[MS-FSMOD]: File Services Management Protocols Overview #### **Intellectual Property Rights Notice for Open Specifications Documentation** - **Technical Documentation.** Microsoft publishes Open Specifications documentation for protocols, file formats, languages, standards as well as overviews of the interaction among each of these technologies. - **Copyrights.** This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you may make copies of it in order to develop implementations of the technologies described in the Open Specifications and may distribute portions of it in your implementations using these technologies or your documentation as necessary to properly document the implementation. You may also distribute in your implementation, with or without modification, any schema, IDL's, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications. - No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation. - Patents. Microsoft has patents that may cover your implementations of the technologies described in the Open Specifications. Neither this notice nor Microsoft's delivery of the documentation grants any licenses under those or any other Microsoft patents. However, a given Open Specification may be covered by Microsoft Open Specification Promise or the Community Promise. If you would prefer a written license, or if the technologies described in the Open Specifications are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting ipla@microsoft.com. - Trademarks. The names of companies and products contained in this documentation may be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks. - **Fictitious Names.** The example companies, organizations, products, domain names, email addresses, logos, people, places, and events depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred. **Reservation of Rights.** All other rights are reserved, and this notice does not grant any rights other than specifically described above, whether by implication, estoppel, or otherwise. **Tools.** The Open Specifications do not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments you are free to take advantage of them. Certain Open Specifications are intended for use in conjunction with publicly available standard specifications and network programming art, and assumes that the reader either is familiar with the aforementioned material or has immediate access to it. This document provides an overview of the File Services Management Protocols Overview Protocol Family. It is intended for use in conjunction with the Microsoft Protocol Technical Documents, publicly available standard specifications, network programming art, and Microsoft Windows distributed systems concepts. It assumes that the reader is either familiar with the aforementioned material or has immediate access to it. A Protocol System Document does not require the use of Microsoft programming tools or programming environments in order to implement the Protocols in the System. Developers who have access to Microsoft programming tools and environments are free to take advantage of them. #### Abstract This document provides an overview of the functionality and relationship of the protocols used for configuring, managing, and monitoring file services in Windows over the network. The File Services Management protocols include the protocols specified in [MS-FSRM], [MS-WKST], [MS-SRVS], [MS-RAP], [MS-DFSNM], [MS-DFSRH], [MS-FRS2], and [MS-FRS1]. These protocols support scenarios such as share management, DFS namespace management, SMB Server management, SMB network redirector management, file server resource management, and file replication. This document describes the intended functionality of the File Services Management protocols and how these protocols interact with each other. It provides examples of some common use cases. It does not restate the processing rules and other details that are specific for each protocol. Those details are described in the protocol specifications for each of the protocols and data structures that belong to this protocols group. # **Revision Summary** | Date | Revision
History | Revision
Class | Comments | |------------|---------------------|---|--| | 12/16/2011 | 1.0 | | | | 03/30/2012 | 2.0 | | | | 07/12/2012 | 2.0 | No change | No changes to the meaning, language, or formatting of the technical content. | | 10/25/2012 | 2.0 | No change | No changes to the meaning, language, or formatting of the technical content. | | 01/31/2013 | 2.0 | No change No changes to the meaning, language, or form the technical content. | | | 08/08/2013 | 3.0 | Major | Significantly changed the technical content. | | 11/14/2013 | 4.0 | Major | Significantly changed the technical content. | | 02/13/2014 | 4.0 | No change | No changes to the meaning, language, or formatting of the technical content. | # **Contents** | 1 | Introduction | | |---|---|----| | | .1 Glossary | 5 | | | .2 References | 6 | | | | | | | Functional Architecture | | | | 2.1 Overview | 8 | | | 2.1.1 System Purposes | 8 | | | 2.1.2 Relationship with External Components | 8 | | | 2.1.3 System Capabilities | | | | 2.1.4 Abstract Components of the File Services Management System | | | | 2.1.5 Protocol Relationship | | | | 2.2 Protocol Summary | | | | 2.3 Environment | | | | 2.3.1 Dependencies on This System | | | | 2.3.2 Dependencies on Other Systems/Components | | | | 2.4 Assumptions and Preconditions | | | | 2.5 Use Cases | | | | 2.5.1 Share Management Use Cases | | | | 2.5.1.1 Create Share SMB | | | | 2.5.1.2 List SMB Shares | | | | 2.5.1.3 Getting and Setting the Properties for an Existing SMB Share | | | | 2.5.1.4 Delete an SMB Share | | | | 2.5.2 DFS Use Cases | | | | 2.5.2.1 Create DFS Standalone Namespace | | | | 2.5.2.1 Create DFS Standalone Namespace | | | | 2.5.2.3 Create DFS Link | | | | 2.5.2.4 Add a Root Target to a Domain-Based Namespace | | | | 2.5.2.4 Add a Root Target to a Domain-Based Namespace | | | | 2.5.3.1 Get Health Information for a DFS Replication | JZ | | | 2.5.3.1 Get Health Information for a DFS Replication Group Using Server | 34 | | | Credentials | 25 | | | 2.5.4 Resource Management Use Cases | | | | 2.5.4.1 Create and Configure a File Management Job | | | | | | | | 2.5.4.2 Create a Report Job | 38 | | | | | | | 2.5.5 Server Management Use Cases | | | | 5 | | | | | | | | 2.5.5.3 Retrieve Alias Names | | | | 2.5.5.4 Binding or Unbinding an SMB Server Transport Protocol | | | | 2.5.5.5 Getting or Setting the Configuration Information for a Server | | | | 2.5.6 SMB Redirector Use Cases | | | | 2.5.6.1 Enable a Transport Protocol on an SMB Network Redirector | | | | 2.5.6.2 Disable a Transport Protocol on an SMB Network Redirector | | | | 2.5.6.3 Get Statistics about an SMB Network Redirector | | | | 2.5.6.4 Get Transport Protocols Enabled on an SMB Network Redirector | | | | 2.6 Versioning, Capability Negotiation, and Extensibility | | | | 2.6.1 Remote Administration Protocol | | | | 2.6.2 File Replication Service | | | | 2.7 Error Handling | 56 | | | 2. | 7.1 Connection Disconnected | 56 | |---|-------------|---|-----------| | | 2. | 7.2 Internal Failures | 56 | | | 2.8 | Coherency Requirements | 56 | | | 2.9 | Security | 56 | | | | Additional Considerations | | | _ | 5 ., | annula. | FO | | 3 | 2 1 | amples | 50 | | | 2.1 | Example 1: Creating an SMB Share | 50 | | | | Example 2: Deleting an SMB Share | | | | 3.3 | Example 3: Creating and Managing a DFS Domain Namespace | 61 | | | | Example 4: Creating an FSRM File Screen | | | | | Example 5: Creating an FSRM Quota | | | | | Example 6: Creating and Configuring a File Management Job | | | | | Example 7: Creating a Scheduled Report Job | | | | 3.8 | Example 8: Client Cannot Connect to a DFS Service | 72 | | 4 | Mi | crosoft Implementations | 74 | | • | 4.1 | Product Behavior | 74 | | _ | Ch | ange Tracking | 76 | | 3 | Cn | ianye Tracking | | | 6 | Inc | dex | 77 | | | | | | # 1 Introduction This File System Management Overview describes the purpose and use of the protocols that are required for remote administration and management of file servers in an organization. The system administrator uses an administrative client to configure and query the state of file services, such as Distributed File System (DFS) and File Replication Service (FRS). The administrator can also use the administrative client to configure various policies that apply to the object store on a file server, such as disk quotas to set limits on user disk space use, screening and filtering to restrict the type of content that can be stored, and other policies. Users and applications access these services through file clients. File client and file access protocols are described in the File Access Services Protocol Overview ([MS-FASOD]). # 1.1 Glossary The following terms are defined in [MS-GLOS]: ``` Active Directory computer name Distributed File System (DFS) link Distributed File System (DFS) namespace Distributed File System (DFS)
namespace, domain-based Distributed File System (DFS) namespace, standalone directory service (DS) Distributed Component Object Model (DCOM) Distributed File System (DFS) Distributed File System Replication (DFS-R) domain domain controller (DC) file File Replication Service (FRS) file system Group Policy Lightweight Directory Access Protocol (LDAP) named pipe NetBIOS network redirector server service session share UncPath Universal Naming Convention (UNC) ``` The following terms are defined in [MS-DFSRH]: # replication member The following terms are specific to this document: **admin client:** An instance of a client of the File Service administration protocols, as described in [MS-DFSNM], [MS-DFSRH], [MS-FSRM], [MS-SRVS], and [MS-WKST]. 5 / 77 [MS-FSMOD] — v20140124 File Services Management Protocols Overview Copyright © 2014 Microsoft Corporation. Release: Thursday, February 13, 2014 - **classification rule:** A File Server Resource Manager (FSRM) object that defines a rule, which invokes a classification module on the files in a set of directories to apply property definition instances to each of those files. - **DFS Service:** A service on the file server that implements the server functionality of the Namespace Referral Protocol [MS-DFSC] and of the Namespace Management Protocol [MS-DFSNM]. - **directory quota:** An FSRM object that is associated with a file system directory that limits the amount of data, which the system or any user can store in a directory. - **file group:** An FSRM object that contains a logical collection of file name patterns, which are identified by name. The name is used to define file screens and file screen exceptions. File group definitions can also be used for generating report jobs that are based on the file type. - **file management job:** A scheduled task that applies a command to a set of files as determined by a list of conditions and a list of namespaces. - **file screen:** An FSRM object that is associated with a file system directory that limits the types of files that the system or any user can store in a directory. When a restricted file is detected, the FSRM server can raise one or more events in the FSRM notification area. **file server:** A computer that hosts one or more instances of a file service. - **SMB access protocols:** A collective reference to protocols, as described in [MS-CIFS], [MS-FSCC], [MS-SMB], and [MS-SMB2]. - **SMB File Service:** A service on the file server that provides access to files by using the Server Message Block (SMB) access protocols and related protocols. - **SMB Network Redirector:** A service that handles requests for remote files and printer operations by using SMB access protocols. - **SMB share:** A share that is accessed by using the SMB access protocols. - **UNC path:** The location of a file in a network of computers as specified in the Universal Naming Convention (UNC) syntax. Also known as **UncPath**. # 1.2 References [MS-ADOD] Microsoft Corporation, "Active Directory Protocols Overview". [MS-AUTHSOD] Microsoft Corporation, "Authentication Services Protocols Overview". [MS-BRWS] Microsoft Corporation, "Common Internet File System (CIFS) Browser Protocol". [MS-CIFS] Microsoft Corporation, "Common Internet File System (CIFS) Protocol". [MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol". [MS-DFSNM] Microsoft Corporation, "<u>Distributed File System (DFS): Namespace Management Protocol</u>". [MS-DFSRH] Microsoft Corporation, "DFS Replication Helper Protocol". [MS-FASOD] Microsoft Corporation, "File Access Services Protocols Overview". [MS-FRS1] Microsoft Corporation, "File Replication Service Protocol". [MS-FRS2] Microsoft Corporation, "Distributed File System Replication Protocol". [MS-FSRM] Microsoft Corporation, "File Server Resource Manager Protocol". [MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary". [MS-RAP] Microsoft Corporation, "Remote Administration Protocol". [MS-RDC] Microsoft Corporation, "Remote Differential Compression Algorithm". [MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions". [MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol". [MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3". [MS-SRVS] Microsoft Corporation, "Server Service Remote Protocol". [MS-WKST] Microsoft Corporation, "Workstation Service Remote Protocol". # 2 Functional Architecture This section describes the basic structure of the system and the interrelationships among its parts, consumers, and dependencies. # 2.1 Overview A goal of information technology (IT) groups is to manage **file server** resources efficiently while keeping them available and secure for users. As networks expand to include more users and **servers**—whether they are located in one site or in geographically distributed sites—administrators find it increasingly difficult to keep users connected to the **files** that they require. On one hand, distributing resources across a network makes them more available and promotes crossorganizational efforts. On the other hand, storing files on different file servers that are located throughout an organization makes it difficult for users to know where to look for information. Administrators also find it difficult to keep track of all the servers and users who use those servers. The task of replacing an old server with a new server becomes a major communication chore when users across an organization must be notified to update links and file paths. Within the File Services Management system, the **UNC** path is usually rendered as "\\<Server>\<Share>\<Remaining path>", where a share is a specific instance of a file service that is present on the target server. While a UNC path name can be used to indicate the path to a specific physical share, it can also be used to virtualize access to **shares**, through the use of the Distributed File System (DFS): Referral and the Distributed File System (DFS): Namespace Management Protocols. **DFS** allows administrators to group shared folders that are located on different servers by transparently connecting them to one or more **DFS namespaces**. By using the DFS tools, an administrator selects which shared folders to present in the namespace, designs the hierarchy in which those folders appear, and determines the names that the shared folders show. When a user views the namespace, the folders appear to reside on a single, high-capacity hard disk. Users can navigate the namespace without having to know the server names or shared folders that host the data. An **admin client** uses management protocols to configure and query the state of **services**, such as the **DFS Service** and the File Services. The admin client is also used to configure various policies that apply to the object store on a file server, such as quotas to limit user disk space use, screening to restrict the type of content that is allowed to be stored), and other policies. # 2.1.1 System Purposes The purpose of the File Services Management system is to allow an administrator to configure and monitor file services remotely. # 2.1.2 Relationship with External Components The File Services Management system interacts with several other Windows components. The following diagram shows the key interactions. Figure 1: Components interacting with the File Services Management system File server, file system, domain controller, and printer services are used by the File Services Management system (FSM system). **File server:** A computer hosting one or more instances of a file service, for example, an instance of an **SMB File Service**. A File Services Management system is used to configure the file servers. File servers use **file systems** to store information in the form of files. **File system:** A hierarchical store for persistence of user and application data. The File Services Management system uses a file system to store configuration data and to retrieve the properties of the file system objects. The File Services Management system depends on an external object store for storing files and directories, and for changing the configuration of the file system objects. In Windows, the object store is provided by a local file system, usually the NTFS file system. **Domain controller:** Used to store Distributed File System (DFS) namespace metadata if a domain-based namespace is created. The **domain controller** is also used to store **File Replication Service (FRS)** objects, which store the configuration that is related to all replication members. **Printer services:** Printers can be shared by using the File Services Management system. The system uses printer services to provide printer sharing, where printers can be accessed as described in [MS-PRSOD]. FSMOD protocols are used to configure the printers and present them to users. **Admin tool:** A tool that provides management functionality to the administrator. The admin tool uses the File Services Management system to configure and retrieve configuration information for the file servers. It is also used to configure and query the state of the file services. # 2.1.3 System Capabilities The following are the administrative operations that can be performed by using the File Services Management Protocols: **DFS namespace management:** The Distributed File System (DFS) namespace is a virtual view of resources that reside on one or more file servers. When a user views the namespace, the directories and files in it appear to reside on a single share. Users can navigate the namespace without previous knowledge of the server names or the shares hosting the data. By using the admin tools, an administrator selects which shared folders to present in the namespace, designs the hierarchy in which those folders appear, and determines the names that the shared folders show in the namespace, as described in Distributed File System
(DFS): Namespace Management Protocol [MS-DFSNM]. **Configuring Distributed File System Replication (DFS-R):** The administrator can use the admin tools to create, modify, and delete configuration objects in **Active Directory**. For this purpose, the administrator uses the Distributed File System (DFS) Replication Helper Protocol, as described in [MS-DFSRH]. **Monitoring Distributed File System Replication (DFS-R):** The administrator can monitor **DFS-R** on the server and collect statistics about the DFS-R operation. Information that can be collected includes: - Number and size of replicated files on the server. - Disk use on the server. - Information about replicated folders on the server. - Replication backlog—the number of files that are not yet fully replicated. The interfaces that are used to collect these statistics are described in [MS-DFSRH]. **Directory quota management: Directory quotas** track and control directory space usage for NTFS file system volumes. Directory quotas allow administrators to control the amount of data that each user can store on a specific NTFS file system directory. A directory quota can be configured with one or more directory quota thresholds that define a set of highly customizable notifications that are sent when the quota usage reaches the threshold value. For more information on how to configure the directory quota, see the File Server Resource Manager Protocol [MS-FSRM]. **File screen management:** Administrators can create and modify **file screens** that restrict the types of files that can be stored in a specific directory and its subdirectories. For each file screen, there is a configurable list of blocked **file groups** that define a set of patterns, based on the file name, which is to be restricted. When a file is created or renamed, the server evaluates whether the file name matches a pattern in any file group that is configured on a parent portion of the path. If a match is found, the file is blocked, and a set of highly customizable File Server Resource Management (FSRM) notifications that are configured for the file screen are raised. For more information on how to configure a file screen, see [MS-FSRM]. **Analyze storage use:** An administrator can generate reports to better understand how storage is used in specific directories. A storage report job specifies a set of directories to be analyzed to generate one or more reports. Report jobs can be run on a schedule or on demand. An administrator can also query and set properties on the report job to manipulate report generation parameters, format options, email delivery information, and other options. For more information on how to configure report jobs, see [MS-FSRM]. **File classification:** An administrator can classify files and apply policies that are based on that classification. An administrator can retrieve and modify the values that are assigned to classification properties for files that are stored on the server. An administrator can create, enumerate, modify, and delete **classification rules** and classification modules on the server. For more information on how to configure the file classification, see [MS-FSRM]. **Creating and modifying a file management job:** A **file management job** is a scheduled task that applies a command to a set of files, as determined by lists of conditions and namespaces. File management jobs can also produce FSRM notifications at configurable intervals before a file is affected by the configured task. **Modifying the file properties:** An administrator can set, enumerate, modify, and delete values of properties for specific files on the file server by interacting with the FSRM server component. **Configuring the SMB Network Redirector:** An administrator can query and configure the **SMB Network Redirector** by using the File Services Management system. For example, the administrator can query the **computer name** or major and minor version numbers of the operating system from a remote computer. An administrator can set the following configuration options: - The number of seconds that the SMB Network Redirector maintains an inactive SMB connection to a remote computer's resource before closing it. - The number of simultaneous network commands that can be processed by the SMB Network Redirector. - The number of seconds that the SMB Network Redirector waits before the redirector disconnects an inactive SMB session. Configuration operations and the protocol that is used to carry out these tasks are described in <a>[MS-WKST]. **Managing information on the SMB server:** The administrator can query and configure information on the server, such as active connections, **sessions**, shares, files, and transport protocols. A server can be configured to present different resources based on the name the client connects with, allowing it to appear as multiple, distinct servers. This task is achieved by scoping a share to a specific name and by hosting all of the names on the same server. The Server Service Remote Protocol [MS-SRVS] provides a list of configuration operations. **Managing the SMB server:** The administrator can query and configure the SMB server. For example, the administrator can identify the type of service that the SMB server is running, such as a server running the Workstation service, change the services that are running, and get a list of all servers of a specific type in a **domain**. The administrator can also configure aliases for a server by identifying multiple distinct names that should present the same resources. The protocol that is used to manage an SMB server is described in [MS-SRVS]. # 2.1.4 Abstract Components of the File Services Management System The following diagram shows the abstract components of the File Services Management system. Figure 2: Abstract components of the File Services Management system **Admin tool:** The admin tool is a program that offers management functionality to the administrator by means of the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The admin tool is external to the File Services Management system and uses the admin client to accomplish its work. **Admin client:** The admin client is code running on the administrator's computer. The admin client implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. **FSRM Service:** This service implements the server component of the File Server Resource Manager Protocol [MS-FSRM], and provides interfaces for managing the configuration of directory quotas, file screens, classification properties, classification rules, file management jobs, report jobs, classifier modules, and storage modules on a computer. The FSRM Service provides the following features: - Controls for the quantity of data - Mechanisms to manage the type of data - Classification of data - Application of policy that is based on metadata - Generation of reports about the data **FRS Service:** The File Replication Service (FRS) replicates files and folders that are stored on domain controllers and Distributed File System (DFS) shared folders. It implements the File Replication Service Protocol [MS-FRS1] or the Distributed File System Replication Protocol [MS-FRS2]. Both of these protocols provide similar functionality; however, [MS-FRS1] is deprecated. The File Replication Service (FRS) also implements the server side of the DFS Replication Helper Protocol [MS-DFSRH], which is used to configure and monitor Distributed File System Replication (DFS-R) on a server. **SMB File Service:** The SMB File Service implements server-side protocol components that are consumed by the admin client. It also implements the server-side of the Server Service Remote Protocol (SRVSVC) [MS-SRVS], which is an administrative protocol that is used to query and configure certain properties of the SMB File Service on a server, such as active connections, sessions, shares, open files, and transport protocols. It implements the server side of the Workstation Service Remote Protocol [MS-WKST], which is used to configure the behavior of an SMB Network Redirector. **DFS Service:** The DFS Service groups shared folders, which are located on different servers, and presents them to users as a virtual tree of folders, known as a Distributed File System (DFS) namespace. The DFS Service implements the server-side protocol components of the Distributed File System (DFS): Referral (DFSC) Protocol [MS-DFSC] and the Distributed File System (DFS): Namespace Management Protocol [MS-DFSNM]. **Legacy printer service:** This service implements the server side of the Remote Administration Protocol [MS-RAP], which supports certain server administration methods, such as SMB file share enumeration. This functionality has been superseded by the Workstation Service Remote Protocol [MS-WKST] and the Server Service Remote Protocol [MS-SRVS]. **SMB Network Redirector:** A software component on a connected computer that handles requests for remote files and printer operations. An administrator can configure some aspects of SMB Network Redirector by using the Workstation Service Remote Protocol [MS-WKST]. **Administrator:** The administrator is the person who administers the file server. The administrator organizes the file namespace, sets access rights, and enforces limits through quotas on users' file storage. The administrator interacts with the File Services Management system through the admin tool. # 2.1.5 Protocol Relationship The following diagram shows the protocol layering relationships for the File Services Management system member protocols that use remote procedure call (RPC) as a transport. Figure 3: Protocol relationship of RPC-related protocols The protocols [MS-DFSNM], [MS-SRVS], and
[MS-WKST] use [MS-RPCE] over **named pipes**. Thus, the protocols can be transported over **SMB access protocols** and cannot use any of the other RPC transports. The File Server Resource Manager Protocol, as described in [MS-FSRM], [MS-DFSRH], [MS-FRS1], and [MS-FRS2], uses the Remote Procedure Call Protocol Extensions over TCP only. For more information on the type of RPC transport, see section 2.10. The following diagram shows the protocol layering relationships of the Remote Administration Protocol [MS-RAP]. Figure 4: Protocol relationship of the Remote Administration Protocol The Remote Administration Protocol [MS-RAP] is an administrative protocol that is transported by the Common Internet File System (CIFS) and the Server Message Block (SMB) Protocol, but not by the Server Message Block (SMB) Protocol Versions 2 and 3 [MS-SMB2]. The function of the Remote Administration Protocol, as described in [MS-RAP], has largely been replaced by newer protocols. In the File Services Management system, the Remote Administration Protocol is used as a discovery protocol. File Services clients can discover servers by using the Remote Administration Protocol to retrieve a list of servers from the Browser Service, as described in the Common Internet File System (CIFS) Browser Protocol [MS-BRWS]. The Remote Administration Protocol also supports certain client and server administration methods, such as SMB file share enumeration, but this functionality has been superseded by the Workstation Service Remote Protocol [MS-WKST] and the Server Service Remote Protocol [MS-SRVS]. # 2.2 Protocol Summary The following table provides a comprehensive list of the member protocols of the File Services Management system. 14 / 77 | Protocol name | Description | Short
name | |---|--|----------------| | File Server Resource
Manager Protocol | This protocol describes operating system, file system, and storage concepts. The protocol exposes a set of interfaces that enable tools in a client role to manage the following: | [MS-
FSRM] | | | Directory quotas to limit the amount of storage capacity in a directory. | | | | File screens to limit the type of files in a directory. | | | | Setup of the file classification that defines the classification property schema and rules to automatically classify files. | | | | File management tasks that apply simple commands to filtered groups of files. | | | | Storage reports that cover storage usage and trend analysis. | | | | Query and modification of file classification values by retrieving and setting classification properties for files, as provided by the FSRM component server role. | | | Workstation Service
Remote Protocol | This protocol is used to configure the properties and behavior of a Server Message Block (SMB) Network Redirector (SMB Network Redirector) on a computer. It is also used to configure domain membership. For example, this protocol can be used to query the platform identifier, computer name, or major and minor version numbers of the operating system that runs on a remote computer. The File Services Management system uses this protocol to configure an SMB Network Redirector. Other capabilities of this protocol are not used by the File Services Management system. | [MS-
WKST] | | Server Service
Remote Protocol | This protocol is used to enable file and printer sharing and named pipe access to the server through the Server Message Block (SMB) Protocol [MS-SMB]. The protocol is also used for remote administration of servers that are running Windows operating systems. | [MS-
SRVS] | | Remote
Administration
Protocol | This protocol is used for legacy administrative functions which include tasks, such as share maintenance and printer maintenance on LAN Manager servers. In addition, the Common Internet File System (CIFS) Browser Protocol uses the Remote Administration Protocol to enumerate the servers on the network. Most of this protocol's functionality has been superseded by the Workstation Service Remote Protocol [MS-WKST], and the Server Service Remote Protocol [MS-SRVS]. | [MS-
RAP] | | Distributed File
System (DFS):
Namespace
Management Protocol | This protocol is used to create and administer Distributed File System (DFS) namespaces. DFS namespaces enable the creation of a virtual, contiguous file system namespace to unify multiple namespaces. | [MS-
DFSNM] | | DFS Replication
Helper Protocol | This protocol is a DCOM protocol that can be divided into two parts. One part consists of interfaces to change, modify, and delete configuration objects in Active Directory. The second part is an interface to monitor Distributed File System-Replication (DFS-R) on a server [MS-FRS2] and to collect various statistics about the DFS Replication operation. | [MS-
DFSRH] | | Distributed File
System Replication | This protocol is used to replicate files between file servers. It is a multimaster replication, which enables files to be changed by any member that participates in replicating shared files. Because it uses | [MS-
FRS2] | | Protocol name | Description | Short
name | |---|---|---------------| | Protocol | an optimistic replication strategy, files can be updated without any prior consensus or serialization. DFS-R uses the Remote Differential Compression (RDC) algorithm. DFS-R supersedes the older FRS replication protocol. | | | File Replication
Service Protocol | This protocol is an RPC protocol that is used on file servers to replicate files and folders among file servers on the network. This protocol enables multimaster file and folder replicas to be synchronized on multiple file servers. FRS is used to maintain duplicate copies of data files in system volume (SYSVOL) system folders on domain controllers in a domain. FRS can also be used to replicate data files among DFS shares. | [MS-
FRS1] | | Remote Differential
Compression (RDC)
Algorithm | This algorithm enables efficient synchronization of files with a remote source by using compression techniques to minimize the amount of data that is sent between a source location and a target location. This algorithm is used by the Distributed File System: Replication (DFS-R) Protocol. | [MS-
RDC] | #### 2.3 Environment The following sections identify the context in which the system exists. This includes the systems that use the interfaces that are provided by this system of protocols, other systems that depend on this system, and, as appropriate, the communication between components of the systems. # 2.3.1 Dependencies on This System File Access Services depends on the File Services Management system for share and namespace management. # 2.3.2 Dependencies on Other Systems/Components The File Management Services system depends on the following external systems and components: - Object store: Used to store files and metadata. - Active Directory system: Used to store Distributed File System (DFS) namespace metadata. If an Active Directory system is unavailable, an administrator cannot create a domain-based Distributed File System (DFS) namespace and cannot use the Distributed File System Replication (DFS-R) Services. - Authentication Services system: Used to authenticate admin clients and the admin server. The Authentication services are described in the Authentication Services Protocols Overview [MS-AUTHSOD]. # 2.4 Assumptions and Preconditions The following assumptions and preconditions must be satisfied for the File Services Management system to operate successfully: **System availability:** The File Services Management system must be installed on all computers involved. **Domain configuration:** In a domain configuration, file clients and file services have access to **directory services** that are provided by the domain. **Authentication services:** Authentication services, as described in [MS-AUTHSOD], are available to all file clients and file services. **RPC:** Components of the file client and file services that use remote procedure call (RPC) interfaces must have all prerequisites satisfied, as described in [MS-RPCE] section 1.5. **Network configuration:** For system components that are running on different computers to communicate, the network services and infrastructure must be functional and configured in such a way that required protocols, ports, and so on are remotely accessible. **Domain functionality:** For system functionality that requires a domain and directory services, as described in [MS-ADOD], at least one domain controller must be configured and accessible. Some functionality may require an Active Directory domain as noted in individual technical documents. # 2.5 Use Cases # 2.5.1 Share Management Use Cases Share Management use cases describe the management activities that the administrator
performs to control a shared resource by using the admin tool. The share management activity includes the following share tasks: - Creation - Enumeration - Getting and setting information - Deletion The following diagram shows the Share Management use cases that are described in detail in the following sections. Figure 5: Share Management use cases # 2.5.1.1 Create Share SMB #### Goal To create a share for access by using SMB access protocols. # **Context of Use** The administrator is setting up a file server or is adding a share to an existing file server. #### **Actors** Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. SMB File Service 18 / 77 [MS-FSMOD] — v20140124 File Services Management Protocols Overview Copyright © 2014 Microsoft Corporation. Release: Thursday, February 13, 2014 The SMB File Service is a supporting actor that implements server-side protocol components and the file services that are consumed by the admin client. Authentication Services The Authentication Services is the supporting actor that is used for authentication. #### **Stakeholders** Administrator The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide the SMB File Service. #### **Preconditions** The administrator has identified a file server, an available share name on a file server, and a location on the file server's object store to host the share. An SMB File Service must be present on the file server that implements the Server Service Remote Protocol [MS-SRVS]. #### **Main Success Scenario** - Trigger: The admin tool receives a request from the administrator to create a share on the file server. The admin tool establishes a communication channel to the SMB File Service, as described in [MS-SRVS] section 2.1. - 2. The admin tool establishes a communication channel to the SMB File Service, as described in [MS-SRVS] section 2.1. - 3. The SMB File Service authenticates the administrator through the mechanisms as described in [MS-AUTHSOD] section 2.1.2.3.1. - 4. The admin tool contacts the SMB File Service by using the **NetrShareAdd** method, as described in [MS-SRVS] section 3.1.4.7, to create the share on the file server. - 5. The SMB File Service authorizes the administrator through the mechanisms, as described in [MS-SRVS] section 3.1.4.7. - 6. The SMB File Service creates the requested share that stores configuration information in an implementation-specific manner. # **Postcondition** The named share is created on the file server. #### **Extensions** If the communication channel for the Server Service Remote Protocol [MS-SRVS] cannot be established, or it becomes disconnected: The admin tool may attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the share may or may not have been created. If user authorization or user authentication fails: • The use case ends with failure. 19 / 77 If share creation fails: The use case ends with failure. #### 2.5.1.2 List SMB Shares #### Goal To list shares on a file server that can be accessed through SMB access protocols. #### **Context of Use** The administrator has located and selected a file server and must discover any file shares on it. #### Actors Admin tool The admin tool is the primary actor. It triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. SMB File Service The SMB File Service is a supporting actor. It implements server-side protocol components and the file services that are consumed by the admin client. Authentication Services The Authentication Services is the supporting actor that is used for authentication. #### Stakeholders Administrator The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide the SMB File Service. #### **Preconditions** The user has identified a file server. An SMB File Service must be present on the file server, as described in the Server Service Remote Protocol [MS-SRVS] section 3.1. #### Main Success Scenario 1. Trigger: The admin tool receives a request from the user to retrieve a list of shares that are hosted by the file server. - 2. The admin tool establishes a communication channel to the SMB File Service, as described in [MS-SRVS] section 2.1. - 3. The SMB File Service authenticates the user through the mechanisms, as described in [MS-AUTHSOD] section 2.1.2.3.1. - 4. The admin tool contacts the SMB File Service by using the **NetrShareEnum** method ([MS-SRVS] section 3.1.4.8) to retrieve the list of shares. - 5. The SMB File Service authorizes the user through the procedure, as described in [MS-SRVS] section 3.1.4.8. - 6. The SMB File Service performs the action and returns the results to the application. - 7. The admin tool displays a list of file shares. #### **Postcondition** The list of shares that are hosted by the file server is returned to the user. #### **Extensions** If the communication channel for the Server Service Remote Protocol, as described in [MS-SRVS], cannot be established, or it becomes disconnected: The admin tool may attempt to establish connection multiple times; ultimately, the use case ends with failure. If user authorization or authentication fails: • The use case ends with failure. # 2.5.1.3 Getting and Setting the Properties for an Existing SMB Share #### Goal To get or set the properties of an particular shared resource on the server in a **ShareList**, such as name, type, and permissions of the resource, comments that are associated with the resource, the maximum number of concurrent connections, the number of current connections, the local path for the resource, or a password for the current connection. #### Context of Use The administrator is setting up a file server or is changing the parameters of a shared resource. #### Actors Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. Admin client 21 / 77 The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. SMB File Service SMB File Service is a supporting actor that implements server-side protocol components and the File Services that are consumed by the admin client. Authentication Services The Authentication Services is the supporting actor that is used for authentication. #### **Stakeholders** Administrator The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide SMB File Services. #### **Preconditions** The administrator has identified a file server and an existing share name on a file server. An SMB File Service must be present on the file server, as described in [MS-SRVS]. #### **Postcondition** The properties of the shared resource are retrieved and set by the administrator. # **Main Success Scenario** Trigger: The admin tool receives a request from the administrator to get and set the information of an **SMB share**. - 1. The admin tool establishes a communication channel to the SMB File Service, as described in [MS-SRVS] section 2.1. - 2. The SMB File Service authenticates the administrator through the mechanisms, as described in [MS-AUTHSOD] section 2.1.2.3.1. - 3. The admin tool contacts SMB File Service by using the **NetrShareGetInfo** method ([MS-SRVS] section 3.1.4.11) to retrieve the information of a shared resource. - 4. The SMB File Service authorizes the administrator through the mechanisms, as described in [MS-SRVS] section 3.1.4.10. - 5. The SMB File Service returns the requested information of the shared resource. - 6. The admin tool contacts the SMB File Service by using the **NetrShareSetInfo** method ([MS-SRVS] section 3.1.4.11) to create the share on the file server. - 7. The SMB File Service authorizes the administrator through the mechanisms, as described in [MS-SRVS] section 3.1.4.11. - 8. The SMB File Service updates the share. #### **Postcondition** The properties of the shared resource are
retrieved and set by the administrator. #### **Extensions** If the communication channel for the Server Service Remote Protocol [MS-SRVS] cannot be established, or it becomes disconnected: The admin tool may attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the share may or may not have been created. If user authorization or authentication fails: • The use case ends with failure. # 2.5.1.4 Delete an SMB Share #### Goal To delete a share from an SMB server. #### **Context of Use** The administrator is deleting a share from an existing file server. #### Actors Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by an administrator. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. SMB File Service The SMB File Service is a supporting actor that implements server-side protocol components and the File Services that are consumed by the admin client. Authentication Services The Authentication Services is the supporting actor that is used for authentication purposes. #### **Stakeholders** Administrator The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide SMB File Services. #### **Preconditions** The administrator has identified a file server and a share to be deleted on that server. An SMB File Service must be present on the file server, as described in [MS-SRVS]. #### **Main Success Scenario** - 1. Trigger: The admin tool receives a request from the administrator to delete a share on the file server. - 2. The admin tool establishes a communication channel to the SMB File Service, as described in [MS-SRVS] section 2.1. - 3. The SMB File Service authenticates the administrator through the mechanisms, as described in [MS-AUTHSOD] section 2.1.2.3.1. - 4. The admin tool contacts the SMB File Service by using the **NetrShareDel** method ([MS-SRVS] section 3.1.4.12) to delete the share from the file server. - 5. The SMB File Service authorizes the administrator through the mechanisms, as described in [MS-SRVS] section 3.1.4.12. - 6. The SMB File Service deleted the requested share. #### **Postcondition** The named share is deleted from the **ShareList** on the file server. #### **Extensions** If the communication channel for [MS-SRVS] cannot be established, or it becomes disconnected: The admin tool may attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the share may or may not have been created. If user authorization or authentication fails: The use case ends with failure. #### 2.5.2 DFS Use Cases The Distributed File System (DFS) functions provide the ability to logically group shares on multiple servers and to transparently link shares into a single, hierarchical namespace. DFS organizes shared resources on a network in a treelike structure. This section provides a series of use cases for namespace configuration and management. The following diagram shows the DFS use cases that are described in detail in the following sections. Figure 6: DFS use cases # 2.5.2.1 Create DFS Standalone Namespace # Goal To create a **standalone DFS namespace** for access by using SMB access protocols with extensions, as described in the Distributed File System (DFS): Namespace Referral Protocol [MS-DFSC]. #### Context of Use The administrator is setting up a file server or is adding a namespace to an existing file server. #### **Actors** Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. DFS Service The DFS Service is a supporting actor that provides the technology that helps administrators group shared folders that are located on different servers and present them to users as a virtual tree of folders that is known as a namespace. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. Authentication Services The Authentication Services is the supporting actor that is used for authentication purposes. #### **Stakeholders** Administrator The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide SMB File Services. #### **Preconditions** The administrator has identified a Distributed File System (DFS) Service and an existing SMB file share on the File Service that is to be promoted to a DFS namespace. A DFS Service must be present, as described in the Distributed File System (DFS): Namespace Management Protocol [MS-DFSNM]. **Trigger:** The admin tool receives a request from the administrator to create a standalone DFS namespace on an SMB File Service. # **Main Success Scenario** - The admin tool establishes a communication channel to the DFS Service, as described in [MS-DFSNM] section 2.1. - 2. The DFS Service authenticates the administrator through the mechanisms as described in the Authentication Services Protocols Overview [MS-AUTHSOD]. - 3. The admin tool contacts DFS Service by using the **NetrDfsAddRootTarget** method ([MS-DFSNM] section 3.1.4.1.9) or the **NetrDfsAddStdRoot** method ([MS-DFSNM] section 3.1.4.4.1) to promote the share to a namespace on the file server. - 4. The DFS Service authorizes the administrator through the mechanisms of the **NetrDfsAddRootTarget** method ([MS-DFSNM] section 3.1.4.1.9) or the **NetrDfsAddStdRoot** method ([MS-DFSNM] section 3.1.4.4.1), as appropriate to the call. - 5. The DFS Service performs the action. # **Postcondition** The named share is promoted to a DFS namespace on the SMB File Service. #### **Extensions** if the communication channel for the Distributed File System (DFS): Namespace Management Protocol [MS-DFSNM], cannot be established, or it becomes disconnected: The admin tool might attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the DFS standalone namespace might or might not have been created. If user authorization or authentication fails: • The use case ends with failure. # 2.5.2.2 Create DFS Domain Namespace #### Goal To create a domain Distributed File System (DFS) namespace for access by using SMB access protocols with [MS-DFSC] extensions. #### Context of Use The administrator is setting up a file server or is adding a namespace to an existing file server. #### Actors Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. DFS Service The DFS Service is a supporting actor that provides the technology that helps administrators group shared folders that are located on different servers and present them to users as a virtual tree of folders that is known as a namespace. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. Authentication Services The Authentication Services is the supporting actor that is used for authentication. Active Directory system The Active Directory system is a supporting actor. The File Services Management system stores metadata that is related to the domain DFS namespace in Active Directory. #### **Stakeholders** Administrator 27 / 77 The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide SMB File Services. #### **Preconditions** The administrator has identified an SMB File Service and an existing SMB file share on the File Service to be promoted to a DFS domain namespace. A DFS Service must be present on the SMB File Service, as described in [MS-DFSNM]. #### **Main Success Scenario** - 1. Trigger: The admin tool receives a request from the administrator to create a DFS namespace on the SMB File Service. - 2. The admin tool establishes a communication channel to the DFS Service, as described in [MS-DFSNM] section 2.1. - 3. DFS Service authenticates the administrator through the mechanisms, as described in [MS-AUTHSOD] section 2.1.2.3.1. - 4. The admin tool contacts DFS Service by using the **NetrDfsAddRootTarget** method ([MS-DFSNM] section 3.1.4.1.9) or the **NetrDfsAddFtRoot** method
([MS-DFSNM] section 3.1.4.3.1) to promote the share to a namespace on the SMB File Service. - 5. The DFS Service authorizes the administrator through the mechanisms of the **NetrDfsAddRootTarget** method ([MS-DFSNM] section 3.1.4.1.9) or the **NetrDfsAddFtRoot** method ([MS-DFSNM] section 3.1.4.3.1), as appropriate to the call. - 6. The DFS Service performs the action and interacts with the Active Directory directory service [MS-ADOD] to store metadata changes that are related to the DFS namespace, as described in [MS-DFSNM]. # **Postcondition** The named share is promoted to a DFS namespace on the SMB File Service with corresponding metadata that is written to the Active Directory system. #### **Extensions** If the communication channel for [MS-DFSNM] cannot be established, or it becomes disconnected: The admin tool may attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the namespace may or may not have been created. If user authorization or authentication fails: The use case ends with failure. # 2.5.2.3 Create DFS Link #### Goal To create a **DFS link** for access by using SMB access protocols with extensions, as described in [MS-DFSC]. # Context of Use 28 / 77 [MS-FSMOD] — v20140124 File Services Management Protocols Overview Copyright © 2014 Microsoft Corporation. Release: Thursday, February 13, 2014 The administrator is setting up a file server or is maintaining a namespace on an existing file server. #### **Actors** Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. DFS Service The DFS Service is a supporting actor that provides the technology that helps administrators group shared folders that are located on different servers and present them to users as a virtual tree of folders that is known as a namespace. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. Authentication Services The Authentication Services is the supporting actor that is used for authentication purposes. Active Directory system The Active Directory system is a supporting actor. The File Services Management system stores metadata that is related to the domain DFS namespace in Active Directory. #### **Stakeholders** Administrator The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide the SMB File Service. # **Preconditions** The administrator has identified an SMB File Service that hosts an instance of the given namespace, the SMB share on the SMB File Service that hosts the given namespace, the path in the share at which the link should be created, and the target that the link should refer to. A DFS Service must be present on the SMB File Service, as described in [MS-DFSNM]. #### Main Success Scenario - 1. Trigger: The admin tool receives a request from the administrator to create a DFS link on the SMB File Service. - The admin tool establishes a communication channel to DFS Service, as described in [MS-DFSNM] section 2.1. - The DFS Service authenticates the administrator through the mechanisms, as described in [MS-AUTHSOD]. - 4. The admin tool contacts the DFS Service by using the **NetrDfsAdd** method ([MS-DFSNM] section 3.1.4.1.3) to create the link within the namespace, which also creates the DFS link object in the local object store. - 5. The DFS Service authorizes the administrator through the mechanisms of the **NetrDfsAdd** method, as described in [MS-DFSNM] section 3.1.4.1.3. - 6. The DFS Service performs the action. #### **Postcondition** The specified DFS link is created within the given DFS namespace on the SMB File Service along with corresponding metadata that is written to the Active Directory system in the case of a domain DFS namespace. #### **Extensions** If the communication channel for the DFS namespace, as described in [MS-DFSNM], cannot be established, or it becomes disconnected: The admin tool may attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the link may or may not have been created. If user authorization or authentication fails: The use case ends with failure. In the case of a domain DFS namespace: The DFS Service additionally interacts with the Active Directory system, as described in [MS-ADOD] to store metadata changes that are related to the DFS link, as described in [MS-DFSNM]. # 2.5.2.4 Add a Root Target to a Domain-Based Namespace #### Goal To add a DFS root target to an existing namespace that will host the DFS namespace. #### Context of Use The administrator has existing file servers in a domain and must set up a domain-based namespace. #### **Actors** Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. DFS Service The DFS Service is a supporting actor that provides the technology that helps administrators group shared folders on different servers and present them to users as a virtual tree of folders known as a namespace. 30 / 77 Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. Authentication Services The Authentication Services is the supporting actor that is used for authentication purposes. Active Directory system The Active Directory system is a supporting actor. The File Services Management system stores metadata that is related to the domain DFS namespace in Active Directory. #### **Stakeholders** Administrator The administrator is the person who sets up and manages the DFS root target servers and the DFS namespaces. #### **Preconditions** The administrator has identified an SMB File Service to act as a root server for an already created DFS namespace. A DFS Service must be present on the SMB File Service, as described in [MS-DFSNM]. #### Main Success Scenario - 1. Trigger: The admin tool receives a request from the administrator to add a DFS root target to an existing namespace. - The admin tool establishes a communication channel to the DFS Service, as described in [MS-DFSNM] section 2.1. - 3. The DFS Service authenticates the administrator through the mechanisms, as described in [MS-AUTHSOD]. - 4. The admin tool contacts DFS Service by using the **NetrDfsAddFtRoot** method ([MS-DFSNM] section 3.1.4.3.1) to add the file server as a root target server to the existing namespace. - 5. The DFS Service uses the **NetrDfsAddFtRoot** method to authorize the administrator through the mechanisms of [MS-DFSNM] section 3.1.4.3.1, as appropriate to the call. - 6. The DFS Service performs the action, and interacts with the Active Directory directory service, as described in [MS-ADOD], to store metadata changes that are related to the DFS namespace, as described in [MS-DFSNM]. #### **Postcondition** The named share is promoted to a DFS namespace on the SMB File Service with corresponding metadata that is written to the Active Directory system. # **Extensions** If the communication channel for the DFS namespace [MS-DFSNM] cannot be established, or it becomes disconnected: The admin tool may attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the namespace may or may not have been created. If user authorization or authentication fails: • The use case ends with failure. # 2.5.3 DFS-R Configuration and Monitoring Use Cases This section describes the configuration and monitoring activity of Distributed File System-Replication (DFS-R) on a server that includes the configuration of the DFS-R objects for the high availability of data that the server contains. The following diagram shows the DSF-R configuration and monitoring use cases that are described in detail in the following sections. Figure 7: DFS-R configuration and monitoring use cases # Goal To get the health information for a Distributed File System Replication (DFS-R) Service. # **Context of Use** The administrator wants collect various statistics about the DFS-R operation on the DFS-R Service. # **Actors** # Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. #### DFS-R Service The DFS-R Service is a supporting actor that provides the interfaces to create, modify, and delete configuration objects in Active Directory by using the server's
machine account. It also provides the interface to monitor DFS-R on the computer and to collect various statistics about the DFS-R operation. #### Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. #### Stakeholders Administrator The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide SMB File Services. #### Main Success Scenario - 1. Trigger: The admin tool receives a request from the administrator to get the health report for DFS-R Service. - 2. The admin tool establishes a communication channel to the DFS-R Service, as described in [MS-DFSRH] section 2.1. - 3. The DFS Service authenticates the administrator through the mechanisms of the Authentication Services Protocol Overview, as described in [MS-AUTHSOD]. - 4. The admin tool contacts the DFS-R Service to get the health report by using either the IServerHealthReport interface or the IServerHealthReport2 interface, as described in [MS-DFSRH] sections 3.1.5.4 and 3.1.5.5. - 5. The DFS-R Service generates the report and returns it to the admin client. #### **Postcondition** The health report is generated and is returned to the administrator. #### **Extensions** If the communication channel for the DFS Replication Helper Protocol, as described in [MS-DFSRH], cannot be established, or it becomes disconnected: The admin tool may attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the namespace may or may not have been created. # 2.5.3.1 Get Health Information for a DFS Replication #### Goal To get the health information for a Distributed File System Replication (DFS-R) Service. #### **Context of Use** The administrator has to collect statistics about the DFS-R operation that runs on the DFS-R Service. #### Actors Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. DFS-R Service The DFS-R Service is a supporting actor that provides the interfaces to create, modify, and delete configuration objects in Active Directory by using the server's machine account. It also provides the interface to monitor DFS-R on the computer and to collect statistics about the DFS-R operation. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. #### Stakeholders Administrator The administrator is the person who administers the file server. The administrator's has administrative rights and uses the File Services Management system to provide SMB File Services. # **Main Success Scenario** - 1. Trigger: The admin tool receives a request from the administrator to get the health report for the DFS-R Service. - 2. The admin tool establishes a communication channel to the DFS-R Service, as described in [MS-DFSRH] section 2.1. - 3. The DFS Service authenticates the administrator through the mechanisms of the Authentication Services Protocols Overview, as described in [MS-AUTHSOD]. - 4. The admin tool contacts the DFS-R Service to get the health report by using either the **IServerHealthReport** or the **IServerHealthReport2** interface, as described in [MS-DFSRH] sections 3.1.5.4 and 3.1.5.5. - 5. The DFS-R Service generates the report and returns it to the admin client. #### **Post-Condition** The health report is generated and returned to the administrator. #### **Extensions** If the communication channel for the DFS Replication Helper Protocol, as described in [MS-DFSRH], cannot be established, or it becomes disconnected: The admin tool may attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the namespace may or may not have been created. # 2.5.3.2 Create a Directory Object for a DFS Replication Group Using Server Credentials #### Goal To create an Active Directory object that is used by the DFS-R Service. #### **Context of Use** The administrator must create Active Directory objects that have configuration information for DFS replication. #### Actors Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. DFS-R Service The DFS-R Service is a supporting actor that provides the interfaces to create, modify, and delete configuration objects in Active Directory by using the server's machine account. It also provides the interface to monitor DFS-R on the computer and to collect statistics about the DFS-R operation. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. Active Directory system The Active Directory system is a supporting actor. The File Services Management system stores all configuration data that is related to the replication members in Active Directory. # **Stakeholders** Administrator The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide the SMB File Service. #### **Preconditions** The administrator has identified an SMB File Service. A DFS-R Service must be present on the SMB File Service, as described in [MS-FRS2]. #### **Main Success Scenario** - 1. Trigger: The admin tool receives a request from the administrator to create an Active Directory object. - 2. The admin tool establishes a communication channel to the DFS-R Service, as described in [MS-DFSRH] section 2.1. - The DFS Service authenticates the administrator through the mechanisms as described in [MS-AUTHSOD]. - 4. The admin tool contacts DFS-R Service to create an Active Directory object with a specified distinguished name and attributes. - 5. The DFS-R Service authorizes the administrator through the mechanisms described in [MS-DFSRH] section 3.1.5.2.1 IADProxy2::CreateObject or section 3.1.5.3.1 IADProxy2::CreateObject). - The DFS-R Service executes a Lightweight Directory Access Protocol (LDAP) command under machine security credentials to create an Active Directory object. # **Postcondition** The requested Active Directory object is created. # **Extensions** The following results occur if the communication channel for the DFS Replication Helper Protocol, as described in [MS-DFSRH], cannot be established, or it becomes disconnected: The admin tool may attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the namespace may or may not have been created. # 2.5.4 Resource Management Use Cases The File Server Resource Manager (FSRM) enables system administrators to understand how storage is used and to manage the use of their storage by generating storage reports, by applying quotas to volumes and folders, and by screening files on the server. The following diagram shows the Resource Management use cases that are described in detail in the following sections. Figure 8: Resource Management use cases # 2.5.4.1 Create and Configure a File Management Job #### Goal To create and configure a file management job. ### Context of Use The administrator is setting up a file server and must schedule a task that applies a command to a set of files as determined by a list of conditions and a list of namespaces. # Actors ## Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. ### FSRM Service The FSRM Service is a supporting actor. It provides functionality for setting up and managing storage on folders and shares on a file server. # Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. ### **Stakeholders** Administrator The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide SMB File Services. ### **Preconditions** The administrator has identified a file server and a set of files on the server to schedule the job. ### **Main Success Scenario** - 1. Trigger: The admin tool receives a request from the Create and
Configure a File management task. The admin tool establishes a communication channel to the File Server Resource Manager, which is a component of the File Service, as described in [MS-FSRM] section 3.1.3. - The admin tool creates a file management job on the file server by using the CreateFileManagementJob method, as described in [MS-FSRM] section 3.2.4.2.50.2. It sets the Name, NamespaceRoot, and Format task by using the IFsrmReportScheduler::CreateScheduleTask method and ExpirationDirectory for the new namespace, as described in [MS-FSRM] sections 3.2.4.2.48.3, 3.2.4.2.48.5, 3.2.4.2.48.19, 3.2.4.2.37.2, and 3.2.4.2.48.11. - 3. The admin tool modifies properties of the newly created file management job, such as the **ReportEnabled** property and the **Logging** property, and associates a different task. #### **Postcondition** The requested file management task is created and configured. ## **Extensions** If the communication channel for the File Server Resource Manager Protocol [MS-FSRM] cannot be established, or it becomes disconnected: The admin tool may attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the file management job may or may not have been created. # 2.5.4.2 Create a Report Job ### Goal To create a report job. #### **Context of Use** The administrator is setting up a file server and must analyze a set of directories and generate a report. # **Actors** Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin 38 / 77 [MS-FSMOD] — v20140124 File Services Management Protocols Overview Copyright © 2014 Microsoft Corporation. Release: Thursday, February 13, 2014 tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. FSRM Service The File Server Resource Manager (FSRM) Service is a supporting actor. It provides functionality for classifying data by applying policy that is based on file server metadata and by generating data reports on the file server. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. ### **Stakeholders** Administrator The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide the SMB File Service. #### **Preconditions** The administrator has identified a file server and a set of directories on the server to generate the utilization report. ### **Main Success Scenario** - 1. Trigger: The admin tool receives a request to create a report job. - 2. The admin tool establishes a communication channel to the File Server Resource Manager, a component of the File Service, as described in [MS-FSRM] section 3.1.3. - 3. The admin tool creates a report job by using the IFsrmReportManager::CreateReportJob method ([MS-FSRM] section 3.2.4.2.33.2). The client calls the IFsrmReportJob::NamespaceRoots(put) ([MS-FSRM] section 3.2.4.2.34.5), IFsrmReportJob::Task(put) ([MS-FSRM] section 3.2.4.2.34.3), and IFsrmReportJob::CreateReport ([MS-FSRM] section 3.2.4.2.34.15) methods of the File Server Resource Manager Protocol [MS-FSRM] with valid values for each method. ## **Postcondition** The requested file management task is created and configured. ## **Extensions** If the communication channel for File Server Resource Manager Protocol [MS-FSRM] cannot be established, or it becomes disconnected: The admin tool may attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the report job may or may not have been created. # 2.5.4.3 Configure File Screens and Directory Quotas ### Goal To configure a file screen and share directory quota on the file server. ### **Context of Use** The administrator is setting up a file server and has to configure a file screen and share directory quota. ### Actors Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. FSRM Service The FSRM Service is a supporting actor. It provides the ability to control the amount and type of data that is stored on a file server. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. #### Stakeholders Administrator The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide SMB File Services. # **Main Success Scenario** - 1. Trigger: The admin tool receives a request from the administrator to configure quota and screening. - 2. The admin tool establishes a communication channel to the File Server Resource Manager, a component of the File Service, as described in [MS-FSRM] section 3.1.3. - 3. The admin tool creates a quota on the file server by using the IFsrmQuotaManager::CreateQuota method, as described in [MS-FSRM] section 3.2.4.2.18.3, and provides the folder path on which the quota has to be applied. The admin tool calls the IFsrmQuotaBase::QuotaLimit(put) method ([MS-FSRM] section 3.2.4.2.14.3) with a valid quota limit. - 4. Alternatively, the admin tool creates a file screen on the file server by using the CreateFileScreen method, as described in [MS-FSRM] sections 3.2.4.2.29.3 and 3.2.4.2.27.1. The admin tool then calls the IFsrmFileScreenBase::BlockedFileGroups(put) method ([MS-FSRM] section 3.2.4.2.26.2) with a valid collection of file groups. # **Postcondition** The requested quota limits and file screens are instantiated on the file server. ### **Extensions** If the communication channel for File Server Resource Manager Protocol [MS-FSRM] cannot be established, or it becomes disconnected: • The admin tool might attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the file quota and file screen might or might not have been created. # 2.5.5 Server Management Use Cases This section describes the operations that are performed by administrator to manage an SMB share which includes the following operations: attaching and detaching the alias names, getting or setting the configuration information of a server, and binding and unbinding a server to a transport protocol. The following diagram shows the Server Management use cases that are described in detail in the following sections. # Figure 9: Server Management use cases # 2.5.5.1 Attach an Alias Name to an Existing Server #### Goal To attach an alias name to an existing SMB server. ### Context of Use The administrator is setting up a file server and has to add an alias to an existing file server. #### Actors Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. SMB File Service The SMB File Service is a supporting actor that implements server-side protocol components and the file services that are consumed by the admin client. Authentication Services Authentication Services is the supporting actor that is used for authentication. #### **Stakeholders** Administrator The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide the SMB File Service. ## **Preconditions** The administrator has identified a file server to which he has to create an alias name. The administrator has also determined an alias name to add to the server name. An SMB File Service must be present on the file server, as described in [MS-SRVS]. # **Main Success Scenario** - 1. Trigger: The admin tool receives a request from the administrator to add an alias to the file server. - 2. The admin tool establishes a communication channel to SMB File Service, as described in [MS-SRVS] section 2.1. - 3. The SMB File Service authenticates the administrator through the mechanisms as described in [MS-AUTHSOD]. - 4. The admin tool contacts the SMB File Service by using the **NetrServerAliasAdd** method ([MS-SRVS] section 3.1.4.44), to add an alias to the file server. - 5. The SMB File Service authorizes the administrator through the mechanisms as described in [MS-SRVS] section 3.1.4.44. - 6. The SMB File Service adds an alias to attach the existing server name. ### **Postcondition** The server is accessible
with the existing name and with the added alias. #### **Extensions** If the communication channel for [MS-SRVS] cannot be established, or it becomes disconnected: The admin tool may attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the alias may or may not have been added. If user authentication or authorization fails: • The use case ends with failure. ## 2.5.5.2 Detach an Alias Name from a Server #### Goal To detach an alias name from an existing SMB server. ## Context of Use The administrator is setting up a file server and has to remove an alias that is associated with the file server. #### **Actors** Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. SMB File Service The SMB File Service is a supporting actor that implements server-side protocol components and the file services that are consumed by the admin client. Authentication Services Authentication Services is the supporting actor that is used for authentication. ### **Stakeholders** Administrator The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide the SMB File Service. # **Preconditions** The administrator has identified a file server from which an alias name should be detached. The administrator also has an alias name to detach from the server name. An SMB File Service must be present on the file server, as described in [MS-SRVS]. ### **Main Success Scenario** - 1. Trigger: The admin tool receives a request from the administrator to delete an alias from the file server. - 2. The admin tool establishes a communication channel to the SMB File Service, as described in [MS-SRVS] section 2.1. - 3. The SMB File Service authenticates the administrator through the mechanisms as described in [MS-AUTHSOD]. - 4. The admin tool contacts the SMB File Service by using the **NetrServerAliasDel** method, as described in the Server Service Remote Protocol [MS-SRVS] section 3.1.4.46, to delete an alias from the file server. - 5. The SMB File Service authorizes the administrator through the mechanisms as described in [MS-SRVS] section 3.1.4.46. - 6. The SMB File Service deletes the alias that is attached to the file server. #### **Postcondition** The server is not accessible by attempting to access it with the deleted alias. # **Extensions** If the communication channel for the Server Service Remote Protocol [MS-SRVS] cannot be established, or it becomes disconnected: The admin tool may attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the alias name may or may not have been detached. If user authentication or authorization fails: • The use case ends with failure. # 2.5.5.3 Retrieve Alias Names #### Goal To retrieve all aliases that are attached to an existing SMB server. #### Context of Use The administrator is setting up a file server and has to enumerate all aliases that are attached to a file server. #### **Actors** Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. SMB File Service The SMB File Service is a supporting actor that implements server-side protocol components and the file services that are consumed by the admin client. Authentication Services Authentication Services is the supporting actor that is used for authentication purposes. # **Stakeholders** Administrator The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide the SMB File Service. ### **Preconditions** The administrator has identified a file server for which aliases should be enumerated. An SMB File Service must be present on the file server, as described in [MS-SRVS]. # **Main Success Scenario** - 1. Trigger: The admin tool receives a request from the administrator to enumerate the aliases that are associated with a file server. The admin tool establishes a communication channel to the SMB File Service, as described in [MS-SRVS] section 2.1. - 2. The SMB File Service authenticates the administrator through the mechanisms as described in [MS-AUTHSOD]. - 3. The admin tool contacts the SMB File Service by using the **NetrServerAliasEnum** method ([MS-SRVS] section 3.1.4.45) to enumerate the alias that is attached to the file server. - 4. The SMB File Service authorizes the administrator through the mechanisms as described in [MS-SRVS] section 3.1.4.45. - 5. The SMB File Service enumerates all the aliases that are attached to the existing server name and returns the list of aliases to the admin tool. ### **Postcondition** The admin tool displays all the aliases that are associated with the SMB server. #### Extensions If the communication channel for the Server Service Remote Protocol, as described in [MS-SRVS], cannot be established, or it becomes disconnected: • The admin tool may attempt to establish the connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the aliases may or may not have been displayed. If user authentication or authorization fails: • The use case ends with failure. # 2.5.5.4 Binding or Unbinding an SMB Server Transport Protocol #### Goal To bind a transport protocol to an SMB server or to unbind a transport protocol from an SMB server. # **Context of Use** The administrator is setting up an SMB server and has to bind or unbind the server to or from a transport protocol. ### **Actors** Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. SMB File Service The SMB File Service is a supporting actor that implements server-side protocol components and the file services that are consumed by the admin client. Authentication Services The Authentication Services is the supporting actor that is used for authentication purposes. ### **Stakeholders** Administrator The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide the SMB File Service. ### **Preconditions** The administrator has identified a file server to which he wants to bind and unbind the transport. The administrator has also determined a transport to bind and a transport to unbind. An SMB File Service must be present on the file server, as described in [MS-SRVS]. ### **Main Success Scenario** - 1. Trigger: The admin tool receives a request from the administrator to bind or unbind an SMB server to a transport protocol. - 2. The admin tool establishes a communication channel to an SMB File Service, as described in [MS-SRVS] section 2.1. - 3. The SMB File Service authenticates the administrator through the mechanisms as described in [MS-AUTHSOD]. - 4. The admin tool contacts the SMB File Service by using the NetrServerTransportAdd method ([MS-SRVS] section 3.1.4.22) to bind a transport with the file server or by using the NetrServerTransportDel method ([MS-SRVS] section 3.1.4.25) to unbind a transport with the file server. - 5. The SMB File Service authorizes the administrator through the mechanisms as described in [MS-SRVS] sections <u>3.1.4.22</u> and <u>3.1.4.25</u>. - 6. The SMB File Service binds and unbinds the provided transports. ## **Postcondition** The server is accessible with bound transport, but is not accessible with unbound transport. #### **Extensions** The following results occur if the communication channel for the Server Service Remote Protocol [MS-SRVS] cannot be established, or it becomes disconnected: The admin tool may attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the server may or may not have been bound to or unbound from the transport protocol. If user authentication or authorization fails: • The
use case ends with failure. # 2.5.5.5 Getting or Setting the Configuration Information for a Server ## Goal To get and set the operating parameters for a file server. ### Context of Use The administrator is setting up a file server and must configure the server. #### **Actors** Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. SMB File Service The SMB File Service is a supporting actor that implements server-side protocol components and the file services that are consumed by the admin client. Authentication Services Authentication Services is the supporting actor that is used for authentication. #### **Stakeholders** Administrator The administrator is the person who administers the file server. The administrator has administrative rights and uses the File Services Management system to provide the SMB File Service. ### **Preconditions** The administrator has identified a file server on which to get or set the configuration information. An SMB File Service must be present on the file server, as described in [MS-SRVS]. # **Main Success Scenario** - 1. Trigger: The admin tool receives a request from the administrator to get or set the operating parameters of a file server. - 2. The admin tool establishes a communication channel to the SMB File Service, as described in [MS-SRVS] section 2.1. - 3. The SMB File Service authenticates the administrator through the mechanisms as described in [MS-AUTHSOD]. - 4. The admin tool contacts the SMB File Service by using the **NetrServerGetInfo** method ([MS-SRVS] section 3.1.4.17) to get the operating parameters of the file server. - 5. The SMB File Service authorizes the administrator through the mechanisms as described in [MS-SRVS] section 3.1.4.17. - 6. The SMB File Service returns the requested configured information. - 7. The admin tool contacts the SMB File Service by using the **NetrServerSetInfo** method ([MS-SRVS] section 3.1.4.18) to set the required operating parameters of the file server. - 8. The SMB File Service authorizes the administrator through the mechanisms, as described in [MS-SRVS] section 3.1.4.18. - 9. The SMB File Service updates the server configuration object. ### **Postcondition** None. #### **Extensions** If the communication channel for the Server Service Remote Protocol, as described in [MS-SRVS], cannot be established, or it becomes disconnected: • The admin tool may attempt to establish connection multiple times; ultimately, the use case ends with failure. Depending on when the connection failed, the operating parameters of the server may or may not have been set. If the user authentication fails: • The use case ends with failure. ## 2.5.6 SMB Redirector Use Cases This section describes the operations performed by administrator to manage an SMB Network Redirector. The following diagram shows the SMB Redirector use cases that are described in detail in the following sections. Figure 10: Configure SMB Network Redirector use cases # 2.5.6.1 Enable a Transport Protocol on an SMB Network Redirector ## Goal To enable a transport protocol on an SMB Network Redirector. ### **Context of Use** The administrator is configuring the SMB Network Redirector and must enable a transport protocol. #### **Actors** Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. SMB Network Redirector 50 / 77 [MS-FSMOD] — v20140124 File Services Management Protocols Overview Copyright © 2014 Microsoft Corporation. Release: Thursday, February 13, 2014 The SMB Network Redirector is a supporting actor that handles requests for remote files and printer operations and uses the Server Message Block (SMB) protocol as access protocol. The SMB Network Redirector also implements server-side protocol components that are used to configure it and that are consumed by the admin client. Authentication Services Authentication Services is the supporting actor that is used for authentication. #### **Stakeholders** Administrator The administrator is the person who administers the SMB Network Redirector. The administrator has administrative rights and uses the File Services Management system to provide the SMB File Service. #### **Preconditions** The administrator has identified a remote computer to which a transport protocol is to be enabled. An SMB Network Redirector and the implementation of the Workstation Service Remote Protocol, as described in [MS-WKST], must be present on the remote computer. ## **Main Success Scenario** - 1. Trigger: The admin tool receives a request from the administrator to enable a transport protocol on an SMB Network Redirector. - 2. The admin tool establishes a communication channel to the Workstation Service, as described in [MS-WKST] section 2.1. - 3. The admin tool contacts the Workstation Service by using the **NetrWkstaTransportAdd** method ([MS-WKST"] section 3.2.4.5) to enable the SMB Network Redirector to use a transport protocol on a remote computer. - 4. The Workstation Service enables the provided transport protocol to be used by the SMB Network Redirector. ## **Postcondition** The SMB Network Redirector can use the provided transport protocol. # 2.5.6.2 Disable a Transport Protocol on an SMB Network Redirector #### Goal To disable a transport protocol on an SMB Network Redirector. ### Context of Use The administrator is configuring the SMB Network Redirector and must disable a transport protocol. ## **Actors** Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. SMB Network Redirector The SMB Network Redirector is a supporting actor that handles requests for remote files and printer operations that use the Server Message Block (SMB) protocol as access protocol. The SMB Network Redirector also implements server-side protocol components that are used to configure it and that are consumed by the admin client. Authentication Services Authentication Services is the supporting actor that is used for authentication purposes. ### **Stakeholders** Administrator The administrator is the person who administers the SMB Network Redirector. The administrator has administrative rights and uses the File Services Management system to provide the SMB File Service. # **Preconditions** The administrator has identified a remote computer to which the administrator must disable a transport protocol. A SMB Network Redirector and the implementation of the Workstation Service Remote Protocol, as described in [MS-WKST], must be present on the remote computer. ## **Main Success Scenario** - 1. Trigger: The admin tool receives a request from the administrator to disable a transport protocol on an SMB Network Redirector. - 2. The admin tool establishes a communication channel to the Workstation Service, as described in [MS-WKST] section 2.1. - The admin tool contacts the Workstation Service by using the NetrWkstaTransportDel method, as described in [MS-WKST] section 3.2.4.6, to disable the SMB Network Redirector to use as transport protocol on a remote computer. - 4. If any open file or printer handles are using the transport protocol that this call tries to disable, the server behavior depends on the value of the *ForceLevel* parameter that is provided by the admin tool. If the admin tool requested a forced deletion, the server forces all open handles to close, and then disables the transport protocol. # **Postcondition** The SMB Network Redirector can use the provided transport protocol. # **Extensions** • If any open file or printer handles are using the transport protocol that this call tries to disable, and the admin tool has not requested a forceful deletion: The call fails, and the transport protocol is not deleted. ## 2.5.6.3 Get Statistics about an SMB Network Redirector #### Goal To get various statistics about the SMB Network Redirector on a remote computer. #### Context of Use The administrator is
configuring the SMB Network Redirector and must get various statistics. ### Actors Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. SMB Network Redirector The SMB Network Redirector is a supporting actor that handles requests for remote files and printer operations that use SMB as access protocol. The SMB Network Redirector also implements server-side protocol components that are used to configure it and that are consumed by the admin client. Authentication Services Authentication Services is the supporting actor that is used for authentication. ## **Stakeholders** Administrator The administrator is the person who administers the SMB Network Redirector. The administrator has administrative rights and uses the File Services Management system to provide the SMB File Service. # **Preconditions** The administrator has identified an SMB Network Redirector, and the implementation of the Workstation Service Remote Protocol, as described in [MS-WKST], must be present on the remote computer. # **Main Success Scenario** - 1. Trigger: The admin tool receives a request from the administrator to get various statistics about the SMB Network Redirector on a remote computer. - 2. The admin tool establishes a communication channel to the Workstation Service, as described in [MS-WKST] section 2.1. - The admin tool contacts the Workstation Service by using the NetrWorkstationStatisticsGet method ([MS-WKST] section 3.2.4.11) to get various statistics about the SMB Network Redirector on a remote computer. - 4. The Workstation Service returns the corresponding statistics about the SMB Network Redirector. #### **Postcondition** None. # 2.5.6.4 Get Transport Protocols Enabled on an SMB Network Redirector #### Goal To enumerate enabled transport protocols on an SMB Network Redirector. #### Context of Use The administrator is configuring the SMB Network Redirector and requires information about the transport protocols that are currently enabled for use by the Server Message Block (SMB) network. #### Actors Admin tool The admin tool is the primary actor that triggers this use case. The admin tool is a program that offers management functionality to the administrator through the admin client. Typical admin tools are command-line tools and graphical shells, management utilities, and graphical management programs. The purpose of the admin tool is to correctly interpret, execute, and display the results of the commands that are issued by the administrator. Admin client The admin client is a supporting actor that implements client-side protocol components and consumes the file server administration services that are offered by the file server. The admin client is internal to the File Services Management system. SMB Network Redirector The SMB Network Redirector is a supporting actor that handles requests for remote files and printer operations that use SMB as access protocol. The SMB Network Redirector also implements server-side protocol components that are used to configure it and that are consumed by the admin client. Authentication Services Authentication Services is the supporting actor that is used for authentication. ## **Stakeholders** Administrator The administrator is the person who administers the SMB Network Redirector. The administrator has administrative rights and uses the File Services Management system to provide the SMB File Service. ### **Preconditions** The administrator has identified an SMB Network Redirector, and the implementation of the Workstation Service Remote Protocol, as described in [MS-WKST], must be present on the remote computer. ### **Main Success Scenario** - 1. Trigger: The admin tool receives a request from the administrator to enumerate the enabled transport protocols on an SMB Network Redirector. - 2. The admin tool establishes a communication channel to the Workstation Service, as described in [MS-WKST] section 2.1. - The admin tool contacts Workstation Service by using the NetrWkstaTransportEnum method ([MS-WKST] section 3.2.4.4) to enumerate the transport protocol that is enabled on the SMB Network Redirector. - 4. The Workstation Service provides the transport protocols that are enabled on the SMB Network Redirector. #### **Postcondition** None. # 2.6 Versioning, Capability Negotiation, and Extensibility ### 2.6.1 Remote Administration Protocol The current File Services Management system evolved from earlier systems for remote file access, including the Microsoft LAN Manager. These early systems did not have a general RPC transport available to them, and instead defined protocol-specific methods for encoding what would later be understood to be remote function calls. The Remote Administration Protocol, as described in [MS-RAP], is such a protocol. With the introduction of the Microsoft Windows NT 3.1 operating system, an RPC transport, as described in [MS-RPCE], became available to implementers of the File Services Management system. Rather than continuing to extend the Remote Administration Protocol, the new Server Service Remote Protocol [MS-SRVS] was defined. It replaces the use of the Remote Administration Protocol within the File Services Management system between clients and servers, which is based on the new platforms. Support for the Remote Administration Protocol was maintained however, for interoperability with pre-RPC platforms that include the Microsoft Windows 95 operating system. In the Windows 7 operating system, the Remote Administration Protocol is deprecated. It can only be used to enumerate file shares. # 2.6.2 File Replication Service The File Replication Service (FRS), as described in [MS-FRS1], is a technology that was originally introduced in the Microsoft Windows 2000 Server operating system to replicate Distributed File System (DFS) folders and the SYSVOL folder on domain controllers. Starting with the Windows Server 2003 R2 operating system, Microsoft began to phase out the use of FRS. In the Windows Server 2003 R2 operating system, the DFS Replication (DFS-R) Service replaced FRS for replication of DFS folders, although FRS was still used to replicate the SYSVOL folder on domain controllers and could be configured to run on other custom folders. In the Windows Server 2008 operating system, DFS Replication replaced FRS for replicating the SYSVOL folder in domains that use the Windows Server 2008 domain functional level. In Windows Server 2008 R2 operating system, FRS can be used only to replicate the SYSVOL folder on domain controllers in domains that use the Windows Server 2003 operating system or the Windows 2000 Server domain functional levels. # 2.7 Error Handling ## 2.7.1 Connection Disconnected A common failure scenario is an unexpected breakdown of the connection between the system and external entities. A disconnection can be caused when the network is not available or when one of the communicating participants has become unavailable. In the case where the network is not available, both participants remain active and expect the other party to continue the communication pattern of the protocol in use at the time of the failure. Similarly, in the case where one of the participants is not available, the active participant expects the communication to proceed as specified by the protocol in use. Generally, a protocol detects a breakdown connection through one of the following methods: - Use of a timer object that generates an event if the corresponding participant has not responded within a reasonable time span. - Notification by the underlying protocol that the connection is disconnected. When a connection disconnected event is detected, it causes the protocol to initiate a recovery that can include a breakdown of all related communications and update any necessary data structures to maintain the system state. Details about how each protocol detects a connection disconnected event and how it behaves under this scenario are provided in the specifications of the member protocols. ### 2.7.2 Internal Failures The File Service Management system does not defend against internal failures of its state, other than those that are described in the specifications of the member protocols. The components that comprise the system mutually determine that each is authoritative at all times. # 2.8 Coherency Requirements Each File Services Management protocol provides its own coherency mechanisms. There are no coherence mechanisms among dissimilar protocols. Because coherency mechanisms among similar protocols are specified in the individual protocol documents, there are no system-level coherency requirements. # 2.9 Security Versioning of security is handled by the underlying RPC transport. For more information, see Remote Procedure Call Protocol Extensions ([MS-RPCE] section 3.3.3). # 2.10 Additional Considerations The following table specifies the RPC transport that is used by each member protocol. | Protocol name | RPC binding | |---|--------------| | File Replication Service Protocol [MS-FRS1] | ncacn_ip_tcp | | Distributed File System Replication Protocol [MS-FRS2] | ncacn_ip_tcp | | Distributed File System (DFS): Namespace Management Protocol [MS-DFSNM] | ncacn_np | | Workstation Service Remote Protocol [MS-WKST] |
ncacn_np | | Server Service Remote Protocol [MS-SRVS] | ncacn_np | | DFS Replication Helper Protocol [MS-DFSRH] | ncacn_ip_tcp | | File Server Resource Manager Protocol [MS-FSRM] | ncacn_ip_tcp | For more details on RPC binding, see [MS-RPCE] section 2.1. # 3 Examples # 3.1 Example 1: Creating an SMB Share This example demonstrates the use cases that are described in section 2.5.1.1. The sequence in this example describes how the application creates an SMB share at a given path in the object store of a given server. # **Prerequisites** - The participating client and server computers must be configured to belong to the same Active Directory domain. - The admin tool has acquired an RPC calling context by using the procedure, as described in [MS-SRVS] section 2.1. - The specific path that is to be provisioned for remote access must exist in the local object store of the file server. # **Initial System State** A share with the specified share name does not exist on the server computer. # **Final System State** A share with the specified share name is created on the server computer. The following sequence diagram shows the creation of a share on the SMB server by the admin tool. Figure 11: Sequence diagram for creating an SMB share # **Sequence of Events** - 1. The admin client calls the **NetrShareGetInfo** method ([MS-SRVS] section 3.1.4.10). It specifies the share name and server name to check if a share with the given name exists. - 2. The SMB File Service returns the **NERR_NetNameNotFound** error code to indicate that the share with the given name does not exist. - 3. The admin client invokes the **NetprNameValidate** method ([MS-SRVS] section 3.1.4.32) to check the share name. - 4. The SMB File Service returns a success code. - 5. The admin client calls the **NetrShareAdd** method ([MS-SRVS] section 3.1.4.7). It specifies the share name, local object store path, and various options that are provided by the caller. - 6. The SMB File Service returns a success code. - 7. The admin client calls the **NetrShareSetInfo** method ([MS-SRVS] section 3.1.4.11). It specifies the share name and the access permissions. - 8. The SMB File Service returns a success code. # 3.2 Example 2: Deleting an SMB Share This example demonstrates the use cases described in section 2.5.1.4. The sequence in this example describes how the application deletes an SMB share from a given server. ### **Prerequisites** • The admin tool has acquired an RPC calling context. ### **Initial System State** None. # **Final System State** The specified share is removed from the list of shares that are available from that server. The following sequence diagram shows the steps to delete an SMB share. Figure 12: Sequence diagram for deleting an SMB share # **Sequence of Events** - 1. The admin client calls the **NetrShareGetInfo** method ([MS-SRVS] section 3.1.4.10). It specifies the share name and server name to check if the share exists. - 2. The SMB File Service returns ERROR_SUCCESS to confirm that the share exists. - 3. The admin client calls the **NetrConnectionEnum** method ([MS-SRVS] section 3.1.4.1) to check if the share is currently accessed. - 4. The SMB File Service returns a success code with **TotalEntries** as 0 to indicate that the share is not currently accessed. - 5. The admin client calls the **NetrShareDel** method ([MS-SRVS] section 3.1.4.12) after checking that the share is not in use. - 6. The SMB File Service removes the share name from the share list and returns a success code to the admin client. In Windows-based implementations, the Shared Folders snap-in is used as the admin tool to centrally manage file shares on a computer. The Shared Folders snap-in calls the **NetrShareEnum** method ([MS-SRVS] section 3.1.4.8) to enumerate the share entries in the **ShareList**. # 3.3 Example 3: Creating and Managing a DFS Domain Namespace This example demonstrates the use cases described in section 2.5.2.2, section 2.5.2.3, and section 2.5.2.4. ## **Prerequisites** - The participating client and server computers must be configured to belong to the same Active Directory domain. - A share is created on the file server. - Clients and Distributed File System (DFS) servers have access to the Active Directory system that is provided by the domain. - The application has acquired a remote procedure call (RPC) calling context for DFS Service by using the procedure as described in [MS-DFSNM] section 2.1. - The application has acquired an RPC calling context for File Replication Service (FRS) Service by using the procedure as described in [MS-DFSRH] section 2.1. # **Initial System State** None. ## **Final System State** The specified local path on the file server functions as a DFS namespace with a single link. This example is divided into three tasks: - Creating a DFS domain namespace - Creating a DFS link - Creating a replication group The following sequence diagram shows the steps to create and manage a DFS domain namespace. Figure 13: Sequence diagram for creating and managing a namespace - 1. **CreateNamespace:** The administrator requests that the admin tool creates a DFS namespace on the previously configured SMB share. The admin tool specifies the server, the share name, and various other options that are specific to the creation of the namespace. - 2. **Create DFS Namespace:** The admin tool makes use of the admin client to create a DFS namespace. The sequence of steps is described in Task 1: Creating a DFS domain namespace. - 3. **CreateLink:** The administrator requests that the admin tool creates a DFS link in the DFS namespace. The admin tool specifies the server and share name of the namespace, the path at which the link should be created, the target of the link, and various other options that are specific to creating the link. - 4. **Create DFS Link:** The admin tool makes use of the admin client to create a DFS link. The sequence of steps is described in Task 2: Creating a DFS Link. - 5. **CreateReplicationGroup (Optional):** The administrator requests that the admin tool creates an FRS replica group. It specifies the domain controller and the group members. - 6. **Create DFS-R Replication group (Optional):** The admin tool makes use of the admin client to create a replication group. The sequence of steps is described in Task 3: Creating a Replication Group (Optional). Note: The admin tool uses the **NetrDfsEnum** method ([MS-DFSNM] section 3.1.4.1.7), or the **NetrDfsEnumEx** method ([MS-DFSNM] section 3.1.4.2.3) to enumerate the DFS root that is hosted on a server or the DFS links of the namespace that are hosted by a server. The admin tool calls the **NetrDfsManagerGetVersion** method ([MS-DFSNM] section 3.1.4.1.2) to determine the enumeration method to use. The admin tool calls these enumeration methods multiple times to refresh its list. # Task 1: Creating a DFS Domain Namespace The following example describes the steps that are used to create a DFS domain namespace. The DFS service that is used in this example resides on the root target server. The following sequence diagram shows the steps to create a DFS domain namespace. Figure 14: Sequence diagram for creating a DFS domain namespace - 1. The admin client calls the **NetrDfsAddRootTarget** method ([MS-DFSNM] section 3.1.4.1.9). The admin client specifies the server, the share to host the namespace, and various options that are provided by the administrator.<1> - 2. The DFS Service creates a new DFS namespace Lightweight Directory Access Protocol (LDAP) entry with the DFS namespace anchor LDAP entry as its parent. The server also creates the DFS metadata that is required for the new DFS namespace and updates the DFS metadata in the object that corresponds to the DFS namespace. This update appears as an LDAP Add operation to the domain controller. - 3. The DFS metadata write operation is successful, and the domain controller returns LDAP_SUCCESS to indicate success. - 4. The DFS Service completes the **NetrDfsAddRootTarget** method and returns a success code to the admin client. # Task 2: Creating a DFS Link The following example describes the steps that are used to add a new DFS link to an existing domainv2-based DFS namespace with one root target. The DFS service that is used in this example resides on the root target server. The following sequence diagram shows the steps to add a DFS link. Figure 15: Sequence diagram for adding a DFS link - 5. The admin tool requests the admin client to create the given DFS link in the DFS namespace, which is hosted by the server that is identified in the RPC calling context. The admin client calls the **NetrDfsAdd** method ([MS-DFSNM] section 3.1.4.1.3) that specifies the link path, target, and other options. - 6. The DFS service verifies the existence of the namespace name and the link ([MS-DFSNM] section 3.1.4.1.3). - 7. The DFS service issues an LDAP Add request to the domain controller with the updated DFS metadata that contains the new DFS link information for a domainv2-based DFS namespace ([MS-DFSNM] section 3.1.4.1.3). - 8. The LDAP Add operation is successful and the LDAP server returns an LDAP_SUCCESS message to the DFS service. - 9. The **NetrDfsAdd** method that is invoked by the admin client finishes successfully. The DFS service returns a success code to the admin client. # Task 3: Creating a Replication Group (Optional) The following example describes the steps to create a replication group on a domain controller. The following sequence diagram shows the steps to create a replication group. 64 / 77 [MS-FSMOD] — v20140124 File Services Management Protocols Overview Copyright © 2014 Microsoft Corporation. Release: Thursday, February 13, 2014 # Figure 16: Sequence diagram for creating a replication group - 10.The admin client calls the **CreateObject** method of the DFS-R Service that passes the domain controller name and the replica
members by using the **IADProxy::CreateObject** method<2>, as described in [MS-DFSRH] section 3.1.5.2.1, or by using the **IADProxy2::CreateObject** method ([MS-DFSRH] section 3.1.5.3.1). - 11.The DFS-R Service uses LDAP messages to create the replication object on the domain controller ([MS-DFSRH] section 3.1.5.2.1). - 12. After getting the success response from the domain controller, the DFS-R Service sends a success code to the admin client. # 3.4 Example 4: Creating an FSRM File Screen This example demonstrates the use cases described in section 2.5.4.3. This example describes the creation of a File Server Resource Manager (FSRM) file screen at a given path in the object store of a given server by the admin tool. # **Prerequisites** The admin tool has acquired an RPC calling context that provides the FSRM server ([MS-FSRM] section 2.1). # **Initial System State** The participating client and server computers are configured to belong to the same Active Directory domain. The following sequence diagram shows the steps to create an FSRM file screen. Figure 17: Sequence diagram for creating an FSRM file screen # **Sequence of Events** - 1. The admin tool requests that the admin client creates the given file screen by specifying the RPC calling context, the server, the local object store path, and the file group. The admin client queries the server to determine if there is an existing file screen that is specified on the object store path. To do this, it calls the **IFsrmFileScreenManager::GetFileScreen** method ([MS-FSRM] section 3.2.4.2.29.4). The server does not return any **IFsrmFileScreen** object ([MS-FSRM] section 3.2.4.2.27). - The admin client creates an empty IFsrmFileScreen object by using the IFsrmFileScreenManager::CreateFileScreen method ([MS-FSRM] section 3.2.4.2.29.3). The FSRM Service returns the reference to a newly created IFsrmFileScreen object. - 3. The admin client acquires an **IFsrmCommittableCollection** object, which contains a pointer to every file group on the server, by using the **IFsrmFileGroupManager::EnumFileGroups** method ([MS-FSRM], section 3.2.4.2.25.3). The FSRM Service returns the **IFsrmCommittableCollection** object and a status code. - 4. The admin client enumerates the names of each of the file groups that are returned in the step 3, by using the **IFsrmFileGroup::Name(get)** method ([MS-FSRM], section 3.2.4.2.23.2). The server returns the name of the file group. - 5. The admin client acquires the IFsrmMutableCollection object from the file screen, to which it adds the caller-specified file group, by using the IFsrmFileScreenBase::BlockedFileGroups(get) method ([MS-FSRM] section 3.2.4.2.26.1). The FSRM Service returns the IFsrmMutableCollection object and a status code. - 6. The admin client, by using the acquired collection object, adds the requested file group to the collection by using the **IFsrmMutableCollection::Add** method ([MS-FSRM] section 3.2.4.2.2.1). The FSRM Service returns a success code. - 7. The admin client places the modified collection object in the file screen, by using the **IFsrmFileScreenBase::BlockedFileGroups(put)** method ([MS-FSRM] section 3.2.4.2.26.2). The FSRM Service returns a success code. - 8. To complete the operation, the admin client instructs the server to commit the modifications to the file screen by using the **IFsrmFileScreen::Commit** method ([MS-FSRM] section 3.2.4.2.27.1). The FSRM Service returns a success code. ## **Final System State** The FSRM Service successfully executes the requested operations, and the specified file screen policy is created on the server. # 3.5 Example 5: Creating an FSRM Quota This example demonstrates the use cases described in section 2.5.4.3. This example describes the creation of a File Server Resource Manager (FSRM) quota at a given path in the object store of a given server by the admin tool. # **Initial System State** None. ## **Prerequisites** - The participating client and server computers must be configured to belong to the same Active Directory domain. - The admin tool has acquired an RPC calling context that provides the FSRM server ([MS-FSRM] section 2.1). ## **Final System State** The FSRM Service successfully executes the requested operations, and the specified file quota policy is created on the server. The following sequence diagram shows the steps to create an FSRM quota. Figure 18: Sequence diagram for creating an FSRM quota # **Sequence of Events** - The admin client queries the server to determine if there is an existing quota that is specified on the object store path. To do this, it calls the IFsrmQuotaManager::GetQuota method ([MS-FSRM] section 3.2.4.2.18.5) by retrieving a potentially non-empty existing IFsrmQuota object. If an IFsrmQuota object is returned, the admin tool determines that no quota is currently configured on the server at the specified path. - The admin client creates an empty IFsrmQuota object by using the IFsrmQuotaManager::CreateQuota method ([MS-FSRM] section 3.2.4.2.18.3). The FSRM Service returns the reference to the newly created quota object and a success code. - The admin client modifies the returned IFsrmQuota object to reflect the specified quota limit by using the IFsrmQuotaBase::QuotaLimit(put) method ([MS-FSRM] section 3.2.4.2.14.3). The FSRM Service returns a success code. - 4. To complete the operation, the admin client instructs the server to commit the modifications to the quota by using the **IFsrmQuotaObject::Commit** method ([MS-FSRM] section 3.2.4.2.15.1). The FSRM Service returns a success code. # 3.6 Example 6: Creating and Configuring a File Management Job This example demonstrates the use cases described in section 2.5.4.1. The admin client creates a file management job and configures it. ## **Prerequisites** - The participating client and server computers must be configured to belong to the same Active Directory domain. - The admin tool has acquired an RPC calling context that provides the FSRM server name ([MS-FSRM] section 1.3). # **Initial System State** None. # **Final System State** A file management job is created and configured on the FSRM server. The following sequence diagram shows the steps to create and configure a file management job. Figure 19: Sequence diagram for creating and configuring a file management job Sequence of Events 1. The admin client creates a file management job by calling the IFsrmFileManagementJobManager::CreateFileManagementJob method, ([MS-FSRM] section 3.2.4.2.50.2). The FSRM Service returns a pointer to the file management job and returns a success code. - The admin client sets the Name property of the file management job by calling the IFsrmFileManagementJob::Name(put) method ([MS-FSRM] section 3.2.4.2.48.3), and the server returns ERROR SUCCESS. - 3. The admin client sets the **NamespaceRoot** property of the newly created file management job by calling the **IFsrmFileManagementJob::NamespaceRoot(put)** method ([MS-FSRM] section 3.2.4.2.48.5). The FSRM Service returns a success code. - 4. The admin client sets the **Enable** property of the newly created file management job by calling the **IFsrmFileManagementJob::Enable(put)** method ([MS-FSRM] section 3.2.4.2.48.7). The FSRM Service returns a success code. - 5. The admin client sets the **ExpirationDirectory** property for a new namespace by calling the **IFsrmFileManagementJob::ExpirationDirectory(put)** method ([MS-FSRM] section 3.2.4.2.48.110. The FSRM Service returns a success code. - 6. The admin client sets the Operation type for new namespace by calling the **IFsrmFileManagementJob::OperationType(put)** method ([MS-FSRM] section 3.2.4.2.48.9). The FSRM Service returns a success code. - 7. The admin client sets the list of report formats that the report job will create when the report job is generated by calling the **IFsrmFileManagementJob::Formats(put)** method ([MS-FSRM] section 3.2.4.2.48.19). The FSRM Service returns a success code. - 8. The admin client adds a notification period to the file management job's list of notification periods by calling the **IFsrmFileManagementJob::AddNotification** method ([MS-FSRM] section 3.2.4.2.48.44). The FSRM Service returns a success code. - 9. The admin client calls the **IFsrmFileManagementJob::Task(put)** method ([MS-FSRM] section 3.2.4.2.48.32), with the name of the scheduled task to be used in step 11. The FSRM Service returns a success code. - 10. The admin client calls the **IFsrmFileManagementJob::Commit** method ([MS-FSRM] section 3.2.4.2.48.1) to commit the modifications to the file management job. - 11.The admin client creates a scheduled task by calling the IFsrmReportScheduler::CreateScheduleTask method ([MS-FSRM] section 3.2.4.2.36.2) to pass in the name as it was used in step 9, namespaces, and serialized text of the task. The FSRM Service returns a success code. # 3.7 Example 7: Creating a Scheduled Report Job This example demonstrates the use cases described in section 2.5.4.2. The admin client creates a report job and configures it. # **Prerequisites** - The participating client and server computers must be configured to belong to the same Active Directory domain. - The admin tool has acquired an RPC calling context that provides the FSRM server ([MS-FSRM] section 2.1). # **Initial System State** None. # **Final System State** The report job is created and configured. The following sequence diagram shows the steps to create and configure a scheduled report job. Figure 20: Sequence diagram for creating and configuring a scheduled report job Sequence of Events - 1. The admin client creates a report job instance by using the **IFsrmReportManager::CreateReportJob** method ([MS-FSRM] section 3.2.4.2.33.2). The FSRM Service returns a pointer to the created report job and a success code. - The admin client calls the
IFsrmReportJob::EnumReports method to enumerate all the reports that are configured for the newly created job. The server returns S_OK upon successful completion (<u>[MS-FSRM]</u> section <u>3.2.4.2.34.14</u>). - 3. The admin client creates a report by calling the **IFsrmReportJob::CreateReport** method for each of the report types to add the report to the report job ([MS-FSRM] section 3.2.4.2.34.15). The FSRM Service returns a pointer to the created reports and a success code. - 4. The admin client sets the filter of the created report objects by calling the **IFsrmReport::SetFilter** method for each report object to set the filter ([MS-FSRM] section 3.2.4.2.35.8). The FSRM Service returns a success code. - 5. The admin client sets the NamespaceRoots of the newly created Report Job by calling the **IFsrmReportJob::NamespaceRoots(put)** method (<u>[MS-FSRM]</u> section <u>3.2.4.2.34.5</u>). The FSRM Service returns a success code. - 6. The admin client sets the list of report formats that the report job creates when the report job is generated by calling the **IFsrmReportJob::Formats(put)** method ([MS-FSRM] section 3.2.4.2.34.7). The FSRM Service returns a success code. - The admin client sets the email address recipient list to which the reports are emailed when the report job is successfully finished by calling the IFsrmReportJob::MailTo(put) method ([MS-FSRM] section 3.2.4.2.34.9). The FSRM Service returns a success code. - 8. The Admin client calls the **IFsrmReportJob::Task(put)** method ([MS-FSRM] section 3.2.4.2.34.3), with the name of the scheduled task to be used in step 11. The FSRM Service returns a success code. - 9. The admin client persists the report by calling the **IFsrmReportJob::Commit** method (<u>[MS-FSRM]</u> section 3.2.4.2.34.1). The FSRM Service returns a success code. - 10.The admin client calls the **IFsrmReportJob::WaitForCompletion** method to wait until report task is finished ([MS-FSRM] section 3.2.4.2.34.17). The FSRM Service returns a success code. - 11. The admin client calls the **IFsrmReportScheduler::CreateScheduleTask** method ([MS-FSRM] section 3.2.4.2.36.2) that passes in the name, namespaces as used in step 8, and serialized text for the task. The FSRM Service returns a success code. # 3.8 Example 8: Client Cannot Connect to a DFS Service This example demonstrates extension 1 of the use case described in section 2.5.2.1. The admin client tries to establish a connection to the Distributed File System (DFS) Service to create a namespace and does not get a response from the DFS Service. # **Prerequisites** The prerequisites are described in [MS-DFSNM] section 1.5. ## **Initial System State** None. # **Final System State** None. The following sequence diagram shows the steps for the RPC bind calling context of the DFS Service. Figure 21: Sequence diagram for showing an RPC bind operation with a No Response error message # **Sequence of Events** - 1. The admin tool uses the identified server to request that the admin client binds the RPC calling context. - 2. The admin client initiates the bind operation by using the procedure ([MS-DFSNM] section 2.1). - 3. The admin client does not get a response from the server. After the admin client waits for a timeout period, it sends the error message to the admin tool. # 4 Microsoft Implementations There are no variations in the behavior of the File Access Services System in different versions of Windows beyond those described in the specifications of the protocols supported by the system, as listed in section 2.2. The information in this specification is applicable to the following Microsoft products: - Windows 95 operating system - Windows NT operating system - Windows NT 3.1 operating system - Windows NT 4.0 operating system - Windows NT Server 4.0 operating system - Windows 2000 operating system - Windows 2000 Server operating system - Windows 2000 Advanced Server operating system - Windows XP operating system - Windows Server 2003 operating system - Windows Server 2003 R2 operating system - Windows Vista operating system - Windows Server 2008 operating system - Windows 7 operating system - Windows Server 2008 R2 operating system - Windows 8 operating system - Windows Server 2012 operating system - Windows 8.1 operating system - Windows Server 2012 R2 operating system Exceptions, if any, are noted below. If a service pack number appears with the product version, behavior changed in that service pack. The new behavior also applies to subsequent service packs of the product unless otherwise specified. # 4.1 Product Behavior <1> Section 3.3: The NetrDfsAddRootTarget method is not supported on the following Windows servers: Windows NT, Windows NT Server 4.0, Windows 2000 Server, Windows Server 2003, and Windows Server 2003 R2. The Windows client uses the NetrDfsAddRootTarget method to create the domain-based namespace if a user has enabled Windows 2008 mode. Otherwise, it uses the NetrDfsAddFtRoot method. <2> Section 3.3: In Windows, the DFS Management snap-in is used as the admin tool. When a domain administrator uses the DFS Management snap-in to create a replication group object, the IADProxy::CreateObject method is not used; instead, a direct LDAP call is used to create the replication group object. # **5 Change Tracking** No table of changes is available. The document is either new or has had no changes since its last release. # 6 Index | A | <u>Handling requirements</u> 56 | |--|--| | Additional considerations 57 | I | | Applicable protocols 14 | Implementations Missourft 74 | | Architecture 8 | Implementations - Microsoft 74 | | Assumptions 16 | <u>Implementer - security considerations</u> 56
<u>Informative references</u> 6 | | C | <u>Initial state</u> 16 | | | Introduction 5 | | Capability negotiation 55 | | | Change tracking 76 | M | | Client unable to connect to DFS service example 72 | • • | | Coherency requirements 56 | Managing DFS domain namespace example 61 | | | | | Communications 16 | Microsoft implementations 74 | | Concepts 8 | | | Considerations | 0 | | <u>additional</u> 57 | | | security 56 | Overview | | Creating and configuring file management job | summary of protocols 14 | | example 68 | synopsis 8 | | Creating and managing DFS domain namespace | | | example 61 | Р | | | • | | Creating FSRM file screen example 65 | Dunconditions 10 | | <u>Creating FSRM quota example</u> 67 | Preconditions 16 | | Creating scheduled report job example 70 | Product behavior 74 | | <u>Creating SMB share example</u> 58 | | | | R | | D | | | | References 6 | | Deleting SMB share example 60 | Requirements | | Dependencies 16 | coherency 56 | | | error handling 56 | | Design intent 17 | | | _ | overview 8 | | E | preconditions 16 | | | _ | | Environment 16 | S | | Error handling 56 | | | Examples | Security considerations 56 | | client unable to connect to DFS service 72 | | | creating and configuring file management job 68 | Т | | creating and managing DFS domain namespace | • | | 61 | Table of protocols 14 | | - - | Tracking changes 76 | | <u>creating FSRM file screen</u> 65 | Tracking changes 70 | | creating FSRM quota 67 | | | creating scheduled report job 70 | U | | creating SMB share 58 | | | deleting SMB share 60 | <u>Use cases</u> 17 | | Extensibility (section 2.6 55, section 4 74) | | | | V | | F | | | • | Versioning 55 | | Functional architecture 8 | | | <u>Functional alchitecture</u> o | | | | | | G | | | | | | Glossary 5 | | | | | | H | |