

1 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MS - IKEE - Diff]:

Internet Key Exchange Protocol Extensions

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation (ñthis
documentationò) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter -protocol relationships and interactions.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your i mplementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.
Á Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
thi s documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promis e or the Microsoft Community Promise . If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Communit y Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com .

Á License Programs . To see all of the protocols in scope under a specific license program and the
associated patents, visit t he Patent Map .

Á Trademarks . The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
.www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights . All other rights are re served, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require the use of Microsoft programming

tools or programmi ng environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with public ly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.c om .

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

10/22/2006 0.01 New Version 0.01 release

1/19/2007 1.0 Major Version 1.0 release

3/2/2007 1.1 Minor Version 1.1 release

4/3/2007 1.2 Minor Version 1.2 release

5/11/2007 1.3 Minor Version 1.3 release

6/1/2007 1.3.1 Editorial Changed language and formatting in the technical content.

7/3/2007 2.0 Major Updated and revised the technical content.

7/20/2007 2.0.1 Editorial Changed language and formatting in the technical content.

8/10/2007 3.0 Major Updated and revised the technical content.

9/28/2007 3.0.1 Editorial Changed language and formatting in the technical content.

10/23/2007 3.0.2 Editorial Changed language and formatting in the technical content.

11/30/2007 3.0.3 Editorial Changed language and formatting in the technical content.

1/25/2008 4.0 Major Updated and revised the technical content.

3/14/2008 4.0.1 Editorial Changed language and formatting in the technical content.

5/16/2008 4.0.2 Editorial Changed lang uage and formatting in the technical content.

6/20/2008 5.0 Major Updated and revised the technical content.

7/25/2008 6.0 Major Updated and revised the technical content.

8/29/2008 6.1 Minor Clarified the meaning of the technical content.

10/24/2008 6.2 Minor Clarified the meaning of the technical content.

12/5/2008 7.0 Major Updated and revised the technical content.

1/16/2009 8.0 Major Updated and revised the technical content.

2/27/2009 9.0 Major Updated and revised the technical content.

4/10/2009 10.0 Major Updated and revised the technical content.

5/22/2009 11.0 Major Updated and revised the technical content.

7/2/2009 12.0 Major Updated and revised the technical content.

8/14/2009 12.1 Minor Clarified the meaning of the technical content.

9/25/2009 12.2 Minor Clarified the meaning of the technical content.

11/6/2009 13.0 Major Updated and revised the technical content.

12/18/2009 13.1 Minor Clarified the meaning of the technical content.

1/29/2010 14.0 Major Updated and revised the technical content.

3 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Date
Revision
History

Revision
Class Comments

3/12/2010 15.0 Major Updated and revised the technical content.

4/23/2010 16.0 Major Updated and revised the technical content.

6/4/2010 17.0 Major Updated and revised the technical content.

7/16/2010 18.0 Major Updated and revi sed the technical content.

8/27/2010 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 18.1 Minor Clarified the meaning of the technical content.

2/11/2011 18.1 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 18.1 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 18.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 18.2 Minor Clarified the meaning of the technical content.

9/23/2011 18.2 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 19.0 Major Updated and revised the technical content.

3/30/2012 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 19.1 Minor Clarified the meaning of the technical content.

10/25/2012 19.1 None
No changes to the meaning, language, or formatting of the

technical content.

1/31/2013 20.0 Major Updated and revised the technical content.

8/8/2013 21.0 Major Updated and revised the technical content.

11/14/2013 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 22.0 Major Updated and revised the technical content.

5/15/2014 22.0 None
No changes to the meaning, l anguage, or formatting of the
technical content.

6/30/2015 23.0 Major Significantly changed the technical content.

10/16/2015 23.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 24.0 Major Significantly changed the technical content.

4 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Date
Revision
History

Revision
Class Comments

6/1/2017 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

5 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Table of Contents

1 Introduction 9
1.1 Glossary 9
1.2 References 12

1.2.1 Normative References 12
1.2.2 Informative References 13

1.3 Overview 14
1.3.1 Network Address Translation Travers al (NAT -T) 14
1.3.2 IKE Fragmentation 15
1.3.3 Authentication Using a Cryptographically Generated Address 15
1.3.4 Fast Failover 16
1.3.5 Negotiation Discovery 16
1.3.6 Reliable Delete 16
1.3.7 Denial of Service Protection 17
1.3.8 IKE/AuthIP Co -Existence 17
1.3.9 IKE SA Correlation (IKEv2) 17
1.3.10 IKE Server Internal Addresses Configuration Attributes (IKEv2) 17
1.3.11 Xbox Multiplayer Gaming (IKEv2) 17
1.3.12 IPsec Security Realm (IKEv2 transport mode) 17
1.3.13 Extension to RFC Cross Reference 18

1.4 Relations hip to Other Protocols 19
1.5 Prerequisites/Preconditions 19

1.5.1 General Prerequisites/Preconditions 19
1.5.2 CGA Authentication Prerequisites/Preconditions 19

1.6 Applicability Statement 19
1.7 Versioning and Capability Negotiation 20
1.8 Vendor -Extensible Fields 20
1.9 Standards Assignments 20

2 Messages 21
2.1 Transport 21
2.2 Message Syntax 21

2.2.1 NAT-T Payload Types 21
2.2.2 NAT-T UDP Encapsulation Modes 21
2.2.3 IKE Message Fragment 22

2.2.3.1 Fragment Payload Packet 22
2.2.4 AUTH_CGA Authentication Method Packet 23
2.2.5 ID_IPV6_CGA Identification Type Packet 23
2.2.6 Notify Payload Packet 24
2.2.7 Notify Payload (IKEv2) Packet 26
2.2.8 Configuration Attribute (IKEv2) Packet 26
2.2.9 Correlation Payload (IKEv2) Packet 27
2.2.10 Security Realm Vendor ID Payload (IKEv2) 28

3 Pro tocol Details 29
3.1 Common Details 29

3.1.1 Abstract Data Model 29
3.1.2 Timers 30
3.1.3 Initialization 30
3.1.4 Higher -Layer Triggered Events 30
3.1.5 Message Processing Events and Sequencing Rules 31
3.1.6 Timer Events 32
3.1.7 Other Local Events 32

3.2 NAT Traversal Details 32
3.2.1 Abstract Data Model 33
3.2.2 Timers 33

6 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.3 Initialization 33
3.2.4 Higher -Layer Triggered Even ts 34

3.2.4.1 Start of an IKE MM SA Negotiation 34
3.2.5 Message Processing Events and Sequencing Rules 34

3.2.5.1 Receiving Message #1 34
3.2.5.2 Receiving Message #2 34
3.2.5.3 Receiving Other Messages 34

3.2.6 Timer Events 34
3.2.7 Other Local Events 35

3.3 IKE Fragmentation Details 35
3.3.1 Abstract Data Mod el 35
3.3.2 Timers 36
3.3.3 Initialization 36
3.3.4 Higher -Layer Triggered Events 37

3.3.4.1 Start of an IKE MM SA Negotiation 37
3.3.5 Message Processing Events and Sequencing Rules 37

3.3.5.1 Receiving Message #1 37
3.3.5.2 Receiving Message #2 37
3.3.5.3 Receiving Other IKE Messages 37

3.3.6 Timer Event s 38
3.3.6.1 Expiration of Fragmentation Timer 38
3.3.6.2 Expiration of the Fragment Reassembly Timer 39

3.3.7 Other Local Events 39
3.4 CGA Authentication Details 39

3.4.1 Abstract Data Model 40
3.4.2 Timers 40
3.4.3 Initialization 40
3.4.4 Higher -Layer Triggered Events 41

3.4.4.1 Start of an IKE MM SA Negotiation 41
3.4.5 Message Processing Events and Sequencing Rules 41

3.4.5.1 Receiving Message #1 41
3.4.5.2 Receiving Message #2 41
3.4.5.3 Receiving Message #3 41
3.4.5.4 Receiving Message #4 41
3.4.5.5 Receiving Message #5 42
3.4.5.6 Receiving Message #6 42

3.4.6 Timer Events 42
3.4.7 Other Local Events 42

3.5 Fast Failover Client Details 42
3.5.1 Abstract Data Model 43
3.5.2 Timers 43
3.5.3 Initialization 43
3.5.4 Higher -Layer Triggered Even ts 44

3.5.4.1 Start of an IKE MM SA Negotiation 44
3.5.5 Message Processing Events and Sequencing Rules 44

3.5.5.1 Receiving Message #1 44
3.5.5.2 Receiving Message #2 44

3.5.6 Timer Events 44
3.5.6.1 Expiration of the QM SA Idle Timer 44

3.5.7 Other Local Events 44
3.5.7.1 Successful Negotiation of a QM SA 44

3.6 Fast Failover Server Details 44
3.6.1 Abstract Data Model 45
3.6.2 Timers 45
3.6.3 Initialization 45
3.6.4 Higher -Layer Triggered Even ts 45

3.6.4.1 Start of an IKE MM SA Negotiation 45
3.6.5 Message Processing Events and Sequencing Rules 45

7 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.6.5.1 Receiving Message #1 45
3.6.5.2 Receiving Message #2 46

3.6.6 Timer Events 46
3.6.7 Other Local Events 46

3.7 Negotiation Discovery Details 46
3.7.1 Abstract Data Model 49
3.7.2 Timers 50
3.7.3 Initialization 50
3.7.4 Higher -Layer Triggered Events 50

3.7.4.1 Outbound Packet 50
3.7.4.2 Inbound Packet 51

3.7.5 Message Processing Events and Sequencing Rules 52
3.7.5.1 Receiving Message #1 52
3.7.5.2 Receiving Message #2 52
3.7.5.3 Receiving Message #5 52
3.7.5.4 Receiving Message #6 53

3.7.6 Timer Events 53
3.7.7 Other Local Events 53

3.8 Reliable Delete Details 53
3.8.1 Abstract Data Model 53
3.8.2 Timers 54
3.8.3 Initialization 54
3.8.4 Higher -Layer Triggered Events 54

3.8.4.1 SA Deletion/Invalidation 54
3.8.5 Message Process ing Events and Sequencing Rules 55

3.8.5.1 Receiving Message #1 55
3.8.5.2 Receiving Message #2 55

3.8.6 Timer Events 55
3.8.6.1 Expiration of the Delete Retransmission Timer 55

3.8.7 Other Local Events 56
3.8.7.1 Shutdown 56
3.8.7.2 MM SA Exhaustion 56

3.9 Denial of Service Protection Details 56
3.9.1 Abstrac t Data Model 57
3.9.2 Timers 57
3.9.3 Initialization 58
3.9.4 Higher -Layer Triggered Events 58
3.9.5 Message Processing Events and Sequencing Rules 58

3.9.5.1 Receiving Message #1 58
3.9.5.2 Receiving Message #2 58
3.9.5.3 Receiving Message #3 58

3.9.6 Timer Events 59
3.9.7 Other Local Events 59

3.10 IKE SA Correlation (IKEV2) Details 59
3.10.1 Abstract Data Model 59
3.10.2 Timers 59
3.10.3 Initialization 59
3. 10.4 Higher -Layer Triggered Events 60
3.10.5 Message Processing Events and Sequencing Rules 60

3.10.5.1 Receiving Message #1 61
3.10.5.2 Receiving Subsequent Messages 61
3.10.5.3 Receiv ing the Error Notify 62

3.10.6 Timer Events 62
3.10.7 Other Local Events 62

3.11 IKE Server Internal Addresses Configuration Attributes (IKEv2) Details 62
3.11.1 Abstract Data Model 62
3.11.2 Timers 62
3.11.3 Init ialization 62

8 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.11.4 Higher -Layer Triggered Events 62
3.11.5 Message Processing Events and Sequencing Rules 63

3.11.5.1 Receiving Message #1 64
3.11.5.2 Receiving Message #2 64

3.11.6 Timer Events 64
3.11.7 Other Local Events 64

3.12 Dead Peer Detection Details 64
3.12.1 Abstract Data Model 64
3.12.2 Timers 64
3.12.3 Initialization 65
3.12.4 Higher -Layer Triggered Events 65

3.12.4.1 TCP Dead Peer Detection 65
3.12.4.2 UDP Dead Peer Detection 65

3.12.5 Message Processing Events and Sequencing Rules 65
3.12.5.1 Receiving a UDP Packet 65

3.12.6 Timer Events 65
3.12.6.1 Expiration of the QM SA Idle Timer 65

3.12.7 Other Local Events 66
3.12.7.1 Successful Negotiation of a QM SA and MM SA 66

3.13 Xbox Multiplayer Gaming (IKEv2) Vendor IDs Details 66
3.13.1 Abstract Data Model 66
3.13.2 Timers 66
3.13.3 Initialization 66
3.13.4 Higher -Layer Triggered Events 66
3.13.5 Message Processing Events and Sequencing Rules 66

3.13.5.1 Microsoft Xbox One 2013 Vendor ID 67
3.13.5.2 Xbox IKEv2 Negotiation Vendor ID 67

3.13.6 Timer Events 67
3.13.7 Other Local Events 67

3.14 Security Realm ID (IKE v2) Vendor IDs Details 67
3.14.1 Abstract Data Model 67
3.14.2 Timers 68
3.14.3 Initialization 68
3.14.4 Higher -Layer Triggered Events 68
3.14.5 Message Processing Events and Sequencing Rules 68

3.14.5.1 IKE_SA_INIT Messages 69
3.14.5.2 IKE_SA_AUTH and CREATE_CHILD_SA Messages 69

3.14.6 Timer Events 70
3.14.7 Other Local Events 70

4 Protocol Examples 71
4.1 Negotiation Discovery Examples 71

5 Security 73
5.1 Security Considerations for Implementer s 73

5.1.1 Negotiation Discovery 73
5.2 Index of Security Parameters 73

6 Appendix A: Product Behavior 74

7 Change Tracking 95

8 Index 97

9 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 Introduc tion

Internet Key Exchange (IKE) Protocol Extensions apply to the IKE Protocol versions 1 and 2, as
specified in [RFC2407], [RFC2408], [RFC2409], [RFC3947], and [RFC4306]. These extensions provide
additional capabil ities to IKE, including interoperation between different revisions of the network
address translation traversal (NAT -Traversal or NAT -T) specification, fragmentation of large IKE
version 1 messages, authentication by using cryptographically generated addre sses (CGAs), fast

failover when communicating with a cluster of hosts, easier interoperation with non - Internet Protocol
security (IPsec) ïcapable peers, acknowledgment of security association (SA) deletion messages,
denial of service protection, IKE securit y association correlation (IKEv2), and IKE server internal
addresses configuration attributes (IKEv2).

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

Authenticated IP (AuthIP) : An Internet Key Exchange (IKE) protocol extension, as specified in
[MS -AIPS].

authentication header (AH) : An Internet Protocol Security (IPsec) encapsulation mode that
provide s authentication and message integrity. For more information, see [RFC4302] section 1.

certificate : A certificate is a collection of attributes (1) and extensions that can be stored
persistently. The set of attributes in a certificate can vary depending on the intended usage of
the certificate. A certificate securely binds a public key to the entity that holds the corresponding
private key. A certificate is commonly used for authentication (2) and secure exchange of
information on open networks, such as the Internet, extranets, and intranets. Certificates are

digitally signed by the issuing certification authority (CA) and can be issued for a user, a
computer, or a service. The most widely accepted format for certificates is defined by the ITU -T
X.509 versio n 3 international standards. For more information about attributes and extensions,

see [RFC3280] and [X509] sections 7 and 8.

certificate chain : A sequence of certificates, where each certificate in the sequence is signed by
the subsequent certificate. The last certificate in the chain is normally a self -signed certificate.

cluster : A group of computers that are able to dynamically assign resource tasks among nodes in
a group. The group can be accessed as though they are a single host. A cluster is generally
accessed by using a virtual IP address. For more information, see [MSFT -WLBS].

cryptographic hash function : A function that maps an input of any length to a short output bit
string of fixed length, such that finding an input that maps to a partic ular bit string of the
correct output length, or even finding two inputs that map to the same output bit string, is
computationally infeasible. For more information, see [SCHNEIER] chapters 2 and 18.

cryptographically generated address (CGA) : An IPv6 addre ss for which the interface identifiers
(the low -order 64 bits) are generated by computing a cryptographic hash function on a public

key. The corresponding private key can be used to sign messages sent from this IPv6 address.
CGA is specified in [RFC3972].

domain of interpretation (DOI) : A domain that defines the manner in which a group of protocols
uses the ISAKMP (as specified in[RFC2408]) framework to negotiate security associations (SAs)
(for example, identifiers for cryptographic algorithms, interpretat ion of payload contents, and so

on). For example, the Internet Protocol security (IPsec) DOI (as specified in [RFC2407]) defines
the use of the ISAKMP framework for protocols that negotiate main mode (MM) and quick mode

10 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

security associations (SAs). Both In ternet Key Exchange (IKE) and AuthIP fall under the IPsec
DOI.

Encapsulating Security Payload (ESP) : An Internet Protocol security (IPsec) encapsulation
mode that provides authentication, data confidentiality, and message integrity. For more

information, s ee [RFC4303] section 1.

exchange : A pair of messages, consisting of a request and a response.

flow : A TCP session or User Datagram Protocol (UDP) pseudo session, identified by a 5 - tuple
(source and destination IP and ports, and protocol). By extension, a request/response Internet
Control Message Protocol (ICMP) exchange (for example, ICMP echo) is also a flow.

Generic Security Services (GSS) : An Internet standard, as described in [RFC2743], for providing
security services to applications. It consists of an application programming interface (GSS -API)

set, as well as standards that describe the structure of the security data.

initiator : The party that sends the first message of an Internet Key Exchange (IKE).

Internet Key Exchange (IKE) : The protocol that is used to negotiate and provide authenticated
keying material for security associations (SAs) in a protected manner. For more information, see
[RFC2409].

Internet Protocol security (IPsec) : A framework of open standards for ensuring private, secure

communica tions over Internet Protocol (IP) networks through the use of cryptographic security
services. IPsec supports network - level peer authentication, data origin authentication, data
integrity, data confidentiality (encryption), and replay protection. The Micro soft implementation
of IPsec is based on standards developed by the Internet Engineering Task Force (IETF) IPsec
working group.

Internet Security Association and Key Management Protocol (ISAKMP) : A cryptographic
protocol specified in [RFC2408] that defines procedures and packet formats to establish,

negotiate, modify and delete security associations (SAs). It forms the basis of the Internet Key
Exchange (IKE) protocol, as specified in [RFC2409].

ISAKMP payload : A modular building block for constructing ISAK MP messages. A payload is used
to transfer information such as security association (SA) data, or key generation and
authentication data. The presence and order of payloads in a packet is defined by and
dependent upon the type of exchange specified in the ISAKMP header of the ISAKMP message.
For more information, see [RFC2408] section 4.1.

main mode (MM) : The first phase of an Internet Key Exchange (IKE) negotiation that performs
authentication and negotiates a main mode security association (MM SA) between the peers. For
more information, see [RFC2409] section 5.

main mode security association (MM SA) : A security association that is used to protect
Internet Key Exchange (IKE) traffic between two peers. For more information, see [RFC2408]
section 2.

main mod e security association database (MMSAD) : A database that contains operational

state for each main mode (MM) security association (SA). For more information, see [MS -AIPS]
section 3.1.1 and [MS - IKEE] section 3.1.1.

maximum transmission unit (MTU) : The size, in bytes, of the largest packet that a given layer
of a communications protocol can pass onward.

negotiation : A series of exchanges. The successful outcome of a negotiation is the establishment
of one or more security associations (SAs). For more informat ion, see [RFC2408] section 2.

11 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

negotiation discovery : An Internet Key Exchange (IKE) extension that improves interoperation
between Internet Protocol security (IPsec) and non - IPsec -aware hosts. Detecting that the peer

host is not capable of IPsec usually in volves waiting for the IKE negotiation to time out, then
sending traffic in the clear. With negotiation discovery, the host starts the IKE negotiation and

sends clear text traffic in parallel. If the IKE negotiation succeeds and security associations
(SAs) are established, further traffic is secured.

network address translation (NAT) : The process of converting between IP addresses used
within an intranet, or other private network, and Internet IP addresses.

nonce : A number that is used only once. This is ty pically implemented as a random number large
enough that the probability of number reuse is extremely small. A nonce is used in
authentication protocols to prevent replay attacks. For more information, see [RFC2617].

phase : A series of exchanges that provi de a particular set of security services (for example,
authentication or creation of security associations (SAs)).

quick mode : The second phase of an Internet Key Exchange (IKE) negotiation, during which the

peers negotiate quick mode security associations (QM SAs). For more information, see
[RFC2409] section 5.5.

quick mode security association (QM SA) : A security association (SA) that is used to protect IP

packets between peers (the Internet Key Exchange (IKE) traffic is protected by the main mode
securit y association (MM SA)). For more information, see [RFC2409] section 5.5.

responder : The computer that responds to request messages.

root certificate : A self -signed certificate that identifies the public key of a root certification
authority (CA) and has be en trusted to terminate a certificate chain.

security association (SA) : A simplex "connection" that provides security services to the traffic
carried by it. See [RFC4301] for more information.

security association database (SAD) : A database that contains p arameters that are associated
with each established (keyed) security association.

security policy database (SPD) : A database that specifies the policies that determine the
disposition of all IP traffic inbound or outbound from a host or security gateway.

self - signed certificate : A certificate that is signed by its creator and verified using the public key
contained in it. Such certificates are also termed root certificates.

transport mode : An IP encapsulation mechanism, as specified in [RFC4301], that provi des

Internet Protocol security (IPsec) security for host - to -host communication.

tunnel mode : An IP encapsulation mechanism, as specified in [RFC4301], that provides Internet
Protocol security (IPsec) security to tunneled IP packets. IPsec processing is per formed by the
tunnel endpoints, which can be (but are typically not) the end hosts.

vendor ID payload : A particular type of ISAKMP payload that contains a vendor -defined constant.
The constant is used by vendors to identify and recognize remote instances of their

implementations. This mechanism allows a vendor to experiment with new features while
maintaining backward compatibility. For more information, see [RFC2408] section 3.16.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

12 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the sect ion numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to as sure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[ECP] Fu, D. and Solinas, J., "ECP Groups For IKE and IKEv2", Septem ber 2005,
http://tools.ietf.org/id/draft - ietf - ipsec - ike -ecp -groups -02.txt

[GSS] Piper, D., and Swander, B., "A GSS -API Authentication Method for IKE", Internet Draft, July
2001, http://tools.ietf.org/html/draft - ietf - ipsec - isakmp -gss-auth -07

[IANAIPSEC] IAN A, "Internet Key Exchange (IKE) Attributes", November 2006,
http://www.iana.org/assignments/ipsec - registry

[IANAISAKMP] IANA, "'Magic Numbers' for ISAKMP Protocol", October 2006,
http://www.iana.org/assignments/isakmp -registry

[MS -AIPS] Microsoft Corporati on, "Authenticated Internet Protocol".

[MS -ERREF] Microsoft Corporation, "Windows Error Codes".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

[RFC2 403] Madson, C. and Glenn, R., "The Use of HMAC -MD5 -96 Within ESP and AH", RFC 2403,

November 1998, http://www.ietf.org/rfc/rfc2403.txt

[RFC2407] Piper, D., "The Internet IP Security Domain of Interpretation for ISAKMP", RFC 2407,
November 1998, http://www .ietf.org/rfc/rfc2407.txt

[RFC2408] Maughan, D., Schertler, M., Schneider, M., and Turner, J., "Internet Security Association
and Key Management Protocol (ISAKMP)", RFC 2408, November 1998,

http://www.ietf.org/rfc/rfc2408.txt

[RFC2409] Harkins, D. and Carr el, D., "The Internet Key Exchange (IKE)", RFC 2409, November 1998,
http://www.ietf.org/rfc/rfc2409.txt

[RFC2451] Pereira, R. and Adams, R., "The ESP CBC -Mode Cipher Algorithms", RFC 2451, November
1998, http://www.ietf.org/rfc/rfc2451.txt

[RFC3447] Jonsso n, J. and Kaliski, B., "Public -Key Cryptography Standards (PKCS) #1: RSA

Cryptography Specifications Version 2.1", RFC 3447, February 2003,
http://www.ietf.org/rfc/rfc3447.txt

[RFC3526] Kivinen, T. and Kojo, M., "More Modular Exponential (MODP) Diffie -Hell man Groups for
Internet Key Exchange (IKE)", RFC 3526, May 2003, http://www.ietf.org/rfc/rfc3526.txt

[RFC3947] Kivinen, T., Swander, B., Huttunen, A., and Volpe, V., "Negotiation of NAT -Traversal in the
IKE", RFC 3947, January 2005, http://www.ietf.org/rfc /rfc3947.txt

13 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[RFC3972] Aura, T., "Cryptographically Generated Addresses (CGA)", RFC 3972, March 2005,
http://www.ietf.org/rfc/rfc3972.txt

[RFC4301] Kent, S. and Seo, K., "Security Architecture for the Internet Protocol", RFC 4301,
December 2005, http://www .ietf.org/rfc/rfc4301.txt

[RFC4306] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC 4306, December 2005,
http://www.ietf.org/rfc/rfc4306.txt

[RFC4555] P. Eronen, Ed., "IKEv2 Mobility and Multihoming Protocol (MOBIKE)", RFC 4555, June
2006, http: //www.ietf.org/rfc/rfc4555.txt

[RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and Eronen, P., "Internet Key Exchange Protocol Version
2 (IKEv2)", RFC 5996, September 2010, http://tools.ietf.org/html/rfc5996

[RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980, http://www. ietf rfc -
editor .org/rfc/rfc768.txt

[RFC792] Postel, J., "Internet Control Message Protocol", RFC 792, September 1981,
http://www.ietf.org/rfc/rfc792.txt

1.2.2 Informative References

[DRAFT -NATT] Kivinen, T., Huttunen, A., Swander, B., and Volpe, V., "Negotiation of NAT -Traversal in
the IKE", June 2002, http://tools.ietf.org/id/draft - ietf - ipsec -nat - t - ike -03.txt

[FIPS140] FIPS PUBS, "Security Requirements for Cryptographic Modules", FIPS PUB 140, December
2002, http://csrc.nist.gov/publications/fips/fips140 -2/fips1402.pdf

[MSFT -WLBS] Microsoft Corporation, "MS Windows NT Load Balancing Service (WLBS)", January 1999,
http://www.microsoft.com/technet/archive/winn tas/deploy/depovg/wlbsdepl.mspx?mfr=true

[RFC2404] Madson, C. and Glenn, R., "The Use of HMAC -SHA-1-96 Within ESP and AH", RFC 2404,

November 1998, http://www.ietf.org/rfc/rfc2404.txt

[RFC2405] Madson, C. and Doraswamy, N., "The ESP DES -CBC Cipher Algorith m With Explicit IV", RFC
2405, November 1998, http://www.ietf.org/rfc/rfc2405.txt

[RFC2410] Glenn, R. and Kent, S., "The NULL Encryption Algorithm and Its Use With IPsec", RFC
2410, November 1998, http://www.ietf.org/rfc/rfc2410.txt

[RFC3602] Frankel, S., Glenn, R., and Kelly, S., "The AES -CBC Cipher Algorithm and Its Use with
IPsec", RFC 3602, September 2003, http://www.ietf.org/rfc/rfc3602.txt

[RFC3715] Aboba, B. and Dixon, W., "IPsec -Network Address Translation (NAT) Compatibility
Requirements", RFC 3715 , March 2004, http://www.ietf.org/rfc/rfc3715.txt

[RFC3948] Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and Stenberg, M., "UDP Encapsulation of
IPsec ESP Packets", RFC 3948, January 2005, http://www.ietf.org/rfc/rfc3948.txt

[RFC4106] Viega, J. and M cGrew, D., "The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating

Security Payload (ESP)", RFC 4106, June 2005, http://www.ietf.org/rfc/rfc4106.txt

[RFC4302] Kent, S., "IP Authentication Header", RFC 4302, December 2005,
http://www.ietf.org/rfc/rfc43 02.txt

[RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, December 2005,
http://www.ietf.org/rfc/rfc4303.txt

14 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[RFC4543] McGrew, D., and Viega, J., "The Use of Galois Message Authentication Code (GMAC) in
IPsec ESP and AH", RFC 4543, Ma y 2006, http://www.ietf.org/rfc/rfc4543.txt

[RFC4621] Kivinen, T., and Tschofenig, H., "Design of the IKEv2 Mobility and Multihoming (MOBIKE)
Protocol", RFC 4621, August 2006, http://www.ietf.org/rfc/rfc4621.txt

[RFC791] Postel, J., Ed., "Internet Protocol : DARPA Internet Program Protocol Specification", RFC 791,
September 1981, http://www.rfc -editor.org/rfc/rfc791.txt

[SCHNEIER] Schneier, B., "Applied Cryptography, Second Edition", John Wiley and Sons, 1996, ISBN:
0471117099, http://www.wiley.com/WileyCDA/ WileyTitle/productCd -0471117099.html

[SHA256] National Institute of Standards and Technology, "FIPS 180 -2, Secure Hash Standard
(SHS)", August 2002, http://csrc.nist.gov/publications/fips/fips180 -2/fips180 -2withchangenotice.pdf

1.3 Overview

The Internet Key Exchange (IKE) Protocol version 1 is used to negotiate security associations (SAs),

as specified in [RFC2409], for the purpose of keying authentication header (AH) and Encapsulating
Security Payload (ESP) packet tr ansformations. For more information, see [RFC4302] and [RFC4303],
respectively. For the general security architecture of IPsec, see [RFC4301].

The IKE Protocol version 1 is specified in [RFC2409] and is closely tied to [RFC2407] and [RFC2408].
In addition, IKE is clearly the most commonly implemented protocol that uses [RFC2407] and
[RFC2408]. Also, version 2 of the IKE protocol is specified by a single Request for Comments
[RFC4306]. For these reasons, industry practice supports use of the term IKE to coll ectively refer to

[RFC2407], [RFC2408], [RFC2409], and more recently, [RFC4306].

In the remainder of this document, the term IKE collectively applies to [RFC2407], [RFC2408],
[RFC2409], and [RFC4306]. Where applicable, the appropriate section of each RFC i s referenced in the
document. <1>

This document specifies the extensions to IKE. Each of these IKE extensions is independent and can

be implemented in isolation. There is no sequencing between the individual extensions. An

implementation of this protocol ca n support any combination of these IKE extensions. <2>

1.3.1 Network Address Translation Traversal (NAT -T)

In the original IPsec specifications, the interposition of network address translation (NAT) devices
between IPsec peers preve nts correct IPsec operation. For more information about the

incompatibilities, see [RFC3715] section 2.

Two specifications have been defined to address these incompatibilities. For more information about
the User Datagram Protocol (UDP) encapsulation of ES P packets, see [RFC3948]. UDP -encapsulated
ESP packets are correctly translated by NAT devices. [RFC3947] specifies an IKE extension to detect
the presence of NAT devices between two IPsec peers and to negotiate the use of a UDP -encapsulated
ESP.

Network a ddress translation traversal (NAT -T) negotiation for IKE was first published as an Internet

draft before becoming [RFC3947]. In [DRAFT -NATT], the IKE parameter numbers for NAT -T
negotiation are chosen from the appropriate private use ranges, as specified i n [IANAISAKMP]. In
specification [RFC3947], different IKE parameter numbers were assigned by the Internet Assigned
Numbers Authority (IANA). As a result, a [DRAFT -NATT] -compliant implementation is incompatible
with an [RFC3947] -compliant implementation. Fo r more information, see [DRAFT -NATT].

The NAT -T extension specified in this document enables IKE implementations supporting NAT -T to

negotiate the use of either the [DRAFT -NATT] or the [RFC3947] parameters. This specification does

15 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

not extend the NAT -T prot ocol itself. It negotiates only the interpretation of the NAT -T IKE parameter
numbers. Also, this document specifies the support of NAT -T IKE for IPsec transport mode only.

The extension negotiates the use of the [DRAFT -NATT] or [RFC3947] parameters as fol lows:

1. The host signals which revisions of the specification it supports (that is, [DRAFT -NATT],

[RFC3947], or both) by sending vendor ID payloads ("RFC 3947" or "draft - ietf - ipsec -nat - t - ike -
02 \ n") with its first IKE message. See section 1.7, Capability Nego tiation.

2. On receipt of the first IKE message from the peer, the host looks up the vendor ID payloads to
determine which revision of the NAT -T protocol to use. If both revisions are supported by both
hosts, preference is given to [RFC3947] over [DRAFT -NATT].

For details, see section 3.2.

1.3.2 IKE Fragmentation

IKE uses UDP as a transport. IKE messages can be sufficiently large; so the underlying IP layer might

fragment them, as described in [RFC791] sectio n 2.3. This fragmentation typically happens with IKE
messages that contain certificate chains. To avoid fragmentation -based attacks, fragmented UDP

packets are commonly blocked by firewalls and routers. Blocking the fragmented UDP packets can
lead to IKE f ailures that are especially difficult to diagnose. The IKE fragmentation extension that is
specified in this document avoids fragmentation at the IP level by fragmenting IKE packets into
smaller UDP packets that the underlying IP layer is guaranteed not to fragment.

Hosts that support IKE fragmentation advertise this capability through a "FRAGMENTATION" vendor ID
payload; for more information, see section 1.7. If both peers support fragmentation, a fragmentation
timer is started whenever a message is sent. If the timer expires, it is assumed that the message that

is associated with the timer did not reach its destination because it was too large to traverse the
intervening network. In this case, the message is split into several small fragments, and all thes e
small fragments are sent.

So that the destination host can correctly reassemble the fragmented message, each fragment carries
a fragment ID that is unique to the original message and a fragment number that is unique to the

particular fragment. Fragment n umbers range from 1 to N, where N is the number of fragments for a

message.

Upon receipt of a fragment, the receiving host verifies whether it has already received other fragments
for that fragment ID. If not, the receiving host starts a reassembly timer. It then verifies whether it
has received all N fragments for the message, where the Nth fragment is indicated by a particular bit
in the fragment. If the fragment reassembly timer expires before all fragments are correctly received,
the receiving host has to discard all fragments.

For details, see section 3.3.

1.3.3 Authentication Using a Cryptographically Generated Address

This extension specifies a new authentication method for IKE based on cryptograp hically generated
addresses (CGAs), as specified in [RFC3972]. A CGA is an IPv6 address for which the interface

identifier (that is, the low -order 64 bits) is generated by computing a cryptographic hash function of a

public key (for more information about the cryptographic hash function, see [SCHNEIER] chapters 2
and 18).

Hosts that support CGA authentication advertise their capability through an "IKE CGA version 1"
vendor ID payload. CGA authentication is negotiated as a regular IKE authentication method; see
section 1.7, Capability Negotiation. The CGA verification that occurs during this authentication ensures
that the remote peer has access to the private key that was used to generate the CGA. This CGA

verification uses the corresponding public key and a parameters structure that contains information
originally used to generate the CGA. The public key and parameters structure must, therefore, be is

16 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

sent to the host that verifies the CGA. The public key is transmitted within an IKE certificate payload,
and the parameters structure is transmitted by using a new CGA identification payload as part of the

IKE main mode (MM) negotiation. Successful validation of the CGA completes the IKE main mode
negotiation.

For details, see section 3.4.

1.3.4 Fast Failover

This extension reduces the time required for a client to restore an IPsec security association (SA) to

the virtual IP address for a cluster of hosts after a failure on one of the hosts that is sharing the virtual
IP address.

The clien t uses a "Vid - Initial -Contact" vendor ID payload (see section 1.7, Capability Negotiation) to
signal to the cluster that it does not have any main mode security association (MM SA) or quick mode
security association (QM SA) established with the cluster so that the IKE session can be reallocated to
a different node within the cluster. The server uses an "NLBS_PRESENT" vendor ID payload (see
section 1.7, Capability Negotiation) to indicate to the client that the client is to use a shorter quick

mode idle time r. In this way, a new QM SA is renegotiated faster if a failover occurs.

For more information about clusters based on virtual IP addresses, see [MSFT -WLBS]. For
specifications, see sections 3.5 and 3.6.

1.3.5 Negotiation Discovery

IK E Protocol Extensions enable a client to determine whether a remote peer supports IPsec -protected
communications.

Negotiation discovery introduces new IPsec policy options. In the case of outbound traffic, if the traffic
matches a negotiation discovery pol icy, the host sends the packet in Cleartext and starts an IKE
negotiation in parallel. If the remote peer is not IPsec -capable, the IKE negotiation eventually times
out, and the connection stays in Cleartext. If the peer is IPsec -capable and the IKE negoti ation

eventually succeeds, the connection starts using the negotiated SA. To enforce that a once -secured

flow can never downgrade back to Cleartext, this extension maintains a per - flow state table that is
looked up for every packet.

In the case of inbound traffic, negotiation discovery supports a policy -specified boundary mode in
which the host can accept both Cleartext and secured connections to allow inbound traffic from non -
IPsec -capable hosts in addition to secure connections from IPsec -capable hosts. T he flow state table
determines if an incoming Cleartext packet can be accepted.

For details, see section 3.7.

1.3.6 Reliable Delete

This extension enables a peer to reliably confirm the deletion of a security association that is
establishe d with another peer. The original IKE specification does not require the acknowledgment of

Delete payloads.

This capability is advertised through additional ISAKMP payloads. The standard IKE Delete message is
sent with an additional ISAKMP Nonce payload (a s specified in [RFC2408] section 3.13) appended. The
host starts a retransmission timer when sending the Delete message. On receipt of the Delete
message, the host constructs an acknowledgment message that contains an ISAKMP Nonce payload,
an ISAKMP Delete payload, and the Message ID from the received Delete message in the ISAKMP

header. On receipt of the acknowledgment message, the host verifies that the Message ID matches
the Message ID that was sent with the Delete message. On expiration of the retransmi ssion timer, the
Delete message is retransmitted.

17 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

For details, see section 3.8.

1.3.7 Denial of Service Protection

A responder that implements the IKE protocol has to create states for all correctly formed initial
requests, even if the i nitiator is flooding the responder with packets from multiple incorrect IP
addresses. The vulnerability to denial -of -service (DoS) attacks is mitigated if responders do not create
any state until the peer can prove that it exists at a routable address.

Thi s extension enables a responder to delay creating state until it has verified the following:

1. That the source of a message is not a spoofed IP address.

2. When a threshold of incoming requests has been reached.

For details, see section 3.9.

1.3.8 IKE/AuthIP Co-Existence

This extension allows two peers that are both IKEv1 and authenticated IP (AuthIP) -capable to
negotiate the use of AuthIP over IKEv1. This extension is specified in [MS -AIPS] section 1.7 and also
applies to IKE. <3>

1.3.9 IKE SA Correlation (IKEv2)

This extension allows two different IKEv2 IKE_SA to be correlated together. Assume that an IKE_SA
has been established. This is called SAoriginal. At a later time, to ensure that the client credentials are
still valid, but witho ut tearing down the existing SA, a new IKE_SA (called SAcurrent) can be built to
embed a new payload in this exchange that securely correlates this SA with the original SA.

1.3.10 IKE Server Internal Addresses Configuration Attributes (IKEv2)

This extension allow s the IKEv2 client endpoint of an IPsec remote access client (IRAC), as specified in
[RFC4306] section 2.19, to determine the internal IPv4 and IPv6 addresses of the IPsec remote access
server (IRAS), as also specified in [RFC4306] section 2.19.

1.3.11 Xbox Multi player Gaming (IKEv2)

This extension is used by two IKEv2 peers negotiating SAs for Xbox multiplayer gaming scenarios.
There are two vendor ID payloads used for this extension. The first vendor ID payload, "Microsoft
Xbox One 2013", is used by an IKEv2 ini tiator endpoint to show that this SA negotiation is for Xbox
multiplayer gaming. The second vendor ID payload, "Xbox IKEv2 Negotiation", and an associated

identifier are used by negotiating peers to distinguish between various types of multiplayer gaming
secure connections and to do some throttling based on the type. Details of these extensions are
specified in section 3.13.

1.3.12 IPsec Security Realm (IKEv2 transport mode)

An IPsec "Security Realm " defines per -application IPsec policies and the set of "related " applications
whose network traffic is secured by these policies. The security realm refers to the common set of
crypto settings used for IPsec SA negotiation, and the credentials used for authentication. Details of
this extension are specified in section 3 .14.

This extension is used by two IKEv2 peers negotiating transport mode SAs for scenarios involving per -
application IPsec policies. This extension uses a vendor ID payload called "MSFT IPsec Security Realm

18 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Id". The vendor ID payload is associated with a 16 -byte identifier. This identifier is used as an optional
selector to choose an appropriate IPsec policy for negotiation.

If the message from the initiator for negotiating the child SA does not have aan "MSFT IPsec Security
Realm Id" vendor ID, but the pa rent IKE SA is associated with a security realm policy, then this

message will be discarded by the responder and the child SA negotiation will be failed.

1.3.13 Extension to RFC Cross Reference

The following table summarizes h ow each IKE extension extends each of the applicable RFCs.

IKE extension
Extends
[RFC2407]

Extends
[RFC2408]

Extends
[RFC2409]

Extends
[RFC3947]

Extends
[RFC4306]

IKE
version

NAT-T transport
mode only

(1) (2) (3) (7) IKEv1

IKE
fragmentation

 (3) (8) IKEv1

CGA
authentication

(4) (5) (3) (9) IKEv1

Fast failover (3) (10) IKEv1

Negotiation
discovery

 (3) (6) (10) IKEv1

Reliable delete (11) IKEv1

Denial of Service
protection

 (6) (12) IKEv1

IKE SA
Correlation

 (13) IKEv2

Configuration
Attribute

 (14) IKEv2

1. Adjunction of an encapsulation mode in the private range. Encapsulation mode is specified in

[RFC2407] section 4.5.

2. Adjunction of a vendor ID. Vendor ID is as specified in [RFC2408] section 3.16.

3. Adjunction of payloa d types in the private range. Payload types are specified in [RFC2408] section
3.1.

4. Adjunction of an authentication method within an ISAKMP SA payload, as specified in [RFC2407]
section 4.6.1.

5. Adjunction of an identification type for an ISAKMP Identificati on payload from the private

Identification Type range, as specified in [RFC2407] section 4.6.2.

6. Adjunction of a notify message type from the private range. The notify message types are
specified in [RFC2408] section 3.14.1.

7. Negotiation of the interpretatio n of payload types and encapsulation modes.

8. Fragmentation and reassembly. Packet construction and decoding for IKE are specified in
[RFC2409] section 5.

19 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

9. Extends the IKE phase 1 exchange using certificates. For more information, see [RFC2409] section
5.1.

10. Extends the IKE phase 1 exchange. For more information, see [RFC2409] section 5. Extends the
QM SAs negotiation. For more information, see [RFC2409] section 5.5.

11. Extends the Notify exchange. For more information, see [RFC2409] section 5.7.

12. Extends the IKE phase 1 exchange. For more information, see [RFC2409] section 5.1.

13. This extension allows two different IKEv2 IKE_SA to be correlated together for the purpose of
ensuring that the client credentials are still valid but without tearing down the existing SA. When
validation is required, a new IKE_SA (called SAcurrent) can be built to embed a new payload in
this exchange that securely correlates this SA with the original SA.

14. This extension allows the IKEv2 client endpoint of an IPsec remote access client (IRAC), as

specified in [RFC4306], to determine the internal IPv4 and IPv6 addresses of the IPsec remote
access server (IRAS), also as specified in [RFC4306].

1.4 Relationship to Other Protocols

IKE is used for the authentication and keying of IPsec SAs, as specified in [RFC4301] section 3. IKE
relies on UDP as a transport, as specified in [RFC768].

1.5 Prerequisites/Preconditions

The followin g sections describe the prerequisites and preconditions for using IKE protocol extensions:

Á General Prerequisites/Preconditions (section 1.5.1)

Á CGA Authentication Prerequisites/Preconditions (section 1.5.2)

1.5.1 General Prerequisites/Preconditions

IKE assumes that both the initiator and the responder have an IP address and have UDP connectivity.
IKE also assumes that the initiator knows the responder's IP address (for example, through manual
configuration or through a policy lookup in the case of tunnel mode).

Successful establishment of a QM SA using IKEv1 requires that the initiator and the responder have at
least one common authentication method and a common set of cryptographic parameters for the MM
and the QM SAs. For authentication using certificates, each peer validates the remote peer certificate
chain to a locally trusted root certificate, as specified in [RFC2409] section 5.1. For pre -shared key

authentication, both peers are required to share the same pre -shared secret, as specified in
[RFC2409] section 5.4.

1.5.2 CGA Authentication Prerequisites/Preconditions

For CGA authentication, as specified in [RFC3972] section 1, the peers must need to possess a CGA

and the associated self -signed certificate.

1.6 Applicability Statement

Á NAT-T applies when NAT devices bet ween the IPsec peers can otherwise prevent the

establishment of IPsec SAs.

Á IKE fragmentation applies when intermediary devices in the path between the IPsec peers can
drop fragmented UDP datagrams, that can prevent the establishment of IPsec SAs.

20 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Á Authentic ation using CGA applies when the IPsec peers do not share a common credential
distribution infrastructure. CGA authentication allows such peers to verify that the remote peer

has access to the public -private key pair used to generate the CGA. CGA authentic ation only
applies to IPv6 addresses.

Á Fast failover applies when IPsec clients connect to a cluster of hosts using IPsec, and it is
necessary to minimize the amount of time required for a client to failover from one host in the
cluster to another.

Á Negotiat ion discovery applies when hosts communicate with both IPsec -aware and non - IPsec -
aware devices, and it is necessary to minimize the amount of time required to detect IPsec -
awareness on each peer.

Á Reliable delete applies when a peer needs to reliably confir m the deletion of a security association

(SA) established with another peer.

Á IKEv2 SA Correlation applies when two different IKEv2 SAs need to be correlated.

Á IKEv2 Server Internal Addresses Configuration Attributes apply when the client endpoint of an

IPse c remote access client needs to determine the internal IPv4 and IPv6 addresses of the IPsec
remote access server.

1.7 Versioning and Capability Negotiation

This section covers versioning issues in the following areas:

Á Protocol Versions: The protocol version is part of the ISAKMP header. IKEv1 uses protocol
version 1.0, as specified in [RFC2408] section 3.1. IKEv2 uses protocol version 2.0, as specified in
[RFC4306] section 3.1.

Á Security and Authentication Methods: IKE supports multiple authentication and encryption
algorithms for both the MM SAs and QM SAs, as specified in [RFC2408] section 5.6. IKE supports
the negotiation of the authentication method, the Diffie -Hellman group, and the hashing and
authentication algorithm using [RFC2409], [GSS], or [RFC3972]. <4>

Á Cryptographic Parameters: Cryptographic parameters are negotiated in different phases of the
protocol (that is, initial exchange, MM, and quick mode, as sp ecified in [RFC2409] section 5).

Details about algorithm and parameter numbers are specified in [IANAIPSEC] and
[IANAISAKMP]. <5>

Á Capability Negotiation: IKE can advertise specific capabilities through vendor ID payloads, as
specified in [RFC2408] section 3.16. <6>

1.8 Vendor -Extensible Fields

The IKE extensions specified in this document do not introduce any new vendor -extensible fields.
These extensions inherit the extensibility features of ISAKMP (as specified in [RFC2408]) and IKE (as
specified in [RFC2409]).

1.9 Standards Assignm ents

No standards assignments have been received for the IKE extensions described in this document. All
values used in these extensions are in private ranges, as specified in [IANAIPSEC] and [IANAI SAKMP].

21 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Messages

2.1 Transport

IKE messages MUST be transported over ISAKMP, as specified in [RFC2408], which uses UDP port 500

by default. IKE MUST run over ports 500 and 4500 if a NAT has been detected, as specified in
[RFC3947] section 3.2; otherwise, it MAY be run over a different port. <7>

All fields are sent and encoded in network order unless otherwise specified.

2.2 Message Syntax

2.2.1 NAT -T Payload Types

Each ISAKMP message consists of a header and a variable number of payloads, each i dentified by a 1 -
octet payload type value in its Next Payload field, as specified in [RFC2408] section 3.1. NAT -T adds

two new payload types: NAT Discovery (NAT -D) and NAT Original Address (NAT -OA). The payload
type values for these payload types are speci fied in [RFC3947]. For more information about an
alternative set of payload type values, see [DRAFT -NATT]. <8>].

The following table describes the NAT-D payload type values are as follows .

NAT Discovery (NAT -D) payload type value Revision

0x82 [DRAFT -NATT]

0x14 [RFC3947]

The following table describes the supported NAT -OA payload type types are as follows .

Supported NAT Original Address (NAT -OA) payload type Revision

0x83 [DRAFT -NATT]

0x15 [RFC3947]

2.2.2 NAT -T UDP Encapsulation Modes

The Encapsulation Mode f ield is located in the SA payload, as specified in [RFC2407] section 4.5.
Specification [RFC3947] introduces new encapsulation mode values for this field. For more information
about an alternative set of these values, see section 3.2.4.1 and [DRAFT -NATT]. < 9>].

The following table describes lists the UDP -Encapsulated -Tunnel values.

UDP - Encapsulated - Tunnel Revision

0xF003 [DRAFT -NATT]

0x0003 [RFC3947]

The following table describes lists the UDP -Encapsulated -Transport values.

22 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

UDP - Encapsulated - Transport Revision

0xF004 [DRAFT -NATT]

0x0004 [RFC3947]

2.2.3 IKE Message Fragment

An IKE message fragment contains:

Á An ISAKMP header, as specified in [RFC2408] section 3.1.

Á A single, non -encrypted, Fragment payload.

2.2.3.1 Fragment Payload Packet

The Fragment payload is an ISAKMP payload, as specified in [RFC2408] section 3.1. The payload type
value for a Fragment payload is 0x84 from the private payload type range, as specified in [RFC2408]
section 3.1. A Fragment payload MUST be preceded by an ISAKMP header that has this payload type.

The following illustration describes the Fragment Payload packet .

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Next_Payload RESERVED Payload_Length

Fragment_ID Fragment_Number Flags

Fragment_Data (variable)

...

Next_Payload (1 byte): Identifier for the payload type, which MUST specify the next payload in the
message. For a Fragment payload, this field MUST be set to 0.

RESERVED (1 byte): This field MUST be set to zero. The responder MUST ignore this field on receipt.
This behavior is identical to IKE.

Payload_Length (2 bytes): This field MU ST be the length, in bytes, of the payload, including the

generic payload header. This is identical to IKE.

Fragment_ID (2 bytes): This field is 2 bytes and contains the fragment ID. It MUST specify the
same value for every fragment that is generated from a particular IKE message.

Fragment_Number (1 byte): This field MUST indicate the order in which the fragments are sent.
The first fragment MUST have a fragment number of 1, and each subsequent fragment MUST have
a fragment number that is one greater than t hat of the previous fragment. Because the maximum
size of an IKE message is limited to 64 KB by UDP and fragments are aligned on the minimum

MTU for IPv4 and IPv6, the fragment number cannot wrap.

Flags (1 byte): The Flags field MUST have the following val ue.

23 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

LAST_FRAGMENT

0x01

This flag indicates the last fragment in the message.

All other bits of the Flags field MUST be set to zero on the initiator and ignored on the responder.
For more details on flag semantics, see section 3.1.

Fragmen t_Data (variable): This field MUST contain the fragment data. The size of the
Fragment_Data field MUST be computed by subtracting the size of the Fragment payload header
(8 bytes) from the value of the Payload_Length field.

2.2.4 AUTH_CGA Authentication Method Packet

AUTH_CGA is an authentication method within an ISAKMP SA payload, as specified in [RFC2407]
section 4.6.1. The format of the SA payload is the following, as specified in [RFC2408] section 3.4.

Á A number of Proposal payloads, as specified in [RFC2408] section 3.5.

Á Within each Proposal payload, there is a number of Transform payloads, as specified in [RFC2408]

section 3.6.

Á Within each Proposal payload, there is a number of Data Attributes payloads, as specified in
[RFC2408] section 3.3. In a Data Attribute payload, an authentication method is indicated by the
value 0x0003 in the Attribute Type field of the Data Attribute payload, as specified in [RFC2409]
Appendix A. The particular authentication method is determined by the value of the Attribute
Value field, as specified in [RFC2409] Appendix A.

The Data Attribute payload for the AUTH_CGA Authentication method has the format seen in the

following AUTH_CGA packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

A Attribute_Type Attribute_Value

A - One (1 bit): This field MUST be set to 1.

Attribute_Type (15 bits): For the AUTH_CGA authentication method, this field MUST be set to the
value 0x0003. This value corresponds to the authentication method, as specified in [RFC2409]
Appendix A.

Attribute_Value (2 bytes): For the AUTH_CGA authentication method, this field MUST be set to the

value 0xFDED in network order. This value is from the private authentication method range, as
specified in [RFC2409] Appendix A.

2.2.5 ID_IPV6_CGA Identification Type Packet

ID_IPV6_CGA is an identification type for an ISAKMP Identification payload, as specified in [RFC2407]
section 4.6.2. The ID_IPV6_CGA Identification Type is 0xFA from the private Identification Type range,
as specified in [IANAISAKMP].

The format of the Identification payload for an ID_IPV6_CGA identification type is seen in the following
packet.

24 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Next_Payload RESERVED Payload_Length

Identification_Type Protocol_ID Port

Modifier (16 bytes)

...

...

Collision_Count Extension_fields (variable)

...

Next_Payload (1 byte): This field is the identifier for the payload type of the next payload in the
message. This field MUST be identical to the corresponding IKE field.

RESERVED (1 byte): This field MUST be set to zero. The responder MUST ignore this field on receipt.

This behavior is identical to IKE.

Payload_Length (2 bytes): This field MUST be the length in bytes of the payload, includi ng the
Generic Payload header. This is identical to IKE.

Identification_Type (1 byte): This field is the value describing how the fields after the Port field are
to be interpreted. The ID_IPV6_CGA identification type MUST be 0xFA, from the private
Identification Type range, as specified in [IANAISAKMP].

Protocol_ID (1 byte): This field MUST be set to zero. The responder MUST ignore this field on

receipt. This is identical to IKE.

Port (2 bytes): This field MUST be set to zero. The responder MUST ign ore this field on receipt. This
is identical to IKE.

Modifier (16 bytes): This field MUST be as specified in [RFC3972] section 3.

Collision_Count (1 byte): This field MUST be as specified in [RFC3972] section 3.

Extension_fields (variable): This field MUST be as specified in [RFC3972] section 3.

2.2.6 Notify Payload Packet

The Notify Payload packet is specified in [RFC2408] section 3.14. The format is as foll ows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Next_Payload RESERVED Payload_Length

Domain_of_Interpretation

Protocol - ID SPI_size Notify_Message_Type

25 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Security_Parameter_Index (variable)

...

Notification_Data (variable)

...

Next_Payload (1 byte): This field MUST be as specified in [RFC2408] section 3.14.

RESERVED (1 byte): This field MUST be as specified in [RFC2408] section 3.14.

Payload_Length (2 bytes): This field MUST be as specified in [RFC2408] section 3.14.

Domain _of_Interpretation (4 bytes): The domain of interpretation (DOI) field MUST be set to 1
(IPSEC_DOI) as specified in [RFC2408] section A.2.

Protocol - ID (1 byte): This field MUST be as specified in [RFC2408] section 3.14.

SPI_size (1 byte): This field MUST b e as specified in [RFC2408] section 3.14. The SPI_size is
updated to a value of 8 when the Message ID is appended to the notification data as described in
this section under Notification_Data .

Notify_Message_Type (2 bytes): This MUST identify the type of notification being sent with this
message, in network byte order. The notify message types MUST be one of the following values,
which are from the private range, as specified in [RFC2408] section 3.14.1.

Value Meaning

0x9C43

NOTIFY_STATUS (check)

This no tify message type is a status code indicating the failure to establish a security association

(SA) with a peer.

0x9C44

NOTIFY_DOS_COOKIE (check)

This notify message type is used by the DoS protection extension.

0x9C45

EXCHANGE_INFO

This notify message type is used by the negotiation discovery extension.

Security_Parameter_Index (variable): This is the Security Parameter Index (SPI) of size SPI_size.
This field MUST be as specified in [RFC2408] section 3.14.

Notification_Data (variable): The content of this field depends on the Notify_Message_Type
field. The following list describes field content for various notify message types. If the peer has
previously sent the Vendor ID "MS NT5 ISAKMPOAKLEY" as specified in the footnote regarding

Capability Negotiat ion in section 1.7, and the notify corresponds to the quick mode exchange, then
the Message ID (in network order) of the quick mode is appended as the first 4 bytes of the

notification data. In particular, the NOTIFY_DOS_COOKIE will never have the Message ID in the
notification data because that is always a main mode operation. The EXCHANGE_INFO notify will
always have the Message ID appended if the peer sends the above vendor ID. The
NOTIFY_STATUS will only have the Message ID appended if the failure is a quick mode failure.

Field content MUST correspond to the Notify_Message_Type as follows:

Á NOTIFY_STATUS (4 Bytes): MUST be a status code indicating failure. The values transmitted
as status codes are implementation -specific. <8>

26 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Á NOTIFY_DOS_COOKIE (8 Bytes): MUST be the responder cookie value.

Á EXCHANGE_INFO (4 Bytes): The flag values MUST be one of the following values.

Value Meaning

0x00000001 IKE_EXCHANGE_INFO_ND_BOUNDARY

This flag is used by the negotiation discovery extension.

0x00000002 IKE_EXCHANGE_INFO_GUARANTEE_ENCRYPTION

This flag is used by the negotiation discovery extension.

2.2.7 Notify Payload (IKEv2) Packet

The Notify Payload packet is specified in [RFC4306] section 3.10. The format is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Protocol - ID SPI_size Notify_Message_Type

SPI

Notification_Data (variable)

...

Protocol - ID (1 byte): This field MUST be as specified in [RFC4306] section 3.10.

SPI_size (1 byte): This field MUST be as specified in [RFC4306] section 3.10.

Notify_Message_Type (2 bytes): This MUST identify the type of notification being sent with this
message, in network byte order. The notify message types MUST be one of the following values,
which are from the private error range, as specified in [RFC4306] section 3.10.1.

Value Meaning

0x3039 Notify status. This notify message type is used to tell th e peer of a private failure reason.

SPI (4 bytes): The Security Parameter Index (SPI) field MUST be as specified in [RFC4306] section
3.10.

Notification_Data (variable): The content of this field depends on the Notify_Message_Type
field. The following li st describes field content for various notify message types. Field content
MUST correspond to the notify message type as follows:

Á NOTIFY_STATUS (4 bytes): MUST be a status code indicating failure. The values transmitted
as status codes are implementation s pecific. <9>

2.2.8 Configuration Attribute (IKEv2) Packet

The Configuration Attribute packet is specified in [RFC4 306] section 3.15.1. The format is as follows.

27 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

R Attribute Type Length

Value (variable)

...

R (1 bit): This reserved field MUST be as specified in [RFC4306] section 3.15.1.

Attribute Type (15 bits): This field MUST be as specified in [RFC4306] section 3.15.1.

Length (2 bytes): The length of the data in the value field.

Value (variable): The internal IPv4 or IPv6 address of the server.

Two additional Attribute Types from the p rivate -use range are defined as follows.

Attribute type
Length
(bytes) Value

INTERNAL_IP4_SERVER

0x5BA0

4 The internal IPv4 address of the server.

INTERNAL_IP6_SERVER

0x5BA1

16 The internal IPv6 address of the server.

2.2.9 Correlation Payload (IKEv2) Packet

The Correlation Payload (IKEv2) packet format is as follows. There are two IKE_SAs here, SAcurrent
and SAorigina l. This payload is sent under the protection of SACurrent. The payload type value for a
Correlation payload is 0xc8 from the private payload type range, as specified in [RFC4306] section
3.2.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Next_Payload RESERVED Payload_Length

IKE_SA_Initiator_SPI

...

IKE_SA_Responder_SPI

...

Correlation_Hash (variable)

...

28 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Next_Payload (1 byte): This field MUST be as specified in [RFC2408] section 3.2.

RESERVED (1 byte): This field MUST be as specified in [RFC2408] section 3.2.

Payload_Length (2 bytes): This field MUST be as specified in [RFC2408] section 3.2.

IKE_SA_Initiator_SPI (8 bytes): This MUST be set to the initiator's SPI from the IKE_SA being

correlated, SAoriginal. This value is taken from the IKEv2 header of the prior IKE_SA, as specified
in [RFC4306] section 3.1.

IKE_SA_Responder_SPI (8 bytes): This MUST be set to the responder's SPI from the IKE_SA
being correlated, SAoriginal. This value is taken from the IKEv2 header of the p rior IKE_SA, as
specified in [RFC4306] section 3.1.

Correlation_Hash (variable): This computes a keyed hash using the SAcurrent's negotiated PRF
function. The key used is the SK_ai on the initiator and the SK_ar for the responder from

SAoriginal. See [RFC 4306] section 2.14. The correlation hash is as follows.

 prf(SK_a(i or r),

SAcurrent.InitiatorSpi|SAcurrent.ResponderSpi|SAoriginal.InitiatorSpi|SAoriginal.responde

rSpi)

2.2.10 Security Realm Vendor ID Payload (IKEv2)

The "MSFT IPsec Security Realm Id" vendor ID payload isSHOULD<10> be constructed as specified in

[RFC5996] section 3.12. The vendor ID payload has a variable length field call ed Vendor ID or VID. In
the case of this extension, the first 16 bytes is an MD5 hash of the string "MSFT IPsec Security Realm
Id". The subsequent bytes contain the actual Security Realm ID. <11>

29 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Protocol Details

The follow ing sections specify protocol details, including abstract data models and message processing
rules, that are common and that are specific to NAT -T, IKE fragmentation, CGAs, the fast - failover
client, the fast - failover server, negotiation discovery, reliable delete, denial of service protection, IKE
SA correlation (IKEv2), IKE Server Internal Addresses Configuration Attributes (IKEv2), dead -peer
detection, Xbox multiplayer gaming (IKEv2) vendor IDs, and security realm ID (IKEv2) vendor IDs.

3.1 Common Details

This section documents deviations from "The Internet IP Security Domain of Interpretation for
ISAKMP", as specified in [RFC2407]; "Internet Security Association and Key Management Protocol

(ISAKMP)", as specifie d in [RFC2408]; "The Internet Key Exchange (IKE)", as specified in [RFC2409];
"Internet Key Exchange (IKEv2) Protocol", as specified in [RFC4306]; and "Negotiation of NAT -
Traversal in the IKE", as specified in [RFC3947]. These deviations affect each of the se RFC standards
as described in the table in section 1.3.13.

The flags bit semantics used by this document are as follows: for a flag, its "value" signifies a mask
which, when its bitwise logical AND with the flags field is computed, yields either a zero value (all zero
bits) if the flag is unset (set to FALSE), and a nonzero value otherwise. For example, a flag

mask/value of 0x01 signifies that the bitwise logical AND of a single -byte flag field with 0x01 is zero if
and only if the flag is set to FALSE. A ssuming no other flag masks/values for this field, then, both
0x00 and 0x01 are valid values for this single -byte flag field: the former corresponding to the flag
being unset, and the latter to the flag being set.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol in addition t o what is specified in [RFC2407], [RFC2408],
[RFC2409], [RFC3947], and [RFC4301] for IKEv1, or [RFC4306] for IKEv2. The described organization
is provided to explain how the protocol behaves. This document does not mandate that
implementations adhere to th is model as long as their external behavior is consistent with the

behavior described in this document.

The following main data elements are required by any implementation:

Á Main mode security association database (MMSAD): A database that contains the operational state
for each MM SA. The entry for each MM SA contains the following data elements.

For each IKE MM SA, the following information MUST be maintained:

Á All states that are necessary for managing a standard IKE MM SA as defined in [RFC2409]
appen dix A for IKEv1 and [RFC4306] section 3.3.2 for IKEv2.

Á All states that are necessary for management of other IKE extensions for the SA, as specified
in this section and in sections 3.2.1, 3.3.1, 3.4.1, 3.5.1, 3.6.1, 3.7.1, 3.8.1 for IKEv1 only,
and 3.10.1 for IKEv2 only.

The MMSAD MUST be indexed by the local and peer IP addresses and the initiator and responder
cookies found in the ISAKMP header, as specified in [RFC2408].

Á Peer authorization database (PAD): The PAD and its management operations are specifi ed in
[RFC4301] section 4.4.3. This specification does not extend that definition. The PAD that is

referred to in this specification contains rules that describe if and how IKE negotiates SAs with a
remote peer, as specified in [RFC4301].

All states that a re necessary for the management of IKE extensions are described in section 3.4.1
for IKEv1 only.

30 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The PAD MUST be looked up by using tuples that are composed of local and remote IP addresses.

Á Security policy database (SPD): The SPD and its management operat ions are specified in

[RFC4301] section 4.4.1. The SPD that is referred to in this specification contains rules that
describe if and how IPsec protection is applied to inbound or outbound IP traffic. The SPD MUST be

looked up by using tuples that are compo sed of flow information (that is, source and destination IP
addresses, port numbers, and protocol) for the packet.

All states that are necessary for management of IKE extensions are described in section 3.7.1 for
IKEv1 only.

Á Security association database (SAD): The SAD contains the parameters of each QM SA. The SAD
and its management operations are specified in [RFC4301] section 4.4.2.

All states that are necessary for management of IKE extensions are described in section 3.7.1 for

IKEv1 only.

Á Connection st ate table: Stores a set of connection entries. These connection entries correspond to
active TCP/UDP/ICMP or protocol -only connections.

The possible connection entries are:

Á V4 TCP/UDP state entry: {IPv4 source address {DWORD}, IPv4 destination address
{DWO RD}, IP protocol {DWORD}, source port {DWORD}, destination port {DWORD}}.

Á V6 TCP/UDP state entry: {IPv6 source address {16 bytes}, IPv6 destination address {16
bytes}, IP protocol {DWORD}, source port {DWORD}, destination port {DWORD}}.

Á V4 ICMP state entry : {IPv4 source address {DWORD}, IPv4 destination address {DWORD}, IP
protocol {DWORD}, ICMP type {DWORD}, ICMP code {DWORD}}, as defined in [RFC792].

Á V6 ICMP state entry: {IPv6 source address {16 bytes}, IPv6 destination address {16 bytes},
IP protocol {DW ORD}, ICMP type {DWORD}, ICMP code {DWORD}}, as defined in [RFC792].

Á V4 protocol -only state entry: {IPv4 source address {DWORD}, IPv4 destination address

{DWORD}, IP protocol {DWORD}}.

Á V6 protocol -only state entry: {IPv6 source address {16 bytes}, IPv6 des tination address {16
bytes}, IP protocol {DWORD}}.

All states that are necessary for management of IKE extensions are described in section 3.7.1 for
IKEv1 only.

Á Other states: Additional states are defined in section 3.9.1 and section 3.11.1.

Note The prec eding conceptual data can be implemented by using a variety of techniques. Any data

structure that stores the preceding conceptual data can be used in the implementation.

3.1.2 Timers

None beyond what is specified in [RFC2407], [RFC2408], [RFC2409], [RFC3947], or [RFC4306].

3.1.3 Initialization

None beyond what is specified in [RFC2407], [RFC2408], [RFC2409], [RFC3947], or [RFC4306] .

3.1.4 Higher -Layer Triggered Events

None except what is specified in [RFC2407], [RFC2408], [RFC2409], [RFC3947], or [RFC4306].

31 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.5 Message Processing Events and Sequencing Rules

[RFC2407]: Message processing MUST be as specified in [RFC2407] with the following exceptions:

Á [RFC2407] section 4.5.2: "If conflicting attributes are detected, an ATTRIBUTES -NOT-SUPPORTED

Notification Payload SHOULD be returned and the security associati on setup MUST be aborted."

The IKE variant specified by this document MUST NOT terminate the SA setup when it encounters
an unknown attribute.

Á [RFC2407] section 4.5.3: "If an implementation receives a defined IPSEC DOI attribute (or
attribute value) that i t does not support, an ATTRIBUTES -NOT-SUPPORTED SHOULD be sent and
the security association setup MUST be aborted, unless the attribute value is in the reserved
range."

The IKE variant specified by this document MUST NOT terminate the SA setup when it enco unters
an unknown attribute.

Á [RFC2407] section 4.5.3: "Notification Status Messages MUST be sent under the protection of an

ISAKMP SA, either as a payload in the last main mode exchange; in a separate informational
exchange after main mode or aggressive mo de processing is complete; or as a payload in any
quick mode exchange."

The IKE variant specified by this document SHOULD send notifications unprotected by an SA,
without the hash payload, as specified in [RFC2409] section 5.7, if the notify occurs during the
first two round trips of main mode. If the notify occurs in the last round trip of main mode, then
this notify SHOULD be protected by the SA. <12>

[RFC2408]: Message processing MUST be as specified in [RFC2408] with the following exceptions:

Á [RFC2408] section 3.9: "The certificate payload MUST be accepted at any point during an
exchange."

The IKE variant specified by this document MUST NOT accept certificate payloads at any time; a
certificate payload MUST be in a message that contains an ID payload.

Á [R FC2408] section 5.1: "When transmitting an ISAKMP message, the transmitting entity (initiator
or responder) MUST do the following: 1. Set a timer and initialize a retry counter."

The IKE variant timer specified by this document does not set a retransmissio n timer in the
following cases:

Á The responder never sets a retransmission timer.

Á A notify message is sent to a peer.

Á A delete message is sent to a peer that does not support reliable deletes, that is, a peer that
has not sent the Microsoft Implementation V endor ID.

[RFC2409]: Message processing MUST be as specified in [RFC2409].

[RFC3947]: Message processing MUST be as specified in [RFC3947] with the following exceptions:

Á [RFC3947] section 5.2: "In the case of transport mode, both ends MUST send both origin al

initiator and responder addresses to the other end" and "The initiator MUST send the payloads if it
proposes any UDP -Encapsulated -Transport mode, and the responder MUST send the payload only
if it selected UDP -Encapsulated -Transport mode."

The IKE varia nt specified by this document MUST send the NAT -OA if the host is behind a NAT.

[RFC4306]: Message processing MUST be as specified in [RFC4306] with the following exceptions:

32 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Á [RFC4306] section 2.7: "This hierarchical structure was designed to efficiently e ncode proposals
for cryptographic suites when the number of supported suites is large because multiple values are

acceptable for multiple transforms. The responder MUST choose a single suite, which MAY be any
subset of the SA proposal following the rules b elow:"

The responder MUST consult its SPD and loop through the SPD entries, comparing each SPD entry
in turn with all the proposal suites from the peer. If a match is found from the list of proposal
suites, the responder MUST accept that proposal suite. T his MUST repeat until a match is found, or
policy comparison, and the negotiation fails.

Á [RFC4306] section 3.12: "Writers of Internet -Drafts who wish to extend this protocol MUST define
a Vendor ID payload to announce the ability to implement the extensio n in the Internet -Draft."

The IKE variant specified by this document does not define a Vendor ID to announce the

implementation of CFG attributes described in section 3.11.

3.1.6 Timer Events

None beyond what is specified in [RFC2407], [RFC2408] , [RFC2409], [RFC3947], or [RFC4306].

3.1.7 Other Local Events

None beyond what is specified in [RFC2407], [RFC2408], [RFC2409], [RFC3947], or [RFC4306].

3.2 NAT Trav ersal Details

Using the notation specified in [RFC2409] section 3.2, the generalized form of an IKE phase 1
exchange that uses NAT -T is as shown in the following figure and as specified in [RFC3947] section
3.2.

33 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 1 : IKE phase 1 exchange using NAT - T

The description in this section uses the message numbers from the protocol sequence diagram.

The IKE NAT Traversal Protocol extension exists in two revisions. The [RFC3947] revision is specified

in [RFC3947]. The [DRAFT -NATT] revision is identical to the [RFC3947] revision, except that the

values used for the types defined in sections 2.2.1 and 2.2.2 are those that are specified in [DRAFT -
NATT], instead of those that are specified in [RFC3947]. Both revisions include the negotiation of a
choice of revision supported by both peers. <13> For more information, see [DRAFT -NATT].

3.2.1 Abstract Data Model

When this extension is implemented, the following additional state must be is maintained. This is an
extension to IKE Protocol version 1 as specified in [RFC2409].

Main mode security association database (MMSAD): The entry for each MM SA con tains the following
specific data element for NAT -T:

Á Selected Revision: A flag that MUST specify what revision of the NAT -T protocol extension (as
specified in [RFC3947]) has been selected for this MM SA. For more information, see [DRAFT -

NATT].

3.2.2 Timers

The NAT -T keep -alive timer (per MM SA) is as specified in [RFC3948] section 4. <14>

3.2.3 Initialization

None.

34 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4 Higher -Layer Triggered Eve nts

3.2.4.1 Start of an IKE MM SA Negotiation

As part of the construction of mes sage #1 for a new MM SA negotiation (as specified in [RFC2409]
section 5), a NAT -T supporting host MUST include with its first IKE message extra vendor ID payloads
(as specified in [RFC2408] section 3.16) to advertise its NAT -T revision support (as specifi ed in
[RFC3947] section 3.1). If the host supports only [DRAFT -NATT], it MUST include only the vendor ID
"draft - ietf - ipsec -nat - t - ike -02 \ n" within message #1. If it supports only [RFC3947], it MUST include

only the vendor ID "RFC 3947" within message #1. If it supports both [DRAFT -NATT] and [RFC3947],
it MUST include both vendor IDs "draft - ietf - ipsec -nat - t - ike -02 \ n" and "RFC 3947" within message
#1. <15>

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Receiving Message #1

On receipt of message #1, a NAT -T supporting host MUST check for the presence of the NAT -T vendor
ID payloads that are specified in section 3.2.4.1. If NAT -T vendor ID payloads are present in the

message, the host MUST set the Selected Revision for the corresponding MMSAD entry according to
the following rules:

Á If both hosts support [RFC3947] and [DRAFT -NATT], the host MUST set the Selected Revision to
[RFC3947]. For more information, see [DRAFT -NATT].

Á If both hosts share only one common revision, the host MUST set the Selected Revision to the
common revision.

Á If the hosts do not share a common revision, the host MUST ignore the payload.

Then, the host MUST construct message #2 (as specified in [RFC2409] section 5) and add vendor ID
payloads that advertise its NAT -T capabilities, setting the values of those payloads exactly as it would

if it were constructing IKE message #1. For details, see section 3.2.4.

3.2.5.2 Receiving Message #2

On receipt of message #2, the host MUST check for the presence of NAT -T vendor ID payloads and set
the Selected Revision as specified in section 3.2.5.1.

3.2.5.3 Receiving Other Messages

As specified in [RF C3947] section 5.2, NAT -OA payloads can be sent within the first two quick mode
messages. On receipt of the first or second quick mode message, the host MUST use the Selected
Revision flag of the SA's corresponding entry in the MMSAD to interpret the paylo ad type, as defined
in section 2.2.1.

A UDP Encapsulation type can be negotiated through the SA payload, as specified in [RFC3947]

section 5.1. On receipt of an IKE message that might contain an SA payload, the host MUST use the

Selected Revision flag of t he SA's corresponding entry in the MMSAD to interpret the Encapsulation
Type, as defined in section 2.2.2.

3.2.6 Timer Events

None.

35 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.7 Other Local Events

None.

3.3 IKE Fragmentation Details

Using the notation as specified in [RFC2409] section 3.2, the generalized form of an IKE phase 1
exchange that is authenticated with signatures is as shown in the fo llowing figure, as a fragmentation
example. For more information, see [RFC2409] section 5.

Figure 2 : IKE phase 1 exchange

The description in this section uses the message numbers from the protocol sequence diagram.

3.3.1 Abstract Data Model

When this extension is implemented, the following additional state must be is maintained. This is an
extension to IKE Protocol version 1 as specified in [RFC2409].

36 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Main mode security association database (MMSAD): The entry for each MM SA contains the following
IKE fragmentation ïspecific data elements.

Á Fragmentation supported: A flag that MUST be set if the peer suppo rts receiving fragmented
messages.

Á Fragmentation active: A flag that MUST be set if the IKE messages MUST be fragmented.

Á Fragmentation determination: The fragmentation need is determined by the firing of the
fragmentation timer. See section 3.3.2 and the a ssociated endnotes for more details. After
determining that fragmentation is needed, the chosen MTU MUST be the minimum MTU for the
protocol, which is 576 bytes for IPv4 and 1280 bytes for IPv6.

Á Fragment queue: A queue holding the fragments that correspond to incomplete IKE messages,
indexed by the Fragment ID. Each entry in the queue MUST contain:

Á The Fragment ID.

Á The Fragment Number.

Á A Flag that indicates whether this fragment is the last one (that is, the LAST_FRAGMENT bit is
set in the Fragment payload).

Á The Fragment Data.

For definitions of the previous values, see section 2.2.3.1.

Flow state table: The following information MUST be maintained.

Á Fragment ID counter: MUST be maintained and MUST be a 16 bit number. A Fragment ID counter
SHOULD be implemented as a global counter.

3.3.2 Timers

IKE fragmentation uses the following timers:

Á Fragmentation timer (for each IKE message): This timer MUST trigger triggers fragmentation. The
fragmentatio n timer MUST be started after sending each IKE message. The expiration of the
fragmentation timer MUST indicate indicates that the message is to will be fragmented the next
time it is retransmitted. There MUST be one fragmentation timer per MM SA. The fragme ntation
timer must fire within the retransmission duration of the IKE negotiation and MUSTSHOULD<16>

be between 1 and 5 seconds .<17> .

Á Fragment reassembly timer (for each Fragment ID value): This timer MUST trigger the discarding
of all the fragments receiv ed for this message. The fragment reassembly timer MUST be started
when a Fragment payload is received and the timer has not been started for the corresponding
Fragment ID value. When the fragmentation reassembly timer fires, the delay MUST NOT exceed
90 s econds. <17>

3.3.3 Initialization

The Fragment ID counter ADM element MUST be set to zero.

37 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.3.4 Higher -Layer Triggered Events

3.3.4.1 Start of an IKE MM SA Negotiation

As part of the construction of message #1 for a new MM SA negotiation (as specified in [RFC2409]
section 5), an IKE fragmentation -supporting host MUST include a "FRAGMENTATION" vendor ID
payload (that is, a vendor ID payload that is generated by using the Vendor ID string
"FRAGMENTATION", as specified in [RFC2408] section 3.16) to advertise its fragmentation capability.

3.3.5 Message Processing Events and Sequencing Rules

3.3.5.1 Receivi ng Message #1

On receipt of message #1, the host MUST check for the presence of a "FRAGMENTATION" vendor ID
payload. If a "FRAGMENTATION" vendor ID payload is pres ent in the message, the host MUST set the
Fragmentation supported flag for the corresponding MMSAD entry.

Then, the host MUST construct message #2 (as specified in [RFC2409] section 5) and add the
"FRAGMENTATION" vendor ID payload to advertise its fragment ation capability.

3.3.5.2 Receiving Message #2

On receipt of message #2, the host MUST check for the presence of a "FRAGMENTATION" vendor ID
payload and set the Fragmentation supported flag, as specified in section 3.3.5.1.

3.3.5.3 Receiving Other IKE Messages

On receipt of an IKE message, the host MUST check if the messag e contains a Fragment payload. If a
Fragment payload is present, this payload MUST be the only payload in the message. If not, the host
MUST silently discard the message.

On receipt of a Fragment payload, the host MUST:

Á Retrieve the Fragment ID from the Fr agment payload.

Á Start a fragmentation reassembly timer for this Fragment ID if no fragments are currently queued
for this Fragment ID.

Á If the queue for this Fragment ID already contains a fragment with the same Fragment number,
the host MUST silently discard the message. If not, the host MUST queue the Fragment payload's
fields in the corresponding entry of the MMSAD, indexed by the Fragm ent ID.

In addition, the host SHOULD set the Fragmentation active flag in the corresponding MMSAD

entry. <18>

The host MUST then check whether all Fragment payloads for this Fragment ID have been received
(that is, whether Fragment payloads that have a Fra gment number from 1 to n have been received,

and fragment n has the Flags field set to LAST_FRAGMENT).

The host MUST silently discard all Fragment payloads for this Fragment ID if any of the following error
conditions occur:

Á More than one Fragment payload has the Flags field set to LAST_FRAGMENT.

Á A Fragment payload has been received with a Fragment number greater than the Fragment
number of the fragment with the Flags field set to LAST_FRAGMENT.

38 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If all Fragment payloads for a Fragment ID have been received , the host MUST construct the
reassembled message by concatenating the following:

Á The ISAKMP header from the first fragment.

Á Fragment payloads (without the Fragment payload header) in the order of their Fragment number.

The host MUST then stop the fragment reassembly timer and process the reassembled IKE message
as a typical message.

If the received message is a response to a previously sent message, the host MUST clear the
fragmentation timer for the previously sent message.

If the processing of the IKE me ssage results in the host sending a message, and the Fragmentation
active flag is set for the corresponding MM SA, the host SHOULD fragment this message following the
steps specified in section 3.3.6.1. If the Fragmentation active flag is not set, the host MUST start the

fragmentation timer for the message it is about to send. <19>

3.3.6 Timer Events

3.3.6.1 Expiration of Fragmentation Timer

When the fragmentation timer expires, the host SHOULD start starts fragmenting the message that
caused the timer to start. Note that the host does not need to buffer every message for fragmentation
purposes becau se the IKE protocol has provisions for regenerating lost messages .<21> .

The fragments MUST be constructed as follows:

Á The Fragment ID counter ADM element is incremented.

Á The IKE message is split into "n" fragments that are numbered 1 to n; the size of each fragment
(after adding IP, UDP, and ISAKMP headers) is 576 bytes for IPv4 and 1,280 bytes for IPv6;
however, the last fragment, which contains the remainder of the message, can be smaller.

Á IKE does not adjust packet size based on router MTU advertisement; it continues to send packets
for IPv4 (576 bytes) and IPv6 (1,280 byes). Therefore, IP - level fragmentation is possible in this

case.

Á For each fragment, a message MUST be constructed as follows:

Á The ISAKMP header of the original IKE message has the Next Payload field set to the
Fragment payload and the Encrypted flag cleared (as specified in [RFC2408] section 3.1).

Á The Fragment payload header has the following values set:

Á The Fragment ID is set to the current value of the Fragment ID counter ADM element.

Á The Fragment number is set to the current Fragment number, which starts at 1 and is

incremented for each fragment,

Á The Flags field is set to LAST_FRAGMENT in Fragment number n.

The fragments MUST be sent back - to -back to the peer.

The only messages that IKE fragments are those that contain the Identification payload, as specified
in [RFC2408] section 3.8.

39 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.3.6.2 Expiration of the Fragment Reassembly Timer

When the fragment reassembly timer expires, the host MUST silently discard all the fragments
currently queued under the Fragment ID of the Fragment payload whose receipt caused the timer to

start.

3.3.7 Other Local Events

None.

3.4 CGA Authentication Details

Using the notation as specified in [RFC2409] section 3.2, the generalized form of an IKE phase 1
exchange using certificates is as shown in the following figure. For more information, see [RFC2409]
section 5.1.

Figure 3 : IKE phase 1 exchange using certificates

The CGA Authentication Protocol extension uses the same exchanges as an IKE phase 1 certificate
exchange. T he description in this section uses the message numbers from the protocol sequence
diagram above.

The ID_IPV6_CGA identification type packet (section 2.2.5) does not contain the subnet. The subnet is

determined by using the following algorithm.

40 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1. Compare the first 4 bytes of the CGA address to a well -known prefix ð0x3f, 0xfe, 0x83, 0x1e ðto
get the prefix length. If the values match, the prefix length is equal to 88 bits; otherwise, the

prefix length is 64 bits.

2. Using the prefix length, the subnet is determined by taking the leftmost number of bits equal to

the prefix length from the CGA address in the packet from the peer.

3.4.1 Abstract Data Model

When this extension is implemented, the following additional state must be is maintained. This is an

extension to IKE Protocol version 1 as specified in [RFC2409].

Main mode security association database (MMSAD): The entry for each MM SA contains the following
CGA authentication ïspecific data elements:

Á CGA_CAPABLE: A flag that indicates if the authentication type 0xFDED MUST be interpreted as the
AUTH_CGA authentication method.

Peer authorization database (PAD): The following information MUST be maintained:

Á A new valid value AUTH_CGA that identifies the CGA authentication method, added to the locally -

configurable list of acceptable authentication methods.

Á A new CGA ID data structure to hold the following parameters:

Á Modifier: size: 16 octets, type: unsigned integer. See [RFC3972] section 3.

Á Subnet Prefix: size: 8 octets, type: IPv6 subnet. See [RFC3972] section 3.

Á Collision Count: size: 1 octet, type: unsigned integer. See [RFC3972] section 3.

Á Public Key: size: variable, type: cryptographic key. See [RFC3972] section 3.

Á A self -signed certificate (type X.509) compatible with the IKE exchange. See [RFC2409] section

5.1.

This data structure is used during:

Á Generation of a CGA and its associated self -signed certificate (see section 3.4.3).

Á Construction of an identity payload (see section 3.4.5.4).

Á Verification of its association with a public key (see section 3.4.5.5).

3.4.2 Timers

None.

3.4.3 Initialization

Each host configured to use CGA authentication MUST generate an RSA public/private key pair (see
[RFC3447] section 3 and [RFC3972] section 3). The host MUST then generate a X.509 self -signed
certi ficate that uses this key pair and is compatible with IKE (see [RFC2409] section 5.1).

The CGA itself MUST be created as described in [RFC3972] section 4. This IP address is used to send
and receive the IKE packets described in section 3.4.5.

41 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.4 Higher -Layer Triggered Events

3.4.4.1 Start of an IKE MM SA Negotiation

As par t of the construction of message #1, a CGA authentication -supporting host MUST include an
"IKE CGA version 1" vendor ID payload (that is, a vendor ID payload generated by using the vendor
ID string "IKE CGA version 1", as specified in [RFC2408] section 3.1 6) to advertise its CGA
authentication capability.

If the PAD requires CGA authentication, the host MUST include the AUTH_CGA Authentication method

in its SA payload, as specified in section 2.2.4.

The host MUST use its CGA to communicate with the peer for this negotiation.

3.4.5 Message Processing Events and Sequencing Rules

3.4.5.1 Receiving Mess age #1

On receipt of message #1, a CGA authentication -supporting host MUST check for the presence of the
"IKE CGA version 1" vendor ID payload. If an "IKE CGA ver sion 1" vendor ID payload is present in
message #1, the host MUST set the CGA_CAPABLE flag for the corresponding MMSAD entry.

The host MUST then look up its PAD to select one of the transforms that the peer proposes, as
specified in [RFC2408] section 5.4.

If the host selects the proposed AUTH_CGA authentication method defined in section 3.4.1, the host
MUST construct message #2, as specified in [RFC2409] section 5.1, and add an "IKE CGA version 1"
vendor ID payload to advertise its CGA authentication capab ility.

The host MUST also use its CGA to communicate with the peer for this negotiation.

3.4.5.2 Receiving Message #2

On receipt of message #2, the host MUST check whethe r the proposal that the peer selected contains
the AUTH_CGA authentication method defined in section 3.4.1. The host then MUST construct
message #3, as specified in [RFC2409] section 5.1.

3.4.5.3 Receiving Message #3

Processing MUST be identical to that specified in [RFC2409] section 5.1.

3.4.5.4 Receiving Message #4

Processing MUST be identical to that specified in [RFC2409] section 5.1.

The host MUST then construct message #5, as specified in [RFC2409] section 5.1, with the following
differences:

Á The Identity payload MUST have the Identification type ID_IPV6_CGA and contain the

identification data that corresponds to the host CGA (for details, see section 2.2.5). The ID IPV6
CGA fields are read from the CGA ID (see section 3.4.1).

Á The CERT payload MUST contain the self -signed certificate that corresponds to the CGA.

42 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.5.5 Receiving Mes sage #5

On receipt of message #5, the host MUST validate the message in the following ways:

Á Use the SIG_I payload to verify the signature, as specified in [RFC240 9] section 5.1. A successful

verification proves that the peer has access to the private key that corresponds to the self -signed
certificate passed in the CERT payload of message #5.

Á Retrieve the CGA parameter structure (that is, Modifier, Collision Count, and Extension Fields)
from the ID_IPV6_CGA Identity payload (for details, see section 2.2.4).

Á Verify that the public key contained in the self -signed certificate and the parameter structure were
used to generate the peer CGA, as specified in [RFC3972] sec tion 5.

If an error is encountered during payload processing, or the CGA cannot be validated, the host MUST

fail the negotiation, as specified in [RFC2408] section 5.

Then, the host MUST construct message #6 by using the procedure for constructing message #5, as
specified in section 3.4.5.4.

3.4.5.6 Receiving Message #6

On receipt of message #6, the host MUST validate the message using the procedure specified for
validatin g message #5 in section 3.4.5.5.

3.4.6 Timer Events

None.

3.4.7 Other Local Events

None.

3.5 Fast Failover Client De tails

Using the notation as specified in [RFC2409] section 3.2, the generalized form of an IKE phase 1
exchange is as shown in the following figure. For more information, see [RFC2409] section 5.

43 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 4 : IKE phase 1 exchange

The description in this section uses the message numbers from the protocol sequence diagram.

3.5.1 Abstract Data Model

When this extension is implemented, the following additional state must be is maintained. This is an
extension to IKE Protocol version 1 as specified in [RFC2409].

Main mode security association database (MMSAD): The entry for each MM SA contains the following

fast - failover client -specific data elements:

Á Fast Failover: A flag that indicates that the "NLBS_PRESENT" vendor ID was received from the
peer for this MM SA. For more details, see section 3.6.4.1.

3.5.2 Timers

QM SA idl e timer (for each QM SA): This timer controls the inactivity time before the QM SA can be
deleted (as specified in section 3.5.7.1). This timer MUST be set when the QM SA has been
negotiated. The QM SA idle timer is 1 minute if the peer has sent an "NLBS_P RESENT" vendor ID

payload during the negotiation of the MM SA under which this QM SA was negotiated (as specified in
section 3.6.4.1). Otherwise, the QM SA idle timer is 5 minutes.

3.5.3 Initialization

None.

44 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.5.4 Higher -Layer Triggered Events

3.5.4.1 Start of an IKE MM SA Negotiation

As part of the construction of message #1 for a new MM SA negotiation (as specified in [RFC2409]
section 5), a fast failover -supporting host MUST inclu de a "Vid - Initial -Contact" vendor ID payload (that
is, a vendor ID payload that is generated using the vendor ID string "Vid - Initial -Contact", as specified
in [RFC2408] section 3.16) if the host does not have any active MM SAs to the peer. This is
determin ed by looking up the MMSAD using the peer IP address.

In addition, the host MAY also add the "Vid - Initial -Contact" vendor ID payload to message #1 if it has
no open TCP connections to the peer and if new connection attempts cause the retransmission of SYN
packets. <20>

3.5.5 Message Processing Events and Sequencing Rules

3.5.5.1 Receiving Me ssage #1

On receipt of message #1, a fast failover -supporting host MUST check for the presence of the
"NLBS_PRESENT" vendor ID (as specified in section 3.6.4.1) . If the "NLBS_PRESENT" vendor ID

payload is present in the message, the host MUST set the Fast Failover flag for the corresponding
MMSAD entry.

If no errors are found, the host MUST construct message #2 in response. The host MUST add the "Vid -
Initial -Cont act" vendor ID payload to message #2 under the conditions that are specified in section
3.5.4.1. Otherwise, the host MUST silently ignore the packet.

3.5.5.2 Receiving Message #2

On receipt of message #2, the host MUST check for the presence of the "NLBS_PRESENT" vendor ID
(for details, see section 3.6.4.1). If the "NLBS_PRESENT" vendor ID payload is present in the

message, the host MUST set the Fast Failover flag for th e corresponding MMSAD entry.

3.5.6 Timer Events

3.5.6.1 Expiration of the QM SA Idle Timer

Upon expiration of the QM SA idle timer, the host MUST delete all states for the corresponding QM SA
in the SAD.

3.5.7 Other Local Events

3.5.7.1 Su ccessful Negotiation of a QM SA

QM SAs MUST be negotiated as specified in [RFC2409] section 5.5. Upon successful negotiation of a

QM SA, the host MAY set the QM SA idle timer to a lower value than the default value if the Fast
Failover flag is set on the corresponding MM SA. <21>

3.6 Fast Failover Server Details

The description in this section uses the message numbers from the protocol sequence diagram in
section 3.5.

45 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.6.1 Abstr act Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to explain how the

protocol behaves. This document does not mandate that implementations adhere to this model as long
as their external behaviors are consistent with what is described in this document. This is an extension
to IKE Protocol version 1 as specified in [RFC2409].

The data elements any implementation requires i nclude the following:

Á Main mode security association database (MMSAD):

For each MM SA (as specified in [RFC2409]), the following information MUST be maintained:

Á All IKE states necessary for managing an IKE MM SA, without extensions.

Á All states necessary for managing other IKE extensions for the SA, as specified in sections
3.1.1 and 3.6.1.

Á Initial Contact: A flag indicating if the "Vid - Initial -Contact" vendor ID payload (see section
3.5.4.1) has been received for the MM SA.

The MMSAD MUST be indexed by the local and peer IP addresses and the initiator and responder
cookies found in the ISAKMP header (as specified in [RFC2408]).

Note The preceding conceptual data can be implemented by using a variety of techniques. An
implementation i s at liberty to implement such data in any way it pleases.

3.6.2 Timers

None.

3.6.3 Initialization

None.

3.6.4 Higher -Layer Triggered Events

3.6.4.1 Start of an IKE MM SA Negotiation

As part of the construction of message #1, a fast failover -supporting host MUST include an
"NLBS_PRESENT" vendor ID payload (that is, a vendor ID payload generated by using the vendor ID
string "NLBS_PRESENT", as specified in [RFC2408] section 3.16).

3.6.5 Message Processing Events and Sequencing Rules

3.6.5.1 Receiving Message #1

On receipt of message #1, the host MUST check for the presence of the "Vid - Initial -Contact" vendor
ID (as specified in section 3.5.4.1). If the "Vid - Initial -Contact" vendor ID payload is present in the

message, the host MUST set the Initial Contact flag for the corresponding MMSAD entry.

If the host is part o f a cluster, it MAY use this information to rebalance the MM SA to a different host
within the cluster. <22>

46 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.6.5.2 Receiving Message #2

Message #2 has the same process ing as message #1.

3.6.6 Timer Events

None.

3.6.7 Other Local Events

None.

3.7 Negotiation Discovery Details

Using the notation as specified in [RFC2409] section 3.2, the generalized form of an IKE phas e 1 (MM)
exchange is as shown in the following figure. For more information, see [RFC2409] section 5.

Figure 5 : IKE phase 1 (MM) exchange

The description in this section uses the MM message numbers from the protocol sequence diagram.

Using the notation as specified in [RFC2409] section 3.2, the generalized form of an IKE phase 2

(quick mode) exchange is as shown in the following figure. For more information, see [RFC2409]
section 5.5.

47 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 6 : IKE phase 2 (QM) exchange

The description in this section uses the quick mode message numbers from the protocol sequence

diagram.

48 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 7 : Negotiation discovery of a TCP connection between two IPsec - capable peers

The TCP packet exc hanges happen in parallel with the IKE exchanges that are described in the first
two figures of this section ("IKE phase 1 (MM) exchange" and "IKE phase 2 (QM) exchange"). The
preceding figure illustrates one of many ways in which the packets might interle ave. When the IKE
exchange completes the successful IPsec negotiation (figure "IKE phase 2 (QM) exchange"), the TCP
connection is secured.

49 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 8 : Negotiation discovery of a TCP connection between an IPsec - capable peer and a
non - IPsec - capable peer.

The TCP packet exchanges happen in parallel with the IKE exchanges that are described in the first

two figures of this section ("IKE phase 1 (MM) exchange" and "IKE phase 2 (QM) exchange"). The
preceding figure illustrates one of ma ny ways in which the packets might interleave. The responder
does not respond to the IKE negotiation (an unsuccessful IPsec negotiation), and the TCP connection
continues in the clear.

If the responder responds to the IKE negotiation, IKE fails because the responder does not have, by

definition, a valid credential (it is non - IPsec -capable). However, the IKE failure does not affect the TCP
stream, and the TCP connection continues in the clear.

3.7.1 Abstract Data Model

When this extension is implemented, the following additional states must be are maintained. This is an

extension to IKE Protocol version 1 as specified i n [RFC2409].

Main mode security association database (MMSAD): The entry for each MM SA contains the following
specific data element for negotiation discovery:

Á Negotiation Discovery Supported: A flag that MUST be set if the peer supports negotiation
discove ry.

Security policy database (SPD): The following information MUST be maintained:

Á A policy flag indicating that negotiation discovery MUST be applied to inbound and/or outbound

traffic.

50 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Á A Boundary policy flag for negotiation discovery inbound rules that MU ST be set if plaintext is
accepted for this rule.

Á A policy flag that MUST be set if encryption is guaranteed for this traffic.

Security association database (SAD): The following information MUST be maintained:

Á Boundary flag: A flag that MUST be set if the QM SA matches an inbound negotiation discovery
rule on the remote host.

Á Guaranteed Encryption flag: A flag that MUST be set if the QM SA is an encryption SA and can be
used for flows that have the Guaranteed Encryption flag set.

Flow state table: The follo wing information MUST be maintained:

Á Secure flag: A flag that MUST be set if one or more packets for this flow have been sent over a QM
SA.

Á Guaranteed Encryption flag: A flag that MUST be set if encryption is guaranteed for this flow.

Á Acquire flag: A flag that MUST be set if a QM SA negotiation has already been triggered for this
flow. This flag prevents triggering of an Acquire for each packet over a connection that stays in
plaintext.

3.7.2 Timers

None.

3.7.3 Initialization

None.

3.7.4 Higher -Layer Triggered Events

3.7.4.1 Outbound Packet

An outbound packet MUST be matched against the SPD to determine if and how it needs to be
protected, as specified in [RFC4301] section 5.

Á If the packet matches a negotiation discovery rule in the SPD, and no QM SA matches the packet,
one of the following MUST occur:

Á If the Secure flag is not set for the corresponding flow:

The IPsec implementation MUST send the packet and MUST trigger IKE to negotiate the
corresponding QM SA if the Acquire flag is not set on the corresponding flow. Otherwise, the
IPsec implementation MUST send the packet and MUST NOT trigger IKE. The first quick mode
negotiation message is message #5. Message #5 MUST be constructed as follows:

Á The header and payloads MUST be constructed as specified in [RFC2409] section 5.5.

Á If the SPD rule matching the traffic has the Boundary flag set, or if the Guarantee

Encryption flag is set for the flow, the host MUST include a notification payload with the
following fields and values:

Notify Message Type (2 bytes): 0x9C45 (EXCHANGE_INFO).

The Notification Data field is interpreted as a flags field.

51 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Á Flag 0x00000001 (IKE_EXCHANGE_INFO_ND_BOUNDARY) MUST be set if th e
corresponding rule in the SPD has the Boundary flag set.

Á Flag 0x00000002 (IKE_EXCHANGE_INFO_GUARANTEE_ENCRYPTION) MUST be set if
the Guarantee Encryption flag is set on the corresponding flow.

Á This notification payload MUST be constructed as specified in section 2.2.6.

The host MUST then set the Acquire flag on the corresponding flow.

Á If the Secure flag is set for the corresponding flow:

The IPsec implementation MUST NOT send the packet (it MAYcan queue or silently discard the
packet) and MUST trigger IK E to negotiate the corresponding QM SA. Message #5 MUST be
constructed as previously specified.

If a QM SA needs to be negotiated, and no corresponding MM SA exists (as determined by using

the outbound packet destination IP address to look up the MMSAD), an MM SA MUST be
negotiated. The host MUST construct and send packet #1 as specified in [RFC2409] section 5. The

host MUST include in it an "MS -Negotiation Discovery Capable" vendor ID payload (a vendor ID
payload generated by using the vendor ID string "M S-Negotiation Discovery Capable", as specified
in [RFC2408] section 3.16).

Á If the packet matches a negotiation discovery rule in the SPD, and a QM SA matches the packet,

the following MUST occur:

If the matching QM SA and the corresponding flow do not hav e the same value for the Guaranteed
Encryption flag, the host MUST trigger IKE to negotiate the corresponding QM SA, as previously
described in the case where there is no matching QM SA for the packet.

Otherwise, one of the following MUST occur:

Á If the mat ching QM SA is a UDP -ESP SA ([RFC3947] section 5) with the Boundary flag (defined
in section 3.7.1) set, the host MUST send the packet in Cleartext.

Á Otherwise, the IPsec implementation MUST send the packet encapsulated by using the
matching QM SA, and it MUST set the Secure flag for this flow.

Á If the packet does not match a negotiation discovery rule, packet processing MUST be performed
as specified in [RFC4301] section 5.

If the packet matches a Guaranteed Encryption rule in the SPD, the host MUST set th e Guaranteed
Encryption flag on the corresponding flow. This rule MUST apply regardless of whether a matching QM
SA is found or not.

3.7.4.2 Inbound Packet

An inbound packet is matched against the SPD after IPsec decap sulation to determine if and how it
needs to be treated, as specified in [RFC4301] section 5. The following rules MUST be applied to the

packet:

Á If the packet is in Cleartext:

Á If the packet is the first packet for a new flow (for example, an inbound TCP S YN packet):

If the packet matches an inbound negotiation discovery rule in the SPD, the host MUST accept
the packet. Otherwise, the host MUST silently discard the packet.

Á If the packet belongs to an already existing flow:

52 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If the Secure flag is not set on the flow, the host MUST accept the packet. Otherwise, the host
MUST silently discard the packet.

Á If the packet was encapsulated using ESP or authentication header (AH):

The host MUST set the Secure flag on the flow and process the packet as specified in [RFC4301]

section 5.

Regardless of whether the packet is in plaintext, if there is an SA that matches the packet, and its
Guaranteed Encryption flag is set, the host MUST set the Guaranteed Encryption flag on the
corresponding flow.

3.7.5 Message Processing Even ts and Sequencing Rules

3.7.5.1 Receiving Message #1

On receipt of message #1, the host MUST check for the presence of the "MS -Negotiation Discovery

Capable" vendor ID payload (as specified in section 3.7.4.1). If the "MS -Negotiation D iscovery
Capable" vendor ID payload is present in the message, the host MUST set the Negotiation Discovery
Supported flag for the corresponding MMSAD entry.

Then, the host MUST construct message #2, as specified in [RFC2409] section 5, and add the "MS -
Nego tiation Discovery Capable" vendor ID payload to advertise its negotiation discovery capability.

3.7.5.2 Receiving Message #2

On receipt of message #2, the host MUST check for the presence of the "MS -Negotiation Discovery
Capable" vendor ID payload (for details, see section 3.7.4.1) and set the Negotiation Discovery
Supported flag for the corresponding MMSAD entry.

Messages #3 and #4 MUST be constructed and processed a s specified in [RFC2409] section 5.

3.7.5.3 Receiving Message #5

On receipt of message #5, the host MUST check for the presence of flags within a notification payload
of type EXCHANGE_INFO.

Á IKE_EXCHANGE_INFO_ND_BOUNDARY: If this flag is set, the host MUST set the Boundary flag for

the corresponding QM SA.

Á IKE_EXCHANGE_INFO_GUARANTEE_ENCRYPTION: If this flag is set, the host MUST set the
Guaranteed Encryption flag for th e corresponding QM SA.

Message #6 MUST be constructed in response as follows:

The IPsec implementation MUST send the packet and MUST trigger IKE to negotiate the corresponding
QM SA. The first quick mode negotiation message is message #5. Message #6 MUST b e constructed
as follows:

Á The header and payloads MUST be constructed as specified in [RFC2409] section 5.5.

Á If the SPD rule matching the traffic for which the QM SA is negotiated has the Boundary flag set,
the host MUST add a notification payload with the following fields:

Notify Message Type (2 bytes): 0x9C45 (EXCHANGE_INFO).

The Notification Data field is interpreted as a flags field.

53 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Flag 0x00000001 (IKE_EXCHANGE_INFO_ND_BOUNDARY) MUST be set if the corresponding rule
in the SPD has the Boundary flag s et.

This notification payload MUST be constructed as specified in section 2.2.6.

3.7.5.4 Receiving Message #6

On receipt of message #6, the host MUST check for the pre sence of flags within a notification payload
of type EXCHANGE_INFO:

Á IKE_EXCHANGE_INFO_ND_BOUNDARY: If this flag is set, the host MUST set the Boundary flag for

the QM SA. For more details see section 2.2.6.

Messages #7 and #8 are constructed and processed as specified in [RFC2408] section 3.1.

3.7.6 Timer Events

None.

3.7.7 Other Local Events

None.

3.8 Relia ble Delete Details

Using the notation as specified in [RFC2408] section 4.1.1, the generalized form of an IKE Delete
exchange using the Reliable Delete extension is as shown in the following figure. For more
information, see [RFC2409] section 5.

Figure 9 : IKE Delete exchange

The description in this section uses the message numbers from the protocol sequence diagram.

3.8.1 Abstract Data Model

When this extension is implemented, the following additional state must be is maintained. This is an
extension to IKE Protocol version 1 as specified in [RFC2409].

Flow state table: The following information MUST be maintained:

54 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Á Ni payload: The exact Ni payload that is sent with the delete message#1 is preserved as part of
the IKE MM SA state in order to validate the acknowledgment response. The Ni payload is a Nonce

paylo ad and MUST be constructed as specified in [RFC2408] section 3.13.

3.8.2 Timers

The delete retransmission timer (for each MM and QM SA): This triggers a Delete payload
retransmission. The start and dura tion of the timer MUST be as specified in sections 3.8.4.1, 3.8.6.1,
and 3.8.7.1.

3.8.3 Initialization

None.

3.8.4 Higher -Layer Triggered Events

3.8.4.1 SA Deletion/Invalidation

The higher layer application can cause SAs to be deleted by changing the underlying security polic y, or

by triggering a local state cleanup (see section 3.8.7). In such cases, the host SHOULD delete the
SAs, as specified in [RFC2408] section 5.15.

After a delete has been triggered, a delete notify MUST be sent immediately, but the MM SA MUST
NOT be de leted until quick mode delete processing has been completed. Moreover, the QM SAs
associated with the MM SA MUST NOT be deleted until deletion is triggered by other protocol events,
as specified in [RFC2409] section 5.5. These protocol events are quick mod e lifetime expiry as

specified in [RFC2409] Section 5.5, policy changes (see section 3.8.7) or the peer sending a quick
mode delete (See section 3.8.5). Once all the QM SAs associated with the MM SA have been deleted
the MM SA MUST be deleted.

The host MUS T then construct message #1 as follows:

Á Message #1 MUST consist only of an ISAKMP header, a Hash payload, a Nonce payload, and a
Delete payload, as specified in [RFC2408] section 3.15. <23>

Á The ISAKMP header MUST be constructed as specified in [RFC2409] sec tion 5.7.

Á The Hash payload MUST be constructed in the following manner:

 HASH(1) = prf(SKEYID_a, M - ID | Ni | Delete)

as specified in [RFC2409] section 5.7.

Á The Ni payload is a Nonce payload and MUST be constructed as specified in [RFC2408] section

3.13.

Á The Delete payload MUST be constructed as specified in [RFC2408] section 3.15.

If the "MS NT5 ISAKMPOAKLEY" vendor ID payload (see section 1.7) has been received from the peer
for the corresponding MM SA, the host MUST then start the delete retransmission tim er and set it to
expire in 1 second. Otherwise, the host MUST NOT start the delete retransmission timer.

55 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.8.5 Message Processing Events and Sequencing Rules

3.8.5.1 Receiving Message #1

On receipt of message #1, the host MUST validate the message, as specified in [RFC24 08] section 5.
If message #1 is correctly validated, the host MUST delete the corresponding SA and MUST construct
message #2 in response.

Á The message MUST consist only of an ISAKMP header as specified in [RFC2408] section 3.1, a
Hash payload as specified i n [RFC2408] section 3.11, a Delete payload as specified in [RFC2408]

section 3.15, and a Nonce payload structured as specified in [RFC2408] section 3.13.

Á The ISAKMP header MUST be constructed as specified in as specified in [RFC2408] section 3.1.
The Message ID field MUST be copied from message #1.

Á The Hash payload MUST be constructed in the following manner:

 HASH(2) = prf(SKEYID_a, Ni | M - ID | Nr | Delete)

Once computed as above, this hash value MUST be sent on the wire format specified in section
3.1 1 of [RFC2408].

Á The Ni payload is the Nonce payload without a generic payload header.

Á The Delete payload MUST be copied from message #1.

Á The Nr payload is a Nonce payload and MUST be constructed as specified in [RFC2408] section

3.13.

Otherwise, the host MUST silently discard message #1.

3.8.5.2 Receiving Message #2

On receipt of message #2, the host MUST validate the message as follows:

Á Validate the ISAKMP header, as specif ied in [RFC2408] section 5.2.

Á Verify that the message ID in the ISAKMP payload is identical to the message ID from message
#1.

If this verification succeeds, the host MUST stop the delete retransmission timer. Otherwise, the host
MUST silently discard mess age #2.

3.8.6 Timer Events

3.8.6.1 Expiration of the Delete Retransmission Timer

When this timer expires, the initiator MUST retransmit message #1, as specified in section 3.8.4.1,
and it SHOULD reset the timer to double the previous duration unless a total of four retransmissions
has already occurred. If four retransmissions have occurred, the host MUST remove the corresponding
MM SA or QM SA from the MMSAD or the SAD without retransmitting message #1 or resetting the
timer. <24>

When each timer expires, if a message #2 has not been received a nd verified for that SA, as specified
in section 3.8.5.2, it SHOULD retransmit the notification message for that SA without resetting the

timer.

56 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.8.7 Other Local Events

An administrator can trigger local SA state deletion via a local -only interface to delete all active SAs.

The abstract interface for security policy configuration changes is specified in [RFC4301] section 4.4.1.

The administrator MUST be able to specify a new local security p olicy as defined in [RFC4301] section
4.4.1. Any MM SAs established with a policy invalidated by the new policy are deleted as specified in
section 3.8.4.1.

3.8.7.1 Shutdown

IKE protocol shutdown: IKE MUST send Delet e notification messages for all SAs, as specified in section
3.8.4.1, and then SHOULD set the delete retransmission timer to 1 second for each SA. <25>

3.8.7.2 MM SA Exhaustion

Establishment of a successful QM SA can exhaust the limits for the number of QM SAs allo wed for a

given MM. This quick mode limit is a local policy setting in the PAD. <26> In this case, the host MUST
NOT explicitly delete the SA. Instead, the SA MUST be invalidated, and not used for establishing any
new QM SAs.

3.9 Denial of Service Protection Det ails

IKE goes into DoS protection under the condition described in section 3.9.7.

Using the notation, as specified in [RFC2408] section 4.1.1, the generalized form of an IKE exchange
using the DoS Protection extension is as shown in the following figure. For more information, see
[RFC2409] section 5.

57 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 10 : IKE using the DoS Protection extension

The description in this section uses the message numbers from the protocol sequence diagram.

3.9.1 Abst ract Data Model

When this extension is implemented, the following additional state must be maintained. This is an

extension to IKE Protocol version 1 as specified in [RFC2409].

Flow state table: The following information MUST be maintained:

Á A flag indicating that DoS protection is active.

DoS Protection mode state: responder MUST maintain the following state to implem ent Denial of
Service Protection mode.

Á A cookie field consisting of random data.

Á A cookie timeout period, initialized to 150 secs.

This state is used by the cookie generation algorithm that is described in section 3.9.5.1.

3.9.2 Timers

None.

58 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.9.3 Initialization

None.

3.9.4 Higher -Layer Triggered Events

None.

3.9.5 Message Processing Events and Sequencing Rules

3.9.5.1 Receiving Message #1

On receipt of message #1, the host MUST validate the message, as specified in [RFC2408] section 5.

If message #1 is correctly validated, the host MUST construct message #2 in response, as follows:

Á The message MUST consist of only an ISAKMP header and a Notify payload structure, as specified
in [RFC2408] section 3.14.

Á The ISAKMP header MUST b e constructed as specified in [RFC2409] section 5.7. The message ID
field is unique to this exchange, as specified in [RFC2409] section 5.7.

Á The notify message type MUST be set to NOTIFY_DOS_COOKIE, and the notification data MUST
contain an 8 -byte cookie v alue. The cookie generation mechanism is implementation -dependent

but SHOULD be stateless to provide good DoS protection. <27>

The host MUST then silently discard message #1, even if the message is correctly validated.

3.9.5.2 Receiving Message #2

On receipt of message #2, the host MUST validate the message, as specified in [RFC2408] section 5.
In addition, the host MUST:

Á Verify that the message contains a single Notify payload, that the notify message type is set to
NOTIFY_DOS_COOKIE, and that the notification data contains an 8 -byte cookie value. No checks
on the actual value are performed at this stage.

If this verification succeeds, the host MUST construct message #3 as follows:

Á Message #3 is the same as message #1, except that the Responder Cookie field of the ISAKMP

header ([RFC2408] section 3.1) is the cookie from the notify NOTIFY_DOS_COOKIE payload in
message #2.

Otherwise the host MUST process message #2 as a nor mal ISAKMP message.

3.9.5.3 Receiving Message #3

On receipt of message #3, the host MUST validate the message, as specified in [RFC2408] section 5.
In addition, the host M UST:

Á Verify that the Responder Cookie field in the ISAKMP header is not zero.

Á Verify that the Responder Cookie field in the ISAKMP header is the same as the cookie sent in
the Notify payload of message #2. The actual verification mechanism is implementation -
dependent. <28>

If this verification succeeds, the host MUST process message #3 as a normal ISAKMP message.
Otherwise, the host MUST process message #3 in the same way as message #1.

59 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Subsequent messages received for this SA on the host in DoS Protection mode MUST be processed the
same as message #3.

Subsequent messages received for SAs for which no state exists i n the SAD MUST be processed in the
same way as message #1.

3.9.6 Timer Events

None.

3.9.7 Other Local Events

DoS Pro tection threshold: If the number of negotiations for which only one message has been
received from any initiator is above a predefined threshold, IKE MUST go into DoS Protection mode
(see section 3.1 for details). The threshold can be implemented in a numb er of ways. <29>

3.10 IKE SA Correlation (IKEV2) Details

See [RFC4306] section 1.2. If SA Correlation is used, during the IKE_SA exchange the Correlation
payload MUST be inserted immediately prior to the SA payload.

On initiator:

HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,] NOTIFY, AUTH, CORRELATION, SAi2, TSi, TSr}

This is similar to the behavior for the Extensible Authentication Protocol (EAP) exchange, as defined in
[RFC4306] section 2.16.

NOTIFY is related to the Mobility and Multihoming Protocol (MOBIKE). See [RF C4555] section 4 for
information about the Notify message type. See [RFC4306] section 3.10 for the general Notify header
format.

The correlation exchange MUST use the same authentication as the original exchange. If the original

exchange did EAP authentica tion, then the correlation exchange MUST use EAP authentication.
Similarly, if the original exchange used certificate authentication (and not EAP authentication), then
the correlation exchange MUST use certificate authentication, and MUST NOT use EAP auth entication.

3.10.1 Abstract Data Model

When this extension is implemented, the following additional state must be is maintained. This is an
extension to IKE Protocol version 2 as specified in [RFC4306].

Main mode security association database (MMSAD): The entry fo r each MM SA contains the following
specific data elements for IKE SA Correlation.

For IKE_SA correlation (IKEv2), the following information MUST be maintained:

Á The index of the entry in the MMSAD for the other SA to which this SA has been correlated, if it

exists (see section 3.10.5.1).

3.10.2 Timers

None.

3.10.3 Initialization

None.

60 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.10.4 Higher -Layer Triggered Events

None.

3.10.5 Message Processing Events and Sequencing Rules

The following figures show the standard and EAP exchange sequences, as specified in [RFC4306]
sections 1. 2 and 2.16, respectively.

Figure 11 : Standard IKEv2 exchange

61 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 12 : IKEv2 EAP exchange

3.10.5.1 Receiving Message #1

The responder processes all payloads prior to the correlation payload as per [RFC4306], [RFC4555],
and [RFC4621]. Note that message #1 corresponds to the third packet in the IKEv2 exchange. See

[RFC4306] section 1.2.

When the host receives the correlation payload, it MUST validate its generic header as specified in
[RFC4306] section 3.2. Addi tionally, the host MUST:

1. See whether an existing IKE_SA in its SADB table matches the initiator and responder SPIs from
the correlation payload.

2. If there is an existing SA, the host MUST validate the correlation hash by computing its own value
given its lo cal SA state, and comparing it with the value of the correlation hash in the payload. If

they are equal, the host flags these SAs as correlated.

Any failures in this exchange MUST NOT affect the state of the correlated IKE_SA.

3.10.5.2 Receiving Subsequent Messages

All subsequent messages in the exchange ðexcept the final message ðare processed as usual. At the
end of the exchange, when the responder has successfully finished processing the final message, the
responder tears down this exchange and sends back an IKEV2 error notify via the notification
mechanism in [RFC4306] section 1.4.

For the standard exchange, there are no subsequent messages. For the EAP exchange, the
subsequent messages 2 ï5 are constructed and processed identically to [RFC4306].

62 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.10.5.3 Receiving the Error Notify

The error notify MUST be processed as specified in [RFC4306] section 1.4 and MUST delete the SA as
specified in [RFC4306] section 3.10.1.

The initiator, who is receiving the error notify, SHOULD process the extended error information as
defined in 2.2.7.

3.10.6 Timer Events

None.

3.10.7 Other Local Events

None.

3.11 IKE Server Internal Addresses Configuration Attributes (IKEv2) Details

See [RFC4306] section 2.19. During the IKE_AUTH exchange, the IPsec remote access client (IRAC)
MUSTSHOULD request the IPsec remote access server (IRAS) -controlled address. <30>

On initiator:

HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,] AUTH, CP(CFG_REQUEST),SAi2, TSi, TSr}

The server (IRAS) replies with:

HDR, SK {IDr, [CERT,] AUTH, CP(CFG_REPLY), SAr2, TSi, TSr}

3.11.1 Ab stract Data Model

When this extension is implemented ,<33> , the following additional state must be is maintained. This is

an extension to IKE Protocol version 2 as specified in [RFC4306].

Flow state table: The following information MUST be maintained:

Á The internal IPv4 address of the server.

Á The internal IPv6 address of the server.

The initiator SHOULD request this attribute for each IP version it supports.

3.11.2 Timers

None.

3.11.3 Initialization

None.

3.11.4 Higher -Layer Triggered Events

None.

63 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.11.5 Message Processing Events and S equencing Rules

The following figure shows the exchange sequence for IKEv2 Non -EAP embedded quick mode
negotiation with Configuration payloads.

Figure 13 : IKEv2 Non - EAP embedded quick mode negotiation with Configuration payload
exchange

The following figure shows the Configuration payload exchange sequence with EAP, as specified in

[RFC4306] section 3.15.

Figure 14 : IKEv2 Configuration payload exchange with EAP

64 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.11.5.1 Receiving Message #1

When the host receives the CFG_REQUEST (as specified in [RFC4306] section 3.15) for the
INTERNAL_IP4_SERVER or INTERNAL_IP6_SERVER attribute, it MUST validate the message as also

specified in [RFC4306] section 3.15. Additionally, the host MAY<34 SHOULD<31 > :

Á See whether the server has an internal IPv4 address or an internal IPv6 address.

Á If either or both are present, add these attributes in CFG_REPLY.

Any failures in this exchange MUST NOT affect the state of the IKE_SA.

3.11.5.2 Receiving Message #2

When the host receives the CFG_REPLY (as specified in [RFC4306] section 3.15) for the
INTERNAL_IP4_SERVER or INTERNAL_IP6_SERVER attribute, it MUST validate the message (as also
specified in [RFC4306] section 3 .). Additionally, the host MAY: <35 SHOULD: <32 >

Á See whether the server has sent an internal IPv4 address or an internal IPv6 address.

Á If either or both are present, store these values in its local data structures and use these

addresses to send packets to the internal address of IRAS.

Any failures in th is exchange MUST NOT affect the state of the IKE_SA.

3.11.6 Timer Events

None.

3.11.7 Other Local Events

None.

3.12 Dead Peer Detection Details

3.12.1 Abstract Data Model

When this extension is implemented <36> ,, the following additional state must SHOULD<33> be
maintained. This is a n extension to IKE Protocol version 1 as specified in [RFC2409].

Main mode security association database (MMSAD): The entry for each MM SA contains the following
fast - failover client -specific data elements:

Á InboundPacketTimeStamp: 1 octet, type: unsigned i nteger. A time stamp field that is present if
the SA has the Fast Failover flag set as described in section 3.5.1.

Á A DeadPeerDetection flag: A flag that indicates whether the current SA is in dead peer detection

mode.

3.12.2 Timers

QM SA idle timer (for each QM S A): This timer controls the inactivity time before the QM SA can be

deleted (as specified in section 3.5.7.1). This timer MUST be set when the QM SA has been negotiated
as described in section 3.5.2.

65 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.12.3 Initialization

None.

3.12.4 Higher -Layer Triggered Events

3.12.4.1 TCP Dead Peer Detection

The stack sends a TCP packet and makes a lookup of the corresponding connection state in the state
table defined in section 3.1.1. It determines whether the packet is a TCP retransmission. If it is a
retransmission, the flag DeadPeerDet ection defined in section 3.12.1 is set to TRUE and the dead peer
detection is executed as follows:

Á The host implementing this feature MUST attempt to rekey the QM SA (as described in [RFC2409]
section 5.5) when a new connection is attempted to the peer.

Á On failure of a quick mode rekey, the host implementing this extension MUST attempt to rekey

MM SA (as described in [RFC2409] section 5.4) with a maximum of two retransmissions.

Á If MM rekey fails, the peer is deemed dead and a new MM SA negotiation ([RFC240 9] section 5.4)
MAYcan be attempted.

3.12.4.2 UDP Dead Peer Detection

The stack sends a UDP packet and makes a lookup of the corresponding connection state in the state
table defined in section 3.1.1. It determines whether the corresponding SA has seen a packet in the
other direction by checking the InboundPacketTimeStamp field. If the difference is more than 20
seconds, the flag DeadPeerDetection defined in section 3.12.1 is set to TRUE and the dead peer
detection is executed as follows:

Á The host implementing this feature MUST attempt to rekey the QM SA (as described in [RFC2409]
section 5.5).

Á On failure of a quick mode rekey, the host implementing this extension MUST attempt to rekey
MM SA (as described in [RFC2409] section 5.4) with a maximum of two retransmissio ns.

Á If the MM rekey fails, the peer is deemed dead and a new MM SA negotiation ([RFC2409] section
5.4) MAYcan be attempted.

3.12.5 Message Processing Events and Sequencing Rules

3.12.5.1 Receiving a UDP Packet

The stack receives an inbound UDP packet and determines the co rresponding connection state in the
state table defined in section 3.1.1, and then it sets the InboundPacketTimeStamp to the current time.

3.12.6 Timer Events

3.12.6.1 Expiration of the QM SA Idle Timer

Upon expiration of the QM SA idle timer, the host MUST delete all sta tes for the corresponding QM SA
in the SAD.

66 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.12.7 Other Local Events

3.12.7.1 Successful Negotiation of a QM SA and MM SA

QM SAs MUST be negotiated as specified in [RFC2409] section 5.5. Upon successful negotiation of a
QM SA, the host MUST set the DeadPeerDetection to F ALSE, and the host MAY set the QM SA idle
timer to a lower value than the default value if the Fast Failover flag is set on the corresponding MM
SA.<34>

MM SAs MUST be negotiated as specified in [RFC2409] section 5.4. Upon successful negotiation of a

MM SA , the host MUST set the DeadPeerDetection to FALSE.

3.13 Xbox Multiplayer Gaming (IKEv2) Vendor IDs Details

3.13.1 Abstract Data Model

When this extension is implemented <38> ,,<35> the following additional state must be is maintained.
This is an extension to IKE Protoco l version 2 as specified in [RFC4306].

Main main mode security association database (MMSAD): The entry for each MM SA contains the
following Xbox multiplayer gaming ïspecific data element:

Á Xbox IKEv2 Negotiation Type: 4 octets, type: unsigned integer. An int eger representing the type
of Xbox multiplayer identifier associated with the "Xbox IKEv2 Negotiation" vendor ID
payload. <36>

3.13.2 Timers

None.

3.13.3 Initialization

For Xbox multiplayer gaming, secure connections can be of various types. This type information is

stored in the XBox IKEv2 Negotiation Type ADM element discussed in section 3.13.1. The significance
of the different types of secure connections for Xbox multiplayer gaming is out of scope for this
document. However, a limit can be imposed on the number of simultaneous IKE negotiations that are
available for each type of Xbox multiplayer gaming secure connection. Absence of such a configuration
would mean that there is no limit to the number of simultaneous ongoing negotiations.

3.13.4 Higher -Layer Triggered Event s

None.

3.13.5 Message Processing Events and Sequencing Rules

67 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 15 : IKE_SA_INIT message exchange for Xbox multiplayer gaming secure - connection
establishment

IKE initiators that are participating in Xbox multiplayer gaming scenarios and establishing a secure
connection with a remote peer can send the "Microsoft XBox One 2013" vendor ID and the "Xbox

IKEv2 Negotiation" vendor ID payloads in the IKE_SA_INIT message.

3.13.5.1 Microsoft Xbox One 2013 Vendor ID

The "Microsoft Xbox One 201 3" vendor ID simply indicates that the IKEv2 message exchange is for
negotiation of an IKE SA for Xbox multiplayer gaming secure connections.

3.13.5.2 Xbox IKEv2 Negotiation Vendor ID

The "Xbox IKEv2 Negotiation" vendor ID can be looked up by the responder and stor ed in the XBox
IKEv2 Negotiation Type ADM element discussed in section 3.13.1. For the associated negotiation type,
the host MUST increment the number of ongoing IKE negotiations. If the number of such IKE
negotiations exceeds the configured limit for the given Xbox secure connection, the negotiation is
failed.

3.13.6 Timer Events

If an IKE SA is associated with an Xbox negotiation type, then IKE_SA_INIT messages for those SAs
are not retransmitted if no response is received from the peer after the first timeout p eriod

([RFC5996] section 2.1).

3.13.7 Other Local Events

None.

3.14 Security Realm ID (IKEv2) Vendor IDs Details

3.14.1 Abstract Data Model

When this extension is implemented ,<40> , the following additional state must SHOULD<37> be
maintained. This is an extension to IKE Proto col version 2 as specified in [RFC5996].

Security policy database (SPD): The following information MUST be maintained for a security realm
IPsec policy:

Á Security Realm ID : A variable length array of bytes stored as an HMAC -MD5 hash of the string
that ident ifies the security realm IPsec policy. For more information, see section 1.3.12. <38>

68 / 103

[MS - IKEE-Diff] - v20170601
Internet Key Exchange Protocol Extensions
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.14.2 Timers

None.

3.14.3 Initialization

None.

3.14.4 Higher -Layer Triggered Events

None.

3.14.5 Message Processing Events and Sequencing Rules

Figure 16 : Sending Security Realm ID Vendor ID in IKE_SA_INIT and IKE_SA_AUTH

messages

IKE initiators can send the Security Realm ID vendor ID in the IKE_SA_INIT and IKE_SA_AUTH
messages if the policy used to negotiate the IKE and IPsec SAs are security realm -based IPsec
pol icies.

