
1 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

[MS-FSCC]:

File System Control Codes

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Revision Summary

Date
Revision
History

Revision
Class Comments

4/3/2007 0.01 New Version 0.01 release

7/3/2007 1.0 Major MLonghorn+90

7/20/2007 2.0 Major Updated and revised the technical content.

8/10/2007 3.0 Major Updated and revised the technical content.

9/28/2007 4.0 Major Updated and revised the technical content.

10/23/2007 5.0 Major Updated and revised the technical content.

11/30/2007 5.0.1 Editorial Changed language and formatting in the technical content.

1/25/2008 5.0.2 Editorial Changed language and formatting in the technical content.

3/14/2008 5.0.3 Editorial Changed language and formatting in the technical content.

5/16/2008 6.0 Major Updated and revised the technical content.

6/20/2008 7.0 Major Updated and revised the technical content.

7/25/2008 8.0 Major Updated and revised the technical content.

8/29/2008 9.0 Major Updated and revised the technical content.

10/24/2008 10.0 Major Updated and revised the technical content.

12/5/2008 11.0 Major Updated and revised the technical content.

1/16/2009 12.0 Major Updated and revised the technical content.

2/27/2009 13.0 Major Updated and revised the technical content.

4/10/2009 14.0 Major Updated and revised the technical content.

5/22/2009 15.0 Major Updated and revised the technical content.

7/2/2009 16.0 Major Updated and revised the technical content.

8/14/2009 17.0 Major Updated and revised the technical content.

9/25/2009 18.0 Major Updated and revised the technical content.

11/6/2009 19.0 Major Updated and revised the technical content.

12/18/2009 20.0 Major Updated and revised the technical content.

1/29/2010 21.0 Major Updated and revised the technical content.

3/12/2010 22.0 Major Updated and revised the technical content.

4/23/2010 23.0 Major Updated and revised the technical content.

6/4/2010 24.0 Major Updated and revised the technical content.

7/16/2010 25.0 Major Updated and revised the technical content.

8/27/2010 26.0 Major Updated and revised the technical content.

3 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Date
Revision
History

Revision
Class Comments

10/8/2010 27.0 Major Updated and revised the technical content.

11/19/2010 27.1 Minor Clarified the meaning of the technical content.

1/7/2011 27.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 28.0 Major Updated and revised the technical content.

3/25/2011 29.0 Major Updated and revised the technical content.

5/6/2011 30.0 Major Updated and revised the technical content.

6/17/2011 30.1 Minor Clarified the meaning of the technical content.

9/23/2011 30.2 Minor Clarified the meaning of the technical content.

12/16/2011 31.0 Major Updated and revised the technical content.

3/30/2012 32.0 Major Updated and revised the technical content.

7/12/2012 33.0 Major Updated and revised the technical content.

10/25/2012 34.0 Major Updated and revised the technical content.

1/31/2013 35.0 Major Updated and revised the technical content.

8/8/2013 36.0 Major Updated and revised the technical content.

11/14/2013 36.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 37.0 Major Updated and revised the technical content.

5/15/2014 37.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 38.0 Major Significantly changed the technical content.

10/16/2015 39.0 Major Significantly changed the technical content.

7/14/2016 40.0 Major Significantly changed the technical content.

6/1/2017 41.0 Major Significantly changed the technical content.

9/15/2017 42.0 Major Significantly changed the technical content.

12/1/2017 43.0 Major Significantly changed the technical content.

3/16/2018 44.0 Major Significantly changed the technical content.

9/12/2018 45.0 Major Significantly changed the technical content.

9/23/2019 46.0 Major Significantly changed the technical content.

3/4/2020 47.0 Major Significantly changed the technical content.

8/26/2020 48.0 Major Significantly changed the technical content.

4/7/2021 49.0 Major Significantly changed the technical content.

6/2/2021 50.0 Major Significantly changed the technical content.

4 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Date
Revision
History

Revision
Class Comments

6/25/2021 51.0 Major Significantly changed the technical content.

4/29/2022 52.0 Major Significantly changed the technical content.

9/20/2023 53.0 Major Significantly changed the technical content.

4/23/2024 54.0 Major Significantly changed the technical content.

7/8/2024 55.0 Major Significantly changed the technical content.

5 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Table of Contents

1 Introduction .. 10
1.1 Glossary ... 10
1.2 References .. 14

1.2.1 Normative References ... 14
1.2.2 Informative References ... 15

1.3 Overview .. 16
1.4 Relationship to Protocols and Other Structures .. 16
1.5 Applicability Statement ... 17
1.6 Versioning and Localization ... 17
1.7 Vendor-Extensible Fields ... 17

2 Structures ... 18
2.1 Common Data Types .. 18

2.1.1 Time ... 18
2.1.2 Reparse Point Data Structures .. 18

2.1.2.1 Reparse Tags ... 18
2.1.2.2 REPARSE_DATA_BUFFER ... 22
2.1.2.3 REPARSE_GUID_DATA_BUFFER .. 22
2.1.2.4 Symbolic Link Reparse Data Buffer .. 23
2.1.2.5 Mount Point Reparse Data Buffer .. 24
2.1.2.6 Network File System (NFS) Reparse Data Buffer 25

2.1.3 FILE_OBJECTID_BUFFER Structure ... 27
2.1.3.1 FILE_OBJECTID_BUFFER Type 1 ... 27
2.1.3.2 FILE_OBJECTID_BUFFER Type 2 ... 28

2.1.4 Alternate Data Streams ... 28
2.1.5 Pathname .. 28

2.1.5.1 Dot Directory Names ... 29
2.1.5.2 Filename .. 29

2.1.5.2.1 8.3 Filename ... 30
2.1.5.3 Streamname .. 30
2.1.5.4 Streamtype .. 30

2.1.6 Share name ... 30
2.1.7 FILE_NAME_INFORMATION .. 31
2.1.8 Boolean ... 31
2.1.9 64-bit file ID .. 31
2.1.10 128-bit file ID .. 31
2.1.11 STORAGE_OFFLOAD_TOKEN .. 32

2.2 Status Codes ... 32
2.3 FSCTL Structures ... 33

2.3.1 FSCTL_CREATE_OR_GET_OBJECT_ID Request ... 35
2.3.2 FSCTL_CREATE_OR_GET_OBJECT_ID Reply ... 35
2.3.3 FSCTL_DELETE_OBJECT_ID Request ... 35
2.3.4 FSCTL_DELETE_OBJECT_ID Reply... 36
2.3.5 FSCTL_DELETE_REPARSE_POINT Request ... 36
2.3.6 FSCTL_DELETE_REPARSE_POINT Reply ... 36
2.3.7 FSCTL_DUPLICATE_EXTENTS_TO_FILE Request ... 37

2.3.7.1 DUPLICATE_EXTENTS_DATA .. 37
2.3.7.2 SMB2_DUPLICATE_EXTENTS_DATA ... 38

2.3.8 FSCTL_DUPLICATE_EXTENTS_TO_FILE Reply ... 39
2.3.9 FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX Request .. 39

2.3.9.1 DUPLICATE_EXTENTS_DATA_EX ... 40
2.3.9.2 SMB2_DUPLICATE_EXTENTS_DATA_EX ... 41

2.3.10 FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX Reply ... 42
2.3.11 FSCTL_FILESYSTEM_GET_STATISTICS Request .. 43
2.3.12 FSCTL_FILESYSTEM_GET_STATISTICS Reply ... 43

6 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.12.1 FILESYSTEM_STATISTICS .. 43
2.3.12.2 NTFS_STATISTICS .. 45

2.3.12.2.1 MftWritesUserLevel .. 49
2.3.12.2.2 Mft2WritesUserLevel .. 50
2.3.12.2.3 BitmapWritesUserLevel .. 50
2.3.12.2.4 MftBitmapWritesUserLevel .. 51
2.3.12.2.5 Allocate .. 51

2.3.12.3 FAT_STATISTICS .. 52
2.3.12.4 EXFAT_STATISTICS ... 53

2.3.13 FSCTL_FILE_LEVEL_TRIM Request .. 54
2.3.13.1 FILE_LEVEL_TRIM_RANGE ... 55

2.3.14 FSCTL_FILE_LEVEL_TRIM Reply.. 55
2.3.15 FSCTL_FIND_FILES_BY_SID Request .. 56
2.3.16 FSCTL_FIND_FILES_BY_SID Reply .. 56
2.3.17 FSCTL_GET_COMPRESSION Request ... 57
2.3.18 FSCTL_GET_COMPRESSION Reply .. 57
2.3.19 FSCTL_GET_INTEGRITY_INFORMATION Request .. 58
2.3.20 FSCTL_GET_INTEGRITY_INFORMATION Reply .. 58
2.3.21 FSCTL_GET_NTFS_VOLUME_DATA Request .. 60
2.3.22 FSCTL_GET_NTFS_VOLUME_DATA Reply ... 60
2.3.23 FSCTL_GET_REFS_VOLUME_DATA Request .. 62
2.3.24 FSCTL_GET_REFS_VOLUME_DATA Reply ... 62
2.3.25 FSCTL_GET_OBJECT_ID Request .. 64
2.3.26 FSCTL_GET_OBJECT_ID Reply .. 64
2.3.27 FSCTL_GET_REPARSE_POINT Request .. 65
2.3.28 FSCTL_GET_REPARSE_POINT Reply .. 65
2.3.29 FSCTL_GET_RETRIEVAL_POINTER_COUNT Request .. 66
2.3.30 FSCTL_GET_RETRIEVAL_POINTER_COUNT Reply .. 66
2.3.31 FSCTL_GET_RETRIEVAL_POINTERS Request .. 67
2.3.32 FSCTL_GET_RETRIEVAL_POINTERS Reply .. 67

2.3.32.1 EXTENTS ... 68
2.3.33 FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT Request 69
2.3.34 FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT Reply 69

2.3.34.1 EXTENT_AND_REFCOUNTS ... 70
2.3.35 FSCTL_IS_PATHNAME_VALID Request ... 71
2.3.36 FSCTL_IS_PATHNAME_VALID Reply .. 71
2.3.37 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request 72

2.3.37.1 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB............ 72
2.3.37.2 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB2 72
2.3.37.3 TARGET_LINK_TRACKING_INFORMATION_Buffer 73

2.3.37.3.1 TARGET_LINK_TRACKING_INFORMATION_Buffer_1 73
2.3.37.3.2 TARGET_LINK_TRACKING_INFORMATION_Buffer_2 73

2.3.38 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Reply 74
2.3.39 FSCTL_MARK_HANDLE Request .. 74
2.3.40 FSCTL_MARK_HANDLE Reply ... 75
2.3.41 FSCTL_OFFLOAD_READ Request ... 76
2.3.42 FSCTL_OFFLOAD_READ Reply .. 77
2.3.43 FSCTL_OFFLOAD_WRITE Request ... 79
2.3.44 FSCTL_OFFLOAD_WRITE Reply ... 80
2.3.45 FSCTL_PIPE_PEEK Request .. 82
2.3.46 FSCTL_PIPE_PEEK Reply .. 82
2.3.47 FSCTL_PIPE_TRANSCEIVE Request ... 84
2.3.48 FSCTL_PIPE_TRANSCEIVE Reply ... 84
2.3.49 FSCTL_PIPE_WAIT Request .. 84
2.3.50 FSCTL_PIPE_WAIT Reply ... 85
2.3.51 FSCTL_QUERY_ALLOCATED_RANGES Request .. 86
2.3.52 FSCTL_QUERY_ALLOCATED_RANGES Reply ... 86
2.3.53 FSCTL_QUERY_FAT_BPB Request ... 87

7 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.54 FSCTL_QUERY_FAT_BPB Reply ... 87
2.3.55 FSCTL_QUERY_FILE_REGIONS Request ... 88
2.3.56 FSCTL_QUERY_FILE_REGIONS Reply .. 89

2.3.56.1 FILE_REGION_INFO .. 90
2.3.57 FSCTL_QUERY_ON_DISK_VOLUME_INFO Request .. 90
2.3.58 FSCTL_QUERY_ON_DISK_VOLUME_INFO Reply .. 91
2.3.59 FSCTL_QUERY_SPARING_INFO Request .. 93
2.3.60 FSCTL_QUERY_SPARING_INFO Reply .. 93
2.3.61 FSCTL_READ_FILE_USN_DATA Request... 94
2.3.62 FSCTL_READ_FILE_USN_DATA Reply .. 94

2.3.62.1 USN_RECORD_COMMON_HEADER .. 94
2.3.62.2 USN_RECORD_V2 ... 95
2.3.62.3 USN_RECORD_V3 ... 98

2.3.63 FSCTL_RECALL_FILE Request .. 100
2.3.64 FSCTL_RECALL_FILE Reply ... 100
2.3.65 FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT Request 100

2.3.65.1 REFS_STREAM_SNAPSHOT_QUERY_DELTAS_INPUT_BUFFER 102
2.3.66 FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT Reply 103

2.3.66.1 REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER 103
2.3.66.1.1 REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER_ENTRY 104

2.3.66.2 REFS_STREAM_SNAPSHOT_QUERY_DELTAS_OUTPUT_BUFFER 105
2.3.66.2.1 REFS_STREAM_EXTENT ... 105

2.3.67 FSCTL_SET_COMPRESSION Request .. 106
2.3.68 FSCTL_SET_COMPRESSION Reply .. 107
2.3.69 FSCTL_SET_DEFECT_MANAGEMENT Request .. 107
2.3.70 FSCTL_SET_DEFECT_MANAGEMENT Reply .. 108
2.3.71 FSCTL_SET_ENCRYPTION Request ... 108
2.3.72 FSCTL_SET_ENCRYPTION Reply .. 109

2.3.72.1 DECRYPTION_STATUS_BUFFER ... 110
2.3.73 FSCTL_SET_INTEGRITY_INFORMATION Request .. 110
2.3.74 FSCTL_SET_INTEGRITY_INFORMATION Reply ... 111
2.3.75 FSCTL_SET_INTEGRITY_INFORMATION_EX Request 112
2.3.76 FSCTL_SET_INTEGRITY_INFORMATION_EX Reply .. 113
2.3.77 FSCTL_SET_OBJECT_ID Request ... 113
2.3.78 FSCTL_SET_OBJECT_ID Reply ... 113
2.3.79 FSCTL_SET_OBJECT_ID_EXTENDED Request .. 114
2.3.80 FSCTL_SET_OBJECT_ID_EXTENDED Reply .. 114
2.3.81 FSCTL_SET_REPARSE_POINT Request .. 115
2.3.82 FSCTL_SET_REPARSE_POINT Reply ... 115
2.3.83 FSCTL_SET_SPARSE Request .. 115
2.3.84 FSCTL_SET_SPARSE Reply .. 116
2.3.85 FSCTL_SET_ZERO_DATA Request .. 116
2.3.86 FSCTL_SET_ZERO_DATA Reply ... 117
2.3.87 FSCTL_SET_ZERO_ON_DEALLOCATION Request ... 117
2.3.88 FSCTL_SET_ZERO_ON_DEALLOCATION Reply ... 117
2.3.89 FSCTL_SIS_COPYFILE Request .. 118
2.3.90 FSCTL_SIS_COPYFILE Reply.. 119
2.3.91 FSCTL_VIRTUAL_STORAGE_QUERY_PROPERTY Request 119
2.3.92 FSCTL_WRITE_USN_CLOSE_RECORD Request .. 119
2.3.93 FSCTL_WRITE_USN_CLOSE_RECORD Reply .. 120

2.4 File Information Classes ... 120
2.4.1 FileAccessInformation .. 122
2.4.2 FileAllInformation .. 122
2.4.3 FileAlignmentInformation .. 124
2.4.4 FileAllocationInformation .. 125
2.4.5 FileAlternateNameInformation ... 125
2.4.6 FileAttributeTagInformation .. 126
2.4.7 FileBasicInformation... 127

8 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.4.8 FileBothDirectoryInformation .. 128
2.4.9 FileCompressionInformation .. 130
2.4.10 FileDirectoryInformation ... 132
2.4.11 FileDispositionInformation .. 134
2.4.12 FileEaInformation .. 134
2.4.13 FileEndOfFileInformation ... 135
2.4.14 FileFullDirectoryInformation .. 135
2.4.15 FileFullEaInformation ... 138

2.4.15.1 FILE_GET_EA_INFORMATION .. 139
2.4.16 FileHardLinkInformation ... 140

2.4.16.1 FILE_LINK_ENTRY_INFORMATION .. 141
2.4.17 FileId64ExtdBothDirectoryInformation .. 141
2.4.18 FileId64ExtdDirectoryInformation .. 144
2.4.19 FileIdAllExtdBothDirectoryInformation .. 146
2.4.20 FileIdAllExtdDirectoryInformation .. 149
2.4.21 FileIdBothDirectoryInformation .. 152
2.4.22 FileIdExtdDirectoryInformation .. 154
2.4.23 FileIdFullDirectoryInformation ... 157
2.4.24 FileIdGlobalTxDirectoryInformation .. 159
2.4.25 FileIdInformation ... 162
2.4.26 FileInternalInformation ... 163
2.4.27 FileLinkInformation .. 163

2.4.27.1 FileLinkInformation for the SMB Protocol ... 164
2.4.27.2 FileLinkInformation for the SMB2 Protocol ... 165

2.4.28 FileMailslotQueryInformation ... 166
2.4.29 FileMailslotSetInformation ... 166
2.4.30 FileModeInformation .. 167
2.4.31 FileNameInformation .. 168
2.4.32 FileNamesInformation .. 169
2.4.33 FileNetworkOpenInformation ... 170
2.4.34 FileNormalizedNameInformation .. 171
2.4.35 FileObjectIdInformation .. 172

2.4.35.1 FILE_OBJECTID_INFORMATION_TYPE_1 ... 172
2.4.35.2 FILE_OBJECTID_INFORMATION_TYPE_2 ... 173

2.4.36 FilePipeInformation .. 174
2.4.37 FilePipeLocalInformation ... 175
2.4.38 FilePipeRemoteInformation ... 177
2.4.39 FilePositionInformation ... 178
2.4.40 FileQuotaInformation ... 179

2.4.40.1 FILE_GET_QUOTA_INFORMATION .. 180
2.4.41 FileRenameInformation .. 181

2.4.41.1 FileRenameInformation for SMB ... 182
2.4.41.2 FileRenameInformation for SMB2 ... 182

2.4.42 FileReparsePointInformation.. 183
2.4.43 FileSfioReserveInformation ... 184
2.4.44 FileShortNameInformation .. 185
2.4.45 FileStandardInformation ... 186
2.4.46 FileStandardLinkInformation ... 187
2.4.47 FileStreamInformation.. 187
2.4.48 FileValidDataLengthInformation ... 189

2.5 File System Information Classes ... 189
2.5.1 FileFsAttributeInformation .. 190
2.5.2 FileFsControlInformation ... 192
2.5.3 FileFsDriverPathInformation .. 195
2.5.4 FileFsFullSizeInformation .. 195
2.5.5 FileFsLabelInformation ... 196
2.5.6 FileFsObjectIdInformation ... 197
2.5.7 FileFsSectorSizeInformation .. 198

9 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.5.8 FileFsSizeInformation ... 199
2.5.9 FileFsVolumeInformation .. 200
2.5.10 FileFsDeviceInformation ... 201

2.6 File Attributes ... 203
2.7 Directory Change Notifications .. 204

2.7.1 FILE_NOTIFY_INFORMATION ... 205
2.8 Cluster Shared Volume File System IOCTLs .. 206

2.8.1 IOCTL_STORAGE_QUERY_PROPERTY Request ... 206
2.8.2 IOCTL_STORAGE_QUERY_PROPERTY Reply ... 207
2.8.3 IOCTL_VOLUME_GET_GPT_ATTRIBUTES Request .. 207
2.8.4 IOCTL_VOLUME_GET_GPT_ATTRIBUTES Reply .. 208

3 Structure Examples ... 209

4 Security ... 210
4.1 Security Considerations for Implementers .. 210
4.2 Index of Security Parameters ... 210

5 Appendix A: NTFS Alternate Streams ... 211
5.1 NTFS Streams .. 211
5.2 NTFS Attribute Types ... 211
5.3 NTFS Reserved File Names ... 212
5.4 NTFS Stream Names ... 213
5.5 NTFS Stream Types ... 213
5.6 Known Alternate Stream Names .. 214

5.6.1 Zone.Identifier Stream Name .. 214
5.6.2 Outlook Express Properties Stream Name ... 214
5.6.3 Document Properties Stream Name ... 214
5.6.4 Encryptable Thumbnails Stream Name ... 215
5.6.5 Internet Explorer Favicon Stream Name ... 215
5.6.6 Macintosh Supported Stream Names .. 215
5.6.7 XPRESS Stream Name .. 215

6 Appendix B: Product Behavior ... 216

7 Change Tracking .. 235

8 Index ... 236

10 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

1 Introduction

This specification defines the network format of native Windows structures that can be used within
other protocols. It also describes the structure of common Windows native file system control codes,
file information levels, and file system information levels that are issued in client/server and
server/server communications. These structures do not result in a protocol, but their structure is
common across multiple protocols. As such, they are placed in this document as a reference that can

be used by other protocols to ensure consistency and accuracy.

Sections 1.7 and 2 of this specification are normative. All other sections and examples in this
specification are informative.

1.1 Glossary

This document uses the following terms:

8.3 name: A file name string restricted in length to 12 characters that includes a base name of up
to eight characters, one character for a period, and up to three characters for a file name
extension. For more information on 8.3 file names, see [MS-CIFS] section 2.2.1.1.1.

access control list (ACL): A list of access control entries (ACEs) that collectively describe the
security rules for authorizing access to some resource; for example, an object or set of objects.

alternate name: An 8.3 name that can optionally be generated when a file is created. A file will
not have an alternate name if the user wants to optimize performance, or if the name of the
file already uses the 8.3 format.

binary large object (BLOB): A collection of binary data stored as a single entity in a database.

chunk: The amount of data that the operating system's implementation of the Lempel-Ziv
compression algorithm tries to compress at one time. The compression unit size used by the
file system is always a multiple of the underlying compression algorithm's chunk size. For more

information on the Lempel-Ziv compression algorithm, see [UASDC].

cluster: The smallest allocation unit on a volume.

compression unit: The amount of data that NTFS tries to compress at one time. Compression of
large files is accomplished as a series of compressions of data blocks, each at the most
compression unit bytes in size.

compression unit shift: The number of bits by which to left-shift a 1 bit to arrive at the

compression unit size.

content indexing service: A service that extracts content from files and constructs an indexed
catalog to facilitate efficient and rapid searching.

disk quota: Maximum amount of data a user can store on a disk volume.

Distributed Link Tracking (DLT): A protocol that enables client applications to track sources that

have been sent to remote locations using remote procedure call (RPC) interfaces, and to
maintain links to files. It exposes methods that belong to two interfaces, one of which exists on

the server (trksvr) and the other on a workstation (trkwks).

dot directory name: In a pathname, a directory name component of "." (single period) or ".."
(two periods). For more details, see [MS-FSCC] section 2.1.5.1.

FAT file system: A file system used to organize and manage files. The file allocation table
(FAT) is a data structure that the operating system creates when a volume is formatted by

%5bMS-CIFS%5d.pdf#Section_d416ff7cc536406ea9514f04b2fd1d2b
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

11 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

using FAT or FAT32 file systems. The operating system stores information about each file in the
FAT so that it can retrieve the file later.

Fid: A 16-bit value that the Server Message Block (SMB) server uses to represent an opened file,
named pipe, printer, or device. A Fid is returned by an SMB server in response to a client

request to open or create a file, named pipe, printer, or device. The SMB server guarantees that
the Fid value returned is unique for a given SMB connection until the SMB connection is closed,
at which time the Fid value can be reused. The Fid is used by the SMB client in subsequent SMB
commands to identify the opened file, named pipe, printer, or device.

file allocation table (FAT): A data structure that the operating system creates when a volume is
formatted by using FAT or FAT32 file systems. The operating system stores information about
each file in the FAT so that it can retrieve the file later.

file name component: The portion of a file name between path separator characters (or
backslashes).

file record segment: A record in the master file table that contains attributes for a specific file

on an NTFS volume. The file record segment is always 1,024 bytes (1 kilobyte) in size.

file stream: See main stream and named stream.

file system control (FSCTL): A command issued to a file system to alter or query the behavior of

the file system and/or set or query metadata that is associated with a particular file or with the
file system itself.

filter: Type of driver that is layered between the kernel and a base file system (such as FAT or
NTFS) that receives I/O request packets on their way to and from the base file system. The
term filter can refer to legacy filters or minifilters.

filter manager: A file system filter driver that simplifies the development of other file system
filter drivers. Although it is possible to write a filter driver that manages other filters, for the

purposes of this document, the phrase filter manager refers only to the file system filter
manager, which is an operating system component. A filter driver developed to the filter

manager model is called a minifilter.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] have to be used for generating the GUID. See also universally unique
identifier (UUID).

GUIDString: A GUID in the form of an ASCII or Unicode string, consisting of one group of 8
hexadecimal digits, followed by three groups of 4 hexadecimal digits each, followed by one
group of 12 hexadecimal digits. It is the standard representation of a GUID, as described in
[RFC4122] section 3. For example, "6B29FC40-CA47-1067-B31D-00DD010662DA". Unlike a

curly braced GUID string, a GUIDString is not enclosed in braces.

I/O control (IOCTL): A command that is issued to a target file system or target device in order

to query or alter the behavior of the target; or to query or alter the data and attributes that are
associated with the target or the objects that are exposed by the target.

independent software vendor (ISV): A company or organization that develops software
solutions that can utilize this specification.

logical cluster number (LCN): The cluster number relative to the beginning of the volume. The

first cluster on a volume is zero (0).

https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=89824

12 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

mailslot: A mechanism for one-way interprocess communications (IPC). For more information, see
[MSLOT] and [MS-MAIL].

master file table (MFT): On an NTFS volume, the MFT is a relational database that consists of
rows of file records and columns of file attributes. It contains at least one entry for every file on

an NTFS volume, including the MFT itself. The MFT stores the information required to retrieve
files from the NTFS partition.

master file table mirror (MFT2/MFTMirr): On an NTFS volume, the MFT2 is a redundant copy
of the first four (4) records of the MFT.

named stream: A place within a file in addition to the main stream where data is stored, or the
data stored therein. File systems support a mode in which it is possible to open either the main
stream of a file and/or to open a named stream. Named streams and the main stream each

have different data than each other and can be read and written independently. Not all file
systems support named streams. See also GLOSSARY:[main stream}.

NetBIOS name: A 16-byte address that is used to identify a NetBIOS resource on the network.

For more information, see [RFC1001] and [RFC1002].

NT file system (NTFS): A proprietary Microsoft file system. For more information, see [MSFT-
NTFS].

Object ID: See ObjectID.

object identifier (OID): In the context of an object server, a 64-bit number that uniquely
identifies an object.

object-oriented file system: In the context of file system control codes, a file system that allows
the assignment of object IDs to files.

Offload Read: A variant to a normal read operation where a target device generates and returns a
Token instead of a buffer containing the data to be read. The Token is maintained by the

target device until it invalidates the Token for any vendor-specific reason. The data logically

represented by the Token cannot change, and the target device is required to maintain this
representation. An example of a target device is a SAN Storage Array with support for the
associated low-level storage commands. For more information on Offload Read, see [INCITS-
T10/11-059].

Offload Write: A variant to a normal write operation where the host provides a Token instead of
a buffer containing the data to be written. Upon receipt of the Offload Write, the target device

parses the Token and determines whether the data movement (the Write) can be completed to
the requested location. An example of a target device is a SAN Storage Array with support for
the associated low-level storage commands. For more information on Offload Write, see
[INCITS-T10/11-059].

reparse point: An attribute that can be added to a file to store a collection of user-defined data
that is opaque to NTFS or ReFS. If a file that has a reparse point is opened, the open will

normally fail with STATUS_REPARSE, so that the relevant file system filter driver can detect the
open of a file associated with (owned by) this reparse point. At that point, each installed filter

driver can check to see if it is the owner of the reparse point, and, if so, perform any special
processing required for a file with that reparse point. The format of this data is understood by
the application that stores the data and the file system filter that interprets the data and
processes the file. For example, an encryption filter that is marked as the owner of a file's
reparse point could look up the encryption key for that file. A file can have (at most) 1 reparse

point associated with it. For more information, see [MS-FSCC].

reparse point tag: A unique identifier for a file system filter driver stored within a file's optional
reparse point data that indicates the file system filter driver that performs additional filter-
defined processing on a file during I/O operations. An implementer can request more than one

https://go.microsoft.com/fwlink/?LinkId=90218
%5bMS-MAIL%5d.pdf#Section_8ea19aa46e5a4aedb6280b5cd75a1ab9
https://go.microsoft.com/fwlink/?LinkId=90260
https://go.microsoft.com/fwlink/?LinkId=90261
https://go.microsoft.com/fwlink/?LinkId=90200
https://go.microsoft.com/fwlink/?LinkId=90200
https://go.microsoft.com/fwlink/?LinkId=239442
https://go.microsoft.com/fwlink/?LinkId=239442

13 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

reparse point for use with a file system, a file system filter driver, or a minifilter driver. To
request a reparse point tag, use the reparse point tag request form. For more information, see

[WHDC-RPTR].

replica set: In File Replication Service (FRS), the replication of files and directories according to a

predefined topology and schedule on a specific folder. The topology and schedule are collectively
called a replica set. A replica set contains a set of replicas, one for each machine that
participates in replication.

sector: The smallest addressable unit of a disk.

security identifier (SID): An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a smaller integer representing an identity relative to the account authority, termed

the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a string
representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section 1.1.1.2.

short name: This has the same definition as alternate name.

single-instance storage (SIS): An NTFS feature that implements links with the semantics of
copies for files stored on an NTFS volume. SIS uses copy-on-close to implement the copy
semantics of its links.

sparse file: A file containing large sections of data composed only of zeros. This file is marked as a
sparse file in the file system, which saves disk space by only allocating as many ranges on disk
as are required to completely reconstruct the non-zero data. When an attempt is made to read
in the nonallocated portions of the file (also known as holes), the file system automatically
returns zeros to the caller.

stream: A sequence of bytes written to a file on the target file system. Every file stored on a
volume that uses the file system contains at least one stream, which is normally used to store

the primary contents of the file. Additional streams within the file can be used to store file
attributes, application parameters, or other information specific to that file. Every file has a
default data stream, which is unnamed by default. That data stream, and any other data stream

associated with a file, can optionally be named.

sub-read and sub-write: An I/O operation sent by the file system to the storage stack that is
part of a larger file I/O operation. Sometimes large file reads and writes are broken down by the
file system into smaller reads and writes, which are then sent to the storage stack.

symbolic link: A symbolic link is a reparse point that points to another file system object. The
object being pointed to is called the target. Symbolic links are transparent to users; the links
appear as normal files or directories, and can be acted upon by the user or application in exactly
the same manner. Symbolic links can be created using the FSCTL_SET_REPARSE_POINT
request as specified in [MS-FSCC] section 2.3.61. They can be deleted using the
FSCTL_DELETE_REPARSE_POINT request as specified in [MS-FSCC] section 2.3.5. Implementing

symbolic links is optional for a file system.

tag: Another name for a reparse point. For instance, the file system filter manager FltTagFile
routine sets a reparse point on a file. Tag is also used to refer to the field in a reparse point

that identifies what software component put the reparse point there.

token: A 512-byte length opaque string that is generated and maintained by a supported target
device. A Token functions logically as an immutable point-in-time representation for a set of
data specified by a host and can be conceptualized as a compressed representation of the data

that only a certain class of storage subsystems can interpret. A Token can also be constructed
from a set of well-known Tokens to enable the client to describe a homogeneous attribute for a
set of data (for example, all zeros) or to enable a server to apply a homogeneous attribute to a
set of data (for example, a set of all zeros). For more information on Tokens, see [INCITS-
T10/11-059].

https://go.microsoft.com/fwlink/?LinkId=90564
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-AZOD%5d.pdf#Section_5a0a0a3ec7a742e1b5f2cc8d8bd9739e

14 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Unicode character: Unless otherwise specified, a 16-bit UTF-16 code unit.

Uniform Resource Locator (URL): A string of characters in a standardized format that identifies
a document or resource on the World Wide Web. The format is as specified in [RFC1738].

Universal Disk Format (UDF): A type of file system for storing files on optical media.

update sequence number (USN): The offset from the beginning of the change journal stream
that uniquely identifies a change journal record.

virtual cluster number (VCN): The cluster number relative to the beginning of the file, directory,
or stream within a file. The cluster describing byte 0 in a file is VCN 0.

volume: A group of one or more partitions that forms a logical region of storage and the basis for
a file system. A volume is an area on a storage device that is managed by the file system as a
discrete logical storage unit. A partition contains at least one volume, and a volume can exist

on one or more partitions.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-FSA] Microsoft Corporation, "File System Algorithms".

[MS-LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol".

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MS-SQLRS] Microsoft Corporation, "SQL Server Remote Storage Profile".

[RFC1094] Sun Microsystems, Inc., "NFS: Network File System Protocol Specification", RFC 1094,

March 1989, https://www.rfc-editor.org/info/rfc1094

[RFC1813] Callaghan, B., Pawlowski, B., and Staubach, P., "NFS Version 3 Protocol Specification", RFC
1813, June 1995, https://www.rfc-editor.org/info/rfc1813

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc-editor.org/info/rfc2119

https://go.microsoft.com/fwlink/?LinkId=90287
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-FSA%5d.pdf#Section_860b1516c45247b4bdbc625d344e2041
%5bMS-LSAD%5d.pdf#Section_1b5471ef4c334a91b079dfcbb82f05cc
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
%5bMS-SQLRS%5d.pdf#Section_3a7a8a09b876465d99b4de0e84d8f101
https://go.microsoft.com/fwlink/?LinkId=90267
https://go.microsoft.com/fwlink/?LinkId=90294
https://go.microsoft.com/fwlink/?LinkId=90317

15 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

1.2.2 Informative References

[FSBO] Microsoft Corporation, "File System Behavior in the Microsoft Windows Environment", June
2008, http://download.microsoft.com/download/4/3/8/43889780-8d45-4b2e-9d3a-

c696a890309f/File%20System%20Behavior%20Overview.pdf

[INCITS-T10/11-059] INCITS, "T10 specification 11-059", http://www.t10.org/cgi-
bin/ac.pl?t=d&f=11-059r9.pdf

[MS-CIFS] Microsoft Corporation, "Common Internet File System (CIFS) Protocol".

[MS-DFSC] Microsoft Corporation, "Distributed File System (DFS): Referral Protocol".

[MS-DLTW] Microsoft Corporation, "Distributed Link Tracking: Workstation Protocol".

[MS-EFSR] Microsoft Corporation, "Encrypting File System Remote (EFSRPC) Protocol".

[MS-WDVME] Microsoft Corporation, "Web Distributed Authoring and Versioning (WebDAV) Protocol:

Microsoft Extensions".

[MSDFS] Microsoft Corporation, "How DFS Works", March 2003, http://technet.microsoft.com/en-
us/library/cc782417%28WS.10%29.aspx

[MSDN-CJ] Microsoft Corporation, "Change Journals", http://msdn.microsoft.com/en-
us/library/aa363798.aspx

[MSDN-SECZONES] Microsoft Corporation, "About URL Security Zones",
http://msdn.microsoft.com/en-us/library/ms537183.aspx

[MSFT-NTFSWorks] Microsoft Corporation, "How NTFS Works", March 2003,
http://technet.microsoft.com/en-us/library/cc781134(WS.10).aspx

[MSFT-NTFS] Microsoft Corporation, "NTFS Technical Reference", March 2003,
http://technet2.microsoft.com/WindowsServer/en/Library/81cc8a8a-bd32-4786-a849-

03245d68d8e41033.mspx

[MSKB-5014019] Microsoft Corporation, "KB5014019 May 2022", KB5014019 May 2022,
https://support.microsoft.com/en-us/topic/may-24-2022-kb5014019-os-build-22000-708-preview-
442dbde4-ce28-4345-aecf-2d4744376418

[MSKB-5014021] Microsoft Corporation, "KB5014021 May 2022", KB5014021 May 2022,

https://support.microsoft.com/en-us/topic/may-24-2022-kb5014021-os-build-20348-740-preview-
2b180bd4-dceb-4c49-b8cf-402b342ebc84

[MSKB-5014022] Microsoft Corporation, "KB5014022 May 2022", KB5014022 May 2022,
https://support.microsoft.com/en-us/topic/may-24-2022-kb5014022-os-build-17763-2989-preview-
08f88943-2fc8-4fdb-a13b-ba89af313d06

[MSKB-5014023] Microsoft Corporation, "KB5014023 May 2022", https://support.microsoft.com/en-

us/topic/june-2-2022-kb5014023-os-builds-19042-1741-19043-1741-and-19044-1741-preview-
65ac6a5d-439a-4e88-b431-a5e2d4e2516a

[MSKB-5014701] Microsoft Corporation, "KB5014701 - June 2022", KB5014701, June 14, 2022,
https://www.catalog.update.microsoft.com/Search.aspx?q=KB5014701

[MSKB-5014702] Microsoft Corporation, "KB5014702 - June 2022", KB5014702, June 14, 2022,
https://support.microsoft.com/en-us/topic/june-14-2022-kb5014702-os-build-14393-5192-e60ac0e1-

44a4-49f9-871f-7c25eb0e5bb1

https://go.microsoft.com/fwlink/?LinkId=140636
https://go.microsoft.com/fwlink/?LinkId=140636
https://go.microsoft.com/fwlink/?LinkId=239442
https://go.microsoft.com/fwlink/?LinkId=239442
%5bMS-CIFS%5d.pdf#Section_d416ff7cc536406ea9514f04b2fd1d2b
%5bMS-DFSC%5d.pdf#Section_3109f4be2dbb42c99b8e0b34f7a2135e
%5bMS-DLTW%5d.pdf#Section_fc649f0e871a431a88b5d5b2f80e9cc9
%5bMS-EFSR%5d.pdf#Section_08796ba801c8487292211000ec2eff31
%5bMS-WDVME%5d.pdf#Section_8cafdf55ee5c443ebdb72cb2ab1fb2c3
%5bMS-WDVME%5d.pdf#Section_8cafdf55ee5c443ebdb72cb2ab1fb2c3
https://go.microsoft.com/fwlink/?LinkId=89945
https://go.microsoft.com/fwlink/?LinkId=89945
https://go.microsoft.com/fwlink/?LinkId=89970
https://go.microsoft.com/fwlink/?LinkId=89970
https://go.microsoft.com/fwlink/?LinkId=90660
https://go.microsoft.com/fwlink/?LinkId=168880
https://go.microsoft.com/fwlink/?LinkId=90200
https://go.microsoft.com/fwlink/?LinkId=90200
https://go.microsoft.com/fwlink/?linkid=2194206
https://go.microsoft.com/fwlink/?linkid=2194206
https://go.microsoft.com/fwlink/?linkid=2193970
https://go.microsoft.com/fwlink/?linkid=2193970
https://go.microsoft.com/fwlink/?linkid=2194302
https://go.microsoft.com/fwlink/?linkid=2194302
https://go.microsoft.com/fwlink/?linkid=2194303
https://go.microsoft.com/fwlink/?linkid=2194303
https://go.microsoft.com/fwlink/?linkid=2194303
https://go.microsoft.com/fwlink/?linkid=2195268
https://go.microsoft.com/fwlink/?linkid=2195314
https://go.microsoft.com/fwlink/?linkid=2195314

16 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

[MSKB-5014710] Microsoft Corporation, "KB5014710 - June 2022", KB5014710, June 14, 2022,
https://support.microsoft.com/en-us/topic/june-14-2022-kb5014710-os-build-10240-19325-expired-

4e04a4e1-f560-4131-b676-0238c28f5e5a

[PIPE] Microsoft Corporation, "Named Pipes", http://msdn.microsoft.com/en-us/library/aa365590.aspx

[REPARSE] Microsoft Corporation, "Reparse Points", http://msdn.microsoft.com/en-
us/library/aa365503.aspx

[SPARSE] Microsoft Corporation, "Sparse Files", http://msdn.microsoft.com/en-
us/library/aa365564.aspx

[UASDC] Ziv, J. and Lempel, A., "A Universal Algorithm for Sequential Data Compression", May 1977,
http://www.cs.duke.edu/courses/spring03/cps296.5/papers/ziv_lempel_1977_universal_algorithm.pdf

[UDF] Optical Storage Technology Association, "UDF Specification, Revision 2.60", March 2005,
http://www.osta.org/specs/pdf/udf260.pdf

[WHDC-RPTR] Microsoft Corporation, "Reparse Point Tag Request", https://learn.microsoft.com/en-
us/windows-hardware/drivers/ifs/reparse-point-tag-request

[WININTERNALS] Russinovich, M., and Solomon, D., "Microsoft Windows Internals, Fourth Edition",

Microsoft Press, 2005, ISBN: 0735619174.

1.3 Overview

This document describes the structure of common file system control (FSCTL) codes, file information
levels, and file system information levels that are issued in client/server and server/server

communications. These structures do not result in a protocol, but their structure is common across
multiple protocols. As such, they are placed in this document as a reference that can be used by other
protocols to ensure consistency and accuracy.

File system control codes are parameters to the device I/O control interface between applications and

the operating system. These device I/O control functions, like other I/O functions, accept a file handle
as a parameter, indicating the resource on which the requested operation is performed. When the

operating system detects that a handle corresponds to a file on a remote file server, the request can
be redirected over the network to the server where the file is stored.

The following topics are addressed in this specification:

 Common file system control operations, including the control code itself and the input/output
parameters.

 File information classes and their corresponding structures.

 File system information classes and their corresponding structures.

 File attribute definitions and NTSTATUS code definitions referenced by the file system control
code, file information level, and file system information-level documentation.

1.4 Relationship to Protocols and Other Structures

Versions 1 and 2 of the Server Message Block (SMB) Protocol, as specified in [MS-SMB] and [MS-
SMB2], rely on the structures and definitions in this document to interpret certain fields that can be
sent or received as part of its processing.

https://go.microsoft.com/fwlink/?linkid=2195315
https://go.microsoft.com/fwlink/?linkid=2195315
https://go.microsoft.com/fwlink/?LinkId=90247
https://go.microsoft.com/fwlink/?LinkId=90259
https://go.microsoft.com/fwlink/?LinkId=90259
https://go.microsoft.com/fwlink/?LinkId=90527
https://go.microsoft.com/fwlink/?LinkId=90527
https://go.microsoft.com/fwlink/?LinkId=90549
https://go.microsoft.com/fwlink/?LinkId=184845
https://go.microsoft.com/fwlink/?LinkId=90564
https://go.microsoft.com/fwlink/?LinkId=90564
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

17 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

1.5 Applicability Statement

The structures and classes defined in this document are useful for any lower-level protocol that
serializes and exchanges file information levels, file system information levels, and file system control

operations without needing to remap this information into a protocol-specific representation.

1.6 Versioning and Localization

None.

1.7 Vendor-Extensible Fields

File system control codes that are used to set reparse point data specify a ReparseTag field value
that identifies the file system filter that understands the application-specific reparse point data
format. A vendor developing an application protocol that sets reparse point data MUST request a

unique reparse tag for that application from Microsoft by following the instructions described in

[WHDC-RPTR]. For more information about reparse points, see [REPARSE].

This protocol uses NTSTATUS values, as specified in [MS-ERREF]. Vendors are free to choose their
own values for this field as long as the C bit (0x20000000) is set, indicating it is a customer code.

https://go.microsoft.com/fwlink/?LinkId=90564
https://go.microsoft.com/fwlink/?LinkId=90259
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

18 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2 Structures

The structures specified in this document have no transport requirements of their own. Instead, they
are packaged and transported in accordance with the protocol that makes use of them, such as the
Server Message Block (SMB) Protocol, as specified in [MS-SMB]. A server receiving one of these
structures passes the structure to an implementation-defined function that performs the indicated
operation on a file, a file system, or a volume.

The following sections specify how File System Control Codes messages are encapsulated on the wire
and common File System Control Codes data types.

This document references commonly used data types as defined in [MS-DTYP].

Unless otherwise qualified, instances of GUID in this section refer to [MS-DTYP] section 2.3.4.

2.1 Common Data Types

2.1.1 Time

Unless otherwise noted, Time fields are 64-bit signed integers representing the number of 100-

nanosecond intervals that have elapsed since January 1, 1601, Coordinated Universal Time (UTC).

See FILETIME ([MS-DTYP] section 2.3.3) for related information.

For information regarding the semantics of the file timestamps of the CreationTime,
LastAccessTime, LastWriteTime, and ChangeTime fields, see [FSBO] section 6.

2.1.2 Reparse Point Data Structures

For conceptual information about reparse points, see [REPARSE].

2.1.2.1 Reparse Tags

Each reparse point has a reparse tag. The reparse tag uniquely identifies the owner of that reparse
point. The owner is the implementer of the file system filter driver associated with a reparse tag.

Reparse tags are exposed to clients for third-party applications. Those applications can set, get, and
process reparse tags as needed. Third parties MUST request a reserved reparse tag value to ensure
that conflicting tag values do not occur. [WHDC-RPTR] <1>

The following reparse tags, with the exception of IO_REPARSE_TAG_SYMLINK, are processed on the
server and are not processed by a client after transmission over the wire. Clients SHOULD treat

associated reparse data as opaque data.<2>

Value Meaning

IO_REPARSE_TAG_RESERVED_ZERO

0x00000000

Reserved reparse tag value.

IO_REPARSE_TAG_RESERVED_ONE

0x00000001

Reserved reparse tag value.

IO_REPARSE_TAG_RESERVED_TWO

0x00000002

Reserved reparse tag value.

IO_REPARSE_TAG_MOUNT_POINT Used for mount point support, specified in section 2.1.2.5.

%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=140636
https://go.microsoft.com/fwlink/?LinkId=90259
https://go.microsoft.com/fwlink/?LinkId=90564

19 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

0xA0000003

IO_REPARSE_TAG_HSM

0xC0000004

Obsolete. Used by legacy Hierarchical Storage Manager Product.

IO_REPARSE_TAG_DRIVE_EXTENDER

0x80000005

Home server drive extender.<3>

IO_REPARSE_TAG_HSM2

0x80000006

Obsolete. Used by legacy Hierarchical Storage Manager Product.

IO_REPARSE_TAG_SIS

0x80000007

Used by single-instance storage (SIS) filter driver. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_WIM

0x80000008

Used by the WIM Mount filter. Server-side interpretation only, not
meaningful over the wire.

IO_REPARSE_TAG_CSV

0x80000009

Obsolete. Used by Clustered Shared Volumes (CSV) version 1 in
Windows Server 2008 R2 operating system. Server-side interpretation
only, not meaningful over the wire.

IO_REPARSE_TAG_DFS

0x8000000A

Used by the DFS filter. The DFS is described in the Distributed File
System (DFS): Referral Protocol Specification [MS-DFSC]. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_FILTER_MANAGER

0x8000000B

Used by filter manager test harness.<4>

IO_REPARSE_TAG_SYMLINK

0xA000000C

Used for symbolic link support. See section 2.1.2.4.

IO_REPARSE_TAG_IIS_CACHE

0xA0000010

Used by Microsoft Internet Information Services (IIS) caching. Server-
side interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_DFSR

0x80000012

Used by the DFS filter. The DFS is described in [MS-DFSC]. Server-
side interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_DEDUP

0x80000013

Used by the Data Deduplication (Dedup) filter. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_APPXSTRM

0xC0000014

Not used.

IO_REPARSE_TAG_NFS

0x80000014

Used by the Network File System (NFS) component. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_FILE_PLACEHOLDER

0x80000015

Obsolete. Used by Windows Shell for legacy placeholder files in
Windows 8.1. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_DFM

0x80000016

Used by the Dynamic File filter. Server-side interpretation only, not
meaningful over the wire.

IO_REPARSE_TAG_WOF

0x80000017

Used by the Windows Overlay filter, for either WIMBoot or single-file
compression. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_WCI

0x80000018

Used by the Windows Container Isolation filter. Server-side
interpretation only, not meaningful over the wire.

%5bMS-DFSC%5d.pdf#Section_3109f4be2dbb42c99b8e0b34f7a2135e

20 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

IO_REPARSE_TAG_WCI_1

0x90001018

Used by the Windows Container Isolation filter. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_GLOBAL_REPARSE

0xA0000019

Used by NPFS to indicate a named pipe symbolic link from a server
silo into the host silo. Server-side interpretation only, not meaningful
over the wire.

IO_REPARSE_TAG_CLOUD

0x9000001A

Used by the Cloud Files filter, for files managed by a sync engine such
as Microsoft OneDrive. Server-side interpretation only, not meaningful
over the wire.

IO_REPARSE_TAG_CLOUD_1

0x9000101A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_2

0x9000201A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_3

0x9000301A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_4

0x9000401A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_5

0x9000501A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_6

0x9000601A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_7

0x9000701A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_8

0x9000801A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_9

0x9000901A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_A

0x9000A01A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_B

0x9000B01A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_C

0x9000C01A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_D

0x9000D01A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

21 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

IO_REPARSE_TAG_CLOUD_E

0x9000E01A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_F

0x9000F01A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_APPEXECLINK

0x8000001B

Used by Universal Windows Platform (UWP) packages to encode
information that allows the application to be launched by
CreateProcess. Server-side interpretation only, not meaningful over
the wire.

IO_REPARSE_TAG_PROJFS

0x9000001C

Used by the Windows Projected File System filter, for files managed
by a user mode provider such as VFS for Git. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_LX_SYMLINK

0xA000001D

Used by the Windows Subsystem for Linux (WSL) to represent a UNIX
symbolic link. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_STORAGE_SYNC

0x8000001E

Used by the Azure File Sync (AFS) filter. Server-side interpretation
only, not meaningful over the wire.

IO_REPARSE_TAG_WCI_TOMBSTONE

0xA000001F

Used by the Windows Container Isolation filter. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_UNHANDLED

0x80000020

Used by the Windows Container Isolation filter. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_ONEDRIVE

0x80000021

Not used.

IO_REPARSE_TAG_PROJFS_TOMBSTONE

0xA0000022

Used by the Windows Projected File System filter, for files managed
by a user mode provider such as VFS for Git. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_AF_UNIX

0x80000023

Used by the Windows Subsystem for Linux (WSL) to represent a UNIX
domain socket. Server-side interpretation only, not meaningful over
the wire.

IO_REPARSE_TAG_LX_FIFO

0x80000024

Used by the Windows Subsystem for Linux (WSL) to represent a UNIX
FIFO (named pipe). Server-side interpretation only, not meaningful
over the wire.

IO_REPARSE_TAG_LX_CHR

0x80000025

Used by the Windows Subsystem for Linux (WSL) to represent a UNIX
character special file. Server-side interpretation only, not meaningful
over the wire.

IO_REPARSE_TAG_LX_BLK

0x80000026

Used by the Windows Subsystem for Linux (WSL) to represent a UNIX
block special file. Server-side interpretation only, not meaningful over
the wire.

IO_REPARSE_TAG_WCI_LINK

0xA0000027

Used by the Windows Container Isolation filter. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_WCI_LINK_1

0xA0001027

Used by the Windows Container Isolation filter. Server-side

interpretation only, not meaningful over the wire.

22 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.1.2.2 REPARSE_DATA_BUFFER

The REPARSE_DATA_BUFFER data element stores data for a reparse point. This reparse data buffer
MUST be used only with reparse tag values whose high bit is set to 1.

This data element has two subtypes: Symbolic Link Reparse Data Buffer (section 2.1.2.4) and Mount
Point Reparse Data Buffer (section 2.1.2.5).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReparseTag

ReparseDataLength Reserved

DataBuffer (variable)

...

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner of the reparse point.

ReparseDataLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the
reparse data in the DataBuffer member.

Reserved (2 bytes): A 16-bit field. This field is reserved. This field SHOULD be set to 0, and MUST
be ignored.

DataBuffer (variable): A variable-length array of 8-bit unsigned integer values containing reparse-
specific data for the reparse point. The format of this data is defined by the owner (that is, the
implementer of the filter driver associated with the specified ReparseTag) of the reparse point.

2.1.2.3 REPARSE_GUID_DATA_BUFFER

The REPARSE_GUID_DATA_BUFFER data element stores data for a reparse point and associates a
GUID with the reparse tag. This reparse data buffer MUST be used only with reparse tag values
whose high bit is set to 0.

Reparse point GUIDs are assigned by the independent software vendor (ISV). An ISV MUST link

one GUID to each assigned reparse point tag and MUST always use that GUID with that tag.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReparseTag

ReparseDataLength Reserved

ReparseGuid (16 bytes)

...

...

DataBuffer (variable)

23 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner of the reparse point.

ReparseDataLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the

reparse data in the DataBuffer member.

Reserved (2 bytes): A 16-bit field. This field SHOULD be set to 0 by the client, and MUST be ignored
by the server.

ReparseGuid (16 bytes): A 16-byte GUID that uniquely identifies the owner of the reparse point.
Reparse point GUIDs are not assigned by Microsoft. A reparse point implementer MUST select one
GUID to be used with their assigned reparse point tag to uniquely identify that reparse point. For

more information, see [REPARSE].

DataBuffer (variable): The content of this buffer is opaque to the file system. On receipt, its content

MUST be preserved and properly returned to the caller.

2.1.2.4 Symbolic Link Reparse Data Buffer

The Symbolic Link Reparse Data Buffer data element is a subtype of REPARSE_DATA_BUFFER,
which contains information on symbolic link reparse points. This reparse data buffer MUST be used
only with reparse tag values whose high bit is set to 1.

A symbolic link has a substitute name and a print name associated with it. The substitute name is a
pathname (section 2.1.5) identifying the target of the symbolic link. The print name SHOULD be an
informative pathname, suitable for display to a user, that also identifies the target of the symbolic
link. Either pathname can contain dot directory names as specified in section 2.1.5.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReparseTag

ReparseDataLength Reserved

SubstituteNameOffset SubstituteNameLength

PrintNameOffset PrintNameLength

Flags

PathBuffer (variable)

...

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner (that is, the implementer of the filter driver associated with this
ReparseTag) of the reparse point. This value MUST be 0xA000000C.

ReparseDataLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the
reparse data that follows the common portion of the REPARSE_DATA_BUFFER element. This value

is the length of the data starting at the SubstituteNameOffset field (or the size of the
PathBuffer field, in bytes, plus 12).

https://go.microsoft.com/fwlink/?LinkId=90259

24 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Reserved (2 bytes): A 16-bit field. This field is not used. It SHOULD be set to 0 and MUST be
ignored.

SubstituteNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the
substitute name string in the PathBuffer array, computed as an offset from byte 0 of

PathBuffer. Note that this offset is divided by 2 to get the array index.

SubstituteNameLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of
the substitute name string. If this string is null-terminated, SubstituteNameLength does not
include the Unicode null character.

PrintNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the print
name string in the PathBuffer array, computed as an offset from byte 0 of PathBuffer. Note that
this offset is divided by 2 to get the array index.

PrintNameLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of the
print name string. If this string is null-terminated, PrintNameLength does not include the
Unicode null character.

Flags (4 bytes): A 32-bit field that specifies whether the substitute name is a full path name or a
path name relative to the directory containing the symbolic link.

This field contains one of the values in the following table.

Value Meaning

0x00000000 The substitute name is a full path name.

SYMLINK_FLAG_RELATIVE

0x00000001

The substitute name is a path name relative to the directory containing the symbolic
link.

PathBuffer (variable): Unicode character array that contains the substitute name string and print
name string. The substitute name and print name strings can appear in any order in the

PathBuffer. To locate the substitute name and print name strings in the PathBuffer, use the
SubstituteNameOffset, SubstituteNameLength, PrintNameOffset, and PrintNameLength
members.

2.1.2.5 Mount Point Reparse Data Buffer

The Mount Point Reparse Data Buffer data element is a subtype of REPARSE_DATA_BUFFER, which
contains information about mount point reparse points. This reparse data buffer MUST be used only
with reparse tag values whose high bit is set to 1.

A mount point has a substitute name and a print name associated with it. The substitute name is a
pathname (section 2.1.5) identifying the target of the mount point. The print name SHOULD be an
informative pathname, suitable for display to a user, that also identifies the target of the mount point.
Neither of these pathnames can contain dot directory names.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReparseTag

ReparseDataLength Reserved

SubstituteNameOffset SubstituteNameLength

25 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

PrintNameOffset PrintNameLength

PathBuffer (variable)

...

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner (that is, the implementer of the filter driver associated with this
ReparseTag) of the reparse point. This value MUST be 0xA0000003.

ReparseDataLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the
reparse data that follows the common portion of the REPARSE_DATA_BUFFER element. This value
is the length of the data starting at the SubstituteNameOffset field (or the size of the
PathBuffer field, in bytes, plus 8).

Reserved (2 bytes): A 16-bit field. This field is not used. It SHOULD be set to 0 and MUST be

ignored.

SubstituteNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the
substitute name string in the PathBuffer array, computed as an offset from byte 0 of
PathBuffer. Note that this offset is divided by 2 to get the array index.

SubstituteNameLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of
the substitute name string. If this string is null-terminated, SubstituteNameLength does not
include the Unicode null character.

PrintNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the print

name string in the PathBuffer array, computed as an offset from byte 0 of PathBuffer. Note that
this offset is divided by 2 to get the array index.

PrintNameLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of the
print name string. If this string is null-terminated, PrintNameLength does not include the

Unicode null character.

PathBuffer (variable): Unicode character array that contains the substitute name string and print
name string. The substitute name and print name strings can appear in any order in PathBuffer.

To locate the substitute name and print name strings in the PathBuffer field, use the
SubstituteNameOffset, SubstituteNameLength, PrintNameOffset, and PrintNameLength
members.

2.1.2.6 Network File System (NFS) Reparse Data Buffer

The Network File System Reparse Data Buffer data element is a subtype of
REPARSE_DATA_BUFFER, which contains information about symbolic files and devices created by the
Network File System client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReparseTag

ReparseDataLength Reserved

GenericReparseBuffer (variable)

26 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner (that is, the implementer of the filter driver associated with this
ReparseTag) of the reparse point. This value MUST be 0x80000014.

ReparseDataLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the
reparse data that follows the common portion of the REPARSE_DATA_BUFFER element. This value
is the length of the data starting at the GenericReparseBuffer field.

Reserved (2 bytes): A 16-bit field. This field is not used. It SHOULD be set to 0 and MUST be
ignored.

GenericReparseBuffer (variable): The data in this variable buffer takes the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type

...

DataBuffer (variable)

...

Type (8 bytes): A 64-bit unsigned integer value describing the type and format of the data stored in
the DataBuffer field. The valid values for this field are:

Value Meaning

NFS_SPECFILE_LNK

0x00000000014B4E4C

Indicates that the DataBuffer field has a Unicode string containing the symbolic
link data.

NFS_SPECFILE_CHR

0x0000000000524843

Indicates that the DataBuffer field has two 32–bit integers that contain the major
and minor device numbers for the character special device created by the Network
File System client.

NFS_SPECFILE_BLK

0x00000000004B4C42

Indicates that the DataBuffer field has two 32–bit integers that contain the major
and minor device numbers for the block special device created by the Network File
System client.

NFS_SPECFILE_FIFO

0x000000004F464946

Indicates that the file containing the NFS reparse point is a named pipe device
created by the Network File System client. The DataBuffer field is empty.

NFS_SPECFILE_SOCK

0x000000004B434F53

Indicates that the file containing the NFS reparse point is a socket device created
by the Network File System client. The DataBuffer field is empty.

DataBuffer (variable): A variable buffer that has the following formats depending upon the Type

field defined earlier.

 NFS_SPECFILE_CHR and NFS_SPECFILE_BLK: The DataBuffer field contains two 32-bit
integers that represent major and minor device numbers.

 NFS_SPECFILE_LNK: The DataBuffer field contains the symbolic link target path specified by
the Network File System client in its NFSPROC_SYMLINK request, [RFC1813] section 3.3.10 and

https://go.microsoft.com/fwlink/?LinkId=90294

27 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

[RFC1094] section 2.2.14, represented in Unicode format and not NULL-terminated. The upper
limit on the size of the symbolic link data is 2050 bytes.

 NFS_SPECFILE_FIFO and NFS_SPECFILE_SOCK: The DataBuffer field is empty.

2.1.3 FILE_OBJECTID_BUFFER Structure

The FILE_OBJECTID_BUFFER structure contains extended metadata for a file system object,
including its object ID. This data element MUST be in one of the following two formats:

 FILE_OBJECTID_BUFFER Type 1

 FILE_OBJECTID_BUFFER Type 2

2.1.3.1 FILE_OBJECTID_BUFFER Type 1

The first possible structure for the FILE_OBJECTID_BUFFER data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ObjectId (16 bytes)

...

...

BirthVolumeId (16 bytes)

...

...

BirthObjectId (16 bytes)

...

...

DomainId (16 bytes)

...

...

ObjectId (16 bytes): A 16-byte GUID that uniquely identifies the file or directory within the volume
on which it resides. Specifically, the same object ID can be assigned to another file or directory on
a different volume, but it MUST NOT be assigned to another file or directory on the same volume.

BirthVolumeId (16 bytes): A 16-byte GUID that uniquely identifies the volume on which the object
resided when the object identifier was created, or zero if the volume had no object identifier at
that time. After copy operations, move operations, or other file operations, this value is potentially
different from the object identifier of the volume on which the object presently resides.

https://go.microsoft.com/fwlink/?LinkId=90267

28 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

BirthObjectId (16 bytes): A 16-byte GUID value containing the object identifier of the object at the
time it was created. Copy operations, move operations, or other file operations MAY change the

value of the ObjectId member. Therefore, the BirthObjectId is potentially different from the
ObjectId member at present. Specifically, the same object ID MAY be assigned to another file or

directory on a different volume, but it MUST NOT be assigned to another file or directory on the
same volume. The object ID is assigned at file creation time.<5>

DomainId (16 bytes): A 16-byte GUID value containing the domain identifier. This value is unused;
it SHOULD be zero, and MUST be ignored.<6>

2.1.3.2 FILE_OBJECTID_BUFFER Type 2

The second possible structure for the FILE_OBJECTID_BUFFER data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ObjectId (16 bytes)

...

...

ExtendedInfo (48 bytes)

...

...

ObjectId (16 bytes): A 16-byte GUID that uniquely identifies the file or directory within the volume

on which it resides. Specifically, the same object ID can be assigned to another file or directory on
a different volume, but it MUST NOT be assigned to another file or directory on the same volume.

ExtendedInfo (48 bytes): A 48-byte value containing extended data that was set with the
FSCTL_SET_OBJECT_ID_EXTENDED request. This field contains application-specific data.<7>

2.1.4 Alternate Data Streams

A file system MAY<8> support alternate data streams within a file or a directory. For a general

description of file streams, section 1.1.

Every file has a default stream, which is the stream that is referenced when no stream name
component is specified as part of the pathname. A directory does not have a default data stream;
however, it can have named alternate data streams.

For more information on stream naming, see section 2.1.5; for more information on streams in

general, see section 5.

2.1.5 Pathname

A pathname has the following characteristics:

 A pathname MUST be no more than 32,760 characters in length.

 A pathname is composed of one or more pathname components separated by the "\" backslash

character. All pathname components other than the last pathname component denote directories

29 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

or reparse points. The last pathname component denotes a directory, a file, a stream, or a
reparse point.

 A leading "\" backslash character is optional, and determines whether a pathname is absolute or
relative:

 A pathname that begins with a leading "\" backslash character, for example, "\a\b\c", is an
absolute pathname. An absolute pathname SHOULD be evaluated relative to the root
directory.

 A pathname that omits a leading "\" backslash character, for example, "a\b\c", is a relative
pathname. A relative pathname MAY be evaluated relative to any directory, such as an
application's current working directory.

 Each pathname component has one of the following forms:

 A dot directory name as specified in section 2.1.5.1.

 A filename as specified in section 2.1.5.2, optionally followed by a ":" colon character and a
streamname as specified in section 2.1.5.3, optionally followed by a ":" colon character and a
streamtype as specified in section 2.1.5.4. The streamname, if specified, MAY be zero-length
only if streamtype is also specified; otherwise, it MUST be at least one character. The
streamtype, if specified, MUST be at least one character.

2.1.5.1 Dot Directory Names

The pathname components of "." (single period) and ".." (two periods) are reserved as dot directory
names.

Except where explicitly permitted, a pathname component that is a dot directory name MUST NOT be

sent over the wire.

When parsing pathname components, a dot directory name of "." refers to the current directory name
component and a dot directory name of ".." refers to the parent directory name of the current

directory name component.

Some examples to illustrate:

 In the pathname "dirA\.\dirB", the "." refers to dirA, so this expression is equivalent to "dirA\dirB".

 In the pathname "dirA\dirB\..\dirC", the ".." refers to dirA, so this expression is equivalent to
"dirA\dirC".

A dot directory name of ".." at the root of a share MUST be treated as equivalent to ".". For example:
\\ServerX\ShareY\..\dirA is equivalent to \\ServerX\ShareY\.\dirA (which is equivalent to
\\ServerX\ShareY\dirA).

2.1.5.2 Filename

 All Unicode characters are legal in a filename except the following:

 The characters

 " \ / : | < > * ?

 Control characters, ranging from 0x00 through 0x1F.

 A filename MUST be at least one character but no more than 255 characters in length.

30 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.1.5.2.1 8.3 Filename

An 8.3 filename (also referred to as a DOS name, a short name, or an 8.3-compliant filename) is a
filename that conforms to the following restrictions:

 An 8.3 filename MUST only contain characters that can be represented in ASCII, in the range
below 0x80.

 An 8.3 filename MUST NOT contain the " " space character.

 An 8.3 filename MUST NOT contain more than one "." period character.

 The general form of a valid 8.3 filename is a base filename, optionally followed by the "." period
character and a filename extension.

 The base filename MUST be 1-8 characters in length and MUST NOT contain a "." period

character.

 The filename extension, if present, MUST be 1-3 characters in length and MUST NOT contain a
"." period character.

2.1.5.3 Streamname

 All Unicode characters are legal in a streamname component except the following:

 The characters \ / :

 Control character 0x00.

 A streamname MUST be no more than 255 characters in length.

 A zero-length streamname denotes the default stream.

See section 5 for additional information on alternate streams in the NTFS file system.

2.1.5.4 Streamtype

 All Unicode characters are legal in a streamtype component except the following:

 The characters \ / :

 Control character 0x00.

2.1.6 Share name

A share name has the following characteristics:

 A share name MUST be no more than 80 characters in length.

 The following characters are illegal in a share name:

 " \ / [] : | < > + = ; , * ?

 Control characters in range 0x00 through 0x1F, inclusive, are illegal in a share name.

 All other Unicode characters are legal.

31 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.1.7 FILE_NAME_INFORMATION

The FILE_NAME_INFORMATION data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileNameLength

FileName (variable)

...

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file
name contained within the FileName field.

FileName (variable): A sequence of Unicode characters containing a pathname (section 2.1.5). The
meaning of the pathname depends on the operation. The name string is not null-terminated.
There are scenarios where one or more padding characters can be at the end of the string due to
buffer alignment requirements, but their presence and their values MUST NOT be relied upon.
When working with this field, use FileNameLength to determine the length of the file name

rather than assuming the presence of a trailing null delimiter.

2.1.8 Boolean

A Boolean data type is a primitive that has one of two possible values: TRUE and FALSE, which are

defined as follows:

TRUE: A sender MUST use any nonzero value to denote a TRUE. A receiver MUST interpret any
nonzero value as TRUE.<9>

FALSE: A sender MUST use a zero value to denote a FALSE. A receiver MUST interpret a zero value

as FALSE.

2.1.9 64-bit file ID

A 64-bit file ID value uniquely identifies a file within a given volume. This identifier is generated and
stored by the file system. The identifier SHOULD<10> be unique to the volume and stable until the
file is deleted.

For file systems that do not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored.

For files for which a unique 64-bit file ID cannot be established, this field MUST be set to
0xFFFFFFFFFFFFFFFF, and MUST be ignored.

2.1.10 128-bit file ID

A 128-bit file ID value uniquely identifies a file within a given volume. This identifier is generated

and stored by the file system. The identifier SHOULD<11> be unique to the volume and stable until
the file is deleted.

For file systems that do not support a 128-bit file ID, this field MUST be set to 0, and MUST be
ignored.

For files for which a unique 128-bit file ID cannot be established, this field MUST be set to
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, and MUST be ignored.

32 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.1.11 STORAGE_OFFLOAD_TOKEN

The STORAGE_OFFLOAD_TOKEN structure contains the Token to be used as a representation of
the data contained within the portion of the file specified in the FSCTL_OFFLOAD_READ_INPUT data

element at the time of the FSCTL_OFFLOAD_READ operation. This Token is used in
FSCTL_OFFLOAD_READ and FSCTL_OFFLOAD_WRITE operations. The format of the data within this
field is either vendor-specific or of a well-known type. The contents of this field MUST NOT be modified
during subsequent operations.<12>

The TokenType and TokenIdLength fields of STORAGE_OFFLOAD_TOKEN structure MUST be
sent in big-endian format. The TokenId field is a stream of bytes and has no endian property.

The STORAGE_OFFLOAD_TOKEN structure is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TokenType

Reserved TokenIdLength

TokenId (504 bytes)

...

...

TokenType (4 bytes): A 32-bit unsigned integer that defines the type of Token that is contained
within the STORAGE_OFFLOAD_TOKEN structure. This field MUST contain one of the following
values.

Value Meaning

STORAGE_OFFLOAD_TOKEN_TYPE_ZERO_DATA

0xFFFF0001

A well-known Token that indicates that the data logically
represented by the Token is logically equivalent to
zero.<13>

Reserved

0xFFFF0002 – 0xFFFFFFFF

Reserved for other well-known Tokens currently
undefined.

Any other value.

A vendor-specific Token format is contained within the
Token field.

Reserved (2 bytes): A 16-bit unsigned integer that is reserved. This field SHOULD be set to 0x0000
and MUST be ignored.

TokenIdLength (2 bytes): A 16-bit unsigned integer that defines the length of the TokenId field in

bytes.

TokenId (504 bytes): A 504-byte unsigned integer that contains opaque vendor-specific data.

2.2 Status Codes

This specification uses NTSTATUS status codes, as specified in [MS-ERREF] section 2.3. The format of
a status code MUST be as specified in [MS-ERREF].

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

33 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

The reply message lists the common error codes that are directly generated by the function. Error
codes can also be generated by code below the file system (such as RAID drivers or disk drivers) or

above the file system (such as virus scanners).

A server SHOULD return a status of STATUS_INVALID_DEVICE_REQUEST when a message is not

supported remotely or is not supported on the file system on which the file or directory handle
specified exists.<14><15>

STATUS_BUFFER_OVERFLOW is a warning code and not an error code. This warning means that the
given output buffer is not large enough to contain all of the requested information. Unless otherwise
noted, a given operation SHOULD attempt to return as much data as it reasonably can.

2.3 FSCTL Structures

A process invokes an FSCTL on a handle to perform an action against the file or directory associated
with the handle. When a server receives an FSCTL request, it SHOULD use the information in the
request, which includes a handle and, optionally, an input data buffer, to perform the requested

action. How a server performs the action requested by an FSCTL is implementation-dependent.<16>

The following table specifies the system defined generic FSCTLs that are permitted to be invoked
across the network. Generic FSCTLs are used by the local file systems or by multiple components
within the system. Any application, service, or driver can define private FSCTLs. Most private FSCTLs
are used locally in the internal driver stacks and do not flow over the wire. However, if a component
allows its private FSCTLs to flow over the wire, that component is responsible for ensuring the FSCTLs
and associated data structures are documented. Examples of such private FSCTLs can be found in
[MS-SMB2] and [MS-DFSC].

FSCTL name FSCTL function number

FSCTL_CREATE_OR_GET_OBJECT_ID 0X900C0

FSCTL_DELETE_OBJECT_ID 0X900A0

FSCTL_DELETE_REPARSE_POINT 0X900AC

FSCTL_DUPLICATE_EXTENTS_TO_FILE 0X98344

FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX 0x983E8

FSCTL_FILESYSTEM_GET_STATISTICS 0X90060

FSCTL_FILE_LEVEL_TRIM 0X98208

FSCTL_FIND_FILES_BY_SID 0X9008F

FSCTL_GET_COMPRESSION 0X9003C

FSCTL_GET_INTEGRITY_INFORMATION 0X9027C

FSCTL_GET_NTFS_VOLUME_DATA 0X90064

FSCTL_GET_REFS_VOLUME_DATA 0X902D8

FSCTL_GET_OBJECT_ID 0X9009C

FSCTL_GET_REPARSE_POINT 0X900A8

FSCTL_GET_RETRIEVAL_POINTER_COUNT 0x9042B

FSCTL_GET_RETRIEVAL_POINTERS 0X90073

FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT 0x903D3

%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-DFSC%5d.pdf#Section_3109f4be2dbb42c99b8e0b34f7a2135e

34 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

FSCTL name FSCTL function number

FSCTL_IS_PATHNAME_VALID 0X9002C

FSCTL_LMR_SET_LINK_TRACKING_INFORMATION 0X1400EC

FSCTL_MARK_HANDLE 0x900FC

FSCTL_OFFLOAD_READ 0X94264

FSCTL_OFFLOAD_WRITE 0X98268

FSCTL_PIPE_PEEK 0X11400C

FSCTL_PIPE_TRANSCEIVE 0X11C017

FSCTL_PIPE_WAIT 0X110018

FSCTL_QUERY_ALLOCATED_RANGES 0X940CF

FSCTL_QUERY_FAT_BPB 0X90058

FSCTL_QUERY_FILE_REGIONS 0X90284

FSCTL_QUERY_ON_DISK_VOLUME_INFO 0X9013C

FSCTL_QUERY_SPARING_INFO 0X90138

FSCTL_READ_FILE_USN_DATA 0X900EB

FSCTL_RECALL_FILE 0X90117

FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT 0x90440

FSCTL_SET_COMPRESSION 0X9C040

FSCTL_SET_DEFECT_MANAGEMENT 0X98134

FSCTL_SET_ENCRYPTION 0X900D7

FSCTL_SET_INTEGRITY_INFORMATION 0X9C280

FSCTL_SET_INTEGRITY_INFORMATION_EX 0x90380

FSCTL_SET_OBJECT_ID 0X90098

FSCTL_SET_OBJECT_ID_EXTENDED 0X900BC

FSCTL_SET_REPARSE_POINT 0X900A4

FSCTL_SET_SPARSE 0X900C4

FSCTL_SET_ZERO_DATA 0X980C8

FSCTL_SET_ZERO_ON_DEALLOCATION 0X90194

FSCTL_SIS_COPYFILE 0X90100

FSCTL_WRITE_USN_CLOSE_RECORD 0X900EF

35 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.1 FSCTL_CREATE_OR_GET_OBJECT_ID Request

This message requests that the server return the object identifier for the file or directory associated
with the handle on which this FSCTL was invoked. If no object identifier exists, the server MUST

create one.

This message does not contain any additional data elements.

2.3.2 FSCTL_CREATE_OR_GET_OBJECT_ID Reply

This message returns the results of the FSCTL_CREATE_OR_GET_OBJECT_ID request in a

FILE_OBJECTID_BUFFER (section 2.1.3).

The buffer can be either Type 1 or Type 2 as follows:

 If neither FSCTL_SET_OBJECT_ID_EXTENDED nor FSCTL_SET_OBJECT_ID has been previously
issued on the file, then the buffer is of Type 1 and contains implementation-generated values as

specified in section 2.1.3.1.

 If FSCTL_SET_OBJECT_ID was used to set the object ID, then the buffer is of the type that was

used during that FSCTL_SET_OBJECT_ID call.

 If FSCTL_SET_OBJECT_ID_EXTENDED was issued to change the object ID's extended information,
then the buffer is of Type 2.

There is no way for the issuer of this FSCTL to determine the returned buffer type without knowing
whether the object ID was previously set or modified and by what means
(FSCTL_SET_OBJECT_ID_EXTENDED or FSCTL_SET_OBJECT_ID).

This message also returns a status code as specified in section 2.2. Upon success, the status code

returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error
codes are listed in the following table.

 Error code Meaning

STATUS_DUPLICATE_NAME

0xC00000BD

The file has no object ID yet, and the file system is unable to generate a

unique ID (to this volume).<17>

STATUS_INVALID_PARAMETER

0xC000000D

The handle is not to a file or directory, or the output buffer is not large
enough to contain a FILE_OBJECTID_BUFFER structure.

STATUS_MEDIA_WRITE_PROTECTED

0xC00000A2

The volume is write-protected and changes to it cannot be made. This
error code is returned even if the file already has an object ID assigned to
it.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The file system does not support the use of object IDs.

2.3.3 FSCTL_DELETE_OBJECT_ID Request

This message requests that the server remove the object identifier from the file or directory
associated with the handle on which this FSCTL was invoked. The underlying object MUST NOT be
deleted. If the file or directory has no object identifier, the request MUST be considered successful.

This message does not contain any additional data elements.

36 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.4 FSCTL_DELETE_OBJECT_ID Reply

This message returns the results of the FSCTL_DELETE_OBJECT_ID request.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,

the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most
common error codes are listed in the following table.

 Error code Meaning

STATUS_ACCESS_DENIED

0xC0000022

The handle was not opened with write access or write attributes access.

STATUS_OBJECT_NAME_NOT_FOUND

0xC0000034

The file or directory has no object ID. This status is not returned on a
healthy volume but can be returned if the volume is corrupt.

STATUS_MEDIA_WRITE_PROTECTED

0xC00000A2

The volume is write-protected and changes to it cannot be made.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The file system does not support the use of object IDs.

2.3.5 FSCTL_DELETE_REPARSE_POINT Request

This message requests that the server delete the reparse point from the file or directory associated
with the handle on which this FSCTL was invoked. The underlying file or directory MUST NOT be
deleted.

The message MUST contain a REPARSE_GUID_DATA_BUFFER or a REPARSE_DATA_BUFFER data
element (including subtypes). Both the REPARSE_GUID_DATA_BUFFER and the

REPARSE_DATA_BUFFER structures begin with a ReparseTag field. The ReparseTag value uniquely

identifies the filter driver that creates/uses the reparse point, and the application's filter driver
processes the reparse point data as either a REPARSE_GUID_DATA_BUFFER or a
REPARSE_DATA_BUFFER, depending on the structure implemented by the filter driver for that type of
reparse point.

This message MUST only be sent for a file or directory handle.

2.3.6 FSCTL_DELETE_REPARSE_POINT Reply

This message returns the result of the FSCTL_DELETE_REPARSE_POINT request.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most
common error codes are listed in the following table.

 Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

A nonzero value was passed for the output buffer's length, or the
handle is not to a file or directory.

STATUS_ACCESS_DENIED

0xC0000022

The handle was not opened to write file data or file attributes.

STATUS_IO_REPARSE_DATA_INVALID The input buffer's length is neither the size of a
REPARSE_DATA_BUFFER nor a REPARSE_GUID_DATA_BUFFER; or

37 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

 Error code Meaning

0xC0000278 the reparse data length is nonzero; or the reparse tag is a third
party reparse tag, and the length is other than the size of
REPARSE_GUID_DATA_BUFFER.

STATUS_IO_REPARSE_TAG_INVALID

0xC0000276

The specified reparse tag with a value of 0 or 1 is reserved for use
by the system and cannot be deleted.

STATUS_NOT_A_REPARSE_POINT

0xC0000275

The file or directory does not have a reparse point.

STATUS_IO_REPARSE_TAG_MISMATCH

0xC0000277

The file or directory has a reparse point but not one with the reparse
tag that was specified in this call.

STATUS_REPARSE_ATTRIBUTE_CONFLICT

0xC00002B2

The file or directory has a third party tag, and the Reparse GUID
provided does not match the one in the reparse point for this file or
directory.

2.3.7 FSCTL_DUPLICATE_EXTENTS_TO_FILE Request

The FSCTL_DUPLICATE_EXTENTS_TO_FILE<18> request message requests that the server copy the
specified portion of one file (that is the source file) into a specified portion of another file (target file)

on the same volume. The logical sizes of the portions have to be the same. The two files involved in
this operation can refer to the same file, but in that case, the logical portions have to refer to disjoint
regions on the file. The FSCTL is sent on a handle opened to the target file.

When used locally, the request message takes the form of DUPLICATE_EXTENTS_DATA as specified in
section 2.3.7.1. When used remotely with [MS-SMB2], the request message takes the form of
SMB2_DUPLICATE_EXTENTS_DATA as specified in section 2.3.7.2.

2.3.7.1 DUPLICATE_EXTENTS_DATA

A DUPLICATE_EXTENTS_DATA data element is defined as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileHandle

...

SourceFileOffset

...

TargetFileOffset

...

ByteCount

...

%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

38 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

FileHandle (8 bytes): A HANDLE ([MS-DTYP] section 2.2.16) data type that is an identifier of the
open to the source file.

SourceFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the
start of a range of bytes in a source file from which the data is to be copied. The value of this field

MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster
boundary.

TargetFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start
of a range of bytes in a target file to which the data is to be copied. The value of this field MUST
be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster
boundary.

ByteCount (8 bytes): A 64-bit signed integer that contains the number of bytes to copy from source

to target. The value of this field MUST be greater than or equal to 0x0000000000000000 and
MUST be aligned to a logical cluster boundary.

2.3.7.2 SMB2_DUPLICATE_EXTENTS_DATA

A SMB2_DUPLICATE_EXTENTS_DATA data element is defined as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SourceFileID

...

...

...

SourceFileOffset

...

TargetFileOffset

...

ByteCount

...

SourceFileID (16 bytes): An SMB2_FILEID structure, as specified in [MS-SMB2] section 2.2.14.1,

that is an identifier of the open to the source file.

SourceFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the
start of a range of bytes in a source file from which the data is to be copied. The value of this field
MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster

boundary.

TargetFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start
of a range of bytes in a target file to which the data is to be copied. The value of this field MUST

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

39 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster
boundary.

ByteCount (8 bytes): A 64-bit signed integer that contains the number of bytes to copy from source
to target. The value of this field MUST be greater than or equal to 0x0000000000000000 and

MUST be aligned to a logical cluster boundary.

2.3.8 FSCTL_DUPLICATE_EXTENTS_TO_FILE Reply

This message returns the result of the FSCTL_DUPLICATE_EXTENTS_TO_FILE<19> request.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned by the function that processes this FSCTL SHOULD<20> be
STATUS_SUCCESS. The most common error codes are listed in the following table.

Error Code Meaning

STATUS_NOT_SUPPORTED

0xC00000BB
 The source and target destination ranges overlap on the same file.

 Source file is sparse, while target is a non-sparse file.

 The source range is beyond the source file's allocation size.

STATUS_INVALID_PARAMETER

0xC000000D

The FileHandle parameter is either invalid or does not represent a handle
to an opened file on the same volume.

STATUS_INSUFFICIENT_RESOURCES

0xC000009A

There were insufficient resources to complete the operation.

STATUS_DISK_FULL

0xC000007F

The disk is full.

STATUS_MEDIA_WRITE_PROTECTED

0xC00000A2

The volume is read-only.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The file system does not support duplicating extents.

2.3.9 FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX Request

The FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX<21> request message requests that the server copy
the specified portion of the source file into a specified portion of the target file on the same volume.
The logical sizes of the portions MUST be the same. The two files involved in this operation can refer
to the same file but the logical portions have to refer to disjoint regions on the file. The FSCTL is sent
on a handle opened to the target file. When the DUPLICATE_EXTENTS_DATA_EX_SOURCE_ATOMIC

flag isn’t set, the behavior is identical to FSCTL_DUPLICATE_EXTENTS_TO_FILE. When the flag is set,
duplication is atomic from the source's point of view. It means duplication fully succeeds or fails

without side effect (when only part of source file region is duplicated).

When used locally, the request message takes the form of DUPLICATE_EXTENTS_DATA_EX as
specified in section 2.3.9.1. When used remotely with [MS-SMB2], the request message takes the
form of SMB2_DUPLICATE_EXTENTS_DATA_EX as specified in section 2.3.9.2.

%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

40 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.9.1 DUPLICATE_EXTENTS_DATA_EX

A DUPLICATE_EXTENTS_DATA_EX data element is defined as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize

…

FileHandle

...

SourceFileOffset

...

TargetFileOffset

...

ByteCount

...

Flags

StructureSize (8 bytes): A SIZE_T [MS-DTYP] section 2.2.43) data type that specifies the size of
the structure, in bytes.

FileHandle (8 bytes): A HANDLE ([MS-DTYP] section 2.2.16) data type that is an identifier of the
open to the source file.

SourceFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the
start of a range of bytes in a source file from which the data is to be copied. The value of this field
MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster

boundary.

TargetFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start
of a range of bytes in a target file to which the data is to be copied. The value of this field MUST
be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster
boundary.

ByteCount (8 bytes): A 64-bit signed integer that contains the number of bytes to copy from source

to target. The value of this field MUST be greater than or equal to 0x0000000000000000 and
MUST be aligned to a logical cluster boundary.

Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values.
Flag values not specified in the following table SHOULD be set to 0 and MUST be ignored.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

41 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

DUPLICATE_EXTENTS_DATA_EX_SOURCE_ATOMIC

0x00000001

Indicates that duplication is atomic from source
point of view.

2.3.9.2 SMB2_DUPLICATE_EXTENTS_DATA_EX

A SMB2_DUPLICATE_EXTENTS_DATA_EX data element is defined as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize

…

SourceFileID

...

...

...

SourceFileOffset

...

TargetFileOffset

...

ByteCount

...

Flags

Reserved

StructureSize (8 bytes): A 64-bit unsigned integer value that specifies the size of the structure, in
bytes. This field MUST be set to 0x30.

SourceFileID (16 bytes): An SMB2_FILEID structure, as specified in [MS-SMB2] section 2.2.14.1,
that is an identifier of the open to the source file.

SourceFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the
start of a range of bytes in a source file from which the data is to be copied. The value of this field

%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

42 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster
boundary.

TargetFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start
of a range of bytes in a target file to which the data is to be copied. The value of this field MUST

be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster
boundary.

ByteCount (8 bytes): A 64-bit signed integer that contains the number of bytes to copy from source
to target. The value of this field MUST be greater than or equal to 0x0000000000000000 and
MUST be aligned to a logical cluster boundary.

Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values.
Flag values not specified in the following table SHOULD be set to 0 and MUST be ignored.

Value Meaning

DUPLICATE_EXTENTS_DATA_EX_SOURCE_ATOMIC

0x00000001

Indicates that duplication is atomic from source
point of view.

Reserved (4 bytes): This field SHOULD be set to zero and MUST be ignored.

2.3.10 FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX Reply

This message returns the result of the FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX request<22>.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,

the status code returned by the function that processes this FSCTL SHOULD be STATUS_SUCCESS.
The most common error codes are listed in the following table.

Error Code Meaning

STATUS_NOT_SUPPORTED

0xC00000BB
 The source and target destination ranges overlap

on the same file.

 Source file is sparse, while target is a non-sparse
file.

 The source range is beyond the source file's
allocation size.

STATUS_INVALID_PARAMETER

0xC000000D

The FileHandle parameter is either invalid or does not
represent a handle to an opened file on the same
volume.

STATUS_INSUFFICIENT_RESOURCES

0xC000009A

There were insufficient resources to complete the
operation.

STATUS_DISK_FULL

0xC000007F

The disk is full.

STATUS_MEDIA_WRITE_PROTECTED

0xC00000A2

The volume is read-only.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The file system does not support duplicating extents.

43 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.11 FSCTL_FILESYSTEM_GET_STATISTICS Request

This message requests that the server return the statistical information of the file system such as
Type, Version, and so on, as specified in FSCTL_FILESYSTEM_GET_STATISTICS reply, for the file or

directory associated with the handle on which this FSCTL was invoked.<23>

This message does not contain any additional data elements.

2.3.12 FSCTL_FILESYSTEM_GET_STATISTICS Reply

This message returns the result of the FSCTL_FILESYSTEM_GET_STATISTICS request message as a

pair of structures: a generic structure, FILESYSTEM_STATISTICS, optionally followed by a file system
type specific structure that can be either NTFS_STATISTICS, FAT_STATISTICS, or EXFAT_STATISTICS,
depending on the underlying file system type. There is one pair of these structures for each
processor.<24>

These statistics contain information about both user and metadata files. User files are available for the

user. Metadata files are system files that contain information that the file system uses for its internal

organization.

The statistics structures contain fields that can overflow during the server's lifetime. This is by design.
When an overflow occurs, the value just wraps. For example, 0XFFFFF000 + 0x2000 will result in
0x1000.

The structures within the output buffer MUST all start on 64-byte boundaries. The final output MUST
be padded to a 64-byte boundary. Any padding bytes MUST be filled with zeros.

This message also returns a status code as specified in section 2.2. Upon success, the status code

returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error
codes are listed in the following table.

Error code Meaning

STATUS_BUFFER_TOO_SMALL

0xC0000023

The output buffer is too small to contain a FILESYSTEM_STATISTICS structure.

STATUS_BUFFER_OVERFLOW

0x80000005

The output buffer was filled before all the statistics data could be returned.

2.3.12.1 FILESYSTEM_STATISTICS

The FILESYSTEM_STATISTICS data element is returned with a
FSCTL_FILESYSTEM_GET_STATISTICS reply message. It contains the generic information for the
message.

The FILESYSTEM_STATISTICS data element is as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileSystemType Version

SizeOfCompleteStructure

44 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

UserFileReads

UserFileReadBytes

UserDiskReads

UserFileWrites

UserFileWriteBytes

UserDiskWrites

MetaDataReads

MetaDataReadBytes

MetaDataDiskReads

MetaDataWrites

MetaDataWriteBytes

MetaDataDiskWrites

FileSystemType (2 bytes): A 16-bit unsigned integer value containing the type of file system. This
field MUST contain one of the following values.

Value Meaning

FILESYSTEM_STATISTICS_TYPE_NTFS

0x0001

The file system is an NTFS file system. If this value is set, this
structure is followed by an NTFS_STATISTICS structure.

FILESYSTEM_STATISTICS_TYPE_FAT

0x0002

The file system is a FAT file system. If this value is set, this
structure is followed by a FAT_STATISTICS structure.

FILESYSTEM_STATISTICS_TYPE_EXFAT

0x0003

The file system is an exFAT file system. If this value is set, this
structure is followed by an EXFAT_STATISTICS structure.

FILESYSTEM_STATISTICS_TYPE_REFS

0x0004

The file system is an ReFS file system. If this value is set, this
structure is not followed by a structure specific to file system type.

Version (2 bytes): A 16-bit unsigned integer value containing the version. This field MUST be set to

the value 0x0001.

SizeOfCompleteStructure (4 bytes): A 32-bit unsigned integer value that indicates the size, in
bytes, of this structure plus the size of the file system-specific structure that follows this structure,
each rounded up to a multiple of 64, then the sum is multiplied by the number of processors. For
example, if the size of FILESYSTEM_STATISTICS is 0x38, the size of NTFS_STATISTICS is
0XD4, and there are two processors, the size of the buffer allocated is 0x280. This is the sum of

the sizes of the NTFS_STATISTICS structure and the FILESYSTEM_STATISTICS structure,
both rounded up to a multiple of 64 (0x40 + 0x100 = 0x140) and multiplied by the number of
processors.

45 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

UserFileReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations
on user files.

UserFileReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read
from user files.

UserDiskReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations
on user files that went to the disk rather than the cache. This value includes sub-read operations.

UserFileWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations
on user files.

UserFileWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to user files.

UserDiskWrites (4 bytes): A 32-bit unsigned integer value containing the number of write

operations on user files that went to disk rather than the cache. This value includes sub-write
operations.

MetaDataReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations on metadata files.

MetaDataReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
read from metadata files.

MetaDataDiskReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations on metadata files. This value includes sub-read operations.

MetaDataWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations on metadata files.

MetaDataWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to metadata files.

MetaDataDiskWrites (4 bytes): A 32-bit unsigned integer value containing the number of write

operations on metadata files. This value includes sub-write operations.

2.3.12.2 NTFS_STATISTICS

The NTFS_STATISTICS data element is returned with a FSCTL_FILESYSTEM_GET_STATISTICS reply

message when NTFS file system statistics are requested.

The NTFS_STATISTICS data element is as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LogFileFullExceptions

OtherExceptions

MftReads

MftReadBytes

MftWrites

46 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

MftWriteBytes

MftWritesUserLevel

...

MftWritesFlushForLogFileFull MftWritesLazyWriter

MftWritesUserRequest Padding1

Mft2Writes

Mft2WriteBytes

Mft2WritesUserLevel

...

Mft2WritesFlushForLogFileFull Mft2WritesLazyWriter

Mft2WritesUserRequest Padding2

RootIndexReads

RootIndexReadBytes

RootIndexWrites

RootIndexWriteBytes

BitmapReads

BitmapReadBytes

BitmapWrites

BitmapWriteBytes

BitmapWritesFlushForLogFileFull BitmapWritesLazyWriter

BitmapWritesUserRequest BitmapWritesUserLevel

...

MftBitmapReads

MftBitmapReadBytes

MftBitmapWrites

47 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

MftBitmapWriteBytes

MftBitmapWritesFlushForLogFileFull MftBitmapWritesLazyWriter

MftBitmapWritesUserRequest MftBitmapWritesUserLevel

...

... Padding3

UserIndexReads

UserIndexReadBytes

UserIndexWrites

UserIndexWriteBytes

LogFileReads

LogFileReadBytes

LogFileWrites

LogFileWriteBytes

Allocate (40 bytes)

...

...

LogFileFullExceptions (4 bytes): A 32-bit unsigned integer value containing the number of
exceptions generated due to the log file being full.

OtherExceptions (4 bytes): A 32-bit unsigned integer value containing the number of other

exceptions generated.

MftReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations on
the Master File Table (MFT).

MftReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read from
the MFT.

MftWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations on

the MFT.

MftWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written to
the MFT.

MftWritesUserLevel (8 bytes): An MftWritesUserLevel structure containing statistics about writes
resulting from certain user-level operations.

48 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

MftWritesFlushForLogFileFull (2 bytes): A 16-bit unsigned integer containing the number of
flushes of the MFT performed because the log file was full.

MftWritesLazyWriter (2 bytes): A 16-bit unsigned integer containing the number of MFT write
operations performed by the lazy writer thread.

MftWritesUserRequest (2 bytes): A 16-bit unsigned integer that is the sum of the four fields in the
MftWritesUserLevel structure.

Padding1 (2 bytes): Unused. This field SHOULD be set to 0 and MUST be ignored.

Mft2Writes (4 bytes): A 32-bit unsigned integer value containing the number of write operations on
the master file table mirror (MFT2).

Mft2WriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written
to the MFT2.

Mft2WritesUserLevel (8 bytes): An MftWritesUserLevel structure containing statistics about writes

resulting from certain user-level operations.

Mft2WritesFlushForLogFileFull (2 bytes): A 16-bit unsigned integer containing the number of
flushes of the MFT2 performed because the log file was full.

Mft2WritesLazyWriter (2 bytes): A 16-bit unsigned integer containing the number of MFT2 write
operations performed by the lazy writer thread.

Mft2WritesUserRequest (2 bytes): A 16-bit unsigned integer that contains the sum of the four
fields in the Mft2WritesUserLevel structure.

Padding2 (2 bytes): Unused. This field SHOULD be set to 0 and MUST be ignored.

RootIndexReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations on the root index.

RootIndexReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes

read from the root index.

RootIndexWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations on the root index.

RootIndexWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to the root index.

BitmapReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations
on the cluster allocation bitmap.

BitmapReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read

from the cluster allocation bitmap.

BitmapWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations
on the cluster allocation bitmap. This is the sum of the BitmapWritesFlushForLogFileFull,

BitmapWritesLazyWriter and BitmapWritesUserRequest fields.

BitmapWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to the cluster allocation bitmap.

BitmapWritesFlushForLogFileFull (2 bytes): A 16-bit unsigned integer containing the number of
flushes of the bitmap performed because the log file was full.

BitmapWritesLazyWriter (2 bytes): A 16-bit unsigned integer containing the number of bitmap
write operations performed by the lazy writer thread.

49 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

BitmapWritesUserRequest (2 bytes): A 16-bit unsigned integer that is the sum of the fields in the
BitmapWritesUserLevel structure.

BitmapWritesUserLevel (6 bytes): A BitmapWritesUserLevel structure containing statistics about
bitmap writes resulting from certain user-level operations.

MftBitmapReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations on the MFT bitmap.

MftBitmapReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
read from the MFT bitmap.

MftBitmapWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations on the MFT bitmap. This value is the sum of the
MftBitmapWritesFlushForLogFileFull, MftBitmapWritesLazyWriter and

MftBitmapWritesUserRequest fields.

MftBitmapWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes

written to the MFT bitmap.

MftBitmapWritesFlushForLogFileFull (2 bytes): A 16-bit unsigned integer containing the number
of flushes of the MFT bitmap performed because the log file was full.

MftBitmapWritesLazyWriter (2 bytes): A 16-bit unsigned integer value containing the number of

MFT bitmap write operations performed by the lazy writer thread.

MftBitmapWritesUserRequest (2 bytes): A 16-bit unsigned integer that is the sum of all the fields
in the MftBitmapWritesUserLevel structure.

MftBitmapWritesUserLevel (8 bytes): An MftBitmapWritesUserLevel structure containing statistics
about MFT bitmap writes resulting from certain user-level operations.

Padding3 (2 bytes): Unused. This field SHOULD be set to 0 and MUST be ignored.

UserIndexReads (4 bytes): A 32-bit unsigned integer value containing the number of read

operations on the user index.

UserIndexReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
read from user indices.

UserIndexWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations on user indices.

UserIndexWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to user indices.

LogFileReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations
on the log file.

LogFileReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read
from the log file.

LogFileWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations
on the log file.

LogFileWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to the log file.

Allocate (40 bytes): An Allocate structure describes cluster allocation patterns in NTFS.

2.3.12.2.1 MftWritesUserLevel

50 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

The MftWritesUserLevel structure contains statistics about writes resulting from certain user-level
operations.

The MftWritesUserLevel structure is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Write Create

SetInfo Flush

Write (2 bytes): A 16-bit unsigned integer containing the number of MFT writes due to a write
operation.

Create (2 bytes): A 16-bit unsigned integer containing the number of MFT writes due to a create
operation.

SetInfo (2 bytes): A 16-bit unsigned integer containing the number of MFT writes due to a set file
information operation.

Flush (2 bytes): A 16-bit unsigned integer containing the number of MFT writes due to a flush
operation.

2.3.12.2.2 Mft2WritesUserLevel

The Mft2WritesUserLevel structure contains statistics about writes resulting from certain user-level
operations.

The Mft2WritesUserLevel structure is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Write Create

SetInfo Flush

Write (2 bytes): A 16-bit unsigned integer containing the number of MFT2 writes due to a write
operation.

Create (2 bytes): A 16-bit unsigned integer containing the number of MFT2 writes due to a create
operation.

SetInfo (2 bytes): A16-bit unsigned integer containing the number of MFT2 writes due to a set file
information operation.

Flush (2 bytes): A 16-bit unsigned integer containing the number of MFT2 writes due to a flush
operation.

2.3.12.2.3 BitmapWritesUserLevel

The BitmapWritesUserLevel structure contains statistics about bitmap writes resulting from certain
user-level operations.

The BitmapWritesUserLevel structure is as follows.

51 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Write Create

SetInfo

Write (2 bytes): A 16-bit unsigned integer containing the number of bitmap writes due to a write
operation.

Create (2 bytes): A 16-bit unsigned integer containing the number of bitmap writes due to a create

operation.

SetInfo (2 bytes): A 16-bit unsigned integer containing the number of bitmap writes due to a set file
information operation.

2.3.12.2.4 MftBitmapWritesUserLevel

The MftBitmapWritesUserLevel structure contains statistics about MFT bitmap write operations
resulting from certain user-level operations.

The MftBitmapWritesUserLevel structure is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Write Create

SetInfo Flush

Write (2 bytes): A 16-bit unsigned integer containing the number of MFT bitmap write operations

due to a write operation.

Create (2 bytes): A 16-bit unsigned integer containing the number of MFT bitmap write operations
due to a create operation.

SetInfo (2 bytes): A 16-bit unsigned integer containing the number of MFT bitmap write operations
due to a set file information operation.

Flush (2 bytes): A 16-bit unsigned integer containing the number of MFT bitmap write operations
due to a flush operation.

2.3.12.2.5 Allocate

The Allocate structure describes cluster allocation patterns in NTFS. The cache refers to in-memory

structures that allow quick lookups of free cluster runs either by logical cluster number (LCN) or by
run length.

The Allocate structure is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Calls

Clusters

52 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Hints

RunsReturned

HintsHonored

HintsClusters

Cache

CacheClusters

CacheMiss

CacheMissClusters

Calls (4 bytes): A 32-bit unsigned integer value containing the number of individual calls to allocate
clusters.

Clusters (4 bytes): A 32-bit unsigned integer value containing the number of clusters allocated.

Hints (4 bytes): A 32-bit unsigned integer value containing the number of times a hint was specified
when trying to determine which clusters to allocate.

RunsReturned (4 bytes): A 32-bit unsigned integer value containing the number of runs used to
satisfy all the requests.

HintsHonored (4 bytes): A 32-bit unsigned integer value containing the number of times the
starting LCN hint was used to determine which clusters to allocate.

HintsClusters (4 bytes): A 32-bit unsigned integer value containing the number of clusters allocated
via the starting LCN hint.

Cache (4 bytes): A 32-bit unsigned integer value containing the number of times the run length
cache was useful.

CacheClusters (4 bytes): A 32-bit unsigned integer value containing the number of clusters
allocated via the run length cache.

CacheMiss (4 bytes): A 32-bit unsigned integer value containing the number of times the cache was

not useful and the bitmapped had to be scanned for free clusters.

CacheMissClusters (4 bytes): A 32-bit unsigned integer value containing the number of clusters
allocated by scanning the bitmap.

2.3.12.3 FAT_STATISTICS

The FAT_STATISTICS data element is returned with a FSCTL_FILESYSTEM_GET_STATISTICS reply
message when FAT file system statistics are requested.

The FAT_STATISTICS data element is as follows:

53 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CreateHits

SuccessfulCreates

FailedCreates

NonCachedReads

NonCachedReadBytes

NonCachedWrites

NonCachedWriteBytes

NonCachedDiskReads

NonCachedDiskWrites

CreateHits (4 bytes): A 32-bit unsigned integer value containing the number of create operations.

SuccessfulCreates (4 bytes): A 32-bit unsigned integer value containing the number of successful
create operations.

FailedCreates (4 bytes): A 32-bit unsigned integer value containing the number of failed create
operations.

NonCachedReads (4 bytes): A 32-bit unsigned integer value containing the number of read

operations that were not cached.

NonCachedReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
read from a file that were not cached.

NonCachedWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations that were not cached.

NonCachedWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to a file that were not cached.

NonCachedDiskReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations that were not cached. This value includes sub-read operations.

NonCachedDiskWrites (4 bytes): A 32-bit unsigned integer value containing the number of write

operations that were not cached. This value includes sub-write operations.

2.3.12.4 EXFAT_STATISTICS

The EXFAT_STATISTICS data element is returned with a FSCTL_FILESYSTEM_GET_STATISTICS
reply message when exFAT file system statistics are requested.

The EXFAT_STATISTICS data element is as follows:

54 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CreateHits

SuccessfulCreates

FailedCreates

NonCachedReads

NonCachedReadBytes

NonCachedWrites

NonCachedWriteBytes

NonCachedDiskReads

NonCachedDiskWrites

CreateHits (4 bytes): A 32-bit unsigned integer value containing the number of create operations.

SuccessfulCreates (4 bytes): A 32-bit unsigned integer value containing the number of successful
create operations.

FailedCreates (4 bytes): A 32-bit unsigned integer value containing the number of failed create
operations.

NonCachedReads (4 bytes): A 32-bit unsigned integer value containing the number of read

operations that were not cached.

NonCachedReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
read from a file that were not cached.

NonCachedWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations that were not cached.

NonCachedWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to a file that were not cached.

NonCachedDiskReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations that were not cached. This value includes sub-read operations.

NonCachedDiskWrites (4 bytes): A 32-bit unsigned integer value containing the number of write

operations that were not cached. This value includes sub-write operations.

2.3.13 FSCTL_FILE_LEVEL_TRIM Request

The FSCTL_FILE_LEVEL_TRIM operation informs the underlying storage medium that the contents of
the given range of the file no longer needs to be maintained. This message allows the storage medium

to manage its space more efficiently. This operation is required most commonly for Solid State
Devices (SSD), as well as for thinly provisioned storage environments.

The FILE_LEVEL_TRIM data element follows.

55 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Key

NumRanges

Ranges (variable)

...

Key (4 bytes): This field is used for byte range locks to uniquely identify different consumers of byte
range locks on the same thread. Typically, this field is used only by remote protocols such as SMB
or SMB2.

NumRanges (4 bytes): A count of how many Offset, Length pairs follow in the data item.

Ranges (variable): An array of zero or more FILE_LEVEL_TRIM_RANGE (section 2.3.13.1) data
elements. The NumRanges field contains the number of FILE_LEVEL_TRIM_RANGE data
elements in the array.

2.3.13.1 FILE_LEVEL_TRIM_RANGE

The FILE_LEVEL_TRIM_RANGE data element follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Offset

...

Length

...

Offset (8 bytes): A 64-bit unsigned integer that contains a byte offset into the given file at which to
start the trim request.

Length (8 bytes): A 64-bit unsigned integer that contains the length, in bytes, of how much of the

file to trim, starting at Offset.

2.3.14 FSCTL_FILE_LEVEL_TRIM Reply

This message returns the results of the FSCTL_FILE_LEVEL_TRIM Request (section 2.3.13).

The FILE_LEVEL_TRIM_OUTPUT data element follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NumRangesProcessed

56 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

NumRangesProcessed (4 bytes): A 32-bit unsigned integer identifying the number of input ranges
that were processed.

This message returns a status code as specified in section 2.2. Upon success, the status code returned
by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are

listed in the following table.

Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The given file is compressed or encrypted, or the size of the input buffer
is smaller than the size of the FILE_LEVEL_TRIM data element, or no
FILE_LEVEL_TRIM_RANGE (section 2.3.13.1) structures were given, or
the output buffer is smaller than the size of
FILE_LEVEL_TRIM_OUTPUT.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The file system does not support this operation.

STATUS_INTEGER_OVERFLOW

0xC0000095

An operation on a parameter in the FSCTL_FILE_LEVEL_TRIM input
structure overflowed 64 bits.

STATUS_NO_RANGES_PROCESSED

0xC0000460

The operation was successful, but no range was processed.

2.3.15 FSCTL_FIND_FILES_BY_SID Request

The FSCTL_FIND_FILES_BY_SID Request message requests that the server return a list of the files
and directories whose owner matches the specified security identifier (SID), in no necessary order.
The search spans the file system subtree descending from the directory associated with the handle on
which this FSCTL was invoked. This message contains a FIND_BY_SID_DATA data element.

The FIND_BY_SID_DATA data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Restart

SID (variable)

...

Restart (4 bytes): A 32-bit unsigned integer value that indicates to restart the search. This value
MUST be 0x00000001 on the first call so that the search starts from the beginning of the directory
on which the operation is requested. For subsequent calls, this member SHOULD be zero so that

the search resumes at the point where it stopped.

SID (variable): A SID ([MS-DTYP] section 2.4.2.2) data element that specifies the owner.

2.3.16 FSCTL_FIND_FILES_BY_SID Reply

The FSCTL_FIND_FILES_BY_SID Reply message returns the results of the FSCTL_FIND_FILES_BY_SID
Request (section 2.3.15) as an array of FILE_NAME_INFORMATION (section 2.1.7) data elements
containing relative pathnames (section 2.1.5), one for each matching file or directory that is found, in
no necessary order. All returned file names MUST be relative to the directory on which the

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

57 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

FSCTL_FIND_FILES_BY_SID Request was issued. This returns as many FILE_NAME_INFORMATION
data elements as will fit in the provided output buffer. The beginning of each

FILE_NAME_INFORMATION data element MUST be aligned to an 8-byte boundary, as measured
from the beginning of the buffer. The last FILE_NAME_INFORMATION structure returned MAY<25>

contain trailing padding.

This message also returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error
codes are listed in the following table.

Status code Meaning

STATUS_NO_QUOTAS_FOR_ACCOUNT

0x0000010D

Quota tracking is not enabled; therefore, the file system does not keep a
record of file owners. This is considered a success code. The reply MUST
NOT contain any data elements.

STATUS_INVALID_PARAMETER

0xC000000D

The handle specified is not the handle to a directory.

STATUS_ACCESS_DENIED

0xC0000022

Neither the SeManageVolumePrivilege nor the SeBackupPrivilege, as
specified in [MS-LSAD] section 3.1.1.2.1, privilege is held.

STATUS_BUFFER_TOO_SMALL

0xC0000023

The output buffer is not large enough to contain the
FILE_NAME_INFORMATION structure (including any trailing padding)
for the first matching file or directory.

STATUS_INVALID_USER_BUFFER

0xC00000E8

The input buffer is less than the size of a long integer (4 bytes) plus the
length of the SID provided, or the input or output buffer is not aligned to
the native word size of the platform, or the size of the output buffer is
less than the minimum size of a FILE_NAME_INFORMATION structure
(8 bytes), or the restart value is greater than 1.

When the status code is STATUS_SUCCESS, the responder MUST retain an implementation-dependent
indication of where the directory processing ended, which is required to support a subsequent

FSCTL_FIND_FILES_BY_SID Request with the Restart field set to 0x00000000. For an example of
FSCTL_FIND_FILES_BY_SID restart handling, see [MS-FSA] section 2.1.5.10.8.

2.3.17 FSCTL_GET_COMPRESSION Request

This message requests that the server return the current compression state of the file or directory
associated with the handle on which this FSCTL was invoked.

This message does not contain any additional data elements.

2.3.18 FSCTL_GET_COMPRESSION Reply

The FSCTL_GET_COMPRESSION reply message returns the results of the FSCTL_GET_COMPRESSION
request as a 16-bit unsigned integer value that indicates the current compression state of the file or
directory.

The CompressionState element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CompressionState

CompressionState (2 bytes): One of the following standard values MUST be returned.

%5bMS-LSAD%5d.pdf#Section_1b5471ef4c334a91b079dfcbb82f05cc
%5bMS-FSA%5d.pdf#Section_860b1516c45247b4bdbc625d344e2041

58 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

COMPRESSION_FORMAT_NONE

0x0000

The file or directory is not compressed.

COMPRESSION_FORMAT_LZNT1

0x0002

The file or directory is compressed by using the LZNT1 compression algorithm.
For more information, see [UASDC].

All other values Reserved for future use and MUST NOT be used.

The actual file or directory compression format is implementation-dependent.<26>

If the file system of the volume that contains the specified file or directory does not support per-file
or per-directory compression, the request MUST NOT succeed. The error code that is returned in this
situation MUST be as specified in section 2.2.

This message also returns a status code as specified in section 2.2. Upon success, the status code

returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error

codes are listed in the following table.

 Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The output buffer length is less than 2, or the handle is not to a file or
directory.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The volume does not support compression.<27>

2.3.19 FSCTL_GET_INTEGRITY_INFORMATION Request

The FSCTL_GET_INTEGRITY_INFORMATION Request message requests that the server return the
current integrity state of the file or directory associated with the handle on which this FSCTL is
invoked.<28>

If the file system of the volume containing the specified file or directory does not support the use of
integrity, the request will not succeed. The error code returned in this situation varies, depending on
the file system.

This message does not contain additional data elements.

2.3.20 FSCTL_GET_INTEGRITY_INFORMATION Reply

The FSCTL_GET_INTEGRITY_INFORMATION Reply message returns the results of the

FSCTL_GET_INTEGRITY_INFORMATION Request (section 2.3.19) and indicates the current integrity
state of the file or directory.

The FSCTL_GET_INTEGRITY_INFORMATION_BUFFER data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ChecksumAlgorithm Reserved

Flags

https://go.microsoft.com/fwlink/?LinkId=90549

59 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

ChecksumChunkSizeInBytes

ClusterSizeInBytes

ChecksumAlgorithm (2 bytes): For ReFS v1, the field MUST be set to one of the following standard
values.

Value Meaning

CHECKSUM_TYPE_NONE

0x0000

The file or directory is not configured to use integrity.

CHECKSUM_TYPE_CRC64

0x0002

The file or directory is configured to use a CRC64 checksum to provide integrity.

All other values Reserved for future use and MUST NOT be used.

For ReFS v2, the field MUST be set to one of the following standard values.

Value Meaning

CHECKSUM_TYPE_NONE

0x0000

The file or directory is not configured to use integrity.

CHECKSUM_TYPE_CRC32

0x0001

The file or directory is configured to use a CRC32 checksum to provide integrity.

CHECKSUM_TYPE_CRC64

0x0002

The file or directory is configured to use a CRC64 checksum to provide integrity.

All other values Reserved for future use and MUST NOT be used.

Reserved (2 bytes): A 16-bit reserved value. This field MUST be set to 0x0000 and MUST be
ignored.

Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values.
Flag values not specified in the following table SHOULD be set to 0 and MUST be ignored.

Value Meaning

FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF

0x00000001

Indicates that checksum enforcement is not
currently enabled on the target file.

All other values Reserved for future use and MUST NOT be
used.

ChecksumChunkSizeInBytes (4 bytes): A 32-bit unsigned integer specifying the size in bytes of

each chunk in a stream that is configured with integrity.

ClusterSizeInBytes (4 bytes): A 32-bit unsigned integer specifying the size of a cluster for this

volume in bytes.

This message also returns a status code, as specified in section 2.2. Upon success, the status code
returned by the function that processes this FSCTL MUST be STATUS_SUCCESS or one of the
following.

60 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The output buffer length is less than the size of the
FSCTL_GET_INTEGRITY_INFORMATION_BUFFER data element, or the
handle is not to a file or directory.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The volume does not support integrity.

2.3.21 FSCTL_GET_NTFS_VOLUME_DATA Request

This message requests that the server return information about the NTFS file system volume that
contains the file or directory that is associated with the handle on which this FSCTL was invoked.

This message does not contain any parameters.

2.3.22 FSCTL_GET_NTFS_VOLUME_DATA Reply

The FSCTL_GET_NTFS_VOLUME_DATA reply message returns the results of the
FSCTL_GET_NTFS_VOLUME_DATA request as an NTFS_VOLUME_DATA_BUFFER element.

The NTFS_VOLUME_DATA_BUFFER contains information on a volume. For more information about the

NTFS file system, see [MSFT-NTFS].

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

VolumeSerialNumber

...

NumberSectors

...

TotalClusters

...

FreeClusters

...

TotalReserved

...

BytesPerSector

BytesPerCluster

https://go.microsoft.com/fwlink/?LinkId=90200

61 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

BytesPerFileRecordSegment

ClustersPerFileRecordSegment

MftValidDataLength

...

MftStartLcn

...

Mft2StartLcn

...

MftZoneStart

...

MftZoneEnd

...

VolumeSerialNumber (8 bytes): A 64-bit signed integer that contains the serial number of the
volume. This is a unique number assigned to the volume media by the operating system when the
volume is formatted.

NumberSectors (8 bytes): A 64-bit signed integer that contains the number of sectors in the
specified volume.

TotalClusters (8 bytes): A 64-bit signed integer that contains the total number of clusters in the
specified volume.

FreeClusters (8 bytes): A 64-bit signed integer that contains the number of free clusters in the
specified volume.

TotalReserved (8 bytes): A 64-bit signed integer that contains the number of reserved clusters in
the specified volume. Reserved clusters are free clusters reserved for when the volume becomes
full. Reserved clusters used to guarantee clusters are available at points when the file system can't
properly report allocation failures.

BytesPerSector (4 bytes): A 32-bit unsigned integer that contains the number of bytes in a sector
on the specified volume.

BytesPerCluster (4 bytes): A 32-bit unsigned integer that contains the number of bytes in a cluster

on the specified volume. This value is also known as the cluster factor.

BytesPerFileRecordSegment (4 bytes): A 32-bit unsigned integer that contains the number of
bytes in a file record segment.

ClustersPerFileRecordSegment (4 bytes): A 32-bit unsigned integer that contains the number of
clusters in a file record segment.

62 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

MftValidDataLength (8 bytes): A 64-bit signed integer that contains the size of the master file
table in bytes.

MftStartLcn (8 bytes): A 64-bit signed integer that contains the starting logical cluster number
(LCN) of the master file table.

Mft2StartLcn (8 bytes): A 64-bit signed integer that contains the starting logical cluster number of
the master file table mirror.

MftZoneStart (8 bytes): A 64-bit signed integer that contains the starting logical cluster number of
the master file table zone.

MftZoneEnd (8 bytes): A 64-bit signed integer that contains the ending logical cluster number of the
master file table zone. The size of the master file table zone is (MftZoneEnd - MftZoneStart)
clusters.

This message also returns a status code as specified in section 2.2. Upon success, the status code
returned directly by the function that processes this FSCTL is STATUS_SUCCESS. The most common

error codes are listed in the following table.

 Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The handle specified is not open.

STATUS_VOLUME_DISMOUNTED

0xC000026E

The specified volume is no longer mounted.

STATUS_BUFFER_TOO_SMALL

0xC0000023

The output buffer is too small to contain an NTFS_VOLUME_DATA_BUFFER
structure.

2.3.23 FSCTL_GET_REFS_VOLUME_DATA Request

This message requests that the server return information about the ReFS file system volume that
contains the file or directory that is associated with the handle on which this FSCTL was invoked.

This message does not contain any parameters.

2.3.24 FSCTL_GET_REFS_VOLUME_DATA Reply

The FSCTL_GET_REFS_VOLUME_DATA reply message returns the results of the
FSCTL_GET_REFS_VOLUME_DATA request as an REFS_VOLUME_DATA_BUFFER element.

The REFS_VOLUME_DATA_BUFFER contains information on a volume.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

MajorVersion

MinorVersion

63 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

BytesPerPhysicalSector

VolumeSerialNumber

...

NumberSectors

...

TotalClusters

...

FreeClusters

...

TotalReserved

...

BytesPerSector

BytesPerCluster

MaximumSizeOfResidentFile

...

Reserved (80 bytes)

...

...

ByteCount (4 bytes): A 32-bit unsigned integer that contains the valid data length for this structure.
ByteCount can be less than the size of this structure. Only the fields that entirely fit within the
valid data length for this structure, as defined by ByteCount, are valid.

MajorVersion (4 bytes): A 32-bit unsigned integer that contains the major version of the ReFS
volume.

MinorVersion (4 bytes): A 32-bit unsigned integer that contains the minor version of the ReFS
volume.

BytesPerPhysicalSector (4 bytes): A 32-bit unsigned integer that defines the number of bytes in a
physical sector on the specified volume.

VolumeSerialNumber (8 bytes): A 64-bit signed integer that contains the serial number of the
volume. This is a unique number assigned to the volume media by the operating system when the
volume is formatted.

64 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

NumberSectors (8 bytes): A 64-bit signed integer that contains the number of sectors in the
specified volume.

TotalClusters (8 bytes): A 64-bit signed integer that contains the total number of clusters in the
specified volume.

FreeClusters (8 bytes): A 64-bit signed integer that contains the number of free clusters in the
specified volume.

TotalReserved (8 bytes): A 64-bit signed integer that contains the number of reserved clusters in
the specified volume. Reserved clusters are used to guarantee clusters are available at points
when the file system can't properly report allocation failures.

BytesPerSector (4 bytes): A 32-bit unsigned integer that contains the number of bytes in a sector
on the specified volume.

BytesPerCluster (4 bytes): A 32-bit unsigned integer that contains the number of bytes in a cluster
on the specified volume. This value is also known as the cluster factor.

MaximumSizeOfResidentFile (8 bytes): A 64-bit unsigned integer that defines the maximum
number of bytes a file can contain and be co-located with the file system metadata that describes
the file (commonly known as resident files).

Reserved (80 bytes): 80 bytes which, if included, as per the ByteCount field, are reserved, have an

undefined value, and are not interpreted.

This message also returns a status code as specified in section 2.2. Upon success, the status code
returned directly by the function that processes this FSCTL is STATUS_SUCCESS. The most common
error codes are listed in the following table.

Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The handle specified is not open.

STATUS_VOLUME_DISMOUNTED

0xC000026E

The specified volume is no longer mounted.

STATUS_BUFFER_TOO_SMALL

0xC0000023

The output buffer is too small to contain a REFS_VOLUME_DATA_BUFFER
structure.

2.3.25 FSCTL_GET_OBJECT_ID Request

This message requests that the server return the object identifier for the file or directory associated
with the handle on which this FSCTL was invoked.

Object identifiers are 16-byte opaque values that are used to track files and directories, and they are

generated by the server. File and directory object identifiers are invisible to most applications and
SHOULD never be modified by applications.

This message does not contain any additional data elements.

2.3.26 FSCTL_GET_OBJECT_ID Reply

This message returns the results of an FSCTL_GET_OBJECT_ID request in a
FILE_OBJECTID_BUFFER (section 2.1.3).

65 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

If the file system of the volume containing the specified file or directory does not support the use of
object IDs, the request will not succeed. The error code returned in this situation is specified in section

2.2.

This message also returns a status code as specified in section 2.2. Upon success, the status code

returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error
codes are listed in the following table.

 Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The output buffer length is less than the size of a
FILE_OBJECTID_BUFFER or the handle is not to a file or directory.

STATUS_OBJECTID_NOT_FOUND

0xC00002F0

The file or directory has no object ID.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The file system does not support the use of object IDs.

2.3.27 FSCTL_GET_REPARSE_POINT Request

This message requests that the server return the reparse point data for the file or directory
associated with the handle on which this FSCTL was invoked.

This message MUST only be sent for a file or directory handle.

This message does not contain any additional data elements.

2.3.28 FSCTL_GET_REPARSE_POINT Reply

This message returns the results of the FSCTL_GET_REPARSE_POINT request. The message contains a
REPARSE_GUID_DATA_BUFFER (including subtypes) or a REPARSE_DATA_BUFFER data element.

Both the REPARSE_GUID_DATA_BUFFER and the REPARSE_DATA_BUFFER structures begin with a
ReparseTag field. The ReparseTag value uniquely identifies the filter driver that creates/uses the
reparse point, and the application's filter driver processes the reparse point data as either a
REPARSE_GUID_DATA_BUFFER or a REPARSE_DATA_BUFFER, depending on the structure
implemented by the filter driver for that type of reparse point. A particular filter driver is implemented

with specific support for the type of reparse point data structure it accepts.

If the file system of the volume containing the specified file or directory does not support the use of
reparse points, the request will not succeed. The error code returned in this situation MAY vary,
depending on the file system.<29>

This message also returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error

codes are listed in the following table.

 Error code Meaning

STATUS_BUFFER_TOO_SMALL

0xC0000023

The output buffer is too small to contain a
REPARSE_GUID_DATA_BUFFER.

STATUS_INVALID_PARAMETER

0xC000000D

The handle is not to a file or directory.

66 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

 Error code Meaning

STATUS_BUFFER_OVERFLOW

0x80000005

The output buffer filled before all the reparse point data was returned.

STATUS_NOT_A_REPARSE_POINT

0xC0000275

The file or directory is not a reparse point.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The file system does not support the use of reparse points.

2.3.29 FSCTL_GET_RETRIEVAL_POINTER_COUNT Request

The FSCTL_GET_RETRIEVAL_POINTER_COUNT request message requests that the server return a

count of extents for the file or directory associated with the handle on which this FSCTL was invoked.
The extents describe the mapping between virtual cluster numbers (VCNs) and logical cluster
numbers (LCNs). This request is most commonly used by defragmentation utilities. This message
contains a STARTING_VCN_INPUT_BUFFER data element.

The STARTING_VCN_INPUT_BUFFER data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StartingVcn

...

StartingVcn (8 bytes): A 64-bit signed integer that contains the virtual cluster number (VCN) at

which to begin retrieving extents in the file. This value MUST be greater than or equal to 0.

2.3.30 FSCTL_GET_RETRIEVAL_POINTER_COUNT Reply

The FSCTL_GET_RETRIEVAL_POINTER_COUNT reply message returns the results of the

FSCTL_GET_RETRIEVAL_POINTER_COUNT request as a fixed size data element,
RETRIEVAL_POINTER_COUNT, that specifies the number of extents on disk of a specific file.

The FSCTL_GET_RETRIEVAL_POINTER_COUNT reply returns the number of extents of nonresident
data. A file system MAY allow resident data, which is data that can be written to disk within the file's
directory record. Because resident data requires no additional disk space allocation, no extent
locations are associated with resident data.<30>

The RETRIEVAL_POINTER_COUNT data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ExtentCount

ExtentCount (4 bytes): A 32-bit unsigned integer that contains the number of extents. This number
can be zero if there are no clusters allocated at (or beyond) the specified StartingVcn.

67 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

This message also returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error

codes are listed in the following table.

Error code Meaning

STATUS_BUFFER_TOO_SMALL

0xC0000023

The output buffer is too small to contain a RETRIEVAL_POINTER_COUNT
structure.

STATUS_INVALID_PARAMETER

0xC000000D

The input buffer is too small to contain a STARTING_VCN_INPUT_BUFFER, or
the StartingVcn given is negative, or the handle is not to a file or directory.

STATUS_END_OF_FILE

0xC0000011

The stream is resident in the MFT and has no clusters allocated, or the starting
VCN is beyond the end of the file.

2.3.31 FSCTL_GET_RETRIEVAL_POINTERS Request

The FSCTL_GET_RETRIEVAL_POINTERS request message requests that the server return a list of
extents for the file or directory associated with the handle on which this FSCTL was invoked. The
extents describe the mapping between virtual cluster numbers (VCNs) and logical cluster
numbers (LCNs). This request is most commonly used by defragmentation utilities. This message
contains a STARTING_VCN_INPUT_BUFFER data element.

The STARTING_VCN_INPUT_BUFFER data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StartingVcn

...

StartingVcn (8 bytes): A 64-bit signed integer that contains the virtual cluster number (VCN) at
which to begin retrieving extents in the file. This value MUST be greater than or equal to 0.

2.3.32 FSCTL_GET_RETRIEVAL_POINTERS Reply

The FSCTL_GET_RETRIEVAL_POINTERS reply message returns the results of the
FSCTL_GET_RETRIEVAL_POINTERS request as a variably sized data element,
RETRIEVAL_POINTERS_BUFFER, that specifies the allocation and location on disk of a specific file.

The FSCTL_GET_RETRIEVAL_POINTERS reply returns the extent locations (that is, locations of
allocated regions of disk space) of nonresident data. A file system MAY allow resident data, which is

data that can be written to disk within the file's directory record. Because resident data requires no

additional disk space allocation, no extent locations are associated with resident data.<31>

The RETRIEVAL_POINTERS_BUFFER data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ExtentCount

68 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Unused

StartingVcn

...

Extents (variable)

...

ExtentCount (4 bytes): A 32-bit unsigned integer that contains the number of EXTENTS data
elements in the Extents array. This number can be zero if there are no clusters allocated at (or
beyond) the specified StartingVcn.

Unused (4 bytes): Reserved for alignment. This field can contain any value and MUST be ignored.

StartingVcn (8 bytes): A 64-bit signed integer that contains the starting virtual cluster number
(VCN) returned by the FSCTL_GET_RETRIEVAL_POINTERS reply. This is not necessarily the VCN
requested by the FSCTL_GET_RETRIEVAL_POINTERS request, as the file system driver might
return the starting VCN of the extent containing the requested starting VCN. This value MUST be
greater than or equal to 0.

Extents (variable): An array of zero or more EXTENTS data elements. For the number of EXTENTS
data elements in the array, see ExtentCount.

2.3.32.1 EXTENTS

The EXTENTS data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextVcn

...

Lcn

...

NextVcn (8 bytes): A 64-bit signed integer that contains the VCN at which the next extent begins.
This value minus either StartingVcn (for the first Extents array element) or the NextVcn of the
previous element of the array (for all other Extents array elements) is the length in clusters of
the current extent.

Lcn (8 bytes): A 64-bit signed integer that contains the logical cluster number (LCN) at which the
current extent begins on the volume. A 64-bit value of -1 indicates either a compression unit

that is partially allocated or an unallocated region of a sparse file. For more information about
sparse files, see [SPARSE]. Compression is performed in 16-cluster units. If a given 16-cluster unit
compresses to fit in, for example, 9 clusters, there will be a 7-cluster extent of the file with an LCN
of -1.

https://go.microsoft.com/fwlink/?LinkId=90527

69 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

This message also returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error

codes are listed in the following table.

 Error code Meaning

STATUS_BUFFER_TOO_SMALL

0xC0000023

The output buffer is too small to contain a RETRIEVAL_POINTERS_BUFFER
structure.

STATUS_INVALID_PARAMETER

0xC000000D

The input buffer is too small to contain a STARTING_VCN_INPUT_BUFFER, or
the StartingVcn given is negative, or the handle is not to a file or directory.

STATUS_END_OF_FILE

0xC0000011

The stream is resident in the MFT and has no clusters allocated, or the starting
VCN is beyond the end of the file.

STATUS_BUFFER_OVERFLOW

0x80000005

The output buffer filled before all the extents for this file were returned.

2.3.33 FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT Request

The FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT request message requests that the server
return a list of extents and their reference counts for the file or directory associated with the handle

on which this FSCTL was invoked. The extents describe the mapping between virtual cluster
numbers (VCNs) and logical cluster numbers (LCNs). The reference count describes how many
times these logical cluster numbers (LCNs) are being used within the volume. This request is
most commonly used by deduplication utilities. This message contains a
STARTING_VCN_INPUT_BUFFER data element.<32>

The STARTING_VCN_INPUT_BUFFER data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StartingVcn

...

StartingVcn (8 bytes): A 64-bit signed integer that contains the virtual cluster number (VCN) at
which to begin retrieving extents in the file. This value MUST be greater than or equal to 0.

2.3.34 FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT Reply

The FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT reply message returns the results of the
FSCTL_GET_RETRIEVAL_POINTERS AND_REFCOUNT request as a variably-sized data element,

RETRIEVAL_POINTERS_AND_REFCOUNT_BUFFER, that specifies the allocation and location on disk of
a specific file.

The FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT reply returns the extent locations (that is,
locations of allocated regions of disk space) and their reference counts of nonresident data. A file
system MAY allow resident data, which is data that can be written to disk within the file's directory

record. Because resident data requires no additional disk space allocation, no extent locations or
reference counts are associated with resident data.<33>

The RETRIEVAL_POINTERS_AND_REFCOUNT_BUFFER data element is as follows.

70 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ExtentCount

Unused

StartingVcn

...

Extents (variable)

...

ExtentCount (4 bytes): A 32-bit unsigned integer that contains the number of
EXTENT_AND_REFCOUNTS data elements in the Extents array. This number can be zero if there
are no clusters allocated at (or beyond) the specified StartingVcn.

Unused (4 bytes): Reserved for alignment. This field can contain any value and MUST be ignored.

StartingVcn (8 bytes): A 64-bit signed integer that contains the starting virtual cluster number
(VCN) returned by the FSCTL_GET_RETRIEVAL_POINTER_AND_REFCOUNT reply. This is not
necessarily the VCN requested by the FSCTL_GET_RETRIEVAL_POINTERS request, as the file
system driver might return the starting VCN of the extent containing the requested starting VCN.
This value MUST be greater than or equal to 0.

Extents (variable): An array of zero or more EXTENT_AND_REFCOUNTS data elements. For the
number of EXTENT_AND_REFCOUNTS data elements in the array, see ExtentCount.

2.3.34.1 EXTENT_AND_REFCOUNTS

The EXTENT_AND_REFCOUNTS data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextVcn

...

Lcn

...

ReferenceCount

NextVcn (8 bytes): A 64-bit signed integer that contains the VCN at which the next extent begins.
This value minus either StartingVcn (for the first Extents array element) or the NextVcn of the
previous element of the array (for all other Extents array elements) is the length in clusters of
the current extent.

Lcn (8 bytes): A 64-bit signed integer that contains the logical cluster number (LCN) at which the
current extent begins on the volume. A 64-bit value of -1 indicates either a compression unit

71 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

that is partially allocated or an unallocated region of a sparse file. For more information about
sparse files, see [SPARSE]. Compression is performed in 16-cluster units. If a given 16-cluster unit

compresses to fit in, for example, 9 clusters, there will be a 7-cluster extent of the file with an LCN
of -1.

ReferenceCount (4 bytes): A 32-bit unsigned integer that contains the reference count on the
logical cluster number (LCN) at which the current extent begins on the volume. If no one else
is using the corresponding LCN, the reference count will be 1.

This message also returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error
codes are listed in the following table.

Error code Meaning

STATUS_BUFFER_TOO_SMALL

0xC0000023

The output buffer is too small to contain a RETRIEVAL_POINTERS_BUFFER
structure.

STATUS_INVALID_PARAMETER

0xC000000D

The input buffer is too small to contain a STARTING_VCN_INPUT_BUFFER, or

the StartingVcn given is negative, or the handle is not to a file or directory.

STATUS_END_OF_FILE

0xC0000011

The stream is resident in the MFT and has no clusters allocated, or the starting
VCN is beyond the end of the file.

STATUS_BUFFER_OVERFLOW

0x80000005

The output buffer filled before all the extents for this file were returned.

2.3.35 FSCTL_IS_PATHNAME_VALID Request

The FSCTL_IS_PATHNAME_VALID request message requests that the server indicate whether the

specified pathname is well-formed (of acceptable length, with no invalid characters, and so on - see

section 2.1.5) with respect to the volume that contains the file or directory associated with the handle
on which this FSCTL was invoked.

The data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PathNameLength

PathName (variable)

...

PathNameLength (4 bytes): An unsigned 32-bit integer that specifies the length, in bytes, of the
PathName data element.

PathName (variable): A variable-length Unicode string that specifies the path name.

2.3.36 FSCTL_IS_PATHNAME_VALID Reply

This message returns the results of the FSCTL_IS_PATHNAME_VALID Request (section 2.3.35).

https://go.microsoft.com/fwlink/?LinkId=90527

72 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

A STATUS_SUCCESS from this call means that the pathname is valid. An error means that the
pathname is not valid.<34>

2.3.37 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request

The FSCTL_LMR_SET_LINK_TRACKING_INFORMATION request message sets Distributed Link
Tracking (DLT) information such as file system type, volume ID, object ID, and destination
computer's NetBIOS name for the file or directory associated with the handle on which this FSCTL
was invoked. For more information about Distributed Link Tracking (DLT), see [MS-DLTW] section

3.1.6.

There are two variations of this request, depending on whether it is embedded within [MS-SMB] or
[MS-SMB2]. The request definitions are as follows.

 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB

 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB2

2.3.37.1 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB

The message contains a REMOTE_LINK_TRACKING_INFORMATION32 data element. The SMB
REMOTE_LINK_TRACKING_INFORMATION32 data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TargetFileObject

TargetLinkTrackingInformationLength

TargetLinkTrackingInformationBuffer (variable)

...

TargetFileObject (4 bytes): The Fid of the file from which to obtain link tracking information. For
Fid type, see [MS-SMB] section 2.2.7.2.1.

TargetLinkTrackingInformationLength (4 bytes): The length of the
TargetLinkTrackingInformationBuffer.

TargetLinkTrackingInformationBuffer (variable): This field is as specified in
TARGET_LINK_TRACKING_INFORMATION_Buffer.

2.3.37.2 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB2

The message contains an SMB2_REMOTE_LINK_TRACKING_INFORMATION data element. The

SMB2_REMOTE_LINK_TRACKING_INFORMATION data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TargetFileObject

...

%5bMS-DLTW%5d.pdf#Section_fc649f0e871a431a88b5d5b2f80e9cc9
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688

73 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

TargetLinkTrackingInformationLength

TargetLinkTrackingInformationBuffer (variable)

...

TargetFileObject (8 bytes): Nonzero values of TargetFileObject are never used in the Server
Message Block (SMB) Version 2 Protocol variant of the request. This field MUST be set to zero.

TargetLinkTrackingInformationLength (4 bytes): The length of the

TargetLinkTrackingInformationBuffer field.

TargetLinkTrackingInformationBuffer (variable): This field is as specified in
TARGET_LINK_TRACKING_INFORMATION_BUFFER.

2.3.37.3 TARGET_LINK_TRACKING_INFORMATION_Buffer

The TARGET_LINK_TRACKING_INFORMATION_Buffer data element MUST take one of the following
forms:

 TARGET_LINK_TRACKING_INFORMATION_Buffer_1 if the
TargetLinkTrackingInformationLength value is less than 36.

 TARGET_LINK_TRACKING_INFORMATION_Buffer_2 if the
TargetLinkTrackingInformationLength value is greater than or equal to 36.

2.3.37.3.1 TARGET_LINK_TRACKING_INFORMATION_Buffer_1

If the TargetLinkTrackingInformationLength value is less than 36, the
TARGET_LINK_TRACKING_INFORMATION_Buffer data element MUST be as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NetBIOSName (variable)

...

NetBIOSName (variable): A null-terminated ASCII string containing the NetBIOS name of the
destination computer, if known. For more information, see [MS-DLTW] section 3.1.6. If not

known, this field is zero length and contains nothing.

2.3.37.3.2 TARGET_LINK_TRACKING_INFORMATION_Buffer_2

If the TargetLinkTrackingInformationLength value is greater than or equal to 36, the

TARGET_LINK_TRACKING_INFORMATION_Buffer data element MUST be as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type

VolumeId (16 bytes)

%5bMS-DLTW%5d.pdf#Section_fc649f0e871a431a88b5d5b2f80e9cc9

74 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

...

ObjectId (16 bytes)

...

...

NetBIOSName (variable)

...

Type (4 bytes): An unsigned 32-bit integer that indicates the type of file system on which the file is
hosted on the destination computer. MUST be one of the following.

Value Meaning

0x00000000 The destination file system is NTFS.

0x00000001 The destination file system is DFS. For more information, see [MSDFS].

VolumeId (16 bytes): A 16-byte GUID that uniquely identifies the volume for the object, as
obtained from the ObjectId field of FileFsObjectIdInformation.

ObjectId (16 bytes): A 16-byte GUID that uniquely identifies the destination file or directory within
the volume on which it resides, as indicated by VolumeId.

NetBIOSName (variable): A null-terminated ASCII string containing the NetBIOS name of the

destination computer, if known. For more information, see [MS-DLTW] section 3.1.6. If not

known, this field is zero length and contains nothing.

2.3.38 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Reply

This message returns the results of the FSCTL_LMR_SET_LINK_TRACKING_INFORMATION request.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most
common error codes are listed in the following table.

 Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The input buffer length is smaller than the length of the required input data
element.

2.3.39 FSCTL_MARK_HANDLE Request

The FSCTL_MARK_HANDLE request is used to set specific operational state on the given file handle.
This state is lost once the handle is closed.<35>

https://go.microsoft.com/fwlink/?LinkId=89945
%5bMS-DLTW%5d.pdf#Section_fc649f0e871a431a88b5d5b2f80e9cc9

75 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

The MARK_HANDLE_INFO element is as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CopyNumber

Unused

VolumeHandle

...

HandleInfo

Reserved

CopyNumber (4 bytes): A 32-bit unsigned integer that identifies, when reading from a file which
resides on redundant media, which copy to read.

Unused (4 bytes): Reserved for alignment. This field can contain any value and MUST be ignored.

VolumeHandle (8 bytes): A 64-bit HANDLE that is not used and MUST be set to zero.

HandleInfo (4 bytes): A 32-bit unsigned integer containing flags to identify the request. Only one of
the following values can be set:

Value Meaning

MARK_HANDLE_READ_COPY

0x00000080

When a file resides on redundant media (ex: mirrored or RAID) this tells
the file system that read operations on this handle should only come from
the specified copy of data.

When this state is not set a file system will return data from any copy
available as it sees fit.

This operation is typically used by scrubber applications that want to
validate the contents of all copies of data for a given file.

MARK_HANDLE_NOT_READ_COPY

0x00000100

When a file resides on redundant media (ex: mirrored or RAID) this tells
the file system that read operations on this handle may come from any
copy of the data as the file system sees fit. This turns off reading from a
specific copy.

Reserved (4 Bytes): A 32-bit field. This field is reserved. This field SHOULD be set to 0, and MUST
be ignored.

2.3.40 FSCTL_MARK_HANDLE Reply

This message returns the results of the FSCTL_MARK_HANDLE request.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INVALID_PARAMETER This status is returned if:

76 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error code Meaning

0xC000000D
 HandleInfo contains any flag other than one and only one

of either MARK_HANDLE_READ_COPY or
MARK_HANDLE_NOT_READ_COPY

 The file was opened for cached IO

 The specified copy number is greater than the number of
available redundant copies

STATUS_DIRECTORY_NOT_SUPPORTED

0xC000047C

This operation is not supported on directory files.

STATUS_NOT_REDUNDANT_STORAGE

0xC0000479

This operation is only supported on redundant media.

STATUS_COMPRESSED_FILE_NOT_SUPPORTED

0xC000047B

This operation is not supported on compressed files.

2.3.41 FSCTL_OFFLOAD_READ Request

The FSCTL_OFFLOAD_READ Request message requests that the server perform an Offload Read
operation to a specified portion of a file on a target volume. On the client side, this request is
received, processed, and sent down to an intelligent storage subsystem that generates and returns a
Token in an FSCTL_OFFLOAD_READ Reply (section 2.3.42) message. This Token logically represents
the data to be read and can be used with an FSCTL_OFFLOAD_WRITE Request (section 2.3.43) and an

FSCTL_OFFLOAD_WRITE Reply (section 2.3.44) pair to complete the data movement.<36>

The request message contains an FSCTL_OFFLOAD_READ_INPUT data element, as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Size

Flags

TokenTimeToLive

Reserved

FileOffset

...

CopyLength

...

Size (4 bytes): A 32-bit unsigned integer that indicates the size, in bytes, of this data element.

77 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Flags (4 bytes): A 32-bit unsigned integer that indicates the flags to be set for this operation.
Currently, no flags are defined. This field SHOULD be set to 0x00000000 and MUST be ignored.

TokenTimeToLive (4 bytes): A 32-bit unsigned integer that contains the requested Time to Live
(TTL) value in milliseconds for the generated Token. This value MUST be greater than or equal to

0x00000000. A value of 0x00000000 represents a default TTL interval.<37>

Reserved (4 bytes): A 32-bit unsigned integer field that is reserved. This field SHOULD be set to
0x00000000 and MUST be ignored.

FileOffset (8 bytes): A 64-bit unsigned integer that contains the file offset, in bytes, of the start of a
range of bytes in a file from which to generate the Token. The value of this field MUST be greater
than or equal to 0x0000000000000000 and MUST be aligned to a logical sector boundary on the
volume.

CopyLength (8 bytes): A 64-bit unsigned integer that contains the size, in bytes, of the requested
range of the file from which to generate the Token. The value of this field MUST be greater than or
equal to 0x0000000000000000 and MUST be aligned to a logical sector boundary on the

volume.<38>

2.3.42 FSCTL_OFFLOAD_READ Reply

The FSCTL_OFFLOAD_READ Reply message returns the results of the FSCTL_OFFLOAD_READ
Request (section 2.3.41).

The FSCTL_OFFLOAD_READ_OUTPUT data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Size

Flags

TransferLength

...

Token (512 bytes)

...

...

Size (4 bytes): A 32-bit unsigned integer that indicates the size, in bytes, of the returned data

element.

Flags (4 bytes): A 32-bit unsigned integer that indicates which flags were returned for this
operation. Possible values for the flags follow. All unused bits are reserved for future use, SHOULD
be set to 0, and MUST be ignored.

Value Meaning

OFFLOAD_READ_FLAG_ALL_ZERO_BEYOND_CURRENT_RANGE

0x00000001

The data beyond the current range is
logically equivalent to zero.

78 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

TransferLength (8 bytes): A 64-bit unsigned integer that contains the amount, in bytes, of data
that the Token logically represents. This value indicates a contiguous region of the file from the

beginning of the requested offset in the FileOffset field in the FSCTL_OFFLOAD_READ_INPUT
data element (section 2.3.41). This value can be smaller than the CopyLength field specified in

the FSCTL_OFFLOAD_READ_INPUT data element, which indicates that less data was logically
represented (logically read) with the Token than was requested. The value of this field MUST be
greater than 0x0000000000000000 and MUST be aligned to a logical sector boundary on the
volume.

Token (512 bytes): A STORAGE_OFFLOAD_TOKEN (section 2.1.11) structure that contains the
generated Token to be used as a representation of the data contained within the portion of the file
specified in the FSCTL_OFFLOAD_READ_INPUT data element at the time of the

FSCTL_OFFLOAD_READ operation. The contents of this field MUST NOT be modified during
subsequent operations.<39>

This message returns a status code as specified in section 2.2. Upon success, the status code returned
by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are
listed in the following table.

Error code Meaning

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The file system does not support offload operations.

STATUS_INVALID_PARAMETER

0xC000000D

At least one of the following assertions is true:

 The target file is smaller than the logical sector size.

 The FileOffset field is not a multiple of the logical sector
size of the volume.

 The CopyLength field is not a multiple of the logical
sector size of the volume.

 The Size field is not equivalent to the size of an
FSCTL_OFFLOAD_READ_INPUT data element.

 Adding the FileOffset and CopyLength fields results in
the overflow of a 64-bit value.

STATUS_OFFLOAD_READ_FILE_NOT_SUPPORTED

0xC000A2A3

Offload operations cannot be performed on:

 Compressed Files

 Sparse Files

 Encrypted Files

 File System Metadata Files

STATUS_NOT_SUPPORTED

0xC00000BB

The file system indicates that the volume does not support
the Offload Read operation.

STATUS_OFFLOAD_READ_FLT_NOT_SUPPORTED

0xC000A2A1

A file system filter on the server has not opted in for Offload
Read support.

STATUS_FILE_DELETED

0xC0000123

The specified data stream is not valid.

79 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error code Meaning

STATUS_FILE_CLOSED

0xC0000128

The specified file handle is closed.

STATUS_END_OF_FILE

0xC0000011

The file read starts beyond the End Of the File (EOF).<40>

STATUS_INSUFFICIENT_RESOURCES

0xC000009A

There were insufficient resources to complete the operation.

STATUS_BUFFER_TOO_SMALL

0xC0000023

The input buffer is too small to contain an
FSCTL_OFFLOAD_READ_INPUT data element.

or

The output buffer is too small to contain an
FSCTL_OFFLOAD_READ_OUTPUT data element.

STATUS_DEVICE_FEATURE_NOT_SUPPORTED

0xC0000463

The storage device does not support offload read.

2.3.43 FSCTL_OFFLOAD_WRITE Request

The FSCTL_OFFLOAD_WRITE Request message requests that the server perform an Offload Write
operation to a specified portion of a file on a target volume, providing a Token to the server that

indicates what data is to be logically written. On the server side, this request is received, processed,
and sent to an intelligent storage subsystem that processes the Token and determines whether it can
perform the data movement to the requested portion of the file. The Token is generated by an
intelligent storage subsystem through an FSCTL_OFFLOAD_READ Request (section 2.3.41) or is
constructed as a well-known Token type such as STORAGE_OFFLOAD_TOKEN in section
2.1.11.<41><42>

The request message contains an FSCTL_OFFLOAD_WRITE_INPUT data element, as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Size

Flags

FileOffset

...

CopyLength

...

TransferOffset

...

80 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Token (512 bytes)

...

...

Size (4 bytes): A 32-bit unsigned integer that indicates the size, in bytes, of this data element.

Flags (4 bytes): A 32-bit unsigned integer that indicates the flags to be set for this operation.
Currently, no flags are defined. This field SHOULD be set to 0x00000000 and MUST be ignored.

FileOffset (8 bytes): A 64-bit unsigned integer that contains the file offset, in bytes, of the start of a
range of bytes in a file at which to begin writing the data logically represented by the Token. The
value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to
a logical sector boundary on the volume.

CopyLength (8 bytes): A 64-bit unsigned integer that contains the size, in bytes, of the requested
range of the file to write the data logically represented by the Token. The value of this field MUST

be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical sector
boundary on the volume. This value can be smaller than the size of the data logically represented
by the Token.

TransferOffset (8 bytes): A 64-bit unsigned integer that contains the file offset, in bytes, relative to
the front of a region of data logically represented by the Token at which to start writing. The value
of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a
logical sector boundary on the volume.

Token (512 bytes): A STORAGE_OFFLOAD_TOKEN (section 2.1.11) structure that contains the
generated (or constructed) Token to be used as a representation of the data to be logically
written. The contents of this field MUST NOT be modified during subsequent operations.

2.3.44 FSCTL_OFFLOAD_WRITE Reply

The FSCTL_OFFLOAD_WRITE Reply message returns the results of the FSCTL_OFFLOAD_WRITE
Request (section 2.3.43).

The FSCTL_OFFLOAD_WRITE_OUTPUT data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Size

Flags

LengthWritten

...

Size (4 bytes): A 32-bit unsigned integer that indicates the size, in bytes, of the returned data
element.

Flags (4 bytes): A 32-bit unsigned integer that indicates which flags were returned for this
operation. Currently, no flags are defined. This field SHOULD be set to 0x00000000 and MUST be
ignored.

81 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

LengthWritten (8 bytes): A 64-bit unsigned integer that contains the amount, in bytes, of data that
was written. The value of this field MUST be greater than or equal to zero and MUST be aligned to

a logical sector boundary on the volume. This value can be smaller than the CopyLength field
specified in the FSCTL_OFFLOAD_WRITE_INPUT data element. A smaller value indicates that less

data was logically written with the specified Token than was requested. This field MUST NOT be
greater than the CopyLength field specified in the FSCTL_OFFLOAD_WRITE_INPUT data element,
meaning it is incorrect to copy more than what was requested<43>.

This message returns a status code as specified in section 2.2. Upon success, the status code returned
by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are
listed in the following table.

Error code Meaning

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The file system does not support offload operations.

STATUS_INVALID_PARAMETER

0xC000000D

At least one of the following assertions is true:

 The target file is smaller than the logical sector size.

 The FileOffset field is not a multiple of the logical
sector size of the volume.

 The CopyLength field is not a multiple of the logical
sector size of the volume.

 The TransferOffset field is not a multiple of the logical
sector size of the volume.

 The FileOffset field is greater than the Valid Data
Length (VDL) for the file.

 The Size field is not equivalent to the size of an
FSCTL_OFFLOAD_WRITE_INPUT data element.

 Adding the FileOffset and CopyLength fields results
in the overflow of a 64-bit value.

STATUS_OFFLOAD_WRITE_FILE_NOT_SUPPORTED

0xC000A2A4

Offload operations cannot be performed on:

 Compressed Files

 Sparse Files

 Encrypted Files

 File System Metadata Files

STATUS_NOT_SUPPORTED

0xC00000BB

The file system indicates that the volume does not support
the Offload Write operation.

STATUS_OFFLOAD_WRITE_FLT_NOT_SUPPORTED

0xC000A2A2

A file system filter on the server has not opted in for Offload
Write support.

STATUS_FILE_DELETED

0xC0000123

The specified data stream was not valid.

STATUS_FILE_CLOSED The specified file handle is closed.

82 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error code Meaning

0xC0000128

STATUS_END_OF_FILE

0xC0000011

The file offset for the write is beyond the End Of the File
(EOF).

STATUS_MEDIA_WRITE_PROTECTED

0xC00000A2

The volume is read only.

STATUS_INSUFFICIENT_RESOURCES

0xC000009A

There were insufficient resources to complete the operation.

STATUS_BUFFER_TOO_SMALL

0xC0000023

The input buffer is too small to contain an
FSCTL_OFFLOAD_WRITE_INPUT data element.

or

The output buffer is too small to contain an
FSCTL_OFFLOAD_WRITE_OUTPUT data element.

STATUS_DEVICE_FEATURE_NOT_SUPPORTED

0xC0000463

The storage device does not support Offload Write.

STATUS_DEVICE_UNREACHABLE

0xC0000464

Data cannot be moved by Offload Write because the source
device cannot communicate with the destination device.

STATUS_INVALID_TOKEN

0xC0000465L

The token representing the data is invalid or expired.

2.3.45 FSCTL_PIPE_PEEK Request

The FSCTL_PIPE_PEEK request requests that the server copy a named pipe's data into a buffer for

preview without removing it. The FSCTL_PIPE_PEEK request message is issued to invoke a reply, and

does not have an associated data structure.

2.3.46 FSCTL_PIPE_PEEK Reply

The FSCTL_PIPE_PEEK response returns data from the pipe server's output buffer in the FSCTL

output buffer. The structure of that data is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NamedPipeState

ReadDataAvailable

NumberOfMessages

MessageLength

Data (variable)

...

83 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

NamedPipeState (4 bytes): A 32-bit unsigned integer referring to the current state of the pipe. The
allowed values are shown in the following table.

Pipe State Meaning

FILE_PIPE_CONNECTED_STATE

0x00000003

The specified named pipe is in the connected state.

FILE_PIPE_CLOSING_STATE

0x00000004

The server end of the specified named pipe has been closed, but data is
still available for the client to read.

ReadDataAvailable (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the data
available to read from the pipe.

NumberOfMessages (4 bytes): A 32-bit unsigned integer that specifies the number of messages
available in the pipe if the pipe has been created as a message-type pipe. Otherwise, this field is
0.

MessageLength (4 bytes): A 32-bit unsigned integer that specifies the length of the first message
available in the pipe if the pipe has been created as a message-type pipe. Otherwise, this field is

0.

Data (variable): A byte buffer of data from the pipe.

This message returns a status code as specified in section 2.2. Upon success, the status code returned
by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are
listed in the following table.

Error code Meaning

STATUS_PIPE_DISCONNECTED

0xC00000B0

The specified named pipe is in the disconnected state.

STATUS_INVALID_PIPE_STATE

0xC00000AD

The data cannot be read in the current state of the specified pipe.

STATUS_PIPE_BROKEN

0xC000014B

The pipe operation has failed because the other end of the pipe has been
closed.

STATUS_INVALID_USER_BUFFER

0xC00000E8

An exception was raised while accessing a user buffer.

STATUS_INSUFFICIENT_RESOURCES

0xC000009A

There were insufficient resources to complete the operation.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The type of the handle is not a pipe.

STATUS_BUFFER_OVERFLOW

0x80000005

The data was too large for the specified buffer. This is a warning, not an
error. Response contains information including available data length and
data that fits into the buffer.

For more information on named pipes, see [PIPE].

https://go.microsoft.com/fwlink/?LinkId=90247

84 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.47 FSCTL_PIPE_TRANSCEIVE Request

The FSCTL_PIPE_TRANSCEIVE request is used to send and receive data from an open pipe. Any bytes
in the FSCTL input buffer are written as a binary large object (BLOB) to the input buffer of the pipe

server.

The FSCTL input buffer does not have an associated structure. The buffer is a BLOB of bytes that are
written into the associated pipe.

2.3.48 FSCTL_PIPE_TRANSCEIVE Reply

The FSCTL_PIPE_TRANSCEIVE response returns data from the pipe server's output buffer in the FSCTL
output buffer.

This message returns a status code as specified in section 2.2. Upon success, the status code returned
by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are
listed in the following table.

 Error code Meaning

STATUS_PIPE_DISCONNECTED

0xC00000B0

The specified named pipe is in the disconnected state.

STATUS_INVALID_PIPE_STATE

0xC00000AD

The named pipe is not in the connected state or not in the full-duplex
message mode.

STATUS_PIPE_BUSY

0xC00000AE

The named pipe contains unread data.

STATUS_INVALID_USER_BUFFER

0xC00000E8

An exception was raised while accessing a user buffer.

STATUS_INSUFFICIENT_RESOURCES

0xC000009A

There were insufficient resources to complete the operation.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The type of the handle is not a pipe.

STATUS_BUFFER_OVERFLOW

0x80000005

The data was too large to fit into the specified buffer.

For more information on named pipes, see [PIPE].

2.3.49 FSCTL_PIPE_WAIT Request

The FSCTL_PIPE_WAIT Request requests that the server wait until either a time-out interval elapses,
or an instance of the specified named pipe is available for connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Timeout

...

NameLength

https://go.microsoft.com/fwlink/?LinkId=90247

85 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

TimeoutSpecified Padding Name (variable)

...

Timeout (8 bytes): A 64-bit signed integer that specifies the maximum amount of time, in units of
100 milliseconds, that the function can wait for an instance of the named pipe to be available.

NameLength (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the named

pipe Name field.

TimeoutSpecified (1 byte): A Boolean (section 2.1.8) value that specifies whether or not the
Timeout parameter will be ignored.

Value Meaning

FALSE Indicates that the server MUST wait forever (no timeout) for the named pipe. Any value in Timeout
MUST be ignored.

TRUE Indicates that the server MUST use the value in the Timeout parameter.

Padding (1 byte): The client SHOULD set this field to 0x00, and the server MUST ignore it.

Name (variable): A Unicode string that contains the name of the named pipe. Name MUST not

include the "\pipe\", so if the operation was on \\server\pipe\pipename, the name would be
"pipename".

For more information on named pipes, see [PIPE].

2.3.50 FSCTL_PIPE_WAIT Reply

This message returns the results of the FSCTL_PIPE_WAIT request.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_SUCCESS

0x00000000

The specified named pipe is available for connection.

STATUS_OBJECT_NAME_NOT_FOUND

0xC0000034

The specified named pipe does not exist.

This error code is also returned when the pipe is closed during wait.

STATUS_IO_TIMEOUT

0xC00000B5

Timeout specified in the FSCTL_PIPE_WAIT request expired.

STATUS_INSUFFICIENT_RESOURCES

0xC000009A

There were insufficient resources to complete the operation.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The type of the handle is not a pipe.

https://go.microsoft.com/fwlink/?LinkId=90247

86 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.51 FSCTL_QUERY_ALLOCATED_RANGES Request

The FSCTL_QUERY_ALLOCATED_RANGES request message requests that the server scan a file or
alternate stream looking for byte ranges that can contain nonzero data, and then return information

on those ranges. Only sparse files can have zeroed ranges known to the operating system. For other
files, the server will return only a single range that contains the starting point and the length
requested. The request message contains a FILE_ALLOCATED_RANGE_BUFFER data element.

The FILE_ALLOCATED_RANGE_BUFFER data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileOffset

...

Length

...

FileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start of a
range of bytes in a file. The value of this field MUST be greater than or equal to 0.

Length (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the range. In a request
message, the value of this field MUST be greater than or equal to 0. In a reply message, it MUST
be greater than 0.

2.3.52 FSCTL_QUERY_ALLOCATED_RANGES Reply

The FSCTL_QUERY_ALLOCATED_RANGES Reply message returns the results of the

FSCTL_QUERY_ALLOCATED_RANGES Request (section 2.3.51).

This message MUST return an array of zero or more FILE_ALLOCATED_RANGE_BUFFER data elements.
The number of FILE_ALLOCATED_RANGE_BUFFER elements returned is computed by dividing the size
of the returned output buffer (from either SMB or SMB2, the lower-layer protocol that carries the
FSCTL) by the size of the FILE_ALLOCATED_RANGE_BUFFER element. Ranges returned MUST

intersect the range specified in the FSCTL_QUERY_ALLOCATED_RANGES Request. Zero
FILE_ALLOCATED_RANGE_BUFFER data elements MUST be returned when the file has no allocated
ranges.<44>

The FILE_ALLOCATED_RANGE_BUFFER data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileOffset

...

Length

...

87 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

FileOffset (8 bytes): A 64-bit signed integer that contains the file offset in bytes from the start of
the file; the start of a range of bytes to which storage is allocated. If the file is a sparse file, it

can contain ranges of bytes for which storage is not allocated; these ranges will be excluded from
the list of allocated ranges returned by this FSCTL.<45> Because an application using a sparse file

can choose whether or not to allocate disk space for each sequence of 0x00-valued bytes, the
allocated ranges can contain 0x00-valued bytes. This value MUST be greater than or equal to
0.<46>

Length (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the range. In a request
message, the value of this field MUST be greater than or equal to 0. In a reply message, it MUST
be greater than 0.

This message returns a status code as specified in section 2.2. Upon success, the status code returned

by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are
listed in the following table.

 Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The handle is not to a file, or the size of the input buffer is less than the size
of a FILE_ALLOCATED_RANGE_BUFFER structure, or the given FileOffset
field value is less than zero, or the given Length field value is less than zero,
or the given FileOffset field value plus the given Length field value is larger
than 0x7FFFFFFFFFFFFFFF.

STATUS_INVALID_USER_BUFFER

0xC00000E8

The input buffer or output buffer is not aligned to a 4-byte boundary.

STATUS_BUFFER_TOO_SMALL

0xC0000023

The output buffer is too small to contain a FILE_ALLOCATED_RANGE_BUFFER
structure.

STATUS_BUFFER_OVERFLOW

0x80000005

The output buffer is too small to contain the required number of
FILE_ALLOCATED_RANGE_BUFFER structures.

2.3.53 FSCTL_QUERY_FAT_BPB Request

This message requests that the server return the first 0x24 bytes of sector 0 for the volume that
contains the file or directory associated with the handle on which this FSCTL was invoked. The first
0x24 bytes of sector 0 are known as the FAT BIOS Parameter Block (BPB), which contains hardware-
specific bootstrap information.

This message does not contain any additional data elements.

This FSCTL is valid only for a FAT file system. All other file systems treat this as an invalid FSCTL.

2.3.54 FSCTL_QUERY_FAT_BPB Reply

The reply buffer contains the first 0x24 bytes of sector 0 for the volume associated with the handle
on which this FSCTL was invoked.

This message also returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error
codes are listed in the following table.

Error Code Meaning

STATUS_INVALID_DEVICE_REQUEST The specified request is not a valid operation for the target device.

88 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error Code Meaning

0xC0000010

STATUS_BUFFER_TOO_SMALL

0xC0000023

The buffer is too small to contain the entry. No information has been
written to the buffer.

2.3.55 FSCTL_QUERY_FILE_REGIONS Request

The FSCTL_QUERY_FILE_REGIONS request message requests that the server return a list of file
regions, based on a specified usage parameter, for the file associated with the handle on which this
FSCTL was invoked. This message contains an optional FILE_REGION_INPUT data element. If no
FILE_REGION_INPUT parameter is specified, information for the entire size of the file is returned.

A FILE_REGION_INPUT data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileOffset

...

Length

...

DesiredUsage

Reserved

FileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start of a
range of bytes in a file.

Length (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the range.

DesiredUsage (4 bytes): A 32-bit unsigned integer that indicates usage parameters for this

operation. The following table provides the currently defined usage parameters.

Value Meaning

FILE_REGION_USAGE_VALID_CACHED_DATA

0x00000001

Information about the valid data length for the specified
file and file range in the cache will be returned.<47>

FILE_REGION_USAGE_VALID_NONCACHED_DATA

0x00000002

Information about the valid data length for the specified
file and file range on disk will be returned.<48>

All other values If a FILE_REGION_INPUT object is specified in
FSCTL_QUERY_FILE_REGION, then any other value will
return STATUS_INVALID_PARAMETER.

Reserved (4 bytes): A 32-bit unsigned integer that is reserved. This field SHOULD be 0x00000000

and MUST be ignored.

89 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.56 FSCTL_QUERY_FILE_REGIONS Reply

The FSCTL_QUERY_FILE_REGIONS reply message returns the results of the
FSCTL_QUERY_FILE_REGIONS Request as a variably sized data element, FILE_REGION_OUTPUT,

which contains one or more FILE_REGION_INFO elements that contain the ranges computed as a
result of the desired usage.

A FILE_REGION_OUTPUT data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

TotalRegionEntryCount

RegionEntryCount

Reserved

Region (variable)

...

...

Flags (4 bytes): A 32-bit unsigned integer that indicates the flags for this operation. No flags are
currently defined, thus this field SHOULD be set to 0x00000000 and MUST be ignored.

TotalRegionEntryCount (4 bytes): A 32-bit unsigned integer that indicates the total number of

regions that could be returned.

RegionEntryCount (4 bytes): A 32-bit unsigned integer that indicates the number of regions that
were actually returned and which are contained in this structure.

Reserved (4 bytes): A 32-bit unsigned integer that is reserved. This field SHOULD be set to
0x00000000 and MUST be ignored.

Region (variable): One or more FILE_REGION_INFO structures, as specified in section 2.3.56.1, that

contain information on the desired ranges based on the desired usage indicated by the
DesiredUsage field.

This message returns a status code as specified in section 2.2. Upon success, the status code returned
by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are
listed in the following table.

Error code Meaning

STATUS_BUFFER_TOO_SMALL

0xC0000023

The input buffer is too small to contain a FILE_REGION_INPUT structure, or the
output buffer is too small to contain a FILE_REGION_OUTPUT structure.

STATUS_BUFFER_OVERFLOW

0x80000005

The output buffer was filled before all the desired regions for this file were
returned.

STATUS_INVALID_PARAMETER

0xC000000D

A specified file region is invalid, or the specified desired usage flag is invalid, or
the given handle is not for a file (but for a directory or volume instead).

90 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.56.1 FILE_REGION_INFO

The FILE_REGION_INFO structure contains a computed region of a file based on a desired usage.
This structure is used to store region information for the FSCTL_QUERY_FILE_REGIONS reply
message, with the FILE_REGION_OUTPUT structure containing one or more FILE_REGION_INFO
structures.

A FILE_REGION_INFO data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileOffset

...

Length

...

DesiredUsage

Reserved

FileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the region.

Length (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the region.

DesiredUsage (4 bytes): A 32-bit unsigned integer that indicates the usage for the given region of

the file.

Value Meaning

0x00000000 The given range is invalid. It does not match the criteria
of the requested DesiredUsage as specified in section
2.3.55.

FILE _USAGE_VALID_CACHED_DATA

0x00000001

Defines those regions of the file that exists before VDL
as it exists in the cache manager.<49>

FILE _USAGE_VALID_NONCACHED_DATA

0x00000002

Defines those regions of the files that exist before VDL
on the storage device.<50>

Reserved (4 bytes): A 32-bit unsigned integer field that is reserved. This field SHOULD be set to
0x00000000 and MUST be ignored.

2.3.57 FSCTL_QUERY_ON_DISK_VOLUME_INFO Request

This message requests UDF-specific volume information for the volume that contains the file or
directory associated with the handle on which this FSCTL was invoked.

This message does not contain any additional data elements.

91 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

This FSCTL is only valid on UDF file systems. All other File Systems will treat this as an invalid FSCTL.
For information regarding UDF, see [UDF].

2.3.58 FSCTL_QUERY_ON_DISK_VOLUME_INFO Reply

This message returns the results of the FSCTL_QUERY_ON_DISK_VOLUME_INFO request (section
2.3.57) as a FSCTL_QUERY_ON_DISK_VOLUME_INFO_BUFFER structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DirectoryCount

...

FileCount

...

FsFormatMajVersion FsFormatMinVersion

FsFormatName (24 bytes)

...

...

FormatTime

...

LastUpdateTime

...

CopyrightInfo (68 bytes)

...

...

AbstractInfo (68 bytes)

...

...

FormattingImplementationInfo (68 bytes)

...

https://go.microsoft.com/fwlink/?LinkId=184845

92 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

LastModifyingImplementationInfo (68 bytes)

...

...

DirectoryCount (8 bytes): A 64-bit signed integer. The number of directories on the specified
volume. This member is -1 if the number is unknown.

For UDF file systems with a virtual allocation table, this information is available only if the UDF

revision of the volume is greater than 1.50.<51>

FileCount (8 bytes): A 64-bit signed integer. The number of files on the specified volume. Returns -1

if the number is unknown.

For UDF file systems with a virtual allocation table, this information is available only if the UDF
revision of the volume is greater than 1.50.

FsFormatMajVersion (2 bytes): A 16-bit signed integer. The major version number of the file

system. Returns -1 if the number is unknown or not applicable. For example on UDF 1.02 file
systems, 1 is returned.

FsFormatMinVersion (2 bytes): A 16-bit signed integer. The minor version number of the file
system. Returns -1 if the number is unknown or not applicable. For example: on UDF 1.02 file
systems, 2 is returned.

FsFormatName (24 bytes): Always returns "UDF" in Unicode characters followed by nine Unicode
NULL characters.

FormatTime (8 bytes): The time the volume was formatted; see section 2.1.1.

LastUpdateTime (8 bytes): The time the volume was last updated; see section 2.1.1.

CopyrightInfo (68 bytes): A Unicode string containing any copyright notifications associated with
the volume. This information is implementation-specific and will be padded with NULLs.<52>

AbstractInfo (68 bytes): A Unicode string containing any abstract information written on the
volume. This information is implementation-specific and will be padded with NULLs.<53>

FormattingImplementationInfo (68 bytes): A Unicode string containing the operating system

version that the volume was formatted by. This information is implementation-specific and will be
padded with NULLs.<54>

LastModifyingImplementationInfo (68 bytes): A Unicode string containing the operating system
version that the volume was last modified by. This information is implementation-specific and will
be padded with NULLs.<55>

This message returns a status code as specified in section 2.2. Upon success, the status code returned

by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are
listed in the following table.

Error Code Meaning

STATUS_INVALID_USER_BUFFER

0xC00000E8

An access to a user buffer failed.

93 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error Code Meaning

STATUS_BUFFER_TOO_SMALL

0xC0000023

The buffer is too small to contain the entry. No information has been written
to the buffer.

STATUS_INVALID_PARAMETER

0xC000000D

An invalid parameter was passed to a service or function.

2.3.59 FSCTL_QUERY_SPARING_INFO Request

Retrieves the defect management properties of the volume that contains the file or directory
associated with the handle on which this FSCTL was invoked.

This message does not contain any additional data elements.

This FSCTL is only valid on UDF file systems. All other file systems will treat this as an invalid FSCTL.

For information regarding UDF, see [UDF].

2.3.60 FSCTL_QUERY_SPARING_INFO Reply

This message returns the results of the FSCTL_QUERY_SPARING_INFO request (section 2.3.59) as a

FSCTL_QUERY_SPARING_BUFFER structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SparingUnitBytes

SoftwareSparing Reserved

TotalSpareBlocks

FreeSpareBlocks

SparingUnitBytes (4 bytes): A 32-bit unsigned integer that contains the size, in bytes, of a sparing
packet, which is the same as the underlying error check and correction (ECC) block size of the
media. For more information, see [UDF].

SoftwareSparing (1 byte): A Boolean (section 2.1.8) value. If TRUE, indicates that sparing behavior
is software-based; if FALSE, it is hardware-based.

Reserved (3 bytes): A 24-bit reserved value. This field SHOULD be set to zero and MUST be ignored.

TotalSpareBlocks (4 bytes): A 32-bit unsigned integer that contains the total number of blocks

allocated for sparing.

FreeSpareBlocks (4 bytes): A 32-bit unsigned integer that contains the number of blocks available
for sparing.

This message returns a status code as specified in section 2.2. Upon success, the status code returned

by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are
listed in the following table.

https://go.microsoft.com/fwlink/?LinkId=184845
https://go.microsoft.com/fwlink/?LinkId=184845

94 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

An invalid parameter was passed to a service or function, or the buffer is too
small to contain the entry.

2.3.61 FSCTL_READ_FILE_USN_DATA Request

This message requests that the server return the most recent change journal USN for the file or
directory associated with the handle on which this FSCTL was invoked. This message contains an
optional READ_FILE_USN_DATA data element.<56>

The READ_FILE_USN_DATA data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MinMajorVersion MaxMajorVersion

MinMajorVersion (2 bytes): A 16-bit unsigned integer that contains the minimum major version of

records returned in the results of this request.<57>

MaxMajorVersion (2 bytes): A 16-bit unsigned integer that contains the maximum major version of
records returned in the results of this request.<58>

2.3.62 FSCTL_READ_FILE_USN_DATA Reply

The FSCTL_READ_FILE_USN_DATA reply message returns the results of the
FSCTL_READ_FILE_USN_DATA request as a USN_RECORD_V2 or a USN_RECORD_V3. Both forms of
reply message begin with a USN_RECORD_COMMON_HEADER, which can be used to determine the

form of the full reply message.

This message returns a status code as specified in section 2.2. Upon success, the status code returned
by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are

listed in the following table.

Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The handle is not to a file, directory or if invalid MinMajorVersion and
MaxMajorVersion values are specified. .

STATUS_INVALID_USER_BUFFER

0xC00000E8

The output buffer is not aligned to a 4-byte boundary.

STATUS_BUFFER_TOO_SMALL

0xC0000023

The output buffer is too small to contain a USN_RECORD structure.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The file system does not support the use of a USN change journal.

2.3.62.1 USN_RECORD_COMMON_HEADER

The USN_RECORD_COMMON_HEADER element is as follows.

95 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordLength

MajorVersion MinorVersion

RecordLength (4 bytes): A 32-bit unsigned integer that contains the total length of the update
sequence number (USN) record, in bytes.

MajorVersion (2 bytes): A 16-bit unsigned integer that contains the major version of the change

journal software for this record. For example, if the change journal software is version 2.0, the
major version number is 2.<59>

MinorVersion (2 bytes): A 16-bit unsigned integer that contains the minor version of the change
journal software for this record. For example, if the change journal software is version 2.0, the
minor version number is 0 (zero).<60>

2.3.62.2 USN_RECORD_V2

The USN_RECORD_V2 element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordLength

MajorVersion MinorVersion

FileReferenceNumber

...

ParentFileReferenceNumber

...

Usn

...

TimeStamp

...

Reason

SourceInfo

SecurityId

FileAttributes

96 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

FileNameLength FileNameOffset

FileName (variable)

...

RecordLength (4 bytes): A 32-bit unsigned integer that contains the total length of the update
sequence number (USN) record, in bytes.

MajorVersion (2 bytes): A 16-bit unsigned integer that contains the major version of the change

journal software for this record. For a USN_RECORD_V2, the major version number is 2.

MinorVersion (2 bytes): A 16-bit unsigned integer that contains the minor version of the change
journal software for this record. For a USN_RECORD_V2, the minor version number is 0 (zero).

FileReferenceNumber (8 bytes): The 64-bit file ID, as specified in section 2.1.9, of the file or

directory for which this record notes changes.

ParentFileReferenceNumber (8 bytes): The 64-bit file ID, as specified in section 2.1.9, of the

directory on which the file or directory that is associated with this record is located.

Usn (8 bytes): A 64-bit signed integer, opaque to the client, containing the USN of the record. This
value is unique within the volume on which the file is stored. This value MUST be greater than or
equal to 0. This value MUST be 0 if no USN change journal records have been logged for the file or
directory associated with this record. For more information, see [MSDN-CJ].

TimeStamp (8 bytes): The absolute system time that this change journal event was logged; see
section 2.1.1.

Reason (4 bytes): A 32-bit unsigned integer that contains flags that indicate reasons for changes
that have accumulated in this file or directory journal record since the file or directory was
opened. When a file or directory is closed, a final USN record is generated with the

USN_REASON_CLOSE flag set in this field. The next change, occurring after the next open
operation or deletion, starts a new record with a new set of reason flags. A rename or move
operation generates two USN records: one that records the old parent directory for the item and
one that records the new parent in the ParentFileReferenceNumber member. Possible values

for the reason code are as follows (all unused bits are reserved for future use and MUST NOT be
used).

Value Meaning

USN_REASON_BASIC_INFO_CHANGE

0x00008000

A user has either changed one or more files or directory
attributes (such as read-only, hidden, archive, or sparse) or
one or more time stamps.

USN_REASON_CLOSE

0x80000000

The file or directory is closed.

USN_REASON_COMPRESSION_CHANGE

0x00020000

The compression state of the file or directory is changed from
(or to) compressed.

USN_REASON_DATA_EXTEND

0x00000002

The file or directory is extended (added to).

USN_REASON_DATA_OVERWRITE

0x00000001

The data in the file or directory is overwritten.

USN_REASON_DATA_TRUNCATION The file or directory is truncated.

https://go.microsoft.com/fwlink/?LinkId=89970

97 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

0x00000004

USN_REASON_EA_CHANGE

0x00000400

The user made a change to the extended attributes of a file or
directory. These NTFS file system attributes are not accessible
to nonnative applications. This USN reason does not appear
under normal system usage but can appear if an application or
utility bypasses the Win32 API and uses the native API to
create or modify extended attributes of a file or directory.

USN_REASON_ENCRYPTION_CHANGE

0x00040000

The file or directory is encrypted or decrypted.

USN_REASON_FILE_CREATE

0x00000100

The file or directory is created for the first time.

USN_REASON_FILE_DELETE

0x00000200

The file or directory is deleted.

USN_REASON_HARD_LINK_CHANGE

0x00010000

A hard link is added to (or removed from) the file or directory.

USN_REASON_INDEXABLE_CHANGE

0x00004000

A user changes the FILE_ATTRIBUTE_NOT_CONTEXT_INDEXED
attribute. That is, the user changes the file or directory from
one in which content can be indexed to one in which content
cannot be indexed, or vice versa.

USN_REASON_NAMED_DATA_EXTEND

0x00000020

The one (or more) named data stream for a file is extended
(added to).

USN_REASON_NAMED_DATA_OVERWRITE

0x00000010

The data in one (or more) named data stream for a file is
overwritten.

USN_REASON_NAMED_DATA_TRUNCATION

0x00000040

One (or more) named data stream for a file is truncated.

USN_REASON_OBJECT_ID_CHANGE

0x00080000

The object identifier of a file or directory is changed.

USN_REASON_RENAME_NEW_NAME

0x00002000

A file or directory is renamed, and the file name in the
USN_RECORD structure is the new name.

USN_REASON_RENAME_OLD_NAME

0x00001000

The file or directory is renamed, and the file name in the
USN_RECORD structure is the previous name.

USN_REASON_REPARSE_POINT_CHANGE

0x00100000

The reparse point that is contained in a file or directory is
changed, or a reparse point is added to (or deleted from) a file
or directory.

USN_REASON_SECURITY_CHANGE

0x00000800

A change is made in the access rights to a file or directory.

USN_REASON_STREAM_CHANGE

0x00200000

A named stream is added to (or removed from) a file, or a
named stream is renamed.

USN_REASON_INTEGRITY_CHANGE

0x00800000

A change is made in the integrity status of a file or directory.

SourceInfo (4 bytes): A 32-bit unsigned integer that provides additional information about the
source of the change. When a thread writes a new USN record, the source information flags in the

98 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

prior record continue to be present only if the thread also sets those flags. Therefore, the source
information structure allows applications to filter out USN records that are set only by a known

source, for example, an antivirus filter. This flag MUST contain one of the following values.

Value Meaning

USN_SOURCE_DATA_MANAGEMENT

0x00000001

The operation provides information about a change to the file
or directory that was made by the operating system. For
example, a change journal record with this SourceInfo value is
generated when the Remote Storage system moves data from
external to local storage. This SourceInfo value indicates that
the modifications did not change the application data in the
file.

USN_SOURCE_AUXILIARY_DATA

0x00000002

The operation adds a private data stream to a file or directory.
For example, a virus detector might add checksum information.
As the virus detector modifies the item, the system generates
USN records. This SourceInfo value indicates that the
modifications did not change the application data in the file.

USN_SOURCE_REPLICATION_MANAGEMENT

0x00000004

The operation modified the file to match the content of the
same file that exists in another member of the replica set for
the File Replication Service (FRS).

SecurityId (4 bytes): A 32-bit unsigned integer that contains an index of a unique security identifier
assigned to the file or directory associated with this record. This index is internal to the underlying

object store and MUST be ignored.

FileAttributes (4 bytes): A 32-bit unsigned integer that contains attributes for the file or directory
associated with this record. Attributes of streams associated with the file or directory are
excluded. Valid file attributes are specified in section 2.6.

FileNameLength (2 bytes): A 16-bit unsigned integer that contains the length of the file or directory
name associated with this record, in bytes. The FileName member contains this name. Use this
member to determine file name length rather than depending on a trailing null to delimit the file

name in FileName.

FileNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the
FileName member from the beginning of the structure.

FileName (variable): A variable-length field of Unicode characters containing the name of the file
or directory associated with this record in Unicode format. When working with this field, do not
assume that the file name will contain a trailing Unicode null character.

The fields Reason, TimeStamp, SourceInfo, and SecurityId for a USN RECORD element returned
by this FSCTL MUST all be set to 0.<61>

2.3.62.3 USN_RECORD_V3

The USN_RECORD_V3 element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecordLength

MajorVersion MinorVersion

FileReferenceNumber (16 bytes)

99 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

...

ParentFileReferenceNumber (16 bytes)

...

...

Usn

...

TimeStamp

...

Reason

SourceInfo

SecurityId

FileAttributes

FileNameLength FileNameOffset

FileName (variable)

...

RecordLength (4 bytes): A 32-bit unsigned integer that contains the total length of the update
sequence number (USN) record, in bytes.

MajorVersion (2 bytes): A 16-bit unsigned integer that contains the major version of the change

journal software for this record. For a USN_RECORD_V3, the major version number is 3.

MinorVersion (2 bytes): A 16-bit unsigned integer that contains the minor version of the change
journal software for this record. For a USN_RECORD_V3, the minor version number is 0 (zero).

FileReferenceNumber (16 bytes): The 128-bit file ID, as specified in section 2.1.10, of the file or
directory for which this record notes changes.

ParentFileReferenceNumber (16 bytes): The 128-bit file ID, as specified in section 2.1.10, of the

directory on which the file or directory that is associated with this record is located.

The fields Usn, TimeStamp, Reason, SourceInfo, SecurityId, FileAttributes, FileNameLength,
FileNameOffset, and FileName for a USN RECORD_V3 element are as described for a
USN_RECORD_V2 element; see section 2.3.62.2.

100 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.63 FSCTL_RECALL_FILE Request

This message requests that the server recall the file (associated with the handle on which this FSCTL
was invoked) from storage media that Remote Storage manages. This FSCTL is not valid for

directories.

Typically, files stored on media that is managed by Remote Storage are recalled when an application
attempts to make the first access to data. An application that opens a file without immediately
accessing the data can speed up the first access by using FSCTL_RECALL_FILE immediately after
opening the file. For performance reasons, it is recommended that an application not recall a file
unnecessarily.

This message does not contain any additional data elements.

2.3.64 FSCTL_RECALL_FILE Reply

This message returns the results of the FSCTL_RECALL_FILE request.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,

the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most
common error codes are listed in the following table.

 Error code Meaning

STATUS_ACCESS_DENIED

0xC0000022

The file is set to not allow recall.

ERROR_INVALID_FUNCTION

0x00000001

The Remote Storage option is not installed.

STATUS_NOT_SUPPORTED

0xC00000BB

The request is not supported.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The supplied handle is not that of a file.

2.3.65 FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT Request

The FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT request message requests that the server
perform a specific stream snapshot operation on a given data stream contained in a file. The operation
performed is dependent on the value defined in REFS_STREAM_SNAPSHOT_OPERATION. The request
message takes the form of a REFS_STREAM_SNAPSHOT_MANAGEMENT_INPUT_BUFFER structure.

The REFS_STREAM_SNAPSHOT_MANAGEMENT_INPUT_BUFFER is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Operation

SnapshotNameLength OperationInputBufferLength

Reserved

101 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

...

...

NameAndInputBuffer (variable)

...

Operation (4 bytes): This field specifies the operation and MUST contain one of the following values:

Value Meaning

REFS_STREAM_SNAPSHOT_OPERATION_INVALID

0x00000000

All requests with this operational code MUST
be failed by the server.

REFS_STREAM_SNAPSHOT_OPERATION_CREATE

0x00000001

This request message requests the server
create a new snapshot of the UNICODE name
contained within NameAndInputBuffer,
saving a point-in-time view of the data
stream represented by the handle the
request is being sent on.

REFS_STREAM_SNAPSHOT_OPERATION_LIST

0x00000002

This request message requests the server
return a list of all snapshots of the set
containing the data stream represented by
the handle the request is being sent on, and
matching a given regular expression query
string contained in NameAndInputBuffer.

REFS_STREAM_SNAPSHOT_OPERATION_QUERY_DELTAS

0x00000003

This request message requests the server
return a list of all metadata extents that have
incurred modifying operations between the
data stream represented by the handle the
request is being sent on, and the data
stream represented by the UNICODE name
contained in NameAndInputBuffer. The data
stream represented by the handle must be of
a newer creation time than the data stream
represented by the UNICODE name.

REFS_STREAM_SNAPSHOT_OPERATION_REVERT

0x00000004

This request message requests the server
revert the data stream represented by the
handle the request is being sent on to a
point-in-time snapshot view represented by
the UNICODE name contained within
NameAndInputBuffer.

REFS_STREAM_SNAPSHOT_OPERATION_SET_SHADOW_BTREE

0x00000005

This request message requests the server
create a shadow data stream on the data
stream represented by the handle the
request is being sent on.

REFS_STREAM_SNAPSHOT_OPERATION_CLEAR_SHADOW_BTREE

0x00000006

This request message requests the server
remove a shadow data stream on the data
stream represented by the handle the
request is being sent on.

REFS_STREAM_SNAPSHOT_OPERATION_MAX The maximum operational code supported by

102 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

0x00000006 the server. All operational codes larger than
this numerical value will be failed.

SnapshotNameLength (2 bytes): An unsigned integer representing the length in bytes of the
unicode name contained within NameAndInputBuffer field. If no such name is present in the
message, then this value is set to zero.

OperationInputBufferLength (2 bytes): An unsigned integer representing the length in bytes of
the operational control structure present in the message and contained within

NameAndInputBuffer field. If no such control structure is present in the message, then this
value is set to zero.

Reserved (16 bytes): This field MUST be set to zero and MUST be ignored.

NameAndInputBuffer (variable): An array of bytes optionally containing a unicode name as well as
an operational control buffer. When a unicode name is present, it is located immediately within the

first byte of NameAndInputBuffer. When an operational control buffer is present, it is located at

the next quad aligned boundary past the end of the unicode name. If no such unicode name is
present, then the operational control buffer is located at the first byte of NameAndInputBuffer.

The following Operation codes require a unicode name to be present:
 REFS_STREAM_SNAPSHOT_OPERATION_CREATE
 REFS_STREAM_SNAPSHOT_OPERATION_LIST
 REFS_STREAM_SNAPSHOT_OPERATION_QUERY_DELTAS
 REFS_STREAM_SNAPSHOT_OPERATION_REVERT

The following Operation code requires a control structure of the following type:

 REFS_STREAM_SNAPSHOT_OPERATION_QUERY_DELTAS requires a
REFS_STREAM_SNAPSHOT_QUERY_DELTAS_INPUT_BUFFER to be present.

2.3.65.1 REFS_STREAM_SNAPSHOT_QUERY_DELTAS_INPUT_BUFFER

The REFS_STREAM_SNAPSHOT_QUERY_DELTAS_INPUT_BUFFER is as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StartingVcn

...

Flags

Reserved

StartingVcn (8 bytes): A signed integer representing the starting VCN for which to perform the
request on.

Flags (4 bytes): An unsigned integer representing flags to modify the behavior of the request. This
field must be set to zero.

Reserved (4 bytes): This field MUST be set to zero and MUST be ignored.

103 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.66 FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT Reply

This message returns the result of the FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT request.

The message returns either a status code, as specified in section 2.2, or depending on the operation,

an output data payload.

The most common error codes are listed in the following table.

Value Meaning

STATUS_NOT_SUPPORTED

0xC00000BB

The operation as requested is not supported, or the file

system does not support snapshot operations.

STATUS_INVALID_PARAMETER

0xC000000D

One of the parameters to the request is incorrect.

STATUS_INSUFFICIENT_RESOURCES

0xC000009A

There were insufficient resources to complete the
operation.

STATUS_DISK_FULL

0xC000007F

The disk is full.

STATUS_MEDIA_WRITE_PROTECTED

0xC00000A2

The volume is read-only.

STATUS_SUCCESS

0x00000000

The operation was successful.

2.3.66.1 REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER

The REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER is as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EntryCount

BufferSizeRequiredForQuery

Reserved

...

Entries (variable)

...

EntryCount (4 bytes): An unsigned integer representing the number of entries contained within the
Entries field.

BufferSizeRequiredForQuery (4 bytes): An unsigned integer representing the total number of
bytes to fully satisfy the request. This value is accurate upon returning STATUS_SUCCESS as well
as STATUS_BUFFER_OVERFLOW.

104 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Reserved (8 bytes): This field MUST be set to zero and MUST be ignored.

Entries (variable): An array of REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER_ENTRY
structs.

2.3.66.1.1 REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER_ENTRY

The REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER_ENTRY is as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

SnapshotNameLength SnapshotCreationTime

...

... StreamSize

...

... StreamAllocationSize

...

... Reserved

...

...

...

... SnapshotName (variable)

...

NextEntryOffset (4 bytes): An unsigned integer representing the offset in bytes to the next
REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER_ENTRY structure. When this value is zero
there are no more entries in the array.

SnapshotNameLength (2 bytes): A unsigned integer representing the length of the UNICODE name

contained in SnapshotName in bytes.

SnapshotCreationTime (8 bytes): An unsigned integer representing a FILETIME structure
containing the creation time of the snapshot.

StreamSize (8 bytes): An unsigned integer representing the End-Of-File marker of the data stream
represented by this entry.

StreamAllocationSize (8 bytes): An unsigned integer representing the size in bytes used by the

data owned by the data stream represented by this entry.

Reserved (16 bytes): This field MUST be set to zero and MUST be ignored.

105 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

SnapshotName (variable): An array of WCHARs, as specified in [MS-DTYP] section 2.2.60,
representing the UNICODE name for the snapshot representing this entry. The size of the array is

defined in the SnapshotNameLength field.

2.3.66.2 REFS_STREAM_SNAPSHOT_QUERY_DELTAS_OUTPUT_BUFFER

The REFS_STREAM_SNAPSHOT_QUERY_DELTAS_INPUT_BUFFER is as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ExtentCount

Reserved

...

Extents (variable)

...

ExtentCount (4 bytes): An unsigned integer representing the number of REFS_STREAM_EXTENT

structs contained in the Extents field.

Reserved (8 bytes): This field MUST be set to zero and MUST be ignored.

Extents (variable): An array of REFS_STREAM_EXTENT structs.

2.3.66.2.1 REFS_STREAM_EXTENT

The REFS_STREAM_EXTENT is as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Vcn

...

Lcn

...

Length

...

Properties

Vcn (8 bytes): A signed integer representing a VCN within a data stream. This value will always be
greater than zero.

Lcn (8 bytes): A signed integer representing the LCN mapping to Vcn in a data stream. This value
will always be greater than zero.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

106 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Length (8 bytes): A signed integer representing the contiguous length in clusters for which the VCN
to LCN mapping holds. This value will always be greater than zero.

Properties (4 bytes): A value representing the properties for this VCN to LCN mapping. The value
MUST be one of the following:

Value Meaning

REFS_STREAM_EXTENT_PROPERTY_VALID

0x0010

The metadata extent is considered valid, where the
VCN to LCN mapping represents a written or zeroed
extent.

REFS_STREAM_EXTENT_PROPERTY_STREAM_RESERVED

0x0020

The metadata extent does not map to an LCN, but
instead contains a token representation an allocation
reservation.

REFS_STREAM_EXTENT_PROPERTY_CRC32

0x0080

The metadata extent references data that is
checksumed with the CRC32 algorithm.

REFS_STREAM_EXTENT_PROPERTY_CRC64

0x0100

The metadata extent references data that is
checksumed with the CRC64 algorithm.

REFS_STREAM_EXTENT_PROPERTY_GHOSTED

0x0200

The metadata extent contains a ghosted recall buffer.

REFS_STREAM_EXTENT_PROPERTY_READONLY

0x0400

The metadata extent is a cached copy of a different
metadata extent. This extent is immutable, and the
LCN it references is not writable via this extent.

REFS_STREAM_EXTENT_PROPERTY_SPARSE

0x0008

The metadata extent represents a sparse range within
the stream. The range represented by this extent is
analogous to a sparse hole in the stream table.

2.3.67 FSCTL_SET_COMPRESSION Request

The FSCTL_SET_COMPRESSION request message requests that the server set the compression state
of the file or directory associated with the handle on which this FSCTL was invoked. The message
contains a 16-bit unsigned integer.

The CompressionState element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CompressionState

CompressionState (2 bytes): MUST be one of the following standard values.

Value Meaning

COMPRESSION_FORMAT_NONE

0x0000

The file or directory is not compressed.

COMPRESSION_FORMAT_DEFAULT

0x0001

The file or directory is compressed by using the default compression
algorithm.<62>

COMPRESSION_FORMAT_LZNT1 The file or directory is compressed by using the LZNT1 compression

107 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

0x0002 algorithm. For more information, see [UASDC].

All other values Reserved for future use and MUST NOT be used.

The actual file or directory compression performed when a server receives a request for
COMPRESSION_FORMAT_DEFAULT and COMPRESSION_FORMAT_LZNT1 is implementation-

dependent.<63>

If the file system of the volume containing the specified file or directory does not support per-file
or per-directory compression, the request MUST NOT succeed. The error code returned in this
situation is specified in section 2.2.

2.3.68 FSCTL_SET_COMPRESSION Reply

This message returns the results of the FSCTL_SET_COMPRESSION request.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most
common error codes are listed in the following table.

 Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The input buffer length is less than 2, or the handle is not to a file or
directory, or the requested CompressionState is not one of the values
listed in the table for CompressionState in FSCTL_SET_COMPRESSION
Request (section 2.3.67).

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The volume does not allow compression.

STATUS_DISK_FULL

0xC00007F

The disk is full.

2.3.69 FSCTL_SET_DEFECT_MANAGEMENT Request

Sets the software defect management state for the specified file associated with the handle on which
this FSCTL was invoked. Used for UDF file systems.

This message contains a FILE_SET_DEFECT_MGMT_BUFFER structure.

FILE_SET_DEFECT_MGMT_BUFFER is defined as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Disable

Disable (1 byte): A Boolean (section 2.1.8) value. If TRUE, indicates that defect management will be
disabled. If FALSE, indicates that defect management will be enabled.

This FSCTL is valid only on UDF file systems. All other file systems will treat this as an invalid
FSCTL. For information regarding UDF, see [UDF].

https://go.microsoft.com/fwlink/?LinkId=90549
https://go.microsoft.com/fwlink/?LinkId=184845

108 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.70 FSCTL_SET_DEFECT_MANAGEMENT Reply

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned directly by the function that processes this FSCTL is STATUS_SUCCESS. The

most common error codes are listed in the following table.

Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

An invalid parameter was passed to a service or function or the handle on
which this FSCTL was invoked is that of a directory.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The specified request is not a valid operation for the target device.

STATUS_SHARING_VIOLATION

0xC0000043

A file cannot be opened because the share access flags are incompatible.

STATUS_VOLUME_DISMOUNTED

0xC000026E

An operation was attempted to a volume after it was dismounted.

STATUS_FILE_INVALID

0xC0000098

The volume for a file has been externally altered such that the opened file
is no longer valid.

STATUS_WRONG_VOLUME

0xC0000012

The wrong volume is in the drive.

STATUS_VERIFY_REQUIRED

0x80000016

The media has changed and a verify operation is in progress so no reads
or writes can be performed to the device, except those used in the verify
operation.

There are no additional data elements in this reply.

2.3.71 FSCTL_SET_ENCRYPTION Request

The FSCTL_SET_ENCRYPTION request sets the encryption for the file or directory associated with the
given handle.<64><65>

The message contains an ENCRYPTION_BUFFER structure that indicates whether to encrypt/decrypt a
file or an individual stream.

ENCRYPTION_BUFFER is defined as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionOperation

Private Padding

EncryptionOperation (4 bytes): A 32-bit unsigned integer value that indicates the operation to be
performed. The valid values are as follows.

Value Meaning

FILE_SET_ENCRYPTION

0x00000001

This operation requests encryption of the specified file or directory.<66>

109 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

FILE_CLEAR_ENCRYPTION

0x00000002

This operation requests removal of encryption from the specified file or
directory. It MUST fail if any streams for the file are marked
encrypted.<67>

STREAM_SET_ENCRYPTION

0x00000003

This operation requests encryption of the specified stream.<68>

STREAM_CLEAR_ENCRYPTION

0x00000004

This operation requests the removal of encryption from the specified
stream.<69>

Private (1 byte): An 8-bit unsigned char value.<70>

Padding (3 bytes): These bytes MUST be ignored.

2.3.72 FSCTL_SET_ENCRYPTION Reply

This message returns the results of the FSCTL_SET_ENCRYPTION request. If the file system of the
volume containing the specified file or directory does not support encryption, the request MUST NOT
succeed. The error code returned in this situation varies, depending on the file system.

This message returns a status code, as specified in section 2.2, as well as a
DECRYPTION_STATUS_BUFFER (section 2.3.72.1) if an output buffer is passed in.

Upon success, the status code returned by the function that processes this FSCTL is
STATUS_SUCCESS<71>. The most common error codes are listed in the following table.

 Error code Meaning

STATUS_MEDIA_WRITE_PROTECTED

0xC00000A2

The disk cannot be written to because it is write-protected.

STATUS_INVALID_PARAMETER

0xC000000D

The EncryptionOperation field value is invalid, the open request is not
for a file or directory or stream encryption has been requested on a
stream that is compressed.

STATUS_BUFFER_TOO_SMALL

0xC0000023

The size of the input buffer is less than the size of the encryption buffer
structure defined in section 2.3.71, or an output buffer is present and is
smaller than a DECRYPTION_STATUS_BUFFER structure.

STATUS_VOLUME_NOT_UPGRADED

0xC000029C

The version of the file system on the volume does not support
encryption.<72>

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The request was invalid for a system-specific reason.<73>

STATUS_FILE_CORRUPT_ERROR

0xC0000102

A required attribute is missing from a directory for which encryption was
requested.<74>

STATUS_VOLUME_DISMOUNTED

0xC000026E

The volume is not mounted.

STATUS_INVALID_USER_BUFFER

0xC00000E8

An exception was raised while accessing a user buffer.

110 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.72.1 DECRYPTION_STATUS_BUFFER

The DECRYPTION_STATUS_BUFFER is defined as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NoEncryptedStreams

NoEncryptedStreams (1 byte): A Boolean (section 2.1.8) value. A TRUE value means that the last
encrypted stream of the specified file was just decrypted by an FSCTL_SET_ENCRYPTION
operation; otherwise, a FALSE value is returned.

2.3.73 FSCTL_SET_INTEGRITY_INFORMATION Request

The FSCTL_SET_INTEGRITY_INFORMATION Request message requests that the server set the

integrity state of the file or directory associated with the handle on which this FSCTL was
invoked.<75>

If the file system of the volume containing the specified file or directory does not support integrity, the
request MUST NOT succeed. The error code returned in this situation is specified in section 2.2.

The FSCTL_SET_INTEGRITY_INFORMATION_BUFFER element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ChecksumAlgorithm Reserved

Flags

ChecksumAlgorithm (2 bytes): For ReFS v1, the field MUST be set to one of the following standard
values.

Value Meaning

CHECKSUM_TYPE_NONE

0x0000

The file or directory is set to not use integrity.

CHECKSUM_TYPE_CRC64

0x0002

The file or directory is set to provide integrity using a CRC64 checksum.

CHECKSUM_TYPE_UNCHANGED

0xFFFF

The integrity status of the file or directory is unchanged.

All other values

0x0003 — 0xFFFE

Reserved for future use and MUST NOT be used.

For ReFS v2, the field MUST be set to one of the following standard values.

Value Meaning

CHECKSUM_TYPE_NONE

0x0000

The file or directory is set to not use integrity.

CHECKSUM_TYPE_CRC32 The file or directory is set to provide integrity using a CRC32 or CRC64

111 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

0x0001 checksum. If the ReFS cluster size is 4KB, the checksum used is CRC32;
otherwise, if the cluster size is 64K, the CRC64 checksum is used.

CHECKSUM_TYPE_CRC64

0x0002

The file or directory is set to provide integrity using a CRC32 or CRC64
checksum. If the ReFS cluster size is 4KB, the checksum used is CRC32;
otherwise, if the cluster size is 64K, the CRC64 checksum is used.

CHECKSUM_TYPE_UNCHANGED

0xFFFF

The integrity status of the file or directory is unchanged.

All other values

0x0003 — 0xFFFE

Reserved for future use and MUST NOT be used.

Note that for ReFS v2 any value except CHECKSUM_TYPE_NONE or
CHECKSUM_TYPE_UNCHANGED will set the integrity value to a file-system-selected integrity
mechanism and is not guaranteed to use the user specified checksum value.

Reserved (2 bytes): A 16-bit reserved value. This field MUST be set to zero and MUST be ignored.

Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values.
Flag values that are unspecified in the following table SHOULD be set to 0 and MUST be ignored.

Value Meaning

FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF

0x00000001

When set, if a checksum does not match, the
associated I/O operation will not be failed.

2.3.74 FSCTL_SET_INTEGRITY_INFORMATION Reply

This message returns the results of the FSCTL_SET_INTEGRITY_INFORMATION
Request (section 2.3.73).

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The input buffer length is less than the size, in bytes, of the
FSCTL_SET_INTEGRITY_INFORMATION_BUFFER element; the handle is
not to a file or directory; or the requested ChecksumAlgorithm field is
not one of the values listed in the table for the ChecksumAlgorithm
field in the FSCTL_SET_INTEGRITY_INFORMATION Request.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The volume does not support integrity.

STATUS_DISK_FULL

0xC000007F

The disk is full.

STATUS_NOT_SUPPORTED

0xC00000BB

The file has been ghosted (allocation blocks are being shared).

112 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.75 FSCTL_SET_INTEGRITY_INFORMATION_EX Request

The FSCTL_SET_INTEGRITY_INFORMATION_EX Request message requests that the server set the
integrity state of the file or directory associated with the handle on which this FSCTL was

invoked.<76>

If the file system of the volume containing the specified file or directory does not support integrity, the
request MUST NOT succeed. The error code returned in this situation is specified in section 2.2.

The FSCTL_SET_INTEGRITY_INFORMATION_BUFFER_EX element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EnableIntegrity A Reserved1

Flags

Version Reserved2

…

EnableIntegrity (1 byte): This field MUST be one of the following values:

Value Meaning

0x00 The file or directory is set to not use integrity.

0x01 The file or directory is set to provide integrity using
CRC32 or CRC64 checksum.

A - KeepIntegrityStateUnchanged (1 byte): This field MUST be one of the following values:

Value Meaning

0x00 The file or directory integrity state should change

based on the EnableIntegrity parameter.

0x01 The file or directory integrity state must not change.

Reserved1 (2 bytes): A 16-bit reserved value. This field MUST be set to zero and MUST be ignored.

Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values.
Flag values that are unspecified in the following table SHOULD be set to 0 and MUST be ignored.

Value Meaning

FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF

0x00000001

When set, if a checksum does not match, the
associated I/O operation will not be failed.

Version (1 byte): An 8-bit value. This field MUST be set to 1.

Reserved2 (7 bytes): A 56-bit reserved value. This field MUST be set to zero and MUST be ignored.

113 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.76 FSCTL_SET_INTEGRITY_INFORMATION_EX Reply

This message returns the results of the FSCTL_SET_INTEGRITY_INFORMATION_EX Request (section
2.3.75).

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The input buffer length is less than the size, in bytes, of
the FSCTL_SET_INTEGRITY_INFORMATION_BUFFER_EX
element; the handle is not to a file or directory; or
Version is not equal to 1.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The volume does not support integrity.

STATUS_DISK_FULL

0xC000007F

The disk is full.

STATUS_NOT_SUPPORTED

0xC00000BB

The file has been ghosted (allocation blocks are being
shared).

2.3.77 FSCTL_SET_OBJECT_ID Request

This message sets the object identifier for the file or directory associated with the handle on which
this FSCTL was invoked. The message contains a FILE_OBJECTID_BUFFER (section 2.1.3) data
element. Either a Type 1 or a Type 2 buffer is valid.<77><78>

2.3.78 FSCTL_SET_OBJECT_ID Reply

This message returns the results of the FSCTL_SET_OBJECT_ID request.

If the file system of the volume containing the specified file or directory does not support the use of
object IDs, the request will not succeed. The error code returned in this situation varies, depending on
the file system.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most
common error codes are listed in the following table.

 Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The handle is not to a file or directory, or the input buffer's length is not
equal to the size of a FILE_OBJECTID_BUFFER structure.

STATUS_ACCESS_DENIED

0xC0000022

The handle was not opened with write data or write attribute access as
well as restore access.

STATUS_OBJECT_NAME_COLLISION

0xC0000035

The file or directory already has an object ID.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The file system does not support the use of object IDs.

114 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

 Error code Meaning

STATUS_MEDIA_WRITE_PROTECTED

0xC00000A2

The volume is write-protected and changes to it cannot be made.

2.3.79 FSCTL_SET_OBJECT_ID_EXTENDED Request

The FSCTL_SET_OBJECT_ID_EXTENDED request message requests that the server set the extended
information for the file or directory associated with the handle on which this FSCTL was invoked. The
message contains an EXTENDED_INFO data element.

The EXTENDED_INFO data element is defined as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ExtendedInfo (48 bytes)

...

...

ExtendedInfo (48 bytes): A 48-byte binary large object(BLOB) containing user-defined extended

data that was passed to this FSCTL by an application. In this situation, the user refers to the
implementer who is calling this FSCTL, meaning the extended info is opaque to NTFS; there are
no rules enforced by NTFS as to what these last 48 bytes contain. Contrast this with the first 16
bytes of an object ID, which can be used to open the file, so NTFS requires that they be unique
within a volume.<79>

2.3.80 FSCTL_SET_OBJECT_ID_EXTENDED Reply

This message returns the results of the FSCTL_SET_OBJECT_ID_EXTENDED request.

If the file system of the volume containing the specified file or directory does not support the use of
ObjectIds, the request will not succeed. The error code returned in this situation varies, depending on
the file system.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most
common error codes are listed in the following table.

 Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The handle is not to a file or directory, or the input buffer's length is not
equal to the size of an EXTENDED_INFO structure.

STATUS_ACCESS_DENIED

0xC0000022

The handle was not opened with write data or write attribute access.

STATUS_OBJECT_NAME_NOT_FOUND

0xC0000034

The file or directory has no object ID.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The file system does not support the use of object IDs.

115 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.81 FSCTL_SET_REPARSE_POINT Request

This message requests that the server set a reparse point on the file or directory associated with the
handle on which this FSCTL was invoked.

The message contains a REPARSE_GUID_DATA_BUFFER or a REPARSE_DATA_BUFFER (including
subtypes) data element. Both the REPARSE_GUID_DATA_BUFFER and REPARSE_DATA_BUFFER
structures begin with a ReparseTag field. The ReparseTag value uniquely identifies the filter driver

that creates/uses the reparse point, and the filter driver processes the reparse point data as either a
REPARSE_GUID_DATA_BUFFER or a REPARSE_DATA_BUFFER, depending on the structure
implemented by the filter driver for that type of reparse point.

This message is applicable only to a file or directory handle, not to a volume handle.

2.3.82 FSCTL_SET_REPARSE_POINT Reply

This message returns the results of the FSCTL_SET_REPARSE_POINT request.

If the file system of the volume containing the specified file or directory does not support reparse
points, the request will not succeed. The error code returned in this situation varies, depending on
the file system.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most

common error codes are listed in the following table.

 Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The handle is not to a file or directory, or the output buffer's length is
greater than 0.

STATUS_IO_REPARSE_DATA_INVALID

0xC0000278

The input buffer length is less than the size of a
REPARSE_DATA_BUFFER structure, or the input buffer length is greater
than 16,384, or a REPARSE_DATA_BUFFER structure has been specified
for a third party reparse tag, or the GUID specified for a third party
reparse tag does not match the GUID known by the operating system
for this reparse point, or the reparse tag is 0 or 1.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The file system does not support reparse points.

2.3.83 FSCTL_SET_SPARSE Request

This message requests that the server mark the file that is associated with the handle on which this

FSCTL was invoked as sparse. In a sparse file, large ranges of zeros (0) might not require disk

allocation. Space for nonzero data is allocated as the file is written. The message either has no data
elements at all or it contains a FILE_SET_SPARSE_BUFFER element. If there is no data element, the
sparse flag for the file is set, exactly as if the FILE_SET_SPARSE_BUFFER element was supplied and
had a SetSparse value of TRUE.<80>

The FILE_SET_SPARSE_BUFFER element is as follows:

116 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SetSparse

SetSparse (1 byte): A Boolean (section 2.1.8) value.

A FALSE value will cause the file system to attempt to "unsparse" the file by allocating clusters for
any regions of the file that are currently sparsed. If the entire file is successfully unsparsed, the

sparse flag is cleared for the file. If an error is encountered during unsparsing, any regions of the
file that were unsparsed MAY<81> remain unsparsed.

A TRUE value will cause the sparse flag for the file to set. Currently allocated clusters SHOULD
NOT<82> be deallocated.

2.3.84 FSCTL_SET_SPARSE Reply

This message returns the results of the FSCTL_SET_SPARSE request.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most
common error codes are listed in the following table.

 Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The handle is not to a file, or the input buffer length is nonzero and is less than
the size of a FILE_SET_SPARSE_BUFFER structure.

STATUS_ACCESS_DENIED

0xC0000022

The handle is not open with write data or write attribute access.

2.3.85 FSCTL_SET_ZERO_DATA Request

The FSCTL_SET_ZERO_DATA request message requests that the server fill the specified range of the

file (associated with the handle on which this FSCTL was invoked) with zeros. The message contains a
FILE_ZERO_DATA_INFORMATION element.

The FILE_ZERO_DATA_INFORMATION element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileOffset

...

BeyondFinalZero

...

FileOffset (8 bytes): A 64-bit signed integer that contains the file offset of the start of the range to
set to zeros, in bytes. The value of this field MUST be greater than or equal to 0.

117 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

BeyondFinalZero (8 bytes): A 64-bit signed integer that contains the byte offset of the first byte
beyond the last zeroed byte. The value of this field MUST be greater than or equal to 0.

How an implementation zeros data within a file is implementation-dependent. A file system MAY
choose to deallocate regions of disk space that have been zeroed.<83>

2.3.86 FSCTL_SET_ZERO_DATA Reply

This message returns the results of the FSCTL_SET_ZERO_DATA request.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,

the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most
common error codes are listed in the following table.

 Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The handle is not to a file, or input buffer length is not equal to the size of a
FILE_ZERO_DATA_INFORMATION structure, or the given FileOffset is less than
zero, or the given BeyondFinalZero is less than zero, or the given FileOffset
is greater than the given BeyondFinalZero.

STATUS_ACCESS_DENIED

0xC0000022

The handle is not open with write data or write attribute access.

2.3.87 FSCTL_SET_ZERO_ON_DEALLOCATION Request

This message requests that the server fill the clusters of the target file with zeros when they are
deallocated.<84> This is used to set a file to secure delete mode, which ensures that data will be
zeroed upon file truncation or deletion.

There are several side effects associated with this operation.

 If the file is resident, it is converted to non-resident and the resident portion is zeroed.

 When reallocating ranges of a compressed file, the clusters are both zeroed and then replaced
with a cluster representing compressed zeros before being reallocated.

This message does not contain any additional data elements.

2.3.88 FSCTL_SET_ZERO_ON_DEALLOCATION Reply

This message returns the results of the FSCTL_SET_ZERO_ON_DEALLOCATION request. The only data
item this message returns is a status code, as specified in section 2.2. Upon success, the status code
returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error
codes are listed in the following table.

 Error code Meaning

STATUS_ACCESS_DENIED

0xC0000022

Zero on deallocation can only be set on a user file opened for write access and
cannot be set on a directory.

118 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.89 FSCTL_SIS_COPYFILE Request

The FSCTL_SIS_COPYFILE request message requests that the server use the single-instance
storage (SIS) filter to copy a file. The message contains an SI_COPYFILE data element.

If the SIS filter is installed on the server, it will attempt to copy the specified source file to the
specified destination file by creating an SIS link instead of actually copying the file data. If necessary
and allowed, the source file is placed under SIS control before the destination file is created.

This FSCTL can be issued against either a file or directory handle. The source and destination files
MUST reside on the volume associated with the given handle.

The SI_COPYFILE data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SourceFileNameLength

DestinationFileNameLength

Flags

SourceFileName (variable)

...

DestinationFileName (variable)

...

SourceFileNameLength (4 bytes): A 32-bit unsigned integer that contains the size, in bytes, of the
SourceFileName element, including a terminating-Unicode null character.

DestinationFileNameLength (4 bytes): A 32-bit unsigned integer that contains the size, in bytes,
of the DestinationFileName element, including a terminating-Unicode null character.

Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values.
Flag values not specified in the following table SHOULD be set to 0 and MUST be ignored.

Value Meaning

COPYFILE_SIS_LINK

0x00000001

If this flag is set, only create the destination file if the source file is already under SIS
control. If the source file is not under SIS control, the FSCTL returns
STATUS_OBJECT_TYPE_MISMATCH.

If this flag is not specified, place the source file under SIS control (if it is not already
under SIS control), and create the destination file.

COPYFILE_SIS_REPLACE

0x00000002

If this flag is set, create the destination file if it does not exist; if it does exist,
overwrite it.

If this flag is not specified, create the destination file if it does not exist; if it does
exist, the FSCTL returns STATUS_OBJECT_NAME_COLLISION.

SourceFileName (variable): A null-terminated Unicode string containing the source file name.

DestinationFileName (variable): A null-terminated Unicode string containing the destination file
name.<85>

119 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.3.90 FSCTL_SIS_COPYFILE Reply

This message returns the results of the FSCTL_SIS_COPYFILE request.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,

the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most
common error codes are listed in the following table.

 Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The input buffer is NULL, or the input buffer length is less than the size of

the SI_COPYFILE structure, or the given SourceFileNameLength or
DestinationFileNameLength is less than 2 or greater than the buffer
length, or the given SourceFileNameLength plus
DestinationFileNameLength is greater than the length of the given
SourceFileName plus DestinationFileName in the input buffer, or the
given SourceFileName or DestinationFileName is NULL, or the given
SourceFileName or DestinationFileName is not null-terminated.

STATUS_OBJECT_NAME_NOT_FOUND

0xC0000034

The source file does not exist.

STATUS_OBJECT_NAME_COLLISION

0xC0000035

The COPYFILE_SIS_REPLACE flag was not specified, and the destination
file exists, or the source and destination file are the same.

STATUS_OBJECT_TYPE_MISMATCH

0xC0000024

The COPYFILE_SIS_LINK flag was specified, and the source file is not
under SIS control.

STATUS_NOT_SAME_DEVICE

0xC00000D4

The source and destination file names are not located on the same
volume, or the source and destination file names are located on the
same volume, but it is not the volume associated with the handle on
which the FSCTL was performed.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The single-instance storage (SIS) filter is not installed on the server.

STATUS_FILE_IS_A_DIRECTORY

0xC00000BA

The source or destination file is a directory.

STATUS_ACCESS_DENIED

0xC0000022

The caller is not an administrator.

2.3.91 FSCTL_VIRTUAL_STORAGE_QUERY_PROPERTY Request

This request contains a message with the same structure as the IOCTL_STORAGE_QUERY_PROPERTY

request (section 2.8.1) with the following values:

PropertyId (4 bytes): 0x00000004

QueryType (4 bytes): 0x00000000

Remote servers SHOULD ignore this request.<86>

2.3.92 FSCTL_WRITE_USN_CLOSE_RECORD Request

This message requests that the server generate a record in the server's file system change journal
stream for the file or directory associated with the handle on which this FSCTL was invoked,

120 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

indicating that the file or directory was closed. This FSCTL can be called independently of the actual
file close operation to write a USN record and cause a post of any pending USN updates for the

indicated file.

No data structure is associated with this request.

2.3.93 FSCTL_WRITE_USN_CLOSE_RECORD Reply

This message returns the results of the FSCTL_WRITE_USN_CLOSE_RECORD request as a single field,
Usn, which is a 64-bit signed integer that contains the server file system's USN for the file or

directory. This value MUST be greater than or equal to 0.

This message returns a status code as specified in section 2.2. Upon success, the status code returned
by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are
listed in the following table.

 Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The handle is not to a file or directory, or the length of the output buffer
is less than the size of a 64-bit integer, or the output buffer does not
begin on a 4-byte boundary.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The file system does not support the use of a USN change journal.

2.4 File Information Classes

File information classes are numerical values (specified by the Level column in the following table) that
specify what information for a file is to be queried or set or for local use<87>. File information classes
can require additional information to be included in the query or the response. When appropriate, the

additional information is detailed in the file information class description. The table indicates which file
information classes are supported for query and set operations.<88>

File information class Level Uses

FileAccessInformation 8 Query

FileAlignmentInformation 17 Query

FileAllInformation 18 Query

FileAllocationInformation 19 Set

FileAlternateNameInformation 21 Query

FileAttributeTagInformation 35 Query

FileBasicInformation 4 Query, Set

FileBothDirectoryInformation 3 Query

FileCompressionInformation 28 Query

FileDirectoryInformation 1 Query

FileDispositionInformation 13 Set

FileEaInformation 7 Query

121 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

File information class Level Uses

FileEndOfFileInformation 20 Set

FileFullDirectoryInformation 2 Query

FileFullEaInformation 15 Query, Set

FileHardLinkInformation 46 LOCAL

FileId64ExtdBothDirectoryInformation 79 Query<89>

FileId64ExtdDirectoryInformation 78 Query<90>

FileIdAllExtdBothDirectoryInformation 81 Query<91>

FileIdAllExtdDirectoryInformation 80 Query<92>

FileIdBothDirectoryInformation 37 Query

FileIdExtdDirectoryInformation 60 Query

FileIdFullDirectoryInformation 38 Query

FileIdGlobalTxDirectoryInformation 50 LOCAL

FileIdInformation 59 Query<93>

FileInternalInformation 6 Query

FileLinkInformation 11 Set

FileMailslotQueryInformation 26 LOCAL

FileMailslotSetInformation 27 LOCAL

FileModeInformation 16 Query, Set<94>

FileMoveClusterInformation 31 <95>

FileNameInformation 9 LOCAL

FileNamesInformation 12 Query

FileNetworkOpenInformation 34 Query

FileNormalizedNameInformation 48 Query<96>

FileObjectIdInformation 29 LOCAL

FilePipeInformation 23 Query, Set

FilePipeLocalInformation 24 Query

FilePipeRemoteInformation 25 Query

FilePositionInformation 14 Query, Set

FileQuotaInformation 32 Query, Set<97>

FileRenameInformation 10 Set

FileReparsePointInformation 33 LOCAL

FileSfioReserveInformation 44 LOCAL

122 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

File information class Level Uses

FileSfioVolumeInformation 45 <98>

FileShortNameInformation 40 Set

FileStandardInformation 5 Query

FileStandardLinkInformation 54 LOCAL

FileStreamInformation 22 Query

FileTrackingInformation 36 LOCAL

FileValidDataLengthInformation 39 Set

If an information class is specified that does not match the usage in the above table,
STATUS_INVALID_INFO_CLASS MUST be returned. If a file system does not support a specific file

information class, STATUS_INVALID_PARAMETER MUST be returned.

2.4.1 FileAccessInformation

This information class is used to query the access rights of a file that were granted when the file was
opened.

A FILE_ACCESS_INFORMATION data element, defined as follows, is returned by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AccessFlags

AccessFlags (4 bytes): A 32-bit unsigned integer that MUST contain values specified in [MS-SMB2]

section 2.2.13.1.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.2 FileAllInformation

This information class is used to query a collection of file information structures.

A FILE_ALL_INFORMATION data element, defined as follows, is returned by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BasicInformation (40 bytes)

%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

123 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

...

StandardInformation (24 bytes)

...

...

InternalInformation

...

EaInformation

AccessInformation

PositionInformation

...

ModeInformation

AlignmentInformation

NameInformation (variable)

...

BasicInformation (40 bytes): A FILE_BASIC_INFORMATION structure specified in section 2.4.7.

StandardInformation (24 bytes): A FILE_STANDARD_INFORMATION structure specified in section
2.4.45.

InternalInformation (8 bytes): A FILE_INTERNAL_INFORMATION structure specified in section
2.4.26.

EaInformation (4 bytes): A FILE_EA_INFORMATION structure specified in section 2.4.12.

AccessInformation (4 bytes): A FILE_ACCESS_INFORMATION structure specified in section 2.4.1.

PositionInformation (8 bytes): A FILE_POSITION_INFORMATION structure specified in section

2.4.39.

ModeInformation (4 bytes): A FILE_MODE_INFORMATION structure specified in section 2.4.30.

AlignmentInformation (4 bytes): A FILE_ALIGNMENT_INFORMATION structure specified in section
2.4.3.

NameInformation (variable): A FILE_NAME_INFORMATION structure specified in section 2.4.31.

124 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most

common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.3 FileAlignmentInformation

This information class is used to query the buffer alignment required by the underlying device.

A FILE_ALIGNMENT_INFORMATION data element, defined as follows, is returned by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AlignmentRequirement

AlignmentRequirement (4 bytes): A 32-bit unsigned integer that MUST contain one of the
following values.

Value Meaning

FILE_BYTE_ALIGNMENT

0x00000000

Specifies that there are no alignment requirements for the device.

FILE_WORD_ALIGNMENT

0x00000001

Specifies that data MUST be aligned on a 2-byte boundary.

FILE_LONG_ALIGNMENT

0x00000003

Specifies that data MUST be aligned on a 4-byte boundary.

FILE_QUAD_ALIGNMENT

0x00000007

Specifies that data MUST be aligned on an 8-byte boundary.

FILE_OCTA_ALIGNMENT

0X0000000F

Specifies that data MUST be aligned on a 16-byte boundary.

FILE_32_BYTE_ALIGNMENT

0X0000001F

Specifies that data MUST be aligned on a 32-byte boundary.

FILE_64_BYTE_ALIGNMENT

0X0000003F

Specifies that data MUST be aligned on a 64-byte boundary.

FILE_128_BYTE_ALIGNMENT

0X0000007F

Specifies that data MUST be aligned on a 128-byte boundary.

FILE_256_BYTE_ALIGNMENT

0X000000FF

Specifies that data MUST be aligned on a 256-byte boundary.

FILE_512_BYTE_ALIGNMENT

0X000001FF

Specifies that data MUST be aligned on a 512-byte boundary.

125 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most

common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.4 FileAllocationInformation

This information class is used to set but not to query the allocation size for a file. The file system is
passed a 64-bit signed integer containing the file allocation size, in bytes. The file system rounds the
requested allocation size up to an integer multiple of the cluster size for nonresident files, or an

implementation-defined multiple for resident files.<99><100> All unused allocation (beyond EOF) is
freed on the last handle close.

A FILE_ALLOCATION_INFORMATION data element, defined as follows, is provided by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AllocationSize

...

AllocationSize (8 bytes): A 64-bit signed integer that contains the desired allocation to be used by
the given file.

This operation returns a status code as specified in section 2.2. Upon success, the status code

returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The handle is for a directory and not a file, or the allocation is greater than
the maximum file size allowed.

STATUS_ACCESS_DENIED

0xC0000022

The handle was not opened to write file data or file attributes.

STATUS_DISK_FULL

0xC000007F

The disk is full.

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.5 FileAlternateNameInformation

This information class is used to query alternate name information for a file. The alternate name for
a file is its 8.3 format name (eight characters that appear before the "." and three characters that

126 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

appear after). A file MAY have an alternate name to achieve compatibility with the 8.3 naming
requirements of legacy applications.<101>

A FILE_NAME_INFORMATION (section 2.1.7) data element containing an 8.3 file name (section
2.1.5.2.1) is returned by the server.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_OBJECT_NAME_NOT_FOUND

0xC0000034

The object name is not found or is empty.

STATUS_BUFFER_OVERFLOW

0x80000005

The output buffer was filled before the complete name could be returned.

2.4.6 FileAttributeTagInformation

This information class is used to query for attribute and reparse tag information for a file.

A FILE_ATTRIBUTE_TAG_INFORMATION data element, defined as follows, is returned by the
server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileAttributes

ReparseTag

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid file
attributes are as specified in section 2.6.

ReparseTag (4 bytes): A 32-bit unsigned integer that specifies the reparse point tag. If the

FileAttributes member includes the FILE_ATTRIBUTE_REPARSE_POINT attribute flag, this
member specifies the reparse tag. Otherwise, this member SHOULD be set to 0, and MUST be
ignored. Section 2.1.2.1 contains more details on reparse tags.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most

common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_ACCESS_DENIED

0xC0000022

The handle was not opened to read file data or file attributes.

127 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.4.7 FileBasicInformation

This information class is used to query or set file information.

A FILE_BASIC_INFORMATION data element, defined as follows, is returned by the server or
provided by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CreationTime

...

LastAccessTime

...

LastWriteTime

...

ChangeTime

...

FileAttributes

Reserved

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. A valid time for this

field is an integer greater than or equal to 0. When setting file attributes, a value of 0 indicates to
the server that it MUST NOT change this attribute. When setting file attributes, a value of -1
indicates to the server that it MUST NOT change this attribute for all subsequent operations on the
same file handle. When setting file attributes, a value of -2 indicates to the server that it MUST
change this attribute for all subsequent operations on the same file handle. This field MUST NOT
be set to a value less than -2.<102>

LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. A valid time for

this field is an integer greater than or equal to 0. When setting file attributes, a value of 0
indicates to the server that it MUST NOT change this attribute. When setting file attributes, a value
of -1 indicates to the server that it MUST NOT change this attribute for all subsequent operations

on the same file handle. When setting file attributes, a value of -2 indicates to the server that it
MUST change this attribute for all subsequent operations on the same file handle. This field MUST
NOT be set to a value less than -2.<103>

LastWriteTime (8 bytes): The last time information was written to the file; see section 2.1.1. A

valid time for this field is an integer greater than or equal to 0. When setting file attributes, a
value of 0 indicates to the server that it MUST NOT change this attribute. When setting file
attributes, a value of -1 indicates to the server that it MUST NOT change this attribute for all
subsequent operations on the same file handle. When setting file attributes, a value of -2 indicates
to the server that it MUST change this attribute for all subsequent operations on the same file
handle. This field MUST NOT be set to a value less than -2.<104>

128 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. A valid time for this
field is an integer greater than or equal to 0. When setting file attributes, a value of 0 indicates to

the server that it MUST NOT change this attribute. When setting file attributes, a value of -1
indicates to the server that it MUST NOT change this attribute for all subsequent operations on the

same file handle. When setting file attributes, a value of -2 indicates to the server that it MUST
change this attribute for all subsequent operations on the same file handle. This field MUST NOT
be set to a value less than -2.<105>

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid file
attributes are specified in section 2.6.

Reserved (4 bytes): A 32-bit field. This field is reserved. This field can be set to any value, and
MUST be ignored.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_ACCESS_DENIED

0xC0000022

The handle was not opened to read file data or file attributes.

2.4.8 FileBothDirectoryInformation

This information class is used in directory enumeration to return detailed information about the
contents of a directory.

This information class returns a list that contains a FILE_BOTH_DIR_INFORMATION data element

for each file or directory within the target directory.

This information class differs from FileDirectoryInformation (section 2.4.10) in that it includes short
names in the returns list.

When multiple FILE_BOTH_DIR_INFORMATION data elements are present in the buffer, each
MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero,
and the receiver MUST ignore them. No padding is required following the last data element.

A FILE_BOTH_DIR_INFORMATION data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

FileIndex

CreationTime

...

129 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

LastAccessTime

...

LastWriteTime

...

ChangeTime

...

EndOfFile

...

AllocationSize

...

FileAttributes

FileNameLength

EaSize

ShortNameLength Reserved ShortName (24 bytes)

...

...

... FileName (variable)

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_BOTH_DIR_INFORMATION entry is located, if
multiple entries are present in a buffer. This member is zero if no other entries follow this one. An

implementation MUST use this value to determine the location of the next entry (if multiple entries
are present in a buffer).

FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the
parent directory. For file systems in which the position of a file within the parent directory is not
fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and
MUST be ignored.<106>

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. This value MUST be
greater than or equal to 0.

LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. This value MUST
be greater than or equal to 0.

130 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

LastWriteTime (8 bytes): The last time information was written to the file; see section 2.1.1. This
value MUST be greater than or equal to 0.

ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. This value MUST be
greater than or equal to 0.

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a
byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately
following the last valid byte in the file. Because this value is zero-based, it actually refers to the
first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes
appended to the file will be written. The value of this field MUST be greater than or equal to 0.

AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The
value of this field MUST be an integer multiple of the cluster size.

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid file
attributes are specified in section 2.6.

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file
name contained within the FileName member.

EaSize (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes field, this
field MUST contain a reparse tag as specified in section 2.1.2.1. Otherwise, this field is a 32-bit

unsigned integer that contains the combined length, in bytes, of the extended attributes (EA) for
the file.

ShortNameLength (1 byte): An 8-bit signed integer that specifies the length, in bytes, of the file
name contained in the ShortName member. This value MUST be greater than or equal to 0.

Reserved (1 byte): Reserved for alignment. This field can contain any value and MUST be ignored.

ShortName (24 bytes): A sequence of Unicode characters containing the short (8.3) file name.
When working with this field, use ShortNameLength to determine the length of the file name

rather than assuming the presence of a trailing null delimiter.

FileName (variable): A sequence of Unicode characters containing the file name. When working with
this field, use FileNameLength to determine the length of the file name rather than assuming the
presence of a trailing null delimiter. Dot directory names are valid for this field. For more
details, see section 2.1.5.1.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most

common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.9 FileCompressionInformation

This information class is used to query compression information for a file.

A FILE_COMPRESSION_INFORMATION data element, defined as follows, is returned by the server.

131 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CompressedFileSize

...

CompressionFormat CompressionUnitShift ChunkShift

ClusterShift Reserved

CompressedFileSize (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the
compressed file. This value MUST be greater than or equal to 0.

CompressionFormat (2 bytes): A 16-bit unsigned integer that contains the compression format.

The actual compression operation associated with each of these compression format values is

implementation-dependent. An implementation can link any local compression algorithm with the
values described in the following table because the compressed data does not travel across the
wire in the context of FSCTL, FileInformation class, or FileSystemInformation class requests or
replies.<107>

Value Meaning

COMPRESSION_FORMAT_NONE

0x0000

The file or directory is not compressed.

COMPRESSION_FORMAT_LZNT1

0x0002

The file or directory is compressed by using the LZNT1 compression
algorithm.

All other values Reserved for future use.

CompressionUnitShift (1 byte): An 8-bit unsigned integer that contains the compression unit
shift, which is the number of bits by which to left-shift a 1 bit to arrive at the compression unit
size. The compression unit size is the number of bytes in a compression unit, that is, the number
of bytes to be compressed. This value is implementation-defined.<108>

ChunkShift (1 byte): An 8-bit unsigned integer that contains the compression chunk size shift,
which is the number of bits by which to left-shift a 1 bit to arrive at the compression chunk size.
The chunk size is the number of bytes that the operating system's implementation of the Lempel-
Ziv compression algorithm tries to compress at one time. This value is implementation-
defined.<109>

ClusterShift (1 byte): An 8-bit unsigned integer that contains the cluster size shift, which is the
number of bits by which to left-shift a 1 bit to arrive at the cluster size. The cluster size specifies

the amount of space that is saved by compression to successfully compress a compression unit. If
a cluster size amount of space is not saved by compression, the data in that compression unit is
stored uncompressed. Each successfully compressed compression unit MUST occupy at least one

cluster less than the uncompressed compression unit. This value is implementation-defined.<110>

Reserved (3 bytes): A 24-bit reserved value. This field SHOULD be set to 0, and MUST be ignored.

This operation returns a status code as specified in section 2.2. Upon success, the status code

returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

132 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_BUFFER_OVERFLOW

0x80000005

The data was too large to fit into the specified buffer. No data is returned.

2.4.10 FileDirectoryInformation

This information class is used in directory enumeration to return detailed information about the
contents of a directory.

This information class returns a list that contains a FILE_DIRECTORY_INFORMATION data element
for each file or directory within the target directory.

When multiple FILE_DIRECTORY_INFORMATION data elements are present in the buffer, each
MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero,
and the receiver MUST ignore them. No padding is required following the last data element.

A FILE_DIRECTORY_INFORMATION data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

FileIndex

CreationTime

...

LastAccessTime

...

LastWriteTime

...

ChangeTime

...

EndOfFile

...

AllocationSize

133 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

FileAttributes

FileNameLength

FileName (variable)

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_DIRECTORY_INFORMATION entry is located, if
multiple entries are present in a buffer. This member MUST be zero if no other entries follow this

one. An implementation MUST use this value to determine the location of the next entry (if
multiple entries are present in a buffer).

FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the
parent directory. For file systems in which the position of a file within the parent directory is not
fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and
MUST be ignored.<111>

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. This value MUST be
greater than or equal to 0.

LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. This value MUST
be greater than or equal to 0.

LastWriteTime (8 bytes): The last time information was written to the file; see section 2.1.1. This
value MUST be greater than or equal to 0.

ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. This value MUST be

greater than or equal to 0.

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a
byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately
following the last valid byte in the file. Because this value is zero-based, it actually refers to the
first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes
appended to the file will be written. The value of this field MUST be greater than or equal to 0.

AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The

value of this field MUST be an integer multiple of the cluster size.

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes
are as specified in section 2.6.

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file
name contained within the FileName member.

FileName (variable): A sequence of Unicode characters containing the file name. When working with

this field, use FileNameLength to determine the length of the file name rather than assuming the
presence of a trailing null delimiter. Dot directory names are valid for this field. For more
details, see section 2.1.5.1.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

134 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.11 FileDispositionInformation

This information class is used to mark a file for deletion.

A FILE_DISPOSITION_INFORMATION data element, defined as follows, is provided by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DeletePending

DeletePending (1 byte): An 8-bit field that is set to 1 to indicate that a file SHOULD be deleted
when it is closed; otherwise, 0.<112>

For a discussion of file deletion semantics, see [FSBO].

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_ACCESS_DENIED

0xC0000022

The handle was not opened with delete access.

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_DIRECTORY_NOT_EMPTY

0xC0000101

Indicates that the directory trying to be deleted is not empty.

2.4.12 FileEaInformation

This information class is used to query for the size of the extended attributes (EA) for a file. An

extended attribute is a piece of application-specific metadata that an application can link with a file
that is not part of the file's data. For more information about extended attributes, see [MS-CIFS]
section 2.2.1.2.

A FILE_EA_INFORMATION data element, defined as follows, is returned by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EaSize

EaSize (4 bytes): A 32-bit unsigned integer that contains the combined length, in bytes, of the

extended attributes (EA) for the file.

https://go.microsoft.com/fwlink/?LinkId=140636
%5bMS-CIFS%5d.pdf#Section_d416ff7cc536406ea9514f04b2fd1d2b

135 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most

common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.13 FileEndOfFileInformation

This information class is used to set end-of-file information for a file.

A FILE_END_OF_FILE_INFORMATION data element, defined as follows, is provided by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EndOfFile

...

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end of file position as a
byte offset from the start of the file. EndOfFile specifies the offset from the beginning of the file of
the byte following the last byte in the file. That is, it is the offset from the beginning of the file at
which new bytes appended to the file will be written. The value of this field MUST be greater than
or equal to 0.

This operation returns a status code as specified in section 2.2. Upon success, the status code

returned by the function that processes this file information class is STATUS_SUCCESS. The most

common error codes are listed in the following table.

Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

The handle was for a directory and not a file, or the allocation is greater
than the maximum file size allowed.

STATUS_ACCESS_DENIED

0xC0000022

The handle was not opened to read file data or file attributes.

STATUS_DISK_FULL

0xC000007F

The disk is full.

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.14 FileFullDirectoryInformation

This information class is used in directory enumeration to return detailed information about the
contents of a directory.

136 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

This information class returns a list that contains a FILE_FULL_DIR_INFORMATION data element
for each file or directory within the target directory.

When multiple FILE_FULL_DIR_INFORMATION data elements are present in the buffer, each MUST
be aligned on an 8-byte boundary; any bytes inserted for alignment SHOULD be set to zero, and the

receiver MUST ignore them. No padding is required following the last data element.

A FILE_FULL_DIR_INFORMATION data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

FileIndex

CreationTime

...

LastAccessTime

...

LastWriteTime

...

ChangeTime

...

EndOfFile

...

AllocationSize

...

FileAttributes

FileNameLength

EaSize

FileName (variable)

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_FULL_DIR_INFORMATION entry is located, if

137 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

multiple entries are present in a buffer. This member is zero if no other entries follow this one. An
implementation MUST use this value to determine the location of the next entry (if multiple entries

are present in a buffer).

FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the

parent directory. For file systems in which the position of a file within the parent directory is not
fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and
MUST be ignored.<113>

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. This value MUST be
greater than or equal to 0.

LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. This value MUST
be greater than or equal to 0.

LastWriteTime (8 bytes): The last time information was written to the file; see section 2.1.1. This
value MUST be greater than or equal to 0.

ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. This value MUST be
greater than or equal to 0.

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a
byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately

following the last valid byte in the file. Because this value is zero-based, it actually refers to the
first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes
appended to the file will be written. The value of this field MUST be greater than or equal to 0.

AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The
value of this field MUST be an integer multiple of the cluster size.

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. For a list of valid
file attributes, see section 2.6.

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file

name contained within the FileName member.

EaSize (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes field, this
field MUST contain a reparse tag as specified in section 2.1.2.1. Otherwise, this field is a 32-bit
unsigned integer that contains the combined length, in bytes, of the extended attributes (EA) for
the file.

FileName (variable): A sequence of Unicode characters containing the file name. When working with

this field, use FileNameLength to determine the length of the file name rather than assuming the
presence of a trailing null delimiter. Dot directory names are valid for this field. For more
details, see section 2.1.5.1.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

138 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.4.15 FileFullEaInformation

This information class is used to query or set extended attribute (EA) information for a file. For
queries, the client provides a list of FILE_GET_EA_INFORMATION (section 2.4.15.1) structures, and a

list of FILE_FULL_EA_INFORMATION structures is returned by the server. For setting EA
information, the client provides a list of FILE_FULL_EA_INFORMATION structures, and a status
code is returned by the server, as specified in section 2.2.

When multiple FILE_FULL_EA_INFORMATION data elements are present in the buffer, each MUST
be aligned on a 4-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the
receiver MUST ignore them. No padding is required following the last data element.

A FILE_FULL_EA_INFORMATION data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

Flags EaNameLength EaValueLength

EaName (variable)

...

EaValue (variable)

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_FULL_EA_INFORMATION entry is located, if

multiple entries are present in the buffer. This member MUST be zero if no other entries follow this
one. An implementation MUST use this value to determine the location of the next entry (if
multiple entries are present in a buffer).

Flags (1 byte): An 8-bit unsigned integer that MUST contain one of the following flag values.

Value Meaning

0x00000000 If no flags are set, this EA does not prevent the file to which the EA belongs from being
interpreted by applications that do not understand EAs.

FILE_NEED_EA

0x00000080

If this flag is set, the file to which the EA belongs cannot be interpreted by applications that
do not understand EAs.

EaNameLength (1 byte): An 8-bit unsigned integer that contains the length, in bytes, of the

extended attribute name in the EaName field. This value MUST NOT include the terminating null
character to EaName.

EaValueLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of the

extended attribute value in the EaValue field. When setting EA information, if this field is zero,
then the given EaName and its current value are deleted from the given file.

EaName (variable): An array of 8-bit ASCII characters that contains the extended attribute name
followed by a single terminating null character byte. The EaName MUST be less than 255
characters and MUST NOT contain any of the following characters:

139 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

ASCII values 0x00 - 0x1F, \ / : * ? " < > | , + = [] ;

EaValue (variable): An array of bytes that contains the extended attribute value. The length of this
array is specified by the EaValueLength field.

This operation returns a status code as specified in section 2.2. Upon success, the status code

returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The target file system does not implement this functionality.

STATUS_ACCESS_DENIED

0xC0000022

The handle was not opened to read file data or file attributes.

STATUS_BUFFER_TOO_SMALL

0xC0000023

The buffer is too small to contain the entry. No information has been
written to the buffer.

STATUS_NO_EAS_ON_FILE

0xC0000052

The file for which EAs were requested has no EAs.

STATUS_BUFFER_OVERFLOW

0x80000005

The output buffer was filled before all of the EA data could be returned.
Only complete FILE_FULL_EA_INFORMATION structures are returned.

STATUS_INVALID_EA_NAME

0x80000013

The Flags field contains a value other than zero or FILE_NEED_EA, or the
EaName field is longer than 255 characters, or it contains any of the
following characters:

ASCII values 0x00 - 0x1F, \ / : * ? " < > | , + = [] ;

2.4.15.1 FILE_GET_EA_INFORMATION

This data structure can be used to specify an explicit list of attributes to query via the

FileFullEaInformation (section 2.4.15) information class. If no FILE_GET_EA_INFORMATION elements
are specified, all extended attributes for the given file are returned.

When multiple FILE_GET_EA_INFORMATION data elements are present in the buffer, each MUST be
aligned on a 4-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the
receiver MUST ignore them. No padding is required following the last data element.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

EaNameLength EaName (variable)

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_GET_EA_INFORMATION entry is located, if
multiple entries are present in a buffer. This member MUST be zero if no other entries follow this
one. An implementation MUST use this value to determine the location of the next entry (if
multiple entries are present in a buffer).

140 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

EaNameLength (1 byte): An 8-bit unsigned integer that contains the length, in bytes, of the
EaName field. This value MUST NOT include the terminating null character to EaName.

EaName (variable): An array of 8-bit ASCII characters that contains the extended attribute name
followed by a single terminating null character byte.

2.4.16 FileHardLinkInformation

This information class is used locally to query hard links to an existing file.<114> At least one name
MUST be returned.

A FILE_LINKS_INFORMATION data element, defined as follows, is returned to the caller.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BytesNeeded

EntriesReturned

Entries (variable)

...

BytesNeeded (4 bytes): A 32-bit unsigned integer that MUST contain the number of bytes needed
to hold all available names. This field MUST NOT be 0.

EntriesReturned (4 bytes): A 32-bit unsigned integer that MUST contain the number of
FILE_LINK_ENTRY_INFORMATION structures that have been returned in the Entries field.

The query MUST return as many entries as will fit in the supplied output buffer. A value of

0x00000000 for this field indicates that there is insufficient room to return any entry. The error
STATUS_BUFFER_OVERFLOW (0x80000005) indicates that not all available entries were returned.

Entries (variable): A buffer that MUST contain the returned FILE_LINK_ENTRY_INFORMATION
structures. It MUST be BytesNeeded bytes in size to return all of the available entries.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_NOT_SUPPORTED

0xC00000BB

The request is not supported.

STATUS_BUFFER_OVERFLOW

0x80000005

The output buffer was filled before all of the link information could be
returned. Only complete FILE_LINK_ENTRY_INFORMATION structures are
returned.

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

141 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.4.16.1 FILE_LINK_ENTRY_INFORMATION

The FILE_LINK_ENTRY_INFORMATION packet is used to describe a single hard link to an existing
file.

When multiple FILE_LINK_ENTRY_INFORMATION data elements are present in the buffer, each
MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero,
and the receiver MUST ignore them. No padding is required following the last data element.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

ParentFileId

...

FileNameLength

FileName (variable)

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that MUST specify the offset, in bytes, from
the current FILE_LINK_ENTRY_INFORMATION structure to the next
FILE_LINK_ENTRY_INFORMATION structure. A value of 0 indicates this is the last entry

structure.

ParentFileId (8 bytes): The 64-bit file ID, as specified in section 2.1.9, of the parent directory of the
given link. For file systems which do not support a 64-bit file ID, this field MUST be set to 0, and

MUST be ignored.

FileNameLength (4 bytes): A 32-bit unsigned integer that MUST specify the length, in characters,
of the FileName for the given link.

FileName (variable): A sequence of FileNameLength Unicode characters that MUST contain the
Unicode string name of the given link.

2.4.17 FileId64ExtdBothDirectoryInformation

This information class is used in directory enumeration to return extended information about the

contents of a directory.

This information class returns a list that contains a
FILE_ID_64_EXTD_BOTH_DIR_INFORMATION data element for each file or directory within the

target directory.

When multiple FILE_ID_64_EXTD_BOTH_DIR_INFORMATION data elements are present in the
buffer, each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be

set to zero, and the receiver MUST ignore them. No padding is required following the last data
element.

A FILE_ID_64_EXTD_BOTH_DIR_INFORMATION data element is as follows.

142 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

FileIndex

CreationTime

...

LastAccessTime

...

LastWriteTime

...

ChangeTime

...

EndOfFile

...

AllocationSize

...

FileAttributes

FileNameLength

EaSize

ReparsePointTag

FileId

...

ShortNameLength Reserved1 ShortName (24 bytes)

...

...

FileName (variable)

143 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_ID_64_EXTD_BOTH_DIR_INFORMATION entry is
located, if multiple entries are present in the buffer. This member MUST be zero if no other entries

follow this one. An implementation MUST use this value to determine the location of the next entry
(if multiple entries are present in a buffer).

FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the
parent directory. For file systems in which the position of a file within the parent directory is not
fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and
MUST be ignored.<115>

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this

field MUST be greater than or equal to 0.

LastWriteTime (8 bytes): The last time information was written; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field

MUST be greater than or equal to 0.

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a
byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately
following the last valid byte in the file. Because this value is zero-based, it actually refers to the
first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes
appended to the file will be written. The value of this field MUST be greater than or equal to 0.

AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The

value of this field MUST be an integer multiple of the cluster size.

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes
are as specified in section 2.6.

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file
name contained within the FileName member.

EaSize (4 bytes): A 32-bit unsigned integer that contains the combined length, in bytes, of the

extended attributes (EA) for the file.

ReparsePointTag (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes
field, this field MUST contain a 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner of the reparse point. section 2.1.2.1 contains more details on reparse
tags.

FileId (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file systems that do

not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored. For file systems

which do not explicitly store directory entries named ".." (synonymous with the parent directory),
an implementation MAY set this field to 0 for the entry named "..", and this value MUST be
ignored.<116>

ShortNameLength (1 byte): An 8-bit signed integer that specifies the length, in bytes, of the file
name contained within the ShortName member.

Reserved1 (1 byte): An 8-bit field. This field is reserved. This field MUST be set to zero, and MUST
be ignored.

144 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

ShortName (24 bytes): A sequence of Unicode characters containing the short (8.3) file name.
When working with this field, use ShortNameLength to determine the length of the file name

rather than assuming the presence of a trailing null delimiter.

FileName (variable): A sequence of Unicode characters containing the file name. When working with

this field, use FileNameLength to determine the length of the file name rather than assuming the
presence of a trailing null delimiter. Dot directory names are valid for this field. For more details,
see section 2.1.5.1.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.18 FileId64ExtdDirectoryInformation

This information class is used in directory enumeration to return extended information about the
contents of a directory.

This information class returns a list that contains a FILE_ID_64_EXTD_DIR_INFORMATION data

element for each file or directory within the target directory.

When multiple FILE_ID_64_EXTD_DIR_INFORMATION data elements are present in the buffer,
each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to
zero, and the receiver MUST ignore them. No padding is required following the last data element.

A FILE_ID_64_EXTD_DIR_INFORMATION data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

FileIndex

CreationTime

...

LastAccessTime

...

LastWriteTime

...

ChangeTime

145 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

EndOfFile

...

AllocationSize

...

FileAttributes

FileNameLength

EaSize

ReparsePointTag

FileId

...

FileName (variable)

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_ID_64_EXTD_DIR_INFORMATION entry is located,

if multiple entries are present in the buffer. This member MUST be zero if no other entries follow

this one. An implementation MUST use this value to determine the location of the next entry (if
multiple entries are present in a buffer).

FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the
parent directory. For file systems in which the position of a file within the parent directory is not
fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and
MUST be ignored.<117>

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

LastWriteTime (8 bytes): The last time information was written; see section 2.1.1. The value of this

field MUST be greater than or equal to 0.

ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field

MUST be greater than or equal to 0.

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a
byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately
following the last valid byte in the file. Because this value is zero-based, it actually refers to the
first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes
appended to the file will be written. The value of this field MUST be greater than or equal to 0.

146 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The
value of this field MUST be an integer multiple of the cluster size.

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes
are as specified in section 2.6.

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file
name contained within the FileName member.

EaSize (4 bytes): A 32-bit unsigned integer that contains the combined length, in bytes, of the
extended attributes (EA) for the file.

ReparsePointTag (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes
field, this field MUST contain a 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner of the reparse point. section 2.1.2.1 contains more details on reparse

tags.

FileId (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file systems that do

not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored. For file systems
which do not explicitly store directory entries named ".." (synonymous with the parent directory),
an implementation MAY set this field to 0 for the entry named "..", and this value MUST be
ignored.<118>

FileName (variable): A sequence of Unicode characters containing the file name. When working with
this field, use FileNameLength to determine the length of the file name rather than assuming the
presence of a trailing null delimiter. Dot directory names are valid for this field. For more details,
see section 2.1.5.1.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.19 FileIdAllExtdBothDirectoryInformation

This information class is used in directory enumeration to return extended information about the
contents of a directory.

This information class returns a list that contains a
FILE_ID_ALL_EXTD_BOTH_DIR_INFORMATION data element for each file or directory within the
target directory.

When multiple FILE_ID_ALL_EXTD_BOTH_DIR_INFORMATION data elements are present in the

buffer, each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be
set to zero, and the receiver MUST ignore them. No padding is required following the last data
element.

A FILE_ID_ALL_EXTD_BOTH_DIR_INFORMATION data element is as follows.

147 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

FileIndex

CreationTime

...

LastAccessTime

...

LastWriteTime

...

ChangeTime

...

EndOfFile

...

AllocationSize

...

FileAttributes

FileNameLength

EaSize

ReparsePointTag

FileId

...

FileId128

…

…

…

148 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

ShortNameLength Reserved1 ShortName (24 bytes)

...

...

FileName (variable)

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_ID_ALL_EXTD_BOTH_DIR_INFORMATION entry is
located, if multiple entries are present in the buffer. This member MUST be zero if no other entries

follow this one. An implementation MUST use this value to determine the location of the next entry
(if multiple entries are present in a buffer).

FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the
parent directory. For file systems in which the position of a file within the parent directory is not
fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and
MUST be ignored.<119>

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

LastWriteTime (8 bytes): The last time information was written; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field

MUST be greater than or equal to 0.

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a
byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately
following the last valid byte in the file. Because this value is zero-based, it actually refers to the
first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes
appended to the file will be written. The value of this field MUST be greater than or equal to 0.

AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The

value of this field MUST be an integer multiple of the cluster size.

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes
are as specified in section 2.6.

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file
name contained within the FileName member.

EaSize (4 bytes): A 32-bit unsigned integer that contains the combined length, in bytes, of the

extended attributes (EA) for the file.

ReparsePointTag (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes
field, this field MUST contain a 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner of the reparse point. section 2.1.2.1 contains more details on reparse
tags.

149 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

FileId (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file systems that do
not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored. For file systems

which do not explicitly store directory entries named ".." (synonymous with the parent directory),
an implementation MAY set this field to 0 for the entry named "..", and this value MUST be

ignored.<120>

FileId128 (16 bytes): The 128-bit file ID, as specified in section 2.1.10, of the file. For file systems
that do not support a 128-bit file ID, this field MUST be set to 0, and MUST be ignored.

ShortNameLength (1 byte): An 8-bit signed integer that specifies the length, in bytes, of the file
name contained within the ShortName member.

Reserved1 (1 byte): An 8-bit field. This field is reserved. This field MUST be set to zero, and MUST
be ignored.

ShortName (24 bytes): A sequence of Unicode characters containing the short (8.3) file name.
When working with this field, use ShortNameLength to determine the length of the file name
rather than assuming the presence of a trailing null delimiter.

FileName (variable): A sequence of Unicode characters containing the file name. When working with
this field, use FileNameLength to determine the length of the file name rather than assuming the
presence of a trailing null delimiter. Dot directory names are valid for this field. For more details,

see section 2.1.5.1.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.20 FileIdAllExtdDirectoryInformation

This information class is used in directory enumeration to return extended information about the
contents of a directory.

This information class returns a list that contains a FILE_ID_ALL_EXTD_DIR_INFORMATION data
element for each file or directory within the target directory.

When multiple FILE_ID_ALL_EXTD_DIR_INFORMATION data elements are present in the buffer,

each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to
zero, and the receiver MUST ignore them. No padding is required following the last data element.

A FILE_ID_ALL_EXTD_DIR_INFORMATION data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

FileIndex

CreationTime

150 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

LastAccessTime

...

LastWriteTime

...

ChangeTime

...

EndOfFile

...

AllocationSize

...

FileAttributes

FileNameLength

EaSize

ReparsePointTag

FileId

…

FileId128

…

…

...

FileName (variable)

...

151 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_ID_ALL_EXTD_DIR_INFORMATION entry is located,

if multiple entries are present in the buffer. This member MUST be zero if no other entries follow
this one. An implementation MUST use this value to determine the location of the next entry (if

multiple entries are present in a buffer).

FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the
parent directory. For file systems in which the position of a file within the parent directory is not
fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and
MUST be ignored.<121>

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

LastWriteTime (8 bytes): The last time information was written; see section 2.1.1. The value of this

field MUST be greater than or equal to 0.

ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field
MUST be greater than or equal to 0.

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a
byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately
following the last valid byte in the file. Because this value is zero-based, it actually refers to the
first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes
appended to the file will be written. The value of this field MUST be greater than or equal to 0.

AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The
value of this field MUST be an integer multiple of the cluster size.

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes
are as specified in section 2.6.

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file
name contained within the FileName member.

EaSize (4 bytes): A 32-bit unsigned integer that contains the combined length, in bytes, of the
extended attributes (EA) for the file.

ReparsePointTag (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes

field, this field MUST contain a 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner of the reparse point. section 2.1.2.1 contains more details on reparse
tags.

FileId (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file systems that do
not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored. For file systems
which do not explicitly store directory entries named ".." (synonymous with the parent directory),

an implementation MAY set this field to 0 for the entry named "..", and this value MUST be

ignored.<122>

FileId128 (16 bytes): The 128-bit file ID, as specified in section 2.1.10, of the file. For file systems
that do not support a 128-bit file ID, this field MUST be set to 0, and MUST be ignored.

FileName (variable): A sequence of Unicode characters containing the file name. When working with
this field, use FileNameLength to determine the length of the file name rather than assuming the
presence of a trailing null delimiter. Dot directory names are valid for this field. For more details,

see section 2.1.5.1.

152 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most

common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.21 FileIdBothDirectoryInformation

This information class is used in directory enumeration to return detailed information about the
contents of a directory.

This information class returns a list that contains a FILE_ID_BOTH_DIR_INFORMATION data

element for each file or directory within the target directory.

When multiple FILE_ID_BOTH_DIR_INFORMATION data elements are present in the buffer, each
MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero,
and the receiver MUST ignore them. No padding is required following the last data element.

A FILE_ID_BOTH_DIR_INFORMATION data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

FileIndex

CreationTime

...

LastAccessTime

...

LastWriteTime

...

ChangeTime

...

EndOfFile

...

AllocationSize

153 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

FileAttributes

FileNameLength

EaSize

ShortNameLength Reserved1 ShortName (24 bytes)

...

...

... Reserved2

FileId

...

FileName (variable)

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_ID_BOTH_DIR_INFORMATION entry is located, if
multiple entries are present in the buffer. This member MUST be zero if no other entries follow this

one. An implementation MUST use this value to determine the location of the next entry (if

multiple entries are present in a buffer).

FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the
parent directory. For file systems in which the position of a file within the parent directory is not
fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and
MUST be ignored.<123>

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

LastWriteTime (8 bytes): The last time information was written; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field

MUST be greater than or equal to 0.

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a
byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately
following the last valid byte in the file. Because this value is zero-based, it actually refers to the
first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes
appended to the file will be written. The value of this field MUST be greater than or equal to 0.

154 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The
value of this field MUST be an integer multiple of the cluster size.

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes
are as specified in section 2.6.

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file
name contained within the FileName member.

EaSize (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes field, this
field MUST contain a reparse tag as specified in section 2.1.2.1. Otherwise, this field is a 32-bit
unsigned integer that contains the combined length, in bytes, of the extended attributes (EA) for
the file.

ShortNameLength (1 byte): A 8-bit signed integer that specifies the length, in bytes, of the file

name contained within the ShortName member.

Reserved1 (1 byte): An 8-bit field. This field is reserved. This field MUST be set to zero, and MUST

be ignored.

ShortName (24 bytes): A sequence of Unicode characters containing the short (8.3) file name.
When working with this field, use ShortNameLength to determine the length of the file name
rather than assuming the presence of a trailing null delimiter.

Reserved2 (2 bytes): A 16-bit field. This field is reserved. This field MUST be set to zero, and MUST
be ignored.

FileId (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file systems that do
not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored. For file systems
which do not explicitly store directory entries named ".." (synonymous with the parent directory),
an implementation MAY set this field to 0 for the entry named "..", and this value MUST be
ignored.<124>

FileName (variable): A sequence of Unicode characters containing the file name. When working with

this field, use FileNameLength to determine the length of the file name rather than assuming the
presence of a trailing null delimiter. Dot directory names are valid for this field. For more
details, see section 2.1.5.1.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.22 FileIdExtdDirectoryInformation

This information class is used in directory enumeration to return extended information about the
contents of a directory.

This information class returns a list that contains a FILE_ID_EXTD_DIR_INFORMATION data
element for each file or directory within the target directory.

155 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

When multiple FILE_ID_EXTD_DIR_INFORMATION data elements are present in the buffer, each
MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero,

and the receiver MUST ignore them. No padding is required following the last data element.

A FILE_ID_EXTD_DIR_INFORMATION data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

FileIndex

CreationTime

...

LastAccessTime

...

LastWriteTime

...

ChangeTime

...

EndOfFile

...

AllocationSize

...

FileAttributes

FileNameLength

EaSize

ReparsePointTag

FileId

…

156 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

…

...

FileName (variable)

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_ID_EXTD_DIR_INFORMATION entry is located, if
multiple entries are present in the buffer. This member MUST be zero if no other entries follow this
one. An implementation MUST use this value to determine the location of the next entry (if
multiple entries are present in a buffer).

FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the

parent directory. For file systems in which the position of a file within the parent directory is not

fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and
MUST be ignored.<125>

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

LastWriteTime (8 bytes): The last time information was written; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field
MUST be greater than or equal to 0.

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a
byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately
following the last valid byte in the file. Because this value is zero-based, it actually refers to the

first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes
appended to the file will be written. The value of this field MUST be greater than or equal to 0.

AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The
value of this field MUST be an integer multiple of the cluster size.

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes
are as specified in section 2.6.

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file

name contained within the FileName member.

EaSize (4 bytes): A 32-bit unsigned integer that contains the combined length, in bytes, of the

extended attributes (EA) for the file.

ReparsePointTag (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes
field, this field MUST contain a 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner of the reparse point. section 2.1.2.1 contains more details on reparse

tags.

FileId (16 bytes): The 128-bit file ID, as specified in section 2.1.10, of the file. For file systems that
do not support a 128-bit file ID, this field MUST be set to 0, and MUST be ignored.

157 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

FileName (variable): A sequence of Unicode characters containing the file name. When working with
this field, use FileNameLength to determine the length of the file name rather than assuming the

presence of a trailing null delimiter. Dot directory name are valid for this field. For more details,
see section 2.1.5.1.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.23 FileIdFullDirectoryInformation

This information class is used in directory enumeration to return detailed information about the
contents of a directory.

This information class returns a list that contains a FILE_ID_FULL_DIR_INFORMATION data
element for each file or directory within the target directory.

When multiple FILE_ID_FULL_DIR_INFORMATION data elements are present in the buffer, each
MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero,

and the receiver MUST ignore them. No padding is required following the last data element.

A FILE_ID_FULL_DIR_INFORMATION data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

FileIndex

CreationTime

...

LastAccessTime

...

LastWriteTime

...

ChangeTime

...

EndOfFile

158 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

AllocationSize

...

FileAttributes

FileNameLength

EaSize

Reserved

FileId

...

FileName (variable)

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_ID_FULL_DIR_INFORMATION entry is located, if
multiple entries are present in a buffer. This field SHOULD<126> be zero if no other entries follow

this one. An implementation MUST use this value to determine the location of the next entry (if
multiple entries are present in a buffer).

FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the
parent directory. For file systems in which the position of a file within the parent directory is not
fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and
MUST be ignored.<127>

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

LastWriteTime (8 bytes): The last time information was written; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field

MUST be greater than or equal to 0.

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a
byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately
following the last valid byte in the file. Because this value is zero-based, it actually refers to the
first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes
appended to the file will be written. The value of this field MUST be greater than or equal to 0.

AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The

value of this field MUST be an integer multiple of the cluster size.

159 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes
are as specified in section 2.6.

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file
name contained within the FileName member.

EaSize (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes field, this
field MUST contain a reparse tag as specified in section 2.1.2.1. Otherwise, this field is a 32-bit
unsigned integer that contains the combined length, in bytes, of the extended attributes (EA) for
the file.

Reserved (4 bytes): Reserved for alignment. This field can contain any value and MUST be ignored.

FileId (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file systems that do
not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored. For file systems

which do not explicitly store directory entries named ".." (synonymous with the parent directory),
an implementation MAY set this field to 0 for the entry named "..", and this value MUST be
ignored.<128>

FileName (variable): A sequence of Unicode characters containing the file name. When working with
this field, use FileNameLength to determine the length of the file name rather than assuming the
presence of a trailing null delimiter. Dot directory names are valid for this field. For more

details, see section 2.1.5.1.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.24 FileIdGlobalTxDirectoryInformation

This information class is used locally to query transactional visibility information for the files in a
directory. This information class MAY be implemented for file systems that return the
FILE_SUPPORTS_TRANSACTIONS flag in response to FileFsAttributeInformation specified in section
2.5.1. This information class MUST NOT be implemented for file systems that do not return that flag.

This information class returns a list that contains a FILE_ID_GLOBAL_TX_DIR_INFORMATION

data element for each file or directory within the target directory. This list MUST reflect the presence
of a subdirectory named "." (synonymous with the target directory itself) within the target directory
and one named ".." (synonymous with the parent directory of the target directory), unless the target
directory is the root of the volume. For more details, see section 2.1.5.1.

When multiple FILE_ID_GLOBAL_TX_DIR_INFORMATION data elements are present in the buffer,
each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to
zero, and the receiver MUST ignore them. No padding is required following the last data element.

A FILE_ID_GLOBAL_TX_DIR_INFORMATION data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

160 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

FileIndex

CreationTime

...

LastAccessTime

...

LastWriteTime

...

ChangeTime

...

EndOfFile

...

AllocationSize

...

FileAttributes

FileNameLength

FileId

...

LockingTransactionId (16 bytes)

...

...

TxInfoFlags

FileName (variable)

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_ID_GLOBAL_TX_DIR_INFORMATION entry is
located, if multiple entries are present in a buffer. This member MUST be zero if no other entries

161 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

follow this one. An implementation MUST use this value to determine the location of the next entry
(if multiple entries are present in a buffer).

FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the
parent directory. For file systems in which the position of a file within the parent directory is not

fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and
MUST be ignored.<129>

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

LastWriteTime (8 bytes): The last time information was written to the file; see section 2.1.1. The

value of this field MUST be greater than or equal to 0.

ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field

MUST be greater than or equal to 0.

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a
byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately
following the last valid byte in the file. Because this value is zero-based, it actually refers to the

first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes
appended to the file will be written. The value of this field MUST be greater than or equal to 0.

AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The
value of this field MUST be an integer multiple of the cluster size.

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes
are as specified in section 2.6.

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file

name contained within the FileName member.

FileId (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file systems that do
not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored. For file systems
which do not explicitly store directory entries named ".." (synonymous with the parent directory),
an implementation MAY set this field to 0 for the entry named "..", and this value MUST be
ignored.<130>

LockingTransactionId (16 bytes): A GUID value that is the ID of the transaction that has this file

locked for modification. This number is generated and assigned by the file system. If the
FILE_ID_GLOBAL_TX_DIR_INFO_FLAG_WRITELOCKED flag is not set in the TxInfoFlags field,
this field MUST be ignored.

TxInfoFlags (4 bytes): A 32-bit unsigned integer that contains a bitmask of flags that indicate the
transactional visibility of the file. The value of this field MUST be a bitwise OR of zero or more of
the following values. Any flag values not explicitly mentioned here can be set to any value and

MUST be ignored. If the FILE_ID_GLOBAL_TX_DIR_INFO_FLAG_WRITELOCKED flag is not set, the

other flags MUST NOT be set. If flags other than
FILE_ID_GLOBAL_TX_DIR_INFO_FLAG_WRITELOCKED are set,
FILE_ID_GLOBAL_TX_DIR_INFO_FLAG_WRITELOCKED MUST be set.

Value Meaning

FILE_ID_GLOBAL_TX_DIR_INFO_FLAG_WRITELOCKED

0x00000001

The file is locked for modification by a
transaction. The transaction's ID MUST be
contained in the LockingTransactionId
field if this flag is set.

162 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

FILE_ID_GLOBAL_TX_DIR_INFO_FLAG_VISIBLE_TO_TX

0x00000002

The file is visible to transacted enumerators
of the directory whose transaction ID is in
the LockingTransactionId field.

FILE_ID_GLOBAL_TX_DIR_INFO_FLAG_VISIBLE_OUTSIDE_TX

0x00000004

The file is visible to transacted enumerators
of the directory other than the one whose
transaction ID is in the
LockingTransactionId field, and it is visible
to non-transacted enumerators of the
directory.

FileName (variable): A sequence of Unicode characters containing the file name. When working with

this field, use FileNameLength to determine the length of the file name rather than assuming the
presence of a trailing null delimiter. Dot directory names are valid for this field. For more details,
see section 2.1.5.1.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_NOT_SUPPORTED

0xC00000BB

The request is not supported.

2.4.25 FileIdInformation

This information class is used to query the volume serial number and fileid information for a file.

A FILE_ID_INFORMATION data element, defined as follows, is provided by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

VolumeSerialNumber

...

FileId

...

...

...

VolumeSerialNumber (8 bytes): A 64-bit unsigned integer that contains the serial number of the
volume where the file is located.

FileId (16 bytes): The 128-bit file ID, as specified in section 2.1.10, of the file. For file systems that
do not support a 128-bit file ID, this field MUST be set to 0, and MUST be ignored.

163 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most

common error codes are listed in the following table.

Error Code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not
match the length that is required for the specified
information class.

2.4.26 FileInternalInformation

This information class is used to query for the file system's 64-bit file ID, as specified in section 2.1.9.

A FILE_INTERNAL_INFORMATION data element, defined as follows, is returned by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

IndexNumber

...

IndexNumber (8 bytes): The 64-bit file ID for the file. For file systems that do not support a 64-bit
file ID, this field MUST be set to 0, and MUST be ignored. <131>

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.27 FileLinkInformation

This information class is used to create a hard link to an existing file.<132> The Server Message Block
(SMB) Protocol [MS-SMB] and the Server Message Block (SMB) Version 2 Protocol [MS-SMB2]
implement unique structure variants:

 FILE_LINK_INFORMATION_TYPE_1, as specified in section 2.4.27.1.

 FILE_LINK_INFORMATION_TYPE_2, as specified in section 2.4.27.2.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INVALID_PARAMETER An invalid parameter was specified for the RootDirectory field.

%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

164 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error code Meaning

0xC000000D

STATUS_FILE_IS_A_DIRECTORY

0xC00000BA

The file that was specified is a directory.

STATUS_ACCESS_DENIED

0xC0000022

The object has been deleted.

STATUS_OBJECT_NAME_INVALID

0xC0000033

The object name is invalid for the target file system.

STATUS_TOO_MANY_LINKS

0xC0000265

An attempt was made to create more links on a file than the file system
supports.

STATUS_OBJECT_NAME_COLLISION

0xC0000035

The specified name already exists and ReplaceIfExists is zero.

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_NOT_SUPPORTED

0xC00000BB

The request is not supported.

2.4.27.1 FileLinkInformation for the SMB Protocol

This information class is used to create a hard link to an existing file via the SMB Protocol as specified
in [MS-SMB].

A FILE_LINK_INFORMATION_TYPE_1 data element, defined as follows, is provided by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReplaceIfExists Reserved

RootDirectory

FileNameLength

FileName (variable)

...

ReplaceIfExists (1 byte): A Boolean (section 2.1.8) value. Set to TRUE to indicate that if the link
already exists, it SHOULD be replaced with the new link. Set to FALSE to indicate that the link
creation operation MUST fail if the link already exists.

Reserved (3 bytes): This field SHOULD be set to zero by the client and MUST be ignored by the
server.

RootDirectory (4 bytes): A 32-bit unsigned integer that contains the file handle for the directory
where the link is to be created. For network operations, this value MUST always be zero.

%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688

165 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

FileNameLength (4 bytes): A 32-bit unsigned integer that contains the length in bytes of the
FileName field.

FileName (variable): A sequence of Unicode characters that contains the name to be assigned to
the newly created link. When working with the FileName field, the FileNameLength field is used

to determine the length of the file name rather than assuming the presence of a trailing null
delimiter. If the RootDirectory field is zero, this field MUST specify a full pathname to the link to
be created. For network operations, this pathname is relative to the root of the share. If the
RootDirectory field is not zero, this field MUST specify a pathname, relative to RootDirectory,
for the link name.

2.4.27.2 FileLinkInformation for the SMB2 Protocol

This information class is used to create a hard link to an existing file via the SMB Version 2 Protocol,
as specified in [MS-SMB2].

A FILE_LINK_INFORMATION_TYPE_2 data element, defined as follows, is provided by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReplaceIfExists Reserved

...

RootDirectory

...

FileNameLength

FileName (variable)

...

ReplaceIfExists (1 byte): A Boolean (section 2.1.8) value. Set to TRUE to indicate that if the link
already exists, it SHOULD be replaced with the new link. Set to FALSE to indicate that the link
creation operation MUST fail if the link already exists.

Reserved (7 bytes): Reserved for alignment. This field can contain any value and MUST be ignored.

RootDirectory (8 bytes): A 64-bit unsigned integer that contains the file handle for the directory
where the link is to be created. For network operations, this value MUST be zero.

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length in bytes of the file

name contained within the FileName field.

FileName (variable): A sequence of Unicode characters containing the name to be assigned to the
newly created link. When working with this field, the FileNameLength field is used to determine
the length of the file name rather than assuming the presence of a trailing null delimiter. If the
RootDirectory field is zero, this field MUST specify a full pathname to the link to be created. For
network operations, this pathname is relative to the root of the share. If the RootDirectory field

is not zero, this field MUST specify a pathname, relative to RootDirectory, for the link name.

%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

166 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.4.28 FileMailslotQueryInformation

This information class is used locally to query information on a mailslot.

A FILE_MAILSLOT_QUERY_INFORMATION data element, defined as follows, is returned to the

caller.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MaximumMessageSize

MailslotQuota

NextMessageSize

MessagesAvailable

ReadTimeout

...

MaximumMessageSize (4 bytes): A 32-bit unsigned integer that contains the maximum size of a
single message that can be written to the mailslot, in bytes. To specify that the message can be of
any size, set this value to zero.

MailslotQuota (4 bytes): A 32-bit unsigned integer that contains the quota, in bytes, for the
mailslot. The mailslot quota specifies the in-memory pool quota that is reserved for writes to this

mailslot.

NextMessageSize (4 bytes): A 32-bit unsigned integer that contains the next message size, in

bytes.

MessagesAvailable (4 bytes): A 32-bit unsigned integer that contains the total number of
messages waiting to be read from the mailslot.

ReadTimeout (8 bytes): A 64-bit signed integer that contains the time a read operation can wait

for a message to be written to the mailslot before a time-out occurs in milliseconds. The value of
this field MUST be (-1) or greater than or equal to 0. A value of (-1) requests that the read wait
forever for a message, without timing out. A value of 0 requests that the read not wait and return
immediately whether a pending message is available to be read or not.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.29 FileMailslotSetInformation

This information class is used locally to set information on a mailslot.

167 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

A FILE_MAILSLOT_SET_INFORMATION data element, defined as follows, is provided by the caller.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReadTimeout

...

ReadTimeout (8 bytes): A 64-bit signed integer that contains the time that a read operation can
wait for a message to be written to the mailslot before a time-out occurs as follows:

 A positive value specifies the operation time-out as an absolute system time on the server,
represented as a count of 100-nanosecond intervals since January 1, 1601.

 A negative value specifies the number of 100-nanosecond intervals for the operation to time out
relative to the current server time.

 A value of -1 (0xFFFFFFFFFFFFFFFF) requests that the read wait forever for a message without
timing out.

 A value of zero sends a request that the read not wait and return immediately, whether a pending
message is available to be read or not.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.30 FileModeInformation

The FileModeInformation information class is used to query or set the mode of the file. The mode
returned by a query corresponds to the CreateOptions used in the initial create operation, modified
by any set FileModeInformation operations performed since the create operation.<133>

A FILE_MODE_INFORMATION data element, defined as follows, is returned by the server or

provided by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Mode

Mode (4 bytes): A 32-bit unsigned integer that specifies how the file will subsequently be accessed.

Value Meaning

FILE_WRITE_THROUGH

0x00000002

When set, any system services, file system drivers (FSDs), and
drivers that write data to the file are required to actually transfer
the data into the file before any requested write operation is
considered complete.

168 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

FILE_SEQUENTIAL_ONLY

0x00000004

This is a hint that informs the cache that it SHOULD<134>
optimize for sequential access. Non-sequential access of the file
can result in performance degradation.

FILE_NO_INTERMEDIATE_BUFFERING

0x00000008

When set, the file cannot be cached or buffered in a driver's
internal buffers.

FILE_SYNCHRONOUS_IO_ALERT

0x00000010

When set, all operations on the file are performed synchronously.
Any wait on behalf of the caller is subject to premature termination
from alerts. This flag also causes the I/O system to maintain the
file position context.

FILE_SYNCHRONOUS_IO_NONALERT

0x00000020

When set, all operations on the file are performed synchronously.
Wait requests in the system to synchronize I/O queuing and
completion are not subject to alerts. This flag also causes the I/O
system to maintain the file position context.

FILE_DELETE_ON_CLOSE

0x00001000

 This flag is not implemented and is always returned as not set.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_INVALID_PARAMETER An attempt to set the file mode returns STATUS_INVALID_PARAMETER in
any of the following cases:

 The Mode field contains any flag other than FILE_WRITE_THROUGH,
FILE_SEQUENTIAL_ONLY, FILE_SYNCHRONOUS_IO_ALERT, or
FILE_SYNCHRONOUS_IO_NONALERT.

 FILE_SYNCHRONOUS_IO_ALERT or
FILE_SYNCHRONOUS_IO_NONALERT is set and the file was not
opened for synchronous I/O.

 Neither FILE_SYNCHRONOUS_IO_ALERT nor
FILE_SYNCHRONOUS_IO_NONALERT are set and the file was opened
for synchronous I/O.

 FILE_SYNCHRONOUS_IO_ALERT and
FILE_SYNCHRONOUS_IO_NONALERT are both set.

2.4.31 FileNameInformation

This information class is used locally to query the name of a file. This information class returns a
FILE_NAME_INFORMATION data element containing an absolute pathname (section 2.1.5).

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

169 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error code Meaning

STATUS_NOT_SUPPORTED

0xC00000BB

The resource is not supported.

STATUS_BUFFER_OVERFLOW

0x80000005

The output buffer was filled before the complete name could be returned.

2.4.32 FileNamesInformation

This information class is used in directory enumeration to return detailed information about the
contents of a directory.

This information class returns a list that contains a FILE_NAMES_INFORMATION data element for
each file or directory within the target directory.

When multiple FILE_NAMES_INFORMATION data elements are present in the buffer, each MUST be
aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the
receiver MUST ignore them. No padding is required following the last data element.

A FILE_NAMES_INFORMATION data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

FileIndex

FileNameLength

FileName (variable)

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the

beginning of this entry, at which the next FILE_NAMES_INFORMATION entry is located, if multiple
entries are present in a buffer. This member MUST be zero if no other entries follow this one. An
implementation MUST use this value to determine the location of the next entry (if multiple entries
are present in a buffer).

FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the
parent directory. For file systems in which the position of a file within the parent directory is not
fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and

MUST be ignored.<135>

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file
name contained within the FileName member.

FileName (variable): A sequence of Unicode characters containing the file name. When working
with this field, use FileNameLength to determine the length of the file name rather than
assuming the presence of a trailing null delimiter. Dot directory names are valid for this field. For
more details, see section 2.1.5.1.

170 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most

common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.33 FileNetworkOpenInformation

This information class is used to query for information that is commonly needed when a file is opened
across a network.<136>

A FILE_NETWORK_OPEN_INFORMATION data element, defined as follows, is returned by the

server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CreationTime

...

LastAccessTime

...

LastWriteTime

...

ChangeTime

...

AllocationSize

...

EndOfFile

...

FileAttributes

Reserved

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

171 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this
field MUST be greater than or equal to 0.

LastWriteTime (8 bytes): The last time information was written to the file; see section 2.1.1. The
value of this field MUST be greater than or equal to 0.

ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field
MUST be greater than or equal to 0.

AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The
value of this field MUST be an integer multiple of the cluster size.

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a
byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately
following the last valid byte in the file. Because this value is zero-based, it actually refers to the

first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes
appended to the file will be written. The value of this field MUST be greater than or equal to 0.

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes
are as specified in section 2.6.

Reserved (4 bytes): A 32-bit field. This field is reserved. This field can be set to any value and MUST
be ignored.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_ACCESS_DENIED

0xC0000022

The handle was not opened to read file data or file attributes.

2.4.34 FileNormalizedNameInformation

This information class is used to query the normalized name of a file. A normalized name is an
absolute pathname where each short name component has been replaced with the corresponding long
name component, and each name component uses the exact letter casing stored on disk. This
information class returns a FILE_NAME_INFORMATION data element containing an absolute

pathname, as specified in section 2.1.7. <137>

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error Code Meaning

STATUS_NOT_SUPPORTED

0xC00000BB

The resource is not supported.

STATUS_BUFFER_OVERFLOW

0x80000005

The output buffer was filled before the complete name
could be returned.

172 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.4.35 FileObjectIdInformation

This information class is used locally to query object ID information for the files in a directory on a
volume. The query MUST fail if the file system does not support object IDs.<138>

The data returned to the caller will take one of two forms. The choice of which data structure to use,
and the interpretation of the data within it, is application-specific. An application implementer chooses
one of the following two data elements as the structure for its object ID information data.<139>

 FILE_OBJECTID_INFORMATION_TYPE_1 (section 2.4.35.1).

 FILE_OBJECTID_INFORMATION_TYPE_2 (section 2.4.35.2).

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The target file system does not implement this functionality.

STATUS_INVALID_INFO_CLASS

0xC0000003

The specified information class is not a valid information class for the
specified object.

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_INVALID_PARAMETER

0xC000000D

The file specified is not a valid parameter.

STATUS_NO_SUCH_FILE

0xC000000F

The file does not exist.

STATUS_NO_MORE_FILES

0x80000006

No more files were found which match the file specification.

STATUS_BUFFER_OVERFLOW

0x80000005

The output buffer was filled before all of the ObjectID information could
be returned. Only complete FILE_OBJECTID_INFORMATION structures
are returned.

2.4.35.1 FILE_OBJECTID_INFORMATION_TYPE_1

A FILE_OBJECTID_INFORMATION_TYPE_1 data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileReferenceNumber

...

ObjectId (16 bytes)

173 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

...

BirthVolumeId (16 bytes)

...

...

BirthObjectId (16 bytes)

...

...

DomainId (16 bytes)

...

...

FileReferenceNumber (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file
systems that do not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored.

ObjectId (16 bytes): A 16-byte GUID that uniquely identifies the file or directory within the

volume on which it resides. Specifically, the same object ID can be assigned to another file or
directory on a different volume, but it MUST NOT be assigned to another file or directory on the

same volume.

BirthVolumeId (16 bytes): A 16-byte GUID that uniquely identifies the volume on which the object
resided when the object identifier was created, or zero if the volume had no object identifier at
that time. After copy operations, move operations, or other file operations, this might not be the

same as the object identifier of the volume on which the object presently resides.

BirthObjectId (16 bytes): A 16-byte GUID value containing the object identifier of the object at the
time it was created. After copy operations, move operations, or other file operations, this value
might not be the same as the ObjectId member at present.<140>

DomainId (16 bytes): A 16-byte GUID value containing the domain identifier. This value is unused;
it SHOULD be zero and MUST be ignored.

2.4.35.2 FILE_OBJECTID_INFORMATION_TYPE_2

A FILE_OBJECTID_INFORMATION_TYPE_2 data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileReferenceNumber

...

174 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

ObjectId (16 bytes)

...

...

ExtendedInfo (48 bytes)

...

...

FileReferenceNumber (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file
systems that do not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored.

ObjectId (16 bytes): A 16-byte GUID that uniquely identifies the file or directory within the

volume on which it resides. Specifically, the same object ID can be assigned to another file or
directory on a different volume, but it MUST NOT be assigned to another file or directory on the
same volume.

ExtendedInfo (48 bytes): A 48-byte BLOB that contains application-specific extended information
on the file object. If no extended information has been written for this file, the server MUST return
48 bytes of 0x00 in this field.

2.4.36 FilePipeInformation

This information class is used to query or set information on a named pipe that is not specific to one
end of the pipe or another.

A FILE_PIPE_INFORMATION data element, defined as follows, is returned by the server or

provided by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReadMode

CompletionMode

ReadMode (4 bytes): A 32-bit unsigned integer that MUST contain one of the following values.

Value Meaning

FILE_PIPE_BYTE_STREAM_MODE

0x00000000

If this value is specified, data MUST be read from the pipe as a stream of
bytes.

FILE_PIPE_MESSAGE_MODE

0x00000001

If this value is specified, data MUST be read from the pipe as a stream of
messages.

If this field is set to FILE_PIPE_BYTE_STREAM_MODE, any attempt to subsequently change it MUST
fail with a STATUS_INVALID_PARAMETER error code.

CompletionMode (4 bytes): A 32-bit unsigned integer that MUST contain one of the following
values.

175 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

FILE_PIPE_QUEUE_OPERATION

0x00000000

If this value is specified, blocking mode MUST be enabled. When the
pipe is being connected, read to, or written from, the operation is not
completed until there is data to read, all data is written, or a client is
connected. Use of this mode can result in the server waiting indefinitely
for a client process to perform an action.

FILE_PIPE_COMPLETE_OPERATION

0x00000001

If this value is specified, non-blocking mode MUST be enabled. When
the pipe is being connected, read to, or written from, the operation
completes immediately.

This operation returns a status code as specified in section 2.2. Upon success, the status code

returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_INVALID_PARAMETER

0xC000000D

An invalid parameter was passed to a service or function. When setting the
FilePipeInformation information level, STATUS_INVALID_PARAMETER will
be returned:

 If the ReadMode field is set to FILE_PIPE_BYTE_STREAM_MODE and a
subsequent set operation attempts to set the ReadMode field to any
value other than FILE_PIPE_BYTE_STREAM_MODE.

 If the value of the ReadMode field is not equal to
FILE_PIPE_MESSAGE_MODE or FILE_PIPE_BYTE_STREAM_MODE.

 If the value of the CompletionMode field is not equal to
FILE_PIPE_QUEUE_OPERATION or FILE_PIPE_COMPLETE_OPERATION.

For more information on named pipes, please see [PIPE].

2.4.37 FilePipeLocalInformation

This information class is used to query information on a named pipe that is associated with the end of
the pipe that is being queried.

A FILE_PIPE_LOCAL_INFORMATION data element, defined as follows, is returned by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NamedPipeType

NamedPipeConfiguration

MaximumInstances

CurrentInstances

InboundQuota

https://go.microsoft.com/fwlink/?LinkId=90247

176 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

ReadDataAvailable

OutboundQuota

WriteQuotaAvailable

NamedPipeState

NamedPipeEnd

NamedPipeType (4 bytes): A 32-bit unsigned integer that contains the named pipe type. MUST be
one of the following.

Value Meaning

FILE_PIPE_BYTE_STREAM_TYPE

0x00000000

If this value is specified, data MUST be read from the pipe as a stream of
bytes.

FILE_PIPE_MESSAGE_TYPE

0x00000001

If this flag is specified, data MUST be read from the pipe as a stream of
messages.

NamedPipeConfiguration (4 bytes): A 32-bit unsigned integer that contains the named pipe
configuration. MUST be one of the following.

Value Meaning

FILE_PIPE_INBOUND

0x00000000

If this value is specified, the flow of data in the pipe goes from client to server
only.

FILE_PIPE_OUTBOUND

0x00000001

If this value is specified, the flow of data in the pipe goes from server to client
only.

FILE_PIPE_FULL_DUPLEX

0x00000002

If this value is specified, the pipe is bi-directional; both server and client
processes can read from and write to the pipe.

MaximumInstances (4 bytes): A 32-bit unsigned integer that contains the maximum number of
instances that can be created for this pipe.

CurrentInstances (4 bytes): A 32-bit unsigned integer that contains the number of current named
pipe instances.

InboundQuota (4 bytes): A 32-bit unsigned integer that contains the inbound quota, in bytes, for
the named pipe. The inbound quota is the size of the buffer reserved for inbound transfer of data

on the pipe.

ReadDataAvailable (4 bytes): A 32-bit unsigned integer that contains the bytes of data available

to be read from the named pipe.

OutboundQuota (4 bytes): A 32-bit unsigned integer that contains the outbound quota, in bytes,
for the named pipe. The outbound quota is the size of the buffer reserved for outbound transfer of
data on the pipe.

WriteQuotaAvailable (4 bytes): A 32-bit unsigned integer that contains the write quota, in bytes,

for the named pipe. If the NamedPipeEnd field is set to FILE_PIPE_CLIENT_END, the
WriteQuotaAvailable field is the remaining InboundQuota field available. If the

177 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

NamedPipeEnd field is set to FILE_PIPE_SERVER_END, the WriteQuotaAvailable field is the
remaining OutboundQuota field available.

NamedPipeState (4 bytes): A 32-bit unsigned integer that contains the named pipe state that
specifies the connection status for the named pipe. MUST be one of the following.

Value Meaning

FILE_PIPE_DISCONNECTED_STATE

0x00000001

Named pipe is disconnected.

FILE_PIPE_LISTENING_STATE

0x00000002

Named pipe is waiting to establish a connection.

FILE_PIPE_CONNECTED_STATE

0x00000003

Named pipe is connected.

FILE_PIPE_CLOSING_STATE

0x00000004

Named pipe is in the process of being closed.

NamedPipeEnd (4 bytes): A 32-bit unsigned integer that contains the type of the named pipe end,
which specifies whether this is the client or the server side of a named pipe. MUST be one of the
following.

Value Meaning

FILE_PIPE_CLIENT_END

0x00000000

This is the client end of a named pipe.

FILE_PIPE_SERVER_END

0x00000001

This is the server end of a named pipe.

This operation returns a status code as specified in section 2.2. Upon success, the status code

returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

For more information on named pipes, please see [PIPE].

2.4.38 FilePipeRemoteInformation

This information class is used to query information on a named pipe that is associated with the client

end of the pipe that is being queried. Remote information is not available for local pipes or for the

server end of a remote pipe. Therefore, this information class is usable only by the client to retrieve
information associated with its end of the pipe.

A FILE_PIPE_REMOTE_INFORMATION data element, defined as follows, is returned by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CollectDataTime

https://go.microsoft.com/fwlink/?LinkId=90247

178 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

MaximumCollectionCount

CollectDataTime (8 bytes): A 64-bit signed integer that MUST contain the maximum amount of
time counted in 100-nanosecond intervals that will elapse before transmission of data from the
client machine to the server.

MaximumCollectionCount (4 bytes): A 32-bit unsigned integer that MUST contain the maximum
size, in bytes, of data that will be collected on the client machine before transmission to the
server.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

For more information on named pipes, please see [PIPE].

2.4.39 FilePositionInformation

This information class is used to query or set the position of the file pointer within a file.<141>

A FILE_POSITION_INFORMATION data element, defined as follows, is returned by the server or
provided by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CurrentByteOffset

...

CurrentByteOffset (8 bytes): A 64-bit signed integer that MUST contain the offset, in bytes, of the
file pointer from the beginning of the file. A unique offset value is maintained for each open of a
file. When setting the position, only values greater than or equal to zero are valid. If the given file
was opened using the FILE_NO_INTERMEDIATE_BUFFERING flag, the offset that is being set
SHOULD be aligned to a sector boundary. This value SHOULD<142> be updated by read and write

operations if the given file was opened using the FILE_SYNCHRONOUS_IO_ALERT or
FILE_SYNCHRONOUS_IO_NONALERT flags.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_INVALID_PARAMETER Returned when setting the offset if the CurrentByteOffset is negative or

https://go.microsoft.com/fwlink/?LinkId=90247

179 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error code Meaning

0xC000000D the file was opened using the FILE_NO_INTERMEDIATE_BUFFERING flag
and CurrentByteOffset is not aligned to a sector boundary.

2.4.40 FileQuotaInformation

This information class is used to query or to set file quota information for a volume. For queries, an
optional buffer of FILE_GET_QUOTA_INFORMATION (section 2.4.40.1) data elements is provided by
the client to specify the SIDs for which quota information is requested. If the
FILE_GET_QUOTA_INFORMATION buffer is not specified, information for all quotas is returned. A
buffer of FILE_QUOTA_INFORMATION data elements is returned by the server. For sets,
FILE_QUOTA_INFORMATION data elements are populated and sent by the client, as specified in

[MS-SMB] section 2.2.7.6.1 and [MS-SMB2] section 3.2.4.15.<143>

When multiple FILE_QUOTA_INFORMATION data elements are present in the buffer, each MUST be
aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the
receiver MUST ignore them. No padding is required following the last data element.

A FILE_QUOTA_INFORMATION data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

SidLength

ChangeTime

...

QuotaUsed

...

QuotaThreshold

...

QuotaLimit

...

Sid (variable)

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the

beginning of this entry, at which the next FILE_QUOTA_INFORMATION entry is located, if multiple
entries are present in a buffer. This member MUST be zero if no other entries follow this one. An

%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

180 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

implementation MUST use this value to determine the location of the next entry (if multiple entries
are present in a buffer).

SidLength (4 bytes): A 32-bit unsigned integer that contains the length, in bytes, of the Sid data
element.

ChangeTime (8 bytes): The last time that the quota was changed; see section 2.1.1. This value
MUST be greater than or equal to 0x0000000000000000. When setting quota information, the
server MUST ignore the value of this field.

QuotaUsed (8 bytes): A 64-bit signed integer that contains the amount of quota used by this user,
in bytes. This value MUST be greater than or equal to 0x0000000000000000. When setting quota
information, the server MUST ignore the value of this field.

QuotaThreshold (8 bytes): A 64-bit signed integer that contains the disk quota warning

threshold, in bytes, on this volume for this user. This field MUST be set to a 64-bit integer value
greater than or equal to 0 to set a quota warning threshold for this user on this volume. If this
field is set to -1 there is no quota warning threshold for this user.

QuotaLimit (8 bytes): A 64-bit signed integer that contains the disk quota limit, in bytes, on this
volume for this user. This field MUST be set to a 64-bit integer value greater than or equal to zero
to set a disk quota limit for this user on this volume, to -1 to specify that no quota limit is set for

this user, or to -2 to delete the quota entry for the user.

Sid (variable): Security identifier (SID) for this user.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The target file system does not implement this functionality.

STATUS_INVALID_INFO_CLASS

0xC0000003

The specified information class is not a valid information class for the
specified object.

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_INVALID_PARAMETER

0xC000000D

The SID or SID Length specified is not a valid parameter.

STATUS_NO_SUCH_FILE

0xC000000F

For query operations, indicates that no FILE_QUOTA_INFORMATION
data elements were returned that matched the input criteria.

STATUS_BUFFER_TOO_SMALL

0xC0000023

The buffer is too small to contain the entry. No information has been
written to the buffer.

2.4.40.1 FILE_GET_QUOTA_INFORMATION

This structure is used to provide the list of SIDs for which quota query information is requested.

When multiple FILE_GET_QUOTA_INFORMATION data elements are present in the buffer, each
MUST be aligned on a 4-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and
the receiver MUST ignore them. No padding is required following the last data element.

181 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

A FILE_GET_QUOTA_INFORMATION data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

SidLength

Sid (variable)

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_GET_QUOTA_INFORMATION entry is located, if

multiple entries are present in a buffer. This member MUST be zero if no other entries follow this

one. An implementation MUST use this value to determine the location of the next entry (if
multiple entries are present in a buffer).

SidLength (4 bytes): A 32-bit unsigned integer that contains the length, in bytes, of the Sid data
element.

Sid (variable): SID for this user. SIDs are sent in little-endian format and require no padding. The

format of a SID is as specified in [MS-DTYP] section 2.4.2.2.

2.4.41 FileRenameInformation

This information class is used to rename a file. The data element provided by the client takes one of
two forms, depending on whether it is embedded within SMB or SMB2. The structure definitions are as

follows:

 FILE_RENAME_INFORMATION_TYPE_1 for the SMB protocol (section 2.4.41.1).

 FILE_RENAME_INFORMATION_TYPE_2 for the SMB2 protocol (section 2.4.41.2).

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INVALID_PARAMETER

0xC000000D

An invalid parameter was passed for FileName or FileNameLength, or
the RootDirectory field value was nonzero for a network operation.

STATUS_ACCESS_DENIED

0xC0000022

The handle was not opened with delete access, or the target file was open
and ReplaceIfExists is nonzero.

STATUS_NOT_SAME_DEVICE

0xC00000D4

The destination file of a rename request is located on a different device
than the source of the rename request.

STATUS_OBJECT_NAME_INVALID

0xC0000033

The object name is invalid for the target file system.

STATUS_OBJECT_NAME_COLLISION

0xC0000035

The specified name already exists and ReplaceIfExists is zero.

STATUS_INFO_LENGTH_MISMATCH The specified information record length does not match the length that is

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

182 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error code Meaning

0xC0000004 required for the specified information class.

2.4.41.1 FileRenameInformation for SMB

This information class is used to rename a file from within the SMB Protocol, as specified in [MS-SMB].

A FILE_RENAME_INFORMATION_TYPE_1 data element, defined as follows, is provided by the
client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReplaceIfExists Reserved

RootDirectory

FileNameLength

FileName (variable)

...

ReplaceIfExists (1 byte): A Boolean (section 2.1.8) value. Set to TRUE to indicate that if a file with
the given name already exists, it SHOULD be replaced with the given file. Set to FALSE to indicate

that the rename operation MUST fail if a file with the given name already exists.

Reserved (3 bytes): Reserved area for alignment. This field can contain any value and MUST be

ignored.

RootDirectory (4 bytes): A 32-bit unsigned integer that contains the file handle for the directory to
which the new name of the file is relative. For network operations, this value MUST be zero.

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file
name contained within the FileName field.

FileName (variable): A sequence of Unicode characters containing the new file name of type
Filename (section 2.1.5.2). When working with this field, use FileNameLength to determine the
length of the file name rather than assuming the presence of a trailing null delimiter.

2.4.41.2 FileRenameInformation for SMB2

This information class is used to rename a file from within the SMB2 Protocol [MS-SMB2].

A FILE_RENAME_INFORMATION_TYPE_2 data element, defined as follows, is provided by the
client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReplaceIfExists Reserved

%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

183 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

RootDirectory

...

FileNameLength

FileName (variable)

...

Padding (variable)

ReplaceIfExists (1 byte): A Boolean (section 2.1.8) value. Set to TRUE to indicate that if a file with
the given name already exists, it SHOULD be replaced with the given file. Set to FALSE to indicate
that the rename operation MUST fail if a file with the given name already exists.

Reserved (7 bytes): Reserved area for alignment. This field can contain any value and MUST be
ignored.

RootDirectory (8 bytes): A 64-bit unsigned integer that contains the file handle for the directory to
which the new name of the file is relative. For network operations, this value MUST always be
zero.

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file

name contained within the FileName field.

FileName (variable): A sequence of Unicode characters containing the new name of the file. When
working with this field, use FileNameLength to determine the length of the file name rather than

assuming the presence of a trailing null delimiter.

Padding (variable): Length of this field MUST be the number of bytes required to make the size of
this structure at least 24. This field MAY be set to 0 and MUST be ignored on receipt.

2.4.42 FileReparsePointInformation

This information class is used locally to query for information on a reparse point.

A FILE_REPARSE_POINT_INFORMATION data element, defined as follows, is returned to the
caller.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileReferenceNumber

...

Tag

FileReferenceNumber (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file.

184 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Tag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that uniquely
identifies the owner of the reparse point. Section 2.1.2.1 contains more details on reparse tags.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most

common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_INVALID_DEVICE_REQUEST

0xC0000010

The target file system does not implement this functionality.

STATUS_INVALID_INFO_CLASS

0xC0000003

The specified information class is not a valid information class for the
specified object.

STATUS_NO_SUCH_FILE

0xC000000F

No reparse points exist for the given file.

STATUS_BUFFER_OVERFLOW

0x80000005

The output buffer was filled before all of the
FILE_REPARSE_POINT_INFORMATION structures could be returned; a
partial structure might be returned.

2.4.43 FileSfioReserveInformation

This information class is used locally to query or set reserved bandwidth for a file handle. Conceptually
reserving bandwidth is effectively specifying the bytes per second to allocate to file IO.

A FILE_SFIO_RESERVE_INFORMATION data element, defined as follows, is returned to the caller.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RequestsPerPeriod

Period

RetryFailures Discardable Reserved

RequestSize

NumOutstandingRequests

RequestsPerPeriod (4 bytes): A 32-bit unsigned integer indicating the number of I/O requests that
complete per period of time, as specified in the Period field. When setting bandwidth reservation,
a value of 0 indicates to the file system that it MUST free any existing reserved bandwidth.

Period (4 bytes): A 32-bit unsigned integer that contains the period for reservation, which is the
time from which I/O is issued to the kernel until the time the I/O is completed, specified in
milliseconds.

RetryFailures (1 byte): A Boolean (section 2.1.8) value.

185 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Discardable (1 byte): A Boolean (section 2.1.8) value.

Reserved (2 bytes): Reserved for alignment. This field can contain any value and MUST be ignored.

RequestSize (4 bytes): A 32-bit unsigned integer that indicates the minimum size of any individual
I/O request that can be issued by an application using bandwidth reservation. When setting

reservations, this field MUST be ignored by servers and SHOULD be set to 0 by clients.

NumOutstandingRequests (4 bytes): A 32-bit unsigned integer that indicates the number of
RequestSize I/O requests allowed to be outstanding at any time. When setting reservations, this
field MUST be ignored by servers and SHOULD be set to 0 by clients.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_NOT_SUPPORTED

0xC00000BB

The request is not supported.

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.44 FileShortNameInformation

This information class is used to change a file's short name. If the supplied name is of zero length,
the file's existing short name, if any, SHOULD<144> be deleted. Otherwise, the supplied name MUST
be a valid short name as specified in section 2.1.5.2.1 and be unique among all file names and short
names in the same directory as the file being operated on. A caller changing the file's short name
MUST have SeRestorePrivilege, as specified in [MS-LSAD] section 3.1.1.2.1.

A FILE_NAME_INFORMATION (section 2.1.7) data element containing an 8.3 file name (section

2.1.5.2.1) is provided by the client.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_MEDIA_WRITE_PROTECTED

0xC00000A2

The target cannot be written to because it is write-
protected.

STATUS_INVALID_PARAMETER

0xC000000D

The file name is not a valid parameter.

STATUS_ACCESS_DENIED

0xC0000022

The handle was not opened to write file data or file
attributes, or the file has been deleted.

STATUS_PRIVILEGE_NOT_HELD

0xC0000061

The SeRestorePrivilege privilege is not held.

STATUS_SHORT_NAMES_NOT_ENABLED_ON_VOLUME

0xC000019F

Short names are not enabled on this volume.

%5bMS-LSAD%5d.pdf#Section_1b5471ef4c334a91b079dfcbb82f05cc

186 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error code Meaning

STATUS_OBJECT_NAME_COLLISION

0xC0000035

The specified name already exists.

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match
the length that is required for the specified information
class.

2.4.45 FileStandardInformation

This information class is used to query file information.

A FILE_STANDARD_INFORMATION data element, defined as follows, is returned by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AllocationSize

...

EndOfFile

...

NumberOfLinks

DeletePending Directory Reserved

AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The
value of this field MUST be an integer multiple of the cluster size.

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute end-of-file position as a byte
offset from the start of the file. EndOfFile specifies the offset to the byte immediately following
the last valid byte in the file. Because this value is zero-based, it actually refers to the first free
byte in the file. That is, it is the offset from the beginning of the file at which new bytes appended
to the file will be written. The value of this field MUST be greater than or equal to 0.

NumberOfLinks (4 bytes): A 32-bit unsigned integer that contains the number of non-deleted links
to this file.

DeletePending (1 byte): A Boolean (section 2.1.8) value. Set to TRUE to indicate that a file deletion
has been requested; set to FALSE otherwise.

Directory (1 byte): A Boolean (section 2.1.8) value. Set to TRUE to indicate that the file is a
directory; set to FALSE otherwise.

Reserved (2 bytes): A 16-bit field. This field is reserved. This field can be set to any value, and

MUST be ignored.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

187 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.46 FileStandardLinkInformation

This information class is used locally to query file link information.<145>

A FILE_STANDARD_LINK_INFORMATION data element, defined as follows, is returned to the
caller.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NumberOfAccessibleLinks

TotalNumberOfLinks

DeletePending Directory Reserved

NumberOfAccessibleLinks (4 bytes): A 32-bit unsigned integer that contains the number of non-
deleted links to this file.

TotalNumberOfLinks (4 bytes): A 32-bit unsigned integer that contains the total number of links to
this file, including links marked for delete.

DeletePending (1 byte): A Boolean (section 2.1.8) value that MUST be set to TRUE to indicate that
a file deletion has been requested; otherwise, FALSE.

Directory (1 byte): An 8-bit field that MUST be set to 1 to indicate that the file is a directory;
otherwise, 0.

Reserved (2 bytes): A 16-bit field. This field is reserved. This field can be set to any value and MUST

be ignored.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_STATUS_NOT_SUPPORTED

0xC00000BB

The request is not supported.

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.4.47 FileStreamInformation

This information class is used to enumerate the data streams of a file or a directory. A buffer of
FILE_STREAM_INFORMATION data elements is returned by the server.

188 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

When multiple FILE_STREAM_INFORMATION data elements are present in the buffer, each MUST
be aligned on an 8-byte boundary; any bytes inserted for alignment SHOULD be set to zero and the

receiver MUST ignore them. No padding is required following the last data element.

A FILE_STREAM_INFORMATION data element is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

StreamNameLength

StreamSize

...

StreamAllocationSize

...

StreamName (variable)

...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_STREAM_INFORMATION entry is located, if
multiple entries are present in a buffer. This member is zero if no other entries follow this one. An
implementation MUST use this value to determine the location of the next entry (if multiple entries
are present in a buffer).

StreamNameLength (4 bytes): A 32-bit unsigned integer that contains the length, in bytes, of the
stream name string.

StreamSize (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the stream. The
value of this field MUST be greater than or equal to 0x0000000000000000.

StreamAllocationSize (8 bytes): A 64-bit signed integer that contains the file stream allocation
size, in bytes. The value of this field MUST be an integer multiple of the cluster size.

StreamName (variable): A sequence of Unicode characters containing the name of the stream using

the form ":streamname:$DATA", or "::$DATA" for the default data stream, as specified in section
2.1.4. This field is not null-terminated and MUST be handled as a sequence of
StreamNameLength bytes.

This operation returns a status code as specified in section 2.2. Upon success, the status code

returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_BUFFER_OVERFLOW

0x80000005

The output buffer was filled before all of the stream information could be
returned. Only complete FILE_STREAM_INFORMATION structures are
returned.

STATUS_INFO_LENGTH_MISMATCH The specified information record length does not match the length that is

189 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error code Meaning

0xC0000004 required for the specified information class.

2.4.48 FileValidDataLengthInformation

This information class is used to set the valid data length information for a file. A file's valid data
length is the length, in bytes, of the data that has been written to the file. This valid data extends
from the beginning of the file to the last byte in the file that has not been zeroed or left
uninitialized.<146>

A FILE_VALID_DATA_LENGTH_INFORMATION data element, defined as follows, is provided by
the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ValidDataLength

...

ValidDataLength (8 bytes): A 64-bit signed integer that contains the new valid data length for the
file. This parameter MUST be a positive value that is greater than the current valid data length,
but less than or equal to the current file size.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file information class is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_MEDIA_WRITE_PROTECTED

0xC00000A2

The target cannot be written to because it is write-protected.

STATUS_INVALID_PARAMETER

0xC000000D

The ValidDataLength specified is not a valid parameter or the given
handle is to a sparse or compressed file.

STATUS_PRIVILEGE_NOT_HELD

0xC0000061

The manage volume privilege is not held.

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.5 File System Information Classes

File system information classes are numerical values (specified by the Level column in the following

table) that specify what information on a particular instance of a file system on a volume is to be
queried. File system information classes can retrieve information such as the file system type, volume
label, size of the file system, and name of the driver used to access the file system. The table
indicates which file system information classes are supported for query and set operations.<147>

190 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

File system information class Level Uses

FileFsVolumeInformation 1 Query

FileFsLabelInformation 2 LOCAL<148>

FileFsSizeInformation 3 Query

FileFsDeviceInformation 4 Query

FileFsAttributeInformation 5 Query

FileFsControlInformation 6 Query, Set

FileFsFullSizeInformation 7 Query

FileFsObjectIdInformation 8 Query, Set

FileFsDriverPathInformation 9 LOCAL<149>

FileFsVolumeFlagsInformation 10 LOCAL<150>

FileFsSectorSizeInformation 11 Query

If an Information Class is specified that does not match the usage in the above table,

STATUS_INVALID_INFO_CLASS MUST be returned. If a file system does not implement one of the
above defined uses of an Information Class, STATUS_INVALID_PARAMETER MUST be returned.

2.5.1 FileFsAttributeInformation

This information class is used to query attribute information for a file system.

A FILE_FS_ATTRIBUTE_INFORMATION data element, defined as follows, is returned by the
server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileSystemAttributes

MaximumComponentNameLength

FileSystemNameLength

FileSystemName (variable)

...

FileSystemAttributes (4 bytes): A 32-bit unsigned integer that contains a bitmask of flags that
specify attributes of the specified file system as a combination of the following flags. The value of
this field MUST be a bitwise OR of zero or more of the following with the exception that

FILE_FILE_COMPRESSION and FILE_VOLUME_IS_COMPRESSED cannot both be set. Any flag
values not explicitly mentioned here can be set to any value, and MUST be ignored.<151>

Value Meaning

FILE_SUPPORTS_USN_JOURNAL The file system implements a USN change journal.

191 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

0x02000000

FILE_SUPPORTS_OPEN_BY_FILE_ID

0x01000000

The file system supports opening a file by FileID or ObjectID.

FILE_SUPPORTS_EXTENDED_ATTRIBUTES

0x00800000

The file system persistently stores Extended Attribute
information per file.

FILE_SUPPORTS_HARD_LINKS

0x00400000

The file system supports hard linking files.

FILE_SUPPORTS_TRANSACTIONS

0x00200000

The volume supports transactions.<152>

FILE_SEQUENTIAL_WRITE_ONCE

0x00100000

The underlying volume is write once.

FILE_READ_ONLY_VOLUME

0x00080000

If set, the volume has been mounted in read-only mode.

FILE_NAMED_STREAMS

0x00040000

The file system supports named streams.

FILE_SUPPORTS_ENCRYPTION

0x00020000

The file system supports the Encrypted File System
(EFS).<153>

FILE_SUPPORTS_OBJECT_IDS

0x00010000

The file system supports object identifiers.

FILE_VOLUME_IS_COMPRESSED

0x00008000

The specified volume is a compressed volume. This flag is
incompatible with the FILE_FILE_COMPRESSION flag.

FILE_SUPPORTS_REMOTE_STORAGE

0x00000100

The file system supports remote storage.<154>

FILE_SUPPORTS_REPARSE_POINTS

0x00000080

The file system supports reparse points.

FILE_SUPPORTS_SPARSE_FILES

0x00000040

The file system supports sparse files.

FILE_VOLUME_QUOTAS

0x00000020

The file system supports per-user quotas.

FILE_FILE_COMPRESSION

0x00000010

The file volume supports file-based compression. This flag is
incompatible with the FILE_VOLUME_IS_COMPRESSED flag.

FILE_PERSISTENT_ACLS

0x00000008

The file system preserves and enforces access control lists
(ACLs).

FILE_UNICODE_ON_DISK

0x00000004

The file system supports Unicode in file and directory names.
This flag applies only to file and directory names; the file
system neither restricts nor interprets the bytes of data within a
file.

FILE_CASE_PRESERVED_NAMES

0x00000002

The file system preserves the case of file names when it places
a name on disk.

192 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

FILE_CASE_SENSITIVE_SEARCH

0x00000001

The file system supports case-sensitive file names when looking
up (searching for) file names in a directory.

FILE_SUPPORT_INTEGRITY_STREAMS

0x04000000

The file system supports integrity streams.

FILE_SUPPORTS_BLOCK_REFCOUNTING

0x08000000

The file system supports sharing logical clusters between files
on the same volume. The file system reallocates on writes to
shared clusters. Indicates that
FSCTL_DUPLICATE_EXTENTS_TO_FILE is a supported operation.

FILE_SUPPORTS_SPARSE_VDL

0x10000000

The file system tracks whether each cluster of a file contains
valid data (either from explicit file writes or automatic zeros) or
invalid data (has not yet been written to or zeroed).

File systems that use Sparse VDL do not store a valid data
length (section 2.4.48) and do not require that valid data be
contiguous within a file.

MaximumComponentNameLength (4 bytes): A 32-bit signed integer that contains the maximum
file name component length, in bytes, supported by the specified file system. The value of this
field MUST be greater than zero and MUST be no more than 510.<155>

FileSystemNameLength (4 bytes): A 32-bit unsigned integer that contains the length, in bytes, of
the file system name in the FileSystemName field. The value of this field MUST be greater than
0.

FileSystemName (variable): A variable-length Unicode field containing the name of the file system.
This field is not null-terminated and MUST be handled as a sequence of FileSystemNameLength
bytes. This field is intended to be informative only. A client SHOULD NOT infer file system type

specific behavior from this field.<156>

This operation returns a status code as specified in section 2.2. Upon success, the status code

returned by the function that processes this file system information class is STATUS_SUCCESS. The
most common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_BUFFER_OVERFLOW

0x80000005

The output buffer was filled before all of the file system information could
be returned; only a portion of the FileSystemName field is returned.

2.5.2 FileFsControlInformation

This information class is used to query or set quota and content indexing control information for a file
system volume.

Setting quota information requires the caller to have permission to open a volume handle or a handle

to the quota index file<157> for write access.

A FILE_FS_CONTROL_INFORMATION data element, defined as follows, is returned by the server
or provided by the client.

193 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FreeSpaceStartFiltering

...

FreeSpaceThreshold

...

FreeSpaceStopFiltering

...

DefaultQuotaThreshold

...

DefaultQuotaLimit

...

FileSystemControlFlags

Padding

FreeSpaceStartFiltering (8 bytes): A 64-bit signed integer that contains the minimum amount of

free disk space, in bytes, that is required for the operating system's content indexing service to
begin document filtering. This value SHOULD be set to 0 and MUST be ignored.

FreeSpaceThreshold (8 bytes): A 64-bit signed integer that contains the minimum amount of free
disk space, in bytes, that is required for the indexing service to continue to filter documents and
merge word lists. This value SHOULD be set to 0 and MUST be ignored.

FreeSpaceStopFiltering (8 bytes): A 64-bit signed integer that contains the minimum amount of
free disk space, in bytes, that is required for the content indexing service to continue filtering. This
value SHOULD be set to 0, and MUST be ignored.

DefaultQuotaThreshold (8 bytes): A 64-bit unsigned integer that contains the default per-user
disk quota warning threshold, in bytes, for the volume. A value of 0xFFFFFFFFFFFFFFFF specifies
that no default quota warning threshold per user is set.

DefaultQuotaLimit (8 bytes): A 64-bit unsigned integer that contains the default per-user disk

quota limit, in bytes, for the volume. A value of 0xFFFFFFFFFFFFFFFF specifies that no default
quota limit per user is set.

FileSystemControlFlags (4 bytes): A 32-bit unsigned integer that contains a bitmask of flags that

control quota enforcement and logging of user-related quota events on the volume. The following
bit flags are valid in any combination. Bits not defined in the following table SHOULD be set to 0,
and MUST be ignored.<158>

194 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

FILE_VC_CONTENT_INDEX_DISABLED

0x00000008

Content indexing is disabled.

FILE_VC_LOG_QUOTA_LIMIT

0x00000020

An event log entry will be created when the user exceeds the
assigned disk quota limit.

FILE_VC_LOG_QUOTA_THRESHOLD

0x00000010

An event log entry will be created when the user exceeds his or her
assigned quota warning threshold.

FILE_VC_LOG_VOLUME_LIMIT

0x00000080

An event log entry will be created when the volume's free space limit
is exceeded.

FILE_VC_LOG_VOLUME_THRESHOLD

0x00000040

An event log entry will be created when the volume's free space
threshold is exceeded.

FILE_VC_QUOTA_ENFORCE

0x00000002

Quotas are tracked and enforced on the volume.

Note: FILE_VC_QUOTA_TRACK takes precedence over this flag. In
other words, if both FILE_VC_QUOTA_TRACK and
FILE_VC_QUOTA_ENFORCE are set, the FILE_VC_QUOTA_ENFORCE
flag is ignored. This flag will be ignored if a client attempts to set it.

FILE_VC_QUOTA_TRACK

0x00000001

Quotas are tracked on the volume, but they are not enforced.
Tracked quotas enable reporting on the file system space used by
system users. If both this flag and FILE_VC_QUOTA_ENFORCE are
specified, FILE_VC_QUOTA_ENFORCE is ignored.

Note: This flag takes precedence over FILE_VC_QUOTA_ENFORCE. In
other words, if both FILE_VC_QUOTA_TRACK and
FILE_VC_QUOTA_ENFORCE are set, the FILE_VC_QUOTA_ENFORCE
flag is ignored. This flag will be ignored if a client attempts to set it.

FILE_VC_QUOTAS_INCOMPLETE

0x00000100

The quota information for the volume is incomplete because it is
corrupt, or the system is in the process of rebuilding the quota
information.

Note: This does not necessarily imply that
FILE_VC_QUOTAS_REBUILDING is set. This flag will be ignored if a
client attempts to set it.

FILE_VC_QUOTAS_REBUILDING

0x00000200

The file system is rebuilding the quota information for the volume.

Note: This does not necessarily imply that
FILE_VC_QUOTAS_INCOMPLETE is set. This flag will be ignored if a
client attempts to set it.

Padding (4 bytes): This field SHOULD be set to 0x00000000 and MUST be ignored.

This operation returns a status code as specified in section 2.2. Upon success, the status code

returned by the function that processes this file system information class is STATUS_SUCCESS. The
most common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_VOLUME_NOT_UPGRADED

0xC000029C

The file system on the volume does not support quotas.

195 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.5.3 FileFsDriverPathInformation

This information class is used locally to query if a given driver is in the I/O path for a file system
volume.

A FILE_FS_DRIVER_PATH_INFORMATION data element, defined as follows, is returned to the
caller.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DriverInPath Reserved

DriverNameLength

DriverName (variable)

...

DriverInPath (1 byte): A Boolean (section 2.1.8) value. Set to TRUE if the driver is in the I/O path
for the file system volume; set to FALSE otherwise.

Reserved (3 bytes): Reserved for alignment. This field can contain any value and MUST be ignored.

DriverNameLength (4 bytes): A 32-bit unsigned integer that contains the length of the

DriverName string.

DriverName (variable): A variable-length Unicode field containing the name of the driver for which
to query. This sequence of Unicode characters MUST NOT be null-terminated.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file system information class is STATUS_SUCCESS. The

most common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.5.4 FileFsFullSizeInformation

This information class is used to query sector size information for a file system volume.

A FILE_FS_FULL_SIZE_INFORMATION data element, defined as follows, is returned by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalAllocationUnits

...

CallerAvailableAllocationUnits

196 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

...

ActualAvailableAllocationUnits

...

SectorsPerAllocationUnit

BytesPerSector

TotalAllocationUnits (8 bytes): A 64-bit signed integer that contains the total number of allocation
units on the volume that are available to the user associated with the calling thread. The value of
this field MUST be greater than or equal to 0.<159>

CallerAvailableAllocationUnits (8 bytes): A 64-bit signed integer that contains the total number

of free allocation units on the volume that are available to the user associated with the calling
thread. The value of this field MUST be greater than or equal to 0.<160>

ActualAvailableAllocationUnits (8 bytes): A 64-bit signed integer that contains the total number
of free allocation units on the volume. The value of this field MUST be greater than or equal to 0.

SectorsPerAllocationUnit (4 bytes): A 32-bit unsigned integer that contains the number of sectors

in each allocation unit.

BytesPerSector (4 bytes): A 32-bit unsigned integer that contains the number of bytes in each
sector.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file system information class is STATUS_SUCCESS. The
most common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.5.5 FileFsLabelInformation

This information class is used locally to set the label for a file system volume.

A FILE_FS_LABEL_INFORMATION data element, defined as follows, is provided by the caller.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

VolumeLabelLength

VolumeLabel (variable)

...

VolumeLabelLength (4 bytes): A 32-bit unsigned integer that contains the length, in bytes,
including the trailing null, if present, of the name for the volume.<161>

197 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

VolumeLabel (variable): A variable-length Unicode field containing the name of the volume. The
content of this field can be a null-terminated string, or it can be a string padded with the space

character to be VolumeLabelLength bytes long.

This operation returns a status code as specified in section 2.2. Upon success, the status code

returned by the function that processes this file system information class is STATUS_SUCCESS. The
most common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.5.6 FileFsObjectIdInformation

This information class is used to query or set the object ID for a file system data element. The
operation MUST fail if the file system does not support object IDs.<162>

A FILE_FS_OBJECTID_INFORMATION data element, defined as follows, is returned by the server
or provided by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ObjectId (16 bytes)

...

...

ExtendedInfo (48 bytes)

...

...

ObjectId (16 bytes): A 16-byte GUID that identifies the file system volume on the disk. This value
is not required to be unique on the system.

ExtendedInfo (48 bytes): A 48-byte value containing extended information on the file system
volume. If no extended information has been written for this file system volume, the server MUST
return 48 bytes of 0x00 in this field.<163>

This operation returns a status code as specified in section 2.2. Upon success, the status code

returned by the function that processes this file system information class is STATUS_SUCCESS. The
most common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_VOLUME_NOT_UPGRADED The file system on the volume does not support object IDs.

198 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error code Meaning

0xC000029C

STATUS_INVALID_PARAMETER

0xC000000D

The file system does not implement object IDs.

2.5.7 FileFsSectorSizeInformation

This information class is used to query for the extended sector size and alignment information for a
volume. The message contains a FILE_FS_SECTOR_SIZE_INFORMATION data element.<164>

A FILE_FS_SECTOR_SIZE_INFORMATION data element, defined as follows, is returned to the
caller.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LogicalBytesPerSector

PhysicalBytesPerSectorForAtomicity

PhysicalBytesPerSectorForPerformance

FileSystemEffectivePhysicalBytesPerSectorForAtomicity

Flags

ByteOffsetForSectorAlignment

ByteOffsetForPartitionAlignment

LogicalBytesPerSector (4 bytes): A 32-bit unsigned integer that contains the number of bytes in a
logical sector for the device backing the volume. This field is the unit of logical addressing for the
device and is not the unit of atomic write. Applications SHOULD NOT utilize this value for
operations requiring physical sector alignment.

PhysicalBytesPerSectorForAtomicity (4 bytes): A 32-bit unsigned integer that contains the

number of bytes in a physical sector for the device backing the volume. Note that this is the
reported physical sector size of the device and is the unit of atomic write. Applications
SHOULD<165> utilize this value for operations requiring sector alignment.

PhysicalBytesPerSectorForPerformance (4 bytes): A 32-bit unsigned integer that contains the
number of bytes in a physical sector for the device backing the volume. This is the reported

physical sector size of the device and is the unit of performance. Applications SHOULD<166>
utilize this value for operations requiring sector alignment.

FileSystemEffectivePhysicalBytesPerSectorForAtomicity (4 bytes): A 32-bit unsigned integer
containing the unit, in bytes, that the file system on the volume will use for internal operations
that require alignment and atomicity.<167>

Flags (4 bytes): A 32-bit unsigned integer that indicates the flags for this operation. Currently
defined flags are:

199 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

SSINFO_FLAGS_ALIGNED_DEVICE

0x00000001

When set, this flag indicates that the first physical
sector of the device is aligned with the first logical
sector. When not set, the first physical sector of the
device is misaligned with the first logical sector.

SSINFO_FLAGS_PARTITION_ALIGNED_ON_DEVICE

0x00000002

When set, this flag indicates that the partition is
aligned to physical sector boundaries on the storage
device.

SSINFO_FLAGS_NO_SEEK_PENALTY

0x00000004

When set, the device reports that it does not incur a
seek penalty (this typically indicates that the device
does not have rotating media, such as flash-based
disks).

SSINFO_FLAGS_TRIM_ENABLED

0x00000008

When set, the device supports TRIM operations, either
T13 (ATA) TRIM or T10 (SCSI/SAS) UNMAP.

ByteOffsetForSectorAlignment (4 bytes): A 32-bit unsigned integer that contains the logical
sector offset within the first physical sector where the first logical sector is placed, in bytes. If this
value is set to SSINFO_OFFSET_UNKNOWN (0XFFFFFFFF), there was insufficient information to

compute this field.<168>

ByteOffsetForPartitionAlignment (4 bytes): A 32-bit unsigned integer that contains the byte
offset from the first physical sector where the first partition is placed. If this value is set to
SSINFO_OFFSET_UNKNOWN (0XFFFFFFFF), there was either insufficient information or an error
was encountered in computing this field.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file system information class is STATUS_SUCCESS. The

most common error codes are listed in the following table.

Error Code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.5.8 FileFsSizeInformation

This information class is used to query sector size information for a file system volume.

A FILE_FS_SIZE_INFORMATION data element, defined as follows, is returned by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalAllocationUnits

...

AvailableAllocationUnits

...

200 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

SectorsPerAllocationUnit

BytesPerSector

TotalAllocationUnits (8 bytes): A 64-bit signed integer that contains the total number of allocation
units on the volume that are available to the user associated with the calling thread. This value
MUST be greater than or equal to 0.<169>

AvailableAllocationUnits (8 bytes): A 64-bit signed integer that contains the total number of free
allocation units on the volume that are available to the user associated with the calling thread.
This value MUST be greater than or equal to 0.<170>

SectorsPerAllocationUnit (4 bytes): A 32-bit unsigned integer that contains the number of sectors
in each allocation unit.

BytesPerSector (4 bytes): A 32-bit unsigned integer that contains the number of bytes in each

sector.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file system information class is STATUS_SUCCESS. The
most common error codes are listed in the following table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.5.9 FileFsVolumeInformation

This information class is used to query information on a volume on which a file system is mounted.

A FILE_FS_VOLUME_INFORMATION data element, defined as follows, is returned by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

VolumeCreationTime

...

VolumeSerialNumber

VolumeLabelLength

SupportsObjects Reserved VolumeLabel (variable)

...

VolumeCreationTime (8 bytes): The time when the volume was created; see section 2.1.1. The
value of this field MUST be greater than or equal to 0.

VolumeSerialNumber (4 bytes): A 32-bit unsigned integer that contains the serial number of the
volume. The serial number is an opaque value generated by the file system at format time, and is

201 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

not necessarily related to any hardware serial number for the device on which the file system is
located. No specific format or content of this field is required for protocol interoperation. This value

is not required to be unique.

VolumeLabelLength (4 bytes): A 32-bit unsigned integer that contains the length, in bytes,

including the trailing null, if present, of the name of the volume.<171>

SupportsObjects (1 byte): A Boolean (section 2.1.8) value. Set to TRUE if the file system supports
object-oriented file system objects; set to FALSE otherwise.<172>

Reserved (1 byte): An 8-bit field. This field is reserved. This field MUST be set to zero and MUST be
ignored.

VolumeLabel (variable): A variable-length Unicode field containing the name of the volume. The
content of this field can be a null-terminated string or can be a string padded with the space

character to be VolumeLabelLength bytes long.

This operation returns a status code as specified in section 2.2. Upon success, the status code

returned by the function that processes this file system information class is STATUS_SUCCESS. The
most common error codes are listed in the following table.

If the volume label is greater than 32 characters, return the first 32 characters of the label and
STATUS_SUCCESS.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

STATUS_BUFFER_OVERFLOW

0x80000005

The output buffer was filled before all of the volume information could be
returned; only a portion of the VolumeLabel field is returned.

2.5.10 FileFsDeviceInformation

This information class is used to query device information associated with a file system volume.

A FILE_FS_DEVICE_INFORMATION data element, defined as follows, is returned by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DeviceType

Characteristics

DeviceType (4 bytes): This identifies the type of given volume. It MUST be one of the following.

Value Meaning

FILE_DEVICE_CD_ROM

0x00000002

Volume resides on a CD ROM.

FILE_DEVICE_DISK

0x00000007

Volume resides on a disk.

202 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Characteristics (4 bytes): A bit field which identifies various characteristics about a given volume.
The following are valid bit values.

Value Meaning

FILE_REMOVABLE_MEDIA

0x00000001

Indicates that the storage device supports removable
media. Notice that this characteristic indicates
removable media, not a removable device. For
example, drivers for JAZ drive devices specify this
characteristic, but drivers for PCMCIA flash disks do
not.

FILE_READ_ONLY_DEVICE

0x00000002

Indicates that the device cannot be written to.

FILE_FLOPPY_DISKETTE

0x00000004

Indicates that the device is a floppy disk device.

FILE_WRITE_ONCE_MEDIA

0x00000008

Indicates that the device supports write-once media.

FILE_REMOTE_DEVICE

0x00000010

Indicates that the volume is for a remote file system

like SMB or CIFS.

FILE_DEVICE_IS_MOUNTED

0x00000020

Indicates that a file system is mounted on the device.

FILE_VIRTUAL_VOLUME

0x00000040

Indicates that the volume does not directly reside on
storage media but resides on some other type of
media (memory for example).

FILE_DEVICE_SECURE_OPEN

0x00000100

By default, volumes do not check the ACL associated
with the volume, but instead use the ACLs associated
with individual files on the volume. When this flag is
set the volume ACL is also checked.

FILE_CHARACTERISTIC_TS_DEVICE

0x00001000

Indicates that the device object is part of a Terminal
Services device stack. See [MS-RDPBCGR] for more
information.

FILE_CHARACTERISTIC_WEBDAV_DEVICE

0x00002000

Indicates that a web-based Distributed Authoring and
Versioning (WebDAV) file system is mounted on the

device. See [MS-WDVME] for more information.

FILE_DEVICE_ALLOW_APPCONTAINER_TRAVERSAL

0x00020000

The IO Manager normally performs a full security
check for traverse access on every file open when the
client is an appcontainer. Setting of this flag
bypasses this enforced traverse access check if the
client token already has traverse privileges.<173>

FILE_PORTABLE_DEVICE

0x0004000

Indicates that the given device resides on a portable
bus like USB or Firewire and that the entire device
(not just the media) can be removed from the
system.

This operation returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this file system information class is STATUS_SUCCESS. The
most common error codes are listed in the following table.

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-WDVME%5d.pdf#Section_8cafdf55ee5c443ebdb72cb2ab1fb2c3

203 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

The specified information record length does not match the length that is
required for the specified information class.

2.6 File Attributes

The following attributes are defined for files and directories. They can be used in any combination
unless noted in the description of the attribute's meaning. There is no file attribute with the value
0x00000000 because a value of 0x00000000 in the FileAttributes field means that the file attributes
for this file MUST NOT be changed when setting basic information for the file.

Note: File systems silently ignore any attribute that is not supported by that file system.
Unsupported attributes MUST NOT be persisted on the media. It is recommended that unsupported

attributes be masked off when encountered.

Value Meaning

FILE_ATTRIBUTE_READONLY

0x00000001

A file or directory that is read-only. For a file, applications can
read the file but cannot write to it or delete it. For a directory,
applications cannot delete it, but applications can create and
delete files from that directory.

FILE_ATTRIBUTE_HIDDEN

0x00000002

A file or directory that is hidden. Files and directories marked
with this attribute do not appear in an ordinary directory listing.

FILE_ATTRIBUTE_SYSTEM

0x00000004

A file or directory that the operating system uses a part of or
uses exclusively.

FILE_ATTRIBUTE_DIRECTORY

0x00000010

This item is a directory.

FILE_ATTRIBUTE_ARCHIVE

0x00000020

A file or directory that requires to be archived. Applications use
this attribute to mark files for backup or removal.

FILE_ATTRIBUTE_NORMAL

0x00000080

A file that does not have other attributes set. This flag is used to
clear all other flags by specifying it with no other flags set.

This flag MUST be ignored if other flags are set.<174>

FILE_ATTRIBUTE_TEMPORARY

0x00000100

A file that is being used for temporary storage. The operating
system can choose to store this file's data in memory rather than
on mass storage, writing the data to mass storage only if data
remains in the file when the file is closed.

FILE_ATTRIBUTE_SPARSE_FILE

0x00000200

A file that is a sparse file.

FILE_ATTRIBUTE_REPARSE_POINT

0x00000400

A file or directory that has an associated reparse point.

FILE_ATTRIBUTE_COMPRESSED

0x00000800

A file or directory that is compressed. For a file, all of the data in
the file is compressed. For a directory, compression is the default
for newly created files and subdirectories.

FILE_ATTRIBUTE_OFFLINE

0x00001000

The data in this file is not available immediately. This attribute
indicates that the file data is physically moved to offline storage.
This attribute is used by Remote Storage, which is hierarchical

204 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

storage management software.

FILE_ATTRIBUTE_NOT_CONTENT_INDEXED

0x00002000

A file or directory that is not indexed by the content indexing
service.

FILE_ATTRIBUTE_ENCRYPTED

0x00004000

A file or directory that is encrypted. For a file, all data streams in
the file are encrypted. For a directory, encryption is the default
for newly created files and subdirectories.

FILE_ATTRIBUTE_INTEGRITY_STREAM

0x00008000

A file or directory that is configured with integrity support. For a
file, all data streams in the file have integrity support. For a
directory, integrity support is the default for newly created files
and subdirectories, unless the caller specifies otherwise.<175>

FILE_ATTRIBUTE_NO_SCRUB_DATA

0x00020000

A file or directory that is configured to be excluded from the data
integrity scan. For a directory configured with
FILE_ATTRIBUTE_NO_SCRUB_DATA, the default for newly
created files and subdirectories is to inherit the
FILE_ATTRIBUTE_NO_SCRUB_DATA attribute.<176>

FILE_ATTRIBUTE_RECALL_ON_OPEN

0x00040000

This attribute appears only in directory enumeration classes
(FILE_DIRECTORY_INFORMATION,
FILE_BOTH_DIR_INFORMATION, etc.). When this attribute is set,
it means that the file or directory has no physical representation
on the local system; the item is virtual. Opening the item will be
more expensive than usual because it will cause at least some of
the file or directory content to be fetched from a remote store.
This attribute can only be set by kernel-mode components. This
attribute is for use with hierarchical storage management
software.<177>

FILE_ATTRIBUTE_PINNED

0x00080000

This attribute indicates user intent that the file or directory
should be kept fully present locally even when not being actively
accessed. This attribute is for use with hierarchical storage
management software.<178>

FILE_ATTRIBUTE_UNPINNED

0x00100000

This attribute indicates that the file or directory should not be
kept fully present locally except when being actively accessed.
This attribute is for use with hierarchical storage management
software.<179>

FILE_ATTRIBUTE_RECALL_ON_DATA_ACCESS

0x00400000

When this attribute is set, it means that the file or directory is
not fully present locally. For a file this means that not all of its
data is on local storage (for example, it may be sparse with
some data still in remote storage). For a directory it means that
some of the directory contents are being virtualized from another
location. Reading the file or enumerating the directory will be
more expensive than usual because it will cause at least some of
the file or directory content to be fetched from a remote store.
Only kernel-mode callers can set this attribute. This attribute is
for use with hierarchical storage management software.<180>

2.7 Directory Change Notifications

The following definitions are part of the Directory Change Notification algorithm defined in [MS-FSA]
section 2.1.5.11.

%5bMS-FSA%5d.pdf#Section_860b1516c45247b4bdbc625d344e2041

205 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

2.7.1 FILE_NOTIFY_INFORMATION

The FILE_NOTIFY_INFORMATION structure contains the changes for which the client is being
notified. The structure consists of the following.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NextEntryOffset

Action

FileNameLength

FileName (variable)

NextEntryOffset (4 bytes): The offset, in bytes, from the beginning of this structure to the
subsequent FILE_NOTIFY_INFORMATION structure. If there are no subsequent structures, the
NextEntryOffset field MUST be 0. NextEntryOffset MUST always be an integral multiple of 4.
The FileName array MUST be padded to the next 4-byte boundary counted from the beginning of
the structure.

Action (4 bytes): The changes that occurred on the file. This field MUST contain one of the following

values.<181>

Value Meaning

FILE_ACTION_ADDED

0x00000001

The file was renamed, and FileName contains the new name.
This notification is only sent when the rename operation
changes the directory the file resides in. The client will also
receive a FILE_ACTION_REMOVED notification. This notification
will not be received if the file is renamed within a directory.

FILE_ACTION_REMOVED

0x00000002

The file was renamed, and FileName contains the old name.
This notification is only sent when the rename operation
changes the directory the file resides in. The client will also
receive a FILE_ACTION_ADDED notification. This notification
will not be received if the file is renamed within a directory.

FILE_ACTION_MODIFIED

0x00000003

The file was modified. This can be a change to the data or
attributes of the file.

FILE_ACTION_RENAMED_OLD_NAME

0x00000004

The file was renamed, and FileName contains the old name.
This notification is only sent when the rename operation does
not change the directory the file resides in. The client will also
receive a FILE_ACTION_RENAMED_NEW_NAME notification.
This notification will not be received if the file is renamed to a
different directory.

FILE_ACTION_RENAMED_NEW_NAME

0x00000005

The file was renamed, and FileName contains the new name.
This notification is only sent when the rename operation does
not change the directory the file resides in. The client will also
receive a FILE_ACTION_RENAMED_OLD_NAME notification. This
notification will not be received if the file is renamed to a
different directory.

FILE_ACTION_ADDED_STREAM

0x00000006

The file was added to a named stream.

206 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Value Meaning

FILE_ACTION_REMOVED_STREAM

0x00000007

The file was removed from the named stream.

FILE_ACTION_MODIFIED_STREAM

0x00000008

The file was modified. This can be a change to the data or
attributes of the file.

FILE_ACTION_REMOVED_BY_DELETE

0x00000009

An object ID was removed because the file the object ID
referred to was deleted.

This notification is only sent when the directory being
monitored is the special directory
"\$Extend\$ObjId:$O:$INDEX_ALLOCATION".

FILE_ACTION_ID_NOT_TUNNELLED

0x0000000A

An attempt to tunnel object ID information to a file being
created or renamed failed because the object ID is in use by
another file on the same volume.

This notification is only sent when the directory being
monitored is the special directory
"\$Extend\$ObjId:$O:$INDEX_ALLOCATION".

FILE_ACTION_TUNNELLED_ID_COLLISION

0x0000000B

An attempt to tunnel object ID information to a file being
renamed failed because the file already has an object ID.

This notification is only sent when the directory being
monitored is the special directory
"\$Extend\$ObjId:$O:$INDEX_ALLOCATION".

If two or more files have been renamed, the corresponding FILE_NOTIFY_INFORMATION entries
for each file rename MUST be consecutive in this response for the client to make the correct
correspondence between old and new names.

FileNameLength (4 bytes): The length, in bytes, of the file name in the FileName field.

FileName (variable): A Unicode string with the name of the file that changed.

2.8 Cluster Shared Volume File System IOCTLs

SQL Server Remote Storage Profile [MS-SQLRS] relies on the I/O control (IOCTL) code structures,
and definitions in this section, to interpret certain fields that can be sent or received as part of its
processing. See section 2.3 for more information about processing.

2.8.1 IOCTL_STORAGE_QUERY_PROPERTY Request

The IOCTL_STORAGE_QUERY_PROPERTY Request message requests that the server return the
properties of a storage device or verify that the request is supported.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PropertyId

QueryType

PropertyId (4 bytes): This field MUST be set to 0x00000006.

%5bMS-SQLRS%5d.pdf#Section_3a7a8a09b876465d99b4de0e84d8f101

207 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

QueryType (4 bytes): Contains flags indicating the type of query to be performed.

Value Meaning

0x00000000
PropertyStandardQuery

Query to return the
IOCTL_STORAGE_QUERY_PROPERTY Reply message.

0x00000001
PropertyExistsQuery

Query to see whether PropertyId is supported.

2.8.2 IOCTL_STORAGE_QUERY_PROPERTY Reply

The IOCTL_STORAGE_QUERY_PROPERTY Reply message contains the storage alignment information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

Size

BytesPerCacheLine

BytesOffsetForCacheAlignment

BytesPerLogicalSector

BytesPerPhysicalSector

BytesOffsetForSectorAlignment

Version (4 bytes): Contains the size of this structure, in bytes.

Size (4 bytes): Specifies the total size of the data returned, in bytes.

BytesPerCacheLine (4 bytes): The number of bytes in a cache line of the device.

BytesOffsetForCacheAlignment (4 bytes): The address offset necessary for proper cache access
alignment, in bytes.

BytesPerLogicalSector (4 bytes): The number of bytes in a logical sector of the device.

BytesPerPhysicalSector (4 bytes): The number of bytes in a physical sector of the device.

BytesOffsetForSectorAlignment (4 bytes): The logical sector offset within the first physical sector
where the first logical sector is placed, in bytes.

2.8.3 IOCTL_VOLUME_GET_GPT_ATTRIBUTES Request

The IOCTL_VOLUME_GET_GPT_ATTRIBUTES Request message retrieves the attributes for a volume.

208 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

This message does not contain any additional data elements.

2.8.4 IOCTL_VOLUME_GET_GPT_ATTRIBUTES Reply

The IOCTL_VOLUME_GET_GPT_ATTRIBUTES Reply message returns the attributes of the volume.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

GptAttributes

…

GptAttributes (4 bytes): Specifies all of the attributes associated with a volume.

Value Meaning

GPT_BASIC_DATA_ATTRIBUTE_READ_ONLY
0x1000000000000000

The volume is read-only.

GPT_BASIC_DATA_ATTRIBUTE_SHADOW_COPY
0x2000000000000000

The volume is a shadow copy of another volume.

GPT_BASIC_DATA_ATTRIBUTE_HIDDEN
0x4000000000000000

The volume is hidden.

GPT_BASIC_DATA_ATTRIBUTE_NO_DRIVE_LETTER
0x8000000000000000

The volume is not assigned a default drive letter.

209 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

3 Structure Examples

For structure examples, see the individual protocols (such as the Distributed Link Tracking:
Workstation Protocol; for more information, see [MS-DLTW] section 3.1.6) that use the structures and
constants defined in this document.

%5bMS-DLTW%5d.pdf#Section_fc649f0e871a431a88b5d5b2f80e9cc9

210 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

4 Security

4.1 Security Considerations for Implementers

Allowing the use of native information levels and file system controls by a protocol could

unintentionally grant access to a wider range of functionality than the protocol author intended.
Developers who choose to take advantage of these common structures in a generic format can protect
their applications appropriately by blocking both the levels that they do not want to support and the
levels that they do not expect.

For example, the protocol could verify that the provided level is within the range of levels that existed
at the time of protocol design and development before the protocol performs any further processing.

The latter is significant if the underlying file system might be upgraded to support new functionality
that was not there when the protocol was initially implemented.

4.2 Index of Security Parameters

None.

211 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

5 Appendix A: NTFS Alternate Streams

5.1 NTFS Streams

All files on an NTFS volume consist of at least one stream - the main stream – this is the normal,

viewable file in which data is stored. The full name of a stream is of the form below.

<filename>:<stream name>:<stream type>

The default data stream has no name. That is, the fully qualified name for the default stream for a file
called "sample.txt" is "sample.txt::$DATA" since "sample.txt" is the name of the file and "$DATA" is
the stream type.

A user can create a named stream in a file and "$DATA" as a legal name. That means that for this

stream, the full name is sample.txt:$DATA:$DATA. If the user had created a named stream of name
"bar", its full name would be sample.txt:bar:$DATA. Any legal characters for a file name are legal for

the stream name (including spaces). For more information about the naming format for streams, see
[MS-FSCC]. For more information about the attributes of a stream, see [MS-FSA].

In the case of directories, there is no default data stream, but there is a default directory stream.
Directories are the stream type $INDEX_ALLOCATION. The default stream name for the type
$INDEX_ALLOCATION (a directory stream) is $I30. (This contrasts with the default stream name for a

$DATA stream, which has an empty stream name.) The following are equivalent:

Dir C:\Users

Dir C:\Users:$I30:$INDEX_ALLOCATION

Dir C:\Users::$INDEX_ALLOCATION

Although directories do not have a default data stream, they can have named data streams. These
alternate data streams are not normally visible, but can be observed from a command line using the
/R option of the DIR command.

5.2 NTFS Attribute Types

On a NTFS volume, each unit of information associated with a file including its name, its owner, its
timestamp, its contents, and so on, is implemented as a file attribute. A file's data is an attribute; the

"Data Attribute" known as $DATA. A number of attributes exist on a NTFS volume. The attribute
names used by NTFS are listed in the table below.

Attribute Name Description

$ATTRIBUTE_LIST Lists the location of all attribute records that do not fit in the MFT record

$BITMAP Attribute for Bitmaps

$DATA Contains the default file data

$EA Extended the attribute index

$EA_INFORMATION Extended attribute information

$FILE_NAME File name

$INDEX_ALLOCATION The type name for a Directory Stream. A string for the attribute code for index
allocation

$INDEX_ROOT Used to support folders and other indexes

%5bMS-FSA%5d.pdf#Section_860b1516c45247b4bdbc625d344e2041

212 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Attribute Name Description

$LOGGED_UTILITY_STREAM Use by the encrypting file system

$OBJECT_ID Unique GUID for every MFT record

$PROPERTY_SET Obsolete

$REPARSE_POINT Used for volume mount points

$SECURITY_DESCRIPTOR Security descriptor stores ACL and SIDs

$STANDARD_INFORMATION Standard information, such as file times and quota data

$SYMBOLIC_LINK Obsolete

$TXF_DATA Transactional NTFS data

$VOLUME_INFORMATION Version and state of the volume

$VOLUME_NAME Name of the volume

$VOLUME_VERSION Obsolete. Volume version

A comprehensive discussion and explanation about attributes is available in [WININTERNALS]

Chapter 12 and [MSFT-NTFSWorks].

5.3 NTFS Reserved File Names

NTFS uses a number of names as part of the file system internals. The names used by NTFS within the
root directory are listed in the following table:

Filename Description

\$Mft Master File Table (MFT) - an index of every file

\$MftMirr A backup copy of the first 4 records of the MFT

\$LogFile Transactional logging file

\$Volume Serial number, creation time, dirty flag

\$AttrDef Attribute definitions

\$Bitmap Contains the volume's cluster map (in-use vs. free)

\$Boot Boot record of the volume

\$BadClus Lists bad clusters on the volume

\$Secure Security descriptors used by the volume

\$UpCase Table of uppercase characters used for collating

\$Extend A directory

An additional set of names are found in the system directory as follows:

Filename Description

\$Extend\$Config Use for NTFS repair activity

https://go.microsoft.com/fwlink/?LinkId=168880

213 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Filename Description

\$Extend\$Delete Delete file name

\$Extend\$ObjId Unique Ids given to every file

\$Extend\$Quota Quota information

\$Extend\$Repair Repair name

\$Extend\$Repair.log Repair log name

\$Extend\$Reparse Reparse point information

\$Extend\$RmMetadata Transactional NTFS resource manager metadata name

\$Extend\$Tops Transactional NTFS Old Page Stream, used to store data that has been overwritten
inside a currently active transaction

\$Extend\$Txf Transactional NTFS

\$Extend\$TxfLog Transactional NTFS log

5.4 NTFS Stream Names

NTFS by convention uses names starting with '$' for internal metadata files and streams on those
internal metadata files. There is no mechanism to stop applications from using names of this form;
therefore, it is recommended that names of this form not be used internally by an object store for a
server environment except when emulating NTFS metadata streams such as
"\$Extend\$Quota:$Q:$INDEX_ALLOCATION" or "\$Extend\$Reparse:$R:$INDEX_ALLOCATION".

Stream Names currently used by NTFS are as follows:

NTFS Internal Stream Names Example

$I30 Default name for directory streams C:\Users:$I30:$INDEX_ALLOCATION

$O \$Extend\$ObjId:$O:$INDEX_ALLOCATION

$Q \$Extend\$Quota:$Q:$INDEX_ALLOCATION

$R \$Extend\$Reparse:$R:$INDEX_ALLOCATION

$J \$Extend\$UsnJrnl:$J:$DATA

$MAX \$Extend\$UsnJrnl:$MAX:$DATA

$SDH \$Secure:$SDH:$INDEX_ALLOCATION

$SII \$Secure:$SII:$INDEX_ALLOCATION

5.5 NTFS Stream Types

Names currently used are as follows:

214 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

NTFS Stream Types

$DATA

$INDEX_ALLOCATION

$BITMAP

5.6 Known Alternate Stream Names

Selection of an alternate stream name, is in principle, identical to selection of a filename. An
application might need to check whether a name is in use prior to attempting to use a name. When an

application has successfully avoided a file name conflict, it has complete control over any stream
names that it might wish to use. It is advisable to use textual GUID (GUIDString) as stream names
in order to avoid conflicts. Injection of streams into files that an application does not completely own

has the potential to cause unpredictable behavior and can be flagged by virus scanning software.

5.6.1 Zone.Identifier Stream Name

Windows Internet Explorer uses the stream name Zone.Identifier for storage of URL security zones.

The fully qualified form is sample.txt: Zone.Identifier:$DATA

The stream is a simple text stream of the form:

[ZoneTransfer]

ZoneId=3

[MSDN-SECZONES] gives an explanation of security zones.

5.6.2 Outlook Express Properties Stream Name

Outlook Express uses the stream name OECustomProperty for storage of custom properties related to

email files.

The fully qualified form is sample.eml:OECustomProperty:$DATA

5.6.3 Document Properties Stream Name

Property sets, when applied to files, use a number of different stream names. The initial character is

Unicode U+2663, known as (BLACK CLUB).

The names "♣ BnhqlkugBim0elg1M1pt2tjdZe", "♣ SummaryInformation" and the GUID {4c8cc155-
6c1e-11d1-8e41-00c04fb9386d} are used.

The fully qualified names would be as follows:

sample.doc:♣ BnhqlkugBim0elg1M1pt2tjdZe:$DATA

sample.doc:♣ SummaryInformation:$DATA

sample.gif:{4c8cc155-6c1e-11d1-8e41-00c04fb9386d}:$DATA

https://go.microsoft.com/fwlink/?LinkId=90660

215 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

5.6.4 Encryptable Thumbnails Stream Name

Windows Shell uses the stream name "encryptable" to store attributes relating to thumbnails in the
thumbnails database.

The fully qualified name would be as follows:

Thumbs.db:encryptable:$DATA

5.6.5 Internet Explorer Favicon Stream Name

Internet Explorer uses the stream name "favicon" for storing favorite ICONs for web pages.

The fully qualified name would be as follows:

Pages.url:favicon:$DATA

5.6.6 Macintosh Supported Stream Names

Two stream names exist for compatibility with Macintosh operating system property lists. These
names are "AFP_AfpInfo" and "AFP_Resource".

The fully qualified name would be as follows:

Sample.txt:AFP_AfpInfo:$DATA

Sample.txt:AFP_Resource:$DATA

5.6.7 XPRESS Stream Name

The stream name "{59828bbb-3f72-4c1b-a420-b51ad66eb5d3}.XPRESS" is used during remote
differential compression.

The fully qualified name would be as follows:

Sample.bin: {59828bbb-3f72-4c1b-a420-b51ad66eb5d3}.XPRESS:$DATA

216 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

6 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Windows NT 4.0 operating system

 Windows 98 operating system

 Windows 98 operating system Second Edition

 Windows 2000 operating system

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

 Windows Server operating system

 Windows Server 2019 operating system

 Windows Server 2022 operating system

 Windows 11 operating system

 Windows Server 2025 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior

also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.1.2.1: All reparse tags defined by Microsoft components MUST have the high bit set to
1. Non-Microsoft reparse tags MUST have the high bit set to 0.

217 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

<2> Section 2.1.2.1: These are Microsoft reparse tags. Except where explicitly allowed, clients MUST
NOT process the Microsoft reparse tag data buffers.

<3> Section 2.1.2.1: The Windows Home Server Drive Extender is part of the Windows Home Server
product.

<4> Section 2.1.2.1: The filter manager test harness is not shipped with Windows.

<5> Section 2.1.3.1: When a file is moved or copied from one volume to another, the ObjectId
member value changes to a random unique value to avoid the potential for ObjectId collisions
because the object ID is not guaranteed to be unique across volumes.

<6> Section 2.1.3.1: The NTFS file system places no constraints on the format of the 48 bytes of
information following the ObjectId in this structure. This format of the FILE_OBJECTID_BUFFER is used
on Windows by the Microsoft Distributed Link Tracking Service (see [MS-DLTW] section 3.1.6).

<7> Section 2.1.3.2: Windows places Distributed Link Tracking (DLT) information into the
ExtendedInfo field for use by the Distributed Link Tracking (DLT) protocols (see [MS-DLTW] section

3.1.6).

<8> Section 2.1.4: The following Windows file systems provide alternate data stream functionality:
NTFS, ReFS and Universal Disk Format (UDF). ReFS supports alternate data streams of up to 128
KB in length in Windows 8.1 and subsequent. ReFS does not support renaming of alternate data

streams.

<9> Section 2.1.8: Windows defines a TRUE as "1"; however, it will interpret any nonzero value as
TRUE.

<10> Section 2.1.9: The following table lists the file systems that support the 64-bit file ID:

64 bit file ID Generate Stable Unique

FAT Yes No No

EXFAT Yes No No

FAT32 Yes No No

Cdfs No n/a n/a

UDFS Yes Yes Yes

NTFS Yes Yes Yes

ReFS Yes Yes Yes

NTFS computes the 64-bit file ID as follows: the low 48 bits are the index of the file's primary record

in the master file table (MFT); the remaining 16 bits are a sequence number. Therefore, it is possible,

%5bMS-DLTW%5d.pdf#Section_fc649f0e871a431a88b5d5b2f80e9cc9

218 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

though rare, that a different file can have the same 64-bit file ID as a file on that volume had in the
past.

ReFS maps a subset of the possible 128-bit file ID values to a 64-bit value using a reversible
algorithm; for values outside of this subset, ReFS sets the 64-bit file ID to -1.

<11> Section 2.1.10: The following table lists the file systems that support the 128-bit file ID:

128 bit file ID Generate Stable Unique

FAT No n/a n/a

EXFAT No n/a n/a

FAT32 No n/a n/a

Cdfs No n/a n/a

UDFS No n/a n/a

NTFS Yes Yes Yes

ReFS Yes Yes Yes

NTFS computes the 128-bit file ID as follows: the low 48 bits are the index of the file's primary
record in the master file table (MFT), the next 16 bits are a sequence number, and the high 64 bits
MUST be zero. Therefore, it is possible, though rare, that a different file can have the same 128-bit

file ID as a file on that volume had in the past.

ReFS computes the 128-bit file ID as follows: the low 64 bits consists of an index uniquely
identifying the file's parent directory on the volume. The high 64-bits consists of an index uniquely
identifying the file within that directory.

<12> Section 2.1.11: The Token is defined in [INCITS-T10/11-059].

<13> Section 2.1.11: When provided by a client to a server for an FSCTL_OFFLOAD_WRITE operation,
this Token value requests that the server logically write zeros.

<14> Section 2.2: NTFS supports reparse points, object IDs, and the update sequence number
(USN) change journal; ReFS supports reparse points and the USN change journal. The Microsoft FAT,
EXFAT, CDFS, and UDFS file systems do not support these attributes. Therefore, FSCTLs involving
these technologies will return STATUS_INVALID_DEVICE_REQUEST when the specified file or directory
is located on a volume formatted with the FAT file system. Windows also returns
STATUS_INVALID_DEVICE_REQUEST when a required file system filter is supported by the file
system but is not installed (see section 2.3.90).

https://go.microsoft.com/fwlink/?LinkId=239442

219 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

<15> Section 2.2: The following table lists FSCTLs that are not supported remotely and that, if
received by the object store, will respond with a status code other than

STATUS_INVALID_DEVICE_REQUEST, as specified in section 2.2.

FSCTL name FSCTL function number Status Code

FSCTL_GET_BOOT_AREA_INFO 0x90230 STATUS_INVALID_PARAMETER

FSCTL_GET_RETRIEVAL_POINTER_BASE 0x90234 STATUS_INVALID_PARAMETER

FSCTL_IS_VOLUME_DIRTY 0x90078 STATUS_INVALID_PARAMETER

FSCTL_ALLOW_EXTENDED_DASD_IO 0x90083 STATUS_ACCESS_DENIED

FSCTL_LOOKUP_STREAM_FROM_CLUSTER 0x901FC STATUS_INVALID_PARAMETER

FSCTL_EXTEND_VOLUME 0x900F0 STATUS_INVALID_PARAMETER

FSCTL_SHRINK_VOLUME 0x901B0 STATUS_INVALID_PARAMETER

FSCTL_FILE_PREFETCH 0x90120 STATUS_INVALID_PARAMETER

FSCTL_SET_PERSISTENT_VOLUME_STATE 0x90238 STATUS_INVALID_PARAMETER

FSCTL_QUERY_PERSISTENT_VOLUME_STATE 0x9023C STATUS_INVALID_PARAMETER

FSCTL_SD_GLOBAL_CHANGE 0x901F4 STATUS_INVALID_PARAMETER

<16> Section 2.3: The NtFsControlFile function is used to invoke an FSCTL on a file handle. The
definition of this function, including its content and the function signature, is implementation-
dependent, and is not part of the protocol specification.

<17> Section 2.3.2: Windows will try 16 times to generate a unique ID, and will fail with this status if

16 attempts have been unsuccessful.

<18> Section 2.3.7: FSCTL_DUPLICATE_EXTENTS_TO_FILE is only supported by the ReFS file system
in Windows Server 2016 and later.

<19> Section 2.3.8: FSCTL_DUPLICATE_EXTENTS_TO_FILE is only supported by the ReFS file system
in Windows Server 2016 and later.

<20> Section 2.3.8: Applicable Windows Server releases return STATUS_INVALID_HANDLE if the

source file handle is closed, and STATUS_FILE_CLOSED if the target file handle is closed.

<21> Section 2.3.9: FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX request is only supported by the
ReFS file system in Windows 10 v1803 operating system and Windows Server v1803 operating
system.

<22> Section 2.3.10: FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX reply is only supported by the ReFS

file system in Windows 10 v1803 and Windows Server v1803.

<23> Section 2.3.11: This FSCTL is implemented on ReFS, NTFS, FAT, and exFAT file systems. Other

file systems return STATUS_INVALID_DEVICE_REQUEST.

<24> Section 2.3.12: This FSCTL is implemented on ReFS, NTFS, FAT, and exFAT file systems. Other
file systems return STATUS_INVALID_DEVICE_REQUEST.

<25> Section 2.3.16: NTFS always returns at least 2 bytes and up to 8 bytes of trailing padding after
each entry in the reply, including the last entry.

220 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

<26> Section 2.3.18: The LZNT1 is the only compression algorithm implemented on Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows

Server 2008 R2.

<27> Section 2.3.18: Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows

Server 2008, Windows 7, and Windows Server 2008 R2 support file compression on volumes that are
formatted with the NTFS file system and have a cluster size less than or equal to 4 kilobytes.

<28> Section 2.3.19: The FSCTL_GET_INTEGRITY_INFORMATION_Request (section 2.3.19) message
is supported only by the ReFS file system.

<29> Section 2.3.28:

 Windows NT 4.0 returns STATUS_INVALID_DEVICE_REQUEST for a file on an NTFS, FAT, or CDFS
file system.

 Windows 2000 returns STATUS_INVALID_DEVICE_REQUEST for a file on a FAT or CDFS file
system.

 Windows XP returns STATUS_INVALID_DEVICE_REQUEST for a file on a FAT or CDFS file system.

 Windows Server 2003 returns STATUS_INVALID_DEVICE_REQUEST for a file on a FAT or CDFS file
system.

 Windows Vista returns STATUS_INVALID_DEVICE_REQUEST for a file on a FAT or CDFS file

system.

 Windows Server 2008 returns STATUS_INVALID_DEVICE_REQUEST for a file on a FAT or CDFS file
system.

 Windows 7 returns STATUS_INVALID_DEVICE_REQUEST for a file on a FAT or CDFS file system.

 Windows Server 2008 R2 returns STATUS_INVALID_DEVICE_REQUEST for a file on a FAT or CDFS
file system.

<30> Section 2.3.30: On an NTFS volume, very short data streams (typically several hundred bytes)

can be written to disk without having any clusters allocated. These short streams are sometimes
called resident because the data resides in the file's master file table (MFT) record. A resident data
stream has no retrieval pointers to return.

<31> Section 2.3.32: On an NTFS volume, very short data streams (typically several hundred bytes)
can be written to disk without having any clusters allocated. These short streams are sometimes
called resident because the data resides in the file's master file table (MFT) record. A resident data
stream has no retrieval pointers to return.

<32> Section 2.3.33: The FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT request is supported
only on ReFS and Windows 10 v1703 operating system and later, Windows Server 2019 and later, and
Windows Server operating system and later.

<33> Section 2.3.34: On an ReFS volume, all alternate data streams are resident and all default data

streams are non-resident. A resident data stream has no retrieval pointers to return.

<34> Section 2.3.36: Windows NT operating system, Windows 2000, Windows XP, Windows Server

2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 operating
system support the FSCTL_IS_PATHNAME_VALID Request (section 2.3.35) and return
STATUS_SUCCESS whenever this request is invoked.

<35> Section 2.3.39: This operation is supported only by the NTFS and ReFS file systems.

<36> Section 2.3.41: Offload Read operations are supported only by the NTFS file system running
on Windows 8 and subsequent.

221 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

<37> Section 2.3.41: Clients and servers cannot depend on the TokenTimeToLive field as a true
timer, because vendors can choose to ignore the requested TTL value or can implement the TTL

counter in a vendor-specific manner. The TokenTimeToLive field can be interpreted as a hint.

<38> Section 2.3.41: The generated Token can represent less data than the requested amount; this

information is contained in the TransferLength field in the FSCTL_OFFLOAD_READ_OUTPUT data
element; for more information, see section 2.3.42.

<39> Section 2.3.42: In the following two cases, a well-known token,
STORAGE_OFFLOAD_TOKEN_TYPE_ZERO_DATA, is returned, even if the target volume does not
support Offload Read:

 If FSCTL_OFFLOAD_READ_INPUT.FileOffset is greater than or equal to the Valid Data Length
(VDL) of the file.

 Or, if FSCTL_OFFLOAD_READ_INPUT.CopyLength is 0.

<40> Section 2.3.42: File reads can start beyond the Valid Data Length (VDL), but not beyond EOF.

<41> Section 2.3.43: Offload Write operations are supported only by the NTFS file system running
on Windows 8 and subsequent.

<42> Section 2.3.43: The FSCTL_OFFLOAD_READ and FSCTL_OFFLOAD_WRITE is used by Windows
to copy large files.

When copying files, Windows avoids using offload operations on volumes that do not support offload.
However, it is possible that the source volume and the destination volume both support offload, yet
offload cannot occur from the source volume to the destination volume because of SAN topology or
storage array compatibility issues. When this happens, Windows avoids repeated offload attempts
between these two volumes.

There is currently no reliable way to detect unreachable volume pairs because there is no unique
status code for this scenario. STATUS_INVALID_TOKEN can be returned for a variety of reasons

including unreachable volume pairs or a token expiration due to time-out.

In a best effort to detect unreachable volume pairs, Windows assumes a pair of volumes is not
reachable if all the following are true:

 This is the first token write on the file stream.

 The FSCTL_OFFLOAD_WRITE request returns with a status code of STATUS_INVALID_TOKEN.

 The Offload Write operation is made at offset 0 in the destination file.

Windows chunks data for Offload Write operations into segments of 256 MB, a size that is subject to

change.

<43> Section 2.3.44: While it is valid to issue a single Offload Write operation for the full contents of
a file, the Win32 CopyFileEx API does not perform this. Instead, CopyFileEx issues Offload Write
operations in 256-MB chunks so that components like Explorer can show proper progress of file copy

operations.

<44> Section 2.3.52: Each entry in the output array contains an offset and a length that indicates a

range in the file that can contain nonzero data. The actual nonzero data, if any, is somewhere within
this range, and the calling application scans further within the range to locate it and determines if it
really is valid data. Multiple instances of valid data can exist within the range.

<45> Section 2.3.52: Sparse files are supported by Windows 2000, Windows XP, Windows Server
2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2. The NTFS file
system rounds down the input file offset to a 65,536-byte (64-kilobyte) boundary, rounds up the
length to a convenient boundary, and then begins to walk through the file.

222 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

<46> Section 2.3.52: Windows does not track every piece of zero (0) or nonzero data. Because zero
(0) is often perfectly legal data, it would be misleading. Instead, the system tracks ranges in which

disk space is allocated. Where no disk space is allocated, all data bytes within that range for Length
bytes from FileOffset are assumed to be zero (0) (when data is read, NTFS returns a zero for every

byte in a sparse region). Allocated storage can contain zero (0) or nonzero data. So all that this
operation does is return information on parts of the file where nonzero data might be located. It is up
to the application to scan these parts of the file in accordance with the application's data conventions.

<47> Section 2.3.55: This region usage flag can only be specified for volumes using the NTFS file
system.

<48> Section 2.3.55: This region usage flag can only be specified for volumes using the ReFS file
system.

<49> Section 2.3.56.1: The NTFS file system is the only file system that returns this region usage
value.

<50> Section 2.3.56.1: The ReFS file system is the only file system that returns this region usage

value.

<51> Section 2.3.58: The following is the Windows UDF File System Support table. It lists the UDF
revisions and "builds" (VAT/Spared/Write) that are supported by each covered version of Windows.

Windows UDF V1.02 UDF V1.5 UDF V2.01 UDF V2.5 UDF 2.6

95 / 95OSR2 - - - - -

Windows 98 Read - - - -

Windows NT - - - - -

Windows 2000 Read Read - - -

Windows XP Read Read Read - -

Windows Server 2003 Read Read Read - -

Windows Vista Read/Write Read/Write Read/Write Read/Write -

Windows 7 and subsequent Read/Write Read/Write Read/Write Read/Write Read/Write

Note If Read of a given UDF version is supported, then reading of all UDF variants of that version are
supported (VAT, Sparing and Simple). If Read/Write of a given UDF version is supported, then
reading/writing of all UDF variants of that version are supported (VAT, Sparing and Simple).

<52> Section 2.3.58: The Windows UDF implementation pads the entire CopyrightInfo field with

NULLs.

<53> Section 2.3.58: The Windows UDF implementation pads the entire AbstractInfo field with
NULLs.

<54> Section 2.3.58: When the volume is formatted on Windows, this value is set to "*Microsoft
Windows" followed by Unicode NULLs.

<55> Section 2.3.58: When the volume is written to on a Windows system, this value is set to
"*Microsoft Windows" followed by Unicode NULLs.

<56> Section 2.3.61: This operation is supported by both the NTFS and ReFS file systems.

<57> Section 2.3.61: Currently supported values are 2 or 3. The MinMajorVersion is <=
MaxMajorVersion.

223 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

<58> Section 2.3.61: Currently supported values are 2 or 3. The MinMajorVersion is <=
MaxMajorVersion.

<59> Section 2.3.62.1: The major version number is 2 for file systems created on Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows

Server 2008 R2.

<60> Section 2.3.62.1: The minor version number is 0 for file systems created on Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2.

<61> Section 2.3.62.2: The contents of a USN_RECORD_V2 or USN_RECORD_V3 element returned by
this FSCTL is a partially populated record compared to the fully populated records returned by a local-
only FSCTL FSCTL_READ_USN_JOURNAL.

<62> Section 2.3.67: Equivalent to COMPRESSION_FORMAT_LZNT1.

<63> Section 2.3.67: The LZNT1 is the only compression algorithm implemented on Windows 2000,

Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2. Therefore, requests for COMPRESSION_FORMAT_DEFAULT and
COMPRESSION_FORMAT_LZNT1 are equivalent from the server's perspective.

<64> Section 2.3.71: This message is implemented only on NTFS, and it is only for private use by the

Encrypted File System (EFS). EFS issues this message locally on the machine that physically contains
the file, notifying NTFS of a change in the file/stream attributes and causing NTFS to invoke the EFS
callback that does the actual work of encrypting/decrypting streams.

This message is not used by any other component other than local EFS on Windows. It is not sent by
the SMB1 and SMB2 client redirectors, nor is it accepted by an SMB2 server. In order to manipulate
the encryption state of files and streams, clients use EFS and the EFSRPC protocol specified in [MS-
EFSR].

<65> Section 2.3.71: The SMB1 server does not currently fail the FSCTL_SET_ENCRYPTION
Request (section 2.3.71) if received. A QFE is planned to address this issue for the SMB1 server.

<66> Section 2.3.71: Windows sets the FILE_ATTRIBUTE_ENCRYPTED flag in the duplicate
information file attributes field, and invokes the EFS callback which then creates the $EFS attribute.

<67> Section 2.3.71: Windows takes the following actions to clear encryption:

 Clears the FILE_ATTRIBUTE_ENCRYPTED flag in the duplicate information file attributes field.

 Invokes the EFS callback, which removes the $EFS attribute.

<68> Section 2.3.71: Windows takes the following actions to set encryption on a stream:

 If the stream is a resident user data stream, converts it to non-resident.

 Sets ATTRIBUTE_FLAG_ENCRYPTED in the attribute header.

 Invokes the EFS callback to generate an encryption context for this stream.

Note that if this is called during the creation of a named data attribute on a file with an empty
unnamed data attribute, then the unnamed data attribute will be converted to non-resident and its

attribute header flag will be set to encrypted.

Also note that this will set the FILE_ATTRIBUTE_ENCRYPTED flag if it is the first stream on the file that
is encrypted.

<69> Section 2.3.71: Windows clears the ATTRIBUTE_FLAG_ENCRYPTED flag from the attribute
header and invokes the EFS callback to free the encryption context for the stream.

%5bMS-EFSR%5d.pdf#Section_08796ba801c8487292211000ec2eff31
%5bMS-EFSR%5d.pdf#Section_08796ba801c8487292211000ec2eff31

224 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

<70> Section 2.3.71: The Private field is a placeholder marking the beginning of the private portion
of the encryption buffer structure. This portion of the structure is meaningful only to EFS, because all

the information necessary to fill (making a well-formed request) is private to EFS. Windows uses the
EFSRPC protocol as specified in [MS-EFSR] to manipulate file encryption state.

<71> Section 2.3.72: An FSCTL_SET_ENCRYPTION operation never succeeds unless it is requested by
the Encrypted File System (EFS), because the information necessary to make a well-formed request is
visible only to EFS, as FSCTL_SET_ENCRYPTION is only for private use by EFS. Windows uses the
EFSRPC protocol as specified in [MS-EFSR] to manipulate file encryption state.

<72> Section 2.3.72: On Windows, encryption requires NTFS major version 2 or greater.

<73> Section 2.3.72: Windows returns this error code if the NTFS encryption driver is not loaded or
the FILE_CLEAR_ENCRYPTION operation was requested on a file containing a stream that is still

marked as encrypted.

<74> Section 2.3.72: Windows returns this error code if the $INDEX_ROOT attribute of the directory
that was trying to be encrypted, could not be found.

<75> Section 2.3.73: The FSCTL_SET_INTEGRITY_INFORMATION Request (section 2.3.73) message
is supported only by the ReFS file system.

<76> Section 2.3.75: The FSCTL_SET_INTEGRITY_INFORMATION_EX Request message is supported

only by Windows Server 2022 and later, and Windows 11, version 22H2 operating system and later.
FSCTL_SET_INTEGRITY_INFORMATION_EX is processed as described on systems updated with
[MSKB-5014019], [MSKB-5014021], [MSKB-5014022], [MSKB-5014023], [MSKB-5014701], [MSKB-
5014702], or [MSKB-5014710].

<77> Section 2.3.77: Windows expects that the file whose object identifier is set with this FSCTL
has been opened for write and that backup/restore operations were specified at file open. In Windows,
this is accomplished by specifying the flag, FILE_FLAG_BACKUP_SEMANTICS (whose value is

0x02000000), along with other attributes such as FILE_ATTRIBUTE_NORMAL when opening the file.

<78> Section 2.3.77: All Windows versions: This request is never sent to a remote server.

<79> Section 2.3.79: The Microsoft Distributed Link Tracking Service uses the last 48 bytes of the
ExtendedInfo BLOB to store information that helps it locate files that are moved to different volumes
or computers within a domain. For more information, see [MS-DLTW] section 3.1.6.

<80> Section 2.3.83: This operation is supported by both the NTFS and ReFS file systems. ReFS
supports this operation for conventional streams, but not for integrity streams, in Windows 8 and

Windows Server 2012. ReFS supports this operation for both conventional and integrity streams in
Windows 8.1 and subsequent.

<81> Section 2.3.83: NTFS does not attempt to recover a failed unsparse operation by "resparsing".

<82> Section 2.3.83: Neither NFTS or ReFS deallocate existing clusters.

<83> Section 2.3.85: This operation is supported by both the NTFS and ReFS file systems.

Upon receipt of this message, NTFS might deallocate disk space in the file if the file is stored on an

NTFS volume and the file is sparse or compressed. It will free any allocated space in chunks of 64
kilobytes that begin at an offset that is a multiple of 64 kilobytes. Other bytes in the file (prior to the
first freed 64-kilobyte chunk and after the last freed 64-kilobyte chunk) will be zeroed but not
deallocated. This FSCTL sets the range of bytes to zeros (0) without extending the file size.

ReFS supports FSCTL_SET_ ZERO_DATA for conventional file streams, but not for integrity file
streams, in Windows 8 and Windows Server 2012. ReFS supports FSCTL_SET_ ZERO_DATA for both
conventional and integrity file streams in Windows 8.1 and subsequent.

https://go.microsoft.com/fwlink/?linkid=2194206
https://go.microsoft.com/fwlink/?linkid=2193970
https://go.microsoft.com/fwlink/?linkid=2194302
https://go.microsoft.com/fwlink/?linkid=2194303
https://go.microsoft.com/fwlink/?linkid=2195268
https://go.microsoft.com/fwlink/?linkid=2195314
https://go.microsoft.com/fwlink/?linkid=2195314
https://go.microsoft.com/fwlink/?linkid=2195315

225 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Upon receipt of this message, ReFS might deallocate disk space in the file if the file is stored on a
ReFS volume and the file is sparse. It will free any allocated space in chunks of 64 kilobytes that begin

at an offset that is a multiple of 64 kilobytes. Other bytes in the file (prior to the first freed 64-kilobyte
chunk and after the last freed 64-kilobyte chunk) will be zeroed but not deallocated. This FSCTL sets

the range of bytes to zeros (0) without extending the file size.

<84> Section 2.3.87: This message is implemented only by NTFS, which is supported on Windows NT,
Windows XP, Windows 2000, Windows Server 2003, Windows Vista, Windows Server 2008, Windows
7, and Windows Server 2008 R2.

<85> Section 2.3.89: Both the source and destination file names represent paths on the same
volume, and the file names are the full paths to the files, including the share or drive letter at which
each file is located.

<86> Section 2.3.91: All Windows Server versions return STATUS_NOT_IMPLEMENTED.

<87> Section 2.4: The FileHardLinkInformation, FileIdGlobalTxDirectoryInformation,
FileMailslotQueryInformation, FileMailslotSetInformation, FileNameInformation,

FileObjectIdInformation, FileReparsePointInformation, FileSfioReserveInformation,
FileStandardLinkInformation, and FileTrackingInformation file information classes are intended for
local use only; the server will fail them with STATUS_NOT_SUPPORTED.

<88> Section 2.4: Windows uses the NtQueryInformationFile function to process the specified query
for file information and NtSetInformationFile to process the specified request to set file information.
The definition of the function used to process any file information request, including its content and
the function signature, is implementation-dependent and is not part of the protocol specification.

<89> Section 2.4: FileId64ExtdBothDirectoryInformation information class is supported in the NTFS
and ReFS file systems in Windows 11, version 23H2 operating system and later and Windows Server
2022, 23H2 operating system and later.

<90> Section 2.4: FileId64ExtdDirectoryInformation information class is supported in the NTFS and
ReFS file systems in Windows 11, version 23H2 and later and Windows Server 2022, 23H2 and later.

<91> Section 2.4: FileIdAllExtdBothDirectoryInformation information class is supported in the NTFS
and ReFS file systems in Windows 11, version 23H2 and later and Windows Server 2022, 23H2 and
later.

<92> Section 2.4: FileIdAllExtdDirectoryInformation information class is supported in the NTFS and
ReFS file systems in Windows 11, version 23H2 and later and Windows Server 2022, 23H2 and later.

<93> Section 2.4: The FileIdInformation information class is supported in the NTFS and ReFS file
systems in Windows 8 and subsequent and Windows Server 2012 and subsequent.

<94> Section 2.4: This information class is not sent across the wire. In Windows, it is handled by the
IOManager on the client. If this operation is sent to an SMB server, both SMB and SMB2 send the
request to the IOManager on the server and perform normal processing of the operation.

<95> Section 2.4: Windows file systems do not implement this file information class; the server will

fail it with STATUS_NOT_SUPPORTED.

<96> Section 2.4: Windows 10 v1803, Windows Server v1803, and subsequent allow remote
FileNormalizedNameInformation query; other servers return STATUS_NOT_SUPPORTED.

<97> Section 2.4: The CIFS, SMB, and SMB2 protocols do not directly call this information class but
use the structures associated with it.

<98> Section 2.4: Windows file systems do not implement this file information class; the server will
fail it with STATUS_NOT_SUPPORTED.

226 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

<99> Section 2.4.4: A file's allocation size and end-of-file position are independent of each other with
the following exception: The end-of-file position is always less than or equal to the allocation size. If

the allocation size is set to a value that is less than the end-of-file position, the end-of-file position is
automatically adjusted to match the allocation size. Because the end-of-file position can be less than

the file's allocation size, the last sector (or cluster) of a file can have unused bytes between the last
byte of the file and the last byte of the sector (or cluster).

<100> Section 2.4.4: NTFS rounds allocation size for resident files to a multiple of 8 bytes. When
shrinking a resident file's allocation size using the FileAllocationInformation info class, the file remains
resident with an allocation size rounded up to a multiple of 8 bytes. When extending a resident file's
allocation size using the FileAllocationInformation info class, the file is converted to nonresident with
an allocation size rounded up to a multiple of the cluster size.

<101> Section 2.4.5: NTFS assigns an alternate name to a file whose full name is not compliant
with restrictions for file names under MS-DOS and 16-bit Windows unless the system has been
configured through a registry entry to not generate these names to improve performance.

<102> Section 2.4.7: The file system updates the values of the LastAccessTime, LastWriteTime,

and ChangeTime members as appropriate after an I/O operation is performed on a file. However, a
driver or application can request that the file system not update one or more of these members for

I/O operations that are performed on the caller's file handle by setting the appropriate members to -1.
A driver or application can subsequently request that the file system resume updating one or more of
these members for I/O operations that are performed on the caller's file handle by setting the
appropriate members to -2. The caller can set one, all, or any other combination of these three
members to -1 and/or -2. Only the members that are set to -1 will be unaffected by I/O operations on
the file handle; the other members will be updated as appropriate. This behavior is consistent across
all file system types. Note that even though -1 and -2 can be used with the CreationTime field, they

have no effect because file creation time is never updated in response to file system calls such as read
and write.

File system Support value of -2

FAT No

EXFAT No

FAT32 No

Cdfs No

UDFS No

NTFS Windows 8.1 and later, and Windows Server 2012 R2
and later

ReFS Windows 10 v1507 operating system and later, and
Windows Server 2016 and later

<103> Section 2.4.7: The file system updates the value of the LastAccessTime member as
appropriate after an I/O operation is performed on a file. However, a driver or application can request
that the file system not update one or more of these members for I/O operations that are performed

on the caller's file handle by setting the appropriate members to -1. A driver or application can
subsequently request that the file system resume updating one or more of these members for I/O
operations that are performed on the caller's file handle by setting the appropriate members to -2.
The caller can set one, all, or any other combination of these three members to -1 and/or -2. Only the
members that are set to -1 will be unaffected by I/O operations on the file handle; the other members
will be updated as appropriate. This behavior is consistent across all file system types. Note that even

227 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

though -1 and -2 can be used with the CreationTime field, they have no effect because file creation
time is never updated in response to file system calls such as read and write.

File system Support value of -2

FAT No

EXFAT No

FAT32 No

Cdfs No

UDFS No

NTFS Windows 8.1 and later, and Windows Server 2012 R2
and later

ReFS Windows 10 v1507 and later, and Windows Server
2016 and later

<104> Section 2.4.7: The file system updates the value of the LastWriteTime member as

appropriate after an I/O operation is performed on a file. However, a driver or application can request
that the file system not update one or more of these members for I/O operations that are performed
on the caller's file handle by setting the appropriate members to -1. A driver or application can
subsequently request that the file system resume updating one or more of these members for I/O
operations that are performed on the caller's file handle by setting the appropriate members to -2.
The caller can set one, all, or any other combination of these three members to -1 and/or -2. Only the

members that are set to -1 will be unaffected by I/O operations on the file handle; the other members
will be updated as appropriate. This behavior is consistent across all file system types. Note that even
though -1 and -2 can be used with the CreationTime field, they have no effect because file creation
time is never updated in response to file system calls such as read and write.

File system Support value of -2

FAT No

EXFAT No

FAT32 No

Cdfs No

UDFS No

NTFS Windows 8.1 and later, and Windows Server 2012 R2
and later

ReFS Windows 10 v1507 and later, and Windows Server
2016 and later

<105> Section 2.4.7: The file system updates the value of the ChangeTime member as appropriate
after an I/O operation is performed on a file. However, a driver or application can request that the file

system not update one or more of these members for I/O operations that are performed on the
caller's file handle by setting the appropriate members to -1. A driver or application can subsequently
request that the file system resume updating one or more of these members for I/O operations that
are performed on the caller's file handle by setting the appropriate members to -2. The caller can set

228 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

one, all, or any other combination of these three members to -1 and/or -2. Only the members that are
set to -1 will be unaffected by I/O operations on the file handle; the other members will be updated as

appropriate. This behavior is consistent across all file system types. Note that even though -1 and -2
can be used with the CreationTime field, they have no effect because file creation time is never

updated in response to file system calls such as read and write.

File system Support value of -2

FAT No

EXFAT No

FAT32 No

Cdfs No

UDFS No

NTFS Windows 8.1 and later, and Windows Server 2012 R2
and later

ReFS Windows 10 v1507 and later, and Windows Server
2016 and later

<106> Section 2.4.8: When using ReFS or NTFS, the position of a file within the parent directory is
not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS
file systems.

<107> Section 2.4.9: Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows

Server 2008, Windows 7, and Windows Server 2008 R2 implement only one compression algorithm,
LZNT1. For more information, see [UASDC].

<108> Section 2.4.9: NTFS uses a value of 16 calculated as (4 + ClusterShift) for the

CompressionUnitShift by default. The ultimate size of data to be compressed depends on the cluster
size set for the file system at initialization. NTFS defaults to a 4-kilobyte cluster size, resulting in a
ClusterShift value of 12, but NTFS file systems can be initialized with a different cluster size, so the
value can vary. The default compression unit size based on this calculation is 64 kilobytes.

<109> Section 2.4.9: NTFS uses a value of 12 for the ChunkShift so that compression chunks are 4
kilobytes in size.

<110> Section 2.4.9: The value of this field depends on the cluster size set for the file system at
initialization. NTFS uses a value of 12 by default because the default NTFS cluster size is 4 kilobytes. If
an NTFS file system is initialized with a different cluster size, the value of ClusterShift would be log 2
of the cluster size for that file system.

<111> Section 2.4.10: When using ReFS or NTFS, the position of a file within the parent directory is

not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS

file systems.

<112> Section 2.4.11: A file marked for deletion is not actually deleted until all open handles for the
file object have been closed, and the link count for the file is zero.

<113> Section 2.4.14: When using ReFS or NTFS, the position of a file within the parent directory is
not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS

file systems.

<114> Section 2.4.16: In Windows, both the NTFS and UDFS file systems support hard links. UDFS
support of hard links was added in Windows Vista and Windows Server 2008.

https://go.microsoft.com/fwlink/?LinkId=90549

229 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

<115> Section 2.4.17: When using ReFS or NTFS, the position of a file within the parent directory is
not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS

file systems.

<116> Section 2.4.17: The NTFS, ReFS, FAT, and exFAT file systems return a FileId value of 0 for

the entry named ".." in directory query operations.

<117> Section 2.4.18: When using ReFS or NTFS, the position of a file within the parent directory is
not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS
file systems.

<118> Section 2.4.18: The NTFS, ReFS, FAT, and exFAT file systems return a FileId value of 0 for
the entry named ".." in directory query operations.

<119> Section 2.4.19: When using ReFS or NTFS, the position of a file within the parent directory is

not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS
file systems.

<120> Section 2.4.19: The NTFS, ReFS, FAT, and exFAT file systems return a FileId value of 0 for
the entry named ".." in directory query operations.

<121> Section 2.4.20: When using ReFS or NTFS, the position of a file within the parent directory is
not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS

file systems.

<122> Section 2.4.20: The NTFS, ReFS, FAT, and exFAT file systems return a FileId value of 0 for
the entry named ".." in directory query operations.

<123> Section 2.4.21: When using ReFS or NTFS, the position of a file within the parent directory is
not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS
file systems.

<124> Section 2.4.21: The NTFS, ReFS, FAT, and exFAT file systems return a FileId value of 0 for

the entry named ".." in directory query operations.

<125> Section 2.4.22: When using ReFS or NTFS, the position of a file within the parent directory is
not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS
file systems.

<126> Section 2.4.23: Windows-based SMB Version 1 servers set the NextEntryOffset field to the
size of the current FileIdFullDirectoryInformation entry in bytes, if no other entries follow this one.

<127> Section 2.4.23: When using ReFS or NTFS, the position of a file within the parent directory is

not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS
file systems.

<128> Section 2.4.23: The NTFS, ReFS, FAT, and exFAT file systems return a FileId value of 0 for
the entry named ".." in directory query operations.

<129> Section 2.4.24: When using ReFS or NTFS, the position of a file within the parent directory is

not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS

file systems.

<130> Section 2.4.24: The NTFS, ReFS, FAT, and exFAT file systems return a FileId value of 0 for
the entry named ".." in directory query operations.

<131> Section 2.4.26: The NTFS, ReFS, FAT, and exFAT file systems return a FileId value of 0 for
the entry named ".." in directory query operations.

<132> Section 2.4.27: In Windows, both the NTFS and UDFS file systems support hard links. UDFS
support of hard links was added in Windows Vista and Windows Server 2008.

230 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

<133> Section 2.4.30: The FileModeInformation information class is not sent across the wire. In
Windows, it is handled by the IOManager on the client. If this operation is sent to an SMB server,

both SMB and SMB2 send the request to the IOManager on the server and perform normal
processing of the operation.

<134> Section 2.4.30: This flag is cleared by the respective server application while processing the
set operation in the following situations:

 SMB server on all supported versions of Windows if the file is not opened with a DesiredAccess
field value that has the FILE_WRITE_DATA or FILE_APPEND_DATA bit set (see [MS-CIFS] section
2.2.4.64.1).

 SMB2 server on Windows Vista and Windows Server 2008 always.

 SMB2 server on Windows 7 and Windows Server 2008 R2 if the file is opened with a

CreateOptions field value that has the FILE_NO_INTERMEDIATE_BUFFERING bit set (see [MS-
SMB2] section 2.2.13).

<135> Section 2.4.32: When using ReFS or NTFS, the position of a file within the parent directory is
not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS
file systems.

<136> Section 2.4.33: This operation works on both remote and local handles.

<137> Section 2.4.34: This information class is implemented on ReFS and NTFS file systems. Other
file systems return STATUS_INVALID_DEVICE_REQUEST.

<138> Section 2.4.35: The Microsoft ReFS, FAT, EXFAT, UDFS, and CDFS file systems do not support
the use of ObjectIds and return a status code of STATUS_INVALID_DEVICE_REQUEST.

<139> Section 2.4.35: The Microsoft Distributed Link Tracking protocols (see [MS-DLTW] section
3.1.6) use the first type of object ID structure for link tracking.

<140> Section 2.4.35.1: When a file is moved or copied from one volume to another, the ObjectId

member's value changes to a random unique value to avoid the potential for ObjectId collisions
because the object ID is not guaranteed to be unique across volumes.

<141> Section 2.4.39: Both the query and set FilePositionInformation operations are processed on
the local client; therefore, these operations are not transmitted across the wire. The fact that these
operations are processed on the client instead of the server is intended to be transparent to the
client's usage of these operations.

If a server receives a request to set FilePositionInformation, the specified file position will be set on

the remote handle, but its value will be ignored by future read/write operations. If a server receives a
request to query FilePositionInformation, an undetermined value will be returned. For more
information on how the CurrentByteOffset field is updated, see the [MS-FSA] sections for read and
write operations.

<142> Section 2.4.39: Each read and write operation via the Server Message Block (SMB) Protocol
[MS-SMB] and Server Message Block (SMB) Version 2 [MS-SMB2] protocols always provides an

explicit starting offset, and thus is unaffected by the file position. Windows does not update the file
position when read and write operations are performed via these protocols.

<143> Section 2.4.40: Query and set operations are supported only by the NTFS file system and are
valid only on handles opened to the NTFS metadata file "\$Extend\$Quota:$Q:$INDEX_ALLOCATION".

<144> Section 2.4.44: In Windows 7 and Windows Server 2008 R2, the existing short name is
deleted if the FileNameLength field in FILE_NAME_INFORMATION is zero. Previous Windows
implementations return STATUS_INVALID_PARAMETER when the FileNameLength field is zero.

%5bMS-CIFS%5d.pdf#Section_d416ff7cc536406ea9514f04b2fd1d2b
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-FSA%5d.pdf#Section_860b1516c45247b4bdbc625d344e2041
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688

231 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

<145> Section 2.4.46: This information class is supported on Windows 7 and Windows Server 2008
R2.

<146> Section 2.4.48: Windows supports the FileValidDataLengthInformation (section 2.4.48)
information class in the ReFS, NTFS, FAT, FAT32, and EXFAT file systems.

<147> Section 2.5: Windows uses the NtQueryVolumeInformationFile function to process the
specified query for file system information and the NtSetVolumeInformationFile function to set the
specified file system information. The definition of the function used to process any file system
information request, including its content and the function signature, is implementation-dependent
and is not part of the protocol specification.

<148> Section 2.5: This file system information class is intended for local use only; the server will fail
it with status STATUS_NOT_SUPPORTED.

<149> Section 2.5: This file system information class is intended for local use only; the server will fail
it with status STATUS_NOT_SUPPORTED. Furthermore, this file information class is not implemented
by any Windows file systems.

<150> Section 2.5: This file system information class is intended for local use only; the server will fail
a "query" with STATUS_ACCESS_NOT_SUPPORTED, and the server will fail a "set" with
STATUS_ACCESS_DENIED. Furthermore, this file information class is not implemented by any

Windows file systems.

<151> Section 2.5.1: The FILE_SUPPORTS_USN_JOURNAL, FILE_SUPPORTS_OPEN_BY_FILE_ID,
FILE_SUPPORTS_EXTENDED_ATTRIBUTES, and FILE_SUPPORTS_HARD_LINKS attributes are only
available on Windows 7 and Windows Server 2008 R2.

The FILE_READ_ONLY_VOLUME attribute is only available on Windows XP, Windows Server 2003,
Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

The FILE_SUPPORT_INTEGRITY_STREAMS attribute is available only on ReFS/Windows 8.

<152> Section 2.5.1: Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008

R2 set this flag if the volume is formatted for NTFS 3.0 or higher.

<153> Section 2.5.1: Windows support for a volume formatted to NTFS version 3.0 or 3.1 is required
for EFS use. NTFS versions 3.0 and 3.1 are supported on Windows 2000 and subsequent. Support for
FAT and EXFAT was added in Windows 10 v1607 operating system and Windows Server 2016 and
subsequent.

<154> Section 2.5.1: Remote storage is provided by the Remote Storage service to create virtual disk

storage from a tape or other storage media.

<155> Section 2.5.1: For the Microsoft ReFS, NTFS, FAT, and EXFAT file systems, this value is 510.
For the Microsoft UDFS file system, this value is 508. For the Microsoft CDFS file system, this value is
220 for Joliet format and 442 otherwise.

<156> Section 2.5.1: Valid values for this field depend on the version of Windows that the server is
running.

Windows version FAT FAT16 FAT32 exFAT NTFS CDFS UDF CSVFS

Windows 8 and subsequent X X X X X X X X

Windows 7, Windows Server 2008 R2 X X X X X X X

Windows Vista operating system with
Service Pack 1 (SP1), Windows Server
2008, Windows Server 2008 R2

X X X X X X X

232 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

Windows version FAT FAT16 FAT32 exFAT NTFS CDFS UDF CSVFS

Windows Vista RTM X X X X X X

Windows XP X X X X X

<157> Section 2.5.2: Query and set operations are supported only by the NTFS file system, and the

quota index information is saved in the NTFS metadata file
"\$Extend\$Quota:$Q:$INDEX_ALLOCATION".

<158> Section 2.5.2: Logging makes an entry in the Windows application event log.

<159> Section 2.5.4: In Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows
Server 2008, Windows 7, and Windows Server 2008 R2, if per-user quotas are in use, this value can
be less than the total number of allocation units on the disk. Non-Microsoft quota management
software might display the same behavior as these versions of Windows if that software was

implemented as a file system filter driver, and the driver implementer opted to set the
FileFsFullSizeInformation in the same manner as Windows 2000.

<160> Section 2.5.4: In Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows
Server 2008, Windows 7, and Windows Server 2008 R2, if per-user quotas are in use, this value can
be less than the total number of free allocation units on the disk.

<161> Section 2.5.5: A maximum length of 32 characters is imposed for any Windows file system,
though some file systems can impose a stricter limit. The Microsoft FAT file system supports volume

labels that are 0 to 11 characters in length. ReFS and NTFS support volume labels that are 0 to 32
characters in length. All Unicode characters are permitted in a volume label with the exception of
the NULL character, which is reserved for use as a string terminator.

<162> Section 2.5.6: The Microsoft ReFS, FAT, EXFAT, UDFS, and CDFS file systems do not support
the use of object IDs and return a status code of STATUS_INVALID_PARAMETER.

<163> Section 2.5.6: Windows does not write information into the ExtendedInfo field for file

systems.

<164> Section 2.5.7: This information class is only available in the following:

 Windows 8 and subsequent

 Microsoft-implemented file systems including NTFS, ReFS, FAT, ExFAT, UDFS, and CDFS

<165> Section 2.5.7: This is also the reported physical sector size of the device for atomicity. Note
that NTFS does basic sanitation to ensure this value does not cause unexpected application behavior.
NTFS performs the following basic sanitization:

 Ensures that the reported physical sector size is greater than or equal to the logical sector size. If
it is not, the value of this field is set to the logical sector size.

 Ensures that the reported physical sector size is a power of two. If it is not, the value of this field
is set to the logical sector size.

<166> Section 2.5.7: This is the reported physical sector size of the device for performance. Note that
NTFS does basic sanitation to ensure that this value does not cause unexpected application behavior.
NTFS performs the following basic sanitization:

 Ensures that the reported physical sector size is greater than or equal to the logical sector size. If
it is not, the value of this field is set to the logical sector size.

233 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

 Ensures that the reported physical sector size is a power of two. If it is not, the value of this field
is set to the logical sector size.

<167> Section 2.5.7: A client can interpret this field as the unit for which NTFS guarantees an atomic
operation. NTFS calculates the value of this field as follows:

 Retrieve the physical sector size the device reports for atomicity, and store in x.

 Validate that the value x is greater than or equal to the logical sector size. If it is not, set x to the
logical sector size.

 Validate that the value x is a power of two. If it is not, set x to the logical sector size.

 Validate that the value x is less than or equal to the system page size defined in [MS-FSA] section
2.1.1.1. If it is not, set x to the system page size defined in [MS-FSA] section 2.1.1.1.

<168> Section 2.5.7: In this example, a storage device has a logical sector of 512 bytes, a physical

sector of 4 KB (with eight logical sectors in a physical sector), and an offset of three logical sectors.

The ByteOffsetForSectorAlignment field is therefore calculated as 3 * LogicalBytesPerSector =
1536 bytes.

LBA # # # 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 20

Physical
Sector

0 1 2

<169> Section 2.5.8: In Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows
Server 2008, Windows 7, and Windows Server 2008 R2, if per-user quotas are in use, this value can
be less than the total number of allocation units on the disk. Non-Microsoft quota management

software might display the same behavior as Windows 2000 if that software was implemented as a file
system filter driver, and the driver implementer opted to set the FileFsSizeInformation in the same
manner as Windows 2000.

<170> Section 2.5.8: In Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows
Server 2008, Windows 7, and Windows Server 2008 R2, if per-user quotas are in use, this value can
be less than the total number of free allocation units on the disk.

<171> Section 2.5.9: A maximum length of 32 characters is imposed for any Windows file system,

though some file systems can impose a stricter limit. The Microsoft FAT file system supports volume
labels that are 0 to 11 characters in length. NTFS supports volume labels that are 0 to 32 characters
in length. All Unicode characters are permitted in a volume label with the exception of the NULL
character, which is reserved for use as a string terminator.

<172> Section 2.5.9: This value is TRUE for NTFS and FALSE for other file systems implemented by
Windows.

<173> Section 2.5.10: A driver can skip the full check for appcontainers by setting this characteristic
on its device object.

<174> Section 2.6: The Windows file system does not persist the FILE_ATTRIBUTE_NORMAL flag.
When getting attributes via the FileAttributeTagInformation (section 2.4.6) information class, a client
will receive the FILE_ATTRIBUTE_NORMAL flag only if no other attributes were set. Some examples: If
a client sets the attributes as [FILE_ATTRIBUTE_HIDDEN | FILE_ATTRIBUTE_NORMAL], the client will
see just [FILE_ATTRIBUTE_HIDDEN] when it gets the attributes. If the client sets the attributes as

[FILE_ATTRIBUTE_NORMAL], the client will see [FILE_ATTRIBUTE_NORMAL] when it gets the
attributes.

<175> Section 2.6: Only ReFS supports this attribute.

234 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

<176> Section 2.6: Only NTFS and ReFS support this attribute.

<177> Section 2.6: Only NTFS and ReFS support this attribute.

<178> Section 2.6: Only NTFS and ReFS support this attribute.

<179> Section 2.6: Only NTFS and ReFS support this attribute.

<180> Section 2.6: Only NTFS and ReFS support this attribute.

<181> Section 2.7.1: For FILE_ACTION_REMOVED_BY_DELETE, FILE_ACTION_ID_NOT_TUNNELLED,
and FILE_ACTION_TUNNELLED_ID_COLLISION only NTFS supports the special directory
"\$Extend\$ObjId:$O:$INDEX_ALLOCATION".

235 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

2.4 File Information Classes

11733 : Added 4 new file Info classes
FileId64ExtdDirectoryInformation,
FileId64ExtdBothDirectoryInformation,
FileIdAllExtdDirectoryInformation and
FileIdAllExtdBothDirectoryInformation

Major

2.4.17
FileId64ExtdBothDirectoryInformation

11733 : Added new section
FileId64ExtdBothDirectoryInformation

Major

2.4.18
FileId64ExtdDirectoryInformation

11733 : Added new section
FileId64ExtdDirectoryInformation

Major

2.4.19
FileIdAllExtdBothDirectoryInformation

11733 : Added new section
FileIdAllExtdBothDirectoryInformation

Major

2.4.20
FileIdAllExtdDirectoryInformation

11733 : Added new section
FileIdAllExtdDirectoryInformation

Major

mailto:dochelp@microsoft.com

236 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

8 Index

A

Allocate packet 51
Alternate data streams 28
Applicability 17

B

BitmapWritesUserLevel packet 50
Boolean data type 31

C

Change tracking 235
ChecksumAlgorithm packet 58
Cluster Shared Volume File System IOCTLs 206
Codes - status 32
Common data types and fields 18

D

Data elements
 FILE_NAME_INFORMATION 31
 FILE_OBJECTID_BUFFER 27
Data streams - alternate 28
Data structures - reparse point 18
Data type - Boolean 31
Data types and fields - common 18
DECRYPTION_STATUS_BUFFER packet 110
Details
 common data types and fields 18

E

Examples 209
EXFAT_STATISTICS packet 53
EXTENTS packet 68

F

FAT_STATISTICS packet 52
Fields
 time 18
 vendor-extensible 17
Fields - vendor-extensible 17
File attributes 203
File information classes 120
File system information classes 189
FILE_ACCESS_INFORMATION packet 122
FILE_ALIGNMENT_INFORMATION packet 124
FILE_ALLOCATION_INFORMATION packet 125
FILE_GET_EA_INFORMATION packet 139
FILE_GET_QUOTA_INFORMATION packet 180
FILE_LEVEL_TRIM packet 54
FILE_LEVEL_TRIM_OUTPUT packet 55
FILE_LEVEL_TRIM_RANGE packet 55
FILE_LINK_ENTRY_INFORMATION packet 141
FILE_MODE_INFORMATION packet 167
FILE_NAME_INFORMATION data element 31
FILE_NAME_INFORMATION packet 31
FILE_NOTIFY_INFORMATION packet 205

FILE_OBJECTID_BUFFER data element 27
FILE_OBJECTID_BUFFER_Type_1 packet 27
FILE_OBJECTID_BUFFER_Type_2 packet 28
FILE_OBJECTID_INFORMATION_TYPE_1 packet 172
FILE_OBJECTID_INFORMATION_TYPE_2 packet 173
FILE_POSITION_INFORMATION packet 178
FILE_QUOTA_INFORMATION packet 179
FILE_REGION_INFO packet 90
FILE_RENAME_INFORMATION_TYPE_1 packet 182
FILE_RENAME_INFORMATION_TYPE_2 packet 182
FILE_SET_DEFECT_MGMT_BUFFER packet 107
FileAllInformation packet 122
FileAllocationInformation 125
FileAlternateNameInformation information class 125
FileAttributeTagInformation packet 126
FileBasicInformation packet 127
FileBothDirectoryInformation packet 128
FileCompressionInformation packet 130
FileDirectoryInformation packet 132
FileDispositionInformation packet 134
FileEaInformation packet 134
FileEndOfFileInformation packet 135
FileFsAttributeInformation packet 190
FileFsControlInformation packet 192
FileFsDeviceInformation packet 201
FileFsDriverPathInformation packet 195
FileFsFullSizeInformation packet 195
FileFsLabelInformation packet 196
FileFsObjectIdInformation packet 197

FileFsSectorSizeInformation packet 198
FileFsSizeInformation packet 199
FileFsVolumeInformation packet 200
FileFullDirectoryInformation packet 135
FileFullEaInformation packet 138
FileHardLinkInformation packet 140
FileIdBothDirectoryInformation packet 152
FileIdFullDirectoryInformation packet 157
FileIdGlobalTxDirectoryInformation packet 159
FileInternalInformation packet 163
FileLinkInformation packet (section 2.4.27 163,

section 2.4.27.1 164, section 2.4.27.2 165)
FileMailslotQueryInformation packet 166
FileMailslotSetInformation packet 166
FileNameInformation information class 168
FileNamesInformation packet 169
FileNetworkOpenInformation packet 170
FileObjectIdInformation information class 172
FilePipeInformation packet 174
FilePipeLocalInformation packet 175
FilePipeRemoteInformation packet 177
FileRenameInformation information class 181
FileReparsePointInformation packet 183
FileSfioReserveInformation packet 184
FileShortNameInformation information class 185
FileStandardInformation packet 186
FileStandardLinkInformation packet 187
FileStreamInformation packet 187
FILESYSTEM_STATISTICS packet 43
FileValidDataLengthInformation packet 189
FSCTL structures 33
FSCTL_CREATE_OR_GET_OBJECT_ID reply 35
FSCTL_CREATE_OR_GET_OBJECT_ID request 35

237 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

FSCTL_DELETE_OBJECT_ID reply 36
FSCTL_DELETE_OBJECT_ID request 35
FSCTL_DELETE_REPARSE_POINT reply 36
FSCTL_DELETE_REPARSE_POINT request 36
FSCTL_DUPLICATE_EXTENTS_TO_FILE_Request

packet 37
FSCTL_FILESYSTEM_GET_STATISTICS reply 43
FSCTL_FILESYSTEM_GET_STATISTICS request 43
FSCTL_FIND_FILES_BY_SID_Reply packet 56
FSCTL_FIND_FILES_BY_SID_Request packet 56
FSCTL_GET_COMPRESSION request 57
FSCTL_GET_COMPRESSION_Reply packet 57
FSCTL_GET_NTFS_VOLUME_DATA reply 60
FSCTL_GET_NTFS_VOLUME_DATA request 60
FSCTL_GET_OBJECT_ID reply 64
FSCTL_GET_OBJECT_ID request 64
FSCTL_GET_REFS_VOLUME_DATA reply 62
FSCTL_GET_REFS_VOLUME_DATA request 62
FSCTL_GET_REFS_VOLUME_DATA_Reply packet 62
FSCTL_GET_REPARSE_POINT reply 65
FSCTL_GET_REPARSE_POINT request 65
FSCTL_GET_RETRIEVAL_POINTERS_Reply packet 67
FSCTL_GET_RETRIEVAL_POINTERS_Request packet

67
FSCTL_IS_PATHNAME_VALID reply 71
FSCTL_IS_PATHNAME_VALID_Request packet 71
FSCTL_LMR_SET_LINK_TRACKING_INFORMATION

reply 74
FSCTL_LMR_SET_LINK_TRACKING_INFORMATION

request 72
FSCTL_OFFLOAD_READ_INPUT packet 76
FSCTL_OFFLOAD_READ_OUTPUT packet 77
FSCTL_OFFLOAD_WRITE_INPUT packet 79
FSCTL_OFFLOAD_WRITE_OUTPUT packet 80
FSCTL_PIPE_PEEK packet 82
FSCTL_PIPE_PEEK reply 82
FSCTL_PIPE_PEEK request 82
FSCTL_PIPE_TRANSCEIVE reply 84
FSCTL_PIPE_TRANSCEIVE request 84
FSCTL_PIPE_WAIT reply 85
FSCTL_PIPE_WAIT_Request packet 84
FSCTL_QUERY_ALLOCATED_RANGES_Reply packet

86
FSCTL_QUERY_ALLOCATED_RANGES_Request

packet 86
FSCTL_QUERY_FAT_BPB reply 87
FSCTL_QUERY_FAT_BPB request 87
FSCTL_QUERY_FILE_REGIONS Reply packet 89
FSCTL_QUERY_FILE_REGIONS Request packet 88
FSCTL_QUERY_ON_DISK_VOLUME_INFO request 90
FSCTL_QUERY_ON_DISK_VOLUME_INFO_Reply

packet 91
FSCTL_QUERY_SPARING_INFO request 93
FSCTL_QUERY_SPARING_INFO_Reply packet 93
FSCTL_READ_FILE_USN_DATA request 94
FSCTL_READ_FILE_USN_DATA_Request packet 94
FSCTL_RECALL_FILE reply 100
FSCTL_RECALL_FILE request 100
FSCTL_SET_COMPRESSION reply 107
FSCTL_SET_COMPRESSION_Request packet 106
FSCTL_SET_DEFECT_MANAGEMENT reply 108
FSCTL_SET_DEFECT_MANAGEMENT request 107
FSCTL_SET_ENCRYPTION reply 109
FSCTL_SET_ENCRYPTION_Request packet 108
FSCTL_SET_INTEGRITY_INFORMATION reply 111

FSCTL_SET_INTEGRITY_INFORMATION_BUFFER
packet 110

FSCTL_SET_OBJECT_ID reply 113
FSCTL_SET_OBJECT_ID request 113
FSCTL_SET_OBJECT_ID_EXTENDED reply 114
FSCTL_SET_OBJECT_ID_EXTENDED_Request packet

114
FSCTL_SET_REPARSE_POINT reply 115
FSCTL_SET_REPARSE_POINT request 115
FSCTL_SET_SPARSE reply 116
FSCTL_SET_SPARSE request 115
FSCTL_SET_SPARSE_BUFFER packet 115
FSCTL_SET_ZERO_DATA reply 117
FSCTL_SET_ZERO_DATA_Request packet 116
FSCTL_SET_ZERO_ON_DEALLOCATION reply 117
FSCTL_SET_ZERO_ON_DEALLOCATION request 117
FSCTL_SIS_COPYFILE reply 119
FSCTL_SIS_COPYFILE_Request packet 118
FSCTL_WRITE_USN_CLOSE_RECORD reply 120
FSCTL_WRITE_USN_CLOSE_RECORD request 119

G

Glossary 10

I

Implementer - security considerations 210
Index of security parameters 210
Information classes
 file 120
 file system 189
Informative references 15
Introduction 10
IOCTL_STORAGE_QUERY_PROPERTY Reply 207
IOCTL_STORAGE_QUERY_PROPERTY Request 206
IOCTL_VOLUME_GET_GPT_ATTRIBUTES Reply 208
IOCTL_VOLUME_GET_GPT_ATTRIBUTES Request 207

L

Localization 17

M

Mft2WritesUserLevel packet 50
MftBitmapWritesUserLevel packet 51
MftWritesUserLevel packet 49
Mount_Point_Reparse_Data_Buffer packet 24

N

Names
 pathnames 28
 share names 30
Normative references 14
NSF_ REPARSE_DATA_BUFFER packet 25
NTFS_STATISTICS packet 45
NTFS_VOLUME_DATA_BUFFER_Reply packet 60

O

Overview 16
Overview (synopsis) 16

238 / 238

[MS-FSCC] - v20240708
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: July 8, 2024

P

Parameter index - security 210
Parameters - security index 210
Pathnames 28
Product behavior 216

R

References 14
 informative 15

 normative 14
Relationship to protocols and other structures 16
Reparse point data structures 18
Reparse tags 18
REPARSE_DATA_BUFFER packet 22
REPARSE_GUID_DATA_BUFFER packet 22

S

Security
 implementer considerations 210
 parameter index 210
Share names 30
SMB REMOTE_LINK_TRACKING_INFORMATION32

packet 72
SMB2_REMOTE_LINK_TRACKING_INFORMATION

packet 72
Status codes 32
STORAGE_OFFLOAD_TOKEN packet 32
Structures
 FSCTL 33
 overview 18
Symbolic_Link_Reparse_Data_Buffer packet 23

T

Tags - reparse 18
TARGET_LINK_TRACKING_INFORMATION_Buffer_1

packet 73
TARGET_LINK_TRACKING_INFORMATION_Buffer_2

packet 73
Time fields 18
Tracking changes 235

U

USN_RECORD_COMMON_HEADER packet 94
USN_RECORD_V2 packet 95
USN_RECORD_V3 packet 98

V

Vendor-extensible fields 17
Versioning 17

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.6 Versioning and Localization
	1.7 Vendor-Extensible Fields

	2 Structures
	2.1 Common Data Types
	2.1.1 Time
	2.1.2 Reparse Point Data Structures
	2.1.2.1 Reparse Tags
	2.1.2.2 REPARSE_DATA_BUFFER
	2.1.2.3 REPARSE_GUID_DATA_BUFFER
	2.1.2.4 Symbolic Link Reparse Data Buffer
	2.1.2.5 Mount Point Reparse Data Buffer
	2.1.2.6 Network File System (NFS) Reparse Data Buffer

	2.1.3 FILE_OBJECTID_BUFFER Structure
	2.1.3.1 FILE_OBJECTID_BUFFER Type 1
	2.1.3.2 FILE_OBJECTID_BUFFER Type 2

	2.1.4 Alternate Data Streams
	2.1.5 Pathname
	2.1.5.1 Dot Directory Names
	2.1.5.2 Filename
	2.1.5.2.1 8.3 Filename

	2.1.5.3 Streamname
	2.1.5.4 Streamtype

	2.1.6 Share name
	2.1.7 FILE_NAME_INFORMATION
	2.1.8 Boolean
	2.1.9 64-bit file ID
	2.1.10 128-bit file ID
	2.1.11 STORAGE_OFFLOAD_TOKEN

	2.2 Status Codes
	2.3 FSCTL Structures
	2.3.1 FSCTL_CREATE_OR_GET_OBJECT_ID Request
	2.3.2 FSCTL_CREATE_OR_GET_OBJECT_ID Reply
	2.3.3 FSCTL_DELETE_OBJECT_ID Request
	2.3.4 FSCTL_DELETE_OBJECT_ID Reply
	2.3.5 FSCTL_DELETE_REPARSE_POINT Request
	2.3.6 FSCTL_DELETE_REPARSE_POINT Reply
	2.3.7 FSCTL_DUPLICATE_EXTENTS_TO_FILE Request
	2.3.7.1 DUPLICATE_EXTENTS_DATA
	2.3.7.2 SMB2_DUPLICATE_EXTENTS_DATA

	2.3.8 FSCTL_DUPLICATE_EXTENTS_TO_FILE Reply
	2.3.9 FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX Request
	2.3.9.1 DUPLICATE_EXTENTS_DATA_EX
	2.3.9.2 SMB2_DUPLICATE_EXTENTS_DATA_EX

	2.3.10 FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX Reply
	2.3.11 FSCTL_FILESYSTEM_GET_STATISTICS Request
	2.3.12 FSCTL_FILESYSTEM_GET_STATISTICS Reply
	2.3.12.1 FILESYSTEM_STATISTICS
	2.3.12.2 NTFS_STATISTICS
	2.3.12.2.1 MftWritesUserLevel
	2.3.12.2.2 Mft2WritesUserLevel
	2.3.12.2.3 BitmapWritesUserLevel
	2.3.12.2.4 MftBitmapWritesUserLevel
	2.3.12.2.5 Allocate

	2.3.12.3 FAT_STATISTICS
	2.3.12.4 EXFAT_STATISTICS

	2.3.13 FSCTL_FILE_LEVEL_TRIM Request
	2.3.13.1 FILE_LEVEL_TRIM_RANGE

	2.3.14 FSCTL_FILE_LEVEL_TRIM Reply
	2.3.15 FSCTL_FIND_FILES_BY_SID Request
	2.3.16 FSCTL_FIND_FILES_BY_SID Reply
	2.3.17 FSCTL_GET_COMPRESSION Request
	2.3.18 FSCTL_GET_COMPRESSION Reply
	2.3.19 FSCTL_GET_INTEGRITY_INFORMATION Request
	2.3.20 FSCTL_GET_INTEGRITY_INFORMATION Reply
	2.3.21 FSCTL_GET_NTFS_VOLUME_DATA Request
	2.3.22 FSCTL_GET_NTFS_VOLUME_DATA Reply
	2.3.23 FSCTL_GET_REFS_VOLUME_DATA Request
	2.3.24 FSCTL_GET_REFS_VOLUME_DATA Reply
	2.3.25 FSCTL_GET_OBJECT_ID Request
	2.3.26 FSCTL_GET_OBJECT_ID Reply
	2.3.27 FSCTL_GET_REPARSE_POINT Request
	2.3.28 FSCTL_GET_REPARSE_POINT Reply
	2.3.29 FSCTL_GET_RETRIEVAL_POINTER_COUNT Request
	2.3.30 FSCTL_GET_RETRIEVAL_POINTER_COUNT Reply
	2.3.31 FSCTL_GET_RETRIEVAL_POINTERS Request
	2.3.32 FSCTL_GET_RETRIEVAL_POINTERS Reply
	2.3.32.1 EXTENTS

	2.3.33 FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT Request
	2.3.34 FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT Reply
	2.3.34.1 EXTENT_AND_REFCOUNTS

	2.3.35 FSCTL_IS_PATHNAME_VALID Request
	2.3.36 FSCTL_IS_PATHNAME_VALID Reply
	2.3.37 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request
	2.3.37.1 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB
	2.3.37.2 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB2
	2.3.37.3 TARGET_LINK_TRACKING_INFORMATION_Buffer
	2.3.37.3.1 TARGET_LINK_TRACKING_INFORMATION_Buffer_1
	2.3.37.3.2 TARGET_LINK_TRACKING_INFORMATION_Buffer_2

	2.3.38 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Reply
	2.3.39 FSCTL_MARK_HANDLE Request
	2.3.40 FSCTL_MARK_HANDLE Reply
	2.3.41 FSCTL_OFFLOAD_READ Request
	2.3.42 FSCTL_OFFLOAD_READ Reply
	2.3.43 FSCTL_OFFLOAD_WRITE Request
	2.3.44 FSCTL_OFFLOAD_WRITE Reply
	2.3.45 FSCTL_PIPE_PEEK Request
	2.3.46 FSCTL_PIPE_PEEK Reply
	2.3.47 FSCTL_PIPE_TRANSCEIVE Request
	2.3.48 FSCTL_PIPE_TRANSCEIVE Reply
	2.3.49 FSCTL_PIPE_WAIT Request
	2.3.50 FSCTL_PIPE_WAIT Reply
	2.3.51 FSCTL_QUERY_ALLOCATED_RANGES Request
	2.3.52 FSCTL_QUERY_ALLOCATED_RANGES Reply
	2.3.53 FSCTL_QUERY_FAT_BPB Request
	2.3.54 FSCTL_QUERY_FAT_BPB Reply
	2.3.55 FSCTL_QUERY_FILE_REGIONS Request
	2.3.56 FSCTL_QUERY_FILE_REGIONS Reply
	2.3.56.1 FILE_REGION_INFO

	2.3.57 FSCTL_QUERY_ON_DISK_VOLUME_INFO Request
	2.3.58 FSCTL_QUERY_ON_DISK_VOLUME_INFO Reply
	2.3.59 FSCTL_QUERY_SPARING_INFO Request
	2.3.60 FSCTL_QUERY_SPARING_INFO Reply
	2.3.61 FSCTL_READ_FILE_USN_DATA Request
	2.3.62 FSCTL_READ_FILE_USN_DATA Reply
	2.3.62.1 USN_RECORD_COMMON_HEADER
	2.3.62.2 USN_RECORD_V2
	2.3.62.3 USN_RECORD_V3

	2.3.63 FSCTL_RECALL_FILE Request
	2.3.64 FSCTL_RECALL_FILE Reply
	2.3.65 FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT Request
	2.3.65.1 REFS_STREAM_SNAPSHOT_QUERY_DELTAS_INPUT_BUFFER

	2.3.66 FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT Reply
	2.3.66.1 REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER
	2.3.66.1.1 REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER_ENTRY

	2.3.66.2 REFS_STREAM_SNAPSHOT_QUERY_DELTAS_OUTPUT_BUFFER
	2.3.66.2.1 REFS_STREAM_EXTENT

	2.3.67 FSCTL_SET_COMPRESSION Request
	2.3.68 FSCTL_SET_COMPRESSION Reply
	2.3.69 FSCTL_SET_DEFECT_MANAGEMENT Request
	2.3.70 FSCTL_SET_DEFECT_MANAGEMENT Reply
	2.3.71 FSCTL_SET_ENCRYPTION Request
	2.3.72 FSCTL_SET_ENCRYPTION Reply
	2.3.72.1 DECRYPTION_STATUS_BUFFER

	2.3.73 FSCTL_SET_INTEGRITY_INFORMATION Request
	2.3.74 FSCTL_SET_INTEGRITY_INFORMATION Reply
	2.3.75 FSCTL_SET_INTEGRITY_INFORMATION_EX Request
	2.3.76 FSCTL_SET_INTEGRITY_INFORMATION_EX Reply
	2.3.77 FSCTL_SET_OBJECT_ID Request
	2.3.78 FSCTL_SET_OBJECT_ID Reply
	2.3.79 FSCTL_SET_OBJECT_ID_EXTENDED Request
	2.3.80 FSCTL_SET_OBJECT_ID_EXTENDED Reply
	2.3.81 FSCTL_SET_REPARSE_POINT Request
	2.3.82 FSCTL_SET_REPARSE_POINT Reply
	2.3.83 FSCTL_SET_SPARSE Request
	2.3.84 FSCTL_SET_SPARSE Reply
	2.3.85 FSCTL_SET_ZERO_DATA Request
	2.3.86 FSCTL_SET_ZERO_DATA Reply
	2.3.87 FSCTL_SET_ZERO_ON_DEALLOCATION Request
	2.3.88 FSCTL_SET_ZERO_ON_DEALLOCATION Reply
	2.3.89 FSCTL_SIS_COPYFILE Request
	2.3.90 FSCTL_SIS_COPYFILE Reply
	2.3.91 FSCTL_VIRTUAL_STORAGE_QUERY_PROPERTY Request
	2.3.92 FSCTL_WRITE_USN_CLOSE_RECORD Request
	2.3.93 FSCTL_WRITE_USN_CLOSE_RECORD Reply

	2.4 File Information Classes
	2.4.1 FileAccessInformation
	2.4.2 FileAllInformation
	2.4.3 FileAlignmentInformation
	2.4.4 FileAllocationInformation
	2.4.5 FileAlternateNameInformation
	2.4.6 FileAttributeTagInformation
	2.4.7 FileBasicInformation
	2.4.8 FileBothDirectoryInformation
	2.4.9 FileCompressionInformation
	2.4.10 FileDirectoryInformation
	2.4.11 FileDispositionInformation
	2.4.12 FileEaInformation
	2.4.13 FileEndOfFileInformation
	2.4.14 FileFullDirectoryInformation
	2.4.15 FileFullEaInformation
	2.4.15.1 FILE_GET_EA_INFORMATION

	2.4.16 FileHardLinkInformation
	2.4.16.1 FILE_LINK_ENTRY_INFORMATION

	2.4.17 FileId64ExtdBothDirectoryInformation
	2.4.18 FileId64ExtdDirectoryInformation
	2.4.19 FileIdAllExtdBothDirectoryInformation
	2.4.20 FileIdAllExtdDirectoryInformation
	2.4.21 FileIdBothDirectoryInformation
	2.4.22 FileIdExtdDirectoryInformation
	2.4.23 FileIdFullDirectoryInformation
	2.4.24 FileIdGlobalTxDirectoryInformation
	2.4.25 FileIdInformation
	2.4.26 FileInternalInformation
	2.4.27 FileLinkInformation
	2.4.27.1 FileLinkInformation for the SMB Protocol
	2.4.27.2 FileLinkInformation for the SMB2 Protocol

	2.4.28 FileMailslotQueryInformation
	2.4.29 FileMailslotSetInformation
	2.4.30 FileModeInformation
	2.4.31 FileNameInformation
	2.4.32 FileNamesInformation
	2.4.33 FileNetworkOpenInformation
	2.4.34 FileNormalizedNameInformation
	2.4.35 FileObjectIdInformation
	2.4.35.1 FILE_OBJECTID_INFORMATION_TYPE_1
	2.4.35.2 FILE_OBJECTID_INFORMATION_TYPE_2

	2.4.36 FilePipeInformation
	2.4.37 FilePipeLocalInformation
	2.4.38 FilePipeRemoteInformation
	2.4.39 FilePositionInformation
	2.4.40 FileQuotaInformation
	2.4.40.1 FILE_GET_QUOTA_INFORMATION

	2.4.41 FileRenameInformation
	2.4.41.1 FileRenameInformation for SMB
	2.4.41.2 FileRenameInformation for SMB2

	2.4.42 FileReparsePointInformation
	2.4.43 FileSfioReserveInformation
	2.4.44 FileShortNameInformation
	2.4.45 FileStandardInformation
	2.4.46 FileStandardLinkInformation
	2.4.47 FileStreamInformation
	2.4.48 FileValidDataLengthInformation

	2.5 File System Information Classes
	2.5.1 FileFsAttributeInformation
	2.5.2 FileFsControlInformation
	2.5.3 FileFsDriverPathInformation
	2.5.4 FileFsFullSizeInformation
	2.5.5 FileFsLabelInformation
	2.5.6 FileFsObjectIdInformation
	2.5.7 FileFsSectorSizeInformation
	2.5.8 FileFsSizeInformation
	2.5.9 FileFsVolumeInformation
	2.5.10 FileFsDeviceInformation

	2.6 File Attributes
	2.7 Directory Change Notifications
	2.7.1 FILE_NOTIFY_INFORMATION

	2.8 Cluster Shared Volume File System IOCTLs
	2.8.1 IOCTL_STORAGE_QUERY_PROPERTY Request
	2.8.2 IOCTL_STORAGE_QUERY_PROPERTY Reply
	2.8.3 IOCTL_VOLUME_GET_GPT_ATTRIBUTES Request
	2.8.4 IOCTL_VOLUME_GET_GPT_ATTRIBUTES Reply

	3 Structure Examples
	4 Security
	4.1 Security Considerations for Implementers
	4.2 Index of Security Parameters

	5 Appendix A: NTFS Alternate Streams
	5.1 NTFS Streams
	5.2 NTFS Attribute Types
	5.3 NTFS Reserved File Names
	5.4 NTFS Stream Names
	5.5 NTFS Stream Types
	5.6 Known Alternate Stream Names
	5.6.1 Zone.Identifier Stream Name
	5.6.2 Outlook Express Properties Stream Name
	5.6.3 Document Properties Stream Name
	5.6.4 Encryptable Thumbnails Stream Name
	5.6.5 Internet Explorer Favicon Stream Name
	5.6.6 Macintosh Supported Stream Names
	5.6.7 XPRESS Stream Name

	6 Appendix B: Product Behavior
	7 Change Tracking
	8 Index

