one or more responders.

Message request/response pairs applicable to topology discovery tests are defined as follows.

 Sent by mapper Sent by responder

Emit Ack / Flat (*)

Query QueryResp

QueryLargeTlv QueryLargeTlvResp

Charge Flat (*)

Reset N/A

56 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

* If the request frame does not contain a nonzero sequence number, the responder does not send a
response.

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behaviors are consistent with those specified in this

document.

The data elements required in any mapper implementation are:

▪ Generation Number: The mapper uses generation numbers to generate fresh MAC addresses that
are unknown to switches in the network. This avoids the requirement of restarting switches
between mapping runs, so it is critical to choose an as-yet-unused generation number. Note that
mappers do not store previous generation numbers because multiple mappers can operate on a
network, and they do not participate in any process to keep their generation numbers

synchronized.

▪ Network Topology Test Session List: This data element tracks outstanding requests to responders
and allows unique sequence numbers for each request. It is populated after quick discovery has
been completed (see section 3.2.7.1), with an entry for each discovered responder. Each entry is
identified by the responder's MAC address and also contains the following additional fields:

▪ Sequence Number: This field specifies a nonzero 16-bit unsigned value to be used as the
sequence number in frames sent to the responder where a response is expected

(acknowledged Charge frames, acknowledged Emit frames, Query frames, and QueryLargeTlv
frames). This sequence number MUST NOT be zero since responders treat a sequence number
of zero to mean "no response required". When a mapper initializes this entry, it MUST use a
newly generated nonzero sequence number. When issuing commands/requests (for example,
a QueryLargeTlv frame), the mapper populates the sequence number in the Base header of
the frame using this value. After receiving a response from the responder to the

command/request, this sequence number is incremented using ones-complement arithmetic
(this guarantees a nonzero value for subsequent commands/requests).

▪ Pended Request: This field specifies a request per responder for which a corresponding
response is expected. A pended request is uniquely identified by its function code (the
Function field in the Demultiplex header) and sequence number.

▪ Network Medium Connected Flag: A flag indicating whether the network interface is
connected to a network medium.

Note The previous conceptual data can be implemented by using a variety of techniques. An
implementer can implement such data in any way it pleases.

3.2.2 Timers

The Mapper role has one timer:

(Per-Responder) Response timer: This one-shot timer, per entry in the Seen Station List, is used
to ensure timely response or to detect lack of response to Emit, Query, or QueryLargeTlv requests
that expect responses. An Emit Frame with a non-zero sequence number expects a response. An
Emit Frame with a zero sequence number does not. Query and QueryLargeTlv Frames always
contain non-zero sequence numbers and always expect responses. This process works because
only one such request can be pended per responder.

57 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.3 Initialization

 During initialization, the following conditions MUST be met:

▪ All timers must be disabled.

▪ The Network Medium Connected Flag is set to TRUE if the network interface is currently connected
to a network medium; otherwise it is set to FALSE.

3.2.4 Higher-Layer Triggered Events

3.2.4.1 Startup Trigger

When a higher-layer application or protocol triggers startup of topology discovery tests, the Network
Medium Connected Flag is checked first. If the network is currently disconnected, the request is
rejected. Otherwise the mapper MUST assume the role of an enumerator and begin quick discovery,

as specified in section 3.1.4.1.

3.2.4.2 Retrieve a Large Data Property

When an application or higher-layer protocol requests a large data property for a given Type and
responder MAC address, the mapper MUST check the Network Topology Test Session List for the entry

for the responder using the MAC address. If an entry does not exist, or if there is already an
outstanding request for the responder (that is, the Pended Request field is not empty), then the
mapper MUST ignore the request.

If an entry exists and there is no outstanding request, the mapper MUST send a QueryLargeTlv frame
to that responder using the sequence number in the Sequence Number field of the entry, store the
frame as the Pended Request in the Network Topology Test Session List entry, and set the Per-

Responder Response timer to expire in 350 milliseconds.

3.2.4.3 Perform a Network Topology Test

A higher-layer application or protocol requests that LLTD perform a network topology test by supplying
the mapper with the following:

▪ CommandList: A list of one or more commands that are to be sent as part of the test.

▪ ResponderAddress: The MAC address of the responder that processes the commands and sends
out the Train or Probe frames.

▪ AcknowledgementRequired: A flag indicating whether the higher-level application or protocol is
to be notified when the responder has finished processing the commands. This controls whether
the Emit frame will be unacknowledged (if the flag is set to FALSE) or acknowledged (if the flag is
set to TRUE). If the Emit frame is acknowledged, it will occupy a Network Topology Test Session

List entry.

Note: If a higher-layer application or protocol does not require acknowledgement of the Emit

request, it has to decide on its own when to issue the follow-up Test Result Query. It could do this
by waiting for a period of time relative to the cumulative pause time for the CommandList
entries, multiplied by some factor to accommodate transmission time.

The mapper MUST ignore the request if the ResponderAddress is set to the broadcast address. The

mapper must also validate the CommandList. Each entry in the CommandList represents an
EmiteeDesc item (defined in section 2.2.4.4) that will be placed in the Emit frame sent by the mapper
to the responder, and each field must meet the validation criteria described in that section. If any

58 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

entry does not meet the criteria, including that of the cumulative Pause fields from all of the
commands not exceeding 1 second, then the mapper MUST ignore the request.

If AcknowledgementRequired is TRUE and the Network Topology Test Session List does not have
an entry for the responder, or if there is already an outstanding request for the responder (that is, the

Pended Request field is not empty), then the mapper MUST ignore the request. If
AcknowledgementRequired is FALSE, then the Emit frame will not be eliciting a response from the
responder, and it does not need to be tracked in the Network Topology Test Session List.

The responder needs to be charged in order to conduct the topology test (see section 1.3.5.4).

The mapper MAY query the responder's current charge, as described in section 3.2.4.5, to determine
charge requirements. This is not recommended as a reliable mechanism for synchronizing charge, as
the responder frequently resets its charge (see section 3.6.6.1). Implementations SHOULD assume

that the responder charge is zero.

The mapper MUST send enough Charge frames to accommodate the charge requirements. It MUST
then send an Emit frame to the responder, completing the charge requirements (Emit frames also

carry charge). The mapper can determine the minimum charge needed, by determining how many
Train frames, Probe frames, Flat frames, or Ack frames are being requested, and how many bytes are
in those frames. Charge requirements for each frame are: one Frame Charge (FC), and Byte Charge

(BC) equivalent to the combined size, in bytes, of the Destination MAC, Source MAC, EtherType, and
Payload fields of the Ethernet frame. The following table shows the charge required for each of the
frames sent by the responder on behalf of the mapper:

Frame Size Reference

Flat 1 FC; 37 BC section 2.2.4.12

Probe 1 FC; 32 BC section 2.2.4.6

Train 1 FC; 32 BC section 2.2.4.5

Ack 1 FC; 32 BC section 2.2.4.7

The following formulas summarize the charge requirements (see section 1.3.5.4 for a charge
overview):

Frame Received Frames to Send Charge Required

Charge (unacknowledged) None None

Charge (acknowledged) 1 × Flat 1 FC; 37 BC **

Emit (unacknowledged) N × Probe/Train N FC; N × 32 BC

Emit (acknowledged) 1 × Flat
or *
1 × Ack + N × Probe/Train

1 FC; 37 BC
or
(1 + N) FC; (1 + N) × 32 BC

* Acknowledged Emit frames only result in a Flat frame being sent if there is not enough charge to
fulfill the request. Such a Flat frame can always be sendable, because Emit frames always carry

enough implicit charge to accommodate the Flat frame.

** Charge frames are smaller than Flat frames. Mappers that request a Flat frame must pad the
payload of the Ethernet frame encapsulating the acknowledged Charge frame, to at least the size of

the Flat frame. Such Charge frames also result in at most a net increase in the Byte Charge (BC),
because the Flat frame response consumes the Frame Charge (FC) provided by the Charge frame.

The fields in the Charge frame MUST be as follows:

▪ Real_Source_Address: Set to the real MAC address of the mapper.

▪ Real_Destination_Address: Set to the real MAC address of the responder.

59 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

▪ Sequence_Number_or_XID: MUST be zero unless querying for the current charge (see section
3.2.4.5)

The fields in the Emit frame MUST be as follows:

▪ Real_Source_Address: Set to the real MAC address of the mapper.

▪ Real_Destination_Address: Set to the real MAC address of the responder.

▪ Sequence_Number_or_XID: If AcknowledgementRequired is TRUE, this MUST be a nonzero
sequence number; otherwise it MUST be zero.

▪ Num_Descs: Set to the number of entries in the CommandList.

▪ EmiteeDescs: Filled with the entries in the CommandList.

If AcknowledgementRequired is TRUE, then after sending the Emit frame the mapper MUST store
the frame in the Pended Request field of the responder's entry in the Network Topology Test Session

List.

3.2.4.4 Perform a Test Result Query

When a higher-layer application or protocol directs this protocol to request a list of Probe frames seen

by a given responder, the mapper MUST check the Network Topology Test Session List for the entry
for the responder using the MAC address. If an entry does not exist, or if there is already an
outstanding request for the responder (that is, the Pended Request field is not empty), then the
mapper MUST ignore the request.

If an entry exists and there is no outstanding request, the mapper MUST send a Query frame to that
responder using the sequence number in the Sequence Number field of the entry, store the frame as
the Pended Request in the Network Topology Test Session List, and set the Per-Responder Response

timer to expire in 350 milliseconds.

Query frames are intended to elicit a response from the responder, so they MUST contain a nonzero

sequence number; otherwise, the frame will be ignored by the responder.

3.2.4.5 Query for Responder Charge

Charge is abstracted away from higher-layer applications and protocols. There is no direct higher-layer
event to query for the responder charge. However, a mapper MAY query for responder charge in
response to a network topology test issued by a higher-layer application or protocol for a specific
responder (see section 3.2.4.3).

Before querying for the current charge, the mapper must first check the Network Topology Test
Session List for an entry for the responder. If no entry exists, or if there is an outstanding request (the

Pended Request field is not empty), then the mapper MUST NOT query for current charge and MUST
ignore the higher-layer application or protocol request for the network topology test.

If there is an entry and no outstanding request, the mapper sends an acknowledged Charge frame

using the sequence number in the Sequence Number field of the entry and stores the frame in the
Pended Request field. Acknowledged Charge frames MUST be padded to the size of a Flat frame in
order to carry enough implicit charge for the Flat frame response.

Once the Flat frame has been received, the mapper can continue to charge the responder.

3.2.4.6 Shutdown Trigger

When the higher-layer application or protocol that initially triggered the startup shuts down the
topology discovery tests, the mapper MUST shut down quick discovery as specified in section 3.1.4.2.

60 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Any outstanding per-responder response timers MUST be stopped, and the Network Topology Test
Session List MUST be cleared.

3.2.5 Message Processing Events and Sequencing Rules

When a message arrives, the mapper MUST first check whether it is a valid Ack, Flat, QueryResp, or
QueryLargeTlvResp frame or not. If not, it MUST be dropped.

3.2.5.1 Receiving an Ack Frame

Upon receipt of an Ack frame, the mapper MUST first validate the Ack frame by verifying that all of the
following statements are true:

▪ The mapper did indeed solicit the response via an Emit frame, as tracked by the pended request
state.

▪ The Real Source Address field in the Base header of the Ack frame matches the MAC address of

the destination responder in the Emit request.

▪ The Sequence Number field in the Base header of the Ack frame matches that used in the Emit
request.

Upon successful validation, the relevant Per-Responder Response timer MUST be stopped, and the
sequence number for the affected responder MUST be incremented by one using ones-complement
arithmetic (that is, it MUST advance from 0xFFFF to 0x0001 and skip 0x0000) for the next request
with a nonzero sequence number.

If the Ack frame completes the last test that the application requests, the mapper MUST delete the old
Pended request and indicate to the application that the network tests have been completed.

3.2.5.2 Receiving a Flat Frame

Upon receiving a Flat Frame, the mapper MUST validate it by verifying that the following are true:

▪ The mapper did indeed solicit the response via an Emit or Charge frame, as tracked by the pended
request state.

▪ The Real Source Address field in the Base header of the Flat frame matches the MAC address of
the destination responder in the original request.

▪ The Sequence Number field in the Base header of the Flat frame matches that used in the
original request.

Upon successful validation, the relevant Per-Responder Response timer MUST be stopped, and the
sequence number for the affected responder MUST be incremented by one using ones-complement
arithmetic (that is, it MUST advance from 0xFFFF to 0x0001 and skip 0x0000) for the next request
with a nonzero sequence number. The Pended Request entry for the Emit or Charge frame that
solicited the Flat frame response MUST be cleared.

3.2.5.3 Receiving a QueryResp Frame

A responder sends a QueryResp frame in response to a valid Query request with a nonzero sequence
number. The mapper MUST validate the QueryResp frame by verifying that the following are true:

▪ The mapper did indeed solicit the response via a Query frame, as tracked by the pended request
state.

61 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

▪ The Real Source Address field in the Base header of the QueryResp frame matches the MAC
address of the destination responder in the Query request.

▪ The Sequence Number field in the Base header of the QueryResp frame matches that used in
the Query request.

If the QueryResp frame is not valid, it MUST be ignored. Otherwise, it MUST be processed as follows.

The relevant Per-Responder Response timer MUST be stopped. The sequence number for the affected
responder MUST be incremented by one using ones-complement arithmetic (that is, it MUST advance
from 0xFFFF to 0x0001 and skip 0x0000) for the next request with a nonzero sequence number.

If the More flag in the QueryResp header is set, the mapper SHOULD follow up with a subsequent
Query request. This action MUST continue until either a QueryResp frame is returned without the More
flag set or the responder returns more total records than the mapper is prepared to handle.

If the Error flag in the QueryResp header is set, the mapper indicates to the higher level application
that the mapping information is incomplete or inaccurate.

The Pended Request entry for the Query frame that solicited the QueryResp frame response MUST
be cleared.

3.2.5.4 Receiving a QueryLargeTlvResp Frame

Upon receiving a QueryLargeTlvResp, the mapper MUST first validate it by verifying that the following
are true:

▪ The mapper did indeed solicit the response via a QueryLargeTlv frame as tracked by the pended
request state.

▪ The Real Source Address field in the Base header of the QueryLargeTlvResp frame matches the

MAC address of the destination responder in the QueryLargeTlv request.

▪ The Sequence Number field in the Base header of the QueryLargeTlvResp frame matches that

used in the QueryLargeTlv request.

Upon successful validation, the relevant Per-Responder Response timer MUST be stopped. The
sequence number for the affected responder MUST be incremented by one using ones-complement
arithmetic (that is, it MUST advance from 0xFFFF to 0x0001 and skip 0x0000) for the next request

with a nonzero sequence number.

The Pended Request entry for the QueryLargeTlv frame that solicited the QueryLargeTlvResp frame
response MUST be cleared.

If the More flag in the QueryLargeTlvResp header is set, the mapper SHOULD follow up with a
subsequent QueryLargeTlv request. This action MUST continue until a QueryLargeTlvResp frame is
returned without the More flag set or if the responder returns more bytes than the mapper is required
to accommodate for the given TLV type.

If a subsequent QueryLargeTlv request is sent, the mapper MUST store the frame as the Pended

request in the topology discovery test session and set the Per-Request Response timer to expire in
350 milliseconds. Otherwise, the mapper MUST pass the retrieved data back to the application or
higher-layer protocol.

62 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.6 Timer Events

3.2.6.1 Per-Responder Response Timer Expiry

When a Per-Responder Response Timer fires, the mapper MUST retransmit the pended request frame
(the sequence number MUST be unchanged), and the timer MUST be restarted in that case.

The mapper MAY<11> give up retrying communication with the responder if the timer has fired more
than once. If the mapper opts to continue with the topology discovery tests, it SHOULD NOT
communicate with this responder for the duration of the discovery process since the sequence

numbering is likely tainted, and the responder will likely not respond.

3.2.7 Other Local Events

3.2.7.1 Enumerator Finishes Enumerating Responders

After the Enumerator role is fulfilled (that is, when the Block timer is stopped, as specified in section
3.1.6.1), an entry in the Network Topology Test Session List MUST be created for each responder that
is discovered. The Sequence Number field MUST be initialized to a nonzero number (by means of any
random number generator). All subsequent requests with a nonzero sequence number that the

mapper sends MUST adhere to the defined sequence numbering rule. The Pended Request field for the
initialized entry MUST be empty.

At this point, the mapper MUST indicate to the application or higher-layer protocol that it is ready to
perform network topology tests.

3.2.7.2 Media Connect/Disconnect Event

When a Media Connect Event or Media Disconnect Event is received, the Network Medium Connected
Flag is set accordingly.

3.3 QoS Controller Details

This section details the role of a controller station that is used in the QoS network test type of service
that is associated with this protocol.

Message request/response pairs applicable to a controller are defined as follows.

 Sent by controller Sent by sink

QosInitializeSink QosError / QosReady

QosProbe QosProbe (*)

QosQuery QosQueryResp

QosReset QosAck

* If the request frame does not contain a nonzero sequence number, the sink does not send a
response.

3.3.1 Abstract Data Model

This section specifies a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The specified organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behaviors are consistent with those specified in this

document.

63 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The data elements required in any controller implementation are:

▪ Network Test Session Table: A list of network test sessions MAY<12> be maintained if the

controller chooses to support more than one simultaneous sink. Otherwise, the controller MUST
instead support a single network test session. Because QoS sinks identify sessions based on the

MAC address of the controller's network interface, QoS controller implementations MUST fail
requests to initiate a test session with a sink with an existing session. Implementations MUST
NOT allow multiple instances of the controller to be present unless the Network Test Session Table
can be synchronized to prevent simultaneous requests to the same sink.

Each network test session is identified by the MAC address of the sink station and MUST have
the following additional fields:

▪ Probegap Request Table: When a probegap test is requested by a higher-layer application

or protocol, it is registered in this table. Each entry in this table MUST be identified by a
unique sequence number (unsigned 16-bit value) that is then used in the received QosProbe
response from the sink station. For more information about the probegap test, see section
3.3.4.

▪ Timed-Probe Request Table: When a timed probe test is requested by a higher-layer
application or protocol, it is registered in this table. Each entry in this table MUST be identified

by a unique sequence number (unsigned 16-bit value) that is then used in the received
QosQueryResp response from the sink stations. For more information about the timed-probe
test, see section 3.3.4.

▪ Sequence Number: Each network test in a network test session MUST be identified via a
nonzero sequence number unique to that session. This field holds the sequence number to use
in the Base header of the next network test frame. It is initialized with a nonzero unsigned 16-
bit value and incremented every time it is used with ones complement arithmetic (that is, it

MUST advance from 0xFFFF to 0x0001 and skip 0x0000).

▪ Network Medium Connected Flag: A flag indicating whether the network interface is
connected to a network medium.

Note The previous conceptual data can be implemented by using a variety of techniques. An
implementer can implement such data in any way it pleases.

3.3.2 Timers

Each Network Test session has the following timers:

▪ Per-QosInitializeSink Response timer: This timer is used to ensure response (or non-response) to
a QosInitializeSink request. This timer is only valid while the controller attempts to establish a
network test session with the sink.

▪ Per-QosReset Response timer: This timer is used to ensure response (or non-response) to a
QosReset request. This timer is only valid while the controller attempts to shut down a network
test session.

Each entry in a Probegap Request Table has the following timer:

▪ Per-QosProbe Response timer: This one-shot timer is used to ensure response (or non-response)
to a QosProbe request where the Test Type field in the QosProbe header is set to 0x01 (that is, a
probegap test). This timer MUST be tied to the originating QosProbe frame by means of the

corresponding entry in the Probegap Request Table. In other words, as long as the sink has not
responded to the QosProbe frame, the timer MUST remain active.

Each entry in a Timed-Probe Request Table has the following timer:

64 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

▪ Per-QosQuery Response timer: This timer is used to ensure timely response (or non-response) to
a QosQuery request. This timer MUST be tied to the originating QosQuery frame by means of the

corresponding entry in the Timed-Probe Request Table. In other words, as long as the sink has
not responded to the QosQuery frame, the timer MUST remain active.

3.3.3 Initialization

 During initialization, the following conditions MUST be met:

▪ All timers must be disabled.

▪ The Network Medium Connected Flag is set to TRUE if the network interface is currently connected
to a network medium; otherwise it is set to FALSE.

3.3.4 Higher-Layer Triggered Events

3.3.4.1 Start Network Test Session

A higher-layer application or protocol must first instantiate a network test session with a sink before it
can request subsequent timed probe or probegap tests with the sink.

When a higher-layer application or protocol requests a network test session with a given sink, the
Network Medium Connected Flag is checked first. If the network is currently disconnected, the request

is rejected. Otherwise the controller MUST check whether it already has a network test session in
progress to the same sink station, and, if so, it MUST fail the request.

Otherwise, it MUST attempt to create a network test session state with a random nonzero sequence
number. If it cannot create the state, it MUST fail the request.

It MUST then send a QosInitializeSink frame (see section 2.2.5.2) to the specified sink and set the
Per-QosInitializeSink Response timer to expire after 100 milliseconds. The value of the

Interrupt_Mod field of the QosInitializeSink frame can be set by a higher-layer application or
protocol. If the higher-layer application or protocol does not specify the value, 0xFF MUST be used to

indicate that the existing interrupt moderation setting is to be used during tests. The fields in the base
header of the QosInitializeSink frame must be set to the following:

▪ Real_Source_Address : real MAC address of the controller

▪ Real_Destination_Address : real MAC address of the sink

▪ Sequence_Number : the nonzero sequence number associated with the network test session

(the session sequence number is then incremented using ones-complement arithmetic)

A timed probe test requires that the higher-layer application or protocol submit to the controller a set
of one or more descriptors that identify the content of each QosProbe frame that it wants to send to
the sink. When the controller receives this set, it MUST construct a QosProbe frame for each descriptor
in the set. When all the frames are constructed, the controller MUST assign the next available
sequence number (from the session) to all of the frames and then time stamp each frame (Controller
Transmit Timestamp field in QosProbe header) as it is transmitted. Immediately following the last

frame, the controller MUST construct a QosQuery frame with the same sequence number to be sent to
the sink. The controller MUST attempt to create a new entry for the newly chosen sequence number
and place it in the Probegap Request Table, before the QosQuery frame is sent. If a new entry
cannot be created due to the lack of memory, the test request MUST be failed and all of the frames
that were created MUST be deleted. The frames MUST be sent only after the appropriate entry can be
created and placed in the Probegap Request Table. After the QosQuery frame is sent, the Per-

QosQuery Response timer must be enabled and set to expire after 100 milliseconds.

65 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

A probegap test requires that the higher-layer application or protocol submit just one descriptor to be
used for a timed-probe. When the controller receives this descriptor, it MUST construct a QosProbe

frame using the next available sequence number (from the session). The Controller Transmit
Timestamp field in the QosProbe header MUST be updated as the frame is transmitted. The controller

MUST attempt to create a new entry for the newly chosen sequence number and place it in the
Timed-Probe Request Table, before the QosProbe frame is sent. If a new entry cannot be created
due to lack of memory, the test request MUST be failed and all of the frames that were created MUST
be deleted. The frames MUST be sent only after the appropriate entry can be created and placed in
the Timed-Probe Request Table. After the QosProbe is sent, the Per-QosProbe Response timer
MUST be set to expire after 100 milliseconds.

An example of different specifications that MAY<13> be applied on QosProbe frames sent by the

controller is in the size or content (the data following the QosProbe header itself; this is ignored by the
controller and sink, but it can be used to exercise the network equipment in interesting ways).

For both timed probe and probegap tests, each time the next available sequence number is required,
one is generated by incrementing the last used sequence number by one using ones-complement
arithmetic (that is, it MUST advance from 0xFFFF to 0x0001 and skip 0x0000).

If the controller has failed the request due to any of the conditions mentioned previously, it SHOULD

notify the higher-layer application or protocol of the failure. The details that are provided in the failure
notification are up to the implementation. It is recommended that the controller implementation
consider the nature of the failure to enable diagnostics by the higher-layer application or protocol.

3.3.4.2 Stop Network Test Session

When the higher-layer application or protocol for a previously-established network test session
requests that the session be stopped, the Per-QosReset Response timer MUST be set to expire in 100
milliseconds and its logic (see section 3.3.6.4) invoked immediately. The request to shut down a
session MUST always succeed, even if the QosAck response is not received from the sink. The next
available sequence number MUST be used by all of these QosReset frames.

3.3.5 Message Processing Events and Sequencing Rules

When a message arrives, the controller MUST first check whether or not it is a valid QosError,
QosReady, QosProbe, QosQueryResp, or QosAck frame. If not, it MUST be dropped.

3.3.5.1 Receiving a QosProbe Frame

When a QosProbe frame is received, the controller MUST first verify that the Test Type field in the
QosProbe header is set to 0x02 (that is, the sink returns the probegap test result). If not, the frame
MUST be ignored.

Otherwise, the controller MUST attempt to locate a corresponding entry in the Probegap Request
Table by matching its identifier against the Sequence Number field in the Base header of the

received frame. If one is not found, the frame MUST be ignored.

Otherwise, the associated Per-QosProbe Response timer MUST be stopped. The controller MUST

ensure that a high-resolution time stamp is sampled at the time the frame is received. It MUST then
return this time stamp with the contents of the Sink Receive Timestamp and Sink Transmit
Timestamp fields in the QosProbe header to the higher-layer application or protocol that requested
the probegap test. The associated Per-QosProbe Response timer MUST then be stopped, and the

corresponding entry MUST be removed from the Probegap Request Table.

66 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.3.5.2 Receiving a QosQueryResp Frame

When a QosQueryResp frame is received, the controller MUST attempt to match the sequence number
of this QosQueryResp to the identifier of an entry in the Timed-Probe Request Table. If one cannot

be found, the QosQueryResp frame MUST be ignored.

If the count of QosEventDesc structures in the QosQueryResp header is greater than the count of
descriptors in the array (as specified in section 2.2.5.6) given to the controller to start the test, the
QosQueryResp MUST be ignored.

Otherwise, the QosEventDesc List field in the QosQueryResp header MUST be returned to the
higher-layer application or protocol that initiated the timed probe test.

If the QosQueryResp is processed successfully, the associated Per-QosQuery Response timer MUST be

stopped and the corresponding entry MUST be removed from the Timed-Probe Request Table.

3.3.5.3 Receiving a QosError Frame

When a QosError frame is received, the controller MUST attempt to match the Sequence Number

field in the Base header and the Source MAC address field in the Ethernet header of the received
frame against an existing network test session. If a session cannot be found, the frame MUST be
ignored.

Otherwise, the Error Code field in the QosError header MUST be used to inform the higher-layer
application or protocol of why the request failed. The Per-QosInitializeSink Response timer MUST be
stopped, and the corresponding network test session MUST be deleted.

3.3.5.4 Receiving a QosReady Frame

When a QosReady frame is received, the controller MUST attempt to match the Sequence Number
field in the Base header and the Source MAC address field in the Ethernet header of the received
frame against an existing network test session. If a session cannot be found, the frame MUST be
ignored.

Otherwise, the controller MUST notify the higher-layer application or protocol that the network test
session has been established. The Per-QosInitializeSink Response timer MUST be stopped.

3.3.5.5 Receiving a QosAck Frame

When a QosAck frame is received, the controller MUST attempt to match the Sequence Number field
in the Base header and the Source MAC address field in the Ethernet header of the received frame
against an existing network test session. If a session cannot be found, the frame MUST be ignored.

Otherwise, the controller MUST delete the associated network test session and MUST stop the Per-
QosReset Response timer.

3.3.6 Timer Events

3.3.6.1 Per-QosInitializeSink Response Timer Expiry

When this timer fires, the controller SHOULD attempt to send another QosInitializeSink frame to the
sink and restart the timer to expire after 100 milliseconds. The fifth consecutive time that the timer
expires, the controller MUST instead stop and return a time-out error result to the higher-layer
application or protocol that originally requested the creation of the network test session. The
associated network test session MUST also be deleted.

67 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.3.6.2 Per-QosProbe Response Timer Expiry

When this timer fires, the controller MUST NOT attempt to resend the associated QosProbe frame.
Instead, it MUST return a time-out error result to the higher-layer application or protocol that initiated

the probegap test and the associated entry from the Probegap Request Table MUST be deleted.

3.3.6.3 Per-QosQuery Response Timer Expiry

When this timer fires, the controller SHOULD attempt to send another QosQuery frame to the sink and
restart the timer to expire after 100 milliseconds. The fifth consecutive time the timer expires, the

controller MUST instead stop and return a time-out error result to the higher-layer application or
protocol that initiated the timed probe test, and the associated entry from the Timed-Probe Request
Table MUST be deleted.

3.3.6.4 Per-QosReset Response Timer Expiry

When this timer fires, the controller SHOULD attempt to send another QosReset frame to the sink and

restart the timer to expire after 100 milliseconds. The fifth consecutive time the timer expires, it MUST
stop sending the QosReset and delete the associated network test session.

3.3.7 Other Local Events

None.

3.3.7.1 Media Connect/Disconnect Event

When a Media Connect Event or Media Disconnect Event is received, the Network Medium Connected
Flag is set accordingly.

3.4 Cross-Traffic Analysis Initiator Details

This section details the role of a controller station used in the QoS cross-traffic analysis type of service

associated with this protocol. A station MUST NOT have more than one instance of a Cross-Traffic
Analysis Initiator active at any time.

Applicable message request/response pairs are defined as follows.

 Sent by initiator Sent by sink

QosCounterSnapshot QosCounterResult

QosCounterLease N/A

3.4.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol on a per-interface basis. The described organization is
provided to facilitate the explanation of how the protocol behaves. This document does not mandate
that implementations adhere to this model as long as their external behaviors are consistent with

what is described in this document.

The data elements required in any implementation are:

▪ Lease Period: This data element specifies the time period over which the cross-traffic analysis is
performed. The period SHOULD be at least 5 minutes long.

68 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

▪ Sequence Number: Each time a higher-layer application or protocol requests the values of the
cross-traffic analysis counters from a responder, the initiator MUST generate a unique sequence

number for the QosCounterSnapshot request that it sends to the responder. This sequence
number is an unsigned 16-bit value.

▪ Snapshot Request Table: This table tracks the counter snapshot requests that higher-layer
applications or protocols issue. Each entry in the table is identified by a unique sequence number.

▪ Network Medium Connected Flag: A flag indicating whether the network interface is connected to a
network medium,

Note The previous conceptual data can be implemented by using a variety of techniques. An
implementer can implement such data in any way.

3.4.2 Timers

The Cross-Traffic Analysis Initiator role has one timer per network interface —the Per-Interface Lease
Renewal timer. This recurring timer broadcasts the QosCounterLease frame. This timer remains active

for as long as any higher-layer application or protocol performs cross-traffic analysis. This timer

SHOULD have a lower period than the lease period so responders can keep collecting their counter
histories.

Each entry in the Snapshot Request Table has a Per-Snapshot Response timer. This one-shot timer
ensures a timely response (or non-response) to a QosCounterSnapshot request.

3.4.3 Initialization

 During initialization, the following conditions must be met:

▪ All timers MUST be disabled.

▪ The Network Medium Connected Flag is set to TRUE if the network interface is currently connected
to a network medium; otherwise it is set to FALSE.

3.4.4 Higher-Layer Triggered Events

3.4.4.1 Start Cross-Traffic Analysis

When a higher-layer application or protocol requests cross-traffic analysis on a given interface, the
Network Medium Connected Flag is checked first. If the network is currently disconnected, the request
is rejected. Otherwise, the initiator MUST broadcast a QosCounterLease frame over that interface, and
start the interface's periodic Lease Renewal timer. The timer SHOULD be set to expire every 3
minutes.

An initiator SHOULD support multiple higher-layer application or protocol requests simultaneously. In
this case, it MUST do the initialization described above for the first request. It SHOULD NOT send a

QosCounterLease frame for consecutive requests; it MUST NOT reinitialize the periodic Lease Renewal
timer, but continue with the current timer period.

The Base header fields of the QosCounterLease frame MUST be set as follows.

▪ The Real Source Address field MUST be set to the MAC address of the interface of the initiator.

▪ The Real Destination Address field MUST be set to the broadcast address.

▪ The Sequence Number field is ignored by the responder and MUST be set to zero.

69 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.4.2 Request Counters

When a higher-layer application or protocol requests the values of the cross-traffic analysis counters
for a specific responder (specified by the responder's MAC address and the initiator's network

interface), the initiator MUST transmit a QosCounterSnapshot request to that responder on the
specified network interface. The next available sequence number MUST be assigned to the request,
and an entry MUST be created in the Snapshot Request Table before it is sent. The Per-Snapshot
Response timer MUST be set to expire in 100 milliseconds.

The higher-layer application can also specify that a special MAC address is set in the Real
Destination Address field of the Base header of the QosCounterSnapshot request to further refine
the scope of the counters that are returned. For more information, see section 3.8.5.2. Unless this

special MAC address is provided, the Cross-Traffic Analysis Initiator MUST always set this particular
field to be equal to that used in the Source MAC Address field in the Ethernet header.

If the cross-traffic analysis counters are requested by a higher-layer application or protocol before a
request to start cross-traffic analysis has been received (see section 3.4.4.1), then the Cross-Traffic
Analysis Initiator MUST fail the request.

3.4.4.3 Stop Cross-Traffic Analysis

When a higher-layer application or protocol indicates that it is finished with cross-traffic analysis on a
given interface, the initiator MUST stop the interface's Lease Renewal timer.

If an initiator supports multiple higher-layer application or protocol requests simultaneously, it MUST
stop the Lease Renewal timer only if all higher-layer applications or protocols have finished.

3.4.5 Message Processing Events and Sequencing Rules

When a message arrives, the initiator MUST first check whether it is a valid QosCounterResult frame
or not. If not, it MUST be dropped.

3.4.5.1 Receiving a QosCounterResult Frame

When a QosCounterResult frame is received, the Sequence Number field in the Base header of the
received frame MUST be used to look up a matching sequence number identifier in the Snapshot
Request Table. If a matching sequence number is not found, the frame MUST be ignored.

Otherwise, the result MUST be passed back to the higher-layer application or protocol that requested
the snapshot in the first place. The associated entry in the Snapshot Request Table MUST then be
deleted, and the Per-Snapshot Response timer MUST be disabled.

3.4.6 Timer Events

3.4.6.1 Per-Interface Lease Renewal Timer Expiry

When this timer fires, a QosCounterLease frame MUST be broadcast over the network.

3.4.6.2 Per-Snapshot Response Timer Expiry

When this timer fires, the controller SHOULD attempt to send another QosCounterSnapshot frame to
the responder and reset the timer to expire after 100 milliseconds. The fifth consecutive time the
timer expires, the controller MUST instead stop and return a time-out error result to the higher-layer
application or protocol that initiated the request, and the associated entry from the Snapshot

Request Table MUST be deleted.

70 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.7 Other Local Events

None.

3.4.7.1 Media Connect/Disconnect Event

When a Media Connect Event or Media Disconnect Event is received, the Network Medium Connected
Flag is set accordingly.

3.5 Responder (Quick Discovery) Details

A responder MAY support multiple network interfaces. If a responder supports multiple network
interfaces, it MUST create a separate instance of the responder protocol specified in this section for
each supported network interface.

The following figure shows the workings of a responder's quick discovery state engine, also known as

the enumeration state engine.

71 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 1: Possible Responder's Quick Discovery states

While in Quiescent state, responders only listen to broadcast frames and wait for a Discover frame to
trigger an association with a mapper (only for topology discovery) or initiate enumeration session.

The Pausing state is critical to scalable discovery of the responders. During Pausing state, responders
execute the RepeatBAND algorithm (see section 3.5.6.2) to estimate the overall network load and to
delay the transmission of the Hello frame accordingly. The Pausing state is the only state where
responders send the Hello frame. During the Wait state, the responder waits for enumerators or the
mapper to finalize their sessions via the Reset frame. Responders leave the Wait state for the

72 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Quiescent state when all enumerators have either timed out due to inactivity or have successfully sent
the Reset command.

Message request/response pairs applicable to quick discovery are defined as follows.

 Sent by mapper Sent by responder

Discover (as BROADCAST) Hello (as BROADCAST)

Reset (as either UNICAST or BROADCAST) N/A

3.5.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behaviors are consistent with those described in this

document.

The data elements required in any responder implementation are:

▪ Enumeration state engine state: This data element specifies the current state in the enumeration
state engine.

▪ Generation Number: This data element stores the generation number for the responder. This
number is updated during quick discovery.

▪ Alpha: This data element specifies a RepeatBAND constant, and it MUST be set to 45.

▪ Beta: This data element specifies a RepeatBAND constant, and it MUST be set to 2.

▪ Gamma: This data element specifies a RepeatBAND constant, and it MUST be set to 10.

▪ Nmax: This data element specifies a RepeatBAND constant, being the maximum number of

responders on a link, and it MUST be set to 10,000.

▪ r: This data element specifies the observed count of Discover and Hello frames over the network
during the pausing state (see section 3.5.5.1.1.2).

▪ I: This data element specifies the ideal time spacing between two Hello frames seen on the
network. This data element MUST be set to 6.67 milliseconds.

▪ N: This data element specifies an estimate of the number of responders that have yet to respond.

▪ Begun flag: This data element flags the presence of a new enumerator or mapper station.

▪ Tb: This data element specifies a RepeatBAND constant that MUST be set to 300 milliseconds.

▪ Session Table: This data element stores enumerator state information and thereby enables the
enumeration state engine to decide when to transmit Hello frames and when to transition to the

Wait state. The table is indexed by the enumerator station's MAC address (given by the
Real_Source_Address in the base header) and the type of service identifier (that is, quick
discovery or topology discovery). Each entry MUST have the following fields:

▪ Transaction ID (XID): The XID field is an unsigned 16-bit integer that uniquely identifies

the mapper or enumerator session.

▪ State: This field specifies the current state in the Session Table State Machine, as shown in
the following figure.

73 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 2: Responder's Quick Discovery Session Table State

A session is created for each enumerator and mapper detected on the network, as specified in

section 3.5.5.1. The Pending state refers to sessions that have not yet acknowledged the
receiving of a Hello frame from the responder. The Complete state refers to sessions that have
received such an acknowledgement. The Temporary state is a special state for when more than
one mapper is observed on the same network. In this case, some mappers are expected to shut

down until there is only one mapper left on the network, as specified in section 3.1.5.1.1.

▪ Active Time: This field specifies the time at which the last Discover frame was received.

▪ Txc: This field specifies the per-session Hello frame retransmission counter.

▪ TXC: This field specifies the maximum number of Hellos to retransmit per session. This is a
constant and it MUST be set to 4.

Note The previous conceptual data can be implemented by using a variety of techniques. An
implementer can implement such data in any way it pleases.

3.5.2 Timers

The Responder (Quick Discovery) role has three timers:

▪ Session Inactivity timer: This periodic timer checks each session in the session table for inactivity.

▪ Block timer: This periodic timer operates the RepeatBAND network load control algorithm (section
3.5.6.2). It is only active when the enumeration state engine is in the Pausing state.

▪ Hello timer: This one-shot timer delays the sending of a Hello frame until RepeatBAND (section

3.5.6.2) determines that it is time to send one.

74 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.5.3 Initialization

 During initialization, the following conditions must be met:

▪ All timers MUST be disabled.

▪ The enumeration state engine MUST be in Quiescent state.

▪ The Session Table MUST be empty.

3.5.4 Higher-Layer Triggered Events

None.

3.5.5 Message Processing Events and Sequencing Rules

The enumeration state engine MUST ignore any arriving message that is not explicitly identified in the
following sections and pass them on to the topology discovery state engine, as detailed in section 3.6.

3.5.5.1 Receiving a Discover Frame

A responder MUST first check if the frame's destination address matches either its own MAC address
or the broadcast address, because its network interface might have been set to promiscuous mode by
the topology discovery role (see section 3.6). Frames that do not match any of these addresses MUST

be discarded.

The responder MUST attempt to match the MAC address (given by the Real_Source_Address in the
base header) and type of service code of the sender against an entry in the Session Table.

If no entry exists, or the entry has a different XID, the responder MUST then attempt to create a new
session entry. If a session entry cannot be created due to the lack of memory, the Discover frame
MUST be ignored silently. The XID of the new session table entry is set to the XID of the Discover

frame. If the responder's MAC address exists in the Station List field in the Discover frame (indicating

that the responder's Hello request is being acknowledged), the state of the new session table entry
MUST be set to complete. Otherwise, it MUST be set to pending. The active time MUST be set to the
current time. The Xtc datum MUST be set to the value of XTC.

If a session table entry exists (and has the same XID), the active time MUST be updated. If the
responder's MAC address exists in the Station List field in the Discover frame (indicating that the
responder's Hello request is being acknowledged), the entry state MUST be set to complete. If the

session table entry state is set to complete, then the responder must update the generation number
with the generation number from the Discover Frame.

The responder MUST NOT set more than one session for topology discovery (as specified by the type
of service) to pending or complete. If there is such a session already and the responder creates
another session according to the above rules, the new Session Table entry MUST be set to the
temporary state (notwithstanding the previous paragraphs of this section).

Lastly, the enumeration state engine MUST transition to the Pausing, Wait, or Quiescent state, as

indicated in section 3.5.5.4.

For each Discover frame that is not discarded according to the above rules, the responder MUST
increment r by one. For further specifications about the use of this counter, see section 3.5.5.1.1.2.

3.5.5.1.1 Network Load Control

Network load control and scalability of the enumeration process are handled by an algorithm called
RepeatBAND (see section 3.5.6.2). Responders send Hello frames in the Pausing state, but they do

75 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

not send them immediately. Instead, responders MUST measure the network load over a number of
loosely synchronized rounds, also called blocks, of approximately fixed duration Tb (the "block time").

Section 4.4 has several examples of the RepeatBAND algorithm in effect during different scenarios.

3.5.5.1.1.1 Load Initialization

When the enumeration state engine transitions to the Pausing state, it MUST initialize N to Nmax and
set r to 0. It then MUST begin the first block round.

The responder MUST NOT begin to monitor the network load until it is ready to transmit; otherwise,
many similar machines might think that the network load is low and become ready simultaneously.

3.5.5.1.1.2 Dynamic Behavior

At the start of each round (triggered by the expiration of the Block timer) in the Pausing state, a
responder MUST sample its random number generator and choose a time that is uniformly distributed
between 0 and N times I. If the chosen time is less than Tb, the responder MUST set the Hello timer to

the chosen time. If the time is greater than or equal to Tb, the responder MUST NOT send a Hello
frame in this round (because the Hello timer will not expire during the round).

During the block, the responder MUST count the Hello and Discover messages on the network

(including its own transmission if any) in the variable r, so at the end of the block, the responder can
use this information to update its estimate of the number of active responders, as specified in section
3.5.6.2.

3.5.5.1.1.3 Effect of Discover over Network Load Control

Discover frames are handled differently, depending on whether the enumerator is known to the
responder (that is, a session already exists in the Session Table) and the responder is acknowledged.

A Discover frame is counted toward load estimation (that is, causes r to be incremented) if it results in
either of the following (described in detail in section 3.5.5.1):

▪ A new session being created in the Pending state.

▪ An existing session transitioning to the Complete state AND the enumeration state engine
simultaneously transitioning out of the Pausing state because all the session entries in the Session
Table are in the Complete state (see section 3.5.5.4).

The Txc counter for the session MUST be set to TXC. If the session is causing a transition to Pausing

state (see section 3.5.5.4 for how a new session impacts the state), the load control MUST be
initialized as specified in section 3.5.5.1.1.1. If this new session is not causing a transition to Pausing
state, the Begun flag MUST be set, which impacts load control at the end of the current block.

3.5.5.2 Receiving a Hello Frame

A responder MUST first check if the frame's destination address matches either its own MAC address
or the broadcast address, because its network interface might have been set to promiscuous mode by

the topology discovery role (see section 3.6). Frames that do not match any of these addresses MUST
be discarded.

For each Hello frame that is not discarded, the responder MUST increment r by one. For further
specifications about the use of this counter, see section 3.5.5.1.1.2.

76 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.5.5.3 Receiving a Reset Frame

A responder MUST first check if the destination address matches either its own MAC address or the
broadcast address, because its network interface might have been set to promiscuous mode by the

topology discovery role (see section 3.6). Frames that do not match any of these addresses MUST be
discarded.

When a Reset frame is received, the responder MUST first look for a corresponding session entry in
the Session Table by matching the Real Source Address field from the Base header to the
enumerator's MAC address and the Type of Service field from the Demultiplex header to the entry's
type of service identifier.

If no corresponding session entry is found, the Reset frame MUST be ignored. If a corresponding

session entry is found, it MUST be deleted. If the session table becomes empty as a result, the
enumeration state engine MUST proceed to the Quiescent state.

The Quick Discovery Responder role and the Topology Discovery Responder role are coupled through
the selection of the Current Mapper (see section 3.6.1). If the Reset frame is for a topology discovery

session entry that corresponds to the Current Mapper, the topology discovery state engine MUST also
be reset to the Quiescent state. This constitutes the Reset command for the topology discovery state

engine (see section 3.6). In addition, all sessions of the Session Table of the Quick Discovery
Responder that are in the Temporary state MUST be reset.

3.5.5.4 State Transition Rules

When a new Session Table entry is created, or an existing Session Table entry is modified, or an

existing Session Table entry is deleted, the topology state machine state MUST be updated according
to the following rules.

If the Session Table is empty, the enumeration state engine MUST proceed to the Quiescent state. If
all entries of the Session Table are in the Complete state, the enumeration state engine MUST proceed
to the Wait state. In all other cases (that is, when there are Session Table entries in the Pending or
Temporary state), the enumeration state engine MUST proceed to the Pausing state.

If the enumeration state engine changes its state, the rules for entering a new state (see sections

3.5.7.2, 3.5.7.3, and 3.5.7.4) MUST be followed.

3.5.6 Timer Events

3.5.6.1 Session Inactivity Timer Expiry

When this timer fires, each entry in the Session Table MUST be checked for inactivity as follows. If the
session is not in the temporary state and its type of service identifier is topology discovery, and the
topology discovery state engine is in the Command state, the session MUST be considered inactive if
60 seconds or more have elapsed since the active time. Otherwise, the session MUST be considered

inactive if 30 seconds or more have elapsed since the active time.

If a session is considered inactive, it MUST be removed, and the enumeration state engine's state

MUST be updated as specified in section 3.5.5.4.

This timer MUST be reset so it continues firing until the enumeration state engine transitions back to
the Quiescent state.

3.5.6.2 Block Timer Expiry

When the Block timer fires (signaling the end of the block), the responder MUST update the estimate
of the number of active responders on the network based on the count of frames during the block and

77 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

the measured length of the block (in milliseconds), which is called Ta (note that Ta is likely about the
same as the period of the block timer (Tb), but on some platforms, it can be longer due to scheduling

delays). The estimate MUST be calculated by using the RepeatBAND algorithm as follows.

 Value = RoundUp(r * Nold * I / Ta)
 Bound = RoundUp(Nold * Gamma / (Beta * Alpha))
 Nnew = Max(Bound, Min(100 * Nold , Value))

If the implementation is accomplished carefully, this value is never zero or negative and can be
implemented entirely in integer arithmetic.

The responder then MUST check the Begun flag. If it is set, then the estimate N MUST be doubled. If
doubling N would cause the value to exceed Nmax, then N MUST instead be set to Nmax. The Begun
flag MUST then be cleared.

Finally, the responder MUST set r to zero and begin the next round.

See section 4.4 for several examples of the RepeatBAND algorithm in effect during different scenarios.

3.5.6.3 Hello Timer Expiry

After this timer fires, a Hello frame MUST be sent, the Txc counter MUST be decremented for each
pending session in the Session Table, and each session in the temporary state MUST be deleted. When
this counter reaches zero, the session MUST be marked complete even if it has not been

acknowledged.

The generation number used in the Hello frame must be the current generation number stored by
responder. If a stored generation number is not defined, the generation number SHOULD be set to
zero.

3.5.7 Other Local Events

3.5.7.1 Media Disconnect Event

 When the Media Disconnect event is received, all timers MUST be disabled. The enumeration state

engine MUST transition to the Quiescent state. The Session Table MUST be cleared. If the topology
discovery state engine is not already in Quiescent state, it MUST transition to the Quiescent state.

3.5.7.2 Entering Quiescent State

When the enumeration state engine enters the Quiescent state, all timers MUST be disabled. It is
assumed that the Session Table is already empty before entering this state.

3.5.7.3 Entering Pausing State

 When the enumeration state engine enters the Pausing State, the Begun flag MUST be set to false. N

MUST be set to Nmax. The Block timer MUST be started and set to expire after 300 milliseconds. The
Session Inactivity timer MUST also be started and SHOULD be set to expire after 30 seconds.

The enumeration state engine MUST immediately decide, as specified in section 3.5.5.1.1.2, if a Hello
timer is to be set.

78 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.5.7.4 Entering Wait State

 When the enumeration state engine enters the Wait State, the Block timer and any pending Hello
timer MUST be disabled.

3.6 Responder (Topology Discovery) Details

A responder MAY support multiple network interfaces. If a responder supports multiple network
interfaces, it MUST create a separate instance of the responder protocol specified in this section for
each supported network interface.

This section details the workings of a responder's topology discovery state engine. This state engine
operates in one of three states, as outlined in the following figure (this figure is only a clarifying
summary. For the complete state engine, please refer to the figure in section 3.6.1).

Figure 3: Typical initial transition of Responder's topology discovery states

Responders in the Quiescent state ignore all frames that are marked for topology discovery. The
Command state is reached when the enumeration state engine (see section 3.5) successfully
associates with a mapper (and only one mapper). The Command state is where responders spend
most of their time during topology discovery tests. In the Command state, responders execute Emit

79 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

and Query commands from the mapper and operate with the network interface in promiscuous mode.
The Emit state is reached only if responders receive the Emit command. As soon as the command is

fully processed, responders return to the Command state. Responders return to the Quiescent state
after the Reset command or after timing out due to inactivity. The Reset command is triggered by the

enumeration state engine (see section 3.5.5.3) when certain Reset frames have been received.

It is important to note that the topology discovery state engine only processes frames after the
enumeration state engine ignores them. By definition, the topology discovery state engine does not
process Discover, Hello, and Reset frames. Moreover, when the topology discovery state engine is not
in the Quiescent state, upon receipt of a Charge, Emit, Query, or QueryLargeTlv frame from the
currently associated mapper, it MUST update the current topology discovery session's active time field
in the enumeration state engine's Session Table.

Message request/response pairs applicable to topology discovery are defined as follows.

 Sent by mapper Sent by responder

Emit Ack / Flat (*)

Query QueryResp

Charge Flat (*)

QueryLargeTlv QueryLargeTlvResp

*If the request frame has a sequence number of zero, the responder does not send a response.

3.6.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behaviors are consistent with those described in this
document.

The data elements required in any responder implementation are:

▪ Topology State: This data element stores the current state of the topology discovery state engine,

as shown in the following figure.

80 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 4: Responder's Topology Discovery state engine

▪ Generation Number: Knowing the correct generation number for a mapping iteration is necessary
because of the way switches are forced to learn addresses. By the end of quick discovery, at most

one mapper is active, and the mapper knows the correct generation number and all responders
that are associated to it.

▪ Next Sequence Number: This data element is a 16-bit unsigned value. This data element MUST be
initially set to zero, which indicates an invalid sequence number value. The first request that the
mapper sends (via one of the Charge, Emit, Query, or QueryLargeTLV frames) that has a nonzero
Sequence Number field in the Base header is incremented and stored in this data element.

81 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

▪ Sees-List: This list MUST hold all of the information that is required to construct one or more
RecveeDesc structures that are returned in the QueryResp packet (as specified in section

2.2.4.9). Entries in the list MUST be stored in such a way that the oldest entry can be returned
first. A responder SHOULD support up to 10,000 entries in the Sees-List.

▪ Last-Sent Response: The Last-Sent Response MUST be identified by the Function Number field
in the Demultiplex header of the Request frame and the Sequence Number field in the Base
header of the original request frame. Each time the responder sends out an Ack, Flat, QueryResp,
or QueryLargeTlvResp frame, it updates this value as well as a copy of the response frame that it
sent.

▪ Charge/CTC Counters: A responder MUST maintain its current charge (see section 1.3.5.2) or
Current Transmit Credit (CTC). The CTC holds two counters: an 8-bit unsigned integer Frame

Count (FC), and a 16-bit unsigned integer Byte Count (BC). See sections 1.3.5.3 and 1.3.5.5 for
an overview of how charge is accumulated and consumed.

▪ Emit List: This data element is a list that stores the remaining EmiteeDescs fields in the Emit
header that need to be processed when the topology state is set to Emit.

▪ Emit Sequence Value: This 16-bit unsigned value stores the sequence number of the Emit frame
that is being processed when the topology state is set to Emit.

▪ Error Flag: This is a global flag. It MUST be set to FALSE initially. It MUST be set to TRUE when a
Probe frame arrives, and the responder is not able to accommodate it in the Sees-List.

▪ Large Data Property List: This data element is a set of large data properties, as specified in section
2.2.2, for the responder itself.

▪ Current Mapper: This data element contains the MAC address of the mapper the responder is
associated with for the duration of topology discovery. The mapper associated with the responder
is the sole enumerator whose entry has a state field set to Complete in the Session Table

described in section 3.5.1, and is of the Topology discovery service type. The MAC address
associated with that entry is the current mapper MAC address. If the Session Table has no entry
with a state field set to Complete state, there is no current mapper. When the Session Table is

updated, the current mapper MUST be updated accordingly.

Note The previous conceptual data can be implemented by using a variety of techniques. An
implementer can implement such data in any way.

3.6.2 Timers

The Responder (Topology Discovery) role has two timers:

▪ Charge timer: This one-shot timer zeroes out the CTC counters. It MUST be set to expire 1000
milliseconds after being started.

▪ Emit timer: This one-shot timer processes each EmiteeDesc field in an Emit request.

3.6.3 Initialization

 During initialization, the following conditions MUST be met:

▪ All timers MUST be disabled.

▪ The topology discovery state engine (topology state) MUST be in the Quiescent state.

▪ BC and FC counters from the CTC MUST be zero. The Sees-List MUST be empty.

▪ The Error flag MUST be cleared.

82 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

▪ The Last-Sent response MUST be zeroed.

▪ The Next Sequence Number MUST be zeroed.

3.6.4 Higher-Layer Triggered Events

None.

3.6.5 Message Processing Events and Sequencing Rules

When a message arrives, the responder MUST first check whether it is a valid Charge, Emit, Query, or
QueryLargeTlv frame or not. If not, it MUST be dropped.

The responder MUST check if the frame was sent from the currently associated mapper by matching
the Real Source Address of the Base Header with the Current Mapper. If the addresses do not
match, the responder MUST drop the message. Otherwise, the frame is processed as described in the
following sections.

3.6.5.1 Receiving a Charge Frame

If the responder is in the Quiescent state, the Charge frame MUST be ignored.

If the responder is in the Command or Emit state, the Active Time of the current mapping session
MUST be updated to the current time. The Active Time of the session is updated irrespective of further

processing rules which result in the Charge frame being discarded.

If the topology state is in the Emit state, no more processing is done with the Charge frame.
Otherwise, the Charge frame is processed as follows.

If the Sequence Number field in the Base header of the received Charge frame is nonzero, the
responder MUST check this sequence number and function number (Function Number field in the
Demultiplex header) against the Last-Sent Response. If there is a match, the frame saved MUST be

resent and no further processing is done on the Charge frame. If there is no match, and the sequence

number in the frame is nonzero, the responder MUST validate this sequence number against the Next
Sequence Number. If the Next Sequence Number is zero or if the numbers match, the sequence
number from the Charge frame MUST be incremented by one using ones-complement arithmetic (that
is, it MUST advance from 0xFFFF to 0x0001 and skip 0x0000) and store it in Next Sequence Number.
Otherwise, if the numbers do not match, the responder MUST NOT continue processing the Charge
frame.

The responder MUST then zero out the Last-Sent Response (and delete any saved frame).

The responder MUST then proceed to increase the CTC counters by incrementing the Frame Charge
(FC) by 1, and the Byte Charge (BC) by the combined size, in bytes, of the Destination MAC, Source
MAC, EtherType, and Payload fields of the Ethernet frame encapsulating the Charge frame, as
described in section 1.3.5.3. The CTC counters MUST be capped at a maximum value to prevent a
rogue mapper from accumulating a large amount of charge at multiple responders and releasing this
charge at the same time against a target. The limits SHOULD be 65,536 BC and 64 FC. If the Charge

timer is already running, the responder MUST restart the Charge timer; otherwise, it MUST start the
Charge timer.

If the Charge frame is an acknowledged Charge frame (that is, it contains a nonzero sequence
number), then the responder MUST also send a Flat frame in response. The Flat frame requires 1 FC
and 37 BC of charge from the CTC counters. If not enough charge exists to send the Flat frame, the
Charge frame MUST be ignored and the CTC counters MUST be reverted to the previous values. As

mentioned in section 3.2.4.3, an acknowledged Charge frame has at most the net effect of increasing
the BC, since the FC carried by the Charge frame is consumed in sending the Flat frame.

83 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The fields in the Flat frame MUST be as follows:

▪ Real_Source_Address: Set to the Real_Destination_Address field of the Charge frame.

▪ Real_Destination_Address: Set to the Real_Source_Address field of the Charge frame.

▪ Sequence_Number_or_XID: MUST be set to the Sequence_Number_or_XID field of the

Charge frame.

▪ Current_Transmit_Credit_In_Bytes: BC value at the time the Charge frame was received (that
is, before the BC is updated with the byte count of the Charge frame).

▪ CTC_in_packets: FC value at the time the Charge frame was received (that is, before the FC is
incremented to account for the Charge frame).

If the real source address (Real Source Address field in the Base header) of the Charge frame is not
equal to the source address in the Ethernet header of the encapsulating Ethernet frame then the Flat

frame MUST be broadcasted. Otherwise the destination address of the Flat frame SHOULD be set to
the real source address.

When the responder sends the Flat frame, it MUST record this information in the Last-Sent Response
and update the Next Sequence Number with the sequence number of the Charge frame incremented
by one using ones-complement arithmetic (that is, it MUST advance from 0xFFFF to 0x0001 and skip
0x0000).

If the Charge frame is an unacknowledged Charge frame (that is, it contains a zero sequence
number), then the responder MUST NOT send a Flat frame in response.

3.6.5.2 Receiving an Emit Frame

A responder in the Quiescent state MUST ignore the Emit frame.

If the responder is in the Command or Emit state, the Active Time of the current mapping session
MUST be updated to the current time. The Active Time of the session is updated irrespective of further

processing rules which result in error conditions or the Emit frame being discarded.

If the topology state is in the Emit state, no more processing is done with the Emit frame. Otherwise,
the Emit frame is processed as follows.

If the Sequence Number field in the Base header of the received Emit frame is nonzero, the

responder MUST check this sequence number and function number (Function Number field in
Demultiplex header) against the Last-Sent Response. If there is a match, the frame that is saved
MUST be resent, and no further processing is done on the Emit frame.

Otherwise, if there is match with the Last-Sent Response, the Emit frame MUST then be checked for
validity by testing whether all of the following are true:

▪ The Emit frame was not sent to the broadcast address.

▪ Train and Probe Source Address field values equal the responder's MAC address or are within the

range of the OUI that is allocated for this protocol (see section 1.9).

▪ Trains and Probe Destination Address field values are not an Ethernet broadcast or multicast
address.

▪ The cumulative Pause value from all quadruples in the Emit frame MUST NOT exceed 1 second.

If any of the previous statements are not true, the responder MUST perform no further processing on
the Emit frame.

84 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If sequence number in the frame is nonzero, the responder MUST validate this sequence number
against Next Sequence Number. If the sequence number of the frame is zero, no validation is

required.

Validation against the Next Sequence Number succeeds if the Next Sequence Number is zero or if the

Next Sequence Number is nonzero and matches the sequence number of the Emit frame. Otherwise,
validation fails and the responder MUST perform no further processing on the Emit frame.

After validation succeeds, the responder MUST increase the CTC by incrementing the Frame Charge
(FC) by 1, and the Byte Charge (BC) by the combined size, in bytes, of the Destination MAC, Source
MAC, EtherType, and Payload fields of the Ethernet frame encapsulating the Emit frame, as described
in section 1.3.5.3. The CTC counters MUST be capped at a maximum value to prevent a rogue mapper
from accumulating a large amount of charge at multiple responders and releasing this charge at the

same time against a target. The limits SHOULD be 65,536 BC and 64 FC.

To avoid amplification attacks, the responder MUST require enough CTC (in both frames and bytes) to
send a Train frame or Probe frame for each entry in the EmiteeDescs field in the Emit frame. If the
Emit frame is acknowledged (has a nonzero sequence number), enough CTC must also exist to send

an Ack frame or Flat frame.

The CTC required for each frame to be sent by the responder is as follows:

Frame Size Reference

Flat 1 FC; 37 BC section 2.2.4.12

Probe 1 FC; 32 BC section 2.2.4.6

Train 1 FC; 32 BC section 2.2.4.5

Ack 1 FC; 32 BC section 2.2.4.7

If not enough CTC exists, and the Emit frame is unacknowledged (that is, the sequence number is

zero), the responder MUST perform no further processing on the Emit frame and the CTC counters
MUST be reverted to the previous values.

If not enough CTC exists, and the Emit frame is acknowledged (that is, a nonzero sequence number is

present), a Flat frame MUST be returned to the mapper. An Emit frame always contains enough
inherent charge to send a Flat frame.

The fields in the Flat frame MUST be as follows:

▪ Real_Source_Address: Set to the Real_Destination_Address field of the Emit frame.

▪ Real_Destination_Address: Set to the Real_Source_Address field of the Emit frame.

▪ Sequence_Number_or_XID: MUST be set to the Sequence_Number_or_XID field of the Emit
frame.

▪ Current_Transmit_Credit_In_Bytes: BC value at the time the Emit frame was received (that
is, before the BC is updated with the byte count of the Emit frame).

▪ CTC_in_packets: FC value at the time the Emit frame was received (that is, before the FC is

incremented to account for the Emit frame).

When the responder sends the Flat frame, it MUST record this information in the Last-Sent Response
and update the Next Sequence Number with the sequence number of the Emit frame incremented by
one using ones-complement arithmetic (that is, it MUST advance from 0xFFFF to 0x0001 and skip
0x0000). If the real source address (Real Source Address field in the Base header) of the Emit
frame is not equal to the source address in the Ethernet header of the encapsulating Ethernet frame,
then the Flat frame MUST be broadcasted. Otherwise the destination address of the Flat frame

SHOULD be set to the real source address.

85 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If enough CTC exists, the Last-Sent Response and the CTC counters MUST then be zeroed, whether or
not the Emit frame is acknowledged (has a nonzero sequence number). The topology discovery state

engine MUST then transition into the Emit state (by setting the topology state to Emit) while the Emit
frame is being processed. The responder MUST attempt to copy the entire EmiteeDescs field in the

Emit header into the emit list. The sequence number of the Emit frame is copied into Emit Sequence
Value (even if it is zero). The Emit timer MUST be started, with the expiration time delta set to the
Pause value in the first quadruple in the Emit header. If the responder fails to copy the EmiteeDescs
field, it MUST silently ignore the Emit frame and the CTC counters MUST be zeroed.

3.6.5.3 Receiving a Probe Frame

Upon receiving a Probe frame, if the topology state is not in the Command or Emit state, the Probe
frame MUST be ignored.

Otherwise, the topology discovery state engine MUST attempt to add a new RecveeDesc field to its
Sees-List. If it runs out of memory, or reaches the maximum size of the Sees-List, it MUST indicate
this by setting the Error Flag Abstract Data Model element when responding to the Query request.

The responder MUST record the following information in the Sees-List entry:

▪ Real Source Address field from the Base header.

▪ Source Address field from the Ethernet header.

▪ Destination Address field from the Ethernet header.

3.6.5.4 Receiving a Query Frame

When a Query frame is received, the Active Time of the current mapping session MUST be updated to
the current time, notwithstanding any other rule to ignore the frame in the remainder of this section.

If the topology state is not in the Command state, the Query frame MUST be ignored.

Otherwise, if the Sequence Number field in the Base header of the received Query frame is zero, the
Query frame MUST be ignored. The responder MUST check this sequence number and function number

(Function Number field in Demultiplex header) against the Last-Sent Response. If there is a match,
the saved frame MUST be resent, and no further processing is done on the Query frame.

If there is no match, the responder MUST validate this sequence number against the Next Sequence
Number. If the Next Sequence Number is zero, or if the numbers match, the sequence number from
the Query frame MUST be incremented by one using ones-complement arithmetic (that is, it MUST
advance from 0xFFFF to 0x0001 and skip 0x0000) and stored in Next Sequence Number. Otherwise, if
the numbers do not match, the Query frame MUST be ignored.

The responder MUST then zero out the Last-Sent Response (and delete any saved frame).

The responder MUST now send a QueryResp frame to the mapper, including as many entries in its
Sees-List as will fit in the frame. The responder MUST then remove the transmitted entries from its
Sees-List. If the list contains more entries than will fit in a single QueryResp frame, the responder

MUST set the More bit in the QueryResp header so that the mapper will continue sending Query
frames until it has gathered all of the entries. If the real source address (Real Source Address field
in the Base header) of the Query frame is not equal to the source address in the Ethernet header of

the encapsulating Ethernet frame, then the QueryResp frame must be broadcasted. Otherwise the
destination of the QueryResp frame SHOULD be set to the real source address.

If the Error Flag Abstract Data Model element is set, the responder MUST set the Error bit in the
QueryResp header. If the Sees-List is empty, the Error flag MUST then be cleared.

86 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

When the responder sends the QueryResp frame, it MUST record this information in the Last-Sent
Response.

3.6.5.5 Receiving a QueryLargeTlv Frame

Some TLV pairs can be too large to return in a single Hello frame. These TLVs are returned by using
the QueryLargeTlv header. For a list of these TLVs, see the Hello and QueryLargeTlv frame formats in
sections 2.2.4.3 and 2.2.4.13, respectively.

The QueryLargeTlv and QueryLargeTlvResp frames (see section 2.2.4.14) operate in a very similar

way to the Query and QueryResp frames. A QueryLargeTlv frame is sent to the responder's topology
discovery state engine and asks it to return as many octets as possible, starting from a specific offset,
for a specific TLV type.

When a QueryLargeTlv frame is received, the Active Time of the current mapping session MUST be
updated to the current time, notwithstanding any other rule to ignore the frame in the remainder of
this section.

If the topology state is not in Command state, the QueryLargeTlv frame MUST be ignored.

If the Sequence Number field in the Base header of the received QueryLargeTlv frame is zero, the
QueryLargeTlv frame MUST be ignored. Otherwise, the responder MUST check this sequence number
and function number (Function Number field in Demultiplex header) against the Last-Sent Response.
If there is a match, the saved frame MUST be resent, and no further processing is done on the
QueryLargeTlv frame.

If there is no match, the responder MUST validate this sequence number against the Next Sequence
Number. If the Next Sequence Number is zero, or if the numbers match, the sequence number from

the QueryLargeTlv frame MUST be incremented by one using ones-complement arithmetic (that is, it
MUST advance from 0xFFFF to 0x0001 and skip 0x0000) and stored in Next Sequence Number.
Otherwise, if the numbers do not match, the QueryLargeTlv frame MUST be ignored.

The responder MUST then zero out the Last-Sent Response (and delete any saved frame).

The responder then MUST check whether it has a Large Data Property for the requested TLV type. If
not, the responder SHOULD respond with a QueryLargeTlvResp, where the Length field is set to zero.

Otherwise, the responder MUST now acknowledge the QueryLargeTlv by returning the maximum
possible number of octets of the requested Large Data Property that fit in a single Ethernet frame,
starting from the specified offset. If there are more octets to return, the responder MUST set the More
bit in the QueryLargeTlvResp frame to prompt the mapper to continue sending QueryLargeTlv frames
with updated offset values until it has gathered the full TLV. The mapper does not know how large the
TLV is until the final QueryLargeTlvResp frame is returned (with the More bit set to zero). If the real
source address (Real Source Address field in the Base header) of the QueryLargeTlv frame is not

equal to the source address in the Ethernet header of the encapsulating Ethernet frame, then the
QueryLargeTlvResp frame must be broadcasted. Otherwise the destination of the QueryLargeTlvResp
frame SHOULD be set to the real source address.

When the responder sends the QueryLargeTlvResp frame, it MUST record this information in the Last-
Sent Response.

3.6.6 Timer Events

3.6.6.1 Charge Timer Expiry

When the Charge Timer expires, the responder MUST zero out the CTC counters.

87 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.6.6.2 Emit Timer Expiry

When the Emit timer expires, the first EmiteeDesc entry (as specified in section 2.2.4.4) in the Emit
List MUST be processed, which results in the sending of either a Train or Probe frame, as specified in

the EmiteeDesc entry. The Source MAC Address field in the Ethernet header MUST be the source
MAC address that is specified in the EmiteeDesc entry. The Real Source Address field in the Base
header MUST be the MAC address of the responder itself on the network interface over which the
frame is sent. Next, the processed entry MUST be removed from the Emit List. If the responder fails to
transmit the Train or Probe frame, it MUST transition the topology state to the Command state (by
setting the topology state to Command). At this point, it is expected that the mapper retries the failed
operation by sending corresponding command frames.

If the Emit List is not empty, the Emit timer MUST be reactivated with the expiration time delta set to
the Pause field of the next entry in the Emit List.

If the Emit List is empty, the Emit Sequence Value MUST be checked. If this value is zero, the
topology state MUST transition to the Command state (by setting the topology state to Command) and
the Emit timer MUST be stopped.

Otherwise, if the Emit Sequence Value is nonzero, the responder MUST send an Ack response to the

mapper by setting the Sequence Number field in the Base header of the Ack frame to the Emit
Sequence Value. If the real source address (Real Source Address field in the Base header) of the
Emit frame that contained the Emit list was not equal to the source address in the Ethernet header of
the encapsulating Ethernet frame, then the Ack frame MUST be broadcasted. Otherwise the
destination of the Ack frame SHOULD be set to the real source address of the Emit frame. It MUST
record the Ack frame in the Last-Sent Response. The topology state MUST now transition to the
Command state (by setting the topology state to Command) and the Emit timer MUST be stopped.

If at any time the topology state transitions to the Command state, and if Emit Sequence Value is
nonzero, it MUST be incremented by one using ones-complement arithmetic (that is, it MUST advance
from 0xFFFF to 0x0001 and skip 0x0000) and stored in Next Sequence Number.

3.6.7 Other Local Events

3.6.7.1 Media Disconnect Event

 When the Media Disconnect event is received, the topology discovery state engine MUST transition to
the Quiescent state. All the side effects of entering this state MUST be observed as specified in section

3.6.7.2.

3.6.7.2 Entering Quiescent State

 When the topology discovery state engine enters the Quiescent state, all timers MUST be disabled.
CTC byte and frame counters MUST be zero. The Sees-List MUST be cleared. The Error flag MUST be

cleared. The Last-Sent Response MUST be zeroed. The Next Sequence Number MUST be zeroed.

3.6.7.3 Entering Command State

When the topology discovery state engine enters the Command state, the Emit timer MUST be

stopped, the Emit List MUST be emptied, and the BC and FC counters from the CTC MUST be set to
zero.

3.6.7.4 Leaving Command State

When the topology discovery state engine leaves the Command state, the Charge timer MUST be

stopped.

88 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.7 QoS Sink Details

A responder MAY support multiple network interfaces. If a responder supports multiple network
interfaces, it MUST create a separate instance of the responder protocol specified in this section for

each supported network interface.

This section details the workings of a responder's QoS network test engine.

Message request/response pairs applicable to a sink are defined as follows.

 Sent by controller Sent by sink

QosInitializeSink QosError / QosReady

QosProbe QosProbe (*)

QosQuery QosQueryResp

QosReset QosAck

*If the request frame does not contain a nonzero sequence number, the responder does not send a

response.

3.7.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behaviors are consistent with those described in this
document.

The data elements required in any sink implementation are:

▪ Original Interrupt Mod: This is the starting interrupt moderation setting on the interface. It is
set to one of the following values:

▪ InterruptModDisabled

▪ InterruptModEnabled

▪ InterruptModUnsupported

▪ Current Interrupt Mod: This is the current interrupt moderation setting on the interface. The
possible values for Current Interrupt Mod are the same as the possible values for Original
Interrupt Mod.

▪ Session List: This data element is a list of active network test sessions. A sink MUST support at
least three unique network test sessions, up to a recommended maximum of ten sessions. Each
network test session is identified by the real address of the controller station, and each network
test session also contains the following fields:

▪ Error Flag: This field is initially set to FALSE. Use this flag when the sink cannot allocate the
memory for a sequence bucket.

▪ Last Active Time: This field specifies the time at which the last QosProbe or QosQuery frame
for this network test session was received.

▪ Sequence Bucket: This field is a list of entries holding information that was obtained from
incoming QosProbe frames with the Test Type field set to 0x00, all belonging to the same
nonzero sequence number. For further specifications about using this field, see section

3.7.5.2.

89 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

▪ Interrupt Mod: This field contains the interrupt moderation setting specified in the
QosInitializeSink frame that started this network test session. It is used to determine when

interrupt moderation is to be re-enabled on the network interface when the session is
completed.

Note The previous conceptual data can be implemented by using a variety of techniques. An
implementer can implement such data in any way.

3.7.2 Timers

The QoS Sink role has one timer - the Inactivity timer. This is a periodic timer that MUST operate at a
period of 30 seconds. It is used to expire inactive network test sessions.

3.7.3 Initialization

During initialization, the following conditions must be met:

▪ All timers MUST be disabled.

▪ The Session List MUST be initialized to empty.

▪ Original Interrupt Mod MUST be set to the interrupt moderation setting on the interface.

▪ Current Interrupt Mod MUST be set to the same value as Original Interrupt Mod.

3.7.4 Higher-Layer Triggered Events

None.

3.7.5 Message Processing Events and Sequencing Rules

When a message arrives, the sink MUST first check whether it is valid according to the following

criteria:

Demultiplex Header:

▪ Type of Service field is set to 0x02 (QoS diagnostics).

▪ Function field is in one of the following: QosInitializeSink (0x00), QosProbe (0x02), QosQuery
(0x03), or QosReset (0x05).

Base Header:

▪ Real Source Address field must be a unicast MAC address.

▪ Real Destination Address field must be the real MAC address of the sink.

▪ Sequence Number field is nonzero.

Additional validation is required based on the message function and is described in detail as part of
the subsequent sections.

If the message is not valid, it MUST be ignored.

3.7.5.1 Receiving a QosInitializeSink Frame

When a sink receives a QosInitializeSink frame, it MUST first check that the Sequence Number field
in the Base header is nonzero. If it is zero, the QosInitializeSink frame MUST be ignored. Then the sink

90 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

MUST find a matching network test session that already exists in the sink's Session List. If one exists,
it MUST immediately reply with a QosReady frame. Otherwise, processing continues as follows.

The Interrupt_Mod field in the QosInitializeSink header specifies the interrupt moderation mode for
the session to be established. If the Interrupt_Mod field equals 0xFF, the sink need not take any

action. Otherwise, if the Interrupt_Mod field equals 0x00, interrupt moderation is to be disabled on
the network interface. If Current Interrupt Mod is not already set to InterruptModDisabled, the sink
issues a request to the network interface to disable interrupt moderation. If the network interface
does not support disabling, or fails to disable, interrupt moderation, the sink MUST send a QosError
frame with the Error Code value equal to 0x02. If interrupt moderation is successfully disabled,
Current Interrupt Mod MUST be set to InterruptModDisabled.

If the sink is successful in processing the requested interrupt mode, then the sink MUST attempt to

create a network test session and add it to the Session List. A sink MUST use the Real Source
Address field in the Base header of the QosInitializeSink frame to identify the controller station. If a
sink cannot support additional sessions, it MUST return a QosError frame with the Error Code value
equal to 0x01. The Interrupt Mod field of the session table entry MUST be set to the Interrupt_Mod
field of the QosInitializeSink frame to keep track of when the interrupt moderation mode is to be

restored on session completion.

Otherwise, the sink MUST return a QosReady frame.

If the Inactivity timer has not already been started, it MUST be started as soon as the Session List is
not empty.

3.7.5.2 Receiving a QosProbe Frame

After a network test session is established, the controller sends one or more QosProbe frames to the
sink over a period of time. The exact action the sink takes in response to this frame depends on the
Test Type field in the QosProbe header.

If the sequence number in a QosProbe frame is zero, the frame MUST be ignored.

If the value of the field is 0x01, the controller has requested that the sink participate in a probegap

test. On receipt of such a frame, the sink MUST immediately copy the QosProbe frame as-is and return

it to the controller with the following modifications:

▪ The Source Address and Destination Address fields in the Ethernet header MUST be
exchanged.

▪ The Real Source Address and Real Destination Address fields in the Base header MUST be
exchanged.

▪ If the T bit is not set in the received QosProbe header, any existing tag header MUST be removed.

If the T bit is set, a tag header MUST be returned. If one does not already exist in the frame, a

new header MUST be added. The user_priority field of the TCI (Tag Control Information)
field of the tag header must be set to the 802.1p Value field of the received QosProbe header.
The CFI and VID fields of the TCI field of the tag header must be set to zero.

▪ The Sink Receive Timestamp field MUST be updated with a high-resolution time stamp sampled
at the earliest time possible when the QosProbe frame was received.

▪ The Sink Transmit Timestamp field MUST be updated with a high-resolution time stamp
sampled at the last possible moment before the outgoing QosProbe frame is sent.

▪ The Test Type field in the outgoing QosProbe header MUST be changed to the value 0x02, which
indicates to the controller that the QosProbe is sourced from a sink.

91 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If the value of the Test Type field is 0x00, the controller has requested that the sink participate in a
timed probe test. This test requires that a sink receive and record up to 82 consecutive QosProbe

frames, all of the same sequence number. All timed probe frames following the eighty-second frame
MUST be ignored completely. The collection of QosProbe records for a specific sequence number is

called a sequence bucket. The sink MUST attempt to record specific bits of information from each
frame in the form of an 8-octet high-resolution time stamp of the send operation on the controller side
(the Controller_Transmit_Timestamp field of the QosProbe frame), an 8-octet high-resolution time
stamp of the receive operation on the sink side (determined by the local clock of the sink at the time
the QosProbe frame is received), and a 1-octet identifier (the Packet ID field of the QosProbe frame).
The controller requests this recorded information immediately after the last QosProbe frame in the
sequence is sent via the QosQuery frame. The exact number of QosProbe frames sent will vary.

In some rare cases, the QosQuery frame is dropped and the controller can resend it if needed.
However, such a retransmission implies the overlapping arrival of the next series of QosProbe frames
under a subsequent sequence number. Meanwhile, the QosQuery frame for the previous sequence
bucket can still arrive in the near future. In view of this possibility, the sink MUST be prepared to
handle at least two sequence buckets worth of recordings at any point in time up to a maximum of 10
sequence buckets where possible. As a new sequence bucket is needed, the oldest one SHOULD be

cleared and reused.

In case of memory allocation failure preventing the information in the frame from being recorded, the
sink MUST set the network test session's Error flag to TRUE, so that it reports the error condition in
the Error bit in the QosQueryResp header when replying to a QosQuery request.

The applicable network test session's last active time MUST be updated on receipt of this frame.

3.7.5.3 Receiving a QosQuery Frame

Upon receipt of a QosQuery frame, the sink MUST first match the Real Source Address field in the
Base header against an existing network test session's controller MAC address. If one cannot be
found, the QosQuery frame MUST be ignored.

Next, the sink MUST match the Sequence Number field in the Base header against the sequence

bucket in the associated network test session. If the Sequence Number is zero or if a sequence
bucket cannot be found, the QosQuery frame MUST be ignored.

The sink MUST send only one QosQueryResp frame in response because there are no more records
that are stored in a sequence bucket than will fit in a standard 1514-octet Ethernet frame.

If at any time the sink encounters a memory allocation failure while attempting to allocate storage for
the sequence bucket, it MUST set the network test session's Error flag.

The applicable network test session's last active time MUST be updated on receipt of this frame.

The sink MUST not clear the sequence bucket after sending a QosQueryResp frame in case the
QosQuery frame is resent by the controller. The sequence bucket will eventually be reused if needed
(see section 3.7.5.2).

3.7.5.4 Receiving a QosReset Frame

Upon receipt of a QosReset frame, the sink MUST first check that the Sequence Number field in the
Base header is nonzero. If it is zero, the OosReset frame MUST be ignored. The sink MUST attempt to
match the Real Source Address field in the Base header of the QosReset frame against its Session
List. If a session is found, the session must be deleted from the Session List and the sink MUST send a
QosAck response. Otherwise, the sink MUST NOT send a response.

The fields of the QosAck frame SHOULD be set to the following:

▪ Real_Source_Address - Real_Destination_Address of the QosReset frame

92 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

▪ Real_Destination_Address - Real_Source_Address of the QosReset frame

▪ Sequence_Number - Sequence_Number of the QosReset frame

If the Session List is empty, the Inactivity timer MUST be disabled.

If the Session List is empty or all remaining sessions have the Interrupt Mod field of the session

table entry set to 0xFF, and if Current Interrupt Mod does not equal Original Interrupt Mod, then
the interrupt moderation mode on the network interface MUST be restored to Original Interrupt
Mod. Current Interrupt Mod MUST then be reset to Original Interrupt Mod.

3.7.6 Timer Events

3.7.6.1 Inactivity Timer Expiry

When the Inactivity timer expires, the sink SHOULD<14> remove any network test sessions that have
had at least 2 minutes of inactivity as computed from the last active time.

If the Session List is empty after removing all inactive test sessions, the Inactivity timer MUST be
disabled.

If the Session List is empty or all remaining sessions have the Interrupt Mod field of the session
table entry set to 0xFF, and if Current Interrupt Mod does not equal Original Interrupt Mod, then
the interrupt moderation mode on the network interface MUST be restored to Original Interrupt
Mod. Current Interrupt Mod MUST then be reset to Original Interrupt Mod.

3.7.7 Other Local Events

3.7.7.1 Media Disconnect Event

When the Media Disconnect event is received, the sink MUST remove all sessions from the Session
List. All timers MUST be disabled. The interrupt moderation mode on the network interface MUST be

restored to Original Interrupt Mod. Current Interrupt Mod MUST then be reset to Original
Interrupt Mod.

3.8 Responder (QoS Cross-Traffic) Details

This section details the workings of a responder's QoS cross-traffic engine.

A responder MAY support multiple network interfaces. If a responder supports multiple network
interfaces, it MUST create a separate instance of the responder protocol specified in this section for
each supported network interface.

Applicable message request/response pairs are defined as follows.

 Sent by controller Sent by responder

QosCounterSnapshot QosCounterResult

QosCounterLease N/A

3.8.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

93 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

adhere to this model as long as their external behaviors are consistent with those described in this
document.

The data elements required in any responder implementation are:

▪ Counter History: This data element specifies a collection of counters for the total number of bytes

and packets sent and received (due to any network activity, not just the responder). The Counter
History maintains separate counters for each network interface on the device that implements the
responder. Each history buffer is normally implemented as a circular-buffer. Both byte counts and
packet counts use a fixed scaling factor inclusively between 1 and 256 kilobytes or packet units
respectively. Each individual implementation of the protocol is free to choose its own scaling
factor.<15>

All counters MUST be sampled at 1-second intervals, with each counter measured relative to

that from the previous interval. Thus, when starting the measurement, the first data set is only
available after the first interval has elapsed. An implementation can store the absolute counter
values in the history internally and then calculate the relative values when the values are being
read from the history. This requires keeping an initial counter entry in the history which does

not correspond to a measurement interval.

At least 3 seconds of history MUST be maintained for each counter. Devices with sufficient spare

memory SHOULD collect up to 30 seconds of history.

Each row in the collection contains the following counters:

▪ Number of bytes received: This counter MUST be available.

▪ Number of bytes sent: This counter MUST be available.

▪ Number of packets received: Devices SHOULD collect this counter.

▪ Number of packets sent: Devices SHOULD collect this counter.

A responder SHOULD use one set of timers and one counter history to serve multiple controllers (see

section 3.8.2).

Note The previous conceptual data can be implemented by using a variety of techniques. An
implementer can implement such data in any way.

3.8.2 Timers

The Responder (QoS Cross-Traffic) role has two timers:

▪ Lease timer: A one-shot timer that is started and renewed when a QosCounterLease frame is
received. The period MUST be 5 minutes in length. This timer enforces the Lease Period. While this
timer is active, the counter history is guaranteed to be available for query by the server via the
QosCounterSnapshot request.

▪ Snapshot timer: This periodic timer is active only when the lease timer is running. This timer

MUST have a period of 1 second.

A responder SHOULD use one set of timers and one counter history to serve multiple controllers. This
is transparent to the controllers as each controller has to ensure that the lease period is active at least
as long as the controller intends to query the responder for the current history.

3.8.3 Initialization

 During initialization, the following conditions must be met:

▪ All timers MUST be disabled.

94 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

▪ The counter history MUST be empty.

3.8.4 Higher-Layer Triggered Events

None.

3.8.5 Message Processing Events and Sequencing Rules

When a message arrives, the responder MUST first check whether it is a valid QosCounterLease or
QosCounterSnapshot frame or not. If not, it MUST be dropped. The subsequent sections contain the
validation and processing steps for these frames.

3.8.5.1 Receiving a QosCounterLease Frame

On receipt of this request, a responder MUST set the Lease timer to expire after 5 minutes. If the
timer is already running, it is restarted. If the Snapshot timer is not already running, it MUST be
started as well, and set to expire after 1 second.

If a responder chooses to implement separate instances of the timers and counter history per
requesting controller, it has to find the appropriate context based on the controller's MAC address, or
create a new context if there is no context yet. The controller's MAC address is specified by the Real
Source Address field of the Base header. If this field does not contain a unicast address, and the

responder implements per-controller contexts, the frame MUST be ignored.

The Real Destination Address and Sequence Number fields of the Base header are not used in
processing the QosCounterLease frame, and MUST be ignored.

3.8.5.2 Receiving a QosCounterSnapshot Frame

When a responder receives a QosCounterSnapshot frame, it SHOULD respond to the frame even if a
Lease Period is not in effect because the server failed to send QosCounterLease frames in time to
create it or to keep it going until the present time.

If the responder chooses to implement separate instances of the timers and counter history per
requesting controller, it has to find the appropriate context based on the controller's MAC address. If
there is no context for the requesting controller, the responder MAY simply ignore this frame.

Otherwise, the responder MUST send a QosCounterResult frame in response. At this point, a 4-tuple
snapshot (section 2.2.6.3) is immediately taken. This is the sub-second snapshot. It is
indistinguishable from all other snapshots (section 3.8.1), except that the counters for the sub-second
snapshot are not sampled at a full 1-second interval from the previous snapshot, resulting in a shorter
interval. Additionally, the time span since the last sampling interval is recorded in the
SubSecond_Span field. If a lease period is not in effect, the SubSecond_Span field MUST be set to
zero. The sub-second snapshot is not added to the counter history. The QosCounterSnapshot frame

carries a sequence number that MUST be quoted in the transmission of the QosCounterResult
response. The QosCounterResult response MUST return at most the History Size field's (from the
QosCounterSnapshot header) count of snapshots from the counter history, starting with the oldest

snapshot available. The last snapshot in the QosCounterResult response MUST be the sub-second
sample, whose existence is always implied and not reflected by the History Size field.

The Real Destination Address field in the Base header of the QosCounterSnapshot frame indicates

the network interface for which the counter history is to be returned. In some cases, the Real
Destination Address field in the Base header does not equal the destination MAC address in the
Ethernet header. This is intended to be used in the case where the responder is an access point
device, where the Real Destination Address is the BSSID address of one of its wireless bands or a
special FF:FF:FF:FF:FF:FF address.

95 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If the responder is not an access point device and the Real Destination Address field in the Base
header does not match the Ethernet destination MAC address, the responder SHOULD ignore the

frame. If the responder is an access point, the responder SHOULD return only the relevant counter
history given the specified BSSID specified by the Real Destination Address, or in the case of the

special address, return the aggregate of the counter histories for all of its network interfaces, including
the wireless bands it supports. If the address is not recognizable, the QosCounterSnapshot request
MUST be ignored.

3.8.6 Timer Events

3.8.6.1 Lease Timer Expiry

When the Lease timer fires, the Snapshot timer MUST be stopped. Any existing counter history MUST
be cleared.

3.8.6.2 Snapshot Timer Expiry

When the Snapshot timer fires, the responder MUST take a snapshot of the current number of bytes
and packets that were sent and received for each network interface that is available on the device. It
MUST then add this value to the appropriate counter history. If a history reaches its maximum size,

the oldest snapshot MUST be removed to make room for the new snapshot.

3.8.7 Other Local Events

None.

3.8.7.1 Media Disconnect Event

The responder does not take any special action if an interface is disconnected. If the snapshot timer is
running, it will continue accumulating for all interfaces. Upon disconnection, interfaces will not have
any further changes in counters but the data accumulated before the disconnect MUST be available for

aggregation in case a QosCounterSnapshot frame is received with the special FF:FF:FF:FF:FF:FF
address in the RealDestinationAddressField.

96 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of this protocol.

4.1 Example 1: Mapping a Network

The following figure shows a typical network that interconnects two computers and a printer. The user
might have connection problems between the two computers or between a computer and the printer
for a variety of reasons, including a mismatch in IP addressing on the network. Application problems
can motivate the user to generate a map of his or her network to help discover the problem.

The user designates one of the computers as a Mapper, and the printer (R1) and laptop PC (R2)

function as responders. They are interconnected with an Ethernet hub.

Figure 5: Typical two-computers, one-printer network

The following figure shows the protocol exchange between the mapper and the two responders that
are on the network.

97 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 6: Protocol exchange between networked mapper and two responders

The following list describes each step in the protocol exchange:

1. The Mapper broadcasts a Discover frame with a Generation Number of zero to determine what
responders are available on the network.

2. Responder 1 (R1) broadcasts a Hello frame that indicates its current Generation Number and basic
information, such as Host ID, Characteristics, and Physical Medium (Ethernet in this case) in its
TLV_List.

3. The Mapper broadcasts another Discover frame with the generation number given by R1, including

R1's responder in the Station List.

98 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4. Responder 2 (R2) broadcasts a Hello frame that indicates its current Generation Number of zero,
and basic information, such as Host ID, Characteristics, and Physical Medium (Ethernet in this

case) in its TLV_List.

Note R2 used its RepeatBAND load control mechanism (section 3.5.6.2) to not respond to the

first Discover with a Hello response.

5. The Mapper broadcasts another Discover frame with the generation number given by R1, including
R2's MAC address in the Station List.

6. The application now invokes this protocol with a series of tests for R1. to test the network
topology. The LLTD Mapper sends a Charge frame to R1 to generate sufficient byte and frame
credits in R1 for a request that will follow.

7. The Mapper sends an Emit frame to R1, indicating that R1 is to send a Probe frame with a Source

MAC Address of 00-0D-3A-D7-F2-01 and a Destination MAC Address of 00-0D-3A-D7-F1-41.

8. R1 transmits the Probe frame.

Note The Destination MAC Address does not address any machine in particular, so it traverses
the network like a broadcast address.

9. R1 sends an Ack frame to the Mapper to indicate that it has completed the Emit request. At this
point, the Mapper indicates to the application that the series of tests has completed.

10. The application asks this protocol to send a Query to R1 to get the list of MAC address seen by this
responder.

11. The application also asks this protocol to send a Query to R2 to get the list of MAC address that
this responder has seen.

12. R1 sends a QueryResp to the Mapper with no MAC address in the list, and the Mapper completes
the application's request from step 10.

13. R2 sends a QueryResp to the Mapper with an entry that indicates it saw a frame with a Source

MAC Address of 00-0D-3A-D7-F2-01 and a Destination MAC Address of 00-0D-3A-D7-F1-41. The
Mapper completes the application's request from step 11.

14. The application decides to conduct another test and gives this protocol another set of commands
for R1. The Mapper sends a Charge frame to R1 to generate sufficient byte and frame credits in R1
for a request that will follow.

15. The Mapper sends an Emit frame to R1, indicating that R1 is to send a Probe frame with a Source
MAC Address of 00-0D-3A-D7-F2-02 and R2's Destination MAC Address.

16. R1 sends a Probe frame destined to R2 with a Source MAC Address of 00-0D-3A-D7-F2-02.

17. R1 sends an Ack frame to the Mapper to indicate it has completed the Emit request. At this point,
the Mapper indicates to the application that the latest test has completed.

18. The application asks this protocol to send a Query to R2 to get the list of MAC addresses that this

responder has seen.

19. R2 sends a QueryResp to the Mapper with an entry that indicates that it saw a frame with a

Source MAC Address of 00-0D-3A-D7-F2-02 and a R2's MAC address as the destination. This
protocol indicates this information to the application.

Note R2 did not return the MAC address pair that it reported in step 13 because after sending
that information in step 13, it cleared that information from memory.

99 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

20. The application asks this protocol to perform another test from R2, and the Mapper sends an Emit
to R2 with a Sequence Number of zero and a request for R2 to send a Probe using R2's MAC

address for the source and R1's MAC address for the destination.

Note A zero sequence number indicates to R2 that it does not send an Ack frame to the Mapper

when it has completed the Emit request. Hence, the Mapper completes the application's request
immediately.

21. R2 sends a Probe using R2's MAC address for the source and R1's MAC address for the destination.

22. The application asks this protocol to perform another test from R1, and the Mapper sends a
Charge frame to R1 to generate sufficient byte and frame credits in R1 for a request that will
follow.

23. The Mapper sends a second Charge frame to R1 to generate sufficient byte and frame credits in

R1 for a request that will follow.

24. The Mapper sends an Emit frame to R1 that requests R1 to send a Train frame using a Source
MAC Address of 00-0D-3A-D7-F2-03 and R2's MAC address as the destination. The Mapper also

sends a Probe frame using R1's MAC address as the Source and 00-0D-3A-D7-F2-03 as the
Destination MAC Address.

25. R1 sends a Train frame using a Source MAC Address of 00-0D-3A-D7-F2-03 and R2's MAC address

as the destination.

26. R1 sends a Probe using R1's MAC address for the Source and 00-0D-3A-D7-F2-03 as the
Destination MAC Address.

27. R1 sends an Ack frame to the Mapper to indicate that it has completed the Emit request, and the
Mapper completes the application's request from step 22.

28. The application asks this protocol to send a Query to R1 to get the list of MAC addresses that this
responder has seen.

29. The application also asks this protocol to send a Query to R2 to get the list of MAC addresses that

this responder has seen.

30. R1 sends a QueryResp to the Mapper with an entry that indicates that it saw a frame with R2's
MAC address as the Source MAC address and R1's MAC address as the Destination MAC address.
The Mapper completes the application's request from step 28.

31. R2 sends a QueryResp to the Mapper with an entry that indicates it saw a frame with R1's MAC
address as the Source MAC Address and Destination MAC Address of 00-0D-3A-D7-F2-03. The

Mapper completes the application's request from step 29.

32. The application finally directs this protocol to terminate the topology discovery session, and the
Mapper broadcasts a Reset to indicate that the mapping session is complete.

4.2 Example 2: Measuring Network Capacity

The following figure shows the layout of an example network that interconnects a media server and a
TV with an integrated media player.

100 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 7: Example media server and TV, integrated media player network

The media server is used to stream media content to the TV. The QoS support in this protocol can be

used to assess the capacity of the connection between the two endpoints to determine if adequate
bandwidth is available for a requested stream. This example describes the QoS exchange associated

with this protocol for testing the bandwidth using a Test Type of Timed probes.

The following figure shows the protocol exchange between the media server and the TV.
Communication between the controller and the sink is done using their real MAC addresses (no LLTD
OUI–based MAC addresses) and the LLTD Ethertype.

101 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 8: Protocol exchange between media server and TV

The following list describes each step in the protocol exchange:

1. The controller sends a QosInitializeSink header to the sink and indicates that the sink has to use
its existing interrupt moderation setting (Interrupt Mod is set to 0xFF).

2. The sink returns a QosReady header to confirm the creation of a network test session. The sink
indicates that the Sink Link Speed is 54 Mbps (value of 540,000 or 0x83D60) and that its time-
stamp counter has an accuracy of 1 microsecond (value 1,000,000 or 0xF4240).

3. The controller creates its first QosProbe frame, time stamps it, and then transmits it to the sink.

The controller indicates in the QosProbe frame that the Test Type is a Timed probe. The 802.1p
field is indicated as not used. The sink time stamps this frame when it arrives and saves it for
returning the header information to the controller when the controller requests it.

4. The controller immediately creates a second QosProbe frame, time stamps it, and transmits it to
the sink using the same parameters as in step 3. The sink time stamps this frame when it arrives
and saves it for returning the header information to the controller when the controller requests it.

102 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5. The controller immediately creates a third QosProbe frame, time stamps it, and transmits it to the
sink using the same parameters as in step 3. The sink time stamps this frame when it arrives and

saves it for returning the header information to the controller when the controller requests it.

6. The controller sends a QosQuery to the sink to retrieve the header information from the QosProbe

frames.

7. The sink sends a QosQueryResp to the controller and indicates that it has received three events.
The QosProbe headers with both the controller and sink time stamps are included in the frame.

8. The controller sends a QosReset to the sink to indicate that it is done running QoS tests.

9. The sink confirms reception of the QosReset header with a QosAck header.

4.3 Example 3: Charging a Responder

Mappers charge a responder with enough charge to fulfill an upcoming Emit request. There has to be
enough Frame Charge (FC) and Byte Charge (BC) for each frame that would be generated by such a

request.

The following example illustrates how a mapper would charge a responder.

Calculating required charge

A mapper is to issue a request to a responder to emit 5 Probe frames to targets on the network, and
the responder is to acknowledge receipt and processing of the request. The mapper would calculate
the required charge as follows.

First it would determine the necessary FC:

▪ 5 Probe frames + 1 Ack frame = 6 frames.

▪ Each frame takes 1 FC, so 6 FC is required.

Then it would determine the necessary BC:

▪ The required BC is the number of bytes of all the Ethernet frames for the frames to be sent. Both
Ack frames and Probe frames have the following size layout:

▪ 14 bytes (Ethernet Header) + 4 bytes (Demultiplex Header) + 14 bytes (Base Header) = 32
bytes.

▪ Because there are 6 total frames to send, the required BC can be calculated as follows:

▪ 32 bytes per frame × 6 frames = 192 bytes.

▪ Each byte takes 1 BC, so 192 BC is required.

Thus, the total charge requirement is 6 FC and 192 BC.

Charging the responder

The mapper now charges 6 FC and 192 BC on the responder. One approach would be to send 5
unacknowledged Charge frames followed by 1 acknowledged Emit frame. The progression of charge
buildup on the responder would be as follows:

FC BC Frame Received

0 0 None (initial charge)

1 32 1st Charge frame at 32 bytes

2 64 2nd Charge frame at 32 bytes

103 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

FC BC Frame Received

3 96 3rd Charge frame at 32 bytes

4 128 4th Charge frame at 32 bytes

5 160 5th Charge frame at 32 bytes

6 264 Emit frame at 104 bytes*

*The Emit frame is 32 bytes, plus 2 bytes for the number of EmiteeDesc entries, plus 5 EmiteeDesc
entries at 14 bytes each. 32 + 2 + 5 × 14 = 104.

4.4 Example 4: RepeatBAND Algorithm

This example shows the values calculated by the RepeatBAND algorithm for a number of rounds under
various scenarios.

In each example, Ta, or the time between blocks, is assumed to be Tb, or 300 (except in the first
round, which starts immediately after transitioning into Pausing, where Ta is zero). N is also initialized
to Nmax, or 10000, to simulate the responder transitioning into the Pausing state.

Refer to section 3.5.6.2 for the formulas used to calculate the new value of N in each round after
Block Timer Expiry. Section 3.5.5.1.1.2 describes how the new value of N is used to determine
whether or not the Hello timer is started.

4.4.1 Scenario 1: No Hello/Discover Frames Received After Initial Discover Frame

Moves Responder into the Pausing State

Round Nold r Value Bound Nnew Chance of Transmission Tb / (Nnew × i)

1* 10000 0 0 1112 1112 0.04 = 4%

2 1112 0 0 124 124 0.36 = 36%

3 124 0 0 14 14 3.19 = 319%

4 14 0 0 2 2 21.42 = 2142%

5 2 0 0 1 1 42.85 = 4285%

6 1 0 0 1 1 42.85 = 4285%

*This round is triggered immediately upon entering the Pausing state when a new session is created
and the session table was previously empty.

Notice that when no Hello/Discover packets are observed by a responder, it will always schedule the
Hello timer after round 3 at the latest. Round 3 will take place approximately 600 milliseconds after
the initial Discover was received.

4.4.2 Scenario 2: Small Network - A Few Hello/Discover Frames Received During

Each Round

Round Nold r Value Bound Nnew Chance of Transmission Tb / (Nnew × i)

1* 10000 0 0 1112 1112 0.04 = 4%

2 1112 5 75 124 124 0.36 = 36%

3 124 2 14 14 14 3.19 = 319%

4 14 0 1 2 2 21.42 = 2142%

5 2 0 0 1 1 42.85 = 4285%

6 1 0 0 1 1 42.85 = 4285%

*This round is triggered immediately upon entering the Pausing state when a new session is created
and the session table was previously empty.

104 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

In this scenario, the small number of frames seen during each block does not have any overall effect
in slowing down the sending of the Hello frame. This is acceptable since the chance of congesting the

network is small with the low volume of traffic being generated.

4.4.3 Scenario 3: Large Network - A Steady Flow of a Few Hello/Discover Frames

Received During Each Round

Round Nold r Value Bound Nnew Chance of Transmission Tb / (Nnew × i)

1* 10000 0 0 1112 1112 0.040 = 4%

2 1112 40 989 124 989 0.045 = 4%

3 989 40 880 110 880 0.051 = 5%

4 880 40 793 98 793 0.057 = 5%

5 783 40 697 87 697 0.064 = 6%

6 697 40 620 78 620 0.072 = 7%

7 620 40 552 69 552 0.081 = 8%

8 552 40 491 62 491 0.091 = 9%

9 491 40 437 55 437 0.102 = 10%

10 437 40 389 49 389 0.115 = 11%

*This round is triggered immediately upon entering the Pausing state when a new session is created

and the session table was previously empty.

In this scenario, the steady stream of Hello/Discover frames witnessed by the responder initially
lowers the chances of the responder to 4%. However, as each round persists, the chance gets slightly
higher, giving the responder a greater chance of sending the Hello and being Acknowledged by the
enumerator.

105 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5 Security

The following sections specify security considerations for implementers of this protocol.

5.1 Security Considerations for Implementers

While this protocol performs no security checks, it includes measures (the RepeatBAND mechanism, as
specified in section 3.5.6.2, and the Charge mechanism, as specified in section 3.6) to prevent traffic
amplification that could be used in a DoS attack. The intent is that an attacker can do no more harm
using this protocol than the attacker could do by simply sending Ethernet frames in an environment
that does not use this protocol.

5.2 Index of Security Parameters

None.

106 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

▪ Windows XP operating system Service Pack 2 (SP2)

▪ Windows Vista operating system

▪ Windows Server 2008 operating system

▪ Windows 7 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows 8 operating system

▪ Windows Server 2012 operating system

▪ Windows 8.1 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows 10 operating system

▪ Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.2.1.1.13: If the responder service started after the 802.11 connection became active,
Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows
Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 2016
responders only include the 802.11 RSSI attribute once the responder service has been running for

some time (approximately a minute for most wireless drivers).

<2> Section 2.2.1.1.13: Some wireless drivers do not expose the RSSI but do expose a signal
strength indicator between 0 and 100. Windows XP operating system only reports the RSSI if available
and does not include the attribute if it is not. However, Windows Vista, Windows Server 2008,
Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows
Server 2012 R2, Windows 10, and Windows Server 2016 report the signal strength indicator as

provided by the driver, when the driver does not provide the actual RSSI.

<3> Section 2.2.1.1.21: Windows XP SP2operating system Service Pack 2 (SP2) includes the 802.11
Physical Medium attribute.

<4> Section 2.2.2.1: Windows only sends ICO format images as a responder and only recognizes ICO
format images as a mapper. For more information about ICO, see [MSDN-ICO].

<5> Section 2.2.2.3: For a UPnP device, the required information comes from the UPnP device
description phase that has the XML elements that Plug and Play Extension uses to derive the PnP

hardware ID string. This property is the string that Plug and Play uses to match a device with an INF
file on a Windows-based computer.

107 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<6> Section 3: Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows
8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server

2016 support the Enumerator role.

<7> Section 3: Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows

8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2, Windows 10, and Windows
Server 2016 support the Mapper role.

<8> Section 3: Windows Vista, Windows 7, Windows 8, Windows 8.1, and Windows 10 support the
QoS Controller role.

<9> Section 3: Windows Vista, Windows 7, Windows 8, Windows 8.1, and Windows 10 support the
Cross-Traffic Analysis Initiator role.

<10> Section 3.1.6.1: Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2,

Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows
Server 2016 stop the quick discovery process when the Seen Station List does not grow for three
consecutive Block timer expirations.

<11> Section 3.2.6.1: Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2,
Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows
Server 2016 stop retrying communication with a responder after five consecutive per-responder

response timer expirations.

<12> Section 3.3.1: Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2,
Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows
Server 2016 support up to 10 network test sessions.

<13> Section 3.3.4.1: Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2,
Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows
Server 2016 support transmission of arbitrary QosProbe frame size with randomized or zeroed

content.

<14> Section 3.7.6.1: Windows implements the period of inactivity at an aggressive 5 seconds.

<15> Section 3.8.1: Windows uses a byte scaling of 1 kilobyte and packet scaling of 1 packet.

108 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

109 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

8 Index
A

Abstract data model
 cross-traffic analysis initiator 67
 enumerator 51
 mapper 56
 QoS controller 62
 QoS sink 88
 responder (QoS cross-traffic) 92
 responder (quick discovery) 72
 responder (topology discovery) 79
access_point_component_descriptor_802_11 packet 33
Ack frame 60
Applicability 17
Attributes packet 19
Attributes_AP_Association_Table packet 29
Attributes_Repeater_AP_Table packet 30

B

Base specification 35
Base Specification message 35
Block timer (section 3.1.6.1 54, section 3.5.6.2 76)
Bridge_Component_Descriptor packet 33
bssid_802_11 packet 22
Built_in_Switch_Component_Descriptor packet 34

C

Capability negotiation 18
Change tracking 108
Characteristics packet 21
Charge frame 82
Charge timer 86
Command state 87
Component_Descriptors packet 33
Component_Table packet 30
Component_Table2 packet 32
Cross-traffic analysis
 start 68
 stop 69
Cross-traffic analysis initiator
 abstract data model 67
 higher-layer triggered events 68
 initialization 68
 local events 70
 message processing 69
 overview 67
 sequencing rules 69
 timer events 69
 timers 68

D

Data model - abstract
 cross-traffic analysis initiator 67
 enumerator 51
 mapper 56
 QoS controller 62
 QoS sink 88
 responder (QoS cross-traffic) 92
 responder (quick discovery) 72

110 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 responder (topology discovery) 79
Data types 19
Demultiplex_Header_Format packet 35
Detailed icon image 32
Detailed_Icon_Image packet 29
Device_UUID packet 27
Discover frame 74
Discover_Upper_Level_Header_Format packet 37
Dynamic behavior 75

E

Effect of discover over network load control 75
Emit frame 83
Emit timer 87
Emit_Upper_Level_Header_Format packet 38
End_Of_Property_list_marker packet 20

Enumerator
 abstract data model 51
 higher-layer triggered events 52
 initialization 52
 local events 55
 message processing 53
 overview 50
 sequencing rules 53
 timer events 54
 timers 52
Enumerator as mapper (section 3.1.5.1.1 53, section 3.1.6.1.1 54)
Enumerator finishes responders 62
Examples
 network mapping example 96
 network measuring capacity example 99
 overview 96
 RepeatBAND algorithm 103

F

Fields - vendor-extensible 18
Flat frame 60
Flat_Upper_Level_Header_Format packet 41
Friendly name 31
Friendly_Name packet 27

G

Glossary 9

H

Hardware ID 31
Hardware_ID packet 27
Hello frame (section 3.1.5.1 53, section 3.5.5.2 75)
Hello timer 77
Hello_Upper_Level_Header_Format packet 38
Higher-layer triggered events
 cross-traffic analysis initiator 68
 enumerator 52
 mapper 57
 QoS controller 64
 QoS sink 89
 responder (QoS cross-traffic) 94
 responder (quick discovery) 74
 responder (topology discovery) 82
Host_ID packet 20

111 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

I

Icon image 31
Icon_Image packet 25
Implementer - security considerations 105
Inactivity timer 92
Index of security parameters 105
Informative references 12
Initialization
 cross-traffic analysis initiator 68
 enumerator 52
 mapper 57
 QoS controller 64
 QoS sink 89
 responder (QoS cross-traffic) 93
 responder (quick discovery) 74
 responder (topology discovery) 81

Introduction 9
IPv4_Address packet 23
IPv6_Address packet 23

L

Large data properties 31
Large Data Properties message 31
Large data property 57
Large_Data_Properties_AP_Association_Table packet 32
Large_Data_Properties_Repeater_AP_Table packet 34
Lease timer 95
Link_Speed packet 25
Load initialization 75
Local events
 cross-traffic analysis initiator 70
 enumerator 55
 mapper 62
 QoS controller 67
 QoS sink 92
 responder (QoS cross-traffic) 95
 responder (quick discovery) 77
 responder (topology discovery) 87

M

Machine_Name packet 26
Mapper
 abstract data model 56
 higher-layer triggered events 57
 initialization 57
 local events 62
 message processing 60
 overview 55

 sequencing rules 60
 timer events 62
 timers 56
maximum_operational_rate_802_11 packet 24
Media disconnect 95
Media disconnect event (section 3.5.7.1 77, section 3.6.7.1 87, section 3.7.7.1 92)
Message processing
 cross-traffic analysis initiator 69
 enumerator 53
 mapper 60
 QoS controller 65
 QoS sink 89
 responder (QoS cross-traffic) 94
 responder (quick discovery) 74

112 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 responder (topology discovery) 82
Message_Syntax packet 19
Messages
 Base Specification 35
 data types 19
 Large Data Properties 31
 overview 19
 QoS diagnostics - cross-traffic analysis 47
 QoS diagnostics - network test 43
 quick discovery 36
 syntax 19
 topology discovery tests 36
 transport 19

N

Network load control 74

Network load control - effect of discover 75
Network mapping example 96
Network measuring capacity example 99
Network test session (section 3.3.4.1 64, section 3.3.4.2 65)
Network topology test 57
Normative references 11

O

Overview (synopsis) 12

P

Parameters - security index 105
Pausing state 77
Performance_Counter_Frequency packet 24
Per-interface lease renewal timer 69
Per-QosInitializeSink response timer 66
Per-QosProbe response timer 67
Per-QosQuery response timer 67
Per-QosReset response timer 67
Per-Responder Response Timer 62
Per-snapshot response timer 69
Physical_Medium packet 21
physical_medium_802_11 packet 28
Preconditions 17
Prerequisites 17
Probe frame 85
Product behavior 106
Protocol Details
 overview 50

Q

QoS controller
 abstract data model 62
 higher-layer triggered events 64
 initialization 64
 local events 67
 message processing 65
 overview 62
 sequencing rules 65
 timer events 66
 timers 63
QoS diagnostics
 cross-traffic analysis 14
 network test (section 1.3.3 14, section 2.2.5 43)
QoS diagnostics - cross-traffic analysis 47

113 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

QoS sink
 abstract data model 88
 higher-layer triggered events 89
 initialization 89
 local events 92
 message processing 89
 overview 88
 sequencing rules 89
 timer events 92
 timers 89
QoS_Characteristics packet 28
Qos_Diagnostics_Specification_for_Cross_Traffic_Analysis_Base_Header_Format packet 47
QoS_Diagnostics_Specification_for_Network_Test_Base_Header_Format packet 43
QosAck frame 66
QosAck upper-level header format 47
QosCounterLease frame 94
QosCounterLease upper-level header format 49
QosCounterResult frame 69
QosCounterResult packet 48
QosCounterSnapshot frame 94
QosCounterSnapshot packet 48
QosError frame 66
QosError_Upper_Level_Header_Format packet 47

QosInitializeSink frame 89
QosInitializeSink_Upper_Level_Header_Format packet 44
QosProbe frame (section 3.3.5.1 65, section 3.7.5.2 90)
QosProbe_Upper_Level_Header_Format packet 44
QosQuery frame 91
QosQueryResp frame 66
QosQueryResp_Upper_Level_Header_Format packet 46
QosReady frame 66
QosReady_Upper_Level_Header_Format packet 44
QosReset frame 91
Query frame 85
QueryLargeTlv frame 86
QueryLargeTlv_Upper_Level_Header_Format packet 42
QueryLargeTlvResp frame 61
QueryLargeTlvResp_Upper_Level_Header packet 42
QueryResp frame 60
QueryResp_Upper_Level_Header_Format packet 40
Quick discovery (section 1.3.1 13, section 2.2.4 36)
Quick discovery shutdown 53
Quick discovery startup 52
Quiescent state (section 3.5.7.2 77, section 3.6.7.2 87)

R

References 11
 informative 12
 normative 11
Relationship to other protocols 17
RepeatBAND algorithm example 103
Repeater_AP_Lineage packet 30
Request counters 69
Reset frame 76
Responder (QoS cross-traffic)
 abstract data model 92
 higher-layer triggered events 94
 initialization 93
 local events 95
 message processing 94
 overview 92

 sequencing rules 94
 timer events 95
 timers 93

114 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Responder (quick discovery)
 abstract data model 72
 higher-layer triggered events 74
 initialization 74
 local events 77
 message processing 74
 overview 70
 sequencing rules 74
 timer events 76
 timers 73
Responder (topology discovery)
 abstract data model 79
 higher-layer triggered events 82
 higher-layer triggers 81
 local events 87
 message processing 82
 overview 78
 sequencing rules 82
 timer events 86
 timers 81
rssi_802_11 packet 25

S

Security
 implementer considerations 105
 overview 105
 parameter index 105
Sees_list_Working_Set packet 29
Sequencing rules
 cross-traffic analysis initiator 69
 enumerator 53
 mapper 60
 QoS controller 65
 QoS sink 89
 responder (QoS cross-traffic) 94
 responder (quick discovery) 74
 responder (topology discovery) 82
Session inactivity timer 76
Shutdown trigger 59
Snapshot timer 95
ssid_802_11 packet 23
Standards assignments 18
Startup trigger 57
Support_Information packet 26
Syntax 19
 base specification 35
 data types 19
 large data properties 31
 QoS diagnostics - cross-traffic analysis 47
 QoS diagnostics - network test 43
 quick discovery 36
 topology discovery tests 36

T

Test result query 59

Timer events
 cross-traffic analysis initiator 69
 enumerator 54
 mapper 62
 QoS controller 66
 QoS sink 92
 responder (QoS cross-traffic) 95
 responder (quick discovery) 76

115 / 115

[MS-LLTD-Diff] - v20170601
Link Layer Topology Discovery (LLTD) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 responder (topology discovery) 86
Timers
 cross-traffic analysis initiator 68
 enumerator 52
 mapper 56
 QoS controller 63
 QoS sink 89
 responder (QoS cross-traffic) 93
 responder (quick discovery) 73
 responder (topology discovery) 81
Topology discovery tests (section 1.3.2 13, section 2.2.4 36)
Topology_Discovery_Tests_and_Quick_Discovery_Base_Header_Format packet 36
Tracking changes 108
Transport 19
Triggered events - higher-layer
 cross-traffic analysis initiator 68
 enumerator 52
 mapper 57
 QoS controller 64
 QoS sink 89
 responder (QoS cross-traffic) 94
 responder (quick discovery) 74
 responder (topology discovery) 82

V

Vendor-extensible fields 18
Versioning 18

W

Wait state 78
Wireless_Mode packet 22

