
1 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[MS-FRS2]:

Distributed File System Replication Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

3/2/2007 1.0 New Version 1.0 release

4/3/2007 1.1 Minor Version 1.1 release

5/11/2007 1.2 Minor Version 1.2 release

6/1/2007 1.2.1 Editorial Changed language and formatting in the technical content.

7/3/2007 1.2.2 Editorial Changed language and formatting in the technical content.

8/10/2007 1.2.3 Editorial Changed language and formatting in the technical content.

9/28/2007 1.2.4 Editorial Changed language and formatting in the technical content.

10/23/2007 1.3 Minor Updated to use data types in MS-DTYP.

1/25/2008 1.3.1 Editorial Changed language and formatting in the technical content.

3/14/2008 2.0 Major Updated and revised the technical content.

6/20/2008 3.0 Major Updated and revised the technical content.

7/25/2008 3.0.1 Editorial Changed language and formatting in the technical content.

8/29/2008 4.0 Major Updated and revised the technical content.

10/24/2008 5.0 Major Updated and revised the technical content.

12/5/2008 6.0 Major Updated and revised the technical content.

1/16/2009 7.0 Major Updated and revised the technical content.

2/27/2009 8.0 Major Updated and revised the technical content.

4/10/2009 9.0 Major Updated and revised the technical content.

5/22/2009 10.0 Major Updated and revised the technical content.

7/2/2009 10.1 Minor Clarified the meaning of the technical content.

8/14/2009 10.1.1 Editorial Changed language and formatting in the technical content.

9/25/2009 10.2 Minor Clarified the meaning of the technical content.

11/6/2009 10.2.1 Editorial Changed language and formatting in the technical content.

12/18/2009 10.2.2 Editorial Changed language and formatting in the technical content.

1/29/2010 11.0 Major Updated and revised the technical content.

3/12/2010 12.0 Major Updated and revised the technical content.

4/23/2010 13.0 Major Updated and revised the technical content.

6/4/2010 13.0.1 Editorial Changed language and formatting in the technical content.

7/16/2010 13.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 14.0 Major Updated and revised the technical content.

3 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Date
Revision
History

Revision
Class Comments

10/8/2010 15.0 Major Updated and revised the technical content.

11/19/2010 16.0 Major Updated and revised the technical content.

1/7/2011 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 16.1 Minor Clarified the meaning of the technical content.

9/23/2011 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 17.0 Major Updated and revised the technical content.

3/30/2012 18.0 Major Updated and revised the technical content.

7/12/2012 19.0 Major Updated and revised the technical content.

10/25/2012 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 20.0 Major Updated and revised the technical content.

11/14/2013 21.0 Major Updated and revised the technical content.

2/13/2014 22.0 Major Updated and revised the technical content.

5/15/2014 23.0 Major Updated and revised the technical content.

6/30/2015 24.0 Major Significantly changed the technical content.

10/16/2015 25.0 Major Significantly changed the technical content.

7/14/2016 26.0 Major Significantly changed the technical content.

6/1/2017 26.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 27.0 Major Significantly changed the technical content.

12/1/2017 27.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Table of Contents

1 Introduction .. 8
1.1 Glossary ... 8
1.2 References .. 11

1.2.1 Normative References ... 11
1.2.2 Informative References ... 12

1.3 Overview .. 12
1.4 Relationship to Other Protocols .. 15
1.5 Prerequisites/Preconditions ... 15
1.6 Applicability Statement ... 15
1.7 Versioning and Capability Negotiation ... 15
1.8 Vendor-Extensible Fields ... 16
1.9 Standards Assignments ... 16

2 Messages ... 17
2.1 Transport .. 17

2.1.1 Client Authentication Requirements... 17
2.1.2 Server-Side Binding .. 17

2.2 Message Syntax ... 18
2.2.1 Common Data Types ... 18

2.2.1.1 Constants .. 18
2.2.1.1.1 FRS_COMMUNICATION_PROTOCOL_VERSION 18
2.2.1.1.2 CONFIG_RDC_VERSION ... 18
2.2.1.1.3 CONFIG_RDC_VERSION_COMPATIBLE ... 18
2.2.1.1.4 CONFIG_RDC_MAX_LEVELS .. 18
2.2.1.1.5 CONFIG_RDC_MAX_NEEDLENGTH ... 18
2.2.1.1.6 CONFIG_RDC_NEED_QUEUE_SIZE .. 19
2.2.1.1.7 CONFIG_RDC_HORIZONSIZE_MIN .. 19
2.2.1.1.8 CONFIG_RDC_HORIZONSIZE_MAX .. 19
2.2.1.1.9 CONFIG_RDC_HASHWINDOWSIZE_MIN ... 19
2.2.1.1.10 CONFIG_RDC_HASHWINDOWSIZE_MAX .. 19
2.2.1.1.11 CONFIG_RDC_SIMILARITY_DATASIZE ... 19
2.2.1.1.12 CONFIG_TRANSPORT_MAX_BUFFER_SIZE .. 19
2.2.1.1.13 CONFIG_FILEHASH_DATASIZE .. 19
2.2.1.1.14 FRS_UPDATE_FLAG_GHOSTED_HEADER .. 20
2.2.1.1.15 FRS_UPDATE_FLAG_DATA .. 20
2.2.1.1.16 TRUE ... 20
2.2.1.1.17 FALSE .. 20
2.2.1.1.18 FRS_UPDATE_FLAG_CLOCK_DECREMENTED 20
2.2.1.1.19 FRS_XPRESS_FILE_HEADER_SIZE ... 20
2.2.1.1.20 XPRESS_RDC_MIN_GET_DATA_BUFFER_SIZE 20
2.2.1.1.21 XPRESS_RDC_MIN_GET_DATA_BUFFER_SIZE_WITH_FILE_HEADER 21
2.2.1.1.22 XPRESS_RDC_MAX_NB_NEEDS_FOR_COMPRESSION 21
2.2.1.1.23 X_CONFIG_XPRESS_BLOCK_SIZE ... 21

2.2.1.2 Enumerations ... 21
2.2.1.2.1 TransportFlags .. 21
2.2.1.2.2 RDC_FILE_COMPRESSION_TYPES .. 21
2.2.1.2.3 RDC_CHUNKER_ALGORITHM .. 22
2.2.1.2.4 UPDATE_REQUEST_TYPE .. 22
2.2.1.2.5 UPDATE_STATUS ... 22
2.2.1.2.6 RECORDS_STATUS .. 23
2.2.1.2.7 VERSION_REQUEST_TYPE .. 23
2.2.1.2.8 VERSION_CHANGE_TYPE.. 23
2.2.1.2.9 FRS_REQUESTED_STAGING_POLICY .. 23

2.2.1.3 Simple Type Definitions ... 24
2.2.1.3.1 FRS_REPLICA_SET_ID ... 24

5 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.1.3.2 FRS_CONTENT_SET_ID .. 24
2.2.1.3.3 FRS_DATABASE_ID ... 24
2.2.1.3.4 FRS_MEMBER_ID .. 24
2.2.1.3.5 FRS_CONNECTION_ID ... 25
2.2.1.3.6 EPOQUE ... 25
2.2.1.3.7 BYTE_PIPE .. 25

2.2.1.4 Aggregate Definitions .. 25
2.2.1.4.1 FRS_VERSION_VECTOR ... 25
2.2.1.4.2 FRS_EPOQUE_VECTOR ... 25
2.2.1.4.3 FRS_ID_GVSN .. 26
2.2.1.4.4 FRS_UPDATE .. 26
2.2.1.4.5 FRS_UPDATE_CANCEL_DATA .. 27
2.2.1.4.6 FRS_RDC_SOURCE_NEED... 28
2.2.1.4.7 FRS_RDC_PARAMETERS_FILTERMAX ... 28
2.2.1.4.8 FRS_RDC_PARAMETERS_FILTERPOINT ... 29
2.2.1.4.9 FRS_RDC_PARAMETERS_GENERIC .. 29
2.2.1.4.10 FRS_RDC_PARAMETERS ... 29
2.2.1.4.11 FRS_RDC_FILEINFO ... 30
2.2.1.4.12 FRS_ASYNC_VERSION_VECTOR_RESPONSE 30
2.2.1.4.13 FRS_ASYNC_RESPONSE_CONTEXT .. 31
2.2.1.4.14 PFRS_SERVER_CONTEXT .. 31
2.2.1.4.15 XPRESS Block ... 31

2.2.1.4.15.1 XPRESS Block Header ... 32
2.3 Directory Service Schema Elements ... 32

2.3.1 msDFSR-LocalSettings .. 34
2.3.2 msDFSR-Subscriber .. 35
2.3.3 msDFSR-Subscription .. 35
2.3.4 msDFSR-GlobalSettings ... 36
2.3.5 msDFSR-ReplicationGroup ... 36
2.3.6 msDFSR-Content .. 37
2.3.7 msDFSR-ContentSet ... 37
2.3.8 msDFSR-Topology .. 37
2.3.9 msDFSR-Member .. 38
2.3.10 Computer .. 38
2.3.11 msDFSR-Connection ... 38
2.3.12 nTDSConnection ... 39

3 Protocol Details ... 41
3.1 Common Details .. 41

3.1.1 Abstract Data Model .. 42
3.1.1.1 Compression .. 43

3.1.1.1.1 Pseudocode Conventions .. 43
3.1.1.1.2 Data Structures ... 43

3.1.1.1.2.1 PREFIX_CODE_NODE ... 43
3.1.1.1.2.2 PREFIX_CODE_SYMBOL .. 44
3.1.1.1.2.3 BITSTRING ... 44

3.1.1.1.3 Procedures ... 44
3.1.1.1.3.1 PrefixCodeTreeRebuild .. 44
3.1.1.1.3.2 PrefixCodeTreeAddLeaf ... 45
3.1.1.1.3.3 SortSymbols ... 46
3.1.1.1.3.4 CompareSymbols ... 46
3.1.1.1.3.5 BitstringInit ... 47
3.1.1.1.3.6 BitstringLookup ... 47
3.1.1.1.3.7 BitstreamSkip .. 48
3.1.1.1.3.8 PrefixCodeTreeDecodeSymbol ... 48
3.1.1.1.3.9 Decompress .. 48

3.1.2 Timers .. 50
3.1.3 Initialization ... 50

6 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4 Message Processing Events and Sequencing Rules .. 50
3.1.5 Timer Events .. 50
3.1.6 Other Local Events .. 50

3.2 Server Details .. 50
3.2.1 Abstract Data Model .. 50
3.2.2 Timers .. 51
3.2.3 Initialization ... 51
3.2.4 Message Processing Events and Sequencing Rules .. 51

3.2.4.1 FrsTransport Methods .. 51
3.2.4.1.1 CheckConnectivity (Opnum 0) ... 52
3.2.4.1.2 EstablishConnection (Opnum 1) .. 53
3.2.4.1.3 EstablishSession (Opnum 2) ... 55
3.2.4.1.4 RequestUpdates (Opnum 3) .. 56
3.2.4.1.5 RequestVersionVector (Opnum 4) .. 58
3.2.4.1.6 AsyncPoll (Opnum 5) ... 60
3.2.4.1.7 RequestRecords (Opnum 6) .. 61
3.2.4.1.8 UpdateCancel (Opnum 7) ... 62
3.2.4.1.9 RawGetFileData (Opnum 8) .. 63
3.2.4.1.10 RdcGetSignatures (Opnum 9) ... 64
3.2.4.1.11 RdcPushSourceNeeds (Opnum 10) ... 66
3.2.4.1.12 RdcGetFileData (Opnum 11) ... 67
3.2.4.1.13 RdcClose (Opnum 12) .. 70
3.2.4.1.14 InitializeFileTransferAsync (Opnum 13) .. 71

3.2.4.1.14.1 Custom Marshaling Format .. 73
3.2.4.1.14.2 Compressed Data Format .. 76

3.2.4.1.15 RawGetFileDataAsync (Opnum 15) .. 76
3.2.4.1.16 RdcGetFileDataAsync (Opnum 16) ... 77
3.2.4.1.17 RdcFileDataTransferKeepAlive (Opnum 17) ... 78

3.2.5 Timer Events .. 78
3.2.6 Other Local Events .. 79

3.3 Client Details ... 79
3.3.1 Abstract Data Model .. 82

3.3.1.1 Connection State Machine .. 82
3.3.1.2 Replicated Folder Session State Machine .. 83
3.3.1.3 Slow Sync .. 84
3.3.1.4 Raw File Transfer .. 86
3.3.1.5 RDC File Transfer .. 86

3.3.2 Timers .. 87
3.3.3 Initialization ... 87
3.3.4 Message Processing Events and Sequencing Rules .. 88

3.3.4.1 DisConnected ... 88
3.3.4.2 EstablishConnection Completes ... 88
3.3.4.3 EstablishSession Completes .. 88
3.3.4.4 RequestVersionVector Completes .. 89
3.3.4.5 AsyncPoll Completes .. 90
3.3.4.6 RequestUpdates Completes .. 91

3.3.4.6.1 Requesting Updates (State Transitions) .. 91
3.3.4.6.2 Processing Updates .. 92

3.3.4.7 File Downloads ... 94
3.3.4.7.1 stagingPolicy Parameter ... 94

3.3.4.8 InitializeFileTransferAsync Completes .. 94
3.3.4.9 RawGetFileData Completes... 95
3.3.4.10 RdcClose Completes .. 96
3.3.4.11 RawGetFileDataAsync Completes .. 96
3.3.4.12 RdcGetSignatures Completes .. 97
3.3.4.13 RdcPushSourceNeeds Completes ... 97
3.3.4.14 RdcGetFileData Completes ... 98
3.3.4.15 RdcGetFileDataAsync Completes ... 99

7 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.3.4.16 Request Records Completes ... 99
3.3.4.16.1 Requesting Records (State Transitions) ... 100
3.3.4.16.2 Processing Records ... 100

3.3.4.17 UpdateCancel .. 100
3.3.4.18 AsyncPoll Completes for REQUEST_SUBORDINATE_SYNC 101

3.3.5 Timer Events ... 101
3.3.6 Other Local Events ... 101

4 Protocol Examples ... 102
4.1 Abstract Protocol Examples .. 102

4.1.1 Basic Content Distribution ... 102
4.1.2 Version Chain Vector Logic - Two Machines ... 103
4.1.3 Version Chain Vector Logic - Three Machines ... 103
4.1.4 Concurrent Updates and Tombstones ... 104
4.1.5 Directory Moves .. 105
4.1.6 Name Conflicts .. 106

4.2 Examples with Wire-Format Arguments ... 108
4.2.1 RequestVersionVector .. 108
4.2.2 Requesting Updates ... 108
4.2.3 Marshaled Data Format .. 110
4.2.4 Ordering on UIDs and GVSNs .. 111

4.3 Configuration .. 111
4.3.1 Example Objects in the DFS-R Object Hierarchy .. 111

5 Security ... 113
5.1 Security Considerations for Implementers .. 113
5.2 Index of Security Parameters ... 113

6 Appendix A: Full IDL .. 114

7 Appendix B: Product Behavior ... 121

8 Change Tracking .. 126

9 Index ... 127

8 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1 Introduction

The Distributed File System: Replication (DFS-R) Protocol is a remote procedure call (RPC) that
replicates files between servers. DFS-R enables creation of multimaster optimistic file replication
systems. It is multimaster, because files can be changed by any member that participates in
replicating shared files. It is optimistic, because files can be updated without any prior consensus or
serialization. Therefore, files can be changed by any member without requiring the member to prevent

other members from changing the files.

DFS-R is designed to replicate files, attributes, and file metadata. DFS-R is intended to interoperate
with the user-level file system semantics: Files are replicated when the applications that modify them
close the files. File replication is designed to be performed asynchronously, such that updates made on
one member are processed at the rate at which the receiving machine is able to receive the updates,
without any real-time restrictions on when the changes must be propagated. DFS-R allows user-level

file system operations to continue independent of protocol operations.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 Glossary

This document uses the following terms:

access control list (ACL): A list of access control entries (ACEs) that collectively describe the
security rules for authorizing access to some resource; for example, an object or set of objects.

Active Directory: A general-purpose network directory service. Active Directory also refers to
the Windows implementation of a directory service. Active Directory stores information about
a variety of objects in the network. User accounts, computer accounts, groups, and all related
credential information used by the Windows implementation of Kerberos are stored in Active

Directory. Active Directory is either deployed as Active Directory Domain Services (AD DS) or
Active Directory Lightweight Directory Services (AD LDS). [MS-ADTS] describes both forms. For
more information, see [MS-AUTHSOD] section 1.1.1.5.2, Lightweight Directory Access Protocol

(LDAP) versions 2 and 3, Kerberos, and DNS.

authentication level: A numeric value indicating the level of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more

information, see [C706] section 13.1.2.1 and [MS-RPCE].

Authentication Service (AS): A service that issues ticket granting tickets (TGTs), which are used
for authenticating principals within the realm or domain served by the Authentication Service.

client: In DFS-R, a replicating machine acts as a client when it receives replicated files from its
upstream partner. Use of the terminology client stipulates that the machine contact its
upstream server, and is responsible for initiating communication related to receiving replicated
files. It does not imply anything about the operating system version or the function of the

machine.

connection: In DFS-R, a pair of client and server replication partners.

content set: See replicated folder.

database: In Distributed File System Replication (DFS-R), the database maintained by the
Microsoft implementation of DFS-R maintains the local version chain vector and one record for
each resource that is tracked, including tombstones for deleted resources, such that deletion of
files can be propagated in a timely fashion.

%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
%5bMS-AUTHSOD%5d.pdf#Section_953d700a57cb4cf7b0c3a64f34581cc9
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

9 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

DFS-R: A service that keeps DFS and SYSVOL folders in sync automatically. DFS-R is a state-
based, multimaster replication system that supports replication scheduling and bandwidth

throttling. This is a rewrite and new version of FRS. For more information, see [MS-FRS2].

Distributed File System Replication (DFS-R): A service that keeps DFS folders in sync

automatically. DFS-R is a state-based, multi-master replication system that supports replication
scheduling and bandwidth throttling. This is a rewrite and new version of the File Replication
Service (FRS). For more information, see [MS-FRS2].

dynamic endpoint: A network-specific server address that is requested and assigned at run time.
For more information, see [C706].

Fence: An auxiliary time stamp included in an update.

File data: The data stream of the replicated content.

file system: A system that enables applications to store and retrieve files on storage devices. Files
are placed in a hierarchical structure. The file system specifies naming conventions for files and
the format for specifying the path to a file in the tree structure. Each file system consists of one

or more drivers and DLLs that define the data formats and features of the file system. File
systems can exist on the following storage devices: diskettes, hard disks, jukeboxes, removable
optical disks, and tape backup units.

fully qualified domain name (FQDN): An unambiguous domain name that gives an absolute
location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section
3.1 and [RFC2181] section 11.

Global Version Sequence Numbers (GVSN): A GVSN is a pair: Machine identifier and version
sequence number (VSN). Although two machines might assign the same VSN, because they
have different machine identifiers, the associated GVSNs differ. A GVSN is used to identify a
unique version of a unique resource. In other words, no two different resources ever get

assigned the same GVSN, and no two different updates to the same resource ever get assigned
the same GVSN.

hash: The collision-resistant substrate of a sequence of bytes. Well-known hash algorithms for

computing hashes include MD4, MD5, and SHA-1.

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

logical connection: The state maintained on client and server in association with a connectionId.

member (DFS-R): In the Distributed File System Replication Protocol, a computer participating in
replication.

Microsoft Interface Definition Language (MIDL): The Microsoft implementation and extension

of the OSF-DCE Interface Definition Language (IDL). MIDL can also mean the Interface

Definition Language (IDL) compiler provided by Microsoft. For more information, see [MS-
RPCE].

NT file system (NTFS): A proprietary Microsoft file system. For more information, see [MSFT-
NTFS].

persist: The process of storing data in a memory medium that does not require electricity to
maintain the data that it stores. Examples of such mediums are hard disks, CDs, non-volatile

RAM, and memory sticks.

%5bMS-FRS2%5d.pdf#Section_9914bdd4957943a79f2d9efe2e162944
https://go.microsoft.com/fwlink/?LinkId=90264
https://go.microsoft.com/fwlink/?LinkId=127732
https://go.microsoft.com/fwlink/?LinkId=90200
https://go.microsoft.com/fwlink/?LinkId=90200

10 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Persist: To commit (or save) data to Persistent Storage.

Persistent Storage: Nonvolatile storage mediums, such as magnetic disks, tapes, and optical

disks.

principal name: The computer or user name that is maintained and authenticated by the Active

Directory directory service.

RDC FilterMax algorithm: The algorithm that RDC uses to determine the cut points in a file. The
RDC FilterMax algorithm has the property that it will often find cut points that result in
identical chunks being found in differing files, even when the files differ by insertions and
deletions of bytes, not simply by length-preserving byte modifications. See section 3.1.5.1.

read-only replicated folders: A folder where local changes are not replicated out and reverted by
replicating back previous content.

remote differential compression (RDC): Any of a class of compression algorithms that are
designed to compare two files residing on different machines without requiring one of the files to
be transmitted in its entirety to the other machine. For more information, see [MS-RDC].

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set

of request-and-response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

replica set: In File Replication Service (FRS), the replication of files and directories according to a
predefined topology and schedule on a specific folder. The topology and schedule are collectively
called a replica set. A replica set contains a set of replicas, one for each machine that
participates in replication.

replicated folder: The root of a replicated tree. All files and subfolders (recursively) are

replicated.

replication group: A container for a set of replicated folders sharing the same connections to

replication partners.

replication session: The state that is maintained when replicating files in the context of a
replicated folder and connection.

selective single master: A replication mode in which changes from only a single machine
propagate to other machines.

server: A replicating machine that sends replicated files to a partner (client). The term "server"
refers to the machine acting in response to requests from partners that want to receive
replicated files.

SHA-1 hash: A hashing algorithm as specified in [FIPS180-2] that was developed by the National
Institute of Standards and Technology (NIST) and the National Security Agency (NSA).

slow sync: The nominator for a synchronization subprotocol that is used to perform a consistency

check between the databases of two partners.

tombstone: In Distributed File System Replication (DFS-R), an update pertaining to a file deletion.

topology: The structure of the connections between members.

unique identifier (UID): A pair consisting of a GUID and a version sequence number to identify
each resource uniquely. The UID is used to track the object for its entire lifetime through any
number of times that the object is modified or renamed.

%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9
https://go.microsoft.com/fwlink/?LinkId=89868

11 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very

persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also

known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

update: An add, modify, or delete of one or more objects or attribute values. See originating
update, replicated update.

version chain vector: A data structure that maps machine GUIDs to sets of version sequence
numbers.

version sequence number (VSN): A 64-bit unsigned number. Version sequence numbers are
assigned to global version sequence numbers as part of file metadata in monotonic increasing

order.

volume: A group of one or more partitions that forms a logical region of storage and the basis for

a file system. A volume is an area on a storage device that is managed by the file system as a
discrete logical storage unit. A partition contains at least one volume, and a volume can exist
on one or more partitions.

volume sequence number (VSN) (for file replication service): A unique sequence number
assigned to a change order to order the event sequence in a replica. It is a monotonically
increasing sequence number assigned to each change that originates on a given replica
member. If one change order has a smaller volume sequence number (VSN) than another

change order, the change that the first change order represents occurs before the change that
the second change order represents.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

https://www2.opengroup.org/ogsys/catalog/c706

[MS-ADA1] Microsoft Corporation, "Active Directory Schema Attributes A-L".

[MS-ADA2] Microsoft Corporation, "Active Directory Schema Attributes M".

[MS-ADA3] Microsoft Corporation, "Active Directory Schema Attributes N-Z".

[MS-ADLS] Microsoft Corporation, "Active Directory Lightweight Directory Services Schema".

https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ADA1%5d.pdf#Section_19528560f41e4623a406dabcfff0660f
%5bMS-ADA2%5d.pdf#Section_e20ebc4e528540bab3bdffcb81c2783e
%5bMS-ADA3%5d.pdf#Section_4517e8353ee644d4bb95a94b6966bfb0
%5bMS-ADLS%5d.pdf#Section_9427994325ab4c139bf26d411cc2f796

12 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes".

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-BKUP] Microsoft Corporation, "Microsoft NT Backup File Structure".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-FRS1] Microsoft Corporation, "File Replication Service Protocol".

[MS-FSCC] Microsoft Corporation, "File System Control Codes".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS-RDC] Microsoft Corporation, "Remote Differential Compression Algorithm".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC3986] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (URI): Generic
Syntax", STD 66, RFC 3986, January 2005, http://www.rfc-editor.org/rfc/rfc3986.txt

1.2.2 Informative References

[MSDN-RPC] Microsoft Corporation, "Remote Procedure Call", http://msdn.microsoft.com/en-
us/library/aa378651.aspx

1.3 Overview

The Distributed File System: Replication (DFS-R) Protocol is used to implement a multimaster file
replication system. In this system, no single computer is a master, but rather all computers in the
replication system share their knowledge by exchanging version chain vectors, updates, and files. A
computer can take dual roles as both a client and a server. As a client, a computer retrieves
replicated metadata and replicated files from a server. Conversely, as a server, a computer serves

replicated metadata and replicated files to a client.

DFS-R takes a three-tiered approach to file replication:

1. Version chain vectors are retrieved from a server to determine which file versions are known to
the server but not to the client. The protocol requires that a server ensures that the global
version sequence numbers (GVSN) of all replicated files and file metadata that it maintains in
persistent storage (that is, saved to disk) are eventually included in its version chain vector,
such that the state of a server's knowledge can be determined by examining the version chain

vectors alone.

2. Updates, which summarize file metadata, are retrieved from a server. The client uses the version
chain vector received from the server to limit the set of updates that are retrieved from the
server. To retrieve all updates known to the server but not to the client, it is sufficient to request
updates with a GVSN range over the version chain vector received from the server less the
version chain vector maintained by the client. The updates contain file system information about
the replicated files but not about the file data. The information includes the coordinates of the file

in terms of a unique identifier (UID) identifying the file across different versions of the file, the
GVSN (identifying a particular version of the file on a particular machine), a reference to the file's

%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
%5bMS-BKUP%5d.pdf#Section_f67950c8d583469a83ddc4ff4cedf533
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-FRS1%5d.pdf#Section_0fa4f91494424b4993cc038674a333f1
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
%5bMS-LSAD%5d.pdf#Section_1b5471ef4c334a91b079dfcbb82f05cc
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90453
https://go.microsoft.com/fwlink/?LinkId=90075
https://go.microsoft.com/fwlink/?LinkId=90075

13 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

parent directory in terms of a UID for the parent resource (directories are treated as files), and a
file name.

3. File data is retrieved if a client determines that the file data corresponding to a received update is
required to be downloaded in order for the client to synchronize with the server.

The process of retrieving updates alternates with retrieving version chain vectors. A client first
registers a callback with the server to retrieve the latest version chain vector from the server. When
receiving the server's version chain vector, the client retrieves all updates pertaining to it, using
successive calls to the server. Finally, when a client cannot retrieve more updates from the version
chain vector, it registers another callback with the server to retrieve the server's version chain vector
the next time that the version vector, for more information on version vectors see [MS-FRS1] section
3.1.1.11, changes relative to the last time that the callback was registered.

File data can be downloaded at the same time the client retrieves version chain vectors and updates.
File downloads thus proceed as an independent process of synchronizing version chain vectors and
updates. The client specifies which file data to download based on the UID in the file metadata.

Clients can update their previously saved version chain vector based on the server's version chain
vector after a completed synchronization; that is, when all updates pertaining to a version chain
vector have been processed and all file data that is required by a client to synchronize with a server

has been downloaded. A client's version chain vector is updated by taking the union of its version
chain vector and the server's version chain vector.

The version chain vectors themselves are an abstract measure of the knowledge of a member. They
record the versions of files a member (DFS-R) has received, processed, and either discarded or
stored in persistent storage. A member can combine its version chain vector with that of a partner by
taking the union of the two vectors. The resulting version chain vector will also include the versions of
files that the partner, and by transitivity, all its partners, have processed. The difference between the

version chain vectors from two members determines a superset of the set of updates required to
synchronize one member with the contents from the other member.

To enable replication across multiple replicated folders, clients and servers isolate all activities that
belong to one replicated folder in a replication session. Thus, DFS-R contains a separate layer for

establishing replication activity for each replicated folder.

To summarize DFS-R at the level of detail described so far, the following sequence of activities occur
for a client computer:

1. A client establishes a connection with a server.

2. For each (in parallel) replicated folder that is shared between the client and the server, the client
establishes a replication session.

3. For each replication session, the client requests the server version chain vectors.

4. When the client receives a version chain vector from the server, it calculates the versions that are
not known to it and requests updates from the server pertaining to these versions.

5. The client processes updates from the server as it receives them. While processing a requested
update, the client machine can decide that the server updates correspond to file content that it

needs to retrieve. It then requests the file from the server.

6. The client registers a request for updated version chain vectors from the server when the client
has received all updates from the previous version chain vector.

At a very high level, this sequence of events can be summarized as shown in the following sequence
diagram.

%5bMS-FRS1%5d.pdf#Section_0fa4f91494424b4993cc038674a333f1

14 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 1: DFS-R replication sequence

Sections 2 and 3 specify DFS-R.

The detailed specification introduces several additional messages and layers. Most noteworthy are the
following:

 The RequestRecords method is used for retrieving UID and GVSN pairs for each replicated file on
the server. This method is used as part of a synchronization protocol (Slow Sync) that simply
polls the entire content of the server's store of updates in order to synchronize. The Slow Sync
protocol acts as an alternative protocol to the main synchronization protocol described in the

beginning of this section.

15 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 Remote differential compression (RDC) is a file transfer protocol used for efficiently retrieving
file data. For more information, see [MS-RDC].

 AsyncPoll is used for polling version chain vectors using a single pending asynchronous RPC call.

1.4 Relationship to Other Protocols

 The Distributed File System: Replication (DFS-R) Protocol uses RPC, as specified in [C706] and [MS-
RPCE], for all synchronization communication. DFS-R relies on authenticated, encrypted RPC traffic
and therefore uses the NT LAN Manager (NTLM) (as specified in [MS-NLMP]) and Kerberos (as

specified in [MS-KILE]) protocols, which are integral to [MS-RPCE]. It uses Active Directory to
manage configuration. It uses RDC to retrieve file data. Windows implementations of DFS-R also
provide a WMI interface that is used for monitoring the state of a member. The WMI interface serves
an additional role in versions of DFS-R on the Windows client, where it is used for injecting
configurations.

1.5 Prerequisites/Preconditions

DFS-R uses configuration information that is stored in Active Directory. Active Directory supplies the
principal names of the replication partners and DFS-R uses these trusted names for authenticating
all replication traffic (which is over RPC). The principal names are given by the computer objects in
Active Directory. Section 2.3 specifies the configuration objects in Active Directory that are used by
DFS-R.

1.6 Applicability Statement

The Distributed File System: Replication (DFS-R) Protocol is used to replicate files in Active Directory
environments. Support for these scenarios differs depending on the operating system in use.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

 Supported Transports: The Distributed File System: Replication (DFS-R) Protocol is implemented
on top of RPC over TCP/IP, as specified in section 2.1.

 Protocol Versions: DFS-R negotiates versioning as part of an RPC message; EstablishConnection is
specified in section 3.2.4.1.2. This document specifies versions 0x00050000, 0x00050002,
0x00050003, and 0x00050004.

 Security and authentication methods: DFS-R supports the NTLM (as specified in [MS-NLMP]) and
Kerberos (as specified in [MS-KILE]) authentication methods. These are specified in section 2.1.

 Localization: DFS-R does not expose any functionality that is localization-dependent.

 Capability negotiation: DFS-R performs explicit capability negotiation as part of the protocol-

version negotiation. Furthermore, on Windows, RDC similarity (as specified in [MS-RDC] section
3.1.5.4) is enabled only for Enterprise SKUs, as specified in sections 2.2.1.2.1 and 3.2.4.1.2.

DFS-R registers itself with RPC using a single UUID, as specified in section 2.1. It always uses the
same RPC Protocol version 1.0 and negotiates specific extensions using the custom protocol
negotiation scheme that uses the method EstablishConnection (section 3.2.4.1.2) to establish the
further set of methods that can be used between a DFS-R client and a server. All but two methods

can be used in the current two existing protocol versions, 0x00050000 and 0x00050002. The methods
applicable to both protocol versions are specified in sections 3.2.4.1.1 through 3.2.4.1.14. The only
method that is specific to protocol version 0x00050002 is specified in section 3.2.4.1.15. The

%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9

16 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

capability of using similarity for speeding up downloads of RDC files can be controlled by using flags
specified in section 2.2.1.2.1; the flags are communicated using the EstablishConnection method.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

Parameter Value Reference

Universally unique identifier (UUID) 897e2e5f-93f3-4376-9c9c-fd2277495c27 Section 6

17 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2 Messages

2.1 Transport

DFS-R uses authenticated and encrypted RPC for all replication traffic. The UUID of the RPC interface

for the Distributed File System Replication protocol is 897e2e5f-93f3-4376-9c9c-fd2277495c27. The
RPC interface version number is 1.0.

All traffic MUST be authenticated and encrypted using LAN Manager or Kerberos over TCP/IP, which
requires that the client specify to use the protocol sequence associated with RPC over TCP/IP, and
requires that the client specify packet privacy and authentication negotiation.

Both the client and the server MUST require authentication and encryption.

The following is a summary of the relevant parameters:

 Protocol sequence: Ncacn_ip_tcp

 DFSR_ENDPOINT_GUID: 5bc1ed07-f5f5-485f-9dfd-6fd0acf9a23c

 Authentication level: RPC_C_AUTHN_LEVEL_PKT_PRIVACY

 Authentication service (one of): RPC_C_AUTHN_GSS_NEGOTIATE,
RPC_C_AUTHN_GSS_KERBEROS, or RPC_C_AUTHN_WINNT

A server can specify a static port for all DFS-R RPC traffic, or it can use dynamic endpoints and rely

on the endpoint mapper to relay inbound requests that use the endpoint GUID into the DFS-R
service.<1>

As part of mutual authentication, a client MUST furthermore specify its principal name when
establishing a binding handle to allow a server to authenticate RPC calls. This part of the negotiation is
handled opaquely by an RPC runtime that supports principal names, such as the Remote Procedure
Call Extensions runtime. Recall that principal names are managed in Active Directory.

2.1.1 Client Authentication Requirements

An implementation of the Distributed File System: Replication (DFS-R) Protocol MUST require the
security provider used by RPC to mutually authenticate against the server.

The DFS-R client specifies that RPC mutually authenticate against the server. The client further

specifies to RPC that the server can impersonate but cannot delegate. For more information about
Quality of Service (QoS), see [MSDN-RPC].

It follows from the previous requirements that a client authentication call MUST use the following
arguments when setting the authentication information on a binding handle.

 Authentication level: RPC_C_AUTHN_LEVEL_PKT_PRIVACY

 Authn service (one of): RPC_C_AUTHN_GSS_NEGOTIATE, RPC_C_AUTHN_GSS_KERBEROS, or

RPC_C_AUTHN_WINNT

 Authn identity: NULL

 Authorization service implemented by server: RPC_C_AUTHZ_NONE

https://go.microsoft.com/fwlink/?LinkId=90075

18 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.1.2 Server-Side Binding

As specified in section 2.1, the RPC server side of DFS-R uses DFSR_ENDPOINT_GUID with the RPC
policy that specifies endpoint flags to "don't fail". DFSR_ENDPOINT_GUID is used to ensure that the

RPC runtime system can delegate incoming RPC calls to the correct executable. Also, as specified in
section 2.1, a server can bind on a static port or can use the endpoint UUID to register a dynamic
endpoint.<2>

2.2 Message Syntax

All multiple-byte integers represented in this document are in least-significant-byte-first order, called
little-endian.

2.2.1 Common Data Types

2.2.1.1 Constants

Most of the following constants are used to define the allowable limits of parameters in the structures
and function arguments of the interface. In these cases, the RPC library directly enforces these limits.

Some definitions are to provide only a symbolic name to various constants.

2.2.1.1.1 FRS_COMMUNICATION_PROTOCOL_VERSION

 #define FRS_COMMUNICATION_PROTOCOL_VERSION_W2K3R2 0x00050000
 #define FRS_COMMUNICATION_PROTOCOL_VERSION_LONGHORN_SERVER 0x00050002
 #define FRS_COMMUNICATION_PROTOCOL_WIN8_SERVER 0x00050003
 #define FRS_COMMUNICATION_PROTOCOL_WINBLUE_SERVER 0x00050004

These values specify the currently implemented DFS-R protocol version numbers. The protocol
version is a 32 bit integer value in which the high 16 bits represent the major version number and the
low 16 bits represent the minor version number. <3>

2.2.1.1.2 CONFIG_RDC_VERSION

 #define CONFIG_RDC_VERSION (1)

This indicates the major version of RDC. The major version increases when new features or
capabilities are added. This version MUST be version 1.

2.2.1.1.3 CONFIG_RDC_VERSION_COMPATIBLE

 #define CONFIG_RDC_VERSION_COMPATIBLE (1)

This indicates the minimum version of the RDC protocol that can work correctly with this version. The

version MUST be 1.

2.2.1.1.4 CONFIG_RDC_MAX_LEVELS

 #define CONFIG_RDC_MAX_LEVELS (8)

This indicates the maximum depth of signature generation and RDC recursion.

2.2.1.1.5 CONFIG_RDC_MAX_NEEDLENGTH

19 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 #define CONFIG_RDC_MAX_NEEDLENGTH (65536)

This indicates the maximum allowed length of an RDC need. An RDC need is an offset length-pair that
prescribes a range of data that a client requests from the server.

2.2.1.1.6 CONFIG_RDC_NEED_QUEUE_SIZE

 #define CONFIG_RDC_NEED_QUEUE_SIZE (20)

This indicates the maximum number of source needs that can be in a single request.

2.2.1.1.7 CONFIG_RDC_HORIZONSIZE_MIN

 #define CONFIG_RDC_HORIZONSIZE_MIN (128)

This indicates the minimum allowable RDC horizon parameter used by RDC.

2.2.1.1.8 CONFIG_RDC_HORIZONSIZE_MAX

 #define CONFIG_RDC_HORIZONSIZE_MAX (1024*16)

This indicates the maximum allowable RDC horizon parameter used by RDC.

2.2.1.1.9 CONFIG_RDC_HASHWINDOWSIZE_MIN

 #define CONFIG_RDC_HASHWINDOWSIZE_MIN (2)

This indicates the minimum allowable RDC hash window parameter used by RDC.

2.2.1.1.10 CONFIG_RDC_HASHWINDOWSIZE_MAX

 #define CONFIG_RDC_HASHWINDOWSIZE_MAX (96)

This indicates the maximum allowable RDC hash window parameter used by RDC.

2.2.1.1.11 CONFIG_RDC_SIMILARITY_DATASIZE

 #define CONFIG_RDC_SIMILARITY_DATASIZE (16)

This indicates the size, in bytes, of the similarity data.

2.2.1.1.12 CONFIG_TRANSPORT_MAX_BUFFER_SIZE

 #define CONFIG_TRANSPORT_MAX_BUFFER_SIZE (262144)

This indicates the maximal buffer size allowed by a client for requesting file contents. When a client
requests pieces of a file, such as in a basic transfer of file contents and when requesting portions of a

file or file metadata over RDC, it creates an RPC call with a buffer as an argument. The maximum
allocated size of this buffer is bound by this constant.

2.2.1.1.13 CONFIG_FILEHASH_DATASIZE

20 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 #define CONFIG_FILEHASH_DATASIZE (20)

This indicates the size, in bytes, of the full file hash.

2.2.1.1.14 FRS_UPDATE_FLAG_GHOSTED_HEADER

 #define FRS_UPDATE_FLAG_GHOSTED_HEADER (0x04)

The update request is for ghosted header only. A ghosted header consists of the portion of a file data

that excludes the main data stream. Section 3.2.4.1.14 specifies the required format of the data
stream transmitted by DFS-R. In this context, [MS-BKUP] specifies the format of the backup data
stream, which is part of the transmitted data stream. The main data stream is composed of bytes
identified by the DATA stream ID, as specified in [MS-BKUP].

Notice that hexadecimal notation for flags is used. Flags can be combined using the bitwise OR
operation.

2.2.1.1.15 FRS_UPDATE_FLAG_DATA

 #define FRS_UPDATE_FLAG_DATA (0x08)

The update request is for file data only.

2.2.1.1.16 TRUE

 #define TRUE 1

The truth value TRUE. In DFS-R Booleans are of type long.

2.2.1.1.17 FALSE

 #define FALSE 0

The truth value FALSE.

2.2.1.1.18 FRS_UPDATE_FLAG_CLOCK_DECREMENTED

 #define FRS_UPDATE_FLAG_CLOCK_DECREMENTED (0x10)

The presence of this bitmask value in an FRS_UPDATE structure's flags field indicates that the update
is the result of a dirty shutdown on the remote partner, and the clock has been decremented by the
remote partner. The client MAY assign a new GVSN when installing an update with that flag.

2.2.1.1.19 FRS_XPRESS_FILE_HEADER_SIZE

 #define FRS_XPRESS_FILE_HEADER_SIZE (0x4)

The size of the FileHeader, as specified in section 3.2.4.1.12.

2.2.1.1.20 XPRESS_RDC_MIN_GET_DATA_BUFFER_SIZE

%5bMS-BKUP%5d.pdf#Section_f67950c8d583469a83ddc4ff4cedf533

21 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 #define XPRESS_RDC_MIN_GET_DATA_BUFFER_SIZE (0x2410)

The minimum size of the buffer required to hold the fragment headers, the block header, and one
compressed block, as specified in section 3.2.4.1.12.

2.2.1.1.21 XPRESS_RDC_MIN_GET_DATA_BUFFER_SIZE_WITH_FILE_HEADER

 #define XPRESS_RDC_MIN_GET_DATA_BUFFER_SIZE_WITH_FILE_HEADER
 (FRS_XPRESS_FILE_HEADER_SIZE + XPRESS_RDC_MIN_GET_DATA_BUFFER_SIZE)

The minimum size of the buffer passed to the RdcGetFileData method, as specified in section
3.2.4.1.12.

2.2.1.1.22 XPRESS_RDC_MAX_NB_NEEDS_FOR_COMPRESSION

 #define XPRESS_RDC_MAX_NB_NEEDS_FOR_COMPRESSION (128)

The maximum number of fragments in the list of fragments, as specified in section 3.2.4.1.12.

2.2.1.1.23 X_CONFIG_XPRESS_BLOCK_SIZE

 #define X_CONFIG_XPRESS_BLOCK_SIZE (8192)

The size of the compression block.

2.2.1.2 Enumerations

2.2.1.2.1 TransportFlags

The TransportFlags enumerated type has only one flag defined,
TRANSPORT_SUPPORTS_RDC_SIMILARITY.

 typedef enum
 {
 TRANSPORT_SUPPORTS_RDC_SIMILARITY = 1
 } TransportFlags;

TRANSPORT_SUPPORTS_RDC_SIMILARITY: This bitmask flag value is used to indicate to a client
that a DFS-R server is capable of using the similarity features of RDC (as specified in [MS-RDC],
section 3.1.5.4).

2.2.1.2.2 RDC_FILE_COMPRESSION_TYPES

The RDC_FILE_COMPRESSION_TYPES enumerated type identifies the data compression algorithm

used for the file transfer.

 typedef enum
 {
 RDC_UNCOMPRESSED = 0,
 RDC_XPRESS = 1
 } RDC_FILE_COMPRESSION_TYPES;

%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9

22 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

RDC_UNCOMPRESSED: Data is not compressed. This value MUST be sent whenever an
RDC_FILE_COMPRESSION_TYPES enum value is required.

RDC_XPRESS: Not used.

2.2.1.2.3 RDC_CHUNKER_ALGORITHM

The RDC_CHUNKER_ALGORITHM enumerated type identifies the RDC chunking algorithm used to
generate the signatures for the file to be transferred.

 typedef enum
 {
 RDC_FILTERGENERIC = 0,
 RDC_FILTERMAX = 1,
 RDC_FILTERPOINT = 2,
 RDC_MAXALGORITHM = 3
 } RDC_CHUNKER_ALGORITHM;

RDC_FILTERGENERIC: Not used.

RDC_FILTERMAX: RDC FilterMax algorithm is used. This value MUST be sent whenever an
RDC_CHUNKER_ALGORITHM enum value is required.

RDC_FILTERPOINT: Not used.

RDC_MAXALGORITHM: Not used.

2.2.1.2.4 UPDATE_REQUEST_TYPE

The UPDATE_REQUEST_TYPE enumerated type specifies the type of updates being requested when
the client calls the RequestUpdates method.

 typedef enum
 {
 UPDATE_REQUEST_ALL = 0,
 UPDATE_REQUEST_TOMBSTONES = 1,
 UPDATE_REQUEST_LIVE = 2
 } UPDATE_REQUEST_TYPE;

UPDATE_REQUEST_ALL: Request all updates that pertain to a version chain vector.

UPDATE_REQUEST_TOMBSTONES: Request only tombstone updates that pertain to a version
chain vector.

UPDATE_REQUEST_LIVE: Request only non-tombstone updates that pertain to a version chain
vector.

2.2.1.2.5 UPDATE_STATUS

In response to a request for updates, a server MUST use a value of the UPDATE_STATUS enumerated
type to specify whether it was able to send all updates that pertain to an argument version chain
vector.

 typedef enum
 {
 UPDATE_STATUS_DONE = 2,
 UPDATE_STATUS_MORE = 3
 } UPDATE_STATUS;

23 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

UPDATE_STATUS_DONE: There are no more updates that pertain to the argument version chain
vector. In other words, the server does not have any updates whose versions belong to the

version chain vector passed in by the client.

UPDATE_STATUS_MORE: There are potentially more updates (tombstone, if the client requested

tombstones; live, if the client requested live) from the argument version chain vector.

2.2.1.2.6 RECORDS_STATUS

The RECORDS_STATUS enumerated type is used for an output parameter of a Slow Sync request. It
indicates whether the server has more records in the scope of the replicated folder over which Slow
Sync is performed.

 typedef enum
 {
 RECORDS_STATUS_DONE = 0,
 RECORDS_STATUS_MORE = 1
 } RECORDS_STATUS;

RECORDS_STATUS_DONE: No more records are waiting to be transmitted on the server.

RECORDS_STATUS_MORE: More records are waiting to be transmitted on the server.

2.2.1.2.7 VERSION_REQUEST_TYPE

The VERSION_REQUEST_TYPE enumerated value is used to indicate what role the client version vector
request has. For more information on version vectors see [MS-FRS1] section 3.1.1.11.

 typedef enum
 {
 REQUEST_NORMAL_SYNC = 0,
 REQUEST_SLOW_SYNC = 1,
 REQUEST_SUBORDINATE_SYNC = 2
 } VERSION_REQUEST_TYPE;

REQUEST_NORMAL_SYNC: Indicates that the client requests a version vector from the server for
standard synchronization.

REQUEST_SLOW_SYNC: Indicates that the client requests a version vector from the server for

Slow Sync.

REQUEST_SUBORDINATE_SYNC: Indicates that the client requests a version vector from the
server for selective single master mode.

2.2.1.2.8 VERSION_CHANGE_TYPE

A client version vector request uses a value of VERSION_CHANGE_TYPE to indicate whether it is
requesting a version chain vector change notification or a full version chain vector.

 typedef enum
 {
 CHANGE_NOTIFY = 0,
 CHANGE_ALL = 2
 } VERSION_CHANGE_TYPE;

CHANGE_NOTIFY: The client requests notification only for a change of the server’s version chain
vector.

%5bMS-FRS1%5d.pdf#Section_0fa4f91494424b4993cc038674a333f1

24 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

CHANGE_ALL: The client requests to receive the full version vector of the server.

2.2.1.2.9 FRS_REQUESTED_STAGING_POLICY

The FRS_REQUESTED_STAGING_POLICY enumerated type indicates the staging policy for the server

to use.

 typedef enum
 {
 SERVER_DEFAULT = 0,
 STAGING_REQUIRED = 1,
 RESTAGING_REQUIRED = 2
 } FRS_REQUESTED_STAGING_POLICY;

SERVER_DEFAULT: The client indicates to the server that the server is free to use or bypass its
cache.

STAGING_REQUIRED: The client indicates to the server to store the served content in its cache.

RESTAGING_REQUIRED: The client indicates to the server to purge existing content from its cache.

2.2.1.3 Simple Type Definitions

In addition to the types defined in this section, DFS-R also uses the DWORDLONG, ULONGLONG, and
WCHAR type, as specified in [MS-DTYP].

2.2.1.3.1 FRS_REPLICA_SET_ID

UID for a replica set.

This type is declared as follows:

 typedef GUID FRS_REPLICA_SET_ID;

2.2.1.3.2 FRS_CONTENT_SET_ID

UID for a content set.

This type is declared as follows:

 typedef GUID FRS_CONTENT_SET_ID;

2.2.1.3.3 FRS_DATABASE_ID

UID for a DFS-R database.

This type is declared as follows:

 typedef GUID FRS_DATABASE_ID;

2.2.1.3.4 FRS_MEMBER_ID

UID for a member (DFS-R).

This type is declared as follows:

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

25 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 typedef GUID FRS_MEMBER_ID;

2.2.1.3.5 FRS_CONNECTION_ID

UID for a DFS-R connection.

This type is declared as follows:

 typedef GUID FRS_CONNECTION_ID;

2.2.1.3.6 EPOQUE

The EPOQUE data type is used only in the FRS_EPOQUE_VECTOR (section 2.2.1.4.2). The
FRS_EPOQUE_VECTOR is not used in protocol versions 0x00050000 and 0x00050002. However,
proper MIDL marshaling of the parameters that are passed over the wire depends upon the type
information provided by the MIDL. Therefore, these redundant type definitions are included here.

This type is declared as follows:

 typedef SYSTEMTIME EPOQUE;

2.2.1.3.7 BYTE_PIPE

A byte pipe, as defined by RPC.

This type is declared as follows:

 typedef pipe byte BYTE_PIPE;

2.2.1.4 Aggregate Definitions

In addition to the types defined in this section, DFS-R also uses the GUID and FILETIME types, as
specified in [MS-DTYP] (sections 2.3.4.1 and 2.3.3, respectively).

2.2.1.4.1 FRS_VERSION_VECTOR

An entry of a version chain vector.

 typedef struct _FRS_VERSION_VECTOR {
 GUID dbGuid;
 DWORDLONG low;
 DWORDLONG high;
 } FRS_VERSION_VECTOR;

dbGuid: The GUID for the database originating the versions in the interval (low, high).

low: Lower bound for VSN interval.

high: Upper bound for VSN interval. The value of this member SHOULD be greater than the value of
the low member.<4>

The number indicated by "low" is excluded from the version chain vector. The number indicated by
"high" is included in the version chain vector. Thus, [low, high] indicates a half-open interval of

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

26 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

unsigned integers. The GVSNs that are included in this entry are the following: { (dbGuid, low+1), …,
(dbGuid, high) }.

2.2.1.4.2 FRS_EPOQUE_VECTOR

An entry of an epoque vector.

 typedef struct _FRS_EPOQUE_VECTOR {
 GUID machine;
 EPOQUE epoque;
 } FRS_EPOQUE_VECTOR;

machine: Unused. MUST be 0. MUST be ignored on receipt.

epoque: Unused. MUST be 0. MUST be ignored on receipt.

Epoque vectors are attributes of the response payload, as specified in section 2.2.1.4.12.

2.2.1.4.3 FRS_ID_GVSN

A (UID, GVSN) pair.

 typedef struct _FRS_ID_GVSN {
 GUID uidDbGuid;
 DWORDLONG uidVersion;
 GUID gvsnDbGuid;
 DWORDLONG gvsnVersion;
 } FRS_ID_GVSN;

An FRS_ID_GVSN encodes a pair that consists of a UID and a GVSN. It is used as part of the
messages for Slow Sync.

2.2.1.4.4 FRS_UPDATE

A structure that contains file metadata related to a particular file being processed by Distributed File

System Replication (DFS-R).

 typedef struct _FRS_UPDATE {
 long present;
 long nameConflict;
 unsigned long attributes;
 FILETIME fence;
 FILETIME clock;
 FILETIME createTime;
 FRS_CONTENT_SET_ID contentSetId;
 unsigned char hash[CONFIG_FILEHASH_DATASIZE];
 unsigned char rdcSimilarity[CONFIG_RDC_SIMILARITY_DATASIZE];
 GUID uidDbGuid;
 DWORDLONG uidVersion;
 GUID gvsnDbGuid;
 DWORDLONG gvsnVersion;
 GUID parentDbGuid;
 DWORDLONG parentVersion;
 [string] WCHAR name[260+1];
 long flags;
 } FRS_UPDATE;

present: Indicates whether the file exists or has been deleted. The value MUST be either 0 or 1.

27 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Meaning

0x00000000 File has been deleted.

0x00000001 File exists.

nameConflict: Set if this update was tombstone due to a name conflict. The value MUST be either
0 or 1. This field MUST be 0 if present is 1.

attributes: The file's attributes.

fence: The fence clock.

clock: Logical, last change clock.

createTime: File creation time.

contentSetId: The content set ID (replicated folder) that this file belongs to.

hash: The SHA-1 hash of the file.

rdcSimilarity: The similarity hash of the file. The value will be all zeros if the similarity data was not

computed. See [MS-RDC], 3.1.5.4.

uidDbGuid: The GUID portion of the file's UID. Same as the database GUID of the replicated folder
where this file originated.

uidVersion: The VSN portion of the file's UID. This is assigned when the file is created.

gvsnDbGuid: The GUID portion of the file's GVSN. Same as the database GUID of the replicated
folder where this file was last updated.

gvsnVersion: The VSN portion of the file's GVSN. This is assigned when the file was last updated.

parentDbGuid: The GUID portion of the UID of the file's parent. Same as the database GUID of the

replicated folder where this file's parent originated.

parentVersion: The VSN portion of the UID of the file's parent. This is assigned when the parent of
the file was created.

name: The file name, in UTF-16 form, of the file.

flags: A flags bitmask. The value SHOULD be 0 or FRS_UPDATE_FLAG_CLOCK_DECREMENTED. The

client MUST ignore any bits other than FRS_UPDATE_FLAG_CLOCK_DECREMENTED.

Value Meaning

0x00000000 The update is normal.

FRS_UPDATE_FLAG_CLOCK_DECREMENTED

0x00000010

The update is the result of a dirty shutdown on the remote
partner and the clock has been decremented by the remote
partner. The client MAY assign a new GVSN when installing
an update with this flag.

2.2.1.4.5 FRS_UPDATE_CANCEL_DATA

A structure that contains information about updates that were not processed by a client.

%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9

28 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 typedef struct _FRS_UPDATE_CANCEL_DATA {
 FRS_UPDATE blockingUpdate;
 FRS_CONTENT_SET_ID contentSetId;
 FRS_DATABASE_ID gvsnDatabaseId;
 FRS_DATABASE_ID uidDatabaseId;
 FRS_DATABASE_ID parentDatabaseId;
 DWORDLONG gvsnVersion;
 DWORDLONG uidVersion;
 DWORDLONG parentVersion;
 unsigned long cancelType;
 long isUidValid;
 long isParentUidValid;
 long isBlockerValid;
 } FRS_UPDATE_CANCEL_DATA;

blockingUpdate: All integer fields MUST be set to zero and all string fields MUST be set to empty.

contentSetId: The content set where the blocking update resides.

gvsnDatabaseId: The GUID part of the GVSN of the update that could not be processed.

uidDatabaseId: Unused. MUST be set to zero by the client and MUST be ignored on receipt by the
server.

parentDatabaseId: Unused. MUST be set to zero by the client and MUST be ignored on receipt by
the server.

gvsnVersion: The VSN part of the GVSN of the update that could not be processed.

uidVersion: Unused. MUST be set to zero by the client and MUST be ignored on receipt by the

server.

parentVersion: Unused. MUST be set to zero by the client and MUST be ignored on receipt by the
server.

cancelType: The cause for canceling the processing of the update. It MUST be set to the following
value.

Value Meaning

UNSPECIFIED

0x00000001

No reason is indicated by the client. The GVSN and UID indicate which update was not
processed by the client.

isUidValid: MUST be zero.

isParentUidValid: MUST be zero.

isBlockerValid: MUST be zero.

2.2.1.4.6 FRS_RDC_SOURCE_NEED

A file range specification for RDC downloads.

 typedef struct _FRS_RDC_SOURCE_NEED {
 ULONGLONG needOffset;
 ULONGLONG needSize;
 } FRS_RDC_SOURCE_NEED;

needOffset: The offset in the marshaled source file.

29 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

needSize: The number of data (uncompressed), in bytes, to retrieve.

The client uses this structure to request source data from the server when downloading a file with

RDC.

2.2.1.4.7 FRS_RDC_PARAMETERS_FILTERMAX

Configuration parameters for the RDC FilterMax algorithm.

 typedef struct _FRS_RDC_PARAMETERS_FILTERMAX {
 [range(CONFIG_RDC_HORIZONSIZE_MIN, CONFIG_RDC_HORIZONSIZE_MAX)]
 unsigned short horizonSize;
 [range(CONFIG_RDC_HASHWINDOWSIZE_MIN, CONFIG_RDC_HASHWINDOWSIZE_MAX)]
 unsigned short windowSize;
 } FRS_RDC_PARAMETERS_FILTERMAX;

horizonSize: See [MS-RDC] for the definition of the horizon parameter of the FilterMax algorithm.

windowSize: See [MS-RDC] for the definition of the hash window parameter of the FilterMax
algorithm.

2.2.1.4.8 FRS_RDC_PARAMETERS_FILTERPOINT

Configuration for the FilterPoint RDC algorithm. This algorithm and its configuration parameters are
not used.

 typedef struct _FRS_RDC_PARAMETERS_FILTERPOINT {
 unsigned short minChunkSize;
 unsigned short maxChunkSize;
 } FRS_RDC_PARAMETERS_FILTERPOINT;

minChunkSize: Unused. MUST be 0 and MUST be ignored on receipt.

maxChunkSize: Unused. MUST be 0 and MUST be ignored on receipt.

2.2.1.4.9 FRS_RDC_PARAMETERS_GENERIC

Binary large object (BLOB) for alternate RDC algorithms.

 typedef struct _FRS_RDC_PARAMETERS_GENERIC {
 unsigned short chunkerType;
 byte chunkerParameters[64];
 } FRS_RDC_PARAMETERS_GENERIC;

chunkerType: The chunkerType MUST be RDC_FILTERMAX, as specified in section 2.2.1.2.3.

chunkerParameters: Not used. This is a generic parameter block, which allows for space in future
protocol versions.

2.2.1.4.10 FRS_RDC_PARAMETERS

Union of RDC algorithm options.

 typedef struct {
 unsigned short rdcChunkerAlgorithm;
 [switch_is(rdcChunkerAlgorithm)]
 union {

%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9

30 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [case(RDC_FILTERGENERIC)]
 FRS_RDC_PARAMETERS_GENERIC filterGeneric;
 [case(RDC_FILTERMAX)]
 FRS_RDC_PARAMETERS_FILTERMAX filterMax;
 [case(RDC_FILTERPOINT)]
 FRS_RDC_PARAMETERS_FILTERPOINT filterPoint;
 } u;
 } FRS_RDC_PARAMETERS;

rdcChunkerAlgorithm: MUST be RDC_FILTERMAX, as specified in section 2.2.1.2.3, for
compatibility.

filterGeneric: Placeholder only to fill out the enumeration. Never used, because

rdcChunkerAlgorithm MUST NOT have this value.

filterMax: The parameters, as specified in [MS-RDC], necessary for the RDC FilterMax algorithm.

filterPoint: Never used because rdcChunkerAlgorithm MUST NOT have this value.

The server returns an array of these structures, one each for each level of RDC signatures that are
available. The client uses these parameters to ensure that the local signatures match the signatures
that will be returned from the server.

2.2.1.4.11 FRS_RDC_FILEINFO

File information specific to RDC downloads.

 typedef struct _FRS_RDC_FILEINFO {
 DWORDLONG onDiskFileSize;
 DWORDLONG fileSizeEstimate;
 unsigned short rdcVersion;
 unsigned short rdcMinimumCompatibleVersion;
 [range(0, CONFIG_RDC_MAX_LEVELS)]
 byte rdcSignatureLevels;
 RDC_FILE_COMPRESSION_TYPES compressionAlgorithm;
 [size_is(rdcSignatureLevels)] FRS_RDC_PARAMETERS rdcFilterParameters[*];
 } FRS_RDC_FILEINFO;

onDiskFileSize: An estimate for the on-disk, compressed, marshaled source file. The server SHOULD
make this estimate as accurate as possible, but the protocol does not require that it be exact.<5>

fileSizeEstimate: An estimate for the on-disk, uncompressed, unmarshaled source file. The server

SHOULD make this estimate as accurate as possible, but the protocol does not require that it be
exact.<6>

rdcVersion: The current RDC version. It MUST be CONFIG_RDC_VERSION.

rdcMinimumCompatibleVersion: The minimum version of the client-side RDC that is compatible
with the server-side RDC (rdcVersion). It MUST be CONFIG_RDC_VERSION_COMPATIBLE.

rdcSignatureLevels: The depth of the RDC signatures that are available for the client to retrieve.

The server MUST allow the client to get signatures at least to this depth (using
RdcGetSignatures (section 3.2.4.1.10)).<7>

A value of 0 indicates that the file to be served is not suitable for the RDC protocol, or a non-RDC
file transfer is required.

compressionAlgorithm: This field MUST be set to RDC_UNCOMPRESSED and MUST be ignored on
receipt. Despite the name of this field, data compression is always used as specified in section
3.2.4.1.14.

%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9

31 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

rdcFilterParameters: The array of RDC chunker parameters used, one each for the levels of RDC
signatures that are available.

2.2.1.4.12 FRS_ASYNC_VERSION_VECTOR_RESPONSE

Version chain vector response payload.

 typedef struct _FRS_ASYNC_VERSION_VECTOR_RESPONSE {
 ULONGLONG vvGeneration;
 unsigned long versionVectorCount;
 [size_is(versionVectorCount)] FRS_VERSION_VECTOR* versionVector;
 unsigned long epoqueVectorCount;
 [size_is(epoqueVectorCount)] FRS_EPOQUE_VECTOR* epoqueVector;
 } FRS_ASYNC_VERSION_VECTOR_RESPONSE;

vvGeneration: The time stamp associated with the version chain vector on the server. The time

stamp is incremented every time a server updates its version chain vector. This gives a way to
track whether a client has the newest version of the version chain vector known to the server.

versionVectorCount: Number of elements in the versionVector array.

versionVector: An array of FRS_VERSION_VECTOR triples.

epoqueVectorCount: Number of elements in the epoqueVector array.

epoqueVector: An array of FRS_EPOQUE_VECTOR pairs.

2.2.1.4.13 FRS_ASYNC_RESPONSE_CONTEXT

Version chain vector response payload envelope.

 typedef struct _FRS_ASYNC_RESPONSE_CONTEXT {
 unsigned long sequenceNumber;
 DWORD status;
 FRS_ASYNC_VERSION_VECTOR_RESPONSE result;
 } FRS_ASYNC_RESPONSE_CONTEXT;

sequenceNumber: Sequence number that associates the response context with a version vector

request.

status: Error/success status of version vector request.

result: Response payload, comprising a version chain vector.

2.2.1.4.14 PFRS_SERVER_CONTEXT

Context handle that represents the requested file replication operation.

This type is declared as follows:

 typedef [context_handle] void* PFRS_SERVER_CONTEXT;

2.2.1.4.15 XPRESS Block

A block of potentially compressed data.

32 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Block Header

...

...

Block Data (variable)

...

Block Header (12 bytes): An XPRESS Block Header (as specified in section 2.2.1.4.15.1) containing
information about the block data.

Block Data (variable): If the values of the Block Compressed Size and Block Uncompressed

Size fields in the XPRESS block's header (specified in section 2.2.1.4.15.1) are equal, then the
block data has not been compressed. In this case the uncompressed data is obtained by copying
bytes from the Block Data field without modification.

If the value of the Block Compressed Size field is less than the value of the Block
Uncompressed Size field, then the data has been compressed. For more information about
decompressing compressed data, see section 3.1.1.1.3.9.

2.2.1.4.15.1 XPRESS Block Header

Stores information about the data stored in an XPRESS Block.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Block Signature

Block Compressed Size

Block Uncompressed Size

Block Signature (4 bytes): MUST be composed of the four bytes 0x58, 0x42, 0x4c, and 0x4f (or 'X',
'B', 'L', and 'O' in ASCII) as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x58 0x42 0x4c 0x4f

Block Compressed Size (4 bytes): A 32-bit unsigned integer specifying the size of the XPRESS
Block's data in bytes, regardless of whether it is compressed. The value of the Block
Compressed Size field MUST be less than or equal to the value of the Block Uncompressed
Size field and greater than 0.

Block Uncompressed Size (4 bytes): A 32-bit unsigned integer specifying the size of the XPRESS
Block's data when uncompressed. The Block Uncompressed Size field MUST be less than or
equal to 8,192 bytes.

33 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.3 Directory Service Schema Elements

DFS-R is configured using Active Directory objects. File replication proceeds between computers
within the same forest whose principal names are maintained and authenticated by Active Directory.

File ACLs are replicated fully as participating computers are expected to use Active Directory to
identify ACLs.

The protocol accesses the following Directory Service schema classes and attributes listed in the
following table(s).

For the syntactic specifications of the following <Class> or <Class><Attribute> pairs, refer either to:

Active Directory Domain Services (AD DS) ([MS-ADA1], [MS-ADA2], [MS-ADA3], and [MS-ADSC]).

Or to:

Active Directory Lightweight Directory Services (AD LDS) ([MS-ADLS]).

Class Attribute

msDFSR-LocalSettings msDFSR-Version

msDFSR-Subscriber msDFSR-MemberReference

msDFSR-Subscription msDFSR-ConflictPath

msDFSR-ConflictSizeInMB

msDFSR-ContentSetGuid

msDFSR-Enabled

msDFSR-Extension

msDFSR-Options

msDFSR-ReadOnly

msDFSR-RootFence

msDFSR-RootPath

msDFSR-StagingPath

msDFSR-StagingSizeInMb

msDFSR-DefaultCompressionExclusionFilter

msDFSR-GlobalSettings No attribute.

msDFSR-ReplicationGroup msDFSR-Options

msDFSR-ReplicationGroupType

msDFSR-Schedule

msDFSR-TombstoneExpiryInMin

nTSecurityDescriptor

objectGUID

msDFSR-Content No attribute.

msDFSR-ContentSet description

msDFSR-DirectoryFilter

msDFSR-FileFilter

objectGUID

msDFSR-Topology No attribute.

msDFSR-Member msDFSR-ComputerReference

msDFSR-Keywords

%5bMS-ADA1%5d.pdf#Section_19528560f41e4623a406dabcfff0660f
%5bMS-ADA2%5d.pdf#Section_e20ebc4e528540bab3bdffcb81c2783e
%5bMS-ADA3%5d.pdf#Section_4517e8353ee644d4bb95a94b6966bfb0
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADLS%5d.pdf#Section_9427994325ab4c139bf26d411cc2f796

34 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Class Attribute

objectGUID

Computer DNSHostName

msDFSR-Connection FromServer

msDFSR-Enabled

msDFSR-Keywords

msDFSR-Options

msDFSR-RdcEnabled

msDFSR-RdcMinFileSizeInKb

msDFSR-Schedule

objectGUID

nTDSConnection FromServer

enabledConnection

schedule

objectGUID

DFS-R relies on global configuration information (stored in Active Directory) for proper functioning.

These objects prescribe configuration information, in particular the following:

 replicaSetId: The GUID of replication groups. They are configured as the GUID of an object

under the path msDFSR-GlobalSettings/msDFSR-ReplicationGroup.

 connectionId: The GUID of connections. They are configured as the GUID of an object under the
path msDFSR-GlobalSettings/msDFSR-ReplicationGroup/msDFSR-Member/msDFSR-Connection or
msDFSR-GlobalSettings/msDFSR-ReplicationGroup/msDFSR-Member/nTDSConnection.

 contentSetId: The GUID of a replicated folder. They are configured as the GUID of an object
under msDFSR-GlobalSettings/msDFSR-ReplicationGroup/msDFSR-Content/msDFSR-ContentSet.

 Principal names: The principal authenticated computer names. Computer objects form the basis
of an Active Directory configuration.

These are used in the RPC messages and MUST be known to both the server and the client in order
for partners to establish trust, communication, and which folders are replicated among them. This
section summarizes the set of configuration parameters that are used in Active Directory to configure
DFS-R.

An object layout example is illustrated in section 4.3.1.

2.3.1 msDFSR-LocalSettings

This object encapsulates the DFS-R settings that are local to a specific computer, and is stored as a
child of the computer object representing that specific computer in the directory. By default, the

DFSR-LocalSettings object for non-domain controllers will be stored at the following relative directory

path.

"CN=DFSR LocalSettings, CN=<computer name>, CN=Computers"

And, by default, the DFSR-LocalSettings object for domain controllers will be stored at the following
relative directory path.

"CN=DFSR-LocalSettings, CN=<computer name>, OU=Domain Controllers"

35 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Attributes of this object that are relevant for DFS-R are as follows.

msDFSR-Version: Optional, implementation-defined.<8>

Exactly one top-level DFS-R LocalSettings object MUST exist for each computer that is configured for
replication. Each of these can contain one or more subscriber objects.

ACLs are set on msDFSR-LocalSettings and will be inherited by any child subscriber objects.

The schema definition for this object is provided by the msDFSR-LocalSettings class definition, as
specified in [MS-ADSC]. ACLs are set on msDFSR-LocalSettings to protect changing or disclosing
configuration information.

2.3.2 msDFSR-Subscriber

Objects of this class exist under the msDFSR-LocalSettings object and imply that this computer
subscribes to a certain replication group.

The following attribute of this object is relevant to DFS-R:

 msDFSR-MemberReference: Forward link to msDFSR-Member object in msDFSR—Settings tree.
It MUST exist.

Each msDFSR-Subscriber object can contain a reference to one or more msDFSR-Subscription objects.
At most, one msDFSR-Member object MUST be referenced from an msDFSR-Subscriber object.

The schema definition for this object is as specified by the msDFSR-Subscriber class definition in [MS-
ADTS].

2.3.3 msDFSR-Subscription

Each subscription object represents a replicated folder in the replication group that its parent
subscribes to. Objects of this class exist on the msDFSR-Subscriber objects and imply that the
computer uses the topology specified by the msDFSR-Subscriber object to replicate the folder

specified by the attributes of the msDFSR-Subscription object.

The following attributes of this object are relevant to DFS-R:

 msDFSR-ContentSetGUID: ContentSet object GUID MUST exist.

 msDFSR-RootPath: Full path of the replicated folder root directory MUST exist.

 msDFSR-RootFence: Time stamp.

 msDFSR-StagingPath: Full path of the replicated folder staging directory.

 msDFSR-StagingSizeInMb: The maximum size of the staging directory, in megabytes. Optional.

 msDFSR-ConflictPath: Full path of the folder used to store files for which there are replication
conflicts.

 msDFSR-ConflictSizeInMB: The maximum size of the conflicts folder, in megabytes.

 msDFSR-Enabled: Enable and disable replicated folder without removing it from the system.

 msDFSR-Options: Bit Flags to control optional behavior. The following bits are used:

 0x1: Set if the replicated folder is designated as primary.

 All other bits are ignored and SHOULD be set to 0.

%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a

36 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 msDFSR-Extension: In version 0x00050000 of the Distributed File System: Replication (DFS-R)
Protocol, MUST be set to 0 and MUST be ignored on receipt. In version 0x00050002 or later of

DFS-R, contains a string that specifies a file name pattern to be used to exclude some files from
data compression.<9>

 msDFSR-ReadOnly: Specifies whether a replicated folder is configured as read-only. This flag is
set to 1 if the replicated folder is configured read-only and set to 0 for regular replicated folders. If
this flag is set to 1 for a particular replicated folder, DFS-R will roll back changes that occur locally
on that replicated folder, instead of replicating them out to other servers in the replication group.
This behavior is also known as read-only replicated folders. <10>

 This flag is optional and if not set, DFSR MUST default to treating the replicated folder as a
read-write replicated folder. <11>

 msDFSR-DefaultCompressionExclusionFilter: A comma-separated string listing the file
extensions that are not to be compressed by DFSR. The extension * is used to specify that all files
are not to be compressed by DFSR. The empty string is used to specify that all files are to be
compressed by DFSR. <12>

Each msDFSR-Subscription object MUST contain a reference to one msDFSR-Content object. At most,
one msDFSR-Content object MUST be referenced from an msDFSR-Subscription object.

The schema definition for this object is as specified by the msDFSR-Subscription class definition in
[MS-ADSC].

2.3.4 msDFSR-GlobalSettings

Replication topology configurations are grouped under the msDFSR-GlobalSettings object.

The top-level DFS-R global settings object is found in the domain naming context at the following RDN
with each domain's Active Directory domainDNS [MS-ADSC] object:

"CN=DFS GlobalSettings, CN=System"

There are no attributes in this container that are significant to DFS-R.

ACLs MAY be set on msDFSR-GlobalSettings and inherited on child objects. There MUST be exactly
one msDFSR-GlobalSettings object for every domain where DFS-R is configured for replication.

The schema definition for this object is provided by the msDFSR-GlobalSettings class definition in [MS-
ADSC] section 2.109.

2.3.5 msDFSR-ReplicationGroup

Container for content and topology objects. It is found under the msDFSR-GlobalSettings object.

The following attributes of this object are relevant to DFS-R:

 msDFSR-ReplicationGroupType: The replication group type; default is Other=0 (OTHER=0,
SYSVOL=1, PROTECTION=2, DISTRIBUTION=3). It MUST exist.

 msDFSR-TombstoneExpiryInMin: The replication group or replicated folder tombstones
expiration, in minutes.

 msDFSR-Schedule: Replication schedule consisting of time intervals where replication is enabled
and which contains the bandwidth throttling settings.

 objectGUID: The replication group GUID. This corresponds directly to the ID GUID that appears
in the RPC interface. It MUST exist.

%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830

37 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 msDFSR-Options: Bit flags to control certain behavior. The following bits are used:

 0x1: Controls how the schedule is interpreted. If 0, the schedule is interpreted in UTC time

zone. If 1, the schedule is interpreted in the local time zone.

 All other bits are ignored and SHOULD be set to 0.

 nTSecurityDescriptor: To be used in an implementation-dependent manner.<13>

Each msDFSR-ReplicationGroup MUST appear as a reference under msDFSR-GlobalSettings. It MUST
contain an msDFSR-Content reference and an msDFSR-Topology reference. There MUST be at most
one msDFSR-Content and at most one msDFSR-Topology child object under each msDFSR-
ReplicationGroup object.

The schema definition for this object is as specified by the msDFSR-ReplicationGroup class definition in
[MS-ADSC] section 2.112.

2.3.6 msDFSR-Content

Container of replication group replicated folder objects.

There are no attributes in this container that are relevant to DFS-R.

Each msDFSR-Content MAY contain references to one or more msDFSR-ContentSet objects. ACLs MAY
be set on msDFSR-Content and inherited on child objects.

The schema definition for this object is as specified by the msDFSR-Content class definition in [MS-
ADSC] section 2.107.

2.3.7 msDFSR-ContentSet

Subscriber objects on multiple machines link to the same msDFSR-ContentSet, machine-specific
attributes that are stored in the subscriber object as outlined before. The msDFSR-ContentSet object,
however, stores the global attributes (policies) that are shared for all subscriber machines.

Attributes of this object are the following:

 objectGUID: The content set GUID. This attribute MUST exist.

 description: A string to be used in an implementation-dependent manner. Used only for
informative purposes.

 msDFSR-FileFilter: A comma-separated list of 0 or more wildcard file name filters for the replica
set. Any file whose name matches any of the filters SHOULD be excluded from replication. The
value of this attribute SHOULD contain, at a minimum, "*.tmp,*.bak, ~*".<14>

 msDFSR-DirectoryFilter: A comma-separated list of 0 or more wildcard folder name filters for
the replica set. Any folder whose name matches any of the filters SHOULD be excluded from

replication.

The schema definition for this object is as specified by the msDFSR-ContentSet class definition in [MS-
ADSC] section 2.108.

2.3.8 msDFSR-Topology

Container for all topology objects—namely, members and connections.

There are no relevant attributes of the msDFSR-Topology object, it is only relevant as a container for
msDFSR-Member objects.

%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830

38 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Each msDFSR-Topology MAY contain references to one or more msDFSR-Member objects.

The schema definition for this object is as specified by the msDFSR-Topology class definition in [MS-

ADSC] section 2.115.

2.3.9 msDFSR-Member

Member objects represent a computer object in a replication group. Each computer that participates
in a replication group MUST have one corresponding member (DFS-R) object.

The following attributes of this object are relevant to DFS-R:

 objectGUID: The member (DFS-R) GUID. This corresponds directly to the member GUID that
appears in the RPC interface. MUST exist.

 msDFSR-ComputerReference: Distinguished name (DN) of the computer object associated with
this member object. MUST exist.

 msDFSR-Keywords: A string to be used in an implementation-dependent manner.<15>

Each msDFSR-Member object contains 0 or more Connection objects, specified by connectionId in
section 2.3. An msDFSR-Member object can contain more than one Connection object with the same

partner. DFS-R picks only one such connection by sorting connections alphabetically (by converting
the connection GUID to a string) and picks the first one.

The schema definition for this object is as specified by the msDFSR-Member class definition in [MS-
ADSC] section 2.111.

2.3.10 Computer

The following attribute of this object is relevant to DFS-R:

 DNSHostName: String that specifies the fully qualified domain name (FQDN) of the partner.
The format of an FQDN follows the format of FQDN used in URIs. This format is specified in

[RFC3986].

2.3.11 msDFSR-Connection

Each object of this class represents a directional connection between two machines only.

The following attributes of this object are relevant to DFS-R:

 objectGUID: The connection GUID. This attribute MUST exist.

 FromServer: DN of the inbound partner (other msDFSR-Member object). MUST exist.

 msDFSR-Enabled: Boolean that specifies whether this connection is enabled or disabled.

 msDFSR-Schedule: A binary attribute that contains the replication schedule, as defined below.

 msDFSR-Keywords: A string to be used in an implementation-dependent manner.<16>

 msDFSR-RdcEnabled: Enable or disable RDC transfers on a connection.

 msDFSR-RdcMinFileSizeInKB: Minimum size threshold for enabling RDC transfers.

 msDFSR-Options: Bit flags to control certain behavior. The following bits are used:

 0x1: Controls how the schedule is interpreted. If 0, the schedule is interpreted in UTC time

zone. If 1, the schedule is interpreted in the local time zone.

%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
https://go.microsoft.com/fwlink/?LinkId=90453

39 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 All other bits are ignored and SHOULD be set to 0.

Each msDFSR-Connection object MUST NOT use the same msDFSR-Member object as the client and

server.

The schema definition for this object is as specified by the msDFSR-Connection class definition in [MS-

ADSC] section 2.106.

A Schedule is a binary attribute of size 336 bytes (2*24*7) that represents a schedule for a week.
Each hour is represented as a 16-bit integer. Every hour is divided into four quarters, each of which
occupies 4 bits. A schedule starts out specifying the time windows, starting from Sunday midnight in
either UTC or system local time.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sun 00:00 Sun 01:00

02:00 02:15 02:30 02:45 Sun 03:00

Sun 04:00 Sun 05:00

Sun 06:00 Sun 07:00

Sun 08:00 Sun 09:00

Sun 10:00 Sun 11:00

Sun 12:00 Sun 13:00

Sun 14:00 Sun 15:00

Sun 16:00 Sun 17:00

Sun 18:00 Sun 19:00

Sun 20:00 Sun 21:00

Sun 22:00 Sun 23:00

Mon 00:00 ...

The 4 bits that store the schedule data for each quarter hour contain one of the 16 values ranging
from 0x0 to 0xF. A value of 0x0 indicates that the replication schedule is off for that quarter-hour in
the schedule. A value of 0xF indicates that replication is on for that quarter-hour in the schedule with

full bandwidth. The levels in between are used in an implementation-defined way.<17>

2.3.12 nTDSConnection

The schema definition for this object is as specified by the nTDSConnection class definition in [MS-
ADSC] section 2.203. Each object of this class represents a directional connection between two
machines only.

%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830

40 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Each nTDSConnection object MUST NOT use the same msDFSR-Member object as the client and
server.

The following attributes of this object are relevant to DFS-R.

 objectGUID: The connection GUID. This attribute MUST exist.

 FromServer: DN of the inbound partner (other msDFSR-Member object). This attribute MUST
exist.

 enabledConnection: A Boolean that specifies whether this connection is enabled or disabled.

 schedule: A binary attribute that contains the replication schedule, as defined in section 2.3.11.

41 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3 Protocol Details

3.1 Common Details

The following diagram illustrates the main components of the Distributed File System: Replication

(DFS-R) Protocol synchronization core.

The left side of the figure illustrates the server actions and the right side summarizes the client state
machines. On the server, file creations, changes, and deletions are picked up from the file system
and inserted into a database. Changes to the database trigger version chain vector change
notifications that are managed by a Join module, as depicted on the upper left of the figure. In
response, the client, which maintains an inbound connection (also known as InConnection), requests

the server's version chain vector, and then requests updates for the changes that are not already
known to the client. The server sends the updates to the client, which are managed by a Meet module,
as depicted on the lower right of the figure. The Meet module resolves name conflicts (different files
created on multiple replication partners that have the same filename) and downloads and installs the
updated file contents, which are served by the server's outbound connection (also known as

OutConnection), to the local file system.

42 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 2: Main components of the DFS-R synchronized core

The main protocol of DFS-R is initiated by the client, and is used to transfer metadata and data from
the server (upstream partner) to the client. DFS-R can be configured to replicate in both directions, in

which case there are two separate instances of the protocol operating between a pair of machines.
Each machine, then, is both a client and a server.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the

43 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

The overview, as specified in section 3.1, indicates a possible organization. These implementations are

slightly elaborated on here because they can help in understanding the Distributed File System:
Replication (DFS-R) Protocol in context. An implementation is in no way bound by this organization.

InConnection: A logical connection object maintained by the client to group state pertaining to a
configured connection with the server.

File Replication Store: The store where replicated files reside and are changed. The store maintains
file data and organizes the data in a way that is specific to the semantics of the store.

Database: A store that holds the metadata of replicated files, including updates and version chain

vectors.

Note The abstract data model can be implemented in a variety of ways. This protocol does not
prescribe or advocate any specific implementation technique.

3.1.1.1 Compression

Many of the FrsTransport methods use compression to reduce the amount of data that is returned to
the client. This section describes algorithms and a conceptual model of possible data organization that
an implementation maintains in order to decompress compressed data. The described organization is
provided to facilitate the explanation of how the algorithm behaves. Error checking and handling has
been omitted from all algorithms in the interests of clarity. This document does not mandate that
implementations adhere to this model as long as their external behavior is consistent with what is

described in this document.

3.1.1.1.1 Pseudocode Conventions

The following pseudocode conventions are used when defining algorithms.

Syntax Semantics

x := y Assign y to x

x = y Compare x and y for equality

x <> y Compare x and y for inequality

x << y Left-shift x by y bits

x >> y Right-shift x by y bits

x & y Perform the logical-AND operation on x and y

x[y] Access the element at index y in array x. All array indices are zero-based

x.y Access the member named y of data structure x

Note that all algorithms assume a little-endian computer architecture.

3.1.1.1.2 Data Structures

3.1.1.1.2.1 PREFIX_CODE_NODE

The PREFIX_CODE_NODE data structure represents a node in a Huffman prefix code tree.

44 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Members

 USHORT symbol: Stores the symbol encoded by this node in the prefix code tree.

 BOOL leaf: Indicates whether this node is a leaf in the tree.

 PREFIX_CODE_NODE child[2]: Points to the node’s two children. The value NIL is used to

indicate that a particular child does not exist.

3.1.1.1.2.2 PREFIX_CODE_SYMBOL

The PREFIX_CODE_SYMBOL data structure is used to represent information about a Huffman-encoded
symbol.

Members

 USHORT symbol: Stores the symbol.

 USHORT length: Stores the symbol’s Huffman prefix code length.

3.1.1.1.2.3 BITSTRING

The BITSTRING data structure is used to represent a byte array as a bit string from which individual
bits can be read.

Members

 UCHAR source: The byte array.

 ULONG index: The index in source from which the next set of bits will be pulled when the bits in
mask have been consumed.

 ULONG mask: Stores the next bits to be consumed in the bit string.

 LONG bits: Stores the number of bits in mask that remain to be consumed.

3.1.1.1.3 Procedures

3.1.1.1.3.1 PrefixCodeTreeRebuild

Rebuilds the Huffman prefix code tree that will be used to decode symbols during decompression.

Parameters

 in UCHAR input[256]: A 256-byte buffer that contains the canonical encoding of the Huffman
prefix code tree that was used to compress the data.

 inout PREFIX_CODE_NODE treeNodes[1024]: A 1024-element PREFIX_CODE_NODE array in

which the procedure rebuilds the Huffman prefix code tree.

Return Value

Returns the PREFIX_CODE_NODE in treeNodes that represents the root of the rebuilt Huffman prefix
code tree

Algorithm

 PREFIX_CODE_NODE root
 PREFIX_CODE_SYMBOL symbolInfo[512]
 ULONG i
 ULONG j

45 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 ULONG mask
 ULONG bits

 for i from 0 to 1023
 treeNodes[i].symbol := 0
 treeNodes[i].leaf := FALSE
 treeNodes[i].child[0] := NIL
 treeNodes[i].child[1] := NIL
 endfor

 for i from 0 to 255
 symbolInfo[2*i].symbol := 2*i
 symbolInfo[2*i].length := input[i] & 15

 symbolInfo[2*i+1].symbol := 2*i+1
 symbolInfo[2*i+1].length := input[i] >> 4
 endfor

 SortSymbols(symbolInfo)

 i := 0
 while (i < 512) and (symbolInfo[i].length = 0)
 i := i + 1
 endwhile

 mask := 0
 bits := 1

 root := treeNodes[0]
 root.leaf := FALSE

 j := 1
 for i from i to 511
 treeNodes[j].symbol := symbolInfo[i].symbol
 treeNodes[j].leaf := TRUE
 mask := mask << (symbolInfo[i].length – bits)
 bits := symbolInfo[i].length
 j := PrefixCodeTreeAddLeaf(treeNodes, j, mask, bits)
 mask := mask + 1
 endfor

 return root

3.1.1.1.3.2 PrefixCodeTreeAddLeaf

Links a symbol's PREFIX_CODE_NODE into its correct position in a Huffman prefix code tree.

Parameters

 inout PREFIX_CODE_NODE treeNodes[1024]: A 1024 element PREFIX_CODE_NODE array
that contains the Huffman prefix code tree's nodes.

 in ULONG leafIndex: The index in treeNodes of the node to link into the tree.

 in ULONG mask: The symbol's prefix code.

 in ULONG bits: The number of bits in the symbol's prefix code.

Return Value

Returns the index in treeNodes of the next node to be processed.

Algorithm

46 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 PREFIX_CODE_NODE node := treeNodes[0]
 ULONG i := leafIndex + 1
 ULONG childIndex

 while bits > 1
 bits := bits – 1
 childIndex := (mask >> bits) & 1
 if node.child[childIndex] = NIL
 node.child[childIndex] := treeNodes[i]
 treeNodes[i].leaf := FALSE
 i := i + 1
 endif
 node := node.child[childIndex]
 endwhile
 node.child[mask & 1] := treeNodes[leafIndex]
 return i

3.1.1.1.3.3 SortSymbols

Performs a stable sort of an array of PREFIX_CODE_SYMBOLs in order from least to greatest. The
ordering of symbols is determined by the CompareSymbols procedure (see section 3.1.1.1.3.4).

Parameters

 inout PREFIX_CODE_SYMBOL symbols[512]: A 512 element PREFIX_CODE_SYMBOL array.

Return Value

None.

Algorithm

Any stable sorting algorithm that respects the ordering imposed by the CompareSymbols procedure
can be used.

3.1.1.1.3.4 CompareSymbols

Determines the sort order of one PREFIX_CODE_SYMBOL relative to another.

Parameters

 in PREFIX_CODE_SYMBOL a: The first PREFIX_CODE_SYMBOL.

 in PREFIX_CODE_SYMBOL b: The second PREFIX_CODE_SYMBOL.

Return Value

Return value Order of a relative to b

< 0 a is less than b

0 a is equivalent to b

> 0 a is greater than b

Algorithm

 if a.length < b.length
 return -1
 elseif a.length > b.length
 return 1

47 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 elseif a.symbol < b.symbol
 return -1
 elseif a.symbol > b.symbol
 return 1
 else
 return 0
 endif

3.1.1.1.3.5 BitstringInit

Initializes a BITSTRING data structure.

Parameters

 inout BITSTRING bstr: The bit string to initialize.

 in UCHAR source: The byte array that is the backing store for the bit string.

 in ULONG index: The index in source at which the bit string starts.

Return Value

None.

Algorithm

 bstr.mask := (16 bits starting at source[index] as a USHORT)
 bstr.mask := bstr.mask << 16
 index := index + 2
 bstr.mask := bstr.mask + (16 bits starting at source[index] as a USHORT)
 index := index + 2
 bstr.bits := 32
 bstr.source := source
 bstr.index := index

3.1.1.1.3.6 BitstringLookup

Returns the next n bits from the front of a bit string.

Parameters

 inout BITSTRING bstr: The bit string.

 in LONG n: The number of bits to return.

Return Value

A ULONG that stores the n bits at the front of the bit string.

Algorithm

 if n = 0
 return 0
 else
 return bstr.mask >> (32 – n)
 endif

48 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.1.1.3.7 BitstreamSkip

Advances the bit string's cursor by n bits.

Parameters

 inout BITSTRING bstr: The bit string.

 in LONG n: The number of bits that the bit string's cursor will be advanced.

Return Value

None.

Algorithm

 bstr.mask := bstr.mask << n
 bstr.bits := bstr.bits – n
 if bstr.bits < 16
 bstr.mask := bstr.mask +
 ((16 bits starting at bstr.source[bstr.index] as a USHORT) <<
 (16 – bstr.bits))
 bstr.index := bstr.index + 2
 bstr.bits := bstr.bits + 16
 endif

3.1.1.1.3.8 PrefixCodeTreeDecodeSymbol

Returns the symbol encoded by the next prefix code in a bit string.

Parameters

 inout BITSTRING bstr: A bit string.

 in PREFIX_CODE_NODE root: The root node of a Huffman prefix code tree.

Return Value

Returns a ULONG containing the value of the next symbol that was encoded in the bit string.

Algorithm

 ULONG bit
 PREFIX_CODE_NODE node := root

 do
 bit := BitstringLookup(bstr, 1)
 BitstringSkip(bstr, 1)
 node := node.child[bit]
 while node.leaf = FALSE
 return node.symbol

3.1.1.1.3.9 Decompress

Decompresses a buffer of data.

Parameters

 in UCHAR input: A buffer of compressed data.

49 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 in ULONG outputSize: The size of the original (uncompressed) data in bytes.

 inout UCHAR output[outputSize]: A buffer into which the procedure writes the decompressed

data.

Return Value

None

Remarks

While many of the FrsTransport methods are capable of compressing returned data, it is not always
desirable or even possible to compress the returned data. FrsTransport methods that are capable of
returning compressed data will always return information specifying the size of the original data. It is
the caller’s responsibility to determine if the returned data is compressed. If the size of the
compressed data buffer that is returned by the server in bytes is equal to the size in bytes of the

original (uncompressed) data, then the buffer returned by the server contains uncompressed data.

Algorithm

 ULONG i := 0
 ULONG stopIndex := i + outputSize
 ULONG symbol
 ULONG length
 LONG offset
 PREFIX_CODE_NODE root
 PREFIX_CODE_NODE prefixCodeTreeNodes[1024]
 BITSTRING bstr

 root := PrefixCodeTreeRebuild(input, prefixCodeTreeNodes)

 BitstringInit(bstr, input, 256)

 while i < stopIndex
 symbol := PrefixCodeTreeDecodeSymbol(bstr, root)
 if symbol < 256
 output[i] := (symbol as a UCHAR)
 i := i + 1
 else
 symbol := symbol – 256
 length := symbol & 15
 symbol := symbol >> 4

 offset := (1 << symbol) + BitstringLookup(bstr, symbol)
 offset := –1 * offset

 if length = 15
 length := bstr.source[bstr.index] + 15
 bstr.index := bstr.index + 1

 if length = 270
 length :=
 (16 bits starting at bstr.source[bstr.index] as a USHORT)
 bstr.index := bstr.index + 2
 endif
 endif

 BitstringSkip(bstr, symbol)

 length := length + 3
 do
 output[i] := output[i + offset]
 i := i + 1
 length := length – 1
 while length <> 0
 endif

50 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 endwhile

3.1.2 Timers

DFS-R is primarily an event-driven protocol. Actions are taken in response to external stimulus, such
as changes in the File Replication Store. This implementation contains a few implementation-
specific timers. These timers are summarized separately for the client and server behaviors in sections
3.3.2 and 3.2.2.

3.1.3 Initialization

Both clients and servers initialize by obtaining their configuration. Sections 3.3.3 and 3.2.3 specify
client-specific and server-specific initialization.

3.1.4 Message Processing Events and Sequencing Rules

Section 3.3.1 summarizes the client state machine for synchronization. Section 3.1.1 summarizes the
corresponding server sequencing.

3.1.5 Timer Events

Timer events are documented separately for clients and servers.

3.1.6 Other Local Events

Volume dismounts and errors. The per-replicated folder state gets reset when encountering errors

that prevent processing files on the volume on which they reside. At the protocol level, such events
result in discontinuing per-replicated folder replication activity. On the server side, this amounts to
failing RPC calls that are specific to the particular replicated folders. Locally, volume state is rechecked

based on a periodic timer. Remotely, a client attempts to reestablish per-replicated folder sessions by
using the EstablishSession RPC call. The call is retried using an exponential backoff scheme with a
maximal time-out of 5 minutes. That is, retries are first attempted with a delay of 1 second, then a
delay of 2 seconds, then delays of 4, 8, 16, 32, 64, 128, and 256 seconds, and are then followed by

delays of 300 seconds.<18>

3.2 Server Details

3.2.1 Abstract Data Model

Outbound Connection: A logical connection object maintained by the server to represent a
connection between itself and a client in a particular replication group. All of the client’s replication
requests to the server in the related replication group are made in the context of this logical
connection. An outbound connection is created when a client issues a call to the EstablishConnection

method.

DFS-R servers terminate logical connections that have been disabled or removed from the updated
configuration.<19>

Replicated Folder Session: A logical session maintained by the server for a replicated folder.
Every replicated folder session is associated with a single outbound connection, where the replicated
folder session’s replicated folder and the outbound connection’s connection both exist in the same

replication group. All further client calls pertaining to the associated replicated folder are made within

51 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

the context of its replicated folder session. A replicated folder session is created when a client issues a
call to the EstablishSession method.

3.2.2 Timers

Version vector request time-out: The server tears down connection associations when a client
establishes a session, but the client does not request version vectors in a timely fashion. Logically,
there is no requirement that the client requests version vectors within a time limit, so the default
time-out is 12 hours.

Time-outs on open file handles: When a client requests to initialize a file transfer, the server opens
a context handle, which indirectly causes resources, such as file handles, to be kept open on the
server. <20>

3.2.3 Initialization

None. Servers await connection attempts from configured clients.

3.2.4 Message Processing Events and Sequencing Rules

3.2.4.1 FrsTransport Methods

Methods in RPC Opnum Order

Method Description

CheckConnectivity Called by a client to check whether the server is reachable and has been
configured to replicate with the client.

Opnum: 0

EstablishConnection Establishes a logical connection from a client to a server.

Opnum: 1

EstablishSession Establishes a logical relationship on the server for a replicated folder.

Opnum: 2

RequestUpdates Obtains file metadata in the form of updates from a server.

Opnum: 3

RequestVersionVector Obtains the version chain vector persisted on a server.

Opnum: 4

AsyncPoll Registers an asynchronous callback for a server to provide version chain vectors.

Opnum: 5

RequestRecords Retrieves UIDs and GVSNs that a server persists.

Opnum: 6

UpdateCancel Used by a client to indicate to a server that it could not process an update.

Opnum: 7

RawGetFileData Transfers successive segments from a file.

Opnum: 8

RdcGetSignatures Obtains RDC signature data from a server.

Opnum: 9

52 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method Description

RdcPushSourceNeeds Registers requests for file ranges on a server.

Opnum: 10

RdcGetFileData Obtains file ranges whose requests have previously been registered on a server.

Opnum: 11

RdcClose Informs the server that the server context information can be released.

Opnum: 12

InitializeFileTransferAsync Used by a client to start a file download.

Opnum: 13

Opnum14NotUsedOnWire Reserved for local use.

Opnum: 14

RawGetFileDataAsync Used instead of calling RawGetFileData multiple times to obtain file data. This

method is not applicable for protocol version 0x00050000.

Opnum: 15

RdcGetFileDataAsync Used instead of calling RdcGetFileData multiple times to obtain file data. This
method is not applicable for protocol version 0x00050000.

Opnum: 16

RdcFileDataTransferKeepAlive Informs the server to keep the context information alive. This method is not
applicable for protocol versions 0x00050000 and 0x00050002.

Opnum: 17

In the previous table, the term "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined as it does not affect interoperability. <21>

3.2.4.1.1 CheckConnectivity (Opnum 0)

The CheckConnectivity method determines whether a server can establish an outbound connection
(see the EstablishConnection method specified in section 3.2.4.1.2).

 DWORD CheckConnectivity(
 [in] FRS_REPLICA_SET_ID replicaSetId,
 [in] FRS_CONNECTION_ID connectionId
);

replicaSetId: The GUID of the outbound connection’s replication group (see the objectGUID
attribute specified in section 2.3.5).

connectionId: The GUID of the outbound connection (see the objectGUID attribute specified in
section 2.3.11) in the specified replication group.

Return Values: The method MUST return 0 on success or a nonzero error code on failure. All nonzero

values MUST be treated as equivalent failures unless otherwise specified.

Return
value/code Description

0x00000000

ERROR_SUCCESS

The method completed successfully. The server is ready to establish the specified
outbound connection.

53 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

Validating the connectivity check request: The server validates the connectivity check request by
performing the following checks.

 If the server is not a member of the specified replication group it MUST fail the call with an
implementation-defined failure value.

 If the specified connection does not exist in the specified replication group's configuration, then
the server MUST fail the call with an implementation-defined failure value.

 If the specified connection is disabled (see the msDFSR-Enabled attribute specified in section
2.3.11), then the server MUST fail the call with an implementation-defined value.

 If the server is not the specified connection’s outbound partner, then the server MUST fail the call

with an implementation-defined failure value.

Actions Triggered: Upon successfully verifying the connection check request, the server MUST

determine whether it is ready to process a call to the EstablishConnection method. The details of this
test are implementation-specific. If the server is ready to process a call to the EstablishConnection
method for the specified connection, then the server MUST complete the call successfully by returning
ERROR_SUCCESS. If the server is not ready to process a call to the EstablishConnection method for

the specified connection, then the server MUST fail the call with an implementation-defined failure
value.

3.2.4.1.2 EstablishConnection (Opnum 1)

The EstablishConnection method establishes an outbound connection, uniquely identified by a
replication group ID/connection ID pair, from a client to a server. An outbound connection to the
server is required before most other operations can be performed.

 DWORD EstablishConnection(
 [in] FRS_REPLICA_SET_ID replicaSetId,
 [in] FRS_CONNECTION_ID connectionId,
 [in] DWORD downstreamProtocolVersion,
 [in] DWORD downstreamFlags,
 [out] DWORD* upstreamProtocolVersion,
 [out] DWORD* upstreamFlags
);

replicaSetId: The GUID of the outbound connection's replication group (see the objectGUID
attribute specified in section 2.3.5).

connectionId: The GUID of the outbound connection (see the objectGUID attribute specified in
section 2.3.11) in the specified replication group.

downstreamProtocolVersion: Identifies the version of the DFS-R protocol implemented by the
client. Currently implemented protocol versions are specified in section 2.2.1.1.1.

downstreamFlags: This parameter is unused and SHOULD be set to 0 by the client. <22>

upstreamProtocolVersion: Receives the version of the DFS-R protocol implemented by the server.
Currently implemented protocol versions are specified in section 2.2.1.1.1.

upstreamFlags: A flags bitmask. The server MUST set the TRANSPORT_SUPPORTS_RDC_SIMILARITY
bit flag to 1 if the server supports RDC similarity (as specified in [MS-RDC] section 3.1.5.4).
Otherwise, the server MUST clear this bitmask (set all bits to 0). The client MUST ignore any bit

flags other than TRANSPORT_SUPPORTS_RDC_SIMILARITY.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9

54 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return Values: The method MUST return 0 on success or a nonzero error code on failure. For
protocol purposes all nonzero values MUST be treated as equivalent failures unless otherwise

specified.

Return value/code Description

0x00000000

ERROR_SUCCESS

The method completed successfully.

0x0000235A

FRS_ERROR_INCOMPATIBLE_VERSION

The client's DFS-R protocol version is not compatible with the
server's DFS-R protocol version.

0x00002342

FRS_ERROR_CONNECTION_INVALID

The connection is invalid.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

Validating the connection request: The server validates the connection request by performing the

following checks:

 If the server is not a member of the specified replication group it MUST fail the call with an
implementation-defined failure value.

 If the specified connection does not exist in the specified replication group's configuration and the
replication group's type (see the msDFSR-ReplicationGroupType attribute specified in section
2.3.5) is not SYSVOL, then the server MUST fail the call with FRS_ERROR_CONNECTION_INVALID.

 If the replication group's type is SYSVOL and the specified connection does not exist in the

specified replication group's configuration and there is no Member object in the specified
replication group's configuration, the server MUST fail the request with
FRS_ERROR_CONNECTION_INVALID.

 If the replication group's type is SYSVOL and the client is not a domain controller in the same

domain as the server, or if the server is not a domain controller, then the server MUST fail the call
with FRS_ERROR_CONNECTION_INVALID.

 If the specified connection is disabled (see the msDFSR-Enabled attribute specified in section

2.3.11) then the server MUST fail the call with FRS_ERROR_CONNECTION_INVALID.

 If the server is not the specified connection's outbound partner, or the client is not the
connection's inbound partner (see the FromServer attribute specified in section 2.3.11) then the
server MUST fail the call with FRS_ERROR_CONNECTION_INVALID.

 If the client's protocol version number is 0x00050001, or if the client's protocol's major version
number (see section 2.2.1.1.1) is not equal to the server protocol's major version number, then

the server MUST fail the call with the FRS_ERROR_INCOMPATIBLE_VERSION failure value.

Actions Triggered: Upon successfully validating the connection request, the server establishes an
outbound connection with the client.

If the specified connection does not exist in the specified replication group's configuration and the
replication group's type is SYSVOL and there is a Member object in the specified replication group's
configuration, then the server MUST behave as if the replication group's configuration contains an
enabled connection in which the server is the connection's outbound partner and the client is the

connection's inbound partner.

The server MUST ensure that no more than one outbound connection for a unique replicaSetId /
connectionId pair exists with the client at the same time. If an outbound connection with the client
already exists for the same unique replicaSetId / connectionId pair, the server MUST replace the pre-

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

55 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

existing connection with a new connection. The pre-existing outbound connection MUST be torn down
by the server, and all outstanding calls associated with the pre-existing connection MUST be

completed with an implementation-defined failure value.

3.2.4.1.3 EstablishSession (Opnum 2)

The EstablishSession method is used to establish a replicated folder session between the client and
server after the client has successfully established an outbound connection with the server via a call to
the EstablishConnection method. A replicated folder session with the server is required before most
other operations associated with the specified replicated folder can be performed.

 DWORD EstablishSession(
 [in] FRS_CONNECTION_ID connectionId,
 [in] FRS_CONTENT_SET_ID contentSetId
);

connectionId: The GUID of an outbound connection (see the objectGUID attribute specified in

section 2.3.11) that the client established by a previous call to the EstablishConnection method.

contentSetId: The GUID of the replicated folder (see the objectGUID specified in section 2.3.7) in
the specified connection's replication group.

Return Values: The method MUST return 0 on success or a nonzero error code on failure. For
protocol purposes all nonzero values MUST be treated as equivalent failures unless otherwise
specified.

Return value/code Description

0x00000000

ERROR_SUCCESS

The method completed successfully.

0x00002342

FRS_ERROR_CONNECTION_INVALID

The connection is invalid.

0x00002375

FRS_ERROR_CONTENTSET_READ_ONLY

The replicated folder is read-only.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

Validating the session request: The server validates the session request by performing the

following checks:

 If an outbound connection for the specified connection is not established between the client and
server (see the EstablishConnection method) then the server MUST fail the call with the
FRS_ERROR_CONNECTION_INVALID failure value.

 If the server is not currently participating in the replication of the specified replicated folder, then
the server MUST fail the call with an implementation-defined failure value.

 If the specified replicated folder is read-only (see the msDFSR-ReadOnly attribute specified in

section 2.3.3) then the server MUST fail the call with the FRS_ERROR_CONTENTSET_READ_ONLY
failure value.

 If the specified replicated folder is disabled (see the msDFSR-Enabled attribute specified in
section 2.3.3) then the server MUST fail the call with an implementation-defined failure value.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

56 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Actions Triggered: Upon successfully validating the session request, the server establishes a
replicated folder session for the specified replicated folder with the client.

The server MUST ensure that no more than one replicated folder session for a unique connectionId /
contentSetId pair exists with the client at the same time. If a replicated folder session with the client

already exists for the same unique connectionId / contentSetId pair, the server MUST replace the pre-
existing session with a new session. The pre-existing replicated folder session MUST be torn down by
the server, and all outstanding calls associated with the pre-existing session MUST be completed with
an implementation-defined failure value.

3.2.4.1.4 RequestUpdates (Opnum 3)

The RequestUpdates method is used to obtain a specified set of updates (replicated file metadata)

from a server.

 DWORD RequestUpdates(
 [in] FRS_CONNECTION_ID connectionId,
 [in] FRS_CONTENT_SET_ID contentSetId,
 [in, range(0,256)] DWORD creditsAvailable,
 [in, range(0,1)] long hashRequested,
 [in, range(UPDATE_REQUEST_ALL, UPDATE_REQUEST_LIVE)]
 UPDATE_REQUEST_TYPE updateRequestType,
 [in] unsigned long versionVectorDiffCount,
 [in, size_is(versionVectorDiffCount)]
 FRS_VERSION_VECTOR* versionVectorDiff,
 [out, size_is(creditsAvailable), length_is(*updateCount)]
 FRS_UPDATE* frsUpdate,
 [out] DWORD* updateCount,
 [out] UPDATE_STATUS* updateStatus,
 [out] GUID* gvsnDbGuid,
 [out] DWORDLONG* gvsnVersion
);

connectionId: The GUID of an outbound connection (see the objectGUID attribute specified in
section 2.3.11) that the client established by a previous call to the EstablishConnection method.

contentSetId: The GUID of the replicated folder (see the objectGUID attribute specified in section
2.3.7) in the specified connection's replication group.

creditsAvailable: The maximum number of updates that the client can receive in the frsUpdate
buffer.

hashRequested: The client sets the hashRequested parameter to TRUE to request that the server
compute the hash (see the hash field of the FRS_UPDATE structure specified in section 2.2.1.4.4)
for each update that it sends, or FALSE if the hashes are not desired. The server SHOULD
compute hashes when hashes are requested, although it is not required to do so. Computing a
file's hash requires DFS-R to read the file's data. It is possible that another process has already
opened the file for exclusive access, which prevents DFS-R from computing the file hash. In this
scenario, the DFS-R server does not compute the hash even if the client requested that it does.

updateRequestType: The value from the UPDATE_REQUEST_TYPE enumeration that indicates the

type of replication updates requested.

versionVectorDiffCount: The number of items specified in the versionVectorDiff parameter.

versionVectorDiff: The set of FRS_VERSION_VECTOR structures that specifies what updates the
client requires from the server. This parameter specifies the difference between the client's
version vector and the client's most recent copy of the server's version vector obtained from a
previous call to the RequestVersionVector method.

57 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

frsUpdate: The set of FRS_UPDATE structures that describes the update that occurred to each of the
files to be replicated.

updateCount: The number of updates that the server wrote into the frsUpdate buffer.

updateStatus: The value from the UPDATE_STATUS enumeration that specifies if all of the requested

updates have been sent by the server.

gvsnDbGuid: The GVSN GUID (as specified in [MS-DTYP] section 2.3.4) for the last field in the
versionVectorDiff that was processed.

gvsnVersion: The version of the gvsnDbGuid.

Return Values: The method MUST return 0 on success or a nonzero error code on failure. For
protocol purposes all nonzero values MUST be treated as equivalent failures unless otherwise
specified.

Return value/code Description

0x00000000

ERROR_SUCCESS

The method completed successfully.

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The content set was not found.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

Validating the updates request: The server validates the updates request by performing the
following checks.

 If an outbound connection for the specified connection is not established between the client and
server (see the EstablishConnection method) then the server MUST fail the call an
implementation-defined failure value.

 If a replicated folder session for the specified replicated folder is not established between the client
and server (see the EstablishSession method) then the server MUST fail the call with the
FRS_ERROR_CONTENTSET_NOT_FOUND failure value.

 If the contents of the versionVectorDiff parameter are invalid (see section 2.2.1.4.1 for the

FRS_VERSION_VECTOR structure requirements) then the server MUST fail the call with an
implementation-defined failure value.

Actions Triggered: Upon successfully validating the update request, the server MUST send as many
of the requested updates as fit in the frsUpdate buffer. The server sends records for the GVSNs that
are known to the server, appear in the specified versionVectorDiff parameter, and are of the type
specified by the updateRequestType parameter.

The server MUST scan through the database for the updates.

If the value of the updateRequestType parameter is UPDATE_REQUEST_TOMBSTONES, the server
SHOULD<23> send version vector tombstone updates as follows:

 When a particular update is not stale,<24> set the present field of the FRS_UPDATE structure
specified in section 2.2.1.4.4 to 1.

 When a particular update is stale,<25> set the present field of the FRS_UPDATE structure
specified in section 2.2.1.4.4 to 0.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

58 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

If the value of the updateRequestType parameter is UPDATE_REQUEST_ALL and there are tombstone
updates to send, the server MUST place the tombstone updates ahead of the live updates in the

frsUpdate buffer.

The server MUST indicate to the client if there are more of the requested updates to be retrieved by

setting the updateStatus parameter to one of the following values.

 UPDATE_STATUS_DONE: There are no more updates in the scope of the supplied version
chain vector.

 UPDATE_STATUS_MORE: There are potentially more updates from the supplied version chain
vector.

If all of the requested updates could not be sent to the client because of credit limitations, the
gvsnDbGuid and gvsnVersion parameters allow the server to indicate to the client how much of the

versionVectorDiff has been processed during this call. The returned GVSN (formed by the parameter
pair gvsnDbGuid / gvsnVersion) is a cursor into the versionVectorDiff. The cursor MUST be set to the
last GVSN covered by versionVectorDiff that was considered for populating the frsUpdate buffer. The

cursor is used by the client to determine which remaining updates it requests during subsequent calls
to the RequestUpdates method.

3.2.4.1.5 RequestVersionVector (Opnum 4)

The RequestVersionVector method is used to obtain the version chain vector persisted on a server
or to request notification when the server's version chain vector changes.

 DWORD RequestVersionVector(
 [in] DWORD sequenceNumber,
 [in] FRS_CONNECTION_ID connectionId,
 [in] FRS_CONTENT_SET_ID contentSetId,
 [in, range(REQUEST_NORMAL_SYNC,REQUEST_SUBORDINATE_SYNC)]
 VERSION_REQUEST_TYPE requestType,
 [in, range(CHANGE_NOTIFY,CHANGE_ALL)]
 VERSION_CHANGE_TYPE changeType,
 [in] ULONGLONG vvGeneration
);

sequenceNumber: The sequence number for this request. The sequence number is used to pair the
version vector request with the asynchronous response in AsyncPoll. During a given session, the
client SHOULD supply a unique sequence number for each call to this function or else they will not

be able to match server responses via the AsyncPoll method to the original version vector request.

connectionId: The GUID of an outbound connection (see the objectGUID attribute specified in
section 2.3.11) that the client established by a previous call to the EstablishConnection method.

contentSetId: The GUID of the replicated folder (see the objectGUID attribute specified in section
2.3.7) in the specified connection's replication group.

requestType: The value from the VERSION_REQUEST_TYPE enumeration that describes the type of

replication sync to perform.

changeType: The value from the VERSION_CHANGE_TYPE enumeration that indicates whether to
notify change only or send the entire version chain vector.

vvGeneration: The vvGeneration parameter is used to calibrate what incarnation of the server's
version chain vector is known to the client. The client supplies the last generation number that it
received from the server when the requestType parameter is set to REQUEST_NORMAL_SYNC.
Otherwise the client MUST supply zero.

59 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return Values: This method MUST return 0 on success or a nonzero error code on failure. For
protocol purposes all nonzero values MUST be treated as equivalent failures unless otherwise

specified.

Return
value/code

Description

0x00000000

ERROR_SUCCESS

The method completed successfully.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol

[MS-RPCE].

Validating the version vector request: The server validates the version vector request by
performing the following checks:

 If an outbound connection for the specified connection is not established between the client and

server (see the EstablishConnection method) then the server MUST fail the call with an
implementation-defined failure value.

 If a replicated folder session for the specified replicated folder is not established between the client

and server (see the EstablishSession method) then the server MUST fail the call with an
implementation-defined failure value.

 If the value of the requestType parameter is REQUEST_SLOW_SYNC or
REQUEST_SUBORDINATE_SYNC and the value of the vvGeneration parameter is not zero, then
the server MUST fail the call with an implementation-defined failure value.

 If the value of the requestType parameter is REQUEST_SLOW_SYNC or
REQUEST_SUBORDINATE_SYNC and the value of the changeType parameter is not CHANGE_ALL,

then the server MUST fail the call with an implementation-defined failure value.

 If the value of the requestType parameter is REQUEST_SUBORDINATE_SYNC and the server's

DFS-R protocol version is not FRS_COMMUNICATION_PROTOCOL_VERSION_LONGHORN_SERVER,
then the server MUST fail the call with an implementation-defined failure value.

 If the value of the changeType parameter is not CHANGE_NOTIFY or CHANGE_ALL, then the
server fails the call with an implementation-defined failure value.

Actions Triggered when the requestType parameter is NORMAL_SYNC and the changeType
parameter is CHANGE_NOTIFY: The server MUST keep a time stamp on its own version vector.
When the server modifies its version vector (in a way visible to clients), the time stamp is
incremented. The server communicates its version vector time stamp information to the client when it
responds to AsyncPoll requests.

The supplied vvGeneration parameter is used to control when an AsyncPoll request can be completed
by the server. The AsyncPoll request MUST be completed by the server when its version vector time

stamp supersedes the time stamp passed in as the vvGeneration parameter of the version vector
request. The server MUST NOT provide any version vector with the callback.

Actions Triggered when the changeType parameter is CHANGE_ALL: The client requests to
receive the full version vector of the server. The server communicates its version vector information to
the client when it responds to AsyncPoll requests.

Remarks:The client SHOULD have an outstanding call to AsyncPoll. If the client does not have an
outstanding AsyncPoll request, then the server MUST queue up any response until an AsyncPoll is

received such that a response can be sent.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

60 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Sequence number for this request: The sequence number is used to pair the version vector
request with the asynchronous response in AsyncPoll. The asynchronous response from the server that

corresponds to a version vector request MUST contain the same sequence number that was created by
the client. A client SHOULD therefore not have two or more outstanding asynchronous requests with

the same sequence number.

3.2.4.1.6 AsyncPoll (Opnum 5)

The AsyncPoll method is used to register an asynchronous callback, associated with an outbound
connection, which the server uses to provide version chain vectors and notifications of version chain
vector changes to the client.

 DWORD AsyncPoll(
 [in] FRS_CONNECTION_ID connectionId,
 [out] FRS_ASYNC_RESPONSE_CONTEXT* response
);

connectionId: The GUID of an outbound connection (see the objectGUID attribute specified in
section 2.3.11) that the client established by a previous call to the EstablishConnection method.

response: The FRS_ASYNC_RESPONSE_CONTEXT structure that contains the context for the
requested poll.

Return Values: This method MUST return 0 on success or a nonzero error code on failure. For
protocol purposes all nonzero values MUST be treated as equivalent failures unless otherwise
specified.

Return
value/code Description

0x00000000

ERROR_SUCCESS

The method completed successfully.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

Validating the asynchronous poll request: The server validates the asynchronous poll request by
performing the following checks:

 If an outbound connection for the specified connection is not established between the client and
server (see the EstablishConnection method), then the server MUST fail the call with an
implementation-defined failure value.

Actions Triggered: Upon successfully validating the asynchronous poll request, the server MUST
register the callback with the specified outbound connection.

The server invokes the callback in response to a client call to the RequestVersionVector method. The
conditions under which the callback is invoked are determined by the type of the version vector
request issued by the client. See the RequestVersionVector method specified in section 3.2.4.1.5 for

more information.

The client SHOULD NOT issue more than one call to the AsyncPoll method for a particular outbound

connection without an intervening call to the RequestVersionVector method. The server MUST ensure
that no more than one AsyncPoll callback is registered with an outbound connection at the same time.
If an AsyncPoll request is already registered with the outbound connection, the server MUST replace
the pre-existing AsyncPoll callback with the new AsyncPoll callback. The pre-existing callback MUST be
completed with an implementation-defined failure value.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

61 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.2.4.1.7 RequestRecords (Opnum 6)

The RequestRecords method is used to request all (UID, GVSN) pairs that correspond to live (non-
tombstone) records on the server for a specified replicated folder during slow sync (see section

3.3.1.3).

 DWORD RequestRecords(
 [in] FRS_CONNECTION_ID connectionId,
 [in] FRS_CONTENT_SET_ID contentSetId,
 [in] FRS_DATABASE_ID uidDbGuid,
 [in] DWORDLONG uidVersion,
 [in, out] DWORD* maxRecords,
 [out] DWORD* numRecords,
 [out] DWORD* numBytes,
 [out, size_is(,*numBytes)] byte** compressedRecords,
 [out] RECORDS_STATUS* recordsStatus
);

connectionId: The GUID of an outbound connection (see the objectGUID attribute specified in

section 2.3.11) that the client established by a previous call to the EstablishConnection method.

contentSetId: The GUID of the replicated folder (see the objectGUID attribute specified in section
2.3.7) in the specified connection's replication group.

uidDbGuid: A UID database GUID. This parameter, along with the uidVersion parameter, specifies an
iterator into the server's records. A value of zero specifies a request for all of a replicated folder's
records from the server.

uidVersion: A UID version. The parameter, along with uidDbGuid parameter, specifies an iterator into
the server's records. A value of zero specifies a request for all of a replicated folder's records from
the server.

maxRecords: The maximum number of records that the server can send to the client. The server
returns the lesser of the client-specified value and the maximum number of records that the

server is capable of sending.<26>

numRecords: The number of records written into the compressedRecords buffer by the server.

numBytes: The size, in bytes, of the compressedRecords buffer.

compressedRecords: The data records, compressed using the DFS-R compression algorithm
specified in section 3.1.1.1.

The compressedRecords bytes correspond to an array of FRS_ID_GVSN entries. DFS-R uses
custom marshaling in this RPC call to compress the set of transmitted records. The size of the
FRS_ID_GVSN array is given by the numRecords parameter. The decompression algorithm
specified in section 3.1.1.1.3.9 can be used to decompress the received data into a buffer of

sizeof(FRS_ID_GVSN)*numRecords bytes, which can be re-interpreted as an array of
FRS_ID_GVSN entries.

recordsStatus: The value from the RECORDS_STATUS enumeration that indicates whether more

update records are available.

Return Values: This method MUST return 0 on success or a nonzero error code on failure. For
protocol purposes all nonzero values MUST be treated as equivalent failures unless otherwise

specified.

Return value/code Description

0x00000000 The method completed successfully.

62 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

ERROR_SUCCESS

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The content set was not found.

0x000024FE

FRS_ERROR_CSMAN_OFFLINE

The server is not currently participating in the replication of the
specified replicated folder.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

Validating the asynchronous records request: The server validates the records request by
performing the following checks:

 If an outbound connection for the specified connection is not established between the client and
server (see the EstablishConnection method) then the server MUST fail the call with an

implementation-defined failure value.

 If a replicated folder session for the specified replicated folder is not established between the client
and server (see the EstablishSession method) then the server MUST fail the call with the
FRS_ERROR_CONTENTSET_NOT_FOUND failure value.

 If the server is no longer participating in the replication of the specified replicated folder, then the
server SHOULD fail the call the FRS_ERROR_CSMAN_OFFLINE failure value.<27>

Actions Triggered: Upon successfully validating the records request the server MUST send as many

of the requested records as possible, up to a limit of the lesser of the client-specified maxRecords
parameter value and the maximum number of records the server is capable of sending.

The server MUST send records starting at the record immediately following the record whose UID
iterator is formed by the pair (uidDbGuid, uidVersion). If the iterator is zero then the server MUST
begin returning records from the first of the replicated folder's records.

If the iterator, formed by the pair (uidDbGuid, uidVersion), is not zero and there are no more records
to send following the cursor, then the server MUST return 0 records. If there are no more records to

send, the server MUST set the value of the recordsStatus parameter to RECORDS_STATUS_DONE. If
there are more records to send, the server MUST set the value of the recordsStatus parameter to
RECORDS_STATUS_MORE.

Remarks: Provided that the persistent store on a server is unchanged between calls to
RequestRecords, a server MUST be able to fill in all updates present in its persistent store in the
course of repeated calls to RequestRecords. When all updates have been supplied in the

RequestRecords call, the server MUST be able to resend all updates again if another round of
RequestRecords arrives.

3.2.4.1.8 UpdateCancel (Opnum 7)

The UpdateCancel method is used by a client to indicate to a server that it could not process an

update.

 DWORD UpdateCancel(
 [in] FRS_CONNECTION_ID connectionId,
 [in] FRS_UPDATE_CANCEL_DATA cancelData
);

connectionId: The GUID of the connection ID that represents a specific replication partnership.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

63 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

cancelData: The FRS_UPDATE_CANCEL_DATA structure that describes an update to cancel.

Return Values: This method MUST return 0 on success or a nonzero error code on failure. For

protocol purposes all nonzero values MUST be treated as equivalent failures unless otherwise
specified.

Return value/code Description

0x00000000

ERROR_SUCCESS

The method completed successfully.

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The content set was not found.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

Validating the update cancel request: The server MUST validate the update cancel request by

performing the following checks.

 If an outbound connection for the specified connection is not established between the client and

server (see the EstablishConnection method) then the server MUST fail the call with an
implementation-defined failure value.

 If a replicated folder session for the replicated folder specified by contentSetId field of the
cancelData parameter is not established between the client and server (see the EstablishSession
method) then the server MUST fail the call with the FRS_ERROR_CONTENTSET_NOT_FOUND
failure value.

 If the input parameter cancelData is not valid (see section 2.2.1.4.5 for a definition of a valid
FRS_UPDATE_CANCEL_DATA structure), then the server MUST fail the call with an
implementation-defined failure value.

Actions Triggered: The server MUST record the GVSN from the call. The server MUST include the

GVSN, supplied in the UpdateCancel method call when completing subsequent or outstanding
RequestVersionVector method calls for the replicated folder.

Remarks: A replicated folder session MUST have been established with the server for the replicated

folder specified in the UpdateCancel call.

3.2.4.1.9 RawGetFileData (Opnum 8)

The RawGetFileData method is used to transfer successive segments of compressed marshaled data
for a file from the server to the client. This method does not use the Remote Differential Compression
Algorithm (as specified in [MS-RDC]) to transfer data.

 DWORD RawGetFileData(
 [in, out] PFRS_SERVER_CONTEXT* serverContext,
 [out, size_is(bufferSize), length_is(*sizeRead)]
 byte* dataBuffer,
 [in, range(0, CONFIG_TRANSPORT_MAX_BUFFER_SIZE)]
 DWORD bufferSize,
 [out] DWORD* sizeRead,
 [out] long* isEndOfFile
);

serverContext: The context handle that represents the requested file replication operation. The client
MUST specify a pointer to a server context that was retrieved by a previously successful call to the

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9

64 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

InitializeFileTransferAsync method. The server MUST NOT change the value of serverContext and
then return the same serverContext that was passed in.

dataBuffer: The file data received from the server.

bufferSize: The size, in bytes, of dataBuffer.

sizeRead: The size, in bytes, of the file data returned in dataBuffer.

isEndOfFile: The value is TRUE if the end of the specified file has been reached and there is no more
file data to replicate to the client; otherwise, the value is FALSE.

Return Values: This method MUST return 0 on success or a nonzero error code on failure. For
protocol purposes all nonzero values MUST be treated as equivalent failures unless otherwise
specified.

Return value/code Description

0x00000000

ERROR_SUCCESS

The method completed successfully.

0x00000057

ERROR_INVALID_PARAMETER

The context is invalid.

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The content set was not found.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

Validating the file transfer request: The server MUST validate the file transfer request by

performing the following checks.

 If the specified server context was not retrieved by a previously successful call to the

InitializeFileTransferAsync method, then the server MUST fail the call with the
ERROR_INVALID_PARAMETER failure value.

 If the server has already completed transferring the file associated with the server context, the
server MUST fail the call with an implementation-defined failure value.

 If the server is not currently participating in the replication of the replicated folder that is

associated with the specified server context, then the server MUST fail the call with the
FRS_ERROR_CONTENTSET_NOT_FOUND failure value.

Actions Triggered: Upon successfully validating the file transfer request, the server retrieves the
next segment of the file’s marshaled data.

Remarks: If the bufferSize parameter is zero then the server MAY complete the call successfully with
the sizeRead parameter set to zero, or fail the call with an implementation-defined failure value. <28>

The data returned in the dataBuffer parameter is a continuation of the data returned by a previous call
to the InitializeFileTransferAsync method.

3.2.4.1.10 RdcGetSignatures (Opnum 9)

The RdcGetSignatures method is used to obtain a file's RDC signature data from the server.

 DWORD RdcGetSignatures(
 [in] PFRS_SERVER_CONTEXT serverContext,
 [in, range(1, CONFIG_RDC_MAX_LEVELS)]

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

65 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 byte level,
 [in] DWORDLONG offset,
 [out, size_is(length), length_is(*sizeRead)]
 byte* buffer,
 [in, range(1, CONFIG_RDC_MAX_NEEDLENGTH)]
 DWORD length,
 [out] DWORD* sizeRead
);

serverContext: The context handle that represents the requested file replication operation. The client
MUST specify a server context that was retrieved by a previously successful call to
InitializeFileTransferAsync method in which the client set the rdcDesired parameter to TRUE.

level: The RDC recursion level being requested. A client MUST specify a number in the range of 1 to
x, where x is the value of the rdcSignatureLevels field of the rdcInfo structure that was
returned by the InitializeFileTransferAsync method call associated with the specified server
context.

offset: The zero-based offset, in bytes, at which to retrieve data from the file.

buffer: The file signature data received from the server.

length: The size, in bytes, of buffer.

sizeRead: The size, in bytes, of the file data returned in buffer.

Return Values: This method MUST return 0 on success or a nonzero error code on failure. For
protocol purposes all nonzero values MUST be treated as equivalent failures unless otherwise
specified.

Return value/code Description

0x00000000

ERROR_SUCCESS

The method completed successfully.

0x00000057

ERROR_INVALID_PARAMETER

The context is invalid.

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The content set was not found.

0x0000234B

FRS_ERROR_RDC_GENERIC

Unknown error in RDC.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

This method uses the Remote Differential Compression Algorithm, as specified in [MS-RDC], when
replicating a changed file.

Validating the signature request: The server MUST validate the signature request by performing
the following checks.

 If the specified server context was not retrieved by a previously successful call to the
InitializeFileTransferAsync method, then the server MUST fail the call with the
ERROR_INVALID_PARAMETER failure value.

 If the server has already completed transferring the file associated with the server context, the
server MUST fail the call with an implementation-defined failure value.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9

66 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 If the specified server context was retrieved via a call to the InitializeFileTransferAsync method in
which the client set the rdcDesired parameter to FALSE, then the server MUST fail the call with an

implementation-defined failure value.

 If the specified server context was retrieved via a call to the InitializeFileTransferAsync method in

which the server set the rdcSignatureLevels field to zero in the rdcFileInfo output parameter
(see section 2.2.1.4.11), then the server MUST fail the call with an implementation-defined failure
value.

 If the server is not currently participating in the replication of the replicated folder that is
associated with the specified server context, then the server MUST fail the call with the
FRS_ERROR_CONTENTSET_NOT_FOUND failure value.

 If the value of the level parameter is not in the range 1 to x, where x is the value of the

rdcSignatureLevels field of the rdcFileInfo output parameter (see section 2.2.1.4.11) that was
returned by the InitializeFileTransferAsync method call associated with the specified server
context, then the server MUST fail the call with an implementation-defined failure value.

 If offset is beyond the end of the file then the server MUST fail the call with an implementation-
defined failure value.

Actions Triggered: Upon successfully validating the signature request, the server returns a buffer of

RDC signature information for the specified level and the specified file. The server MUST return as
many bytes as requested, except when the end of file is reached. In this case, the server MUST return
as many bytes as remain in the file from the specified offset, which can be zero bytes.

Remarks: The server MUST allow the client to read randomly from all available signature streams.

The format of the signature data is as specified in [MS-RDC].

3.2.4.1.11 RdcPushSourceNeeds (Opnum 10)

The RdcPushSourceNeeds method is used to register requests for file ranges on a server.

 DWORD RdcPushSourceNeeds(
 [in] PFRS_SERVER_CONTEXT serverContext,
 [in, size_is(needCount)] FRS_RDC_SOURCE_NEED* sourceNeeds,
 [in, range(0, CONFIG_RDC_NEED_QUEUE_SIZE)]
 DWORD needCount
);

serverContext: The context handle that represents the requested file replication operation. The client
MUST specify a server context that was retrieved by a previously successful call to the
InitializeFileTransferAsync method in which the client set the rdcDesired parameter to TRUE.

sourceNeeds: The pointer to a set of FRS_RDC_SOURCE_NEED structures that indicate the offsets
and lengths of file data that is sent from the server to the client.

needCount: The number of FRS_RDC_SOURCE_NEED structures pointed to by sourceNeeds.

Return Values: This method MUST return 0 on success or a nonzero error code on failure. For
protocol purposes all nonzero values MUST be treated as equivalent failures unless otherwise
specified.

Return value/code Description

0x00000000

ERROR_SUCCESS

The method completed successfully.

67 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

The context is invalid.

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The content set was not found.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

Validating the RDC source needs request: The server MUST validate the request by performing
the following checks.

 If the specified server context was not retrieved by a previously successful call to the
InitializeFileTransferAsync method, then the server MUST fail the call with the
ERROR_INVALID_PARAMETER failure value.

 If the server has already completed transferring the file associated with the server context, the
server MUST fail the call with an implementation-defined failure value.

 If the specified server context was retrieved via a call to the InitializeFileTransferAsync method in
which the client set the rdcDesired parameter to FALSE, then the server MUST fail the call with an
implementation-defined failure value.

 If the specified server context was retrieved via a call to the InitializeFileTransferAsync method in
which the server set the rdcSignatureLevels field to zero in the rdcFileInfo output parameter
(see section 2.2.1.4.11), then the server MUST fail the call with an implementation-defined failure

value.

 If the server is not currently participating in the replication of the replicated folder that is
associated with the specified server context, then the server MUST fail the call with the
FRS_ERROR_CONTENTSET_NOT_FOUND failure value.

Actions Triggered: Upon successfully validating the RDC source needs request, the server queues
up the requested file offset/length pairs, also known as RDC source needs. The number of RDC source
needs queued by the server MUST NOT exceed the value of CONFIG_RDC_NEED_QUEUE_SIZE. The

client MAY send multiple RdcPushSourceNeeds requests. If the server receives a request that causes
the total number of RDC source needs already in the queue plus the value of the needCount
parameter to be greater than the value of CONFIG_RDC_NEED_QUEUE_SIZE, then the server MUST
fail the request with an implementation-defined failure value.

The server uses the queued RDC source needs to form a stream of data from the marshaled source
file. The format of this data stream is specified in section 3.2.4.1.12 and is returned in the buffer
supplied by the RdcGetFileData method or the RdcGetFileDataAsync method.

Remarks: If the needSize parameter in FRS_RDC_SOURCE_NEED has a value of zero, then the server
SHOULD fail the request to queue RDC source needs, with an implementation-defined failure value.

If the needCount parameter has a value of zero, then the server SHOULD complete the call

successfully, or MAY fail the call with an implementation-defined failure value.

If any of the RDC source needs in the sourceNeeds buffer specifies a range of data that is not part of
the marshaled source file, then the server completes this call successfully and will fail the call to the

RdcGetFileData method or the RdcGetFileDataAsync method when the RDC source needs are
processed.

3.2.4.1.12 RdcGetFileData (Opnum 11)

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

68 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The RdcGetFileData method is used to obtain file ranges whose requests have previously been queued
on a server by calling the RdcPushSourceNeeds method.

 DWORD RdcGetFileData(
 [in] PFRS_SERVER_CONTEXT serverContext,
 [out, size_is(bufferSize), length_is(*sizeReturned)]
 byte* dataBuffer,
 [in, range(0, CONFIG_TRANSPORT_MAX_BUFFER_SIZE)]
 DWORD bufferSize,
 [out] DWORD* sizeReturned
);

serverContext: The context handle that represents the requested file replication operation. The client

MUST specify a server context that was retrieved by a previously successful call to the
InitializeFileTransferAsync method in which the client set the rdcDesired parameter to TRUE.

dataBuffer: The file data received from the server.

bufferSize: The size, in bytes, of dataBuffer

sizeReturned: The size, in bytes, of the file data returned in dataBuffer.

Return Values: This method MUST return 0 on success or a nonzero error code on failure. For

protocol purposes all nonzero values MUST be treated as equivalent failures unless otherwise
specified.

Return value/code Description

0x00000000

ERROR_SUCCESS

The method completed successfully.

0x00000057

ERROR_INVALID_PARAMETER

The context is invalid.

0x0000234B

FRS_ERROR_RDC_GENERIC

Unknown error in RDC.

0x00002358

FRS_ERROR_XPRESS_INVALID_DATA

The compressed data is invalid.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

Validating the RDC file data request: The server MUST validate the request by performing the
following checks.

 If the specified server context was not retrieved by a previously successful call to the

InitializeFileTransferAsync method, then the server MUST fail the call with the
ERROR_INVALID_PARAMETER failure value.

 If the server has already completed transferring the file associated with the server context, the
server MUST fail the call with an implementation-defined failure value.

 If the specified server context was retrieved via a call to the InitializeFileTransferAsync method in
which the client set the rdcDesired parameter to FALSE, then the server MUST fail the call with an
implementation-defined failure value.

 If the specified server context was retrieved via a call to the InitializeFileTransferAsync method in
which the server set the rdcSignatureLevels field to zero in the rdcFileInfo output parameter

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

69 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

(see section 2.2.1.4.11), then the server MUST fail the call with an implementation-defined failure
value.

 If the server is not currently participating in the replication of the replicated folder that is
associated with the specified server context, then the server MUST fail the call with the

FRS_ERROR_CONTENTSET_NOT_FOUND failure value.

 If bufferSize is less than XPRESS_RDC_MIN_GET_DATA_BUFFER_SIZE_WITH_FILE_HEADER then
the server MUST fail the call with an implementation-defined failure value

 If the server detects that the compressed data of the staged file is corrupted then the server
MUST fail the call with FRS_ERROR_XPRESS_INVALID_DATA. Refer to section 3.3.4.7.1 for more
information about the staging area.

Actions Triggered: Upon successfully validating the RDC file data request, the server serves file data

from the source needs that were queued by the RdcPushSourceNeeds method.

Remarks: If the RDC source needs requested by the client through one or multiple calls to the
RdcPushSourceNeeds method have already been processed and retrieved by the client through a

series of calls to the RdcGetFileData method, then the server MUST complete the call successfully and
set the sizeReturned parameter to zero to indicate that the server has completed the transfer of the
previously requested source needs.

If the client has not called the RdcPushSourceNeeds method before calling the RdcGetFileData
method, then the server MUST complete the call successfully and set the sizeReturned parameter to
zero to indicate that the server has completed the transfer of the file associated with the server
context.

The dataBuffer parameter is large enough to hold at least the FileHeader and one data block as
explained below in the dataBuffer format section. A data block cannot be partially returned in
dataBuffer. The server stops filling up dataBuffer when there is not enough space left to write the next

data block, or when there are no more data blocks to send.

Format of dataBuffer: The format of the dataBuffer parameter is as follows.

 FileHeader

 DataBlock1

 DataBlock2

A data block is composed of the following.

 Fragment Header

 List of fragments <optional>

 XPRESS Block

FileHeader: Consists of the four bytes 0x46, 0x52, 0x44, and 0x43 (in ASCII, that is 'F', 'R', 'D', and
'C').

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x46 0x52 0x44 0x43

Fragment Header: Consists of a 4-byte number, numberOfFragments, which is the number of data
fragments to follow. This value MUST be no greater than

XPRESS_RDC_MAX_NB_NEEDS_FOR_COMPRESSION.

70 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

numberOfFragments

Fragment: The list of fragments consists of 0 or more instances of the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BlockOffset

FragmentSize

XPRESS_Block

BlockOffset: A starting offset into the uncompressed bytes from the XPRESS Block portion. The valid
range of this field is 0 to X_CONFIG_XPRESS_BLOCK_SIZE-1.

FragmentSize: The number of uncompressed bytes that the server instructs the client to extract. The

uncompressed bytes start from BlockOffset and include at most, X_CONFIG_XPRESS_BLOCK_SIZE-
blockOffset-1 bytes. The valid range of this field is 1 to X_CONFIG_XPRESS_BLOCK_SIZE.
Additionally, for each fragment, the sum of the BlockOffset field and the FragmentSize field MUST
be less or equal to X_CONFIG_XPRESS_BLOCK_SIZE.

XPRESS Block: Following the optional list of fragments is a variable size XPRESS Block, as specified
in section 2.2.1.4.15.

All the data is tightly packed—no padding bytes are added for alignment purposes.

3.2.4.1.13 RdcClose (Opnum 12)

The RdcClose method informs the server that the server context information can be released.

 DWORD RdcClose(
 [in, out] PFRS_SERVER_CONTEXT* serverContext
);

serverContext: The context handle that represents the requested file replication operation. The client
MUST specify a server context that was retrieved by a previously successful call to the
InitializeFileTransferAsync method.

Return Values: This method MUST return 0 on success or a nonzero error code on failure. For
protocol purposes all nonzero values MUST be treated as equivalent failures unless otherwise
specified.

Return value/code Description

0x00000000

ERROR_SUCCESS

The method completed successfully.

0x00000057

ERROR_INVALID_PARAMETER

The context is invalid.

71 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

Validating the close context request: The server MUST validate the request by performing the
following checks.

 If the specified server context was not retrieved by a previously successful call to the
InitializeFileTransferAsync method, then the server MUST fail the call with the
ERROR_INVALID_PARAMETER failure value.

 If the server has already closed the server context, the server MUST fail the call with an
implementation-defined failure value.

Actions Triggered: The server closes and cleans up all resources associated with the server context.
The serverContext MUST not be used any more by the client after a successful call to the RdcClose

method.

3.2.4.1.14 InitializeFileTransferAsync (Opnum 13)

The InitializeFileTransferAsync method is used by a client to start a file download. The client supplies
an update to specify which file to download. The server provides its latest version of the update and
initial file contents. The server returns information about the file currently being replicated and the

first buffer of data from that file (if any).

 DWORD InitializeFileTransferAsync(
 [in] FRS_CONNECTION_ID connectionId,
 [in, out] FRS_UPDATE* frsUpdate,
 [in, range(0,1)] long rdcDesired,
 [in, out] FRS_REQUESTED_STAGING_POLICY* stagingPolicy,
 [out] PFRS_SERVER_CONTEXT* serverContext,
 [out] FRS_RDC_FILEINFO** rdcFileInfo,
 [out, size_is(bufferSize), length_is(*sizeRead)]
 byte* dataBuffer,
 [in, range(0, CONFIG_TRANSPORT_MAX_BUFFER_SIZE)]
 DWORD bufferSize,
 [out] DWORD* sizeRead,
 [out] long* isEndOfFile
);

connectionId: The GUID of an outbound connection (see the objectGUID attribute specified in
section 2.3.11) that the client established by a previous call to the EstablishConnection method.

frsUpdate: The FRS_UPDATE structure that contains information about the file being replicated. The
fields for the UID in frsUpdate MUST be set to the UID of the file to be downloaded. All other fields

are cleared (zeroed out) or can have the values provided by the server in the response to a
RequestUpdates call. On return, all fields of frsUpdate MUST contain the values that are held by
the server.

rdcDesired: The value is TRUE if RDC has to be used when replicating this file; otherwise, the value
is FALSE.

stagingPolicy: The FRS_REQUESTED_STAGING_POLICY enumeration value that indicates the type of
staging requested. If the client-supplied value of rdcDesired is TRUE and the client-supplied value

of stagingPolicy is SERVER_DEFAULT, then the server MUST set stagingPolicy to
STAGING_REQUIRED. If the client-supplied value of rdcDesired is FALSE and the client-supplied
value of stagingPolicy is STAGING_REQUIRED, then the server MUST set stagingPolicy to
STAGING_REQUIRED. If the client-supplied value of rdcDesired is FALSE and the client-supplied
value of stagingPolicy is RESTAGING_REQUIRED, then the server MUST set stagingPolicy to
RESTAGING_REQUIRED.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

72 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

serverContext: The context handle that represents the requested file replication operation.

rdcFileInfo: The FRS_RDC_FILEINFO structure that describes the file whose replication is in progress.

dataBuffer: The file data received from the server.

bufferSize: The size, in bytes, of dataBuffer. CONFIG_TRANSPORT_MAX_BUFFER_SIZE is 262,144.

sizeRead: The size, in bytes, of the file data returned in dataBuffer.

isEndOfFile: The value is TRUE if the end of the specified file has been reached and there is no more
file data to replicate to the client; otherwise, the value is FALSE.

Return Values: This method MUST return 0 on success or a nonzero error code on failure. For
protocol purposes all nonzero values MUST be treated as equivalent failures unless otherwise
specified.

Return value/code Description

0x00000000

ERROR_SUCCESS

The method completed successfully.

0x00002342

FRS_ERROR_CONNECTION_INVALID

The connection is invalid.

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The content set was not found.

0x0000234B

FRS_ERROR_RDC_GENERIC

Unknown error in RDC.

0x00002358

FRS_ERROR_XPRESS_INVALID_DATA

The compressed data is invalid.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

Validating the file transfer request: The server MUST validate the file transfer request by
performing the following checks.

 If an outbound connection for the specified connection is not established between the client and
server (see the EstablishConnection method) then the server MUST fail the call with the
FRS_ERROR_CONNECTION_INVALID failure value.

 If a replicated folder session for the contentSetId specified in frsUpdate is not established
between the client and server (see the EstablishSession method), then the server MUST fail the
call with the FRS_ERROR_CONTENTSET_NOT_FOUND failure value.

 If the file on the server has been deleted and if the corresponding file metadata has been updated

with the present flag set to 0 then the server MUST fail the call with an implementation-defined

failure value.

 If the information stored in its database for the file associated with the requested UID in the
supplied update is not in sync with the File Replication Store, or the server is performing
operations on the database records that prevent the file from being replicated until those
operations complete, then the server MUST fail the call with an implementation-defined failure
value. <29>

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

73 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 If the server detects that the compressed data of the staged file is corrupted then the server
MUST fail the call with FRS_ERROR_XPRESS_INVALID_DATA. Refer to section 3.3.4.7.1 for more

information about the staging area.

Actions Triggered: Upon successfully validating the file transfer request, the server MUST retrieve

the file data associated with the requested UID in the supplied update. The server MUST then send the
file data in the way that the client has specified if possible (using RDC or not using RDC). The server
sends file data by providing as much marshaled and compressed data as fits into the output buffer
provided in the InitializeFileTransferAsync method call. The remaining marshaled and compressed file
data is sent in response to subsequent client calls to retrieve file contents. The server MUST provide
the file metadata that is associated with the file that it serves. It does so by providing its own view of
the update associated with the requested UID in the return value of frsUpdate.

Remarks: File data in dataBuffer is transferred over the wire in a format that is composed of two
layers.

1. A stream of file data that consists of a custom marshaled format (as specified in section
3.2.4.1.14.1). The custom marshaled format encapsulates file data compatible with [MS-BKUP]

and file metadata compatible with formats specified in [MS-FSCC].

2. An encapsulation of the marshaled file data stream using the compressed data format (as

specified in section 3.2.4.1.14.2) generated by the DFS-R compression algorithm specified in
section 3.1.1.1. Note that even if the marshaled file data stream is not compressed by the server,
it is still encapsulated using the compressed data format.

The format of the backup stream is as specified in [MS-BKUP], and the format of the compressed
marshaled stream is as specified in sections 3.2.4.1.14.1 and 3.2.4.1.14.2.

If bufferSize is zero then the server SHOULD complete the call successfully with sizeRead set to zero,
or fail the call with an implementation-defined failure value.

In the case where the client requests an RDC transfer, the server informs the client of the RDC
parameters that were used for the signatures for the file being transferred. Typically, the parameters
are different for the first recursion level and for all other levels <30> The server limits the number of

simultaneous outstanding file downloads and returns an implementation-defined failure value when a
file download is attempted while a configured threshold<31> of simultaneous downloads has been
reached.

If a client issues multiple simultaneous calls to any of the RPC methods taking a server context as an

input parameter (RawGetFileData, RdcGetSignatures, RdcPushSourceNeeds, RdcGetFileData,
RawGetFileDataAsync or RdcGetFileDataAsync) with the same server context, then the server MUST
ensure that only the first call is processed and all other calls are failed with an implementation-defined
failure value.

3.2.4.1.14.1 Custom Marshaling Format

The encapsulated marshaled format is a byte stream that encodes a sequence of headers that
describe the type and length of the marshaled data that is encoded between the headers. A header is
a structure of type MARSHAL_BLOCK_HEADER.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

streamType

blockSize

%5bMS-BKUP%5d.pdf#Section_f67950c8d583469a83ddc4ff4cedf533
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

74 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Flags

streamType: An enumeration, which MUST be one of the following values.

Value Meaning

MS_TYPE_META_DATA 0x00000001

MS_TYPE_COMPRESSION_DATA 0x00000002

MS_TYPE_REPARSE_DATA 0x00000003

MS_TYPE_FLAT_DATA 0x00000004

MS_TYPE_SECURITY_DATA 0x00000006

Stream type 0x00000005 is not used.

blockSize: The number of bytes of data in the chunk following the header.

Flags: The bitmask, with the HEADER_FLAGS_END_OF_STREAM bit (0x00000001) set if the end of
the stream being marshaled has been reached. All other bits MUST be set to 0.

The HEADER_FLAGS_END_OF_STREAM bit indicates that an end of the stream that is being
marshaled has been reached. For instance, if a stream requires multiple chunks, only the last

header from that stream MUST have the HEADER_FLAGS_END_OF_STREAM bit set; all other
headers MUST have the flags set to 0.

The data MUST be tightly packed. There MUST NOT be any additional bytes of padding.

The format of the data between the headers depends on the value of streamType. These formats
are described as follows.

MS_TYPE_META_DATA (1): The metadata is written to the top of the marshaled file. The metadata

contains information used by the marshaler and other processing code. It consists of data of the

following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

version

Reserved1

basicInfo

... (continues for a total of 10 rows)

sdControl Reserved2

...

primaryDataStreamSize

...

75 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Reserved3

...

version: The marshaler version. It MUST be 3.

Reserved 1: Unused, 4 bytes for alignment. MUST be 0. MUST be ignored on receipt.

basicInfo: The FILE_BASIC_INFORMATION structure, as specified in [MS-FSCC] section 2.4.7. It

contains file times that are stamped on replicated files.

sdControl: The original SD control bits of the file being transferred. The format conforms to the
format for SECURITY_DESCRIPTOR_CONTROL, as specified in [MS-LSAD] section 2.2.3.3.

Reserved2: Unused, 6 bytes for alignment. MUST be 0. MUST be ignored on receipt.

primaryDataStreamSize: A 64-bit unsigned integer. Only used in version 0x00050002 or later. It

contains the absolute new end-of-file position as a byte offset from the start of the file, as

specified in [MS-FSCC] section 2.4.38 (FileStandardInformation).

Reserved3: Unused, pads 8 bytes. MUST be 0. MUST be ignored on receipt.

MS_TYPE_COMPRESSION_DATA (2): Defines which compression algorithm is used to store the file
in compressed format on disk. DFS-R replicates the compression attribute as well as the
compression algorithm to allow that files get compressed uniformly among replication partners.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

format

format: This SHOULD be the value of the CompressionFormat field of the

FILE_COMPRESSION_INFORMATION structure, as specified in [MS-FSCC] section 2.4.9.

MS_TYPE_REPARSE_DATA (3): Reparse point data from reparse points that are replicated by DFS-
R.<32> The data that follows a header tagged by MS_TYPE_REPARSE_DATA MUST be of a format
compatible with the reply format of FSCTL_GET_REPARSE_POINT, as specified in [MS-FSCC]
section 2.3.22.

MS_TYPE_FLAT_DATA (4): A sequence of bytes that represents the file. This sequence complies
with the format of an NT Backup File, as specified in [MS-BKUP], section 2.1.

This is the last data stream of the marshaled data. The MARSHAL_BLOCK_HEADER of this stream,

blockSize and Flags are set to 0. The client reads the stream as specified in [MS-BKUP], section
2.1, until there is no more data received from the server.<33>

Note that a file's security information is sent using the MS_TYPE_SECURITY_DATA stream, and not
sent as part of the MS-BKUP formatted MS_TYPE_FLAT_DATA stream.

MS_TYPE_SECURITY_DATA (6): A sequence of bytes that complies with the format of
SECURITY_DESCRIPTOR. For more information, see [MS-LSAD] section 2.2.3.3.

File hash: DFS-R defines the hash of a marshaled file to be the SHA-1 hash of only the chunks
associated with the following.

 MS_TYPE_FLAT_DATA

 MS_TYPE_SECURITY_DATA

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-LSAD%5d.pdf#Section_1b5471ef4c334a91b079dfcbb82f05cc
%5bMS-BKUP%5d.pdf#Section_f67950c8d583469a83ddc4ff4cedf533

76 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Changes to, for instance, the time stamps that are transferred in chunks associated with
MS_TYPE_META_DATA, do not incur a change of the hash. Also, notice that the hash is computed

only for the chunks and does not include the headers.

The file hash is included in the hash field of FRS_UPDATE.

3.2.4.1.14.2 Compressed Data Format

The compressed data stream starts with a header, which is followed by a series of one or more
XPRESS Blocks (as specified in section 2.2.1.4.15) containing the stream's data.

The data stream header MUST consist of a 4-byte signature, composed of the four bytes 0x46, 0x52,
0x53, and 0x58 (in ASCII, that is 'F', 'R', 'S', and 'X') as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x46 0x52 0x53 0x58

The size of the uncompressed XPRESS block data MUST be equal to 8192 bytes, except for the last
block of a file transfer, which can be smaller, and except when this data is from the RdcGetFileData
method (see section 3.2.4.1.12).

3.2.4.1.15 RawGetFileDataAsync (Opnum 15)

The RawGetFileDataAsync method is used instead of calling RawGetFileData multiple times to obtain

file data. As specified in [MS-RPCE], the specification for asynchronous RPC, an RPC client pulls file
data from the byte pipe until receiving an end-of-file notification from the pipe.

 DWORD RawGetFileDataAsync(
 [in] PFRS_SERVER_CONTEXT serverContext,
 [out] BYTE_PIPE* bytePipe
);

serverContext: The context handle that represents the requested file replication operation. The client
MUST specify a server context that was retrieved by a previously successful call to the
InitializeFileTransferAsync method.

bytePipe: The asynchronous RPC byte pipe that contains returned file data.

Return Values: This method MUST return 0 on success or a nonzero error code on failure. For
protocol purposes all nonzero values MUST be treated as equivalent failures unless otherwise
specified.

Return value/code Description

0x00000000

ERROR_SUCCESS

The method completed successfully.

0x00000057

ERROR_INVALID_PARAMETER

The context is invalid.

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The content set was not found.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

77 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Validating the file transfer request: The server MUST validate the file transfer request by
performing the same checks as the RawGetFileData method, except for the checks related to input

parameters that exist in the RawGetFileData method, but not in the RawGetFileDataAsync method.

Actions Triggered: Upon successfully receiving the file transfer request, the server retrieves the

entire file's marshaled data.

Remarks: The data stream returned by RawGetFileDataAsync is identical to the format of the data
received by a single call to RawGetFileData if RawGetFileData is passed a buffer large enough to hold
all the data returned by the pipe.

3.2.4.1.16 RdcGetFileDataAsync (Opnum 16)

The RdcGetFileDataAsync method is used instead of calling RdcGetFileData multiple times to obtain file

data. As specified in [MS-RPCE], the specification for asynchronous RPC, an RPC client pulls file data
from the byte pipe until receiving an end-of-file notification from the pipe.

 DWORD RdcGetFileDataAsync(
 [in] PFRS_SERVER_CONTEXT serverContext,
 [out] BYTE_PIPE* bytePipe
);

serverContext: The context handle that represents the requested file replication operation. The client
MUST specify a server context that was retrieved by a previously successful call to the
InitializeFileTransferAsync method in which the client set the rdcDesired parameter to TRUE.

bytePipe: The asynchronous RPC byte pipe that contains returned file data.

Return Values: This method MUST return 0 on success or a nonzero error code on failure. For
protocol purposes all nonzero values MUST be treated as equivalent failures unless otherwise
specified.

Return value/code Description

0x00000000

ERROR_SUCCESS

The method completed successfully.

0x00000057

ERROR_INVALID_PARAMETER

The context is invalid.

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The content set was not found.

0x0000234B

FRS_ERROR_RDC_GENERIC

Unknown error in RDC.

0x00002358

FRS_ERROR_XPRESS_INVALID_DATA

The compressed data is invalid.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol

[MS-RPCE].

Validating the file transfer request: The server MUST validate the file transfer request by
performing the same checks as the RdcGetFileData method, except for the checks related to input
parameters that exist in the RdcGetFileData method but not in the RdcGetFileDataAsync method.

Actions Triggered: Upon successfully validating the RDC file data request, the server serves file data
from the source needs that were queued by the RdcPushSourceNeeds method.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

78 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Remarks: The data stream returned by the RdcGetFileDataAsync method is identical to the format of
the data received by a single call to the RdcGetFileData method if the RdcGetFileData method is

passed a buffer large enough to hold all the data returned by the pipe.

3.2.4.1.17 RdcFileDataTransferKeepAlive (Opnum 17)

The RdcFileDataTransferKeepAlive method is used to keep the server context alive.

 DWORD RdcFileDataTransferKeepAlive(
 [in] PFRS_SERVER_CONTEXT serverContext
);

serverContext: The context handle that represents the requested file replication operation that was

retrieved by a previously successful call to the InitializeFileTransferAsync method.

Return Values: This method MUST return 0 on success or a nonzero error code on failure. For
protocol purposes all nonzero values MUST be treated as equivalent failures unless otherwise

specified.

Return value/code Description

0x00000000

ERROR_SUCCESS

The method completed successfully.

0x00000057

ERROR_INVALID_PARAMETER

The context is invalid.

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The content set was not found.

0x0000234B

FRS_ERROR_RDC_GENERIC

Unknown error in RDC.

0x0000234B

FRS_ERROR_IN_BACKUP_RESTORE

Paused for backup or restore.

The server MUST validate the request by performing the following checks:

 If the serverContext is being used in another request and the server is still processing that
request, the server MUST fail the call with ERROR_INVALID_PARAMETER.

 If serverContext is not available, the server MUST fail the call with
FRS_ERROR_CONTENTSET_NOT_FOUND.

 If the server is not currently participating in replication of the replicated folder that is associated
with the specified serverContext, the server MUST fail the call with

FRS_ERROR_CONTENTSET_NOT_FOUND.

 If the server is processing a VSS backup or restore operation, the server MUST fail the call with

FRS_ERROR_IN_BACKUP_RESTORE.

Actions Triggered: The server MUST reset and start the time-outs on the open file handles timer.
The server MUST return ERROR_SUCCESS to the client.

3.2.5 Timer Events

Version vector request time-out: Upon a version vector request time-out, the server tears down its
state associated with the logical connection. Pending asynchronous calls on the connection are

79 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

completed with an error (ERROR_ACCESS_DENIED), and new calls that assume the presence of the
connection object fail with the same error code as well.

Time-outs on open file handles: When a context handle is determined stale by a server, it closes all
states associated with the context handle. Subsequent calls by a client on the context handle fail with

ERROR_INVALID_PARAMETER.

3.2.6 Other Local Events

None.

3.3 Client Details

In the Distributed File System: Replication (DFS-R) Protocol, the client is responsible for driving the
state machine to receive and process version chain vectors, updates, and file transfers. A high-level
view of the main state machine maintained by the client is depicted in the following figure. It is

intended as an example of a DFS-R client. In this instance, the client first requests a notification of a

version vector change, then after receiving the notification, it requests the actual version vector.

The client uses a credit system to control the number of synchronization instances that it is performing
at any given time. A state, GetCredits, is included in the following figure to indicate that the client
manages the number of version vectors that it requests. The client also uses a credit system to control
the processing of updates that are received but are not yet processed at any given time.

A DFS-R server MUST be agnostic to the specific way that a client chooses to throttle processing

updates, as shown in the following state diagram.

80 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 3: Main state machine maintained by the client

To prepare the ground for the detailed walk-through, review the following sequence diagram, which is
a refinement of the high-level sequence diagram, as specified in section 1.3. The additional call
AsyncPoll, which carries the version chain vector response payload, was added, and a file transfer call
sequence is illustrated. Furthermore, asynchronous RPC replies are given explicitly for the
asynchronous RPC messages.

81 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 4: File transfer call sequence

The refined synopsis proceeds as a client as follows:

1. Establishes a logical connection with a server.

2. Registers one asynchronous poll with the server for each logical connection.

3. For each replicated folder that is shared between the client and the server, the client establishes
a replication session.

4. For each replication session, the client requests the server version chain vectors.

82 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

5. The server completes an asynchronous poll request when it is ready with the version chain vector
payload in response to the version chain vector request.

6. When receiving an asynchronous poll response, a client SHOULD field a new asynchronous poll
request to handle other or later-version vector requests.

7. When the client receives a version chain vector from the server, it calculates the versions that are
not known to it and requests updates from the server pertaining to these versions.

8. When the client receives updates from the server, it processes these. While processing a
requested update, the client machine can decide that the server updates correspond to file
content that it needs to replicate in. It then requests the server to send the file.

9. A file transfer starts with an initialization of file transfer (InitializeFileTransferAsync). This
establishes a context handle for the file transfer.

10. A raw file transfer proceeds when the client requests chunks of a file by using the context handle.

11. When the file transfer has been completed by reaching the end of file or as a result of cancellation,

a client MUST close the context handle by using RdcClose.

12. The client registers a request for updated version chain vectors from the server when it has
received all updates from the previous version chain vector.

For detailed summaries of the set of state machines that clarify their relative dependencies, see

diagrams in sections 3.3.1.1, 3.3.1.2, 3.3.1.3, 3.3.1.4, and 3.3.1.5.

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

3.3.1.1 Connection State Machine

The following state diagram specifies the state machine to be referred to when DFS-R establishes a
connection. It introduces the following connection states.

 Disconnected: A client is not connected. When transitioning to the Disconnected state from the
Connected or Polling state, the client terminates all replicated folder sessions associated with
this connection (see section 3.3.1.2).

 Connected: A client has established a connection successfully.

 Polling: A client has registered an asynchronous poll.

83 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 5: State machine referred to when DFS-R establishes a connection

3.3.1.2 Replicated Folder Session State Machine

The Distributed File System: Replication (DFS-R) Protocol requires that a client establishes a session
for each replicated folder that is configured on a connection. All replication activity takes place
within one such session. The following state diagram specifies the state machine for replicating

content on replicated folder. In this initial state, it is assumed that the state machine that establishes
a connection has reached its terminal state. It introduces the following replicated folder session states.

 Restart: A client has not established a replication session for a replicated folder. When

transitioning to the Restart state following a session error or a session termination, the client
cancels or waits for all outstanding RPC calls for the given replicated folder to complete before
calling the EstablishSession method again.

 InSession: The client has established a replicated folder session with the server for a replicated

folder.

 Requesting Version Vector: The client has registered a request for notification when the
server's version chain vector changes.

84 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 Poll Again: The client has been notified of a version chain vector change by the server and has
registered a request for the server's version chain vector.

 Requesting Updates: The client has received the server's version chain vector and is requesting
updates based on the received version chain vector.

Figure 6: Main update request state machine

3.3.1.3 Slow Sync

Slow Sync is a secondary means to ensure the consistency of the data between each pair of

machines. The main part of the Distributed File System Replication (DFS-R) protocol of exchanging
version vectors can in some circumstances, such as garbage collection of tombstone updates, leave
inconsistencies between machines undetected. The slow sync process is periodically run on a client for
each replicated folder to detect and correct such inconsistencies. <34>

When specifying the Slow Sync protocol, the following states are referred to.

85 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 SlowSyncInit: The client starts a slow sync with the server for a particular replicated folder by
requesting a version chain vector from the server via the RequestVersionVector method, setting

requestType to REQUEST_SLOW_SYNC.

 SlowSync Requesting Version Vector: The client is waiting for the server's asynchronous

callback to the AsyncPoll method to supply the requested version chain vector.

 SlowSync Poll Again: The client registers an additional poll with the server.

 SlowSync Request Records: The client requests all of the replicated folder's non-tombstone
update records from the server and processes them.

The state transitions associated with Slow Sync are shown in the following state diagram.

Figure 7: Slow Sync state machine

86 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.3.1.4 Raw File Transfer

A direct file transfer (one that does not use RDC) starts by a call to InitializeFileTransferAsync with
rdcDesired set to 0. The transfer might be fully finished when this call completes, or it might have to

be finished by using either RawGetFileData or RawGetFileDataAsync. When the server signals the end
of file, the client uses RdcClose to dispose of the context handle associated with the file download. The
state transitions associated with a raw file download are illustrated in the following state diagram.

Figure 8: Raw file transfer state machine

3.3.1.5 RDC File Transfer

A transfer over the RDC protocol starts and finishes similarly to a direct file transfer. The client first
uses an InitializeFileTransferAsync to establish a context handle for the file, and then calls
RdcGetSignatures to retrieve the signatures (possibly at recursive levels) that pertain to the file being

transferred. To retrieve file data at given offsets and lengths, the client uses RdcPushSourceNeeds to
indicate which data ranges are requested from the file to be transferred. Notice that several ranges
might be coalesced in a single call to RdcPushSourceNeeds. To retrieve actual file data, the client uses
separate calls, RdcGetFileData, or a single call to RdcGetFileDataAsync. When the file transfer is done,
the client is required to use RdcClose to context handle gracefully.

RDC allows the application to choose the recursion depth arbitrarily. Choosing an optimum recursion
depth is difficult because many factors are involved, including the available network bandwidth and

network latency, the speed and load of the disk storage systems on the server and client machines, as
well as available CPU time for computing signatures, if necessary.<35>

There are few constraints on the order in which a client uses these APIs. Signature data and file data
can be downloaded concurrently.

The DFS-R server requires that the client follow the following rules:

87 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1. A client initializes RDC transfer using InitializeFileTransferAsync, specifying that it wants to
perform a download using RDC.

2. If a server determines that the file to be served is not suitable for the RDC protocol, it sets
rdcSignatureLevels to 0 in the FRS_RDC_FILEINFO structure. The client then has to complete the

download by using a direct transfer, as if it had not requested the RDC protocol.

3. A client serializes its calls to RdcGetSignatures, RdcPushSourceNeeds, RdcGetFileData, or
RdcGetFileDataAsync.

4. The accumulated amount of data requested using RdcGetFileData or RdcGetFileDataAsync never
exceeds the length of the intervals pushed by RdcPushSourceNeeds. The DFS-R server is
otherwise free to fail all subsequent requests on that context handle.

5. RdcClose terminates a context handle and no further requests can be made on the context handle

following this call. The RPC runtime furthermore enforces this constraint, as shown in the following
state diagram.

Figure 9: RDC file transfer state machine

Note The client has to call RdcGetFileData or RdcGetFileDataAsync, but cannot call both.

3.3.2 Timers

<36>

3.3.3 Initialization

For each configured connection, a client creates a separate state machine, as specified in the figure in
section 3.3.1.1, and enters the DisConnected state in each state machine.

88 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

When a Connection object is added or removed, clients either establish (when added) or terminate
(when removed) logical connection objects. Clients can delay establishing a connection based on a

configured schedule.

3.3.4 Message Processing Events and Sequencing Rules

In DFS-R, the client initiates all communication with the server. Only in a few cases does the server
trigger a callback into the client when completing asynchronous RPC messages. For uniformity, the
message processing events are presented as triggered by a successful call to EstablishConnection. All

subsequent actions and messages are triggered by replies by the server. The initial client state is
DisConnected.

3.3.4.1 DisConnected

Message Handling: None.

Actions Triggered: A client MUST, possibly with a delay induced by a schedule, call

EstablishConnection to establish connection objects with each configured inbound connection. For
SYSVOL replication, the client MUST set connectionId to objectGUID of nTDSConnection object.
Otherwise, the client MUST set connectionId to objectGUID of msDFSR-Connection object.

Sequencing: All RPC traffic, other than CheckConnectivity, with the server has to have been
preceded by an EstablishConnection method.

Error Handling: None.

3.3.4.2 EstablishConnection Completes

Upon successful completion, the client has established an outbound connection with the server.

Actions Triggered: The client MUST transition from the Disconnected connection state to the

Connected connection state. See section 3.3.1.1 for a summary of the connection state machine.

Following the transition to the Connected connection state, the client MUST call the AsyncPoll method
to register a callback with the server, then transition to the Polling connection state. The client MUST
call the EstablishSession method for each replicated folder that is part of the specified connection’s
replication group.

Sequencing: The EstablishConnection method MUST be invoked by the client only in the disconnected
state.

Error Handling: The following table summarizes the set of errors returned by the EstablishConnection
method that cause a client to behave in specific ways.

Error code Client response

0x00000000

ERROR_SUCCESS

The client MUST perform the actions listed under the Actions Triggered heading.

All non-zero error
codes

The client MUST transition to the Disconnected connection state. The client SHOULD try to
re-establish the connection by calling the EstablishConnection method after a time-out
interval of its choice.

3.3.4.3 EstablishSession Completes

Upon successful completion the client has established a replicated folder session with the server.

89 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Actions Triggered: The client MUST transition the replicated folder from the Restart session state to
the InSession session state. See section 3.3.1.2 for a summary of the replicated folder session state

machine.

Following the transition to the InSession replicated folder session state, the client MUST register a

request for a version chain vector change notification by calling the RequestVersionVector method
and then transition to the Requesting Version Vector replicated folder session state.

Sequencing: A client MUST NOT call the EstablishSession method until it has established an outbound
connection with the server for a particular connection by successfully calling the EstablishConnection
method. After a connection is established, a client SHOULD call the EstablishSession.

Error Handling: The following table summarizes the set of errors returned by the EstablishSession
method that cause a client to behave in specific ways.

Error code Client response

0x00000000

ERROR_SUCCESS

The client MUST perform the actions listed under the Actions Triggered
heading.

0x00002342

FRS_ERROR_CONNECTION_INVALID

The client MUST transition to the Disconnected connection state. The
client SHOULD try to re-establish the connection by calling the
EstablishConnection method after a time-out interval of its choice.

0x00002375

FRS_ERROR_CONTENTSET_READ_ONLY

 The client MUST remain in the Polling connection state, but SHOULD
not call the EstablishSession method again for this replicated folder.

0x000006A4 – 0x00000788

RPC errors

The client MUST transition to the Disconnected connection state. The
client SHOULD try to re-establish the connection by calling the
EstablishConnection method after a time-out interval of its choice.

All other non-zero error codes The client MUST remain in the Polling connection state and SHOULD
call the EstablishSession method again for this replicated folder, after a
time-out interval of its choice.

3.3.4.4 RequestVersionVector Completes

Upon successful completion the client has requested a version chain vector / version chain vector
change notification from the server.

Actions Triggered: The client MUST wait for the corresponding AsyncPoll request to complete.

Error Handling: The following table summarizes the set of errors returned by the
RequestVersionVector method that cause a client to behave in specific ways.

Error code Client response

0x00000000

ERROR_SUCCESS

The client MUST perform the actions listed under the Actions Triggered heading.

All non-zero error
codes

The client MUST transition to the Disconnected connection state. The client SHOULD try to
re-establish the connection by calling the EstablishConnection method after a time-out
interval of its choice.

90 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.3.4.5 AsyncPoll Completes

Upon successful completion the server has responded to a previous call by the client to the
RequestVersionVector method for a particular replicated folder.

Actions Triggered: The client MUST register another AsyncPoll callback for the connection on which
the AsyncPoll method completed.

Subsequent actions are dependent on the type of version vector request that triggered this AsyncPoll
completion.

REQUEST_NORMAL_SYNC: If the client’s replicated folder session state is currently Requesting
Version Vector, then the AsyncPoll completion indicates that the server’s version vector has changed
to contain versions that are not known to the client. The client MUST request the changed version

vector from the server by calling the RequestVersionVector method with the changeType parameter
equal to CHANGE_ALL and then MUST enter the Poll Again replicated folder session state.

If the client’s replicated folder session state is currently Poll Again then the AsyncPoll completion
indicates that the server has sent its version chain vector to the client. The client MUST enter the

Requesting Updates replicated folder session state. The client MUST then request updates pertaining
to the version chain vector received from the server. The client uses calls to the RequestUpdates

method to retrieve updates from the server.

If the client’s replicated folder session state is neither Requesting Version Vector nor Poll Again, then
the client MUST ignore the reply from the server.

REQUEST_SLOW_SYNC: If the client's slow sync state is currently Requesting Version Vector then
the client MUST transition to the Request Records slow sync state (see section 3.3.1.3) and MUST call
the RequestRecords method to request the replicated folder's live update records from the server.

If the client’s slow sync state is not Requesting Version Vector then the client MUST ignore the

response from the server.

Error Handling: The following table summarizes the set of errors returned by the AsyncPoll method
upon invocation that cause a client to behave in specific ways. (This is the only asynchronous RPC call

whose errors are handled differently during invocation and asynchronous completion).

Error code Client response

0x00000000

ERROR_SUCCESS

The client MUST perform the actions listed under the Actions Triggered heading.

All non-zero error codes The client SHOULD try to call AsyncPoll again after a time-out interval of its choice.

The following table summarizes the set of errors returned by the AsyncPoll method upon asynchronous

completion that cause a client to behave in specific ways.

Error code Client response

0x00000000

ERROR_SUCCESS

The client MUST perform the actions listed under the Actions Triggered heading.

All non-zero error
codes

The client MUST transition to the Disconnected connection state. The client SHOULD try to
re-establish the connection by calling the EstablishConnection method after a time-out
interval of its choice.

91 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.3.4.6 RequestUpdates Completes

Upon successful completion, the server has returned at least some of the requested updates to the
client.

Actions Triggered: Upon an asynchronous callback from the RequestUpdates method while in the
Requesting Updates replicated folder session state, the client MUST queue received updates and
process them as specified in section 3.3.4.6.2.

Because it is possible that not all updates could be sent in response to one RequestUpdates method
call, the client MUST follow the state transitions specified in section 3.3.4.6.1 to ensure that it receives
updates held by the server.

Error Handling: The following table summarizes the set of errors returned by the RequestUpdates

method that cause a client to behave in specific ways.

Error code Client response

0x00000000

ERROR_SUCCESS

The client MUST perform the actions listed under the Actions Triggered
heading.

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The client MUST remain in the Polling connection state and enter the
Restart replicated folder session state.

All other non-zero error codes The client MUST transition to the Disconnected connection state. The
client SHOULD try to re-establish the connection by calling the
EstablishConnection method after a time-out interval of its choice.

3.3.4.6.1 Requesting Updates (State Transitions)

To obtain all updates whose GVSNs are contained in a version chain vector VV, the client might
have to call the RequestUpdates method multiple times. The client is expected to maintain a state

machine of the following form.

Initially; set updateRequestType = UPDATE_REQUEST_ALL and versionVectorDiff = VV.

In response to the completion of RequestUpdates method calls, the client updates updateRequestType

and versionVectorDiff according to the following state transitions.

State Transitions for Requesting Updates

in updateRequestType out updateStatus State transition

UPDATE_REQUEST_ALL UPDATE_STATUS_DONE Done. All updates from VV will have been
received if the client followed this protocol.

UPDATE_REQUEST_ALL UPDATE_STATUS_MORE Set updateRequestType to
UPDATE_REQUEST_TOMBSTONES. Remove all
entries from versionVectorDiff that are
lexicographically less than or equal to
(gvsnDbGuid, gvsnVersion).

UPDATE_REQUEST_TOMBSTONES UPDATE_STATUS_DONE Set updateRequestType to
UPDATE_REQUEST_LIVE and set versionVectorDiff
= VV.

UPDATE_REQUEST_TOMBSTONES UPDATE_STATUS_MORE The value of updateRequestType remains
UPDATE_REQUEST_TOMBSTONES. Remove all
entries from versionVectorDiff that are

92 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

in updateRequestType out updateStatus State transition

lexicographically less than or equal to
(gvsnDbGuid, gvsnVersion).

UPDATE_REQUEST_LIVE UPDATE_STATUS_DONE Done. All updates from VV will have been
received if the client followed this protocol.

UPDATE_REQUEST_LIVE UPDATE_STATUS_MORE The value of updateRequestType remains
UPDATE_REQUEST_LIVE. Remove all entries
from versionVectorDiff that are lexicographically
less than or equal to (gvsnDbGuid, gvsnVersion).

Recall that GVSNs are ordered by the lexicographic extension of the byte-wise ordering on GUIDs and
unsigned comparison of VSNs. The ordering on GVSNs is used to prune VV in the previously
mentioned protocol by treating version chain vectors as sets of GVSNs, and then by removing
elements that are lexicographically less than or equal to a given GVSN.

3.3.4.6.2 Processing Updates

DFS-R ensures convergence by imposing a total ordering on updates. A total ordering is obtained from
the fields (fence, attributes, createTime, clock, uidDbGuid, uidVersion, gvsnDbGuid, and
gvsnVersion).

An update with a higher value of fence supersedes updates with lower fence values; otherwise, the
fence values are equal.

An update with the directory attribute set in the attributes field supersedes updates that do not have
the directory attribute set; otherwise, these attributes coincide.

An update with a higher value of the createTime supersedes updates with lower values;<37>
otherwise, the create times are the same.

An update with a higher value of the clock field supersedes updates with a lower value; otherwise,
the clock fields are the same.

An update with the lexicographically highest uidDbGuid supersedes one with a lower value. GUIDs
are compared using a lexicographic left-to-right comparison of each byte, where each byte is treated

as an unsigned 8-bit number. The C-standard routine, memcmp, can for instance be used to realize
this ordering as a positive return value from this routine stipulates that a GUID is lexicographically
largest. If the uidDbGuid coincide, comparison proceeds to version numbers.

An update with the largest value of uidVersion supersedes an update with a lower value of
uidVersion. Recall that VSNs are unsigned 64-bit numbers. Otherwise, if the versions are the same.

An update with the lexicographically largest gvsnDbGuid supersedes one with a lower value;
otherwise, if the GUIDs are the same.

An update with the largest gvsnVersion supersedes an update with a lower gvsnVersion; otherwise,
the two updates have the same GVSN, which a well-behaved implementation of DFS-R would allow
only if the updates are in fact identical. That is, a well-behaved implementation of DFS-R treats the

fields, except for the file hashes, of an update as immutable after it is created. Furthermore, at most
one machine creates an update with a given GVSN.

To ensure convergence, a replicating member (DFS-R) MUST store one update per UID that is
maximal with respect to the previously mentioned lexicographic ordering. A replicating member MUST

implement a conflict resolution strategy according to standard File Replication Store semantics of
updates. The minimal set of File Replication Store conflicts follow.

93 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Dangling child conflict: An update is a dangling child if its present field is nonzero; it is not a
replicated folder root; and its parent present field is 0.

A well-formed set of updates does not contain any of the previously mentioned conflicts and such that
whenever update1.parentDbGuid = update2.uidDbGuid, update1.parentVersion = update2.uidVersion

and update1.present, then update2.attributes contains the 0x00000010 bit. That is, the bitwise-and
with the attribute and the mask 0x00000010 equals 0x00000010. A client MUST maintain a well-
formed set of updates.

A dangling-child conflict MUST be resolved by ensuring that parents are saved in persistent storage
prior to their children. Absence of dangling children is then enforced as a protocol invariant.

In addition to dangling-child conflicts, a client MAY also resolve cycle and name conflicts.

Cycle conflict: An update update1 introduces a directory cycle if there is a sequence update1,

update2 ,…, . updatek such update1.present is nonzero and updatei.parentDbGuid =
update(i+1).uidDbGuid, updatei.parentVersion = update(i+1).uidVersion, for I = 1…k, and update1 =
updatek.

A cycle conflict MAY be resolved by creating an update with a fresh GVSN and a higher clock value
that retains the old parent. To ensure convergence using this scheme in the presence of cycle
conflicts, a client MUST process received updates in ancestral order—parents before children.<38>

File name conflict: Two file updates, update1 and update2, are in name conflict if their
parentDbGuid and parentVersion field values are the same, they both have the present field set to
a nonzero value, and their name fields are equal according to an implementation-specific string
comparison, but their uidDbGuid or uidDbVersion values are different.

If a client decides to resolve a file name conflict, it MUST generate a new update for the conflict loser
with a fresh GVSN, a clock value that is higher than the name conflict loser, set the present field set
to 0 and the nameConflict field set to 1. To guarantee convergence, a client MUST NOT supersede

any update with nameConflict set to 1 by any update that sets present to 1. Name conflicts are
resolved. File names are compared using case-insensitive string comparison. Language-specific
collation policies are not used when comparing file names.

Directory name conflict: Two directory updates, update1 and update2, are in name conflict if their
parentDbGuid and parentVersion field values are the same, they both have the present field set to
a nonzero value, and their name fields are equal according to an implementation-specific string
comparison, but their uidDbGuid or uidDbVersion values are different.<39>

If a client decides to resolve a directory name conflict, it MUST set the conflict loser's createTime,
uidDbGuid, and uidDbVersion values equal to the corresponding conflict winner field values. The
conflict loser's uidVisible field MUST be set to 1. All files and directories whose parent was the conflict
loser MUST be updated such that their parentDbGuid and parentVersion fields are set to the
uidDbGuid and uidDbVersion values of the conflict winner.

Reserved UIDs: DFS-R reserves a number of UIDs for designated resources.

The UID of replicated folder roots: The UID of replicated folder roots is fixed by using version 1
and the GUID of the replicated folder, that is:

 uidDbGuid = {GUID Replicated Folder}

 uidVersion = 1

The GUID of the replicated folder is present in the configuration for DFS-R.

The UID of version vector tombstones: DFS-R allows members to garbage collect entries in their
version vectors. When a member determines that a GUID m1, which is in the domain of a version

chain vector, is stale, it MAY generate an update whose UID consists of the following:

94 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 uidDbGuid = bitwise XOR({GUID of Replicated Folder}, m1)

 uidVersion = 2

The update's present field is set to 0, and the update is broadcast to replication partners. If a
replication partner determines that m1 is not stale, it MAY<40> generate an update that subsumes

the broadcasted update with the present field set to 1 (a nonzero value). If a member is not
originating updates for a long period and wants to ensure that replication partners do not erroneously
determine that it is stale, it SHOULD<41> periodically generate this update, with the present field set
to 1, for each of its own replicated folders.

VSNs 0–8 are reserved; therefore, the versions of all other UIDs that correspond to replicated files
MUST start with at least version 9.

3.3.4.7 File Downloads

If a client receives an update whose gvsnVersion is larger than any corresponding update that it
already has for the same UID and if the received update has the present field set to a nonzero value,

the client MUST download and persist file contents pertaining to the file. The client MUST either use

raw file transfer or use RDC file transfer to download the file. A file transfer with either protocol is
initiated by a call to InitializeFileTransferAsync.

3.3.4.7.1 stagingPolicy Parameter

A staging area refers to a cache containing serialized replicated files. The cache need not be kept
consistent with the File Replication Store. It is up to the client to detect possible inconsistencies and
instruct the server how to recover using FRS_REQUESTED_STAGING_POLICY. In other cases, a client

can find itself unable to download a file directly from the replicated folder because network latency
and bandwidth limitations repeatedly cause the download to fail. In such cases, a client SHOULD use
STAGING_REQUIRED to instruct the server to use this more suitable strategy. Clients set
STAGING_REQUIRED when encountering return errors ERROR_SHARING_VIOLATION when attempting
to download files from a server.

This does not affect the format of the data sent. The server SHOULD honor the request.

3.3.4.8 InitializeFileTransferAsync Completes

Upon successful completion, the client MUST proceed to download the full file contents.

Actions Triggered: If the server context handle returned by the InitializeFileTransferAsync method is
set to 0, the entire contents of the downloaded file fit in the buffer provided as part of the output

parameters of the InitializeFileTransferAsync method. The client MUST assume that the returned value
of frsUpdate holds the authoritative metadata for the file contents that correspond to the time that the
file download took place.

Sequencing: If the returned context handle is nonzero, the client MUST proceed to download the file
contents fully.

1. If the call to the InitializeFileTransferAsync method had set the rdcDesired parameter to one and

the server sets the rdcSignatureLevels member in the FRS_RDC_FILEINFO structure to a

number greater than zero, the client MUST proceed by downloading the file contents over the RDC
Protocol. It MUST use the FRS_RDC_FILEINFO structure to obtain signatures at the level dictated
by rdcFileInfo. Signatures on the server are retrieved by calling the RdcGetSignatures method.

2. The client MUST ensure that the parameters of the remote signatures match the parameters of the
local signatures. If the parameters do not match, the client MUST either generate signatures with
the correct parameters or download the file contents using the RawGetFileData method or the
RawGetFileDataAsync method.

95 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3. If the call to the InitializeFileTransferAsync method had set the rdcDesired parameter to 0 or if the
server set the rdcSignatureLevels member in the FRS_RDC_FILEINFO structure to 0, the client

MUST proceed by downloading the file contents using the RawGetFileData method or the
RawGetFileDataAsync method.

Recall that the RawGetFileDataAsync method is supported only in protocol version 0x00050002.

Error Handling: The following table summarizes the set of errors returned by the
InitializeFileTransferAsync method that cause a client to behave in specific ways. A client MUST retry
the download on all other error codes.

Error code Client response

0x00000000

ERROR_SUCCESS

The client MUST perform the actions listed under the Actions Triggered
heading.

0x00002342

FRS_ERROR_CONNECTION_INVALID

The client MUST transition to the Disconnected connection state. The
client SHOULD try to re-establish the connection by calling the
EstablishConnection method after a time-out interval of its choice.

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The client MUST remain in the Polling connection state and enter the
Restart replicated folder session state.

0x0000234B

FRS_ERROR_RDC_GENERIC

The client MUST retry the download, setting the rdcDesired parameter
to 0.

0x00002358

FRS_ERROR_XPRESS_INVALID_DATA

The client MUST retry the download, setting the stagingPolicy
parameter to RESTAGING_REQUIRED.

Any other non-zero error code The client MUST retry the download.

3.3.4.9 RawGetFileData Completes

Upon successful completion, the client has received the next buffer of marshaled data (as specified in
section 3.2.4.1.14) from the file identified by the specified server context.

Note: the marshaled file data received from this call does not use the Remote Differential Compression
Algorithm (as specified in [MS-RDC]) when replicating a changed file.

Actions Triggered: In order to receive the full file contents, the client MUST create another call to
the RawGetFileData method if the output value of the isEndOfFile parameter is 0. If the output value

of isEndOfFile is 1, the client MUST call the RdcClose method on the context handle associated with
the file download.

Sequencing: The client MUST NOT issue another call to the RawGetFileData method on the same file
before the previous call has completed.

Error Handling: The following table summarizes the set of errors returned by the RawGetFileData

method that cause a client to behave in specific ways. A client MUST retry the download on all other

error codes.

Error code Client response

0x00000000

ERROR_SUCCESS

The client MUST perform the actions listed under the Actions Triggered
heading.

0x00002344 The client MUST remain in the Polling connection state and enter the

%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9

96 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Error code Client response

FRS_ERROR_CONTENTSET_NOT_FOUND Restart replicated folder session state.

0x000006A4 – 0x00000788

RPC errors

The client MUST transition to the Disconnected connection state. The
client SHOULD try to re-establish the connection by calling the
EstablishConnection method after a time-out interval of its choice.

Any other non-zero error code The client MUST retry the download.

3.3.4.10 RdcClose Completes

Upon successful completion, the client has terminated the file transfer associated with the specified

server context.

Actions Triggered: None.

Sequencing: A client MUST NOT use the context handle after it has been closed using the RdcClose
method.

Error Handling: The following table summarizes the set of errors returned by the RdcClose method
that cause a client to behave in specific ways.

Error code Client response

0x00000000

ERROR_SUCCESS

The client MUST perform the actions listed under the Actions Triggered heading.

0x000006A4 –
0x00000788

RPC errors

The client MUST transition to the Disconnected connection state and destroy any client
context associated with the server context.

3.3.4.11 RawGetFileDataAsync Completes

Recall that the RawGetFileDataAsync method is supported only in protocol version 0x00050002.

Upon successful completion, the client has received the entire marshaled data (as specified in section
3.2.4.1.14) from the file identified by the specified server context.

Note: the marshaled file data received from this call does not use the Remote Differential Compression
Algorithm (as specified in [MS-RDC]) when replicating a changed file.

Actions Triggered: The client MUST persist the data received in the call and MUST call the RdcClose
method to dispose of the context handle.

Sequencing: The client MUST NOT issue any other method call with this server context except
RdcClose.

Error Handling: Same as for the RawGetFileData method.

3.3.4.12 RdcGetSignatures Completes

Upon successful completion, the client has received the requested signature data for the specified
RDC recursion level.

%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9

97 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Note: This method uses the Remote Differential Compression Algorithm, as specified in [MS-RDC],
when replicating a changed file.

Actions Triggered: For a given level, if the previous completed call set the value of the output
parameter sizeRead equal to the value of the input parameter length then the client has not received

the full signature contents and the client MUST create another call to the RdcGetSignatures method
with the same input level.

When making multiple calls to the RdcGetSignatures method for a given level, the value of the input
parameter offset MUST be the sum of the values of the output parameter sizeRead for all the previous
completed calls.

The client can use the requested signature data to reconstruct the file being downloaded by using the
RDC Algorithm. After comparing the source signatures to the seed signatures (as specified in [MS-

RDC]), the client produces a list of needs (list of file ranges that the client needs in order to
reconstruct the file). The client separates the seed and source needs and then sends the source needs
to the server with the RdcPushSourceNeeds method.

Thus, file reconstruction proceeds by submitting further calls to the RdcGetSignatures method or
calling the RdcPushSourceNeeds method with data ranges of bytes that the client requests to be
downloaded.

Sequencing: None.

Error Handling: The following table summarizes the set of errors returned by the RdcGetSignatures
method that cause a client to behave in specific ways.

Error code Client response

0x00000000

ERROR_SUCCESS

The client MUST perform the actions listed under the Actions Triggered
heading.

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The client MUST remain in the Polling connection state and enter the
Restart replicated folder session state.

0x0000234B

FRS_ERROR_RDC_GENERIC

The client MUST retry the download, setting the rdcDesired parameter
to 0.

0x000006A4 – 0x00000788

RPC errors

The client MUST transition to the Disconnected connection state. The
client SHOULD try to re-establish the connection by calling the
EstablishConnection method after a time-out interval of its choice.

Any other non-zero error code The client MUST retry the download.

3.3.4.13 RdcPushSourceNeeds Completes

The source needs specify byte ranges from the marshaled source file being transferred.

Upon successful completion, the client has requested a set of data ranges from the source file being
transferred.

Actions Triggered: A client MUST call the RdcGetFileData method or the RdcGetFileDataAsync
method in order to obtain the file data specified by the RdcPushSourceNeeds method calls.

Sequencing: This method is used after a server context is established with the
InitializeFileTransferAsync method of the FrsTransport interface.

%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9

98 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The client MAY call this function multiple times but MUST NOT exceed more than
CONFIG_RDC_NEED_QUEUE_SIZE (see section 2.2.1.1.6) source needs outstanding before retrieving

them with the RdcGetFileData method or the RdcGetFileDataAsync method.

Error Handling: The following table summarizes the set of errors returned by the

RdcPushSourceNeeds method that cause a client to behave in specific ways.

Error code Client response

0x00000000

ERROR_SUCCESS

The client MUST perform the actions listed under the Actions Triggered
heading.

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The client MUST remain in the Polling connection state and enter the
Restart replicated folder session state.

0x000006A4 – 0x00000788

RPC errors

The client MUST transition to the Disconnected connection state. The
client SHOULD try to re-establish the connection by calling the
EstablishConnection method after a time-out interval of its choice.

Any other non-zero error code The client MUST retry the download.

3.3.4.14 RdcGetFileData Completes

This method uses the Remote Differential Compression Algorithm (as specified in [MS-RDC]) when
replicating a changed file. The data stream returned by the RdcGetFileData method is composed of
ranges from the marshaled source file.

Upon successful completion, the client has successfully received file data as specified by previous calls
to the RdcPushSourceNeeds method.

Actions Triggered: The data stream is broken into blocks of compressed and uncompressed data. To
receive all the source data requested by the RdcPushSourceNeeds method call, a client MUST call the

RdcGetFileData method, possibly repeatedly, until the server returns zero as the value of the
RdcGetFileData method’s sizeReturned output parameter.

Sequencing: This method is used after a server context is established via the
InitializeFileTransferAsync method and after the set of source needs for this file has been sent to the
server via the RdcPushSourceNeeds method.

Error Handling: The following table summarizes the set of errors returned by the RdcGetFileData
method that cause a client to behave in specific ways.

Error code Client response

0x00000000

ERROR_SUCCESS

The client MUST perform the actions listed under the Actions Triggered
heading.

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The client MUST remain in the Polling connection state (as specified in
section 3.3.1.1) and enter the Restart replicated folder session state
(as specified in section 3.3.1.2).

0x00002358

FRS_ERROR_XPRESS_INVALID_DATA

The client MUST retry the download, setting the stagingPolicy
parameter to RESTAGING_REQUIRED.

0x000006A4 – 0x00000788

RPC errors

The client MUST transition to the Disconnected connection state. The
client SHOULD try to re-establish the connection by calling the
EstablishConnection method after a time-out interval of its choice.

%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9

99 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Error code Client response

Any other non-zero error code The client MUST retry the download.

3.3.4.15 RdcGetFileDataAsync Completes

Recall that RdcGetFileDataAsync is supported only in protocol version 0x00050002.

Message Handling: Upon successful completion, the client has successfully received file data, as
requested by previous calls to the RdcPushSourceNeeds method.

Actions Triggered: The client MUST persist the data received in the call and MUST call the RdcClose
method to dispose of the context handle.

Sequencing: The client MUST NOT issue any other method call with this server context except

RdcClose.

Error Handling: Same as for the RdcGetFileData method.

3.3.4.16 Request Records Completes

Upon successful completion the server has returned at least some of the requested records to the

client.

Actions Triggered: Upon an asynchronous callback from the RequestRecords method while in the
Request Records slow sync state, the client MUST queue the received records and process them as
specified in section 3.3.4.16.2.

If the client’s slow sync state is not Request Records, then the client MUST ignore the reply from the
server.

Because it is possible that not all records could be sent in response to one RequestRecords method

call, the client MUST follow the state transitions specified in section 3.3.4.16.1 to ensure that it
receives all records held by the server.

Error Handling: The following table summarizes the set of errors returned by RequestRecords that
cause a client to behave in specific ways.

Error code Client Response

0x00000000

ERROR_SUCCESS

The client MUST perform the actions listed under the Actions Triggered
heading.

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The client MUST abort the ongoing slow sync.

0x000024FE

FRS_ERROR_CSMAN_OFFLINE

The client MUST abort the ongoing slow sync.

All other non-zero error codes The client SHOULD retry the records request after a timeout of its
choice.<42>

3.3.4.16.1 Requesting Records (State Transitions)

100 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

To obtain all records for live (non-tombstone) updates on the server, the client might have to call the
RequestRecords method multiple times. The client is expected to maintain a state machine of the

following form.

Initially the client MUST set uidDbGuid = zeroed GUID and uidVersion = 0.

In response to the completion of RequestRecords method calls, the client updates uidDbGuid and
uidVersion according to the following state transitions.

State Transitions for Requesting Records

Let rec be the last FRS_ID_GVSN record in the compressedRecords buffer that was returned by the
previous call to RequestRecords.

out (uidDbGuid,
uidVersion) State transition

(x,y) Ignored Done. All records for live updates will have been received if the client followed this
protocol.

(x,y) Call the RequestRecords method again, setting the uidDbGuid parameter to
rec.uidDbGuid and setting the uidVersion parameter to rec.uidVersion.

3.3.4.16.2 Processing Records

For each record received from the server that is contained in both the server and client version
vectors, the client determines whether there is a mismatch.

If the UID of the record is not saved in persistent storage locally, this record is a mismatch.

Otherwise, if the GVSN of the record does not match the GVSN of the corresponding record in the
local database, this record is a mismatch.

If the record was found to be a mismatch, the client engages in a resolution process. The policy for
this resolution is implementation-dependent. <43>

3.3.4.17 UpdateCancel

Upon successful completion, the client has notified the server that an update received from the server
could not be processed by the client.

Actions Triggered: The client does not have to perform any further actions.

Sequencing: This method is used if, at any time, the client is unable to process an update. It
guarantees that the server will return that update again the next time the client calls
RequestVersionVector.

Error Handling: The following table summarizes the set of errors returned by the UpdateCancel

method that cause a client to behave in specific ways.

Error code Client Response

0x00000000

ERROR_SUCCESS

The client MUST perform the actions listed under the Actions Triggered
heading.

0x00002344

FRS_ERROR_CONTENTSET_NOT_FOUND

The client MUST remain in the Polling connection state and enter the
Restart replicated folder session state.

101 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Error code Client Response

Any other non-zero error code The client MUST transition to the Disconnected connection state. The
client SHOULD try to re-establish the connection by calling the
EstablishConnection method after a time-out interval of its choice.

3.3.4.18 AsyncPoll Completes for REQUEST_SUBORDINATE_SYNC

A client can specify REQUEST_SUBORDINATE_SYNC in the requestType associated with a version
chain vector request at any time. When such a version chain vector request is issued and how this
version chain vector is used are both implementation specific.<44>

3.3.5 Timer Events

Connection schedules: When a client enters a connection schedule, it uses EstablishConnection to

create a fresh logical connection with the server.

Update throttle time-outs: Client maintains a throttle in the frequency for requesting new updates.
This is entirely for the purpose of ensuring that frequently changing files do not overwhelm the
network.

3.3.6 Other Local Events

None.

102 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

4 Protocol Examples

4.1 Abstract Protocol Examples

In the following examples, two machines—A and B—synchronize a common replicated folder using

the DFS-R synchronization protocol. The examples are intended to illustrate the use of the basic DFS-
R components and data structures.

Assume that machine A starts with a database that has a designated record for the replicated folder
root. A designated machine R, the replicated folder root, owns this resource. The fields of the root
record in the database maintained by DFS-R include the GVSN, UID, fid (a file reference number to
identify the replicated folder root directory on the File Replication Store), the name of the replicated

folder directory, and a pointer to a parent record, which for the root is null.

{gvsn = (R,0), uid = (R,0), fid = 57, name = "share", parent = null}.

Note that the GVSN and the UID are the same here. This is a general rule: UID coincides with the

GVSN value that corresponds to the first occurrence (creation) of resource. The GVSN representation
has been reused to generate UIDs; by taking advantage of that machine, version number
combinations are globally unique. The version chain vector of machine A consists of the map: {},
and its local version sequence number count is initially at 0. The state of machine B is similar, except

that the fid field associated with the share is most likely different.

4.1.1 Basic Content Distribution

Suppose that machine A creates two files, a and b, under the replicated folder root. DFS-R updates
the database accordingly. In particular, the global version of A is incremented and this gvsn value is

assigned to the newly created resource. During the next communication, session machine A realizes
by comparing version chain vectors that something happened on A that B does not know.
Consequently, A sends all the updates that correspond to unknown gvsn values. Thus, the file creation
(edition, renaming, or deletion) operation is propagated to B.

In more detail, when the local updates are processed by FRS, A's database will look like the following
figure.

Figure 10: Database contents of machine A

The mapping {R 0} is implicit in the version chain vector. In general, version chain vectors map to 0

on machines that are not part of the provided domain. When A joins with B, it sends {A 2} to B.

103 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 11: Sending the version vector to machine B

Based on this information, B computes the set difference between its version chain vector, which is

empty, and the version chain vector {A 2} received from A. The set difference is {A 2}. B then
requests updates that come from the set difference. Responding to the update request, A sends the
two records for a and b to B. B determines that it needs to asks A to also send the contents of the files
a and b to it. After receiving the content, it can insert those files into its local version of the share and
update its database.

Figure 12: Database contents of machine B after file replication

4.1.2 Version Chain Vector Logic - Two Machines

Machines A and B are initially synchronized, and they have the same version chain vectors (these
are intended to be synonyms)—for example, {A20, B30}. When a replicated file is edited on A, the
version of A is incremented. Therefore, A's version chain vector now is {A21, B30}. Also, the GVSN

(A21) is assigned to the resource. During the next communication session, the difference between the
version chain vectors is computed first. In this case, it is {A21}, exactly the gvsn index of the edited
resource. In the end of the session, after the new content is propagated to B, B's version chain vector
is updated to {A21, B30} to reflect new state.

4.1.3 Version Chain Vector Logic - Three Machines

Assume now that the network has three machines, A, B, and C, and they are configured such that
machine B receives updates from machine A, machine C from machine B, and machine A from
machine C.

Initially, the replicated content on the machines is synchronized, and the version chain vector on all

the machines is {A20, B30, C50}. Then, two files are created on A, and at the same time, another file

is edited on B. Therefore, the version chain vectors become the values in the following table.

Machine A Machine B Machine C

{A22, B30, C50} {A20, B31, C50} {A20, B30, C50}

B meets A session: The difference of the version chain vectors is {A21, A22}, so B requests these
resources from A and, when completed, updates its own version chain vector. Note that the difference

104 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

is the set of GVSN values in the other machines vector that are not covered by this example's version
chain vector. Values (like B31, in this case) are not processed because the protocol is one way

directed (not symmetric).

Machine A Machine B Machine C

{A22, B30, C50} {A22, B31, C50} {A20, B30, C50}

C meets B session: In this case, the difference is {A21, A22, B31}, so resources marked with these
GVSN values are communicated to C. The version chain vectors are now the values in the following

table.

Machine A Machine B Machine C

{A22, B30, C50} {A22, B31, C50} {A22, B31, C50}

A meets C session: The computed difference is {B31}. Note that since the last session between A and

C, machine C has also gotten resources corresponding to A21 and A22 values. Yet, the version chain
vectors turn out to be sufficient to recognize that these two resources do not need to be sent to A.
Finally, the version chain vectors are identical again, and the content is synchronized on the machines.

Machine A Machine B Machine C

{A22, B31, C50} {A22, B31, C50} {A22, B31, C50}

4.1.4 Concurrent Updates and Tombstones

Machines can update different content concurrently, and synchronization propagates such changes
seamlessly when there are no conflicts. For instance, A could modify a, and B could delete b.

Figure 13: Database contents of machine A and machine B, showing tombstone on machine
B

As usual, a session with A as server starts by A sending the updated version chain vector to B. A
session with B as server starts with B sending its version chain vector to A. B can take advantage of

knowing that A knows at least {A 2} by sending a smaller version chain vector. In general, B sends its
entire version chain vector.

105 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 14: Version chain vector exchange between machine A and machine B

The machines now exchange updates based on the version chain vectors.

Figure 15: File replication sequence, showing tombstone replication

Data for a tombstone is naturally not transmitted. The content on the two machines is then
reconciled after synchronization.

Figure 16: Database contents of machine A and machine B after replication, showing
tombstone on machine A

4.1.5 Directory Moves

FRS associates UIDs with resources. They identify resources irrespective of their names or location in
the File Replication Store. A replicated directory p, for instance, can be renamed to q, while a child
gets created under p on a different machine without encountering a conflict.

FRS furthermore associates a hash with each record to summarize the content on disk. File

transmission is redundant if the hash is unchanged between different versions. The hash obviously
changes in unpredictable ways when small changes are made to files. The implementation of FRS-2

uses RDC to minimize network overhead on small file changes. In the following example, the content
of directory p did not change when it was renamed to q. The database record, therefore, still has the
old hash for p—namely, 42. Consequently, only A needs to request content for b from B.

106 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 17: Example of "directory move" file replication sequence between machine A and
machine B

4.1.6 Name Conflicts

If two machines create files with the same names, they will have a different UID to distinguish them

as name conflicting files. Machines handle name conflicts by creating a tombstone for the name
conflict loser. Whether the tombstone also requires deleting content immediately depends on where
the name conflict is detected. The same name conflict can also be detected on multiple machines.
Each machine then generates a tombstone for the loser but in the end, only one tombstone prevails in
the final database.

This example examines the case where the name conflict is first resolved by a machine that has the

name conflict winner. It then sends the conflict winner before the tombstone to the machine that owns
the loser. This causes another tombstone to be created before the original name conflict tombstone
arrives. The example illustrates how a single tombstone eventually prevails and how FRS deals with
races that can cause it to perform distributed decisions.

Initially both A and B have a file named a under the share root.

Figure 18: Database contents of machine A and machine B

107 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

A starts by sending updates to B. B decides that its version supersedes the version of a received from
A, so it generates a tombstone for A's update.

Figure 19: Machine B database contents after receipt of superseded version of file from

machine A

Now, it is B's turn to send updates to A. This time, B sends the name conflict winner before the
tombstone. Machine A will resolve the name conflict similarly to B, but A will have to generate its own
tombstone. (A might not know the fate of its version on B.)

Figure 20: Database contents of machine A after generation of tombstone for old version of

file A

When B sends its own tombstone for a—the tombstone with version (B,2)—this tombstone will be

compared against the tombstone created by A and conflict resolution chooses a winner. The following
figure illustrates the case where A's tombstone wins, and B has not yet synced again with A to update
the version of the tombstone.

108 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 21: Database contents of machine A and machine B, showing tombstone conflict

4.2 Examples with Wire-Format Arguments

4.2.1 RequestVersionVector

The client can engage in a sequence of calls.

The following table shows the call RequestVersionVector with arguments.

sequenceNumber 23

requestType REQUEST_NORMAL_SYNC

changeType CHANGE_ALL

vvGeneration 0

The server then responds with a callback to AsyncPoll, where the return parameter of AsyncPoll is
populated.

sequenceNumber 23

status status

vvResponse

To obtain the next server version vector, the client can then call the following.

sequenceNumber 103 Fresh sequence number

requestType REQUEST_NORMAL_SYNC

changeType CHANGE_ALL

vvGeneration 45 The generation returned by the previous call

Note that the client uses the value of vvGeneration returned by the server to ensure that the server
does not immediately invoke the AsyncPoll callback with the same version chain vector, but waits
until the server has made a change to its version chain vector that supersedes the version chain
vector returned in the first response.

4.2.2 Requesting Updates

Suppose that versionVectorDiff in a request for updates consists of the following.

109 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

{ { guid1, 10, 200 }, { guid1, 203, 300 }, { guid2, 12, 203} }

The server returns gvsnDbGuid=guid1; gvsnVersion=272, (together with a full frsUpdate array). All

FRS_UPDATEs whose versions belong to the delta.

{ {guid1, 10, 200 }, { guid1, 203, 272 } }

MUST be included in the return value of the initial call.

To further exemplify the functionality of the RequestUpdates method, a client can receive all updates
whose GVSN belong to the previously mentioned version chain vector VV by using a sequence of
calls.

The following table shows the initial call to the RequestUpdates method with parameters.

creditsAvailable 256

hashRequested FALSE

updateRequestType UPDATE_REQUEST_ALL

versionVectorDiffCount 3

versionVectorDiff (VV) { { guid1, 10, 200 }, { guid1, 203, 300 }, { guid2, 12, 203} }

In one possible scenario, the server supplies the output parameters.

frsUpdate An array of updateCount updates.

updateCount The number of valid entries in the frsUpdate array.

updateState UPDATE_STATUS_MORE. The server sent some of the updates whose versions lie within VV, but
there are more to be retrieved.

gvsnDbGuid guid1

gvsnVersion 272

The client then makes another call to the RequestUpdates method to get more updates from VV.

creditsAvailable 256

hashRequested FALSE

updateRequestType UPDATE_REQUEST_TOMBSTONES

versionVectorDiffCount 2

versionVectorDiff { { guid1, 272, 300 }, { guid2, 12, 203} }

The server responds with the following output parameters.

frsUpdate An array of 0 updates.

updateCount 0 as there are no tombstones to send.

updateState UPDATE_STATUS_DONE. The server sent all of the available tombstones whose versions lie within
VV.

gvsnDbGuid A zeroed GUID

110 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

frsUpdate An array of 0 updates.

gvsnVersion 0

The client then makes another call to the RequestUpdates method to get the live updates from VV.

creditsAvailable 256

hashRequested FALSE

updateRequestType UPDATE_REQUEST_LIVE

versionVectorDiffCount 3

versionVectorDiff (VV) { { guid1, 10, 200 }, { guid1, 203, 300 }, { guid2, 12, 203} }

The server responds with the following output parameters.

frsUpdate An array of updateCount updates.

updateCount The number of valid entries in the frsUpdate array.

updateState UPDATE_STATUS_MORE. The server sent some of the updates whose versions lie within VV, but
there are more to be retrieved.

gvsnDbGuid guid1

gvsnVersion 272

The client then makes another call to the RequestUpdates method to get the remaining live updates.

creditsAvailable 256

hashRequested FALSE

updateRequestType UPDATE_REQUEST_LIVE

versionVectorDiffCount 2

versionVectorDiff { { guid1, 272, 300 }, { guid2, 12, 203} }

The server responds with the following output parameters.

frsUpdate An array of updateCount updates.

updateCount The number of valid entries in the frsUpdate array.

updateState UPDATE_STATUS_DONE. There are no more live updates to send.

gvsnDbGuid A zeroed GUID

gvsnVersion 0

4.2.3 Marshaled Data Format

As an illustration, a marshaled data stream can look like the following table.

111 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x00000001

0x00000024

0x00000001

0x24 bytes of marshaled metadata begin ...

... continued ...

Metadata ends.

0x00000004

0x0FFFA144

0x00000000

0x0FFFA144 bytes of data ...

...in the format compatible with the output ...

...of the Win32 API BackupRead ...

...data ends …...

...more headers and data continue ...

4.2.4 Ordering on UIDs and GVSNs

Suppose that the first byte in guid1 is 0xFA and the first byte in guid2 is 0xFB, then:

(guid1, 0x0000000000000001) < (guid1, 0x0000000000000002)

and

(guid1, 0x0000000000000005) < (guid2, 0x0000000000000004)

4.3 Configuration

4.3.1 Example Objects in the DFS-R Object Hierarchy

The following figure illustrates the object hierarchy required in Active Directory for storing
configuration parameters for Windows implementations of DFS-R.

112 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 22: DFS-R object hierarchy in Active Directory

113 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

5 Security

5.1 Security Considerations for Implementers

Chunk hashes used in the RDC sub-protocol are computed using a cryptographically weak hash. To
check the integrity of a file transfer using RDC, DFS-R furthermore uses a stronger hash, a SHA1 hash
(160-bit) for checking that the assembled file coincides with the source file on the server. A client that

manages content from multiple replicated folders with different access rights takes into account the
scope of these integrity checks. For instance, if seed files are permitted across replicated folders, an
attack scenario, however constructed, is to inject a seed file, which is different from, but whose chunk
hashes and file hash coincide with, a particular plaintext.

5.2 Index of Security Parameters

DFS-R uses authenticated encrypted RPC for all replication communication. The relevant security
parameters in this context are shown in the following table.

 Security parameter Section

Authentication level 2.1

Authentication service 2.1

114 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

6 Appendix A: Full IDL

The Distributed File System: Replication (DFS-R) Protocol contains one interface, whose IDL definition
is listed in this section. The IDL definition for this interface imports the "ms-dtyp.idl" file, as specified
in [MS-DTYP] section 2.2.5.3.4.3.

 import "ms-dtyp.idl";

 #define FRS_COMMUNICATION_PROTOCOL_VERSION_W2K3R2 0x00050000
 #define FRS_COMMUNICATION_PROTOCOL_VERSION_LONGHORN_SERVER 0x00050002
 #define FRS_COMMUNICATION_PROTOCOL_WIN8_SERVER 0x00050003
 #define FRS_COMMUNICATION_PROTOCOL_WINBLUE_SERVER 0x00050004

 #define CONFIG_RDC_VERSION (1)
 #define CONFIG_RDC_VERSION_COMPATIBLE (1)

 #define CONFIG_FILEHASH_DATASIZE (20)
 #define CONFIG_RDC_SIMILARITY_DATASIZE (16)
 #define CONFIG_RDC_HORIZONSIZE_MIN (128)
 #define CONFIG_RDC_HORIZONSIZE_MAX (1024*16)
 #define CONFIG_RDC_HASHWINDOWSIZE_MIN (2)
 #define CONFIG_RDC_HASHWINDOWSIZE_MAX (96)
 #define CONFIG_RDC_MAX_LEVELS (8)
 #define CONFIG_RDC_MAX_NEEDLENGTH (65536)
 #define CONFIG_TRANSPORT_MAX_BUFFER_SIZE (262144)
 #define CONFIG_RDC_NEED_QUEUE_SIZE (20)

 #define TRUE 1
 #define FALSE 0

 typedef GUID FRS_REPLICA_SET_ID;
 typedef GUID FRS_CONTENT_SET_ID;
 typedef GUID FRS_DATABASE_ID;
 typedef GUID FRS_MEMBER_ID;
 typedef GUID FRS_CONNECTION_ID;

 typedef SYSTEMTIME EPOQUE;

 typedef struct _FRS_VERSION_VECTOR {

 GUID dbGuid;
 DWORDLONG low;
 DWORDLONG high;
 } FRS_VERSION_VECTOR;

 typedef struct _FRS_EPOQUE_VECTOR {

 GUID machine;
 EPOQUE epoque;

 } FRS_EPOQUE_VECTOR;

 typedef struct _FRS_ID_GVSN {
 GUID uidDbGuid;
 DWORDLONG uidVersion;
 GUID gvsnDbGuid;
 DWORDLONG gvsnVersion;
 } FRS_ID_GVSN;

 typedef struct _FRS_UPDATE {

 long present;
 long nameConflict;

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

115 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 unsigned long attributes;
 FILETIME fence;
 FILETIME clock;
 FILETIME createTime;

 FRS_CONTENT_SET_ID contentSetId;
 unsigned char hash[CONFIG_FILEHASH_DATASIZE];
 unsigned char rdcSimilarity[CONFIG_RDC_SIMILARITY_DATASIZE];

 GUID uidDbGuid;
 DWORDLONG uidVersion;

 GUID gvsnDbGuid;
 DWORDLONG gvsnVersion;

 GUID parentDbGuid;
 DWORDLONG parentVersion;

 [string] WCHAR name[260+1];

 long flags;

 } FRS_UPDATE;

 typedef struct _FRS_UPDATE_CANCEL_DATA {

 FRS_UPDATE blockingUpdate;

 FRS_CONTENT_SET_ID contentSetId;

 FRS_DATABASE_ID gvsnDatabaseId;
 FRS_DATABASE_ID uidDatabaseId;
 FRS_DATABASE_ID parentDatabaseId;

 DWORDLONG gvsnVersion;
 DWORDLONG uidVersion;
 DWORDLONG parentVersion;

 unsigned long cancelType;

 long isUidValid;
 long isParentUidValid;
 long isBlockerValid;

 } FRS_UPDATE_CANCEL_DATA;

 typedef struct _FRS_RDC_SOURCE_NEED {
 ULONGLONG needOffset;
 ULONGLONG needSize;
 } FRS_RDC_SOURCE_NEED;

 typedef enum
 {
 TRANSPORT_SUPPORTS_RDC_SIMILARITY = 1
 } TransportFlags;

 typedef enum
 {
 RDC_UNCOMPRESSED = 0,
 RDC_XPRESS = 1
 } RDC_FILE_COMPRESSION_TYPES;

 typedef enum
 {

116 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 RDC_FILTERGENERIC = 0,
 RDC_FILTERMAX = 1,
 RDC_FILTERPOINT = 2,
 RDC_MAXALGORITHM = 3
 } RDC_CHUNKER_ALGORITHM;

 typedef enum
 {
 UPDATE_REQUEST_ALL = 0,
 UPDATE_REQUEST_TOMBSTONES = 1,
 UPDATE_REQUEST_LIVE = 2
 } UPDATE_REQUEST_TYPE;

 typedef enum
 {
 UPDATE_STATUS_DONE = 2,
 UPDATE_STATUS_MORE = 3
 } UPDATE_STATUS;

 typedef enum
 {
 RECORDS_STATUS_DONE = 0,
 RECORDS_STATUS_MORE = 1
 } RECORDS_STATUS;

 typedef enum
 {
 REQUEST_NORMAL_SYNC = 0,
 REQUEST_SLOW_SYNC = 1,
 REQUEST_SUBORDINATE_SYNC = 2
 } VERSION_REQUEST_TYPE;

 typedef enum
 {
 CHANGE_NOTIFY = 0,
 CHANGE_ALL = 2
 } VERSION_CHANGE_TYPE;

 typedef enum
 {
 SERVER_DEFAULT = 0,
 STAGING_REQUIRED = 1,
 RESTAGING_REQUIRED = 2
 } FRS_REQUESTED_STAGING_POLICY;

 typedef struct _FRS_RDC_PARAMETERS_FILTERMAX
 {
 [range(CONFIG_RDC_HORIZONSIZE_MIN, CONFIG_RDC_HORIZONSIZE_MAX)]
 unsigned short horizonSize;

 [range(CONFIG_RDC_HASHWINDOWSIZE_MIN, CONFIG_RDC_HASHWINDOWSIZE_MAX)]
 unsigned short windowSize;
 } FRS_RDC_PARAMETERS_FILTERMAX;

 typedef struct _FRS_RDC_PARAMETERS_FILTERPOINT
 {
 unsigned short minChunkSize;
 unsigned short maxChunkSize;
 } FRS_RDC_PARAMETERS_FILTERPOINT;

 typedef struct _FRS_RDC_PARAMETERS_GENERIC
 {
 unsigned short chunkerType;
 byte chunkerParameters[64];
 } FRS_RDC_PARAMETERS_GENERIC;

 typedef struct
 {

117 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 unsigned short rdcChunkerAlgorithm;
 [switch_is(rdcChunkerAlgorithm)] union
 {
 [case(RDC_FILTERGENERIC)] FRS_RDC_PARAMETERS_GENERIC filterGeneric;
 [case(RDC_FILTERMAX)] FRS_RDC_PARAMETERS_FILTERMAX filterMax;
 [case(RDC_FILTERPOINT)] FRS_RDC_PARAMETERS_FILTERPOINT filterPoint;
 } u;
 } FRS_RDC_PARAMETERS;

 typedef struct _FRS_RDC_FILEINFO
 {
 DWORDLONG onDiskFileSize;
 DWORDLONG fileSizeEstimate;
 unsigned short rdcVersion;
 unsigned short rdcMinimumCompatibleVersion;
 [range(0, CONFIG_RDC_MAX_LEVELS)]
 byte rdcSignatureLevels;
 RDC_FILE_COMPRESSION_TYPES compressionAlgorithm;

 [size_is(rdcSignatureLevels)]
 FRS_RDC_PARAMETERS rdcFilterParameters[*];
 } FRS_RDC_FILEINFO;

 typedef struct _FRS_ASYNC_VERSION_VECTOR_RESPONSE {
 ULONGLONG vvGeneration;
 unsigned long versionVectorCount;
 [size_is(versionVectorCount)]
 FRS_VERSION_VECTOR * versionVector;
 unsigned long epoqueVectorCount;
 [size_is(epoqueVectorCount)]
 FRS_EPOQUE_VECTOR * epoqueVector;
 } FRS_ASYNC_VERSION_VECTOR_RESPONSE;

 typedef struct _FRS_ASYNC_RESPONSE_CONTEXT {
 unsigned long sequenceNumber;
 DWORD status;

 FRS_ASYNC_VERSION_VECTOR_RESPONSE result;

 } FRS_ASYNC_RESPONSE_CONTEXT;

 #define FRS_UPDATE_FLAG_GHOSTED_HEADER = 0x04;
 #define FRS_UPDATE_FLAG_DATA = 0x08;
 #define FRS_UPDATE_FLAG_CLOCK_DECREMENTED = 0x10;

 typedef pipe byte BYTE_PIPE;

 [
 uuid(897e2e5f-93f3-4376-9c9c-fd2277495c27),
 version(1.0)
]
 interface FrsTransport
 {
 DWORD
 CheckConnectivity(
 [in] FRS_REPLICA_SET_ID replicaSetId,
 [in] FRS_CONNECTION_ID connectionId
);

 DWORD
 EstablishConnection(
 [in] FRS_REPLICA_SET_ID replicaSetId,
 [in] FRS_CONNECTION_ID connectionId,
 [in] DWORD downstreamProtocolVersion,
 [in] DWORD downstreamFlags,
 [out] DWORD *upstreamProtocolVersion,

118 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [out] DWORD *upstreamFlags
);

 DWORD
 EstablishSession(
 [in] FRS_CONNECTION_ID connectionId,
 [in] FRS_CONTENT_SET_ID contentSetId
);

 DWORD
 RequestUpdates(
 [in] FRS_CONNECTION_ID connectionId,
 [in] FRS_CONTENT_SET_ID contentSetId,
 [in, range(0,256)] DWORD creditsAvailable,
 [in, range(0,1)] long hashRequested,
 [in, range(UPDATE_REQUEST_ALL, UPDATE_REQUEST_LIVE)] UPDATE_REQUEST_TYPE
updateRequestType,

 [in] unsigned long versionVectorDiffCount,
 [in, size_is(versionVectorDiffCount)]
 FRS_VERSION_VECTOR *versionVectorDiff,
 [out, size_is(creditsAvailable), length_is(*updateCount)] FRS_UPDATE *frsUpdate,
 [out] DWORD *updateCount,
 [out] UPDATE_STATUS *updateStatus,
 [out] GUID *gvsnDbGuid,
 [out] DWORDLONG *gvsnVersion
);

 DWORD
 RequestVersionVector(
 [in] DWORD sequenceNumber,
 [in] FRS_CONNECTION_ID connectionId,
 [in] FRS_CONTENT_SET_ID contentSetId,
 [in, range(REQUEST_NORMAL_SYNC,REQUEST_SUBORDINATE_SYNC)] VERSION_REQUEST_TYPE
requestType,

 [in, range(CHANGE_NOTIFY,CHANGE_ALL)] VERSION_CHANGE_TYPE changeType,
 [in] ULONGLONG vvGeneration
);

 DWORD
 AsyncPoll(
 [in] FRS_CONNECTION_ID connectionId,
 [out] FRS_ASYNC_RESPONSE_CONTEXT* response
);

 DWORD
 RequestRecords(
 [in] FRS_CONNECTION_ID connectionId,
 [in] FRS_CONTENT_SET_ID contentSetId,
 [in] FRS_DATABASE_ID uidDbGuid,
 [in] DWORDLONG uidVersion,
 [in, out] DWORD *maxRecords,
 [out] DWORD *numRecords,
 [out] DWORD *numBytes,
 [out, size_is(,*numBytes)] byte **compressedRecords,
 [out] RECORDS_STATUS *recordsStatus
);

 DWORD
 UpdateCancel(
 [in] FRS_CONNECTION_ID connectionId,
 [in] FRS_UPDATE_CANCEL_DATA cancelData
);

 typedef [context_handle] void * PFRS_SERVER_CONTEXT;

 DWORD
 RawGetFileData(
 [in, out] PFRS_SERVER_CONTEXT *serverContext,

119 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [out, size_is(bufferSize), length_is(*sizeRead)] byte *dataBuffer,
 [in, range(0, CONFIG_TRANSPORT_MAX_BUFFER_SIZE)] DWORD bufferSize,
 [out] DWORD *sizeRead,
 [out] long *isEndOfFile
);

 DWORD
 RdcGetSignatures(
 [in] PFRS_SERVER_CONTEXT serverContext,
 [in, range(1, CONFIG_RDC_MAX_LEVELS)] byte level,
 [in] DWORDLONG offset,
 [out, size_is(length), length_is(*sizeRead)] byte *buffer,
 [in, range(1, CONFIG_RDC_MAX_NEEDLENGTH)] DWORD length,
 [out] DWORD *sizeRead
);

 DWORD
 RdcPushSourceNeeds(
 [in] PFRS_SERVER_CONTEXT serverContext,
 [in, size_is(needCount)] FRS_RDC_SOURCE_NEED *sourceNeeds,
 [in, range(0, CONFIG_RDC_NEED_QUEUE_SIZE)] DWORD needCount
);

 DWORD
 RdcGetFileData(
 [in] PFRS_SERVER_CONTEXT serverContext,
 [out, size_is(bufferSize), length_is(*sizeReturned)] byte *dataBuffer,
 [in, range(0, CONFIG_TRANSPORT_MAX_BUFFER_SIZE)] DWORD bufferSize,
 [out] DWORD *sizeReturned
);

 DWORD
 RdcClose(
 [in, out] PFRS_SERVER_CONTEXT *serverContext
);

 DWORD
 InitializeFileTransferAsync(
 [in] FRS_CONNECTION_ID connectionId,
 [in, out] FRS_UPDATE *frsUpdate,
 [in, range(0,1)] long rdcDesired,
 [in,out] FRS_REQUESTED_STAGING_POLICY *stagingPolicy,
 [out] PFRS_SERVER_CONTEXT *serverContext,
 [out] FRS_RDC_FILEINFO **rdcFileInfo,
 [out, size_is(bufferSize), length_is(*sizeRead)] byte *dataBuffer,
 [in, range(0, CONFIG_TRANSPORT_MAX_BUFFER_SIZE)] DWORD bufferSize,
 [out] DWORD *sizeRead,
 [out] long *isEndOfFile
);

 DWORD Opnum14NotUsedOnWire (void);

 DWORD
 RawGetFileDataAsync(
 [in] PFRS_SERVER_CONTEXT serverContext,
 [out] BYTE_PIPE* bytePipe
);

 DWORD
 RdcGetFileDataAsync(
 [in] PFRS_SERVER_CONTEXT serverContext,
 [out] BYTE_PIPE* bytePipe
);

 DWORD
 RdcFileDataTransferKeepAlive(
 [in] PFRS_SERVER_CONTEXT serverContext
);

120 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 }

121 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Windows Server 2003 R2 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows Server 2008 R2 operating system

 Windows Server 2012 operating system

 Windows Server 2012 R2 operating system

 Windows Server 2016 operating system

 Windows Server operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base

(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.1: The default behavior of a Windows-based server is to use dynamic endpoints.
Static ports can be specified on a connection using the attribute DNSHostName, as specified in section
2.3.10.

<2> Section 2.1.2: The default behavior of a Windows-based server is to use dynamic endpoints.
Static ports can be specified on a connection using the attribute DNSHostName specified in section
2.3.10.

<3> Section 2.2.1.1.1: Windows Server 2003 R2 identifies its DFS-R protocol version as 0x00050000.

Windows Server 2008 and Windows Server 2008 R2 both identify their DFS-R protocol version as
0x00050002. Windows Server 2012 identifies its DFS-R protocol version as 0x00050003. Windows
Server 2012 R2, Windows Server 2016, and Windows Server operating system identify their DFS-R
protocol version as 0x00050004.

<4> Section 2.2.1.4.1: Windows Server 2003 R2 servers do not perform this check.

<5> Section 2.2.1.4.11: The parameter onDiskFileSize is computed from the size of a cached

version of the marshaled, compressed file.

<6> Section 2.2.1.4.11: The parameter fileSizeEstimate is computed based on the allocated byte

ranges for the main data stream of a file.

<7> Section 2.2.1.4.11: The way that Windows computes rdcSignatureLevels is specified in [MS-
RDC].

<8> Section 2.3.1: If not present or not equal to "1.0.0.0", Windows replaces it with "1.0.0.0".

<9> Section 2.3.3: In version 0x00050002, 0x00050003, and 0x00050004 of the Distributed File

System: Replication (DFS-R) Protocol, it contains a comma-separated list of 0 or more strings that
specify which files are not compressed. Each string can be a file name or can be a file name with the

%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9
%5bMS-RDC%5d.pdf#Section_5b0272950b6345b98f620e49448350d9

122 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

initial portion replaced by the wild card character "*". There is no escape character; therefore, it is not
possible to specify a file name with a comma.

<10> Section 2.3.3: Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2,
Windows Server 2016, and Windows Server operating system are the only versions of DFS-R that

support read-only replicated folders.

<11> Section 2.3.3: This flag is set to 1 on Windows Server 2008 read-only domain controllers that
are using DFSR for SYSVOL replication. In addition, on Windows Server 2008 R2, Windows Server
2012, Windows Server 2012 R2, Windows Server 2016, and Windows Server operating system, this
flag is set to 1 to configure a replicated folder as read-only.

<12> Section 2.3.3: Windows Server 2003 R2 does not have the msDFSR-
DefaultCompressionExclusionFilter attribute. The list of default excluded compression extensions is

hard-coded: .wma, .wmv, .zip, .jpg, .mpg, .mpeg, .m1v, .mp2, .mp3, .mpa, .cab, .wav, .snd, .au,
.asf, .wm, .avi, .z, .gz, .tgz, and .frx.

<13> Section 2.3.5: Windows uses this security descriptor as a template for setting the security

descriptor on the DFS-R WMI provider.

<14> Section 2.3.7: If no value is set for this attribute, Windows uses a value of "*.tmp,*.bak,~*".

<15> Section 2.3.9: Windows configuration tools allow an arbitrary string to be stored here;

otherwise, ignore this field.

<16> Section 2.3.11: Windows configuration tools allow an arbitrary string to be stored here;
otherwise, ignore this field.

<17> Section 2.3.11: Windows approximates its bandwidth usage and attempts to limit it based on
the setting in the schedule. If the setting in the schedule is 0xF, Windows does not attempt to limit its
bandwidth usage. Windows attempts to limit its bandwidth usage for the connection for all values from
0x1 to 0xE, according to the following table.

 Value Limit in kilobytes per second

 1 16

 2 64

 3 128

 4 256

 5 512

 6 1,024

 7 2,048

 8 4,096

 9 8,192

 10 16,384

 11 32,768

 12 65,536

 13 131,072

 14 262,144

123 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<18> Section 3.1.6: Sharing violations DFS-R in Windows Server 2003 R2, Windows Server 2008,

Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016,
and Windows Server operating system accesses files based on NT file system (NTFS) semantics.

This implies respecting NTFS sharing semantics, which means that if other applications have files open
denying shared read access, DFS-R cannot read these files from disk. Similarly, if applications have
files open that deny shared delete access, DFS-R cannot update these files (by renaming the old
version of these files to a temporary name and renaming a new version of the file). DFS-R in Windows
Server 2003 R2 relies on internal timers (that use an exponential backoff scheme with a maximal
time-out of 5 minutes) to re-attempt the file system operations that it requires.

<19> Section 3.2.1: Windows injects configuration changes into DFS-R over Active Directory in

Windows Server 2003 R2, Windows Server 2008, Windows Server 2008 R2 operating system,
Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, and Windows Server
operating system.

<20> Section 3.2.2: Windows-based servers maintain a 30-minute time-out for inactivity on an open

context handle before closing it.

<21> Section 3.2.4.1: Gaps in the opnum numbering sequence apply to Windows as follows.

Opnum Description

14 Just returns ERROR_NOT_IMPLEMENTED. It is never used.

<22> Section 3.2.4.1.2: DFS-R client implementations on enterprise SKUs of Windows Server 2003
R2, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012
R2, Windows Server 2016, and Windows Server operating system set the
TRANSPORT_SUPPORTS_RDC_SIMILARITY bit in the downstreamFlags parameter to 1 when calling
EstablishConnection.

<23> Section 3.2.4.1.4: Windows Server 2003 R2, Windows Server 2008, and Windows Server 2008
R2 do not generate version vector tombstone updates.

<24> Section 3.2.4.1.4: Windows-based servers generate a version vector tombstone update for all
replicated folders every time the service starts up and every 15 days thereafter.

<25> Section 3.2.4.1.4: For each GUID (m1), Windows-based servers generate a version vector
tombstone update when the last refresh within a set of updates, whose GVSN shares the same GUID
(m1), took place more than 60 days ago.

<26> Section 3.2.4.1.7: Windows Server 2003 R2, Windows Server 2008, Windows Server 2008 R2,

Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, and Windows Server
operating system implementations of DFS-R never return more than 1365 = 64 KB / size
of(FRS_ID_GVSN) records, even if the client specifies a larger value in the maxRecords parameter.

<27> Section 3.2.4.1.7: Windows Server 2003 R2 and Windows Server 2008 do not verify this

condition.

<28> Section 3.2.4.1.9: The default behavior of a Windows-based server is to complete the request
successfully and set the sizeRead parameter to zero on return.

<29> Section 3.2.4.1.14: DFS-R with version 0x00050002 or later uses an implementation-defined
failure value when performing operations on the database, such as the deletion of a directory tree, an
NTFS journal wrap recovery, an NTFS journal loss recovery, or a dirty shutdown recovery, which
prevents the file from being replicated until the operation is completed.

124 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<30> Section 3.2.4.1.14: DFS-R in Windows Server 2003 R2, Windows Server 2008, Windows Server
2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, and Windows

Server operating system always uses the following values.

 HorizonSize, level 11024
 Hash Window Size, level 148
 HorizonSize, level 2+ 128
 Hash Window Size, level 2+2

<31> Section 3.2.4.1.14: By default, Windows-based servers set the value to 16 which can be
modified by the registry key
[HKLM\SYSTEM\CurrentControlSet\Services\DFSR\Parameters\Settings\UpdateWorkerThreadCount].

<32> Section 3.2.4.1.14.1: The only type of reparse point that is replicated as a reparse point by
Windows implementations of DFS-R is IO_REPARSE_TAG_SYMLINK. Reparse point types
IO_REPARSE_TAG_SIS and IO_REPARSE_TAG_HSM are replicated as normal files rather than as
reparse points. No other reparse point types (IO_REPARSE_TAG_MOUNT_POINT,

IO_REPARSE_TAG_DFS, and so on) are replicated, neither as reparse points nor normal files.

<33> Section 3.2.4.1.14.1: Windows implementations of DFS-R do not marshal or send a file's Object
ID Backup Stream.

<34> Section 3.3.1.3: In Windows, Slow Sync is initiated by the client once a week.

<35> Section 3.3.1.5: DFS-R uses the following algorithm to compute RDC recursion depth.

 h := 18 / horizonSize0
 depth := 0
 minSizeLevel := 65536
 WHILE (depth < 8) AND (size > minSizeLevel)
 size := size * h + 24
 h := 18 / (2 * horizonSize1)
 minSizeLevel := 32768
 depth := depth + 1
 ENDWHILE

The various constants used are the following.

 18 is the size, in bytes, of an RDC signature (16-byte hash and 2-byte length).

 65,536 is the minimum size, in bytes, of a file that will be considered for RDC transfer.

 32,768 is the minimum size, in bytes, of a signature file that allows increasing the recursion level.

 24 is the size, in bytes, of the RDC signature file header.

 horizonSize0 is 1,024. Used for calculating RDC signatures of the file data.

 horizonSize1 is 256. Used for calculating all recursive levels of RDC signatures.

<36> Section 3.3.2: Connection schedules. Clients establish and terminate connections based on
configured schedules. The only observed effect on the server is that clients could periodically
reconnect to it. Connection schedules can be configured externally to Windows with a 15-minute
granularity.

<37> Section 3.3.4.6.2: On the following servers without the QFE 353495, an update with a lower
value of createTime supersedes updates with higher values.

 Windows Server 2003 R2

125 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 Windows Server 2008

 Windows Server 2008 R2

Servers with two different behaviors cannot be mixed.

<38> Section 3.3.4.6.2: Cycle conflicts are resolved on Windows implementations of DFS-R.

<39> Section 3.3.4.6.2: On the following servers without the QFE 353495, directory name conflicts
are handled in the same way as file name conflicts.

 Windows Server 2003 R2

 Windows Server 2008

 Windows Server 2008 R2

<40> Section 3.3.4.6.2: For each GUID (m1), Windows implementations of DFS-R generate a version
vector tombstone update (with present set to 0) when the last refresh within a set of updates, whose

GVSN shares the same GUID (m1), took place more than 60 days ago. Version vector tombstones are
subsumed if the machine originating the GUID (m1) on the version vector tombstone receives the
version vector tombstone.

<41> Section 3.3.4.6.2: Windows-based servers generate a version vector tombstone update, with
present set to 1, for all replicated folders every time the service starts up and every 15 days
thereafter. This interval can be modified using the Registry Key GcDbSendAliveIntervalInSeconds

under \HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DFSR\Parameters\Settings\.

The following servers do not generate this update:

 Windows Server 2003 R2

 Windows Server 2008

 Windows Server 2008 R2

<42> Section 3.3.4.16: Windows Server 2003 R2, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, and Windows Server

operating system implementations of DFS-R will retry the records request up to a maximum of 128
retries before aborting the ongoing slow sync.

<43> Section 3.3.4.16.2: In Windows, the resolution is to reanimate missing records. That is, updates
whose UIDs are not in the client's store are downloaded from the server.

<44> Section 3.3.4.18: DFS-R clients with version 0x00050002 use REQUEST_SUBORDINATE_SYNC
to retrieve the server’s version chain vector in response to changes on the client's file system. The
server’s version chain vector is used to synchronize the clients back to a state where they are a mirror

image of the server, thus deleting possibly new files on the clients, as opposed to replicating these
out. This behavior is also known as read-only replicated folders.

126 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

127 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

9 Index

A

Abstract data model
 client (section 3.1.1 42, section 3.3.1 82)
 server (section 3.1.1 42, section 3.2.1 50)
Abstract protocol examples 102
Abstract protocol examples example 102
Aggregate definitions 25
Applicability 15
AsyncPoll (section 3.2.4.1.6 60, section 3.3.4.5 90,

section 3.3.4.18 101)
AsyncPoll Completes for

REQUEST_SUBORDINATE_SYNC method 101
AsyncPoll Completes method 90
AsyncPoll method 60
Authentication 17

B

Basic content distribution example 102
Binding 17
BYTE_PIPE 25

C

Capability negotiation 15
Change tracking 126
CheckConnectivity 52
CheckConnectivity method 52
Client
 abstract data model (section 3.1.1 42, section

3.3.1 82)
 AsyncPoll Completes for

REQUEST_SUBORDINATE_SYNC method 101
 AsyncPoll Completes method 90
 DisConnected method 88
 EstablishConnection Completes method 88
 EstablishSession Completes method 88
 File Downloads method 94
 initialization (section 3.1.3 50, section 3.3.3 87)
 InitializeFileTransferAsync Completes method 94
 local events (section 3.1.6 50, section 3.3.6 101)
 message processing (section 3.1.4 50, section

3.3.4 88)
 overview (section 3.1 41, section 3.3 79)
 RawGetFileData Completes method 95
 RawGetFileDataAsync Completes method 96
 RdcClose Completes method 96
 RdcGetFileData Completes method 98
 RdcGetFileDataAsync Completes method 99
 RdcGetSignatures Completes method 97
 RdcPushSourceNeeds Completes method 97
 Request Records Completes method 99
 RequestUpdates Completes method 91
 RequestVersionVector Completes method 89
 sequencing rules (section 3.1.4 50, section 3.3.4

88)

 timer events (section 3.1.5 50, section 3.3.5 101)
 timers (section 3.1.2 50, section 3.3.2 87)
 UpdateCancel method 100
Compressed data format 76
Computer 38

Concurrent updates and tombstones example 104
CONFIG_FILEHASH_DATASIZE 19
CONFIG_RDC_HASHWINDOWSIZE_MAX 19
CONFIG_RDC_HASHWINDOWSIZE_MIN 19
CONFIG_RDC_HORIZONSIZE_MAX 19
CONFIG_RDC_HORIZONSIZE_MIN 19
CONFIG_RDC_MAX_LEVELS 18
CONFIG_RDC_MAX_NEEDLENGTH 18
CONFIG_RDC_NEED_QUEUE_SIZE 19
CONFIG_RDC_SIMILARITY_DATASIZE 19
CONFIG_RDC_VERSION 18
CONFIG_RDC_VERSION_COMPATIBLE 18
CONFIG_TRANSPORT_MAX_BUFFER_SIZE 19
Configuration example 111
Constants 18
Custom marshaling format 73

D

Data model - abstract
 client (section 3.1.1 42, section 3.3.1 82)
 server (section 3.1.1 42, section 3.2.1 50)
Data types

 aggregate definitions 25
 constants 18
 enumerations 21
 simple type definitions 24
Directory moves example 105
Directory service schema elements 32
DisConnected 88
DisConnected method 88
Downloads - file 94

E

Elements - directory service schema 32
Enumerations 21
EPOQUE 25
EstablishConnection (section 3.2.4.1.2 53, section

3.3.4.2 88)
EstablishConnection Completes method 88
EstablishConnection method 53
Establishing connections 82
EstablishSession (section 3.2.4.1.3 55, section

3.3.4.3 88)
EstablishSession Completes method 88
EstablishSession method 55
Events
 local - client 101
 local - server 79
 timer - client 101
 timer - server 78
Examples
 abstract protocol examples 102
 basic content distribution example 102
 concurrent updates and tombstones example 104
 configuration example 111
 directory moves example 105
 marshaled data format example 110
 name conflicts example 106
 object hierarchy example 111
 ordering on UIDs and GVSNs example 111

128 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 requesting updates example 108
 RequestVersionVector example 108
 version chain vector logic - three machines

example 103
 version chain vector logic - two machines example

103
 wire-format arguments example 108

F

FALSE 20
Fields - vendor-extensible 16
File downloads 94
File Downloads method 94
File transfer (section 3.3.1.4 86, section 3.3.1.5 86)
FRS_ASYNC_RESPONSE_CONTEXT 31
FRS_ASYNC_RESPONSE_CONTEXT structure 31

FRS_ASYNC_VERSION_VECTOR_RESPONSE 30
FRS_ASYNC_VERSION_VECTOR_RESPONSE

structure 30
FRS_COMMUNICATION_PROTOCOL_VERSION 18
FRS_CONNECTION_ID 25
FRS_CONTENT_SET_ID 24
FRS_DATABASE_ID 24
FRS_EPOQUE_VECTOR 25
FRS_EPOQUE_VECTOR structure 25
FRS_ID_GVSN 26
FRS_ID_GVSN structure 26
FRS_MEMBER_ID 24
FRS_RDC_FILEINFO 30
FRS_RDC_FILEINFO structure 30
FRS_RDC_PARAMETERS 29
FRS_RDC_PARAMETERS structure 29
FRS_RDC_PARAMETERS_FILTERMAX 28
FRS_RDC_PARAMETERS_FILTERMAX structure 28
FRS_RDC_PARAMETERS_FILTERPOINT 29
FRS_RDC_PARAMETERS_FILTERPOINT structure 29
FRS_RDC_PARAMETERS_GENERIC 29
FRS_RDC_PARAMETERS_GENERIC structure 29
FRS_RDC_SOURCE_NEED 28
FRS_RDC_SOURCE_NEED structure 28
FRS_REPLICA_SET_ID 24
FRS_REQUESTED_STAGING_POLICY 23
FRS_REQUESTED_STAGING_POLICY enumeration 23
FRS_UPDATE 26
FRS_UPDATE structure 26
FRS_UPDATE_CANCEL_DATA 27
FRS_UPDATE_CANCEL_DATA structure 27
FRS_UPDATE_FLAG_DATA 20
FRS_UPDATE_FLAG_GHOSTED_HEADER 20
FRS_VERSION_VECTOR 25
FRS_VERSION_VECTOR structure 25
FrsTransport Methods method 51
Full IDL 114

G

Glossary 8
GVSN ordering example 111

I

IDL 114
Implementer - security considerations 113
Index of security parameters 113

Informative references 12
Initialization
 client (section 3.1.3 50, section 3.3.3 87)
 server (section 3.1.3 50, section 3.2.3 51)
InitializeFileTransferAsync (section 3.2.4.1.14 71,

section 3.3.4.8 94)
InitializeFileTransferAsync Completes method 94
InitializeFileTransferAsync method 71
Introduction 8

L

Local events
 client (section 3.1.6 50, section 3.3.6 101)
 server (section 3.1.6 50, section 3.2.6 79)

M

Main update request state machine 83
Marshaled data format example 110
Message processing
 client (section 3.1.4 50, section 3.3.4 88)
 server (section 3.1.4 50, section 3.2.4 51)
Messages
 aggregate definitions 25
 client authentication 17
 constants 18
 enumerations 21
 server side binding 17
 simple type definitions 24
 syntax 18
 transport 17
Methods 51
 AsyncPoll Completes 90
 AsyncPoll Completes for

REQUEST_SUBORDINATE_SYNC 101
 DisConnected 88
 EstablishConnection Completes 88
 EstablishSession Completes 88
 File Downloads 94
 FrsTransport Methods 51
 InitializeFileTransferAsync Completes 94
 RawGetFileData Completes 95
 RawGetFileDataAsync Completes 96
 RdcClose Completes 96
 RdcGetFileData Completes 98
 RdcGetFileDataAsync Completes 99
 RdcGetSignatures Completes 97
 RdcPushSourceNeeds Completes 97
 Request Records Completes 99
 RequestUpdates Completes 91
 RequestVersionVector Completes 89
 UpdateCancel 100
msDFSR-Connection 38
msDFSR-Content 37
msDFSR-ContentSet 37
msDFSR-GlobalSettings 36

msDFSR-LocalSettings 34
msDFSR-Member 38
msDFSR-ReplicationGroup 36
msDFSR-Subscriber 35
msDFSR-Subscription 35
msDFSR-Topology 37

N

129 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Name conflicts example 106
Normative references 11

O

Object hierarchy example 111
Ordering example 111
Overview 12
Overview (synopsis) 12

P

Parameter index - security 113
Parameters - security index 113
PFRS_SERVER_CONTEXT 31
Preconditions 15
Prerequisites 15
Product behavior 121

R

Raw file transfer 86
RawGetFileData (section 3.2.4.1.9 63, section

3.3.4.9 95)
RawGetFileData Completes method 95
RawGetFileData method 63
RawGetFileDataAsync (section 3.2.4.1.15 76, section

3.3.4.11 96)
RawGetFileDataAsync Completes method 96
RawGetFileDataAsync method 76
RDC file transfer 86
RDC_CHUNKER_ALGORITHM 22
RDC_CHUNKER_ALGORITHM enumeration 22
RDC_FILE_COMPRESSION_TYPES 21
RDC_FILE_COMPRESSION_TYPES enumeration 21
RdcClose (section 3.2.4.1.13 70, section 3.3.4.10

96)
RdcClose Completes method 96
RdcClose method 70
RdcFileDataTransferKeepAlive method 78
RdcGetFileData (section 3.2.4.1.12 67, section

3.3.4.14 98)
RdcGetFileData Completes method 98
RdcGetFileData method 67
RdcGetFileDataAsync Completes method 99
RdcGetFileDataAsync method 77
RdcGetSignatures (section 3.2.4.1.10 64, section

3.3.4.12 97)
RdcGetSignatures Completes method 97
RdcGetSignatures method 64

RdcPushSourceNeeds (section 3.2.4.1.11 66, section
3.3.4.13 97)

RdcPushSourceNeeds Completes method 97
RdcPushSourceNeeds method 66
RECORDS_STATUS 23
RECORDS_STATUS enumeration 23
References 11
 informative 12
 normative 11
Relationship to other protocols 15
Request Records Completes method 99
Requesting updates example 108
RequestRecords 61
RequestRecords method 61

RequestUpdates (section 3.2.4.1.4 56, section
3.3.4.6 91)

RequestUpdates Completes method 91
RequestUpdates method 56
RequestVersionVector (section 3.2.4.1.5 58, section

3.3.4.4 89)
RequestVersionVector Completes method 89
RequestVersionVector example 108
RequestVersionVector method 58

S

Schema elements - directory service 32
Security
 implementer considerations 113
 parameter index 113
Sequencing rules

 client (section 3.1.4 50, section 3.3.4 88)
 server (section 3.1.4 50, section 3.2.4 51)
Server
 abstract data model (section 3.1.1 42, section

3.2.1 50)
 FrsTransport Methods method 51
 initialization (section 3.1.3 50, section 3.2.3 51)
 local events (section 3.1.6 50, section 3.2.6 79)
 message processing (section 3.1.4 50, section

3.2.4 51)
 overview 41
 sequencing rules (section 3.1.4 50, section 3.2.4

51)
 timer events (section 3.1.5 50, section 3.2.5 78)
 timers (section 3.1.2 50, section 3.2.2 51)
Simple type definitions 24
SlowSync (section 3.3.1.3 84, section 3.3.4.16 99)
stagingPolicy 94
Standards assignments 16
Syntax
 aggregate definitions 25
 constants 18
 enumerations 21
 overview 18
 simple type definitions 24

T

Timer events
 client (section 3.1.5 50, section 3.3.5 101)
 server (section 3.1.5 50, section 3.2.5 78)
Timers
 client (section 3.1.2 50, section 3.3.2 87)
 server (section 3.1.2 50, section 3.2.2 51)
Tracking changes 126
Transport 17
TransportFlags 21
TransportFlags enumeration 21
TRUE 20

U

UID ordering example 111
UPDATE_REQUEST_TYPE 22
UPDATE_REQUEST_TYPE enumeration 22
UPDATE_STATUS 22
UPDATE_STATUS enumeration 22

130 / 130

[MS-FRS2] - v20171201
Distributed File System Replication Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

UpdateCancel (section 3.2.4.1.8 62, section 3.3.4.17
100)

UpdateCancel method (section 3.2.4.1.8 62, section
3.3.4.17 100)

V

Vendor-extensible fields 16
Version chain vector logic - three machines example

103
Version chain vector logic - two machines example

103
VERSION_CHANGE_TYPE 23
VERSION_CHANGE_TYPE enumeration 23
VERSION_REQUEST_TYPE 23
VERSION_REQUEST_TYPE enumeration 23
Versioning 15

W

Wire-format arguments example 108

X

xpress_block packet 31
xpress_block_header packet 32

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 Client Authentication Requirements
	2.1.2 Server-Side Binding

	2.2 Message Syntax
	2.2.1 Common Data Types
	2.2.1.1 Constants
	2.2.1.1.1 FRS_COMMUNICATION_PROTOCOL_VERSION
	2.2.1.1.2 CONFIG_RDC_VERSION
	2.2.1.1.3 CONFIG_RDC_VERSION_COMPATIBLE
	2.2.1.1.4 CONFIG_RDC_MAX_LEVELS
	2.2.1.1.5 CONFIG_RDC_MAX_NEEDLENGTH
	2.2.1.1.6 CONFIG_RDC_NEED_QUEUE_SIZE
	2.2.1.1.7 CONFIG_RDC_HORIZONSIZE_MIN
	2.2.1.1.8 CONFIG_RDC_HORIZONSIZE_MAX
	2.2.1.1.9 CONFIG_RDC_HASHWINDOWSIZE_MIN
	2.2.1.1.10 CONFIG_RDC_HASHWINDOWSIZE_MAX
	2.2.1.1.11 CONFIG_RDC_SIMILARITY_DATASIZE
	2.2.1.1.12 CONFIG_TRANSPORT_MAX_BUFFER_SIZE
	2.2.1.1.13 CONFIG_FILEHASH_DATASIZE
	2.2.1.1.14 FRS_UPDATE_FLAG_GHOSTED_HEADER
	2.2.1.1.15 FRS_UPDATE_FLAG_DATA
	2.2.1.1.16 TRUE
	2.2.1.1.17 FALSE
	2.2.1.1.18 FRS_UPDATE_FLAG_CLOCK_DECREMENTED
	2.2.1.1.19 FRS_XPRESS_FILE_HEADER_SIZE
	2.2.1.1.20 XPRESS_RDC_MIN_GET_DATA_BUFFER_SIZE
	2.2.1.1.21 XPRESS_RDC_MIN_GET_DATA_BUFFER_SIZE_WITH_FILE_HEADER
	2.2.1.1.22 XPRESS_RDC_MAX_NB_NEEDS_FOR_COMPRESSION
	2.2.1.1.23 X_CONFIG_XPRESS_BLOCK_SIZE

	2.2.1.2 Enumerations
	2.2.1.2.1 TransportFlags
	2.2.1.2.2 RDC_FILE_COMPRESSION_TYPES
	2.2.1.2.3 RDC_CHUNKER_ALGORITHM
	2.2.1.2.4 UPDATE_REQUEST_TYPE
	2.2.1.2.5 UPDATE_STATUS
	2.2.1.2.6 RECORDS_STATUS
	2.2.1.2.7 VERSION_REQUEST_TYPE
	2.2.1.2.8 VERSION_CHANGE_TYPE
	2.2.1.2.9 FRS_REQUESTED_STAGING_POLICY

	2.2.1.3 Simple Type Definitions
	2.2.1.3.1 FRS_REPLICA_SET_ID
	2.2.1.3.2 FRS_CONTENT_SET_ID
	2.2.1.3.3 FRS_DATABASE_ID
	2.2.1.3.4 FRS_MEMBER_ID
	2.2.1.3.5 FRS_CONNECTION_ID
	2.2.1.3.6 EPOQUE
	2.2.1.3.7 BYTE_PIPE

	2.2.1.4 Aggregate Definitions
	2.2.1.4.1 FRS_VERSION_VECTOR
	2.2.1.4.2 FRS_EPOQUE_VECTOR
	2.2.1.4.3 FRS_ID_GVSN
	2.2.1.4.4 FRS_UPDATE
	2.2.1.4.5 FRS_UPDATE_CANCEL_DATA
	2.2.1.4.6 FRS_RDC_SOURCE_NEED
	2.2.1.4.7 FRS_RDC_PARAMETERS_FILTERMAX
	2.2.1.4.8 FRS_RDC_PARAMETERS_FILTERPOINT
	2.2.1.4.9 FRS_RDC_PARAMETERS_GENERIC
	2.2.1.4.10 FRS_RDC_PARAMETERS
	2.2.1.4.11 FRS_RDC_FILEINFO
	2.2.1.4.12 FRS_ASYNC_VERSION_VECTOR_RESPONSE
	2.2.1.4.13 FRS_ASYNC_RESPONSE_CONTEXT
	2.2.1.4.14 PFRS_SERVER_CONTEXT
	2.2.1.4.15 XPRESS Block
	2.2.1.4.15.1 XPRESS Block Header

	2.3 Directory Service Schema Elements
	2.3.1 msDFSR-LocalSettings
	2.3.2 msDFSR-Subscriber
	2.3.3 msDFSR-Subscription
	2.3.4 msDFSR-GlobalSettings
	2.3.5 msDFSR-ReplicationGroup
	2.3.6 msDFSR-Content
	2.3.7 msDFSR-ContentSet
	2.3.8 msDFSR-Topology
	2.3.9 msDFSR-Member
	2.3.10 Computer
	2.3.11 msDFSR-Connection
	2.3.12 nTDSConnection

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 Compression
	3.1.1.1.1 Pseudocode Conventions
	3.1.1.1.2 Data Structures
	3.1.1.1.2.1 PREFIX_CODE_NODE
	3.1.1.1.2.2 PREFIX_CODE_SYMBOL
	3.1.1.1.2.3 BITSTRING

	3.1.1.1.3 Procedures
	3.1.1.1.3.1 PrefixCodeTreeRebuild
	3.1.1.1.3.2 PrefixCodeTreeAddLeaf
	3.1.1.1.3.3 SortSymbols
	3.1.1.1.3.4 CompareSymbols
	3.1.1.1.3.5 BitstringInit
	3.1.1.1.3.6 BitstringLookup
	3.1.1.1.3.7 BitstreamSkip
	3.1.1.1.3.8 PrefixCodeTreeDecodeSymbol
	3.1.1.1.3.9 Decompress

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 FrsTransport Methods
	3.2.4.1.1 CheckConnectivity (Opnum 0)
	3.2.4.1.2 EstablishConnection (Opnum 1)
	3.2.4.1.3 EstablishSession (Opnum 2)
	3.2.4.1.4 RequestUpdates (Opnum 3)
	3.2.4.1.5 RequestVersionVector (Opnum 4)
	3.2.4.1.6 AsyncPoll (Opnum 5)
	3.2.4.1.7 RequestRecords (Opnum 6)
	3.2.4.1.8 UpdateCancel (Opnum 7)
	3.2.4.1.9 RawGetFileData (Opnum 8)
	3.2.4.1.10 RdcGetSignatures (Opnum 9)
	3.2.4.1.11 RdcPushSourceNeeds (Opnum 10)
	3.2.4.1.12 RdcGetFileData (Opnum 11)
	3.2.4.1.13 RdcClose (Opnum 12)
	3.2.4.1.14 InitializeFileTransferAsync (Opnum 13)
	3.2.4.1.14.1 Custom Marshaling Format
	3.2.4.1.14.2 Compressed Data Format

	3.2.4.1.15 RawGetFileDataAsync (Opnum 15)
	3.2.4.1.16 RdcGetFileDataAsync (Opnum 16)
	3.2.4.1.17 RdcFileDataTransferKeepAlive (Opnum 17)

	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 Client Details
	3.3.1 Abstract Data Model
	3.3.1.1 Connection State Machine
	3.3.1.2 Replicated Folder Session State Machine
	3.3.1.3 Slow Sync
	3.3.1.4 Raw File Transfer
	3.3.1.5 RDC File Transfer

	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 DisConnected
	3.3.4.2 EstablishConnection Completes
	3.3.4.3 EstablishSession Completes
	3.3.4.4 RequestVersionVector Completes
	3.3.4.5 AsyncPoll Completes
	3.3.4.6 RequestUpdates Completes
	3.3.4.6.1 Requesting Updates (State Transitions)
	3.3.4.6.2 Processing Updates

	3.3.4.7 File Downloads
	3.3.4.7.1 stagingPolicy Parameter

	3.3.4.8 InitializeFileTransferAsync Completes
	3.3.4.9 RawGetFileData Completes
	3.3.4.10 RdcClose Completes
	3.3.4.11 RawGetFileDataAsync Completes
	3.3.4.12 RdcGetSignatures Completes
	3.3.4.13 RdcPushSourceNeeds Completes
	3.3.4.14 RdcGetFileData Completes
	3.3.4.15 RdcGetFileDataAsync Completes
	3.3.4.16 Request Records Completes
	3.3.4.16.1 Requesting Records (State Transitions)
	3.3.4.16.2 Processing Records

	3.3.4.17 UpdateCancel
	3.3.4.18 AsyncPoll Completes for REQUEST_SUBORDINATE_SYNC

	3.3.5 Timer Events
	3.3.6 Other Local Events

	4 Protocol Examples
	4.1 Abstract Protocol Examples
	4.1.1 Basic Content Distribution
	4.1.2 Version Chain Vector Logic - Two Machines
	4.1.3 Version Chain Vector Logic - Three Machines
	4.1.4 Concurrent Updates and Tombstones
	4.1.5 Directory Moves
	4.1.6 Name Conflicts

	4.2 Examples with Wire-Format Arguments
	4.2.1 RequestVersionVector
	4.2.2 Requesting Updates
	4.2.3 Marshaled Data Format
	4.2.4 Ordering on UIDs and GVSNs

	4.3 Configuration
	4.3.1 Example Objects in the DFS-R Object Hierarchy

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

