

1 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[MS-IMSA]:
Internet Information Services (IIS) IMSAdminBaseW
Remote Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise. If you would prefer a written license, or if the technologies described in the Open

Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Revision Summary

Date

Revision

History

Revision

Class Comments

07/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

09/28/2007 0.1.1 Editorial Revised and edited the technical content.

10/23/2007 0.1.2 Editorial Revised and edited the technical content.

11/30/2007 0.2 Minor Updated the technical content.

01/25/2008 0.2.1 Editorial Revised and edited the technical content.

03/14/2008 0.2.2 Editorial Revised and edited the technical content.

05/16/2008 0.2.3 Editorial Revised and edited the technical content.

06/20/2008 1.0 Major Updated and revised the technical content.

07/25/2008 1.0.1 Editorial Revised and edited the technical content.

08/29/2008 1.0.2 Editorial Revised and edited the technical content.

10/24/2008 1.0.3 Editorial Revised and edited the technical content.

12/05/2008 1.1 Minor Updated the technical content.

01/16/2009 1.2 Minor Updated the technical content.

02/27/2009 2.0 Major Updated and revised the technical content.

04/10/2009 3.0 Major Updated and revised the technical content.

05/22/2009 4.0 Major Updated and revised the technical content.

07/02/2009 5.0 Major Updated and revised the technical content.

08/14/2009 5.1 Minor Updated the technical content.

09/25/2009 5.2 Minor Updated the technical content.

11/06/2009 6.0 Major Updated and revised the technical content.

12/18/2009 6.1 Minor Updated the technical content.

01/29/2010 6.2 Minor Updated the technical content.

03/12/2010 6.2.1 Editorial Revised and edited the technical content.

04/23/2010 6.2.2 Editorial Revised and edited the technical content.

06/04/2010 6.2.3 Editorial Revised and edited the technical content.

07/16/2010 6.2.3 No change No changes to the meaning, language, or formatting of

the technical content.

3 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Date

Revision

History

Revision

Class Comments

08/27/2010 7.0 Major Significantly changed the technical content.

10/08/2010 7.0 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 7.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 8.0 Major Significantly changed the technical content.

02/11/2011 8.0 No change No changes to the meaning, language, or formatting of

the technical content.

03/25/2011 8.0 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 8.0 No change No changes to the meaning, language, or formatting of

the technical content.

06/17/2011 8.1 Minor Clarified the meaning of the technical content.

09/23/2011 8.1 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 9.0 Major Significantly changed the technical content.

03/30/2012 9.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 9.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/25/2012 9.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/31/2013 9.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 10.0 Major Significantly changed the technical content.

11/14/2013 10.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/13/2014 10.0 No change No changes to the meaning, language, or formatting of

the technical content.

05/15/2014 10.0 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Contents

1 Introduction ... 9
1.1 Glossary ... 9
1.2 References .. 11

1.2.1 Normative References ... 11
1.2.2 Informative References ... 11

1.3 Overview .. 12
1.4 Relationship to Other Protocols .. 12
1.5 Prerequisites/Preconditions ... 12
1.6 Applicability Statement ... 12
1.7 Versioning and Capability Negotiation ... 12
1.8 Vendor-Extensible Fields ... 13
1.9 Standards Assignments .. 13

2 Messages.. 14
2.1 Transport .. 14
2.2 Common Data Types .. 14

2.2.1 ADMINDATA_MAX_NAME_LEN ... 14
2.2.2 IIS_CRYPTO_BLOB ... 14

2.2.2.1 PUBLIC_KEY_BLOB ... 15
2.2.2.2 SESSION_KEY_BLOB ... 16

2.2.2.2.1 ENCRYPTED_SESSION_KEY_ BLOB .. 17
2.2.2.3 HASH_BLOB ... 18
2.2.2.4 CLEARTEXT_DATA_BLOB ... 19
2.2.2.5 ENCRYPTED_DATA_BLOB .. 19

2.2.2.5.1 CLEARTEXT_WITH_PREFIX_BLOB .. 20
2.2.3 Secure Session Negotiation Constants ... 20
2.2.4 METADATA_GETALL_RECORD .. 20
2.2.5 METADATA_HANDLE ... 23
2.2.6 METADATA_HANDLE_INFO .. 23
2.2.7 METADATA_RECORD ... 23
2.2.8 METADATA_MASTER_ROOT_HANDLE .. 25
2.2.9 MD_APP_ROOT .. 26
2.2.10 MD_APP_ISOLATED .. 26
2.2.11 MD_APP_APPPOOL_ID ... 26
2.2.12 MD_BACKUP_MAX_LEN ... 27

3 Protocol Details .. 28
3.1 IMSAdminBaseW Server Details ... 28

3.1.1 Abstract Data Model ... 28
3.1.1.1 Secure Session Context ... 29

3.1.2 Timers .. 29
3.1.3 Initialization .. 29
3.1.4 Message Processing Events and Sequencing Rules .. 29

3.1.4.1 Transferring Sensitive Data .. 32
3.1.4.1.1 Secure Session Negotiation Server Role ... 32
3.1.4.1.2 Encrypting Data .. 33
3.1.4.1.3 Decrypting Data .. 33
3.1.4.1.4 Signed Hash Calculation ... 34
3.1.4.1.5 Signed Hash Validation .. 34

3.1.4.2 OpenKey (Opnum 17) ... 34

5 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.3 CloseKey (Opnum 18) ... 36
3.1.4.4 AddKey (Opnum 3) ... 37
3.1.4.5 CopyKey (Opnum 7) ... 38
3.1.4.6 DeleteKey (Opnum 4) ... 39
3.1.4.7 DeleteChildKeys (Opnum 5) ... 40
3.1.4.8 DeleteData (Opnum 11) .. 41
3.1.4.9 DeleteAllData (Opnum 14) ... 43
3.1.4.10 CopyData (Opnum 15) .. 45
3.1.4.11 EnumKeys (Opnum 6) ... 47
3.1.4.12 R_EnumData (Opnum 12) .. 49
3.1.4.13 Backup (Opnum 28) .. 50
3.1.4.14 EnumBackups (Opnum 30) .. 52
3.1.4.15 DeleteBackup (Opnum 31) ... 53
3.1.4.16 ChangePermissions (Opnum 19) ... 54
3.1.4.17 GetDataPaths (Opnum 16) ... 55
3.1.4.18 GetDataSetNumber (Opnum 23) ... 57
3.1.4.19 GetHandleInfo (Opnum 21) .. 58
3.1.4.20 GetLastChangeTime (Opnum 25) .. 58
3.1.4.21 GetSystemChangeNumber (Opnum 22) ... 59
3.1.4.22 R_GetAllData (Opnum 13) ... 60
3.1.4.23 R_GetData (Opnum 10) ... 63
3.1.4.24 R_GetServerGuid (Opnum 33) .. 64
3.1.4.25 R_KeyExchangePhase1 (Opnum 26) .. 65
3.1.4.26 R_KeyExchangePhase2 (Opnum 27) .. 66
3.1.4.27 R_SetData (Opnum 9) ... 68
3.1.4.28 RenameKey (Opnum 8) ... 69
3.1.4.29 Restore (Opnum 29) ... 70
3.1.4.30 SaveData (Opnum 20) ... 71
3.1.4.31 SetLastChangeTime (Opnum 24) .. 72
3.1.4.32 UnmarshalInterface (Opnum 32) .. 73

3.1.5 Timer Events ... 74
3.1.6 Other Local Events ... 74

3.2 IMSAdminBaseW Client Details .. 74
3.2.1 Abstract Data Model ... 74

3.2.1.1 Secure Session Context ... 74
3.2.2 Timers .. 74
3.2.3 Initialization .. 74
3.2.4 Message Processing Events and Sequencing Rules .. 75

3.2.4.1 Secure Session Negotiation Client Role .. 75
3.2.4.2 R_KeyExchangePhase1 (Opnum 26) ... 75
3.2.4.3 R_KeyExchangePhase2 (Opnum 27) ... 75
3.2.4.4 R_SetData (Opnum 9) ... 76
3.2.4.5 R_GetData (Opnum 10) ... 77
3.2.4.6 R_EnumData (Opnum 12) .. 77
3.2.4.7 R_GetAllData (Opnum 13) ... 77

3.2.5 Timer Events ... 78
3.2.6 Other Local Events ... 78

3.3 IMSAdminBase2W Server Details ... 78
3.3.1 Abstract Data Model ... 78
3.3.2 Timers .. 78
3.3.3 Initialization .. 78
3.3.4 Message Processing Events and Sequencing Rules .. 78

3.3.4.1 BackupWithPasswd (Opnum 34) ... 79

6 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.3.4.2 EnumHistory (Opnum 39) .. 81
3.3.4.3 Export (Opnum 36) ... 82
3.3.4.4 Import (Opnum 37) .. 84
3.3.4.5 RestoreHistory (Opnum 38) ... 85
3.3.4.6 RestoreWithPasswd (Opnum 35)... 87

3.3.5 Timer Events ... 88
3.3.6 Other Local Events ... 88

3.4 IMSAdminBase2W Client Details .. 89
3.4.1 Abstract Data Model ... 89
3.4.2 Timers .. 89
3.4.3 Initialization .. 89
3.4.4 Message Processing Events and Sequencing Rules .. 89
3.4.5 Timer Events ... 89
3.4.6 Other Local Events ... 89

3.5 IMSAdminBase3W Server Details ... 89
3.5.1 Abstract Data Model ... 89
3.5.2 Timers .. 89
3.5.3 Initialization .. 89
3.5.4 Message Processing Events and Sequencing Rules .. 89

3.5.4.1 GetChildPaths (Opnum 40) .. 90
3.5.5 Timer Events ... 92
3.5.6 Other Local Events ... 92

3.6 IMSAdminBase3W Client Details .. 92
3.6.1 Abstract Data Model ... 92
3.6.2 Timers .. 92
3.6.3 Initialization .. 92
3.6.4 Message Processing Events and Sequencing Rules .. 92
3.6.5 Timer Events ... 92
3.6.6 Other Local Events ... 92

3.7 IWamAdmin Server Details ... 93
3.7.1 Abstract Data Model ... 93
3.7.2 Timers .. 93
3.7.3 Initialization .. 93
3.7.4 Message Processing Events and Sequencing Rules .. 93

3.7.4.1 AppCreate (Opnum 3) ... 93
3.7.4.2 AppDelete (Opnum 4) ... 94
3.7.4.3 AppUnload (Opnum 5) ... 95
3.7.4.4 AppGetStatus (Opnum 6) .. 96
3.7.4.5 AppDeleteRecoverable (Opnum 7) .. 97
3.7.4.6 AppRecover (Opnum 8) ... 98

3.7.5 Timer Events ... 99
3.7.6 Other Local Events ... 99

3.8 IWamAdmin2 Server Details ... 99
3.8.1 Abstract Data Model ... 99
3.8.2 Timers .. 99
3.8.3 Initialization .. 99
3.8.4 Message Processing Events and Sequencing Rules .. 99

3.8.4.1 AppCreate2 (Opnum 9) ... 99
3.8.5 Timer Events .. 100
3.8.6 Other Local Events .. 101

3.9 IIISApplicationAdmin Server Details .. 101
3.9.1 Abstract Data Model .. 101
3.9.2 Timers ... 101

7 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.9.3 Initialization ... 101
3.9.4 Message Processing Events and Sequencing Rules ... 101

3.9.4.1 CreateApplication (Opnum 3) .. 102
3.9.4.2 DeleteApplication (Opnum 4) .. 103
3.9.4.3 CreateApplicationPool (Opnum 5) .. 104
3.9.4.4 DeleteApplicationPool (Opnum 6) .. 104
3.9.4.5 EnumerateApplicationsInPool (Opnum 7) .. 105
3.9.4.6 RecycleApplicationPool (Opnum 8) ... 106
3.9.4.7 GetProcessMode (Opnum 9) .. 107

3.9.5 Timer Events .. 107
3.9.6 Other Local Events .. 107

3.10 IIISCertObj Server Details ... 107
3.10.1 Abstract Data Model ... 107
3.10.2 Timers ... 108
3.10.3 Initialization .. 108
3.10.4 Message Processing Events and Sequencing Rules ... 108

3.10.4.1 InstanceName (Set) (Opnum 10) ... 109
3.10.4.2 IsInstalledRemote (Opnum 12) .. 110
3.10.4.3 IsExportableRemote (Opnum 14) ... 111
3.10.4.4 GetCertInfoRemote (Opnum 16) .. 112
3.10.4.5 ImportFromBlob (Opnum 22) .. 113
3.10.4.6 ImportFromBlobGetHash (Opnum 23) .. 114
3.10.4.7 ExportToBlob (Opnum 25) .. 116

3.10.5 Timer Events .. 117
3.10.6 Other Local Events ... 117

3.11 IIISCertObj Client Details ... 118
3.11.1 Abstract Data Model ... 118
3.11.2 Timers ... 118
3.11.3 Initialization .. 118
3.11.4 Message Processing Events and Sequencing Rules ... 118

3.11.4.1 InstanceName (Set) (Opnum 10) ... 118
3.11.5 Timer Events .. 118
3.11.6 Other Local Events ... 118

4 Protocol Examples .. 119
4.1 General Hookup Example ... 119
4.2 BackupWithPasswd Call Example .. 119
4.3 EnumHistory Call Example ... 120
4.4 Export Call Example .. 120
4.5 Import Call Example ... 121
4.6 RestoreHistory Call Example .. 121
4.7 RestoreWithPasswd Call Example .. 121
4.8 GetChildPaths Call Example .. 122
4.9 Reading Sensitive Data from the Server .. 123

5 Security .. 126
5.1 Security Considerations for Implementers .. 126
5.2 Index of Security Parameters ... 126

6 Appendix A: Full IDL ... 127

7 Appendix B: Product Behavior .. 136

8 Change Tracking... 142

8 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

9 Index ... 143

9 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1 Introduction

The Internet Information Services (IIS) IMSAdminBaseW Remote Protocol defines interfaces that
provide Unicode-compliant methods for remotely accessing and administering the IIS metabase
associated with an application that manages IIS configuration, such as the IIS snap-in for Microsoft
Management Console (MMC).

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are

informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

ASCII
base64

certificate
certificate chain
certificate store
client
DCOM
decryption

dynamic endpoint
encryption
endpoint
globally unique identifier (GUID)
HRESULT
Interface Definition Language (IDL)
man in the middle (MITM)

MD5 hash
Microsoft Management Console (MMC)
Network Data Representation (NDR)
object
object identifier (OID)
opnum
plaintext

private key
public key
relative distinguished name (RDN)
remote procedure call (RPC)
RPC protocol sequence
RPC transport

Secure Sockets Layer (SSL)
server

session key
Unicode
universally unique identifier (UUID)
well-known endpoint

The following terms are specific to this document:

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

10 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

application pool: A collection of one or more processes hosting zero or more web
applications.

cipher text: A message that has been encrypted.

cleartext: In cryptography, cleartext is the form of a message (or data) that is transferred or

stored without cryptographic protection.

decryption: The process of converting cipher text to plaintext. Decryption is the opposite of
encryption.

Internet Information Services (IIS): The Microsoft Internet protocol service infrastructure.
IIS consists of a collection of standard Internet protocol servers such as HTTP and FTP in
addition to common infrastructures that are used by other Microsoft Internet protocol
servers such as SMTP, NNTP, and so on. IIS has been part of the Windows operating system

in some versions and a separate install package in others. IIS version 5.0 shipped as part of
Windows 2000, IIS version 5.1 as part of Windows XP, IIS version 6.0 as part of Windows
Server 2003, and IIS version 7.0 as part of Windows Vista and Windows Server 2008.

Internet protocol server: A software program that implements the server host of a standard
Internet protocol such as HTTP or FTP.

Internet protocol server instance (server instance): A configuration collection for an

Internet protocol server that will establish its own network protocol endpoint. A single
Internet protocol server may configure multiple server instances that would each appear to
clients as an independent host (also referred to as a site).

key exchange key pair: A public/private key pair used to encrypt session keys so that they
can be safely stored and exchanged with other users. For more information, see [PUBKEY].

key exchange public key: The public key of a key exchange key pair.

key exchange private key: The private key of the key exchange key pair.

metabase: The name of the configuration storage implemented by Microsoft Internet
Information Services (IIS).

RC4: A data encryption algorithm based on the RC4 symmetric stream cipher, as specified in
[RC4].

RSA: RSA Data Security, Inc., a major developer and publisher of public key cryptography
standards (PKCS).

RSA public key algorithm: A key exchange and signature algorithm based on the popular RSA

Public Key cipher.

secure session: An active communication channel that has associated cryptographic keys and
possibly other state.

signature key pair: The public/private key pair used for authenticating (digitally signing)

messages. For more information, see [PUBKEY].

signature private key: The private key of a signature key pair.

signature public key: The public key of a signature key pair.

signed hash: A hash signed with a signature private key.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90253
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=93759
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90253
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

11 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

web application: A collection of URLs that share a server execution environment. This collection
is defined relative to a root URL. A web application runs in response to HTTP requests for

the URLs in the collection. The process or processes that run in response to such an HTTP
request are termed the application host.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other

documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-OAUT] Microsoft Corporation, "OLE Automation Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RC4] RSA Security, "The RC4 Encryption Algorithm", http://www.rsa.com/node.aspx?id=1204

Note To obtain this stream cipher that is licensed by RSA Data Security, you need to contact this
company.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC3280] Housley, R., Polk, W., Ford, W., and Solo, D., "Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile", RFC 3280, April 2002,

http://www.ietf.org/rfc/rfc3280.txt

[RFC3447] Jonsson, J., and Kaliski, B., "Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1", RFC 3447, February 2003,
http://www.ietf.org/rfc/rfc3447.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MSDN-CoInitialize] Microsoft Corporation, "CoInitialize", http://msdn.microsoft.com/en-
us/library/ms678543.aspx

http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DCOM%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=93759
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90422
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=93395
http://go.microsoft.com/fwlink/?LinkId=93395

12 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[PUBKEY] RSA Laboratories, "Crypto FAQ: Chapter 2 Cryptography: 2.1 Cryptographic Tools: 2.1.1
What Is Public-Key Cryptography?", http://www.rsa.com/rsalabs/node.asp?id=2165

[UNICODE] The Unicode Consortium, "Unicode Home Page", 2006, http://www.unicode.org/

1.3 Overview

The Internet Information Services (IIS) IMSAdminBaseW Remote Protocol is a client/server
protocol that is used for remotely managing a hierarchical configuration data store (metabase). The
layout and specifics of such a store are specified in section 3.1.1.

The Internet Information Services (IIS) IMSAdminBaseW Remote Protocol also provides DCOM
interfaces to manage server entities, such as web applications and public key certificates, which
may be defined or referenced in the metabase data store.

A remote metabase management session begins with the client initiating the connection request to
the server. If the server grants the request, the connection is established. The client can then make
multiple requests to read or modify the metabase on the server by using the same session until the

session is terminated.

A typical remote metabase management session involves the client connecting to the server and
requesting to open a metabase node on the server. If the server accepts the request, it responds

with an RPC context handle that refers to the node. The client uses this RPC context handle to
operate on that node. This involves sending another request to the server specifying the type of
operation to perform and any specific parameters that are associated with that operation. If the
server accepts this request, it attempts to change the state of the node based on the request and
responds to the client with the result of the operation. When the client is finished operating on the
server nodes, it terminates the protocol by sending a request to close the RPC context handle.

1.4 Relationship to Other Protocols

The IIS IMSAdminBaseW Remote Protocol relies on the Distributed Component Object Model
(DCOM) Remote Protocol, which uses RPC as a transport, as specified in [MS-DCOM].

No other IIS protocols rely on this protocol.

1.5 Prerequisites/Preconditions

This protocol is implemented over DCOM and RPC and, as a result, has the prerequisites identified in

[MS-DCOM] and [MS-RPCE] as being common to DCOM and RPC interfaces.

The IIS IMSAdminBaseW Remote Protocol assumes that a client has obtained the name of a server
that supports this protocol suite before the protocol is invoked.

1.6 Applicability Statement

This protocol is applicable when an application needs to remotely configure an IIS server.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

Supported Transports: The IIS IMSAdminBaseW Remote Protocol uses the DCOM Remote Protocol
and multiple RPC protocol sequences, as specified in section 2.1.

Protocol Versions: This protocol has multiple interfaces, as specified in section 3.

http://go.microsoft.com/fwlink/?LinkId=90253
http://go.microsoft.com/fwlink/?LinkId=90550
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf

13 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Security and Authentication Methods: Authentication and security are provided as specified in
[MS-DCOM] and [MS-RPCE].

Capability Negotiation: The IIS IMSAdminBaseW Remote Protocol does not support negotiation of
the interface version to use. Instead, this protocol uses only the interface version number specified

in the IDL for versioning and capability negotiation.

1.8 Vendor-Extensible Fields

The IIS IMSAdminBaseW Remote Protocol does not have any vendor-extensible fields.

1.9 Standards Assignments

The following parameters are private Microsoft assignments.

Parameter Value Reference

DCOM CLSID for the IIS IMSAdminBaseW Remote

Protocol (CLSID_MSAdminBase_W)

A9E69610-B80D-11D0-B9B9-

00A0C922E750

None

DCOM CLSID for the IIS IMSAdminBaseW Remote

Protocol (CLSID_WamAdmin)

61738644-F196-11D0-9953-

00C04FD919C1

None

DCOM CLSID for the IIS IMSAdminBaseW Remote

Protocol (CLSID_IISCertObj)

62B8CCBE-5A45-4372-8C4A-

6A87DD3EDD60

None

RPC Interface UUID for IMSAdminBaseW 70B51430-B6CA-11d0-B9B9-

00A0C922E750

None

RPC Interface UUID for IMSAdminBase2W 8298d101-f992-43b7-8eca-

5052d885b995

None

RPC Interface UUID for IMSAdminBase3W f612954d-3b0b-4c56-9563-

227b7be624b4

None

RPC Interface UUID for IWamAdmin 29822AB7-F302-11D0-9953-

00C04FD919C1

None

RPC Interface UUID for IWamAdmin2 29822AB8-F302-11D0-9953-

00C04FD919C1

None

RPC Interface UUID for IIISApplicationAdmin 7C4E1804-E342-483D-A43E-

A850CFCC8D18

None

RPC Interface UUID for IIISCertObj BD0C73BC-805B-4043-9C30-

9A28D64DD7D2

None

%5bMS-DCOM%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

14 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2 Messages

2.1 Transport

The IIS IMSAdminBaseW Remote protocol MUST use the DCOM Remote Protocol, as specified in
[MS-DCOM], as its transport. On its behalf, the DCOM Remote Protocol uses the following RPC
protocol sequence: RPC over TCP, as specified in [MS-RPCE]. This protocol uses RPC dynamic
endpoints, as specified in [C706] section 4.

This protocol MUST use the following UUIDs:

IMSAdminBaseW: 70B51430-B6CA-11D0-B9B9-00A0C922E750

IMSAdminBase2W: 8298D101-F992-43B7-8ECA-5052D885B995

IMSAdminBase3W: F612954D-3B0B-4C56-9563-227B7BE624B4

IWamAdmin:29822AB7-F302-11D0-9953-00C04FD919C1

IWamAdmin2: 29822AB8-F302-11D0-9953-00C04FD919C1

IIISApplicationAdmin: 7C4E1804-E342-483D-A43E-A850CFCC8D18

IIISCertObj: BD0C73BC-805B-4043-9C30-9A28D64DD7D2

To receive incoming remote calls for these interfaces, the server MUST implement a DCOM Object
Class with the CLSIDs (specified in section 1.9) CLSID_MSAdminBase_W using the UUID
{A9E69610-B80D-11D0-B9B9-00A0C922E750}, CLSID_WamAdmin using the UUID {61738644-
F196-11D0-9953-00C04FD919C1}, and CLSID_IISCertObj using the UUID {62B8CCBE-5A45-4372-
8C4A-6A87DD3EDD60}.

2.2 Common Data Types

In addition to RPC base types and definitions specified in [C706], [MS-DTYP], and [MS-OAUT],
additional data types are defined as follows.

All multiple-byte integer values in the messages declared in this section are stored using little-
endian byte order.

2.2.1 ADMINDATA_MAX_NAME_LEN

The ADMINDATA_MAX_NAME_LEN constant is used to define maximum buffer size, such as the
buffer that holds metabase subnodes or the buffer that contains the path to history files. The
definition of ADMINDATA_MAX_NAME_LEN follows.

#define ADMINDATA_MAX_NAME_LEN 256

2.2.2 IIS_CRYPTO_BLOB

The IIS_CRYPTO_BLOB message defines a block of data, possibly encrypted, that is transferred
between client and server. It is used to transfer public keys, hash information, and encrypted and
cleartext data.

typedef struct {

%5bMS-DCOM%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf
%5bMS-OAUT%5d.pdf

15 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 DWORD BlobSignature;

 DWORD BlobDataLength;

 [size_is(BlobDataLength)] unsigned char BlobData[*];

} IIS_CRYPTO_BLOB;

BlobSignature: The structure signature for this binary large object (BLOB).

Value Meaning

SESSION_KEY_BLOB_SIGNATURE

0x624b6349

The BlobData member contains the session key used to

encrypt sensitive data exchanged between client and

server. See SESSION_KEY_BLOB (section 2.2.2.2) for

more information about the BlobData layout.

PUBLIC_KEY_BLOB_SIGNATURE

0x62506349

The BlobData member contains the public key for a

particular IIS encryption behavior. See

PUBLIC_KEY_BLOB (section 2.2.2.1) for more information

about the BlobData layout.

ENCRYPTED_DATA_BLOB_SIGNATURE

0x62446349

The BlobData member contains encrypted data. See

ENCRYPTED_DATA_BLOB (section 2.2.2.5) for more

information about the BlobData layout.

HASH_BLOB_SIGNATURE

0x62486349

The BlobData member contains a hash. See HASH_BLOB

(section 2.2.2.3) for more information about the

BlobData layout.

CLEARTEXT_DATA_BLOB_SIGNATURE

0x62436349

The BlobData member contains cleartext data. See

CLEARTEXT DATA_BLOB (section 2.2.2.4) for more

information about the BlobData layout.

BlobDataLength: The size, in bytes, of BlobData.

BlobData: A block of bytes that can be interpreted based on BlobSignature.

2.2.2.1 PUBLIC_KEY_BLOB

The PUBLIC_KEY_BLOB message is used to store information about RSA key exchange public
keys and RSA signature public keys. It is used during secure session negotiation.

The syntax of the PUBLIC_KEY_BLOB message is represented by the following diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

PublicKeyBlobDataLength

Reserved0

Type Version Reserved

AlgID

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

16 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Magic

BitLen

PubExp

Modulus (variable)

...

PublicKeyBlobDataLength (4 bytes): A 32-bit unsigned integer. This field contains the total
length of the PUBLIC_KEY_BLOB instance excluding the PublicKeyBlobDataLength and
Reserved0 fields.

Reserved0 (4 bytes): A 32-bit unsigned integer. This field MUST be set to 0x0.

Type (1 byte): An 8-bit unsigned integer. This field MUST be set to 0x6. This indicates that the
public key is transferred.

Version (1 byte): An 8-bit unsigned integer. This field MUST be set to 0x2.

Reserved (2 bytes): A 16-bit unsigned integer. This field MUST be set to 0x0.

AlgID (4 bytes): A 32-bit unsigned integer. This field is set to the CALG_RSA_KEYX value if the
key exchange public key is stored in the BLOB or the CALG_RSA_SIGN value if the signature
public key is stored.

Value Meaning

CALG_RSA_KEYX

0x0000A400

RSA public key exchange algorithm

CALG_RSA_SIGN

0x00002400

RSA public key signature algorithm

Magic (4 bytes): A 32-bit unsigned integer. This field MUST be set to 0x31415352. The value
can be interpreted as the ASCII-encoded string "RSA1".

BitLen (4 bytes): A 32-bit unsigned integer that specifies the size of the public key in bits. This
field MUST be set to 0x200 (512) because the 512 (=0x200) bit RSA key is used.

PubExp (4 bytes): A 32-bit unsigned integer that is a public exponent, as specified in

[RFC3447].

Modulus (variable): A variable-length array of bytes that stores the RSA public key. The size,
in bytes, of the Modulus field is BitLen/8.

2.2.2.2 SESSION_KEY_BLOB

The SESSION_KEY_BLOB is used to store session keys that are transferred during the secure
session negotiation.

http://go.microsoft.com/fwlink/?LinkId=90422

17 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

EncryptedSessionKeyLength

SignedHashLength

EncryptedSessionKey (variable)

...

Padding (variable)

...

SignedHash (variable)

...

EncryptedSessionKeyLength (4 bytes): A 32-bit unsigned integer that contains the size, in
bytes, of the EncryptedSessionKey field.

SignedHashLength (4 bytes): A 32-bit unsigned integer that contains the size, in bytes, of
the SignedHash field.

EncryptedSessionKey (variable): A variable-length array of bytes that contains session key
information. For more information about the internal organization of data inside this field, see
ENCRYPTED_SESSION_KEY_BLOB (section 2.2.2.2.1).

Padding (variable): A variable-length array of bytes that contains zero to seven bytes of

padding based on the SessionKeyDataLength field. The number of padding bytes is
calculated as the difference between an 8-byte aligned EncryptedSessionKeyLength field
and the actual EncryptedSessionKeyLength field.

SignedHash (variable): A variable-length array of bytes that contain the signed hash of the
session key.

2.2.2.2.1 ENCRYPTED_SESSION_KEY_ BLOB

The ENCRYPTED_SESSION_KEY_BLOB message layout is described in the following diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type Version Reserved

AlgID

EncryptAlgID

18 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

SessionKey (variable)

...

Type (1 byte): An 8-bit unsigned integer that specifies that the session key is transferred. This
field MUST be set to 0x1.

Version (1 byte): An 8-bit unsigned integer value. This field MUST be set to 0x2.

Reserved (2 bytes): A 16-bit unsigned integer that MUST be set to 0x0000 and MUST be
ignored on receipt.

AlgID (4 bytes): A 32-bit unsigned integer. This field MUST be set to the CALG_RC4 value,
which MUST be used to indicate that the RC4 stream encryption algorithm will be used for the
data encryption, as specified in [RC4].

Value Meaning

CALG_RC4

0x00006801

The RC4 stream encryption algorithm.

EncryptAlgID (4 bytes): An unsigned 32-bit integer that MUST be set to the CALG_RSA_KEYX
value, which indicates that the session key was encrypted using the RSA public key
algorithm.

Value Meaning

CALG_RSA_KEYX

0x0000a400

The RSA public key algorithm.

SessionKey (variable): A variable-length array of bytes that contains the actual session key of

AlgID type, which is encrypted by the algorithm specified by EncryptAlgID. The size of the
SessionKey field is always the same as the size of the modulus of the public key used for
encryption.

2.2.2.3 HASH_BLOB

The HASH_BLOB message stores the hash that is exchanged during the secure session negotiation.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

HashDataLength

Reserved

HashData (variable)

...

http://go.microsoft.com/fwlink/?LinkId=93759

19 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

HashDataLength (4 bytes): A 32-bit unsigned integer that stores the size, in bytes, of the
HashData field.

Reserved (4 bytes): This field MUST be set to 0x00000000 and MUST be ignored on receipt.

HashData (variable): A variable-length array that contains the hash.

2.2.2.4 CLEARTEXT_DATA_BLOB

The CLEARTEXT_DATA_BLOB message stores cleartext data that does not need encryption, but
uses the IIS_CRYPTO_BLOB message to store the data.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ClearTextData (variable)

...

ClearTextData (variable): A variable-length array of bytes that contains cleartext data.

2.2.2.5 ENCRYPTED_DATA_BLOB

The ENCRYPTED_DATA_BLOB message stores the encrypted, sensitive data that is transferred
between client and server.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

EncryptedDataLength

SignedHashLength

EncryptedData (variable)

...

Padding (variable)

...

SignedHash (variable)

...

EncryptedDataLength (4 bytes): A 32-bit unsigned integer that stores the size, in bytes, of
the EncryptedData field.

SignedHashLength (4 bytes): A 32-bit unsigned integer that stores the size, in bytes, of the
SignedHash field.

20 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EncryptedData (variable): A variable-length array of bytes containing encrypted data. The
cleartext data before the encryption is stored in CLEARTEXT_WITH_PREFIX_BLOB format.

Padding (variable): A variable-length array of bytes where the length of the padding is based
on the EncryptedDataLength field. The number of padding bytes is calculated as the

difference between the 8-byte aligned EncryptedDataLength field and the actual
EncryptedDataLength field.

SignedHash (variable): A variable-length array of bytes that contains the signed hash of the
EncryptedData field.

2.2.2.5.1 CLEARTEXT_WITH_PREFIX_BLOB

The CLEARTEXT_WITH_PREFIX_BLOB message is used to store cleartext data before it is encrypted

and serialized into the BlobData field of the IIS_CRYPTO_BLOB message with the
BlobSignature field set to ENCRYPTED_DATA_BLOB_SIGNATURE.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Reserved

ClearTextData (variable)

...

Reserved (4 bytes): This field MUST be set to zero and MUST be ignored on receipt.

ClearTextData (variable): A variable-length array of bytes that contains cleartext data.

2.2.3 Secure Session Negotiation Constants

Constant/value Description

HASH_TEXT_STRING_1

"IIS Key Exchange Phase

3"

The constant string used to calculate the hash sent by the client with the

R_KeyExchangePhase2 call.

HASH_TEXT_STRING_2

"IIS Key Exchange Phase

4"

The constant string used to calculate the hash sent by the server in response

to the R_KeyExchangePhase2 call.

2.2.4 METADATA_GETALL_RECORD

The METADATA_GETALL_RECORD structure defines an analogous structure to
METADATA_RECORD but is used only to return data from a call to the R_GetAllData method.

Data retrieval specifications are provided in R_GetAllData method parameters, not in this structure
(as is the case with METADATA_RECORD). The R_GetAllData method returns the data from
multiple entries as an array of METADATA_GETALL_RECORD structures.

typedef struct {

 DWORD dwMDIdentifier;

 DWORD dwMDAttributes;

21 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 DWORD dwMDUserType;

 DWORD dwMDDataType;

 DWORD dwMDDataLen;

 DWORD dwMDDataOffset;

 DWORD dwMDDataTag;

} METADATA_GETALL_RECORD,

 *PMETADATA_GETALL_RECORD;

dwMDIdentifier: An unsigned integer value that uniquely identifies the metabase entry.

dwMDAttributes: An unsigned integer value containing bit flags that specify how to set or get
data from the metabase. This member MUST be set to a valid combination of the following
values.

Value Meaning

METADATA_INHERIT

0x00000001

In Get methods: Return the inheritable data.

In Set methods: The data can be inherited.

METADATA_INSERT_PATH

0x00000040

For a string data item.

In Get methods: Replace all occurrences of "<%INSERT_PATH%>"

with the path of the data item relative to the handle.

In Set methods: Indicate that the string contains the Unicode

character substring "<%INSERT_PATH%>".

METADATA_ISINHERITED

0x00000020

In Get methods: Mark the data items that were inherited.

In Set methods: Not valid.

METADATA_NO_ATTRIBUTES

0x00000000

In Get methods: Not applicable. Data is returned regardless of this

flag setting.

In Set methods: The data does not have any attributes.

METADATA_PARTIAL_PATH

0x00000002

In Get methods: Return any inherited data even if the entire path

is not present. This flag is valid only if METADATA_INHERIT is also

set.

In Set methods: Not valid.

METADATA_SECURE

0x00000004

In Get methods: Not valid.

In Set methods: The server and client transport and store the data

in a secure fashion, as specified in 3.1.4.1.1.

METADATA_VOLATILE

0x00000010

In Get methods: Not valid.

In Set methods: Do not save the data in long-term storage.

dwMDUserType: An unsigned integer value that specifies the user type of the data. The
dwMDUserType member MUST be set to one of the following values.

Value Meaning

ASP_MD_UT_APP

0x00000065

The entry contains information specific to ASP application configuration.

IIS_MD_UT_FILE The entry contains information about a file, such as access permissions or

22 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

0x00000002 logon methods.

IIS_MD_UT_SERVER

0x00000001

The entry contains information specific to the server, such as ports in use

and IP addresses.

IIS_MD_UT_WAM

0x00000064

The entry contains information specific to web application management.

dwMDDataType: An integer value that identifies the type of data in the metabase entry. The
dwMDDataType member MUST be set to one of the following values.

Value Meaning

ALL_METADATA

0x00000000

Specifies all data, regardless of type.

BINARY_METADATA

0x00000003

Specifies binary data in any form.

DWORD_METADATA

0x00000001

Specifies all DWORD (unsigned 32-bit integer) data.

EXPANDSZ_METADATA

0x00000004

Specifies all data that consists of a string that includes the terminating

null character, and which contains environment variables that are not

expanded.

MULTISZ_METADATA

0x00000005

Specifies all data represented as an array of strings, where each string

includes the terminating null character, and the array itself is terminated

by two terminating null characters.

STRING_METADATA

0x00000002

Specifies all data consisting of an ASCII string that includes the

terminating null character.

dwMDDataLen: An unsigned integer value that specifies the length, in bytes, of the data. If the

data is a string, this value includes the ending null character. For lists of strings, this includes
an additional terminating null character after the final string (double terminating null
characters).

For example, the length of a string list containing two strings would be as follows.

(wcslen(stringA) + 1) * sizeof(WCHAR) + (wcslen(stringB) + 1)

 * sizeof(WCHAR) + 1 * sizeof(WCHAR)

In-process clients need to specify dwMDDataLen only when setting binary data in the

metabase. Remote clients MUST specify dwMDDataLen for all data types.

dwMDDataOffset: If the data was returned by value, this member contains the byte offset of

the data in the buffer specified by the pbMDBuffer parameter of the R_GetAllData method.
All out-of-process executions will return data by value. The array of records, excluding the
data, is returned in the first part of the buffer. The data associated with the records is
returned in the buffer after the array of records, and dwMDDataOffset is the offset to the

beginning of the data associated with each record in the array.

dwMDDataTag: A reserved member that is currently unused.

%5bMS-DTYP%5d.pdf

23 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.5 METADATA_HANDLE

The METADATA_HANDLE represents a node of the configuration storage tree.

This type is declared as follows:

typedef unsigned long METADATA_HANDLE, *PMETADATA_HANDLE;

2.2.6 METADATA_HANDLE_INFO

The METADATA_HANDLE_INFO structure defines information about a handle to a metabase
entry.

typedef struct {

 DWORD dwMDPermissions;

 DWORD dwMDSystemChangeNumber;

} METADATA_HANDLE_INFO;

dwMDPermissions: An unsigned integer value containing the permissions with which the
handle was opened. This member MUST have a valid combination of the following flags set.

Value Meaning

METADATA_PERMISSION_READ

0x00000001

The handle can read nodes and data.

METADATA_PERMISSION_WRITE

0x00000002

The handle can write nodes and data.

dwMDSystemChangeNumber: An unsigned integer value containing the system change
number when the handle was opened. The system change number is a 32-bit unsigned integer
value that is incremented when a change is made to the metabase. See

GetSystemChangeNumber (section 3.1.4.21) for a specification of the system change
number.

2.2.7 METADATA_RECORD

The METADATA_RECORD structure defines information about a metabase entry.

typedef struct {

 DWORD dwMDIdentifier;

 DWORD dwMDAttributes;

 DWORD dwMDUserType;

 DWORD dwMDDataType;

 DWORD dwMDDataLen;

 [unique, size_is(dwMDDataLen)] unsigned char* pbMDData;

 DWORD dwMDDataTag;

} METADATA_RECORD;

24 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

dwMDIdentifier: An unsigned integer value that uniquely identifies the metabase entry.

dwMDAttributes: An unsigned integer value containing bit flags that specify how to get or set
data from the metabase. This member MUST have a valid combination of the following flags
set.

Value Meaning

METADATA_INHERIT

0x00000001

In Get methods: Returns inheritable data.

In Set methods: The data can be inherited.

METADATA_INSERT_PATH

0x00000040

For a string data item.

In Get methods: Replaces all occurrences of

"<%INSERT_PATH%>" with the path of the data item relative to

the handle.

In Set methods: Indicate that the string contains the Unicode

character substring "<%INSERT_PATH%>".

METADATA_ISINHERITED

0x00000020

In Get methods: Marks data items that were inherited.

In Set methods: Not valid.

METADATA_NO_ATTRIBUTES

0x00000000

In Get methods: Not applicable. Data is returned regardless of this

flag setting.

In Set methods: The data does not have any attributes.

METADATA_PARTIAL_PATH

0x00000002

In Get methods: Returns any inherited data even if the entire path

is not present. This flag is valid only if METADATA_INHERIT is also

set.

In Set methods: Not valid.

METADATA_SECURE

0x00000004

In Get methods: Not valid.

In Set methods: Stores and transports the data in a secure fashion,

as specified in 3.1.4.1.

METADATA_VOLATILE

0x00000010

In Get methods: Not valid.

In Set methods: Does not save the data in long-term storage.

dwMDUserType: An integer value that specifies the user type of the data. The
dwMDUserType member MUST be set to one of the following values.

Value Meaning

ASP_MD_UT_APP

0x00000065

The entry contains information specific to ASP application configuration.

IIS_MD_UT_FILE

0x00000002

The entry contains information about a file, such as access permissions or

logon methods.

IIS_MD_UT_SERVER

0x00000001

The entry contains information specific to the server, such as ports in use

and IP addresses.

IIS_MD_UT_WAM

0x00000064

The entry contains information specific to WAM.

25 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

dwMDDataType: An unsigned integer value that identifies the type of data in the metabase
entry. The dwMDDataType member MUST be set to one of the following values.

Value Meaning

ALL_METADATA

0x00000000

Specifies all data, regardless of type.

BINARY_METADATA

0x00000003

Specifies binary data.

DWORD_METADATA

0x00000001

Specifies all DWORD (unsigned 32-bit integer) data.

EXPANDSZ_METADATA

0x00000004

Specifies all data that consists of a string that includes the terminating

null character and which contains environment variables that are not

expanded.

MULTISZ_METADATA

0x00000005

Specifies all data represented as an array of strings, where each string

includes the terminating null character, and the array itself is terminated

by two terminating null characters.

STRING_METADATA

0x00000002

Specifies all data consisting of an ASCII string that includes the

terminating null character.

dwMDDataLen: An unsigned integer value that specifies the length of the data in bytes. If the
data is a string, this value includes the terminating null character. For lists of strings, this
includes an additional terminating null character after the final string (double terminating null

characters).

For example, the length of a string list containing two strings would be as follows.

(wcslen(stringA) + 1) * sizeof(WCHAR) + (wcslen(stringB) + 1)

 * sizeof(WCHAR) + 1 * sizeof(WCHAR)

In-process clients need to specify dwMDDataLen only when setting binary data in the
metabase. Remote clients MUST specify dwMDDataLen for all data types.

pbMDData: When setting data in the metabase, this member contains a pointer to a buffer that
holds the data. When getting data from the metabase, this member contains a pointer to a
buffer that will receive the data.

dwMDDataTag: A reserved member that is currently unused.

2.2.8 METADATA_MASTER_ROOT_HANDLE

This predefined handle points to the root of the configuration storage tree. It is treated as a valid

handle for operations that require a METADATA_HANDLE opened with the
METADATA_PERMISSION_READ bit flag specified in section 3.1.4.2. It is represented by a null

handle and declared in the following way.

#define METADATA_MASTER_ROOT_HANDLE 0

%5bMS-DTYP%5d.pdf

26 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.9 MD_APP_ROOT

MD_APP_ROOT is a metabase data object defined by a METADATA_RECORD structure. The
following METADATA_RECORD fields define MD_APP_ROOT.

Field Value

dwMDIdentifier MD_APP_ROOT

0x00000838

dwMDAttributes METADATA_INHERIT

0x00000001

dwUserType IIS_MD_UT_WAM

0x00000064

dwMDDataType STRING_METADATA

0x00000002

2.2.10 MD_APP_ISOLATED

MD_APP_ISOLATED is a metabase data object defined by a METADATA_RECORD structure. The
following METADATA_RECORD fields define MD_APP_ISOLATED.

Field Value

dwMDIdentifier MD_APP_ISOLATED

0x00000838

dwMDAttributes METADATA_INHERIT

0x00000001

dwUserType IIS_MD_UT_WAM

0x00000064

dwMDDataType DWORD_METADATA

0x00000001

2.2.11 MD_APP_APPPOOL_ID

MD_APP_APPPOOL_ID is a metabase data object defined by a METADATA_RECORD structure. The
following METADATA_RECORD fields define MD_APP_APPPOOL_ID.

Field Value

dwMDIdentifier MD_APP_APPPOOL_ID

0x0000238D

dwMDAttributes METADATA_INHERIT

0x00000001

dwUserType IIS_MD_UT_SERVER

0x00000001

27 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Field Value

dwMDDataType STRING_METADATA

0x00000002

2.2.12 MD_BACKUP_MAX_LEN

The MD_BACKUP_MAX_LEN constant is used to define the maximum size of a string that specifies a
backup location. This constant is defined as follows.

#define MD_BACKUP_MAX_LEN 100

28 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3 Protocol Details

The client side of the IWamAdmin, IWamAdmin2, and IIISApplicationAdmin interfaces are
simply a pass-through. That is, no additional timers or other state is required on the client side of
this protocol. Calls made by the higher-layer protocol or application are passed directly to the

transport, and the results returned by the transport are passed directly back to the higher-layer
protocol or application.

3.1 IMSAdminBaseW Server Details

3.1.1 Abstract Data Model

The following information must be maintained by the server for use in responding to client queries
and commands.

Configuration storage, interfaced by IMSAdminBaseW, should be implemented as a hierarchical

tree-like store of data. Configuration data is accessed through the metabase path, where each node
of the path represents branch of the tree, similar to the registry key. The node is identified by name
that should be unique between siblings and the metabase path is combined from node names
separated by predefined separation characters. Each node could contain any number of data value

items (data) identified by numerical IDs, and any number of child nodes.

In addition to the registry-like features, the metabase provides data value items inheritance along
the metabase path in such a manner, that data value item defined on the node located closer to the
root of the tree could be inherited by lower level nodes. Each data value item carries an attribute
that could be used to find, if the data on any particular node is defined on that node, or inherited
from the parent node.

Each data on the metabase node has attributes describing the type of data that it contains and type

of use for this data. For a complete description of the data structure with all the attributes, see
section 2.2.7.

The metabase root is defined by the predefined handle METADATA_MASTER_ROOT_HANDLE. When
the metabase is initialized, this handle is opened with read access and stays opened during the
entire session. When a caller is getting access to the nodes, which are located lower than root, the
access type should be passed as parameter. This access type could be read or write; see section

3.1.4.2. When a caller requests write access, the server locks the metabase subtree starting from
the node where access is requested, including the parental nodes and all the child nodes. If at the
moment of call the requested part of metabase is already locked by another caller, the requesting
call returns Win32 error code ERROR_PATH_BUSY (see [MS-ERREF] section 2.2). The server must
keep the state of the locked subtree until the opened node will be explicitly closed. When the caller
requests read-only access, the server locks the same portion of the tree from being opened for write
access. Multiple calls could open locked nodes for read-only access at the same time. If any caller

requests write access to the portion of the tree, which is currently locked for read-only access, then
this call will return the Win32 error code ERROR_PATH_BUSY (see [MS-ERREF] section 2.2).

The server must keep the counter of changes that were done to the configuration storage.

The server must keep record of last change time for each node.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

29 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.1.1 Secure Session Context

When the client expects to exchange sensitive data marked with the METADATA_SECURE secure
flag, it will negotiate secure session. As part of the secure session negotiation, both client and server

will build the secure session context.

For each client, the server MUST maintain the following information related to the secure session:

The server's key exchange private and public key.

The server's signature private and public key.

The client's key exchange public key.

The client's signature public key.

The server's session key.

The client's session key.

3.1.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to

network outages, as specified in [MS-RPCE] section 3.2.3.2.1.

3.1.3 Initialization

The IIS IMSAdminBaseW Remote Protocol server MUST be initialized by registering the RPC
interface and listening on the RPC well-known endpoint, as specified in section 2.1. The server
MUST then wait for IIS IMSAdminBaseW Remote Protocol clients to establish a connection.

3.1.4 Message Processing Events and Sequencing Rules

This DCOM interface inherits the IUnknown interface. Method opnum field values start with 3;

opnum values 0 through 2 represent the IUnknown_QueryInterface, IUnknown_AddRef, and
IUnknown_Release methods, respectively, as specified in [MS-DCOM].

Methods with opnum field values 34 through 39 are defined in section 3.3.4, and field value 40 is
defined in section 3.5.4.

This protocol MUST indicate to the RPC runtime that it is to perform a strict Network Data
Representation (NDR) data consistency check at target level 5.0, as specified in [MS-RPCE]
section 3.

Methods in RPC Opnum Order

Method Description

AddKey Creates a node and adds it to the metabase as a subnode of an existing

node at the specified path.

Opnum: 3

DeleteKey Deletes a node and all its data from the metabase. All of the node's

subnodes are recursively deleted.

Opnum: 4

%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf

30 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Method Description

DeleteChildKeys Deletes all subnodes of the specified node and any data they contain. It

also recursively deletes all nodes below the subnodes.

Opnum: 5

EnumKeys Enumerates the subnodes of the specified node.

Opnum: 6

CopyKey Copies or moves a node, including its subnodes and data, to a specified

destination. The copied or moved node becomes a subnode of the

destination node.

Opnum: 7

RenameKey Renames a node in the metabase.

Opnum: 8

R_SetData Sets a data item for a particular node in the metabase.

Opnum: 9

R_GetData Returns a data entry from a particular node in the metabase.

Opnum: 10

DeleteData Deletes specific data entries from a node in the metabase.

Opnum: 11

R_EnumData Enumerates the data entries of a node in the metabase.

Opnum: 12

R_GetAllData Returns all data associated with a node in the metabase, including all

values that the node inherits.

Opnum: 13

DeleteAllData Deletes all or a subset of local data associated with a particular node.

Opnum: 14

CopyData Copies or moves data between nodes.

Opnum: 15

GetDataPaths Returns the paths of all nodes in the subtree relative to a specified starting

node that contains the supplied identifier.

Opnum: 16

OpenKey Opens a node for read access, write access, or both. The returned handle

can be used by several of the other methods in IMSAdminBaseW.

Opnum: 17

CloseKey Closes a handle to a node.

Opnum: 18

ChangePermissions Changes permissions on an open handle.

Opnum: 19

SaveData Explicitly saves the metabase data to disk.

31 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Method Description

Opnum: 20

GetHandleInfo Returns information associated with the specified metabase handle.

Opnum: 21

GetSystemChangeNumber Returns the number of changes made to data since the metabase was

created.

Opnum: 22

GetDataSetNumber Returns all the data set numbers associated with a node in the metabase.

Opnum: 23

SetLastChangeTime Sets the last change time associated with a node in the metabase.

Opnum: 24

GetLastChangeTime Returns the last change time associated with a node in the metabase.

Opnum: 25

R_KeyExchangePhase1 Receives a pair of encrypted client nodes and returns server encryption

and session keys.

Opnum: 26

R_KeyExchangePhase2 Receives the encrypted client session and hash keys in response to

R_KeyExchangePhase1 and returns the encrypted server hash keys.

Opnum: 27

Backup Backs up the metabase to a specified location.

Opnum: 28

Restore Restores the metabase from a backup.

Opnum: 29

EnumBackups Enumerates the metabase backups in a specified backup location, or in all

backup locations.

Opnum: 30

DeleteBackup Deletes a metabase backup from a backup location.

Opnum: 31

UnmarshalInterface Unmarshals a reference to the IMSAdminBaseW interface.

Opnum: 32

R_GetServerGuid Returns the GUID for the IIS instance that is running.

Opnum: 33

Structures

The Message Processing Events and Sequencing Rules interface defines the following
structures.

%5bMS-GLOS%5d.pdf

32 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Structure Description

METADATA_HANDLE_INFO Defines information about a handle to a metabase entry.

METADATA_RECORD Defines information about a metabase entry.

METADATA_GETALL_RECORD Defines an analogous structure to METADATA_RECORD but is used

only to return data from a call to the R_GetAllData method.

IIS_CRYPTO_BLOB Defines a block of opaque data, possibly encrypted, for RPC marshaling

between IIS and a client.

3.1.4.1 Transferring Sensitive Data

Some of the data that is transferred between client and server is of sensitive nature and needs to be

protected. An example of sensitive data is a password. The IIS IMSAdminBaseW Remote Protocol
defines a way to protect sensitive data transferred in the METADATA_RECORD or

METADATA_GETALL_RECORD structures.

When the client expects transfer of sensitive data, it will initiate negotiation of a secure session. The
secure session is negotiated by processing R_KeyExchangePhase1 and R_KeyExchangePhase2
calls. The 512-bit RSA key exchange keys are used to exchange 40-bit RC4 session keys. RC4
session keys (one for the client and one for the server) are used to encrypt data over the wire. An

MD5 hash signed with 512-bit RSA signature keys is used for message integrity checks.<1>

There are four methods that take advantage of this protection:

R_GetData

R_EnumData

R_GetAllData

R_SetData

Sensitive data is marked with the METADATA_SECURE secure flag in the METADATA_RECORD or
METADATA_GETALL_RECORD structure.<2>

3.1.4.1.1 Secure Session Negotiation Server Role

The purpose of the secure session negotiation is to exchange session keys and signature public keys

between the server and client. The session keys are used for encryption and decryption of sensitive
data, and signature public keys are used to ensure message integrity.

Secure session negotiation is initiated by the client using the R_KeyExchangePhase1 and
R_KeyExchangePhase2 call sequence; for more information, see 3.2.4.1. The server participates
in the secure session negotiation by responding to R_KeyExchangePhase1 and
R_KeyExchangePhase2 calls, in that order.

The server MUST participate in the secure session negotiation initiated by the client. As a result of

the secure session negotiation, the server will receive the client's session key and signature public
key.

%5bMS-GLOS%5d.pdf

33 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.1.2 Encrypting Data

Some data transferred between the client and server must be encrypted before it is sent. Encrypted
data will be transferred in an IIS_CRYPTO_BLOB message with the BlobSignature field set to

ENCRYPTED_DATA_BLOB_SIGNATURE.

Secure session MUST be negotiated before the data encryption takes place (see section 3.1.4.1.1).

Sender MUST perform the following steps to encrypt data and build IIS_CRYPTO_BLOB:

1. Create an instance of a CLEARTEXT_WITH_PREFIX_BLOB message:

Set the Reserved field to zero.

Place the data to be encrypted into the ClearTextData field.

2. Calculate the signed hash and hash length of the CLEARTEXT_WITH_PREFIX_BLOB message from
the previous step, as specified in section 3.1.4.1.4.

3. Encrypt the CLEARTEXT_WITH_PREFIX_BLOB message data using the session key of the sender.
The client will use the session key of the client, and the server will use the session key of the
server.

4. Create an instance of ENCRYPTED_DATA_BLOB:

Set the EncryptedDataLength field to the number of encrypted bytes from the previous

step.

Store encrypted data from the earlier step in the EncryptedData field.

Calculate the padding size between zero and seven, so that EncryptedDataLength +

padding length is a multiple of eight. Set padding bytes to 0x00.

Set the SignedHashLength and SignedHash fields calculated in the earlier step.

5. Create an instance of an IIS_CRYPTO_BLOB message:

Set the BlobSignature field to ENCRYPTED_DATA_BLOB_SIGNATURE.

Calculate the BlobDataLength field value in the IIS_CRYPTO_BLOB message by adding the

EncryptedDataLength + padding length + SignedHashLength.

Store the ENCRYPTED_DATA_BLOB instance from the earlier step in the BlobData field.

3.1.4.1.3 Decrypting Data

Some data is encrypted before it is transferred between the client and server. The receiver MUST
decrypt the data before it can be used. Encrypted data is stored in an IIS_CRYPTO_BLOB
message with the BlobSignature field set to ENCRYPTED_DATA_BLOB_SIGNATURE.

The data decryption process assumes that secure session was already negotiated (see section

3.1.4.1.1).

The receiver MUST perform the following steps to decrypt the data:

1. Retrieve the BlobData field from an IIS_CRYPTO_BLOB message.

2. Interpret BlobData as an ENCRYPTED_DATA_BLOB message.

34 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3. Retrieve the EncryptedData field or EncryptedDataLength bytes from the
ENCRYPTED_DATA_BLOB message.

4. Decrypt the EncryptedData data using the session key of the sender. The server will use the
session key of the client and the client will use the session key of the server.

5. Follow the instructions in section 3.1.4.1.5 to validate the hash. Use the decrypted data from
step 4.

If a hash validation fails, the receiver MUST reject the data and the method that is processing the
encrypted data MUST fail. Error messages from a failure are implementation-dependent.

6. Interpret the decrypted data from step 4 as a CLEARTEXT_WITH_PREFIX_BLOB message.

7. Retrieve the ClearTextData field from the CLEARTEXT_WITH_PREFIX_BLOB message. It will
contain the final decrypted data.

3.1.4.1.4 Signed Hash Calculation

The signed hash is used to provide integrity checking by the receiver.

The sender MUST perform the following steps to calculate the hash:

1. Compute an MD5 hash of cleartext data.

2. Use the sender's signature private key (the server will use the server's signature private key, and

the client will use the client's signature private key) to sign the MD5 hash, as specified in
[RFC3447].

3. The size of the signed hash will match the number of bits in the signature key. The 512-bit RSA
signature keys will be used for signing, so the signed hash will always be 0x40 bytes long.

3.1.4.1.5 Signed Hash Validation

Validation is to be performed by the receiver to verify the integrity of the received data.

The following steps MUST be performed by the receiver:

1. Compute an MD5 hash of decrypted data.

2. Use the MD5 hash from previous step and the sender's signature public key to verify against the
SignedHash field stored in the IIS_CRYPTO_BLOB message. The server will use the client's
signature public key, and the client will use the server's signature public key for verification. If
the signature does not match, the validation fails, as specified in [RFC3447].

3.1.4.2 OpenKey (Opnum 17)

The OpenKey method opens a node for read access, write access, or both. The returned handle can
be used by several of the other methods in the IMSAdminBaseW interface.

HRESULT OpenKey(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in] DWORD dwMDAccessRequested,

 [in] DWORD dwMDTimeOut,

 [out] METADATA_HANDLE* phMDNewHandle

http://go.microsoft.com/fwlink/?LinkId=90422
http://go.microsoft.com/fwlink/?LinkId=90422

35 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

);

hMDHandle: An unsigned 32-bit integer value containing a handle to a node in the metabase

with read permissions as returned by the OpenKey method or the metabase master root
handle (0x00000000).

pszMDPath: A pointer to a Unicode string that contains the path of the node to be opened,
relative to the hMDHandle parameter.

dwMDAccessRequested: A set of bit flags specifying the requested permissions for the handle.
This parameter MUST be set to at least one of the following values.

Value Meaning

METADATA_PERMISSION_READ

0x00000001

Open the node for reading.

METADATA_PERMISSION_WRITE

0x00000002

Open the node for writing.

dwMDTimeOut: An unsigned 32-bit integer value specifying the time, in milliseconds, for the
method to wait on a successful open operation.

phMDNewHandle: A pointer to the newly opened metadata handle (see DWORD).

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070006

ERROR_INVALID_HANDLE

The handle is invalid.

0x80070094

ERROR_PATH_BUSY

The path specified cannot be used at this time.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

The opnum field value for this method is 17.

When processing this call, the server MUST do the following:

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf

36 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Check the handle parameter. This handle is valid if it is either the master root handle or a handle

returned from a previous OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE

error.

Check that the relative path points to a valid node; otherwise, return ERROR_PATH_NOT_FOUND.

Determine if it is possible to provide the required access type for the destination node with the

path combined from the parent handle path and the relative path.

If the destination node represents the root of the metabase and the requested access is for write,

the server returns an error.

If the destination node falls into part of the metabase that is locked as described in 3.1.1, the

server SHOULD attempt to provide access during the time-out, which is passed as a parameter.
If, after this time-out, the node is still locked, the server SHOULD return
ERROR_PATH_BUSY.<3>

If access could be provided, the server calculates the handle of the destination node, increases

its lock count, and saves its state.

Return the following information to the client:

The handle of the opened node.

3.1.4.3 CloseKey (Opnum 18)

The CloseKey method closes a handle to a node.

HRESULT CloseKey(

 [in] METADATA_HANDLE hMDHandle

);

hMDHandle: An unsigned 32-bit integer value containing the handle to close, as returned by the

OpenKey method.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see

[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070006

ERROR_INVALID_HANDLE

The handle is invalid.

The opnum field value for this method is 18.

When processing this call, the server MUST do the following:

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

37 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Check the handle parameter. This handle is valid if it is either the master root handle or a handle

returned from a previous OpenKey (section 3.1.4.2) call. If the handle is invalid, return the

ERROR_INVALID_HANDLE error.

Decrease the internal lock count in the state of the handle and release the lock, if it is possible.

3.1.4.4 AddKey (Opnum 3)

The AddKey method creates a node and adds it to the metabase as a subnode of an existing node
at the specified path.

HRESULT AddKey(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath

);

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying

the node in the metabase where the new key is to be added.

pszMDPath: A pointer to a Unicode string that contains the new node's path, relative to the path
of the hMDHandle parameter.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method

implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070005

E_ACCESSDENIED

General access denied error.

0x80070006

ERROR_INVALID_HANDLE

The handle is invalid.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x800700B7

ERROR_ALREADY_EXISTS

Cannot create a file because that file already exists.

The opnum field value for this method is 3.

When processing this call, the server MUST do the following:

Check the handle parameter. This handle is valid if it is either the master root handle or a handle

returned from a previous OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE

error.

The server SHOULD check whether the parent handle, hMDHandle, was opened for write access.

If not, return E_ACCESSDENIED<4>.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

38 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Check whether the relative path has the right syntax and length. If not, return an error.

Check whether the relative path refers to an existing node. If so, return

ERROR_ALREADY_EXISTS.

Add a new node to the tree that has the resultant path as a combined path of the parent node

specified by the hMDHandle parameter and the relative path specified by the pszMDPath
parameter. If any intermediate nodes are required, the server creates these nodes.

3.1.4.5 CopyKey (Opnum 7)

The CopyKey method copies or moves a node, including its subnodes and data, to a specified

destination. The copied or moved node becomes a subnode of the destination node.

HRESULT CopyKey(

 [in] METADATA_HANDLE hMDSourceHandle,

 [unique, in, string] LPCWSTR pszMDSourcePath,

 [in] METADATA_HANDLE hMDDestHandle,

 [unique, in, string] LPCWSTR pszMDDestPath,

 [in] BOOL bMDOverwriteFlag,

 [in] BOOL bMDCopyFlag

);

hMDSourceHandle: An unsigned 32-bit integer value containing an open metabase handle
specifying the source node to be copied or moved.

pszMDSourcePath: A pointer to a Unicode string that contains the path of the node to be copied

or moved relative to the path of the hMDSourceHandle parameter.

hMDDestHandle: An unsigned 32-bit integer value containing an open metabase handle
specifying the destination node of the moved or copied metabase key.

pszMDDestPath: A pointer to a string that contains the path of the new or moved node, relative

to the hMDDestHandle parameter.

bMDOverwriteFlag: A Boolean value that determine the behavior if a node with the same name

as source is already a child of destination node. If TRUE, the existing node and all its data and
children are deleted prior to copying or moving the source. If FALSE, the existing node, data,
and children remain, and the source is merged with that data. In cases of data conflicts, the
source data overwrites the destination data.

bMDCopyFlag: A Boolean value that specifies whether to copy or move the specified node. If
TRUE, the node is copied. If FALSE, the node is moved, and the source node is deleted from
its original location.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method

implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000 The call was successful.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

39 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return value/code Description

S_OK

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070005

E_ACCESSDENIED

General access denied error.

0x80070006

ERROR_INVALID_HANDLE

The handle is invalid.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

The opnum field value for this method is 7.

When processing this call, the server MUST do the following:

Check the source handle parameter. This handle is valid if it is either the master root handle or a

handle returned from a previous OpenKey call. If the handle is invalid, return
ERROR_INVALID_HANDLE.

Check the destination handle parameter. This handle is valid if it is either the master root handle

or a handle returned from a previous OpenKey call. If the handle is invalid, return
ERROR_INVALID_HANDLE.

The server SHOULD check whether the source and destination handles are opened with the

correct access mask. The destination handle, hMDDestHandle, SHOULD be opened with write
access. If bMDCopyFlag is TRUE the source handle, hMDSourceHandle, SHOULD be opened with

write access, otherwise it SHOULD be opened with read access. If the handles were not opened
with the correct access, return E_ACCESSDENIED.<5>

Check whether the source relative path points to the existing node. If not, return

ERROR_PATH_NOT_FOUND.

Check whether the destination relative path has the right syntax and length. If not, return an

error.

Check if the destination node exists. If it is true, check whether the overwrite parameter is set to

TRUE. If it is FALSE, then merge destination data with source data. When there is a conflict in
this merge, take the source data.

If the destination node does not exist, add a new node to the tree that has the resultant path as

a combined path of destination parent node and destination relative path. If any intermediate
nodes are required, the server creates these nodes. Copy all data from the source path to the

destination path.

If the copy flag is set to FALSE, delete the source node.

3.1.4.6 DeleteKey (Opnum 4)

The DeleteKey method deletes a node and all its data from the metabase. All of the subnodes are
recursively deleted.

HRESULT DeleteKey(

40 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath

);

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying a
node in the metabase where the key is to be deleted.

pszMDPath: A pointer to a Unicode string that contains the path of the node to be deleted,
relative to the path of the hMDHandle parameter. This parameter MUST NOT be NULL.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see

[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070005

E_ACCESSDENIED

General access denied error.

0x80070006

ERROR_INVALID_HANDLE

The handle is invalid.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

The opnum field value for this method is 4.

When processing this call, the server MUST do the following:

Check the handle parameter. This handle is valid if it is a handle returned from a previous

OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE error.

The server SHOULD check whether the handle was opened for write access. If not, return

E_ACCESSDENIED.<6>

Check whether the relative path points to the existing subnode of parent handle. If not, return

ERROR_PATH_NOT_FOUND.

Delete the node that contains the path which was calculated to be the path of the parent handle

combined with the relative path.

Delete all child nodes of this node.

3.1.4.7 DeleteChildKeys (Opnum 5)

The DeleteChildKeys method deletes all subnodes of the specified node and any data they contain.
It also recursively deletes all nodes below the subnodes.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

41 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

HRESULT DeleteChildKeys(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath

);

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying

the node in the metabase where the child key is to be deleted.

pszMDPath: A pointer to a Unicode string that contains the path of the node whose subnodes

are to be deleted, relative to the path of the hMDHandle parameter.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070005

E_ACCESSDENIED

General access denied error.

0x80070006

ERROR_INVALID_HANDLE

The handle is invalid.

The opnum field value for this method is 5.

When processing this call, the server MUST do the following:

Check the handle parameter. This handle is valid if it is either the master root handle or a handle

returned from a previous OpenKey call. If the handle is invalid, the server SHOULD return
ERROR_INVALID_HANDLE.<7>

Check whether the handle was opened for write access. If not, return E_ACCESSDENIED.

Check whether the relative path points to the existing subnode of the parent handle. If not,

return ERROR_PATH_NOT_FOUND.

Delete all child nodes of this subnode.

3.1.4.8 DeleteData (Opnum 11)

The DeleteData method deletes specific data entries from a node in the metabase.

HRESULT DeleteData(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in] DWORD dwMDIdentifier,

 [in] DWORD dwMDDataType

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

42 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

);

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying

the node in the metabase where the key data is to be deleted.

pszMDPath: A pointer to a Unicode string that contains the path of the node whose data is to be
deleted, relative to the path of the hMDHandle parameter.

dwMDIdentifier: An integer value specifying the data identifier.

dwMDDataType: An integer value specifying a data type. If this parameter is not set to
ALL_METADATA, the data item will be removed only if its data type matches the specified

type.

Value Meaning

ALL_METADATA

0x00000000

Specifies all data, regardless of type.

BINARY_METADATA

0x00000003

Specifies binary data in any form.

DWORD_METADATA

0x00000001

Specifies all DWORD (unsigned 32-bit integer) data.

EXPANDSZ_METADATA

0x00000004

Specifies all data consisting of a string that includes the terminating null

character, which contains unexpanded environment variables.

MULTISZ_METADATA

0x00000005

Specifies all data represented as an array of strings, where each string

contains two occurrences of the terminating null character.

STRING_METADATA

0x00000002

Specifies all data consisting of an ASCII string that includes the

terminating null character.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see

[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070005

E_ACCESSDENIED

General access denied error.

0x80070006

ERROR_INVALID_HANDLE

The handle is invalid.

0x800CC801 The specified metadata was not found.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

43 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return value/code Description

MD_ERROR_DATA_NOT_FOUND

The opnum field value for this method is 11.

When processing this call, the server MUST do the following:

Check the handle parameter. This handle is valid if it is either the master root handle or a handle

returned from a previous OpenKey call. If the handle is invalid, return
ERROR_INVALID_HANDLE.

The server SHOULD check whether the handle was opened for write access. If not, return

E_ACCESSDENIED.<8>

Check whether the relative path points to the existing subnode of the parent handle. If not,

return an error.

Check whether the node has data with an ID equal to the ID parameter passed from the client. If

not, return MD_ERROR_DATA_NOT_FOUND.

Check the data type parameter. If it is ALL_METADATA or if the data type matches the data

specified by the dwMDIdentifier, delete this data from the node. Otherwise return
MD_ERROR_DATA_NOT_FOUND.

3.1.4.9 DeleteAllData (Opnum 14)

The DeleteAllData method deletes all or a subset of local data associated with a particular node.

HRESULT DeleteAllData(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in] DWORD dwMDUserType,

 [in] DWORD dwMDDataType

);

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying

the node in the metabase where the key data is to be deleted.

pszMDPath: A pointer to a Unicode string that contains the path of the node with which the data
to be deleted is associated, relative to the path of the hMDHandle parameter.

dwMDUserType: An integer value specifying the data to delete based on user type.

Value Meaning

ALL_METADATA

0x00000000

Specifies all data, regardless of type.

ASP_MD_UT_APP

0x00000065

Specifies data specific to ASP application configuration.

IIS_MD_UT_FILE

0x00000002

Specifies data specific to a file, such as access permissions or logon

methods.

IIS_MD_UT_SERVER Specifies data specific to the server, such as ports in use and IP addresses.

44 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

0x00000001

IIS_MD_UT_WAM

0x00000064

Specifies data specific to WAM.

dwMDDataType: An integer value specifying a data type. If this parameter is not set to
ALL_METADATA, the data item will be removed only if its data type matches the specified
type.

Value Meaning

ALL_METADATA

0x00000000

Specifies all data, regardless of type.

BINARY_METADATA

0x00000003

Specifies binary data in any form.

DWORD_METADATA

0x00000001

Specifies all DWORD (unsigned 32-bit integer) data.

EXPANDSZ_METADATA

0x00000004

Specifies all data consisting of a string that includes the terminating null

character, which contains unexpanded environment variables.

MULTISZ_METADATA

0x00000005

Specifies all data represented as an array of strings, where each string

contains two occurrences of the terminating null character.

STRING_METADATA

0x00000002

Specifies all data consisting of an ASCII string that includes the

terminating null character.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with

the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see

[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070005

E_ACCESSDENIED

General access denied error.

0x80070006

ERROR_INVALID_HANDLE

The handle is invalid.

The opnum field value for this method is 14.

When processing this call, the server MUST do the following:

Check the handle. This handle is valid if it is either the master root handle or a handle returned

from a previous OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

45 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The server SHOULD check whether the handle was opened for write access. If not, return

E_ACCESSDENIED.<9>

Check whether the relative path points to the existing subnode of the parent handle. If not,

return an error.

For each data value that is defined on the destination node and not inherited from the parent

node, repeat the following:

If the dwMDUserType and dwMDDataType parameters are equal to "ALL_METADATA", delete the

data.

If the user type parameter equals the user type of the data and the data type parameter is equal

to the data type of the data or ALL_METADATA, delete this data value.

If the data type parameter equals the data type of the data and the user type parameter is equal

to the user type of the data or ALL_METADATA, the server SHOULD delete this data value.<10>

3.1.4.10 CopyData (Opnum 15)

The CopyData method copies or moves data between nodes.

HRESULT CopyData(

 [in] METADATA_HANDLE hMDSourceHandle,

 [unique, in, string] LPCWSTR pszMDSourcePath,

 [in] METADATA_HANDLE hMDDestHandle,

 [unique, in, string] LPCWSTR pszMDDestPath,

 [in] DWORD dwMDAttributes,

 [in] DWORD dwMDUserType,

 [in] DWORD dwMDDataType,

 [in] BOOL bMDCopyFlag

);

hMDSourceHandle: An unsigned 32-bit integer value containing an open metabase handle

specifying the source node from which the data is to be copied or moved.

pszMDSourcePath: A pointer to a Unicode string that contains the path of the node with which
the source data is associated, relative to the path of the hMDSourceHandle parameter.

hMDDestHandle: An unsigned 32-bit integer value containing an open metabase handle

specifying the destination node to which the data is to be copied or moved.

pszMDDestPath: A pointer to a Unicode string that contains the path of the node for data to be
copied to or moved to, relative to the path of the hMDDestHandle parameter.

dwMDAttributes: Flags used to filter the data, as specified in the METADATA_RECORD
structure.

dwMDUserType: An integer value specifying the data to copy based on the user type.

Value Meaning

ALL_METADATA

0x00000000

Specifies all data, regardless of user type.

ASP_MD_UT_APP Specifies data specific to ASP application configuration.

46 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

0x00000065

IIS_MD_UT_FILE

0x00000002

Specifies data specific to a file, such as access permissions or logon

methods.

IIS_MD_UT_SERVER

0x00000001

Specifies data specific to the server, such as ports in use and IP addresses.

IIS_MD_UT_WAM

0x00000064

Specifies data specific to WAM.

dwMDDataType: An integer value specifying a data type. If this parameter is not set to

ALL_METADATA, the data item will be copied only if its data type matches the specified type.

Value Meaning

ALL_METADATA

0x00000000

Specifies all data, regardless of type.

BINARY_METADATA

0x00000003

Specifies binary data in any form.

DWORD_METADATA

0x00000001

Specifies all DWORD (unsigned 32-bit integer) data.

EXPANDSZ_METADATA

0x00000004

Specifies all data consisting of a string that includes the terminating null

character, which contains unexpanded environment variables.

MULTISZ_METADATA

0x00000005

Specifies all data represented as an array of strings, where each string

contains two occurrences of the terminating null character.

STRING_METADATA

0x00000002

Specifies all data consisting of an ASCII string that includes the

terminating null character.

bMDCopyFlag: A Boolean value that specifies whether to copy or move the data. If this
parameter is set to TRUE, the data is copied. If it is FALSE, the data is moved.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070005

E_ACCESSDENIED

General access denied error.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

47 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return value/code Description

0x80070006

ERROR_INVALID_HANDLE

The handle is invalid.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x80070008

ERROR_NOT_ENOUGH_MEMORY

There is not enough memory to complete the operation.

The opnum field value for this method is 15.

When processing this call, the server:

MUST check the hMDSourceHandle parameter. This handle is valid if it is either the master root

handle or a handle returned from a previous OpenKey call. If the handle is invalid, return
ERROR_INVALID_HANDLE error.

MUST check the hMDDestHandle parameter. This handle is valid if it is either the master root

handle or a handle returned from a previous OpenKey call. If the handle is invalid, return
ERROR_INVALID_HANDLE error.

MUST check whether the destination handle was opened for write access. If not, return

E_ACCESSDENIED.

MUST check whether the source relative path points to the existing node. If not, return

ERROR_PATH_NOT_FOUND.

SHOULD check whether the destination relative path points to an existing node. If not, return an

error.<11>

MUST, if the dwMDUserType and the dwMDDataType parameters are not equal to

"ALL_METADATA", use these parameters as the data selection filter.

MUST, if the dwMDAttributes parameter is defined, use this parameter to get the data.

MUST copy the selected data from the source node to the destination node.

MUST, if the bMDCopyFlag parameter is set to false, remove the selected data from the source.

3.1.4.11 EnumKeys (Opnum 6)

The EnumKeys method enumerates the subnodes of the specified node.

HRESULT EnumKeys(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [out, size_is(ADMINDATA_MAX_NAME_LEN)]

 LPWSTR pszMDName,

 [in] DWORD dwMDEnumObjectIndex

);

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying
the key to be enumerated.

48 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

pszMDPath: A pointer to a Unicode string that contains the path of the node whose subnodes
are to be enumerated, relative to the path of the hMDHandle parameter.

pszMDName: A pointer to a string buffer that receives the names of the enumerated metabase
subnodes.

dwMDEnumObjectIndex: An integer value specifying the index of the subnode to be retrieved.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070005

E_ACCESSDENIED

General access denied error.

0x80070006

ERROR_INVALID_HANDLE

The handle is invalid.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x80070103

ERROR_NO_MORE_ITEMS

No more data is available.

The opnum field value for this method is 6.

A subnode can be enumerated once per call. Subnodes are numbered from zero to (NumKeys - 1),
with NumKeys equal to the number of subnodes below the node.

When processing this call, the server MUST do the following:

Check the handle. This handle is valid if it is either the master root handle or a handle returned

from a previous OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE.

The server SHOULD check whether the handle was opened for read access. If not, return an

error.<12>

Check whether the relative path points to the existing subnode of the parent handle. If not,

return ERROR_PATH_NOT_FOUND.

Find the child node of the destination node that has an index equal to the dwMDEnumKeyIndex

parameter. If there is no child with that index, return ERROR_NO_MORE_ITEMS.

Copy the name of this child node to the pszMDName buffer.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

49 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.12 R_EnumData (Opnum 12)

The R_EnumData method enumerates the data entries of a node in the metabase.

HRESULT R_EnumData(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in, out] METADATA_RECORD* pmdrMDData,

 [in] DWORD dwMDEnumDataIndex,

 [out] DWORD* pdwMDRequiredDataLen,

 [out] IIS_CRYPTO_BLOB** ppDataBlob

);

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying

the key to be enumerated.

pszMDPath: A pointer to a Unicode string that contains the path of the node to be enumerated,

relative to the path of the hMDHandle parameter.

pmdrMDData: A pointer to a METADATA_RECORD structure that specifies the retrieved data.

dwMDEnumDataIndex: An integer value specifying the index of the entry retrieved.

pdwMDRequiredDataLen: Pointer to a DWORD that receives the required buffer size if the
method returns ERROR_INSUFFICIENT_BUFFER as specified in [MS-ERREF].

ppDataBlob: An IIS_CRYPTO_BLOB structure containing the data value as encrypted opaque
data.

Return Values: A signed 32-bit value that indicates return status. If the method returns a

negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method

implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070005

E_ACCESSDENIED

General access denied error.

0x80070006

ERROR_INVALID_HANDLE

The handle is invalid.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x8007007A

ERROR_INSUFFICIENT_BUFFER

The data area passed to a system call is too small.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-DTYP%5d.pdf

50 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return value/code Description

0x80070103

ERROR_NO_MORE_ITEMS

No more data is available.

The opnum field value for this method is 12.

The client indicates how much decrypted data it is ready to receive by passing the number of bytes

in the dwMDDataLen field of the pmdrMDData parameter. If this value is too small to contain the
decrypted data value, the server MUST return ERROR_INSUFFICIENT_BUFFER and return the
number of bytes required to hold the data in the pdwMDRequiredDataLen parameter.

When processing this call, the server MUST do the following:

Check the handle. This handle is valid if it is either the master root handle or a handle returned

from a previous OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE.

The server SHOULD check whether the handle was opened for read access. If not, return

E_ACCESSDENIED.<13>

The server SHOULD check whether the relative path points to the existing subnode of the parent

handle. If not, return ERROR_PATH_NOT_FOUND.

Obtain the requested data using an index parameter. If the index is equal or greater than the

number of data items associated with the node, return ERROR_NO_MORE_ITEMS.

To return the data value to the client, build the IIS_CRYPTO_BLOB structure as specified in the

rules of the R_GetData method.

3.1.4.13 Backup (Opnum 28)

The Backup method backs up the metabase.

HRESULT Backup(

 [unique, in, string] LPCWSTR pszMDBackupName,

 [in] DWORD dwMDVersion,

 [in] DWORD dwMDFlags

);

pszMDBackupName: A string of up to 100 Unicode characters that names the backup.

dwMDVersion: An integer value specifying the version number to be used for the backup.

Value Meaning

MD_BACKUP_HIGHEST_VERSION

0xFFFFFFFE

Overwrite the highest existing backup version with the

specified backup name.

MD_BACKUP_NEXT_VERSION

0xFFFFFFFF

Use the next backup version number available with the

specified backup name.

dwMDFlags: An integer value containing the bit flags describing the type of backup operation to
be performed. The flags can be one or more of the following values.

51 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

MD_BACKUP_FORCE_BACKUP

0x00000004

Force the backup even if the SaveData operation specified by

MD_BACKUP_SAVE_FIRST fails.

MD_BACKUP_OVERWRITE

0x00000001

Back up even if a backup of the same name and version exists,

overwriting it if necessary.

MD_BACKUP_SAVE_FIRST

0x00000002

Perform a SaveData operation before the backup.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x000CC809

MD_WARNING_SAVE FAILED

The metadata save prior to backup failed. The previous version

of the data was backed up.

0x80070008

ERROR_NOT_ENOUGH_MEMORY

There is not enough memory to complete the operation.

The opnum field value for this method is 28.

The location string can be up to 100 Unicode characters in length. Multiple metabase backups can be
stored with the same name.

When processing this call, the server MUST do the following:

Check the pszMDBackupName parameter. If the length of the string is 100 characters or more, or

if it contains any characters in the following set ('/', '\', '*', '.', '?', '"', '&', '!', '@', '#', '$', '%', '^',
'(', ')', '=', '+', '|', '`', '~') return E_INVALIDARG.

Check the version parameter. If it is greater than the maximum allowed version number and is

not either MD_BACKUP_HIGHEST_VERSION or MD_BACKUP_NEXT_VERSION, return
E_INVALIDARG.

If the parameter flags have the bit MD_BACKUP_SAVE_FIRST set, flush the in-memory

configuration data first. If this operation fails, check the MD_BACKUP_FORCE_BACKUP bit. If this

bit is not set, return an error. Otherwise, continue the operation. If no subsequent error occurs,

return MD_WARNING_SAVE_FAILED.

Check the MD_BACKUP_OVERWRITE bit. If it is not set, check if a backup with the target version

exists. If it is TRUE, return an error, otherwise overwrite the existing backup.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

52 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the value of the pszMDBackupName parameter is an empty string, the server uses a default

name for the backup.

The server saves the persisted data using the backup name and the version number as a key so

that the data can be restored later.

3.1.4.14 EnumBackups (Opnum 30)

The EnumBackups method enumerates metabase backups with a specified backup name or all
backups.

HRESULT EnumBackups(

 [in, out, size_is(MD_BACKUP_MAX_LEN)]

 LPWSTR pszMDBackupName,

 [out] DWORD* pdwMDVersion,

 [out] PFILETIME pftMDBackupTime,

 [in] DWORD dwMDEnumIndex

);

pszMDBackupName: A buffer of size MD_BACKUP_MAX_LEN. On input, the buffer can contain

either a string of Unicode characters that names the backup set to be enumerated or an
empty string.

pdwMDVersion: An integer value containing the version number of the backup.

pftMDBackupTime: A FILETIME structure containing the Coordinated Universal Time (UTC)
date and time when this backup was created.

dwMDEnumIndex: An integer value specifying the index number of the backup to be
enumerated.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with

the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070103

ERROR_NO_MORE_ITEMS

No more data is available.

0x80070057

E_INVALIDARG

The pszMDBackupName parameter is NULL.

The opnum field value for this method is 30.

When processing this call, the server MUST do the following:

If the pszMDBackupName parameter is NULL, the server MUST return the error E_INVALIDARG.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

53 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the pszMDBackupName parameter is an empty string, the server MUST enumerate all backups;

otherwise, it enumerates only backups that match the requested name.

For the backups matching the name provided, find the backup with an index equal to the

dwMDEnumIndex parameter. If such a backup does not exist, return the error
ERROR_NO_MORE_ITEMS.

If the pszMDBackupName parameter is an empty string, copy the name of the backup to the

pszMDBackupName buffer.

Copy the version of the backup into the pdwMDVersion parameter.

Copy the backup time into the pftMDBackupTime parameter.

3.1.4.15 DeleteBackup (Opnum 31)

The DeleteBackup method deletes a metabase backup.

HRESULT DeleteBackup(

 [unique, in, string] LPCWSTR pszMDBackupName,

 [in] DWORD dwMDVersion

);

pszMDBackupName: A string of up to 100 Unicode characters that names the backup.

dwMDVersion: Either an integer value specifying the version number of the backup to be

deleted or the following constant.

Value Meaning

MD_BACKUP_HIGHEST_VERSION

0xFFFFFFFE

Delete the existing backup with the highest version number.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method

implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x80070002

ERROR_FILE_NOT_FOUND

The system cannot find the file specified.

0x80070008

ERROR_NOT_ENOUGH_MEMORY

There is not enough memory to complete the operation.

The opnum field value for this method is 31.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

54 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

When processing this call, the server MUST do the following:

If the pszMDBackupName parameter is not an empty string and it contains any characters in the

following set ('/', '\', '*', '.', '?', '"', '&', '!', '@', '#', '$', '%', '^', '(', ')', '=', '+', '|', '`', '~'), return

E_INVALIDARG.

If the pszMDBackupName parameter is empty or is not the name of a backup, return

ERROR_FILE_NOT_FOUND.

Check the dwMDVersion parameter. If this parameter is equal to

MD_BACKUP_HIGHEST_VERSION, find and delete the very last backup. Otherwise, find and
delete the backup with the requested version number. If a backup does not exist, return

ERROR_FILE_NOT_FOUND.

3.1.4.16 ChangePermissions (Opnum 19)

The ChangePermissions method changes permissions on an open handle.

HRESULT ChangePermissions(

 [in] METADATA_HANDLE hMDHandle,

 [in] DWORD dwMDTimeOut,

 [in] DWORD dwMDAccessRequested

);

hMDHandle: An unsigned 32-bit integer value containing the handle to change the permissions

for, as returned by the OpenKey method.

dwMDTimeOut: An integer value specifying the time, in milliseconds, for the method to wait on

a successful permission change operation.

dwMDAccessRequested: A set of bit flags specifying the requested permissions for the handle.
This parameter MUST be set to at least one of the following values.

Value Meaning

METADATA_PERMISSION_READ

0x00000001

Open the node for reading.

METADATA_PERMISSION_WRITE

0x00000002

Open the node for writing.

Return Values: A signed 32-bit value that indicates return status. If the method returns a

negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070006

ERROR_INVALID_HANDLE

The handle is invalid.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

55 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return value/code Description

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x80070094

ERROR_PATH_BUSY

The path specified cannot be used at this time.

The opnum field value for this method is 19.

When processing this call, the server MUST do the following:

Check the handle parameter. This handle is valid if it is a handle returned from a previous

OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE.

Determine if it is possible to provide the requested access type for the specified node.

If the caller requests write access to the handle and the node falls into part of the metabase for

which there are other open read handles, the server will wait for the time period specified by
dwMDTimeOut for the other read handles to close. If, after this time period expires, there are still
open read handles, return ERROR_PATH_BUSY.

If access could be provided, the server updates the state of the handle.<14>

3.1.4.17 GetDataPaths (Opnum 16)

The GetDataPaths method returns the paths of all nodes in the subtree relative to a specified
starting node that contains the supplied identifier.

HRESULT GetDataPaths(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in] DWORD dwMDIdentifier,

 [in] DWORD dwMDDataType,

 [in] DWORD dwMDBufferSize,

 [out, size_is(dwMDBufferSize)] WCHAR* pszBuffer,

 [out] DWORD* pdwMDRequiredBufferSize

);

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying
the key to be queried.

pszMDPath: A pointer to a Unicode string that contains the path of the node to be queried,
relative to the hMDHandle parameter.

dwMDIdentifier: An integer value identifying the data to be queried.

dwMDDataType: An integer value specifying a data type. If this parameter is not set to
ALL_METADATA, the data item will be returned only if its data type matches the specified

type.

Value Meaning

ALL_METADATA

0x00000000

Specifies all data, regardless of type.

56 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

BINARY_METADATA

0x00000003

Specifies binary data in any form.

DWORD_METADATA

0x00000001

Specifies all DWORD (unsigned 32-bit integer) data.

EXPANDSZ_METADATA

0x00000004

Specifies all data consisting of a string that includes the terminating null

character, which contains unexpanded environment variables.

MULTISZ_METADATA

0x00000005

Specifies all data represented as an array of strings, where each string

contains two occurrences of the terminating null character.

STRING_METADATA

0x00000002

Specifies all data consisting of an ASCII string that includes the

terminating null character.

dwMDBufferSize: An integer value specifying the size, in WCHARs, of the pszBuffer parameter.

pszBuffer: A pointer to a buffer that contains the retrieved data. If the method call is successful,
the buffer will contain a contiguous sequence of null-terminated strings in "multi-string"
format. Each string in the sequence is a metabase path at which data matching the

dwMDIdentifier and dwMDDataType fields were found.

pdwMDRequiredBufferSize: A pointer to an integer value that contains the buffer length
required, in WCHARs.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method

implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070006

ERROR_INVALID_HANDLE

The handle is invalid.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x8007007A

ERROR_INSUFFICIENT_BUFFER

The data area passed to a system call is too small.

The opnum field value for this method is 16.

When processing this call, the server MUST do the following:

Check the handle. This handle is valid if it is either the master root handle or a handle returned

from a previous OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

57 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Check that the relative path points to a valid node. Otherwise, return

ERROR_PATH_NOT_FOUND.

On the destination node, find data based on the data ID and the data type. If the data type is set

to anything but ALL_METADATA, check that the found data type is the same as the requested
parameter, dwMDDataType. If the data type matches or the requested data type is
ALL_METADATA, copy the path of the node relative to hMDHandle to the buffer pszBuffer.

For all nodes below the destination node, repeat the same procedure. Find the data by data ID

and data type. If the data is available, check its inheritance flag. If the data is inherited, skip to
the next node. If the data is not inherited, append the node path to the buffer. Each new path is

appended to the buffer in "multi-string" format: Each string is separated by the null character,
and an extra null character is added at the end of buffer after the last string.

If the size of the buffer as specified by the dwMDBufferSize parameter is insufficient to hold all

the path data, set the pdwMDRequiredBufferSize parameter to the required buffer size and return
ERROR_INSUFFICIENT_BUFFER.

3.1.4.18 GetDataSetNumber (Opnum 23)

The GetDataSetNumber method returns the dataset number associated with a node in the
metabase. A dataset number is a unique number identifying the data items at that node, including
inherited data items. Nodes with the same dataset number have identical data.

HRESULT GetDataSetNumber(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [out] DWORD* pdwMDDataSetNumber

);

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying

the key to be queried.

pszMDPath: A pointer to a Unicode string that contains the path of the node to have its dataset

number retrieved, relative to the path of the hMDHandle parameter.

pdwMDDataSetNumber: A pointer to an integer value that returns the number associated with
this dataset. This value can be used to identify datasets common to multiple nodes.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method

implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

The opnum field value for this method is 23.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

58 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

When processing this call, the server MUST do the following:

Determine the metabase node that most closely matches the path specified by pszMDPath. If no

part of the path specified matches a node in the metabase, the server returns the data set

number of the metabase key referenced by the hMDHandle parameter. Otherwise, the server
returns the data set number of the most closely matching node. The dataset number for the
METADATA_MASTER_ROOT_HANDLE is 1.

3.1.4.19 GetHandleInfo (Opnum 21)

The GetHandleInfo method returns information associated with the specified metabase handle.

HRESULT GetHandleInfo(

 [in] METADATA_HANDLE hMDHandle,

 [out] METADATA_HANDLE_INFO* pmdhiInfo

);

hMDHandle: An unsigned 32-bit integer value containing a handle to a node in the metabase as

returned by the OpenKey method.

pmdhiInfo: A pointer to a METADATA_HANDLE_INFO structure containing information about
the specified handle.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with

the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070006

ERROR_INVALID_HANDLE

The handle is invalid.

The opnum field value for this method is 21.

When processing this call, the server MUST do the following:

Check the handle parameter. This handle is valid if it is a handle returned from a previous

OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE.

Populate the supplied METADATA_HANDLE_INFO structure with the permission level for the

handle and the value of the system change number at the time the handle was opened. See

GetSystemChangeNumber (section 3.1.4.21) for a specification of the system change

number.

3.1.4.20 GetLastChangeTime (Opnum 25)

The GetLastChangeTime method returns the last change time associated with a node in the
metabase.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

59 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

HRESULT GetLastChangeTime(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [out] PFILETIME pftMDLastChangeTime,

 [in] BOOL bLocalTime

);

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying

the key to be queried.

pszMDPath: A pointer to a Unicode string containing the path of the node to be queried, relative
to the path of the hMDHandle parameter.

pftMDLastChangeTime: A pointer to a FILETIME structure that returns the last change time

for the node.

bLocalTime: A Boolean value indicating whether the time value returned in the

pftMDLastChangeTime parameter is specified as local time (TRUE) or UTC time (FALSE).

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method

implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

The opnum field value for this method is 25.

When processing this call, the server MUST do the following:

Check the path of the node indicated by hMDHandle and pszMDPath. If the path does not exist,

return ERROR_PATH_NOT_FOUND.

If the path exists and is valid, the server SHOULD return the time that the node was modified in

the pftMDLastChangeTime structure. If bLocalTime is 0, the time is returned as UTC time.

Otherwise the time is the local server time.<15>

3.1.4.21 GetSystemChangeNumber (Opnum 22)

The GetSystemChangeNumber method returns the number of changes made to data since the
metabase was created.

HRESULT GetSystemChangeNumber(

 [out] DWORD* pdwSystemChangeNumber

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

60 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

);

pdwSystemChangeNumber: A pointer to an unsigned 32-bit integer value containing the

system change number. This number is increased each time the metabase is updated.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see

[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

The opnum field value for this method is 22.

When processing this call, the server MUST do the following:

Return the current system change number in the pdwSystemChangeNumber parameter. The

system change number is a 32-bit unsigned integer value that is incremented when a change is
made to the metabase. This value SHOULD be persisted between metabase sessions.<16>

3.1.4.22 R_GetAllData (Opnum 13)

The R_GetAllData method returns all data associated with a node in the metabase, including all
values that the node inherits.

HRESULT R_GetAllData(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in] DWORD dwMDAttributes,

 [in] DWORD dwMDUserType,

 [in] DWORD dwMDDataType,

 [out] DWORD* pdwMDNumDataEntries,

 [out] DWORD* pdwMDDataSetNumber,

 [in] DWORD dwMDBufferSize,

 [out] DWORD* pdwMDRequiredBufferSize,

 [out] IIS_CRYPTO_BLOB** ppDataBlob

);

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying

the key to be queried.

pszMDPath: A pointer to a Unicode string that contains the path of the node with which the data

to be returned is associated, relative to the path of the hMDHandle parameter.

dwMDAttributes: Flags used to specify the data, as listed in the METADATA_RECORD
structure.

dwMDUserType: An integer value specifying the data to return based on user type.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

61 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

ALL_METADATA

0x00000000

Returns all data, regardless of user type.

ASP_MD_UT_APP

0x00000065

Returns data specific to ASP application configuration.

IIS_MD_UT_FILE

0x00000002

Returns data specific to a file, such as access permissions or logon

methods.

IIS_MD_UT_SERVER

0x00000001

Returns data specific to the server, such as ports in use and IP addresses.

IIS_MD_UT_WAM

0x00000064

Returns data specific to WAM.

dwMDDataType: An integer value specifying a data type. If this parameter is not set to

ALL_METADATA, the data item will be returned only if its data type matches the specified
type.

Value Meaning

ALL_METADATA

0x00000000

Specifies all data, regardless of type.

BINARY_METADATA

0x00000003

Specifies binary data in any form.

DWORD_METADATA

0x00000001

Specifies all DWORD (unsigned 32-bit integer) data.

EXPANDSZ_METADATA

0x00000004

Specifies all data that consists of a null-terminated string containing

environment variables that are not expanded.

MULTISZ_METADATA

0x00000005

Specifies all data represented as an array of null-terminated strings,

terminated by two null characters.

STRING_METADATA

0x00000002

Specifies all data consisting of a null-terminated ASCII string.

pdwMDNumDataEntries: A pointer to an integer value that contains the number of entries in
the array of METADATA_GETALL_RECORD structures returned in the ppDataBlob
parameter.

pdwMDDataSetNumber: A pointer to an integer value used to identify the dataset number for
the metabase node whose data is being retrieved. The dataset number is obtained by the
GetDataSetNumber (section 3.1.4.18) method.

dwMDBufferSize: An integer value specifying the size, in bytes, required to hold the decrypted

data returned by the ppDataBlob parameter.

pdwMDRequiredBufferSize: A pointer to an integer value that contains the buffer length
required, in bytes, to contain the decrypted data referenced by the ppDataBlob parameter.

ppDataBlob: An IIS_CRYPTO_BLOB structure containing the requested values as encrypted
opaque data. The encrypted data returned in IIS_CRYPTO_BLOB is a contiguous buffer

%5bMS-DTYP%5d.pdf

62 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

containing an array of METADATA_GETALL_RECORD structures followed by the data
referenced by the METADATA_GETALL_RECORD structures.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Note Invalid dwMDUserType or dwMDDataType parameters result in a E_INVALIDARG return
status.

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070005

E_ACCESSDENIED

General access denied error.

0x80070057

E_INVALIDARG

An invalid parameter value was specified.

0x8007007A

ERROR_INSUFFICIENT_BUFFER

The data area passed to a system call is too small.

The opnum field value for this method is 13.

The client indicates how much decrypted data it is ready to receive by passing the number of bytes
in the dwMDBufferSize parameter.

When processing this call, the server MUST do the following:

Check the path of the node indicated by hMDHandle and pszMDPath. If the path does not exist,

return ERROR_PATH_NOT_FOUND.

If the value passed by the client in the dwMDBufferSize parameter is too small to contain an

array of METADATA_GETALL_RECORD structures for each property value stored at the
metabase node and their associated data, return ERROR_INSUFFICIENT_BUFFER and return the
number of bytes required to hold the data in the pdwMDRequiredBufferSize parameter.

Check whether at least one of the METADATA_RECORD entries contains sensitive data. The

METADATA_SECURE secure flag in the dwMDAttributes member of the METADATA_RECORD

structure for all entries will be set.

If at least one matching entry with the METADATA_SECURE flag set is found:

Encrypt the data value based on the procedure described in section 3.1.4.1.2. The encrypted

data BLOB will be stored in the IIS_CRYPTO_BLOB message format with the BlobSignature
field set to the ENCRYPTED_DATA_BLOB_SIGNATURE signature.

If no METADATA_RECORD entry with the METADATA_SECURE flag is found:

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

63 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Build the IIS_CRYPTO_BLOB message with the BlobSignature field set to

CLEARTEXT_DATA_BLOB_SIGNATURE. Store the cleartext data in the BlobData field. Set the

BlobDataLength field to match the length of the BlobData field.

3.1.4.23 R_GetData (Opnum 10)

The R_GetData method returns a data entry from a particular node in the metabase.

HRESULT R_GetData(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in, out] METADATA_RECORD* pmdrMDData,

 [out] DWORD* pdwMDRequiredDataLen,

 [out] IIS_CRYPTO_BLOB** ppDataBlob

);

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying

the key to be queried.

pszMDPath: A pointer to a Unicode string that contains the path of the node containing the
data, relative to the path of the hMDHandle parameter.

pmdrMDData: A pointer to a METADATA_RECORD structure that describes the requested
data.

pdwMDRequiredDataLen: A pointer to an integer value that contains the buffer length

required, in bytes, to contain the decrypted data referenced by the ppDataBlob parameter.

ppDataBlob: An IIS_CRYPTO_BLOB structure containing the requested data value as
encrypted opaque data.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with

the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070005

E_ACCESSDENIED

General access denied error.

0x80070057

E_INVALIDARG

An invalid parameter value was specified.

0x8007007A

ERROR_INSUFFICIENT_BUFFER

The data area passed to a system call is too small.

0x800CC801 The specified metadata was not found.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

64 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return value/code Description

MD_ERROR_DATA_NOT_FOUND

The opnum field value for this method is 10.

The client describes the data it is requesting by initializing the METADATA_RECORD passed in the
pmdrMDData parameter.

The client indicates how much decrypted data it is ready to receive by passing the number of bytes

in the dwMDDataLen field of the pmdrMDData parameter.

The pbMDData field of the pmdrMDData parameter is not used to transfer the actual data value. The
client MUST set the pbMDData field of pmdrMDData to NULL. The IIS_CRYPTO_BLOB structure is
used to transfer the actual data value returned by the server and can be encrypted when the server
sends data marked as secure.

When processing this call, the server MUST do the following:

Check the path of the node indicated by hMDHandle and pszMDPath. If the path does not exist,

return ERROR_PATH_NOT_FOUND.

If a data value matching the one described by the pmdrMDData parameter is not found at the

node indicated by hMDHandle and pszMDPath, return MD_ERROR_DATA_NOT_FOUND.

If value passed by the client in the dwMDDataLen field of the pmdrMDData parameter is less

than the size of the unencrypted data value, set the value of pdwMDRequiredDataLen to the size

of the unencrypted data value and return ERROR_INSUFFICIENT_BUFFER.

The following set of steps MUST be performed by the server to encrypt or encode a data value and
build an IIS_CRYPTO_BLOB structure to be sent by the server.

1. Check whether the dwMDAttributes member of the METADATA_RECORD structure has the
METADATA_SECURE secure flag set.

2. If the METADATA_SECURE secure flag is set:

Encrypt the data value based on the procedure described in section 3.1.4.1.2. The encrypted

data BLOB will be stored in the IIS_CRYPTO_BLOB message format with the
BlobSignature field set to the ENCRYPTED_DATA_BLOB_SIGNATURE signature.

3. If the METADATA_SECURE secure flag is not set:

Build the IIS_CRYPTO_BLOB message with the BlobSignature field set to

CLEARTEXT_DATA_BLOB_SIGNATURE. Store the cleartext data in the BlobData field. Set the

BlobDataLength field to match the length of the BlobData field.

3.1.4.24 R_GetServerGuid (Opnum 33)

The R_GetServerGuid method returns a GUID for this DCOM object.

HRESULT R_GetServerGuid(

 [out] GUID* pServerGuid

);

pServerGuid: A GUID uniquely identifying this DCOM object.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf

65 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method

implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

The opnum field value for this method is 33.

When processing this call, the server MUST do the following:

If this is the first time the method has been called on this DCOM object, generate a GUID and

return it to the client in the pServerGuid parameter. Subsequent calls to the same DCOM object
MUST return the same GUID.

3.1.4.25 R_KeyExchangePhase1 (Opnum 26)

The R_KeyExchangePhase1 method receives a pair of encrypted client keys and returns server
encryption and session keys.

HRESULT R_KeyExchangePhase1(

 [unique, in] IIS_CRYPTO_BLOB* pClientKeyExchangeKeyBlob,

 [unique, in] IIS_CRYPTO_BLOB* pClientSignatureKeyBlob,

 [out] IIS_CRYPTO_BLOB** ppServerKeyExchangeKeyBlob,

 [out] IIS_CRYPTO_BLOB** ppServerSignatureKeyBlob,

 [out] IIS_CRYPTO_BLOB** ppServerSessionKeyBlob

);

pClientKeyExchangeKeyBlob: A pointer to an IIS_CRYPTO_BLOB structure containing the
encrypted client key used to decrypt client data.

pClientSignatureKeyBlob: A pointer to an IIS_CRYPTO_BLOB structure containing the
encrypted client signature key used for data verification.

ppServerKeyExchangeKeyBlob: A pointer to a set of IIS_CRYPTO_BLOB structures
containing encrypted server keys used by the client to decrypt server data.

ppServerSignatureKeyBlob: A pointer to a set of IIS_CRYPTO_BLOB structures containing
encrypted server signature keys used for data verification.

ppServerSessionKeyBlob: A pointer to a set of IIS_CRYPTO_BLOB structures containing

encrypted server session keys.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see

[MS-ERREF].

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

66 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return value/code Description

0x00000000

S_OK

The call was successful.

The opnum field value for this method is 26.

When the server receives the R_KeyExchangePhase1 method, it SHOULD check the state of the

secure session. If the session was already negotiated, the server SHOULD return the E_INVALIDARG
error code.

If the session was not negotiated yet, the server MUST perform the following steps:

1. Store the client's key exchange public key that was received in the message.

2. Store the client's signature public key that was received in the message.

3. Generate or locate the server's key exchange private key.

4. Generate or locate the server's signature private key.

5. Generate the server's session key.

6. Encrypt the server's session key using the client's key exchange public key that was just
received.

7. Calculate the signed hash of the encrypted server's session key, as described in section
3.1.4.1.4. Use the server's signature private key for signing.

8. Build an IIS_CRYPTO_BLOB structure with the BlobSignature field set to

SESSION_KEY_BLOB_SIGNATURE to store the server's encrypted session key and signed hash as
calculated in the previous steps.

9. Build an IIS_CRYPTO_BLOB structure with the BlobSignature field set to

PUBLIC_KEY_BLOB_SIGNATURE to store the server's key exchange public key.

10.Build an IIS_CRYPTO_BLOB structure with the BlobSignature field set to
PUBLIC_KEY_BLOB_SIGNATURE to store the server's signature public key.

11.Send an IIS_CRYPTO_BLOB structure that was built in the previous three steps to the client in

response to the R_KeyExchangePhase1 method.

3.1.4.26 R_KeyExchangePhase2 (Opnum 27)

The R_KeyExchangePhase2 method receives the encrypted client session and hash keys in
response to the R_KeyExchangePhase1 method and returns the encrypted server hash keys.

HRESULT R_KeyExchangePhase2(

 [unique, in] IIS_CRYPTO_BLOB* pClientSessionKeyBlob,

 [unique, in] IIS_CRYPTO_BLOB* pClientHashBlob,

 [out] IIS_CRYPTO_BLOB** ppServerHashBlob

);

pClientSessionKeyBlob: A pointer to an IIS_CRYPTO_BLOB structure containing the
encrypted client session key.

67 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

pClientHashBlob: A pointer to an IIS_CRYPTO_BLOB structure containing the encrypted client
hash key.

ppServerHashBlob: A pointer to a set of IIS_CRYPTO_BLOB structures containing the
encrypted session hash keys.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

The opnum field value for this method is 27.

When the server receives the R_KeyExchangePhase2 method, it SHOULD check the state of the
secure session. If the session negotiation has not started yet by processing the
R_KeyExchangePhase1 method, the MD_ERROR_SECURE_CHANNEL_FAILURE error code MUST
be returned back to client.

If any of the parameters sent by the client are empty, the server SHOULD return an E_INVALIDARG
error code.

Upon successful validation, the server SHOULD perform the following steps:

1. Decrypt the encrypted client's session key using the server's key exchange private key.

2. Store the client's session key.

3. Compute the hash of the following 3 values (in this order):

1. Client's session key.

2. Server's session key.

3. Value of HASH_TEXT_STRING_1, as specified in section 2.2.3.

4. Compare the hash computed in the previous step with the hash received from the client. If they
match, the client has proved that it owns the client's key exchange private key that matches the
client's key exchange public key. It proved it by being able to decrypt the server's session key
that was needed for the hash calculation.

5. Compute hash of the following 2 values (in this order):

1. Client's session key.

2. Value of HASH_TEXT_STRING_2, as specified in 2.2.3.

6. Build an IIS_CRYPTO_BLOB structure with the BlobSignature field set to
HASH_BLOB_SIGNATURE and store the hash calculated in the previous step.

7. Send the IIS_CRYPTO_BLOB structure calculated in the previous step to the client.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

68 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.27 R_SetData (Opnum 9)

The R_SetData method sets a data item for a particular node in the metabase.

HRESULT R_SetData(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in] METADATA_RECORD* pmdrMDData

);

hMDHandle: An unsigned 32-bit integer value specifying a handle to a node in the metabase

with write permissions as returned by the OpenKey method.

pszMDPath: A pointer to a Unicode string that contains the path of the node that stores the
entry, relative to the path of the hMDHandle parameter.

pmdrMDData: A pointer to a METADATA_RECORD structure that contains the data to set.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16 27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with

the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070005

E_ACCESSDENIED

General access denied error.

0x80070057

E_INVALIDARG

An invalid parameter value was specified.

0x800CC808

MD_ERROR_CANNOT_REMOVE_SECURE_ATTRIBUTE

The METADATA_SECURE attribute cannot

be removed from a data item via the

R_GetData method. Use the DeleteData

method to remove the secure data.

0x80070008

ERROR_NOT_ENOUGH_MEMORY

There is not enough memory to complete

the operation.

The opnum field value for this method is 9.

When processing this call, the server MUST do the following:

Check whether the handle, hMDHandle, was opened for write access. If not, return

E_ACCESSDENIED.

Check the path of the node indicated by hMDHandle and pszMDPath. If the path does not exist,

return ERROR_PATH_NOT_FOUND.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

69 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If data with the specified identifier does not exist at the specified node, create a new data item as

specified by the pmdrMDData parameter.

If data with the specified identifier does exist at the specified node, update the data item with the

properties and data value specified by the pmdrMDData parameter. Before updating the existing
data item, the server SHOULD check whether it has the METADATA_SECURE flag set. If this flag
is set on the existing data item but is not set in the dwMDAttributes member of the
pmdrMDData parameter, the server SHOULD NOT update the existing data item and SHOULD
return MD_ERROR_CANNOT_REMOVE_SECURE_ATTRIBUTE.<17>

The pbMDData and dwMDDataLen fields of METADATA_RECORD (referenced by the pmdrMDData
parameter) MUST be interpreted using the following steps:

1. Check whether the dwMDAttributes member of the METADATA_RECORD structure has the
METADATA_SECURE secure flag set.

2. If the METADATA_SECURE secure flag is set, the pbMDData member of METADATA_RECORD
structure points to the encrypted data BLOB, and the dwMDDataLen field is set to the size of the

encrypted data. The encrypted data BLOB is stored in the IIS_CRYPTO_BLOB message format
with the BlobSignature field set to ENCRYPTED_DATA_BLOB_SIGNATURE.

Decrypt the data pointed to by the pbMDData field based on the procedure described in

section 3.1.4.1.3.

3. If the METADATA_SECURE secure flag is not set, the data referenced by the pbMDData member
of METADATA_RECORD is the cleartext data, and the dwMDDataLen field is its length.

3.1.4.28 RenameKey (Opnum 8)

The RenameKey method renames a node in the metabase.

HRESULT RenameKey(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [unique, in, string] LPCWSTR pszMDNewName

);

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying

the key to be renamed.

pszMDPath: A pointer to a Unicode string that contains the path of the node to be renamed,
relative to the path of the hMDHandle parameter.

pszMDNewName: A pointer to a string that contains the new name for the node.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method

implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000 The call was successful.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

70 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return value/code Description

S_OK

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070005

E_ACCESSDENIED

General access denied error.

0x80070006

ERROR_INVALID_HANDLE

The handle is invalid.

0x80070057

E_INVALIDARG

An invalid parameter value was specified.

0x800700B7

ERROR_ALREADY_EXISTS

A key of that name already exists in the database.

The opnum field value for this method is 8.

When processing this call, the server MUST do the following:

Check the handle. This handle is valid if it is either the master root handle or a handle returned

from a previous OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE.

The server SHOULD check whether the handle was opened for write access. If not, return

E_ACCESSDENIED.<18>

Check the path of the node indicated by hMDHandle and pszMDPath. If the path does not exist,

return ERROR_PATH_NOT_FOUND.

If the new node name would be the same as an existing node name, return

ERROR_ALREADY_EXISTS.

Rename the node without modifying the data.

3.1.4.29 Restore (Opnum 29)

The Restore method restores the metabase from a backup.

HRESULT Restore(

 [unique, in, string] LPCWSTR pszMDBackupName,

 [in] DWORD dwMDVersion,

 [in] DWORD dwMDFlags

);

pszMDBackupName: A string of up to 100 Unicode characters that identifies the backup to be
restored.

dwMDVersion: An integer value specifying either the version number of the backup to be
restored or the following constant.

Value Meaning

MD_BACKUP_HIGHEST_VERSION Restore from the highest existing backup version in the

71 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

0xFFFFFFFE specified backup location.

dwMDFlags: This parameter is reserved and SHOULD always be set to zero.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with

the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x80070013

ERROR_INVALID_DATA

The data is invalid.

0x800CC802

MD_ERROR_INVALID_VERSION

The version specified by dwMDVersion is invalid.

0x000CC805L

MD_WARNING_INVALID_DATA

Invalid metabase data.

0x80070008

ERROR_NOT_ENOUGH_MEMORY

There is not enough memory to complete the operation.

The opnum field value for this method is 29.

When processing this call, the server MUST do the following:

The server restores from a backup that is identified by the pszMDBackupName parameter and the

version number.

If the pszMDBackupName parameter is an empty string, the server MUST use a default backup

name as defined by the server implementation.

If the backup named by pszMDBackupName and dwMDVersion does not exist, the server MUST

return an error.

If the value of the dwMDVersion parameter is greater than MD_BACKUP_MAX_VERSION (9999)

and not equal to MD_BACKUP_HIGHEST_VERSION, the server MUST return the E_INVALIDARG
error code.

3.1.4.30 SaveData (Opnum 20)

The SaveData method explicitly flushes the metabase data resident in memory to configuration

storage.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

72 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

HRESULT SaveData();

This method has no parameters.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070094

ERROR_PATH_BUSY

The path specified cannot be used at this time.

The opnum field value for this method is 20.

When processing this call, the server MUST do the following:

If a handle is open with write permissions, the server SHOULD return ERROR_PATH_BUSY.<19>

Save all data in the metabase that has changed since the last time the metabase was saved.

3.1.4.31 SetLastChangeTime (Opnum 24)

The SetLastChangeTime method sets the last change time associated with a node in the
metabase.

HRESULT SetLastChangeTime(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in] PFILETIME pftMDLastChangeTime,

 [in] BOOL bLocalTime

);

hMDHandle: An unsigned 32-bit integer value containing a handle to a node in the metabase as

returned by the OpenKey method.

pszMDPath: A pointer to a Unicode string containing the path of the node to be set, relative to

the path of the hMDHandle parameter.

pftMDLastChangeTime: A pointer to a FILETIME structure that contains the last change time
to set for the node.

bLocalTime: A Boolean value indicating whether the time value specified in the
pftMDLastChangeTime parameter is local time (TRUE) or UTC time (FALSE).

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-DTYP%5d.pdf

73 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see

[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070005

E_ACCESSDENIED

General access denied error.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

The opnum field value for this method is 24.

When processing this call, the server MUST do the following:

The server SHOULD check whether the handle was opened for write access. If not, return

E_ACCESSDENIED.<20>

Check the path of the node indicated by hMDHandle and pszMDPath. If the path does not exist,

return ERROR_PATH_NOT_FOUND.

If the path exists and is valid, the server SHOULD update the last modified time for the node

based on the value of the pftMDLastChangeTime structure. If bLocalTime is 0, the time is treated
as UTC time. Otherwise the time is treated as the local server time.<21>

3.1.4.32 UnmarshalInterface (Opnum 32)

The UnmarshalInterface method returns a pointer to the IMSAdminBaseW interface.

HRESULT UnmarshalInterface(

 [out] IMSAdminBaseW** piadmbwInterface

);

piadmbwInterface: The address of the pointer that contains the pointer to IMSAdminBaseW.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

The opnum field value for this method is 32.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

74 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

When processing this call, the server MUST do the following:

Return a new reference to this DCOM object to the client in the piadmbwInterface parameter.

3.1.5 Timer Events

No protocol timer events are required on the server other than the timers that are required in the
underlying RPC protocol.

3.1.6 Other Local Events

No local events are maintained on the server other than the events that are maintained in the
underlying RPC protocol.

3.2 IMSAdminBaseW Client Details

3.2.1 Abstract Data Model

The client should use the abstract data model defined by the server; see section 3.1.1.

3.2.1.1 Secure Session Context

When the client expects to exchange sensitive data marked with the METADATA_SECURE secure
flag, it will negotiate a secure session. As part of the secure session negotiation, both client and
server will build the secure session context.

Each client MUST maintain the following information related to the secure session:

The client's key exchange private key and key exchange public key.

The client's signature private key and signature public key.

The server's key exchange public key.

The server's signature public key.

The server's session key.

The client's session key.

3.2.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages, as specified in [MS-RPCE] section 3.2.3.2.1.

3.2.3 Initialization

The client MUST perform initialization according to the following rules when calling an RPC method:

Either create an RPC binding handle to the server or use an RPC context handle. Details

concerning binding handles are as specified in [C706] section 2.3.

Use context handles across multiple calls to server for methods taking METADATA_HANDLE as

a parameter.

%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824

75 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

A context handle SHOULD be reused in multiple invocations when getting or setting information

to remote server configuration.

When creating the RPC binding handle, the client MUST specify an ImpersonationLevel value of

2 (Impersonation), as specified in [MS-DCOM].

3.2.4 Message Processing Events and Sequencing Rules

3.2.4.1 Secure Session Negotiation Client Role

The client MUST negotiate a secure session when sensitive data is to be transferred; for more
information, see 3.1.4.1.1.

The client performs the secure session negotiation by processing the R_KeyExchangePhase1 and
R_KeyExchangePhase2 calls, as described in sections 3.2.4.2 and 3.2.4.3.

As a result of secure session negotiation, the client will receive the server's session key and

signature public key.

3.2.4.2 R_KeyExchangePhase1 (Opnum 26)

The client MUST perform the following steps to process R_KeyExchangePhase1:

Generate or look up the client's key exchange key.

Generate or look up the client's signature key.

Build an IIS_CRYPTO_BLOB structure with the BlobSignature field set to

PUBLIC_KEY_BLOB_SIGNATURE to store the client's key exchange public key.

Build an IIS_CRYPTO_BLOB structure with the BlobSignature field set to

PUBLIC_KEY_BLOB_SIGNATURE to store the client's signature public key.

Send IIS_CRYPTO_BLOBs built in the previous two steps to the server by using the

R_KeyExchangePhase1 method.

Wait for the response from the server.

Retrieve the server's key exchange public key from the IIS_CRYPTO_BLOB structure with the

BlobSignature field set to PUBLIC_KEY_BLOB_SIGNATURE.

Retrieve the server's signature public key from the IIS_CRYPTO_BLOB structure with the

BlobSignature field set to PUBLIC_KEY_BLOB_SIGNATURE.

Retrieve the server's session key from the IIS_CRYPTO_BLOB structure with the

BlobSignature field set to SESSION_KEY_BLOB_SIGNATURE.

Decrypt the server's session key by using the client's key exchange private key.

In the case of success, the client MUST proceed with the R_KeyExchangePhase2 method.

3.2.4.3 R_KeyExchangePhase2 (Opnum 27)

The client MUST call R_KeyExchangePhase2 after successful processing of R_KeyExchangePhase1 to
complete the security session negotiation.

The client MUST perform the following steps:

%5bMS-DCOM%5d.pdf

76 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Generate and store the client's session key.

Encrypt the client's session key with the server's key exchange public key.

Build an IIS_CRYPTO_BLOB structure with the BlobSignature field set to

SESSION_KEY_BLOB_SIGNATURE to store the encrypted client's session key.

Compute the hash of the following three entities in this order:

The client's session key.

The server's session key.

The text value of HASH_TEXT_STRING_1, as specified in section 2.2.3.

Build an IIS_CRYPTO_BLOB structure with the BlobSignature field set to

SESSION_BLOB_SIGNATURE to store the hash computed in the previous step.

Send IIS_CRYPTO_BLOBs built in the previous steps to the server.

Wait for the response from the server.

Retrieve the server's Hash IIS_CRYPTO_BLOB with the BlobSignature field set to

HASH_BLOB_SIGNATURE sent by the server.

Build the hash for validation purposes.

Compute the hash of the client's session key.

Compute the hash of the text HASH_TEXT_STRING_2, as specified in section 2.2.3.

Compare hashes from the previous two steps. If they match, the server owns the server's key

exchange private key and was able to decrypt the client's session key.

If a hash validation fails, the receiver MUST reject the data and the method that is processing the

encrypted data MUST fail. Error messages resulting from a hash validation failure are
implementation-dependent.

Secure session negotiation is now complete. The client and server can now use secure session to

encrypt/decrypt data of a sensitive nature marked by the METADATA_SECURE secure flag with
calls to the R_GetData, R_EnumData, R_GetAllData, and R_SetData methods.

3.2.4.4 R_SetData (Opnum 9)

The data value referenced by the pbMDData field of the METADATA_RECORD MUST be encrypted
if the METADATA_SECURE attribute is set.

Check whether the dwMDAttributes member of the METADATA_RECORD structure has a

METADATA_SECURE flag set.

If the METADATA_SECURE secure flag is set:

Negotiate the secure session (see section 3.1.4.1.1) if it was not negotiated yet.

Encrypt the data value based on the procedure described in section 3.1.4.1.2. The encrypted

data blob will be stored in the IIS_CRYPTO_BLOB message format with the BlobSignature
field set to ENCRYPTED_DATA_BLOB_SIGNATURE.

77 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Set the pbMDData and dwMDDataLen fields in the METADATA_RECORD message

(referenced by pmdrMDData). The pbMDData field MUST be updated to point to the

IIS_CRYPTO_BLOB message built in the previous step. The dwMDDataLen field MUST be

set to the total length in bytes of the IIS_CRYPTO_BLOB message built in the previous step.

If the METADATA_SECURE flag is not set, the cleartext data value will be referenced by the

pbMDData field of the METADATA_RECORD message, and the dwMDDataLen field will be set
to the length of that cleartext data.

3.2.4.5 R_GetData (Opnum 10)

The secure session MUST be negotiated by the client prior to calling the R_GetData method.

The pbMDData field of the METADATA_RECORD structure is not used for the R_GetData call.

The IIS_CRYPTO_BLOB message that is received by the client upon successful completion of the
call to the R_GetData method contains encrypted or encoded data.

The following set of steps MUST be performed by the client to decrypt or decode
IIS_CRYPTO_BLOB data received from the server:

If the BlobSignature member in the IIS_CRYPTO_BLOB message is set to

ENCRYPTED_DATA_BLOB_SIGNATURE, the data inside the message will be decrypted based on
the description in section 3.1.4.1.3.

If the BlobSignature member in the IIS_CRYPTO_BLOB message is set to

CLEARTEXT_DATA_BLOB_SIGNATURE, the BlobData member inside the IIS_CRYPTO_BLOB
will be interpreted as a CLEARTEXT_DATA_BLOB message. The ClearTextData field represents
the actual cleartext data.

3.2.4.6 R_EnumData (Opnum 12)

The session negotiation requirement, IIS_CRYPTO_BLOB handling, and METADATA_RECORD
handling is identical to that used by the R_GetData method.

3.2.4.7 R_GetAllData (Opnum 13)

The secure session MUST be negotiated by the client prior to calling the R_GetAllData method; see

section 3.1.4.1.1.

The IIS_CRYPTO_BLOB structure received by the client upon successful completion of the
R_GetAllData call contains encrypted or encoded data.

The following set of steps MUST be performed by the client to decrypt or decode
IIS_CRYPTO_BLOB data received from the server.

If the BlobSignature member in the IIS_CRYPTO_BLOB message is set to

ENCRYPTED_DATA_BLOB_SIGNATURE, the data inside the message MUST be decrypted based on
the description in section 3.1.4.1.3.

If the BlobSignature member in the IIS_CRYPTO_BLOB message is set to

CLEARTEXT_DATA_BLOB_SIGNATURE, the BlobData inside the IIS_CRYPTO_BLOB structure
will be interpreted as a CLEARTEXT_DATA_BLOB message. The ClearTextData field represents
the actual cleartext data.

The cleartext data retrieved in previous steps follows the METADATA_GETALL_RECORD format.

78 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.2.5 Timer Events

No protocol timer events are required on the client beyond the timers required in the underlying RPC
protocol.

3.2.6 Other Local Events

A client's call of each method is the result of local application activity. The local application on the
client computer specifies values for all input parameters. No other higher-layer triggered events are
processed. The values specified for input parameters are described in section 2.

No additional local events are used on the client beyond the events maintained in the underlying
RPC protocol.

3.3 IMSAdminBase2W Server Details

3.3.1 Abstract Data Model

This interface uses the same data model as the IMSAdminBaseW interface.

3.3.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages, as specified in [MS-RPCE] section 3.2.3.2.1.

3.3.3 Initialization

Initialization is specified in section 3.1.3.

3.3.4 Message Processing Events and Sequencing Rules

This DCOM interface inherits the IUnknown interface. The method opnum field values start with 3;

opnum values 0 through 2 represent the IUnknown_QueryInterface, IUnknown_AddRef, and
IUnknown_Release methods, respectively, as specified in [MS-DCOM].

Methods with opnum field values 3 through 33 are defined in section 3.1.4, and field value 40 is
defined in section 3.5.4.

The IMSAdminBase2W RPC interface extends the IMSAdminBaseW interface, adding
functionality for metabase importing and exporting, history management, and secure data

encryption on backup. The IMSAdminBase2W protocol does not maintain client state information.

An RPC sequence is a client/server session that includes a security context phase and requests to
call remote procedures. For connection-oriented RPC, the session also includes a binding phase. The
RPC client supplies the necessary security information and for a connection-oriented RPC, it also
supplies binding information such as interface name and server endpoint. The sequence of
subsequent RPC calls in the session is implementation-specific.

Methods in RPC Opnum Order

Method Description

BackupWithPasswd Backs up the metabase to a specified location, using a supplied password to

encrypt all secure data.

Opnum: 34

%5bMS-RPCE%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf

79 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Method Description

RestoreWithPasswd Restores the metabase from a backup, using a supplied password to decrypt the

secure data.

Opnum: 35

Export Exports the metabase from a supplied location to a specific file name.

Opnum: 36

Import Imports a previously exported metabase into an existing one.

Opnum: 37

RestoreHistory Restores a metabase history entry for a specific history version.

Opnum: 38

EnumHistory Returns an enumerated history entry with a supplied index.

Opnum: 39

When a remote call is made, the UUID and version number of the interface are specified in the
abstract_syntax and abstract_syntax_vers fields of the incoming RPC_BIND packet, as specified

in [MS-RPCE].

3.3.4.1 BackupWithPasswd (Opnum 34)

The BackupWithPasswd method backs up the metabase using a supplied password to encrypt all
secure data.

HRESULT BackupWithPasswd(

 [unique, in, string] LPCWSTR pszMDBackupName,

 [in] DWORD dwMDVersion,

 [in] DWORD dwMDFlags,

 [unique, in, string] LPCWSTR pszPasswd

);

pszMDBackupName: The name of the backup that is being created.

dwMDVersion: An integer value specifying either the specific version number to be used for the
backup or one of the following flag values. If the version number is an explicit version

number, it SHOULD be less than MD_BACKUP_MAX_VERSION (9999).

Value Meaning

MD_BACKUP_HIGHEST_VERSION

0xFFFFFFFE

Use the highest existing backup version for the backup name

specified.

MD_BACKUP_NEXT_VERSION

0xFFFFFFFF

Use the highest existing backup version number plus one for

the backup name specified.

dwMDFlags: An integer value containing the bit flags to alter backup functionality. The flags can
be zero or one or more of the following values.

%5bMS-RPCE%5d.pdf

80 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

MD_BACKUP_FORCE_BACKUP

0x00000004

Force the backup even if the SaveData operation specified by

MD_BACKUP_SAVE_FIRST fails.

This flag is only specified if MD_BACKUP_SAVE_FIRST is specified.

MD_BACKUP_OVERWRITE

0x00000001

Back up even if a backup of the same name and version exists in

the specified backup location, overwriting it if necessary.

MD_BACKUP_SAVE_FIRST

0x00000002

Perform a SaveData operation before the backup.

pszPasswd: A password string used to encrypt the secure properties in the metabase backup. If
a password is not supplied, this method functions exactly the same as the Backup method.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

The opnum field value for this method is 34.

When processing this call, the server MUST do the following:

Check the pszMDBackupName parameter. If the length of the string is 100 characters or more, or

if it contains any characters in the following set ('/', '\', '*', '.', '?', '"', '&', '!', '@', '#', '$', '%', '^',
'(', ')', '=', '+', '|', '`', '~'), return E_INVALIDARG.

Check the version parameter. If it is greater than the maximum allowed version number and is

not MD_BACKUP_HIGHEST_VERSION or MD_BACKUP_NEXT_VERSION, return E_INVALIDARG.

If the parameter flags have the MD_BACKUP_SAVE_FIRST bit set, flush the in-memory

configuration data first. If this operation fails, check the MD_BACKUP_FORCE_BACKUP bit. If this

bit is reset, return an error, otherwise continue the operation.

Check the MD_BACKUP_OVERWRITE bit. If it is reset, check whether a backup with the target

version exists. If it is true, return an error; otherwise, overwrite the existing backup.

If the pszMDBackupName parameter is an empty string, the server uses a default name for the

backup.

The server saves the persisted data using the backup location and version number as a key so

that the data can be restored later.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf

81 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Any encrypted data MUST be stored encrypted with the password the client has provided. If no

password is provided, the function behaves exactly as the Backup method.

3.3.4.2 EnumHistory (Opnum 39)

The EnumHistory method returns an enumerated history entry with a supplied index.

HRESULT EnumHistory(

 [in, out, size_is(MD_BACKUP_MAX)]

 LPWSTR pszMDHistoryLocation,

 [out] DWORD* pwdMDMajorVersion,

 [out] DWORD* pwdMDMinorVersion,

 [out] PFILETIME pftdMDHistoryTime,

 [in] DWORD dwMDEnumIndex

);

pszMDHistoryLocation: A pointer to a Unicode string that on input contains the path to the

history files being enumerated. If this is an empty string, the server SHOULD use a default

path. If an empty string is passed in, the default history path will be written to the
buffer.<22>

pwdMDMajorVersion: A pointer to an integer value containing the predecimal version number
for the current enumerated history entry.

pwdMDMinorVersion: A pointer to an integer value containing the postdecimal version number
for the current enumerated history entry.

pftdMDHistoryTime: A pointer to a FILETIME structure containing the time stamp for the

current enumerated history entry.

dwMDEnumIndex: An integer value containing the current index of the history entry to be
enumerated. This value SHOULD start at zero on the first call and SHOULD be increased by
one on subsequent calls until the last entry in the history is reached. This indexing is

controlled by the client, so the client is responsible for selecting the next history file to be
enumerated.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x00000002

ERROR_PATH_NOT_FOUND

The system cannot find the file specified.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000012 There are no more history versions.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

82 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return value/code Description

ERROR_NO_MORE_ITEMS

0x0000007A

ERROR_INSUFFICIENT_BUFFER

The data area passed to a system call is too small. In this case

the location string does not have enough space to return the

path to the history location.

0x80070005

ERROR_ACCESS_DENIED

Access is denied.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

The opnum field value for this method is 39.

When processing this call, the server MUST do the following:

If the string passed by the client in the pszMDHistoryLocation parameter is not null-terminated

and less than 100 WCHARs, an E_INVALIDARG error code will be returned.

If the pszMDHistoryLocation parameter is an empty string, the default history directory will be

used, and this value will be written to the pszMDHistoryLocation buffer. Therefore, the history
location buffer needs to be large enough to hold this string. Thus, it is expected that the client
pass a buffer of 100 WCHARs, even in the case where an empty string is passed.

The server will find the history entry that corresponds to the location passed in and the index

number. For instance:

If the index is zero based, then:

If the index passed is 3, then the server should look for the fourth file (file number 4) in the

directory.

If the index passed is 4, then the server should look for the fifth file (file number 5) in the

directory.

Once the history entry is found, the server will return the version number of the history entry in

the two version parameters. The server also will return the file time stamp information in the
pftdMDHistoryTime parameter.

If the index is past the last file in the history location, the server MUST return an

ERROR_NO_MORE_ITEMS error code to indicate that there are no more items to the client.

3.3.4.3 Export (Opnum 36)

The Export method exports a section of the metabase to a file.

HRESULT Export(

 [unique, in, string] LPCWSTR pszPasswd,

 [unique, in, string] LPCWSTR pszFileName,

 [unique, in, string] LPCWSTR pszSourcePath,

 [in] DWORD dwMDFlags

%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf

83 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

);

pszPasswd: A pointer to a Unicode string containing the password that will be used to encrypt

any secure properties being exported.

pszFileName: A pointer to a Unicode string containing the name of the file, including the
directory path, to which the data will be exported. The path MUST exist and be local to the
server.

pszSourcePath: A pointer to a Unicode string containing the path to the metabase node to be
exported.

dwMDFlags: A set of bit flags specifying the export operation to be performed. It can be zero or
one or more of the following values.

Value Meaning

MD_EXPORT_INHERITED

0x00000001

Settings inherited from the parent nodes will be included in the export.

MD_EXPORT_NODE_ONLY

0x00000002

Child nodes will not be exported.

Return Values: A signed 32-bit value that indicates return status. If the method returns a

negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070032

ERROR_NOT_SUPPORTED

The request is not supported.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

The opnum field value for this method is 36.

When processing this call, the server MUST do the following:

If the path passed in the pszFileName parameter does not exist or is not a path local to the

server, return ERROR_PATH_NOT_FOUND.

The server SHOULD validate that the source path provided maps to a node in the data hierarchy.

If it does not, return ERROR_PATH_NOT_FOUND.<23>

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf

84 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the MD_EXPORT_INHERITED flag is passed, the server MUST include inherited property values

in the exported data.

If the MD_EXPORT_NODE_ONLY flag is passed, the server MUST include only the specified node

and its settings. Child nodes MUST NOT be included.

Any encrypted data MUST be stored as encrypted with the password that was provided by the

client.

3.3.4.4 Import (Opnum 37)

The Import method imports metabase data from an exported file into the metabase.

HRESULT Import(

 [unique, in, string] LPCWSTR pszPasswd,

 [unique, in, string] LPCWSTR pszFileName,

 [unique, in, string] LPCWSTR pszSourcePath,

 [unique, in, string] LPCWSTR pszDestPath,

 [in] DWORD dwMDFlags

);

pszPasswd: A pointer to a Unicode string containing the password that will be used to decrypt
the secure properties of the metabase data being imported.

pszFileName: A pointer to a Unicode string containing the name of the file, including directory

path, to import settings from. This file will have been created using the Export function.

pszSourcePath: A pointer to a Unicode string containing the path to the metabase node being
imported from the file specified in pszFileName.

pszDestPath: A pointer to a Unicode string containing the path to the metabase node into which
the file data will be imported.

dwMDFlags: A set of bit flags specifying the import operation to be performed. It can be zero or

one or more of the following values.

Value Meaning

MD_IMPORT_INHERITED

0x00000001

Inherited settings that were exported using the

MD_EXPORT_INHERITED flag will be imported.

MD_IMPORT_NODE_ONLY

0x00000002

Child nodes will not be imported.

MD_IMPORT_MERGE

0x00000004

Imported settings will be merged with any matching existing node

settings.

When a value for a setting is present in the data file and also in the

current metabase, the data file setting will overwrite the existing

metabase setting.

If this flag is not set and there is a current node in the metabase that

conflicts with the node being imported, the imported node will replace

the existing node. All settings from the existing node will be lost

regardless of whether the imported node contains the setting or not.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

85 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method

implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the file specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

The opnum field value for this method is 37.

When processing this call, the server MUST do the following:

The file specified by the pszFileName parameter MUST exist and be local to the server; otherwise

the server MUST return ERROR_FILE_NOT_FOUND.

The server MUST decrypt data with the password the client has provided.

The source path MUST exist in the exported data; otherwise the server MUST return

ERROR_PATH_NOT_FOUND.

If the destination path exists on the server, the server SHOULD replace it and all settings on it

with the data from the data file unless the client has passed the MD_IMPORT_MERGE flag.<24>

If the client has passed the MD_IMPORT_MERGE flag and the destination path exists on the

server, the server will overwrite any existing settings with data from the data file, but will keep
any settings that are not present in the data file.

If the MD_IMPORT_INHERITED flag is passed, the server MUST include inherited properties from

the data file when importing the data to the server.

If the MD_IMPORT_NODE_ONLY flag is passed, the server MUST import only the specified node

and its settings. Child nodes MUST NOT be included.

3.3.4.5 RestoreHistory (Opnum 38)

The RestoreHistory method restores a metabase history entry for a specific history version.

HRESULT RestoreHistory(

 [unique, in, string] LPCWSTR pszMDHistoryLocation,

 [in] DWORD dwMDMajorVersion,

 [in] DWORD dwMDMinorVersion,

 [in] DWORD dwMDFlags

);

pszMDHistoryLocation: A pointer to a Unicode string containing the absolute path to the

location of the history files for the metabase. If an empty string is passed to this function, the
server SHOULD use the default history path.<25>

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf

86 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

dwMDMajorVersion: An integer value containing the predecimal version value of the history
entry to restore from. If the dwMDFlags parameter contains the MD_HISTORY_LATEST flag,

this value MUST be set to zero.

dwMDMinorVersion: An integer value containing the postdecimal version value of the history

entry to restore from. If the dwMDFlags parameter contains the MD_HISTORY_LATEST flag,
this value MUST be set to zero.

dwMDFlags: A set of bit flags specifying the options to be executed during the RestoreHistory
call.

Value Meaning

MD_HISTORY_LATEST

0x00000001

Restore to the most recent history file. If this is set, the

dwMDMajorVersion and dwMDMinorVersion parameters must be set to

zero.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see

[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070002

ERROR_FILE_NOT_FOUND

The system cannot find the file specified.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x8007000E

E_OUTOFMEMORY

Ran out of memory.

0x80070008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x80070013

ERROR_INVALID_DATA

One or more arguments are invalid.

0x800703EC

ERROR_INVALID_FLAGS

Invalid flags were passed.

0x80070005

ERROR_ACCESS_DENIED

Access is denied.

0x800CC802

MD_ERROR_INVALID_VERSION

The version specified in metadata storage was not recognized.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

87 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

The opnum field value for this method is 38.

When processing this call, the server MUST do the following:

The server MUST restore the history from the location passed in the pszMDHistoryLocation value.

If this location does not exist the server returns the HRESULT derived from the Win32 error code
ERROR_PATH_NOT_FOUND.

If the pszMDHistoryLocation value passed in is an empty string, the server uses the default

history location as defined by the server specific implementation.

If the MD_HISTORY_LATEST flag is passed, the server MUST check that dwMDMajorVersion and

dwMDMinorVersion are 0 and return the HRESULT derived from the Win32 error code
E_INVALIDARG.

If the version requested does not exist, the server MUST return the

MD_ERROR_INVALID_VERSION error code.

If the dwMDFlags value contains anything beyond the expected flag values, the server MUST

return the ERROR_INVALID_FLAGS error code.

The server replaces the current metabase data with the data from the history entry specified.

3.3.4.6 RestoreWithPasswd (Opnum 35)

The RestoreWithPasswd method restores the metabase from a backup, using a supplied password
to decrypt the secure data.

HRESULT RestoreWithPasswd(

 [unique, in, string] LPCWSTR pszMDBackupName,

 [in] DWORD dwMDVersion,

 [in] DWORD dwMDFlags,

 [unique, in, string] LPCWSTR pszPasswd

);

pszMDBackupName: A pointer to a Unicode string containing the name of the backup to be

restored.

dwMDVersion: An integer value specifying the version number of the backup to be restored,
which MUST be less than or equal to MD_BACKUP_MAX_VERSION (9999) or the following
constant.

Value Meaning

MD_BACKUP_HIGHEST_VERSION

0xFFFFFFFE

Restore from the highest existing backup version in the

specified backup name.

dwMDFlags: This parameter is reserved and MUST be set to zero.

pszPasswd: A password string used to decrypt the secure properties in the metabase backup. If
the password is not correct, an error is returned. If a password is not supplied, this method
functions exactly the same as the Restore method.

%5bMS-RPCE%5d.pdf

88 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method

implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x8007052B

ERROR_WRONG_PASSWORD

Unable to update the password. The value provided as the current

password is incorrect.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

The opnum field value for this method is 35.

When processing this call, the server MUST do the following:

The server restores from a backup that is identified by the pszMDBackupName parameter and the

version number.

If the pszMDBackupName parameter is an empty string, the server MUST use a default backup

name as defined by the server implementation.

If the backup named by pszMDBackupName does not exist, the server MUST return the

E_INVALIDARG error code.

If the dwMDVersion parameter is greater than MD_BACKUP_MAX_VERSION (9999) and not equal

to MD_BACKUP_HIGHEST_VERSION, the server MUST return the error code E_INVALIDARG.

Any encrypted data MUST be decrypted with the password the client has provided. If no

password is provided, the function behaves exactly as the Restore method.

If the backup cannot be decrypted with the supplied password, the server MUST return the error

code ERROR_WRONG_PASSWORD.

3.3.5 Timer Events

No protocol timer events are required on the client beyond the timers required in the underlying RPC
protocol.

3.3.6 Other Local Events

No local events are maintained on the server other than the events that are maintained in the
underlying RPC protocol.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf

89 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.4 IMSAdminBase2W Client Details

3.4.1 Abstract Data Model

None.

3.4.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages, as specified in [MS-RPCE] section 3.2.3.2.1.

3.4.3 Initialization

The client MUST perform initialization according to the rules defined in section 3.2.3.

3.4.4 Message Processing Events and Sequencing Rules

The client SHOULD follow the rules defined in section 3.2.4.

3.4.5 Timer Events

No protocol timer events are required on the client beyond the timers required in the underlying RPC

protocol.

3.4.6 Other Local Events

A client's call of each method is the result of local application activity. The local application on the
client computer specifies values for all input parameters. No other higher-layer triggered events are
processed. The values specified for input parameters are defined in section 2.

No additional local events are used on the client beyond the events maintained in the underlying

RPC protocol.

3.5 IMSAdminBase3W Server Details

3.5.1 Abstract Data Model

No specific abstract data model is required. This interface uses the same data model as the
IMSAdminBaseW interface.

3.5.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages, as specified in [MS-RPCE] section 3.2.3.2.1.

3.5.3 Initialization

This protocol uses DCOM initialization, as specified in [MS-DCOM].

3.5.4 Message Processing Events and Sequencing Rules

This DCOM interface inherits the IUnknown interface. Method opnum field values start with 3;
opnum values 0 through 2 represent the IUnknown_QueryInterface, IUnknown_AddRef, and
IUnknown_Release methods, respectively, as specified in [MS-DCOM].

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf

90 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Methods with opnum field values 3 through 33 are defined in section 3.1.4, and those with field
values 34 through 39 are defined in section 3.3.4.

The IMSAdminBase3W RPC interface extends the IMSAdminBase2W interface by providing a
method to return the nodes of children from a specified metabase path. The IMSAdminBase3W

protocol does not maintain client state information; the protocol is stateless.

A RPC sequence is a client/server session that includes a security context phase and requests to call
remote procedures. For a connection-oriented RPC, the session also includes a binding phase. The
RPC client supplies the necessary security information, and for connection-oriented RPCs it also
supplies binding information, such as interface name and server endpoint. The sequence of
subsequent RPC calls in the session is implementation-specific.

Methods in RPC Opnum Order

Method Description

GetChildPaths Returns all child nodes of a specified path from a supplied metadata handle.

Opnum: 40

When a remote call is made, the UUID and version number of the interface are specified in the
abstract_syntax and abstract_syntax_vers fields of the incoming RPC_BIND packet, as specified
in [MS-RPCE].

3.5.4.1 GetChildPaths (Opnum 40)

The GetChildPaths method returns all child nodes of a specified path from a supplied metadata
handle.

HRESULT GetChildPaths(

 [in] METADATA_HANDLE hMDhandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in] DWORD cchMDBufferSize,

 [in, out, unique, size_is(cchMDBufferSize)]

 WCHAR* pszBuffer,

 [in, out, unique] DWORD* pcchMDRequiredBufferSize

);

hMDhandle: An unsigned 32-bit integer value specifying a handle to a node in the metabase

with read permissions as returned by the OpenKey method, or the
METADATA_MASTER_ROOT_HANDLE.

pszMDPath: A pointer to a Unicode string that contains the path of the node to be opened,
relative to the hMDHandle parameter.

cchMDBufferSize: The size, in WCHAR, of the pszBuffer buffer to hold the paths for all child
nodes under the path specified.

pszBuffer: A pointer to a Unicode character buffer passed in by the caller to store the retrieved
child paths. The return data will be a set of WCHAR strings, where each includes two
terminating null characters.

pcchMDRequiredBufferSize: An integer value indicating the required size of the buffer if the
supplied buffer proves to be insufficient. If the supplied buffer is sufficient, this value will not
be adjusted.

%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf

91 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method

implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x80070000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x80070005

ERROR_ACCESS_DENIED

Access is denied.

0x80070008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x8007000E

E_OUTOFMEMORY

There was not enough memory to complete the method call.

0x8007007A

ERROR_INSUFFICIENT_BUFFER

The data area passed to a system call is too small.

0x800700A0

ERROR_BAD_ARGUMENTS

One or more arguments are not correct.

0x80004005

E_FAIL

An unspecified error occurred.

0x80070006

E_HANDLE

An invalid handle was passed.

0x800CC800

MD_ERROR_NOT_INITIALIZED

Metadata has not been initialized.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

The opnum field value for this method is 40.

When processing this call, the server MUST do the following:

The server returns all child paths that are relative to the path provided under the node that is

represented by the hMDHandle parameter. The server MUST return these as a list of WCHAR

strings, where each string includes the terminating null character, and the entire list is also
followed by a terminating null character.

The strings returned by the server MUST be compatible with the format used by the OpenKey

method to open those nodes for retrieving data.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf

92 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the hMDHandle parameter is not a valid open handle to the metadata (retrieved by calling

OpenKey), the server MUST return an E_HANDLE error code.

If the path requested does not exist in the metadata, the server MUST return the HRESULT

derived from the ERROR_PATH_NOT_FOUND error code.

If the cchMDBufferSize parameter is not large enough to contain the child path strings that

include the terminating null character, the server MUST return the HRESULT derived from the
ERROR_INSUFFICIENT_BUFFER error code, and the server MUST set the
pcchMDRequiredBufferSize value to the size needed.

3.5.5 Timer Events

No protocol timer events are required on the client beyond the timers required in the underlying RPC
protocol.

3.5.6 Other Local Events

No local events are maintained on the server other than the events that are maintained in the
underlying RPC protocol.

3.6 IMSAdminBase3W Client Details

3.6.1 Abstract Data Model

None.

3.6.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages, as specified in [MS-RPCE] section 3.2.3.2.1.

3.6.3 Initialization

The client MUST perform initialization according to the rules defined in section 3.5.3.

3.6.4 Message Processing Events and Sequencing Rules

Client SHOULD follow the rules defined in 3.5.4.

3.6.5 Timer Events

No protocol timer events are required on the client beyond the timers required in the underlying RPC
protocol.

3.6.6 Other Local Events

A client's call of each method is the result of local application activity. The local application on the

client computer specifies values for all input parameters. No other higher-layer triggered events are
processed. The values specified for input parameters are defined in section 2.

No additional local events are used on the client beyond the events maintained in the underlying
RPC protocol.

%5bMS-RPCE%5d.pdf

93 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.7 IWamAdmin Server Details

3.7.1 Abstract Data Model

The IWamAdmin interface makes use of the configuration storage (metabase) described in section
3.1.1. Although the data elements stored in the metabase are not strictly part of the protocol,
correct client interoperation requires that they be set as specified in the message processing
descriptions that follow. The data elements MD_APP_ISOLATED and MD_APP_ROOT are specified in
sections 2.2.10 and 2.2.9, respectively.

3.7.2 Timers

None.

3.7.3 Initialization

The IWamAdmin server MUST be initialized by registering the RPC interface and listening on the

RPC well-known endpoint, as specified in section 2.1. The server MUST then wait for IWamAdmin
clients to establish a connection.

3.7.4 Message Processing Events and Sequencing Rules

This DCOM interface inherits the IUnknown interface. Method opnum field values start with 3;
opnum values 0 through 2 represent the IUnknown_QueryInterface, IUnknown_AddRef, and
IUnknown_Release methods, respectively, as specified in [MS-DCOM].

The IWamAdmin interface includes the following methods.

Methods in RPC Opnum Order

Method Description

AppCreate Create an application.

Opnum: 3

AppDelete Delete an application.

Opnum: 4

AppUnload Stop an application.

Opnum: 5

AppGetStatus Get the status of an application.

Opnum: 6

AppDeleteRecoverable Delete the application, saving external state.

Opnum: 7

AppRecover Recover an application, restoring saved external state.

Opnum: 8

3.7.4.1 AppCreate (Opnum 3)

The AppCreate method creates a new application at the specified metabase path.

%5bMS-DCOM%5d.pdf

94 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

HRESULT AppCreate(

 [in, unique, string] LPCWSTR szMDPath,

 [in] BOOL fInProc

);

szMDPath: A pointer to a Unicode string that contains the metabase path of the application.

fInProc: A flag indicating whether the application should run in the parent IIS server process or
in its own process.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

The opnum field value for this method is 3.

When processing this call, the server MUST do the following:

The server SHOULD validate that the metabase path specified in the szMDPath parameter is a

valid application path.<26>

Check that the path specified in szMDPath exists in the metabase. If it does not, create it (see

section 3.1.4.4).

If the path exists, check to see whether an application is defined on the path. If an application is

already defined at this metabase path and the value of MD_APP_ISOLATED matches that
specified by the user in the fInProc flag, do nothing. If the value does not match, delete the
current application (see section 3.7.4.2).

Create the new application.

Set the MD_APP_ISOLATED property on the specified metabase path to 0 if the fInProc

parameter is TRUE (nonzero). Set the MD_APP_ISOLATED property on the specified metabase
path to 1 if the fInProc parameter is FALSE.

Set the MD_APP_ROOT property on the specified metabase path to the value of szMDPath

without any trailing '/' if one was specified.

3.7.4.2 AppDelete (Opnum 4)

The AppDelete method deletes the application from the specified metabase path.

HRESULT AppDelete(

 [in, unique, string] LPCWSTR szMDPath,

 [in] BOOL fRecursive

);

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

95 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

szMDPath: A pointer to a Unicode string that contains the metabase path of the application.

fRecursive: A flag indicating whether application definitions are also to be deleted from all
subkeys (TRUE) or just from the application at this key (FALSE).

Return Values: A signed 32-bit value that indicates return status. If the method returns a

negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

The opnum field value for this method is 4.

When processing this call, the server MUST do the following:

If the string length of the szMDPath parameter is <= 10, return E_INVALIDARG.

If the metabase path specified by szMDPath does not exist, return ERROR_PATH_NOT_FOUND.

If there is no application defined at the metabase path specified by szMDPath, return S_OK.

Delete the application. If fRecursive parameter is TRUE, delete applications at all child paths of

szMDPath.

Remove the MD_APP_ISOLATED and MD_APP_ROOT properties from szMDPath. If fRecursive is

TRUE, remove these properties from all child paths of szMDPath.

3.7.4.3 AppUnload (Opnum 5)

The AppUnload method shuts down the specified application.

HRESULT AppUnload(

 [in, unique, string] LPCWSTR szMDPath,

 [in] BOOL fRecursive

);

szMDPath: A pointer to a Unicode string that contains the metabase path of the application.

fRecursive: A flag indicating whether applications are also unloaded from all subkeys (TRUE) or

just from the application at this key (FALSE).

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

96 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see

[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

The opnum field value for this method is 5.

When processing this call, the server MUST do the following:

Attempt to shutdown the application specified in the szMDPath parameter. If the value of the

fRecursive parameter is TRUE, attempt to shutdown applications defined on all child paths of
szMDPath.

3.7.4.4 AppGetStatus (Opnum 6)

The AppGetStatus method retrieves the status of the application defined at the specified metabase
path.

HRESULT AppGetStatus(

 [in, unique, string] LPCWSTR szMDPath,

 [out] DWORD* pdwAppStatus

);

szMDPath: A pointer to a Unicode string that contains the metabase path of the application.

pdwAppStatus: A pointer to a 32-bit unsigned integer that receives the value indicating the

status of the application. This field MUST be set to one of the following values.

Value Meaning

APPSTATUS_STOPPED

0x00000000

The application is defined but is not currently running.

APPSTATUS_RUNNING

0x00000001

The application is defined and is currently running.

APPSTATUS_NOTDEFINED

0x00000002

No application is defined at the specified metabase path.

Return Values: A signed 32-bit value that indicates return status. If the method returns a

negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see

[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

97 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return value/code Description

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

The opnum field value for this method is 6.

When processing this call, the server MUST do the following:

Check that the path specified in the szMDPath parameter exists in the metabase. If it does not,

return ERROR_PATH_NOT_FOUND.

Check if an application is defined at the path. If it is not, set the pdwAppStatus parameter to

APPSTATUS_NOTDEFINED. Return S_OK.

Attempt to determine if the application is running. If unable to determine the status of the

application, APPSTATUS_STOPPED MUST be returned. If application is running,

APPSTATUS_RUNNING MUST be returned, otherwise APPSTATUS_STOPPED MUST be
returned.<27>

3.7.4.5 AppDeleteRecoverable (Opnum 7)

The AppDeleteRecoverable method deletes the application from the specified metabase path and
saves external state needed to recreate the application if it is recovered.

HRESULT AppDeleteRecoverable(

 [in, unique, string] LPCWSTR szMDPath,

 [in] BOOL fRecursive

);

szMDPath: A pointer to a Unicode string that contains the metabase path of the application.

fRecursive: A flag indicating whether application definitions are also to be deleted from all
subkeys (TRUE) or just from the application at this key (FALSE).

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with

the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

The opnum field value for this method is 7.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

98 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

When processing this call, the server MUST do the following:

If the string length of the szMDPath parameter is <= 10, return E_INVALIDARG.

If the metabase path specified by szMDPath does not exist, return ERROR_PATH_NOT_FOUND.

If there is no application defined at the metabase path specified by szMDPath, return S_OK.

If the preceding conditions do not apply, the server MAY mark the application in such a way as to
prevent it from being run. The server MUST NOT change the value of MD_APP_ISOLATED and
MD_APP_ROOT at the metabase key specified by szMDPath.

3.7.4.6 AppRecover (Opnum 8)

The AppRecover method recreates an application that was deleted by the AppDeleteRecoverable
method.

HRESULT AppRecover(

 [in, unique, string] LPCWSTR szMDPath,

 [in] BOOL fRecursive

);

szMDPath: A pointer to a Unicode string that contains the metabase path of the application.

fRecursive: A flag indicating whether application definitions are also to be recovered from all
subkeys (TRUE) or just from the application at this key (FALSE).

Return Values: A signed 32-bit value that indicates return status. If the method returns a

negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

The opnum field value for this method is 8.

When processing this call, the server MUST do the following:

If the metabase path specified by the szMDPath parameter does not exist, return

ERROR_PATH_NOT_FOUND.

If there is no application defined at the metabase path specified by szMDPath, return S_OK.

When processing this call, the server MAY mark the application in such a way as to allow it to be
run.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

99 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.7.5 Timer Events

No protocol timer events are required on the server other than the timers that are required in the
underlying RPC protocol.

3.7.6 Other Local Events

No local events are maintained on the server other than the events that are maintained in the
underlying RPC protocol.

3.8 IWamAdmin2 Server Details

3.8.1 Abstract Data Model

This interface uses the same data model as the IWamAdmin interface, section 3.7.1.

3.8.2 Timers

None.

3.8.3 Initialization

The IWamAdmin2 server MUST be initialized by registering the RPC interface and listening on the
RPC well-known endpoint, as specified in section 2.1. The server MUST then wait for IWamAdmin2
clients to establish a connection.

3.8.4 Message Processing Events and Sequencing Rules

This DCOM interface inherits the IUnknown interface. Method opnum field values start with 3;
opnum values 0 through 2 represent the IUnknown_QueryInterface, IUnknown_AddRef, and

IUnknown_Release methods, respectively, as specified in [MS-DCOM].

The IWamAdmin2 interface extends the IWamAdmin interface. Method opnum field values 3
through 8 are defined in section 3.7.4.

This interface includes the following method.

Methods in RPC Opnum Order

Method Description

AppCreate2 Create an application.

Opnum: 9

3.8.4.1 AppCreate2 (Opnum 9)

The AppCreate2 method creates a new application at the specified metabase path.

HRESULT AppCreate2(

 [in, unique, string] LPCWSTR szMDPath,

 [in] DWORD dwAppMode

);

%5bMS-DCOM%5d.pdf

100 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

szMDPath: A pointer to a Unicode string that contains the metabase path of the application.

dwAppMode: An unsigned 32-bit integer value indicating the process where the application
should run. This parameter MUST be set to one of the following values.

Value Meaning

eAppRunInProc

0x00000000

The application should run in the IIS parent process.

eAppRunOutProcIsolated

0x00000001

The application should run in its own process.

eAppRunOutProcInDefaultPool

0x00000002

The application should run in a shared process with other

applications outside of the IIS parent process.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with

the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

The opnum field value for this method is 9.

When processing this call, the server MUST do the following:

The server SHOULD validate that the metabase path specified in the szMDPath parameter is a

valid application path. <28>

Check that the path specified in szMDPath exists in the metabase. If it does not, create it.

If the path exists, check to see whether an application is defined on the path. If an application is

already defined at this metabase path and the value of MD_APP_ISOLATED matches that

specified by the client in the dwAppMode parameter, return S_OK. If the value does not match,
delete the current application (see section 3.7.4.2).

Create the new application.

Set the MD_APP_ISOLATED property on the specified metabase path to the value specified in the

dwAppMode parameter.

Set the MD_APP_ROOT property on the specified metabase path to the value of szMDPath

without any trailing '/' if one was specified.

3.8.5 Timer Events

No protocol timer events are required on the server other than the timers that are required in the
underlying RPC protocol.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

101 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.8.6 Other Local Events

No local events are maintained on the server other than the events that are maintained in the
underlying RPC protocol.

3.9 IIISApplicationAdmin Server Details

3.9.1 Abstract Data Model

This interface uses the same data model as the IWamAdmin interface, section 3.7.1.

3.9.2 Timers

None.

3.9.3 Initialization

The IIISApplicationAdmin server MUST be initialized by registering the RPC interface and
listening on the RPC well-known endpoint, as specified in section 2.1. The server MUST then wait for
IIISApplicationAdmin clients to establish a connection.

3.9.4 Message Processing Events and Sequencing Rules

This DCOM interface inherits the IUnknown interface. Method opnum field values start with 3;
opnum values 0 through 2 represent the IUnknown_QueryInterface, IUnknown_AddRef, and
IUnknown_Release methods, respectively, as specified in [MS-DCOM].

The IIISApplicationAdmin interface includes the following methods.

Methods in RPC Opnum Order

Method Description

CreateApplication Create an application.

Opnum: 3

DeleteApplication Delete an application.

Opnum: 4

CreateApplicationPool Create an application pool.

Opnum: 5

DeleteApplicationPool Delete an application pool.

Opnum: 6

EnumerateApplicationsInPool Retrieve the names of all the applications associated with an

application pool.

Opnum: 7

RecycleApplicationPool Restart the application pool.

Opnum: 8

GetProcessMode Retrieve the application execution mode for the IIS server.

Opnum: 9

%5bMS-DCOM%5d.pdf

102 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.9.4.1 CreateApplication (Opnum 3)

The CreateApplication method creates a new application at the specified metabase path.

HRESULT CreateApplication(

 [in, unique, string] LPCWSTR szMDPath,

 [in] DWORD dwAppMode,

 [in, unique, string] LPCWSTR szAppPoolId,

 [in] BOOL fCreatePool

);

szMDPath: A pointer to a Unicode string that contains the metabase path of the application.

dwAppMode: An unsigned 32-bit integer value indicating the process where the application

should run. This parameter MUST be set to one of the following values.

Value Meaning

eAppRunInProc

0x00000000

The application should run in the IIS parent process.

eAppRunOutProcIsolated

0x00000001

The application should run in its own process.

eAppRunOutProcInDefaultPool

0x00000002

The application should run in a shared process with other

applications outside of the IIS parent process.

szAppPoolId: A pointer to a Unicode string that specifies the application pool name with which
the new application should be associated.

fCreatePool: A flag indicating whether to create a new application pool if the pool specified by
the szAppPoolId parameter does not exist (TRUE) or to use an existing application pool
(FALSE).

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with

the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x80070490

ERROR_NOT_FOUND

Element not found.

The opnum field value for this method is 3.

When processing this call, the server MUST do the following:

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

103 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The server SHOULD validate that the metabase path specified in the szMDPath parameter is a

valid application path.<29>

If the string length of the szMDPath parameter is <= 10, return E_INVALIDARG.

Check that the path specified in szMDPath exists in the metabase. If it does not, create it.

If the path exists, check to see whether an application is defined on the path. If an application is

already defined at this metabase path and the value of MD_APP_ISOLATED does not match the
value specified by the dwAppMode parameter, delete the current application (see section
3.7.4.2).

Create the new application.

Set the MD_APP_ISOLATED property on the specified metabase path to the value specified in the

dwAppMode parameter.

Set the MD_APP_ROOT property on the specified metabase path to the value of szMDPath

without any trailing '/' if one was specified.

If szAppPoolId is NULL and fCreatePool is FALSE, return S_OK.

If fCreatePool is TRUE, create an application pool with name szAppPoolId (see section 3.9.4.3).

If fCreatePool is FALSE and no application pool exists with the name szAppPoolId, return

ERROR_NOT_FOUND.

Set the MD_APP_APPPOOL_ID property on the specified metabase path to the value of

szAppPoolId.

3.9.4.2 DeleteApplication (Opnum 4)

The DeleteApplication method deletes the application from the specified metabase path.

HRESULT DeleteApplication(

 [in, unique, string] LPCWSTR szMDPath,

 [in] BOOL fRecursive

);

szMDPath: A pointer to a Unicode string that contains the metabase path of the application.

fRecursive: A flag indicating whether application definitions are also to be deleted from all
subkeys (TRUE) or just from the application at this key (FALSE).

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see

[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

104 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return value/code Description

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

The opnum field value for this method is 4.

When processing this call, the server MUST do the following:

If the string length of the szMDPath parameter is <= 10, return E_INVALIDARG.

If the metabase path specified by szMDPath does not exist, return ERROR_PATH_NOT_FOUND.

If there is no application defined at the metabase path specified by szMDPath, return S_OK.

Delete the application. If the fRecursive parameter is TRUE, delete applications at all child paths

of szMDPath.

Remove the MD_APP_ISOLATED, MD_APP_ROOT, and MD_APP_APPPOOL_ID properties from

szMDPath. If fRecursive is TRUE, remove these properties from all child paths of szMDPath.

3.9.4.3 CreateApplicationPool (Opnum 5)

The CreateApplicationPool method creates a new application pool.

HRESULT CreateApplicationPool(

 [in, unique, string] LPCWSTR szPool

);

szPool: A pointer to a Unicode string that contains the name of the new application pool.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method

implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

The opnum field value for this method is 5.

When processing this call, the server MUST do the following:

Create an application pool identified by the szPool parameter.

3.9.4.4 DeleteApplicationPool (Opnum 6)

The DeleteApplicationPool method deletes an application pool.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

105 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

HRESULT DeleteApplicationPool(

 [in, unique, string] LPCWSTR szPool

);

szPool: A pointer to a Unicode string that contains the name of the application pool to delete.

Return Values: A signed 32-bit value that indicates return status. If the method returns a

negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070490

ERROR_NOT_FOUND

Element not found.

0x800710D3

ERROR_NOT_EMPTY

The library, drive, or media pool must be empty to perform this operation.

The opnum field value for this method is 6.

When processing this call, the server MUST do the following:

Determine whether the application pool specified by the szPool parameter exists. If it does not,

return ERROR_NOT_FOUND.

Enumerate the applications in the application pool specified by szPool (see section 3.9.4.5). If

any applications are associated with the pool, return ERROR_NOT_EMPTY.

Delete the application pool.

3.9.4.5 EnumerateApplicationsInPool (Opnum 7)

The EnumerateApplicationsInPool method returns the metabase paths for the applications

associated with the application pool.

HRESULT EnumerateApplicationsInPool(

 [in, unique, string] LPCWSTR szPool,

 [out] BSTR* bstrBuffer

);

szPool: A pointer to a Unicode string that contains the name of the application pool to

enumerate.

bstrBuffer: A pointer to a BSTR that receives the application metabase paths. The BSTR
contains a sequence of contiguous null-terminated strings. The buffer is terminated by another
null character. The server allocates storage, and the client is responsible for freeing the

storage with SysFreeString; see [MS-OAUT].

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf

106 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method

implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

The opnum field value for this method is 7.

When processing this call, the server MUST do the following:

Determine the metabase paths of all applications associated with the application pool specified by

the szPool parameter. The paths are returned as contiguous, null-terminated strings in the
bstrBuffer parameter.

3.9.4.6 RecycleApplicationPool (Opnum 8)

The RecycleApplicationPool method restarts an application pool.

HRESULT RecycleApplicationPool(

 [in, unique, string] LPCWSTR szPool

);

szPool: A pointer to a Unicode string that contains the name of the application pool to restart.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see

[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070003

ERROR_PATH_NOT_FOUND

The system cannot find the path specified.

The opnum field value for this method is 8.

When processing this call, the server MUST do the following:

If the application pool specified does not exist, return ERROR_PATH_NOT_FOUND.

Attempt to recycle (shut down and restart) the application pool if it is running.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

107 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.9.4.7 GetProcessMode (Opnum 9)

The GetProcessMode method retrieves the application execution mode for the IIS server.

HRESULT GetProcessMode(

 [out] DWORD* pdwMode

);

pdwMode: A pointer to an unsigned 32-bit integer that receives the server's application

execution mode. This parameter MUST be set to one of the following values.

Value Meaning

0x00000001 The server is hosting applications in application pools.

0x00000000 The server is hosting applications in the IIS server process and child processes.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see

[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

The opnum field value for this method is 9.

When processing this call, the server MUST do the following:

If the call succeeds, return the current hosting mode defined by the server in the pdwMode

parameter.

3.9.5 Timer Events

No protocol timer events are required on the server other than the timers that are required in the
underlying RPC protocol.

3.9.6 Other Local Events

No local events are maintained on the server other than the events that are maintained in the
underlying RPC protocol.

3.10 IIISCertObj Server Details

3.10.1 Abstract Data Model

The IIISCertObj interface manages IIS web server certificates. Web server certificates are stored

in a server certificate store. They are referenced in the IIS metabase and used by the web server
for Secure Sockets Layer (SSL) communication with HTTP clients.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

108 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The IIISCertObj interface makes use of the configuration storage (metabase) described in section
3.1.1. Although data elements stored in the metabase are not strictly part of the protocol, correct

client interoperation requires that they be set as specified in the message processing descriptions
that follow.

3.10.2 Timers

None.

3.10.3 Initialization

The IIISCertObj server MUST be initialized by registering the RPC interface and listening on the
RPC well-known endpoint, as specified in section 2.1. The server MUST then wait for IIISCertObj

clients to establish a connection.

3.10.4 Message Processing Events and Sequencing Rules

This DCOM interface inherits the IDispatch interface. Method Opnum field values start with 7.

Opnum values 0 through 2 represent the IUnknown_QueryInterface, IUnknown_AddRef, and
IUnknown_Release methods, respectively, as specified in [MS-DCOM].

Opnum values 3 through 6 represent the IDispatch_GetTypeInfoCount, IDispatch_GetTypeInfo,

IDispatch_GetIDsOfNames, and IDispatch_Invoke methods, respectively, as specified in [MS-OAUT].

This interface includes the following methods.

Methods in RPC Opnum Order

Method Description

Opnum7NotUsedOnWire Reserved for local use.<30>

Opnum: 7

Opnum8NotUsedOnWire Reserved for local use.<31>

Opnum: 8

Opnum9NotUsedOnWire Reserved for local use.<32>

Opnum: 9

InstanceName (Set) Set the web server instance used by subsequent method calls.

Opnum: 10

Opnum11NotUsedOnWire Reserved for local use.

Opnum: 11

IsInstalledRemote Determine whether a certificate is associated with the specified

InstanceName.

Opnum: 12

Opnum13NotUsedOnWire Reserved for local use.

Opnum: 13

IsExportableRemote Determine whether the server certificate associated with InstanceName can

be exported.

%5bMS-DCOM%5d.pdf
%5bMS-OAUT%5d.pdf

109 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Method Description

Opnum: 14

Opnum15NotUsedOnWire Reserved for local use.

Opnum: 15

GetCertInfoRemote The GetCertInfoRemote method retrieves properties from a certificate

associate with the specified InstanceName.

Opnum: 16

Opnum17NotUsedOnWire Reserved for local use.

Opnum: 17

Opnum18NotUsedOnWire Reserved for local use.

Opnum: 18

Opnum19NotUsedOnWire Reserved for local use.

Opnum: 19

Opnum20NotUsedOnWire Reserved for local use.

Opnum: 20

Opnum21NotUsedOnWire Reserved for local use.

Opnum: 21

ImportFromBlob The ImportFromBlob method imports a previously exported certificate

blob on the target machine.

Opnum: 22

ImportFromBlobGetHash The ImportFromBlobGetHash method imports a previously exported

certificate blob on the target machine. In addition to data returned by

method ImportFromBlob, this method returns certificate hash and

certificate hash buffer size in the client-provided parameters

pcbCertHashSize and pCertHash. Server must allocate memory for the hash

buffer and assign this memory block to pCertHash. Size of required buffer is

assigned to pcbCertHashSize. If client will pass pCertHash equal to NULL,

hash data will not be returned.

Opnum: 23

Opnum24NotUsedOnWire Reserved for local use.

Opnum: 24

ExportToBlob The ExportToBlob method exports the certificate referenced at

InstanceName to a memory buffer.

Opnum: 25

In the preceding table, "Reserved for local use" means that the client MUST NOT send the opnum,

and the server behavior is undefined because it does not affect interoperability.

3.10.4.1 InstanceName (Set) (Opnum 10)

The InstanceName method sets the web server instance to be used by subsequent method calls.

[propput, id(4)] HRESULT InstanceName(

110 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 [in] BSTR newVal

);

newVal: A string that specifies the web server instance.<33>

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x000006cf

RPC_S_STRING_TOO_LONG

The string is too long.

The opnum field value for this method is 10.

When processing this call, the server MUST do the following:

If the newVal string is empty, return E_INVALIDARG.

If the number of characters in newVal is more than 260, return RPC_S_STRING_TOO_LONG.

Save the value of the newVal parameter for use in subsequent calls on the interface.

3.10.4.2 IsInstalledRemote (Opnum 12)

The IsInstalledRemote method determines if a certificate is associated with the specified
InstanceName.

[id(6)] HRESULT IsInstalledRemote(

 [out, retval] VARIANT_BOOL* retval

);

retval: A pointer to a VARIANT_BOOL.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with

the lower 16 bits in positive nonzero values containing warnings or flags defined in the method

implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000 The call was successful.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

111 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return value/code Description

S_OK

0x80070057

E_INVALIDARG

One or more arguments are invalid.

The opnum field value for this method is 12.

When processing this call, the server MUST do the following:

If the InstanceName (Set) method has not been called to set the web server instance, return

E_INVALIDARG.

Attempt to retrieve the certificate referenced at the specified InstanceName. If the certificate can

be retrieved on the target system, set retval to VARIANT_TRUE. If the certificate cannot be
retrieved on the target system or if no certificate is referenced at the specified InstanceName, set
retval to VARIANT_FALSE. Return S_OK.

3.10.4.3 IsExportableRemote (Opnum 14)

The IsExportableRemote method determines whether the server certificate associated with
InstanceName can be exported.

[id(8)] HRESULT IsExportableRemote(

 [out, retval] VARIANT_BOOL* retval

);

retval: A pointer to a VARIANT_BOOL.

Return Values: A signed 32-bit value that indicates return status. If the method returns a

negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

The opnum field value for this method is 14.

When processing this call, the server MUST do the following:

If the InstanceName (Set) method has not been called to set the web server instance, return

E_INVALIDARG.

Attempt to retrieve the certificate referenced at the specified InstanceName. If the certificate

cannot be retrieved on the target system or if no certificate is referenced at the specified
InstanceName, set retval to VARIANT_FALSE and return S_OK.

%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

112 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Attempt to retrieve the private key for the certificate and to determine whether the key can be

exported. If the key can be retrieved and is exportable, set retval to VARIANT_TRUE, otherwise

set retval to VARIANT_FALSE. Return S_OK.

3.10.4.4 GetCertInfoRemote (Opnum 16)

The GetCertInfoRemote method retrieves properties from a certificate associated with the
specified InstanceName.

[id(10)] HRESULT GetCertInfoRemote(

 [out, retval] VARIANT* BinaryVariant

);

BinaryVariant: A pointer to a VARIANT that will contain the certificate data. If the method
returns S_OK, BinaryVariant contains a single dimension SAFEARRAY of VT_UI1 elements as

defined in [MS-OAUT]. The data contained in the array is a null-terminated Unicode string

containing attribute data from the certificate. The format and contents are described further in
the method details.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with

the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x00000001

S_FALSE

The call was successful. No data was returned.

The opnum field value for this method is 16.

When processing this call, the server MUST do the following:

If the InstanceName (Set) method has not been called to set the web server instance, return

E_INVALIDARG.

Attempt to retrieve the certificate referenced at the specified InstanceName. If the certificate

cannot be retrieved on the target system or if no certificate is referenced at the specified
InstanceName, return S_FALSE.

Attempt to retrieve the Subject field from the certificate ([RFC3280] section 4.1.2.6). For each

relative distinguished name (RDN) contained in the Subject field, append the object
identifier (OID) for the attribute type and the attribute value to a Unicode string separated by
the equals character, '=' (0x003D). If there is more than one RDN contained in the Subject field,

separate the type/value pairs with a newline character, '\n' (0x000A). Append a newline to the
string.

%5bMS-GLOS%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90414
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

113 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Attempt to retrieve the Issuer field from the certificate ([RFC3280] section 4.1.2.4). Retrieve

the attribute value for one of the RDNs in the Issuer field and append the characters '4'

(0x0034), '=' (0x003D), the retrieved attribute value, and '\n' (0x000A) to the Unicode data

string.<34>

Attempt to retrieve the notAfter value from the Validity field of the certificate ([RFC3280]

section 4.1.2.5). The time portion of this value is discarded and the date is converted to a
Unicode string using the server's system locale. The characters '6' (0x0036), '=' (0x003D), the
converted date string, and '\n' (0x000A) are then appended to the Unicode data string.<35>

Attempt to retrieve the Extended Key Usage values for the certificate ([RFC3280] section

4.2.1.13). The Unicode string "2.5.29.37=" is appended to the data string followed by descriptive
names for the specific key usage object identifiers. For example the id-kp-serverAuth OID
("1.3.6.1.5.5.7.3.1") SHOULD be represented as the string "Server Authentication".<36>
Multiple usages are separated by the comma ',' space ' ' (0x0027, 0x0020) character sequence.

If there are no errors encountered in accessing the certificate data, the Unicode string is

converted into a SAFEARRAY of VT_UI1 and returned to the client in the BinaryVariant

parameter. Otherwise, S_FALSE is returned.

3.10.4.5 ImportFromBlob (Opnum 22)

The ImportFromBlob method imports a previously exported certificate blob on the target machine.

[id(16)] HRESULT ImportFromBlob(

 [in] BSTR InstanceName,

 [in] BSTR Password,

 [in] VARIANT_BOOL bInstallToMetabase,

 [in] VARIANT_BOOL bAllowExport,

 [in] VARIANT_BOOL bOverWriteExisting,

 [in] DWORD cbSize,

 [in, string, size_is(cbSize)] char* pBlobBinary

);

InstanceName: A string that specifies a web server instance.

Password: A password used to decrypt the imported certificate data.

bInstallToMetabase: If set to 1 or VARIANT_TRUE, indicates that the imported certificate
should be associated with the web server instance specified by InstanceName.

bAllowExport: If set to 1 or VARIANT_TRUE, indicates that the newly imported certificate should
be made exportable.

bOverWriteExisting: If set to 1 or VARIANT_TRUE, indicates that importing a duplicate

certificate should not generate an error.

cbSize: Contains the number of bytes in the pBlobBinary buffer including the terminating null
character.

pBlobBinary: A buffer containing an exported, base64-encoded certificate to be imported on
the target machine. This buffer is a null-terminated array of bytes.

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with

http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90414
%5bMS-GLOS%5d.pdf

114 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see

[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x000006cf

RPC_S_STRING_TOO_LONG

The string is too long.

0x80092005

CRYPT_E_EXISTS

The object or property already exists.

The opnum field value for this method is 22.

When processing this call, the server MUST do the following:

If InstanceName or Password are empty strings, return E_INVALIDARG.

If InstanceName or Password contains more than 260 characters, return

RPC_STRING_TOO_LONG.

Attempt to use base64 to decode the pBlobBinary blob.

Attempt to decrypt and import the decoded data with the password specified by Password. If

bAllowExport is set to 1 or VARIANT_TRUE, attempt to flag the imported certificate as
exportable.<37>

If the import fails because the password does not match the one used to export and encrypt the

certificate data, return E_INVALIDARG.<38>

If bOverWriteExisting is not set to 1 or VARIANT_TRUE and the imported certificate already exists

in the certificate store, return CRYPT_E_EXISTS; otherwise, continue processing the import.

If bInstallToMetabase is set to 1 or VARIANT_TRUE, the imported certificate is associated with

the web server instance specified by InstanceName.

3.10.4.6 ImportFromBlobGetHash (Opnum 23)

The ImportFromBlobGetHash method imports a previously exported certificate blob on the target
machine. In addition to data returned by method ImportFromBlob, this method returns certificate

hash and certificate hash buffer size in client-provided parameters pcbCertHashSize and pCertHash.
The server MUST allocate memory for the hash buffer and assign this memory block to pCertHash.
Size of required buffer is assigned to pcbCertHashSize. If client will pass pCertHash equal to NULL,
hash data will not be returned.

[id(17)] HRESULT ImportFromBlobGetHash(

 [in] BSTR InstanceName,

 [in] BSTR Password,

 [in] VARIANT_BOOL bInstallToMetabase,

 [in] VARIANT_BOOL bAllowExport,

 [in] VARIANT_BOOL bOverWriteExisting,

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

115 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 [in] DWORD cbSize,

 [in, string, size_is(cbSize)] CHAR* pBlobBinary,

 [out] DWORD* pcbCertHashSize,

 [out] CHAR** pCertHash

);

InstanceName: A string that specifies a web server instance.

Password: A password used to decrypt the imported certificate data.

bInstallToMetabase: If set to VARIANT_TRUE, indicates that the imported certificate should be
associated with the web server instance specified by InstanceName.

bAllowExport: If set to VARIANT_TRUE, indicates that the newly imported certificate should be
made exportable.

bOverWriteExisting: If set to VARIANT_TRUE, indicates that importing a duplicate certificate

should not generate an error.

cbSize: Contains the number of bytes in the pBlobBinary buffer including the terminating null
character.

pBlobBinary: A buffer containing an exported, base64-encoded certificate to be imported on the

target machine. This buffer is a null-terminated array of bytes.

pcbCertHashSize: If the method succeeds, returns the number of bytes returned in the
pCertHash buffer.

pCertHash: If the method succeeds, returns a pointer to a memory buffer containing the
certificate signature hash. The client MUST free the pointer returned in pCertHash using the
appropriate memory allocator as specified by the DCOM implementation.<39>

Return Values: A signed 32-bit value that indicates return status. If the method returns a

negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value
contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method
implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x000006cf

RPC_S_STRING_TOO_LONG

The string is too long.

0x80092005

CRYPT_E_EXISTS

The object or property already exists.

The opnum field value for this method is 23.

When processing this call, the server MUST do the following:

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

116 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If InstanceName or Password are empty strings, return E_INVALIDARG.

If InstanceName or Password contains more than 260 characters, return

RPC_STRING_TOO_LONG.

Attempt to use base64 to decode the pBlobBinary blob.

Attempt to decrypt and import the decoded data with the password specified by Password. If

bAllowExport is set to 1 or VARIANT_TRUE, attempt to flag the imported certificate as
exportable.<40>

If the import fails because the password does not match the one used to export and encrypt the

certificate data, return E_INVALIDARG.<41>

If bOverWriteExisting is not set to 1 or VARIANT_TRUE and the imported certificate already exists

in the certificate store, return CRYPT_E_EXISTS; otherwise, continue processing the import.

If bInstallToMetabase is set to 1 or VARIANT_TRUE, the imported certificate is associated with

the web server instance specified by InstanceName.

If the certificate data was imported successfully, retrieve the certificate signature hash as defined

in [RFC3280] section 4.1.2.3 from the imported certificate. Allocate a buffer to contain the hash
bytes; copy the hash to the allocated buffer; return the number of bytes in the hash in
pcbCertHashSize; and set pCertHash to the address of the allocated buffer.<42>

3.10.4.7 ExportToBlob (Opnum 25)

The ExportToBlob method exports the certificate referenced at InstanceName to a memory buffer.

[id(19)] HRESULT ExportToBlob(

 [in] BSTR InstanceName,

 [in] BSTR Password,

 [in] VARIANT_BOOL bPrivateKey,

 [in] VARIANT_BOOL bCertChain,

 [in, out] DWORD* pcbSize,

 [in, out, string] CHAR** pBlobBinary

);

InstanceName: A string that specifies a web server instance.

Password: A password used to encrypt the exported certificate data.

bPrivateKey: If set to VARIANT_TRUE, indicates that the private key of the certificate should be

exported.

bCertChain: If set to VARIANT_TRUE, indicates that the certificate chain of the certificate
referenced by InstanceName should be exported.

pcbSize: If the method succeeds, returns the number of valid bytes returned in pBlobBinary.

pBlobBinary: If the method succeeds, returns a pointer to a memory buffer containing the
exported certificate data. The buffer contains a null-terminated, base64-encoded array of
bytes. The client MUST free the pointer returned in pBlobBinary using the appropriate memory

allocator as specified for the DCOM implementation.<43>

Return Values: A signed 32-bit value that indicates return status. If the method returns a
negative value, it failed. If the 12-bit facility code (bits 16–27) is set to 0x007, the value

http://go.microsoft.com/fwlink/?LinkId=90414
%5bMS-GLOS%5d.pdf

117 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

contains a Win32 error code in the lower 16 bits. Zero or positive values indicate success, with
the lower 16 bits in positive nonzero values containing warnings or flags defined in the method

implementation. For more information about Win32 error codes and HRESULT values, see
[MS-ERREF].

Return value/code Description

0x00000000

S_OK

The call was successful.

0x80070057

E_INVALIDARG

One or more arguments are invalid.

0x000006cf

RPC_S_STRING_TOO_LONG

The string is too long.

0x800CC801

MD_ERROR_DATA_NOT_FOUND

The specified metadata was not found.

0x80092004

CRYPT_E_NOT_FOUND

Cannot find object or property.

0x80090349

SEC_E_CERT_WRONG_USAGE

The certificate is not valid for the requested usage.

The opnum field value for this method is 25.

When processing this call, the server MUST do the following:

If InstanceName or Password are empty strings, return E_INVALIDARG.

If InstanceName or Password contains more than 260 characters, return

RPC_STRING_TOO_LONG.

Attempt to retrieve the certificate referenced at the specified InstanceName. If the certificate

cannot be retrieved on the target system, if no certificate is referenced at the specified
InstanceName, or if the certificate is not suitable for use by the server for SSL, return an error.

Attempt to export the certificate using the specified password, Password. If bPrivateKey is 1 or

VARIANT_TRUE, include the private key in the exported data. If bCertChain is 1 or

VARIANT_TRUE, include the certificate's associated certificate chain in the exported data.<44>

If the requested data was exported successfully, base64 encode the exported data; allocate a

buffer to return to the client in pBlobBinary; copy the data to the buffer pointed to by
pBlobBinary; and return the number of bytes in the exported and encoded blob in pcbSize;
otherwise, return an error.<45>

3.10.5 Timer Events

No protocol timer events are required on the server other than the timers that are required in the

underlying RPC protocol.

3.10.6 Other Local Events

No local events are maintained on the server other than the events that are maintained in the
underlying RPC protocol.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

118 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.11 IIISCertObj Client Details

3.11.1 Abstract Data Model

The client must use the data model defined by the server in section 3.10.1.

3.11.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages, as specified in [MS-RPCE] section 3.2.3.2.1.

3.11.3 Initialization

The client creates an RPC association (or binding) to the server RPC before an RPC method is called.
The client MAY create a separate association for each method invocation, or it MAY reuse an
association for multiple invocations.

3.11.4 Message Processing Events and Sequencing Rules

3.11.4.1 InstanceName (Set) (Opnum 10)

The client MUST call this method to set a web server instance before calling the following interface
methods: IsInstalledRemote, IsExportableRemote, and GetCertInfoRemote. For other
interface methods, the ServerInstance is specified as a parameter, and a preceding call to
InstanceName has no effect.

3.11.5 Timer Events

No protocol timer events are required on the client beyond the timers required in the underlying RPC

protocol.

3.11.6 Other Local Events

No additional local events are used on the client beyond the events maintained in the underlying
RPC protocol.

%5bMS-RPCE%5d.pdf

119 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4 Protocol Examples

4.1 General Hookup Example

The following example demonstrates how to get a handle that the DCOM Class Object can use to
make the rest of the calls.

The client initializes COM by calling the CoInitializeEx function. For more information, see [MSDN-

CoInitialize].

The client initializes COM security by calling the CoInitializeSecurity function. In this call, the

client should set the impersonation level and authentication level that will be used by COM for
subsequent calls. The IMSAdminBaseW interface does not provide any additional security by
itself; it relies on COM for this.<46>

The client creates an instance of the IMSAdminBaseW interface using a CoCreateInstance COM

call and passing the remote computer name.

The client queries the IMSAdminBaseW interface from the pointer returned by

CoCreateInstance.

From this point, the client has a valid pointer to the IMSAdminBaseW interface that can be

used to perform additional processing via the other methods defined on the interface.

After the client has finished processing, it should release the interface pointer and call the

CoUninitialize function to clear up the COM context.

4.2 BackupWithPasswd Call Example

The client initiates a connection to the server through standard DCOM calls, as specified in [MS-
DCOM].

The client calls the BackupWithPasswd method and provides the following parameters:

A Unicode string that includes the terminating null character, which indicates the backup name.

For example, an empty string signifies that the default backup name should be used.

An integer that indicates the backup version. For example, a parameter value equal to the

MD_BACKUP_HIGHEST_VERSION flag signifies that the backup version should be a replacement
to the highest existing backup version.

An integer for backup flags. For example, combining the MD_BACKUP_SAVE_FIRST |

MD_BACKUP_OVERWRITE | MD_BACKUP_FORCE_BACKUP flag bits signifies to the server to save

nonpersisted data before the backup is performed, to continue with the backup even if the
attempt to save the nonpersisted data fails, and to overwrite existing backups using the same
version and name.

A Unicode string that includes the terminating null character, which is used as a password by the

server for encrypting any protected data in the backup.

The client then checks the return code from the function to determine whether the backup

succeeded.

http://go.microsoft.com/fwlink/?LinkId=93395
http://go.microsoft.com/fwlink/?LinkId=93395
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf

120 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4.3 EnumHistory Call Example

The client initiates a connection to the server through standard DCOM calls, as specified in [MS-
DCOM].

The client sets an index value to zero, which will be used to move through the history entries
starting at the first one.

The client calls the EnumHistory method and provides the following parameters:

An empty buffer with room for 100 WCHARs.

A pointer to a DWORD, which the server can fill in with the Major Version Number of the history

file being enumerated.

A pointer to a DWORD, which the server can fill in with the Minor Version Number of the history

file being enumerated.

A pointer to a FILETIME structure that the server can fill in with the file time of the current

history file being enumerated.

An index value that represents which history file should be enumerated.

If the call is successful, the client reads the default location of the history files from the buffer
passed in and processes the rest of the information returned in the two DWORDs and the
FILETIME parameters.

If the call was successful, the client then increments the Index value and makes another call to the
EnumHistory function to get the next entry.

If the call returned the ERROR_NO_MORE_ITEMS error code, then the client concludes that it has
processed all the history entries and has successfully finished.

4.4 Export Call Example

The client initiates a connection to the server through standard DCOM calls, as specified in [MS-
DCOM].

The client calls the Export method and provides the following parameters:

A Unicode string that includes the terminating null character, which is used as a password by the

server to encrypt any protected data.

A Unicode string that includes the terminating null character and is used by the server as the file

into which the data will be exported. The string should represent an existing path on the server.

A Unicode string that includes the terminating null character, which is used by the server as the

configuration store path of the data that the client wants to export from within the store.

Zero, which is used to inform the server that it can export all child nodes and that it does not

have to include inherited properties because those flags are not passed.

The client then checks the return code from the function to determine whether the export
succeeded.

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf

121 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4.5 Import Call Example

The client initiates a connection to the server through standard DCOM calls, as specified in [MS-
DCOM].

The client calls the Import method and provides the following parameters:

A Unicode string that includes the terminating null character, which is used by the server as a

password to decrypt any protected data (for example, "MyPassword").

A Unicode string that includes the terminating null character, which is used by the server as a

path to an existing file containing the data to be imported (for example,
"d:\\export\\exportedfile.xml").

A Unicode string that includes the terminating null character, which is used by the server as a

configuration path within the file specified in the previous parameter (for example,
"/LM/W3SVC/1/"). The server uses this configuration path to select the subtree from the
configuration data stored in the file.

A Unicode string that includes the terminating null character, which is used by the server as a

configuration path within the configuration store specified in the file (for example,
"/LM/W3SVC/901/"). The server uses this path to locate the point to where the data should be
imported.

A flag parameter used by the server to determine how the data should be imported (for example,

MD_IMPORT_MERGE).

The client then checks the return code from the function to determine whether the import
succeeded.

4.6 RestoreHistory Call Example

The client initiates a connection to the server through standard DCOM calls, as specified in [MS-
DCOM].

The client calls the RestoreHistory method and provides the following parameters:

A Unicode string that includes the terminating null character, which is used by the server to

locate history data (for example, an empty string that will signal to the server to restore from the
default history location).

An integer indicating the predecimal part of the history version. For example, if the history

version is "1234.5678", this parameter should be 1245. It MUST be zero if the flags parameter is
set to MD_HISTORY_LATEST.

An integer indicating the postdecimal part of the history version. For example, if the history

version is "1234.5678", this parameter should be 5678. It MUST be zero if the flags parameter is
set to MD_HISTORY_LATEST.

An integer indicating to the server how the restore operation should be performed. If this

parameter is MD_HISTORY_LATEST, the server should restore the latest available version of
history and ignore data passed as version parameters.

4.7 RestoreWithPasswd Call Example

The client initiates a connection to the server through standard DCOM calls, as specified in [MS-
DCOM].

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf

122 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The client calls the RestoreWithPasswd method and provides the following parameters:

A Unicode string that includes the terminating null character, which contains the backup name.

For example, an empty string signifies that the default backup name should be used.

An integer with the backup version. For example, MD_BACKUP_HIGHEST_VERSION signifies that

the highest version of backup should be restored.

A reserved parameter that must be zero.

A Unicode string that includes the terminating null character, which is used by the server as a

password for decrypting any protected data in the backup (for example, "MyPassword").

The client then checks the return code from the function to determine whether the restore

succeeded.

4.8 GetChildPaths Call Example

The client initiates a connection to the server through standard DCOM calls, as specified in [MS-
DCOM].

The client uses the OpenKey method and provides the following parameters to get a handle to the

metabase data:

METADATA_MASTER_ROOT_HANDLE, which causes the server to open a key relative to the root.

"/LM/W3SVC", which tells the server to open the lm/w3svc key under the root.

METADATA_PERMISSION_READ, which asks the server to open the key with read privileges.

10, which tells the server to time out after 10 milliseconds if it cannot open the key.

A pointer to a handle that the server will fill in with the handle to the node that has been opened.

If the OpenKey call is successful, the client calls the GetChildPaths method, providing the

following parameters to determine from the server how much space is required for a successful call
to the GetChildPaths method:

The handle to the key opened by the OpenKey method.

An empty string, which is used by the server to locate the child paths relative to the handle

passed in the first parameter.

Zero, which indicates the size of the buffer passed in the next parameter. In this first call to the

GetChildPaths method, the buffer size is set to zero, because the client is attempting to
determine the correct size for the buffer.

NULL. While this parameter is normally used as the buffer to hold the child paths, on this first call

to the GetChildPaths method, the client is only attempting to determine how large the buffer
should be, and therefore this parameter is set to NULL.

A pointer to a DWORD. The server will fill in the DWORD with the correct number of bytes to be

used as the buffer size in the subsequent call to the GetChildPaths method.

The call to the GetChildPaths method is expected to return an ERROR_INSUFFICIENT_BUFFER
error code and, in the last parameter, the number of bytes needed by the buffer in order to hold all

of the child paths. If the call to the GetChildPaths method fails for any other reason, the client will
exit.

%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DTYP%5d.pdf

123 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Once the client has been informed of the number of bytes needed to hold all of the child paths, it
will allocate a buffer of that size.

The client then calls the GetChildPaths method again to provide the following parameters:

The handle to the key opened by the OpenKey method.

An empty string, which is used by the server to locate the child paths relative to the handle

passed in the first parameter.

The number of bytes to allocate for the buffer that will hold the child paths. The number of bytes

to allocate was returned by the first call to the GetChildPaths method.

The allocated buffer that will hold the child paths. The size of the buffer is specified in the

previous parameter.

A pointer to a DWORD. If the server determines that the number of bytes specified in the third

parameter is not sufficient to allocate a buffer large enough to hold all the child paths, the server

will fill in the DWORD with the correct number of bytes to allocate for the buffer.

If the child paths were successfully retrieved, the client parses the buffer to locate each child path
string. The client searches for an occurrence of double terminating null characters and, when found,

processes the child path. The client continues parsing the buffer until the end of the data is reached.

4.9 Reading Sensitive Data from the Server

124 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 1: Message sequence for reading sensitive data from the server

The sequence of messages for reading sensitive data from the server is as follows:

1. The client requests that the server open a node. The path location is "/mydata" and
METADATA_PERMISSION_READ read access is requested.

2. The server checks whether the "/mydata" node exists and whether the connecting user is granted
read access, and then returns the handle to the client.

Before the client sends a request to retrieve specific data from the "/mydata" location, the client
will have to negotiate a secure session (that is, one that was not yet negotiated).

3. The client performs phase 1 of the handshake. The client's key exchange key and signature key
are generated, and public keys for both are sent to the server. private keys for both are stored
by the client.

4. The server receives the public keys from the client and retrieves, or generates or locates, its own

server's key exchange key and signature key.

The server also generates the server's session key. It encrypts the session key with the client's
key exchange public key. The server's key exchange public key, the server's signature public key,
and the encrypted server's session key are sent back to the client.

5. The client receives the server's key exchange public key, the server's signature public key, and

the encrypted server's session key. It decrypts the server's session key using the client's key
exchange private key.

The client's session key gets generated and is encrypted with the server's key exchange public
key. In addition, the server's session key hash is generated based on the client's session key, the
server's session key, and the HASH_TEXT_STRING_1 (see section 2.2.3) string constant. The
encrypted client's session key and the server's session key hash are sent to the server.

6. The server receives the encrypted client's session key as well as the server's session key hash

from the client. It verifies the hash generated by the client to ensure that the client was able to
decrypt the server's session key. The server generates the client's session key hash using the
client's session key and the HASH_TEXT_STRING_2 (see section 2.2.3) string constant. The
server then sends the client's session key hash to the client.

7. The client receives the client's session key hash from the server. It verifies that the server owns
the private key for the key exchange key pair and that it was able to decrypt the client's
session keys.

By this point in the sequence, the server and the client have exchanged the session keys that will
be used to encrypt the sensitive data. Also, the signature keys have been exchanged that will be
used for message integrity checks.

The client calls the R_GetData method to retrieve the sensitive data.

8. The server retrieves the requested data and determines whether the METADATA_SECURE secure

flag is set. The server encrypts the data value requested, builds the IIS_CRYPTO_BLOB

message, and sends the data to the client.

9. The client checks the received data and determines whether the METADATA_SECURE secure flag
is set. The client decrypts the data and verifies the signature.

The client calls the CloseKey method to close the handle that was opened in step 2.

125 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

10.The server closes the handle and responds with a success code to the client.

126 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

5 Security

5.1 Security Considerations for Implementers

Authenticated RPC should be used by this protocol, as specified in [C706] section 13.

The IIS IMSAdminBaseW Remote Protocol uses weak keys and cryptographic algorithms. The 512-
bit RSA keys, 40-bit RC4, and MD5 hash are used to protect sensitive data. For more information,
see section 3.1.4.1.1.

The IIS IMSAdminBaseW Remote Protocol includes secure session negotiation but does not provide

support for server side authentication or for handling man in the middle (MITM) attacks. For
more information, see section 3.1.4.1.1.

The RPC/DCOM packet privacy feature should be used for more robust protection of the data
transferred over the IIS IMSAdminBaseW Remote Protocol.<47>

5.2 Index of Security Parameters

Security parameter Section

Secure session settings (512-bit RSA keys, 40-bit RC4 keys, MD5 hash) 3.1.4.1.1

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89826
%5bMS-GLOS%5d.pdf

127 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

6 Appendix A: Full IDL

For ease of implementation the full IDL is provided below, where "ms-dtyp.idl" refers to the IDL
found in [MS-DTYP] 5 and where "ms-dcom.idl" refers to the IDL found in [MS-DCOM] 6.

The syntax uses the IDL syntax extensions defined in [MS-RPCE] sections 2.2.4 and 3.1.1.5.1. For
example, as noted in [MS-RPCE] section 2.2.4.9, a pointer_default declaration is not required and
pointer_default(unique) is assumed.

import "ms-dtyp.idl";

import "ms-dcom.idl";

import "ms-oaut.idl";

typedef unsigned long METADATA_HANDLE, *PMETADATA_HANDLE;

typedef struct _IIS_CRYPTO_BLOB{

 DWORD BlobSignature;

 DWORD BlobDataLength;

 [size_is(BlobDataLength)] unsigned char BlobData[*];

} IIS_CRYPTO_BLOB;

typedef struct {

 DWORD dwMDIdentifier;

 DWORD dwMDAttributes;

 DWORD dwMDUserType;

 DWORD dwMDDataType;

 DWORD dwMDDataLen;

 [unique, size_is(dwMDDataLen)] unsigned char * pbMDData;

 DWORD dwMDDataTag;

} METADATA_RECORD;

typedef struct {

 DWORD dwMDIdentifier;

 DWORD dwMDAttributes;

 DWORD dwMDUserType;

 DWORD dwMDDataType;

 DWORD dwMDDataLen;

 DWORD dwMDDataOffset;

 DWORD dwMDDataTag;

} METADATA_GETALL_RECORD, *PMETADATA_GETALL_RECORD;

typedef struct {

 DWORD dwMDPermissions;

 DWORD dwMDSystemChangeNumber;

} METADATA_HANDLE_INFO;

#define METADATA_MASTER_ROOT_HANDLE 0

#define ADMINDATA_MAX_NAME_LEN 256

#define MD_BACKUP_MAX_LEN 100

[

 object,

 uuid(70B51430-B6CA-11d0-B9B9-00A0C922E750),

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

128 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 pointer_default(unique)

]

interface IMSAdminBaseW : IUnknown

{

 HRESULT AddKey(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath);

 HRESULT DeleteKey(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath);

 HRESULT DeleteChildKeys(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath);

 HRESULT EnumKeys(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [out, size_is(256)] LPWSTR pszMDName,

 [in] DWORD dwMDEnumObjectIndex);

 HRESULT CopyKey(

 [in] METADATA_HANDLE hMDSourceHandle,

 [unique, in, string] LPCWSTR pszMDSourcePath,

 [in] METADATA_HANDLE hMDDestHandle,

 [unique, in, string] LPCWSTR pszMDDestPath,

 [in] BOOL bMDOverwriteFlag,

 [in] BOOL bMDCopyFlag);

 HRESULT RenameKey(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [unique, in, string] LPCWSTR pszMDNewName);

 HRESULT R_SetData(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in] METADATA_RECORD * pmdrMDData);

 HRESULT R_GetData(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in, out] METADATA_RECORD * pmdrMDData,

 [out] DWORD *pdwMDRequiredDataLen,

 [out] IIS_CRYPTO_BLOB **ppDataBlob);

 HRESULT DeleteData(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in] DWORD dwMDIdentifier,

 [in] DWORD dwMDDataType);

 HRESULT R_EnumData(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in, out] METADATA_RECORD * pmdrMDData,

 [in] DWORD dwMDEnumDataIndex,

 [out] DWORD *pdwMDRequiredDataLen,

129 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 [out] IIS_CRYPTO_BLOB **ppDataBlob);

 HRESULT R_GetAllData(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in] DWORD dwMDAttributes,

 [in] DWORD dwMDUserType,

 [in] DWORD dwMDDataType,

 [out] DWORD *pdwMDNumDataEntries,

 [out] DWORD *pdwMDDataSetNumber,

 [in] DWORD dwMDBufferSize,

 [out] DWORD *pdwMDRequiredBufferSize,

 [out] IIS_CRYPTO_BLOB **ppDataBlob);

 HRESULT DeleteAllData(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in] DWORD dwMDUserType,

 [in] DWORD dwMDDataType);

 HRESULT CopyData(

 [in] METADATA_HANDLE hMDSourceHandle,

 [unique, in, string] LPCWSTR pszMDSourcePath,

 [in] METADATA_HANDLE hMDDestHandle,

 [unique, in, string] LPCWSTR pszMDDestPath,

 [in] DWORD dwMDAttributes,

 [in] DWORD dwMDUserType,

 [in] DWORD dwMDDataType,

 [in] BOOL bMDCopyFlag);

 HRESULT GetDataPaths(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in] DWORD dwMDIdentifier,

 [in] DWORD dwMDDataType,

 [in] DWORD dwMDBufferSize,

 [out, size_is(dwMDBufferSize)] WCHAR *pszBuffer,

 [out] DWORD *pdwMDRequiredBufferSize);

 HRESULT OpenKey([in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in] DWORD dwMDAccessRequested,

 [in] DWORD dwMDTimeOut,

 [out] METADATA_HANDLE * phMDNewHandle);

 HRESULT CloseKey(

 [in] METADATA_HANDLE hMDHandle);

 HRESULT ChangePermissions([in] METADATA_HANDLE hMDHandle,

 [in] DWORD dwMDTimeOut,

 [in] DWORD dwMDAccessRequested);

 HRESULT SaveData();

 HRESULT GetHandleInfo([in] METADATA_HANDLE hMDHandle,

 [out] METADATA_HANDLE_INFO * pmdhiInfo);

 HRESULT GetSystemChangeNumber(

 [out] DWORD *pdwSystemChangeNumber);

130 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 HRESULT GetDataSetNumber([in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [out] DWORD *pdwMDDataSetNumber);

 HRESULT SetLastChangeTime([in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in] PFILETIME pftMDLastChangeTime,

 [in] BOOL bLocalTime);

 HRESULT GetLastChangeTime([in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [out] PFILETIME pftMDLastChangeTime,

 [in] BOOL bLocalTime);

 HRESULT R_KeyExchangePhase1(

 [unique, in] IIS_CRYPTO_BLOB *pClientKeyExchangeKeyBlob,

 [unique, in] IIS_CRYPTO_BLOB *pClientSignatureKeyBlob,

 [out] IIS_CRYPTO_BLOB **ppServerKeyExchangeKeyBlob,

 [out] IIS_CRYPTO_BLOB **ppServerSignatureKeyBlob,

 [out] IIS_CRYPTO_BLOB **ppServerSessionKeyBlob);

 HRESULT R_KeyExchangePhase2(

 [unique, in] IIS_CRYPTO_BLOB *pClientSessionKeyBlob,

 [unique, in] IIS_CRYPTO_BLOB *pClientHashBlob,

 [out] IIS_CRYPTO_BLOB **ppServerHashBlob);

 HRESULT Backup(

 [unique, in, string] LPCWSTR pszMDBackupName,

 [in] DWORD dwMDVersion,

 [in] DWORD dwMDFlags);

 HRESULT Restore(

 [unique, in, string] LPCWSTR pszMDBackupName,

 [in] DWORD dwMDVersion,

 [in] DWORD dwMDFlags);

 HRESULT EnumBackups(

 [in, out, size_is(100)] LPWSTR pszMDBackupName,

 [out] DWORD *pdwMDVersion,

 [out] PFILETIME pftMDBackupTime,

 [in] DWORD dwMDEnumIndex);

 HRESULT DeleteBackup(

 [unique, in, string] LPCWSTR pszMDBackupName,

 [in] DWORD dwMDVersion);

 HRESULT UnmarshalInterface(

 [out] IMSAdminBaseW **piadmbwInterface);

 HRESULT R_GetServerGuid(

 [out] GUID *pServerGuid);

};

[

 object,

 uuid(8298d101-f992-43b7-8eca-5052d885b995),

 pointer_default(unique)

]

131 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

interface IMSAdminBase2W : IMSAdminBaseW

{

 HRESULT BackupWithPasswd(

 [unique, in, string] LPCWSTR pszMDBackupName,

 [in] DWORD dwMDVersion,

 [in] DWORD dwMDFlags,

 [unique, in, string] LPCWSTR pszPasswd);

 HRESULT RestoreWithPasswd(

 [unique, in, string] LPCWSTR pszMDBackupName,

 [in] DWORD dwMDVersion,

 [in] DWORD dwMDFlags,

 [unique, in, string] LPCWSTR pszPasswd);

 HRESULT Export(

 [unique, in, string] LPCWSTR pszPasswd,

 [unique, in, string] LPCWSTR pszFileName,

 [unique, in, string] LPCWSTR pszSourcePath,

 [in] DWORD dwMDFlags);

 HRESULT Import(

 [unique, in, string] LPCWSTR pszPasswd,

 [unique, in, string] LPCWSTR pszFileName,

 [unique, in, string] LPCWSTR pszSourcePath,

 [unique, in, string] LPCWSTR pszDestPath,

 [in] DWORD dwMDFlags);

 HRESULT RestoreHistory(

 [unique, in, string] LPCWSTR pszMDHistoryLocation,

 [in] DWORD dwMDMajorVersion,

 [in] DWORD dwMDMinorVersion,

 [in] DWORD dwMDFlags);

 HRESULT EnumHistory(

 [in, out, size_is(MD_BACKUP_MAX_LEN)]

 LPWSTR pszMDHistoryLocation,

 [out] DWORD *pdwMDMajorVersion,

 [out] DWORD *pdwMDMinorVersion,

 [out] PFILETIME pftMDHistoryTime,

 [in] DWORD dwMDEnumIndex);

};

[

 object,

 uuid(f612954d-3b0b-4c56-9563-227b7be624b4),

 pointer_default(unique)

]

interface IMSAdminBase3W : IMSAdminBase2W

{

 HRESULT GetChildPaths(

 [in] METADATA_HANDLE hMDHandle,

 [unique, in, string] LPCWSTR pszMDPath,

 [in] DWORD cchMDBufferSize,

 [in, out, unique, size_is(cchMDBufferSize)]

 WCHAR * pszBuffer,

 [in, out, unique]

 DWORD * pcchMDRequiredBufferSize);

};

132 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[

 uuid(29822AB7-F302-11D0-9953-00C04FD919C1),

 pointer_default(unique)

]

interface IWamAdmin : IUnknown

{

 HRESULT AppCreate(

 [in, unique, string] LPCWSTR szMDPath,

 [in] BOOL fInProc

);

 HRESULT AppDelete(

 [in, unique, string] LPCWSTR szMDPath,

 [in] BOOL fRecursive

);

 HRESULT AppUnLoad(

 [in, unique, string] LPCWSTR szMDPath,

 [in] BOOL fRecursive

);

 HRESULT AppGetStatus(

 [in, unique, string] LPCWSTR szMDPath,

 [out] DWORD *pdwAppStatus

);

 HRESULT AppDeleteRecoverable(

 [in, unique, string] LPCWSTR szMDPath,

 [in] BOOL fRecursive

);

 HRESULT AppRecover(

 [in, unique, string] LPCWSTR szMDPath,

 [in] BOOL fRecursive

);

};

[

 uuid(29822AB8-F302-11D0-9953-00C04FD919C1),

 pointer_default(unique)

]

interface IWamAdmin2 : IWamAdmin

{

 HRESULT AppCreate2(

 [in, unique, string] LPCWSTR szMDPath,

 [in] DWORD dwAppMode

);

};

[

 uuid(7C4E1804-E342-483D-A43E-A850CFCC8D18),

 pointer_default(unique)

]

interface IIISApplicationAdmin : IUnknown

{

 HRESULT CreateApplication(

 [in, unique, string] LPCWSTR szMDPath,

133 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 [in] DWORD dwAppMode,

 [in, unique, string] LPCWSTR szAppPoolId,

 [in] BOOL fCreatePool

);

 HRESULT DeleteApplication(

 [in, unique, string] LPCWSTR szMDPath,

 [in] BOOL fRecursive

);

 HRESULT CreateApplicationPool(

 [in, unique, string] LPCWSTR szPool

);

 HRESULT DeleteApplicationPool(

 [in, unique, string] LPCWSTR szPool

);

 HRESULT EnumerateApplicationsInPool(

 [in, unique, string] LPCWSTR szPool,

 [out] BSTR* bstrBuffer

);

 HRESULT RecycleApplicationPool(

 [in, unique, string] LPCWSTR szPool

);

 HRESULT GetProcessMode(

 [out] DWORD * pdwMode

);

};

[

 object,

 uuid(BD0C73BC-805B-4043-9C30-9A28D64DD7D2),

 dual,

 pointer_default(unique)

]

interface IIISCertObj : IDispatch

{

 [propput, id(1)]

 HRESULT Opnum7NotUsedOnWire(BSTR newVal);

 [propput, id(2)]

 HRESULT Opnum8NotUsedOnWire(BSTR newVal);

 [propput, id(3)]

 HRESULT Opnum9NotUsedOnWire(BSTR newVal);

 [propput, id(4)]

 HRESULT InstanceName(

 [in] BSTR newVal

);

 [id(5), local]

 void Opnum11NotUsedOnWire(void);

 [id(6)]

 HRESULT IsInstalledRemote(

134 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 [out, retval] VARIANT_BOOL * retval

);

 [id(7), local]

 void Opnum13NotUsedOnWire(void);

 [id(8)]

 HRESULT IsExportableRemote(

 [out, retval] VARIANT_BOOL * retval

);

 [id(9), local]

 void Opnum15NotUsedOnWire(void);

 [id(10)]

 HRESULT GetCertInfoRemote(

 [out,retval] VARIANT * BinaryVariant

);

 [id(11), local]

 void Opnum17NotUsedOnWire(void);

 [id(12), local]

 void Opnum18NotUsedOnWire(void);

 [id(13), local]

 void Opnum19NotUsedOnWire(void);

 [id(14), local]

 void Opnum20NotUsedOnWire(void);

 [id(15), local]

 void Opnum21NotUsedOnWire(void);

 [id(16)]

 HRESULT ImportFromBlob(

 [in] BSTR InstanceName,

 [in] BSTR Password,

 [in] VARIANT_BOOL bInstallToMetabase,

 [in] VARIANT_BOOL bAllowExport,

 [in] VARIANT_BOOL bOverWriteExisting,

 [in] DWORD cbSize,

 [in,string,size_is(cbSize)] char * pBlobBinary

);

 [id(17)]

 HRESULT ImportFromBlobGetHash(

 [in] BSTR InstanceName,

 [in] BSTR Password,

 [in] VARIANT_BOOL bInstallToMetabase,

 [in] VARIANT_BOOL bAllowExport,

 [in] VARIANT_BOOL bOverWriteExisting,

 [in] DWORD cbSize,

 [in,string,size_is(cbSize)] char * pBlobBinary,

 [out] DWORD *pcbCertHashSize,

 [out] char ** pCertHash

);

 [id(18), local]

135 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 void Opnum24NotUsedOnWire(void);

 [id(19)]

 HRESULT ExportToBlob(

 [in] BSTR InstanceName,

 [in] BSTR Password,

 [in] VARIANT_BOOL bPrivateKey,

 [in] VARIANT_BOOL bCertChain,

 [in,out] DWORD *pcbSize,

 [in,out,string] char ** pBlobBinary

);

};

136 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows NT 4.0 operating system

Windows 2000 operating system

Windows XP operating system

Windows Server 2003 operating system

Windows Vista operating system

Windows Server 2008 operating system

Windows 7 operating system

Windows Server 2008 R2 operating system

Windows 8 operating system

Windows Server 2012 operating system

Windows 8.1 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 3.1.4.1: Transferring sensitive data without IIS IMSAdminBaseW Remote Protocol-level

encryption.

Windows NT supports a mode where client and server may exchange sensitive data (see section
3.1.4.1) over the IIS IMSAdminBaseW Remote Protocol without having a valid secure session
negotiated. That mode applies to only machines with the French locale.

To negotiate cleartext mode of operation, client and server still MUST go through the secure session
negotiation. They have to handle R_KeyExchangePhase1 and R_KeyExchangePhase2 but with
the following changes:

Any key exchange public key BLOB is replaced with a IIS_CRYPTO_BLOB structure with the

BlobSignature field set to the CLEARTEXT_BLOB_SIGNATURE signature, and where the
BlobData field contains the "KeYk" string without the terminating null character.

Any signature public key BLOB is replaced with a IIS_CRYPTO_BLOB structure with the

BlobSignature field set to the CLEARTEXT_BLOB_SIGNATURE signature, and where the
BlobData field contains the "SiGk" string without the terminating null character.

137 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Any session key BLOB is replaced with a IIS_CRYPTO_BLOB structure with the BlobSignature

field set to the CLEARTEXT_BLOB_SIGNATURE signature, and where the BlobData field contains

the "SeSk" string without the terminating null character.

Any hash exchanged is replaced with a IIS_CRYPTO_BLOB structure with the BlobSignature

field set to the CLEARTEXT_BLOB_SIGNATURE signature, and where the BlobData field contains
one byte set to 0x00.

Sensitive data will not be encrypted in this mode of operation. Instead of using a
IIS_CRYPTO_BLOB structure with the BlobSignature field set to ENCRYPTED_DATA_SIGNATURE,
the sensitive data will be placed into a IIS_CRYPTO_BLOB structure with the BlobSignature field
set to CLEARTEXT_DATA_SIGNATURE in a call to R_SetData, R_GetData, R_EnumData, and

R_GetAllData.

Decryption does not apply in this mode of operation. Instead of decrypting data store in a
IIS_CRYPTO_BLOB structure, the data is simply retrieved from the IIS_CRYPTO_BLOB instance
with a CLEARTEXT_DATA_SIGNATURE signature.

<2> Section 3.1.4.1: Windows Server 2003, Windows Vista, and Windows Server 2008 take
advantage of the RPC/COM packet privacy feature. It provides a protective layer over the weak

encryption used to protect data that is part of the IMSAdminBaseW Remote Protocol. Note that
RPC/COM packet privacy is not a replacement of the IIS IMSAdminBaseW Remote Protocol security
features.

<3> Section 3.1.4.2: On Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2, the
/LM/W3SVC path and all its child paths do not implement the locking behavior described in 3.1.1.
OpenKey calls on these paths will succeed and will not return ERROR_PATH_BUSY even if other

keys are open to parent or child paths.

<4> Section 3.1.4.4: On Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2,
there is no check of the permission level of the metabase handle used in the AddKey method for
metabase paths under and including /LM/W3SVC.

<5> Section 3.1.4.5: On Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2, the

implementation of CopyKey does not check that the destination handle is opened with write
permissions for metabase paths under and including /LM/W3SVC. Instead, the implementation
checks the source handle for write access. This will cause valid calls to CopyKey to fail with
E_ACCESSDENIED.

<6> Section 3.1.4.6: On Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2,

there is no check of the permission level of the metabase handle used in the DeleteKey method for
metabase paths under and including /LM/W3SVC.

<7> Section 3.1.4.7: On Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2, all

calls to the DeleteChildKeys method return ERROR_INVALID_HANDLE for the "/LM/W3SVC" path
and all its child paths.

<8> Section 3.1.4.8: On Windows Vista, Windows Server 2008, Windows 7, Windows

Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2,
there is no check of the permission level of the metabase handle used in the DeleteData method
for metabase paths under and including /LM/W3SVC.

138 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

<9> Section 3.1.4.9: On Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2,

there is no check of the permission level of the metabase handle used in the DeleteAllData method
for metabase paths under and including /LM/W3SVC.

<10> Section 3.1.4.9: On Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2, the
server does not treat ALL_METADATA as matching the user type of data in the DeleteAllData
method for metabase paths under and including /LM/W3SVC. The dwMDUserType parameter must
exactly match the data to be deleted.

<11> Section 3.1.4.10: The CopyData method will return ERROR_PATH_NOT_FOUND on
Windows NT 4.0 SP2, Windows 2000, Windows XP, and Windows Server 2003 when the destination

path specified by pszMDDestPath does not exist.

For destination paths under and including /LM/W3SVC, the CopyData method will not return an
error on Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8,
Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 when the destination path

specified by pszMDDestPath path does not exist.

<12> Section 3.1.4.11: On Windows Vista, Windows Server 2008, Windows 7, Windows

Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2,
there is no check of the permission level of metabase handle used in the EnumKeys method for
paths under and including /LM/W3SVC. There is also no permission check performed for EnumKeys
when enumerating the path /LM if dwMDEnumObjectIndex is 0 or 1.

<13> Section 3.1.4.12: On Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2,
there is no check of the permission level of the metabase handle used in the R_EnumData method

for paths under and including /LM/W3SVC.

<14> Section 3.1.4.16: On Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2, the
ChangePermissions method returns E_INVALIDARG for the "/LM/W3SVC" path and all its child

paths.

<15> Section 3.1.4.20: Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 do

not store a separate change time for the metabase path /LM/W3SVC or any child paths.
GetLastChangeTime returns the same modification time for all paths at or below /LM/W3SVC.

<16> Section 3.1.4.21: On Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2,
two separate system change numbers are kept, one for paths under and including /LM/W3SVC and
another for all other paths. The system change number for /LM/W3SVC and child paths is not

persisted. Changes made to these paths will increment the system change number as long as the
metabase service process, iisadmin, is running. When the service is restarted this record of changes
is lost.

When the GetSystemChangeNumber method is called, the sum of these two numbers is returned.
When the system change number is returned from a GetHandleInfo call, only the change number
corresponding to the path of the open handle is returned.

<17> Section 3.1.4.27: Windows Vista, Windows Server 2008, Windows 7, Windows

Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 do

139 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

not check the state of the METADATA_SECURE flag on existing data items in the R_SetData
method for paths under and including /LM/W3SVC.

<18> Section 3.1.4.28: On Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2,

there is no check of the permission level of the metabase handle used in the RenameKey method
for paths under and including /LM/W3SVC.

<19> Section 3.1.4.30: On Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2,
open write handles to paths under and including /LM/W3SVC do not interfere with the SaveData
operation.

<20> Section 3.1.4.31: On Windows Vista, Windows Server 2008, Windows 7, Windows

Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2,
there is no check of the permission level of the metabase handle used in the SetLastChangeTime
method for paths under and including /LM/W3SVC.

<21> Section 3.1.4.31: Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 do
not update the change time on demand for the metabase path /LM/W3SVC or any child paths.

SetLastChangeTime succeeds but has no effect for all paths at or below /LM/W3SVC.

<22> Section 3.3.4.2: Default path is %windir%\system32\inetsrv\history.

<23> Section 3.3.4.3: On Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2, the
server returns ERROR_NOT_SUPPORTED for the metabase path /LM/W3SVC or any child paths
which map to nodes in the data hierarchy.

<24> Section 3.3.4.4: On Windows Vista, Windows Server 2008, Windows 7, Windows

Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2, the
IMSAdminBase2::Import method is not supported for the destination metabase path /LM/W3SVC
or any child paths. The server will return an error when an Import is attempted with one of these

paths.

<25> Section 3.3.4.5: The default history path on Windows Server 2003 is
"%windir%\system32\inetsrv\history".

<26> Section 3.7.4.1: The metabase path for a web application is valid if it is below the root node

of a website. A website metabase path is a numeric key underneath the Web service key,
"/LM/W3SVC". For example, "/LM/W3SVC/1" defines a website with site id 1. The root of the website
is a key with the name "ROOT". For example, "/LM/W3SVC/2/ROOT" is the root node of the website
with site id 2. The <AppCreate> method will allow applications to be created on valid web
application paths as well as on paths underneath the Web service key that are not under a website.
On Windows NT 4.0 SP2, Windows 2000, Windows XP, and Windows Server 2003 the

<AppCreate> method will allow applications to be created on any child path of the Web service
key, "/LM/W3SVC". Attempts to create an application on an invalid path will return an error.

<27> Section 3.7.4.4: For Windows Vista, Windows Server 2008, Windows 7, Windows

Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2,
IWamAdmin methods are not able to query or modify the running state of an application.

<28> Section 3.8.4.1: The metabase path for a website application is valid if it is below the root
node of a website. A website metabase path is a numeric key underneath the Web service key,

"/LM/W3SVC". For example, "/LM/W3SVC/1" defines a website with site id 1. The root of the website
is a key with the name "ROOT". For example, "/LM/W3SVC/2/ROOT" is the root node of the website

140 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

with site id 2. The <AppCreate> method will allow applications to be created on valid website
application paths as well as on paths underneath the Web service key that are not under a website.

On Windows NT 4.0 SP2, Windows 2000, Windows XP, and Windows Server 2003, the
<AppCreate> method will allow applications to be created on any child path of the Web service

key, "/LM/W3SVC". Attempts to create an application on an invalid path will return an error.

<29> Section 3.9.4.1: The metabase path for a web application is valid if it is below the root node
of a website. A website metabase path is a numeric key underneath the Web service key,
"/LM/W3SVC". For example, "/LM/W3SVC/1" defines a website with site id 1. The root of the website
is a key with the name "ROOT". For example, "/LM/W3SVC/2/ROOT" is the root node of the website
with site id 2. The <AppCreate> method will allow applications to be created on valid web
application paths as well as on paths underneath the Web service key that are not under a website.

On Windows NT 4.0 SP2, Windows 2000, Windows XP, and Windows Server 2003, the
<AppCreate> method will allow applications to be created on any child path of the Web service
key, "/LM/W3SVC". Attempts to create an application on an invalid path will return an error.

<30> Section 3.10.4: Returns ERROR_NOT_IMPLEMENTED. Opnum 7 is never used.

<31> Section 3.10.4: Returns ERROR_NOT_IMPLEMENTED. Opnum 8 is never used.

<32> Section 3.10.4: Returns ERROR_NOT_IMPLEMENTED. Opnum 9 is never used.

<33> Section 3.10.4.1: The format of the InstanceName string in the Windows implementation is
"/LM/W3SVC/N" where N is a number which identifies the particular web server instance and W3SVC
represents the web server. For example, "/LM/W3SVC/1" indicates the default web server instance.

<34> Section 3.10.4.4: The Issuer field is searched using the Windows API function
CertGetNameString using CERT_NAME_SIMPLE_DISPLAY_TYPE and CERT_NAME_ISSUER_FLAG to
specify the Issuer field. This API will return an attribute value from the Issuer field by looking for
the first occurrence of the Common Name, Organizational Unit Name, Organization Name, or

RSA Email Address. If one of these attributes is not found, it uses the Issuer Alternative Name
extension. If there is still no match, it uses the first attribute.

<35> Section 3.10.4.4: The Windows implementation performs the date to string conversion using

the Windows API function GetDateFormat and passing the flag DATE_AUTOLAYOUT. On Windows 7,
Windows Server 2008 R2, Windows 8.1, and Windows Server 2012 R2, Unicode bidirectional
ordering control characters are inserted into the resulting date string. One of the Unicode characters
0x200E (left-to-right mark) or 0x200F (right-to-left mark), depending on the server’s system locale

setting, will appear in the date string immediately before each numeric component of the date.

<36> Section 3.10.4.4: The Windows implementation retrieves a descriptive name for the extended
key usage OID using the CryptFindOIDInfo Windows API function. A complete example of the string
built by the GetCertInfoRemote method might be the following:

1.2.840.113549.1.9.1=somebody@microsoft.com

2.5.4.3=testcert

2.5.4.11=IIS

2.5.4.10=Microsoft

2.5.4.7=Redmond

2.5.4.8=WA

2.5.4.6=US

4=RSACERTSRV

6=7/7/2009

2.5.29.37=Server Authentication

141 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

<37> Section 3.10.4.5: The Windows implementation uses the PFXImportCertStore API when

importing a certificate via ImportFromBlob or ImportFromBlobGetHash. If the bAllowExport

parameter is set to 1 or VARIANT_TRUE, the CRYPT_EXPORTABLE flag is set in dwFlags parameter
in the call to PFXImportCertStore.

<38> Section 3.10.4.5: The Windows implementation exports certificates using the
PFXExportCertStoreEx API. The encryption method of the exported data is dependent on the
implementation of this API. On import via ImportFromBlob or ImportFromBlobGetHash, the
password is validated using PFXVerifyPassword, and the import is performed by
PFXImportCertStore.

<39> Section 3.10.4.6: Memory is allocated in the Windows implementation using CoTaskMemAlloc
and should be released by the client using CoTaskMemFree.

<40> Section 3.10.4.6: The Windows implementation uses the PFXImportCertStore API when
importing a certificate via ImportFromBlob or ImportFromBlobGetHash. If the bAllowExport
parameter is set to 1 or VARIANT_TRUE, the CRYPT_EXPORTABLE flag is set in dwFlags parameter
in the call to PFXImportCertStore.

<41> Section 3.10.4.6: The Windows implementation exports certificates using the
PFXExportCertStoreEx API. The encryption method of the exported data is dependent on the

implementation of this API. On import via ImportFromBlob or ImportFromBlobGetHash the
password is validated using PFXVerifyPassword and the import is performed by PFXImportCertStore.

<42> Section 3.10.4.6: The IDL attributes of pCertHash will not allow the entire certificate hash
buffer to be returned to remote clients. Because no size is indicated in the parameter attributes for
pCertHash, the RPC/DCOM implementation will return a single byte of data to the client when the
method is called remotely. A correct IDL specification for this parameter might have been [out,
size_is(*pcbCertHashSize)].

<43> Section 3.10.4.7: Memory is allocated in the Windows implementation using CoTaskMemAlloc
and should be released by the client using CoTaskMemFree.

<44> Section 3.10.4.7: The Windows implementation uses the PFXExportCertStoreEx API to export

the certificate and optional chain and private key data. The specific format of the exported data blob
should not affect client interoperability as long as a server implementation is capable of passing data
blobs between import and export methods.

<45> Section 3.10.4.7: The pBlobBinary parameter is specified as a [string] in the IDL. The

RPC/DCOM layer will marshal the data buffer created on the server up to the first null (0x00) byte
encountered. The Windows implementation does not null-terminate the encoded data buffer, so
remote clients may receive a null-terminated buffer with some arbitrary number of additional bytes.
The pcbSize parameter correctly indicates the number of valid bytes in the returned buffer.

<46> Section 4.1: A Windows implementation of this protocol requires the
RPC_C_IMP_LEVEL_IMPERSONATE impersonation level to be set.

<47> Section 5.1: Windows Server 2003, Windows Vista, and Windows Server 2008 take advantage
of the RPC/COM packet privacy feature RPC_C_AUTHN_LEVEL_PKT_PRIVACY. This feature provides
a protective layer over the weak encryption, as described in section 3.1.4.1.1.

142 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

143 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

9 Index

A

Abstract data model
IMSAdminBase2W client 89
IMSAdminBase2W server 78
IMSAdminBase3W client 92
IMSAdminBase3W server 89
IMSAdminBaseW client 74
IMSAdminBaseW server 28

AddKey method 37
AppCreate method 93
AppCreate2 method 99
AppDelete method 94
AppDeleteRecoverable method 97
AppGetStatus method 96
Applicability 12
AppRecover method 98
AppUnload method 95

B

Backup method 50
BackupWithPasswd Call example 119
BackupWithPasswd method 79

C

Capability negotiation 12
Change tracking 142
ChangePermissions method 54
CLEARTEXT_DATA_BLOB packet 19
CLEARTEXT_WITH_PREFIX_BLOB packet 20

CloseKey method 36
Common data types 14
Constants page 20
CopyData method 45
CopyKey method 38
CreateApplication method 102
CreateApplicationPool method 104

D

Data model - abstract
IMSAdminBase2W client 89
IMSAdminBase2W server 78
IMSAdminBase3W client 92
IMSAdminBase3W server 89
IMSAdminBaseW client 74
IMSAdminBaseW server 28

Data types 14
DeleteAllData method 43
DeleteApplication method 103
DeleteApplicationPool method 104
DeleteBackup method 53
DeleteChildKeys method 40
DeleteData method 41
DeleteKey method 39

E

ENCRYPTED_DATA_BLOB packet 19
ENCRYPTED_SESSION_KEY_BLOB packet 17
EnumBackups method 52
EnumerateApplicationsInPool method 105
EnumHistory Call example 120
EnumHistory method 81
EnumKeys method 47
Examples

BackupWithPasswd Call 119
EnumHistory Call 120
Export Call 120
General Hookup 119
GetChildPaths Call 122
Import Call 121
Reading Sensitive Data from the Server 123
RestoreHistory Call 121
RestoreWithPasswd Call 121

Export Call example 120
Export method 82
ExportToBlob method 116

F

Fields - vendor-extensible 13
Full IDL 127

G

General Hookup example 119
GetCertInfoRemote method 112
GetChildPaths Call example 122
GetChildPaths method 90
GetDataPaths method 55
GetDataSetNumber method 57
GetHandleInfo method 58
GetLastChangeTime method 58
GetProcessMode method 107

GetSystemChangeNumber method 59
Glossary 9

H

HASH_BLOB packet 18
HASH_TEXT_STRING_1 20
HASH_TEXT_STRING_2 20

I

IDL 127
IIS_CRYPTO_BLOB structure 14
Implementer - security considerations 126
Import Call example 121
Import method 84
ImportFromBlob method 113
ImportFromBlobGetHash method 114
IMSAdminBase2W client

abstract data model 89
initialization 89
local events 89

144 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

message processing 89
sequencing rules 89
timer events 89
timers 89

IMSAdminBase2W server
abstract data model 78
initialization 78
local events 88
message processing 78
sequencing rules 78
timer events 88
timers 78

IMSAdminBase3W client
abstract data model 92
initialization 92
local events 92
message processing 92
sequencing rules 92
timer events 92
timers 92

IMSAdminBase3W server
abstract data model 89
initialization 89

local events 92
message processing 89
sequencing rules 89
timer events 92
timers 89

IMSAdminBaseW client
abstract data model 74
initialization 74
local events 78
message processing 75
sequencing rules 75
timer events 78
timers 74

IMSAdminBaseW server
abstract data model 28
initialization 29
local events 74
message processing 29
sequencing rules 29
timer events 74
timers 29

Index of security parameters 126
Informative references 11
Initialization

IMSAdminBase2W client 89
IMSAdminBase2W server 78
IMSAdminBase3W client 92
IMSAdminBase3W server 89
IMSAdminBaseW client 74
IMSAdminBaseW server 29

InstanceName method 109
Introduction 9
IsExportableRemote method 111
IsInstalledRemote method 110

L

Local events
IMSAdminBase2W client 89

IMSAdminBase2W server 88
IMSAdminBase3W client 92
IMSAdminBase3W server 92
IMSAdminBaseW client 78
IMSAdminBaseW server 74

M

Message processing
IMSAdminBase2W client 89
IMSAdminBase2W server 78
IMSAdminBase3W client 92
IMSAdminBase3W server 89
IMSAdminBaseW client 75
IMSAdminBaseW server 29

Messages
data types 14
transport 14

METADATA_GETALL_RECORD structure 20

METADATA_HANDLE_INFO structure 23
METADATA_RECORD structure 23

N

Normative references 11

O

OpenKey method 34
Overview (synopsis) 12

P

Parameters - security index 126
PMETADATA_GETALL_RECORD 20
Preconditions 12
Prerequisites 12
Product behavior 136
PUBLIC_KEY_BLOB packet 15

R

R_EnumData method 49
R_GetAllData method 60
R_GetData method 63
R_GetServerGuid method 64
R_KeyExchangePhase1 method 65
R_KeyExchangePhase2 method 66
R_SetData method 68

Reading Sensitive Data from the Server example
123

RecycleApplicationPool method 106
References

informative 11
normative 11

Relationship to other protocols 12
RenameKey method 69
Restore method 70
RestoreHistory Call example 121
RestoreHistory method 85
RestoreWithPasswd Call example 121
RestoreWithPasswd method 87

145 / 145

[MS-IMSA] — v20140502
 Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

S

SaveData method 71
Security

implementer considerations 126
parameter index 126
transferring sensitive data 32

Sensitive data 32
Sequencing rules

IMSAdminBase2W client 89
IMSAdminBase2W server 78
IMSAdminBase3W client 92
IMSAdminBase3W server 89
IMSAdminBaseW client 75
IMSAdminBaseW server 29

SESSION_KEY_BLOB packet 16
SetLastChangeTime method 72
Standards assignments 13

T

Timer events
IMSAdminBase2W client 89
IMSAdminBase2W server 88
IMSAdminBase3W client 92
IMSAdminBase3W server 92
IMSAdminBaseW client 78
IMSAdminBaseW server 74

Timers
IMSAdminBase2W client 89
IMSAdminBase2W server 78
IMSAdminBase3W client 92
IMSAdminBase3W server 89
IMSAdminBaseW client 74
IMSAdminBaseW server 29

Tracking changes 142
Transport 14

U

UnmarshalInterface method 73

V

Vendor-extensible fields 13
Versioning 12

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 ADMINDATA_MAX_NAME_LEN
	2.2.2 IIS_CRYPTO_BLOB
	2.2.2.1 PUBLIC_KEY_BLOB
	2.2.2.2 SESSION_KEY_BLOB
	2.2.2.2.1 ENCRYPTED_SESSION_KEY_ BLOB

	2.2.2.3 HASH_BLOB
	2.2.2.4 CLEARTEXT_DATA_BLOB
	2.2.2.5 ENCRYPTED_DATA_BLOB
	2.2.2.5.1 CLEARTEXT_WITH_PREFIX_BLOB

	2.2.3 Secure Session Negotiation Constants
	2.2.4 METADATA_GETALL_RECORD
	2.2.5 METADATA_HANDLE
	2.2.6 METADATA_HANDLE_INFO
	2.2.7 METADATA_RECORD
	2.2.8 METADATA_MASTER_ROOT_HANDLE
	2.2.9 MD_APP_ROOT
	2.2.10 MD_APP_ISOLATED
	2.2.11 MD_APP_APPPOOL_ID
	2.2.12 MD_BACKUP_MAX_LEN

	3 Protocol Details
	3.1 IMSAdminBaseW Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Secure Session Context

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 Transferring Sensitive Data
	3.1.4.1.1 Secure Session Negotiation Server Role
	3.1.4.1.2 Encrypting Data
	3.1.4.1.3 Decrypting Data
	3.1.4.1.4 Signed Hash Calculation
	3.1.4.1.5 Signed Hash Validation

	3.1.4.2 OpenKey (Opnum 17)
	3.1.4.3 CloseKey (Opnum 18)
	3.1.4.4 AddKey (Opnum 3)
	3.1.4.5 CopyKey (Opnum 7)
	3.1.4.6 DeleteKey (Opnum 4)
	3.1.4.7 DeleteChildKeys (Opnum 5)
	3.1.4.8 DeleteData (Opnum 11)
	3.1.4.9 DeleteAllData (Opnum 14)
	3.1.4.10 CopyData (Opnum 15)
	3.1.4.11 EnumKeys (Opnum 6)
	3.1.4.12 R_EnumData (Opnum 12)
	3.1.4.13 Backup (Opnum 28)
	3.1.4.14 EnumBackups (Opnum 30)
	3.1.4.15 DeleteBackup (Opnum 31)
	3.1.4.16 ChangePermissions (Opnum 19)
	3.1.4.17 GetDataPaths (Opnum 16)
	3.1.4.18 GetDataSetNumber (Opnum 23)
	3.1.4.19 GetHandleInfo (Opnum 21)
	3.1.4.20 GetLastChangeTime (Opnum 25)
	3.1.4.21 GetSystemChangeNumber (Opnum 22)
	3.1.4.22 R_GetAllData (Opnum 13)
	3.1.4.23 R_GetData (Opnum 10)
	3.1.4.24 R_GetServerGuid (Opnum 33)
	3.1.4.25 R_KeyExchangePhase1 (Opnum 26)
	3.1.4.26 R_KeyExchangePhase2 (Opnum 27)
	3.1.4.27 R_SetData (Opnum 9)
	3.1.4.28 RenameKey (Opnum 8)
	3.1.4.29 Restore (Opnum 29)
	3.1.4.30 SaveData (Opnum 20)
	3.1.4.31 SetLastChangeTime (Opnum 24)
	3.1.4.32 UnmarshalInterface (Opnum 32)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 IMSAdminBaseW Client Details
	3.2.1 Abstract Data Model
	3.2.1.1 Secure Session Context

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Secure Session Negotiation Client Role
	3.2.4.2 R_KeyExchangePhase1 (Opnum 26)
	3.2.4.3 R_KeyExchangePhase2 (Opnum 27)
	3.2.4.4 R_SetData (Opnum 9)
	3.2.4.5 R_GetData (Opnum 10)
	3.2.4.6 R_EnumData (Opnum 12)
	3.2.4.7 R_GetAllData (Opnum 13)

	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 IMSAdminBase2W Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 BackupWithPasswd (Opnum 34)
	3.3.4.2 EnumHistory (Opnum 39)
	3.3.4.3 Export (Opnum 36)
	3.3.4.4 Import (Opnum 37)
	3.3.4.5 RestoreHistory (Opnum 38)
	3.3.4.6 RestoreWithPasswd (Opnum 35)

	3.3.5 Timer Events
	3.3.6 Other Local Events

	3.4 IMSAdminBase2W Client Details
	3.4.1 Abstract Data Model
	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Message Processing Events and Sequencing Rules
	3.4.5 Timer Events
	3.4.6 Other Local Events

	3.5 IMSAdminBase3W Server Details
	3.5.1 Abstract Data Model
	3.5.2 Timers
	3.5.3 Initialization
	3.5.4 Message Processing Events and Sequencing Rules
	3.5.4.1 GetChildPaths (Opnum 40)

	3.5.5 Timer Events
	3.5.6 Other Local Events

	3.6 IMSAdminBase3W Client Details
	3.6.1 Abstract Data Model
	3.6.2 Timers
	3.6.3 Initialization
	3.6.4 Message Processing Events and Sequencing Rules
	3.6.5 Timer Events
	3.6.6 Other Local Events

	3.7 IWamAdmin Server Details
	3.7.1 Abstract Data Model
	3.7.2 Timers
	3.7.3 Initialization
	3.7.4 Message Processing Events and Sequencing Rules
	3.7.4.1 AppCreate (Opnum 3)
	3.7.4.2 AppDelete (Opnum 4)
	3.7.4.3 AppUnload (Opnum 5)
	3.7.4.4 AppGetStatus (Opnum 6)
	3.7.4.5 AppDeleteRecoverable (Opnum 7)
	3.7.4.6 AppRecover (Opnum 8)

	3.7.5 Timer Events
	3.7.6 Other Local Events

	3.8 IWamAdmin2 Server Details
	3.8.1 Abstract Data Model
	3.8.2 Timers
	3.8.3 Initialization
	3.8.4 Message Processing Events and Sequencing Rules
	3.8.4.1 AppCreate2 (Opnum 9)

	3.8.5 Timer Events
	3.8.6 Other Local Events

	3.9 IIISApplicationAdmin Server Details
	3.9.1 Abstract Data Model
	3.9.2 Timers
	3.9.3 Initialization
	3.9.4 Message Processing Events and Sequencing Rules
	3.9.4.1 CreateApplication (Opnum 3)
	3.9.4.2 DeleteApplication (Opnum 4)
	3.9.4.3 CreateApplicationPool (Opnum 5)
	3.9.4.4 DeleteApplicationPool (Opnum 6)
	3.9.4.5 EnumerateApplicationsInPool (Opnum 7)
	3.9.4.6 RecycleApplicationPool (Opnum 8)
	3.9.4.7 GetProcessMode (Opnum 9)

	3.9.5 Timer Events
	3.9.6 Other Local Events

	3.10 IIISCertObj Server Details
	3.10.1 Abstract Data Model
	3.10.2 Timers
	3.10.3 Initialization
	3.10.4 Message Processing Events and Sequencing Rules
	3.10.4.1 InstanceName (Set) (Opnum 10)
	3.10.4.2 IsInstalledRemote (Opnum 12)
	3.10.4.3 IsExportableRemote (Opnum 14)
	3.10.4.4 GetCertInfoRemote (Opnum 16)
	3.10.4.5 ImportFromBlob (Opnum 22)
	3.10.4.6 ImportFromBlobGetHash (Opnum 23)
	3.10.4.7 ExportToBlob (Opnum 25)

	3.10.5 Timer Events
	3.10.6 Other Local Events

	3.11 IIISCertObj Client Details
	3.11.1 Abstract Data Model
	3.11.2 Timers
	3.11.3 Initialization
	3.11.4 Message Processing Events and Sequencing Rules
	3.11.4.1 InstanceName (Set) (Opnum 10)

	3.11.5 Timer Events
	3.11.6 Other Local Events

	4 Protocol Examples
	4.1 General Hookup Example
	4.2 BackupWithPasswd Call Example
	4.3 EnumHistory Call Example
	4.4 Export Call Example
	4.5 Import Call Example
	4.6 RestoreHistory Call Example
	4.7 RestoreWithPasswd Call Example
	4.8 GetChildPaths Call Example
	4.9 Reading Sensitive Data from the Server

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

