[MS-GPNAP]: Group Policy: Network Access Protection (NAP) Extension

Intellectual Property Rights Notice for Open Specifications Documentation

- **Technical Documentation.** Microsoft publishes Open Specifications documentation for protocols, file formats, languages, standards as well as overviews of the interaction among each of these technologies.
- **Copyrights.** This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you may make copies of it in order to develop implementations of the technologies described in the Open Specifications and may distribute portions of it in your implementations using these technologies or your documentation as necessary to properly document the implementation. You may also distribute in your implementation, with or without modification, any schema, IDL's, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications.
- No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
- Patents. Microsoft has patents that may cover your implementations of the technologies described in the Open Specifications. Neither this notice nor Microsoft's delivery of the documentation grants any licenses under those or any other Microsoft patents. However, a given Open Specification may be covered by Microsoft Open Specification Promise or the Community Promise. If you would prefer a written license, or if the technologies described in the Open Specifications are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplq@microsoft.com.
- Trademarks. The names of companies and products contained in this documentation may be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.
- **Fictitious Names.** The example companies, organizations, products, domain names, email addresses, logos, people, places, and events depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments you are free to take advantage of them. Certain Open Specifications are intended for use in conjunction with publicly available standard specifications and network programming art, and assumes that the reader either is familiar with the aforementioned material or has immediate access to it.

Revision Summary

Date	Revision History	Revision Class	Comments
04/23/2010	0.1	Major	First Release.
06/04/2010	1.0	Major	Updated and revised the technical content.
07/16/2010	1.1	Minor	Clarified the meaning of the technical content.
08/27/2010	1.1	No change	No changes to the meaning, language, or formatting of the technical content.
10/08/2010	1.1	No change	No changes to the meaning, language, or formatting of the technical content.
11/19/2010	1.1	No change	No changes to the meaning, language, or formatting of the technical content.
01/07/2011	1.1	No change	No changes to the meaning, language, or formatting of the technical content.
02/11/2011	1.1	No change	No changes to the meaning, language, or formatting of the technical content.
03/25/2011	2.0	Major	Significantly changed the technical content.
05/06/2011	3.0	Major	Significantly changed the technical content.
06/17/2011	3.1	Minor	Clarified the meaning of the technical content.
09/23/2011	3.1	No change	No changes to the meaning, language, or formatting of the technical content.
12/16/2011	4.0	Major	Significantly changed the technical content.
03/30/2012	5.0	Major	Significantly changed the technical content.
07/12/2012	5.0	No change	No changes to the meaning, language, or formatting of the technical content.
10/25/2012	5.0	No change	No changes to the meaning, language, or formatting of the technical content.
01/31/2013	6.0	Major	Significantly changed the technical content.
08/08/2013	7.0	Major	Significantly changed the technical content.
11/14/2013	7.0	No change	No changes to the meaning, language, or formatting of the technical content.

Contents

1	Introduction	
	1.1 Glossary	5
	1.2 References	6
	1.2.1 Normative References	6
	1.2.2 Informative References	7
	1.3 Overview	
	1.3.1 Background	
	1.3.2 Group Policy Extension Overview	
	1.4 Relationship to Protocols and Other Structures	
	1.5 Applicability Statement	
	1.6 Versioning and Localization	
	1.7 Vendor-Extensible Fields	
	1.7 Vendor Extensible Fields	. 10
2	Structures	. 11
	2.1 Trace Settings	
	2.1.1 Enable Tracing	
	2.1.2 Tracing Level	
	2.2 User Interface Settings	
	2.2.1 SmallText	
	2.2.2 LargeText	
	2.2.3 ImageFile	
	2.2.4 ImageFileName	
	2.3 Enforcement Client Settings	
	2.3.1 DHCP Enforcement	
	2.3.2 Remote Access Enforcement	. 14 15
	2.3.3 IPsec Enforcement	
	2.3.4 RDG Enforcement	
	2.3.5 EAP Enforcement	
	2.4 Health Registration Authority (HRA) Settings	
	2.4.1 PKCS#10 Certificate Settings	
	2.4.1.1 Cryptographic Service Provider (CSP)	
	2.4.1.2 Cryptographic Provider Type	
	2.4.1.3 Public Key OID	
	2.4.1.4 Public Key Length	
	2.4.1.5 Public Key Spec	
	2.4.1.6 Hash Algorithm OID	
	2.4.2 HRA Auto-Discovery	
	2.4.3 Use SSL	
	2.4.4 HRA URLs	. 23
	2.4.4.1 Server	. 24
	2.4.4.2 Order	. 24
	2.4.5 Reconnect Attempts	. 24
	2.5 SoH Settings	
	2.5.1 Task Timer	
	2.5.2 Backward Compatible	
	·	
3	Structure Examples	. 26
4	Security	. 28
	4.1 Security Considerations for Implementers	. 28

	4.2 Index of Security Fields	28
5	Appendix A: Product Behavior	29
6	Change Tracking	31
7	' Index	32

1 Introduction

The Group Policy: Network Access Protection (NAP) Extension protocol specifies functionality to control client computer access to network resources. Access can be granted or restricted per client computer based on its identity and its degree of compliance with corporate governance policy. For non-compliant client computers, NAP specifies automatic methods to reinstate compliance and to dynamically upgrade access to network resources.

Sections 1.7 and 2 of this specification are normative and can contain the terms MAY, SHOULD, MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. All other sections and examples in this specification are informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

certificate authority (CA) or certification authority client-side extension GUID (CSE GUID) cryptographic service provider (CSP) domain domain controller (DC) **Dynamic Host Configuration Protocol (DHCP)** enforcement client globally unique identifier (GUID) **Group Policy Group Policy Object (GPO)** health certificate enrollment agent (HCEA) health registration authority (HRA) language code identifier (LCID) Lightweight Directory Access Protocol (LDAP) **Network Access Protection (NAP)** object identifier (OID) public kev Public Key Cryptography Standards (PKCS) registry statement of health (SoH) statement of health response (SoHR) system health agent (SHA) tool extension GUID or administrative plug-in GUID Unicode

The following terms are defined in [MS-GPOL]:

Group Policy (GP) server

The following terms are specific to this document:

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because links are to the latest version of the documents, which are updated frequently. References to other documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no longer being maintained or was replaced with a new document that provides current implementation details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information. Please check the archive site, http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an additional source.

[IEEE802.1X] Institute of Electrical and Electronics Engineers, "IEEE Standard for Local and Metropolitan Area Networks - Port-Based Network Access Control", December 2004, http://ieeexplore.ieee.org/iel5/9828/30983/01438730.pdf

[MS-DHCPN] Microsoft Corporation, "<u>Dynamic Host Configuration Protocol (DHCP) Extensions for Network Access Protection (NAP)</u>".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-GPOL] Microsoft Corporation, "Group Policy: Core Protocol".

[MS-GPREG] Microsoft Corporation, "Group Policy: Registry Extension Encoding".

[MS-HCEP] Microsoft Corporation, "Health Certificate Enrollment Protocol".

[MS-LCID] Microsoft Corporation, "Windows Language Code Identifier (LCID) Reference".

[MS-PEAP] Microsoft Corporation, "Protected Extensible Authentication Protocol (PEAP)".

[MS-TSGU] Microsoft Corporation, "Terminal Services Gateway Server Protocol".

[MS-WSH] Microsoft Corporation, "Windows Security Health Agent (WSHA) and Windows Security Health Validator (WSHV) Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999, http://www.ietf.org/rfc/fc2616.txt

[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000, http://www.ietf.org/rfc/rfc2818.txt

[RFC2986] Nystrom, M., and Kaliski, B., "PKCS#10: Certificate Request Syntax Specification", RFC 2986, November 2000, http://www.ietf.org/rfc/rfc2986.txt

[RFC3174] Eastlake III, D., and Jones, P., "US Secure Hash Algorithm 1 (SHA1)", RFC 3174, September 2001, http://www.ietf.org/rfc3174.txt

[RFC3447] Jonsson, J., and Kaliski, B., "Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1", RFC 3447, February 2003, http://www.ietf.org/rfc/rfc3447.txt

[TNC-IF-TNCCSPBSoH] TCG, "TNC IF-TNCCS: Protocol Bindings for SoH", version 1.0, May 2007, http://www.trustedcomputinggroup.org/resources/tnc iftnccs protocol bindings for soh version 1 0/

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-NAPOD] Microsoft Corporation, "Network Access Protection Protocols Overview".

[MSDN-ALG] Microsoft Corporation, "CNG Algorithm Identifiers", http://msdn.microsoft.com/en-us/library/aa375534(VS.85).aspx

[MSDN-CSP] Microsoft Corporation, "Cryptographic Provider Names", http://msdn.microsoft.com/en-us/library/aa380243.aspx

[MSDN-DHCP] Microsoft Corporation, "Dynamic Host Configuration Protocol", http://technet.microsoft.com/en-us/network/bb643151.aspx

[MSDN-NAP] Microsoft Corporation, "Network Access Protection", http://msdn.microsoft.com/en-us/library/aa369712(VS.85).aspx

[MSDN-SC] Microsoft Corporation, "Smart Card Minidriver Specification", http://www.microsoft.com/whdc/device/input/smartcard/sc-minidriver.mspx

[MSFT-IPSEC] Microsoft Corporation, "IPsec", http://technet.microsoft.com/en-us/network/bb531150.aspx

[MSFT-NAPIPSEC] Microsoft Corporation, "IPsec Enforcement Configuration," http://technet.microsoft.com/en-us/library/dd125312(WS.10).aspx

[MSFT-RDG] Microsoft Corporation, "Configuring the TS Gateway NAP Scenario", http://technet.microsoft.com/en-us/library/cc732172(WS.10).aspx

1.3 Overview

Network Access Protection (NAP) is a platform that controls access to network resources, based on a client computer's identity and compliance with corporate governance policy. NAP allows network administrators to define granular levels of network access, based on who a client is, the groups to which the client belongs, and the degree to which that client is compliant with corporate governance policy. Based on the degree of compliance, NAP can implement different enforcement methods that can restrict or limit client access to the network. If a client is not compliant, NAP provides a mechanism to automatically bring the client back into compliance and then to dynamically increase its level of network access. The NAP architecture is specified in [MS-NAPOD].

The behavior of NAP can be controlled through **Group Policy** by updating the client **registry**, as specified in [MS-GPOL] and in [MS-GPREG]. This mechanism can be used by an administrator to enable or disable NAP enforcement, to set **Health Registration Authorities (HRAs)** to be used by the client, and to control client user interface and tracing. All NAP group policies are machine-specific, meaning that the same policy is applied to all users on a given machine.

1.3.1 Background

The Group Policy: Core Protocol, as specified in [MS-GPOL], allows clients to discover and retrieve policy settings created by administrators of a **domain**. These settings are persisted within Group Policy Objects (GPOs) assigned to policy target accounts, which are either computer accounts or user accounts in Active Directory. Each client uses the **Lightweight Directory Access Protocol** (LDAP) to determine which GPOs are applicable to it by consulting the Active Directory objects corresponding to its computer account and the user accounts of any users that log on to the client computer.

On each client, each GPO is interpreted and acted upon by software components known as client-side plug-ins. Each client-side plug-in is associated with a specific class of settings. The client-side plug-ins that are responsible for a given GPO are specified by using an attribute on the GPO. This attribute specifies a list of **GUID** pairs. The first GUID of each pair is referred to as a **client-side extension GUID** (**CSE GUID**). The second GUID of each pair is referred to as a **tool extension GUID**.

For each GPO that is applicable to a client, the client consults the CSE GUIDs listed in the GPO to determine which client-side plug-ins on the client should handle the GPO. The client then invokes the client-side plug-ins to handle the GPO. Next, the client-side plug-in uses the contents of the GPO to retrieve and process settings specific to its class, in a manner specific to the plug-in.

1.3.2 Group Policy Extension Overview

NAP client configuration Group Policy settings are accessible from a **GPO** through the Group Policy: NAP Extension to the Group Policy: Core Protocol. The extension provides a mechanism for administrative tools to obtain metadata about registry-based settings.

The process of configuring and applying the NAP Group Policy settings consists of the following steps:

1. An administrator invokes a Group Policy administrative tool to administer the NAP client configuration settings through the Group Policy: NAP Extension. The NAP Extension reads and updates a generic settings database using the Group Policy: Registry Extension Encoding, as specified in [MS-GPREG] section 3.1.5.8, which results in the storage and retrieval of settings on a GP server. These settings describe configuration parameters to be applied to a generic settings database on a client that is affected by the GPO.

The administrator views the data and updates it as desired.

- 2. A client computer affected by that GPO is started (or is connected to the network, if this happens after the client starts), and the Group Policy: Core Protocol is invoked by the client to retrieve Policy Settings from the Group Policy server. As part of this processing, the registry extension's CSE GUID (as specified in [MS-GPREG] section 1.9) is read from the GPO.
- 3. The presence of the registry extension's CSE GUID (as specified in [MS-GPREG] section 1.9) in the GPO instructs the client to invoke a registry extension plug-in component for policy application. This component parses the file of settings and saves them in the generic settings database (registry) on the local machine.
- 4. The NAP subsystem on the client recognizes that its configuration has been updated and takes the appropriate actions.

This document specifies the behavior of the administrative plug-in mentioned in step 1. The operation of the Group Policy: Core Protocol in step 2 is specified in [MS-GPOL] section 3.2. The

process of retrieving the settings in step 3 is specified in <a>[MS-GPREG] section 3.2. Step 4 is specific to a NAP client implementation.

1.4 Relationship to Protocols and Other Structures

Configuration changes updated on the GP server are dependent on the Group Policy: Registry Extension Encoding, as specified in [MS-GPREG] section 3.1.5.8 (and all protocols specified in [MS-GPREG] section 1.4), which reads the Group Policy: NAP Extension data structure and updates the registry.pol file on the GP server.

The distribution of the Group Policy: NAP Extension data structure to the client is dependent on the Group Policy: Registry Extension Encoding, as specified in [MS-GPREG] (and all protocols specified in [MS-GPREG] section 1.4), which retrieves settings from a GPO and populates those settings in the client registry.

The Group Policy: Registry Extension Encoding as specified in [MS-GPREG] is invoked as an extension of the Group Policy: Core Protocol, as specified in [MS-GPOL].

The generic settings database $\leq 1 \geq$ on the local machine maintains the local configuration, which is used by the NAP in case the local machine does not participate in Group Policy. $\leq 2 \geq$

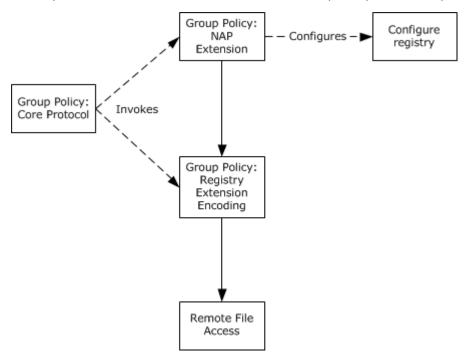


Figure 1: Protocol relationship diagram

1.5 Applicability Statement

The Group Policy: NAP Extension is applicable only within the Group Policy framework and is used to configure certain aspects of NAP behavior on such clients.

The Group Policy: NAP Extension has only an administrative-side extension and no client-side extension. This extension updates the generic settings database <3> and is documented here for informative purposes only.

1.6 Versioning and Localization

This document covers versioning issues in the following areas:

- Structure Versions: There is no versioning mechanism in the Group Policy: NAP Extension. If new functionality is required that would be incompatible with the existing registry settings, a new Group Policy extension should be implemented.
- Localization: Localization-dependent registry content is specified in section 2.2.

The Group Policy: NAP client configuration contains registry keys with data that is used for display purposes; these keys can contain localization-dependent content.

1.7 Vendor-Extensible Fields

The Group Policy: NAP Extension does not define any vendor-extensible fields.

This structure defines tool extension GUID values, as specified in [MS-GPOL] section 1.8. The following assignment represents the GUID in string format.

Parameter	Value
Tool extension GUID (computer policy settings)	{A2A54893-AAF2-49A3-B3F5-CC43CEBCC27C}

2 Structures

This protocol references commonly used data types as defined in [MS-DTYP]. The NAP Group Policy administrative plug-in uses the transport specified in [MS-GPOL] to read and modify settings in the central policy store. Information is retrieved from the policy store by the Group Policy: Registry Extension Encoding ([MS-GPREG] section 3.2), which writes the information to the client's registry.

The NAP Group Policy client configuration is implemented as a set of entries in the machine-specific Registry Policy file used by the Group Policy: Registry Extension Encoding. To support the NAP Group Policy option, the NAP administrative plug-in MUST be able to write and query the corresponding entry in the machine-specific Registry Policy file of the relevant GPO.

The following NAP Group Policy client configurations are defined:

- Trace settings
- User interface settings
- Enforcement client settings
- Health registration authority (HRA) settings
- Statement of health (SoH) settings

The following sections specify the format of the corresponding entries in the machine-specific Registry Policy file. The intent of various settings is also described in the following sections; however, these settings are processed by the NAP system in the client, and their descriptions here are only for informative purposes, not for normative purposes.

2.1 Trace Settings

The NAP client tracing functionality settings are compounded from two registry entries that are represented in the machine-specific Registry Policy file as follows:

Key: Software\Policies\Microsoft\NetworkAccessProtection\ClientConfig\

2.1.1 Enable Tracing

Value: "Enable Tracing" or one of the value names specified in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_DWORD.

Size: Equal to the size of the Data field.

Data: A 32-bit unsigned integer.

Value	Meaning	
0x00000000	Disables NAP tracing on the client.	
0x00000001 Enables NAP tracing on the client.		

2.1.2 Tracing Level

Value: "Tracing Level" or one of the value names listed in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_DWORD.

Size: Equal to size of the Data field.

Data: A 32-bit unsigned integer.

Value	Meaning	
0x00000000	Disables NAP tracing on the client.	
0x0000001	Sets NAP tracing on the client to basic level.	
0x00000002	Sets NAP tracing on the client to advanced level.	
0x00000003	Sets NAP tracing on the client to debug level.	

2.2 User Interface Settings

The NAP client uses user interface registry content as display information when user interface registry keys are available; otherwise, the user interface will not display a title and description. The user interface registry keys can contain localization-dependent content. User interface registry entries can be represented in the machine-specific Registry Policy file as follows:

Key: Software\Policies\Microsoft\NetworkAccessProtection\ClientConfig\UI\<LCID>

The <LCID> language code identifier (LCID) values are specified in [MS-LCID] section 2.2.

2.2.1 SmallText

Value: "SmallText" or one of the value names listed in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_SZ.

Size: Equal to size of the Data field.

Data: A variable-length null-terminated **Unicode** string. This setting specifies the user notification title displayed to the user.

2.2.2 LargeText

Value: "LargeText" or one of the value names listed in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_SZ.

Size: Equal to the size of the Data field.

Data: A variable-length null-terminated Unicode string. This setting specifies the user notification sub-title displayed to the user.

2.2.3 ImageFile

The ImageFile entry may be represented in the machine-specific Registry Policy file as follows:

Value: "ImageFile" or one of the value names listed in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_BINARY.

Size: Equal to the size of the Data field.

Data: An octet stream representing an image that is displayed in the NAP client user interface. The data interpretation is determined by the image file name extension specified in ImageFileName (section 2.2.4).

NAP client implementations interpret this setting as the company logo to display. If this key is missing, no image is displayed. Implementations MAY choose to support this option. If this option is supported, the image file name key (see ImageFileName (section 2.2.4) MUST be available.

2.2.4 ImageFileName

Value: "ImageFileName" or one of the value names listed in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_SZ.

Size: Equal to size of the Data field.

Data: A variable-length null-terminated Unicode string. This setting is used to determine the format of the image data specified in section 2.2.3. File formats, as indicated in the file type extension, include but are not restricted to bmp, icon, gif, jpeg, exif, png, tiff, wmf, or emf.

2.3 Enforcement Client Settings

A NAP **enforcement client** uses the health state of a computer to request a certain level of access to a network. This is done using NAP protocol SoH ([TNC-IF-TNCCSPBSoH] section 3.5) and **statement of health response (SoHR)** ([TNC-IF-TNCCSPBSoH] section 3.6) messages exchanged between a client and a server to validate client conformance with corporate security policies.

Different types of mechanisms transport SoHs intended to manage the health of connected resources. These mechanisms, called enforcement clients, are configured from the NAP Group Policy and are listed in the following table.

Enforcement client	<qec- id> value</qec- 	Description
Dynamic Host Configuration Protocol (DHCP)	79617	Enforces health policies when a client computer attempts to obtain an IP address from a DHCP server. The implementation is specified in section $\underline{2.3.1}$.
Remote access	79618	Enforces health policies when a client computer attempts to gain access to the network through a virtual private network (VPN) connection. The implementation is specified in section 2.3.2.
Internet Protocol security (IPsec)	79619	Enforces health policies when a client computer attempts to communicate with another computer using IPsec. The

Enforcement client	<qec- id> value</qec- 	Description
		implementation is specified in section <u>2.3.3</u> .
Wireless EAPOL	79620	Enforces health policies when a client computer attempts to access a network through an 802.1X wireless connection or an authenticating switch connection. <4> The implementation is specified in section 2.3.5.
Remote desktop gateway (RDG)	79621	Enforces health policies when a client computer attempts to gain access to an RDG. The implementation is specified in section $2.3.4$.
Extensible Authentication Protocol (EAP)	79623	Enforces health policies when a client computer attempts to access a network through an 802.1X wireless connection or an authenticating switch connection. The implementation is specified in section 2.3.5.

For more information on NAP enforcement clients, see [MSDN-NAP].

The NAP enforcement client settings are compounded from one registry entry per enforcement client that MUST be represented in the machine-specific Registry Policy file as follows:

Key: Software\Policies\Microsoft\NetworkAccessProtection\ClientConfig\Qecs\<qec-id>

All the <qec-id> keys MUST have the following value:

Value: "Enabled" or one of the value names listed in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_DWORD.

Size: Equal to size of the Data field.

Data: A 32-bit unsigned integer.

Value	Meaning
0x00000000	Disables NAP enforcement.
0×0000001	Enables NAP enforcement.

2.3.1 DHCP Enforcement

The **Dynamic Host Configuration Protocol (DHCP)** NAP enforcement client provides functionality in the DHCP client service that uses industry standard DHCP messages to exchange system health messages specified in section <u>2.3</u>.

The client sends system health information to the DHCP enforcement server, using DHCP Extensions, as specified in [MS-DHCPN]. The DHCP server may send the SoH to a policy server (for example NPS) for evaluation. Based on the policy server response, the DHCP enforcement server can provide IP addressing information that allows the client to connect to other computers, or it can provide IP addressing information that limits the computers to which the client can connect. Alternatively, the DHCP enforcement server might not provide IP addressing information.

For more information on DHCP, see [MSDN-DHCP].

2.3.2 Remote Access Enforcement

The remote access NAP enforcement client provides functionality in the **Remote Access Service** (**RAS**) that makes it possible to connect a remote client computer to a network server over a **virtual private network (VPN)** and to send health information provided by NAP.

When a client attempts to access a network over VPN, the VPN server can request an SoHR response message ([TNC-IF-TNCCSPBSoH] section 3.6) from the client by sending some PEAP TLV ([MS-PEAP]) messages. If the RAS enforcement client is enabled on the client, it responds with an SoH message, as specified in [MS-PEAP] section 2.2.8. The RAS server might send the SoH message to a policy server (for example NPS) for evaluation. Based on the policy server response, the RAS server can create a VPN connection that enables the client to connect to other computers on the network, or the RAS server can quarantine the client by limiting the computers to which it can connect using the VPN connection. Alternatively, the RAS server can reject the client access request.

For more information on RAS clients, see [MSDN-RAS].

2.3.3 IPsec Enforcement

The IPsec NAP enforcement client is a component that obtains an SoH, as specified in section 2.3, and sends it to a HRA. The protocol used by the client to communicate with the HRA is called the Health Certificate Enrollment Protocol (HCEP), as specified in [MS-HCEP].

The HCEP request message payload sent by the Health Certificate Enrollment Agent (HCEA) contains a **PKCS** #10 certificate request, as specified in [RFC2986], which contains an SoH message ([TNCCSPBSOH] section 3.5).

The HRA sends the SoH to a policy server (for example NPS) for evaluation. Based on the policy server response, the HRA performs the following steps:

- If the policy server response is that the client is compliant with corporate health policy, the HRA requests a **certificate authority (CA)** to issue a certificate and sends the issued certificate back to the client.
- If the client's health state is not compliant, the HRA can request a certificate from the CA, with the certificate containing an indication that the client is unhealthy.

In the IPsec scenario, the client is able to connect to a network, but the client does not have a valid health certificate for communicating on that network until the HCEP message exchange is completed. If the client is non-compliant, the HRA might not provide a health certificate.

The IPsec NAP enforcement client also interacts with the IPsec components to ensure that the health certificate is used for IPsec-protected communication.

For more information, see [MSFT-IPSEC] and [MSFT-NAPIPSEC].

The IPsec NAP enforcement client can be configured to use the local predefined IPsec policy rather than the default IPsec policy. The use local IPsec policy registry entry can be represented in the machine-specific Registry Policy file as follows:

Key: Software\Policies\Microsoft\NetworkAccessProtection\ClientConfig

Value: "PlumbIpsecPolicy" or one of the value names specified in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_DWORD.

Size: Equal to size of the Data field.

Data: A 32-bit unsigned integer.

Value	Meaning	
0x00000000	Allows the use of domain-based IPsec Group Policy on the client.	
0x0000001	Uses the local IPsec policy on the client.	

2.3.4 RDG Enforcement

The NAP remote desktop gateway (RDG) enforcement client is a component that obtains the SoH from NAP as specified in section 2.3 and uses it while the client connects to a remote desktop server.

While attempting to access an RDG server, the remote desktop client (RDC) obtains an SoH, as specified in section 2.3, and sends it in the TSGU, as specified in [MS-TSGU].

The RDG server MAY send the SoH to a policy server (for example MPS) for evaluation. Based on the policy server response, the RDG server MAY grant access to the RDC, or the remote desktop server MAY grant access but deny access to certain machine resources such as hard drives, disks, PnP devices, and clipboards. $\leq 5 \geq$

For more information on RDG and NAP, see [MSFT-RDG].

2.3.5 EAP Enforcement

The NAP EAP enforcement client extends the 802.1x supplicant, allows responding to an SoH Request TLV message with an SoH TLV message, as specified in section 2.3, and sends the response using an 802.1x supplicant for 802.1x-authenticated connections, as described in [MS-NAPOD].<6>

While attempting to access a LAN or WLAN using an 802.1x connection, the 802.1x supplicant obtains an SoH as specified in section 2.3 and sends it in **PEAP-Type-Length-Value (TLV)** extension, as specified in [MS-PEAP] section 2.2.8. The 802.1x server can send the SoH to a policy server (for example NPS) for evaluation. Based on the policy server response, the 802.1x server can enable the client to connect to other computers on the network or can restrict the traffic of the NAP client by specifying a restricted network that limits access to specific resources on the network, as described in [MS-NAPOD]. Alternatively, the 802.1x server can reject supplicant access.

2.4 Health Registration Authority (HRA) Settings

NAP HRAs are divided into groups that use the same certificate security settings specified in section 2.3.3. The HRA groups are represented in the registry as depicted in the following figure.

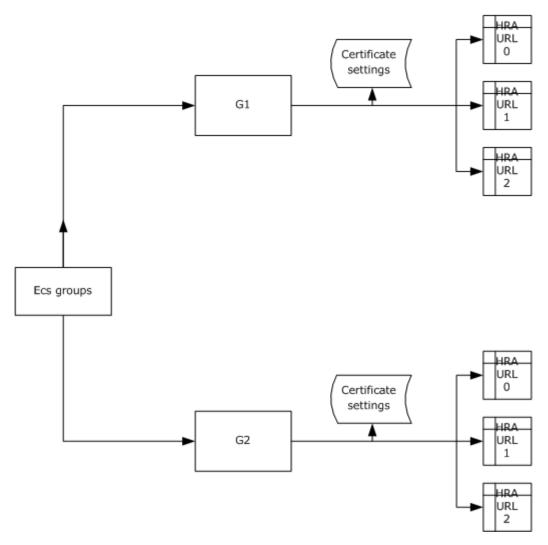


Figure 2: Health certificate server (hcs) groups registry representation

The NAP HRA settings are compounded from multiple registry entries that MUST be represented in the machine-specific Registry Policy file as follows:

 $Key: Software \verb|Policies|Microsoft| Network Access Protection \verb|ClientConfig| Enroll| Hcs Groups \verb|<Server-Group| For the property of the pr$

<Server-Group> is the name of the HRAs group.

2.4.1 PKCS#10 Certificate Settings

The **health certificate enrollment agent (HCEA)** MUST be configured with the required security parameters to construct the Public Key Cryptography Standards (PKCS) #10 certificate request, as specified in [MS-HCEP] section 2.2.1.4.

These security parameters are configured in the NAP Group Policy. If the IPsec enforcement client is enabled, as specified in section 2.3, the security parameters entries MUST be represented in the machine-specific Registry Policy file as follows:

 $Key: Software \end{align} Enroll \end{align} Enroll \end{align} Enroll \end{align} Server-Group >$

Security parameter values follow in sections 2.4.1.1 through 2.4.1.6.

2.4.1.1 Cryptographic Service Provider (CSP)

The name of the **cryptographic service provider (CSP)** used to generate the key pair on the HCEA.

Value: "CSP" or one of the value names specified in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_SZ.

Size: Equal to size of the Data field.

Data: A variable-length null-terminated Unicode string. This setting specifies the name of the CSP

used.

The following CSPs are available by default. <7>

CSP	Description
Microsoft Base Cryptographic Provider v1.0	A broad set of basic cryptographic functionality that can be exported to other countries or regions.
Microsoft Strong Cryptographic Provider	An extension of the Microsoft Base Cryptographic Provider.
Microsoft Enhanced Cryptographic Provider v1.0	Microsoft Base Cryptographic Provider with support for longer keys and additional algorithms.
Microsoft AES Cryptographic Provider	Microsoft Enhanced Cryptographic Provider with support for AES encryption algorithms.
Microsoft Base DSS Cryptographic Provider	Provides hashing, data signing, and signature verification capability, using the Secure Hash Algorithm 1 (SHA1) and Digital Signature Standard (DSS) algorithms.
Microsoft Base DSS and Diffie-Hellman Cryptographic Provider	A superset of the DSS Cryptographic Provider that also supports Diffie-Hellman key exchange, hashing, data signing, and signature verification, using the Secure Hash Algorithm 1 (SHA1) and Digital Signature Standard (DSS) algorithms.
Microsoft Enhanced DSS and Diffie-Hellman Cryptographic Provider	Supports Diffie-Hellman key exchange (a 40-bit DES derivative), SHA hashing, DSS data signing, and DSS signature verification.
Microsoft DH SChannel Cryptographic Provider	Supports hashing, data signing with DSS, generating Diffie-Hellman (D-H) keys, exchanging D-H keys, and exporting a D-H key. This CSP supports key derivation for the SSL3 and TLS1 protocols.

CSP	Description	
Microsoft RSA/Schannel Cryptographic Provider	Supports hashing, data signing, and signature verification. The algorithm identifier CALG_SSL3_SHAMD5 is used for SSL 3.0 and TLS 1.0 client authentication. This CSP supports key derivation for the SSL2, PCT1, SSL3, and TLS1 protocols.	
Microsoft Base Smart Card Crypto Provider	Provides all of the functionality of the Microsoft Strong Cryptographic Provider . The Microsoft Base Smart Card Cryptographic Service Provider communicates with individual smart cards that translate the characteristics of particular smart cards into a uniform interface. For more information on smart cards, see [MSDN-SC].	
Microsoft Exchange Cryptographic Provider v1.0	A 64-bit block encryption CSP tied to the Mail API.	

2.4.1.2 Cryptographic Provider Type

The type of the CSP used to generate the key pair on the HCEA. There are many different standard data formats and protocols that CSP can use. These are generally organized into types, each of which has its own set of data formats and processing rules. For more information about CSP types, see [MSDN-CSP].

Value: "CSPType" or one of the value names specified in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_DWORD.

Size: Equal to size of the Data field.

Data: A 32-bit value consisting of the following type values.

Name	Value	Meaning
PROV_RSA_FULL	0x00000001	Supports both digital signatures and data encryption. It is considered a general purpose CSP. The RSA public key algorithm is used for all public key operations.
PROV_DSS	0x00000003	Supports hashes and digital signatures. The signature algorithm specified by the PROV_DSS provider type is the Digital Signature Algorithm (DSA) .
PROV_RSA_AES	0x0000018	Supports the same as PROV_RSA_FULL with additional AES encryption capability.
PROV_DSS_DH	0x0000000D	A superset of the PROV_DSS provider type with Diffie-Hellman key exchange.
PROV_DH_SCHANNEL	0x00000012	Supports both Diffie-Hellman and Schannel protocols.
PROV_RSA_SCHANNEL	0x0000000C	Supports both RSA and Schannel protocols.
PROV_MS_EXCHANGE	0x00000005	Designed for the cryptographic needs of the Exchange mail application and other applications compatible with Microsoft Mail.

2.4.1.3 Public Key OID

A **public key OID** is an object identifier (OID) identifying the algorithm of the public-private key pair associated with the certificate. For more information, see [RFC3447].

Value: "PublicKeyAlgOid" or one of the value names specified in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_SZ.

Size: Equal to size of the Data field.

Data: A variable-length null-terminated Unicode string. This setting specifies the public key OID used.

The following table maps public key algorithm names and OIDs. For more information on the key algorithms, see [MSDN-ALG].

Name	OID
RSA	1.2.840.113549.1.1.1
DSA	1.2.840.10040.4.1
DH	1.2.840.10046.2.1
RSASSA-PSS	1.2.840.113549.1.1.10
DSA	1.3.14.3.2.12
DH	1.2.840.113549.1.3.1
RSA_KEYX	1.3.14.3.2.22
mosaicKMandUpdSig	2.16.840.1.101.2.1.1.20
ESDH	1.2.840.113549.1.9.16.3.5
NO_SIGN	1.3.6.1.5.5.7.6.2
ECC	1.2.840.10045.2.1
ECDSA_P256	1.2.840.10045.3.1.7
ECDSA_P384	1.3.132.0.34
ECDSA_P521	1.3.132.0.35
RSAES_OAEP	1.2.840.113549.1.1.7
ECDH_STD_SHA1_KDF	1.3.133.16.840.63.0.2

2.4.1.4 Public Key Length

The key length of the public-private key pair associated with the certificate. For more information, see [RFC3447].

Value: "KeyLength" or one of the value names specified in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

20 / 33

[MS-GPNAP] - v20131025

Group Policy: Network Access Protection (NAP) Extension

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

Type: REG_DWORD.

Size: Equal to size of the Data field.

Data: A 32-bit value consisting of the public key length. The minimum "Public Key Length" expected is 0x00000800. If the "Public Key Length" is less than 0x00000800, the Data received from group policy is ignored, and the "Public Key Length" field is set to 0x00000800.

2.4.1.5 Public Key Spec

When a public-private key pair is generated, several types of keys can be created. Keys can be created to allow their use with encryption, digital signatures, or both. The **Value** represents the public key associated with the certificate.

Value: "PublicKeySpec" or one of the value names specified in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted. <8>

Type: REG_DWORD.

Size: Equal to the size of the Data field.

Data: A 32-bit value that is set to 0x00000001 (AT_KEYEXCHANGE).

2.4.1.6 Hash Algorithm OID

The Hash Algorithm OID is an OID identifying the hash algorithm used to sign the certificate request. For more information on hash algorithms, see [RFC3174].

Value: "HashAlgOid" or one of the value names listed in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_SZ.

Size: Equal to size of the Data field.

Data: A variable-length null-terminated Unicode string. This setting specifies the public key OID

The list of supported hash algorithm OIDs follows.

Name	OID
sha1RSA	1.2.840.113549.1.1.5
md5RSA	1.2.840.113549.1.1.4
sha1DSA	1.2.840.10040.4.3
sha1RSA	1.3.14.3.2.29
shaRSA	1.3.14.3.2.15
md5RSA	1.3.14.3.2.3
md2RSA	1.2.840.113549.1.1.2
md4RSA	1.2.840.113549.1.1.3

Name	OID
md4RSA	1.3.14.3.2.2
md4RSA	1.3.14.3.2.4
md2RSA	1.3.14.7.2.3.1
sha1DSA	1.3.14.3.2.13
dsaSHA1	1.3.14.3.2.27
mosaicUpdatedSig	2.16.840.1.101.2.1.1.19
sha1NoSign	1.3.14.3.2.26
md5NoSign	1.2.840.113549.2.5
sha256NoSign	2.16.840.1.101.3.4.2.1
sha384NoSign	2.16.840.1.101.3.4.2.2
sha512NoSign	2.16.840.1.101.3.4.2.3
sha256RSA	1.2.840.113549.1.1.11
sha384RSA	1.2.840.113549.1.1.12
sha512RSA	1.2.840.113549.1.1.13
RSASSA-PSS	1.2.840.113549.1.1.10
sha1ECDSA	1.2.840.10045.4.1
sha256ECDSA	1.2.840.10045.4.3.2
sha384ECDSA	1.2.840.10045.4.3.3
sha512ECDSA	1.2.840.10045.4.3.4
specifiedECDSA	1.2.840.10045.4.3

2.4.2 HRA Auto-Discovery

HRA groups can be set by group policy or can be discovered automatically by the NAP client using DNS SRV lookup, as specified in [RFC2782]. A NAP client discovers a suitable HRA at start-up using the following sequence:

- Query SRV records for HRAs in the Active Directory site of the client (for example, _hra._tcp.<sitename>._sites.<domainname>)
- 2. Query SRV records for HRAs in the Active Directory domain of the client (for example, _hra._tcp.<domainname>)
- 3. Query SRV records for HRAs in the DNS domain of the client (for example, _hra._tcp.<DNSname>)

To enable HRA auto discovery, a registry setting entry MUST be represented in the machine-specific Registry Policy file as follows:

Key: Software\Policies\Microsoft\NetworkAccessProtection\ClientConfig\Enroll\HcsGroups

Value: "EnableDiscovery" or one of the value names specified in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_DWORD.

Size: Equal to the size of the Data field.

Data: A 32-bit unsigned integer.

Value	Meaning
0x00000000	Disables HRA auto discovery.
0x00000001	Enables HRA auto discovery.

2.4.3 Use SSL

The HCEP uses HTTP (as specified in [RFC2616]) or HTTP over TLS (as specified in [RFC2818]) as the transport for its messages. To configure how HCEP connects to the HRA, a registry setting entry MUST be represented in the machine-specific Registry Policy file as follows:

 $Key: Software \ensuremath{\mbox{\sc Network Access Protection \client Config\Enroll\ensuremath{\mbox{\sc Hros}}{Enroll\ensuremath{\mbox{\sc Network Access Protection}}{Enroll\ensuremath{\mbox{\sc Network Access Protection}}{Enroll\ensuremath{\mbox{\sc$

Value: "AllowNonSSL" or one of the value names specified in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG DWORD.

Size: Equal to the size of the Data field.

Data: A 32-bit unsigned integer.

Value	Meaning
0×00000000	Disables SSL.
0x00000001	Enables SSL.

Communication with the HRA is always performed using SSL when HRA auto-discovery is used; see section 2.4.1.

2.4.4 HRA URLs

Group Policy enables the administrator to configure specific HRA groups by setting the URL. To configure an HRA URL, a registry entry MUST be represented in the machine-specific Registry Policy file as follows:

 $Key: Software \ensuremath{\color=0.055cm} Key: Software \ensuremath{\c$

<String> is the key name of a specific HRA. The Group Policy: NAP Extension uses Url#.

Url# is the string "Url" with the HRA order in the group concatenated to it. The Policy Group can define 0 to 254 HRAs in a group. If there are no URLs defined and HRA auto-discovery specified in section 2.4.2 is set to 0 the NAP client won't be able to request a health certificate as specified in section 2.3.3.

2.4.4.1 Server

Value: "Server" or one of the value names specified in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_SZ.

Size: Equal to size of the Data field.

Data: A variable-length null-terminated Unicode string. This setting specifies the HRA URL to connect to.

2.4.4.2 Order

Value: "Order" or one of the value names specified in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_DWORD.

Size: Equal to size of the Data field.

Data: A 32-bit value in the range from 0x00000000 to 0x000000FE, inclusive.

2.4.5 Reconnect Attempts

Group Policy enables the administrator to configure how long the client should wait before attempting to reconnect to an HRA in the event of a connection failure. To configure a blackout interval, a registry entry MUST be represented in the machine-specific Registry Policy file as follows:

 $Key: Software \ensuremath{\label{lem:config} Enroll\ensuremath{\label{lem:config} Enroll\ensuremath{\label{\label{lem:config} Enroll\ensuremath{\label{\label{Enroll\ensuremath{\label{\label{\label{\label{\label{\label{\label{\label{\label}} Enroll\ensuremath{\label{\label{\label{\label{\label{\label{\label}} Enroll\ensuremath{\label{\label{\label{\label{\label{\label{\label{\label{\label}} Enroll\ensuremath{\label{\label{\label{\label{\label}} Enroll\ensuremath{\label{\label} Enroll\ensuremath{\label{\label{\label}} Enroll\ensuremath{\label{\label} Enroll\en$

Value: "BlackOutIntervalInMinutes" or one of the value names listed in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_DWORD.

Size: Equal to size of the Data field.

Data: A 32-bit value representing time in minutes. For example, 0x0000000A represents 10 minutes of blackout.

2.5 SoH Settings

SoH specified in [TNC-IF-TNCCSPBSoH] has two settings that an administrator can configure using Group Policy. These settings are represented in the machine-specific registry as values ShatimeoutInMsec (section 2.5.1) and BackwardCompatible (section 2.5.2). In case these registry values are not set by the administrator, the settings are assigned default data by the NAP client. To

24 / 33

[MS-GPNAP] - v20131025

Group Policy: Network Access Protection (NAP) Extension

Copyright © 2013 Microsoft Corporation.

Release: Friday, October 25, 2013

configure SoH, registry values ShatimeoutInMsec and BackwardCompatible may be present in the machine-specific Registry Policy file under the following key:

Key: Software\Policies\Microsoft\NetworkAccessProtection\ClientConfig\

2.5.1 Task Timer

A Task Timer is a **system health agent (SHA)** timeout. A task timer is associated with all function calls that a SoH client makes to the SHA. The SHA is expected to complete the call within the timeout. Otherwise, the call is canceled and an error is reported by the SoH client.

Value: "ShatimeoutInMsec" or one of the value names specified in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG_DWORD.

Size: Equal to size of the Data field.

Data: A 32-bit value representing time in milliseconds. For example, 0x0000000A represents 10 milliseconds of blackout.

2.5.2 Backward Compatible

This setting determines the version of the message content, as specified in <a>[TNC-IF-TNCCSPBSoH] section 3.5.1.1.

Value: "BackwardCompatible" or one of the value names specified in the table in [MS-GPREG] section 3.2.5.1 specifying how the value is deleted.

Type: REG DWORD.

Size: Equal to size of the Data field.

Data: A 32-bit value consisting of the following values.

Value	Meaning
0x0000001	SSoH ([TNC-IF-TNCCSPBSoH] section 3.5.1.3) SoHReportEntry (0 plus)
0x00000002	SoH Mode Subheader SSoH ([TNC-IF-TNCCSPBSoH] section 3.5.1.3) SoHReportEntry (0 plus)

3 Structure Examples

In the following example, an administrator sets up a new domain and attempts to enable NAP DHCP enforcement on the computers in the domain. The client computers run operating systems that contain NAP client processes initialized at startup and terminated at shutdown.

First, the administrator installs and configures an operating system on a computer that is intended to function as the **domain controller (DC)**. After taking the necessary steps to designate the computer as a DC and creating a user account over the new domain, the administrator restarts the machine and logs on as the newly created user.

Next, the administrator launches the user interface for the administrative plug-in and sets the DHCP enforcement to Enabled. This causes the following entry to be written to the machine-specific Registry Policy file of the relevant GPO.

Key: Software\Policies\Microsoft\NetworkAccessProtection\ClientConfig\Qecs\79617

Value: "Enabled".

Type: REG_DWORD.

Size: Equal to the size of the Data field.

Data: 0x0000001.

The administrator then adds client computers to this domain. When a client computer is restarted for the first time after being added to the domain, it contacts the domain controller and reads Group Policy information, as specified in [MS-GPOL]. As part of this process, a machine-specific registry policy file containing the following items is also downloaded:

 A set of values under the registry key Software\Policies\Microsoft\NetworkAccessProtection\ClientConfig\Qecs\79617 that indicates that the NAP client will instruct the DHCP client on the system to send an SoH when requesting the IP address for the machine, as specified in section <u>2.3.1</u>.

The Group Policy: Registry Extension Encoding on the client parses this file and adds the configuration information to the machine's registry.

The NAP client process polls the registry and determines that its Group Policy settings have changed. The NAP process then reads the enforcement values and sets the system DHCP client to send an SoH.

When a user logs on to the computer, the DHCP client requests the NAP agent for an SoH. NAP invokes the SHA to collect health information and to generate an SoH. The SoH is then sent by the DHCP client to the policy server.

The following figure represents such a transaction.

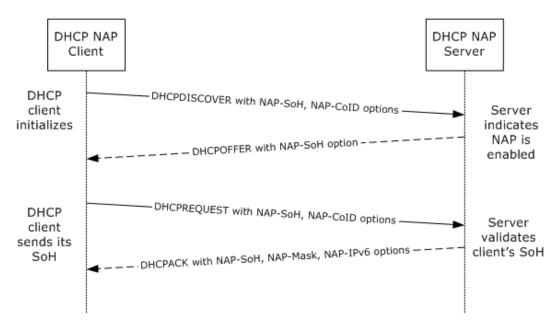


Figure 3: DHCP new lease acquisition process

When the SoH is sent, the client requests access to a service and, as a precondition for that access, is required to prove that it is in good health. When the SoH is received, it is forwarded to an infrastructure server that evaluates the SoH and returns the response (the SoHR) to the client by means of the original receiver of the SoH.

Generally, the receipt of an SoHR by the client allows access to the service being requested. When the health of the client is not good, the SoHR is likely to contain sufficient instructions to allow the client to seek and receive remedy. After the client is restored to good health, the client can initiate the protocol again.

4 Security

4.1 Security Considerations for Implementers

The Group Policy: NAP Extension sets the NAP enforcement policy on the client computer. This policy consists of HRA URLs and HRA connection transport and certificate security settings, as well as enforcement enabling. These configurations can also be set by the user through the NAP configuration UI. Therefore, it is extremely important that an implementation provide a means of protecting the integrity of the NAP policy against tampering, especially during its transfer from server to client. Ideally, this implementation-specific security method should be provided as part of the transport for the Group Policy: Core Protocol.

4.2 Index of Security Fields

None.

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include released service packs:

- Windows 2000 operating system
- Windows XP operating system
- Windows Server 2003 operating system
- Windows Server 2003 R2 operating system
- Windows Vista operating system
- Windows Server 2008 operating system
- Windows 7 operating system
- Windows Server 2008 R2 operating system
- Windows 8 operating system
- Windows Server 2012 operating system
- Windows 8.1 operating system
- Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears with the product version, behavior changed in that service pack or QFE. The new behavior also applies to subsequent service packs of the product unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not follow the prescription.

<1> Section 1.4: Windows implements the generic settings database using the registry.

<2> Section 1.4: Windows maintains the local configuration under the [HKEY LOCAL MACHINE\System\CurrentControlSet\Services\NapAgent] registry key.

<3> Section 1.5: Windows implements the generic settings database using the registry.

<4> Section 2.3: The wireless EAPOL enforcement client is available only on NAP client computers running Windows XP SP3.

<5> Section 2.3.4: The Remote Desktop Gateway Enforcement Client is available with the following Windows versions:

- Windows XP SP3 with Remote Desktop Connection (Terminal Services Client 6.0) installed
- Windows Vista
- Windows 7

- Windows 8
- Windows 8.1

<6> Section 2.3.5: EAP enforcement is available in the following Windows versions:

- Windows Vista
- Windows 7
- Windows 8
- Windows 8.1

<7> Section 2.4.1.1: For more information about the CSPs that are available on Windows, see [MSDN-CSP].

<8> Section 2.4.1.5: The value "PublicKeySpec" is supported in Windows 7, Windows 8, and Windows 8.1. In Windows Vista and Windows XP SP3, the value is named "KeyType".

6 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last release.

7 Index

Α	EAP enforcement 16 Enable tracing value 11
Applicability 9	Enforcement
В	client settings 13 DHCP 14
В	EAP 16
Backward compatible settings 25	<u>IPsec</u> 15 RDG 16
C	remote access 15
Change tracking 31	Example 26
Common data types and fields 11	F
Cryptographic	
provider type 19	Fields
service provider 18	security index 28 vendor-extensible 10
D	<u>veridor-exterisible</u> 10
	G
<u>Data types and fields - common</u> 11	
Details	Glossary 5
backward compatible settings 25	н
common data types and fields 11 cryptographic	п
provider type 19	Hash algorithm OID 21
service provider 18	HRA
DHCP enforcement 14	auto-discovery 22
EAP enforcement 16	settings 16
enable tracing value 11	URLs 23
enforcement client settings 13 hash algorithm OID 21	I
HRA	-
auto-discovery 22	ImageFile value 13
settings 16	ImageFileName value 13
URLs 23	<u>Implementer - security considerations</u> 28
ImageFile value 13	Index of security fields 28
ImageFileName value 13 IPsec enforcement 15	<u>Informative references</u> 7 <u>Introduction</u> 5
LargeText value 12	IPsec enforcement 15
order value 24	11 occ children 10
PKCS#10 certificate settings 17	L
public key	
length 20	LargeText value 12
OID 20 spec 21	Localization 10
RDG enforcement 16	N
reconnect attempts 24	
remote access enforcement 15	Normative references 6
server value 24	•
SmallText value 12 SoH settings 24	0
task timer 25	Order value 24
trace settings 11	Overview
tracing level value 12	background 8
use SSL 23	Group Policy extension overview 8
user interface settings 12	synopsis 7
DHCP enforcement 14	Р
E	
	PKCS#10 certificate settings 17

Release: Friday, October 25, 2013

```
Product behavior 29
Public key
  length 20
  OID 20
  spec 21
R
RDG enforcement 16
Reconnect attempts 24
References
  informative 7
  normative 6
Relationship to protocols and other structures 9
Remote access enforcement 15
S
Security
  field index 28
  implementer considerations 28
Server value 24
Settings
  backward compatible 25
  enforcement client 13
  <u>HRA</u> 16
  PKCS#10 certificate 17
  SoH 24
  trace 11
  user interface 12
SmallText value 12
SoH settings 24
Structures
  enforcement client 13
  <u>HRA</u> 16
  overview 11
  SoH 24
  trace 11
  user interface 12
Т
Task timer 25
Trace settings 11
Tracing level value 12
Tracking changes 31
U
Use SSL 23
User interface settings 12
Values
  enable tracing 11
  ImageFile 13
  ImageFileName 13
  LargeText 12
  order 24
  server 24
  SmallText 12
```

tracing level 12

Versioning 10

Vendor-extensible fields 10