

1 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[MS-FAX-Diff]:

Fax Server and Client Remote Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

12/18/2006 0.1 New Version 0.1 release

3/2/2007 1.0 Major Version 1.0 release

4/3/2007 1.1 Minor Version 1.1 release

5/11/2007 1.2 Minor Version 1.2 release

6/1/2007 1.2.1 Editorial Changed language and formatting in the technical content.

7/3/2007 1.2.2 Editorial Changed language and formatting in the technical content.

7/20/2007 1.2.3 Editorial Changed language and formatting in the technical content.

8/10/2007 1.3 Minor Clarified the meaning of the technical content.

9/28/2007 1.3.1 Editorial Changed language and formatting in the technical content.

10/23/2007 1.4 Minor Updated references.

11/30/2007 1.4.1 Editorial Changed language and formatting in the technical content.

1/25/2008 1.4.2 Editorial Changed language and formatting in the technical content.

3/14/2008 1.4.3 Editorial Changed language and formatting in the technical content.

5/16/2008 2.0 Major Updated and revised the technical content.

6/20/2008 3.0 Major Updated and revised the technical content.

7/25/2008 4.0 Major Updated and revised the technical content.

8/29/2008 4.1 Minor Clarified the meaning of the technical content.

10/24/2008 4.1.1 Editorial Changed language and formatting in the technical content.

12/5/2008 4.2 Minor Clarified the meaning of the technical content.

1/16/2009 5.0 Major Updated and revised the technical content.

2/27/2009 6.0 Major Updated and revised the technical content.

4/10/2009 7.0 Major Updated and revised the technical content.

5/22/2009 8.0 Major Updated and revised the technical content.

7/2/2009 9.0 Major Updated and revised the technical content.

8/14/2009 10.0 Major Updated and revised the technical content.

9/25/2009 11.0 Major Updated and revised the technical content.

11/6/2009 12.0 Major Updated and revised the technical content.

12/18/2009 13.0 Major Updated and revised the technical content.

1/29/2010 14.0 Major Updated and revised the technical content.

3/12/2010 15.0 Major Updated and revised the technical content.

3 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Date
Revision
History

Revision
Class Comments

4/23/2010 16.0 Major Updated and revised the technical content.

6/4/2010 16.1 Minor Clarified the meaning of the technical content.

7/16/2010 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 17.0 Major Updated and revised the technical content.

2/11/2011 18.0 Major Updated and revised the technical content.

3/25/2011 19.0 Major Updated and revised the technical content.

5/6/2011 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 19.1 Minor Clarified the meaning of the technical content.

9/23/2011 20.0 Major Updated and revised the technical content.

12/16/2011 21.0 Major Updated and revised the technical content.

3/30/2012 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 21.1 Minor Clarified the meaning of the technical content.

10/25/2012 21.1 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 21.1 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 22.0 Major Updated and revised the technical content.

11/14/2013 23.0 Major Updated and revised the technical content.

2/13/2014 23.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 23.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 24.0 Major Significantly changed the technical content.

10/16/2015 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Date
Revision
History

Revision
Class Comments

9/15/2017 25.0 Major Significantly changed the technical content.

5 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Table of Contents

1 Introduction .. 11
1.1 Glossary ... 11
1.2 References .. 15

1.2.1 Normative References ... 15
1.2.2 Informative References ... 15

1.3 Overview .. 16
1.3.1 Fax Server Protocol ... 16
1.3.2 Fax Client Protocol .. 17

1.4 Relationship to Other Protocols .. 17
1.5 Prerequisites/Preconditions ... 17
1.6 Applicability Statement ... 17
1.7 Versioning and Capability Negotiation ... 17
1.8 Vendor-Extensible Fields ... 18
1.9 Standards Assignments ... 18

2 Messages ... 19
2.1 Transport .. 19
2.2 Common Data Types .. 19

2.2.1 Common Custom-Marshaling Rules ... 19
2.2.1.1 Single Data Type Instance ... 20
2.2.1.2 Array of N Data Type Instances .. 21
2.2.1.3 Marshaling Referenced Data Types .. 21

2.2.2 FAX_ENUM_MESSAGE_FOLDER .. 22
2.2.3 FAX_ENUM_CONFIG_OPTION ... 22
2.2.4 FAX_ENUM_PERSONAL_PROF_TYPES .. 23
2.2.5 FAX_JOB_ENTRY .. 23
2.2.6 _FAX_JOB_ENTRY ... 26
2.2.7 FAX_PORT_INFO .. 32
2.2.8 _FAX_PORT_INFO ... 35
2.2.9 FAX_ROUTING_METHOD .. 37
2.2.10 FAX_DEVICE_STATUS ... 39
2.2.11 FAX_LOG_CATEGORY .. 45
2.2.12 FAX_COVERPAGE_INFO_EXW ... 47
2.2.13 FAX_JOB_PARAMW ... 47
2.2.14 FAX_JOB_PARAM_EXW .. 49
2.2.15 FAX_MESSAGE_PROPS .. 51
2.2.16 FAX_OUTBOX_CONFIG .. 51
2.2.17 _FAX_OUTBOX_CONFIG .. 52
2.2.18 FAX_REASSIGN_INFO ... 53
2.2.19 FAX_SERVER_ACTIVITY ... 54
2.2.20 _FAX_SERVER_ACTIVITY ... 55
2.2.21 FAX_SPECIFIC_ACCESS_RIGHTS .. 56
2.2.22 FAX_VERSION .. 57
2.2.23 _FAX_VERSION .. 58
2.2.24 FAX_ACCOUNT_INFO_0 ... 59
2.2.25 FAX_ACTIVITY_LOGGING_CONFIGW ... 60
2.2.26 _FAX_ACTIVITY_LOGGING_CONFIGW ... 61
2.2.27 FAX_ARCHIVE_CONFIGW .. 62
2.2.28 FAX_CONFIGURATIONW .. 63
2.2.29 _FAX_CONFIGURATIONW .. 65
2.2.30 FAX_DEVICE_PROVIDER_INFO ... 67
2.2.31 FAX_GENERAL_CONFIG ... 69
2.2.32 FAX_GLOBAL_ROUTING_INFOW ... 73
2.2.33 _FAX_GLOBAL_ROUTING_INFOW ... 73
2.2.34 FAX_JOB_ENTRY_EX_1.. 75

6 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.35 FAX_JOB_ENTRY_EXW .. 80
2.2.36 FAX_JOB_STATUS... 84
2.2.37 FAX_MESSAGE_1 .. 89
2.2.38 FAX_MESSAGEW .. 97
2.2.39 RPC_FAX_OUTBOUND_ROUTING_GROUPW ... 104
2.2.40 _RPC_FAX_OUTBOUND_ROUTING_GROUPW ... 105
2.2.41 RPC_FAX_OUTBOUND_ROUTING_RULEW ... 107
2.2.42 _RPC_FAX_OUTBOUND_ROUTING_RULEW .. 107

2.2.42.1 _FAX_RULE_DESTINATION_DEVICE_ID .. 109
2.2.42.2 _FAX_RULE_DESTINATION_GROUP_NAME .. 109

2.2.43 FAX_PRINTER_INFOW .. 110
2.2.44 FAX_PERSONAL_PROFILEW .. 111
2.2.45 FAX_PORT_INFO_EXW ... 116
2.2.46 _FAX_PORT_INFO_EXW .. 117
2.2.47 FAX_RECEIPTS_CONFIGW .. 119
2.2.48 _FAX_RECEIPTS_CONFIGW ... 120
2.2.49 FAX_ROUTING_EXTENSION_INFO ... 122
2.2.50 FAX_TAPI_LINECOUNTRY_ENTRYW .. 124
2.2.51 FAX_TAPI_LINECOUNTRY_LISTW ... 125
2.2.52 Fax-Specific Errors ... 126
2.2.53 FAX_ENUM_MSG_FLAGS ... 127
2.2.54 FAX_ENUM_RULE_STATUS .. 127
2.2.55 FAX_ENUM_DEVICE_RECEIVE_MODE ... 128
2.2.56 FAX_ENUM_SMTP_AUTH_OPTIONS .. 128
2.2.57 FAX_ENUM_PROVIDER_STATUS .. 128
2.2.58 FAX_ENUM_JOB_OP ... 129
2.2.59 FAX_ENUM_GROUP_STATUS ... 130
2.2.60 FAX_JOB_EXTENDED_STATUS_ENUM... 130
2.2.61 FAX_TIME ... 131
2.2.62 _FAX_TIME ... 132
2.2.63 FAX_ENUM_EVENT_TYPE .. 132
2.2.64 FAX_ENUM_DEVICE_STATUS .. 133
2.2.65 FAX_ENUM_PRIORITY_TYPE .. 134
2.2.66 FAX_EVENT ... 134
2.2.67 FAX_EVENT_EX ... 136

2.2.67.1 FAX_EVENT_EX_JOB_INFO .. 138
2.2.67.2 FAX_EVENT_EX_CONFIG_TYPE .. 139
2.2.67.3 FAX_EVENT_EX_ACTIVITY_INFO .. 140
2.2.67.4 FAX_EVENT_EX_NEW_CALL .. 141
2.2.67.5 FAX_EVENT_EX_QUEUE_STATES ... 142
2.2.67.6 FAX_EVENT_EX_DEVICE_STATUS .. 143

2.2.68 FAX_EVENT_EX_1 .. 143
2.2.68.1 FAX_EVENT_EX_1_JOB_INFO .. 145
2.2.68.2 FAX_EVENT_EX_1_CONFIG_TYPE .. 146
2.2.68.3 FAX_EVENT_EX_1_ACTIVITY_INFO .. 147
2.2.68.4 FAX_EVENT_EX_1_NEW_CALL ... 148
2.2.68.5 FAX_EVENT_EX_1_QUEUE_STATES .. 149
2.2.68.6 FAX_EVENT_EX_1_DEVICE_STATUS ... 150

2.2.69 FAX_EVENT_DEVICE_STATUS ... 150
2.2.70 FAX_EVENT_JOB_1 .. 151
2.2.71 FAX_ENUM_JOB_EVENT_TYPE ... 152
2.2.72 FAX_EVENT_NEW_CALL .. 153
2.2.73 FAX_ENUM_CONFIG_TYPE .. 154
2.2.74 FAX Data Types ... 155
2.2.75 PRODUCT_SKU_TYPE ... 155
2.2.76 FAX_ENUM_DELIVERY_REPORT_TYPES .. 156
2.2.77 FAX_ENUM_JOB_FIELDS ... 157
2.2.78 FAX_ENUM_COVERPAGE_FORMATS ... 158

7 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.79 FAX_SPECIFIC_ACCESS_RIGHTS_2 ... 159
2.2.80 FAX_EVENT_JOB ... 159
2.2.81 FAX_RULE_DESTINATION ... 161
2.2.82 FAX_MAX_RPC_BUFFER .. 161
2.2.83 ALL_FAX_USER_ACCESS_RIGHTS .. 161
2.2.84 Generic Outbound Routing Rule Constants .. 162
2.2.85 Protocol and Fax API Version Constants .. 162
2.2.86 MAX_FAX_STRING_LEN .. 162
2.2.87 Default Routing Methods... 163
2.2.88 FAX_TAPI_LOCATIONS ... 163
2.2.89 FAX_TAPI_LOCATION_INFO .. 165
2.2.90 FAX_SECURITY_DESCRIPTOR .. 166

3 Protocol Details ... 168
3.1 Fax Server Details ... 168

3.1.1 Abstract Data Model ... 168
3.1.2 Timers ... 176
3.1.3 Initialization .. 176
3.1.4 Message Processing Events and Sequencing Rules ... 176

3.1.4.1 Fax Server Interface ... 176
3.1.4.1.1 Sequencing Rules ... 184
3.1.4.1.2 FAX_Abort (Opnum 9) ... 188
3.1.4.1.3 FAX_AccessCheck (Opnum 25) ... 189
3.1.4.1.4 FAX_AccessCheckEx2 (Opnum 101) .. 192
3.1.4.1.5 FAX_AddOutboundGroup (Opnum 51) ... 195
3.1.4.1.6 FAX_AddOutboundRule (Opnum 56) ... 196
3.1.4.1.7 FAX_CheckServerProtSeq (Opnum 26) .. 197
3.1.4.1.8 FAX_CheckValidFaxFolder (Opnum 86) .. 198
3.1.4.1.9 FAX_ClosePort (Opnum 3) ... 199
3.1.4.1.10 FAX_ConnectFaxServer (Opnum 80) ... 200
3.1.4.1.11 FAX_ConnectionRefCount (Opnum 1) .. 202
3.1.4.1.12 FAX_CreateAccount (Opnum 93) .. 203
3.1.4.1.13 FAX_DeleteAccount (Opnum 94) .. 205
3.1.4.1.14 FAX_EnableRoutingMethod (Opnum 14) .. 206
3.1.4.1.15 FAX_EndCopy (Opnum 72) .. 207
3.1.4.1.16 FAX_EndMessagesEnum (Opnum 64) .. 208
3.1.4.1.17 FAX_EndServerNotification (Opnum 75) .. 208
3.1.4.1.18 FAX_EnumAccounts (Opnum 95) .. 209
3.1.4.1.19 FAX_EnumerateProviders (Opnum 45) .. 210
3.1.4.1.20 FAX_EnumGlobalRoutingInfo (Opnum 17) ... 211
3.1.4.1.21 FAX_EnumJobs (Opnum 4) .. 212
3.1.4.1.22 FAX_EnumJobsEx (Opnum 28) ... 213
3.1.4.1.23 FAX_EnumJobsEx2 (Opnum 88) ... 215
3.1.4.1.24 FAX_EnumMessages (Opnum 65) ... 217
3.1.4.1.25 FAX_EnumMessagesEx (Opnum 91) .. 218
3.1.4.1.26 FAX_EnumOutboundGroups (Opnum 54) ... 220
3.1.4.1.27 FAX_EnumOutboundRules (Opnum 59) ... 221
3.1.4.1.28 FAX_EnumPorts (Opnum 10) ... 222
3.1.4.1.29 FAX_EnumPortsEx (Opnum 48) .. 223
3.1.4.1.30 FAX_EnumRoutingExtensions (Opnum 78) ... 224
3.1.4.1.31 FAX_EnumRoutingMethods (Opnum 13) .. 225
3.1.4.1.32 FAX_GetAccountInfo (Opnum 96) ... 226
3.1.4.1.33 FAX_GetActivityLoggingConfiguration (Opnum 43) 227
3.1.4.1.34 FAX_GetArchiveConfiguration (Opnum 41) .. 228
3.1.4.1.35 FAX_GetConfigOption (Opnum 104) .. 229
3.1.4.1.36 FAX_GetConfiguration (Opnum 19) ... 231
3.1.4.1.37 FAX_GetCountryList (Opnum 30) .. 232
3.1.4.1.38 FAX_GetDeviceStatus (Opnum 8) ... 233

8 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.4.1.39 FAX_GetExtensionData (Opnum 49) ... 234
3.1.4.1.40 FAX_GetGeneralConfiguration (Opnum 97) .. 235
3.1.4.1.41 FAX_GetJob (Opnum 5) ... 236
3.1.4.1.42 FAX_GetJobEx (Opnum 29) ... 238
3.1.4.1.43 FAX_GetJobEx2 (Opnum 87) .. 239
3.1.4.1.44 FAX_GetLoggingCategories (Opnum 21) .. 240
3.1.4.1.45 FAX_GetMessage (Opnum 66) .. 242
3.1.4.1.46 FAX_GetMessageEx (Opnum 89) .. 243
3.1.4.1.47 FAX_GetOutboxConfiguration (Opnum 38) ... 245
3.1.4.1.48 FAX_GetPageData (Opnum 7) .. 246
3.1.4.1.49 FAX_GetPersonalCoverPagesOption (Opnum 40) 247
3.1.4.1.50 FAX_GetPersonalProfileInfo (Opnum 31) ... 247
3.1.4.1.51 FAX_GetPort (Opnum 11) .. 249
3.1.4.1.52 FAX_GetPortEx (Opnum 46) .. 250
3.1.4.1.53 FAX_GetQueueStates (Opnum 32) .. 251
3.1.4.1.54 FAX_GetReceiptsConfiguration (Opnum 34) 252
3.1.4.1.55 FAX_GetReceiptsOptions (Opnum 36) ... 252
3.1.4.1.56 FAX_GetRecipientsLimit (Opnum 84) .. 253
3.1.4.1.57 FAX_GetRoutingInfo (Opnum 15) ... 254
3.1.4.1.58 FAX_GetSecurity (Opnum 23) .. 255
3.1.4.1.59 FAX_GetSecurityEx (Opnum 81) ... 256
3.1.4.1.60 FAX_GetSecurityEx2 (Opnum 99) ... 257
3.1.4.1.61 FAX_GetServerActivity (Opnum 76) .. 259
3.1.4.1.62 FAX_GetServerSKU (Opnum 85) .. 259
3.1.4.1.63 FAX_GetServicePrinters (Opnum 0) .. 260
3.1.4.1.64 FAX_GetVersion (Opnum 37) ... 261
3.1.4.1.65 FAX_OpenPort (Opnum 2) ... 262
3.1.4.1.66 FAX_ReadFile (Opnum 71) ... 263
3.1.4.1.67 FAX_ReAssignMessage (Opnum 102) .. 264
3.1.4.1.68 FAX_RefreshArchive (Opnum 82) ... 265
3.1.4.1.69 FAX_RegisterServiceProviderEx (Opnum 60) 266
3.1.4.1.70 FAX_RemoveMessage (Opnum 67) ... 267
3.1.4.1.71 FAX_RemoveOutboundGroup (Opnum 53) ... 268
3.1.4.1.72 FAX_RemoveOutboundRule (Opnum 57) ... 270
3.1.4.1.73 FAX_SendDocumentEx (Opnum 27) .. 271
3.1.4.1.74 FAX_SetActivityLoggingConfiguration (Opnum 44) 274
3.1.4.1.75 FAX_SetArchiveConfiguration (Opnum 42) ... 275
3.1.4.1.76 FAX_SetConfiguration (Opnum 20) ... 277
3.1.4.1.77 FAX_SetConfigWizardUsed (Opnum 77)... 278
3.1.4.1.78 FAX_SetDeviceOrderInGroup (Opnum 55) ... 278
3.1.4.1.79 FAX_SetExtensionData (Opnum 50) .. 280
3.1.4.1.80 FAX_SetGeneralConfiguration (Opnum 98) .. 281
3.1.4.1.81 FAX_SetGlobalRoutingInfo (Opnum 18) ... 283
3.1.4.1.82 FAX_SetJob (Opnum 6) ... 284
3.1.4.1.83 FAX_SetLoggingCategories (Opnum 22) .. 285
3.1.4.1.84 FAX_SetMessage (Opnum 103) .. 286
3.1.4.1.85 FAX_SetOutboundGroup (Opnum 52) .. 288
3.1.4.1.86 FAX_SetOutboundRule (Opnum 58) .. 289
3.1.4.1.87 FAX_SetOutboxConfiguration (Opnum 39) ... 290
3.1.4.1.88 FAX_SetPort (Opnum 12) .. 291
3.1.4.1.89 FAX_SetPortEx (Opnum 47) ... 292
3.1.4.1.90 FAX_SetQueue (Opnum 33) ... 294
3.1.4.1.91 FAX_SetReceiptsConfiguration (Opnum 35) 295
3.1.4.1.92 FAX_SetRecipientsLimit (Opnum 83) ... 296
3.1.4.1.93 FAX_SetRoutingInfo (Opnum 16) ... 297
3.1.4.1.94 FAX_SetSecurity (Opnum 24) .. 298
3.1.4.1.95 FAX_SetSecurityEx2 (Opnum 100) ... 300
3.1.4.1.96 FAX_StartCopyMessageFromServer (Opnum 69) 301

9 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.4.1.97 FAX_StartCopyToServer (Opnum 68) .. 302
3.1.4.1.98 FAX_StartMessagesEnum (Opnum 63) .. 303
3.1.4.1.99 FAX_StartMessagesEnumEx (Opnum 90) ... 304
3.1.4.1.100 FAX_StartServerNotification (Opnum 73)... 306
3.1.4.1.101 FAX_StartServerNotificationEx (Opnum 74) 308
3.1.4.1.102 FAX_StartServerNotificationEx2 (Opnum 92) 310
3.1.4.1.103 FAX_UnregisterRoutingExtension (Opnum 62) 312
3.1.4.1.104 FAX_UnregisterServiceProviderEx (Opnum 61) 312
3.1.4.1.105 FAX_WriteFile (Opnum 70) .. 313

3.1.4.2 FaxObs Server Interface ... 314
3.1.4.2.1 Sequencing Rules ... 317
3.1.4.2.2 FaxObs_ConnectionRefCount (Opnum 0) ... 318
3.1.4.2.3 FaxObs_GetVersion (Opnum 1) .. 319
3.1.4.2.4 FaxObs_GetInstallType (Opnum 2) ... 320
3.1.4.2.5 FaxObs_OpenPort (Opnum 3) .. 321
3.1.4.2.6 FaxObs_ClosePort (Opnum 4) .. 322
3.1.4.2.7 FaxObs_SendDocument (Opnum 5) .. 323
3.1.4.2.8 FaxObs_GetQueueFileName (Opnum 6)... 325
3.1.4.2.9 FaxObs_EnumJobs (Opnum 7) ... 325
3.1.4.2.10 FaxObs_GetJob (Opnum 8) .. 326
3.1.4.2.11 FaxObs_SetJob (Opnum 9) .. 327
3.1.4.2.12 FaxObs_GetPageData (Opnum 10) ... 328
3.1.4.2.13 FaxObs_GetDeviceStatus (Opnum 11) .. 330
3.1.4.2.14 FaxObs_Abort (Opnum 12) .. 331
3.1.4.2.15 FaxObs_EnumPorts (Opnum 13) .. 331
3.1.4.2.16 FaxObs_GetPort (Opnum 14) ... 332
3.1.4.2.17 FaxObs_SetPort (Opnum 15) ... 333
3.1.4.2.18 FaxObs_EnumRoutingMethods (Opnum 16) 334
3.1.4.2.19 FaxObs_EnableRoutingMethod (Opnum 17) 335
3.1.4.2.20 FaxObs_GetRoutingInfo (Opnum 18) .. 336
3.1.4.2.21 FaxObs_SetRoutingInfo (Opnum 19) ... 337
3.1.4.2.22 FaxObs_EnumGlobalRoutingInfo (Opnum 20) 338
3.1.4.2.23 FaxObs_SetGlobalRoutingInfo (Opnum 21) .. 339
3.1.4.2.24 FaxObs_GetConfiguration (Opnum 22) .. 340
3.1.4.2.25 FaxObs_SetConfiguration (Opnum 23) .. 341
3.1.4.2.26 FaxObs_GetLoggingCategories (Opnum 24) 342
3.1.4.2.27 FaxObs_SetLoggingCategories (Opnum 25) 343
3.1.4.2.28 FaxObs_GetTapiLocations (Opnum 26) .. 343
3.1.4.2.29 FaxObs_SetTapiLocations (Opnum 27) .. 344
3.1.4.2.30 FaxObs_GetMapiProfiles (Opnum 28) .. 345
3.1.4.2.31 FaxObs_StartClientServer (Opnum 29) ... 346
3.1.4.2.32 FaxObs_GetSecurityDescriptor (Opnum 31) 347
3.1.4.2.33 FaxObs_SetSecurityDescriptor (Opnum 32) 348
3.1.4.2.34 FaxObs_GetSecurityDescriptorCount (Opnum 33) 348
3.1.4.2.35 FaxObs_AccessCheck (Opnum 34) .. 349

3.1.5 Timer Events ... 351
3.1.6 Other Local Events ... 351

3.2 Fax Client Details .. 351
3.2.1 Abstract Data Model ... 351
3.2.2 Timers ... 351
3.2.3 Initialization .. 351
3.2.4 Message Processing Events and Sequencing Rules ... 351

3.2.4.1 Sequencing Rules ... 352
3.2.4.2 FAX_ClientEventQueue (Opnum 1) ... 352
3.2.4.3 FAX_ClientEventQueueEx (Opnum 3) ... 353
3.2.4.4 FAX_CloseConnection (Opnum 2) ... 354
3.2.4.5 FAX_OpenConnection (Opnum 0) ... 354

3.2.5 Timer Events ... 355

10 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.2.6 Other Local Events ... 356

4 Protocol Examples ... 357
4.1 Message Exchanges While Sending a Fax ... 357
4.2 Message Exchanges During Querying Server Configuration 359
4.3 Message Exchanges During Enumerating Fax Jobs... 360
4.4 Message Exchanges During Modifying Fax Jobs ... 361
4.5 Message Exchanges During Adding an Outbound Routing Rule 362
4.6 Message Exchanges During Registering and Unregistering for Server Notifications... 363
4.7 Message Exchanges During Granting Security Privileges to a User 364

5 Security ... 366
5.1 Security Considerations for Implementers .. 366
5.2 Index of Security Parameters ... 366

6 Appendix A: Full IDL .. 367
6.1 Appendix A.1: faxdatatypes.idl ... 367
6.2 Appendix A.2: fax.idl ... 372
6.3 Appendix A.3: faxobs.idl .. 384
6.4 Appendix A.4: faxclient.idl .. 387

7 Appendix B: Product Behavior ... 389

8 Change Tracking .. 410

9 Index ... 411

11 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

1 Introduction

The Fax Server and Client Remote Protocol Specification defines a protocol that is referred to as the
Fax Server and Client Remote Protocol. This is a client/server protocol based on remote procedure call
(RPC) that is used to send faxes and manage the fax server and its queues.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

activity logging: A log provided by the fax service that can log incoming and outgoing fax activity

such as job identifiers, submission time, banner contents, status, call time, file name, and other
fax-specific information. This activity logging is configurable by the fax server administrator.

archive: The Fax Archive Folder, as described in section 3.1.1.

area code: A nonzero positive 32-bit integer identifying an area within a country. This protocol
makes no assumptions regarding specific integer values and the areas or the countries they
identify.

authenticated user identity: The principal that is provided by the underlying protocol. See

retrieval of client identity in [MS-RPCE] sections 3.2.3.4.2 and 3.3.3.4.3 for details.

authentication level: A numeric value indicating the level of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS-RPCE].

Authentication Service (AS): A service that issues ticket granting tickets (TGTs), which are used
for authenticating principals within the realm or domain served by the Authentication Service.

broadcast: An action of sending the same fax to multiple recipients.

Caller ID: A Caller ID, as described in section 3.1.1.

connection handle: A GUID that represents a unique connection that is made to a previously
loaded and reported Analysis Services model. The Usage Reporting Service generates a unique
handle for each connection and returns that GUID to the model's client application.

Coordinated Universal Time (UTC): A high-precision atomic time standard that approximately
tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones

around the world are expressed as positive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all
references to UTC refer to the time at UTC-0 (or GMT).

country code: A nonzero positive 32-bit integer identifying a country or region. This protocol
makes no assumptions between specific integer values and the countries and/or regions they

identify. For more information about typical country code values see [E164].

CSID: See called subscriber identifier (CSID).

default outbound rule: An outbound rule mapping all countries and all areas to all devices. This
routing rule is present by default when the fax server is installed and enables faxes to be sent
by any device independently of the destination. This rule cannot be removed.

device (or port): A fax device that is used by the fax service to send or receive faxes.

12 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

dynamic endpoint: A network-specific server address that is requested and assigned at run time.
For more information, see [C706].

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol

sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

fax body: The fax pages other than the cover page.

Fax Console: The fax service user interface that is used to manage incoming and outgoing faxes.

fax document: A fax that has not yet been submitted to a fax server. A fax document can consist

of a cover page and body, but must include at least a cover page or body.

fax job: An inbound or outbound fax transmission that is awaiting transmission in the Fax Queue;
the Fax Jobs are qualified as inbound or outbound based on this. The Fax Jobs are further

qualified as follows: queued qualifies a Fax Job as awaiting transmission, and active qualifies a
Fax Job as in process of being sent or received by the fax server.

fax message: A fax that a fax server has completely received or transmitted, and archived to the

Fax Archive Folder described in [MS-FAX] section 3.1.1.

fax queue: A list containing faxes that are being processed (jobs). There is an outgoing queue
(usually called Outbox in the Fax Console) containing the faxes that are being sent. There also is
an incoming queue (usually called Incoming in the Fax Console) containing faxes that are being
received. For more information, see section 3.1.1.

Fax Routing Extension: A Fax Routing Extension, as described in section 3.1.1.

fax routing method: A Fax Routing Method, as described in section 3.1.1.

fax service provider (FSP): A DLL that is used by the fax service and that exposes one or more

fax devices to the service. The DLL coordinates between the fax service and the fax device.

fully qualified domain name (FQDN): An unambiguous domain name that gives an absolute
location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section
3.1 and [RFC2181] section 11.

general configuration: A set of properties on the fax server that defines the overall fax service
behavior. These properties include the number of retries that should be attempted while sending

a fax, the delay between each retry, the number of days unsent jobs are retained, branding, and
application of telephone discount rates. These properties are configurable.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] must be used for generating the GUID. See also universally unique

identifier (UUID).

handle: Any token that can be used to identify and access an object such as a device, file, or a
window.

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

13 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Network Data Representation (NDR): A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime

environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

notification context: The context returned from the fax client (acting as the RPC server) to the
fax server (acting as the RPC client) for a successful FAX_OpenConnection method call. The fax
client uses this context to identify a connection made to a fax server to receive notifications
from this fax server. The context is opaque to the fax server. The fax server calls the
FAX_CloseConnection method to request the fax client to close this context.

outbound group: A group that specifies the routing group by which the fax service sends a fax for
which the routing rule applies. A routing group must be created before it is specified in a routing

rule.

outbound rule: A routing rule that specifies whether a fax is sent by using either a specific device
or a group of devices. If the telephone number for an outgoing fax matches the area code and
country/region code of a routing rule, the fax service sends the fax according to the matching

routing rule.

policy: A set of rules that governs all interactions with an object such as a document or item.

print queue: The logical entity to which jobs can be submitted for a particular print device.
Associated with a print queue is a print driver, a user's print configuration in the form of a
DEVMODE structure, and a system print configuration stored in the system registry.

printer driver: The interface component between the operating system and the printer device. It
is responsible for processing the application data into a page description language (PDL) that
can be interpreted by the printer device.

queue: An object that holds messages passed between applications or messages passed between

Message Queuing and applications. In general, applications can send messages to queues and
read messages from queues.

recipient: The recipient of a fax message.

registry: A local system-defined database in which applications and system components store and
retrieve configuration data. It is a hierarchical data store with lightly typed elements that are
logically stored in tree format. Applications use the registry API to retrieve, modify, or delete
registry data. The data stored in the registry varies according to the version of the operating

system.

remote procedure call (RPC): A context-dependent term commonly overloaded with three
meanings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this
meaning is "RPC runtime". (*) The pattern of request and response message exchange between

two parties (typically, a client and a server). The preferred usage for this meaning is "RPC
exchange". (*) A single message from an exchange as defined in the previous definition. The
preferred usage for this term is "RPC message". For more information about RPC, see [C706].

routing: The main actions performed by the fax routing methods, including (but not limited to):
printing faxes, storing faxes, emailing faxes, and processing received fax files.

routing group: A routing group, as described in section 3.1.1.

routing rule: A rule that specifies how a fax is processed (sent or received) by a specific device or

by a group of devices.

14 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RPC context handle: A representation of state maintained between a remote procedure call (RPC)
client and server. The state is maintained on the server on behalf of the client. An RPC context

handle is created by the server and given to the client. The client passes the RPC context handle
back to the server in method calls to assist in identifying the state. For more information, see

[C706].

security descriptor: A data structure containing the security information associated with a
securable object. A security descriptor identifies an object's owner by its security identifier
(SID). If access control is configured for the object, its security descriptor contains a
discretionary access control list (DACL) with SIDs for the security principals who are allowed or
denied access. Applications use this structure to set and query an object's security status. The
security descriptor is used to guard access to an object as well as to control which type of

auditing takes place when the object is accessed. The security descriptor format is specified in
[MS-DTYP] section 2.4.6; a string representation of security descriptors, called SDDL, is
specified in [MS-DTYP] section 2.5.1.

security provider: A pluggable security module that is specified by the protocol layer above the
remote procedure call (RPC) layer, and will cause the RPC layer to use this module to secure

messages in a communication session with the server. The security provider is sometimes

referred to as an authentication service. For more information, see [C706] and [MS-RPCE].

share: A resource offered by a Common Internet File System (CIFS) server for access by CIFS
clients over the network. A share typically represents a directory tree and its included files
(referred to commonly as a "disk share" or "file share") or a printer (a "print share"). If the
information about the share is saved in persistent store (for example, Windows registry) and
reloaded when a file server is restarted, then the share is referred to as a "sticky share". Some
share names are reserved for specific functions and are referred to as special shares: IPC$,

reserved for interprocess communication, ADMIN$, reserved for remote administration, and A$,
B$, C$ (and other local disk names followed by a dollar sign), assigned to local disk devices.

Simple Mail Transfer Protocol (SMTP): A member of the TCP/IP suite of protocols that is used
to transport Internet messages, as described in [RFC5321].

Stock Keeping Unit (SKU): A unique code that refers to a particular manufactured object or

source of revenue. A SKU can refer to a retail product (software in a box that is sold through a
channel), a subscription program (such as MSDN), or an online service (such as MSN).

subscription context: The context returned from the fax server to the fax client for a successful
FAX_StartServerNotification, FAX_StartServerNotificationEx, or FAX_StartServerNotificationEx2
method call. The fax server uses this context to identify a fax client's subscription for
notifications. To deliver a notification to the subscribed client, the fax server (acting as the RPC
client) calls one of the following methods on the client (acting as the RPC server):
FAX_ClientEventQueue or FAX_ClientEventQueueEx. The context is opaque to the fax client. The

fax client closes this context by calling FAX_EndServerNotification.

Tagged Image File Format (TIFF): A high-resolution, tag-based graphics format. TIFF is used
for the universal interchange of digital graphics.

transmitting subscriber identifier (TSID): A TSID, as described in section 3.1.1.

Universal Naming Convention (UNC): A string format that specifies the location of a resource.
For more information, see [MS-DTYP] section 2.2.57.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple

purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of

15 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

user account: See fax user account.

UTC (Coordinated Universal Time): A high-precision atomic time standard that approximately

tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones
around the world are expressed as positive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all
references to UTC refer to the time at UTC–0 (or GMT).

UTF-16LE: The Unicode Transformation Format - 16-bit, Little Endian encoding scheme. It is used
to encode Unicode characters as a sequence of 16-bit codes, each encoded as two 8-bit bytes
with the least-significant byte first.

virtual fax device: A fax device that does not connect to a physical (real) phone line. A software
fax simulator device is an example of a virtual fax device.

well-known endpoint: A preassigned, network-specific, stable address for a particular

client/server instance. For more information, see [C706].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-EMFPLUS] Microsoft Corporation, "Enhanced Metafile Format Plus Extensions".

[MS-MSRP] Microsoft Corporation, "Messenger Service Remote Protocol".

[MS-RPRN] Microsoft Corporation, "Print System Remote Protocol".

16 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[MSDN-AUTHN] Microsoft Corporation, "Authentication-Service Constants",
http://msdn.microsoft.com/en-us/library/aa373556.aspx

[MSDN-CSIDL] Microsoft Corporation, "CSIDL", http://msdn.microsoft.com/en-
us/library/bb762494(VS.85).aspx

[MSDN-EnumPrinters] Microsoft Corporation, "EnumPrinters function", http://msdn.microsoft.com/en-
us/library/dd162692(VS.85).aspx

[MSDN-FAX_LOG_CATEGORY] Microsoft Corporation, "FAX_LOG_CATEGORY structure",
http://msdn.microsoft.com/en-us/library/ms690890.aspx

[MSDN-FRE] Microsoft Corporation, "Fax Routing Extension Registration",
http://msdn.microsoft.com/en-us/library/ms693451(VS.85).aspx

[MSDN-FRM] Microsoft Corporation, "Fax Routing Methods", http://msdn.microsoft.com/en-
us/library/ms691955.aspx

[MSDN-FSCAR] Microsoft Corporation, "Fax Service Client API Reference",
http://msdn.microsoft.com/en-us/library/ms692335.aspx

[MSDN-MAPIPRF] Microsoft Corporation, "MAPI Profiles", http://msdn.microsoft.com/en-

us/library/cc765895.aspx

[MSDN-PRNAPI] Microsoft Corporation, "Print Spooler API Functions", http://msdn.microsoft.com/en-
us/library/dd162861(VS.85).aspx

[MSDN-REPEV] Microsoft Corporation, "Managing the Lifetime of Remote .NET Objects with Leasing
and Sponsorship", http://msdn.microsoft.com/msdnmag/issues/03/12/LeaseManager/default.aspx

[MSDN-SAR] Microsoft Corporation, "Standard Access Rights", http://msdn.microsoft.com/en-
us/library/aa379607.aspx

[MSDN-TAPI2.2] Microsoft Corporation, "Telephony Application Programming Interface Version 2.2",

http://msdn.microsoft.com/en-us/library/ms737220(VS.85).aspx

[MSDN-TAPIADDR] Microsoft Corporation, "Canonical Addresses", http://msdn.microsoft.com/en-
us/library/ms726017(VS.85).aspx

[RFC3302] Parsons, G., and Rafferty, J., "Tag Image File Format (TIFF) - image/tiff MIME Sub-Type
Registration", RFC 3302, September 2002, http://www.ietf.org/rfc/rfc3302.txt

1.3 Overview

The Fax Server and Client Remote Protocol manages and sends faxes, manages the fax server and its
queues, and allows fax clients to act as RPC servers so that they can accept status notifications from
fax servers acting as clients.

1.3.1 Fax Server Protocol

The Fax Server and Client Remote Protocol can be used to submit and manage faxes. It can be further
used to change configuration on the fax server, for example, setting the Inbound routing

rules/Outbound Groups. The Fax Server and Client Remote Protocol can be used to change settings—
such as whether the fax service archives the faxes it sends or receives, the number of days the fax
service keeps an archive, or the number of rings before a call is answered. Practically everything that
manages the behavior of the fax server can be controlled by using the Fax Server and Client Remote
Protocol.

17 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

This protocol can be used either locally, where both the client and server are on the same machine, or
remotely, where the client and server are on different machines.

Fax server provides for custom Fax Service Providers (FSPs) via the following RPC calls:

▪ FAX_RegisterServiceProviderEx

▪ FAX_UnRegisterServiceProviderEx

For these RPC calls, the vendor needs to register or unregister the FSP by using a GUID.

1.3.2 Fax Client Protocol

The Fax Server and Client Remote Protocol is used for notifications. When activity occurs on the
server—for example, when a new fax is received, a change occurs in the status of an outgoing fax, or
a change occurs in configuration—events are generated. Clients that register for these events can act
like RPC servers, with the fax server as the RPC client, and get these events with the event type and
event data as described in section 3.2.

This can be used either locally, where both the client and server are on the same machine, or
remotely, where the client and server are on different machines.

1.4 Relationship to Other Protocols

The Fax Server and Client Remote Protocol is dependent on the following protocols:

▪ RPC

▪ TCP/IP (for RPC over TCP/IP)

▪ Named pipes

▪ Messenger Service

No protocols are dependent on the Fax Server and Client Remote Protocol.

1.5 Prerequisites/Preconditions

The Fax Server and Client Remote Protocol defines RPC interfaces, and therefore has the prerequisites
specified in [MS-RPCE] section 1.5 as being common to RPC interfaces.

It is assumed that the protocol client has obtained the name of a server that supports the Fax Server
and Client Remote Protocol before this protocol is invoked.

1.6 Applicability Statement

The Fax Server and Client Remote Protocol is applicable only for operations between a computer that
functions as a client and a computer that functions as a fax server. The protocol is intended for
communicating status, setting configuration, and submitting jobs and notification data between fax

server and client applications.

The protocol can be used in a broad set of scenarios ranging from a home-use scenario, where one

computer makes its fax server available for use by other computers, to an enterprise-use scenario
where a fax server provides faxing services for many computers.

1.7 Versioning and Capability Negotiation

This section describes the versioning and capability negotiation performed during this protocol.

18 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Supported Transports: The Fax Server and Client Remote Protocol uses RPC over TCP only.

▪ Protocol Versions: There are four versions of this protocol and the associated fax API. Section

2.2.85 defines the identifiers of these four protocol and API versions.

When the fax client calls FAX_ConnectFaxServer (section 3.1.4.1.10) to create a new connection

to a fax server, the fax client communicates its protocol and API version. On return, the fax
server answers with its own protocol and API version. Section 3.1.4.1.10 describes the fax-
specific error codes that are defined for each protocol and fax API version. The methods that are
to be implemented differently, depending on the protocol and fax API version, have these
differences documented in their respective subsections.

There are two server interfaces and one client interface for this protocol. Both server interfaces
share the same RPC UUID and version numbers, but are otherwise incompatible with each

other. The FaxObs Server Interface (section 3.1.4.2) is a now obsolete interface implemented by
server implementations of the first version of this protocol. The Fax Server
Interface (section 3.1.4.1) is the current interface implemented by subsequent versions up to
and including the current version of this protocol. All clients implement the same Fax Client

Interface (section 3.2.4).

▪ A server in a domain uses the default server principal name for the Simple and Protected GSSAPI

Negotiation Mechanism (SPNEGO) security provider, the Authentication Service (AS) constant
RPC_C_AUTHN_LEVEL_PKT_PRIVACY. For general information concerning Windows AS constants,
see [MSDN-AUTHN].

▪ An RPC client uses the default server principal name for the SPNEGO security provider, the AS
constant RPC_C_AUTHN_LEVEL_PKT_PRIVACY. An RPC client always uses the packet
authentication level, as specified in [MS-RPCE] section 3.3.1.5.2.

▪ Localization: The protocol does not contain locale-specific information.

▪ Capability Negotiation: No capability negotiation mechanism is built into the protocol.

1.8 Vendor-Extensible Fields

There are no vendor-extensible fields.

1.9 Standards Assignments

 Parameter Value Reference

RPC UUID for the Fax Client interface 6099fc12-3eff-11d0-abd0-
00c04fd91a4e

[C706],
Appendix A

RPC UUID for SHAREDFAX (Fax Server and FaxObs
Server) interfaces

ea0a3165-4834-11d2-a6f8-
00c04fa346cc

[C706],
Appendix A

String for named pipe for well-known endpoint for
local connections

SHAREDFAX Section 2.1

String for named pipe for well-known endpoint for
server connections

\\<server machine
name>\\SHAREDFAX

Section 2.1

Pipe name \PIPE\SHAREDFAX Section 2.1

19 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2 Messages

2.1 Transport

The Fax Server and Client Remote Protocol uses the transport RPC over SMB, as specified in [MS-

RPCE] section 2.1.1.1.<1>

This protocol uses RPC well-known endpoints. This is a named pipe that has the value server machine
name followed by SHAREDFAX for remote and SHAREDFAX for local.

This protocol uses RPC dynamic endpoints, as specified in [C706].

This protocol MUST use the UUIDs as specified in section 1.9.

2.2 Common Data Types

The Fax Server and Client Remote Protocol MUST specify that the RPC runtime support only the
Network Data Representation (NDR) 20 transfer syntax, as specified in [C706] part 3. NDR is a
specification that defines a mapping from Interface Definition Language (IDL) data types onto octet
streams; 20 is the format label for NDR specification. For more information, see [C706] part 4 and

[MS-RPCE].

This protocol MUST enable the ms_union extension as specified in [MS-RPCE] section 2.2.4.

In addition to the RPC base types and definitions specified in [C706] and [MS-DTYP], additional data
types are defined in the following sections.

All types defined in the following sections MUST be aligned on an 8-byte boundary. If the size of a
type is not an integral multiple of 8 bytes, the data MUST be padded at the end to ensure that its total
length is an integral multiple of 8 bytes. The padding bytes, when present, SHOULD be filled with

values of zero.

All character strings are Unicode UTF-16LE and, unless specifically noted, all strings are case-
sensitive. All character strings MUST be null-terminated.

Some methods of the Fax Server and Client Remote Protocol use byte arrays to transmit or receive
specific common data types defined here. In some cases, such a byte-array is used to transmit or
receive an array of instances of a common data type.

All common data types that are standard marshaled are defined here using IDL. All common data
types that are custom marshaled (using byte-arrays) by one or more protocol methods are defined by
diagrams describing the custom-marshaled representation of the respective data type.

This protocol specification uses curly-braced string GUIDs as specified in [MS-DTYP] section 2.3.4.3.

2.2.1 Common Custom-Marshaling Rules

A custom-marshaled data type is represented as a single Fixed_Portion block followed by a single

Variable_Data block. For each field in the Variable_Data block, a corresponding offset value is
specified in a field of the Fixed_Portion block. A Variable_Data field is located by adding that offset
value to the address of the start of the Fixed_Portion block.

An array of custom-marshaled data types is represented as a sequence of Fixed_Portion blocks
followed by a single Variable_Data block. For each field in the Variable_Data block, a

corresponding offset value is specified in a field of a Fixed_Portion block. A Variable_Data field is
located by adding that offset value to the address of the start of the first Fixed_Portion block.

The following rules apply to the fields in custom-marshaled data structures:

20 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Each Fixed_Portion block MUST be aligned to an 8-byte boundary; and the padding bytes, when
present, SHOULD be filled with values of zero.

▪ Each Variable_Data block MUST be aligned to an 8-byte boundary; and the padding bytes, when
present, SHOULD be filled with values of zero.

▪ The order of fields in the Fixed_Portion block is defined by the specific structure layout.

▪ Data fields in the Variable_Data block can appear in arbitrary order.

▪ One or more offsets in Fixed_Portion blocks can locate the same field in the Variable_Data
block; or there can be a one-to-one correspondence between offsets and Variable_Data fields.

▪ The Variable_Data fields SHOULD be packed tightly in the Variable_Data block; however, code
that processes a custom-marshaled structure MUST be prepared to correctly handle data that is
not tightly packed and that includes unused space.

▪ The Variable_Data block SHOULD be empty if no offset fields reference Variable_Data fields.

▪ The offset values in the Fixed_Portion block, and all other fields in the Fixed_Portion and
Variable_Data blocks greater than 1 byte in size are marshaled in little-endian byte order.

▪ A NULL pointer field in the original structure is marshaled as an offset value of zero in the
Fixed_Portion block, and the respective optional field in the Variable_Data block is not present
unless specifically noted.

▪ All enumeration fields are custom marshaled as 32-bit (DWORD) fields.

The following subsections describe the arrangement of the Fixed_Portion and Variable_Data blocks
used when marshaling a data type or array of data types in a single byte-array buffer passed as an
argument to a method call.

2.2.1.1 Single Data Type Instance

In this case the custom-marshaled data contains one Fixed_Portion block followed by the
Variable_Data block.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (variable)

...

Variable_Data (variable)

...

Fixed_Portion (variable): A sequence of fields, each with a fixed-length data type.

Variable_Data (variable): A sequence of zero or more optional fields (or variable-length fields). The

data in this field is referenced by offset from the Fixed_Portion block.

21 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.1.2 Array of N Data Type Instances

In this case, the custom-marshaled data contains N Fixed_Portion blocks (one for each structure)
followed by the Variable_Data block containing data referenced by offsets from all N Fixed_Portion

blocks.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion_1 (variable)

...

Fixed_Portion_N (variable)

...

Variable_Data (variable)

...

Fixed_Portion_1 (variable): The Fixed_Portion of the first data type instance in the array.

Fixed_Portion_N (variable): The Fixed_Portion of the last data type instance in the array.

Variable_Data (variable): A sequence of zero or more optional fields (or variable-length fields). The
data in this field is referenced by offset from the Fixed_Portion blocks.

2.2.1.3 Marshaling Referenced Data Types

This section describes an array of N data type instances, each referencing by offset another data type

instance.

In this case, the custom-marshaled data contains N Fixed_Portion blocks (one for each main data

type instance), followed by M additional Fixed_Portion blocks (one for each referenced data type
instances), followed by the Variable_Data block containing data referenced by offset from all
Fixed_Portion blocks. The order in which the referenced data type instances Fixed_Portion block
arrays are marshaled is the order in which the corresponding offset fields are defined in the main data
type instance.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion_1 (variable)

...

Fixed_Portion_N (variable)

...

Referenced_Fixed_Portion_1 (variable)

...

22 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Referenced_Fixed_Portion_M (variable)

...

Variable_Data (variable)

...

Fixed_Portion_1 (variable): The Fixed_Portion block of the first data type instance in the array.

Fixed_Portion_N (variable): The Fixed_Portion block of the last data type instance in the array.

Referenced_Fixed_Portion_1 (variable): The Fixed_Portion block of the first referenced data

type instance in the array.

Referenced_Fixed_Portion_M (variable): The Fixed_Portion block of the last referenced data

type instance in the array.

Variable_Data (variable): A sequence of zero or more optional fields (or variable-length fields). The
data in this field is referenced by offset from the Fixed_Portion blocks and the
Referenced_Fixed_Portion blocks.

2.2.2 FAX_ENUM_MESSAGE_FOLDER

The FAX_ENUM_MESSAGE_FOLDER enumeration defines possible locations for a fax message.

 typedef enum
 {
 FAX_MESSAGE_FOLDER_INBOX = 0x00000000,
 FAX_MESSAGE_FOLDER_SENTITEMS = 0x00000001,
 FAX_MESSAGE_FOLDER_QUEUE = 0x00000002
 } FAX_ENUM_MESSAGE_FOLDER;

FAX_MESSAGE_FOLDER_INBOX: The incoming fax transmission archive, defined in section 3.1.1.

FAX_MESSAGE_FOLDER_SENTITEMS: The outgoing fax transmission archive, defined in section
3.1.1.

FAX_MESSAGE_FOLDER_QUEUE: The Outgoing and Incoming fax queue, defined in section 3.1.1.

2.2.3 FAX_ENUM_CONFIG_OPTION

The FAX_ENUM_CONFIG_OPTION enumeration identifies the configuration option to be returned by
the FAX_GetConfigOption method.

 typedef enum
 {
 FAX_CONFIG_OPTION_ALLOW_PERSONAL_CP = 0x00000000,
 FAX_CONFIG_OPTION_QUEUE_STATE = 0x00000001,
 FAX_CONFIG_OPTION_ALLOWED_RECEIPTS = 0x00000002,
 FAX_CONFIG_OPTION_INCOMING_FAXES_PUBLIC = 0x00000003
 } FAX_ENUM_CONFIG_OPTION;

FAX_CONFIG_OPTION_ALLOW_PERSONAL_CP: Represents whether or not the server allows
personal cover pages. Personal cover page support is described in Section (section 3.1.1.).

23 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FAX_CONFIG_OPTION_QUEUE_STATE: Corresponds to the state of the queue. in Queue state is
described in SectionState (section 3.1.1.).

FAX_CONFIG_OPTION_ALLOWED_RECEIPTS: Corresponds to the type of receipts the server is
configured to send. Delivery receipt support is described in Section 3.1.1. (section 3.1.1).

FAX_CONFIG_OPTION_INCOMING_FAXES_PUBLIC: Corresponds to the viewing permissions of
incoming faxes. Incoming fax viewing permissions are described in Section (section 3.1.1.).

2.2.4 FAX_ENUM_PERSONAL_PROF_TYPES

The FAX_ENUM_PERSONAL_PROF_TYPES enumeration defines values to indicate personal profile
types.

 typedef enum
 {
 RECIPIENT_PERSONAL_PROF = 1,
 SENDER_PERSONAL_PROF = 2
 } FAX_ENUM_PERSONAL_PROF_TYPES;

RECIPIENT_PERSONAL_PROF: Indicates a recipient profile.

SENDER_PERSONAL_PROF: Indicates a sender profile.

2.2.5 FAX_JOB_ENTRY

The FAX_JOB_ENTRY structure describes one fax job. The structure includes information about the job
type and status, the recipient's and the sender's personal profiles (section 3.1.1), scheduling and

delivery settings, and the page count.

This structure is used as an input argument for the FaxObs_SetJob (section 3.1.4.2.11) method.

 typedef struct {
 DWORD SizeOfStruct;
 DWORD JobId;
 LPCWSTR UserName;
 DWORD JobType;
 DWORD QueueStatus;
 DWORD Status;
 DWORD Size;
 DWORD PageCount;
 LPCWSTR RecipientNumber;
 LPCWSTR RecipientName;
 LPCWSTR Tsid;
 LPCWSTR SenderName;
 LPCWSTR SenderCompany;
 LPCWSTR SenderDept;
 LPCWSTR BillingCode;
 DWORD ScheduleAction;
 SYSTEMTIME ScheduleTime;
 DWORD DeliveryReportType;
 LPCWSTR DeliveryReportAddress;
 LPCWSTR DocumentName;
 } FAX_JOB_ENTRY,
 *PFAX_JOB_ENTRY;

SizeOfStruct: A DWORD that indicates the size, in bytes, of the FAX_JOB_ENTRY structure. This
value MUST be 92 or 136 bytes. When filled in on a 32-bit implementation, this value SHOULD be
92 bytes. When filled in on a 64-bit implementation, this value SHOULD be 136 bytes.

24 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

JobId: A DWORD that indicates a unique number that identifies the fax jobs of interest. This is the
same kind of job identifier number as the JobId parameter for the FAX_SetJob function.

UserName: A null-terminated character string that contains the name of the fax user account that
submitted the fax job, if known; otherwise, a NULL pointer.

JobType: A DWORD that indicates the type of the fax job of interest. This field is one of the following
values.

Value Meaning

0x00000000 The job type is JT_UNKNOWN (section 3.1.1).

0x00000001 The job type is JT_SEND (section 3.1.1).

0x00000002 The job type is JT_RECEIVE (section 3.1.1).

0x00000003 The job type is JT_ROUTING (section 3.1.1).

0x00000004 The job type is JT_FAIL_RECEIVE (section 3.1.1).

QueueStatus: A DWORD variable containing a set of bit flags indicating the job status (section
3.1.1) of the fax job identified by the JobId field. This value MUST be a bitwise OR combination of
one or more of the job status values listed in section 3.1.1.

Status: A DWORD that specifies the status of the fax device (or port) that received or sent the fax
job described by this structure, captured at the time the job information was recorded. This
member SHOULD be ignored when this structure is used as an input argument for the
FaxObs_SetJob (section 3.1.4.2.11) method. This value MUST be one of the following predefined
device status codes.

Value Meaning

FPS_UNKNOWN

0x00000000

The status of the device is unknown.

FPS_DIALING

0x20000001

The device is dialing a fax number.

FPS_SENDING

0x20000002

The device is sending a fax document.

FPS_RECEIVING

0x20000004

The device is receiving a fax document.

FPS_COMPLETED

0x20000008

The device completed sending or receiving a fax transmission.

FPS_HANDLED

0x20000010

The fax service processed the outbound fax document; the fax service provider
(FSP) will transmit the fax document.

FPS_UNAVAILABLE

0x20000020

The device is not available because it is in use by another application.

FPS_BUSY

0x20000040

The device encountered a busy signal.

FPS_NO_ANSWER

0x20000080

The receiving device did not answer the call.

25 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

FPS_BAD_ADDRESS

0x20000100

The device dialed an invalid fax number.

FPS_NO_DIAL_TONE

0x20000200

The sending device cannot complete the call because it does not detect a dial
tone.

FPS_DISCONNECTED

0x20000400

The fax call was disconnected by the sender or the caller.

FPS_FATAL_ERROR

0x20000800

The device has encountered a fatal protocol error.

FPS_NOT_FAX_CALL

0x20001000

The device received a call that was a data call or a voice call.

FPS_CALL_DELAYED

0x20002000

The device delayed a fax call because the sending device received a busy signal

multiple times. The device cannot retry the call because dialing restrictions exist
(some countries and regions restrict the number of retry attempts when a number
is busy).

FPS_CALL_BLACKLISTED

0x20004000

The device could not complete a call because the telephone number was blocked
or reserved; emergency numbers such as 911 are blocked.

FPS_INITIALIZING

0x20008000

The device is initializing a call.

FPS_OFFLINE

0x20010000

The device is offline and unavailable.

FPS_RINGING

0x20020000

The device is ringing.

FPS_AVAILABLE

0x20100000

The device is available.

FPS_ABORTING

0x20200000

The device is aborting a fax job.

FPS_ROUTING

0x20400000

The device is routing a received fax document.

FPS_ANSWERED

0x20800000

The device answered a new call.

Size: A DWORD variable that indicates the total size, in bytes, of the fax document to transmit, if
known, or zero otherwise. The size, if known, includes the size of the cover page, if a cover page
is present, and the size of the fax body, if a fax body is present. The size MUST NOT exceed 4

gigabytes.

PageCount: A DWORD that indicates the total number of pages in the fax transmission, including the

cover page, if any, and the fax body, if any, of the fax submitted with this fax job. If the fax is
sent to multiple recipients, this total number of pages is the number of fax pages sent to each
individual recipient (not the sum of the fax pages sent to all recipients).

RecipientNumber: A null-terminated character string that contains the fax number of the recipient
of the fax transmission, if known, or a NULL pointer otherwise. This information comes from the
recipient's personal profile.

26 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RecipientName: A null-terminated character string that contains the name of the recipient of the
fax, if known, or a NULL pointer otherwise. This information comes from the recipient's personal

profile.

Tsid: A null-terminated character string that contains the transmitting subscriber identifier (TSID), if

known, or a NULL pointer otherwise. This information comes from the sender's personal profile.

SenderName: A null-terminated character string that contains the fax sender name, if known, or a
NULL pointer otherwise. This information comes from the sender's personal profile.

SenderCompany: A null-terminated character string that contains the fax sender company, if
known, or a NULL pointer otherwise. This information comes from the sender's personal profile.

SenderDept: A null-terminated character string that contains the fax sender department, if known,
or a NULL pointer otherwise. This information comes from the sender's personal profile.

BillingCode: A null-terminated character string that contains the fax billing code, if known, or a NULL
pointer otherwise.

ScheduleAction: A DWORD that indicates when the fax is to be sent. This can be one of the
following values:

Value Meaning

JSA_NOW

0x00000000

The fax is to be sent as soon as a fax device is available.

JSA_SPECIFIC_TIME

0x00000001

The fax is to be sent at the time specified by the ScheduleTime field of this
FAX_JOB_ENTRY structure.

JSA_DISCOUNT_PERIOD

0x00000002

The fax is to be sent during the discount rate period. The
FaxObs_GetConfiguration (section 3.1.4.2.24) method can be called to retrieve
the discount period for the fax server.

ScheduleTime: A SYSTEMTIME structure indicating the local date and time to send the fax, in
Coordinated Universal Time (UTC) format. This parameter MUST be ignored unless the
ScheduleAction parameter is set to 1 (JSA_SPECIFIC_TIME).

DeliveryReportType: A DWORD variable that indicates the fax delivery report type. This value MUST

be one of the FAX_ENUM_DELIVERY_REPORT_TYPES (section 2.2.76) enumeration values. The
DRT_ATTACH_FAX value can be combined with the DRT_EMAIL value by an OR operation.

DeliveryReportAddress: A null-terminated character string that contains the email address for the
delivery report, if known, or a NULL pointer otherwise.

DocumentName: A null-terminated character string that contains the document name, if known, or
a NULL pointer otherwise.

2.2.6 _FAX_JOB_ENTRY

The _FAX_JOB_ENTRY structure is the custom-marshaled variant of the
FAX_JOB_ENTRY (section 2.2.5) structure and describes one fax job. The structure includes
information about the job type and status, the personal profiles (section 3.1.1) of the recipient and
sender, scheduling and delivery settings, and the page count. The SizeOfStruct, RecipientNumber,

and QueueStatus fields in the Fixed_Portion block MUST NOT be 0. Except for these fields and the
JobId field, all fields of this structure are optional, and if the respective information is not available,
the fields in the Fixed_Portion block MUST be zero.

27 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

An application can call the FAX_GetJob (Opnum 5) method to retrieve information about a specified
job at the server, information which is returned in a _FAX_JOB_ENTRY structure.

An application can call the FAX_EnumJobs function (section 3.1.4.1.21) to enumerate all queued and
active fax jobs (see definition of fax queue inFax Queue section 3.1.1) on the fax server of interest.

The FAX_EnumJobs function returns an array of _FAX_JOB_ENTRY structures. Each structure
describes one fax job in detail.

This structure is also returned as a single structure by the FaxObs_GetJob (section 3.1.4.2.10) method
and as an array of structures by the FaxObs_EnumJobs (section 3.1.4.2.9) method.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (92 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (92 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SizeOfStruct

JobId

UserNameOffset

JobType

QueueStatus

Status

Size

PageCount

RecipientNumberOffset

RecipientNameOffset

28 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

TsidOffset

SenderNameOffset

SenderCompanyOffset

SenderDeptOffset

BillingCodeOffset

ScheduleAction

ScheduleTime (16 bytes)

...

...

...

DeliveryReportType

DeliveryReportAddressOffset

DocumentNameOffset

SizeOfStruct (4 bytes): A DWORD that indicates the size, in bytes, of the _FAX_JOB_ENTRY
structure. MUST be set to 92 bytes.

JobId (4 bytes): A DWORD that indicates a unique number that identifies the fax jobs of

interest. This is the same kind of job identifier number as the JobId parameter for the
FAX_SetJob function.

UserNameOffset (4 bytes): Offset to the UserName field in the Variable_Data portion of the
structure.

JobType (4 bytes): A DWORD variable that indicates the type of the fax job of interest. This field
is one of the following values.

Value Meaning

0x00000000 The job type is JT_UNKNOWN (section 3.1.1).

0x00000001 The job type is JT_SEND (section 3.1.1).

0x00000002 The job type is JT_RECEIVE (section 3.1.1).

0x00000003 The job type is JT_ ROUTING (section 3.1.1).

0x00000004 The job type is JT_FAIL_RECEIVE (section 3.1.1).

JT_BROADCAST

0x00000020

The job type is JT_BROADCAST (section 3.1.1). <2>

29 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

QueueStatus (4 bytes): A DWORD variable containing a set of bit flags indicating the job status
(section 3.1.1) of the fax job identified by the JobId field. This field MUST be a bitwise OR

combination of one or more of the job status values listed in section 3.1.1.

Status (4 bytes): A DWORD that specifies the status of the fax device that received or sent the

fax job described by this structure, captured at the time the job information was recorded.
This value MUST be one of the following predefined device status codes.

Value Meaning

FPS_UNKNOWN

0x00000000

The status of the device is unknown.

FPS_DIALING

0x20000001

The device is dialing a fax number.

FPS_SENDING

0x20000002

The device is sending a fax document.

FPS_RECEIVING

0x20000004

The device is receiving a fax document.

FPS_COMPLETED

0x20000008

The device completed sending or receiving a fax transmission.

FPS_HANDLED

0x20000010

The fax service processed the outbound fax document; the fax service
provider (FSP) will transmit the fax document.

FPS_UNAVAILABLE

0x20000020

The device is not available because it is in use by another application.

FPS_BUSY

0x20000040

The device encountered a busy signal.

FPS_NO_ANSWER

0x20000080

The receiving device did not answer the call.

FPS_BAD_ADDRESS

0x20000100

The device dialed an invalid fax number.

FPS_NO_DIAL_TONE

0x20000200

The sending device cannot complete the call because it does not detect a dial
tone.

FPS_DISCONNECTED

0x20000400

The fax call was disconnected by the sender or the caller.

FPS_FATAL_ERROR

0x20000800

The device has encountered a fatal protocol error.

FPS_NOT_FAX_CALL

0x20001000

The device received a call that was a data call or a voice call.

FPS_CALL_DELAYED

0x20002000

The device delayed a fax call because the sending device received a busy
signal multiple times. The device cannot retry the call because dialing
restrictions exist (some countries and regions restrict the number of retry
attempts when a number is busy).

FPS_CALL_BLACKLISTED

0x20004000

The device could not complete a call because the telephone number was
blocked or reserved; emergency numbers such as 911 are blocked.

30 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

FPS_INITIALIZING

0x20008000

The device is initializing a call.

FPS_OFFLINE

0x20010000

The device is offline and unavailable.

FPS_RINGING

0x20020000

The device is ringing.

FPS_AVAILABLE

0x20100000

The device is available.

FPS_ABORTING

0x20200000

The device is aborting a fax job.

FPS_ROUTING

0x20400000

The device is routing a received fax document.

FPS_ANSWERED

0x20800000

The device answered a new call.

Size (4 bytes): A DWORD variable that indicates the total size, in bytes, of the fax document
received or sent, including the size of the cover page, if a cover page is present, and the size
of the fax body, if a fax body is present. The size MUST NOT exceed 4 gigabytes.

PageCount (4 bytes): A DWORD variable that indicates the total number of pages in the fax
transmission.

RecipientNumberOffset (4 bytes): Offset to the RecipientNumber field in the Variable_Data
portion of the structure.

RecipientNameOffset (4 bytes): Offset to the RecipientName field in the Variable_Data

portion of the structure.

TsidOffset (4 bytes): Offset to the Tsid field in the Variable_Data portion of the structure.

SenderNameOffset (4 bytes): Offset to the SenderName field in the Variable_Data portion
of the structure.

SenderCompanyOffset (4 bytes): Offset to the SenderCompany field in the Variable_Data
portion of the structure.

SenderDeptOffset (4 bytes): Offset to the SenderDepth field in the Variable_Data portion of
the structure.

BillingCodeOffset (4 bytes): Offset to the BillingCode field in the Variable_Data portion of
the structure.

ScheduleAction (4 bytes): A DWORD variable that indicates how the fax was configured or is
configured to be sent if this job is an outgoing fax transmission; otherwise, this parameter
SHOULD be ignored. This value can be one of the following values.

Value Meaning

JSA_NOW

0x00000000

The fax is to be sent as soon as a fax device is available.

31 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

JSA_SPECIFIC_TIME

0x00000001

The fax is to be sent at the time specified by the ScheduleTime field of this
_FAX_JOB_ENTRY structure.

JSA_DISCOUNT_PERIOD

0x00000002

The fax is to be sent during the discount rate period. The
FAX_GetConfiguration (section 3.1.4.1.36) or the
FaxObs_GetConfiguration (section 3.1.4.2.24) method can be called to
retrieve the discount period for the fax server.

ScheduleTime (16 bytes): A SYSTEMTIME structure indicating the local date and time when the
fax was sent or configured to be sent, in UTC format. This parameter SHOULD be ignored

unless the ScheduleAction parameter is set to 1 (JSA_SPECIFIC_TIME) and this job is an
outgoing fax transmission.

DeliveryReportType (4 bytes): A DWORD variable that indicates the fax delivery report type.
This value can be one of the FAX_ENUM_DELIVERY_REPORT_TYPES (section 2.2.76)
enumeration values. The DRT_ATTACH_FAX value can be combined with the DRT_EMAIL value

in one value by an OR operation.

DeliveryReportAddressOffset (4 bytes): Offset to the DeliveryReportAddress field in the
Variable_Data portion of the structure.

DocumentNameOffset (4 bytes): Offset to the DocumentName field in the Variable_Data
portion of the structure.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

UserName (variable)

...

RecipientNumber (variable)

...

RecipientName (variable)

...

Tsid (variable)

...

SenderName (variable)

...

SenderCompany (variable)

...

32 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

SenderDept (variable)

...

BillingCode (variable)

...

DeliveryReportAddress (variable)

...

DocumentName (variable)

...

UserName (variable): A null-terminated character string that contains the name of the fax user
account that submitted the fax job.

RecipientNumber (variable): A null-terminated character string that contains the fax number of

the recipient of the fax transmission. This information comes from the recipient's personal
profile.

RecipientName (variable): A null-terminated character string that contains the name of the
recipient of the fax. This information comes from the recipient's personal profile.

Tsid (variable): A null-terminated character string that contains the transmitting subscriber
identifier (TSID). This information comes from the sender's personal profile.

SenderName (variable): A null-terminated character string that contains the fax sender name.

This information comes from the sender's personal profile.

SenderCompany (variable): A null-terminated character string that contains the fax sender
company. This information comes from the sender's personal profile.

SenderDept (variable): A null-terminated character string that contains the fax sender
department. This information comes from the sender's personal profile.

BillingCode (variable): A null-terminated character string that contains the fax billing code.

DeliveryReportAddress (variable): A null-terminated character string that contains the email
address for the delivery report.

DocumentName (variable): A null-terminated character string that contains the document
name.

2.2.7 FAX_PORT_INFO

The FAX_PORT_INFO structure describes one fax port. The data includes, among other items, a device
identifier, the port's name and current status, and subscriber identifiers.

A fax client application passes the FAX_PORT_INFO structure in a call to the FAX_SetPort function to
modify the configuration of the fax port of interest.

This structure is also used as an input argument for the FaxObs_SetPort (section 3.1.4.2.17) method.

33 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 typedef struct {
 DWORD SizeOfStruct;
 DWORD DeviceId;
 DWORD State;
 DWORD Flags;
 DWORD Rings;
 DWORD Priority;
 [string] LPCWSTR DeviceName;
 [string] LPCWSTR Tsid;
 [string] LPCWSTR Csid;
 } FAX_PORT_INFO,
 *PFAX_PORT_INFO;

SizeOfStruct: A DWORD that holds the size of the structure, in bytes. This value MUST be 36 bytes
or 48 bytes. When filled in on a 32-bit implementation, this value SHOULD be 36 bytes. When

filled in on a 64-bit implementation, this value SHOULD be 48 bytes.

DeviceId: A DWORD variable that holds the line identifier for the fax device (port) of interest.

State: A DWORD variable that holds a fax device status code or value. This member can be one of
the following predefined device status codes.

Value Meaning

FPS_DIALING

0x20000001

The device is dialing a fax number.

FPS_SENDING

0x20000002

The device is sending a fax document.

FPS_RECEIVING

0x20000004

The device is receiving a fax document.

FPS_COMPLETED

0x20000008

The device completed sending or receiving a fax transmission.

FPS_HANDLED

0x20000010

The fax service processed the outbound fax document; the fax service provider
(FSP) will transmit the fax document.

FPS_UNAVAILABLE

0x20000020

The device is not available because it is in use by another application.

FPS_BUSY

0x20000040

The device encountered a busy signal.

FPS_NO_ANSWER

0x20000080

The receiving device did not answer the call.

FPS_BAD_ADDRESS

0x20000100

The device dialed an invalid fax number.

FPS_NO_DIAL_TONE

0x20000200

The sending device cannot complete the call because it does not detect a dial
tone.

FPS_DISCONNECTED

0x20000400

The fax call was disconnected by the sender or the caller.

FPS_FATAL_ERROR

0x20000800

The device has encountered a fatal protocol error.

34 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

FPS_NOT_FAX_CALL

0x20001000

The device received a call that was a data call or a voice call.

FPS_CALL_DELAYED

0x20002000

The device delayed a fax call because the sending device received a busy signal
multiple times. The device cannot retry the call because dialing restrictions exist
(some countries and regions restrict the number of retry attempts when a
number is busy).

FPS_CALL_BLACKLISTED

0x20004000

The device could not complete a call because the telephone number was blocked
or reserved; emergency numbers such as 911 are blocked.

FPS_INITIALIZING

0x20008000

The device is initializing a call.

FPS_OFFLINE

0x20010000

The device is offline and unavailable.

FPS_RINGING

0x20020000

The device is ringing.

FPS_AVAILABLE

0x20100000

The device is available.

FPS_ABORTING

0x20200000

The device is aborting a fax job.

FPS_ROUTING

0x20400000

The device is routing a received fax document.

FPS_ANSWERED

0x20800000

The device answered a new call.

Flags: A DWORD variable that holds a set of bit flags that specify the capability of the fax port. This
member can be a bitwise OR combination of the following flag values.

Value Meaning

FPF_RECEIVE

0x00000001

The device can receive faxes.

FPF_SEND

0x00000002

The device can send faxes.

FPF_VIRTUAL

0x00000004

The device is a virtual fax device. Note that the implementer cannot set a device to be
virtual. When FAX_GetPort is called, the FAX_PORT_INFO flag's FPF_VIRTUAL value indicates
whether the device is virtual. When FAX_SetPort is called, the service will only relate to the
FPF_RECEIVE and FPF_SEND values.

Rings: A DWORD variable that holds the number of times an incoming fax call rings before the
specified device answers the call. Values can be from 0 to 99 inclusive. This value SHOULD be

ignored unless the FPF_RECEIVE port capability bit flag is set.

Priority: A DWORD variable that holds the priority that determines the relative order in which
available fax devices send outgoing transmissions. Values for this member can be 1 through n,
where n is the value of the PortsReturned parameter returned by a call to the FAX_EnumPorts
function. When the fax server initiates an outgoing fax transmission, it attempts to select the
device with the highest priority and FPF_SEND port capability. If that device is not available, the

35 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

server selects the next available device that follows in rank order, and so on. The value of the
Priority member has no effect on incoming transmissions.

DeviceName: A pointer to a constant null-terminated character string that holds the name of the fax
device of interest.

Tsid: A pointer to a constant null-terminated character string that holds the transmitting subscriber
identifier (TSID). This identifier is usually a telephone number. Only English letters, numeric
symbols, and punctuation marks (ASCII range 0x20 to 0x7F) can be used in a TSID.

Csid: A pointer to a constant null-terminated character string that holds the called subscriber
identifier (CSID). This identifier is usually a telephone number. Only English letters, numeric
symbols, and punctuation marks (ASCII range 0x20 to 0x7F) can be used in a CSID.

2.2.8 _FAX_PORT_INFO

The _FAX_PORT_INFO data structure is the custom-marshaled variant of the
FAX_PORT_INFO (section 2.2.7) data structure. This structure describes one fax port. The data

includes, among other items, a device identifier, the port's name and current status, and subscriber

identifiers.

If an application calls the FAX_EnumPorts function to enumerate all the fax devices currently attached
to a fax server, the function returns a byte array of _FAX_PORT_INFO structures. Each structure
describes one device in detail.

If an application calls the FAX_GetPort function to query one device, that function returns information
about the device in one _FAX_PORT_INFO structure.

This structure is also returned as a single structure by the FaxObs_GetPort (section 3.1.4.2.16)

method and as an array of structures by the FaxObs_EnumPorts (section 3.1.4.2.15) method.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (36 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (36 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SizeOfStruct

36 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

DeviceId

State

Flags

Rings

Priority

DeviceNameOffset

TsidOffset

CsidOffset

SizeOfStruct (4 bytes): A DWORD that holds the size of the Fixed_Portion block, in bytes. This
value MUST be 36 bytes.

DeviceId (4 bytes): See the DeviceId field for the FAX_PORT_INFO (section 2.2.7) data

structure.

State (4 bytes): See the State field for the FAX_PORT_INFO (section 2.2.7) data structure.

Flags (4 bytes): See the Flags field for the FAX_PORT_INFO (section 2.2.7) data structure.

Rings (4 bytes): See the Rings field for the FAX_PORT_INFO (section 2.2.7) data structure.

Priority (4 bytes): See the Priority field for the FAX_PORT_INFO (section 2.2.7) data structure.

DeviceNameOffset (4 bytes): Offset to the DeviceName field in the Variable_Data portion of

the structure.

TsidOffset (4 bytes): Offset to the Tsid field in the Variable_Data portion of the structure.

CsidOffset (4 bytes): Offset to the Csid field in the Variable_Data portion of the structure.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DeviceName (variable)

...

Tsid (variable)

...

Csid (variable)

...

37 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

DeviceName (variable): A null-terminated string that holds the name of the fax device of
interest.

Tsid (variable): A null-terminated string that holds the transmitting subscriber identifier (TSID)
with same description as for the Tsid field of the FAX_PORT_INFO (section 2.2.7) data

structure.

Csid (variable): A null-terminated string that holds the called subscriber identifier (CSID) with
same description as for the Csid field of the FAX_PORT_INFO (section 2.2.7) data structure.

2.2.9 FAX_ROUTING_METHOD

The FAX_ROUTING_METHOD structure contains information about one fax routing method as it
pertains to one fax device. This information describes one fax routing method (section 3.1.1). The
data indicates (among other items) whether the fax routing method is enabled for the device, and the
name of the binary that exports the routing method. It also includes the GUID and function name that
uniquely identify the routing method and the method's user-friendly name.

A fax client application can call the FAX_EnumRoutingMethods (section 3.1.4.1.31) or

FaxObs_EnumRoutingMethods (section 3.1.4.2.18) functions to enumerate all of the fax routing
methods associated with a specific fax device. These functions each return an array of
FAX_ROUTING_METHOD structures. Each structure describes one fax routing method in detail.

Call the FAX_EnableRoutingMethod or the FaxObs_EnableRoutingMethod (section 3.1.4.2.19) functions
to enable or disable a fax routing method for a specific fax device.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (36 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (36 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SizeOfStruct

DeviceId

Enabled

38 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

DeviceNameOffset

GuidOffset

FriendlyNameOffset

FunctionNameOffset

ExtensionImageNameOffset

ExtensionFriendlyNameOffset

SizeOfStruct (4 bytes): A DWORD value that holds the size of the Fixed_Portion block, in
bytes. This value MUST be 36 bytes.

DeviceId (4 bytes): A DWORD that holds the line identifier for the fax device (port) of interest.

Enabled (4 bytes): A Boolean that indicates whether the fax routing method is enabled or
disabled for the fax device of interest. If this value is equal to TRUE, the fax routing method is
enabled for the device.

DeviceNameOffset (4 bytes): Offset to the DeviceName field in the Variable_Data block of
the structure.

GuidOffset (4 bytes): Offset to the Guid field in the Variable_Data block of the structure.

FriendlyNameOffset (4 bytes): Offset to the FriendlyName field in the Variable_Data block
of the structure.

FunctionNameOffset (4 bytes): Offset to the FunctionName field in the Variable_Data block
of the structure.

ExtensionImageNameOffset (4 bytes): Offset to the ExtensionImageName field in the
Variable_Data block of the structure.

ExtensionFriendlyNameOffset (4 bytes): Offset to the ExtensionFriendlyName field in the

Variable_Data block of the structure.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DeviceName (variable)

...

Guid (variable)

...

FriendlyName (variable)

...

39 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FunctionName (variable)

...

ExtensionImageName (variable)

...

ExtensionFriendlyName (variable)

...

DeviceName (variable): A null-terminated character string that holds the name of the fax
device.

Guid (variable): A null-terminated character string that holds the GUID that uniquely identifies

the fax routing method.

FriendlyName (variable): A null-terminated character string that holds the user-friendly name
to display for the fax routing method.

FunctionName (variable): A null-terminated character string that holds the name of the
function that executes the specified fax routing procedure. The fax routing extension binary
identified by the ExtensionImageName fields exports the function.

ExtensionImageName (variable): A null-terminated character string that holds the name of the
fax routing extension binary that implements the fax routing method.

ExtensionFriendlyName (variable): A null-terminated character string that holds the user-
friendly name to display for the fax routing extension binary.

2.2.10 FAX_DEVICE_STATUS

The FAX_DEVICE_STATUS structure contains information about the current status of a fax device. In
addition to the status, the structure includes data about whether the device is currently sending or
receiving a fax transmission, device and subscriber identifiers, sender and recipient names, and
routing information.

The fax client application can call the FAX_GetDeviceStatus (section 3.1.4.1.38) function to retrieve
status information for the fax device of interest. The function returns the information in a

FAX_DEVICE_STATUS structure.

This structure is also returned by the FaxObs_GetDeviceStatus (section 3.1.4.2.13) method.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (88 bytes)

...

...

40 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

Variable_Data (variable)

...

Fixed_Portion (88 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SizeOfStruct

CallerIdOffset

CsidOffset

CurrentPage

DeviceId

DeviceNameOffset

DocumentNameOffset

JobType

PhoneNumberOffset

RoutingStringOffset

SenderNameOffset

RecipientNameOffset

Size

StartTime

...

Status

StatusStringOffset

SubmittedTime

...

41 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

TotalPages

TsidOffset

UserNameOffset

SizeOfStruct (4 bytes): A DWORD that holds the size of the Fixed_Portion block, in bytes. This
value MUST be 88 bytes.

CallerIdOffset (4 bytes): Offset to the CallerId field in the Variable_Data portion of the

structure. If the JobType field is not equal to the JT_RECEIVE job type, this field SHOULD be
zero.

CsidOffset (4 bytes): Offset to the Csid field in the Variable_Data portion of the structure.

CurrentPage (4 bytes): A DWORD that holds the current page number of the fax transmission, if

any, that the fax device is currently sending or receiving. If the device is not sending or
receiving a fax, this field MUST be zero.

DeviceId (4 bytes): A DWORD that holds the line identifier for the fax device (port) of interest.

DeviceNameOffset (4 bytes): Offset to the DeviceName field in the Variable_Data portion of
the structure.

DocumentNameOffset (4 bytes): Offset to the DocumentName field in the Variable_Data
portion of the structure.

JobType (4 bytes): A DWORD that holds the type of fax job that is currently active on the
device. This field is one of the following values.

Value Meaning

JT_UNKNOWN

0x00000000

The fax device is in an unknown or idle state.

JT_SEND

0x00000002

The fax device is sending a fax document.

JT_RECEIVE

0x00000004

The fax device is receiving a fax document.

PhoneNumberOffset (4 bytes): Offset to the PhoneNumber field in the Variable_Data
portion of the structure. If the JobType field is not equal to the JT_SEND job type, this field

SHOULD be zero.

RoutingStringOffset (4 bytes): If the JobType field is not equal to the JT_RECEIVE job type,
this field SHOULD be zero. Otherwise, this field MAY be a nonzero offset to the RoutingString
field in the Variable_Data portion of the structure.

SenderNameOffset (4 bytes): Offset to the SenderName field in the Variable_Data portion
of the structure.

RecipientNameOffset (4 bytes): Offset to the RecipientName field in the Variable_Data

portion of the structure.

Size (4 bytes): A DWORD that holds the size, in bytes, of the active fax document. If the
JobType field is JT_SEND, this field SHOULD contain the total size of the active fax document

42 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

being transmitted at the device, including the size of the cover page and the size of the fax
body, if present. Otherwise, this field SHOULD be zero.

StartTime (8 bytes): A FILETIME structure ([MS-DTYP] section 2.3.3) that specifies the starting
time of the current fax job. The time is expressed in Coordinated Universal Time (UTC).

Status (4 bytes): A DWORD variable that holds a fax device status code or value. This field is
one of the following predefined device status codes.

Value Meaning

FPS_DIALING

0x20000001

The device is dialing a fax number.

FPS_SENDING

0x20000002

The device is sending a fax document.

FPS_RECEIVING

0x20000004

The device is receiving a fax document.

FPS_COMPLETED

0x20000008

The device completed sending or receiving a fax transmission.

FPS_HANDLED

0x20000010

The fax service processed the outbound fax document; the fax service provider
will transmit the fax document.

FPS_UNAVAILABLE

0x20000020

The device is not available because it is in use by another application.

FPS_BUSY

0x20000040

The device encountered a busy signal.

FPS_NO_ANSWER

0x20000080

The receiving device did not answer the call.

FPS_BAD_ADDRESS

0x20000100

The device dialed an invalid fax number.

FPS_NO_DIAL_TONE

0x20000200

The sending device cannot complete the call because it does not detect a dial
tone.

FPS_DISCONNECTED

0x20000400

The fax call was disconnected by the sender or the caller.

FPS_FATAL_ERROR

0x20000800

The device has encountered a fatal protocol error.

FPS_NOT_FAX_CALL

0x20001000

The device received a call that was a data call or a voice call.

FPS_CALL_DELAYED

0x20002000

The device delayed a fax call because the sending device received a busy
signal multiple times. The device cannot retry the call because dialing
restrictions exist (some countries and regions restrict the number of retry
attempts when a number is busy).

FPS_CALL_BLACKLISTED

0x20004000

The device could not complete a call because the telephone number was
blocked or reserved; emergency numbers such as 911 are blocked.

FPS_INITIALIZING The device is initializing a call.

43 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

0x20008000

FPS_OFFLINE

0x20010000

The device is offline and unavailable.

FPS_RINGING

0x20020000

The device is ringing.

FPS_AVAILABLE

0x20100000

The device is available.

FPS_ABORTING

0x20200000

The device is aborting a fax job.

FPS_ROUTING

0x20400000

The device is routing a received fax document.

FPS_ANSWERED

0x20800000

The device answered a new call.

StatusStringOffset (4 bytes): Offset to the StatusString field in the Variable_Data portion of
the structure. This field can be set to zero.<3>

SubmittedTime (8 bytes): A FILETIME structure that holds the time the client submitted the fax

document for transmission to the fax queue. The time is expressed in UTC.

TotalPages (4 bytes): A DWORD that holds the total number of pages in the fax transmission.

TsidOffset (4 bytes): Offset to the Tsid field in the Variable_Data portion of the structure.

UserNameOffset (4 bytes): Offset to the UserName field in the Variable_Data portion of the
structure.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CallerId (variable)

...

Csid (variable)

...

DeviceName (variable)

...

DocumentName (variable)

...

44 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

PhoneNumber (variable)

...

RoutingString (variable)

...

SenderName (variable)

...

RecipientName (variable)

...

StatusString (variable)

...

Tsid (variable)

...

UserName (variable)

...

CallerId (variable): If the JobType field is equal to the JT_RECEIVE job type, this is a null-
terminated character string that contains the caller ID of the calling device that sent the
active fax document.

Csid (variable): A null-terminated character string that holds the called subscriber identifier of
the device.

DeviceName (variable): A null-terminated character string that holds the name of the fax
device of interest.

DocumentName (variable): A null-terminated character string that holds the document name to
associate with the fax document that the device is currently sending or receiving.

PhoneNumber (variable): If the JobType field is equal to the JT_SEND job type, this is a null-
terminated character string that holds the fax number dialed for the outgoing fax
transmission.

RoutingString (variable): If the JobType field is equal to the JT_RECEIVE job type, this is a
null-terminated character string that holds the routing string (see section 3.1.1) for an
incoming fax.

SenderName (variable): A null-terminated character string that holds the name of the sender

who initiated the fax transmission.

RecipientName (variable): A null-terminated character string that holds the name of the
recipient of the fax transmission.

45 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

StatusString (variable): A null-terminated character string that holds a textual description of
the fax device status.

Tsid (variable): A null-terminated character string that holds the transmitting subscriber
identifier (TSID). This identifier is usually a telephone number.

UserName (variable): A null-terminated character string that holds the name of the client's fax
user account that submitted the active fax job. When this structure is returned by the
FAX_GetDeviceStatus (section 3.1.4.1.38) method, this account is the client's fax user account
that called the FAX_SendDocumentEx (section 3.1.4.1.73) method. When this structure is
returned by the FaxObs_GetDeviceStatus (section 3.1.4.2.13) method, this account is the
client's fax user accountFax User Account that called the FaxObs_SendDocument (section
3.1.4.2.7) method.

2.2.11 FAX_LOG_CATEGORY

The FAX_LOG_CATEGORY structure describes one logging category. Each logging category is identified
by a numeric identifier and is described by a user-friendly name. The fax server associates with each

logging category a configurable severity-level threshold that controls which logged events will cause
entries to be written to the event log. If the current severity-level threshold for the event's category is
lower than the event's severity level, the fax server SHOULD NOT write a corresponding entry into the
log. The fax client application passes an array of FAX_LOG_CATEGORY structures in a call to the
FAX_SetLoggingCategories function to modify the current logging categories for the fax server of
interest. The FAX_GetLoggingCategories function returns the current settings in an array of
FAX_LOG_CATEGORY structures.

An array of this structure is sent as an input argument for the
FaxObs_SetLoggingCategories (section 3.1.4.2.27) method, and this structure is sent as an output
parameter for the FaxObs_GetLoggingCategories (section 3.1.4.2.26) method.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion

...

...

Variable_Data (variable)

...

Fixed_Portion (12 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NameOffset

Category

46 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Level

NameOffset (4 bytes): Offset to the Name field in the Variable_Data portion of the structure

Category (4 bytes): A DWORD that holds a unique value that identifies a logging category for
the events the fax server writes. Each event to be written by the fax server SHOULD have a

logging category preassigned to it. The fax server SHOULD write the respective logging
category when writing an event, so that the accumulated events could be organized by the
administrator by using the logging categories. This field MUST be one of the following
predefined values.<4>

Value Meaning

FAXLOG_CATEGORY_INIT

1

A fax service initialization or termination event.

FAXLOG_CATEGORY_OUTBOUND

2

An outgoing fax transmission event such as sending a fax.

FAXLOG_CATEGORY_INBOUND

3

An incoming fax transmission event such as receiving a fax or routing
a fax.

FAXLOG_CATEGORY_UNKNOWN

4

An unknown event.

Level (4 bytes): A DWORD that holds the current severity-level threshold for the logging
category identified by Category. If the current severity-level threshold for the event's category

is lower than the event's severity level, the fax server SHOULD NOT write a corresponding
entry into the log. This field MUST contain one of the following predefined severity-level
values.

Value Meaning

FAXLOG_LEVEL_NONE

0

The fax server MUST NOT log events.

FAXLOG_LEVEL_MIN

1

The fax server SHOULD log only the most severe failure events.

FAXLOG_LEVEL_MED

2

The fax server SHOULD log most events (this level does not include some
informational and warning events).

FAXLOG_LEVEL_MAX

3

The fax server MUST log all events.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Name (variable)

...

Name (variable): A null-terminated character string that contains the name for the logging
category.

47 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.12 FAX_COVERPAGE_INFO_EXW

The FAX_COVERPAGE_INFO_EXW structure is used as an argument for the
FAX_SendDocumentEx (section 3.1.4.1.73) call that specifies information about the fax cover page

used when sending a fax.

 typedef struct {
 DWORD dwSizeOfStruct;
 DWORD dwCoverPageFormat;
 [string] LPWSTR lpwstrCoverPageFileName;
 BOOL bServerBased;
 [string] LPWSTR lpwstrNote;
 [string] LPWSTR lpwstrSubject;
 } FAX_COVERPAGE_INFO_EXW,
 *PFAX_COVERPAGE_INFO_EXW,
 *LPCFAX_COVERPAGE_INFO_EXW;

dwSizeOfStruct: A DWORD value that holds the total size of the structure, in bytes. This value

MUST be 24 or 40 bytes. When filled in on a 32-bit implementation, this value SHOULD be 24
bytes. When filled in on a 64-bit implementation, this value SHOULD be 40 bytes.

dwCoverPageFormat: A DWORD that indicates the format of the cover page template. This MUST

be one of the values defined in FAX_ENUM_COVERPAGE_FORMATS. The required file format for
the cover page template is described in section 3.1.4.1.73.

lpwstrCoverPageFileName: A pointer to a null-terminated character string that holds the file name
of the cover page template. This file name SHOULD NOT include any path separators. If
bServerBased is FALSE, the file extension MUST be ".cov", and except for the terminating null
character, the character string MUST contain only characters representing valid hexadecimal
digits: "0123456789abcdefABCDEF". If bServerBased is TRUE the file extension SHOULD be

".cov". The cover page file MUST be present in the fax server queue directory when the
FAX_SendDocumentEx (section 3.1.4.1.73) call is made. If no cover-page information is available,
this pointer MUST be NULL.

bServerBased: A Boolean that indicates whether the cover page template specified by the
lpwstrCoverPageFileName parameter is a new personal cover page template (when set to FALSE)
or a server-based cover page template (when set to TRUE). For more details on the semantics of
TRUE and FALSE, see FAX_SendDocumentEx (section 3.1.4.1.73).

lpwstrNote: A pointer to a null-terminated character string that holds the content for the note field
of the cover page.

lpwstrSubject: A pointer to a null-terminated character string that holds the content for the subject
field.

2.2.13 FAX_JOB_PARAMW

The FAX_JOB_PARAMW structure contains information about a fax job, including information about the
personal profiles (section 3.1.1) for the sender and the recipient of the fax. This structure is used as

an input argument for the FaxObs_SendDocument (Opnum 5) method.

 typedef struct {
 DWORD SizeOfStruct;
 [string] LPCWSTR RecipientNumber;
 [string] LPCWSTR RecipientName;
 [string] LPCWSTR Tsid;
 [string] LPCWSTR SenderName;
 [string] LPCWSTR SenderCompany;
 [string] LPCWSTR SenderDept;
 [string] LPCWSTR BillingCode;

48 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 DWORD ScheduleAction;
 SYSTEMTIME ScheduleTime;
 DWORD DeliveryReportType;
 [string] LPCWSTR DeliveryReportAddress;
 [string] LPCWSTR DocumentName;
 HCALL CallHandle;
 DWORD_PTR Reserved[3];
 } FAX_JOB_PARAMW,
 *PFAX_JOB_PARAMW;

SizeOfStruct: A DWORD that contains the size, in bytes, of this structure. This value MUST be 80 or

136 bytes. When filled in on a 32-bit implementation, this value SHOULD be 80 bytes. When filled
in on a 64-bit implementation, this value SHOULD be 136 bytes.

RecipientNumber: A null-terminated character string that holds the fax number of the fax
transmission recipient.

RecipientName: A null-terminated character string that holds the name of the fax transmission
recipient.

Tsid: A null-terminated character string that holds the transmitting subscriber identifier (TSID). The

valid characters for a TSID string are the English letters, the numeric symbols, and the
punctuation marks (ASCII range 0x20 to 0x7F).

SenderName: A null-terminated character string that holds the name of the fax transmission sender.

SenderCompany: A null-terminated character string that holds the name of the fax transmission
sender's company.

SenderDept: A null-terminated character string that holds the name of the fax transmission sender's
department.

BillingCode: A null-terminated character string that holds an optional billing code for the fax
transmission.

ScheduleAction: A DWORD variable that indicates when the fax is to be sent. This value can be one
of the following values:

Value Meaning

JSA_NOW

0x00000000

The fax is to be sent as soon as a fax device is available.

JSA_SPECIFIC_TIME

0x00000001

The fax is to be sent at the time specified by the ScheduleTime member of this
structure.

JSA_DISCOUNT_PERIOD

0x00000002

The fax is to be sent during the discount rate period. The
FaxObs_GetConfiguration (section 3.1.4.2.24) method can be called to retrieve
the discount period for the fax server.

ScheduleTime: A SYSTEMTIME structure indicating the local date and time to send the fax, in UTC

format. This member is used when the ScheduleAction member is set to 0x00000001
(JSA_SPECIFIC_TIME), and is otherwise ignored.

DeliveryReportType: A DWORD variable that indicates the fax delivery report type. This value can
be one of the FAX_ENUM_DELIVERY_REPORT_TYPES (section 2.2.76) enumeration values. The

DRT_ATTACH_FAX value can be combined with the DRT_EMAIL value in one value by using an OR
operation.

49 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

DeliveryReportAddress: A null-terminated character string. Contains the email address for the
delivery report when the DeliveryReportType member is set to 0x00000001 (DRT_E_MAIL).

Otherwise, this pointer value can be NULL.

DocumentName: A null-terminated character string that holds the document name. A NULL pointer

value specifies that no document name is specified for this fax job.

CallHandle: An unsigned 32-bit integer value containing an optional TAPI call handle. For more
information about TAPI, see [MSDN-TAPI2.2]. For more information about this member, see the
FaxObs_SendDocument (section 3.1.4.2.7) method.

Reserved: A table of three 32-bit unsigned integer fields (on 32-bit implementations), or 64-bit
unsigned integer fields (on 64-bit implementations). If the first value, Reserved[0], is zero, then
all values in this table SHOULD be ignored.

If the fax job is a normal job sent to one fax device (port), the Reserved values SHOULD be as
follows:

▪ Reserved[0] SHOULD be set to zero or to 0xFFFFFFFF (on 32-bit) or 0x00000000FFFFFFFF

(on 64-bit).

▪ Reserved[1] SHOULD contain a device identifier such as the value contained by the
DeviceId member of a valid FAX_PORT_INFO or _FAX_PORT_INFO structure, describing one

fax port (device).

▪ Reserved[2] SHOULD be ignored.

If the fax job is part of a broadcast sequence executed by the client to send the same fax to
multiple recipients, the Reserved values SHOULD be as follows:

▪ Reserved[0] SHOULD be set to 0xFFFFFFFE (on 32-bit) or 0x00000000FFFFFFFE (on 64-bit).

▪ Reserved[1] SHOULD be set to one of the following two values:

▪ A value of 1 (0x00000001 on 32-bit or 0x0000000000000001 on 64-bit) for the first

FaxObs_SendDocument method call made by the client to start the broadcast sequence.

▪ A value of 2 (0x00000002 on 32-bit or 0x0000000000000002 on 64-bit) for the second
and following FaxObs_SendDocument method calls made by the client to continue and
complete a started broadcast sequence.

▪ Reserved[2] SHOULD be set to one of the following two values:

▪ If Reserved[1] is set to a value of 1, Reserved[2] SHOULD be set to zero.

▪ If Reserved[1] is set to a value of 2, Reserved[2] SHOULD contain the job identifier

returned by the FaxObs_SendDocument call that started the broadcast sequence.

For more information about this member, see the FaxObs_SendDocument (section 3.1.4.2.7) method.

2.2.14 FAX_JOB_PARAM_EXW

The FAX_JOB_PARAM_EXW structure defines information about the new job to create when sending a
fax message.

 typedef struct {
 DWORD dwSizeOfStruct;
 DWORD dwScheduleAction;
 SYSTEMTIME tmSchedule;
 DWORD dwReceiptDeliveryType;
 [string] LPWSTR lpwstrReceiptDeliveryAddress;

50 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 FAX_ENUM_PRIORITY_TYPE Priority;
 HCALL hCall;
 DWORD_PTR dwReserved[4];
 [string] LPWSTR lpwstrDocumentName;
 DWORD dwPageCount;
 } FAX_JOB_PARAM_EXW,
 *PFAX_JOB_PARAM_EXW,
 *LPCFAX_JOB_PARAM_EXW;

dwSizeOfStruct: A DWORD that contains the size, in bytes, of this structure. MUST be set to 44
bytes on 32-bit implementations, and MUST be set to 64 bytes on 64-bit implementations.

dwScheduleAction: A DWORD that MUST specify when to send the fax. This member MUST be one
of the following values.

Value Meaning

JSA_NOW

0

Send the fax as soon as a device is available.

JSA_SPECIFIC_TIME

1

Send the fax at the time specified by the tmSchedule member.

JSA_DISCOUNT_PERIOD

2

Send the fax during the discount rate period. Call the FAX_GetConfiguration
function to retrieve the discount period for the fax server.

tmSchedule: A SYSTEMTIME structure that contains the date and time to send the fax. The time
MUST be specified in UTC. This parameter SHOULD be ignored unless dwScheduleAction is set
to 1 (JSA_SPECIFIC_TIME). If the time specified has already passed, the method behaves as if 0

(JSA_NOW) was specified.

dwReceiptDeliveryType: A DWORD that holds the type of receipt delivered to the sender when the
fax is successfully sent and when the fax transmission fails. It can also specify if a receipt will be
sent for each recipient or for all the recipients together. The value of this parameter MUST be a

logical combination of one of the delivery method flags and optionally one of the delivery grouping
flags as specified in FAX_ENUM_DELIVERY_REPORT_TYPES. The fax client MUST NOT use the
DRT_INBOX value if the protocol version reported by the server is FAX_API_VERSION_2

(0x00020000) or FAX_API_VERSION_3 (0x00030000). For more information, see
FAX_ConnectFaxServer (section 3.1.4.1.10).

lpwstrReceiptDeliveryAddress: A pointer to a constant, null-terminated character string. If the
dwReceiptDeliveryType member contains the DRT_EMAIL or DRT_ATTACH_FAX flag, the string
SHOULD be the address to which the delivery receipt (DR) or non-delivery receipt (NDR) SHOULD
be sent. If the dwReceiptDeliveryType member is equal to DRT_INBOX, the string SHOULD be
the name of the MAPI profile to which the DR or NDR SHOULD be sent. For more information

about MAPI, refer to [MSDN-MAPIPRF]. If the dwReceiptDeliveryType member is equal to
DRT_MSGBOX, the string SHOULD be the computer name to send the receipt to as a text message
containing a character string, as described in Messenger Service Remote Protocol Specification
[MS-MSRP] section 3.2.4.1. If the dwReceiptDeliveryType member is set to DRT_NONE, the

pointer SHOULD be NULL.

Priority: A value specifying the priority level of the outgoing fax.

hCall: Reserved.

Note This value MUST be set to NULL.

dwReserved: This field SHOULD be set to zero.

51 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpwstrDocumentName: A null-terminated character string that holds the document name. A NULL
pointer value specifies that no document name is specified for this fax job.

dwPageCount: A DWORD value that holds the number of pages in the fax document pointed to by
the lpcwstrFileName parameter of the FAX_SendDocumentEx method. This value MUST be used

only for fax documents in TIFF, which is the only supported format.

2.2.15 FAX_MESSAGE_PROPS

The FAX_MESSAGE_PROPS structure defines the properties of a fax message that can be set.

 typedef struct {
 DWORD dwValidityMask;
 DWORD dwMsgFlags;
 } FAX_MESSAGE_PROPS,
 *PFAX_MESSAGE_PROPS;

dwValidityMask: A DWORD value that defines a bitwise combination of valid fields in the structure.

Value Meaning

FAX_MSG_PROP_FIELD_MSG_FLAGS

0x0001

 Indicates whether the value in dwMsgFlags is valid. If this bit is set, the
value in dwMsgFlags is valid.

dwMsgFlags: A DWORD bitmask that specifies the state to which the message flags are set.

Value Meaning

FAX_MSG_FLAG_READ

0x00000001

Determines whether this fax message is marked as read. If this bit is set, the message
is marked as read. If this bit is reset, the message is marked as unread.

2.2.16 FAX_OUTBOX_CONFIG

The FAX_OUTBOX_CONFIG structure defines information about outbox settings of the fax server. This
data structure is used as a parameter to the FAX_SetOutboxConfiguration (section 3.1.4.1.87)
method.

 typedef struct {
 DWORD dwSizeOfStruct;
 BOOL bAllowPersonalCP;
 BOOL bUseDeviceTSID;
 DWORD dwRetries;
 DWORD dwRetryDelay;
 FAX_TIME dtDiscountStart;
 FAX_TIME dtDiscountEnd;
 DWORD dwAgeLimit;
 BOOL bBranding;
 } FAX_OUTBOX_CONFIG,
 *PFAX_OUTBOX_CONFIG;

dwSizeOfStruct: A DWORD value that holds the total size of the structure, in bytes. This value
MUST be 36 bytes.

bAllowPersonalCP: A Boolean that indicates whether fax client applications can include a user-
designed cover page template with the fax transmission. If this member is TRUE, the client can

52 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

provide a personal cover page template. If this member is FALSE, the client MUST use a common
cover page stored on the fax server.

bUseDeviceTSID: A Boolean variable that indicates whether the fax server MAY use the devices
transmitting subscriber identifier instead of the value specified when submitting a new job. If this

member is TRUE, the server SHOULD use the devices transmitting subscriber identifier.

dwRetries: A DWORD that holds the number of times the fax server will attempt to retransmit an
outgoing fax if the initial transmission fails.

dwRetryDelay: A DWORD that holds the minimum number of minutes that will elapse between
retransmission attempts by the fax server.

dtDiscountStart: A FAX_TIME structure that MUST specify the hour and minute at which the
discount period begins. The discount period applies only to outgoing transmissions.

dtDiscountEnd: A FAX_TIME structure that holds the hour and minute at which the discount period
ends. The discount period applies only to outgoing transmissions.

dwAgeLimit: A DWORD variable that holds the number of days the fax server will keep unsuccessful
fax messages in its outbox queue. If a fax message stays in the outbox queue longer than the
value specified, it MAY be automatically deleted. If this value is zero, the time limit MUST NOT be
used.

bBranding: A Boolean that indicates whether the fax server generates a brand (banner) at the top of
outgoing fax transmissions. If this member is TRUE, the fax server SHOULD generate a brand that
contains transmission-related information such as the transmitting subscriber identifier, date,
time, and page count.

2.2.17 _FAX_OUTBOX_CONFIG

The _FAX_OUTBOX_CONFIG data type is the custom-marshaled variant of the FAX_OUTBOX_CONFIG
data structure documented in section FAX_OUTBOX_CONFIG (section 2.2.16). The
_FAX_OUTBOX_CONFIG data type is returned from the

FAX_GetOutboxConfiguration (section 3.1.4.1.47) method.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in

section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (36 bytes)

...

...

...

Fixed_Portion (36 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

53 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

bAllowPersonalCP

bUseDeviceTSID

dwRetries

dwRetryDelay

dtDiscountStart

dtDiscountEnd

dwAgeLimit

bBranding

dwSizeOfStruct (4 bytes): A DWORD that holds the size of the structure. MUST be set to 36
bytes.

bAllowPersonalCP (4 bytes): A Boolean that indicates whether fax client applications can

include a user-designed cover page template with the fax transmission. If this field is TRUE,
the client can provide a personal cover page template. If this field is FALSE, the client MUST
use a common cover page template stored on the fax server.

bUseDeviceTSID (4 bytes): A Boolean variable that indicates whether the fax server can use
the device's transmitting subscriber identifier instead of the value specified when a new job is
submitted. If this field is TRUE, the server SHOULD use the device's transmitting subscriber

identifier.

dwRetries (4 bytes): A DWORD that holds the number of times the fax server will attempt to

retransmit an outgoing fax if the initial transmission fails.

dwRetryDelay (4 bytes): A DWORD that holds the minimum number of minutes that will elapse
between retransmission attempts by the fax server.

dtDiscountStart (4 bytes): A FAX_TIME structure that holds the hour and minute at which the
discount period begins. The discount period applies only to outgoing transmissions.

dtDiscountEnd (4 bytes): A FAX_TIME structure that holds the hour and minute at which the
discount period ends. The discount period applies only to outgoing transmissions.

dwAgeLimit (4 bytes): A DWORD variable that holds the number of days the fax server will
keep unsuccessful fax messages in its outbox queue. If a fax message stays in the outbox
queue longer than the value specified, it MAY be automatically deleted. If this value is zero,
the time limit MUST NOT be used.

bBranding (4 bytes): A Boolean that indicates whether the fax server has to generate a brand

(banner) at the top of outgoing fax transmissions. If this field is TRUE, the fax server
generates a brand that contains transmission-related information such as the transmitting
subscriber identifier, date, time, and page count.

2.2.18 FAX_REASSIGN_INFO

The FAX_REASSIGN_INFO structure contains information about the reassignment of a fax.

54 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 typedef struct {
 [string] LPCWSTR lpcwstrRecipients;
 [string] LPCWSTR lpcwstrSenderName;
 [string] LPCWSTR lpcwstrSenderFaxNumber;
 [string] LPCWSTR lpcwstrSubject;
 BOOL bHasCoverPage;
 } FAX_REASSIGN_INFO,
 *PFAX_REASSIGN_INFO;

lpcwstrRecipients: A pointer to a constant, null-terminated character string that holds an array of
intended recipients to which the fax message can be assigned. The recipients are separated by a
semicolon. Each recipient refers to a fax user accountFax User Account.

lpcwstrSenderName: A pointer to a constant null-terminated character string that describes the
sender name for the received fax.

lpcwstrSenderFaxNumber: A pointer to a constant null-terminated character string that describes
the sender fax number for the received fax.

lpcwstrSubject: A pointer to a constant, null-terminated character string that describes the subject
of the received fax.

bHasCoverPage: Boolean value that indicates whether the fax includes a cover page. If this member
is TRUE, the fax SHOULD include a cover page.

2.2.19 FAX_SERVER_ACTIVITY

The FAX_SERVER_ACTIVITY structure defines information about the server's fax queue activity and

the events reported by the fax server. This structure is used as an argument for
FAX_GetServerActivity (section 3.1.4.1.61).

 typedef struct {
 DWORD dwSizeOfStruct;
 DWORD dwIncomingMessages;
 DWORD dwRoutingMessages;
 DWORD dwOutgoingMessages;
 DWORD dwDelegatedOutgoingMessages;
 DWORD dwQueuedMessages;
 DWORD dwErrorEvents;
 DWORD dwWarningEvents;
 DWORD dwInformationEvents;
 } FAX_SERVER_ACTIVITY,
 *PFAX_SERVER_ACTIVITY;

dwSizeOfStruct: A DWORD value that holds the total size of the structure, in bytes. This value
MUST be 36 bytes.

dwIncomingMessages: A DWORD that indicates the number of messages currently being received

by the fax server. This variable MAY also be set to the count of the number of incoming messages

that were successfully received and are currently being routed using an inbound routing method.
If the routing fails, the incoming job SHOULD be marked for a routing retry and the
dwRoutingMessages member used to count this job when the routing restarts. If this value is
nonzero, stopping the server MAY result in the loss of incoming messages.

dwRoutingMessages: A DWORD that indicates the number of incoming messages being rerouted
after a routing failure.

55 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

dwOutgoingMessages: A DWORD that indicates the number of messages currently being sent by
the fax server. If this value is nonzero, stopping the server MAY result in the loss of outgoing

messages.

dwDelegatedOutgoingMessages: A DWORD that indicates the number of messages currently

being sent by a Fax Service Provider on behalf of the fax server. The fax server is not currently
sending these messages.

dwQueuedMessages: A DWORD that indicates the number of outgoing messages waiting to be
processed in the server's fax queue.

dwErrorEvents: A DWORD that indicates the number of error entries added to the system event log
since the last time the fax server was started.

dwWarningEvents: A DWORD that indicates the number of warning entries added to the system

event log since the last time the fax server was started.

dwInformationEvents: A DWORD that indicates the number of information entries added to the
system event log since the last time the fax server was started.

2.2.20 _FAX_SERVER_ACTIVITY

The _FAX_SERVER_ACTIVITY data type is the custom-marshaled variant of the
FAX_SERVER_ACTIVITY data structure described in section 2.2.19. The _FAX_SERVER_ACTIVITY
structure defines information about the server's fax queue activity and the events reported by the fax
server. This structure is used as a union field of the FAX_EVENT_EX (section 2.2.67) and
FAX_EVENT_EX_1 (section 2.2.68) structures.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in

section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (36 bytes)

...

...

...

Fixed_Portion (36 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

dwIncomingMessages

dwRoutingMessages

dwOutgoingMessages

56 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

dwDelegatedOutgoingMessage

dwQueuedMessages

dwErrorEvents

dwWarningEvents

dwInformationEvents

dwSizeOfStruct (4 bytes): A DWORD value that holds the total size of the structure, in bytes.
MUST be set to 36 bytes.

dwIncomingMessages (4 bytes): See the dwIncomingMessages field for the

FAX_SERVER_ACTIVITY (section 2.2.19) structure.

dwRoutingMessages (4 bytes): See the dwRoutingMessages field for the
FAX_SERVER_ACTIVITY (section 2.2.19) structure.

dwOutgoingMessages (4 bytes): See the dwOutgoingMessages field for the
FAX_SERVER_ACTIVITY (section 2.2.19) structure.

dwDelegatedOutgoingMessage (4 bytes): See the dwDelegatedOutgoingMessage field for

the FAX_SERVER_ACTIVITY (section 2.2.19) structure.

dwQueuedMessages (4 bytes): See the dwQueuedMessages field for the
FAX_SERVER_ACTIVITY (section 2.2.19) structure.

dwErrorEvents (4 bytes): See the dwErrorEvents field for the FAX_SERVER_ACTIVITY (section
2.2.19) structure.

dwWarningEvents (4 bytes): See the dwWarningEvents field for the FAX_SERVER_ACTIVITY

(section 2.2.19) structure.

dwInformationEvents (4 bytes): See the dwInformation field for the FAX_SERVER_ACTIVITY
(section 2.2.19) structure.

2.2.21 FAX_SPECIFIC_ACCESS_RIGHTS

The FAX_SPECIFIC_ACCESS_RIGHTS enumeration defines specific access rights, which provide

security when users query and manage fax jobs, fax devices, and fax documents.

 typedef enum
 {
 FAX_ACCESS_SUBMIT = 0x0001,
 FAX_ACCESS_SUBMIT_NORMAL = 0x0002,
 FAX_ACCESS_SUBMIT_HIGH = 0x0004,
 FAX_ACCESS_QUERY_JOBS = 0x0008,
 FAX_ACCESS_MANAGE_JOBS = 0x0010,
 FAX_ACCESS_QUERY_CONFIG = 0x0020,
 FAX_ACCESS_MANAGE_CONFIG = 0x00040,
 FAX_ACCESS_QUERY_IN_ARCHIVE = 0x00080,
 FAX_ACCESS_MANAGE_IN_ARCHIVE = 0x0100,
 FAX_ACCESS_QUERY_OUT_ARCHIVE = 0x0200,
 FAX_ACCESS_MANAGE_OUT_ARCHIVE = 0x0400,
 FAX_GENERIC_READ = FAX_ACCESS_QUERY_JOBS | FAX_ACCESS_QUERY_CONFIG |
FAX_ACCESS_QUERY_IN_ARCHIVE | FAX_ACCESS_QUERY_OUT_ARCHIVE,

 FAX_GENERIC_WRITE = FAX_ACCESS_MANAGE_JOBS | FAX_ACCESS_MANAGE_CONFIG |
FAX_ACCESS_MANAGE_IN_ARCHIVE | FAX_ACCESS_MANAGE_OUT_ARCHIVE,

57 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 FAX_GENERIC_EXECUTE = FAX_ACCESS_SUBMIT,
 FAX_GENERIC_ALL = FAX_ACCESS_SUBMIT | FAX_ACCESS_SUBMIT_NORMAL | FAX_ACCESS_SUBMIT_HIGH |
FAX_ACCESS_QUERY_JOBS | FAX_ACCESS_MANAGE_JOBS | FAX_ACCESS_QUERY_CONFIG |

FAX_ACCESS_MANAGE_CONFIG | FAX_ACCESS_QUERY_IN_ARCHIVE | FAX_ACCESS_MANAGE_IN_ARCHIVE |

FAX_ACCESS_QUERY_OUT_ARCHIVE | FAX_ACCESS_MANAGE_OUT_ARCHIVE

 } FAX_SPECIFIC_ACCESS_RIGHTS;

FAX_ACCESS_SUBMIT: The user can submit low priority fax messages. The user can view and
manage his own messages in the server's queue and outgoing archive.

FAX_ACCESS_SUBMIT_NORMAL: The user can submit normal priority fax messages. The user can
view and manage his own messages in the server's queue and outgoing archive.

FAX_ACCESS_SUBMIT_HIGH: The user can submit high-priority fax messages. The user can view

and manage his own messages in the server's queue and outgoing archive.

FAX_ACCESS_QUERY_JOBS: The user can query all the jobs (incoming or outgoing) in the server's
queue.

FAX_ACCESS_MANAGE_JOBS: The user can manage all the jobs (incoming or outgoing) in the
server's queue.

FAX_ACCESS_QUERY_CONFIG: The user can view the fax server's configuration.

FAX_ACCESS_MANAGE_CONFIG: The user can change the fax server's configuration.

FAX_ACCESS_QUERY_IN_ARCHIVE: The user can view all messages in the incoming messages
archive.

FAX_ACCESS_MANAGE_IN_ARCHIVE: The user can manage all messages in the incoming
messages archive.

FAX_ACCESS_QUERY_OUT_ARCHIVE: The user can view all messages in the outgoing messages
archive.

FAX_ACCESS_MANAGE_OUT_ARCHIVE: The user can manage all messages in the outgoing

messages archive.

FAX_GENERIC_READ: Access rights needed to read faxes.

FAX_GENERIC_WRITE: Access rights needed to write faxes.

FAX_GENERIC_EXECUTE: Access rights needed to execute faxes.

FAX_GENERIC_ALL: All access rights.

2.2.22 FAX_VERSION

The FAX_VERSION structure contains information about the version of the fax server components.
This structure is used by FAX_GetVersion (section 3.1.4.1.64).

 typedef struct {
 DWORD dwSizeOfStruct;
 BOOL bValid;
 WORD wMajorVersion;
 WORD wMinorVersion;
 WORD wMajorBuildNumber;
 WORD wMinorBuildNumber;
 DWORD dwFlags;
 } FAX_VERSION,
 *PFAX_VERSION;

58 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

dwSizeOfStruct: A DWORD value that holds the total size of the structure, in bytes. This value
MUST be 20 bytes.

bValid: A Boolean value indicating the validity of the version information returned.

Note This value MUST be set to false if no version information is returned in this structure.

wMajorVersion: A WORD containing the major version number of the fax server component.

wMinorVersion: A WORD containing the minor version number of the fax server component.

wMajorBuildNumber: A WORD containing the major build number of the fax server component.

wMinorBuildNumber: A WORD containing the minor build number of the fax server component.

dwFlags: A DWORD that MUST contain one of the following values.

Value Meaning

0x00000000 Indicates that the server component was built in release mode.

Note If built in release mode, this value MUST be zero, which is the
default.

FAX_VER_FLAG_CHECKED

0x00000001

Indicates that the server component was built in debug mode.

FAX_VER_FLAG_EVALUATION

0x00000002

Indicates that the server component was built for evaluation
purposes. Reserved for future use.

2.2.23 _FAX_VERSION

The _FAX_VERSION structure is the custom-marshaled variant of the FAX_VERSION (section 2.2.22)

structure. The _FAX_VERSION structure contains the same information about the version of the fax
server components as contained in the FAX_VERSION structure. The _FAX_VERSION structure is
embedded in the FAX_ROUTING_EXTENSION_INFO (section 2.2.49) and
FAX_DEVICE_PROVIDER_INFO structures.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (20 bytes)

...

...

...

Fixed_Portion (20 bytes):

59 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

bValid

wMajorVersion wMinorVersion

wMajorBuildNumber wMinorBuildNumber

dwFlags

dwSizeOfStruct (4 bytes): A DWORD value that holds the total size of the structure, in bytes.
This value MUST be 20 bytes.

bValid (4 bytes): See the bValid field for the FAX_VERSION (section 2.2.22) structure.

wMajorVersion (2 bytes): See the wMajorVersion field for the FAX_VERSION (section 2.2.22)
structure.

wMinorVersion (2 bytes): See the wMinorVersion field for the FAX_VERSION (section 2.2.22)
structure.

wMajorBuildNumber (2 bytes): See the wMajorBuildNumber field for the FAX_VERSION
(section 2.2.22) structure.

wMinorBuildNumber (2 bytes): See the wMinorBuildNumber field for the FAX_VERSION
(section 2.2.22) structure.

dwFlags (4 bytes): See the dwFlags field for the FAX_VERSION (section 2.2.22) structure.

2.2.24 FAX_ACCOUNT_INFO_0

A FAX_ACCOUNT_INFO_0 structure describes one fax user account.Fax User Account. An array of
the FAX_ACCOUNT_INFO_0 data type can be passed as an out parameter (as a byte array) in a
FAX_EnumAccounts (Opnum 95) call. This data type can also be passed as an out parameter (as a
byte array) in a FAX_GetAccountInfo (Opnum 96) call and as an in parameter in a FAX_CreateAccount
(Opnum 93) call.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion

...

Variable_Data (variable)

...

Fixed_Portion (8 bytes):

60 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

lpcwstrAccountNameOffset

dwSizeOfStruct (4 bytes): A DWORD value that holds the size of the Fixed_Portion block, in
bytes. This value MUST be 8 bytes.

lpcwstrAccountNameOffset (4 bytes): Offset to the lpcwstrAccountName field in the

Variable_Data block of the structure.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpcwstrAccountName (variable)

...

lpcwstrAccountName (variable): A null-terminated character string that holds the name of the
fax account. The account name that lpcwstrAccountName indicates MUST be in one of the
following formats.

Format Description

<machine_name>\<user_name> For a local user with machine_name as the local machine's
name.

<domain_name>\<user_name> For a remote (not local) user.

2.2.25 FAX_ACTIVITY_LOGGING_CONFIGW

This structure is used as an input parameter for the
FAX_SetActivityLoggingConfiguration (section 3.1.4.1.74) call.

 typedef struct {
 DWORD dwSizeOfStruct;
 BOOL bLogIncoming;
 BOOL bLogOutgoing;
 [string] LPWSTR lpwstrDBPath;
 } FAX_ACTIVITY_LOGGING_CONFIGW,
 *PFAX_ACTIVITY_LOGGING_CONFIGW;

dwSizeOfStruct: A DWORD value that holds the size of this structure, in bytes. This value MUST be

16 bytes or 28 bytes. When filled in on a 32-bit implementation, this value SHOULD be 16 bytes.
When filled in on a 64-bit implementation, this value SHOULD be 28 bytes.

bLogIncoming: A Boolean flag that indicates whether incoming fax activities are logged.

bLogOutgoing: A Boolean flag that indicates whether outgoing fax activities are logged.

61 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpwstrDBPath: A pointer to a null-terminated character string that holds the directory on the server
where the activity logging database files reside. <5>

2.2.26 _FAX_ACTIVITY_LOGGING_CONFIGW

The _FAX_ACTIVITY_LOGGING_CONFIGW structure is used as an output parameter for the
FAX_GetActivityLoggingConfiguration (section 3.1.4.1.33) method call.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (16 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (16 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

bLogIncoming

bLogOutgoing

lpwstrDBPathOffset

dwSizeOfStruct (4 bytes): A DWORD that holds the size of this structure, in bytes. This value
MUST be set to 16 bytes.

bLogIncoming (4 bytes): A Boolean flag that indicates whether incoming fax activities are
logged.

bLogOutgoing (4 bytes): A Boolean flag that indicates whether outgoing fax activities are
logged.

lpwstrDBPathOffset (4 bytes): An offset to the lpwstrDBPath field in the Variable_Data
block of the structure.

Variable_Data (variable):

62 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpwstrDBPath (variable)

...

lpwstrDBPath (variable): A null-terminated character string that holds the directory on the
server where the activity logging database files reside.

2.2.27 FAX_ARCHIVE_CONFIGW

The FAX_ARCHIVE_CONFIGW data type can be passed as an out parameter (as a byte array) in a
FAX_GetArchiveConfiguration call and as an in parameter for FAX_SetArchiveConfiguration .

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in

section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (40 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (40 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

bUseArchive

lpcstrFolderOffset

bSizeQuotaWarning

dwSizeQuotaHighWatermark

dwSizeQuotaLowWatermark

dwAgeLimit

63 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Padding

dwlArchiveSize

...

dwSizeOfStruct (4 bytes): A DWORD value that holds the size of the Fixed_Portion block, in
bytes. This value MUST be 40 bytes.

bUseArchive (4 bytes): A Boolean value that indicates whether archiving is turned on for the

specified folder name.

lpcstrFolderOffset (4 bytes): Offset to the lpcstrFolder field in the Variable_Data block of
the structure.

bSizeQuotaWarning (4 bytes): A Boolean value that indicates whether the fax server SHOULD

issue an event log warning if the archive quota exceeds the watermarks defined by the
dwSizeQuotaHighWatermark and dwSizeQuotaLowWatermark fields.

dwSizeQuotaHighWatermark (4 bytes): A DWORD that holds the high watermark of the
archive size limit.

dwSizeQuotaLowWatermark (4 bytes): A DWORD that holds the low watermark of the archive
size limit.

dwAgeLimit (4 bytes): A DWORD that holds the number of days the fax server will keep fax
messages in the archive.

Padding (4 bytes): Padding for data alignment of the Fixed_Portion block to an 8-byte

boundary.

dwlArchiveSize (8 bytes): A DWORDLONG that holds the size, in bytes, of the archive.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpwstrFolder (variable)

...

lpwstrFolder (variable): A null-terminated character string that holds the archive folder name.

2.2.28 FAX_CONFIGURATIONW

The FAX_CONFIGURATIONW structure is used as an input parameter for

FAX_SetConfiguration (section 3.1.4.1.76) and FaxObs_SetConfiguration (section 3.1.4.2.25) to
change the current fax server configuration settings. Along with the FAX_GENERAL_CONFIG data
structure, (section 2.2.31), this data structure describes the general configuration of the fax server.

 typedef struct {
 DWORD SizeOfStruct;
 DWORD Retries;
 DWORD RetryDelay;
 DWORD DirtyDays;
 BOOL Branding;

64 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 BOOL UseDeviceTsid;
 BOOL ServerCp;
 BOOL PauseServerQueue;
 FAX_TIME StartCheapTime;
 FAX_TIME StopCheapTime;
 BOOL ArchiveOutgoingFaxes;
 [string] LPCWSTR ArchiveDirectory;
 [string] LPCWSTR ProfileName;
 } FAX_CONFIGURATIONW,
 *PFAX_CONFIGURATIONW;

SizeOfStruct: A DWORD value that holds the total size of the structure, in bytes. This value MUST be
either 52 or 64 bytes. When filled in on a 32-bit implementation, this value SHOULD be 52 bytes.
When filled in on a 64-bit implementation, this value SHOULD be 64 bytes.

Retries: A DWORD variable that contains the value of the "fax transmission retries" fax server
configuration setting. (section 3.1.1).

RetryDelay: A DWORD variable that contains the value of the "fax transmission retry delay" fax

server configuration setting (section 3.1.1)..

DirtyDays: A DWORD variable that contains the value of the "dirty days" fax server configuration
setting (section 3.1.1)..

Branding: A Boolean flag that specifies whether the fax server generates a brand (banner) at the top
of outgoing fax transmissions. If this member is TRUE, the fax server generates a brand that

contains transmission-related information like the transmitting subscriber identifier, date, time,
and page count. This flag configures the "branding"Branding fax server configuration setting
(section 3.1.1)..

UseDeviceTsid: A Boolean flag that specifies whether the fax server uses the device's transmitting
subscriber identifier instead of the value specified in the Tsid member of the FAX_JOB_PARAMW
structure. (section 2.2.13). If this member is TRUE, the server uses the device's transmitting
subscriber identifier. This flag configures the "use of the device's TSID" fax server configuration

setting (section 3.1.1)..

ServerCp: A Boolean flag that specifies whether fax client applications can include a user-designed
cover page template with the fax transmission. If this member is TRUE, the client MUST use a
common cover page template stored on the fax server. If this member is FALSE, the client can use
a personal cover page template. This flag configures the "personal cover page support" fax server
configuration setting (section 3.1.1)..

PauseServerQueue: A Boolean flag that specifies whether the fax server has paused the outgoing

fax queue. If this member is TRUE, the outgoing fax queue is paused and the "Queue State"
(section 3.1.1) setting is set to FAX_OUTBOX_PAUSED (0x00000004). If this field is FALSE, the
outgoing fax queue is not paused, and the "Queue State" is either 0x00000000 or
FAX_OUTBOX_BLOCKED (0x00000002).

StartCheapTime: Contains a FAX_TIME structure (section 2.2.61) that indicates the hour and
minute values of the current "start cheap time" fax server configuration setting (section 3.1.1)..

StopCheapTime: Contains a FAX_TIME structure that indicates the hour and minute values of the
current "stop cheap time" fax server configuration setting (section 3.1.1)..

ArchiveOutgoingFaxes: A Boolean flag that specifies whether the fax server archives fax
transmissions. If this member is TRUE, the server archives transmissions in the directory specified
by the ArchiveDirectory member. This flag configures the "archive enabled"Archive Enabled
fax server configuration setting (section 3.1.1).<.<6>

ArchiveDirectory: A pointer to a constant, null-terminated character string that holds the fully

qualified path of the "Fax Archive Folder" fax server configuration setting (section 3.1.1).. The

65 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

path can be a UNC path or a path that begins with a drive letter. The fax server ignores this
member if the ArchiveOutgoingFaxes member is FALSE. This member can be NULL if the

ArchiveOutgoingFaxes member is FALSE.<7>

ProfileName: Reserved (not used) when this structure is used for

FAX_SetConfiguration (section 3.1.4.1.76)..

When used for FaxObs_SetConfiguration (section 3.1.4.2.25),, this member is a null-terminated
character string containing the "profile name" fax server configuration setting (section 3.1.1)..

2.2.29 _FAX_CONFIGURATIONW

The _FAX_CONFIGURATIONW data type is the custom-marshaled variant of the
FAX_CONFIGURATIONW (section 2.2.28) structure. This data type is used as an output parameter (as
a byte array) for FAX_GetConfiguration (section 3.1.4.1.36) and
FaxObs_GetConfiguration (section 3.1.4.2.24) to return the current fax server configuration settings.
Along with the FAX_GENERAL_CONFIG (section 2.2.31) data structure, this data structure describes
the general configuration of the fax server.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (52 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (52 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SizeOfStruct

Retries

RetryDelay

DirtyDays

Branding

UseDeviceTsid

66 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

ServerCp

PauseServerQueue

Fixed_Portion_of_StartCheapTime

Fixed_Portion_of_StopCheapTime

ArchiveOutgoingFaxes

ArchiveDirectoryOffset

ProfileNameOffset

SizeOfStruct (4 bytes): A DWORD that contains the size, in bytes, of the structure. MUST be set

to 52 bytes.

Retries (4 bytes): A DWORD variable that contains the value of the "fax transmission retries" fax

server configuration setting (section 3.1.1).

RetryDelay (4 bytes): A DWORD variable that contains the value of the "fax transmission retry
delay" fax server configuration setting (section 3.1.1)..

DirtyDays (4 bytes): A DWORD variable that contains the value of the "dirty days" fax server
configuration setting (section 3.1.1)..

Branding (4 bytes): A Boolean flag that specifies whether the fax server generates a brand

(banner) at the top of outgoing fax transmissions. If this field is TRUE, the fax server
generates a brand that contains transmission-related information like the transmitting
subscriber identifier, date, time, and page count. This flag configures the "branding"Branding
fax server configuration setting (section 3.1.1)..

UseDeviceTsid (4 bytes): A Boolean flag that specifies whether the fax server uses the device's
transmitting subscriber identifier instead of the value specified in the Tsid field of the
FAX_JOB_PARAMW structure. (section 2.2.13). If this field is TRUE, the server uses the

device's transmitting subscriber identifier. This flag configures the "use of the device's TSID"
fax server configuration setting (section 3.1.1)..

ServerCp (4 bytes): A Boolean flag that specifies whether fax client applications can include a
user-designed cover page template with the fax transmission. If this field is TRUE, the client
MUST use a common cover page template stored on the fax server. If this field is FALSE, the
client can use a personal cover page template. This flag configures the "personal cover page
support" fax server configuration setting (section 3.1.1)..

PauseServerQueue (4 bytes): A Boolean flag that specifies whether the fax server has paused
the outgoing fax queue. If this field is TRUE, the outgoing fax queue is paused and the
"Queue State" setting (section 3.1.1) is set to FAX_OUTBOX_PAUSED (0x00000004). If this

field is FALSE, the outgoing fax queue is not paused, and the "Queue State" setting is either
0x00000000 or FAX_OUTBOX_BLOCKED (0x00000002).

Fixed_Portion_of_StartCheapTime (4 bytes): The Fixed_Portion block of a _FAX_TIME

structure (section 2.2.62) that indicates the hour and minute values of the current "start
cheap time" fax server configuration setting (section 3.1.1)..

67 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Fixed_Portion_of_StopCheapTime (4 bytes): The Fixed_Portion block of a _FAX_TIME
structure that indicates the hour and minute values of the "stop cheap time" fax server

configuration setting (section 3.1.1)..

ArchiveOutgoingFaxes (4 bytes): A Boolean flag that specifies whether the fax server archives

fax transmissions. If this field is TRUE, the server archives fax transmissions. This flag
corresponds to the "archive enabled"Archive Enabled fax server configuration setting
(section 3.1.1)..

ArchiveDirectoryOffset (4 bytes): The optional offset to the ArchiveDirectory field in the
Variable_Data block. The fax server SHOULD ignore this field and set it to zero if the
ArchiveOutgoingFaxes field is FALSE.<8>

ProfileNameOffset (4 bytes): Offset to the ProfileName field in the Variable_Data block.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ArchiveDirectory (variable)

...

ProfileName (variable)

...

ArchiveDirectory (variable): A null-terminated character string that holds the fully qualified
path of the "Fax Archive Folder" fax server configuration setting (section 3.1.1).. The path can
be a UNC path or a path that begins with a drive letter.

ProfileName (variable): Reserved and MUST be ignored when this structure is used for

FAX_GetConfiguration (section 3.1.4.1.36).

When used for FaxObs_GetConfiguration (section 3.1.4.2.24), this member is a null-terminated
character string containing the "profile name" fax server configuration setting (section 3.1.1)..

2.2.30 FAX_DEVICE_PROVIDER_INFO

An array of this data type FAX_DEVICE_PROVIDER_INFO can be passed as an out parameter (as a
byte array) in a FAX_EnumerateProviders call.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (52 bytes)

...

...

68 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

Variable_Data (variable)

...

Fixed_Portion (52 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

lpcwstrFriendlyNameOffset

lpcwstrImageNameOffset

lpcwstrProviderNameOffset

lpcwstrGUIDOffset

dwCapabilities

Version_Fixed_Portion (20 bytes)

...

...

...

Status

dwLastError

dwSizeOfStruct (4 bytes): A DWORD that holds the size, in bytes, of the structure. MUST be set

to 52 bytes.

lpcwstrFriendlyNameOffset (4 bytes): Offset to the lpcwstrFriendlyName field in the
Variable_Data portion of the structure.

lpcwstrImageNameOffset (4 bytes): Offset to the lpcwstrImageName field in the
Variable_Data portion of the structure.

lpcwstrProviderNameOffset (4 bytes): Offset to the lpcwstrProviderName field in the

Variable_Data portion of the structure.

lpcwstrGUIDOffset (4 bytes): Offset to the lpcwstrGUID field in the Variable_Data portion of
the structure.

dwCapabilities (4 bytes): A DWORD variable that holds the bitwise combination of capabilities
of the FSP. This value MUST be set to zero.

69 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Version_Fixed_Portion (20 bytes): A FAX_VERSION (section 2.2.22) structure that holds the
version of the fax service execution components.

Status (4 bytes): A FAX_ENUM_PROVIDER_STATUS (section 2.2.57) enumeration which holds
the status of the FSP.

dwLastError (4 bytes): A DWORD that holds the error code that was encountered while the
provider was loaded and initialized.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpcwstrFriendlyName (variable)

...

lpcwstrImageName (variable)

...

lpcwstrProviderName (variable)

...

lpcwstrGUID (variable)

...

lpcwstrFriendlyName (variable): A null-terminated string, which holds the FSP's user-friendly

name suitable for display.

lpcwstrImageName (variable): A null-terminated string which holds the full path and file name
for the FSP execution components.<9>

lpcwstrProviderName (variable): A null-terminated string which holds the name of the
telephony service provider associated with the devices for the FSP.

lpcwstrGUID (variable): A null-terminated string which holds the GUID for the FSP.

2.2.31 FAX_GENERAL_CONFIG

The FAX_GENERAL_CONFIG data type can be passed as a byte–array parameter to
FAX_SetGeneralConfiguration (section 3.1.4.1.80) and
FAX_GetGeneralConfiguration (section 3.1.4.1.40) to change or to return the current fax server

configuration settings.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in

section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (88 bytes)

70 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

...

...

Variable_Data (variable)

...

Fixed_Portion (88 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

bUseArchive

lpcwstrArchiveLocationOffset

bSizeQuotaWarning

dwSizeQuotaHighWaterMark

dwSizeQuotaLowWaterMark

dwArchiveAgeLimit

Padding

dwlArchiveSize

...

dwQueueAgeLimit

dwRetries

dwRetryDelay

bUseDeviceTSID

Fixed_Portion of dtDiscountStart

Fixed_Portion of dtDiscountEnd

bBranding

71 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

bAllowPersonalCP

dwQueueState

bAutoCreateAccountOnConnect

bIncomingFaxesArePublic

Padding

dwSizeOfStruct (4 bytes): A DWORD value containing the size, in bytes, of the structure. MUST
be set to 88 bytes.

bUseArchive (4 bytes): A Boolean value that indicates whether the fax server uses an archive to

store fax messages after they are successfully sent or received. If this field is TRUE, the fax

server MUST archive fax messages. This flag corresponds to the "archive enabled"Archive
Enabled fax server configuration setting (section 3.1.1).

lpcwstrArchiveLocationOffset (4 bytes): Offset to the lpcwstrArchiveLocation field in the
Variable_Data block of the structure.

bSizeQuotaWarning (4 bytes): A Boolean value that indicates whether the fax server MAY issue

an implementation-specific warning if the archive quota exceeds the watermarks defined by
the dwSizeQuotaHighWatermark and dwSizeQuotaLowWatermark fields. If this field is
TRUE, the fax server can issue an implementation-specific warning. This flag configures the
"size quota warning" fax server configuration setting (section 3.1.1).

dwSizeQuotaHighWaterMark (4 bytes): A DWORD value that holds the current value of the
"size quota high watermark" fax server configuration setting (section 3.1.1). If the size of the
archive exceeds this value, and if the bSizeQuotaWarning field is set to TRUE, an

implementation-specific warning can be issued.

dwSizeQuotaLowWaterMark (4 bytes): A DWORD value that holds the current value of the
"size quota low watermark" fax server configuration setting (section 3.1.1). If the size of the
archive falls below this value, and if the bSizeQuotaWarning field is set to TRUE, an
implementation-specific warning can be issued.

dwArchiveAgeLimit (4 bytes): A DWORD value that holds the current value of the "archive age
limit"Archive Age Limit fax server configuration setting (section 3.1.1).

Padding (4 bytes): Padding for data alignment to an 8-byte boundary.

dwlArchiveSize (8 bytes): A DWORDLONG value that holds the actual size of the archived data
contained in the "Fax Archive Folder" (section 3.1.1).

dwQueueAgeLimit (4 bytes): A DWORD value that specifies the current "queue age limit" fax
server configuration setting (section 3.1.1). For an outgoing fax job, after this period elapses
for a fax job and the fax job is still not transmitted to its destination, the fax server SHOULD

delete the respective fax job from the outgoing fax queue. For an incoming fax job, after this
period elapses for a fax job, the fax server SHOULD delete the respective fax job from the
incoming fax queue. If bUseArchive is TRUE (, meaning that the "archive enabled"Archive
Enabled fax server configuration setting is enabled),, the fax server SHOULD archive
incoming and outgoing fax messages regardless of whether the time period described by this
value (for the "queue age limit" fax server configuration setting) elapses.

dwRetries (4 bytes): A DWORD value that specifies the current value of the "fax transmission

retries" fax server configuration setting (section 3.1.1).

72 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

dwRetryDelay (4 bytes): A DWORD value that specifies the current value of the "fax
transmission retry delay" fax server configuration setting (section 3.1.1).

bUseDeviceTSID (4 bytes): A Boolean value that specifies the current value of the "use device's
TSID" fax server configuration setting (section 3.1.1).

Fixed_Portion of dtDiscountStart (4 bytes): The Fixed_Portion block of a FAX_TIME
structure that holds the hour and minute values of the "start cheap time" fax server
configuration setting (section 3.1.1).

Fixed_Portion of dtDiscountEnd (4 bytes): The Fixed_Portion block of a FAX_TIME structure
that holds the hour and minute values of the "stop cheap time" fax server configuration
setting (section 3.1.1).

bBranding (4 bytes): A Boolean value that specifies the current value of the

"branding"Branding server configuration setting (section 3.1.1). If this field is TRUE, the fax
server SHOULD generate an implementation-specific brand that contains transmission-related
information, such as the transmitting subscriber identifier, date, time, and page count.

bAllowPersonalCP (4 bytes): A Boolean value that specifies the current value of the "personal
cover page support" fax server configuration setting (section 3.1.1). If this field is TRUE, the
client can provide a personal cover page template. If this field is FALSE, the client MUST use a

common cover page template stored on the fax server.

dwQueueState (4 bytes): A DWORD value that contains the current value of the "Queue State"
setting (section 3.1.1). If this value is zero, both the incoming and outgoing queues MUST be
unblocked; otherwise, this value MUST be a combination of one or more of the following flags.

Value Meaning

FAX_INCOMING_BLOCKED

0x00000001

Fax service will not receive new incoming faxes.

FAX_OUTBOX_BLOCKED

0x00000002

Fax service will reject submissions of new outgoing faxes to its
queue.

FAX_OUTBOX_PAUSED

0x00000004

Fax service will not remove and execute outgoing fax jobs from its
queue.

bAutoCreateAccountOnConnect (4 bytes): A Boolean value that contains the current value of
the "automatic account creation"Automatic Account Creation fax server configuration
setting (section 3.1.1). A value of TRUE indicates that the setting is enabled; FALSE means
that the setting is disabled. For more details, see section 3.1.4.1.10.

bIncomingFaxesArePublic (4 bytes): A Boolean value that contains the current value of the

"incoming fax viewing permission" setting (section 3.1.1). When this setting is TRUE, all
incoming faxes SHOULD be accessible for viewing by all users. When it is FALSE, only users
whose accounts have FAX_ACCESS_MANAGE_RECEIVE_FOLDER permission MUST be able to
view the incoming faxes.

Padding (4 bytes): Padding for data alignment to an 8-byte boundary.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpcwstrArchiveLocation (variable)

73 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

lpcwstrArchiveLocation (variable): A null-terminated character string that indicates the
archives folder location on the fax server file system. The portion preceding the terminating
null character of this string MUST NOT end in a backslash (\) character.

2.2.32 FAX_GLOBAL_ROUTING_INFOW

An array of the FAX_GLOBAL_ROUTING_INFOW structure is used as an input parameter to
FAX_SetGlobalRoutingInfo (section 3.1.4.1.81) and

FaxObs_SetGlobalRoutingInfo (section 3.1.4.2.23).

 typedef struct {
 DWORD SizeOfStruct;
 DWORD Priority;
 [string] LPCWSTR Guid;
 [string] LPCWSTR FriendlyName;
 [string] LPCWSTR FunctionName;
 [string] LPCWSTR ExtensionImageName;
 [string] LPCWSTR ExtensionFriendlyName;
 } FAX_GLOBAL_ROUTING_INFOW,
 *PFAX_GLOBAL_ROUTING_INFOW;

SizeOfStruct: A DWORD that holds the total size of the structure, in bytes. This value MUST be 28
bytes or 48 bytes. When filled in on a 32-bit implementation, this value SHOULD be 28 bytes.
When filled in on a 64-bit implementation, this value SHOULD be 48 bytes.

Priority: A DWORD variable that holds the priority of the fax routing method. The priority determines
the relative order in which the fax service calls the fax routing methods when the service receives

a fax document. Values for this member MUST be 1 through the maximum DWORD value
(0xFFFFFFFF or 4,294,967,295), where 1 is the highest priority.

Guid: A pointer to a constant, null-terminated character string that holds the GUID that uniquely
identifies the fax routing method of interest.

FriendlyName: A pointer to a constant, null-terminated character string that holds the user-friendly
name to display for the fax routing method.

FunctionName: A pointer to a null-terminated character string that holds the name of the function
that executes the specified fax routing method.

ExtensionImageName: A pointer to a constant, null-terminated character string that holds the
name of the fax routing extensions that implements the fax routing method.

ExtensionFriendlyName: A pointer to a constant, null-terminated character string that holds the
user-friendly name to display for the fax routing extensions that implement the fax routing
method.

2.2.33 _FAX_GLOBAL_ROUTING_INFOW

The _FAX_GLOBAL_ROUTING_INFOW structure is the custom-marshaled variant of the
FAX_GLOBAL_ROUTING_INFOW data structure described in section 2.2.32. A byte array of this
structure is used as an output parameter in FAX_EnumGlobalRoutingInfo (section 3.1.4.1.20) and in

FaxObs_EnumGlobalRoutingInfo (section 3.1.4.2.22).

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

74 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (28 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (28 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SizeOfStruct

Priority

GuidOffset

FriendlyNameOffset

FunctionName

ExtensionImageNameOffset

ExtensionFriendlyNameOffset

SizeOfStruct (4 bytes): A DWORD that holds the size of the Fixed_Portion block, in bytes. This

value MUST be 28 bytes.

Priority (4 bytes): See the Priority field for the FAX_GLOBAL_ROUTING_INFOW structure in
section 2.2.32.

GuidOffset (4 bytes): Offset to the Guid field in the Variable_Data portion of the structure.

FriendlyNameOffset (4 bytes): Offset to the FriendlyName field in the Variable_Data portion
of the structure.

FunctionName (4 bytes): Offset to the FunctionName field in the Variable_Data portion of
the structure.

ExtensionImageNameOffset (4 bytes): Offset to the ExtensionImageName field in the
Variable_Data portion of the structure.

ExtensionFriendlyNameOffset (4 bytes): Offset to the ExtensionFriendlyName field in the
Variable_Data portion of the structure.

75 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Guid (variable)

...

FriendlyName (variable)

...

FunctionName (variable)

...

ExtensionImageName (variable)

...

ExtensionFriendlyName (variable)

...

Guid (variable): A null-terminated character string that holds the GUID that uniquely identifies
the fax routing method of interest.

FriendlyName (variable): A null-terminated character string that holds the user-friendly name
to display for the fax routing method.

FunctionName (variable): A null-terminated character string that holds the name of the
function that executes the specified fax routing method.

ExtensionImageName (variable): A null-terminated character string that holds the name of the
fax routing extensions that implements the fax routing method.

ExtensionFriendlyName (variable): A null-terminated character string that holds the user-
friendly name to display for the fax routing extensions that implements the fax routing
method.

2.2.34 FAX_JOB_ENTRY_EX_1

An array of the FAX_JOB_ENTRY_EX_1 (section 2.2.34) data type can be passed as an out parameter
(as a byte array) in the FAX_EnumJobsEx2 (section 3.1.4.1.23) call. The data type can also be passed

as an out parameter in the FAX_GetJobEx2 (section 3.1.4.1.43).

The dwSizeOfStruct and lpcwstrRecipientNumberOffset fields in the Fixed_Portion block MUST
NOT be 0. With the exception of these fields and the dwlMessageId field, all fields of this structure
are optional, and if the respective information is not available, the fields in the Fixed_Portion block
MUST be zero.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

76 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (104 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (104 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

dwValidityMask

dwlMessageId

...

dwlBroadcastId

...

lpcwstrRecipientNumberOffset

lpcwstrRecipientNameOffset

lpcwstrSenderUserNameOffset

lpcwstrBillingCodeOffset

tmOriginalScheduleTime (16 bytes)

...

...

...

tmSubmissionTime (16 bytes)

77 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

...

...

Priority

dwDeliveryReportType

lpcwstrDocumentNameOffset

lpcwstrSubjectOffset

pStatusOffset

bHasCoverPage

lpcwstrReceiptAddressOffset

dwScheduleAction

dwSizeOfStruct (4 bytes): A DWORD value that holds the size of the structure, in bytes. MUST
be set to 104.

dwValidityMask (4 bytes): A DWORD value that holds a bitwise OR combination of valid fields in

FAX_ENUM_JOB_FIELDS (section 2.2.77).

dwlMessageId (8 bytes): A DWORDLONG value that holds the unique identifier of the job.

dwlBroadcastId (8 bytes): A DWORDLONG value that holds the broadcast identifierBroadcast
Identifier (section 3.1.1).

lpcwstrRecipientNumberOffset (4 bytes): Offset to the lpcwstrRecipientNumber field in the
Variable_Data portion of the structure.

lpcwstrRecipientNameOffset (4 bytes): Offset to the lpcwstrRecipientName field in the
Variable_Data portion of the structure.

lpcwstrSenderUserNameOffset (4 bytes): Offset to the lpcwstrSenderUserName field in the
Variable_Data portion of the structure.

lpcwstrBillingCodeOffset (4 bytes): Offset to the lpcwstrBillingCode field in the
Variable_Data portion of the structure.

tmOriginalScheduleTime (16 bytes): If the fax was sent using JSA_SPECIFIC_TIME, this field

holds a SYSTEMTIME structure that contains the date and time originally used to send the fax.
The time specified MUST be expressed in UTC. Used for outgoing faxes only.

tmSubmissionTime (16 bytes): A SYSTEMTIME structure that contains the date and time the
fax message was submitted for sending. The time specified MUST be expressed in UTC. Used
for outgoing faxes only.

Priority (4 bytes): A FAX_ENUM_PRIORITY_TYPE (section 2.2.65) value that describes the
priority of the fax transmission. Used for outgoing faxes only.

78 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

dwDeliveryReportType (4 bytes): A DWORD value that holds the type of receipt that will be
delivered to the sender when the fax is successfully sent or when the fax transmission fails. It

can also specify whether a receipt will be sent for each recipient or for all of the recipients
together. This field MUST be one of the values defined in

FAX_ENUM_DELIVERY_REPORT_TYPES (section 2.2.76).

lpcwstrDocumentNameOffset (4 bytes): Offset to the lpcwstrDocumentName field in the
Variable_Data portion of the structure.

lpcwstrSubjectOffset (4 bytes): Offset to the lpcwstrSubject field in the Variable_Data
portion of the structure.

pStatusOffset (4 bytes): Offset to the Fixed_Portion of pStatus in the Variable_Data portion
of the structure.

bHasCoverPage (4 bytes): Boolean value that specifies whether the fax has a cover page. If
this value is TRUE, the fax SHOULD have a cover page.

lpcwstrReceiptAddressOffset (4 bytes): Offset to the lpcwstrRecipientAddress field in the

Variable_Data portion of the structure.

dwScheduleAction (4 bytes): A DWORD value that specifies when to send the fax. This field
MUST have one of the following values.

Value Meaning

JSA_NOW

0x00000000

Send the fax as soon as a device is available.

JSA_SPECIFIC_TIME

0x00000001

Send the fax at the time specified by the tmOriginalScheduleTime
field.

JSA_DISCOUNT_PERIOD

0x00000002

Send the fax during the discount rate period.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion of pStatus (120 bytes, optional)

...

...

...

lpcwstrRecipientNumber (variable)

...

lpcwstrRecipientName (variable)

...

79 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpcwstrSenderUserName (variable)

...

lpcwstrBillingCode (variable)

...

lpcwstrDocumentName (variable)

...

lpcwstrSubject (variable)

...

lpcwstrReceiptAddress (variable)

...

Variable_Data of pStatus (variable)

...

Fixed_Portion of pStatus (120 bytes): The Fixed_Portion block of the FAX_JOB_STATUS
(section 2.2.36) structure containing the job's dynamic status information. When this data
structure is used in an array of structures, the Fixed_Portion of pStatus is omitted from here

and is placed as a Referenced_Fixed_Portion block as described in section 2.2.1.3.

lpcwstrRecipientNumber (variable): A null-terminated character string that holds the fax
number of the fax transmission recipient. This information comes from the recipient's personal
profile (section 3.1.1).

lpcwstrRecipientName (variable): A null-terminated character string that holds the name of
the fax transmission recipient. This information comes from the recipient's personal profile

(section 3.1.1).

lpcwstrSenderUserName (variable): A null-terminated character string that holds the name of
the sender of an outgoing fax job. Used for outgoing faxes only. This information comes from
the recipient's personal profile (section 3.1.1).

lpcwstrBillingCode (variable): A null-terminated character string that holds an application-
specific or server-specific billing code that applies to the fax transmission. Billing codes are
optional. Used for outgoing faxes only.

lpcwstrDocumentName (variable): A null-terminated character string that holds a document
name to associate with the fax document. Used for outgoing faxes only.

lpcwstrSubject (variable): A null-terminated character string that holds the subject used in the
fax cover page. Used for outgoing faxes only.

lpcwstrReceiptAddress (variable): A null-terminated character string that holds an email
address to which the fax service sends the delivery receipt when the job is finished. If the
dwDeliveryReportType field is equal to DRT_EMAIL, the string is the address to which the

80 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

delivery receipt (DR) or non-delivery receipt (NDR) is sent. If the dwDeliveryReportType
field is not equal to DRT_EMAIL, this string MUST NOT be present (its pointer MUST be NULL).

Variable_Data of pStatus (variable): The Variable_Data block of the FAX_JOB_STATUS
(section 2.2.36) structure containing the job's dynamic status information. When this data

structure is used in an array of structures, the Variable_Data of pStatus is omitted from
here and its data fields are placed as specified in section 2.2.1 in the Variable_Data block for
the structure array described in section 2.2.1.3, along with the Variable_Data of pStatus
fields for the other FAX_JOB_ENTRY_EX_1 structures in the array.

2.2.35 FAX_JOB_ENTRY_EXW

An array of the FAX_JOB_ENTRY_EXW (section 2.2.35) data type can be passed as an out parameter
(as a byte array) in the FAX_EnumJobsEx (section 3.1.4.1.22) calls. The data type can also be passed
as an out parameter in the FAX_GetJobEx (section 3.1.4.1.42) calls.

The dwSizeOfStruct and lpcwstrRecipientNumberOffset fields in the Fixed_Portion block MUST
NOT be 0. Except for these fields and the dwlMessageId field, all fields of this structure are optional,

and if the respective information is not available, the fields in the Fixed_Portion block MUST be zero.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (96 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (96 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

dwValidityMask

dwlMessageId

...

dwlBroadcastId

...

81 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpcwstrRecipientNumberOffset

lpcwstrRecipientNameOffset

lpcwstrSenderUserNameOffset

lpcwstrBillingCodeOffset

tmOriginalScheduleTime (16 bytes)

...

...

...

tmSubmissionTime (16 bytes)

...

...

...

Priority

dwDeliveryReportType

lpcwstrDocumentNameOffset

lpcwstrSubjectOffset

pStatus

Padding

dwSizeOfStruct (4 bytes): A DWORD value that specifies the size, in bytes, of the structure.
MUST be set to 96 bytes.

dwValidityMask (4 bytes): A DWORD value that holds a bitwise combination of valid fields in

FAX_ENUM_JOB_FIELDS (section 2.2.77).

dwlMessageId (8 bytes): A DWORDLONG value that specifies the unique identifier of the job.

dwlBroadcastId (8 bytes): A DWORDLONG value that holds the broadcast identifierBroadcast
Identifier (section 3.1.1).

lpcwstrRecipientNumberOffset (4 bytes): Offset to the lpcwstrRecipientNumber field in the
Variable_Data portion of the structure.

lpcwstrRecipientNameOffset (4 bytes): Offset to the lpcwstrRecipientName field in the
Variable_Data portion of the structure.

82 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpcwstrSenderUserNameOffset (4 bytes): Offset to the lpcwstrSenderUserName field in the
Variable_Data portion of the structure.

lpcwstrBillingCodeOffset (4 bytes): Offset to the lpcwstrBillingCode field in the
Variable_Data portion of the structure.

tmOriginalScheduleTime (16 bytes): If the fax job described by this structure was created by
using the JSA_SPECIFIC_TIME (the dwScheduleAction field in the FAX_JOB_PARAM_EXW
(section 2.2.14) structure submitted as the lpJobParams argument to the
FAX_SendDocumentEx (section 3.1.4.1.73) call that created the fax job), this field specifies a
SYSTEMTIME structure that contains the date and time originally used to send the fax. The
time specified is expressed in UTC. Used for outgoing faxes only.

tmSubmissionTime (16 bytes): A SYSTEMTIME structure that contains the date and time the

fax message was submitted for sending. The time specified is expressed in UTC. Used for
outgoing faxes only.

Priority (4 bytes): A FAX_ENUM_PRIORITY_TYPE (section 2.2.65) value that contains the priority

of the fax transmission. Used for outgoing faxes only.

dwDeliveryReportType (4 bytes): A DWORD value that specifies the type of receipt that will be
delivered to the sender when the fax is successfully sent or when the fax transmission fails. It

can also specify whether a receipt will be sent for each recipient or for all of the recipients
together. This field normally contains one of the values defined in
FAX_ENUM_DELIVERY_REPORT_TYPES (section 2.2.76).

lpcwstrDocumentNameOffset (4 bytes): Offset to the lpcwstrDocumentName field in the
Variable_Data portion of the structure.

lpcwstrSubjectOffset (4 bytes): Offset to the lpcwstrSubject field in the Variable_Data
portion of the structure.

pStatus (4 bytes): Offset to the Fixed_Portion of the pStatus field in the Variable_Data
portion of the structure.

Padding (4 bytes): Padding for data alignment to 8-byte boundary.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion of pStatus (120 bytes)

...

...

...

lpcwstrRecipientNumber (variable)

...

lpcwstrRecipientName (variable)

...

83 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpcwstrSenderUserName (variable)

...

lpcwstrBillingCode (variable)

...

lpcwstrDocumentName (variable)

...

lpcwstrSubject (variable)

...

Variable_Data of pStatus (variable)

...

Fixed_Portion of pStatus (120 bytes): The Fixed_Portion of the FAX_JOB_STATUS (section
2.2.36) structure containing the job's dynamic status information. When this data structure is
used in an array of structures, the Fixed_Portion of pStatus is omitted from here and is

placed as a Referenced_Fixed_Portion block as described in section 2.2.1.3.

lpcwstrRecipientNumber (variable): A null-terminated character string that holds the fax
number of the fax transmission recipient. This information comes from the recipient's personal
profile (see section 3.1.1).

lpcwstrRecipientName (variable): A null-terminated character string that holds the name of
the fax transmission recipient. This information comes from the recipient's personal profile

(see section 3.1.1).

lpcwstrSenderUserName (variable): A null-terminated character string that holds the name of
the sender of an outgoing fax job. Used for outgoing faxes only. This information comes from
the sender's personal profile (see section 3.1.1).

lpcwstrBillingCode (variable): A null-terminated character string that holds an application-
specific or a server-specific billing code that applies to the fax transmission. Billing codes are
optional. Used for outgoing faxes only.

lpcwstrDocumentName (variable): A null-terminated character string that holds a document
name to associate with the fax document. Used for outgoing faxes only.

lpcwstrSubject (variable): A null-terminated character string that holds the subject used in the

fax cover page. Used for outgoing faxes only.

Variable_Data of pStatus (variable): The Variable_Data of the FAX_JOB_STATUS (section
2.2.36) structure containing the job's dynamic status information. When this data structure is
used in an array of structures, the Variable_Data of pStatus is omitted from here and is

placed in the Variable_Data block for the structure array as described in section 2.2.1.3.

84 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.36 FAX_JOB_STATUS

The FAX_JOB_STATUS (section 2.2.36) data type can be passed as a pointer reference inside
FAX_JOB_ENTRY_EXW (section 2.2.35) or FAX_JOB_ENTRY_EX1 (section 2.2.34).

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (120 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (120 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

dwValidityMask

dwJobID

dwJobType

dwQueueStatus

dwExtendedStatus

lpcwstrExtendedStatusOffset

dwSize

dwPageCount

dwCurrentPage

lpcwstrTsidOffset

lpcwstrCsidOffset

85 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

tmScheduleTime (16 bytes)

...

...

...

tmTransmissionStartTime (16 bytes)

...

...

...

tmTransmissionEndTime (16 bytes)

...

...

...

dwDeviceID

lpcwstrDeviceNameOffset

dwRetries

lpcwstrCallerIDOffset

lpcwstrRoutingInfoOffset

dwAvailableJobOperations

dwSizeOfStruct (4 bytes): A DWORD that indicates the size, in bytes, of the structure. MUST be
set to 120 bytes.

dwValidityMask (4 bytes): A DWORD value that holds a bitwise OR of valid fields in

FAX_ENUM_JOB_FIELDS (section 2.2.77).

dwJobID (4 bytes): A DWORD that contains the session job identifier of the fax job.

dwJobType (4 bytes): A DWORD that holds the type of the fax job. It is one of the following
values.

Value Meaning

0x00000000 The job type is JT_UNKNOWN (section 3.1.1).

0x00000001 The jobtype is JT_SEND (section 3.1.1).

86 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

0x00000002 The job type is JT_RECEIVE (section 3.1.1).

0x00000003 The job type is JT_ROUTING (section 3.1.1).

0x00000004 The job type is JT_FAIL_RECEIVE (section 3.1.1).

JT_BROADCAST

0x00000020

The job type is JT_BROADCAST (section 3.1.1).<10>

dwQueueStatus (4 bytes): A DWORD that holds a bitwise OR combination of the job status bit
flags listed in section 3.1.1.

dwExtendedStatus (4 bytes): A DWORD that holds a predefined fax-extended status code as
described in the following table.

Value Meaning

JS_EX_NONE

0x00000000

No extended status code is available.

JS_EX_DISCONNECTED

0x00000001

The sender or the caller disconnected the fax call.

JS_EX_INITIALIZING

0x00000002

The device is initializing a call.

JS_EX_DIALING

0x00000003

The device is dialing a fax number.

JS_EX_TRANSMITTING

0x00000004

The device is sending a fax document.

JS_EX_ANSWERED

0x00000005

The device answered a new call.

JS_EX_RECEIVING

0x00000006

The device is receiving a fax document.

JS_EX_LINE_UNAVAILABLE

0x00000007

The device is not available because it is in use by another
application.

JS_EX_BUSY

0x00000008

The device encountered a busy signal.

JS_EX_NO_ANSWER

0x00000009

The receiving device did not answer the call.

JS_EX_BAD_ADDRESS

0x0000000A

The device dialed an invalid fax number.

JS_EX_NO_DIAL_TONE

0x0000000B

The sending device cannot complete the call because it does not
detect a dial tone.

JS_EX_FATAL_ERROR

0x0000000C

The device has encountered a fatal protocol error.

JS_EX_CALL_DELAYED The device delayed a fax call because the sending device

87 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

0x0000000D received a busy signal multiple times. The device cannot retry
the call because dialing restrictions exist (some countries and
regions restrict the number of retry attempts when a number is
busy).

JS_EX_CALL_BLACKLISTED

0x0000000E

The device could not complete a call because the telephone
number was blocked or reserved; emergency numbers such as
911 are blocked.

JS_EX_NOT_FAX_CALL

0x0000000F

The device received a call that was a data call or a voice call.

JS_EX_PARTIALLY_RECEIVED

0x00000010

The incoming fax was partially received. Some (but not all) of
the pages are available.

JS_EX_HANDLED

0x00000011

The fax service processed the outbound fax document; the fax
service provider MAY transmit the fax document.

JS_EX_CALL_COMPLETED

0x00000012

The call was completed successfully.

JS_EX_CALL_ABORTED

0x00000013

The call was terminated.

lpcwstrExtendedStatusOffset (4 bytes): Offset to the lpcwstrExtendedStatus field in the
Variable_Data portion of the structure. If this offset is zero, the extended status is a

standard extended status described by a greater than zero dwExtendedStatus. If this offset
is not zero, the offset points to a valid NULL-terminated character string in the Variable_Data
of this structure that describes a proprietary (custom) extended status for the respective FSP).

dwSize (4 bytes): A DWORD that holds the size, in bytes, of the fax document to transmit.

dwPageCount (4 bytes): A DWORD that holds the total number of pages in the fax
transmission.

dwCurrentPage (4 bytes): A DWORD that holds the index of the page that the fax device is

currently sending or receiving in the fax transmission. This page index is a 1-based index
value (1 for the first page transmitted, 2 for the second, and so on; it is not 0 for the first
page transmitted, 1 for the second page transmitted, and so on).

lpcwstrTsidOffset (4 bytes): Offset to the lpcwstrTsid field in the Variable_Data portion of
the structure.

lpcwstrCsidOffset (4 bytes): Offset to the lpcwstrCsid field in the Variable_Data portion of
the structure.

tmScheduleTime (16 bytes): For outgoing faxes only. This field is a SYSTEMTIME structure that
holds the date and time to send the fax message. This time is expressed in Coordinated
Universal Time (UTC).

tmTransmissionStartTime (16 bytes): A SYSTEMTIME structure that holds the date and time
when the fax message’s transmission started. This time is expressed in UTC.

tmTransmissionEndTime (16 bytes): A SYSTEMTIME structure that holds the date and time

when the fax message’s transmission ended. This time is expressed in UTC.

dwDeviceID (4 bytes): A DWORD that holds the identifier of the device used to receive or send
the fax messages.

88 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpcwstrDeviceNameOffset (4 bytes): Offset to the lpcwstrDeviceName field in the
Variable_Data portion of the structure.

dwRetries (4 bytes): For outgoing faxes only. This field is a DWORD that holds the number of
failed transmission retries counted for the current fax job.

lpcwstrCallerIDOffset (4 bytes): Offset to the lpcwstrCallerId field in the Variable_Data
portion of the structure.

lpcwstrRoutingInfoOffset (4 bytes): Offset to the lpcwstrRoutingInfo field in the
Variable_Data portion of the structure.

dwAvailableJobOperations (4 bytes): A DWORD containing a bitwise combination of values
defined in FAX_ENUM_JOB_OP (section 2.2.58). This combination value describes the
operations available on the current job. The access rights of the caller are not taken into

account.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpcwstrExtendedStatus (variable)

...

lpcwstrTsid (variable)

...

lpcwstrCsid (variable)

...

lpcwstrDeviceName (variable)

...

lpcwstrCallerID (variable)

...

lpcwstrRoutingInfo (variable)

...

lpcwstrExtendedStatus (variable): A null-terminated string that holds a fax-extended status
provided by the Fax Service Provider (FSP). If this field is not present, the extended status
MUST be a standard extended status described by a greater than zero dwExtendedStatus. If

this field is present it MUST contain a valid NULL-terminated character string that describes a
proprietary (custom) extended status for the respective FSP.

lpcwstrTsid (variable): A null-terminated character string that holds the identifier of the
transmitting subscriber. This identifier can be a telephone number.

89 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpcwstrCsid (variable): A null-terminated character string that holds the called subscriber
identifier. This identifier can be a telephone number.

lpcwstrDeviceName (variable): A null-terminated character string that holds the name of the
device used to receive or send the fax message.

lpcwstrCallerID (variable): For incoming faxes only. A null-terminated character string that
contains the caller ID of the calling device that sent the fax. This string can include the
telephone number of the calling device.

lpcwstrRoutingInfo (variable): For incoming faxes only. A null-terminated character string that
identifies the routing string for the fax. This string can include the telephone number of the
called device.

2.2.37 FAX_MESSAGE_1

An array of the FAX_MESSAGE_1 (section 2.2.37) data type can be passed as an out parameter (as a
byte array) in the FAX_EnumMessagesEx (section 3.1.4.1.25) call. This data type can also be passed

as an out parameter (as a byte array) in FAX_GetMessageEx (section 3.1.4.1.46).

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (192 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (192 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

dwValidityMask

dwlMessageId

...

dwlBroadcastId

...

90 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

dwJobType

dwQueueStatus

dwExtendedStatus

lpcwstrExtendedStatusOffset

dwSize

dwPageCount

lpcwstrRecipientNumberOffset

lpcwstrRecipientNameOffset

lpcwstrSenderNumberOffset

lpcwstrSenderNameOffset

lpcwstrTsidOffset

lpcwstrCsidOffset

lpcwstrSenderUserNameOffset

lpcwstrBillingCodeOffset

tmOriginalScheduleTime (16 bytes)

...

...

...

tmSubmissionTime (16 bytes)

...

...

...

tmTransmissionStartTime (16 bytes)

...

...

91 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

tmTransmissionEndTime (16 bytes)

...

...

...

lpcwstrDeviceNameOffset

Priority

dwRetries

lpcwstrDocumentNameOffset

lpcwstrSubjectOffset

lpcwstrCallerIDOffset

lpcwstrRoutingInfoOffset

bHasCoverPage

dwReceiptType

lpcwstrReceiptAddressOffset

bServerReceiveFolder

dwMsgFlags

dwSizeOfStruct (4 bytes): A DWORD value that holds the size of the Fixed_Portion block, in
bytes. This value MUST be 192 bytes.

dwValidityMask (4 bytes): A DWORD value that defines a bitwise combination of valid fields in

FAX_ENUM_JOB_FIELDS (section 2.2.77).

dwlMessageId (8 bytes): A DWORDLONG value that specifies the unique identifier of the fax
message.

dwlBroadcastId (8 bytes): A DWORDLONG value that contains the broadcast
identifierBroadcast Identifier (section 3.1.1) if this fax message originates from a broadcast
fax job; otherwise, 0.

dwJobType (4 bytes): A DWORD that specifies the job type of the archived fax.

Value Meaning

JT_SEND Job is an outgoing fax transmission.

92 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

0x00000002

JT_RECEIVE

0x00000004

Job is an incoming fax transmission.

dwQueueStatus (4 bytes): A DWORD value that contains a set of bit flags that indicate the last
job status (section 3.1.1), recorded by the fax server just before the message was archived.

This value MUST be a bitwise OR combination of one or more of the job status values listed in
section 3.1.1.

dwExtendedStatus (4 bytes): A DWORD value that specifies extended status information.

Value Meaning

JS_EX_DISCONNECTED

0x00000001

The sender or the caller disconnected the fax call.

JS_EX_INITIALIZING

0x00000002

The device is initializing a call.

JS_EX_DIALING

0x00000003

The device is dialing a fax number.

JS_EX_TRANSMITTING

0x00000004

The device is sending a fax document.

JS_EX_ANSWERED

0x00000005

The device answered a new call.

JS_EX_RECEIVING

0x00000006

The device is receiving a fax document.

JS_EX_LINE_UNAVAILABLE

0x00000007

The device is not available because it is in use by another
application.

JS_EX_BUSY

0x00000008

The device encountered a busy signal.

JS_EX_NO_ANSWER

0x00000009

The receiving device did not answer the call.

JS_EX_BAD_ADDRESS

0x0000000A

The device dialed an invalid fax number.

JS_EX_NO_DIAL_TONE

0x0000000B

The sending device cannot complete the call because it does
not detect a dial tone.

JS_EX_FATAL_ERROR

0x0000000C

The device has encountered a fatal protocol error.

JS_EX_CALL_DELAYED

0x0000000D

The device delayed a fax call because the sending device
received a busy signal multiple times. The device cannot retry
the call because dialing restrictions exist (some countries and
regions restrict the number of retry attempts when a number is
busy).

JS_EX_CALL_BLACKLISTED The device could not complete a call because the telephone
number was blocked or reserved; emergency numbers such as

93 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

0x0000000E 911 are blocked.

JS_EX_NOT_FAX_CALL

0x0000000F

The device received a call that was a data call or a voice call.

JS_EX_PARTIALLY_RECEIVED

0x00000010

The incoming fax was partially received. Some (but not all) of
the pages are available.

JS_EX_HANDLED

0x00000011

The fax service processed the outbound fax document; the FSP
will transmit the fax document.

JS_EX_CALL_COMPLETED

0x00000012

The call was completed successfully.

JS_EX_CALL_ABORTED

0x00000013

The call was terminated.

lpcwstrExtendedStatusOffset (4 bytes): Offset to the lpcwstrExtendedStatus field in the
Variable_Data portion of the structure. If this field is zero, dwExtendedStatus MUST be
one of the predefined extended statuses. If the field is not zero, dwExtendedStatus is the
extended status code as provided by the FSP.

dwSize (4 bytes): A DWORD value that specifies the size, in bytes, of the fax document.

dwPageCount (4 bytes): A DWORD value that specifies the total number of pages in the fax
transmission.

lpcwstrRecipientNumberOffset (4 bytes): Offset to the lpcwstrRecipientNumber field in the
Variable_Data portion of the structure.

lpcwstrRecipientNameOffset (4 bytes): Offset to the lpcwstrRecipientName field in the
Variable_Data portion of the structure.

lpcwstrSenderNumberOffset (4 bytes): Offset to the lpcwstrSenderNumber field in the

Variable_Data portion of the structure.

lpcwstrSenderNameOffset (4 bytes): Offset to the lpcwstrSenderName field in the
Variable_Data portion of the structure.

lpcwstrTsidOffset (4 bytes): Offset to the lpcwstrTsid field in the Variable_Data portion of
the structure.

lpcwstrCsidOffset (4 bytes): Offset to the lpcwstrCsid field in the Variable_Data portion of
the structure.

lpcwstrSenderUserNameOffset (4 bytes): Offset to the lpcwstrSenderUserName field in the
Variable_Data portion of the structure. Used for outgoing faxes only; otherwise, SHOULD be
zero.

lpcwstrBillingCodeOffset (4 bytes): Offset to the lpcwstrBillingCode field in the
Variable_Data portion of the structure. Billing codes are optional. Used for outgoing faxes
only; otherwise, SHOULD be zero.

tmOriginalScheduleTime (16 bytes): If the fax was sent using 1 (JSA_SPECIFIC_TIME was the
value of the dwScheduleAction field in the FAX_JOB_PARAM_EXW (section 2.2.14) structure
submitted as the lpJobParams argument to the FAX_SendDocumentEx (section 3.1.4.1.73) call
that created the fax job), this field specifies a SYSTEMTIME structure that specifies the date
and time originally used to send the fax. The time specified is expressed in UTC. Used for

94 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

outgoing faxes only. This field is valid only if the
FAX_JOB_FIELD_ORIGINAL_SCHEDULE_TIME bit is set in dwValidityMask; otherwise,

the value of this field SHOULD be ignored.

tmSubmissionTime (16 bytes): A SYSTEMTIME structure that specifies the date and time the

fax message was submitted for sending. The time specified is expressed in UTC. Used for
outgoing faxes only. This field is valid only if the FAX_JOB_FIELD_SUBMISSION_TIME bit
is set in dwValidityMask; otherwise, the value of this field SHOULD be ignored.

tmTransmissionStartTime (16 bytes): A SYSTEMTIME structure that specifies the start date
and time the fax message was last transmitted. The time specified is expressed in UTC.

tmTransmissionEndTime (16 bytes): A SYSTEMTIME structure that specifies the end date and
time the fax message was last transmitted. The time specified is expressed in UTC.

lpcwstrDeviceNameOffset (4 bytes): Offset to the lpcwstrDeviceName field in the
Variable_Data portion of the structure.

Priority (4 bytes): A FAX_ENUM_PRIORITY_TYPE (section 2.2.65) value that contains the priority

of the fax transmission. Used for outgoing faxes only.

dwRetries (4 bytes): A DWORD value that specifies the number of failed transmission retries
counted for a fax job. Used for outgoing faxes only.

lpcwstrDocumentNameOffset (4 bytes): Offset to the lpcwstrDocumentName field in the
Variable_Data portion of the structure. Used for outgoing faxes only; otherwise, SHOULD be
zero.

lpcwstrSubjectOffset (4 bytes): Offset to the lpcwstrSubject field in the Variable_Data
portion of the structure. Used for outgoing faxes only; otherwise, SHOULD be zero.

lpcwstrCallerIDOffset (4 bytes): Offset to the lpcwstrCallerID field in the Variable_Data
portion of the structure. Used for incoming faxes only; otherwise, SHOULD be zero.

lpcwstrRoutingInfoOffset (4 bytes): Offset to the lpcwstrRoutingInfo field in the

Variable_Data portion of the structure. Used for incoming faxes only; otherwise, SHOULD be
zero.

bHasCoverPage (4 bytes): Boolean value that specifies whether the fax has a cover page. If
this value is TRUE, the fax can have a cover page.

dwReceiptType (4 bytes): A DWORD value that specifies the type of receipt delivered to the
sender when a fax is successfully sent and when a fax transmission fails. It can also specify

whether a receipt will be sent for each recipient or for all recipients. This field can have one of
the following values.

Value Meaning

frtNONE

0x00000000

No receipt is sent.

frtMAIL

0x00000001

Receipt is sent to the email address specified in lpcwstrReceiptAddress. This
receipt type provides detailed information on delivery status for each recipient.

frtMSGBOX

0x00000004

Receipt is sent to the sender by means of a text message containing a character
string sent to the sender's computer as described in Messenger Service Remote
Protocol Specification [MS-MSRP] section 3.2.4.1. This receipt type indicates only
how many transmissions were completed successfully and how many failed.

95 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpcwstrReceiptAddressOffset (4 bytes): Offset to the lpcwstrReceiptAddress field in the
Variable_Data portion of the structure.

bServerReceiveFolder (4 bytes): Boolean value that specifies whether the fax has been
assigned or SHOULD be sent to the server receive folder. If this value is TRUE, the fax is sent

to the server receive folder. If it is FALSE, the fax is sent to the appropriate account.

dwMsgFlags (4 bytes): Bitmask that specifies the state of various message flags. See
FAX_MESSAGE_PROPS (section 2.2.15).

Value Meaning

FAX_MSG_FLAG_READ

0x00000001

Indicates whether this message is marked as read. The message is
marked as read if this bit is set. The default is unread for inbox
messages and read for sent messages.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpcwstrExtendedStatus (variable)

...

lpcwstrRecipientNumber (variable)

...

lpcwstrRecipientName (variable)

...

lpcwstrsendernumber (variable)

...

lpcwstrSenderName (variable)

...

lpcwstrTsid (variable)

...

lpcwstrCsid (variable)

...

lpcwstrSenderUserName (variable)

...

96 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpcwstrBillingCode (variable)

...

lpcwstrDeviceName (variable)

...

lpcwstrDocumentName (variable)

...

lpcwstrSubject (variable)

...

lpcwstrCallerID (variable)

...

lpcwstrRoutingInfo (variable)

...

lpcwstrReceiptAddress (variable)

...

lpcwstrExtendedStatus (variable): Null-terminated character string that specifies a fax-
extended status string provided by the FSP.

lpcwstrRecipientNumber (variable): Null-terminated character string that specifies the fax

number of the fax transmission recipient. This information is stored with the fax message as
part of the recipient's personal profile.

lpcwstrRecipientName (variable): Null-terminated character string that specifies the name of
the fax transmission recipient. This information is stored with the fax message as part of the
recipient's personal profile.

lpcwstrsendernumber (variable): Null-terminated character string that specifies the fax

number of the fax transmission sender. This information is stored with the fax message as
part of the sender's personal profile.

lpcwstrSenderName (variable): Null-terminated character string that specifies the name of the

fax transmission sender. This information is stored with the fax message as part of the
sender's personal profile.

lpcwstrTsid (variable): Null-terminated character string that specifies the transmitting
subscriber identifier. This information is stored with the fax message as part of the sender's

personal profile.

lpcwstrCsid (variable): Null-terminated character string that specifies the called subscriber
identifier. This information is stored with the fax message as part of the recipient's personal
profile.

97 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpcwstrSenderUserName (variable): Null-terminated character string that specifies the name
of the fax transmission sender of an outgoing fax job. This information is stored with the fax

message as part of the sender's personal profile.

lpcwstrBillingCode (variable): Null-terminated character string that specifies a billing code that

applies to the fax transmission.

lpcwstrDeviceName (variable): Null-terminated character string value that specifies the name
of the device used to receive or send the fax document. The device can no longer exist.

lpcwstrDocumentName (variable): Null-terminated character string that holds the document
name of the fax.

lpcwstrSubject (variable): Null-terminated character string that specifies the subject used on
the fax cover page.

lpcwstrCallerID (variable): Null-terminated character string that specifies the caller ID of the
calling device that sent the fax.

lpcwstrRoutingInfo (variable): Null-terminated character string that contains the routing string
for the fax.

lpcwstrReceiptAddress (variable): Null-terminated character string that specifies an email
address to which the fax service sends the delivery receipt when the job is finished.

2.2.38 FAX_MESSAGEW

An array of the FAX_MESSAGEW (section 2.2.38) data type is passed as an out parameter (as a byte
array) in the FAX_EnumMessages (section 3.1.4.1.24) call. This data type is also passed as an out
parameter (as a byte array) in FAX_GetMessage (section 3.1.4.1.45).

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (176 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (176 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

98 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

dwValidityMask

dwlMessageId

...

dwlBroadcastId

...

dwJobType

dwQueueStatus

dwExtendedStatus

lpcwstrExtendedStatusOffset

dwSize

dwPageCount

lpcwstrRecipientNumberOffset

lpcwstrRecipientNameOffset

LpcwstrSenderNumberOffset

lpcwstrSenderNameOffset

lpcwstrTsidOffset

lpcwstrCsidOffset

lpcwstrSenderUserNameOffset

lpcwstrBillingCodeOffset

tmOriginalScheduleTime (16 bytes)

...

...

...

tmSubmissionTime (16 bytes)

...

99 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

...

tmTransmissionStartTime (16 bytes)

...

...

...

tmTransmissionEndTime (16 bytes)

...

...

...

lpcwstrDeviceNameOffset

Priority

dwRetries

lpcwstrDocumentNameOffset

lpcwstrSubjectOffset

lpcwstrCallerIDOffset

lpcwstrRoutingInfoOffset

Padding

dwSizeOfStruct (4 bytes): A DWORD value that holds the size of the Fixed_Portion block, in
bytes. This value MUST be 176 bytes.

dwValidityMask (4 bytes): A DWORD value that defines a bitwise combination of valid fields in

FAX_ENUM_JOB_FIELDS (section 2.2.77).

dwlMessageId (8 bytes): A DWORDLONG value that specifies the unique identifier of the fax
message.

dwlBroadcastId (8 bytes): A DWORDLONG value that holds the broadcast identifierBroadcast
Identifier (section 3.1.1).

dwJobType (4 bytes): A DWORD that specifies the job type of the archived fax.

100 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

JT_SEND

0x00000002

Job is an outgoing fax transmission.

JT_RECEIVE

0x00000004

Job is an incoming fax transmission.

dwQueueStatus (4 bytes): A DWORD value that contains a set of bit flags that indicate the last
job status (section 3.1.1), recorded by the fax server just before the message was archived.

This value MUST be a bitwise OR combination of one or more of the job status values listed in
section 3.1.1.

dwExtendedStatus (4 bytes): A DWORD value that specifies extended status information.

Value Meaning

0x00000000 No extended status.

JS_EX_DISCONNECTED

0x00000001

The sender or the caller disconnected the fax
call.

JS_EX_INITIALIZING

0x00000002

The device is initializing a call.

JS_EX_DIALING

0x00000003

The device is dialing a fax number.

JS_EX_TRANSMITTING

0x00000004

The device is sending a fax document.

JS_EX_ANSWERED

0x00000005

The device answered a new call.

JS_EX_RECEIVING

0x00000006

The device is receiving a fax document.

JS_EX_LINE_UNAVAILABLE

0x00000007

The device is not available because it is in use
by another application.

JS_EX_BUSY

0x00000008

The device encountered a busy signal.

JS_EX_NO_ANSWER

0x00000009

The receiving device did not answer the call.

JS_EX_BAD_ADDRESS

0x0000000A

The device dialed an invalid fax number.

JS_EX_NO_DIAL_TONE

0x0000000B

The sending device cannot complete the call
because it does not detect a dial tone.

JS_EX_FATAL_ERROR

0x0000000C

The device has encountered a fatal protocol
error.

JS_EX_CALL_DELAYED

0x0000000D

The device delayed a fax call because the
sending device received a busy signal multiple
times. The device cannot retry the call
because dialing restrictions exist (some

101 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

countries and regions restrict the number of
retry attempts when a number is busy).

JS_EX_CALL_BLACKLISTED

0x0000000E

The device could not complete a call because
the telephone number was blocked or
reserved; emergency numbers such as 911
are blocked.

JS_EX_NOT_FAX_CALL

0x0000000F

The device received a call that was a data call
or a voice call.

JS_EX_PARTIALLY_RECEIVED

0x00000010

The incoming fax was partially received. Some
(but not all) of the pages are available.

JS_EX_HANDLED

0x00000011

The fax service processed the outbound fax
document; the fax service provider (FSP) will
transmit the document.

JS_EX_CALL_COMPLETED

0x00000012

The call was completed successfully.

JS_EX_CALL_ABORTED

0x00000013

The call was terminated.

lpcwstrExtendedStatusOffset (4 bytes): Offset to the lpcwstrExtendedStatus field in the
Variable_Data portion of the structure. If this field is zero, dwExtendedStatus MUST be

one of the predefined extended statuses. If the field is not zero, dwExtendedStatus is the
extended status code as provided by the FSP.

dwSize (4 bytes): A DWORD value that specifies the size, in bytes, of the fax document.

dwPageCount (4 bytes): A DWORD value that specifies the total number of pages in the fax
transmission.

lpcwstrRecipientNumberOffset (4 bytes): Offset to the lpcwstrRecipientNumber field in the
Variable_Data portion of the structure.

lpcwstrRecipientNameOffset (4 bytes): Offset to the lpcwstrRecipientName field in the
Variable_Data portion of the structure.

LpcwstrSenderNumberOffset (4 bytes): Offset to the lpcwstrSenderNumber field in the
Variable_Data portion of the structure. Used for outgoing faxes only; otherwise, SHOULD be
zero.

lpcwstrSenderNameOffset (4 bytes): Offset to the lpcwstrSenderName field in the
Variable_Data portion of the structure.

lpcwstrTsidOffset (4 bytes): Offset to the lpcwstrTsid field in the Variable_Data portion of
the structure.

lpcwstrCsidOffset (4 bytes): Offset to the lpcwstrCsid field in the Variable_Data portion of
the structure.

lpcwstrSenderUserNameOffset (4 bytes): Offset to the lpcwstrSenderUserName field in the
Variable_Data portion of the structure.

lpcwstrBillingCodeOffset (4 bytes): Offset to the lpcwstrBillingCode field in the
Variable_Data portion of the structure. Billing codes are optional. Used for outgoing faxes
only; otherwise, SHOULD be zero.

102 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

tmOriginalScheduleTime (16 bytes): If the fax was sent using 1 (JSA_SPECIFIC_TIME was the
value of the dwScheduleAction field in the FAX_JOB_PARAM_EXW (section 2.2.14) structure

submitted as the lpJobParams argument to the FAX_SendDocumentEx (section 3.1.4.1.73) call
that created the fax job), this field specifies a SYSTEMTIME structure that specifies the date

and time originally used to send the fax. The time specified is expressed in UTC. Used for
outgoing faxes only. This field is valid only if the
FAX_JOB_FIELD_ORIGINAL_SCHEDULE_TIME bit is set in dwValidityMask; otherwise,
the value of this field SHOULD be ignored.

tmSubmissionTime (16 bytes): A SYSTEMTIME structure that specifies the date and time the
fax message was submitted for sending. The time specified is expressed in UTC. Used for
outgoing faxes only. This field is valid only if the FAX_JOB_FIELD_SUBMISSION_TIME bit

is set in dwValidityMask; otherwise, the value of this field SHOULD be ignored.

tmTransmissionStartTime (16 bytes): A SYSTEMTIME structure that specifies the start date
and time the fax message was last transmitted. The time specified is expressed in UTC.

tmTransmissionEndTime (16 bytes): A SYSTEMTIME structure that specifies the end date and

time the fax message was last transmitted. The time specified is expressed in UTC.

lpcwstrDeviceNameOffset (4 bytes): Offset to the lpcwstrDeviceName field in the

Variable_Data portion of the structure.

Priority (4 bytes): A FAX_ENUM_PRIORITY_TYPE (section 2.2.65) value that contains the priority
of the fax transmission. Used for outgoing faxes only.

dwRetries (4 bytes): A DWORD value that specifies the number of failed transmission retries
counted for a fax job. Used for outgoing faxes only.

lpcwstrDocumentNameOffset (4 bytes): Offset to the lpcwstrDocumentName field in the
Variable_Data portion of the structure. Used for outgoing faxes only; otherwise, SHOULD be

zero.

lpcwstrSubjectOffset (4 bytes): Offset to the lpcwstrSubject field in the Variable_Data

portion of the structure. Used for outgoing faxes only; otherwise, SHOULD be zero.

lpcwstrCallerIDOffset (4 bytes): Offset to the lpcwstrCallerID field in the Variable_Data
portion of the structure. Used for incoming faxes only; otherwise, SHOULD be zero.

lpcwstrRoutingInfoOffset (4 bytes): Offset to the lpcwstrRoutingInfo field in the
Variable_Data portion of the structure. Used for incoming faxes only; otherwise, SHOULD be

zero.

Padding (4 bytes): Padding for data alignment to 8-byte boundary.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpcwstrExtendedStatus (variable)

...

lpcwstrRecipientNumber (variable)

...

103 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpcwstrRecipientName (variable)

...

lpcwstrSenderNumber (variable)

...

lpcwstrSenderName (variable)

...

lpcwstrTsid (variable)

...

lpcwstrCsid (variable)

...

lpcwstrSenderUserName (variable)

...

lpcwstrBillingCode (variable)

...

lpcwstrDeviceName (variable)

...

lpcwstrDocumentName (variable)

...

lpcwstrSubject (variable)

...

lpcwstrCallerID (variable)

...

lpcwstrRoutingInfo (variable)

...

lpcwstrExtendedStatus (variable): Null-terminated character string that holds a fax-extended
status string provided by the FSP.

104 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpcwstrRecipientNumber (variable): Null-terminated character string that holds the fax
number of the fax transmission recipient. This information is stored with the fax message as

part of the recipient's personal profile (section 3.1.1).

lpcwstrRecipientName (variable): Null-terminated character string that holds the name of the

fax transmission recipient. This information is stored with the fax message as part of the
recipient's personal profile (section 3.1.1).

lpcwstrSenderNumber (variable): Null-terminated character string that holds the fax number
of the fax transmission sender. This information is stored with the fax message as part of the
sender's personal profile (section 3.1.1).

lpcwstrSenderName (variable): Null-terminated character string that holds the name of the fax
transmission sender. This information is stored with the fax message as part of the sender's

personal profile (section 3.1.1).

lpcwstrTsid (variable): Null-terminated character string that holds the transmitting subscriber
identifier. This information is stored with the fax message as part of the sender's personal

profile (section 3.1.1).

lpcwstrCsid (variable): Null-terminated character string that holds the called subscriber
identifier. This information is stored with the fax message as part of the recipient's personal

profile (section 3.1.1).

lpcwstrSenderUserName (variable): Null-terminated character string that holds the name of
the sender of an outgoing fax job. This information is stored with the fax message as part of
the sender's personal profile (section 3.1.1).

lpcwstrBillingCode (variable): Null-terminated character string that holds a billing code that
applies to the fax transmission. This information is stored with the fax message as part of the
sender's personal profile (section 3.1.1).

lpcwstrDeviceName (variable): Null-terminated character string value that holds the name of
the device used to receive or send the fax document. The device might no longer exist.

lpcwstrDocumentName (variable): Null-terminated character string that holds the document
name of the fax message.

lpcwstrSubject (variable): Null-terminated character string that holds the subject used on the
fax cover page.

lpcwstrCallerID (variable): Null-terminated character string that holds the caller ID of the

calling device that sent the fax.

lpcwstrRoutingInfo (variable): Null-terminated character string that holds the routing string
for the fax.

2.2.39 RPC_FAX_OUTBOUND_ROUTING_GROUPW

The RPC_FAX_OUTBOUND_ROUTING_GROUPW data type is used as an input argument for

FAX_SetOutboundGroup (section 3.1.4.1.85). The group name contained by this structure describes
one routing group (section 3.1.1).

For reference, the data type definition is shown as follows.

 typedef struct {
 DWORD dwSizeOfStruct;
 [string] LPWSTR lpwstrGroupName;
 [range(0,FAX_MAX_DEVICES_IN_GROUP)]
 DWORD dwNumDevices;

105 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [unique, size_is(dwNumDevices)]
 LPDWORD lpdwDevices;
 FAX_ENUM_GROUP_STATUS Status;
 } RPC_FAX_OUTBOUND_ROUTING_GROUPW,
 *PRPC_FAX_OUTBOUND_ROUTING_GROUPW;

dwSizeOfStruct: A DWORD value that holds the total size of the structure, in bytes. This value
MUST be 20 or 40 bytes. When filled in on a 32-bit implementation, this value SHOULD be 20

bytes. When filled in on a 64-bit implementation, this value SHOULD be 40 bytes.

lpwstrGroupName: A null-terminated character string containing the group name. The length of this
string MUST be between 1 and 128 characters, excluding the length of the terminating null
character. The group name is case-insensitive.

dwNumDevices: A DWORD value that holds the number of devices in the group. The value MUST be
in the range between 0 and 1,000. The dwNumDevices parameter also indicates the length of the
lpdwDevices array, which is not larger than the actual number of devices.

lpdwDevices: A pointer to a DWORD array which contains dwNumDevices entries. Each DWORD
value specifies one device identifier in the group. A device MUST only appear once in a group's
device list. A single device can belong to one or more groups. Groups are not set to store invalid
devices. The order of the devices in the array determines the order the devices are to be used to
send faxes, when the group is selected.

Status: Current status of the group from the enumeration

FAX_ENUM_GROUP_STATUS (section 2.2.59).

2.2.40 _RPC_FAX_OUTBOUND_ROUTING_GROUPW

The _RPC_FAX_OUTBOUND_ROUTING_GROUPW data type is used as an array of structures passed as
an output byte-array argument for FAX_EnumOutboundRoutingGroups (section 3.1.4.1.26). The group

name contained by this structure describes one routing group (section 3.1.1).

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (16 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (16 bytes):

106 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

lpwstrGroupNameOffset

dwNumDevices

lpdwDevicesOffset

Status

dwSizeOfStruct (4 bytes): A DWORD value that holds the size, in bytes, of this structure. MUST
be set to 16 bytes.

lpwstrGroupNameOffset (4 bytes): Offset to the lpwstrGroupName field in the

Variable_Data of the data type.

dwNumDevices (4 bytes): A DWORD value that holds the number of devices in the group. The
value MUST be in the range between 0 and 1,000. The dwNumDevices parameter also
indicates the length of the lpdwDevices array, which MUST NOT be larger than the actual
number of devices.

lpdwDevicesOffset (4 bytes): Offset to the lpdwDevices field in the Variable_Data block of

the structure.

Status (4 bytes): Current status of the group from the enumeration FAX_ENUM_GROUP_STATUS
(section 2.2.59).

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpwstrGroupName (variable)

...

lpdwDevices (variable)

...

lpwstrGroupName (variable): A null-terminated character string containing the group name.
The length of this string MUST be between 1 and 128 characters, excluding the length of the

terminating null character. The group name is case-insensitive.

lpdwDevices (variable): A pointer to an array which contains dwNumDevices entries. Each
DWORD value specifies one device identifier in the group. A device MUST appear only once in
a group's device list. A single device can belong to one or more groups. Groups are not set to
store invalid devices. The order of the devices in the array determines the order the devices
are to be used to send faxes, when the group is selected.

107 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.41 RPC_FAX_OUTBOUND_ROUTING_RULEW

The RPC_FAX_OUTBOUND_ROUTING_RULEW data type is used as an input argument for
FAX_SetOutboundRule (section 3.1.4.1.86). The information contained in this structure describes one

routing rule in the "configurationConfiguration of the routing rules"Routing Rules (section 3.1.1).

For reference, the data type definition is as follows.

 typedefstruct{
 DWORD dwSizeOfStruct;
 DWORD dwAreaCode;
 DWORD dwCountryCode;
 [string] LPWSTR lpwstrCountryName;
 [switch_is(bUseGroup)] FAX_RULE_DESTINATION Destination;
 BOOL bUseGroup;
 }RPC_FAX_OUTBOUND_ROUTING_RULEW,
 *RPC_PFAX_OUTBOUND_ROUTING_RULEW;

dwSizeOfStruct: A DWORD value that holds the total size of the structure, in bytes. This value
MUST be 24 or 40 bytes. When filled in on a 32-bit implementation, this value SHOULD be 24
bytes. When filled in on a 64-bit implementation this value SHOULD be 40 bytes.

dwAreaCode: A DWORD that contains the area code of the rule. A value of zero indicates the special
any-area value ROUTING_RULE_AREA_CODE_ANY. The dwAreaCode and dwCountryCode
members MUST form a unique key. This value is unrestricted.

dwCountryCode: A DWORD that contains the country/region code of the rule. A value of zero

indicates the special any-country, any-region value ROUTING_RULE_COUNTRY_CODE_ANY. The
dwAreaCode and dwCountryCode numeric values MUST form a unique key. Clients can obtain
valid values with the FAX_GetCountryList (section 3.1.4.1.37) method.

lpwstrCountryName: A pointer to a null-terminated string that contains the country/region name
indicated by the dwCountryCode parameter if known; otherwise, a NULL pointer. If
dwCountryCode is zero, this pointer MUST be NULL.

Destination: A FAX_RULE_DESTINATION union that contains the destination of the rule. When
bUseGroup is FALSE, this union value MUST hold a device identifier; otherwise, this union value
MUST represent the name of an outbound routing group of devices.

bUseGroup: A Boolean value that indicates whether the group is used in the destination. If TRUE,
the group MUST be used as the rule's destination. If FALSE, the device MUST be used as the rule's
destination.

2.2.42 _RPC_FAX_OUTBOUND_ROUTING_RULEW

The _RPC_FAX_OUTBOUND_ROUTING_RULEW data type is used as an array of structures passed as
an output byte-array argument for FAX_EnumOutboundRules (section 3.1.4.1.27). The information
contained in each _RPC_FAX_OUTBOUND_ROUTING_RULEW structure describes one routing rule in
the "configurationConfiguration of the routing rules"Routing Rules (section 3.1.1).

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (24 bytes)

108 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

...

...

Variable_Data (variable)

...

Fixed_Portion (24 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

dwAreaCode

dwCountryCode

lpwstrCountryNameOffset

Fixed_Portion of Destination

bUseGroup

dwSizeOfStruct (4 bytes): A DWORD that holds the size of this structure. MUST be set to 24

bytes.

dwAreaCode (4 bytes): A DWORD that holds the area code of the rule. A value of zero indicates
the special any-area value ROUTING_RULE_AREA_CODE_ANY. The dwAreaCode and
dwCountryCode fields MUST form a unique key. This value is unrestricted.

dwCountryCode (4 bytes): A DWORD that holds the country/region code of the rule. A value of
zero indicates the special any-country, any-region value

ROUTING_RULE_COUNTRY_CODE_ANY. The dwAreaCode and dwCountryCode numeric
values MUST form a unique key. Clients can obtain valid values with the FAX_GetCountryList
(section 3.1.4.1.37) method.

lpwstrCountryNameOffset (4 bytes): Offset to the lpwstrCountryname field in the
Variable_Data block of this structure, containing the country/region name indicated by the
dwCountryCode field if known; otherwise, it is zero. If dwCountryCode is zero, this offset
MUST be zero.

Fixed_Portion of Destination (4 bytes): The Fixed_Portion of a union that specifies the
destination of the rule. When bUseGroup is FALSE, this union MUST be a
_FAX_RULE_DESTINATION_DEVICE_ID (section 2.2.42.1) structure containing a device
identifier; otherwise, it MUST be a _FAX_RULE_DESTINATION_GROUP_NAME (section
2.2.42.2) structure containing the name of an outbound routing group of devices.

bUseGroup (4 bytes): A Boolean value that indicates whether the group is used in the
destination. If TRUE, the group MUST be used as the rule's destination. If FALSE, the device

MUST be used as the rule's destination.

109 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpwstrCountryName (variable)

...

Variable_Data_of_Destination (variable)

...

lpwstrCountryName (variable): A null-terminated string that specifies the country/region name
indicated by the dwCountryCode field.

Variable_Data_of_Destination (variable): The Variable_Data, if any, of the Destination
union that specifies the destination of the rule.

2.2.42.1 _FAX_RULE_DESTINATION_DEVICE_ID

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion

Fixed_Portion (4 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwDeviceId

dwDeviceId (4 bytes): A DWORD value that contains the unique identifier (UID) of the device.

2.2.42.2 _FAX_RULE_DESTINATION_GROUP_NAME

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion

Variable_Data (variable)

...

Fixed_Portion (4 bytes):

110 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpwstrGroupNameOffset

lpwstrGroupNameOffset (4 bytes): Offset to the lpwstrGroupName field in the
Variable_Data block of the structure.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpwstrGroupName (variable)

...

lpwstrGroupName (variable): A null-terminated string that uniquely identifies a new group
name. The group name is case-insensitive.

2.2.43 FAX_PRINTER_INFOW

An array of the FAX_PRINTER_INFOW data type can be passed as an out parameter (as a byte array)
in the FAX_GetServicePrinters (section 3.1.4.1.63) call.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (16 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (16 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpwstrPrinterNameOffset

lpwstrServerNameOffset

lpwstrDriverNameOffset

111 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Padding

lpwstrPrinterNameOffset (4 bytes): Offset to the lpwstrPrinterName field in the
Variable_Data block.

lpwstrServerNameOffset (4 bytes): Offset to the lpwstrServerName field in the

Variable_Data block.

lpwstrDriverNameOffset (4 bytes): Offset to the lpwstrDriverName field in the
Variable_Data block.

Padding (4 bytes): Padding for data alignment of the Fixed_Portion block to an 8-byte
boundary.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpwstrPrinterName (variable)

...

lpwstrServerName (variable)

...

lpwstrDriverName (variable)

...

lpwstrPrinterName (variable): A null-terminated character string that holds the printer name.

lpwstrServerName (variable): A null-terminated character string that holds the name of the
server where the printer is attached.

lpwstrDriverName (variable): A null-terminated character string that holds the name of the
driver for this printer.

2.2.44 FAX_PERSONAL_PROFILEW

The FAX_PERSONAL_PROFILEW structure contains information describing one personal profile (section
3.1.1). This structure is used by FAX_GetPersonalProfileInfo (section 3.1.4.1.50) to return information
about the personal profile of the sender or the recipient of a fax message. This structure is also used
to specify the sender’s and the receiver’s personal profiles for

FAX_SendDocumentEx (section 3.1.4.1.73). This structure is described below.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

All fields of this structure except dwSizeOfStruct in the Fixed_Portion block are optional. If the
respective information is not available, the offset fields in the Fixed_Portion block MUST be zero.

112 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (68 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (68 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

lpwstrNameOffset

lpwstrFaxNumberOffset

lpwstrCompanyOffset

lpwstrStreetAddressOffset

lpwstrCityOffset

lpwstrStateOffset

lpwstrZipOffset

lpwstrCountryOffset

lpwstrTitleOffset

lpwstrDepartmentOffset

lpwstrOfficeLocationOffset

lpwstrHomePhoneOffset

lpwstrOfficePhoneOffset

lpwstrEmailOffset

113 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpwstrBillingCodeOffset

lpwstrTSIDOffset

dwSizeOfStruct (4 bytes): A DWORD value that holds the size of the Fixed_Portion block, in
bytes. This value MUST be 68 bytes.

lpwstrNameOffset (4 bytes): Offset to the lpwstrName field in the Variable_Data portion of

the structure.

lpwstrFaxNumberOffset (4 bytes): Offset to the lpwstrFaxNumber field in the
Variable_Data portion of the structure.

lpwstrCompanyOffset (4 bytes): Offset to the lpwstrCompany field in the Variable_Data
portion of the structure.

lpwstrStreetAddressOffset (4 bytes): Offset to the lpwstrStreetAddress field in the

Variable_Data portion of the structure.

lpwstrCityOffset (4 bytes): Offset to the lpwstrCity field in the Variable_Data portion of the
structure.

lpwstrStateOffset (4 bytes): Offset to the lpwstrState field in the Variable_Data portion of
the structure.

lpwstrZipOffset (4 bytes): Offset to the lpwstrZip field in the Variable_Data portion of the
structure.

lpwstrCountryOffset (4 bytes): Offset to the lpwstrCountry field in the Variable_Data
portion of the structure.

lpwstrTitleOffset (4 bytes): Offset to the lpwstrTitle field in the Variable_Data portion of the
structure.

lpwstrDepartmentOffset (4 bytes): Offset to the lpwstrDepartment field in the
Variable_Data portion of the structure.

lpwstrOfficeLocationOffset (4 bytes): Offset to the lpwstrOfficeLocation field in the

Variable_Data portion of the structure.

lpwstrHomePhoneOffset (4 bytes): Offset to the lpwstrHomePhone field in the
Variable_Data portion of the structure.

lpwstrOfficePhoneOffset (4 bytes): Offset to the lpwstrOfficePhone field in the
Variable_Data portion of the structure.

lpwstrEmailOffset (4 bytes): Offset to the lpwstrEmail field in the Variable_Data portion of

the structure.

lpwstrBillingCodeOffset (4 bytes): Offset to the lpwstrBillingCode field in the
Variable_Data portion of the structure.

lpwstrTSIDOffset (4 bytes): Offset to the lpwstrTSID field in the Variable_Data portion of
the structure.

Variable_Data (variable):

114 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpwstrName (variable)

...

lpwstrFaxNumber (variable)

...

lpwstrCompany (variable)

...

lpwstrStreetAddress (variable)

...

lpwstrCity (variable)

...

lpwstrState (variable)

...

lpwstrZip (variable)

...

lpwstrCountry (variable)

...

lpwstrTitle (variable)

...

lpwstrDepartment (variable)

...

lpwstrOfficeLocation (variable)

...

lpwstrHomePhone (variable)

...

115 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpwstrOfficePhone (variable)

...

lpwstrEmail (variable)

...

lpwstrBillingCode (variable)

...

lpwstrTSID (variable)

...

lpwstrName (variable): Null-terminated character string containing the recipient or sender
name.

lpwstrFaxNumber (variable): Null-terminated character string containing the fax number

associated with this profile.

lpwstrCompany (variable): Null-terminated character string containing the name of the
company for which the person associated with this profile works.

lpwstrStreetAddress (variable): Null-terminated character string containing the street address
associated with this profile.

lpwstrCity (variable): Null-terminated character string containing the name of the city

associated with this profile.

lpwstrState (variable): Null-terminated character string containing the name of the state
associated with this profile.

lpwstrZip (variable): Null-terminated character string containing the ZIP code associated with
this profile.

lpwstrCountry (variable): Null-terminated character string containing the name of the
country/region associated with this profile.

lpwstrTitle (variable): Null-terminated character string containing the title of the person
associated with this profile.

lpwstrDepartment (variable): Null-terminated character string containing the name of the
department in which the person associated with this profile works.

lpwstrOfficeLocation (variable): Null-terminated character string containing the office location

of the person associated with this profile.

lpwstrHomePhone (variable): Null-terminated character string containing the home telephone

number of the person associated with this profile.

lpwstrOfficePhone (variable): Null-terminated character string containing the office telephone
number of the person associated with this profile.

lpwstrEmail (variable): Null-terminated character string containing the email address of the
person associated with this profile.

116 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpwstrBillingCode (variable): Null-terminated character string containing the billing code
associated with this profile.

lpwstrTSID (variable): Null-terminated character string containing the transmitting subscriber
identifier (TSID) associated with this profile.

2.2.45 FAX_PORT_INFO_EXW

The FAX_PORT_INFO_EXW structure defines information about a single fax device, known as a port.
This structure is used for FAX_SetPortEx (section 3.1.4.1.89).

 typedef struct {
 DWORD dwSizeOfStruct;
 DWORD dwDeviceID;
 [string] LPCWSTR lpcwstrDeviceName;
 [string] LPWSTR lpwstrDescription;
 [string] LPCWSTR lpcwstrProviderName;
 [string] LPCWSTR lpcwstrProviderGUID;
 BOOL bSend;
 FAX_ENUM_DEVICE_RECEIVE_MODE ReceiveMode;
 DWORD dwStatus;
 DWORD dwRings;
 [string] LPWSTR lpwstrCsid;
 [string] LPWSTR lpwstrTsid;
 } FAX_PORT_INFO_EXW,
 *PFAX_PORT_INFO_EXW;

dwSizeOfStruct: DWORD value that holds the total size of the structure, in bytes. This value MUST
be 48 or 72 bytes. When filled in on a 32-bit implementation, this value SHOULD be 48 bytes.

When filled in on a 64-bit implementation, this value SHOULD be 72 bytes.

dwDeviceID: A DWORD that holds the line identifier for the specified fax device (port).

lpcwstrDeviceName: A null-terminated character string that holds the name of the fax device.

lpwstrDescription: A null-terminated character string that holds the description of the fax device.
The length of this string MUST NOT exceed MAX_FAX_STRING_LEN (section 2.2.86) characters,
including the length of the terminating null character.

lpcwstrProviderName: A null-terminated character string that holds the name of the fax device
provider.

lpcwstrProviderGUID: A null-terminated character string that holds the GUID of the fax device
provider.

bSend: A Boolean value that indicates whether the fax device is enabled to send faxes.

ReceiveMode: An FAX_ENUM_DEVICE_RECEIVE_MODE (section 2.2.55) enumeration value that
indicates whether the fax device is enabled to receive faxes and whether the calls are manually or

automatically answered.

dwStatus: A DWORD that holds the current status of the device. It SHOULD contain any combination
of values from the FAX_ENUM_DEVICE_STATUS (section 2.2.64) enumeration or 0 (meaning:
status unknown).

dwRings: A DWORD that holds the number of times an incoming fax call rings before the specified
device answers the call.

lpwstrCsid: A null-terminated character string that holds the called subscriber identifier for faxes

sent using this device. This identifier can be a telephone number.

117 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpwstrTsid: A null-terminated character string that holds the transmitting subscriber identifier for
faxes sent using this device. This identifier can be a telephone number.

2.2.46 _FAX_PORT_INFO_EXW

The _FAX_PORT_INFO_EXW data type is the custom-marshaled variant of the
FAX_PORT_INFO_EXW (section 2.2.45) structure. This data type is used for
FAX_EnumPortsEx (section 3.1.4.1.29) and FAX_GetPortEx (section 3.1.4.1.52).

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in

section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (48 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (48 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

dwDeviceID

lpcwstrDeviceNameOffset

lpwstrDescriptionOffset

lpcwstrProviderNameOffset

lpcwstrProviderGUIDOffset

bSend

ReceiveMode

dwStatus

dwRings

118 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpwstrCsidOffset

lpwstrTsidOffset

dwSizeOfStruct (4 bytes): A DWORD value that holds the size of the Fixed_Portion block, in
bytes. This value MUST be 48 bytes.

dwDeviceID (4 bytes): A DWORD that holds the line identifier for the specified fax device (port).

lpcwstrDeviceNameOffset (4 bytes): Offset to the lpcwstrDeviceName field in the
Variable_Data block.

lpwstrDescriptionOffset (4 bytes): Offset to the lpcwstrDescription field in the
Variable_Data block.

lpcwstrProviderNameOffset (4 bytes): Offset to the lpcwstrProviderName field in the
Variable_Data block

lpcwstrProviderGUIDOffset (4 bytes): Offset to the lpcwstrProviderGUID field in the
Variable_Data block.

bSend (4 bytes): A Boolean value that indicates whether the fax device is enabled to send faxes.

ReceiveMode (4 bytes): An FAX_ENUM_DEVICE_RECEIVE_MODE (section 2.2.55) enumerated
value that indicates whether the fax device is enabled to receive faxes and whether the calls
are manually or automatically answered.

dwStatus (4 bytes): A DWORD that holds the current status of the device. It SHOULD contain

any combination of values from the FAX_ENUM_DEVICE_STATUS (section 2.2.64)
enumeration or 0 (meaning: status unknown).

dwRings (4 bytes): A DWORD that holds the number of times an incoming fax call rings before
the specified device answers the call.

lpwstrCsidOffset (4 bytes): Offset to the lpcwstrCsid field in the Variable_Data block

lpwstrTsidOffset (4 bytes): Offset to the lpcwstrTsid field in the c block.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpcwstrDeviceName (variable)

...

lpwstrDescription (variable)

...

lpcwstrProviderName (variable)

...

lpcwstrProviderGUID (variable)

119 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

lpwstrCsid (variable)

...

lpwstrTsid (variable)

...

lpcwstrDeviceName (variable): A null-terminated character string that holds the name of the
fax device.

lpwstrDescription (variable): A null-terminated character string that holds the description of

the fax device. The length of this string MUST NOT exceed MAX_FAX_STRING_LEN (section

2.2.86) characters, including the length of the terminating null character.

lpcwstrProviderName (variable): A null-terminated character string that holds the name of the
fax device provider.

lpcwstrProviderGUID (variable): A null-terminated character string that holds the GUID of the
fax device provider.

lpwstrCsid (variable): A null-terminated character string that holds the called subscriber
identifier for faxes sent using this device. This identifier can be a telephone number.

lpwstrTsid (variable): A null-terminated character string that holds the transmitting subscriber
identifier for faxes sent using this device. This identifier can be a telephone number.

2.2.47 FAX_RECEIPTS_CONFIGW

The FAX_RECEIPTS_CONFIGW structure defines the format for the receipt settings of the fax server.
This structure is used by FAX_SetReceiptsConfiguration (section 3.1.4.1.91). The information
contained by this structure describes the "delivery receipt support" fax server configuration (section
3.1.1).

 typedef struct {
 DWORD dwSizeOfStruct;
 DWORD dwAllowedReceipts;
 FAX_ENUM_SMTP_AUTH_OPTIONS SMTPAuthOption;
 [string] LPWSTR lpwstrReserved;
 [string] LPWSTR lpwstrSMTPServer;
 DWORD dwSMTPPort;
 [string] LPWSTR lpwstrSMTPFrom;
 [string] LPWSTR lpwstrSMTPUserName;
 [string] LPWSTR lpwstrSMTPPassword;
 BOOL bIsToUseForMSRouteThroughEmailMethod;
 } FAX_RECEIPTS_CONFIGW,
 *PFAX_RECEIPTS_CONFIGW;

dwSizeOfStruct: A DWORD value that holds the total size of the structure, in bytes. This value
MUST be 40 or 72 bytes. When filled in on a 32-bit implementation, this value SHOULD be 40
bytes. When filled in on a 64-bit implementation, this value SHOULD be 72 bytes.

dwAllowedReceipts: A DWORD that holds the type of receipts that the server supports. This
member MUST be one of the values defined in
FAX_ENUM_DELIVERY_REPORT_TYPES (section 2.2.76).

120 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

SMTPAuthOption: A type of SMTP authentication that the server will use for SMTP connections. The
options MUST be one of the enumerations defined in

FAX_ENUM_SMTP_AUTH_OPTIONS (section 2.2.56).

lpwstrReserved: A reserved pointer, which MUST be set to NULL.

lpwstrSMTPServer: A null-terminated character string that holds the SMTP server name.

dwSMTPPort: A DWORD that holds the port number of the SMTP server.

lpwstrSMTPFrom: A null-terminated character string that holds the SMTP email address of the
sender of the fax receipt messages.

lpwstrSMTPUserName: A null-terminated character string that holds the user name to use for
Basic-authenticated SMTP connections.

lpwstrSMTPPassword: A null-terminated character string that holds the password to use for Basic-

authenticated SMTP connections. For anonymous access, no user name and password is required.
For Basic and Integrated authentication, a cleartext password is sent over the wire. It is for the

server to use the password that depends on the authentication mode.

bIsToUseForMSRouteThroughEmailMethod: If set to TRUE, the routing extension MUST use the
DRT_EMAIL receipts settings to route incoming faxes by email.

2.2.48 _FAX_RECEIPTS_CONFIGW

The _FAX_RECEIPTS_CONFIGW data type is the custom-marshaled variant of the
FAX_RECEIPTS_CONFIGW (section 2.2.47) structure. This data type is used by
FAX_GetReceiptsConfiguration (section 3.1.4.1.54).

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in

section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (40 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (40 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

dwAllowedReceipts

121 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

SMTPAuthOption

lpwstrReservedOffset

lpwstrSMTPServerOffset

dwSMTPPort

lpwstrSMTPFromOffset

lpwstrSMTPUserNameOffset

lpwstrSMTPPasswordOffset

bIsToUseForMSRouteThroughEmailMethod

dwSizeOfStruct (4 bytes): A DWORD value that holds the size of the Fixed_Portion block, in
bytes. This value MUST be 40 bytes.

dwAllowedReceipts (4 bytes): A DWORD that holds the type of receipts that the server

supports. This field MUST be one of the values defined in
FAX_ENUM_DELIVERY_REPORT_TYPES (section 2.2.76).

SMTPAuthOption (4 bytes): A type of SMTP authentication that the server will use for SMTP
connections. The options MUST be one of the enumerations defined in
FAX_ENUM_SMTP_AUTH_OPTIONS (section 2.2.56).

lpwstrReservedOffset (4 bytes): A reserved offset value which MUST be set to zero and

otherwise ignored.

lpwstrSMTPServerOffset (4 bytes): Offset to the lpwstrSMTPServer field in the
Variable_Data block.

dwSMTPPort (4 bytes): A DWORD that holds the port number of the SMTP server.

lpwstrSMTPFromOffset (4 bytes): Offset to the lpwstrSMTPFrom field in the Variable_Data
block.

lpwstrSMTPUserNameOffset (4 bytes): Offset to the lpwstrSMTPUserName field in the

Variable_Data block.

lpwstrSMTPPasswordOffset (4 bytes): Offset to the lpwstrSMTPPassword field in the
Variable_Data block. For anonymous access, no user name and password is required and
this offset SHOULD be zero.

bIsToUseForMSRouteThroughEmailMethod (4 bytes): If set to TRUE, the routing extension
MUST use the DRT_EMAIL receipts settings to route incoming faxes by email.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpwstrSMTPServer (variable)

122 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

lpwstrSMTPFrom (variable)

...

lpwstrSMTPUserName (variable)

...

lpwstrSMTPPassword (variable)

...

lpwstrSMTPServer (variable): A null-terminated character string that holds the SMTP server

name.

lpwstrSMTPFrom (variable): A null-terminated character string that holds the SMTP email

address of the sender of the fax receipt messages.

lpwstrSMTPUserName (variable): A null-terminated character string that holds the user name
to use for Basic-authenticated SMTP connections.

lpwstrSMTPPassword (variable): A null-terminated character string that holds the password to
use for Basic-authenticated SMTP connections. For anonymous access, no user name and
password is required. For Basic and Integrated authentication, a clear text password is sent

over the wire. It is for the server to use the password that depends on the authentication
mode.

2.2.49 FAX_ROUTING_EXTENSION_INFO

The FAX_ROUTING_EXTENSION_INFO data type defines the format in which the routing extensions

are enumerated and can be returned by a call to FAX_EnumRoutingExtensions (section 3.1.4.1.30).
The call can return a pointer to an array of routing extensions, where each element of the array is of
this type. The information contained in each FAX_ROUTING_EXTENSION_INFO structure describes one
fax routing extension (section 3.1.1).

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (44 bytes)

...

...

...

Variable_Data (variable)

123 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

Fixed_Portion (44 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

lpcwstrFriendlyNameOffset

lpcwstrImageNameOffset

lpcwstrExtensionNameOffset

Version (20 bytes)

...

...

...

Status

dwLastError

dwSizeOfStruct (4 bytes): A DWORD that holds the size, in bytes, of the size of the structure.

MUST be set to 44 bytes.

lpcwstrFriendlyNameOffset (4 bytes): Offset to the lpcwstrFriendlyName field in the
Variable_Data portion of the structure.

lpcwstrImageNameOffset (4 bytes): Offset to the lpcwstrImageName field in the
Variable_Data portion of the structure.

lpcwstrExtensionNameOffset (4 bytes): Offset to the lpcwstrExtensionName field in the

Variable_Data portion of the structure.

Version (20 bytes): A FAX_VERSION (section 2.2.22) structure that holds version information
for the fax routing execution component.<11>

Status (4 bytes): A FAX_ENUM_PROVIDER_STATUS (section 2.2.57) enumeration which holds
load status of the fax extension.

dwLastError (4 bytes): A DWORD value that holds the Win32 error code that was encountered
while the extension was loaded and initialized.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpcwstrFriendlyName (variable)

124 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

lpcwstrImageName (variable)

...

lpcwstrExtensionName (variable)

...

lpcwstrFriendlyName (variable): A null-terminated string which holds the FSP user-friendly
name, suitable for display.

lpcwstrImageName (variable): A null-terminated string which holds the full path and file name

for the FSP binary.

lpcwstrExtensionName (variable): A null-terminated string which holds the name of the
telephony service provider associated with the devices for the FSP.

2.2.50 FAX_TAPI_LINECOUNTRY_ENTRYW

The FAX_TAPI_LINECOUNTRY_ENTRYW data type defines the arrangement of data inside the
FAX_TAPI_LINECOUNTRY_LISTW (section 2.2.51) structure, which can be passed as an out parameter
to FAX_GetCountryList (section 3.1.4.1.37). This structure holds information about a specific
country/region in the array of FAX_TAPI_LINECOUNTRY_LISTW (section 2.2.51).

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (16 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (16 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwCountryID

dwCountryCode

125 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpcwstrCountryNameOffset

lpcwstrLongDistanceRuleOffset

dwCountryID (4 bytes): A DWORD that holds the country/region identifier.

dwCountryCode (4 bytes): A DWORD that holds the country/region code.

lpcwstrCountryNameOffset (4 bytes): Offset to the lpwstrCountryName field in the

Variable_Data block.

lpcwstrLongDistanceRuleOffset (4 bytes): Offset to the lpwstrLongDistanceRule field in the
Variable_Data block.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpcwstrCountryName (variable)

...

lpcwstrLongDistanceRule (variable)

...

lpcwstrCountryName (variable): A null-terminated character string that holds the

country/region name.

lpcwstrLongDistanceRule (variable): A null-terminated character string that holds the dialing

rule for directly dialed calls to other areas in the same country/region.

2.2.51 FAX_TAPI_LINECOUNTRY_LISTW

The FAX_TAPI_LINECOUNTRY_LISTW data type defines the structure that
FAX_GetCountryList (section 3.1.4.1.37) can use to return the list of countries/regions from TAPI. For
more information about TAPI, see [MSDN-TAPI2.2]. The structure has a pointer to a list of
countries/regions, with each country/region's data defined by a
FAX_TAPI_LINECOUNTRY_ENTRYW (section 2.2.50) structure.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion

...

Variable_Data (variable)

...

126 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Fixed_Portion (8 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwNumCountries

LineCountryEntriesOffset

dwNumCountries (4 bytes): A DWORD that holds the number of countries/regions in the list.

LineCountryEntriesOffset (4 bytes): Offset to the ListCountryEntries field in the

Variable_Data.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LineCountryEntries (variable)

...

LineCountryEntries (variable): An array of dwNumCountries
FAX_TAPI_LINECOUNTRY_ENTRYW (section 2.2.50) structures describing the list of countries
and regions. This array is custom marshaled within the Variable_Data block for the

FAX_TAPI_LINECOUNTRY_LISTW data type as shown in section 2.2.1.2.

2.2.52 Fax-Specific Errors

The following fax-specific errors can be returned by the server to the client and are of data type

DWORD.

Return value/code Description

0x1B59

FAX_ERR_SRV_OUTOFMEMORY

The fax server failed to allocate memory.<12>

0x1B5A

FAX_ERR_GROUP_NOT_FOUND

The fax server failed to locate an outbound routing group by
name.<13>

0x1B5B

FAX_ERR_BAD_GROUP_CONFIGURATION

The fax server encountered an outbound routing group with bad
configuration.<14>

0x1B5C

FAX_ERR_GROUP_IN_USE

The fax server cannot remove an outbound routing group because
it is in use by one or more outbound routing rules.<15>

0x1B5D

FAX_ERR_RULE_NOT_FOUND

The fax server failed to locate an outbound routing rule by
country/region code and area code.<16>

0x1B5F

FAX_ERR_DIRECTORY_IN_USE

The fax server cannot use the same folder for both the inbox and
the sent-items archives.<17>

0x1B60

FAX_ERR_FILE_ACCESS_DENIED

The fax server cannot access the specified file or folder.<18>

127 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x1B61

FAX_ERR_MESSAGE_NOT_FOUND

The fax server cannot find the job or message by its ID, or the
client's fax user accountFax User Account does not have
sufficient rights to access the job or message identified by this
ID.<19>

0x1B62

FAX_ERR_DEVICE_NUM_LIMIT_EXCEEDED

The fax server cannot complete the operation because the number
of active fax devices allowed for this version of the server
operating system washas been exceeded.<20>

0x1B63

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU

The fax server cannot complete the operation the fax serverif it is
running on a client operating system, and the operation requires a
server operating system.<21>

0x1B64

FAX_ERR_VERSION_MISMATCH

The fax client/server versions mismatch.<22>

0x1B65

FAX_ERR_RECIPIENTS_LIMIT

The limit on the number of recipients for a single fax broadcast was
reached.<23>

2.2.53 FAX_ENUM_MSG_FLAGS

The FAX_ENUM_MSG_FLAGS enumeration defines the possible flags that specify the read or unread
status of a fax message.

 typedef enum
 {
 FAX_MSG_FLAG_READ = 0x00000001
 } FAX_ENUM_MSG_FLAGS;

FAX_MSG_FLAG_READ: Indicates whether this message is marked as read. The message MUST be
marked as read if this bit is set. The default MAY be unread for an inbox message and read for a
sent message.

2.2.54 FAX_ENUM_RULE_STATUS

The FAX_ENUM_RULE_STATUS enumeration defines the possible status values for an outbound
routing rule.

 typedef enum
 {
 FAX_RULE_STATUS_VALID = 0x00000000,
 FAX_RULE_STATUS_EMPTY_GROUP = 0x00000001,
 FAX_RULE_STATUS_ALL_GROUP_DEV_NOT_VALID = 0x00000002,
 FAX_RULE_STATUS_SOME_GROUP_DEV_NOT_VALID = 0x00000003,
 FAX_RULE_STATUS_BAD_DEVICE = 0x00000004
 } FAX_ENUM_RULE_STATUS;

FAX_RULE_STATUS_VALID: Indicates this outbound routing rule is valid.

FAX_RULE_STATUS_EMPTY_GROUP: Indicates the rule's destination group has no devices.

FAX_RULE_STATUS_ALL_GROUP_DEV_NOT_VALID: Indicates that all devices in the rule's

destination group are invalid.

128 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FAX_RULE_STATUS_SOME_GROUP_DEV_NOT_VALID: Indicates the rule's destination group has
some invalid devices.

FAX_RULE_STATUS_BAD_DEVICE: Indicates the rule's destination device is not valid.

2.2.55 FAX_ENUM_DEVICE_RECEIVE_MODE

The FAX_ENUM_DEVICE_RECEIVE_MODE enumeration constants describe the receive mode for a fax
device.

 typedef enum
 {
 FAX_DEVICE_RECEIVE_MODE_OFF = 0,
 FAX_DEVICE_RECEIVE_MODE_AUTO = 1,
 FAX_DEVICE_RECEIVE_MODE_MANUAL = 2
 } FAX_ENUM_DEVICE_RECEIVE_MODE;

FAX_DEVICE_RECEIVE_MODE_OFF: Do not answer incoming calls.

FAX_DEVICE_RECEIVE_MODE_AUTO: Automatically answer incoming calls after the specified
number of rings.

FAX_DEVICE_RECEIVE_MODE_MANUAL: Manually answer incoming calls.

2.2.56 FAX_ENUM_SMTP_AUTH_OPTIONS

The FAX_ENUM_SMTP_AUTH_OPTIONS enumeration defines the type of authentication used for SMTP
connections.

 typedef enum
 {
 FAX_SMTP_AUTH_ANONYMOUS = 0,
 FAX_SMTP_AUTH_BASIC = 1,
 FAX_SMTP_AUTH_NTLM = 2
 } FAX_ENUM_SMTP_AUTH_OPTIONS;

FAX_SMTP_AUTH_ANONYMOUS: The server will send fax transmission receipts using a non-
authenticated SMTP server. The server's name and port are defined in the
FAX_RECEIPTS_CONFIGW (section 2.2.47) structure.

FAX_SMTP_AUTH_BASIC: The server will send fax transmission receipts using a basic (plain text)
authenticated SMTP server. The server's name, port, user name, and password are defined in the
FAX_RECEIPTS_CONFIGW (section 2.2.47) structure.

FAX_SMTP_AUTH_NTLM: The server will send fax transmission receipts using an NTLM-
authenticated SMTP server. The server's name, port, user name, and password are defined in the
FAX_RECEIPTS_CONFIGW (section 2.2.47) structure.

2.2.57 FAX_ENUM_PROVIDER_STATUS

The FAX_ENUM_PROVIDER_STATUS enumeration defines load status types for Fax Service Providers
(FSPs).

 typedef enum
 {
 FAX_PROVIDER_STATUS_SUCCESS = 0x00000000,
 FAX_PROVIDER_STATUS_SERVER_ERROR = 0x00000001,

129 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 FAX_PROVIDER_STATUS_BAD_GUID = 0x00000002,
 FAX_PROVIDER_STATUS_BAD_VERSION = 0x00000003,
 FAX_PROVIDER_STATUS_CANT_LOAD = 0x00000004,
 FAX_PROVIDER_STATUS_CANT_LINK = 0x00000005,
 FAX_PROVIDER_STATUS_CANT_INIT = 0x00000006
 } FAX_ENUM_PROVIDER_STATUS;

FAX_PROVIDER_STATUS_SUCCESS: The provider was successfully loaded, linked, and initialized.

FAX_PROVIDER_STATUS_SERVER_ERROR: Error encountered while trying to load, link, and
initialize the provider. This is a server-related error. For more information about the error code,
see the dwLastError member of the FAX_DEVICE_PROVIDER_INFO (section 2.2.30) or
FAX_ROUTING_EXTENSION_INFO (section 2.2.49) structures.

FAX_PROVIDER_STATUS_BAD_GUID: Error encountered while parsing the installation data of the
device provider. The GUID of the device provider is invalid.

FAX_PROVIDER_STATUS_BAD_VERSION: Error encountered while parsing the installation data of

the device provider. The API version of the device provider is invalid.

FAX_PROVIDER_STATUS_CANT_LOAD: Error encountered while loading the provider's binary.
Place the corresponding error in the dwLastError member of the
FAX_DEVICE_PROVIDER_INFO (section 2.2.30) or

FAX_ROUTING_EXTENSION_INFO (section 2.2.49) structures.

FAX_PROVIDER_STATUS_CANT_LINK: Error encountered while linking to routines exported by
the device provider. Place the corresponding error in the dwLastError member of the
FAX_DEVICE_PROVIDER_INFO (section 2.2.30) or
FAX_ROUTING_EXTENSION_INFO (section 2.2.49) structures.<24>

FAX_PROVIDER_STATUS_CANT_INIT: Error encountered while calling the initialization function of
the provider. Place the corresponding error in the dwLastError member of the

FAX_DEVICE_PROVIDER_INFO (section 2.2.30) or
FAX_ROUTING_EXTENSION_INFO (section 2.2.49) structures.

2.2.58 FAX_ENUM_JOB_OP

The FAX_ENUM_JOB_OP enumeration specifies the possible operations available on the current job.
Security considerations (that is, access rights of the caller) are not taken into account.

 typedef enum
 {
 FAX_JOB_OP_VIEW = 0x00000001,
 FAX_JOB_OP_PAUSE = 0x00000002,
 FAX_JOB_OP_RESUME = 0x00000004,
 FAX_JOB_OP_RESTART = 0x00000008,
 FAX_JOB_OP_DELETE = 0x00000010,
 FAX_JOB_OP_RECIPIENT_INFO = 0x00000020,
 FAX_JOB_OP_SENDER_INFO = 0x00000040
 } FAX_ENUM_JOB_OP;

FAX_JOB_OP_VIEW: Indicates that the job can be viewed.

FAX_JOB_OP_PAUSE: Indicates that the job can be paused.

FAX_JOB_OP_RESUME: Indicates that the job can be resumed.

FAX_JOB_OP_RESTART: Indicates that the job can be restarted.

FAX_JOB_OP_DELETE: Indicates that the job can be deleted.

130 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FAX_JOB_OP_RECIPIENT_INFO: Indicates that the job has recipient info.

FAX_JOB_OP_SENDER_INFO: Indicates that the job has sender info.

2.2.59 FAX_ENUM_GROUP_STATUS

The FAX_ENUM_GROUP_STATUS enumeration defines status types for outbound routing groups.

 typedef enum
 {
 FAX_GROUP_STATUS_ALL_DEV_VALID = 0x00000000,
 FAX_GROUP_STATUS_EMPTY = 0x00000001,
 FAX_GROUP_STATUS_ALL_DEV_NOT_VALID = 0x00000002,
 FAX_GROUP_STATUS_SOME_DEV_NOT_VALID = 0x00000003
 } FAX_ENUM_GROUP_STATUS;

FAX_GROUP_STATUS_ALL_DEV_VALID: All the devices in the group are valid and available for

sending outgoing faxes.

FAX_GROUP_STATUS_EMPTY : The group is empty (does not contain any devices), and does not
have any routing rules added.

FAX_GROUP_STATUS_ALL_DEV_NOT_VALID : All the devices in the group are not available for
sending outgoing faxes. Devices could be unavailable if they do not exist or are offline.

FAX_GROUP_STATUS_SOME_DEV_NOT_VALID: Some (but not all) of the devices in the group
are not available for sending outgoing faxes. Devices could be unavailable if they do not exist or
are offline.

2.2.60 FAX_JOB_EXTENDED_STATUS_ENUM

The FAX_JOB_EXTENDED_STATUS_ENUM enumeration defines the extended status values for a fax
job. These are basic values provided for developers of an FSP. However, with the exception of

fjesPARTIALLY_RECEIVED, these values or other proprietary values that can be developed for a
specific FSP are not recognized or interpreted by the fax server.

 typedef enum
 {
 fjesNONE = 0,
 fjesDISCONNECTED = 1,
 fjesINITIALIZING = 2,
 fjesDIALING = 3,
 fjesTRANSMITTING = 4,
 fjesANSWERED = 5,
 fjesRECEIVING = 6,
 fjesLINE_UNAVAILABLE = 7,
 fjesBUSY = 8,
 fjesNO_ANSWER = 9,
 fjesBAD_ADDRESS = 10,
 fjesNO_DIAL_TONE = 11,
 fjesFATAL_ERROR = 12,
 fjesCALL_DELAYED = 13,
 fjesCALL_BLACKLISTED = 14,
 fjesNOT_FAX_CALL = 15,
 fjesPARTIALLY_RECEIVED = 16,
 fjesHANDLED = 17,
 fjesCALL_COMPLETED = 18,
 fjesCALL_ABORTED = 19,
 fjesPROPRIETARY = 0x01000000
 } FAX_JOB_EXTENDED_STATUS_ENUM;

131 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

fjesNONE: No extended status value.

fjesDISCONNECTED: The sender or the caller disconnected the fax call.

fjesINITIALIZING: The device is initializing a call.

fjesDIALING: The device is dialing a fax number.

fjesTRANSMITTING: The device is sending a fax.

fjesANSWERED: The device answered a new call.

fjesRECEIVING: The device is receiving a fax.

fjesLINE_UNAVAILABLE: The device is not available because it is in use by another application.

fjesBUSY: The device encountered a busy signal.

fjesNO_ANSWER: The receiving device did not answer the call.

fjesBAD_ADDRESS: The device dialed an invalid fax number.

fjesNO_DIAL_TONE: The sending device cannot complete the call because it does not detect a dial
tone.

fjesFATAL_ERROR: The device has encountered a fatal protocol error.

fjesCALL_DELAYED: The device delayed a fax call because the sending device received a busy
signal multiple times. The device cannot retry the call because dialing restrictions exist (some
countries/regions restrict the number of retry attempts when a number is busy).

fjesCALL_BLACKLISTED: The device could not complete a call because the telephone number was
blocked or reserved; emergency numbers such as 911 are blocked.

fjesNOT_FAX_CALL: The device received a call that was a data call or a voice call.

fjesPARTIALLY_RECEIVED: The incoming fax was partially received. Some (but not all) of the
pages are available.

fjesHANDLED: The fax service processed the outbound fax; the FSP will transmit the fax.

fjesCALL_COMPLETED: The call was completed.

fjesCALL_ABORTED: The call was aborted.

fjesPROPRIETARY: Obsolete.

2.2.61 FAX_TIME

The FAX_TIME structure represents a time, using individual members for the current hour and minute.
The time is expressed in Coordinated Universal Time (UTC). This structure is used in

_FAX_CONFIGURATIONW (section 2.2.29), _FAX_OUTBOX_CONFIG (section 2.2.17),
FAX_GENERAL_CONFIG (section 2.2.31)

 typedef struct {
 WORD Hour;
 WORD Minute;
 } FAX_TIME,
 *PFAX_TIME;

132 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Hour: A 16-bit unsigned integer that holds the current hour. This value MUST be between 0 and 23
inclusive.

Minute: A 16-bit unsigned integer that holds the current minute. This value MUST be between 0 and
59 inclusive.

2.2.62 _FAX_TIME

The _FAX_TIME data type is the custom marshaled variant of the FAX_TIME (section 2.2.61) data
structure. The _FAX_TIME structure is used in FAX_GENERAL_CONFIG (section 2.2.31) and the

custom marshaled types _FAX_CONFIGURATIONW (section 2.2.29) and
_FAX_OUTBOX_CONFIG (section 2.2.17).

This data structure is custom marshaled as follows, and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion

Fixed_Portion (4 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hour Minute

Hour (2 bytes): A 16-bit unsigned integer that holds the current hour. This value MUST be
between 0 and 23 inclusive.

Minute (2 bytes): A 16-bit unsigned integer that holds the current minute. This value MUST be

between 0 and 59 inclusive.

2.2.63 FAX_ENUM_EVENT_TYPE

The FAX_ENUM_EVENT_TYPE enumeration defines types of events that the caller can specify to
receive.<25>

 typedef enum
 {
 FAX_EVENT_TYPE_LEGACY = 0x00000000,
 FAX_EVENT_TYPE_IN_QUEUE = 0x00000001,
 FAX_EVENT_TYPE_OUT_QUEUE = 0x00000002,
 FAX_EVENT_TYPE_CONFIG = 0x00000004,
 FAX_EVENT_TYPE_ACTIVITY = 0x00000008,
 FAX_EVENT_TYPE_QUEUE_STATE = 0x00000010,
 FAX_EVENT_TYPE_IN_ARCHIVE = 0x00000020,
 FAX_EVENT_TYPE_OUT_ARCHIVE = 0x00000040,
 FAX_EVENT_TYPE_FXSSVC_ENDED = 0x00000080,
 FAX_EVENT_TYPE_DEVICE_STATUS = 0x00000100,
 FAX_EVENT_TYPE_NEW_CALL = 0x00000200,
 FAX_EVENT_TYPE_LOCAL_ONLY = 0x80000000
 } FAX_ENUM_EVENT_TYPE;

FAX_EVENT_TYPE_LEGACY: The type used for all legacy events. Legacy events are events that are
requested by fax API version FAX_API_VERSION_0 (0x00000000) and FAX_API_VERSION_1
(0x00010000) fax clients to protocol version FAX_API_VERSION_2 (0x00020000) and

133 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FAX_API_VERSION_3 (0x00030000) fax servers. For more information, see
FAX_ConnectFaxServer (section 3.1.4.1.10), FAX_StartServerNotification (section 3.1.4.1.100),

FAX_StartServerNotificationEx (section 3.1.4.1.101),
FaxObs_StartClientServer (section 3.1.4.2.31), and FAX_ClientEventQueue (section 3.2.4.2). A

legacy event signaled with a FAX_ClientEventQueue (section 3.2.4.2) call is described by a
FAX_EVENT (section 2.2.66) structure that does not include a member that describes the event
type (the legacy events do not have event types; thus the need to describe their type by a
common, generic, FAX_ENUM_EVENT_TYPE value). This value SHOULD NOT be supported by
protocol version FAX_API_VERSION_0 (0x00000000) and FAX_API_VERSION_1 (0x00010000) fax
servers.<26>

The following FAX_ENUM_EVENT_TYPE values describe the type of the extended events. For more

information about extended events, see FAX_StartServerNotificationEx (section 3.1.4.1.101),
FAX_StartServerNotificationEx2 (section 3.1.4.1.102), and FAX_ClientEventQueueEx (Opnum 3).
An extended event signaled with a FAX_ClientEventQueueEx (section 3.2.4.3) call is described by
a FAX_EVENT_EX (section 2.2.67) or FAX_EVENT_EX_1 (section 2.2.68) structure, each of these
structures including a member (called EventType for FAX_EVENT_EX and EventType4 for
FAX_EVENT_EX_1) containing the FAX_ENUM_EVENT_TYPE value describing the type of the

respective extended event.

FAX_EVENT_TYPE_IN_QUEUE: Requests notification about fax jobs in the incoming queue.
Whenever the state of an incoming fax job changes, a notification of that type is issued.

FAX_EVENT_TYPE_OUT_QUEUE: Requests notification about fax jobs in the outgoing queue.
Whenever the state of an outgoing fax job changes, a notification of that type is issued.

FAX_EVENT_TYPE_CONFIG: Requests notifications about fax server configuration changes.
Whenever the configuration of the fax server changes, a notification of that type is issued.

FAX_EVENT_TYPE_ACTIVITY: Requests notifications about the fax server activity. Whenever the
activity state of the fax server changes, a notification of that type is issued.

FAX_EVENT_TYPE_QUEUE_STATE: Requests notifications about the fax queue state.Queue State
(section 3.1.1). Whenever the state of the fax queue changes, a notification of that type is issued.

FAX_EVENT_TYPE_IN_ARCHIVE: Requests notifications about the removal of fax messages from
the incoming messages archive. Whenever a message is removed from the archive, the archive
type and the message unique identifier are issued in a notification message.

FAX_EVENT_TYPE_OUT_ARCHIVE: Requests notifications about the removal of fax messages from
the outgoing messages archive. Whenever a message is removed from the archive, the archive
type and the message unique identifier are issued in a notification message.

FAX_EVENT_TYPE_FXSSVC_ENDED: Specifies the shutdown of the fax server.

FAX_EVENT_TYPE_DEVICE_STATUS: Specifies that the status of a device has changed.

FAX_EVENT_TYPE_NEW_CALL: Specifies that a new incoming call was detected by the fax service.

FAX_EVENT_TYPE_LOCAL_ONLY: Specifies that the fax client (acting as RPC server) needs to

accept only local (same computer) notifications.<27>

2.2.64 FAX_ENUM_DEVICE_STATUS

The FAX_ENUM_DEVICE_STATUS enumeration defines the possible status values of a fax device.

 typedef enum
 {
 FAX_DEVICE_STATUS_POWERED_OFF = 0x00000001,
 FAX_DEVICE_STATUS_SENDING = 0x00000002,

134 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 FAX_DEVICE_STATUS_RECEIVING = 0x00000004,
 FAX_DEVICE_STATUS_RINGING = 0x00000008
 } FAX_ENUM_DEVICE_STATUS;

FAX_DEVICE_STATUS_POWERED_OFF: The device is powered off. This status MUST NOT be
combined with any other status.

FAX_DEVICE_STATUS_SENDING: The device is currently sending one or more fax jobs.

FAX_DEVICE_STATUS_RECEIVING: The device is currently receiving one or more fax jobs.

FAX_DEVICE_STATUS_RINGING: The device is currently ringing.

2.2.65 FAX_ENUM_PRIORITY_TYPE

The FAX_ENUM_PRIORITY_TYPE enumeration defines types of priorities for outgoing faxes.

 typedef enum
 {
 FAX_PRIORITY_TYPE_LOW = 0x00000000,
 FAX_PRIORITY_TYPE_NORMAL = 0x00000001,
 FAX_PRIORITY_TYPE_HIGH = 0x00000002
 } FAX_ENUM_PRIORITY_TYPE;

FAX_PRIORITY_TYPE_LOW: The fax is sent with a low priority.

FAX_PRIORITY_TYPE_NORMAL: The fax is sent with a normal priority.

FAX_PRIORITY_TYPE_HIGH: The fax is sent with a high priority.

2.2.66 FAX_EVENT

The FAX_EVENT structure represents the contents of an input/output (I/O) completion packet. The fax
server sends the completion packet to notify a fax client application about an asynchronous fax server
event.

 typedef struct {
 DWORD SizeOfStruct;
 FILETIME TimeStamp;
 DWORD DeviceId;
 DWORD EventId;
 DWORD JobId;
 } FAX_EVENT,
 *PFAX_EVENT;

SizeOfStruct: A DWORD value that holds the total size of the structure, in bytes. This value MUST be
24 bytes.

TimeStamp: Specifies a FILETIME structure, as specified in [MS-DTYP] section 2, that contains the
time at which the fax server generated the event.

DeviceId: Specifies a DWORD variable that indicates the line identifier for the fax device (port) of
interest.

EventId: Specifies a DWORD variable that identifies the current asynchronous event that occurred

within the fax server. The following table lists the possible events and their meanings.

135 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

FEI_DIALING

0x00000001

The sending device is dialing a fax number.

FEI_SENDING

0x00000002

The sending device is transmitting a page of fax data.

FEI_RECEIVING

0x00000003

The receiving device is receiving a page of fax data.

FEI_COMPLETED

0x00000004

The device has completed a fax transmission call.

FEI_BUSY

0x00000005

The sending device has encountered a busy signal.

FEI_NO_ANSWER

0x00000006

The receiving device does not answer.

FEI_BAD_ADDRESS

0x00000007

The sending device cannot complete the call because the fax number is
invalid.

FEI_NO_DIAL_TONE

0x00000008

The sending device cannot complete the call because it does not detect a
dial tone.

FEI_DISCONNECTED

0x00000009

The device cannot complete the call because a fax device was disconnected
or because the fax call itself was disconnected.

FEI_FATAL_ERROR

0x0000000A

The device encountered a fatal protocol error.

FEI_NOT_FAX_CALL

0x0000000B

The modem device received a data call or a voice call.

FEI_CALL_DELAYED

0x0000000C

The sending device received a busy signal multiple times. The device cannot
retry the call because dialing restrictions exist (some countries and regions
restrict the number of retry attempts when a number is busy).

FEI_CALL_BLACKLISTED

0x0000000D

The device cannot complete the call because the telephone number is
blocked or reserved; numbers such as 911 are blocked.

FEI_RINGING

0x0000000E

The receiving device is ringing.

FEI_ABORTING

0x0000000F

The device is aborting a fax job.

FEI_ROUTING

0x00000010

The receiving device is routing a received fax document.

FEI_MODEM_POWERED_ON

0x000000011

The modem device was turned on.

FEI_MODEM_POWERED_OFF

0x000000012

The modem device was turned off.

FEI_IDLE

0x000000013

The device is idle.

136 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

FEI_FAXSVC_ENDED

0x000000014

The fax service has terminated. For more information, see the following
Remarks section.

FEI_ANSWERED

0x000000015

The receiving device answered a new call.

FEI_JOB_QUEUED

0x000000016

The fax job has been queued.

FEI_DELETED

0x00000017

The fax job has been processed. The job identifier for the job is no longer
valid.

FEI_INITIALIZING

0x00000018

The modem device is being initialized.

FEI_LINE_UNAVAILABLE

0x00000019

The device cannot complete the call because the requested line is

unavailable.

FEI_HANDLED

0x0000001A

The fax job has been processed.

FEI_FAXSVC_STARTED

0x0000001B

The fax service has started. For more information, see the following
Remarks section. Interchangeable with FEI_NEVENTS.

FEI_NEVENTS

0x0000001B

The total number of fax events received. For more information, see the
following Remarks section. Interchangeable with FEI_FAXSVC_STARTED.

JobId: Specifies a unique number that identifies the fax job of interest. If this member is equal to the
value 0xffffffff, it indicates an inactive fax job. Note that this number is not a print spooler
identification number.

After a fax client application receives the FEI_FAXSVC_ENDED message from the fax service, it will no

longer receive fax events. To resume receiving fax events, the application MUST call the
FaxInitializeEventQueue function again when the fax service restarts. The application can determine
whether the fax service is running by using the service control manager.

If the application receives events by means of notification messages, it can use the FEI_NEVENTS
event. If the message is between the application's base window message and the base window
message + FEI_NEVENTS, then the application can process the message as a fax window message. An
application specifies the base window message by using the MessageStart parameter in the

FaxInitializeEventQueue function; the base window message MUST be greater than the WM_USER
message.

2.2.67 FAX_EVENT_EX

The FAX_EVENT_EX structure defines information about asynchronous events delivered to applications

that have registered to receive notification of fax events. This structure is passed as a byte array
argument to FAX_ClientEventQueueEx (section 3.2.4.3).

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

137 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (56 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (56 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

TimeStamp

...

EventType

Fixed_Portion_of_EventInfo (40 bytes)

...

...

...

dwSizeOfStruct (4 bytes): A DWORD that contains the size, in bytes, of this structure. MUST

be set to 56 bytes.

TimeStamp (8 bytes): A FILETIME structure, as specified in [MS-DTYP] section 2, that contains
the time the fax server generated the event.

EventType (4 bytes): One of the FAX_ENUM_EVENT_TYPE (section 2.2.63) values that indicates
the type of event. Only a single bit is set in this value, thus there is notification for only a

single event per value. This field defines which field of the EventInfo union is used. For the

FAX_EVENT_TYPE_FXSSVC_ENDED (section 2.2.63) event, none of the EventInfo union fields
are used. This field MUST NOT be set to FAX_EVENT_TYPE_LEGACY.

Fixed_Portion_of_EventInfo (40 bytes): The Fixed_Portion of a union containing
information according to the event type.

For the FAX_EVENT_TYPE_IN_QUEUE (section 2.2.63),
FAX_EVENT_TYPE_OUT_QUEUE (section 2.2.63), FAX_EVENT_TYPE_IN_ARCHIVE (section 2.2.63),

138 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

and FAX_EVENT_TYPE_OUT_ARCHIVE (section 2.2.63) events, the union contains a
FAX_EVENT_EX_JOB_INFO (section 2.2.67.1) structure with status about an existing job in the

queue or archives.

For the FAX_EVENT_TYPE_CONFIG (section 2.2.63) event, the union contains a

FAX_EVENT_EX_CONFIG_TYPE (section 2.2.67.2) enumeration value that indicates the type of the
configuration that has changed. The receiver of this notification SHOULD call
FAX_GetConfiguration (section 3.1.4.1.36) to get the new configuration.

For the FAX_EVENT_TYPE_ACTIVITY (section 2.2.63) event, the union contains a
FAX_EVENT_EX_ACTIVITY_INFO (section 2.2.67.3) structure that contains information about the
server activity that has changed.

For the FAX_EVENT_TYPE_NEW_CALL (section 2.2.63) event, the union contains a

FAX_EVENT_EX_NEW_CALL (section 2.2.67.4) structure that contains information about the new
incoming call detected by the fax service.

For the FAX_EVENT_TYPE_QUEUE_STATE (section 2.2.63) event, the union contains a

FAX_EVENT_EX_QUEUE_STATES (section 2.2.67.5) structure with the queue status.

For the FAX_EVENT_TYPE_DEVICE_STATUS (section 2.2.63) event, the union contains a
FAX_EVENT_EX_DEVICE_STATUS (section 2.2.67.6) structure that indicates the status of the fax

device.

The six possible variants for the Fixed_Portion blocks of the EventInfo union are described in
the next six subsections. The size of the EventInfo field is always 40 bytes, including padding.
The size of 40 bytes is dictated by the size of the largest Fixed_Portion field in the union.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Variable_Data of EventInfo (variable)

...

Variable_Data of EventInfo (variable): The Variable_Data of the EventInfo union. The six

possible variants for the Variable_Data blocks of the EventInfo union are described in the
next six sub-sections.

2.2.67.1 FAX_EVENT_EX_JOB_INFO

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (40 bytes)

...

...

...

139 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Variable_Data (variable)

...

Fixed_Portion (40 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion of JobInfo (16 bytes)

...

...

...

Padding (24 bytes)

...

...

...

Fixed_Portion of JobInfo (16 bytes): The Fixed_Portion of a FAX_EVENT_JOB (section

2.2.80) structure describing the status of an existing job in the queue or archives.

Padding (24 bytes): Padding to align the size of the Fixed_Portion of this data structure to the

required size of 40 bytes. For more information, see FAX_EVENT_EX (section 2.2.67).

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Variable_Data of JobInfo (variable)

...

Variable_Data of JobInfo (variable): The Variable_Data of a FAX_EVENT_JOB (section

2.2.80) structure describing the status of an existing job in the queue or archives.

2.2.67.2 FAX_EVENT_EX_CONFIG_TYPE

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (40 bytes)

140 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

...

...

Fixed_Portion (40 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ConfigType

Padding (36 bytes)

...

...

...

ConfigType (4 bytes): The ConfigType field contains a FAX_ENUM_CONFIG_TYPE enumeration

value that indicates the type of the configuration that has changed. The receiver of this
notification SHOULD call FAX_GetConfiguration (section 3.1.4.1.36) to get the new
configuration.

Padding (36 bytes): Padding to align the size of the Fixed_Portion of this data structure to the
required size of 40 bytes. For more information, see FAX_EVENT_EX (section 2.2.67).

2.2.67.3 FAX_EVENT_EX_ACTIVITY_INFO

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (40 bytes)

...

...

...

Fixed_Portion (40 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion of ActivityInfo (40 bytes)

141 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

...

...

Fixed_Portion of ActivityInfo (40 bytes): Contains a FAX_SERVER_ACTIVITY (section 2.2.19)
structure that contains information about the server activity that has changed. This event
SHOULD only be sent when the message counters in the server activity structure change. No

event is sent when an event log entry is added on the server.

2.2.67.4 FAX_EVENT_EX_NEW_CALL

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in

section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (40 bytes)

...

...

...

Fixed_Portion (40 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion of NewCall

...

...

Padding (28 bytes)

...

...

...

Fixed_Portion of NewCall (12 bytes): A FAX_EVENT_NEW_CALL (section 2.2.72) structure that
contains information about the new incoming call detected by the fax service. For more
information, see FAX_EVENT_NEW_CALL (section 2.2.72).

Padding (28 bytes): Padding to align the size of the Fixed_Portion of this data structure to the
required size of 40 bytes. For more information, see FAX_EVENT_EX (section 2.2.67).

142 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.67.5 FAX_EVENT_EX_QUEUE_STATES

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (40 bytes)

...

...

...

Fixed_Portion (40 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwQueueStates

Padding (36 bytes)

...

...

...

dwQueueStates (4 bytes): The dwQueueStates field contains the queue status. If this value is
zero, both the incoming and outgoing queues are unblocked; otherwise, this value is a
combination of one or more of the following values.

Value Meaning

FAX_INCOMING_BLOCKED

0x00000001

The incoming faxes queue is blocked. The fax server will not answer
any new incoming faxes.

FAX_OUTBOX_BLOCKED

0x00000002

The outbox queue is blocked. The fax server will not accept

submission of new faxes. If the outbox is not paused, faxes in the
queue are still being processed.

FAX_OUTBOX_PAUSED

0x00000004

The outbox queue is paused. The fax server will not start sending
outgoing faxes from the queue. Fax transmissions in progress are not
affected. If the outbox is not blocked, the fax server still accepts
submission of new faxes to the queue.

Padding (36 bytes): Padding to align the size of the Fixed_Portion of this data structure to the
required size of 40 bytes. For more information, see FAX_EVENT_EX (section 2.2.67).

143 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.67.6 FAX_EVENT_EX_DEVICE_STATUS

This data structure is custom marshaled as follows, and uses the custom marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (40 bytes)

...

...

...

Fixed_Portion (40 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DeviceStatus

...

Padding (32 bytes)

...

...

...

DeviceStatus (8 bytes): The DeviceStatus field contains a FAX_EVENT_DEVICE_STATUS
(section 2.2.69) structure that indicates the status of the fax device.

Padding (32 bytes): Padding to align the size of the Fixed_Portion of this data structure to the

required size of 40 bytes. For more information, see FAX_EVENT_EX (section 2.2.67).

2.2.68 FAX_EVENT_EX_1

The FAX_EVENT_EX_1 structure defines information about asynchronous events delivered to
applications that have been registered to receive notifications of fax events. This structure is passed

as a byte array argument to FAX_ClientEventQueueEx (section 3.2.4.3) and it requires custom
marshaling.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (56 bytes)

144 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

...

...

Variable_Data (variable)

...

Fixed_Portion (56 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSizeOfStruct

TimeStamp

...

EventType4

Fixed_Portion of EventInfo (40 bytes)

...

...

...

dwSizeOfStruct (4 bytes): A DWORD containing the size, in bytes, of this structure. MUST be

set to 56 bytes.

TimeStamp (8 bytes): A FILETIME structure, as defined in [MS-DTYP], that contains the time
when the fax server generated the event.

EventType4 (4 bytes): One of the FAX_ENUM_EVENT_TYPE (section 2.2.63) values that
indicates the type of event. Only a single bit is set in this value; therefore, notification occurs
for only a single event per value. This field defines which field of the EventInfo union is used.

For the FAX_EVENT_TYPE_FXSSVC_ENDED event type, none of the EventInfo union fields
are used. This field MUST NOT be set to FAX_EVENT_TYPE_LEGACY.

Fixed_Portion of EventInfo (40 bytes): The Fixed_Portion of a union containing information

according to the event type:

For the FAX_EVENT_TYPE_IN_QUEUE, FAX_EVENT_TYPE_OUT_QUEUE,
FAX_EVENT_TYPE_IN_ARCHIVE, and FAX_EVENT_TYPE_OUT_ARCHIVE events (specified in
FAX_ENUM_EVENT_TYPE, section 2.2.63), union contains a

FAX_EVENT_EX_1_JOB_INFO (section 2.2.68.1) structure with status information about an
existing job in the queue or archives.

145 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

For the FAX_EVENT_TYPE_CONFIG (section 2.2.63) event, the union contains a
FAX_EVENT_EX_1_CONFIG_TYPE (section 2.2.68.2) structure that indicates the type of the

configuration that has changed.

For the FAX_EVENT_TYPE_ACTIVITY (section 2.2.63) event, the union contains a

FAX_EVENT_EX_1_ACTIVITY_INFO (section 2.2.68.3) structure that contains information about
the server activity that has changed.

For the FAX_EVENT_TYPE_NEW_CALL (section 2.2.63) event, the union contains a
FAX_EVENT_EX_1_NEW_CALL (section 2.2.68.4) structure that contains information about the
new incoming call detected by the fax service.

For the FAX_EVENT_TYPE_QUEUE_STATE (section 2.2.63) event, the union contains the
FAX_EVENT_EX_1_QUEUE_STATES (section 2.2.68.5) structure with the queue status.

For the FAX_EVENT_TYPE_DEVICE_STATUS (section 2.2.63) event, the union contains a
FAX_EVENT_EX_1_DEVICE_STATUS (section 2.2.68.6) structure that indicates the status of the
fax devices.

The six possible variants for the Fixed_Portion blocks of the EventInfo union are described in
the following six sub-sections. The size of the EventInfo field is always 40 bytes, including
padding. The size of 40 bytes is dictated by the size of the largest Fixed_Portion field in the

union.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Variable_Data of EventInfo (variable)

...

Variable_Data of EventInfo (variable): The Variable_Data of the EventInfo union. The six
possible variants for the Variable_Data blocks of the EventInfo union are described in the
following six subsections.

2.2.68.1 FAX_EVENT_EX_1_JOB_INFO

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (40 bytes)

...

...

...

Variable_Data (variable)

146 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

Fixed_Portion (40 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion of JobInfo (24 bytes)

...

...

...

Padding (16 bytes)

...

...

...

Fixed_Portion of JobInfo (24 bytes): The Fixed_Portion of a FAX_EVENT_JOB_1 (section

2.2.70) structure with status about an existing job in the queue or archives.

Padding (16 bytes): Padding to align the size of the Fixed_Portion of this data structure to the
required size of 40 bytes. For more information, see FAX_EVENT_EX_1 (section 2.2.68).

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Variable_Data of JobInfo (variable)

...

Variable_Data of JobInfo (variable): The Variable_Data of a FAX_EVENT_JOB_1 (section

2.2.70) structure with status about an existing job in the queue or archives.

2.2.68.2 FAX_EVENT_EX_1_CONFIG_TYPE

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in

section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (40 bytes)

...

147 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

...

Fixed_Portion (40 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ConfigType

Padding (36 bytes)

...

...

...

ConfigType (4 bytes): The ConfigType field contains a FAX_ENUM_CONFIG_TYPE (section

2.2.73) enumeration value that indicates the type of configuration that has changed. The
receiver of this notification SHOULD call FAX_GetConfiguration (section 3.1.4.1.36) to get the
new configuration.

Padding (36 bytes): Padding to align the size of the Fixed_Portion of this data structure to the
required size of 40 bytes. For more information, see FAX_EVENT_EX_1 (section 2.2.68).

2.2.68.3 FAX_EVENT_EX_1_ACTIVITY_INFO

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (40 bytes)

...

...

...

Fixed_Portion (40 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion of ActivityInfo (40 bytes)

...

148 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

...

Fixed_Portion of ActivityInfo (40 bytes): The Fixed_Portion of a FAX_SERVER_ACTIVITY
(section 2.2.19) structure that contains information about the server activity that has
changed. This event SHOULD only be sent when the messages counters in the server activity

structure change. No event is sent when an event log entry is added on the server.

2.2.68.4 FAX_EVENT_EX_1_NEW_CALL

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in

section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (40 bytes)

...

...

...

Fixed_Portion (40 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion of NewCall

...

...

Padding (28 bytes)

...

...

...

Fixed_Portion of NewCall (12 bytes): The Fixed_Portion of a FAX_EVENT_NEW_CALL
(section 2.2.72) structure that contains information about the new incoming call detected by
the fax service. For more information, see FAX_EVENT_NEW_CALL (section 2.2.72).

Padding (28 bytes): Padding to align the size of the Fixed_Portion of this data structure to the
required size of 40 bytes. For more information, see FAX_EVENT_EX_1 (section 2.2.68).

149 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.68.5 FAX_EVENT_EX_1_QUEUE_STATES

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (40 bytes)

...

...

...

Fixed_Portion (40 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwQueueStates

Padding (36 bytes)

...

...

...

dwQueueStates (4 bytes): The dwQueueStates field contains the queue status. If this value is
zero, both the incoming and outgoing queues are unblocked; otherwise, this value is a
combination of one or more of the following values.

Value Meaning

0x00000000 Both the incoming and outgoing queues are unblocked.

FAX_INCOMING_BLOCKED

0x00000001

The incoming faxes queue is blocked. The fax server will not answer
any new incoming faxes.

FAX_OUTBOX_BLOCKED

0x00000002

The outbox queue is blocked. The fax server will not accept
submission of new faxes. If the outbox is not paused, faxes in the
queue are still being processed.

FAX_OUTBOX_PAUSED

0x00000004

The outbox queue is paused. The fax server will not start sending
outgoing faxes from the queue. Fax transmissions in progress are not
affected. If the outbox is not blocked, the fax server still accepts
submission of new faxes to the queue.

Padding (36 bytes): Padding to align the size of the Fixed_Portion of this data structure to the
required size of 40 bytes. For more information, see FAX_EVENT_EX_1 (section 2.2.68)

150 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.68.6 FAX_EVENT_EX_1_DEVICE_STATUS

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (40 bytes)

...

...

...

Fixed_Portion (40 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DeviceStatus

...

Padding (32 bytes)

...

...

...

DeviceStatus (8 bytes): The DeviceStatus field contains a FAX_EVENT_DEVICE_STATUS
(section 2.2.69) structure that indicates the status of the fax device.

Padding (32 bytes): Padding to align the size of the Fixed_Portion of this data structure to the

required size of 40 bytes. For more information, see FAX_EVENT_EX_1 (section 2.2.68).

2.2.69 FAX_EVENT_DEVICE_STATUS

The FAX_EVENT_DEVICE_STATUS structure defines information about the status of a fax device. This
structure is embedded in the FAX_EVENT_EX (section 2.2.67) and FAX_EVENT_EX_1 (section 2.2.68)

structures as a union field.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion

151 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

Fixed_Portion (8 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwDeviceId

dwNewStatus

dwDeviceId (4 bytes): A DWORD value indicating the identification number of the device that

had a status change.

dwNewStatus (4 bytes): A DWORD value indicating the new status. The value is a combination
of values from FAX_ENUM_DEVICE_STATUS (section 2.2.64).

2.2.70 FAX_EVENT_JOB_1

The FAX_EVENT_JOB_1 structure defines information about notifications regarding a single job in the
server's queue. This structure is embedded in the FAX_EVENT_EX (section 2.2.67) and
FAX_EVENT_EX_1 (section 2.2.68) structures as a union field.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (24 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (24 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwlMessageId

...

Type

152 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

pJobDataOffset

bServerReceiveFolder

Padding

dwlMessageId (8 bytes): A DWORDLONG value that contains the unique identifier of the job.

Type (4 bytes): Specifies the type of information about the job. This is one of the
FAX_ENUM_JOB_EVENT_TYPE (section 2.2.71) enumeration values.

pJobDataOffset (4 bytes): If the Type field contains the FAX_JOB_EVENT_TYPE_STATUS value
from the FAX_ENUM_JOB_EVENT_TYPE (section 2.2.71) enumeration, this field contains an
offset to the Fixed_Portion of the pJobData field in the Variable_Data of the structure
holding a FAX_JOB_STATUS (section 2.2.36) structure that contains the current status of the
job. Otherwise, this offset is zero.

bServerReceiveFolder (4 bytes): A BOOL value that indicates whether the job is still in the

server's receive folder.

Value Meaning

1 The job is still in the server's receive folder; it has not been reassigned yet.

0 The job has been reassigned and is no longer in the server's receive folder.

Padding (4 bytes): Padding for data alignment to 8-byte boundary.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion of pStatus (120 bytes, optional)

...

...

...

Variable_Data of pStatus (variable)

...

Fixed_Portion of pStatus (120 bytes): The Fixed_Portion of a FAX_JOB_STATUS (section

2.2.36) structure that contains the current status of the job.

Variable_Data of pStatus (variable): The Variable_Data of a FAX_JOB_STATUS (section
2.2.36) structure that contains the current status of the job.

2.2.71 FAX_ENUM_JOB_EVENT_TYPE

The FAX_ENUM_JOB_EVENT_TYPE enumeration defines types of events for a single job.

153 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 typedef enum
 {
 FAX_JOB_EVENT_TYPE_ADDED = 0x00000000,
 FAX_JOB_EVENT_TYPE_REMOVED = 0x00000001,
 FAX_JOB_EVENT_TYPE_STATUS = 0x00000002,
 FAX_JOB_EVENT_TYPE_CHANGED = 0x00000003
 } FAX_ENUM_JOB_EVENT_TYPE;

FAX_JOB_EVENT_TYPE_ADDED: A job was added to the queue or a message was added to the
archive.

FAX_JOB_EVENT_TYPE_REMOVED: A job was removed from the queue or a message was
removed from the archive.

FAX_JOB_EVENT_TYPE_STATUS: The job has changed its status. This does not apply to archive
messages.

FAX_JOB_EVENT_TYPE_CHANGED: An archives message has changed.

2.2.72 FAX_EVENT_NEW_CALL

The FAX_EVENT_NEW_CALL structure defines notifications regarding a new incoming call. This
structure is embedded in the FAX_EVENT_EX (section 2.2.67) and FAX_EVENT_EX_1 (section 2.2.68)

structures as a union field.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion

...

...

Variable_Data (variable)

...

Fixed_Portion (12 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

hCall

dwDeviceId

lpwstrCallerIdOffset

hCall (4 bytes): Call handle of the new incoming call.

dwDeviceId (4 bytes): Identifier of the fax device on which the new incoming call has arrived.

154 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpwstrCallerIdOffset (4 bytes): Offset to the lpwstrCallerId field in the Variable_Data block
of the structure holding a null-terminated Unicode string that contains the caller ID for the

incoming call. It is set to zero if no caller ID information is available.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

lpwstrCallerId (variable)

...

lpwstrCallerId (variable): A null-terminated Unicode string that contains the caller ID for the
incoming call.

2.2.73 FAX_ENUM_CONFIG_TYPE

The FAX_ENUM_CONFIG_TYPE enumeration indicates the type of configuration that has changed
during a FAX_ENUM_EVENT_TYPE (section 2.2.63) event.

 typedef enum
 {
 FAX_CONFIG_TYPE_RECEIPTS = 0x00000000,
 FAX_CONFIG_TYPE_ACTIVITY_LOGGING = 0x00000001,
 FAX_CONFIG_TYPE_OUTBOX = 0x00000002,
 FAX_CONFIG_TYPE_SENTITEMS = 0x00000003,
 FAX_CONFIG_TYPE_INBOX = 0x00000004,
 FAX_CONFIG_TYPE_SECURITY = 0x00000005,
 FAX_CONFIG_TYPE_EVENTLOGS = 0x00000006,
 FAX_CONFIG_TYPE_DEVICES = 0x00000007,
 FAX_CONFIG_TYPE_OUT_GROUPS = 0x00000008,
 FAX_CONFIG_TYPE_OUT_RULES = 0x00000009,
 FAX_CONFIG_TYPE_GENERAL_CONFIG = 0x0000000A
 } FAX_ENUM_CONFIG_TYPE;

FAX_CONFIG_TYPE_RECEIPTS: The receipt configuration has changed.

FAX_CONFIG_TYPE_ACTIVITY_LOGGING: The activity logging configuration has changed.

FAX_CONFIG_TYPE_OUTBOX: The outbox configuration has changed.

FAX_CONFIG_TYPE_SENTITEMS: The sent items archive configuration has changed.

FAX_CONFIG_TYPE_INBOX: The Inbox configuration has changed.

FAX_CONFIG_TYPE_SECURITY: The security configuration has changed.

FAX_CONFIG_TYPE_EVENTLOGS: The event log configuration has changed.

FAX_CONFIG_TYPE_DEVICES: The device configuration has changed.

FAX_CONFIG_TYPE_OUT_GROUPS: The outbound routing groups configuration has changed.

FAX_CONFIG_TYPE_OUT_RULES: The outbound routing rules configuration has changed.

FAX_CONFIG_TYPE_GENERAL_CONFIG: The general configuration has changed.

155 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.74 FAX Data Types

The FAX data types for the fax server and client interfaces.

 typedef [context_handle] HANDLE RPC_FAX_HANDLE;
 typedef [ref] RPC_FAX_HANDLE* PRPC_FAX_HANDLE;
 typedef [context_handle] HANDLE RPC_FAX_PORT_HANDLE;
 typedef RPC_FAX_PORT_HANDLE* PRPC_FAX_PORT_HANDLE;
 typedef [context_handle] HANDLE RPC_FAX_SVC_HANDLE;
 typedef RPC_FAX_SVC_HANDLE* PRPC_FAX_SVC_HANDLE;
 typedef [context_handle] HANDLE RPC_FAX_MSG_ENUM_HANDLE;
 typedef RPC_FAX_MSG_ENUM_HANDLE* PRPC_FAX_MSG_ENUM_HANDLE;
 typedef [context_handle] HANDLE RPC_FAX_COPY_HANDLE;
 typedef RPC_FAX_COPY_HANDLE* PRPC_FAX_COPY_HANDLE;
 typedef [context_handle] HANDLE RPC_FAX_EVENT_HANDLE;
 typedef RPC_FAX_EVENT_HANDLE* PRPC_FAX_EVENT_HANDLE;
 typedef [context_handle] HANDLE RPC_FAX_EVENT_EX_HANDLE;
 typedef RPC_FAX_EVENT_EX_HANDLE* PRPC_FAX_EVENT_EX_HANDLE;
 #ifdef SERVER_STUB
 typedef [range(0, RPC_COPY_BUFFER_SIZE)] DWORD RANGED_DWORD;
 typedef RANGED_DWORD * LPRANGED_DWORD;
 #else
 typedef DWORD* LPRANGED_DWORD;
 #endif

RPC_FAX_HANDLE: A context handle used in fax client interfaces.

PRPC_FAX_HANDLE: A pointer to a context handle that is used in fax client interfaces.

RPC_FAX_PORT_HANDLE: An RPC context handle that references a specified fax port.

PRPC_FAX_PORT_HANDLE: A pointer to a context handle that references a specified fax port.

RPC_FAX_SVC_HANDLE: A fax service context handle.

PRPC_FAX_SVC_HANDLE: A pointer to a fax service context handle.

RPC_FAX_MSG_ENUM_HANDLE: A message enumeration handle.

PRPC_FAX_MSG_ENUM_HANDLE: A pointer to a message enumeration handle.

RPC_FAX_COPY_HANDLE: A context handle for a file.

PRPC_FAX_COPY_HANDLE: A pointer to a context handle for a file.

RPC_FAX_EVENT_HANDLE: A notification context handle.

PRPC_FAX_EVENT_HANDLE: A pointer to a notification context handle.

RPC_FAX_EVENT_EX_HANDLE: A subscription context handle.

PRPC_FAX_EVENT_EX_HANDLE: A pointer to a subscription context handle.

RANGED_DWORD: A ranged DWORD, see section 6.2 for specific usage.

LPRANGED_DWORD: A pointer to a ranged DWORD, see section 6.2 for specific usage.

2.2.75 PRODUCT_SKU_TYPE

The PRODUCT_SKU_TYPE enumeration provides values that identify the different stock-keeping
unitStock Keeping Unit (SKU) versions of an operating system.<28>

156 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 typedef enum
 {
 PRODUCT_SKU_UNKNOWN = 0x00000000,
 PRODUCT_SKU_PERSONAL = 0x00000001,
 PRODUCT_SKU_PROFESSIONAL = 0x00000002,
 PRODUCT_SKU_SERVER = 0x00000004,
 PRODUCT_SKU_ADVANCED_SERVER = 0x00000008,
 PRODUCT_SKU_DATA_CENTER = 0x00000010,
 PRODUCT_SKU_DESKTOP_EMBEDDED = 0x00000020,
 PRODUCT_SKU_SERVER_EMBEDDED = 0x00000040,
 PRODUCT_SKU_WEB_SERVER = 0x00000080
 } PRODUCT_SKU_TYPE;

PRODUCT_SKU_UNKNOWN: SKU of theThe operating system is unknown.

PRODUCT_SKU_PERSONAL: SKU of the operating system is Client Personal Edition.

PRODUCT_SKU_PROFESSIONAL: SKU of the operating system is Client Professional Edition.

PRODUCT_SKU_SERVER: SKU of the operating system is Server Standard Edition.

PRODUCT_SKU_ADVANCED_SERVER: SKU of the operating system is Server Advanced Edition

PRODUCT_SKU_DATA_CENTER: SKU of the operating system is Server Datacenter Edition.

PRODUCT_SKU_DESKTOP_EMBEDDED: SKU of the operating system is Client Embedded Edition.

PRODUCT_SKU_SERVER_EMBEDDED: SKU of the operating system is Server Embedded Edition.

PRODUCT_SKU_WEB_SERVER: SKU of the operating system is Server Web Server Edition.

2.2.76 FAX_ENUM_DELIVERY_REPORT_TYPES

 The FAX_ENUM_DELIVERY_REPORT_TYPES enumeration defines the type of receipt delivered to the
sender when the fax is successfully sent and when the fax transmission fails. It MAY also specify

whether a receipt will be sent for each recipient or for all the recipients together. The value of this
parameter MUST be a logical combination of one of the delivery method flags and optionally one of the
delivery grouping flags.

 typedef enum
 {
 DRT_NONE = 0x00000000,
 DRT_EMAIL = 0x00000001,
 DRT_INBOX = 0x00000002,
 DRT_MSGBOX = 0x00000004,
 DRT_GRP_PARENT = 0x00000008,
 DRT_ATTACH_FAX = 0x00000010
 } FAX_ENUM_DELIVERY_REPORT_TYPES;

DRT_NONE: Delivery method flag indicating that the receipt MUST NOT be sent.

DRT_EMAIL: Delivery method flag indicating that the receipt MUST be sent by email. The email
address will be that of the sender.

DRT_INBOX: Delivery method flag indicating that the receipt MUST be sent to a MAPI profile
described in [MSDN-MAPIPRF]. This receipt type is available only in FAX_API_VERSION_0
(0x00000000) and FAX_API_VERSION_1 (0x00010000) protocol versions.

157 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

DRT_MSGBOX: Delivery method flag indicating that the receipt MUST be sent by means of a text
message containing a character string sent to the sender's computer as described in Messenger

Service Remote Protocol Specification [MS-MSRP] section 3.2.4.1.<29>

DRT_GRP_PARENT: Delivery grouping flag. The format of the receipt is dependent on the delivery

method and is implementation-specific. DRT_EMAIL and DRT_INBOX will provide a detailed status
for each recipient. The detailed status is server implementation-specific and can include
information such as the name of the fax sender, the name of the fax recipient, the fax number,
the number of fax pages, the time when the fax was sent, and the name of the fax device used to
send the fax. DRT_MSGBOX will indicate only the number of recipients for which the transmission
completed successfully and the number of recipients for which the transmission failed. If this flag
is not set, the receipt SHOULD be sent for each recipient. This delivery grouping flag can be

combined with any of the delivery method flags described in this section.

DRT_ATTACH_FAX: Delivery grouping flag indicating that a fax Tagged Image File Format (TIFF) file
MUST be attached to the receipt. This delivery grouping flag MUST NOT be combined with any
delivery method flag except DRT_EMAIL.

2.2.77 FAX_ENUM_JOB_FIELDS

The FAX_ENUM_JOB_FIELDS enumeration defines bit fields of valid fields in a job or message
structure.

 typedef enum
 {
 FAX_JOB_FIELD_JOB_ID = 0x00000001,
 FAX_JOB_FIELD_TYPE = 0x00000002,
 FAX_JOB_FIELD_QUEUE_STATUS = 0x00000004,
 FAX_JOB_FIELD_STATUS_EX = 0x00000008,
 FAX_JOB_FIELD_SIZE = 0x00000010,
 FAX_JOB_FIELD_PAGE_COUNT = 0x00000020,
 FAX_JOB_FIELD_CURRENT_PAGE = 0x00000040,
 FAX_JOB_FIELD_RECIPIENT_PROFILE = 0x00000080,
 FAX_JOB_FIELD_SCHEDULE_TIME = 0x00000100,
 FAX_JOB_FIELD_ORIGINAL_SCHEDULE_TIME = 0x00000200,
 FAX_JOB_FIELD_SUBMISSION_TIME = 0x00000400,
 FAX_JOB_FIELD_TRANSMISSION_START_TIME = 0x00000800,
 FAX_JOB_FIELD_TRANSMISSION_END_TIME = 0x00001000,
 FAX_JOB_FIELD_PRIORITY = 0x00002000,
 FAX_JOB_FIELD_RETRIES = 0x00004000,
 FAX_JOB_FIELD_DELIVERY_REPORT_TYPE = 0x00008000,
 FAX_JOB_FIELD_SENDER_PROFILE = 0x00010000,
 FAX_JOB_FIELD_STATUS_SUB_STRUCT = 0x00020000,
 FAX_JOB_FIELD_DEVICE_ID = 0x00040000,
 FAX_JOB_FIELD_MESSAGE_ID = 0x00080000,
 FAX_JOB_FIELD_BROADCAST_ID = 0x00100000,
 FAX_JOB_FIELD_RECEIPT_TYPE = 0x00200000,
 FAX_JOB_FIELD_SERVER_RECEIVE_FOLDER = 0x00400000,
 FAX_JOB_FIELD_MESSAGE_FLAGS = 0x00800000
 } FAX_ENUM_JOB_FIELDS;

FAX_JOB_FIELD_JOB_ID: The presence of this flag indicates that the job ID field is valid.

FAX_JOB_FIELD_TYPE: The presence of this flag indicates that the job type field is valid.

FAX_JOB_FIELD_QUEUE_STATUS: The presence of this flag indicates that the queue status field
is valid.

FAX_JOB_FIELD_STATUS_EX: The presence of this flag indicates that the extended status field is
valid.

FAX_JOB_FIELD_SIZE: The presence of this flag indicates that the size field is valid.

158 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FAX_JOB_FIELD_PAGE_COUNT: The presence of this flag indicates that the page count field is
valid.

FAX_JOB_FIELD_CURRENT_PAGE: The presence of this flag indicates that the current page field
is valid.

FAX_JOB_FIELD_RECIPIENT_PROFILE: The presence of this flag indicates that the recipient
profile field is valid.

FAX_JOB_FIELD_SCHEDULE_TIME: The presence of this flag indicates that the schedule time
field is valid.

FAX_JOB_FIELD_ORIGINAL_SCHEDULE_TIME: The presence of this flag indicates that the
original schedule time field is valid.

FAX_JOB_FIELD_SUBMISSION_TIME: The presence of this flag indicates that the submission

time field is valid.

FAX_JOB_FIELD_TRANSMISSION_START_TIME: The presence of this flag indicates that the

transmission start time field is valid.

FAX_JOB_FIELD_TRANSMISSION_END_TIME: The presence of this flag indicates that the
transmission end time field is valid.

FAX_JOB_FIELD_PRIORITY: The presence of this flag indicates that the priority field is valid.

FAX_JOB_FIELD_RETRIES: The presence of this flag indicates that the retries field is valid.

FAX_JOB_FIELD_DELIVERY_REPORT_TYPE: The presence of this flag indicates that the delivery
report field is valid.

FAX_JOB_FIELD_SENDER_PROFILE: The presence of this flag indicates that the sender profile
field is valid.

FAX_JOB_FIELD_STATUS_SUB_STRUCT: The presence of this flag indicates that the status field

is valid.

FAX_JOB_FIELD_DEVICE_ID: The presence of this flag indicates that the device id field is valid.

FAX_JOB_FIELD_MESSAGE_ID: The presence of this flag indicates that the message id field is
valid.

FAX_JOB_FIELD_BROADCAST_ID: The presence of this flag indicates that the broadcast id field
is valid.

FAX_JOB_FIELD_RECEIPT_TYPE: The presence of this flag indicates that the receipt type field is
valid.

FAX_JOB_FIELD_SERVER_RECEIVE_FOLDER: The presence of this flag indicates that the server
receive folder field is valid.

FAX_JOB_FIELD_MESSAGE_FLAGS: The presence of this flag indicates that the message flag
field is valid.

2.2.78 FAX_ENUM_COVERPAGE_FORMATS

 The FAX_ENUM_COVERPAGE_FORMAT enumeration defines the types of cover page templates that
the server MUST support. Each cover page MUST be described by one of the following values:

 typedef enum

159 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 {
 FAX_COVERPAGE_FMT_COV = 0x00000001,
 FAX_COVERPAGE_FMT_COV_SUBJECT_ONLY = 0x00000002
 } FAX_ENUM_COVERPAGE_FORMATS;

FAX_COVERPAGE_FMT_COV: Indicates it is a normal cover-page template.

FAX_COVERPAGE_FMT_COV_SUBJECT_ONLY: Indicates it is a subject-only cover-page template.

2.2.79 FAX_SPECIFIC_ACCESS_RIGHTS_2

 The FAX_SPECIFIC_ACCESS_RIGHTS_2 enumeration defines specific access rights, which provide
security when users query and manage fax jobs, fax devices, and fax document. The access rights
specified below define access rights in addition to those specified in
FAX_SPECIFIC_ACCESS_RIGHTS (section 2.2.21).

 typedef enum
 {
 FAX_ACCESS_QUERY_OUT_JOBS = 0x0008,
 FAX_ACCESS_MANAGE_OUT_JOBS = 0x0010,
 FAX_ACCESS_QUERY_ARCHIVES = 0x0080,
 FAX_ACCESS_MANAGE_ARCHIVES = 0x0100,
 FAX_ACCESS_MANAGE_RECEIVE_FOLDER = 0x0200,
 FAX_GENERIC_READ_2 = FAX_ACCESS_QUERY_CONFIG | FAX_ACCESS_MANAGE_RECEIVE_FOLDER,
 FAX_GENERIC_WRITE_2 = FAX_ACCESS_MANAGE_CONFIG,
 FAX_GENERIC_EXECUTE_2 = FAX_ACCESS_SUBMIT,
 FAX_GENERIC_ALL_2 = FAX_ACCESS_SUBMIT | FAX_ACCESS_SUBMIT_NORMAL |
FAX_ACCESS_SUBMIT_HIGH | FAX_ACCESS_QUERY_OUT_JOBS |

 FAX_ACCESS_MANAGE_OUT_JOBS | FAX_ACCESS_QUERY_CONFIG |
 FAX_ACCESS_MANAGE_CONFIG | FAX_ACCESS_QUERY_ARCHIVES |
 FAX_ACCESS_MANAGE_ARCHIVES
 } FAX_SPECIFIC_ACCESS_RIGHTS_2;

FAX_ACCESS_QUERY_OUT_JOBS: The user MAY view all the outgoing jobs in the server's queue.

FAX_ACCESS_MANAGE_OUT_JOBS: The user MAY manage all the outgoing jobs in the server's
queue.

FAX_ACCESS_QUERY_ARCHIVES: The user MAY view all the messages (Inbox and Sent Items) in
the server's archive.

FAX_ACCESS_MANAGE_ARCHIVES: The user MAY manage all the messages (Inbox and Sent
Items) in the server's archive.

FAX_ACCESS_MANAGE_RECEIVE_FOLDER: The user MAY view and manage the server's incoming
queue.

FAX_GENERIC_READ_2: Access rights needed to read faxes.

FAX_GENERIC_WRITE_2: Access rights needed to write faxes.

FAX_GENERIC_EXECUTE_2: Access rights needed to execute faxes.

FAX_GENERIC_ALL_2: All access rights.

2.2.80 FAX_EVENT_JOB

The FAX_EVENT_JOB structure defines information about notifications regarding a single job in the
server's queue. This structure is embedded in the FAX_EVENT_EX (section 2.2.67) structure as a
union field.

160 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (16 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (16 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwlMessageId

...

Type

pJobDataOffset

dwlMessageId (8 bytes): A DWORDLONG value that contains the unique identifier of the job.

Type (4 bytes): Specifies the type of information about the job. This will be one of the
FAX_ENUM_JOB_EVENT_TYPE (section 2.2.71) enumeration values.

pJobDataOffset (4 bytes): If the Type field contains the FAX_JOB_EVENT_TYPE_STATUS value
from the FAX_ENUM_JOB_EVENT_TYPE (section 2.2.71) enumeration, this field contains an

offset to the Fixed_Portion of a FAX_JOB_STATUS structure that contains the current status
of the job. Otherwise, this field is zero.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion of pStatus (120 bytes)

...

...

...

161 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Variable_Data of pStatus (variable)

...

Fixed_Portion of pStatus (120 bytes): The Fixed_Portion of a FAX_JOB_STATUS (section
2.2.36) structure that contains the current status of the job.

Variable_Data of pStatus (variable): The Variable_Data of a FAX_JOB_STATUS (section

2.2.36) structure that contains the current status of the job.

2.2.81 FAX_RULE_DESTINATION

The FAX_RULE_DESTINATION union defines information about the outbound routing destination.

 typedef
 [switch_type(int)]
 union {
 [case(0)]
 DWORD dwDeviceId;
 [default]
 [string] LPWSTR lpwstrGroupName;
 } FAX_RULE_DESTINATION;

dwDeviceId: A DWORD value that contains the unique identifier (UID) of the device.

lpwstrGroupName: A pointer to a null-terminated string that uniquely identifies a new group name.
This value cannot be NULL. The group name is expected to be case-insensitive.

2.2.82 FAX_MAX_RPC_BUFFER

The FAX_MAX_RPC_BUFFER constant defines the largest buffer size that the client can use for buffers

of variable length.

 #define FAX_MAX_RPC_BUFFER 0x100000

2.2.83 ALL_FAX_USER_ACCESS_RIGHTS

The ALL_FAX_USER_ACCESS_RIGHTS constant defines a combination of the fax-specific
FAX_GENERIC_ALL_2 access rights (see FAX_SPECIFIC_ACCESS_RIGHTS_2 in section 2.2.79) and
several standard access rights which are described below.

Standard access
rights Description

READ_CONTROL

0x00020000

Read access to the owner, group, and discretionary access control list (ACL) of the
security descriptor.

WRITE_DAC

0x00040000

Write access to the ACL.

WRITE_OWNER

0x00080000

Write access to the owner.

The constant definition is as follows.

162 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 #define ALL_FAX_USER_ACCESS_RIGHTS (READ_CONTROL | WRITE_DAC | WRITE_OWNER |
FAX_GENERIC_ALL_2)

2.2.84 Generic Outbound Routing Rule Constants

The generic outbound routing rule constants define generic outbound routing rules for the country
dialing code (ROUTING_RULE_COUNTRY_CODE_ANY) and the area dialing code
(ROUTING_RULE_AREA_CODE_ANY). They are defined as follows.

Constant/value Description

ROUTING_RULE_COUNTRY_CODE_ANY

0

Any country code, or all countries.

ROUTING_RULE_AREA_CODE_ANY

0

Any area code, or all area codes.

2.2.85 Protocol and Fax API Version Constants

These constants define identifiers for the four different versions of this protocol and the associated fax
API.<30> They are defined as follows.

Constant/value Description

FAX_API_VERSION_0

0x00000000

First version of this protocol and API.

FAX_API_VERSION_1

0x00010000

Second version of this protocol and API.

FAX_API_VERSION_2

0x00020000

Third version of this protocol and API.

FAX_API_VERSION_3

0x00030000

Fourth version of this protocol and API.

Servers that implement the FAX_API_VERSION_0 version of the protocol (and therefore, the first API

version) MUST implement the FaxObs Server Interface (section 3.1.4.2).

Servers that implement the FAX_API_VERSION_1, FAX_API_VERSION_2, and FAX_API_VERSION_3
protocol versions (and associated API versions) MUST implement the Fax Server
Interface (section 3.1.4.1).

2.2.86 MAX_FAX_STRING_LEN

The MAX_FAX_STRING_LEN constant defines the maximum number of characters that the client can
use for null-terminated character strings sent in structure fields or method call parameters. This
constant is used in data types such as FAX_PORT_INFO_EXW (section 2.2.45) and method calls such
as FAX_RegisterServiceProviderEx (section 3.1.4.1.69).

 #define MAX_FAX_STRING_LEN 253

163 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.87 Default Routing Methods

A fax server's initial state SHOULD reflect the preregistration of a default inbound routing extension
and its default routing methods. The default routing methods SHOULD be identified with the GUID

values listed in the following table.

Routing method GUID Routing method description

REGVAL_RM_EMAIL_GUID

{6bbf7bfe-9af2-11d0-abf7-
00c04fd91a4e}

Routing incoming faxes to be sent by email. The routing method configuration
data for this method is a null-terminated character string containing an
EmailID.

REGVAL_RM_FOLDER_GUID

{92041a90-9af2-11d0-abf7-
00c04fd91a4e}

Routing incoming faxes to be saved to a file folder. The routing method
configuration data for this method is a null-terminated character string
containing a Folder name.

REGVAL_RM_PRINTING_GUID

{aec1b37c-9af2-11d0-abf7-
00c04fd91a4e}

Routing incoming faxes to be sent to a printer and printed. The routing
method configuration data for this method is a null-terminated character
string containing a Printer name.

REGVAL_RM_INBOX_GUID

{9d3d0c32-9af2-11d0-abf7-
00c04fd91a4e}

Routing incoming faxes to be sent to a MAPI client. The routing method
configuration data for this method is a null-terminated character string
containing a MAPI Profile name. For more information about MAPI profiles,
refer to [MSDN-MAPIPRF]. This default routing method is supported only by
FAX_API_VERSION_0 fax servers.

Any mechanisms for registering additional routing extensions are local to the server and are
implementation-dependent.<31>

2.2.88 FAX_TAPI_LOCATIONS

The FAX_TAPI_LOCATIONS structure describes one TAPI location. This structure is used in the
FAX_TAPI_LOCATION_INFO (section 2.2.89) structure. For more information about TAPI, see [MSDN-
TAPI2.2].

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion (24 bytes)

...

...

...

Variable_Data (variable)

...

Fixed_Portion (24 bytes):

164 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PermanentLocationID

LocationNameOffset

CountryCode

AreaCode

NumTollPrefixes

TollPrefixesOffset

PermanentLocationID (4 bytes): A DWORD that holds a numeric identifier of the TAPI location
described by this structure. This value is used to uniquely identify the current TAPI location in
the array of FAX_TAPI_LOCATIONS structures specified by the TapiLocations Variable_Data

member of a FAX_TAPI_LOCATION_INFO (section 2.2.89) structure.

LocationNameOffset (4 bytes): Offset to the LocationName field in the Variable_Data block
of the structure.

CountryCode (4 bytes): A DWORD containing the country code for this TAPI location.

AreaCode (4 bytes): A DWORD containing the area code for this TAPI location.

NumTollPrefixes (4 bytes): A DWORD containing the number of toll prefixes contained in the

TollPrefixes field in the Variable_Data block of the structure.

TollPrefixesOffset (4 bytes): Offset to the TollPrefixes field in the Variable_Data block of the
structure.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LocationName (variable)

...

TollPrefixes (variable)

...

LocationName (variable): A null-terminated character string containing the friendly name of the
TAPI location described by this structure.

TollPrefixes (variable): An optional null-terminated character string containing one or multiple
toll prefixes separated by a "," character. A toll prefix is a number and is represented in this
string with decimal-digit characters.

165 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.89 FAX_TAPI_LOCATION_INFO

The FAX_TAPI_LOCATION_INFO structure describes the configuration of all TAPI locations for a fax
server. This structure is used as an input argument for the

FaxObs_SetTapiLocations (section 3.1.4.2.29) method and is returned by the
FaxObs_GetTapiLocations (section 3.1.4.2.28) method. The structure contains an array of
FAX_TAPI_LOCATIONS (section 2.2.88) structures. Each of these structures describes one TAPI
location of the fax server, and also contains information about which of these TAPI locations is the
current location. For more information about TAPI, see [MSDN-TAPI2.2].

This data structure is custom marshaled as follows and uses the custom marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion

...

...

Variable_Data (variable)

...

Fixed_Portion (12 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CurrentLocationID

NumLocations

TapiLocationsOffset

CurrentLocationID (4 bytes): A DWORD that holds the value of the PermanentLocationID
member of the FAX_TAPI_LOCATIONS structure from the list referenced by
TapiLocationsOffset. This FAX_TAPI_LOCATIONS structure represents the current TAPI

location for the server.

NumLocations (4 bytes): A DWORD that holds the number of FAX_TAPI_LOCATIONS structures
in the list referenced by TapiLocationsOffset.

TapiLocationsOffset (4 bytes): Offset to the TapiLocations field in the Variable_Data block

of the structure.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TapiLocations (variable)

166 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

TapiLocations (variable): An array of FAX_TAPI_LOCATIONS (section 2.2.88) structures,
custom marshaled as described in section 2.2.1.2.

2.2.90 FAX_SECURITY_DESCRIPTOR

The FAX_SECURITY_DESCRIPTOR structure describes a fax security descriptor. This structure is used
as an input argument for the FaxObs_SetSecurityDescriptor (section 3.1.4.2.33) method and is
returned by the FaxObs_GetSecurityDescriptor (section 3.1.4.2.32) method.

This data structure is custom marshaled as follows and uses the custom-marshaling rules defined in
section 2.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Fixed_Portion

...

...

Variable_Data (variable)

...

Fixed_Portion (12 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Id

FriendlyNameOffset

SecurityDescriptorOffset

Id (4 bytes): A DWORD containing a numeric identifier for the fax security descriptor. This value
MUST be 0.

FriendlyNameOffset (4 bytes): Offset to the FriendlyName field in the Variable_Data block
of the structure.

SecurityDescriptorOffset (4 bytes): Offset to the SecurityDescriptor field in the
Variable_Data block of the structure.

Variable_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FriendlyName (variable)

167 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

...

SecurityDescriptor (variable)

...

FriendlyName (variable): A null-terminated character string containing the friendly name for
the fax security descriptor described by this structure.

SecurityDescriptor (variable): A SECURITY_DESCRIPTOR structure as described in [MS-DTYP]

section 2.4.6.

168 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3 Protocol Details

The client side of this protocol is simply a pass-through. That is, there are no additional timers or
other states required on the client side of this protocol. Calls made by the higher-layer protocol or
application are passed directly to the transport, and the results returned by the transport are passed
directly back to the higher-layer protocol or application.

3.1 Fax Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of data organization that a possible implementation would
maintain to participate in this protocol.

The following descriptions pertain to the Serverserver Fax Queue.

Archive age limitAge Limit: Fax server configuration settings that allow a fax client to configure the
fax server to keep faxes in the Fax Archive Folder for a length of time period, as opposed to
keeping the faxes indefinitely. The fax server initializes the archive age limitArchive Age Limit

to be disabled. The archive age limitArchive Age Limit setting persists after shutdown or
restart of the fax server.<32>

Archive enabledEnabled: Fax server configuration setting that allows a fax client to configure
whether the fax server archives faxes to the Fax Archive Folder. There is one archive
enabledArchive Enabled setting, and it applies to both the Incoming Archive and the
Outgoing Archive. The fax server initializes the archive enabledArchive Enabled setting to 1
(enabled).<33> The fax client can disable and re-enable the archive enabledArchive Enabled

setting. The archive enabledArchive Enabled setting persists after shutdown or restart of the
fax server.<34>

Automatic account creationAccount Creation: Fax server configuration setting that enables the
fax server to automatically create a new fax user accountFax User Account when a fax client

connects to the fax server. This setting persists after shutdown or restart of the fax server.<35>

Branding: Fax server configuration setting that causes the fax server to generate a fax server

implementation-specific brand (banner) at the top of all outgoing fax transmissions. This setting
persists after shutdown or restart of the fax server.<36>

Caller ID: A null-terminated character string that identifies the origin of a fax message. This string
contains the sender's fax number optionally followed by a name associated with this fax number.
The Caller ID string is sent when the fax transmission is being set up but before the fax is
received by the recipient. The maximum length of this string is 260 characters, including the
length of the terminating null character.

Broadcast identifierIdentifier: A DWORDLONG value that uniquely identifies a broadcast fax. All
Fax Jobs and all fax messages created for the same broadcast operation share the same
broadcast identifier.Broadcast Identifier. The fax server generates the broadcast
identifierBroadcast Identifier when a broadcast fax is sent and stores the broadcast

identifierBroadcast Identifier with each Fax Job in the queue, including the Fax Jobs
generated by the fax server for each individual recipient included in the broadcast. The broadcast
identifiersBroadcast Identifiers persist with the fax messages archived in the Fax Archive

Folder.

Configuration of the routing rulesRouting Rules: The list of routing rules for the fax server
configuration; each entry in the list includes the following settings:

▪ The area code of the routing rule.

169 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ The country code of the routing rule.

▪ The name of the routing group or the device identifier specifying where the routing rule

applies.

The configurationConfiguration of the routing rulesRouting Rules persists after shutdown or

restart of the fax server.<37>

Connection handleHandle: A handle created by the fax server to identify a connection to a fax
client. The connection handleConnection Handle element is associated with an RPC binding
handle on the fax server. A connection handle is opened when a new connection to a fax client is
made (with the RPC binding handle submitted by the fax client) and closed when the connection
to the fax client is terminated. The fax server retains athe connection handle for the entire
duration of a connection with a fax client. The fax client only uses the connection handle to

disconnect from the fax server. The connectionConnection handles do not persist after
shutdown or restart of the fax server.

Copy handleHandle: A handle created by the fax server to identify a copy operation started by

the fax client to copy data to a file in the server queue directory, or to copy data from a fax
message in the Fax Archive Folder, or to copy data from a Fax Job in the server queue
directory. The copy handleCopy Handle element is associated on the fax server with an RPC

binding handle.

A copy handle is opened when a new copy operation is started at the request of the fax client (,
with the RPC binding handle submitted by the fax client and closed when the copy operation is
terminated).. The fax server retains a copy handle for the entire duration of a copy operation
with a fax client. The fax client uses the copy handle to copy data and to terminate the copy
operation. A handle value of 0 or NULL indicates an invalid copy handle. The copy handles
doCopy Handle element does not persist after shutdown or restart of the fax server.

CSID: A null-terminated character string that identifies the fax recipient that receives a fax. The
CSID is transmitted to a fax sender by the receiving fax device when an incoming fax is
detected. The CSID can be a combination of the fax number and business name. The CSID can
be the same as the TSID. The fax server maintains a CSID for each Fax Port. The CSID of a

Fax Port persists after shutdown or restart of the fax server.

Current page number: A DWORD that holds the number of the page in the fax transmission that
a fax device is currently sending or receiving. The current page number for the first page in

the fax transmission is one. If the respective fax device is not currently transmitting a fax, the
current page number is zero.

Delivery receipt support: Fax server configuration setting to indicate how the fax sender gets
notified when a fax is successfully sent or when the fax transmission fails. Delivery receipt
support can be configured in one of the following ways: not to send any delivery receipt, to send
the receipt to an email address, to send the receipt to a MAPI profile described in [MSDN-

MAPIPRF], or by means of a text message containing a character string sent to the sender's
computer as described in the Messenger Service Remote Protocol Specification ([MS-MSRP]
section 3.2.4.1). Sending the receipt to a MAPI profile is supported only in FAX_API_VERSION_0
and FAX_API_VERSION_1 protocol versions. This setting persists after shutdown or restart of
the fax server.<38>

Device identifier: See line identifier.

Dirty days: Fax server configuration setting that configures the maximum number of days the fax

server keeps unsent fax jobs in the outgoing fax queue. This setting persists after shutdown or
restart of the fax server.<39>

Document name: A null-terminated character string containing the name of the fax document in a
Fax Job. The fax server maintains an optional document name for each Fax Job. The
document name is specified by the fax client when the fax client requests the fax server to

170 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

send a new Fax Job. The document names do not persist after shutdown or restart of the fax
server.

Fax access rights: Access rights applicable to athe fax user account. The fax access rights are
based on and include the standard access rights described by [MSDN-SAR] and also include

specific fax access rights for fax-specific purposes such as permission to send a fax. The fax
access rights are applied to athe fax user account using implementation-specific server
functionality. The fax access rights applied to a fax user account persist after shutdown or
restart of the fax server.

Fax Archive Folder: A file folder (or other type of collection storage) where successfully processed
faxes are stored. This item is also known as a fax archive or simply archive. There are two kinds
of fax archives, the Outgoing Archive and Incoming Archive; described later in this list. The

default location and name of the Fax Archive Folder are specific to each fax server
implementation. <40>

Fax Job: Also mentioned as a job. An inbound or outbound fax transmission that is awaiting
transmission in the Fax Queue; the Fax Jobs are qualified as inbound or outbound based on

this. The Fax Jobs are further qualified as follows: queued qualifies a Fax Job as awaiting
transmission, and active qualifies a Fax Job as in process of being sent or received by the fax

server.

Fax number: See Telephone number.

Fax Port: A logical representation of the connection, of a fax device, to the fax server. A Fax Port
is uniquely identified on the fax server by a Line Identifier. The fax client uses the Line
Identifier of a Fax Port to obtain a Fax Port Handle from the fax server and uses this handle
to access the Fax Port. A Fax Port is in an open state if the Fax Port has one or more opened
fax port handles. Otherwise, the Fax Port is in a closed state.

For each Fax Port installed on the fax server, the fax server maintains the following settings:

▪ The Line Identifier uniquely identifying the Fax Port on the fax server.

▪ The name of the fax device connected to the fax server through the Fax Port.

▪ The current status of the Fax Port, describing the current fax operation, if any, executed by
the fax device connected to the fax server through the Fax Port.

▪ The priority of the Fax Port to send faxes compared with the other Fax Ports on the fax
server.

▪ The TSID of the fax device connected to the fax server through the Fax Port.

▪ The CSID of the fax device connected to the fax server through the Fax Port.

▪ The number of phone rings that triggers a call to be answered by the fax device connected to
the fax server through the Fax Port.

▪ The type of the fax device connected to the fax server through the Fax Port, as a combination
of any the following attributes: the device can send faxes, the device can receive faxes, or the

device is a virtual fax device.

▪ The list of Fax Routing Methods currently enabled for the fax device connected to the fax
server through the Fax Port.

The Fax Ports persist after shutdown or restart of the fax server.<41>

Fax port handle: A handle created by the fax server to identify an open Fax Port. When a fax
client opens a Fax Port on the fax server, the fax server returns the fax port handle to the fax
client, and the fax client uses the fax port handle for subsequent calls acting on the respective

171 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

open Fax Port. The fax port handle is closed by the fax server when the fax client closes the
Fax Port or when the connection with the fax client is terminated. The fax port handles do not

persist after shutdown or restart of the fax server.

Fax print queue: A print queue that can be shared from the computer that is both a fax server

and a print server, and that can be installed on the computer that is both a print client and a fax
client, as described by the Print System Remote Protocol [MS-RPRN]. The printer driver installed
on the client computer prints each document to a local TIFF file. Then the fax client can use the
local TIFF file as the cover page or the fax body of a fax job to be transmitted through the fax
server using this protocol. <42>

Fax Queue: A list of fax jobs. There are two kinds of fax queues, the Incoming Queue and the
Outgoing Queue, described here.

Incoming Queue: Contains the fax jobs that are in the process of being received or are
waiting for routing to their destination by a routing provider. Usually called Incoming in
the Fax Console.

Outgoing Queue: Contains the fax jobs that are waiting for transmission or are in the
process of being transmitted. Usually called Outbox in the Fax Console.

Fax Routing Extension: A server implementation-specific binary module that exports one or more

Fax Routing Methods.

For each Fax Routing Extension, the fax server maintains the following settings:

▪ The friendly name of the Fax Routing Extension.

▪ The image name of the Fax Routing Extension.

▪ The list of Fax Routing Methods contained in the Fax Routing Extension.

The fax server's initial state reflects the preregistration of a default inbound Fax Routing
Extension and its default Fax Routing Methods. The default Fax Routing Methods are listed

in "Default Routing Methods" (section 2.2.87). The Fax Routing Extensions persist after

shutdown or restart of the fax server. <43>

Fax Routing Method: A function exported by a Fax Routing Extension that implements an
operation such as (but not limited to) printing, storing, or emailing a fax. The fax server can be
configured to apply a routing method to all faxes received or sent through a fax device or a
routing group.

For each Fax Routing Method, the fax server maintains the following settings:

▪ The friendly name of the routing method.

▪ The name of the function contained by the routing method.

▪ The identifier of the routing method.

▪ The priority of the routing method.

The Fax Routing Methods persist after shutdown or restart of the fax server. <44>

Fax transmission retries: Fax server configuration setting that configures the maximum number

of times the fax server attempts to retransmit a fax job from the outgoing fax queue if the initial
transmission of the respective fax jobs fails. After the maximum number of retries the fax job is
still not successfully transmitted, the fax server leaves the fax job in the outgoing fax queue
pending manual intervention from the server's administrator, or until the queue age limit
period, if enabled on the fax server, elapses, and the fax server deletes the fax job. The fax
transmission retries setting persists after shutdown or restart of the fax server.<45>

172 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Fax transmission retry delay: Fax server configuration setting that configures the minimum
delay time interval, in minutes, between two consecutive fax transmission retries. The fax

transmission retry delay setting persists after shutdown or restart of the fax server.<46>

Fax user accountUser Account: An entry in a fax server-maintained list of operating-system

users authorized to send and receive faxes via the fax server. Each fax user account contains
a data structure that holds an implementation-specific identifier for the authenticated user
identity. The fax server creates the first fax user account at the time of the fax server's
installation. <47> The fax user accounts persist after shutdown or restart of the fax server.

Incoming Archive: Fax archive stored in the Fax Archive Folder containing faxes that have been
successfully received by the fax server. Usually this archive is called Inbox in the Fax Console.
There is one Incoming Archive on each fax server.

Incoming fax viewing permission: Fax server configuration setting indicating whether the
incoming faxes can be viewed by all users or only by users whose accounts have proper access
rights to do so. This setting persists after shutdown or restart of the fax server.<48>

Job identifierIdentifier: Also mentioned as a Job ID. A DWORD value that uniquely identifies a
Fax Job in the fax server's Fax Queue. The Fax Jobs in the fax server's Fax Queue and their
job identifiers do not persist after shutdown or restart of the fax server.

Job statusStatus: A DWORD that describes the current status of a Fax Job. This DWORD value
contains a bitwise OR combination of one or more of the following permissible flag values.

Value Meaning

JS_PENDING

0x00000001

The Fax Job is in the queue and is pending to be processed by the fax
server.

JS_INPROGRESS

0x00000002

The Fax Job is in process of being sent or received.

JS_DELETING

0x00000004

The Fax Job is in process of being deleted.

JS_FAILED

0x00000008

The Fax Job failed.

JS_PAUSED

0x00000010

The Fax Job is paused.

JS_NOLINE

0x00000020

The Fax Job cannot be sent because no line is available.

JS_RETRYING

0x00000040

The Fax Job failed and is in process of being retried.

JS_RETRIES_EXCEEDED

0x00000080

The fax server exceeded the maximum number of fax transmission
retries for this Fax Job. The Fax Job will not be sent.

JS_COMPLETED

0x00000100

The Fax Job is complete.

JS_CANCELED

0x00000200

The Fax Job is canceled.

JS_CANCELING

0x00000400

The Fax Job is in process of being canceled.

173 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

JS_ROUTING

0x00000800

The Fax Job is in process of being routed.

Job type: A DWORD that describes the type of a Fax Job and specifies whether the job is inbound
(to be received, or received), outbound (to be sent, or sent), being routed (inbound or
outbound), or unknown. The following are the permissible values for the job type.

Value Meaning

JT_UNKNOWN

0x00000001

The job type is unknown. This value indicates that the fax server has not yet
scheduled the job.

JT_SEND

0x00000002

The job is an outgoing fax transmission.

JT_RECEIVE

0x00000004

The job is an incoming fax transmission.

JT_ROUTING

0x00000008

The fax server tried to route the fax transmission, but routing failed. The fax
server will attempt to route the job again.

JT_FAIL_RECEIVE

0x00000010

The fax server failed to receive the job.

JT_BROADCAST

0x00000020

The job is an outgoing broadcast message. This value is not available on
servers that implement the FAX_API_VERSION_0 version of the protocol.
<49>

Line identifier: A unique identifier of a Fax Port on the fax server. The fax server maintains a
line identifier for the duration that the respective Fax Port exists. The line identifiers persist
after shutdown or restart of the fax server.

Message identifier: Also mentioned as a message ID. A DWORDLONG that uniquely identifies a
fax message on the fax server, in archived message or queued job form. When the fax server
sends a fax to multiple recipients, the fax server generates a message identifier representing
the fax message to be sent to all recipients, and one or more additional message identifiers, one
for each individual fax message copy to be sent to each recipient. The message identifiers do
not persist after shutdown or restart of the fax server.

Outgoing Archive: Fax archive stored in the Fax Archive Folder containing faxes that have been
successfully sent by the fax server. Usually this archive is called Sent Items in the Fax Console.
There is one Outgoing Archive on each fax server.

Personal cover page support: Fax server configuration setting that when enabled, allows fax
clients to provide user-designed cover page templates with outgoing faxes. Otherwise, clients
can only use one of the common cover page templates stored in the server. The same cover
page template can be reused for multiple fax jobs. This setting persists after shutdown or restart

of the fax server.<50>

Personal profile: Information describing a user who receives or sends a fax through the fax
server. When the fax client requests a new fax to be sent through the fax server, the fax client
submits one personal profile describing the sender of the fax, and one or more personal
profiles describing the recipients of the fax, including the telephone number to be dialed for
each recipient. The fax server stores the personal profiles of the sender and the recipient with
each Fax Job in the queue pending to be sent. The personal profiles of the sender and the

recipient persist with each fax message archived in the Fax Archive Folder.

174 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

For each personal profile, the fax server maintains the following data:

▪ The user's name to be printed on the faxes sent from or to this user, if available.

▪ The telephone number to dial when sending a fax to this user.

▪ The title of the user, if available.

▪ The home address of the user, if available, containing a street address, a city name, a ZIP
code, and/or a country name.

▪ The user's home phone number, if available.

▪ An email address of the user, if available.

▪ The user's company name, if available.

▪ The user's department name, if available.

▪ The user's office location, if available.

▪ The user's office phone number, if available.

▪ A billing code, if any.

▪ A TSID associated with this profile, if any.

Port access mode: A fax port handle attribute specified by the fax client when opening a Fax
Port. This attribute specifies the subsequent operations that the fax server allows the fax client
to perform using the fax port handle. The port access mode persists for the duration that the

Fax Port is kept open by the fax client. The fax port access modes do not persist after
shutdown or restart of the fax server.

Profile name: A fax server configuration setting that identifies one MAPI profile configured on the
fax server for the default routing method identified by the REGVAL_RM_INBOX_GUID (see

section 2.2.87). The fax server can contain more than one MAPI profile, out of which only one
profile is configured at one time for the profile name setting. The profile name setting
persists after shutdown or restart of the fax server.<51> The profile name setting is supported

only by FAX_API_VERSION_0 fax servers. For more information about MAPI profiles, see
[MSDN-MAPIPRF].

Queue age limitAge Limit: Fax server configuration settings that allow a fax client to configure
the fax server to keep faxes in the Fax Queues for a finite time period. The fax server initializes
the queue age limitQueue Age Limit to be disabled. The archive enabledArchive Enabled
setting takes precedence over the queue age limit setting. The queue age limit setting
persists after shutdown or restart of the fax server.<52>

Queue State: A DWORD that stores the current state of the fax incoming and outgoing fax
queues. If the Queue State is zero, both the incoming and outgoing fax queues are unblocked.
Otherwise, the Queue State is described by a bitwise OR combination of one or more of the
following permissible flag values.<53>

Value Meaning

FAX_INCOMING_BLOCKED

0x00000001

The fax service will not receive new incoming faxes. The incoming
fax queue is blocked.

FAX_OUTBOX_BLOCKED

0x00000002

The fax service will reject submissions of new outgoing faxes to its
outgoing fax queue. The outgoing fax queue is blocked.

175 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

FAX_OUTBOX_PAUSED

0x00000004

The fax service will not dequeue and execute outgoing fax jobs from
its outgoing fax queue. The outgoing fax queue is paused.

Routing groupGroup: A group of fax devices connected to the fax server and for which the same
routing rules are applied. The fax server maintains a list of one or multiple routing
groups.more Routing Group elements. This list is initialized by the fax server to contain at
least the special routing group named "<All devices>" representing all fax devices installed on
the fax server.

For each routing group, the fax server stores the following settings:

▪ The name of the routing group

▪ The list of the Line Identifiers representing the fax devices in the group, except for the
default special group named "<All devices>"

▪ The list of Fax Routing Methods currently enabled for the routing groupgroups,

The routing groupswhich persist after shutdown or restart of the fax server.<54>

Routing string: A null-terminated character string that contains a Canonical Phone Address
described by [MSDN-TAPIADDR], where additional routing information, if present, is contained
by the Subaddress field (described by [MSDN-TAPIADDR]). A routing string describes the
inbound routing destination, if any, of a fax being received by a fax device.<55>The routing
strings do not persist after shutdown or restart of the fax server.

Rules map: The list of all outbound rules added to a fax server and not yet removed. The rules
map persists after shutdown or restart of the fax server.

Server queue: See Fax Queue.

Server queue directory: Also mentioned as the fax queue directory. The folder on the fax server

where the Fax Queue is stored. The location and name of this folder are specific to each fax
server implementation. If not otherwise specified, this folder refers to both the Incoming
Queue and the Outgoing Queue.<56>

Size quota high watermark: Fax server configuration setting that configures the high watermark
of the archive quota, expressed in megabytes (MB). The fax server uses the size quota high

watermark to determine when to issue a size quota warning. This setting persists after
shutdown or restart of the fax server.<57>

Size quota low watermark: Fax server configuration setting that configures the low watermark
of the archive quota, expressed in megabytes (MB). The fax server uses the size quota low
watermark to determine when to issue a size quota warning. This setting persists after
shutdown or restart of the fax server.<58>

Size quota warning: Fax server configuration setting that enables the fax server to issue an
implementation-specific warning if the archive quota exceeds size quota high watermark or

falls below the size quota low watermark. This setting persists after shutdown or restart of
the fax server.<59>

Start cheap time: Fax server configuration setting that configures the start time for the fax
server's discount period applying to outgoing fax transmissions. The time value is expressed in
UTC as a number of hours and a number of minutes. Equal time values (hours and minutes) for

the start cheap time and stop cheap time settings mean that the fax server has no discount
period for outgoing fax transmissions. The fax server uses the discount period, if any, to
schedule the fax's pending transmission in the Outgoing Queue. If there is a discount period, if
an outgoing fax is queued during the discount period, the fax is scheduled to be immediately

176 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

sent; if the fax is queued after the discount period passed, the fax is scheduled for the next day;
and if the fax is queued before the discount period, the fax is scheduled for the discount period.

A value of stop cheap time before start cheap time indicates that the discount time elapses
from one day to another past midnight. This setting persists after shutdown or restart of the fax

server.<60>

Subscriber identifier: A TSID or CSID.

Stop cheap time: Fax server configuration setting that configures the stop time for the fax
server's discount period applying to outgoing fax transmissions. The time value is expressed in
UTC as a number of hours and a number of minutes. Together with the start cheap time, this
setting configures the discount period for outgoing fax transmissions. This setting persists after
shutdown or restart of the fax server.<61>

Telephone number: A null-terminated character string containing the telephone number dialed by
a fax device when sending a fax.

TSID: A null-terminated character string that identifies the fax recipient that sends a fax. The

TSID is sent by the transmitting fax device when it sends a fax to a receiving fax device. This
string can be a combination of the fax or telephone number and the name of the business. The
TSID can be the same as the CSID. The fax server maintains a TSID for each Fax Port. The

TSID of a Fax Port persists after shutdown or restart of the fax server.

Use device's TSID: Fax server configuration setting that configures the fax server to use the fax
device's TSID instead of the TSID specified by the fax client when submitting a fax job for
transmission. This setting persists after shutdown or restart of the fax server.<62>

3.1.2 Timers

No protocol timer events are required on the client beyond the timers required in the underlying RPC
protocol.

3.1.3 Initialization

The server MUST listen on a well-known endpoint, as specified in [C706].

3.1.4 Message Processing Events and Sequencing Rules

3.1.4.1 Fax Server Interface

This protocol MUST specify to the RPC runtime that it is to perform a strict Network Data
Representation (NDR) data consistency check at target level 5.0, as specified in [([MS-RPCE] section
3.).

This protocol MUST specify to the RPC runtime via the type_strict_context_handle attribute that it

is to reject, which rejects the use of context handles created by a method that creates a different type
of context handle, as specified in [([MS-RPCE] section 3.).

Methods in RPC Opnum Order

Method Description

FAX_GetServicePrinters This method is called by the client to obtain a list of printers that are
visible to the fax service.

Opnum: 0

FAX_ConnectionRefCount This method is called by the client to connect, disconnect, or release a

177 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

connection between the fax client and the fax server.

Opnum: 1

FAX_OpenPort This method is called by the client to open a fax port and obtain a fax port
handle for subsequent use in other fax methods.

Opnum: 2

FAX_ClosePort This method is called by the client to close an opened fax port.

Opnum: 3

FAX_EnumJobs This method is called by the client to enumerate all the fax jobs on the
specified fax server.

Opnum: 4

FAX_GetJob This method is called by the client to retrieve information about a
specified fax job.

Opnum: 5

FAX_SetJob This method is called by the client to pause, resume, cancel, or restart a
specified fax job.

Opnum: 6

FAX_GetPageData This method is called by the client to retrieve data in the first page of an
outgoing fax job.

Opnum: 7

FAX_GetDeviceStatus This method is called by the client to retrieve information about a
specified fax device (port).

Opnum: 8

FAX_Abort This method is called by the client to abort a specified fax job on the
server.

Opnum: 9

FAX_EnumPorts This method is called by the client to enumerate and obtain information
about all the devices (ports) on the server.

Opnum: 10

FAX_GetPort This method is called by the client to retrieve port status information for a
specified port at the server.

Opnum: 11

FAX_SetPort This method is called by the client to set fax device information for a
specified port at the server.

Opnum: 12

FAX_EnumRoutingMethods This method is called by the client to enumerate all the routing methods
for a specified fax port that are registered with the fax server.

Opnum: 13

FAX_EnableRoutingMethod This method is called by the client to enable or disable a fax routing
method for a specified fax device (port).

Opnum: 14

FAX_GetRoutingInfo This method is called by the client to retrieve information regarding a
specified fax routing method.

Opnum: 15

178 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

FAX_SetRoutingInfo This method is called by the client to set routing information for a
specified fax routing method.

Opnum: 16

FAX_EnumGlobalRoutingInfo This method is called by the client to enumerate global routing
information.

Opnum: 17

FAX_SetGlobalRoutingInfo This method is called by the client to set global routing properties like the
routing method priority.

Opnum: 18

FAX_GetConfiguration This method is called by the client to obtain the configuration settings on
the fax server.

Opnum: 19

FAX_SetConfiguration This method is called by the client to change the configuration settings on
the fax server.

Opnum: 20

FAX_GetLoggingCategories This method is called by the client to obtain the current logging categories
for the fax server.

Opnum: 21

FAX_SetLoggingCategories This method is called by the client to modify the current logging
categories for the fax server.

Opnum: 22

FAX_GetSecurity This method is called by the client to retrieve information regarding the
fax server's security descriptor.

Opnum: 23

FAX_SetSecurity This method is called by the client to set the fax server's security
descriptor.

Opnum: 24

FAX_AccessCheck This method is called by the client to check whether it has access
permissions to do a particular server operation.

Opnum: 25

FAX_CheckServerProtSeq This method is called by the client to validate whether a specified protocol
sequence is supported by the fax server.

Opnum: 26

FAX_SendDocumentEx This method is called by the client to send a specified fax job.

Opnum: 27

FAX_EnumJobsEx This method is called by the client to enumerate a specified set of jobs on
the server's queue.

Opnum: 28

FAX_GetJobEx This method is called by the client to retrieve information regarding a
specified job at the server.

Opnum: 29

FAX_GetCountryList This method is called by the client to retrieve the list of country/region
information defined on the server.

Opnum: 30

179 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

FAX_GetPersonalProfileInfo This method is called by the client to retrieve information on the personal
profile of a user from the specified fax message present in the described
message folder.

Opnum: 31

FAX_GetQueueStates This method is called by the client to retrieve the state of the fax queues
at the server.

Opnum: 32

FAX_SetQueue This method is called by the client to change the state of the server
queue.

Opnum: 33

FAX_GetReceiptsConfiguration This method is called by the client to obtain the receipts configuration
information on the fax server.

Opnum: 34

FAX_SetReceiptsConfiguration This method is called by the client to set the receipt configuration
information on the fax server.

Opnum: 35

FAX_GetReceiptsOptions This method is called by the client to the retrieve the supported receipt
options on the fax server.

Opnum: 36

FAX_GetVersion This method is called by the client to get the version of the fax server it is
connected to.

Opnum: 37

FAX_GetOutboxConfiguration This method is called by the client to retrieve the outbox configuration at
the server.

Opnum: 38

FAX_SetOutboxConfiguration This method is called by the client to set the outbox configuration at the
server.

Opnum: 39

FAX_GetPersonalCoverPagesOption This method is called by the client to retrieve information about the
supported personal cover-page options.

Opnum: 40

FAX_GetArchiveConfiguration This method is called by the client to retrieve the archive configuration for
a specific fax folder on the fax server.

Opnum: 41

FAX_SetArchiveConfiguration This method is called by the client to set the archive configuration for a
specific fax folder on the fax server.

Opnum: 42

FAX_GetActivityLoggingConfiguration This method is called by the client to retrieve the current activity logging
configuration.

Opnum: 43

FAX_SetActivityLoggingConfiguration This method is called by the client to set the activity logging
configuration.

Opnum: 44

FAX_EnumerateProviders This method is called by the client to enumerate all the fax service

180 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

providers (FSPs) that are installed on the server.

Opnum: 45

FAX_GetPortEx This method is called by the client to retrieve port status information for a
specified port at the server.

Opnum: 46

FAX_SetPortEx This method is called by the fax client to set fax device information for a
specified port at the server.

Opnum: 47

FAX_EnumPortsEx This method is called by the client to enumerate detailed port state
information for each device connected to the fax server.

Opnum: 48

FAX_GetExtensionData This method is called by the client to retrieve the extension data for a
device.

Opnum: 49

FAX_SetExtensionData This method is called by the client to write the extension data for a
device.

Opnum: 50

FAX_AddOutboundGroup This method is called by the client to add a new outbound routing group
on the fax server.

Opnum: 51

FAX_SetOutboundGroup

This method is called by the client to set a new device list to an existing
outbound routing group.

Opnum: 52

FAX_RemoveOutboundGroup This method is called by the client to remove an existing outbound
routing group from the fax server.

Opnum: 53

FAX_EnumOutboundGroups This method is called by the client to enumerate the outbound routing
groups on the fax server.

Opnum: 54

FAX_SetDeviceOrderInGroup This method is called by the client to set the order of a single device in a
group of outbound routing devices.

Opnum: 55

FAX_AddOutboundRule This method is called by the client to add a new outbound routing rule.

Opnum: 56

FAX_RemoveOutboundRule This method is called by the client to remove an existing outbound
routing rule.

Opnum: 57

FAX_SetOutboundRule This method is called by the client to set the information about an
individual fax outbound routing rule.

Opnum: 58

FAX_EnumOutboundRules This method is called by the client to enumerate all the outbound routing
rules that are present on the fax server.

Opnum: 59

181 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

FAX_RegisterServiceProviderEx This method is called by the client to register a fax service provider (FSP)
with the fax service.

Opnum: 60

FAX_UnregisterServiceProviderEx This method is called by the client to unregister a fax service provider
(FSP) from the fax service.

Opnum: 61

FAX_UnregisterRoutingExtension This method is called by the client to unregister an existing inbound
routing extension.

Opnum: 62

FAX_StartMessagesEnum This method is called by the client to obtain a messages enumeration
handle to start an enumeration of messages in one of the archives.

Opnum: 63

FAX_EndMessagesEnum This method is called by the client to end an enumeration of messages for
a specified message enumeration handle.

Opnum: 64

FAX_EnumMessages This method is called by the client to obtain information about the
messages by using a specified message enumeration handle.

Opnum: 65

FAX_GetMessage This method is called by the client to obtain the contents and size of a
specified message.

Opnum: 66

FAX_RemoveMessage This method is called by the client to remove a message from a specific
fax archive folder.

Opnum: 67

FAX_StartCopyToServer This method is called by the client to obtain a copy handle to start
copying a file to the server queue directory for which the client's fax
user account has access to submit faxes.

Opnum: 68

FAX_StartCopyMessageFromServer This method is called by the client to obtain a copy handle to start
copying a message from the server's archive or queue to the client.

Opnum: 69

FAX_WriteFile This method is called by the client to copy data (in chunks) to a file in the
server queue directory by using a copy handle.

Opnum: 70

FAX_ReadFile This method is called by the client to copy data (in chunks) from a file on
the server using a copy handle.

Opnum: 71

FAX_EndCopy This method is called by the client to end the copy process from or to the
server for a specified copy handle.

Opnum: 72

FAX_StartServerNotification This method is called by the client to obtain a fax event handle to start
receiving notifications about legacy fax events from the server.

Opnum: 73

FAX_StartServerNotificationEx This method is called by the client to obtain a fax event handle to start
receiving notifications about extended or legacy fax events from the

182 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

server.

Opnum: 74

FAX_EndServerNotification This method is called by the client to stop the notifications about fax
events from the server for a specified fax event handle.

Opnum: 75

FAX_GetServerActivity This method is called by the client to retrieve the status of the fax queue
activity and event log reports.

Opnum: 76

FAX_SetConfigWizardUsed This method is called by the client to set a value in the registry, indicating
whether the configuration wizard was used.

Opnum: 77

FAX_EnumRoutingExtensions This method is called by the client to enumerate all the routing extensions
that are registered with the fax server.

Opnum: 78

Opnum79NotUsedOnWire Reserved for local use.

Opnum: 79

FAX_ConnectFaxServer This method is called by the client to create an initial connection to the
server.

Opnum: 80

FAX_GetSecurityEx This method is called by the client to retrieve information about the fax
security descriptor from the fax server.

Opnum: 81

FAX_RefreshArchive This method is called by the client to notify the server that the archive
folder has changed and SHOULD be refreshed.

Opnum: 82

FAX_SetRecipientsLimit This method is called by the client to set the recipients limit of a single
broadcast job.

Opnum: 83

FAX_GetRecipientsLimit This method is called by the client to retrieve the recipients limit of a
single broadcast job.

Opnum: 84

FAX_GetServerSKU This method is called by the client to retrieve the stock-keeping unit
(SKU) of the fax server operating system.

Opnum: 85

FAX_CheckValidFaxFolder This method is called by the client to check whether the specified path is
accessible to the fax server.

Opnum: 86

FAX_GetJobEx2 This method is called by the client to retrieve information about a
specified job.

Opnum: 87

FAX_EnumJobsEx2 This method is called by the client to enumerate a specified set of jobs on
the server's queue for a specific fax account.

Opnum: 88

183 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

FAX_GetMessageEx This method is called by the client to retrieve a particular message from
one of the specified fax message archives.

Opnum: 89

FAX_StartMessagesEnumEx This method is called by the client to obtain a message enumeration
handle to start an enumeration of messages in one of the archives.

Opnum: 90

FAX_EnumMessagesEx This method is called by the client to obtain information about the
messages by using a specified message enumeration handle.

Opnum: 91

FAX_StartServerNotificationEx2 This method is called by the client to obtain a fax event handle to start
receiving notifications about extended fax events from the server.

Opnum: 92

FAX_CreateAccount This method is called by the client to create a new fax account on the
server.

Opnum: 93

FAX_DeleteAccount This method is called by the client to delete a specified fax account from
the server.

Opnum: 94

FAX_EnumAccounts This method is called by the client to enumerate all the fax accounts on
the server.

Opnum: 95

FAX_GetAccountInfo This method is called by the client to retrieve information about a
specified account.

Opnum: 96

FAX_GetGeneralConfiguration This method is called by the client to retrieve information regarding the
general configuration at the server.

Opnum: 97

FAX_SetGeneralConfiguration This method is called by the client to set the general configuration options
for the server.

Opnum: 98

FAX_GetSecurityEx2 This method is called by the client to retrieve information about the fax
security descriptor from the fax server.

Opnum: 99

FAX_SetSecurityEx2 This method is called by the client to set the security descriptor of the fax
server.

Opnum: 100

FAX_AccessCheckEx2 This method is called by the client to check whether it has access
permissions for a particular server operation.

Opnum: 101

FAX_ReAssignMessage This method is called by the client to assign the specified fax message to
a set of users.

Opnum: 102

FAX_SetMessage This method is called by the client to set message properties for a
specified message.

184 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

Opnum: 103

FAX_GetConfigOption This method is called by the client to retrieve a configuration setting at
the server.

Opnum: 104

In the table above, the term "Reserved for local use" means that the client MUST NOT send the
opnum. The server behavior is undefined.<63>

All methods MUST NOT throw exceptions except those that are thrown by the underlying RPC protocol
[MS-RPCE].

3.1.4.1.1 Sequencing Rules

The successful outcome of a series of RPC method calls depends on the sequence of calls made,
because state is maintained on the server throughout the method invocations. It is valid to call RPC

methods concurrently; when this happens, the server MUST ensure that it remains in a consistent

state while processing the concurrent method calls. The outcome of concurrent calls is as expected
according to the current state of the server when the calls were made.

The following methods are used by the fax client to connect to, disconnect from, or release a
connection from the fax server.

▪ FAX_ConnectionRefCount (section 3.1.4.1.11)

▪ FAX_ConnectFaxServer (section 3.1.4.1.10)

The FAX_ConnectFaxServer method or the FAX_ConnectionRefCount method MUST be called by the
client to connect to the fax server before the following methods are called. FAX_ConnectionRefCount
MUST be called to close this connection.

▪ FAX_GetServicePrinters (section 3.1.4.1.63)

▪ FAX_EnumJobs (section 3.1.4.1.21)

▪ FAX_GetJob (section 3.1.4.1.41)

▪ FAX_SetJob (section 3.1.4.1.82)

▪ FAX_GetPageData (section 3.1.4.1.48)

▪ FAX_Abort (section 3.1.4.1.2)

▪ FAX_EnumPorts (section 3.1.4.1.28)

▪ FAX_EnumGlobalRoutingInfo (section 3.1.4.1.20)

▪ FAX_SetGlobalRoutingInfo (section 3.1.4.1.81)

▪ FAX_GetConfiguration (section 3.1.4.1.36)

▪ FAX_SetConfiguration (section 3.1.4.1.76)

▪ FAX_GetLoggingCategories (section 3.1.4.1.44)

▪ FAX_SetLoggingCategories (section 3.1.4.1.83)

▪ FAX_GetSecurity (section 3.1.4.1.58)

185 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ FAX_SetSecurity (section 3.1.4.1.94)

▪ FAX_AccessCheck (section 3.1.4.1.3)

▪ FAX_CheckServerProtSeq (section 3.1.4.1.7)

▪ FAX_SendDocumentEx (section 3.1.4.1.73)

▪ FAX_EnumJobsEx (section 3.1.4.1.22)

▪ FAX_GetJobEx (section 3.1.4.1.42)

▪ FAX_GetCountryList (section 3.1.4.1.37)

▪ FAX_GetPersonalProfileInfo (section 3.1.4.1.50)

▪ FAX_GetQueueStates (section 3.1.4.1.53)

▪ FAX_SetQueue (section 3.1.4.1.90)

▪ FAX_GetReceiptsConfiguration (section 3.1.4.1.54)

▪ FAX_SetReceiptsConfiguration (section 3.1.4.1.91)

▪ FAX_GetReceiptsOptions (section 3.1.4.1.55)

▪ FAX_GetVersion (section 3.1.4.1.64)

▪ FAX_GetOutboxConfiguration (section 3.1.4.1.47)

▪ FAX_SetOutboxConfiguration (section 3.1.4.1.87)

▪ FAX_GetPersonalCoverPagesOption (section 3.1.4.1.49)

▪ FAX_GetArchiveConfiguration (section 3.1.4.1.34)

▪ FAX_SetArchiveConfiguration (section 3.1.4.1.75)

▪ FAX_GetActivityLoggingConfiguration (section 3.1.4.1.33)

▪ FAX_SetActivityLoggingConfiguration (section 3.1.4.1.74)

▪ FAX_EnumerateProviders (section 3.1.4.1.19)

▪ FAX_GetPortEx (section 3.1.4.1.52)

▪ FAX_SetPortEx (section 3.1.4.1.89)

▪ FAX_EnumPortsEx (section 3.1.4.1.29)

▪ FAX_GetExtensionData (section 3.1.4.1.39)

▪ FAX_SetExtensionData (section 3.1.4.1.79)

▪ FAX_AddOutboundGroup (section 3.1.4.1.5)

▪ FAX_SetOutboundGroup (section 3.1.4.1.85)

▪ FAX_RemoveOutboundGroup (section 3.1.4.1.71)

▪ FAX_EnumOutboundGroups (section 3.1.4.1.26)

▪ FAX_SetDeviceOrderInGroup (section 3.1.4.1.78)

186 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ FAX_AddOutboundRule (section 3.1.4.1.6)

▪ FAX_RemoveOutboundRule (section 3.1.4.1.72)

▪ FAX_SetOutboundRule (section 3.1.4.1.86)

▪ FAX_EnumOutboundRules (section 3.1.4.1.27)

▪ FAX_RegisterServiceProviderEx (section 3.1.4.1.69)

▪ FAX_UnregisterServiceProviderEx (section 3.1.4.1.104)

▪ FAX_UnregisterRoutingExtension (section 3.1.4.1.103)

▪ FAX_GetMessage (section 3.1.4.1.45)

▪ FAX_RemoveMessage (section 3.1.4.1.70)

▪ FAX_GetServerActivity (section 3.1.4.1.61)

▪ FAX_SetConfigWizardUsed (section 3.1.4.1.77)

▪ FAX_EnumRoutingExtensions (section 3.1.4.1.30)

▪ FAX_GetSecurityEx (section 3.1.4.1.59)

▪ FAX_RefreshArchive (section 3.1.4.1.68)

▪ FAX_SetRecipientsLimit (section 3.1.4.1.92)

▪ FAX_GetRecipientsLimit (section 3.1.4.1.56)

▪ FAX_GetServerSKU (section 3.1.4.1.62)

▪ FAX_CheckValidFaxFolder (section 3.1.4.1.8)

▪ FAX_GetJobEx2 (section 3.1.4.1.43)

▪ FAX_EnumJobsEx2 (section 3.1.4.1.23)

▪ FAX_GetMessageEx (section 3.1.4.1.46)

▪ FAX_CreateAccount (section 3.1.4.1.12)

▪ FAX_DeleteAccount (section 3.1.4.1.13)

▪ FAX_EnumAccounts (section 3.1.4.1.18)

▪ FAX_GetAccountInfo (section 3.1.4.1.32)

▪ FAX_GetGeneralConfiguration (section 3.1.4.1.40)

▪ FAX_SetGeneralConfiguration (section 3.1.4.1.80)

▪ FAX_GetSecurityEx2 (section 3.1.4.1.60)

▪ FAX_SetSecurityEx2 (section 3.1.4.1.95)

▪ FAX_AccessCheckEx2 (section 3.1.4.1.4)

▪ FAX_ReAssignMessage (section 3.1.4.1.67)

▪ FAX_SetMessage (section 3.1.4.1.84)

187 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ FAX_GetConfigOption (section 3.1.4.1.35)

The following methods MUST be used by the fax client to open or close a fax port.

▪ FAX_OpenPort (section 3.1.4.1.65)

▪ FAX_ClosePort (section 3.1.4.1.9)

The FAX_OpenPort method MUST be called to open a fax port and obtain a fax port handle for use
with the following methods. The port MUST be closed using FAX_ClosePort.

▪ FAX_GetDeviceStatus (section 3.1.4.1.38)

▪ FAX_GetPort (section 3.1.4.1.51)

▪ FAX_SetPort (section 3.1.4.1.88)

▪ FAX_EnumRoutingMethods (section 3.1.4.1.31)

▪ FAX_EnableRoutingMethod (section 3.1.4.1.14)

▪ FAX_GetRoutingInfo (section 3.1.4.1.57)

▪ FAX_SetRoutingInfo (section 3.1.4.1.93)

The following methods MUST be used by the fax client to start or stop enumerating messages in one
of the archives on the fax server.

▪ FAX_StartMessagesEnum (section 3.1.4.1.98)

▪ FAX_StartMessagesEnumEx (section 3.1.4.1.99)

▪ FAX_EndMessagesEnum (section 3.1.4.1.16)

The FAX_StartMessagesEnum method or the FAX_StartMessagesEnumEx method MUST be called to
obtain a fax message enumeration handle for use with the following methods. FAX_EndMessagesEnum

MUST be called to stop the message enumeration.

▪ FAX_EnumMessages (section 3.1.4.1.24)

▪ FAX_EnumMessagesEx (section 3.1.4.1.25)

The following methods MUST be used by the fax client to start or stop copying a file to or a message

from the fax server.

▪ FAX_StartCopyToServer (section 3.1.4.1.97)

▪ FAX_StartCopyMessageFromServer (section 3.1.4.1.96)

▪ FAX_EndCopy (section 3.1.4.1.15)

The FAX_StartCopyToServer method or the FAX_StartCopyMessageFromServer method MUST be

called to obtain a copy handle for use with the following methods. FAX_EndCopy MUST be called to
stop the copy operation and close the copy handle. The contents of one file are split and copied in one

or several parts (chunks), each individual part (chunk) copied with a separate
FAX_WriteFile (section 3.1.4.1.105) or FAX_ReadFile (section 3.1.4.1.66) method call, in a sequence,
until the entire file contents are copied.<64> After the entire contents of the file are copied, the fax
client MUST call the FAX_EndCopy (section 3.1.4.1.15) method as described in the previous
sequencing rule.

▪ FAX_WriteFile (section 3.1.4.1.105)

188 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ FAX_ReadFile (section 3.1.4.1.66)

The following methods MUST be used by the fax client to start or stop notifications from the fax

server.

▪ FAX_StartServerNotification (section 3.1.4.1.100)

▪ FAX_StartServerNotificationEx (section 3.1.4.1.101)

▪ FAX_EndServerNotification (section 3.1.4.1.17)

▪ FAX_StartServerNotificationEx2 (section 3.1.4.1.102)

3.1.4.1.2 FAX_Abort (Opnum 9)

The FAX_Abort (Opnum 9) method is called by the client to abort the specified fax job on the server.
The value for the JobId parameter can be obtained using one of the following methods:

FAX_EnumJobs (section 3.1.4.1.21), FAX_EnumJobsEx (section 3.1.4.1.22), or
FAX_EnumJobsEx2 (section 3.1.4.1.23).

In response, the server MUST validate that the job identifier specified by the JobId argument is for a
valid job. The server MUST validate that the client's fax user account has write access to the job. On
success, the server MUST terminate the specified fax job that is queued or in progress.

 error_status_t FAX_Abort(
 [in] handle_t hBinding,
 [in] DWORD JobId
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle

used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

JobId: A unique number that identifies the fax job to terminate.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return either one of the following error codes, one of the fax-specific errors that are defined
in section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. This error code is returned when any of the following
conditions happen:

▪ The client's fax user account does not have
FAX_ACCESS_MANAGE_RECEIVE_FOLDER permission, and the
specified JobId represents an incoming fax job.

▪ The client's fax user account does not have
FAX_ACCESS_MANAGE_OUT_JOBS permission, and the specified
JobId represents an outgoing fax job of a different user.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The fax job identified by the specified JobId is not found.

▪ The specified job has already been canceled or is in the process of
being canceled.

189 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

▪ The type of the fax job specified by the JobId parameter is
JT_BROADCAST (see the description of the dwJobType member of the
FAX_JOB_STATUS structure specified in section 2.2.36).

0x000010DD

ERROR_INVALID_OPERATION

The operation is invalid. This error code is returned under any of the
following conditions:

▪ The specified JobId represents an incoming fax job (the dwJobType
member of the FAX_JOB_STATUS (section 2.2.36) describing the job is
set to 0x0002), which is being routed (the dwQueueStatus member
of the FAX_JOB_STATUS describing the job is set to JS_ROUTING) and
cannot be aborted at this stage.

▪ The specified JobId represents a fax job in progress (the dwJobType
member of the FAX_JOB_STATUS (section 2.2.36) describing the job is
set to 0x0003), which the fax server failed to route (the
dwQueueStatus member of the FAX_JOB_STATUS describing the job
is set to JS_IN_PROGRESS) and cannot be aborted at this stage.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.3 FAX_AccessCheck (Opnum 25)

The FAX_AccessCheck (Opnum 25) method is called when the client needs to check whether the
client's fax user account has certain access permissions on the server.

In response, the server MUST validate the access rights specified by the client against the actual

specific access rights of the client's fax user account. On success, the server SHOULD return the
access rights specified by the client that are granted to the client's fax user account.

 error_status_t FAX_AccessCheck(
 [in] handle_t hBinding,
 [in] DWORD AccessMask,
 [out, ref] BOOL* pfAccess,
 [in, out, unique] LPDWORD lpdwRights
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

AccessMask: A DWORD variable that MUST contain a set of bit flags that define the fax access

permissions specified by the client to be validated against the access permissions of the client's
fax user account. This parameter can be any bitwise OR combination of fax-specific access rights,
standard access rights, and fax-generic access rights. For a list of standard access rights, see

[MSDN-SAR].

Fax-generic access
rights Meaning

FAX_GENERIC_READ

0x000002A8

Includes the read-only rights that are granted by the following specific access
rights:

▪ FAX_ACCESS_QUERY_JOBS

190 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Fax-generic access
rights Meaning

▪ FAX_ACCESS_QUERY_CONFIG

▪ FAX_ACCESS_QUERY_IN_ARCHIVE

▪ FAX_ACCESS_QUERY_OUT_ARCHIVE

FAX_GENERIC_WRITE

0x00000550

Includes the management rights that are granted by the following specific access
rights:

▪ FAX_ACCESS_MANAGE_JOBS

▪ FAX_ACCESS_MANAGE_CONFIG

▪ FAX_ACCESS_MANAGE_IN_ARCHIVE

▪ FAX_ACCESS_MANAGE_OUT_ARCHIVE

FAX_GENERIC_EXECUTE

0x00000001

Identical to the FAX_ACCESS_SUBMIT access right.

FAX_GENERIC_ALL

0x000007FF

Includes all the following specific fax permissions:

▪ FAX_ACCESS_SUBMIT

▪ FAX_ACCESS_SUBMIT_NORMAL

▪ FAX_ACCESS_SUBMIT_HIGH

▪ FAX_ACCESS_QUERY_JOBS

▪ FAX_ACCESS_MANAGE_JOBS

▪ FAX_ACCESS_QUERY_CONFIG

▪ FAX_ACCESS_MANAGE_CONFIG

▪ FAX_ACCESS_QUERY_IN_ARCHIVE

▪ FAX_ACCESS_MANAGE_IN_ARCHIVE

▪ FAX_ACCESS_QUERY_OUT_ARCHIVE

▪ FAX_ACCESS_MANAGE_OUT_ARCHIVE

Fax-specific access rights Meaning

FAX_ACCESS_SUBMIT

0x00000001

Grants permission to send a low-priority fax transmission to one or
more recipients.

FAX_ACCESS_SUBMIT_NORMAL

0x00000002

Grants permission to send a normal-priority fax transmission to
one or more recipients.

FAX_ACCESS_SUBMIT_HIGH

0x00000004

Grants permission to send a high-priority fax transmission to one
or more recipients.

FAX_ACCESS_QUERY_JOBS Grants permission to view all the incoming and outgoing faxes in
the Incoming and Outbox queues, including those that belong to

191 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Fax-specific access rights Meaning

0x00000008 other users. By default, without this permission, non-administrator
users can view their own outgoing messages in the Outbox queue
but cannot view the Incoming queue. Also, non-administrator
users cannot view incoming or outgoing faxes that belong to other
users.

FAX_ACCESS_MANAGE_JOBS

0x00000010

Grants permission to manage all the incoming and outgoing faxes
in the Incoming and Outbox queues, including those that belong to
other users. By default, without this permission, non-administrator
users can manage their own outgoing messages in the Outgoing
queue (defined in section 3.1.1) but cannot manage the Incoming
queue. Also, non-administrator users cannot manage incoming or
outgoing faxes that belong to other users.

FAX_ACCESS_QUERY_CONFIG

0x00000020

Grants permission to view the properties of the Fax Service. By
default, non-administrator users do not have this permission.
Without this permission, users cannot view any of the tree nodes,
except for the cover page node in the Fax Service Manager.

FAX_ACCESS_MANAGE_CONFIG

0x00000040

Grants permission to modify the properties of the fax service. By
default, non-administrator users do not have this permission.

FAX_ACCESS_QUERY_IN_ARCHIVE

0x00000080

Grants permission to view all successfully received messages in
the Inbox archive. By default, without this permission, non-
administrator users cannot view archived incoming faxes.

FAX_ACCESS_MANAGE_IN_ARCHIVE

0x00000100

Grants permission to manage all successfully received messages in
the Inbox archive. By default, without this permission, non-
administrator users cannot manage archived incoming faxes.

FAX_ACCESS_QUERY_OUT_ARCHIVE

0x00000200

Grants permission to view all successfully sent messages in the
Sent Items archive, including those belonging to other users. By
default, without this permission, non-administrator users can view
archives of their own sent messages but cannot view archives that
belong to other users.

FAX_ACCESS_MANAGE_OUT_ARCHIVE

0x00000400

Grants permission to manage all successfully sent messages in the
Sent Items archive, including those that belong to other users. By
default, without this permission, non-administrator users can
manage archives of their own sent messages but cannot manage
archives that belong to other users.

Standard access
rights Meaning

DELETE

0x00010000

Delete access.

READ_CONTROL

0x00020000

Read access to the owner, group, and discretionary access control list (ACL) of the
security descriptor.

WRITE_DAC

0x00040000

Write access to the ACL.

WRITE_OWNER

0x00080000

Write access to the owner.

SYNCHRONIZE Allow use of the object for synchronization.

192 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Standard access
rights Meaning

0x00100000

Miscellaneous access
rights Meaning

MAXIMUM_ALLOWED

0x02000000

Maximum allowed access rights for this server.

pfAccess: A pointer to a BOOL to receive the access check return value. This value MUST be TRUE if
the client's fax user account has all of the fax access rights specified by the AccessMask
parameter; otherwise, this value MUST be FALSE. If the value submitted by the client for the
AccessMask parameter is zero, the value pointed to by the pfAccess parameter SHOULD be FALSE

on return.

lpdwRights: A pointer to a DWORD value to receive the fax access rights that this caller is verified to
have of those requested in the AccessMask parameter. This value MUST be a DWORD bitwise OR
combination of fax-specific access rights, standard access rights, and/or fax-generic access rights
limited to those specified by the client in the AccessMask parameter. In order for the client to be
verified for the maxiumum allowed rights, the caller MUST set the AccessMask parameter to
0x02000000 (MAXIMUM_ALLOWED) and the server SHOULD set this output value to the actual

rights that this caller is verified to have.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The user does not have a valid fax user account on the
server.<65>

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. The pfAccess argument is NULL,<66> or the
access mask specified by the AccessMask argument contains invalid fax-
specific access rights.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.4 FAX_AccessCheckEx2 (Opnum 101)

The FAX_AccessCheckEx2 (Opnum 101) method is called by the client when the client needs to check
whether the client's fax user account has certain access permissions on the server.

In response, the server MUST validate the access rights specified by the client against the actual

access rights granted to the client's fax user account. On success, the server SHOULD return the
access rights specified by the client that are granted to the client's fax user account.

Protocol versions FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and
FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client
MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0
(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For
more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

193 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 error_status_t FAX_AccessCheckEx2(
 [in] handle_t hBinding,
 [in] DWORD AccessMask,
 [out, ref] BOOL* pfAccess,
 [in, out, unique] LPDWORD lpdwRights
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

AccessMask: A DWORD variable that contains a set of bit flags specified by the client to be
validated. Zero is a valid value for this parameter and means that no access rights are specified by
the client to be validated. This parameter can be any combination of fax-specific access rights,
standard access rights, and fax-generic access rights. If this parameter is set to 0x02000000
(MAXIMUM_ALLOWED), on return, the lpdwRights parameter SHOULD receive the maximum
access rights granted to the client's fax user account.

Fax-generic access
rights Meaning

FAX_GENERIC_EXECUTE_2

0x00000001

Includes the read-only rights granted by the FAX_ACCESS_SUBMIT access
right.

FAX_GENERIC_READ_2

0x00000020

Includes the read-only rights granted by the FAX_ACCESS_QUERY_CONFIG
access right.

FAX_GENERIC_WRITE_2

0x00000040

Includes the read-only rights granted by the FAX_ACCESS_MANAGE_CONFIG
access right.

FAX_GENERIC_ALL_2

0x000003FF

Includes the read-only rights granted by the following fax-specific access
rights:

▪ FAX_ACCESS_SUBMIT

▪ FAX_ACCESS_SUBMIT_NORMAL

▪ FAX_ACCESS_SUBMIT_HIGH

▪ FAX_ACCESS_QUERY_OUT_JOBS

▪ FAX_ACCESS_MANAGE_OUT_JOBS

▪ FAX_ACCESS_QUERY_CONFIG

▪ FAX_ACCESS_MANAGE_CONFIG

▪ FAX_ACCESS_QUERY_ARCHIVES

▪ FAX_ACCESS_MANAGE_ARCHIVES

▪ FAX_ACCESS_MANAGE_RECEIVE_FOLDER

Fax-specific access rights Meaning

FAX_ACCESS_SUBMIT

0x00000001

Grants permission to send a low-priority fax transmission to one
or more recipients.

194 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Fax-specific access rights Meaning

FAX_ACCESS_SUBMIT_NORMAL

0x00000002

Grants permission to send a normal-priority fax transmission to
one or more recipients.

FAX_ACCESS_SUBMIT_HIGH

0x00000004

Grants permission to send a high-priority fax transmission to
one or more recipients.

FAX_ACCESS_QUERY_OUT_JOBS

0x00000008

Grants permission to view the outgoing faxes in the fax queue.
By default, no users have this permission.

FAX_ACCESS_MANAGE_OUT_JOBS

0x00000010

Grants permission to manage the outgoing faxes in the fax
queue by using such operations as pause, resume, restart, and
delete (FAX_SetJob).section 3.1.4.1.82). By default, no users
have this permission.

FAX_ACCESS_QUERY_CONFIG

0x00000020

Grants permission to view the properties of the Fax Service and
to enumerate accounts, and to read any account configuration
information. By default, non-administrator users do not have
this permission. Without it, users cannot view any of the tree
nodes, except for the cover page node in the Fax Service
Manager.

FAX_ACCESS_MANAGE_CONFIG

0x00000040

Grants permission to modify the properties of the fax service. By
default, non-administrator users do not have this permission.

FAX_ACCESS_QUERY_ARCHIVES

0x00000080

Grants permission to view the sent and received fax messages
in the archives. By default, no users have this permission.

FAX_ACCESS_MANAGE_ARCHIVES

0x00000100

Grants permission to manage the sent and received fax
messages in the archives by using such operations as delete
(FAX_RemoveMessagesection 3.1.4.1.70) and copy
(FAX_StartCopyMessageFromServer,
FAX_StartCopyToServersections 3.1.4.1.96, 3.1.4.1.97, and
FAX_EndCopy3.1.4.1.15). By default, no users have this

permission.

FAX_ACCESS_MANAGE_RECEIVE_FOLDER

0x00000200

When global routing is not enabled, this permission allows the
user to delete any messages. When global routing is active, it
allows the user to see the contents of all receive folder faxes, to
delete faxes, and to cancel receive transmissions in progress.

pfAccess: A pointer to a Boolean value that receives the access check return value. This value MUST
be TRUE if the client's fax user account has all of the fax access rights specified by the AccessMask

parameter; otherwise, this value MUST be FALSE. If the value submitted by the client for the
AccessMask parameter is zero, the value pointed to by the pfAccess parameter SHOULD be FALSE
on return.

lpdwRights: A pointer to a DWORD value that receives the fax access rights that this caller is
verified to have of those requested in the AccessMask parameter. This value MUST be a DWORD
bitwise OR combination of fax-specific access rights, standard access rights, and/or fax-generic

access rights limited to those specified by the client in the AccessMask parameter. In order for the

client to be verified for the maximum allowed rights, the caller MUST set the AccessMask
parameter to 0x02000000 (MAXIMUM_ALLOWED) and the server SHOULD set this output value to
the actual rights that this caller is verified to have.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

195 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The caller does not have the required permissions for this
request (the caller does not have a valid fax user account).

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The pointer specified in the pfAccess parameter is NULL.

▪ The fax access rights specified in the lpdwRights parameter contain
invalid access values.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.5 FAX_AddOutboundGroup (Opnum 51)

The FAX_AddOutboundGroup (Opnum 51) method is called by the client to add a new outbound
routing group.

In response, the server MUST check for the client's fax user account access to write outbound
groups. The server MUST check for duplicate group names in a case-insensitive manner. On success,

the server MUST add a new outbound routing group to the fax server. Devices can be added to a
newly created group by using FAX_SetOutboundGroup (section 3.1.4.1.85).<67>

 error_status_t FAX_AddOutboundGroup(
 [in] handle_t hFaxHandle,
 [in, string, ref] LPCWSTR lpwstrGroupName
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle

used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpwstrGroupName: A pointer to a null-terminated character string that uniquely identifies a new

group name. This value cannot be NULL. The group name is expected to be case-insensitive.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have
the FAX_ACCESS_MANAGE_CONFIG access rights.

0x00000034

ERROR_DUP_NAME

The group name specified by the lpwstrGroupName parameter
is "< All devices>".

0x00000057

ERROR_INVALID_PARAMETER

The fax server tried to return
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU, but the client fax

API version (FAX_API_VERSION_0, described in (section
3.1.4.1.10) does not support this error code.

0x0000006F

ERROR_BUFFER_OVERFLOW

The length of the character string specified by the
lpwstrGroupName parameter, excluding the length of the
terminating null terminator, is equal to or greater than 128

196 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

characters.

0x000003F7

ERROR_REGISTRY_CORRUPT

The fax server cannot store the new outbound routing group
configuration in the registry. The registry could be corrupted.

0x00001B63

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU

The fax client module API version (as specified in
FAX_ConnectFaxServer (section 3.1.4.1.10))) is
FAX_API_VERSION_1 or above, and the fax server is running
on a version of the operating system that does not support the
requested operation.<68>

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.6 FAX_AddOutboundRule (Opnum 56)

The FAX_AddOutboundRule (Opnum 56) method is called by the client to add a new outbound rule for
the specified outbound group to the fax server’s rules map. The value for the dwDeviceId parameter

can be obtained using the FAX_EnumPorts (section 3.1.4.1.28) method or the
FAX_EnumPortsEx (section 3.1.4.1.29) method.

In response, if bUseGroup is TRUE, the server MUST validate that the group name is valid; if
bUseGroup is FALSE, the server MUST validate that the device ID is for a valid device. The server
MUST validate that the client's fax user account has access to add an outbound routing rule.

On success, the server MUST add an outbound rule to the fax server.

 error_status_t FAX_AddOutboundRule(
 [in] handle_t hFaxHandle,
 [in] DWORD dwAreaCode,
 [in] DWORD dwCountryCode,
 [in] DWORD dwDeviceId,
 [in, string, unique] LPCWSTR lpwstrGroupName,
 [in] BOOL bUseGroup
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

dwAreaCode: The area code of the rule. A value of zero indicates the special any-area value
ROUTING_RULE_AREA_CODE_ANY. The combination of the dwAreaCode and dwCountryCode
parameters is a unique key.

dwCountryCode: The country/region code of the rule. The value of this argument MUST NOT be
zero. A value of zero indicates the special any-country, any-region value
ROUTING_RULE_COUNTRY_CODE_ANY, which is not valid for this argument. The combination of

the dwAreaCode and dwCountryCode parameters is a unique key.

dwDeviceId: The destination device of the rule. This value is valid only if the bUseGroup parameter is
FALSE. The value of dwDeviceId MUST be greater than zero.

lpwstrGroupName: The destination group of the rule. This value is valid only if the bUseGroup

parameter is TRUE.

bUseGroup: A Boolean value that specifies whether the group SHOULD be used as the destination.

197 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have
the access rightsauthorization required for this call
(FAX_ACCESS_MANAGE_CONFIG).

0x00000014

ERROR_BAD_UNIT

The system cannot find the device specified by the
dwDeviceId argument.

0x0000001F

ERROR_GEN_FAILURE

The fax server encountered an exception while processing
the character string specified by the lpwstrGroupName
argument.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned when
any of the following conditions are met:

▪ The country code specified with the dwCountryCode
argument is ROUTING_RULE_COUNTRY_CODE_ANY (not
a valid rule dialing location).

▪ The lpwstrGroupName argument value is NULL.

▪ The value of the dwDeviceId argument is 0.

▪ The fax server needs to return
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU, but the
client fax API version (FAX_API_VERSION_0) does not
support this error code.

0x0000006F

ERROR_BUFFER_OVERFLOW

The destination group of the rule specified by the
lpwstrGroupName argument is longer than the maximum
supported value of 128 characters (excluding the terminating
null character).

0x000003F7

ERROR_REGISTRY_CORRUPT

The registry is corrupted. The structure of one of the files
containing registry data is corrupted, or the system's
memory image of the file is corrupted, or the file could not
be recovered because the alternate copy or log was absent or
corrupted.

0x00001B5B

FAX_ERR_BAD_GROUP_CONFIGURATION

The fax server encountered an outbound routing group with a
bad configuration, or the group device list is empty; the
status for the new rule object created by the server based on
the specified dialing location and device ID is
FAX_RULE_STATUS_ALL_GROUP_DEV_NOT_VALID or
FAX_RULE_STATUS_EMPTY_GROUP.

0x00001B63

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU

The fax client module API version (as specified in
FAX_ConnectFaxServer (section 3.1.4.1.10))) is
FAX_API_VERSION_1 or above, and the fax server is running
on a version of the operating system that does not support
the requested operation.<69>

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.7 FAX_CheckServerProtSeq (Opnum 26)

198 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The FAX_CheckServerProtSeq (Opnum 26) method is called by the client to validate whether a
specified protocol sequence is supported by the server.<70> In response, the server MUST validate

the specified protocol sequence.

Protocol version FAX_API_VERSION_2 (0x00020000) and FAX_API_VERSION_3 (0x00030000) fax

servers SHOULD fail this call by returning ERROR_NOT_SUPPORTED (0x00000032). The fax client
SHOULD NOT call this method if the protocol version reported by the server is FAX_API_VERSION_2
(0x00020000) or FAX_API_VERSION_3 (0x00030000). For more information, see
FAX_ConnectFaxServer (section 3.1.4.1.10).

 error_status_t FAX_CheckServerProtSeq(
 [in] handle_t hbinding,
 [in, out, unique] LPDWORD lpdwProtSeq
);

hbinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpdwProtSeq: A variable into which the requested sequence is specified. If the specified protocol
sequence is supported, upon return, lpdwProtSeq contains the value for this validated sequence.

Value Meaning

RPC_PROT_TCP_IP

1

Check the protocol sequence for TCP/IP.

RPC_PROT_SPX

2

Check the protocol sequence for IPX/SPX.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. The lpdwProtSeq argument specified is
NULL.

0x0000006A7

RPC_S_PROTSEQ_NOT_SUPPORTED

The protocol sequence specified by the lpdwProtSeq argument is not
supported.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.8 FAX_CheckValidFaxFolder (Opnum 86)

The FAX_CheckValidFaxFolder (Opnum 86) method is called by the client to check whether the
specified path is accessible to the fax server.

In response, the server MUST validate the folder path. The server MUST validate that the client’s fax
user account has correct access rights (ALL_FAX_USER_ACCESS_RIGHTS) and that the folder is not
the same as any of the folders used for persistence of the incoming and outgoing fax queues. On
success, the server MUST confirm that the specified path is accessible for use by the Fax Service.

199 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Protocol version FAX_API_VERSION_0 (0x00000000) and FAX_API_VERSION_1 (0x00010000) fax
servers SHOULD NOT implement this call. The fax client MUST NOT call this method if the protocol

version reported by the server is FAX_API_VERSION_0 (0x00000000) or FAX_API_VERSION_1
(0x00010000). For more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

 error_status_t FAX_CheckValidFaxFolder(
 [in] handle_t hBinding,
 [in, string, ref] LPCWSTR lpcwstrPath
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpcwstrPath: A pointer to a null-terminated character string that contains the path to validate,
specified as a complete file path. The path can be a UNC path or a path that begins with a drive
letter. The path MUST contain a file name. The length of the path, including the terminating null

character, MUST be under 180 characters.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have sufficient
rights for this operation (ALL_FAX_USER_ACCESS_RIGHTS).

0x00000003

ERROR_PATH_NOT_FOUND

The path specified by the lpcwstrPath argument has a valid structure, but
the folder path does not exist.

0x00000002

ERROR_FILE_NOT_FOUND

The path specified by the lpcwstrPath argument has a valid structure (the
folder path is valid), but the file does not exist.

0x00000057

ERROR_INVALID_PARAMETER

The lpcwstrPath argument is NULL, or the path specified by the
lpcwstrPath argument is incomplete.

0x0000006F

ERROR_BUFFER_OVERFLOW

The length of the path (including length of the terminating null character)
specified by the lpcwstrPath argument exceeds 180 characters.

0x00001B5F

FAX_ERR_DIRECTORY_IN_USE

The path specified by the lpcwstrPath argument points to a folder
currently in use by the fax server, such as the server queue directory or
the fax archive folder (section 3.1.1).

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.9 FAX_ClosePort (Opnum 3)

The FAX_ClosePort (Opnum 3) method is called by the client to close an open fax port. The client
passes FaxPortHandle, which it received from a call to FAX_OpenPort (section 3.1.4.1.65).

In response, the server MUST validate that the port handle specified by the FaxPortHandle argument
is a valid open port handle returned by a call to FAX_OpenPort. On success, the server MUST close the
specified port.

 error_status_t FAX_ClosePort(

200 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in, out] PRPC_FAX_PORT_HANDLE FaxPortHandle
);

FaxPortHandle: A pointer to a fax port handle.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000006

ERROR_INVALID_HANDLE

FaxPortHandle is not a valid open port handle returned by FAX_OpenPort.
<71>

0x00000057

ERROR_INVALID_PARAMETER

The RPC_FAX_PORT_HANDLE referenced by the FaxPortHandle parameter is
set to a NULL pointer value.<72>

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.10 FAX_ConnectFaxServer (Opnum 80)

The FAX_ConnectFaxServer (Opnum 80) method is called by the client to create a connection to the
fax server.

Protocol version FAX_API_VERSION_0 (0x00000000) fax servers SHOULD NOT implement this

method.

If the underlying RPC layer fails this call by returning RPC_S_PROCNUM_OUT_OF_RANGE
(0x000006D1), the fax client SHOULD consider the server protocol (and API version) to be
FAX_API_VERSION_0 and MAY retry this request by switching to the FaxObs Server
Interface (section 3.1.4.2) and calling the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method.

In response, if the bAutoCreateAccountOnConnect field of the FAX_GENERAL_CONFIG structure is

set to FALSE, the server MUST validate whether the calling user's authenticated user identity has a fax
user account associated on the fax server and MUST validate whether this client's fax user account
has any fax user access rights. On success, the server MUST create a connection handle.

The client MUST call the FAX_ConnectionRefCount (section 3.1.4.1.11) method at the end of the
session to disconnect the session and close the connection handle. This call MUST include a value of
0x00000000 for the Connect argument as well as the connection handle returned by the server via the
FAX_ConnectFaxServer method as the Handle argument.

If the bAutoCreateAccountOnConnect field of the FAX_GENERAL_CONFIG (section 2.2.31)
structure is set to FALSE and the calling user's authenticated user identity does not have a fax user
account associated on the fax server, FAX_ConnectFaxServer MUST fail with
ERROR_ACCESS_DENIED.

If the bAutoCreateAccountOnConnect field of the FAX_GENERAL_CONFIG (section 2.2.31)
structure is set to TRUE and the calling user’s authenticated user identity does not have a fax user
account associated on the fax server, FAX_ConnectFaxServer MUST create a new fax user account

with the default fax user access rights described in section 3.1.4.1.12.

If this call is successful, the client SHOULD retain the RPC binding handle used for the hBinding
argument and reuse it as the RPC binding handle input argument for all subsequent fax server calls
made, until the connection with the server is disconnected.

201 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 error_status_t FAX_ConnectFaxServer(
 [in] handle_t hBinding,
 [in] DWORD dwClientAPIVersion,
 [out, ref] LPDWORD lpdwServerAPIVersion,
 [out, ref] PRPC_FAX_SVC_HANDLE pHandle
);

hBinding: The RPC binding handle that is provided by the client RPC layer when the RPC call is made.

dwClientAPIVersion: A DWORD that MUST contain the protocol version (fax API version) of the
client module. This value MUST be one of the constants defined in section 2.2.85.The value

determines the specific FAX_ERR error codes that can be returned by the fax server, as described
in the following table. If the fax server receives from the fax client a version number greater than
the server’s version number, the server MUST accept the request and MUST consider the client
version to be the same as the version supported by the fax server.

Value Meaning

FAX_API_VERSION_0

0x00000000

No FAX_ERR_* values can be returned.

FAX_API_VERSION_1

0x00010000

FAX_ERR_* values in the FAX_ERR 7001-7012 range can be returned.

FAX_API_VERSION_2

0x00020000

FAX_ERR_* values in the FAX_ERR 7001-7013 range can be returned.

FAX_API_VERSION_3

0x00030000

FAX_ERR_* values in the FAX_ERR 7001-7013 range can be returned.

lpdwServerAPIVersion: A pointer to a DWORD that contains the protocol and fax API version of the
fax server that is reported back by the fax server to the fax client. This value MUST be one of the

constants defined in section 2.2.85.

The fax client SHOULD use this value to determine which fax specific error codes are to be
expected from the fax server, and also to determine which fax server methods are implemented
by the fax server. The methods which are to be implemented differently depending on the protocol
and fax API version have version differences documented in their respective subsections.

pHandle: The connection handle returned by the fax server. The client MUST use this connection
handle as the Handle argument for the FAX_ConnectionRefCount (section 3.1.4.1.11) method call

made to disconnect from the fax server at the end of the session.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return the following error code, one of the fax-specific errors that are defined in section
2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The bAutoCreateAccountOnConnect field of the
FAX_GENERAL_CONFIG structure is set to FALSE and the calling user's
authenticated user identity does not have a fax user account associated on the
fax server, or the does not have any of the access rights defined in
ALL_FAX_USER_ACCESS_RIGHTS (section 2.2.83).

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

202 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.4.1.11 FAX_ConnectionRefCount (Opnum 1)

The FAX_ConnectionRefCount (Opnum 1) method is called by the client.<73>

In response, the server MUST connect, disconnect, or release a connection between the fax client and

the fax server.

If this call is successfully made with a Connect argument value of Connect (0x00000001), the client
SHOULD retain the RPC binding handle used for the hBinding argument and reuse it as the RPC
binding handle input argument for all subsequent fax server calls made, until the connection with the
server is disconnected.

 error_status_t FAX_ConnectionRefCount(
 [in] handle_t hBinding,
 [in, out] PRPC_FAX_SVC_HANDLE Handle,
 [in] DWORD Connect,
 [out] LPDWORD CanShare
);

hBinding: The RPC binding handle that is provided by the client RPC layer when the RPC call is made.

If the Connect parameter is set to Disconnect (0x00000000), the client SHOULD reuse the RPC
binding handle used for the FAX_ConnectFaxServer (section 3.1.4.1.10) call or for the previous
call to this method used to connect to the fax server.

Handle: The connection handle that references a connection to the fax server. If Connect is set to
0x00000001 (Connect), a new handle is returned in this parameter. Otherwise, this parameter
MUST be set to a handle returned from a previous call to this method, or to the

FAX_ConnectFaxServer (section 3.1.4.1.10) method.

Connect: A DWORD value that specifies connection information.

Value Meaning

Disconnect

0x00000000

Close the fax server connection.

The handle specified in Handle MUST have been returned by a previous call to
FAX_ConnectFaxServer or FAX_ConnectionRefCount with a Connect value of 1 (Connect).
After this call, the handle in Handle will be invalid and MUST NOT be used in any subsequent
calls.

Connect

0x00000001

Connect to the fax server.

Calling FAX_ConnectionRefCount with this value is equivalent to calling
FAX_ConnectFaxServer with an API version of FAX_API_VERSION_0.

Release

0x00000002

Release a connection to the fax server.

The handle specified in Handle MUST have been returned by a previous call to
FAX_ConnectFaxServer or FAX_ConnectionRefCount with a Connect value of 1 (Connect).
After this call, the handle in Handle MUST NOT be used in any subsequent calls except a call
to FAX_ConnectionRefCount with a Connect value of 0 (Disconnect).

If FAX_ConnectionRefCount is called in a sequence, and varying values are given for this
parameter on the same Handle, the following holds true:

1. The call sequence SHOULD have values for the Connect argument in the following order:

1. 1 (Connect): To obtain a valid Handle and connect to the fax server. (This call is optional and
can be replaced by a FAX_ConnectFaxServer call.<74><75>

2. 2 (Release): Step "1 (connect)" is mandatory for this call to succeed.

3. 0 (Disconnect): Step "1 (connect)" is mandatory for this call to succeed.

203 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2. The following sequence of calls on the same handle MUST result in an
ERROR_INVALID_PARAMETER error:

1. Consecutive calls with a Connect argument value of 2 (Release) or 0 (Disconnect) without
obtaining a valid Handle in between two calls (through step "1 (connect)" above).

2. A call with a Connect argument value of 0 (Disconnect) following a call with a Connect
argument value of 2 (Release).

CanShare: The server MUST return a nonzero value in the DWORD referenced by this parameter if
the fax print queues can be shared as described in section 3.1.1, and a zero value otherwise.<76>

Possible value Description

0x00000000 The fax print queues can be shared.

0x00000001 —
0xFFFFFFFF

The fax print queues cannot be shared.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The Connect parameter is set to a value of 0x00000001
(Connect), and the client's fax user account does not have the
ALL_FAX_USER_ACCESS_RIGHTS access rights required for the connect
operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the
following conditions are met:

▪ The Connect parameter is set to a value of 0x00000000 (Disconnect)
or to a value of 0x00000002 (Release), and the Handle parameter is
set to a NULL value.<77>

▪ The Connect parameter is set to a value of 0x00000001 (Connect), and
the CanShare parameter is set to a NULL pointer value.<78>

▪ The Connect parameter is set to a value other than 0x00000000
(Disconnect), 0x00000001 (Connect), or 0x00000002 (Release).

Fax clients call this method to connect or disconnect from the fax server.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.12 FAX_CreateAccount (Opnum 93)

The FAX_CreateAccount (Opnum 93) method is called by the client to request a new fax user account
to be created based on an existing valid operating system user account.

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and

FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client
MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0
(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For
more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

204 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The server MUST validate that the client's fax user account has access to create an account. On
success, the server MUST create a new fax account. The server SHOULD apply the following default

fax access rights, depending on the authenticated user identity of the user account described by the
FAX_ACCOUNT_INFO_0 (section 2.2.24) structure,<79> and return ERROR_SUCCESS. The function

MUST return ERROR_ALREADY_EXISTS if the account already exists.

Authenticated user identity Default fax user access rights

Administrator WRITE_OWNER |

WRITE_DAC |

READ_CONTROL |

FAX_ACCESS_SUBMIT |

FAX_ACCESS_SUBMIT_NORMAL |

FAX_ACCESS_SUBMIT_HIGH |

FAX_ACCESS_QUERY_CONFIG |

FAX_ACCESS_MANAGE_CONFIG |

FAX_ACCESS_QUERY_ARCHIVES

Standard user READ_CONTROL |

FAX_ACCESS_SUBMIT |

FAX_ACCESS_SUBMIT_NORMAL

Interactive logon user READ_CONTROL |

FAX_ACCESS_SUBMIT |

FAX_ACCESS_SUBMIT_NORMAL |

FAX_ACCESS_SUBMIT_HIGH |

FAX_ACCESS_QUERY_CONFIG |

FAX_ACCESS_MANAGE_RECEIVE_FOLDER

The client SHOULD free the returned Buffer.

 error_status_t FAX_CreateAccount(
 [in] handle_t hBinding,
 [in] DWORD level,
 [in, ref, size_is(BufferSize)] const LPBYTE Buffer,
 [in, range(0,FAX_MAX_RPC_BUFFER)]
 DWORD BufferSize
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used

as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

level: A DWORD value that indicates the type of structure to return in Buffer. The value passed in
this parameter MUST be zero.

Buffer: A pointer to a FAX_ACCOUNT_INFO_0 (section 2.2.24) structure that contains fax account
information. The lpcwstrAccountName member of the FAX_ACCOUNT_INFO_0 structure MUST

be set to the name of the operating system user account for which the new fax user account is to
be created, using the same account name. The format of the user account name string is
described in section 2.2.24 (FAX_ACCOUNT_INFO_0).

BufferSize: A DWORD value that indicates the return size, in bytes, of the buffer that is pointed to
by the Buffer parameter. The maximum size is FAX_MAX_RPC_BUFFER (section 2.2.82).

205 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return Values: This method MUST return 0 (ERROR_SUCCESS) for success; otherwise, it MUST
return one of the following error codes, one of the fax-specific errors that are defined in section

2.2.52, or one of the other standard errors that are defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_ACCESS_MANAGE_CONFIG access right.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This value is returned when any of the
following conditions are true:

▪ The Buffer parameter is NULL.

▪ The BufferSize parameter is 0.

▪ The level parameter is greater than zero.

▪ The account name, as pointed to by the account information
contained in the Buffer parameter, is NULL or is specified using an
invalid format.

0x00000649

ERROR_INVALID_HANDLE_STATE

The handle is in an invalid state.

0x000000B7

ERROR_ALREADY_EXISTS

The fax account already exists.

The account name contained in the lpcwstrAccountName member of the
FAX_ACCOUNT_INFO_0 structure, as pointed to by the Buffer parameter, MUST be in one of the
following formats. Any other format is invalid.

Format Description

<machine_name>\<user_name> For a local user with machine_name as the local machine's name.

<domain_name>\<user_name> For a nonlocal user.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.13 FAX_DeleteAccount (Opnum 94)

The FAX_DeleteAccount (Opnum 94) method is called by the client to delete a fax user account
previously created with FAX_CreateAccount.

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and
FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client
MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0

(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For
more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

On success, the server MUST delete the specified fax account. The server MUST validate that the
client's fax user account has access to delete fax user accounts on the fax server. The client can
delete any fax user accounts or the current fax user account. Any subsequent operations on the
deleted fax user accounts MUST be failed by the server with the error code
ERROR_ACCESS_DENIED. The fax server SHOULD allow deleting a fax user account even if the

206 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

underlying operating system's user account has been deleted after this fax user account was
created.

 error_status_t FAX_DeleteAccount(
 [in] handle_t hBinding,
 [in, string, unique] LPCWSTR lpcwstrAccountName
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used

as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpcwstrAccountName: A pointer to a constant, null-terminated character string that contains the
name of the account to delete. The value for this parameter can be obtained using the
FAX_EnumAccounts (section 3.1.4.1.18) method.

Return Values: This method MUST return 0 (ERROR_SUCCESS) for success; otherwise, it MUST

return one of the following error codes, a fax-specific error defined in section 2.2.52, or one of the

standard errors that are defined in [MS-ERREF] section 2.2.

Return error value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_ACCESS_MANAGE_CONFIG access right.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. The account name pointed to by the
lpcwstrAccountName parameter is NULL or improperly formatted.

The account name that lpcwstrAccountName indicates MUST be in one of the following formats.
Any other format is invalid.

Format Description

<machine_name>\<user_name> For a local user with machine_name as the local machine's name.

<domain_name>\<user_name> For a remote (not local) user.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.14 FAX_EnableRoutingMethod (Opnum 14)

The FAX_EnableRoutingMethod (Opnum 14) method is called by the client for a specified fax device
(port).

The user is expected to set the proper configuration settings on the client before enabling any routing

method. For example, in order to enable email, the user SHOULD specify the proper SMTP details, and

the client SHOULD then call the FAX_SetReceiptsConfiguration (section 3.1.4.1.91) method, with the
bIsToUseForMSRouteThroughEmailMethod value in the pReceipts parameter set to true. Also, the user
can ensure that the proper routing method destinations, such as EmailID, Printer, and Folder values,
have been specified. The client can use the FAX_SetExtensionData (section 3.1.4.1.79) method to set
the EmailID, Printer, and Folder once the user has entered the proper values.

On success, the server MUST enable or disable a fax routing method for a specific fax device. The

server MUST validate that the client's fax user account has access to enable or disable routing
methods. The RoutingGUID parameter MUST be for a valid routing method.

207 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 error_status_t FAX_EnableRoutingMethod(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, string, unique] LPCWSTR RoutingGuid,
 [in] BOOL Enabled
);

FaxPortHandle: An RPC context handle that references a specified fax port. This parameter MUST
NOT be NULL.

RoutingGuid: A curly-braced GUID string that MUST specify the GUID that uniquely identifies the fax
routing method upon which to act. For more information about routing methods, see [MSDN-FRM].
The routing methods and the associated curly-braced GUID string values that can be used for this
parameter are discoverable by calling FAX_EnumRoutingMethods (section 3.1.4.1.31). Included in

this list are the default routing methods described in section 2.2.87.

Enabled: A Boolean variable that indicates whether the application is enabling or disabling the fax
routing method that is specified by the RoutingGuid parameter. If this parameter is TRUE, the

application is requesting that the server enable the routing method; if this parameter is FALSE,
the application is requesting that the server disable the routing method.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_ACCESS_MANAGE_CONFIG access right.

0x0000000D

ERROR_INVALID_DATA

The data is invalid. The GUID specified by the RoutingGuid parameter is not
a routing method GUID.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This is returned when RoutingGuid is set to
NULL.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.15 FAX_EndCopy (Opnum 72)

The FAX_EndCopy (Opnum 72) method is called by the client to end a copy operation process from or
to the server, and to close the respective copy handle.

On success, the server MUST terminate the specified copy operation previously begun with
FAX_StartCopyToServer (Opnum 68) or FAX_StartCopyMessageFromServer (Opnum 69).

 error_status_t FAX_EndCopy(
 [in, out, ref] PRPC_FAX_COPY_HANDLE lphCopy
);

lphCopy: A copy handle that MUST be returned by FAX_StartCopyToServer (Opnum 68) or
FAX_StartCopyMessageFromServer (Opnum 69).

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

208 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000006

ERROR_INVALID_HANDLE

This error code SHOULD be returned if the handle pointed to by the specified
lphCopy parameter is not a valid handle returned by FAX_StartCopyToServer
or FAX_StartCopyMessageFromServer.<80>

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.16 FAX_EndMessagesEnum (Opnum 64)

The FAX_EndMessagesEnum (Opnum 64) method is called by the client.

On success, the server MUST halt the enumerating of messages in the specified archives.

 error_status_t FAX_EndMessagesEnum(
 [in, out, ref] PRPC_FAX_MSG_ENUM_HANDLE lpHandle
);

lpHandle: The parameter lpHandle MUST have been returned by FAX_StartMessagesEnum (Opnum

63).

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

 This error SHOULD be returned if the handle pointed to by the specified
lpHandle parameter is NULL.<81>

0x00000006

ERROR_INVALID_HANDLE

This error code SHOULD be returned if the handle pointed to by the specified
lpHandle parameter is not a valid handle returned by
FAX_StartMessagesEnum.<82>

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.17 FAX_EndServerNotification (Opnum 75)

The FAX_EndServerNotification (Opnum 75) method is called by the client to stop the notifications
from the server, which were initiated by a call to FAX_StartServerNotification (Opnum 73),

FAX_StartServerNotificationEx (Opnum 74), or FAX_StartServerNotificationEx2 (Opnum 92).

On success, the server MUST stop notifying the client of events.

 error_status_t FAX_EndServerNotification(
 [in, out, ref] PRPC_FAX_EVENT_EX_HANDLE lpHandle
);

209 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpHandle: A pointer to a previously registered subscription context handle. The lpHandle parameter
MUST match the one supplied by the server when the

FAX_StartServerNotification (section 3.1.4.1.100) family of calls is in use.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

The lpHandle parameter is specified as NULL.<83>

0x0000000D

ERROR_INVALID_DATA

This error SHOULD be returned if the lpHandle parameter is not a valid
handle obtained using the FAX_StartServerNotification method, the
FAX_StartServerNotificationEx method, or the
FAX_StartServerNotificationEx2 method.<84>

To stop notifications, the client SHOULD call FAX_EndServerNotification (Opnum 75); the server
SHOULD call FAX_CloseConnection (Opnum 2) to close the connection.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.18 FAX_EnumAccounts (Opnum 95)

The FAX_EnumAccounts (Opnum 95) method is called by the client to enumerate all the fax accounts
on the server.

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and

FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client
MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0
(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For

more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

The server MUST validate that the client's fax user account has access to receive an enumeration of
the accounts. The Buffer, BufferSize, and lpdwAccounts parameters MUST NOT be NULL. On success,
the server MUST enumerate all existing fax accounts and return the enumerated accounts in Buffer.

 error_status_t FAX_EnumAccounts(
 [in] handle_t hBinding,
 [in] DWORD level,
 [out, size_is(,*BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD lpdwAccounts
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used

as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

level: A DWORD value that indicates the type of structure that is pointed to by Buffer. The value
passed in this parameter MUST be zero.

Buffer: A pointer to an array of FAX_ACCOUNT_INFO_0 (section 2.2.24) structures that contain fax
account information.

210 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

BufferSize: A pointer to a DWORD value that specifies the size, in bytes, of the buffer that is pointed
to by the Buffer parameter.

lpdwAccounts: A DWORD that contains the number of accounts whose information is being returned.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client's fax user account does not have the access right
FAX_ACCESS_QUERY_CONFIG to perform this operation.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The fax server failed to allocate the amount of memory needed to process
this request.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the
following conditions are met:

▪ The value specified for the level parameter is not equal to zero.

▪ The pointer specified by the Buffer parameter is NULL.<85>

▪ The value pointed to by the BufferSize parameter is zero.<86>

▪ The pointer specified by the lpdwAccounts parameter is NULL.<87>

The account name that lpcwstrAccountName indicates MUST be in one of the following formats. Any
other format is invalid.

Format Description

<machine_name>\<user_name> For a local user with machine_name as the local machine's name.

<domain_name>\<user_name> For a nonlocal user.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.19 FAX_EnumerateProviders (Opnum 45)

The FAX_EnumerateProviders (Opnum 45) method is called by the client to enumerate all the FSPs
installed on the server.

The server MUST validate that the client's fax user account has access to enumerate providers. The
Buffer parameter MUST NOT be NULL. On success, the server MUST return the FSPs installed on the
fax server.

The client SHOULD free the returned buffer.

 error_status_t FAX_EnumerateProviders(
 [in] handle_t hFaxHandle,
 [out, size_is(, *BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD lpdwNumProviders
);

211 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

Buffer: A pointer to the address of a buffer to receive an array of

FAX_DEVICE_PROVIDER_INFO (section 2.2.30) structures. Each structure contains information
about one fax device provider, as it pertains to the entire fax service.

BufferSize: A pointer to a DWORD in which to return the size, in bytes, of the buffer.

lpdwNumProviders: A pointer to a DWORD variable to receive the number of
FAX_DEVICE_PROVIDER_INFO (section 2.2.30) structures that the method returns in the Buffer
parameter. This number MUST be equal to the total number of FSPs installed on the target server.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_ACCESS_QUERY_CONFIG access rights required for this operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error is returned if the BufferSize and/or
the lpdwNumProviders parameters are set to NULL pointer values.

0x00001B59

FAX_ERR_SRV_OUTOFMEMORY

The fax server failed to allocate sufficient memory for the return buffer to
hold the FAX_DEVICE_PROVIDER_INFO structures to be returned to the
client.

0x0000054F

ERROR_INTERNAL_ERROR

The fax server failed to custom marshal the array of
FAX_DEVICE_PROVIDER_INFO structures to be returned to the client.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.20 FAX_EnumGlobalRoutingInfo (Opnum 17)

The FAX_EnumGlobalRoutingInfo (Opnum 17) method is called by the client to enumerate global
routing information.

The server MUST validate that the client's fax user account has access to enumerate the global routing
information. On success, the server MUST return all the fax routing methods associated with a specific
fax server in RoutingInfoBuffer.

The client SHOULD free the returned buffer.

 error_status_t FAX_EnumGlobalRoutingInfo(
 [in] handle_t hBinding,
 [out, size_is(, *RoutingInfoBufferSize)]
 LPBYTE* RoutingInfoBuffer,
 [out, ref] LPDWORD RoutingInfoBufferSize,
 [out, ref] LPDWORD MethodsReturned
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

212 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RoutingInfoBuffer: A pointer to the address of a buffer to receive an array of
_FAX_GLOBAL_ROUTING_INFOW (section 2.2.33) structures. Each structure contains information

about one fax routing method, as it pertains to the entire Fax Service.

RoutingInfoBufferSize: A variable to return the size, in bytes, of the routing information buffer.

MethodsReturned: A pointer to a DWORD variable to receive the number of
_FAX_GLOBAL_ROUTING_INFOW (section 2.2.33) structures that the method returns in the
RoutingInfoBuffer parameter. This number SHOULD equal the total number of fax routing methods
installed on the target server.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_ACCESS_QUERY_CONFIG access rights required for this
operation.

0x00000001

ERROR_INVALID_FUNCTION

 The server failed to enumerate the routing methods.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

 The server cannot allocate sufficient memory to hold the array of
_FAX_GLOBAL_ROUTING_INFOW structures to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The RoutingInfoBuffer parameter is set to a NULL pointer value.<88>

0x0000054F

ERROR_INTERNAL_ERROR

The server failed to custom marshal the array of
FAX_GLOBAL_ROUTING_INFOW structures to be returned to the client.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.21 FAX_EnumJobs (Opnum 4)

The FAX_EnumJobs (Opnum 4) method is called by the client to enumerate all the fax jobs on the
specified fax server.

In response, the server MUST validate whether the client's fax user account has access to enumerate
the jobs. On success, the server MUST return information about all the queued and active jobs in
Buffer. It MUST also return the total size of the buffer in which the information is returned and the
total number of enumerated jobs.

The client SHOULD free the returned buffer.

 error_status_t FAX_EnumJobs(
 [in] handle_t hBinding,
 [out, size_is(,*BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD JobsReturned
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

213 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Buffer: A pointer to the address of a buffer to receive an array of _FAX_JOB_ENTRY (section 2.2.6)
structures.

BufferSize: A variable to return the size, in bytes, of the job information buffer.

JobsReturned: A pointer to a DWORD variable to receive the number of

_FAX_JOB_ENTRY (section 2.2.6) structures that the method returns in the Buffer parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_ACCESS_QUERY_JOBS access right.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

 The server cannot allocate sufficient memory to hold the array of
FAX_JOB_ENTRY structures to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. The Buffer parameter is set to a NULL pointer
value.<89>

0x0000054F

ERROR_INTERNAL_ERROR

The server failed to custom marshal the array of FAX_JOB_ENTRY
structures to be returned to the client.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.22 FAX_EnumJobsEx (Opnum 28)

The FAX_EnumJobsEx (Opnum 28) method is called by the client to enumerate a specified set of jobs
on the server's queue. The type of jobs to enumerate is described by the dwJobTypes argument.

In response, the server MUST validate whether the client's fax user account has access to enumerate
the jobs. On success, the server MUST return information about all the jobs of the specified type. It
MUST also return the total size of the buffer in which the information is returned and the total number

of enumerated jobs.

The client SHOULD free the returned buffer.

 error_status_t FAX_EnumJobsEx(
 [in] handle_t hBinding,
 [in] DWORD dwJobTypes,
 [out, size_is(, *BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD lpdwJobs
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

dwJobTypes: A DWORD value. The dwJobTypes parameter SHOULD be a bitwise combination of job
types defined in section 3.1.1. Only jobs that are of the requested types SHOULD be returned in
the buffer. If zero is passed as a value for the parameter (0 is not a valid job type), the server will
return success, but with a zero-byte buffer.

214 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Buffer: A pointer to the address of a buffer to receive an array of
FAX_JOB_ENTRY_EXW (section 2.2.35) structures followed by an array of the same number of

FAX_JOB_STATUS (section 2.2.36) structures, followed by other data pointed at from these
structures (from pointer type fields). Each FAX_JOB_ENTRY_EXW (section 2.2.35) and

FAX_JOB_STATUS (section 2.2.36) structure pair describes one fax job. For each returned
FAX_JOB_ENTRY_EXW (section 2.2.35) structure, if the pStatus pointer is not NULL, it MUST point
to one of the FAX_JOB_STATUS (section 2.2.36) structures in the buffer. If the pStatus pointer is
NULL the FAX_JOB_STATUS (section 2.2.36) attached to the current
FAX_JOB_ENTRY_EXW (section 2.2.35) structure is located at the corresponding index position in
the structure array. This data is serialized on the wire. The field length MUST be clamped to 32
bits before serialization.

For example, when three jobs are successfully enumerated, the call returns ERROR_SUCCESS with
a value of 3 for the *lpdwJobs output argument. The returned data is arranged in memory as
follows, from the start of the address specified by the Buffer parameter:

Data structure Size Description

FAX_JOB_ENTRY_EXW
 sizeof(FAX_JOB_ENTRY_EXW)

The first FAX_JOB_ENTRY_EXW
structure in the buffer, corresponding to
the first FAX_JOB_STATUS structure in
the buffer if pStatus is NULL in this
FAX_JOB_ENTRY_EXW.

FAX_JOB_ENTRY_EXW
 sizeof(FAX_JOB_ENTRY_EXW)

The second FAX_JOB_ENTRY_EXW
structure in the buffer, corresponding to
the second FAX_JOB_STATUS structure
in the buffer if pStatus is NULL in this
FAX_JOB_ENTRY_EXW.

FAX_JOB_ENTRY_EXW
 sizeof(FAX_JOB_ENTRY_EXW)

The third FAX_JOB_ENTRY_EXW
structure in the buffer, corresponding to
the third FAX_JOB_STATUS structure in
the buffer if pStatus is NULL in this
FAX_JOB_ENTRY_EXW.

FAX_JOB_STATUS
 sizeof(FAX_JOB_STATUS)

The first FAX_JOB_STATUS structure in
the buffer, corresponding to the first
FAX_JOB_ENTRY_EXW structure in the
buffer if pStatus is NULL in this
FAX_JOB_ENTRY_EXW.

FAX_JOB_STATUS
 sizeof(FAX_JOB_STATUS)

The second FAX_JOB_STATUS structure
in the buffer, corresponding to the

second FAX_JOB_ENTRY_EXW structure
in the buffer if pStatus is NULL in this
FAX_JOB_ENTRY_EXW.

FAX_JOB_STATUS
 sizeof(FAX_JOB_STATUS)

The third FAX_JOB_STATUS structure in
the buffer, corresponding to the third
FAX_JOB_ENTRY_EXW structure in the
buffer if pStatus is NULL in this
FAX_JOB_ENTRY_EXW .

Other data
 *BufferSize – (3 *
(sizeof(FAX_JOB_ENTRY_EXW) +

sizeof(FAX_JOB_STATUS)))

Data pointed at by pointer fields in the
FAX_JOB_ENTRY_EXW and
FAX_JOB_STATUS structures at the
beginning of the buffer.

BufferSize: A variable to return the size, in bytes, of the buffer.

215 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpdwJobs: A pointer to a DWORD variable to receive the number of
FAX_JOB_ENTRY_EXW (section 2.2.35) and FAX_JOB_STATUS (section 2.2.36) structures that the

method returns in the Buffer parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have any of the
access rights defined in ALL_FAX_USER_ACCESS_RIGHTS (section 2.2.83)
when enumerating jobs of type JT_SEND. The client's fax user account
does not have the FAX_ACCESS_MANAGE_RECEIVE_FOLDER access
right when enumerating jobs of type JT_RECEIVE or JT_ROUTING.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000057

ERROR_INVALID_PARAMETER

At least one of the following arguments has been specified as NULL:
Buffer, BufferSize, or lpdwJobs.<90>

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.23 FAX_EnumJobsEx2 (Opnum 88)

The FAX_EnumJobsEx2 (Opnum 88) method is called by the client to enumerate a specified set of jobs
on the server's queue for a specific fax account. The type of jobs to enumerate is described by the
dwJobTypes argument.

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and
FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client

MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0
(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For
more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

In response, the server MUST validate whether the client's fax user account has access to enumerate

the jobs for the specified account. If the lpcwstrAccountName is not NULL, the server MUST validate
the format of the account name. It MUST check for existence of account name. It MUST also verify
that the level argument is set to 1.

On success, the server MUST return information about all the jobs of the specified type for the
specified account. It MUST also return the total size of the buffer in which the information is returned
and the total number of jobs enumerated.

The client SHOULD free the returned buffer.

 error_status_t FAX_EnumJobsEx2(
 [in] handle_t hBinding,
 [in] BOOL fAllAccounts,
 [in, string, unique] LPCWSTR lpcwstrAccountName,
 [in] DWORD dwJobTypes,
 [in] DWORD level,
 [out, size_is(,*BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD lpdwJobs
);

216 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

fAllAccounts: Flag indicating whether the jobs for all accounts are enumerated. If this parameter is

nonzero, the jobs for all accounts are enumerated and lpcwstrAccountName is reset to NULL and
not taken into account. Otherwise, lpcwstrAccountName SHOULD indicate which accounts are to
be enumerated.

lpcwstrAccountName: Pointer to a constant, null-terminated character string that indicates which
account to enumerate. If this value is set to NULL, the current account's jobs are enumerated.
Cross-account enumeration is currently not supported. If fAllAccounts is nonzero, this value is
reset to NULL. The value for this parameter can be obtained using the FAX_EnumAccounts method

(section 3.1.4.1.18).

dwJobTypes: A DWORD value that MUST consist of a bitwise combination of the job types defined in
section 3.1.1. Only jobs that are of the requested types SHOULD be returned in the buffer.

level: A DWORD value that indicates the type of structure to return in Buffer. The value MUST be set
to 1.

Buffer: Pointer to the address of a buffer that will receive an array of

FAX_JOB_ENTRY_EX_1 (section 2.2.34) structures. Each structure describes one fax job.

BufferSize: Pointer to a DWORD value that returns the size, in bytes, of Buffer.

lpdwJobs: Pointer to a DWORD value that receives the number of
FAX_JOB_ENTRY_EX_1 (section 2.2.34) structures that the method returns in the Buffer
parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. This error can be returned when any of the following
conditions are true:

▪ The client's fax user account does not have any of the access rights
defined in ALL_FAX_USER_ACCESS_RIGHTS (section 2.2.83) that are
required in order to enumerate jobs of type JT_SEND on its own
account. That is, the fAllAccounts parameter is FALSE.

▪ The client's fax user account does not have the

FAX_ACCESS_QUERY_OUT_JOBS access right that is required in
order to enumerate jobs of type JT_SEND on all accounts. That is, the
fAllAccounts parameter is TRUE.

▪ The client's fax user account does not have the
FAX_ACCESS_MANAGE_RECEIVE_FOLDER access right that is
required in order to enumerate jobs of type JT_RECEIVE or
JT_ROUTING.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This value is returned when any of the
following conditions are true:

217 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

▪ Either the lpwdJobs or the Buffer parameter is NULL.

▪ The BufferSize parameter is 0.

▪ The level parameter is not set to 1.

▪ The lpcwstrAccountName parameter contains an improperly
formatted account name or points to a nonexistent or other user
account.

The account name that lpcwstrAccountName indicates MUST be in one of the following formats. Any
other format is invalid.

Format Description

<machine_name>\<user_name> For a local user with machine_name as the local machine's name.

<domain_name>\<user_name> For a nonlocal user.

Exceptions Thrown:

No exceptions are thrown beyond those thrown by the underlying RPC protocol [MS-RPCE].

3.1.4.1.24 FAX_EnumMessages (Opnum 65)

The FAX_EnumMessages (Opnum 65) method is called by the client.

In response, the server MUST validate that the hEnum argument passed by the client was created as
part of a prior FAX_StartMessagesEnum (Opnum 63) (section 3.1.4.1.98) call. The server MUST

validate that the dwNumMessages argument is not zero.

On success, the server MUST return information about the messages. The server MUST also return the
size of the information returned and the number of messages for which it could successfully retrieve
the information. The latter value MUST NOT exceed dwNumMessages.

The client SHOULD free the returned buffer.

 error_status_t FAX_EnumMessages(
 [in, ref] RPC_FAX_MSG_ENUM_HANDLE hEnum,
 [in] DWORD dwNumMessages,
 [out, size_is(, *lpdwBufferSize)]
 LPBYTE* lppBuffer,
 [out, ref] LPDWORD lpdwBufferSize,
 [out, ref] LPDWORD lpdwNumMessagesRetrieved
);

hEnum: The enumeration handle returned through the lpHandle output argument by

FAX_StartMessagesEnum.

dwNumMessages: A DWORD value indicating the maximum number of messages the caller requires
to enumerate. This value MUST NOT be zero.

lppBuffer: A pointer to a buffer of FAX_MESSAGE (section 2.2.38) structures. This buffer contains
lpdwNumMessagesRetrieved entries.

lpdwBufferSize: A pointer to a DWORD in which to return the size, in bytes, of the buffer.

218 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpdwNumMessagesRetrieved: A pointer to a DWORD value indicating the actual number of
messages retrieved. This value SHOULD NOT exceed dwNumMessages.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The fax server failed to allocate memory for the return buffer.

0x00000057

ERROR_INVALID_PARAMETER

This error code is returned if any of the following conditions are met:

▪ One or more of the pointer values specified by the following
arguments are NULL: lppBuffer, lpdwBufferSize, and
lpdwNumMessagesRetrieved.

▪ The hEnum parameter is NULL.<91>

▪ The maximum number of messages, specified by the
dwNumMessages argument, is set to zero.

0x00000103

ERROR_NO_MORE_ITEMS

No more data is available. The method reached the end of the lppBuffer
message buffer and there are no more messages to be enumerated.

0x00001B59

FAX_ERR_SRV_OUTOFMEMORY

The fax server failed to allocate memory needed for internal execution of
the command.

0x0000006F

ERROR_BUFFER_OVERFLOW

The fax server encountered an integer overflow condition while processing
the request for the maximum number of messages specified by the
dwNumMessages argument.

The client expects that this method is incremental and uses an internal context cursor to point to the

next set of messages to retrieve for each call. The cursor is set to point to the beginning of the

messages in the archive after a successful call to FAX_StartMessagesEnum (section 3.1.4.1.98). Each
successful call to FAX_EnumMessages (section 3.1.4.1.24) advances the cursor by the number of
messages retrieved. After the cursor reaches the end of the enumeration, the method fails with the
0x00000103 (ERROR_NO_MORE_ITEMS) error code. The FAX_EndMessagesEnum (section 3.1.4.1.16)
method SHOULD then be called.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.25 FAX_EnumMessagesEx (Opnum 91)

The FAX_EnumMessagesEx (Opnum 91) method is called by the client. This message differs from the
FAX_EnumMessages (section 3.1.4.1.24) in that this function takes a level parameter, which
differentiates the type of message information structure that the function returns.

In response, the server MUST validate that the hEnum argument that is passed by the client was

created as part of a prior FAX_StartMessagesEnum (Opnum 63) or FAX_StartMessagesEnumEx
(Opnum 90) call. The server MUST validate that the dwNumMessages argument is not zero.

On success, the server MUST return information regarding messages. The server MUST return the size
of the returned information and the number of messages for which it could successfully retrieve the
information. The latter value MUST NOT exceed dwNumMessages. The server MUST return the level of
information. This return value is decided by whether the client used FAX_StartMessagesEnum (Opnum
63) or FAX_StartMessagesEnumEx (Opnum 90) to start the enumeration of messages.

219 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The client SHOULD free the returned buffer.

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and

FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client
MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0

(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For
more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

 error_status_t FAX_EnumMessagesEx(
 [in, ref] RPC_FAX_MSG_ENUM_HANDLE hEnum,
 [in] DWORD dwNumMessages,
 [out, size_is(,*lpdwBufferSize)]
 LPBYTE* lppBuffer,
 [out, ref] LPDWORD lpdwBufferSize,
 [out, ref] LPDWORD lpdwNumMessagesRetrieved,
 [out, ref] LPDWORD lpdwLevel
);

hEnum: The enumeration handle returned through the lpHandle output argument by
FAX_StartMessagesEnum or FAX_StartMessagesEnumEx.

dwNumMessages: A DWORD value that indicates the maximum number of messages that the caller
requires to enumerate. This value MUST NOT be zero.

lppBuffer: A pointer to an array of FAX_MESSAGE_1 (section 2.2.37) structures that contain
lpdwNumMessagesRetrieved entries.

lpdwBufferSize: A pointer to a DWORD value that specifies the size, in bytes, of the buffer.

lpdwNumMessagesRetrieved: A pointer to a DWORD value that indicates the actual number of
retrieved messages. This value SHOULD NOT exceed dwNumMessages.

lpdwLevel: A pointer to a DWORD value that indicates the structure to return.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The fax server failed to allocate memory for the return buffer.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the
following conditions are met:

▪ One or more of the pointer values specified by the following
arguments are NULL: lppBuffer, lpdwBufferSize,
lpdwNumMessagesRetrieved, and lpdwLevel.

▪ hEnum is NULL<92> or is an invalid handle that is not returned by a
call to FAX_StartMessagesEnum or FAX_StartMessagesEnumEx
<93>.

▪ dwNumMessages is zero.

0x00000103

ERROR_NO_MORE_ITEMS

No more data is available. The method reached the end of the lppBuffer
message buffer and there are no more messages to be enumerated.

0x00001B59 The fax server failed to allocate memory needed for internal execution of

220 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

FAX_ERR_SRV_OUTOFMEMORY the command.

0x0000006F

ERROR_BUFFER_OVERFLOW

The fax server encountered an integer overflow condition while processing
the request for the maximum number of messages specified by the
dwNumMessages argument.

The client implementation assumes that this method is incremental and uses an internal context
cursor to point to the next set of messages to retrieve for each call. The cursor is set to point to the

beginning of the messages in the archive after a successful call to FAX_StartMessagesEnum or
FAX_StartMessagesEnumEx. Each successful call to FAX_EnumMessagesEx advances the cursor by the
number of messages retrieved. After the cursor reaches the end of the enumeration, the method fails
with the 0x00000103 (ERROR_NO_MORE_ITEMS) error code. The
FAX_EndMessagesEnum (section 3.1.4.1.16) method can then be called to halt the enumeration of
messages.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.26 FAX_EnumOutboundGroups (Opnum 54)

The FAX_EnumOutboundGroups (Opnum 54) method is called by the client.

In response, the server MUST validate that the client's fax user account has access to enumerate the
outbound routing groups.

On success, the server MUST return information about all its outbound routing groups in ppData. It
MUST also return the size of the information returned and the number of outbound routing groups for
which it enumerated information successfully.

The client SHOULD free ppData buffer.

 error_status_t FAX_EnumOutboundGroups(
 [in] handle_t hFaxHandle,
 [out, size_is(, *lpdwDataSize)]
 LPBYTE* ppData,
 [out, ref] LPDWORD lpdwDataSize,
 [out, ref] LPDWORD lpdwNumGroups
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

ppData: The address of a pointer to a buffer containing an array of
_RPC_FAX_OUTBOUND_ROUTING_GROUPW (section 2.2.40) structures.

lpdwDataSize: The size, in bytes, of the returned ppData buffer.

lpdwNumGroups: The number of groups that are returned.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

221 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have
the access rights (FAX_ACCESS_QUERY_CONFIG) required for
this operation.

0x00000057

ERROR_INVALID_PARAMETER

This error code is returned under any of the following
conditions:

▪ The pointer referenced by the ppData argument is
NULL.<94>

▪ The fax server tried to return
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU, but the client
fax API version (FAX_API_VERSION_0, described in
3.1.4.1.10) does not support this error code.

0x00001B63

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU

The fax client module's API version (as specified in
FAX_ConnectFaxServer (section 3.1.4.1.10))) is
FAX_API_VERSION_1 or above, and the fax server is running.
on a version of the operating system that does not support the
requested operation.<95>

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.27 FAX_EnumOutboundRules (Opnum 59)

The FAX_EnumOutboundRules (Opnum 59) method is called by the client to enumerate all the

outbound routing rules that are present on the specified fax server.

In response, the server MUST validate whether the client's fax user account has access to enumerate
the outbound routing rules.

On success, the server MUST use the lpData parameter to return information about all its outbound
routing rules. It MUST also return the size of the returned information and the number of outbound
routing rules for which it successfully enumerated information.

The client SHOULD free lpData.

 error_status_t FAX_EnumOutboundRules(
 [in] handle_t hFaxHandle,
 [out, size_is(, *lpdwDataSize)]
 LPBYTE* ppData,
 [out, ref] LPDWORD lpdwDataSize,
 [out, ref] LPDWORD lpdwNumRules
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle

used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

ppData: A pointer to a buffer containing an array of
_RPC_FAX_OUTBOUND_ROUTING_RULEW (section 2.2.42) structures.

lpdwDataSize: A pointer to a DWORD in which to return the size, in bytes, of the lpData buffer.

lpdwNumRules: A pointer to a DWORD value indicating the number of rules retrieved.

222 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have
the access rights (FAX_ACCESS_QUERY_CONFIG) required
for this operation.

0x00000057

ERROR_INVALID_PARAMETER

The fax server tried to return
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU but the client fax
API version (FAX_API_VERSION_0, described in 3.1.4.1.10)

does not support this error code.

0x00001B63

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU

The fax client module's API version (as specified in
FAX_ConnectFaxServer (section 3.1.4.1.10))) is
FAX_API_VERSION_1 or above, and the fax server is running
on a version of the operating system that does not support the
requested operation.<96>

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.28 FAX_EnumPorts (Opnum 10)

The FAX_EnumPorts (Opnum 10) method is called by the client to obtain port state information.

In response, the server MUST validate whether the client's fax user account has access to enumerate
all the devices (ports) on the server. On success, the server MUST return information about all its
devices in PortBuffer. It MUST also return the size of the returned information and the number of
devices for which it successfully enumerated information.

The client SHOULD free the returned buffer.

 error_status_t FAX_EnumPorts(
 [in] handle_t hBinding,
 [out, size_is(,*BufferSize)] LPBYTE* PortBuffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD PortsReturned
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

PortBuffer: A pointer to the address of a buffer to receive an array of
_FAX_PORT_INFO (section 2.2.7) structures. Each structure describes one fax port.

BufferSize: A variable to return the size, in bytes, of the port buffer.

PortsReturned: A pointer to a DWORD variable to receive the number of
_FAX_PORT_INFO (section 2.2.7) structures that the method returns in the PortBuffer parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

223 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the access
rights (FAX_ACCESS_QUERY_CONFIG) required for this operation.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command. The fax server
cannot allocate sufficient memory to hold the array of _FAX_PORT_INFO
structures to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the
following conditions are met: <97>

▪ The PortBuffer parameter is set to a NULL pointer value.

▪ The PortsReturned parameter is set to a NULL pointer value.

0x0000054F

ERROR_INTERNAL_ERROR

The fax server failed to custom marshal the array of _FAX_PORT_INFO
structures to be returned to the client.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.29 FAX_EnumPortsEx (Opnum 48)

The FAX_EnumPortsEx (Opnum 48) method is called by the client to enumerate detailed port state
information for each device that is connected to the fax server.

In response, the server MUST validate whether the client's fax user account has access to enumerate
all the devices (ports) on the server. On success, the server MUST return information about all its
devices in Buffer. It MUST also return the size of the returned information and the number of devices
for which it successfully enumerated information.

The client SHOULD free the returned buffer.

 error_status_t FAX_EnumPortsEx(
 [in] handle_t hFaxHandle,
 [out, size_is(, *BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD lpdwNumPorts
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

Buffer: A pointer to the address of a buffer to receive an array of
_FAX_PORT_INFO_EXW (section 2.2.46) structures. Each structure describes one fax port. The

data includes, among other items, the line identifier and the current status and capability of the

port.

BufferSize: A pointer to a DWORD in which to return the size, in bytes, of the buffer.

lpdwNumPorts: A pointer to a DWORD variable that receives the number of ports that are returned
by the method.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

224 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the access
rights (FAX_ACCESS_QUERY_CONFIG) required for this operation.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command. The fax server
cannot allocate sufficient memory to hold the array of
_FAX_PORT_INFO_EXW structures to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The Buffer parameter is set to a NULL pointer value. <98>

0x0000054F

ERROR_INTERNAL_ERROR

The fax server failed to custom marshal the array of
_FAX_PORT_INFO_EXW structures to be returned to the client.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.30 FAX_EnumRoutingExtensions (Opnum 78)

The FAX_EnumRoutingExtensions (Opnum 78) function is called by the client to enumerate all the
routing extensions that are registered with the specified fax server. The function returns detailed
information about each of the routing extensions.

In response, the server MUST validate whether the client's fax user account has access to enumerate
all the routing extensions on the server. On success, the server MUST return information about all its
routing extensions in Buffer. The server MUST also return the size of the returned information and the

number of routing extensions for which it successfully enumerated information.

The client SHOULD free the returned buffer.

 error_status_t FAX_EnumRoutingExtensions(
 [in] handle_t hFaxHandle,
 [out, size_is(, *BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD lpdwNumExts
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

Buffer: A pointer to the address of a buffer to receive an array of

FAX_ROUTING_EXTENSION_INFO (section 2.2.49) structures. Each structure contains information
about one fax routing extension, as it pertains to the entire Fax Service.

BufferSize: A pointer to a DWORD in which to return the size, in bytes, of the buffer.

lpdwNumExts: A pointer to a DWORD variable to receive the number of

FAX_ROUTING_EXTENSION_INFO (section 2.2.49) structures that the method returns in the
ppRoutingExtensions parameter. This number MUST equal the total number of fax device routing
extensions that are installed on the target server.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

225 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the access
rights (FAX_ACCESS_QUERY_CONFIG) required for this operation.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command. The fax server
cannot allocate sufficient memory to hold the array of
FAX_ROUTING_EXTENSION_INFO structures to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The Buffer parameter is set to a NULL pointer value. <99>

0x0000054F

ERROR_INTERNAL_ERROR

The fax server failed to custom marshal the array of
FAX_ROUTING_EXTENSION_INFO structures to be returned to the client.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.31 FAX_EnumRoutingMethods (Opnum 13)

The FAX_EnumRoutingMethods (Opnum 13) method is called by the client to enumerate all the routing
methods for a specified port that are registered with the fax server in the fax server's list of routing
methods. The client calls Fax_OpenPort (Opnum 2) (section 3.1.4.1.65) to get the value for
FaxPortHandle. The function returns detailed information about each of the enumerated routing
methods.

In response, the server MUST validate that the client's fax user account has access to query

configuration. The server MUST allocate memory for the routing information array to be passed out
and the server MUST fill the routing information array with data.

On success, the server MUST fill the buffer with the routing information for the particular port, along
with the buffer size and the number of enumerated methods.

The client SHOULD free the buffer.<100>

 error_status_t FAX_EnumRoutingMethods(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [out, size_is(, *RoutingInfoBufferSize)]
 LPBYTE* RoutingInfoBuffer,
 [out, ref] LPDWORD RoutingInfoBufferSize,
 [out, ref] LPDWORD PortsReturned
);

FaxPortHandle: An RPC context handle that references a specified fax port.

RoutingInfoBuffer: A pointer to the address of a buffer to receive an array of
FAX_ROUTING_METHOD (section 2.2.9) structures. Each structure contains information about one
fax routing method.

RoutingInfoBufferSize: A variable to return the size, in bytes, of the routing method buffer.

PortsReturned: A pointer to a DWORD variable to receive the number of
FAX_ROUTING_METHOD (section 2.2.9) structures that are returned by the RoutingInfoBuffer
parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

226 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000001

ERROR_INVALID_FUNCTION

The fax server failed to enumerate any routing methods for the fax port
specified through the FaxPortHandle parameter.

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the access
rights (FAX_ACCESS_QUERY_CONFIG) required for this operation.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command. The fax server
cannot allocate sufficient memory to hold the array of
FAX_ROUTING_METHOD structures to be returned to the client.

0x0000000D

ERROR_INVALID_DATA

This error SHOULD be returned if the FaxPortHandle argument is not a
valid handle obtained using FAX_OpenPort.<101>

0x00000057

ERROR_INVALID_PARAMETER

The RoutingInfoBuffer parameter is set to a NULL pointer value. <102>

0x0000054F

ERROR_INTERNAL_ERROR

The fax server failed to custom marshal the array of
FAX_ROUTING_METHOD structures to be returned to the client.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.32 FAX_GetAccountInfo (Opnum 96)

The FAX_GetAccountInfo (Opnum 96) method is called by the client to retrieve information about a

specified fax user account. The fax user account for which information is retrieved is specified by the
lpcwstrAccountName parameter, which can be obtained using the
FAX_EnumAccounts (section 3.1.4.1.18) method.

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and
FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client

MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0
(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For

more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

In response, the server MUST validate the account name that is passed in with the
lpwstrAccountName argument. If the account name specified by the lpwstrAccountName argument is
not the same as the logged-on user, the server MUST check whether this user account has access to
query configuration as follows. If the user account specified by the lpwstrAccountName argument is
not the caller, and it does not have the FAX_ACCESS_QUERY_CONFIG rights, the call MUST return
ERROR_ACCESS_DENIED. The server MUST allocate the buffer to hold the account information.

On success, the server MUST return the detailed information about the account that is passed in the
buffer as per the level specified, along with the buffer size.

The client SHOULD free the buffer.

 error_status_t FAX_GetAccountInfo(
 [in] handle_t hBinding,
 [in, string, unique] LPCWSTR lpcwstrAccountName,
 [in] DWORD level,
 [out, size_is(,*BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize
);

227 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpcwstrAccountName: A pointer to a constant, null-terminated character string that contains the

name of the account for which to retrieve information.

level: A DWORD value that indicates the type of structure that is pointed to by Buffer. This MUST be
zero.

Buffer: A pointer to a FAX_ACCOUNT_INFO_0 (section 2.2.24) structure that contains fax account
information.

BufferSize: A pointer to a DWORD value that specifies the size, in bytes, of the structure that is
pointed to by the Buffer parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The user account specified by the lpwstrAccountName
argument is not the caller, and it does not have the fax access rights
FAX_ACCESS_QUERY_CONFIG.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. The value of the level argument is greater than
zero. The account name specified by the lpcwstrAccountName parameter is
not a valid fax account name.

0x00000002

ERROR_FILE_NOT_FOUND

The account name specified by the lpcwstrAccountName parameter appears
valid but does not exist.

The account name that lpcwstrAccountName indicates MUST be in one of the following formats. Any

other format is invalid.

Format Description

<machine_name>\<user_name> For a local user that has machine_name as the name of the local machine.

<domain_name>\<user_name> For a nonlocal user.

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.33 FAX_GetActivityLoggingConfiguration (Opnum 43)

The FAX_GetActivityLoggingConfiguration (Opnum 43) method is called by the client to retrieve the
current activity logging configuration.

In response, the server MUST validate that the client's fax user account has access to query
configuration. It MUST then allocate memory for the activity logging information to be passed out and

fill it with data.

To indicate success, the server MUST return the buffer that contains the activity logging information,
along with the buffer size.

The client SHOULD free the buffer.

228 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 error_status_t FAX_GetActivityLoggingConfiguration(
 [in] handle_t hFaxHandle,
 [out, size_is(, *BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

Buffer: A pointer to a _FAX_ACTIVITY_LOGGING_CONFIGW (section 2.2.26) structure.

BufferSize: A pointer to a DWORD in which to return the size, in bytes, of the buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the access
rights (FAX_ACCESS_QUERY_CONFIG) required for this operation.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command. The fax server
cannot allocate sufficient memory to hold the
_FAX_ACTIVITY_LOGGING_CONFIGW structure to be returned to the
client.

0x00000057

ERROR_INVALID_PARAMETER

The Buffer parameter is set to a NULL pointer value. <103>

0x0000054F

ERROR_INTERNAL_ERROR

The fax server failed to custom marshal the
_FAX_ACTIVITY_LOGGING_CONFIGW structure to be returned to the
client.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.34 FAX_GetArchiveConfiguration (Opnum 41)

The FAX_GetArchiveConfiguration (Opnum 41) method is called by the client to retrieve the current

archive configuration on the fax server. In response, the server returns archive configuration
information about the fax server.

Protocol version FAX_API_VERSION_3 (0x00030000) fax servers SHOULD fail this call by returning
ERROR_NOT_SUPPORTED (0x00000032). The fax client SHOULD NOT call this method if the protocol
version reported by the server is FAX_API_VERSION_3 (0x00030000). For more information, see
FAX_ConnectFaxServer (section 3.1.4.1.10). The fax client SHOULD call

FAX_GetGeneralConfiguration (section 3.1.4.1.40) instead.

In response, the server MUST validate that the client's fax user account has access to query
configuration. Then, the server MUST allocate memory for the archive configuration information to be
passed out and the server MUST fill the archive configuration information with data.

To indicate success, the server MUST return the buffer that contains the archive configuration
information, along with the buffer size.

The client SHOULD free the buffer.

229 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 error_status_t FAX_GetArchiveConfiguration(
 [in] handle_t hFaxHandle,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder,
 [out, size_is(, *BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

Folder: Archive location. This MUST be either FAX_MESSAGE_FOLDER_INBOX (section 2.2.2) or
FAX_MESSAGE_FOLDER_SENTITEMS (section 2.2.2).

Buffer: A pointer to a FAX_ARCHIVE_CONFIGW (section 2.2.27) object. If the size of the archive
exceeds the dwSizeQuotaHighWatermark value and if the bSizeQuotaWarning member is set
to TRUE, an event log warning SHOULD be issued. If an event log warning was already issued, no
more events SHOULD be issued until the size of the archive drops below the

dwSizeQuotaLowWatermark value. If a fax message stays in the archive longer than the

dwAgeLimit value, it MAY be automatically deleted. If the dwAgeLimit value is zero, the time
limit MUST NOT be used.

BufferSize: A pointer to a DWORD in which to return the size, in bytes, of the buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the access
rights (FAX_ACCESS_QUERY_CONFIG) required for this operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the
following conditions are met:

▪ The Buffer parameter is set to a NULL pointer value. <104>

▪ The value specified for the Folder parameter is not
FAX_MESSAGE_FOLDER_SENTITEMS or
FAX_MESSAGE_FOLDER_INBOX.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command. The fax server
cannot allocate sufficient memory to hold the FAX_ARCHIVE_CONFIGW
structure to be returned to the client.

0x00000032

ERROR_NOT_SUPPORTED

The fax server does not implement this method. Protocol version
FAX_API_VERSION_3 (0x00030000) fax servers SHOULD fail this call by
returning this error code.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.35 FAX_GetConfigOption (Opnum 104)

The FAX_GetConfigOption (Opnum 104) is called by the client to retrieve a configuration setting at the
server using an RPC_REQUEST packet.

230 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and
FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client

MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0
(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For

more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

In response, the server MUST validate that the client's fax user account has access as follows. Use of
this method does NOT require FAX_ACCESS_QUERY_CONFIG access rights. A calling user with any
access control entry (ACE) on the server can use this method.

On success, the appropriate config option MUST be passed out by the server.

 error_status_t FAX_GetConfigOption(
 [in] handle_t hFaxHandle,
 [in] FAX_ENUM_CONFIG_OPTION option,
 [out] LPDWORD lpdwValue
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

option: Identifies the configuration option to be returned. This parameter MUST be a value from the

FAX_ENUM_CONFIG_OPTION (section 2.2.3) enumeration.

lpdwValue: A pointer to a DWORD that holds the value of the configuration option upon return. The
value's type depends on the configuration option that was asked for using the option parameter.

If option was set to FAX_CONFIG_OPTION_ALLOW_PERSONAL_CP, lpdwValue contains a BOOL
that MUST take one of the following values.

Value Meaning

0x00000001 TRUE. The server allows personal cover page templates.

0x00000000 FALSE. The server allows only server-side cover page templates.

If option was set to FAX_CONFIG_OPTION_QUEUE_STATE, lpdwValue is a DWORD value that
MUST specify state information about the fax queue defined in section 3.1.1. If this value is zero,
both the incoming and outgoing queues are unblocked. Otherwise, this value MUST be a
combination of one or more of the following flags.

Value Meaning

FAX_INCOMING_BLOCKED

0x00000001

The incoming faxes queue is blocked. The fax server does not answer any new
incoming faxes.

FAX_OUTBOX_BLOCKED

0x00000002

The outbox queue is blocked. The fax server does not accept submission of new
faxes. If the outbox is not paused, faxes in the queue are being processed.

FAX_OUTBOX_PAUSED

0x00000004

The outbox queue is paused. The fax server will not start sending outgoing

faxes from the queue. Fax transmissions in progress are not affected. If the
outbox is not blocked, the fax server still accepts submission of new faxes to
the queue.

If option was set to FAX_CONFIG_OPTION_ALLOWED_RECEIPTS, lpdwValue contains a DWORD
that MUST be a bitwise combination of one or more of the flags that are specified in
FAX_ENUM_DELIVERY_REPORT_TYPES (section 2.2.76).

231 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

If option was set to FAX_CONFIG_OPTION_INCOMING_FAXES_PUBLIC, lpdwValue contains a
BOOL that MUST take one of the following values.

Value Meaning

TRUE

0x00000001

All incoming faxes can be viewed by all fax users.

FALSE

0x00000000

Incoming faxes can be viewed only by recipients.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have any of the
permissions covered by ALL_FAX_USER_ACCESS_RIGHTS.

0x00000057

ERROR_INVALID_PARAMETER

This error is returned when any of the following conditions are met:

▪ The lpdwValue parameter is set to a NULL pointer value.<105>

▪ The configuration option specified by the option parameter is not one of
the following values: FAX_CONFIG_OPTION_ALLOW_PERSONAL_CP,
FAX_CONFIG_OPTION_QUEUE_STATE,
FAX_CONFIG_OPTION_ALLOW_RECEIPTS or
FAX_CONFIG_OPTION_INCOMING_FAXES_PUBLIC.

Use of this method does not require FAX_ACCESS_QUERY_CONFIG access rights. A calling user with

any ACE on the server can use this method.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.36 FAX_GetConfiguration (Opnum 19)

The FAX_GetConfiguration (Opnum 19) method is called by the client to query the general
configuration of the fax server that is described by the _FAX_CONFIGURATIONW (section 2.2.29)

structure.

In response, the server MUST validate that the client's fax user account has access to query the
configuration of the fax server. It MUST then allocate memory for the configuration information to be
passed out and fill it with data.

To indicate success, the server MUST return the buffer that contains the configuration information,
along with the buffer size. The client SHOULD free the buffer.

 error_status_t FAX_GetConfiguration(
 [in] handle_t hBinding,
 [out, size_is(, *BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

232 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Buffer: A pointer to the address of a buffer to receive a _FAX_CONFIGURATIONW (section 2.2.29)
structure. The structure contains the current configuration settings for the fax server.

BufferSize: A variable to return the size, in bytes, of the buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_ACCESS_QUERY_CONFIG access rights required for this
operation.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

 The server cannot allocate sufficient memory to hold the
FAX_CONFIGURATION data structure to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The buffer parameter is set to a NULL pointer value.<106>

0x0000054F

ERROR_INTERNAL_ERROR

The server failed to custom marshal the FAX_CONFIGURATION data
structure to be returned to the client.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.37 FAX_GetCountryList (Opnum 30)

The FAX_GetCountryList (Opnum 30) method is called by the client to retrieve the list of
country/region information that is defined on the server. TAPI maintains this list, which contains
information like the country/region name or country/region ID.

In response, the server MUST validate that the client's fax user account has any access to the fax

server. It MUST then allocate memory for the country/region list array to be passed out and fill it with
data. To indicate success, the server MUST return the buffer that contains the country/region list,
along with the buffer size.

The client SHOULD free the buffer.

 error_status_t FAX_GetCountryList(
 [in] handle_t FaxHandle,
 [out, size_is(, *BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize
);

FaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

Buffer: A pointer to a buffer of type FAX_TAPI_LINECOUNTRY_LISTW (section 2.2.51) in which to
place the country/region information.

BufferSize: A pointer to a DWORD in which to return the size, in bytes, of the buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

233 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have any of the
permissions covered by ALL_FAX_USER_ACCESS_RIGHTS.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command. The fax server
cannot allocate sufficient memory to hold the
FAX_TAPI_LINECOUNTRY_LISTW structure to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error is returned if the Buffer parameter
is set to a NULL pointer value.<107>

0x0000054F

ERROR_INTERNAL_ERROR

The fax server failed to custom marshal the
FAX_TAPI_LINECOUNTRY_LISTW structure to be returned to the client.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.38 FAX_GetDeviceStatus (Opnum 8)

The FAX_GetDeviceStatus (Opnum 8) method is called by the client to retrieve information about a
specified fax device (port).

In response, the server MUST validate that the client's fax user account has access to query
configuration. The server SHOULD validate that the FaxPortHandle is not set to NULL. It MUST then
allocate memory for the status buffer to be passed out and fill it with data.

The fax server MUST ignore the access mode of the fax port specified by the FaxPortHandle.

To indicate success, the server MUST return the buffer that contains the status information, along with
the buffer size.

The client SHOULD free the buffer.

 error_status_t FAX_GetDeviceStatus(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [out, size_is(,*BufferSize)] LPBYTE* StatusBuffer,
 [out, ref] LPDWORD BufferSize
);

FaxPortHandle: An RPC context handle that references a specified fax port. This context handle
MUST be obtained using the FAX_OpenPort (section 3.1.4.1.65) method.

StatusBuffer: A pointer to the address of a buffer to receive a FAX_DEVICE_STATUS (section 2.2.10)
structure. The structure describes the status of one fax device. The fax server MUST set the
SizeOfStruct member of this structure to the correct size for the Fixed_Portion block of the
FAX_DEVICE_STATUS structure, as described in section 2.2.10.

BufferSize: A variable to return the size, in bytes, of the data returned in the buffer referenced by

the StatusBuffer parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005 Access is denied. The client's fax user account does not have the
FAX_ACCESS_QUERY_CONFIG access rights required for this

234 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

ERROR_ACCESS_DENIED operation.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

 The server cannot allocate sufficient memory to hold the
FAX_DEVICE_STATUS data structure to be returned to the client.

0x0000000D

ERROR_INVALID_DATA

The FaxPortHandle parameter is not set to a valid port handle obtained
using FAX_OpenPort.<108>

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The StatusBuffer parameter is set to a NULL pointer value.<109>

▪ The FaxPortHandle parameter is set to a NULL value.<110>

0x0000054F

ERROR_INTERNAL_ERROR

The server failed to custom marshal the FAX_DEVICE_STATUS structure
to be returned to the client.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC

protocol, [MS-RPCE].

3.1.4.1.39 FAX_GetExtensionData (Opnum 49)

The FAX_GetExtensionData (Opnum 49) method is called by the client to retrieve the private
configuration data for a fax routing extension or a routing method. Such private configuration data is
written with a FAX_SetExtensionData (section 3.1.4.1.79) call. The lpcwstrNameGUID parameter
MUST be for a valid routing extension or routing method for which the client requests the private data.

The value for the dwDeviceId parameter can be obtained using the
FAX_EnumPorts (section 3.1.4.1.28) parameter or the FAX_EnumPortsEx (section 3.1.4.1.29)
parameter.

In response, the server MUST validate that the client's fax user account has the access rights required

to query the configuration data. It MUST then allocate memory for the routing extension data to be
passed out and fill it with data.

To indicate success, the server MUST return the buffer that contains the routing extension data, along
with the buffer size.

The client SHOULD free the buffer.

 error_status_t FAX_GetExtensionData(
 [in] handle_t hFaxHandle,
 [in] DWORD dwDeviceId,
 [in, string, ref] LPCWSTR lpcwstrNameGUID,
 [out, size_is(, *lpdwDataSize)]
 LPBYTE* ppData,
 [out, ref] LPDWORD lpdwDataSize
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

dwDeviceId: The device identifier. A value of zero indicates the caller requests a named data BLOB
that is not associated with any specific device. This value can be used to store configurations that
affect all the devices. For example, an Optical Character Recognition (OCR) routing extension
might export several different routing methods that all rely on the same OCR parameters. This

235 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

routing extension can associate the OCR configuration with a non-specific device so that it would
become global.

lpcwstrNameGUID: A curly-braced GUID string that identifies the data to return. The GUID can
identify a routing extension or a routing method.Because GUIDs are unique, the server determines

from the specific GUID value whether the call is requesting routing extension data or routing
method data.

ppData: A pointer to an allocated private data buffer. This buffer contains the data that is returned by
the fax server. For the default routing methods described in section 2.2.87, this data is a null-
terminated character string containing an EmailID, Printer, or Folder name. For other routing
extensions or methods the format of this data depends on the respective routing extension or
routing method and SHOULD be treated as opaque binary data by the fax server.

lpdwDataSize: A pointer to a DWORD value that returns the size, in bytes, of the data that is
pointed to by the ppData parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the access
rights (FAX_ACCESS_QUERY_CONFIG) required for this operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the following
conditions are met: <111>

▪ The lpcwstrNameGUID parameter is set to a NULL pointer value.

▪ The ppData parameter is set to a NULL pointer value.

▪ The lpdwDataSize parameter is set to a NULL pointer value.

▪ The lpcwstrNameGUID parameter holds an invalid curly-braced GUID

string.

0x000003F7

ERROR_REGISTRY_CORRUPT

The registry is corrupted. The structure of one of the files that contain
registry data is corrupted, or the system's memory image of the file is
corrupted, or the file could not be recovered because the alternate copy or
log was absent or corrupted.

0x00000002

ERROR_FILE_NOT_FOUND

The fax server cannot find the requested data.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.40 FAX_GetGeneralConfiguration (Opnum 97)

The FAX_GetGeneralConfiguration (Opnum 97) method is called by the client to request information
about the general configuration at the server.

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and

FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client
MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0
(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For
more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

236 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

In response, the server MUST validate that the client's fax user account has access to query
configuration. It then MUST allocate memory for the configuration information to be passed out and

then fill it with data.

On success, the server MUST return the buffer that contains the configuration information as specified

by the level, along with the buffer size.

The client SHOULD free the buffer.

 error_status_t FAX_GetGeneralConfiguration(
 [in] handle_t hBinding,
 [in] DWORD level,
 [out, size_is(,*BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

level: A DWORD value that indicates the type of structure pointed to by Buffer. This MUST be zero.

Buffer: A pointer to a FAX_GENERAL_CONFIG (section 2.2.31) structure that contains the server
information to retrieve. The buffer indicated by this pointer contains the following:

1. A serialized FAX_GENERAL_CONFIG structure filled by server.

2. A null-terminated, wide character string that indicates the archive folder location on the fax
server file system.

The lpcwstrArchiveLocation member of the FAX_GENERAL_CONFIG structure contains the

offset to this string in the buffer.

BufferSize: A pointer to a DWORD value that specifies the size, in bytes, of the buffer that is pointed

to by the Buffer parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_ACCESS_QUERY_CONFIG access rights required for this
operation.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command. The fax server
failed to allocate sufficient memory to hold the FAX_GENERAL_CONFIG
structure to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. The level parameter is set to a value other
than 0.

0x0000054F

ERROR_INTERNAL_ERROR

The fax server failed to custom marshal the FAX_GENERAL_CONFIG
structure to be returned to the client.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC

protocol, [MS-RPCE].

3.1.4.1.41 FAX_GetJob (Opnum 5)

237 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The FAX_GetJob (Opnum 5) method is called by the client to retrieve information regarding a specific
job. The job is specified by the JobId parameter. The value for the JobId parameter can be obtained

using one of the following methods: FAX_EnumJobs (section 3.1.4.1.21),
FAX_EnumJobsEx (section 3.1.4.1.22), or FAX_EnumJobsEx2 (section 3.1.4.1.23).

In response, the server MUST validate that the job identified by JobId exists in the fax queue. The
server MUST validate that the client's fax user account has access to query the job identified by JobId
as follows:

▪ If the job is for an outgoing fax, the client's fax user account MUST be the owner of the job or
have FAX_ACCESS_QUERY_OUT_JOBS access rights.

▪ If the job is for an incoming fax, the client's fax user account MUST have the
FAX_ACCESS_MANAGE_RECEIVE_FOLDER access rights or the incoming faxes MUST be public.

On success, the server MUST return the job information of the specified job.

The client SHOULD free the returned buffer.

 error_status_t FAX_GetJob(
 [in] handle_t hBinding,
 [in] DWORD JobId,
 [out, size_is(,*BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

JobId: A unique number that identifies a queued or active fax job.

Buffer: A pointer to the address of a buffer to receive a _FAX_JOB_ENTRY (section 2.2.6) structure.

BufferSize: A variable to return the size, in bytes, of the job information buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

 The client's fax user account does not have access to query the job
specified by the JobId parameter. This error can happen in any of the
following cases:

▪ The job specified by the JobId parameter is an outgoing job; the
client (the fax user account currently logged in on the client) is not
the owner of this job and does not have the
FAX_ACCESS_QUERY_OUT_JOBS access rights.

▪ The job specified by the JobId parameter is an incoming job;
incoming faxes are not public and the client's fax user account does
not have the FAX_ACCESS_MANAGE_RECEIVE_FOLDER rights.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The server cannot allocate sufficient memory to hold the FAX_JOB_ENTRY
structure to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the
following conditions are met:

238 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

▪ The Buffer parameter is set to a NULL pointer value.<112>

▪ The fax job specified by the JobId parameter cannot be found (does
not exist) in the fax server queue.

▪ The fax job specified by the JobId parameter cannot be queried: the
job type is JT_BROADCAST, JS_DELETING, or JS_COMPLETED.
For more information about job types, see the description of the
dwJobType member of the FAX_JOB_STATUS (section 2.2.36)
structure.

0x0000054F

ERROR_INTERNAL_ERROR

The server failed to custom marshal the FAX_JOB_ENTRY structure to be
returned to the client.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC

protocol, [MS-RPCE].

3.1.4.1.42 FAX_GetJobEx (Opnum 29)

The FAX_GetJobEx (Opnum 29) is called by the client to retrieve information about a specified job at
the server. The job is identified by the job message ID. The job message ID can be obtained using one
of the following methods: FAX_EnumJobs (section 3.1.4.1.21), FAX_EnumJobsEx (section 3.1.4.1.22),
or FAX_EnumJobsEx2 (section 3.1.4.1.23).

In response, the server MUST validate that the message ID is for a valid job. The server MUST
validate that the client's fax user account has read access to the job.

On success, the server MUST return the queued job's job information and the size of the job
information.

This method is an extended version of FAX_GetJob (section 3.1.4.1.41), which returns a
FAX_JOB_ENTRY_EXW (section 2.2.35) structure for the specified message.

The client SHOULD free the returned buffer.

 error_status_t FAX_GetJobEx(
 [in] handle_t hBinding,
 [in] DWORDLONG dwlMessageID,
 [out, size_is(, *BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

dwlMessageID: A unique number that identifies a queued or active fax job. The job MUST be an

inbound or outbound transmission.

Buffer: A pointer to the address of a buffer to receive one FAX_JOB_ENTRY_EXW (section 2.2.35)
structure followed by one FAX_JOB_STATUS (section 2.2.36) structure, followed by other data
pointed at from these two structures (from pointer type fields). These two data structures describe
one fax job. If the pStatus pointer field of the FAX_JOB_ENTRY_EXW structure is not NULL, it
MUST point to the address of the FAX_JOB_STATUS structure in the buffer. If the pStatus pointer
is NULL, the FAX_JOB_STATUS structure is located in the buffer immediately after the
FAX_JOB_ENTRY_EXW structure. The field length MUST be clamped to 32 bits before serialization.

239 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

BufferSize: A variable to return the size, in bytes, of the buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the access
rights required for this operation: ALL_FAX_USER_ACCESS_RIGHTS.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The server cannot allocate memory for the data to be returned to the
caller.

0x00000057

ERROR_INVALID_PARAMETER

This error code is returned under any of the following conditions:<113>

▪ The pointer submitted for the Buffer argument is NULL.

▪ The pointer submitted for the BufferSize argument is NULL.

0x00001B61

FAX_ERR_MESSAGE_NOT_FOUND

The fax server cannot find the fax job indicated by the dwlMessageId
argument.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.43 FAX_GetJobEx2 (Opnum 87)

The FAX_GetJobEx2 (Opnum 87) method is called by the client to retrieve information about a
specified job. The job is identified by the job message ID. The job message ID can be obtained using

one of the following methods: FAX_EnumJobs (section 3.1.4.1.21),
FAX_EnumJobsEx (section 3.1.4.1.22), or FAX_EnumJobsEx2 (section 3.1.4.1.23).

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and
FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client
MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0
(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For
more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

In response, the server MUST validate that the message ID is for a valid job. The server MUST
validate that the client's fax user account has read access to the job.

On success, the server MUST return the information about the specified job in a
FAX_JOB_ENTRY_EX_1 (section 2.2.34) structure. This method is an extended version of
FAX_GetJob (section 3.1.4.1.41).

The client SHOULD free the returned buffer.

 error_status_t FAX_GetJobEx2(
 [in] handle_t hBinding,
 [in] DWORDLONG dwlMessageID,
 [in] DWORD level,
 [out, size_is(,*BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

240 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

dwlMessageID: A DWORDLONG value that specifies a unique number that identifies a queued or
active fax job. The job MUST be an inbound or outbound transmission.

level: A DWORD value that indicates the structure to return in Buffer. This value MUST be set to 1.

Buffer: A pointer to the address of a buffer that receives a FAX_JOB_ENTRY_EX_1 (section 2.2.34)

structure.

BufferSize: A pointer to a DWORD value that specifies the size, in bytes, of the buffer that is pointed
to by the Buffer parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. This error code is returned under any of the following
conditions:

▪ The client's fax user account does not have any of the permissions
covered by ALL_FAX_USER_ACCESS_RIGHTS.

▪ For an outgoing fax job, the caller is not the owner of the fax job,
and the caller does not have the FAX_ACCESS_MANAGE_OUT_JOBS
rights.

▪ For an incoming fax job, the caller is not the receiver of the call,
incoming faxes are not public, and the client's fax user account does
not have the FAX_ACCESS_MANAGE_RECEIVE_FOLDER rights.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command. The fax server
failed to allocate sufficient memory to hold the FAX_JOB_ENTRY_EX_1
structure to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The Buffer and/or BufferSize parameters are set to NULL pointer
values.<114>

▪ The level parameter is set to a value other than 1.

0x00001B61

FAX_ERR_MESSAGE_NOT_FOUND

This error code is returned under any of the following conditions:

▪ The fax server cannot find the fax job identified by the value of the
dwlMessageID parameter.

▪ The user is not the owner of the fax job identified by the value of
the dwlMessageID parameter.

0x0000054F

ERROR_INTERNAL_ERROR

The fax server failed to custom marshal the FAX_JOB_ENTRY_EX_1
structure to be returned to the client.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.44 FAX_GetLoggingCategories (Opnum 21)

The FAX_GetLoggingCategories (Opnum 21) method is called by the client. In response, the server
MUST return the current logging categories for the fax server to which the client has connected. A

241 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

logging category determines the errors or other events that the fax server records in the application
event log.

The client SHOULD free the returned buffer.

 error_status_t FAX_GetLoggingCategories(
 [in] handle_t hBinding,
 [out, size_is(, *BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD NumberCategories
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

Buffer: A pointer to the address of a buffer to receive an array of
FAX_LOG_CATEGORY (section 2.2.11) structures. The number of structures included in the array

is set by NumberCategories. Each structure describes one current logging category. The Name
strings are appended after the FAX_LOG_CATEGORY entries. The Name field of each

FAX_LOG_CATEGORY structure is an offset indicating the location of the associated Name string
in the buffer.<115>

BufferSize: A variable to return the size, in bytes, of the buffer.

NumberCategories: A pointer to a DWORD variable to receive the number of FAX_LOG_CATEGORY
structures that the method returns in the Buffer parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_ACCESS_QUERY_CONFIG access rights required for this operation.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The server cannot allocate sufficient memory to hold the array of
FAX_LOG_CATEGORY structures to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the
following conditions are met:

▪ The BufferSize parameter is set to a NULL pointer value.<116>

▪ The NumberCategories parameter is set to a NULL pointer
value.<117>

0x0000054F

ERROR_INTERNAL_ERROR

The server failed to custom marshal the array of FAX_LOG_CATEGORY
structures to be returned to the client.

0x00000216

ERROR_ARITHMETIC_OVERFLOW

This error code is returned if any of the following conditions are met:

▪ The total number of logging categories multiplied by the size, in
bytes, of the FAX_LOG_CATEGORY Fixed_Size block results in a
number that exceeds the maximum value for a DWORD
(0xFFFFFFFF).

▪ The total number of logging categories multiplied by the size, in
bytes, of the FAX_LOG_CATEGORY Fixed_Size block plus the sum

242 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

of all lengths, in bytes, including NULL terminators, of all Name
strings from the Variable_Data blocks results in a number that
exceeds the maximum value for a DWORD (0xFFFFFFFF).

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.45 FAX_GetMessage (Opnum 66)

The FAX_GetMessage (Opnum 66) method is called by the client. The archive can be one of the

enumerations that are defined by FAX_ENUM_MESSAGE_FOLDER except
FAX_MESSAGE_FOLDER_QUEUE. The dwlMessageId parameter specifies a particular message and can
be obtained using the FAX_EnumMessages (section 3.1.4.1.24) method or the
FAX_EnumMessagesEx (section 3.1.4.1.25) method.

In response, the server MUST validate that the message ID is for a valid message. The server MUST
validate that the client's fax user account has access to read the message.

On success, the server MUST return the contents of the message and also its size.

The client SHOULD free the returned buffer.

 error_status_t FAX_GetMessage(
 [in] handle_t hFaxHandle,
 [in] DWORDLONG dwlMessageId,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder,
 [out, size_is(, *lpdwBufferSize)]
 LPBYTE* lppBuffer,
 [out, ref] LPDWORD lpdwBufferSize
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

dwlMessageId: A DWORDLONG value that identifies the fax message to retrieve from the archive.

Folder: The type of archive where the message resides. FAX_MESSAGE_FOLDER_QUEUE is an invalid
value for this parameter.

lppBuffer: A pointer to a buffer that receives a FAX_MESSAGEW (section 2.2.38) structure. This
buffer contains the retrieved message.

lpdwBufferSize: A pointer to a DWORD in which to return the size, in bytes, of the buffer that is
pointed to by the lppBuffer parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have any of the
permissions covered by ALL_FAX_USER_ACCESS_RIGHTS.

0x00000008 Not enough storage is available to process this command. The fax
server failed to allocate sufficient memory to hold the FAX_MESSAGEW

243 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

ERROR_NOT_ENOUGH_MEMORY structure to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned when any of the
following conditions are met:

▪ The lppBuffer or lpdwBufferSize parameters are set to NULL
pointer values.<118>

▪ The dwlMessageId parameter is set to a value of 0, and the value
of the specified Folder parameter is not
FAX_MESSAGE_FOLDER_INBOX or
FAX_MESSAGE_FOLDER_SENTITEMS.

0x00001B61

FAX_ERR_MESSAGE_NOT_FOUND

The fax server cannot find the job or message by its identifier. This
error code is returned when any of the following conditions are met:

▪ The message identified by the dwlMessageId parameter is not
found.

▪ The message identified by dwlMessageId is an unassigned
incoming fax. The incoming faxes are not public (accessible to all
users), and the user does not have
FAX_ACCESS_MANAGE_RECEIVE_FOLDER permission.

▪ The message identified by dwlMessageId is for a different user,
and this user does not have FAX_ACCESS_QUERY_ARCHIVES
permission.

0x0000054F

ERROR_INTERNAL_ERROR

The fax server failed to custom marshal the FAX_MESSAGEW structure
to be returned to the client.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.46 FAX_GetMessageEx (Opnum 89)

The FAX_GetMessageEx (Opnum 89) method is called by the client to retrieve a particular message
from one of the specified fax message archives. The dwlMessageId parameter specifies a particular
message and can be obtained using the FAX_EnumMessages (section 3.1.4.1.24) method or the
FAX_EnumMessagesEx (section 3.1.4.1.25) method. The folder value MUST be one of the

enumerations that are defined by FAX_ENUM_MESSAGE_FOLDER (section 2.2.2), except
FAX_MESSAGE_FOLDER_QUEUE. This is an extended version of FAX_GetMessage (section 3.1.4.1.45),
because it takes an additional level parameter supporting the extended structure
FAX_MESSAGE_1 (section 2.2.37).

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and
FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client
MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0

(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For

more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

In response, the server MUST validate that message ID is for a valid message. The server MUST
validate that the client's fax user account has access to read the message. On success, the server
MUST return the contents of the message in lppBuffer and also its size.

The client SHOULD free the returned buffer.

 error_status_t FAX_GetMessageEx(

244 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in] handle_t hFaxHandle,
 [in] DWORDLONG dwlMessageId,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder,
 [in] DWORD level,
 [out, size_is(,*lpdwBufferSize)]
 LPBYTE* lppBuffer,
 [out, ref] LPDWORD lpdwBufferSize
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

dwlMessageId: A DWORDLONG value that identifies the fax message to retrieve from the archive.

Folder: A FAX_ENUM_MESSAGE_FOLDER (section 2.2.2) enumeration that indicates the type of the

archive where the message resides. The FAX_MESSAGE_FOLDER_QUEUE value is invalid for this
parameter.

level: A DWORD value that indicates the type of structure to return in lppBuffer. The only value
currently supported is 1.

lppBuffer: A pointer to an array of FAX_MESSAGE_1 (section 2.2.37) structures that contain the
retrieved messages.

lpdwBufferSize: A pointer to a DWORD value that specifies the size, in bytes, of the buffer that is

pointed to by the lppBuffer parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have any of the
permissions covered by ALL_FAX_USER_ACCESS_RIGHTS.

0x00001B59

FAX_ERR_SRV_OUTOFMEMORY

The fax server failed to allocate memory needed for internal execution of
this operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect.

This error code results under any of the following conditions:

▪ The value of the specified level parameter is not 1.

▪ The pointer specified by the lppBuffer parameter is NULL.<119>

▪ The pointer specified by the lpdwBufferSize parameter is
NULL.<120>

▪ The value of the dwlMessageId parameter is specified as 0.

▪ The value of the specified Folder parameter is not
FAX_MESSAGE_FOLDER_INBOX or
FAX_MESSAGE_FOLDER_SENTITEMS.

0x00001B61

FAX_ERR_MESSAGE_NOT_FOUND

This error code is returned under any of the following conditions:

▪ The message identified by the dwlMessageId parameter is not
found.

245 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

▪ The message identified by dwlMessageId is an unassigned incoming
fax. The incoming faxes are not public (accessible to all users), and
the user does not have FAX_ACCESS_MANAGE_RECEIVE_FOLDER
permission.

▪ The message identified by dwlMessageId is for a different user, and
this user does not have FAX_ACCESS_QUERY_ARCHIVES
permission.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.47 FAX_GetOutboxConfiguration (Opnum 38)

The FAX_GetOutboxConfiguration (Opnum 38) method is called by the client to retrieve the outbox
configuration at the server.

In response, the server MUST validate that the client's fax user account has access to query the
outbox configuration. On success, the server MUST return the outbox configuration in Buffer and also
its size.

The client SHOULD free the returned buffer.

 error_status_t FAX_GetOutboxConfiguration(
 [in] handle_t hFaxHandle,
 [out, size_is(, *BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

Buffer: A pointer to a FAX_OUTBOX_CONFIG (section 2.2.16) object.

BufferSize: A pointer to a DWORD in which to return the size, in bytes, of the buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_ACCESS_QUERY_CONFIG access rights required for this operation.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command. The fax server
cannot allocate sufficient memory to hold the FAX_OUTBOX_CONFIG
structure to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. The Buffer parameter is set to a NULL pointer
value.<121>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

246 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.4.1.48 FAX_GetPageData (Opnum 7)

The FAX_GetPageData (Opnum 7) method is called by the client to retrieve data in the first page of an
outgoing fax job. The information that is returned in the buffer is an in-memory copy of the first page

of the TIFF file. The value for the JobId parameter can be obtained using one of the following
methods: FAX_EnumJobs (section 3.1.4.1.21), FAX_EnumJobsEx (section 3.1.4.1.22), or
FAX_EnumJobsEx2 (section 3.1.4.1.23).

In response, the server MUST validate that the JobId is for a valid job. The server MUST validate that
the client's fax user account has read access to the job. On success, the server MUST return the first
page of data for the queued or active job in the TIFF 6.0 Class F format in Buffer, along with the
image width and height.

The client SHOULD free the returned buffer.

For information about TIFF, see [RFC3302].

 error_status_t FAX_GetPageData(
 [in] handle_t hBinding,
 [in] DWORD JobId,
 [out, size_is(,*BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize,
 [in, out] LPDWORD ImageWidth,
 [in, out] LPDWORD ImageHeight
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

JobId: A unique number that identifies the fax job that is associated with the page of data.

Buffer: A pointer to the address of a buffer to receive the first page of data in the fax document.

BufferSize: A pointer to a DWORD variable to receive the size of the buffer, in bytes, pointed to by
the Buffer parameter.

ImageWidth: A pointer to a DWORD variable to receive the width, in pixels, of the fax image.

ImageHeight: A pointer to a DWORD variable to receive the height, in pixels, of the fax image.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The caller does not have the access rights required for

this operation: ALL_FAX_USER_ACCESS_RIGHTS (section 2.2.83).

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x0000000D

ERROR_INVALID_DATA

The job identified by the JobId parameter is not an outgoing fax job or is
not a valid fax job for which the fax server can extract the first page of
the TIFF file.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

247 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

▪ One or more of the following parameters are null pointers: Buffer,
ImageWidth, ImageHeight.<122>

▪ The fax server cannot find the fax job indicated by the JobId
parameter.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.49 FAX_GetPersonalCoverPagesOption (Opnum 40)

The FAX_GetPersonalCoverPagesOption (Opnum 40) method is called by the client to retrieve
information about the supported personal cover-page options.

In response, the server MUST return the personal cover-page option that is supported by the server.

 error_status_t FAX_GetPersonalCoverPagesOption(
 [in] handle_t hFaxHandle,
 [out, ref] LPBOOL lpbPersonalCPAllowed
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpbPersonalCPAllowed: A pointer to a BOOL that receives the personal cover-pages option. If
TRUE, the server allows sending personal cover pages. Otherwise, the server does not allow
personal cover pages.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return the following error code, one of the fax-specific errors that are defined in section
2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have any of the
permissions covered by ALL_FAX_USER_ACCESS_RIGHTS.<123>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.50 FAX_GetPersonalProfileInfo (Opnum 31)

The FAX_GetPersonalProfileInfo (Opnum 31) method is called by the client to retrieve information
about the personal profile (section 3.1.1) of the sender or the receiver of a fax from the specified fax

message that is present in the described message folder. The Folder value MUST be one of the
enumerations defined by FAX_ENUM_MESSAGE_FOLDER (section 2.2.2) except
FAX_MESSAGE_FOLDER_INBOX. The ProfType value MUST be one of the enumerations that are

defined by FAX_ENUM_PERSONAL_PROF_TYPES (section 2.2.4). The dwlMessageId parameter
specifies a particular message and can be obtained using the following methods:
FAX_EnumJobs (section 3.1.4.1.21), FAX_EnumJobsEx (section 3.1.4.1.22),
FAX_EnumMessages (section 3.1.4.1.24), or FAX_EnumMessagesEx (section 3.1.4.1.25).

In response, the server MUST validate that the message ID is for a valid message. The server MUST
validate that the client's fax user account has any of the permissions covered by

248 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

ALL_FAX_USER_ACCESS_RIGHTS. On success, the server MUST return the profile information about
the sender or recipient in Buffer along with the size.

The client SHOULD free the returned buffer.

 error_status_t FAX_GetPersonalProfileInfo(
 [in] handle_t hBinding,
 [in] DWORDLONG dwlMessageId,
 [in] FAX_ENUM_MESSAGE_FOLDER dwFolder,
 [in] FAX_ENUM_PERSONAL_PROF_TYPES ProfType,
 [out, size_is(, *BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

dwlMessageId: A DWORDLONG that contains the message identifier for which the sender's
FAX_PERSONAL_PROFILEW (section 2.2.44) structure is retrieved.

dwFolder: A FAX_ENUM_MESSAGE_FOLDER (section 2.2.2) indicating the location of the folder in

which to search for the message containing the personal profile information.

ProfType: A FAX_ENUM_PERSONAL_PROF_TYPES (section 2.2.4) indicating whether to retrieve
sender or recipient personal profile information.

Buffer: A pointer to a FAX_PERSONAL_PROFILEW (section 2.2.44) structure in which to place the
returned recipient or sender personal profile information.

BufferSize: A pointer to a DWORD variable to receive the buffer size.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have any of the
permissions covered by ALL_FAX_USER_ACCESS_RIGHTS.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect.

This error code is returned under any of the following conditions:

▪ The pointer specified by the Buffer parameter is NULL.<124>

▪ The value of the Folder parameter specified is not
FAX_MESSAGE_FOLDER_QUEUE or
FAX_MESSAGE_FOLDER_SENTITEMS.

0x00001B61

FAX_ERR_MESSAGE_NOT_FOUND

This error code is returned when any of the following conditions
happen:

▪ The message identified by the dwlMessageId parameter is not
found.

▪ The dwFolder parameter is specified as
FAX_MESSAGE_FOLDER_QUEUE, but the message identified by
dwlMessageId parameter is not an outgoing queued message.

▪ The message identified by dwlMessageId is an outgoing queued

249 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

message being deleted.

▪ The message identified by dwlMessageId is an outgoing queued
message of a different user, and this user does not have
FAX_ACCESS_QUERY_OUT_JOBS permission.

▪ The message identified by dwlMessageId is an archived sent
message of a different user, and this user does not have
FAX_ACCESS_QUERY_ARCHIVES permission.

0x00001B59

FAX_ERR_SRV_OUTOFMEMORY

The fax server failed to allocate memory needed for internal execution
of this operation.

0x0000000B

ERROR_BAD_FORMAT

The message identified by dwlMessageId is an archived sent message
and there was an error in reading the message file.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.51 FAX_GetPort (Opnum 11)

The FAX_GetPort (Opnum 11) method is called by the client to retrieve port status information for a
requested port at the server.

The server MUST validate that the user has the access to get port status information. The PortBuffer
parameter MUST NOT be NULL. The FaxPortHandle parameter MUST be returned by the
Fax_OpenPort (section 3.1.4.1.65) method called by the client with the PORT_OPEN_QUERY port
access mode flag specified with the Flags argument. On success, the server MUST return information
for a specified fax port to a fax client application in PortBuffer.<125>

The client SHOULD free the returned buffer.

 error_status_t FAX_GetPort(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [out, size_is(,*BufferSize)] LPBYTE* PortBuffer,
 [out, ref] LPDWORD BufferSize
);

FaxPortHandle: An RPC context handle that references a specified fax port.

PortBuffer: A pointer to the address of a buffer to receive a _FAX_PORT_INFO (section 2.2.7)
structure. The structure describes one fax port.

BufferSize: A variable to return the size, in bytes, of the port buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_ACCESS_QUERY_CONFIG access rights required for this operation.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The server cannot allocate sufficient memory to hold the FAX_PORT_INFO
data structure to be returned to the client.

250 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x0000000D

ERROR_INVALID_DATA

The FaxPortHandle parameter is not set to a valid port handle obtained
using FAX_OpenPort.<126>

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the
following conditions are met:

▪ The PortBuffer parameter is set to a NULL pointer value.<127>

▪ The FaxPortHandle parameter is set to NULL.<128>

0x0000054F

ERROR_INTERNAL_ERROR

The server failed to custom marshal the FAX_PORT_INFO structure to be
returned to the client.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.52 FAX_GetPortEx (Opnum 46)

The FAX_GetPortEx (Opnum 46) method is called by the client to retrieve port status information for a
requested port at the server. The device ID that is passed in SHOULD be obtained from

FAX_EnumPorts (section 3.1.4.1.28). This method is an extended version of
FAX_GetPort (section 3.1.4.1.51).

The server MUST validate that the client's fax user account has the access to obtain port status
information. The server MUST validate that dwDeviceId is for a valid device. The Buffer parameter
MUST NOT be NULL.

On success, the server MUST return information about the specified fax port in Buffer.

The client SHOULD free the returned buffer.

 error_status_t FAX_GetPortEx(
 [in] handle_t hFaxHandle,
 [in] DWORD dwDeviceId,
 [out, size_is(, *BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

dwDeviceId: A DWORD that indicates a unique identifier that distinguishes the device. The value of
dwDeviceId MUST be greater than zero.

Buffer: A pointer to a buffer to hold a _FAX_PORT_INFO_EXW (section 2.2.46) structure.

BufferSize: A pointer to a DWORD in which to return the size, in bytes, of the buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005 Access is denied. The client's fax user account does not have the

251 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

ERROR_ACCESS_DENIED FAX_ACCESS_QUERY_CONFIG access rights required for this call.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command. The fax server
cannot allocate sufficient memory to hold the FAX_PORT_INFO_EXW
structure to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. The Buffer parameter is set to a NULL pointer
value.<129>

0x00000014

ERROR_BAD_UNIT

The system cannot find the port for the receiving device by using the line
identifier specified by the dwDeviceId argument.

0x0000054F

ERROR_INTERNAL_ERROR

The fax server failed to custom marshal the FAX_PORT_INFO_EXW
structure to be returned to the client.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC

protocol, [MS-RPCE].

3.1.4.1.53 FAX_GetQueueStates (Opnum 32)

The FAX_GetQueueStates (Opnum 32) method is called by the client to retrieve the state of the fax
queues at the server.

The pdwQueueStates parameter MUST NOT be NULL. On success, the server MUST return the state
information about the fax service.

 error_status_t FAX_GetQueueStates(
 [in] handle_t hFaxHandle,
 [out] LPDWORD pdwQueueStates
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

pdwQueueStates: A pointer to a DWORD value that receives state information about the fax queue.
If this value is zero, both the incoming and outgoing queues are unblocked. Otherwise, this value
is a combination of one or more of the following values.

Value Meaning

0x00000000 Both the incoming and outgoing queues are unblocked.

FAX_INCOMING_BLOCKED

0x00000001

The fax service will not receive new incoming faxes.

FAX_OUTBOX_BLOCKED

0x00000002

The fax service will reject submissions of new outgoing faxes to its queue.

FAX_OUTBOX_PAUSED

0x00000004

The fax service will not dequeue and execute outgoing fax jobs from its queue.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

252 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have any of the
permissions covered by ALL_FAX_USER_ACCESS_RIGHTS.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. The pdwQueueStates parameter is set to a NULL
pointer value. <130>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.54 FAX_GetReceiptsConfiguration (Opnum 34)

The FAX_GetReceiptsConfiguration (Opnum 34) method is called by the client. On success, the server
MUST return the receipt configuration information of the fax server.

 error_status_t FAX_GetReceiptsConfiguration(
 [in] handle_t hFaxHandle,
 [out, size_is(, *BufferSize)] LPBYTE* Buffer,
 [out, ref] LPDWORD BufferSize
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

Buffer: A pointer to a _FAX_RECEIPTS_CONFIGW structure , as defined in section
_FAX_RECEIPTS_CONFIGW (section 2.2.48).

BufferSize: A pointer to a DWORD in which to return the size, in bytes, of the buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [([MS-ERREF] section 2.2.).

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_ACCESS_QUERY_CONFIG access rights required for this operation.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command. The fax server
cannot allocate sufficient memory to hold the _FAX_RECEIPTS_CONFIGW
structure to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. The Buffer parameter is set to a NULL pointer

value.<131>

0x0000054F

ERROR_INTERNAL_ERROR

The fax server failed to custom marshal the _FAX_RECEIPTS_CONFIGW
structure to be returned to the client.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.55 FAX_GetReceiptsOptions (Opnum 36)

The FAX_GetReceiptsOptions (Opnum 36) method is called by the client to retrieve the supported
receipt options on the server.

253 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The server MUST validate that the client's fax user account has the access to retrieve the receipt
options. On success, the server MUST return the receipt options that are supported by the server.

 error_status_t FAX_GetReceiptsOptions(
 [in] handle_t hFaxHandle,
 [out, ref] LPDWORD lpdwReceiptsOptions
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle

used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpdwReceiptsOptions: A pointer to the DWORD that receives the options.

Value Meaning

DRT_EMAIL

1

Allow sending the receipt by email. The email address is the email address of the sender.

DRT_MSGBOX

4

Allow notification on the transmission result by sending a text message containing a
character string to the sender's computer as described in Messenger Service Remote
Protocol Specification [MS-MSRP] section 3.2.4.1.<132>

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return the following error code, one of the fax-specific errors that are defined in section

2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have any of the
permissions covered by ALL_FAX_USER_ACCESS_RIGHTS.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.56 FAX_GetRecipientsLimit (Opnum 84)

The FAX_GetRecipientsLimit (Opnum 84) method is called by the client to retrieve information about
the recipient limit of a single broadcast job.

The server MUST validate that the client's fax user account has access to retrieve the recipient limit.
On success, the server MUST return the maximum number of recipients to which a fax can be sent.

Protocol version FAX_API_VERSION_0 (0x00000000) and FAX_API_VERSION_1 (0x00010000) fax
servers SHOULD NOT implement this call. The fax client MUST NOT call this method if the protocol
version reported by the server is FAX_API_VERSION_0 (0x00000000) or FAX_API_VERSION_1
(0x00010000). For more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

 error_status_t FAX_GetRecipientsLimit(
 [in] handle_t hbinding,
 [out, ref] LPDWORD lpdwRecipientsLimit
);

hbinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used

as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

254 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpdwRecipientsLimit: A pointer to a DWORD value. This is set to the maximum number of
recipients to which a fax can be sent.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return the following error code, one of the fax-specific errors that are defined in section

2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have any of the following
access rights: FAX_ACCESS_SUBMIT, FAX_ACCESS_SUBMIT_NORMAL, or
FAX_ACCESS_SUBMIT_HIGH

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.57 FAX_GetRoutingInfo (Opnum 15)

The FAX_GetRoutingInfo (Opnum 15) method is called by the client to retrieve information about a
specified routing method that is identified by the passed-in GUID.

The server MUST validate that the client's fax user account has the access to retrieve information
about a routing method. The RoutingGuid and RoutingInfoBuffer parameters MUST NOT be NULL. The
server MUST validate that the RoutingGuid is for a valid routing method. On success, the server MUST
return the routing information for a fax routing method that is associated with a specific fax device in
RoutingInfoBuffer.

The client SHOULD free the returned buffer.

 error_status_t FAX_GetRoutingInfo(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, string, unique] LPCWSTR RoutingGuid,
 [out, size_is(, *RoutingInfoBufferSize)]
 LPBYTE* RoutingInfoBuffer,
 [out, ref] LPDWORD RoutingInfoBufferSize
);

FaxPortHandle: An RPC context handle that references a specified fax port.

RoutingGuid: A curly braced GUID string that specifies the GUID that uniquely identifies the fax
routing method for which to obtain the routing information. Fax routing methods are defined by a

fax routing extension and the method is identified by a GUID. For more information about routing
methods, see [MSDN-FRM]. The routing methods and the associated curly-braced GUID string
values that can be used for this parameter are discoverable by calling
FAX_EnumRoutingMethods (section 3.1.4.1.31). Included in this list are the default routing
methods described in section 2.2.87.

RoutingInfoBuffer: A pointer to the address of a buffer that receives the fax routing information.
The buffer format and contents depend on the routing method that is identified by the

RoutingGuid parameter.

RoutingInfoBufferSize: A pointer to a DWORD variable that receives the size, in bytes, of the
RoutingInfoBuffer buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

255 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_ACCESS_QUERY_CONFIG access rights required for this operation.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The server cannot allocate sufficient memory to hold the fax routing
information data to be returned to the client.

0x0000000D

ERROR_INVALID_DATA

 This error code is returned if any of the following conditions are met:

▪ The port handle specified by the FaxPortHandle parameter is not a
valid fax port handle obtained with FAX_OpenPort.<133>

▪ The server cannot find the routing method identified by the GUID
specified by the RoutingGuid parameter.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the
following conditions are met:

▪ The RoutingGuid parameter is set to a NULL pointer value.

▪ The RoutingInfoBuffer parameter is set to a NULL pointer
value.<134>

▪ The FaxPortHandle parameter is set to a NULL value.<135>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.58 FAX_GetSecurity (Opnum 23)

The FAX_GetSecurity (Opnum 23) method is called by the client to retrieve information about the fax
security descriptor from the fax server.

The server MUST validate that the client's fax user account has access to retrieve security information.
On success, the server MUST return the fax security descriptor from the fax server in
pSecurityDescriptor.

Protocol version FAX_API_VERSION_3 (0x00030000) fax servers SHOULD fail this call by returning
ERROR_NOT_SUPPORTED (0x00000032). The fax client SHOULD NOT call this method if the protocol
version reported by the server is FAX_API_VERSION_3 (0x00030000). For more information, see
FAX_ConnectFaxServer (section 3.1.4.1.10). The fax client SHOULD call
FAX_GetSecurityEx2 (section 3.1.4.1.60) instead.

The client SHOULD free pSecurityDescriptor.

 error_status_t FAX_GetSecurity(
 [in] handle_t hBinding,
 [out, size_is(, *lpdwBufferSize)]
 LPBYTE* pSecurityDescriptor,
 [out, ref] LPDWORD lpdwBufferSize
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

pSecurityDescriptor: A pointer to a SECURITY_DESCRIPTOR structure, as specified in [MS-DTYP]
section 2.

256 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpdwBufferSize: A variable to return the size, in bytes, of the security descriptor buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have a
permission level of at least READ_CONTROL.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This is returned when pSecurityDescriptor
is NULL.

0x0000053A

ERROR_INVALID_SECURITY_DESCR

The security descriptor structure is invalid.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.59 FAX_GetSecurityEx (Opnum 81)

The FAX_GetSecurityEx (Opnum 81) method is called by the clients to retrieve information about the
fax security descriptor from the fax server.<136>

Protocol version FAX_API_VERSION_3 (0x00030000) fax servers SHOULD fail this call by returning
ERROR_NOT_SUPPORTED (0x00000032). The fax client SHOULD NOT call this method if the protocol
version reported by the server is FAX_API_VERSION_3 (0x00030000). For more information, see
FAX_ConnectFaxServer (section 3.1.4.1.10). The fax client SHOULD call
FAX_GetSecurityEx2 (section 3.1.4.1.60) instead.

The server MUST validate that the client's fax user account has access to retrieve security information.
On success, the server MUST return the fax security descriptor in pSecurityDescriptor.

The client SHOULD free pSecurityDescriptor.

 error_status_t FAX_GetSecurityEx(
 [in] handle_t hBinding,
 [in] SECURITY_INFORMATION SecurityInformation,
 [out, size_is(, *lpdwBufferSize)]
 LPBYTE* pSecurityDescriptor,
 [out, ref] LPDWORD lpdwBufferSize
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used

as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

SecurityInformation: Defines the wanted entries, indicated as a bitwise OR operator, in the security
descriptor to return. For more information, see the SECURITY_INFORMATION data type.
SecurityInformation MUST only be a bitwise combination of the following four values:

▪ OWNER_SECURITY_INFORMATION 0x00000001 [MS-DTYP]

▪ GROUP_SECURITY_INFORMATION 0x00000002 [MS-DTYP]

257 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ DACL_SECURITY_INFORMATION 0x00000004 [MS-DTYP]

▪ SACL_SECURITY_INFORMATION 0x00000008 [MS-DTYP]

pSecurityDescriptor: A pointer to a SECURITY_DESCRIPTOR structure, as specified in [MS-DTYP]
section 2.

lpdwBufferSize: A pointer to a DWORD value that indicates the size of the pSecurityDescriptor
buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. This error code is returned if any of the following
conditions occur:

▪ The client's fax user account does not have READ_CONTROL
access but the requesting SecurityInformation parameter
contains one of these flags: GROUP_SECURITY_INFORMATION,
DACL_SECURITY_INFORMATION, or
OWNER_SECURITY_INFORMATION.

▪ The client's fax user account does not have
ACCESS_SYSTEM_SECURITY but the SecurityInformation
parameter contains the flag SACL_SECURITY_INFORMATION.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This is returned when the
pSecurityDescriptor parameter is NULL.

0x0000053A

ERROR_INVALID_SECURITY_DESCR

The security descriptor structure is invalid.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.60 FAX_GetSecurityEx2 (Opnum 99)

The FAX_GetSecurityEx2 (Opnum 99) method is called by the client to retrieve information about the
fax security descriptor from the fax server.

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and

FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client
MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0
(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For

more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

The server MUST validate that the client's fax user account has the access to retrieve security
information. The pSecurityDescriptor parameter MUST NOT be NULL. On success, the server MUST
return the fax security descriptor from the fax server in pSecurityDescriptor.

The client SHOULD free the returned buffer.

 error_status_t FAX_GetSecurityEx2(
 [in] handle_t hBinding,

258 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in] SECURITY_INFORMATION SecurityInformation,
 [out, size_is(,*lpdwBufferSize)]
 LPBYTE* pSecurityDescriptor,
 [out, ref] LPDWORD lpdwBufferSize
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

SecurityInformation: Defines the desired entries, which are indicated as a bitwise OR operation, in
the security descriptor to return.

SecurityInformation MUST be a bitwise combination of the following four values only:

OWNER_SECURITY_INFORMATION: 0x00000001 [MS-DTYP], section 2.4.7

GROUP_SECURITY_INFORMATION: 0x00000002 [MS-DTYP], section 2.4.7

DACL_SECURITY_INFORMATION: 0x00000004 [MS-DTYP], section 2.4.7

SACL_SECURITY_INFORMATION: 0x00000008 [MS-DTYP], section 2.4.7

The requested access levels to entries by SecurityInformation can be a combination of the
following:

1. Read Control (requested if any of the bits in SecurityInformation is set by an OR operation
with GROUP_SECURITY_INFORMATION, DACL_SECURITY_INFORMATION, and/or
OWNER_SECURITY_INFORMATION)

2. Request for access to set or get SACL (requested if one of the bits in SecurityInformation is
set by an OR operation with SACL_SECURITY_INFORMATION)

For more information, see the description of the SECURITY_INFORMATION bit flags.

pSecurityDescriptor: A pointer to a SECURITY_DESCRIPTOR structure, as specified in [MS-DTYP]
section 2.

lpdwBufferSize: A pointer to a DWORD value that indicates the size, in bytes, of the
pSecurityDescriptor buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. This error is returned when there is a mismatch
between the access level requested (Read control, access to set/get
SACL security information or both) through the bit pattern in
SecurityInformation and the current authorized level.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of
the following conditions:

▪ The pSecurityDescriptor parameter is NULL.

▪ The value of the SecurityInformation parameter does not

259 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

conform to the definition of valid bit patterns for this parameter.

0x0000053A

ERROR_INVALID_SECURITY_DESCR

The security descriptor structure is invalid.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol [MS-RPCE].

3.1.4.1.61 FAX_GetServerActivity (Opnum 76)

The fax client application calls the FAX_GetServerActivity (Opnum 76) method to retrieve the status of
the fax queue activity and event log reports.

The client MUST allocate memory for the pServerActivity argument. It MUST also set the
dwSizeOfStruct field of FAX_SERVER_ACTIVITY (section 2.2.19) to the correct size, in bytes, of the

FAX_SERVER_ACTIVITY structure as described in section 2.2.19.

In response, the server MUST validate that the client's fax user account has access to the server logs.
On success, the server MUST return information about its activity and event logs.

 error_status_t FAX_GetServerActivity(
 [in] handle_t hFaxHandle,
 [in, out, ref] PFAX_SERVER_ACTIVITY pServerActivity
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

pServerActivity: A pointer to a FAX_SERVER_ACTIVITY (section 2.2.19) object.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_ACCESS_QUERY_CONFIG access rights required for this operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. The dwSizeOfStruct member of the
FAX_SERVER_ACTIVITY structure specified by the pServerActivity parameter
on input is set by the client to an incorrect value. For more details about the
correct size to be filled in this member, see the FAX_SERVER_ACTIVITY
structure in section 2.2.19.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC

protocol, [MS-RPCE].

3.1.4.1.62 FAX_GetServerSKU (Opnum 85)

The FAX_GetServerSKU (Opnum 85) method is called by the client. In response, the server returns
the stock-keeping unit (SKU) of the fax server operating system.

The server MUST check whether the client's fax user account has permissions to know the server SKU
type. On success, the server MUST return its SKU type.

260 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Protocol version FAX_API_VERSION_0 (0x00000000) and FAX_API_VERSION_1 (0x00010000) fax
servers SHOULD NOT implement this call. The fax client MUST NOT call this method if the protocol

version reported by the server is FAX_API_VERSION_0 (0x00000000) or FAX_API_VERSION_1
(0x00010000). For more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

 error_status_t FAX_GetServerSKU(
 [in] handle_t hbinding,
 [out, ref] PRODUCT_SKU_TYPE* pServerSKU
);

hbinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

pServerSKU: A pointer to a PRODUCT_SKU_TYPE (section 2.2.75) enumeration that receives the fax
server SKU.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return the following error code, one of the fax-specific errors that are defined in section
2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have any of the

permissions covered by ALL_FAX_USER_ACCESS_RIGHTS.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.63 FAX_GetServicePrinters (Opnum 0)

The fax client application calls the FAX_GetServicePrinters (Opnum 0) method to obtain a list of

printers that are visible to the fax server.

In response, the server MUST validate whether the client's fax user account has access to execute this
operation. On success, the server SHOULD enumerate printers using an implementation-specific
method<137> and then the server MUST return information about all the enumerated printers in a
buffer containing an array of FAX_PRINTER_INFOW (section 2.2.43) structures, each of the returned
structures describing one enumerated printer. The server MUST also return the size of this information
and the number of printers for which it enumerated the information successfully.

The client SHOULD free the returned buffer.

 error_status_t FAX_GetServicePrinters(
 [in] handle_t hBinding,
 [out, size_is(,*lpdwBufferSize)]
 LPBYTE* lpBuffer,
 [out, ref] LPDWORD lpdwBufferSize,
 [out, ref] LPDWORD lpdwPrintersReturned
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used

as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpBuffer: A pointer to a buffer containing an array of FAX_PRINTER_INFOW (section 2.2.43)
structures.

261 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpdwBufferSize: A pointer to a DWORD value containing the size, in bytes, of the buffer.

lpdwPrintersReturned: A pointer to a DWORD value indicating the number of the printers in the

buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_ACCESS_QUERY_CONFIG access rights required for this operation.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command. The fax
server failed to allocate sufficient memory to hold the array of
FAX_PRINTER_INFOW structures to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. The lpBuffer parameter is set to a NULL
pointer value.<138>

0x0000054F

ERROR_INTERNAL_ERROR

The fax server failed to custom marshal the array of
FAX_PRINTER_INFOW structures to be returned to the client.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.64 FAX_GetVersion (Opnum 37)

The fax client application calls the FAX_GetVersion (Opnum 37) method to obtain the version of the
fax server it is connected to.

In response, the server MUST check whether the client's fax user account has permissions to discover
the fax version. On success, the server MUST return its version.

 error_status_t FAX_GetVersion(
 [in] handle_t hFaxHandle,
 [in, out] PFAX_VERSION pVersion
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

pVersion: A pointer to a FAX_VERSION (section 2.2.22) object.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return the following error codes, one of the fax-specific errors that are defined in section
2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
ALL_FAX_USER_ACCESS_RIGHTS access rights required for this operation.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

262 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.4.1.65 FAX_OpenPort (Opnum 2)

The FAX_OpenPort (Opnum 2) method is called by the client. In response, the server opens a fax port
for subsequent use in other fax methods, and it returns a fax port handle for use by the fax client

application.

In response, the server MUST validate whether the client's fax user account has access to open the
specified fax port. The server MUST validate that the DeviceId argument that is passed by the client is
for a valid device. If the Flags argument specifies PORT_OPEN_MODIFY, the server MUST also confirm
that the specified port has not yet been opened for modification, and if the port is already opened for
modification, the server MUST fail the request by returning ERROR_INVALID_HANDLE. To indicate
success, the server MUST return a new port handle to the client.

 error_status_t FAX_OpenPort(
 [in] handle_t hBinding,
 [in] DWORD DeviceId,
 [in] DWORD Flags,
 [out] PRPC_FAX_PORT_HANDLE FaxPortHandle
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

DeviceId: A DWORD variable that is the line identifier for the device (port). The client SHOULD call
the FAX_EnumPorts (section 3.1.4.1.28) method to retrieve a valid value for this parameter.

Flags: A DWORD variable that contains a set of bit flags defining the access mode for the
port.<139>

Value Meaning

0x00000000 No port access mode flags are specified.

PORT_OPEN_QUERY

0x00000001

The port access mode that is required to obtain a fax port handle. This access
mode is also required to call the FAX_GetPort (section 3.1.4.1.51) method to
query fax port information.<140>

PORT_OPEN_MODIFY

0x00000002

The port access mode to change the configuration of a fax port. The fax server
can use this port access mode to allow execution of the
FAX_SetPort (section 3.1.4.1.88) method. This access mode also includes the
allowance that is associated with the PORT_OPEN_QUERY access mode.<141>

FaxPortHandle: A pointer to a variable that receives a fax port handle (as defined in section 2.2.74)

which is required on subsequent calls by other fax client methods. This method SHOULD return a
NULL handle to indicate an error.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied: the client's fax user account does not have either the
FAX_ACCESS_QUERY_CONFIG or the FAX_ACCESS_MANAGE_CONFIG
access permissions.

0x00000014

ERROR_BAD_UNIT

The system cannot find the port for the receiving device by using the line
identifier specified by the DeviceId argument.

263 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

The FaxPortHandle argument is NULL.<142>

0x00000006

ERROR_INVALID_HANDLE

The call was made with the Flags argument containing the
PORT_OPEN_MODIFY flag and the port is already opened to be modified by
another call.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.66 FAX_ReadFile (Opnum 71)

The fax client application calls the FAX_ReadFile (Opnum 71) method to copy a file from the server (in
chunks).

In response, the server MUST validate that the hCopy context handle refers to a valid copy handle
returned by FAX_StartCopyMessageFromServer (section 3.1.4.1.96) and for which FAX_EndCopy has
not been called. To indicate success, the server MUST copy the contents of the message specified by

the hCopy handle into the buffer and return the buffer to the client. The server MUST also return the
number of bytes it wrote successfully to the buffer. The server MUST NOT write more than
dwMaxDataSize bytes to the buffer.

The fax client SHOULD call the FAX_ReadFile method one or several times, each call reading one
part (chunk) of the file.<143> The fax client SHOULD stop calling FAX_ReadFile when the fax server
returns a zero number of bytes in the output *lpdwDataSize argument, meaning that no more data is

available to be copied from the respective file.

If the fax client calls FAX_ReadFile after the file is entirely copied, the fax server SHOULD return a
zero number of bytes in the output *lpdwDataSize argument and write no data in the lpbData buffer.

No specific access rights are required for the client's fax user account to successfully call this method.

The client MUST allocate the memory for the buffer before making the call and MUST free the buffer
when done with the data written by the server in the buffer.

 error_status_t FAX_ReadFile(
 [in, ref] RPC_FAX_COPY_HANDLE hCopy,
 [in] DWORD dwMaxDataSize,
 [out, ref, size_is(*lpdwDataSize)]
 LPBYTE lpbData,
 [in, out, ref] LPRANGED_DWORD lpdwDataSize
);

hCopy: A copy handle returned by FAX_StartCopyMessageFromServer (section 3.1.4.1.96).

dwMaxDataSize: A DWORD value that indicates the maximum size, in bytes, of data to be read and

returned in the buffer. The caller MUST set this argument to a value greater than zero before

making the call.

lpbData: A pointer to the buffer in which to place the data. This data MUST be allocated by the caller
to be at least the size specified by the lpdwDataSize argument. The data to be placed in this buffer
is a binary data block read from the file indicated by the dwlMessageId and Folder arguments for
the FAX_StartCopyMessageFromServer call, which the client used to obtain the hCopy handle.

264 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpdwDataSize: A pointer to a DWORD in which to return the size, in bytes, of the data that is sent in
this segment. The caller MUST set *lpdwDataSize to the same value as dwMaxDataSize before

making the call.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The handle specified by the hCopy argument is NULL.<144>

▪ The value specified for the dwMaxDataSize argument is zero.

▪ The value specified for the *lpdwDataSize at input (when the call is
made) is different than the value specified for the dwMaxDataSize
argument.

0x00000006

ERROR_INVALID_HANDLE

The handle specified by the hCopy argument is not a valid copy handle
returned by FAX_StartCopyMessageFromServer (section 3.1.4.1.96) for
which FAX_EndCopy (section 3.1.4.1.15) has not been called.<145>

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, [MS-RPCE].

3.1.4.1.67 FAX_ReAssignMessage (Opnum 102)

The fax client application calls the FAX_ReAssignMessage (Opnum 102) method to reassign the
specified fax message to a set of users.<146>

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and
FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client
MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0

(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For
more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

The dwlMessageId parameter specifies a particular message and can be obtained using the
FAX_EnumMessages (section 3.1.4.1.24) method or the FAX_EnumMessagesEx (section 3.1.4.1.25)
methods.

The client MUST specify the recipients for a reassigned message in a semicolon (;) separated format.

In response, the server MUST validate whether the bIncomingFaxesArePublic option (section
2.2.31) is not set in the server configuration. The server MUST also validate whether the message that
is specified by the dwlMessageId argument refers to a valid message on the server. The server MUST
validate that there are recipient numbers for each of the recipients that are listed in pReAssignInfo
structure. On success, the server MUST reassign the specified fax message.

 error_status_t FAX_ReAssignMessage(
 [in] handle_t hBinding,
 [in] DWORDLONG dwlMessageId,
 [in, ref] PFAX_REASSIGN_INFO pReAssignInfo
);

265 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

dwlMessageId: A DWORDLONG value that specifies the identifier of the fax message to reassign.

pReAssignInfo: A pointer to a FAX_REASSIGN_INFO (section 2.2.18) structure that contains
reassignment information.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000002

ERROR_FILE_NOT_FOUND

This error code is returned under any of the following conditions:

▪ The dwlMessageId argument does not specify a valid message.

▪ One or more recipients specified in the lpcwstrRecipients field of
the pReAssignInfo argument do not have a corresponding fax user
account.

0x00000005

ERROR_ACCESS_DENIED

The caller does not have the
FAX_ACCESS_MANAGE_RECEIVE_FOLDER access rights.

0x00000057

ERROR_INVALID_PARAMETER

This error code is returned under any of the following conditions:

▪ The value specified for the dwlMessageId parameter is zero.

▪ The lpcwstrRecipients member of the data structure specified by
the pReAssignInfo parameter is set to NULL or to an empty string.

0x0000006F

ERROR_BUFFER_OVERFLOW

The number of recipients specified in the lpcwstrRecipients member of
the data structure pointed at by the pReAssignInfo parameter is greater
than FAX_MAX_RECIPIENTS (10000).

0x000010DD

ERROR_INVALID_OPERATION

This error code is returned under any of the following conditions:

▪ Incoming faxes are public (see bIncomingFaxesArePublic in
section 2.2.31). Reassignment is not supported when incoming faxes
are public.

▪ The server does not support reassignment or the server is configured
with a policy that is currently set to disable fax message
reassignment.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.68 FAX_RefreshArchive (Opnum 82)

A fax client application calls the FAX_RefreshArchive (Opnum 82) method to notify the server that the
archive folder has been changed and SHOULD be refreshed.<147>

In response, the server MUST validate that the client's fax user account has access to the specified
folder. On success, the server MUST update its data.

 error_status_t FAX_RefreshArchive(
 [in] handle_t hFaxHandle,

266 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in] FAX_ENUM_MESSAGE_FOLDER Folder
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

Folder: A value indicating the archive folder to refresh. The value can be either
FAX_MESSAGE_FOLDER_INBOX or FAX_MESSAGE_FOLDER_SENTITEMS. For more information,
see FAX_ENUM_MESSAGE_FOLDER (section 2.2.2).<148>

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The required access level SHOULD be
FAX_ACCESS_MANAGE_CONFIG.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. The folder parameter SHOULD either be
FAX_MESSAGE_FOLDER_INBOX or
FAX_MESSAGE_FOLDER_SENTITEMS.<149>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC

protocol, [MS-RPCE].

3.1.4.1.69 FAX_RegisterServiceProviderEx (Opnum 60)

The fax client application calls the FAX_RegisterServiceProviderEx (Opnum 60) method to register a
fax service provider (FSP) with the Fax Service. Registration takes place after the Fax Service restarts.

In response, the server MUST validate that the client's fax user account has access to register an FSP.

The server MUST also validate that the guidlpcwstrGUID is not a duplicate because it MUST NOT

register duplicate FSPs.

On success, the server MUST register the specified FSP.

 error_status_t FAX_RegisterServiceProviderEx(
 [in] handle_t hFaxHandle,
 [in, string, ref] LPCWSTR lpcwstrGUID,
 [in, string, ref] LPCWSTR lpcwstrFriendlyName,
 [in, string, ref] LPCWSTR lpcwstrImageName,
 [in, string, ref] LPCWSTR lpcwstrTspName,
 [in] DWORD dwFSPIVersion,
 [in] DWORD dwCapabilities
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle

used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpcwstrGUID: A pointer to a constant null-terminated character string that contains a valid string
representation of the GUID of the FSP.

lpcwstrFriendlyName: A pointer to a constant null-terminated character string to associate with the
FSP execution component. This is the FSP friendly name, which is suitable for display. This value

cannot exceed MAX_FAX_STRING_LEN (section 2.2.86) characters.

267 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpcwstrImageName: A pointer to a constant null-terminated character string that specifies the full
path and file name for the FSP execution component.<150> This value cannot exceed

MAX_FAX_STRING_LEN (section 2.2.86) characters.

lpcwstrTspName: A pointer to a constant null-terminated character string that specifies the name of

the telephony service provider that is associated with the devices for the FSP. This parameter
SHOULD be set to NULL if the FSP does not use a telephony service provider. This value cannot
exceed MAX_FAX_STRING_LEN (section 2.2.86) characters. This value MUST be unique across all
registered FSPs.

dwFSPIVersion: A DWORD value that specifies the API version of the FSP interface. The value MUST
be 0x00010000.

dwCapabilities: A DWORD value that specifies the capabilities of the extended FSP. This value MUST

be 0.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the access
rights (authorization for FAX_ACCESS_MANAGE_CONFIG) () required for
this operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the
following conditions are met:

▪ The lpcwstrGuid parameter contains an invalid GUID.

▪ The dwFSPIVersion parameter is set to a value other than
0x00010000.

▪ The dwCapabilities parameter is set to a value other than 0.

▪ The file path specified by the lpcwstrImageName parameter does not
exist, or the fax server does not have access to the file.

0x0000006F

ERROR_BUFFER_OVERFLOW

 The length of the lpcwstrFriendlyName, lpcwstrImageName or
lpcwstrTspName character strings exceeds
MAX_FAX_STRING_LEN (section 2.2.86) characters, excluding the length
of the NULL string terminator.

0x000000B7

ERROR_ALREADY_EXISTS

An FSP is already registered with the same GUID (specified by the
lpcwstrGUID parameter) or with the same telephony service provider
(specified by the lpcwstrTspName parameter).

0x000003F7

ERROR_REGISTRY_CORRUPT

The registry is corrupted. The structure of one of the files that contains
registry data is corrupted, or the system's memory image of the file is
corrupted, or the file could not be recovered because the alternate copy
or log was absent or corrupted.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.70 FAX_RemoveMessage (Opnum 67)

The fax client application calls the FAX_RemoveMessage (Opnum 67) method to remove a message

from a specific fax archive folder. The dwlMessageId parameter specifies a particular message and can

268 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

be obtained using the FAX_EnumMessages (section 3.1.4.1.24) method or the
FAX_EnumMessagesEx (section 3.1.4.1.25) method.

In response, the server MUST validate whether the client's fax user account has access to remove a
message from the server. The server MUST also validate whether the dwlMessageId argument refers

to a valid message in the folder that is specified by the Folder parameter and whether the client's fax
user account has access to this message.

On success, the server MUST remove the specified fax message from the specified archive folder.

 error_status_t FAX_RemoveMessage(
 [in] handle_t hFaxHandle,
 [in] DWORDLONG dwlMessageId,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

dwlMessageId: A DWORD value identifying the fax message to remove from the archive.

Folder: The type of the archive where the message resides. FAX_MESSAGE_FOLDER_QUEUE is an
invalid value for this parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The caller does not have the required access rights
(ALL_FAX_USER_ACCESS_RIGHTS) for this operation.

0x00000057

ERROR_INVALID_PARAMETER

This error code is returned under any of the following conditions:

▪ The value of the dwlMessageId parameter is 0.

▪ The value of the Folder parameter is not
FAX_MESSAGE_FOLDER_INBOX or
FAX_MESSAGE_FOLDER_SENT_ITEMS.

0x00001B60

FAX_ERR_FILE_ACCESS_DENIED

The fax server failed to remove the fax message. When trying to
delete the fax archived file (the file that represents the fax message
to be removed), the fax server internally encountered an access
denied or sharing violation error.

0x00001B61

FAX_ERR_MESSAGE_NOT_FOUND

The fax server cannot find the message to be deleted (indicated by
dwlMessageId). When trying to delete the fax archived file (the file
that represents the fax message to be removed), the fax server
internally encountered a file not found error.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.71 FAX_RemoveOutboundGroup (Opnum 53)

The fax client application calls the FAX_RemoveOutboundGroup (Opnum 53) method to remove an
existing outbound routing group from the fax server. The name of the group to remove is specified

269 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

using the lpwstrGroupName parameter. The value for the lpwstrGroupName parameter can be
obtained using FAX_EnumOutboundGroups (section 3.1.4.1.26).<151>

In response, the server MUST validate that the lpwstrGroupName does not specify the special routing
group called "All Devices", because this routing group cannot be removed. The client's fax user

account MUST have access to manage configuration on the server. The server MUST also confirm that
the group is NOT being used in a rule.

On success, the server MUST remove the specified outbound routing group.

 error_status_t FAX_RemoveOutboundGroup(
 [in] handle_t hFaxHandle,
 [in, string, ref] LPCWSTR lpwstrGroupName
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpwstrGroupName: A pointer to a null-terminated string that uniquely identifies an existing group
name. The group name is expected to be case-insensitive.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have
the FAX_ACCESS_MANAGE_CONFIG access rights.

0x00000057

ERROR_INVALID_PARAMETER

The fax server tried to return
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU but the client fax
API version (FAX_API_VERSION_0, described in section
3.1.4.1.10) does not support this error code.

0x0000006F

ERROR_BUFFER_OVERFLOW

The group name specified by the lpwstrGroupName argument
(excluding the length of the terminating null character) is
longer than 128 characters.

0x000003F7

ERROR_REGISTRY_CORRUPT

The fax server cannot access the local machine's fax routing
group information in the registry. The registry could be
corrupt.

0x000010DD

ERROR_INVALID_OPERATION

The lpwstrGroupName parameter specifies the special routing
group "<All Devices>".

0x000001B5A

FAX_ERR_GROUP_NOT_FOUND

The group specified by the lpwstrGroupName argument
cannot be found.

0x00001B5C

FAX_ERR_GROUP_IN_USE

The fax server cannot remove the outbound routing group
identified by the lpwstrGroupName parameter. The outbound
routing group is in use by one or more outbound routing
rules.

0x00001B63

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU

The fax client module API version (as specified in
FAX_ConnectFaxServer (section 3.1.4.1.10))) is
FAX_API_VERSION_1 or above, and the fax server is running
on a version of the operating system that does not support
the requested operation.<152>

270 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.72 FAX_RemoveOutboundRule (Opnum 57)

The FAX_RemoveOutboundRule (Opnum 57) method removes an existing outbound routing rule from
the rules map. The default outbound rule cannot be removed.

In response, the server MUST validate that the client's fax user account has access to manage
configuration. The country/region code MUST NOT be 0, because the country/region code indicates
that the access corresponds to any country/region.

On success, the server MUST remove the specified outbound routing rule from the rules map.

 error_status_t FAX_RemoveOutboundRule(
 [in] handle_t hFaxHandle,
 [in] DWORD dwAreaCode,
 [in] DWORD dwCountryCode
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

dwAreaCode: The area code of the rule. The dwAreaCode and dwCountryCode parameters are a
unique key.

dwCountryCode: The country code of the rule. The dwAreaCode and dwCountryCode parameters are
a unique key.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not
have the required FAX_ACCESS_MANAGE_CONFIG access
rights to perform this operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. The country code specified by
the dwCountryCode argument is
ROUTING_RULE_COUNTRY_CODE_ANY.

Also returned if the fax server tried to return
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU but the client
fax API version (FAX_API_VERSION_0, described in section
3.1.4.1.10) does not support this error code.

0x000003F7

ERROR_REGISTRY_CORRUPT

The fax server encountered a registry error when
attempting to remove the specified outbound rule
registration. The registry could be corrupt.

0x00001B5D

FAX_ERR_RULE_NOT_FOUND

The fax server failed to locate an outbound routing rule by
country/region code and area code.

0x00001B63

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU

The fax server is running on a version of the operating
system that does not support the requested
operation.<153>

271 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.73 FAX_SendDocumentEx (Opnum 27)

The FAX_SendDocumentEx (Opnum 27) method is called by the client.

In response, the server MUST initiate sending of the specified document to the specified recipients and
MUST create the information for the fax messages and their message identifiers.

When the fax job is successfully queued, the server SHOULD signal an FEI_JOB_QUEUED fax event
(see FAX_EVENT (section 2.2.66)) to the client for each recipient by calling
FAX_ClientEventQueue (section 3.2.4.2), and then immediately complete this call.

To succeed, the FAX_SendDocumentEx method requires that at least one recipient and either a

cover page or a fax body are present. Fax servers SHOULD provide a set of cover page templates to
be used by the clients. In such a case, the name of the cover page template is sent on the wire during
submission of faxes. Optionally, fax clients can create and use their own cover page templates. In this

latter case, the format of the cover page template MUST be Enhanced Metafile Format Plus Extensions
(EMF+) [MS-EMFPLUS], and the fax client MUST copy the cover page template to the fax server queue
directory with a file name extension of .cov before making this call. The fax server converts the .cov

file to a .TIF using standard APIs for EMF+. The fax client can reuse the same cover page template for
multiple FAX_SendDocumentEx calls.

 error_status_t FAX_SendDocumentEx(
 [in] handle_t hBinding,
 [in, string, unique] LPCWSTR lpcwstrFileName,
 [in] LPCFAX_COVERPAGE_INFO_EXW lpcCoverPageInfo,
 [in] LPBYTE lpcSenderProfile,
 [in, range(0,FAX_MAX_RECIPIENTS)]
 DWORD dwNumRecipients,
 [in, size_is(dwNumRecipients)] LPBYTE* lpcRecipientList,
 [in] LPCFAX_JOB_PARAM_EXW lpJobParams,
 [in, out, unique] LPDWORD lpdwJobId,
 [out] PDWORDLONG lpdwlMessageId,
 [out, size_is(dwNumRecipients)]
 PDWORDLONG lpdwlRecipientMessageIds
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpcwstrFileName: A pointer to a null-terminated character string that contains the name of the file,
without path information, of the body of the fax in TIFF. The body file is previously copied to the
server queue directory using the call sequence of FAX_StartCopyToServer (section 3.1.4.1.97)
to retrieve the file name from the server, FAX_WriteFile (section 3.1.4.1.105) to write to the file,
and FAX_EndCopy (section 3.1.4.1.15) to end the write operation. If no fax body is available, this
pointer MUST be NULL.

lpcCoverPageInfo: A pointer to a FAX_COVERPAGE_INFO_EXW (section 2.2.12) structure that

contains the cover-page information, including the name of the cover-page file obtained from the
fax server with the FAX_StartCopyToServer (section 3.1.4.1.97) call, if available. This pointer
MUST NOT be NULL. If no cover-page information is available, the lpwstrCoverPageFileName
member of the structure MUST be NULL. If cover-page information is specified, the fax server
SHOULD use the server queue directory to find the cover page. The fax client can add a new
personal cover page template to the server queue directory before calling this method by using

the call sequence of FAX_StartCopyToServer (section 3.1.4.1.97) to retrieve the file name from
the server, FAX_WriteFile (section 3.1.4.1.105) to write to the file, and
FAX_EndCopy (section 3.1.4.1.15) to end the write operation. If this call sequence was used, the

272 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

client SHOULD set the bServerBased member of the structure to FALSE; otherwise the client
MUST set the bServerBased member to TRUE. If bServerBased is FALSE, the server SHOULD

validate that the cover page template specified by the lpwstrCoverPageFileName member has
a file extension of ".cov" and the file name string contains (except for the terminating null

character) only characters representing valid hexadecimal digits: "0123456789abcdefABCDEF".

lpcSenderProfile: A pointer to a buffer containing an array of
FAX_PERSONAL_PROFILEW (section 2.2.44) structures that contain the personal profile (section
3.1.1) of the fax sender. This pointer MUST NOT be NULL.

dwNumRecipients: A DWORD that contains the number of recipients of the fax.

lpcRecipientList: A pointer to an array FAX_PERSONAL_PROFILEW (section 2.2.44) structure that
contains the personal profiles (section 3.1.1) of the recipients of the fax. The dwNumRecipients

member specifies the number of elements in this array.

lpJobParams: A pointer to a FAX_JOB_PARAM_EXW (section 2.2.14) structure that contains the
information necessary for the fax server to send the fax transmission.

lpdwJobId: An optional pointer to a DWORD to return the job identifier. This parameter is used for
backward compatibility with FaxObs_SendDocument (section 3.1.4.2.7). The fax server MUST
ignore this argument if the fax client submits a NULL pointer value when making the call.

lpdwlMessageId: A pointer to a DWORDLONG that returns the unique message identifier that
represents the fax message to be sent to all recipients.

lpdwlRecipientMessageIds: A pointer to an array of DWORDLONGs in which the server returns the
unique message identifier for each individual recipient. The number of elements in this array
SHOULD be at least equal to the value specified in the dwNumRecipients member. The elements
in the array SHOULD be ordered in the same order as the elements of the lpcRecipientList array.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
(section 2.2.52,) or one of the other standard errors defined in [([MS-ERREF] section 2.2.).

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. This error is returned when any of the
following conditions are met:

▪ The limit on the number of recipients for a single fax
broadcast was reached and
FAX_ERR_RECIPIENTS_LIMIT couldn't be returned
because this error code is unsupported by the fax client
API version (FAX_API_VERSION_0 or
FAX_API_VERSION_1, see
FAX_ConnectFaxServer (section 3.1.4.1.10).

▪ The client's fax user account does not have the required
access rights to submit the fax: FAX_ACCESS_SUBMIT
(for FAX_PRIORITY_TYPE_LOW),
FAX_ACCESS_SUBMIT_NORMAL (for
FAX_PRIORITY_TYPE_NORMAL), or
FAX_ACCESS_SUBMIT_HIGH (for
FAX_PRIORITY_TYPE_HIGH), where the
FAX_PRIORITY_TYPE value comes from the Priority field
of the specified lpJobParams structure.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

273 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000013

ERROR_WRITE_PROTECT

The outgoing fax queue is blocked: The queue state is
FAX_OUTBOX_BLOCKED . For more information regarding
the queue state FAX_OUTBOX_BLOCKED, see
FAX_SetQueue (section 3.1.4.1.90).

0x00000032

ERROR_NOT_SUPPORTED

The fax server SHOULD return this error code when the
request described by the lpJobParams argument is not
supported by the fax server.<154>

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under
any of the following conditions:

▪ One or more of the following arguments are NULL or 0:
dwNumRecipients, lpcSenderProfile, lpcRecipientList,

lpJobParams, lpdwlMessageId,
lpdwlRecipientMessageIds,<155>lpcCoverPageInfo.

▪ The file name indicated by the lpcstwrFileName
argument does not indicate a file of the expected TIFF
format.

▪ The lpwstrCoverPageFileName field of the
lpcCoverPageInfo structure is not in the expected COV
format.

▪ The Priority field of the lpJobParams structure is not one
of the following values: FAX_PRIORITY_TYPE_LOW,
FAX_PRIORITY_TYPE_NORMAL,
FAX_PRIORITY_TYPE_HIGH.

▪ The requested receipt delivery types are invalid (the
dwReceiptDeliveryType field of the lpJobParams
structure), not DRT_EMAIL, DRT_MSGBOX, and/or
DRT_NONE.

▪ The fax server tried to return
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU but the
client fax API version (. FAX_API_VERSION_0, described
in (section 3.1.4.1.10) does not support this error code.

0x0000065E

ERROR_UNSUPPORTED_TYPE

Data of this type is not supported. The requested receipt
delivery type specified by the dwReceiptDeliveryType field of
the lpJobParams structure is not supported by the fax server.

0x0000000D

ERROR_INVALID_DATA

The file specified by lpcwstrFileName argument is empty (has
a size of 0 bytes).

0x00001B63

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU

The fax client module API version (as specified in
FAX_ConnectFaxServer (section 3.1.4.1.10))) is
FAX_API_VERSION_1 or above, and the fax server is running
on a version of the operating system that does not support
the requested operation.<156>

0x00001B65

FAX_ERR_RECIPIENTS_LIMIT

The limit on the number of recipients for a single fax
broadcast was reached.

ERROR_ACCESS_DENIED is returned instead of this error
code when the client does not support it (client-supported fax
API version is FAX_API_VERSION_0 or FAX_API_VERSION_1;
see FAX_ConnectFaxServer).

274 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.74 FAX_SetActivityLoggingConfiguration (Opnum 44)

The fax client application calls the FAX_SetActivityLoggingConfiguration (Opnum 44) method to set
options for activity logging. This includes setting whether entries for incoming and outgoing faxes
SHOULD be logged and the location of the log file.

In response, the server MUST check that the client's fax user account has access to manage server
configuration. It MUST validate the logging parameters, including the path that is specified to the log
file.

On success, the server MUST apply the specified logging options.

 error_status_t FAX_SetActivityLoggingConfiguration(
 [in] handle_t hFaxHandle,
 [in, ref] const PFAX_ACTIVITY_LOGGING_CONFIGW pActivLogCfg
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

pActivLogCfg: A pointer to a FAX_ACTIVITY_LOGGING_CONFIGW (section 2.2.25) object. The
directory specified by the lpwstrDBPath field of this structure SHOULD be created by the caller if it
does not exist.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access denied. This error code is returned under any of the following
conditions:

▪ The client's fax user account does not have the required
FAX_ACCESS_MANAGE_CONFIG access rightsauthorization to
manage the server configuration.

▪ The directory specified by the lpwstrDBPath member of the
pActivLogCfg structure is not a valid fax folder (the fax server does
not have rights to create files, write to files, enumerate files and/or
delete files), the server needs to return
FAX_ERR_FILE_ACCESS_DENIED, and the client does not support
this error code.

0x00000057

ERROR_INVALID_PARAMETER

This error code is returned under any of the following conditions:

▪ The dwSizeOfStruct member of the
FAX_ACTIVITY_LOGGING_CONFIGW structure specified by the
pActivLogCfg parameter is set to an incorrect value. The correct
size, in bytes, of the FAX_ACTIVITY_LOGGING_CONFIGW structure
is described in section 2.2.25.

▪ The lpwstrDBPath field of the structure specified by the
pActivLogCfg argument contains an empty string or is set to NULL.

▪ The lpwstrDBPath member of the structure specified by the

275 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

pActivLogCfg argument does not indicate a complete path name.

0x0000006F

ERROR_BUFFER_OVERFLOW

The file name is too long. The lpwstrDBPath field of the structure
specified by the pActivityLog argument contains a path name longer
than 248 characters, not counting the terminating null character.

0x000003F7

ERROR_REGISTRY_CORRUPT

The fax server cannot store the new activity logging configuration in the
registry. This error can happen if the registry is corrupted.

0x00001B60

FAX_ERR_FILE_ACCESS_DENIED

This error code is returned under any of the following conditions:

▪ The folder specified by the lpwstrDBPath member of the
pActivityLog structure is not a valid fax folder where the server has
rights to create, enumerate, write to, and delete files.

▪ The fax server cannot create a new (if different from the respective
existing file) file specified by the lpwstrDBPath member of the
pActivLogCfg parameter, because the server encountered an access
denied (ERROR_ACCESS_DENIED) or sharing violation error
(ERROR_SHARING_VIOLATION) error when attempting to create
the specified file.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.75 FAX_SetArchiveConfiguration (Opnum 42)

The fax client application calls the FAX_SetArchiveConfiguration (Opnum 42) method to set the
archive configuration for a specific fax folder on the fax server.

In response, the server MUST validate that the client's fax user account has access to manage server
configuration. On success, the server MUST set the specified configuration and return success.

Protocol version FAX_API_VERSION_3 (0x00030000) fax servers SHOULD fail this call by returning

ERROR_NOT_SUPPORTED (0x00000032). The fax client SHOULD NOT call this method if the protocol
version reported by the server is FAX_API_VERSION_3 (0x00030000). For more information, see
FAX_ConnectFaxServer (section 3.1.4.1.10). The fax client SHOULD call
FAX_SetGeneralConfiguration (section 3.1.4.1.80) instead.

 error_status_t FAX_SetArchiveConfiguration(
 [in] handle_t hFaxHandle,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder,
 [in, ref] const LPBYTE pArchiveCfg
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount method call (section 3.1.4.1.11) method call used to connect to the fax
server.

Folder: The archive location. The client MUST set this parameter to either
FAX_MESSAGE_FOLDER_INBOX or FAX_MESSAGE_FOLDER_SENTITEMS.

pArchiveCfg: A pointer to a buffer containing an array of FAX_ARCHIVE_CONFIGW (section 2.2.27)
structures. If the size of the archive exceeds the dwSizeQuotaHighWatermark value and if the
bSizeQuotaWarning member is set to TRUE, an event log warning SHOULD be issued. If an
event log warning was already issued, no more events SHOULD be issued until the size of the

276 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

archive drops below the dwSizeQuotaLowWatermark value. If a fax message stays in the
archive longer than the dwAgeLimit value, it MAY be automatically deleted. If the dwAgeLimit

value is zero, the time limit MUST NOT be used.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
(section 2.2.52,), or one of the other standard errors defined in [([MS-ERREF] section 2.2.).

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the required
FAX_ACCESS_MANAGE_CONFIG access rights required authorization for
this operation.

0x00000032

ERROR_NOT_SUPPORTED

The fax server does not support this operation. This error code SHOULD
be returned by the FAX_API_VERSION_3 servers.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The dwSizeOfStruct member of the FAX_ARCHIVE_CONFIGW
structure (section 2.2.27) specified by the pArchiveCfg parameter is
set to an incorrect value. The correct size of the
FAX_ARCHIVE_CONFIGW structure is described in section 2.2.27.

▪ The Folder parameter is set to a value other than
FAX_MESSAGE_FOLDER_SENTITEMS and
FAX_MESSAGE_FOLDER_INBOX.

▪ The bUseArchive member of the FAX_ARCHIVE_CONFIGW structure

specified by the pArchiveCfg parameter is set to a value of TRUE,
and any of the three following conditions are also met:

▪ The value of the dwSizeQuotaHighWatermark member of the
same structure is smaller than the value of the
dwSizeQuotaLowWatermark member of the same structure.

▪ The lpcstrFolder member of the same structure is set to a
NULL pointer value.

▪ The lpcstrFolder member of the same structure is set to point
to an empty character string.

0x00001B5F

FAX_ERR_DIRECTORY_IN_USE

The bUseArchive member of the FAX_ARCHIVE_CONFIGW mstructure
specified by the pArchiveCfg parameter is set to a value of TRUE, and
the file specified by the lpcstrFolder member of the same structure is
invalid: the directory of the file is the same as the fax queue directory.

0x0000006F

ERROR_BUFFER_OVERFLOW

The file name is too long. The bUseArchive member of the
FAX_ARCHIVE_CONFIGW structure specified by the pArchiveCfg
parameter is set to a value of TRUE, and the length of the file name

specified by the lpcstrFolder of the same structure is set to a character
string longer than 180 characters, excluding the length of the null
terminator.

0x000003F7

ERROR_REGISTRY_CORRUPT

The fax server cannot store the new archive configuration to the registry.
The registry could be corrupted.

0x00001B60

FAX_ERR_FILE_ACCESS_DENIED

The bUseArchive member of the FAX_ARCHIVE_CONFIGW structure
specified by the pArchiveCfg parameter is set to a value of TRUE, and
the file specified by the lpcstrFolder member of the same structure is
invalid: the fax server encountered an access denied
(ERROR_ACCESS_DENIED) or a sharing violation

277 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

(ERROR_SHARING_VIOLATION) error when attempting to access the
file.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.76 FAX_SetConfiguration (Opnum 20)

The fax client application calls the FAX_SetConfiguration (Opnum 20) method to change the general

configuration of the fax server. The FAX_CONFIGURATIONW (section 2.2.28) structure describes the
general configuration of the fax server.

In response, the server MUST validate that the client's fax user account has access to manage
configuration on the server. On success, the server MUST set the specified configuration parameters.

 error_status_t FAX_SetConfiguration(
 [in] handle_t hBinding,
 [in] const FAX_CONFIGURATIONW* FaxConfig
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

FaxConfig: A pointer to a FAX_CONFIGURATIONW (section 2.2.28) structure. The SizeOfStruct
member of this structure MUST be set to the correct size, in bytes, of the FAX_CONFIGURATIONW
structure described in section 2.2.28. The structure MUST be passed as a byte array buffer. The
structure MUST be present at the start of the buffer. The LPCWSTR fields in the structure MUST
store the offsets to the actual string data, which MUST be located at the end of the structure. The

LPCWSTR strings located at the end of the buffer MUST be in the same order of occurrence in the
structure. If the Branding structure member is TRUE, the fax server SHOULD generate a brand

that contains transmission-related information, such as the transmitting subscriber identifier, date,
time, and page count. If the UseDeviceTsid structure member is TRUE, the server SHOULD use
the device's transmitting subscriber identifier. If the ServerCp structure member is TRUE, the
client SHOULD use a common cover page stored on the fax server; if this member is FALSE, the
client SHOULD use a personal cover page template. If the PauseServerQueue structure member

is TRUE, the server SHOULD pause the outgoing fax queue. If the ArchiveOutgoingFaxes
structure member is TRUE, the server SHOULD archive transmissions in the directory specified by
the ArchiveDirectory member. The fax server SHOULD ignore the ArchiveDirectory structure
member if the ArchiveOutgoingFaxes member is FALSE. If the ArchiveOutgoingFaxes
member is TRUE, the fax server SHOULD<157> validate the value of the ArchiveDirectory
member, and if this validation succeeds, the fax server SHOULD retain the value of the
ArchiveDirectory member and use this value as the name of the directory where the fax server

will archive the future fax transmissions. The fax server SHOULD retain the discount time period
submitted by the client with the StartCheapTime and the StopCheapTime structure
members.<158>

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the required
access rights, in this case FAX_ACCESS_MANAGE_CONFIG.

278 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The pointer specified with the FaxConfig argument is NULL.<159>

▪ The dwSizeOfStruct member of the FAX_CONFIGURATIONW data
structure specified by the FaxConfig parameter is different from the
correct size, in bytes, for the FAX_CONFIGURATIONW structure,
described in section 2.2.28.

▪ The ArchiveOutgoingFaxes member of the FAX_CONFIGURATIONW
data structure specified by the FaxConfig parameter is set to TRUE,
and the ArchiveDirectory member of the same data structure is set
to a NULL pointer value.<160>

0x000003F7

ERROR_REGISTRY_CORRUPT

The registry is corrupted. The structure of one of the files that contain
registry data is corrupted, or the system's memory image of the file is
corrupted, or the file could not be recovered because the alternate copy
or log was absent or corrupted.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.77 FAX_SetConfigWizardUsed (Opnum 77)

The FAX_SetConfigWizardUsed method is called by the client. The server MUST validate that the
client's fax user account has access to manage configuration information on the server. On success,
the server MUST set a value in the registry indicating whether or not the configuration wizard was

used. <161>

 error_status_t FAX_SetConfigWizardUsed(
 [in] handle_t hFaxHandle,
 [in] BOOL bConfigWizardUsed
);

hFaxHandle: The handle that is provided by the client RPC layer when the RPC call is made.

bConfigWizardUsed: A Boolean value indicating whether the fax configuration wizard was used.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The caller does not have the required rights
(FAX_ACCESS_MANAGE_CONFIG) to perform this operation.

0x000003F7

ERROR_REGISTRY_CORRUPT

The registry is corrupted. The structure of one of the files containing
registry data is corrupted, or the system's memory image of the file is
corrupted.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.78 FAX_SetDeviceOrderInGroup (Opnum 55)

279 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The FAX_SetDeviceOrderInGroup method is called by the client. The value for the dwDeviceId
parameter can be obtained using the FAX_EnumPorts (section 3.1.4.1.28) method or the

FAX_EnumPortsEx (section 3.1.4.1.29) method. The name of the group to remove is specified using
the lpwstrGroupName parameter. The value for the lpwstrGroupName parameter can be obtained

using FAX_EnumOutboundGroups (section 3.1.4.1.26).

The order is the 1-based location of the device in the group. The value of 1 indicates the device is
ordered first in the group. The order of devices in the group determines the order in which they are
used to send outgoing faxes when the group is selected by an outbound routing rule.

The server MUST validate that the group name length is within allowed. It MUST validate that the
client's fax user account has access to manage configuration on the server. It MUST validate that
dwNewOrder is within the limits of the specified group.

On success, the server MUST set the order of a single device in the specified group of outbound
routing devices.

 error_status_t FAX_SetDeviceOrderInGroup(
 [in] handle_t hFaxHandle,
 [in, string, ref] LPCWSTR lpwstrGroupName,
 [in] DWORD dwDeviceId,
 [in] DWORD dwNewOrder
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpwstrGroupName: A pointer to a null-terminated string that uniquely identifies a group. Group
names SHOULD be case-insensitive.

dwDeviceId: A DWORD value specifying the identifier of the device in the group. The specified
device MUST exist in the group.

dwNewOrder: A DWORD value specifying the new 1-based order of the device in the group. If there
are N devices in the group, this value MUST be between 1 and N (inclusive). Other devices are
moved up or down in the group to place the specified device in the specified order.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have
the required FAX_ACCESS_MANAGE_CONFIG access rights
required authorization for this operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any
of the following conditions are met:

▪ The dwDeviceId or the dwNewOrder parameter is set to
a value of 0.

▪ The fax server tried to return
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU, but the
client fax API version (FAX_API_VERSION_0, described
in section 3.1.4.1.10) does not support this error code.

0x0000006F The group name is too long. The length of the character

280 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

ERROR_BUFFER_OVERFLOW string specified by the lpwstrGroupName parameter,
excluding the length of the null terminator, exceeds 128
characters.

0x000003F7

ERROR_REGISTRY_CORRUPT

The registry is corrupted. The structure of one of the files
containing registry data is corrupted, or the system's
memory image of the file is corrupted, or the file could not
be recovered because the alternate copy or log was absent or
corrupted.

0x00001B5B

FAX_ERR_BAD_GROUP_CONFIGURATION

The device specified by dwDeviceId does not exist in the
group identified by the lpwstrGroupName parameter, or the
value of dwNewOrder is greater than the number of devices

in the group.

0x00001B63

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU

The fax client module API version (as specified in
FAX_ConnectFaxServer (section 3.1.4.1.10)) is
FAX_API_VERSION_1 or above, and the fax server is running
on a version of the operating system that does not support
the requested operation.<162>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol [MS-RPCE].

3.1.4.1.79 FAX_SetExtensionData (Opnum 50)

The fax client application calls the FAX_SetExtensionData (Opnum 50) method in order to write the
private data for a routing extension or routing method for one or all fax devices installed on the fax
server. The corresponding method that the fax client calls to read this private data is
FAX_GetExtensionData (section 3.1.4.1.39). The value for the dwDeviceId parameter can be obtained
using the FAX_EnumPorts (section 3.1.4.1.28) method or the FAX_EnumPortsEx (section 3.1.4.1.29)

method. The lpcwstrNameGUID parameter MUST be for a valid routing extension or routing method
for which the client requests the private data to be written.

In response, the server MUST validate that the client's fax user account has access to manage
configuration on the server.

On success, the server MUST apply the specified private routing extension data or private routing
method data for the specified device.

When routing method configuration data is specified, the lpcwstrNameGUID parameter MUST contain

the GUID of the corresponding routing method.

 error_status_t FAX_SetExtensionData(
 [in] handle_t hFaxHandle,
 [in, string] LPCWSTR lpcwstrComputerName,
 [in] DWORD dwDeviceId,
 [in, string] LPCWSTR lpcwstrNameGUID,
 [in, ref, size_is(dwDataSize)] LPBYTE pData,
 [in, range(0,FAX_MAX_RPC_BUFFER)]
 DWORD dwDataSize
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle

used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpcwstrComputerName: A null-terminated character string that SHOULD hold the name of the client
computer.

281 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

dwDeviceId: A DWORD value of the unique device identifier. A value of zero indicates the caller
needs to set a named data BLOB that is not associated with any specific device. This value can be

used to store configurations that affect all the devices. For example, an Optical Character
Recognition (OCR) routing extension might export several different routing methods that all rely

on the same OCR parameters. This routing extension can associate the OCR configuration with a
non-specific device so that it becomes global.

lpcwstrNameGUID: A curly-braced GUID string that identifies the data to set. The GUID can identify
a routing extension or a routing method. Because GUIDs are unique, the server determines from
the specific GUID value whether the call is requesting to set routing extension data or routing
method data. If some data is already set for the specified GUID, the fax server SHOULD replace it
with the new data that is pointed to by the pData parameter.

pData: A pointer to the data buffer to set. For the default routing methods described in section 2.2.87
this data is a null-terminated character string containing an EmailID, Printer, or Folder name. For
other routing extensions or methods the format of this data depends on the respective routing
extension or routing method and SHOULD be treated as opaque binary data by the fax server.

dwDataSize: A DWORD value that indicates the size, in bytes, of the pData buffer. The maximum
size is FAX_MAX_RPC_BUFFER (section 2.2.82).

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the access
rights (required FAX_ACCESS_MANAGE_CONFIG) required authorization
for this operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the
following conditions are met: <163>

▪ The lpcwstrComputerName parameter is set to a NULL pointer value.

▪ The lpcwstrNameGUID parameter is set to a NULL pointer value.

▪ The pData parameter is set to a NULL pointer value.

▪ The dwDataSize parameter is set to zero.

▪ The lpcwstrNameGUID parameter holds an invalid curly-braced GUID
string.

0x000003F7

ERROR_REGISTRY_CORRUPT

The registry is corrupted. The structure of one of the files that contain
registry data is corrupted, or the system's memory image of the file is
corrupted, or the file could not be recovered because the alternate copy
or log was absent or corrupted.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC

protocol, [MS-RPCE].

3.1.4.1.80 FAX_SetGeneralConfiguration (Opnum 98)

The fax client application calls the FAX_SetGeneralConfiguration (Opnum 98) method to set the

configuration options provided for the fax service. The FAX_GENERAL_CONFIG (section 2.2.31)
structure MUST be serialized. The variable data fields, such as strings, MUST be filled with the offset to
the string from the beginning of the buffer and not the actual address. In response, the server MUST

282 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

validate that the client's fax user account has access to manage configuration on the server. On
success, the server MUST set the requested configuration options.

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and
FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client

MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0
(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For
more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

 error_status_t FAX_SetGeneralConfiguration(
 [in] handle_t hBinding,
 [in] DWORD level,
 [in, ref, size_is(BufferSize)] const LPBYTE Buffer,
 [in, range(0,FAX_MAX_RPC_BUFFER)]
 DWORD BufferSize
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used

as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

level: A DWORD value that indicates the type of structure to return in Buffer. This value MUST be set
to zero.

Buffer: A pointer to a FAX_GENERAL_CONFIG (section 2.2.31) structure that contains the

configuration information to set.

BufferSize: A pointer to a DWORD value that specifies the size, in bytes, of the buffer that is pointed
to by the Buffer parameter. The maximum size is FAX_MAX_RPC_BUFFER (section 2.2.82).

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
required FAX_ACCESS_MANAGE_CONFIG access rights required
authorization for this operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the

following conditions are met:

▪ The level parameter is set to a value greater than 0.

▪ In the FAX_GENERAL_CONFIG structure referenced by the Buffer
parameter, the dtDiscountStart.Hour member is set to a value
greater than or equal to 24, and the dtDiscountStart.Minute
member is set to a value greater than or equal to 60.

▪ In the FAX_GENERAL_CONFIG structure referenced by the Buffer
parameter, the dtDiscountEnd.Hour member is set to a value
greater than or equal to 24, and the dtDiscountEnd.Minute
member is set to a value greater than or equal to 60.

▪ In the FAX_GENERAL_CONFIG structure referenced by the Buffer
parameter, the bUseArchive member is set to TRUE and the
lpcwstrArchiveLocationOffset member is set to 0.

▪ In the FAX_GENERAL_CONFIG structure referenced by the Buffer
parameter, the dwSizeQuotaHighWaterMark member is set to a
value greater than the value of the dwSizeQuotaLowWaterMark

283 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

member.

▪ In the FAX_GENERAL_CONFIG structure referenced by the Buffer
parameter, the dwQueueState member contains one or more of
the following flag values: FAX_INCOMING_BLOCKED,
FAX_OUTBOX_BLOCKED, or FAX_OUTBOX_PAUSED.

▪ The value of the BufferSize parameter is less than the size required
to hold the custom marshaled FAX_GENERAL_CONFIG structure
referenced by the Buffer parameter. This size is specified by the
dwSizeOfStruct member of the FAX_GENERAL_CONFIG structure
referenced by the Buffer parameter (described in section 2.2.31).

0x00000008

ERROR_NOT_ENOUGH_MEMORY

In order to process the data for custom marshaling, the server needs to
make a copy of the FAX_GENERAL_CONFIG data structure provided by
the client; but the server cannot allocate sufficient memory to hold the
copy of the FAX_GENERAL_CONFIG data structure.

0x0000054F

ERROR_INTERNAL_ERROR

The server failed to parse the custom marshaled
FAX_GENERAL_CONFIG data structure.

0x0000000D

ERROR_INVALID_DATA

The lpcwstrArchiveLocationOffset member of the Fixed_Portion of
the FAX_GENERAL_CONFIG structure referenced by the Buffer
parameter is set to an invalid offset value.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.81 FAX_SetGlobalRoutingInfo (Opnum 18)

The fax client application calls the FAX_SetGlobalRoutingInfo (Opnum 18) method to set global routing
properties such as the routing method priority.

In response, the server MUST validate that the client's fax user account has access to set the global
routing information on the server. On success, the server MUST modify its fax routing method data,
such as routing priority, that applies globally.

 error_status_t FAX_SetGlobalRoutingInfo(
 [in] handle_t hBinding,
 [in] const FAX_GLOBAL_ROUTING_INFOW* RoutingInfo
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

RoutingInfo: A pointer to a buffer that contains a FAX_GLOBAL_ROUTING_INFOW (section 2.2.32)
structure.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the access

rights (required FAX_ACCESS_MANAGE_CONFIG) required authorization

284 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

for this operation.

0x0000000D

ERROR_INVALID_DATA

The fax server cannot find the routing method specified by the Guid
structure field of the RoutingInfo parameter.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the
following conditions are met:

▪ The RoutingInfo parameter is set to a NULL pointer value.

▪ The SizeOfStruct structure field of the RoutingInfo parameter is not
set to the correct size, in bytes, for the
FAX_GLOBAL_ROUTING_INFOW structure.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.82 FAX_SetJob (Opnum 6)

The FAX_SetJob method is called by the client. The value for the JobId parameter can be obtained
using one of the following methods: FAX_EnumJobs (section 3.1.4.1.21),

FAX_EnumJobsEx (section 3.1.4.1.22), or FAX_EnumJobsEx2 (section 3.1.4.1.23).

On success, the server MUST pause, resume, cancel, or restart the specified fax job and MUST set the
job status (section 3.1.1) to reflect the new job state.

 error_status_t FAX_SetJob(
 [in] handle_t hBinding,
 [in] DWORD JobId,
 [in] DWORD Command
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

JobId: A DWORD variable that uniquely identifies the fax job to modify.

Command: A DWORD variable that indicates the job command that the fax server is requested to
perform.

Value Meaning

JC_DELETE

0x00000001

The fax server MUST cancel the specified fax job. This job can be in an active or queued
state. This is equivalent with the FAX_Abort (section 3.1.4.1.2) call.

JC_PAUSE

0x00000002

The fax server MUST pause the specified fax job if the job status is JS_PENDING or
JS_RETRYING.

JC_RESUME

0x00000003

The fax server MUST resume the specified fax job if it is in a paused state and return the
job status to the value it had when the job was paused: JS_PENDING or JS_RETRYING.

JC_RESTART

0x00000003

The fax server MUST restart the specified fax job.

285 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Note that JC_RESUME and JC_RESTART are both defined to the same value. When receiving either
a JC_RESUME or JC_RESTART FAX_SetJob request, the server MUST restart the job if the job

status (section 3.1.1) is JS_RETRIES_EXCEEDED (see _(_FAX_JOB_ENTRY (section 2.2.6));
otherwise, the server MUST resume the job.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the access
rights required to perform this operation:

▪ For an outgoing fax job, the client's fax user account is not the owner
of the fax job and the client's fax user account does not have the
FAX_ACCESS_MANAGE_OUT_JOBS rights.

▪ For an incoming fax job, incoming faxes are not public, and the
client's fax user account does not have the
FAX_ACCESS_MANAGE_RECEIVE_FOLDER rights.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The fax job indicated by the JobId argument cannot be found by the
fax server.

▪ The specified Command argument value is JC_DELETE and the fax
job specified by the JobId argument indicates a fax job that is already
in a state of being deleted or was already deleted.

▪ The specified Command argument value is JC_UNKNOWN (0).

▪ The specified Command argument value is not JC_DELETE,
JC_PAUSE, or JC_RESUME/JC_RESTART.

▪ The specified Command argument value is JC_DELETE and the type
of the fax job specified by the JobId parameter is JT_BROADCAST
(seeSee the descriptiondefinition of the dwJobType member of the
FAX_JOB_STATUS structure in (section 2.2.36).

0x000010DD

ERROR_INVALID_OPERATION

The specified Command argument value is JC_DELETE, and the specified
JobId represents a fax job with a current job status other than
JS_PENDING or JS_RETRYING.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.83 FAX_SetLoggingCategories (Opnum 22)

The FAX_SetLoggingCategories method is called by the client. On success, the server MUST modify
the current logging categories for the fax server to which the client has connected. A logging category
determines the errors or other events that the fax server records in the application event log.

 error_status_t FAX_SetLoggingCategories(
 [in] handle_t hBinding,
 [in, unique, size_is(BufferSize)]
 const LPBYTE Buffer,
 [in, range(0,FAX_MAX_RPC_BUFFER)]
 DWORD BufferSize,
 [in] DWORD NumberCategories

286 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

Buffer: A pointer to an array of the FAX_LOG_CATEGORY (section 2.2.11) structure. Each structure
contains the data to modify one logging category. The data includes a friendly name of the logging
category, a numeric identifier for the category, and the current severity-level threshold for the
category. For more information, see [MSDN-FSCAR].

BufferSize: A variable to return the size, in bytes, of the job information buffer. This variable MUST
be set to a value between 1 and 1,048,576. The maximum size is

FAX_MAX_RPC_BUFFER (section 2.2.82).

NumberCategories: A DWORD variable that contains the number of
FAX_LOG_CATEGORY (section 2.2.11) structure items that the method passes in the Buffer
parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_ACCESS_MANAGE_CONFIG access rights required for this call.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The value specified for the Buffer parameter is NULL.

▪ The value specified for the BufferSize parameter is 0.

▪ The fax server cannot parse the FAX_LOG_CATEGORY data structures
pointed at by the Buffer parameter, possibly because the buffer data
is corrupted.

▪ One of the pointer fields of one of the FAX_LOG_CATEGORY data
structures pointed at by Buffer parameter point to memory locations
outside of the memory block specified by the Buffer and BufferSize
parameters.

0x000003F7

ERROR_REGISTRY_CORRUPT

The registry is corrupted. The fax server cannot write to registryregister
the modified logging categories.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC

protocol, [MS-RPCE].

The FAX_LOG_CATEGORY structure array MUST be serialized. For more information, see [MSDN-
FAX_LOG_CATEGORY]. The variable data fields, such as strings, SHOULD be filled with the offset to
the string from the beginning of the buffer and not the actual address.

3.1.4.1.84 FAX_SetMessage (Opnum 103)

The fax client application calls the FAX_SetMessage (Opnum 103) method to set the specific message

properties for the message identified by its ID.<164> The dwlMessageId parameter specifies a

287 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

particular message and can be obtained using the FAX_EnumMessages (section 3.1.4.1.24) method or
the FAX_EnumMessagesEx (section 3.1.4.1.25) method.

In response, the server MUST validate whether the client's fax user account has access to set the
message properties. The server MUST also confirm if the dwlMessageId specified by the client refers to

a valid message and the client's fax user account has access to this message in the specified folder.
On success, the server MUST set the specified message properties, enabled using the
dwValidityMask member of the FAX_MESSAGE_PROPS (section 2.2.15) structure, for the fax
message.

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and
FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client
MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0

(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For
more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

 error_status_t FAX_SetMessage(
 [in] handle_t hFaxHandle,
 [in] DWORDLONG dwlMessageId,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder,
 [in, ref] PFAX_MESSAGE_PROPS lpMessageProps
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

dwlMessageId: The unique ID number of the fax message.

Folder: Identifies the location of the fax message. The value in this parameter MUST come from the
FAX_ENUM_MESSAGE_FOLDER enumeration. It can be set to the FAX_MESSAGE_FOLDER_INBOX
or FAX_MESSAGE_FOLDER_SENTITEMS constant.

lpMessageProps: This MUST be a pointer to a FAX_MESSAGE_PROPS (section 2.2.15) structure.

Contains the property settings for the fax message identified by dwlMessageId.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00001B61

FAX_ERR_MESSAGE_NOT_FOUND

The fax message specified by the dwlMessageId argument cannot be
found by the fax server in the folder specified by the Folder argument.

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
ALL_FAX_USER_ACCESS_RIGHTS access rights required for this
operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the
following conditions are met:

▪ The structure pointed to by the lpMessageProps argument
contains invalid data.

▪ The Folder argument has an invalid value (a value other than
FAX_MESSAGE_FOLDER_INBOX or
FAX_MESSAGE_FOLDER_SENTITEMS).

▪ The dwlMessageId parameter is zero.

288 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

▪ In the structure pointed at by the lpMessageProps argument, the
dwValidityMask field contains the
FAX_MSG_PROP_FIELD_MSG_FLAGS, and the dwMsgFlags field
does not contain the FAX_MSG_ALL_FLAGS flag.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.85 FAX_SetOutboundGroup (Opnum 52)

The fax client application calls the FAX_SetOutboundGroup (Opnum 52) method to set a new device
list to an existing group. The name of the group to remove is specified using the lpwstrGroupName
parameter. The value for the lpwstrGroupName parameter can be obtained using
FAX_EnumOutboundGroups (section 3.1.4.1.26).

In response, the server MUST validate whether the client's fax user account has access to set the

outbound routing groups. It MUST validate whether the dwSizeOfStruct field passed in pGroup is equal
to the size of RPC_FAX_OUTBOUND_ROUTING_GROUPW structure. On success, the server MUST

modify its outbound routing groups as specified by the client.

 error_status_t FAX_SetOutboundGroup(
 [in] handle_t hFaxHandle,
 [in, ref] PRPC_FAX_OUTBOUND_ROUTING_GROUPW pGroup
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

pGroup: A pointer to an RPC_FAX_OUTBOUND_ROUTING_GROUPW (section 2.2.39) buffer to set.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client's fax user account does not have the access
rights (required FAX_ACCESS_MANAGE_CONFIG) required

authorization for this operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned when
any of the following conditions occur:

▪ The dwSizeOfStruct member of the pGroup parameter
is not equal to the correct size of the
RPC_FAX_OUTBOUND_ROUTING_GROUPW
structure.

▪ The lpwstrGroupName member of the pGroup
parameter is set to a NULL pointer value.

▪ The lpdwDevices member of the pGroup parameter is
set to NULL and the dwNumDevices member of the
same pGroup parameter is set to a value greater than
zero.

▪ The fax server tried to return

289 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU but the
client fax API version (FAX_API_VERSION_0, described
in section 3.1.4.1.10) does not support this error code.

0x0000006F

ERROR_BUFFER_OVERFLOW

The length (excluding the terminating null character) of the
character string pointed at by the lpwstrGroupName
member of the pGroup parameter is longer than 128
characters.

0x000003F7

ERROR_REGISTRY_CORRUPT

The registry is corrupted. The structure of one of the files
containing registry data is corrupted, or the system's
memory image of the file is corrupted, or the file could not
be recovered because the alternate copy or log was absent

or corrupted.

0x00001B63

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU

The fax client module API version, as specified in
FAX_ConnectFaxServer (section 3.1.4.1.10), is
FAX_API_VERSION_1 or above, and the fax server is
running on a version of the operating system that does not
support the requested operation.<165>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.86 FAX_SetOutboundRule (Opnum 58)

A fax client application uses the FAX_SetOutboundRule (Opnum 58) method to set the information
about an individual fax outbound routing rule.

In response, the server MUST validate that the client's fax user account has access to set an outbound
routing rule. On success, the server MUST modify its outbound routing rule as specified by the client.

 error_status_t FAX_SetOutboundRule(
 [in] handle_t hFaxHandle,
 [in, ref] RPC_FAX_OUTBOUND_ROUTING_RULEW* pRule
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle

used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

pRule: A pointer to an RPC_FAX_OUTBOUND_ROUTING_RULEW (section 2.2.41) buffer to set.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not
have the access rights (required
FAX_ACCESS_MANAGE_CONFIG) required authorization for
this operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any
of the following conditions occur:

▪ The lpwstrGroupName member of the Destination

290 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

member of the pRule parameter is set to a NULL
pointer value.

▪ The dwDeviceId member of the Destination member
of the pRule parameter is set to zero.

▪ The fax server tried to return
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU but the
client fax API version (FAX_API_VERSION_0, described
in section 3.1.4.1.10) does not support this error code.

0x0000006F

ERROR_BUFFER_OVERFLOW

The length (excluding the terminating null character) of the
character string pointed at by the lpwstrGroupName
member of the Destination member of the pRule
parameter is greater than 128 characters.

0x000003F7

ERROR_REGISTRY_CORRUPT

The registry is corrupted. The structure of one of the files
containing registry data is corrupted, or the system's
memory image of the file is corrupted, or the file could not
be recovered because the alternate copy or log was absent
or corrupted.

0x00001B63

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU

The fax client module API version, as specified in
FAX_ConnectFaxServer (section 3.1.4.1.10), is
FAX_API_VERSION_1 or above, and the fax server is
running on a version of the operating system that does not
support the requested operation.<166>

0x00001B5B

FAX_ERR_BAD_GROUP_CONFIGURATION

This error code is returned if any of the following conditions
occur:

▪ The fax server encountered an outbound routing group
with a bad configuration, or the group device list is

empty.

▪ The status for the outbound routing rule object
indicated by the specified dialing location (the
dwCountryCode and dwAreaCode members of the
pRule parameter) and group name (the
lpwstrGroupName member of the Destination
member of the pRule parameter) is
FAX_GROUP_STATUS_ALL_ DEV_NOT_VALID or
FAX_RULE_STATUS_EMPTY_GROUP.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.87 FAX_SetOutboxConfiguration (Opnum 39)

The fax client application calls the FAX_SetOutboxConfiguration (Opnum 39) method to set the current

Outbox configuration such as the Discount Time.

In response, the server MUST validate whether the client's fax user account has access to set an
outbound routing configuration. On success, the server MUST modify its outbound routing
configuration as specified by the client.

 error_status_t FAX_SetOutboxConfiguration(
 [in] handle_t hFaxHandle,
 [in, ref] const PFAX_OUTBOX_CONFIG pOutboxCfg

291 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

pOutboxCfg: A pointer to an FAX_OUTBOX_CONFIG (section 2.2.16) object containing configuration
information.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the access
rights (required FAX_ACCESS_MANAGE_CONFIG) required authorization
for this operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the
following conditions occur:

▪ The dwSizeOfStruct member of the structure pointed at by the
pOutboxCfg parameter is not the correct size for the
FFAX_OUTBOX_CONFIGstructure.

▪ The dtDiscountStart or dtDiscountEnd members of the structure
pointed to by the pOutboxCfg parameter contain one or more invalid
Hour (value greater than 24) or Minute (value greater than 60)
fields.

0x000003F7

ERROR_REGISTRY_CORRUPT

The registry is corrupted. The structure of one of the files containing
registry data is corrupted, or the system's memory image of the file is
corrupted, or the file could not be recovered because the alternate copy or
log was absent or corrupted.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.88 FAX_SetPort (Opnum 12)

A fax client application uses the FAX_SetPort (Opnum 12) method to set fax device information. The
function sets extension configuration properties that are stored at the device level, such as enabling or
disabling sending and receiving, and the auto or manual answering of calls.

In response, the server MUST validate whether the FaxPortHandle argument that is passed by the
client refers to a port handle that is obtained by a call to FAX_OpenPort with the PORT_OPEN_MODIFY

port access mode flag specified with the Flags argument. The server MUST validate whether the
client's fax user account has access to modify the properties of this port. On success, the server MUST
modify the properties of the port as specified by the client.<167>

 error_status_t FAX_SetPort(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in] const FAX_PORT_INFO* PortInfo
);

FaxPortHandle: An RPC context handle that references a specified fax port.

292 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

PortInfo: A pointer to a FAX_PORT_INFO (section 2.2.7) structure. The structure (except the State
field, which has no purpose for this call and which the fax server SHOULD ignore) contains data to

modify the configuration of the specified fax port. The client MUST set the SizeofStruct member
of this structure to the correct size described in section 2.2.7 before it calls the FAX_SetPort

method.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have
the FAX_ACCESS_MANAGE_CONFIG fax access right.

0x0000000D

ERROR_INVALID_DATA

The handle specified by the FaxPortHandle argument is not a
valid fax port handle obtained by a call to
FAX_OpenPort.<168>

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any
of the following conditions are met:

▪ The pointer specified by the PortInfo argument is NULL.

▪ The handle specified by the FaxPortHandle argument is
NULL.

▪ The requested value of the Priority member of the
PortInfo parameter is 0, or is greater than the total
number of installed fax devices.

▪ The size of the PortInfo structure specified in the
SizeOfStruct field is not the correct size, in bytes, for
the FAX_PORT_INFO structure.

▪ When FAX_ERR_DEVICE_NUM_LIMIT_EXCEEDED is to be
returned, but the fax client does not support this error
code (the fax client API version specified in
FAX_ConnectFaxServer (section 3.1.4.1.10) is
FAX_API_VERSION_0).

0x00001B62

FAX_ERR_DEVICE_NUM_LIMIT_EXCEEDED

The fax server cannot complete the operation because all of
the following conditions are true:

If the fax server has an implementation-dependent maximum
number of supported devices set<169> and the number of
fax devices currently connected to the server is equal to or
exceeds this maximum number of supported devices.

The device is not send, receive, or manual-receive enabled.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.89 FAX_SetPortEx (Opnum 47)

A fax client application uses the FAX_SetPortEx (Opnum 47) method to set fax device information. The
function sets extension configuration properties that are stored at the device level, such as enable or

disable sending and receiving, and the auto or manual answering of calls. The value for the
dwDeviceId parameter can be obtained using the FAX_EnumPorts (section 3.1.4.1.28) method or the
FAX_EnumPortsEx (section 3.1.4.1.29) method.

293 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

In response, the server MUST validate whether the client's fax user account has access to the server.
The server MUST validate that the dwDeviceId parameter that is specified by the client is for a valid

device. On success, the server MUST modify the properties of the device as specified by the client.

 error_status_t FAX_SetPortEx(
 [in] handle_t hFaxHandle,
 [in] DWORD dwDeviceId,
 [in, ref] const PFAX_PORT_INFO_EXW pPortInfo
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

dwDeviceId: A unique identifier that distinguishes the device. The value of dwDeviceId MUST be
greater than zero.

pPortInfo: A pointer to a buffer of type FAX_PORT_INFO_EXW (section 2.2.45).

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The caller does not have the required
FAX_ACCESS_MANAGE_CONFIG access rights required
authorization for this operation.

0x00000014

ERROR_BAD_UNIT

The fax server cannot find the device specified by the
dwDeviceId parameter.

0x00000057

ERROR_INVALID_PARAMETER

This error code is returned under any of the following
conditions:

▪ The value of the dwDeviceId parameter is zero.

▪ The size of the structure pointed at by the pPortInfo
parameter, or the value of the dwSizeOfStruct field of
this structure, do not match the correct size for the
FAX_PORT_INFO_EXW structure.

▪ The ReceiveMode field of the structure pointed at by
the pPortInfo parameter does not contain a valid value
of the FAX_DEVICE_RECEIVE_MODE enumeration.

▪ The device specified by dwDeviceId is a virtual device
(the Flags field of the FAX_PORT_INFO (section 2.2.7)
structure is set to FPF_VIRTUAL) and the ReceiveMode
field of the structure pointed at by pPortInfo is
FAX_DEVICE_RECEIVE_MODE_MANUAL.

0x00001B62

FAX_ERR_DEVICE_NUM_LIMIT_EXCEEDED

The fax server cannot complete the operation because the
number of active fax devices that are allowed for this version
of the operating system was exceeded.<170>

0x0000006F

ERROR_BUFFER_OVERFLOW

The length of the lpwstrDescription character string field of
the data structure pointed at by the pPortInfo parameter
exceeds 253 characters, excluding the length of the NULL
string terminator.

294 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x000003F7

ERROR_REGISTRY_CORRUPT

The fax server cannot store the updated device information
to Registry. The Registry might be corrupt.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.90 FAX_SetQueue (Opnum 33)

The fax client application calls the FAX_SetQueue (Opnum 33) method to change the state of the

server queue. In response, the server MUST validate whether the client's fax user account has
accessauthorization to set the queue stateQueue State of the server. On success, the server MUST
set its queue stateQueue State as specified by the client.

 error_status_t FAX_SetQueue(
 [in] handle_t hFaxHandle,
 [in] const DWORD dwQueueStates
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

dwQueueStates: A pointer to a DWORD value that contains state information about the fax queue.
If this value is zero, both the incoming and outgoing queues are unblocked. Otherwise, this value
is a combination of one or more of the following values.

Value Meaning

FAX_INCOMING_BLOCKED

0x00000001

The fax service will not receive new incoming faxes.

FAX_OUTBOX_BLOCKED

0x00000002

The fax service will reject submissions of new outgoing faxes to its queue.

FAX_OUTBOX_PAUSED

0x00000004

The fax service will not dequeue and execute outgoing fax jobs from its
queue.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the required
FAX_ACCESS_MANAGE_CONFIG access rights required authorization for
this operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. The dwQueueStates parameter is set to a
combination of values that does not contain any of the supported values:
FAX_INCOMING_BLOCKED, FAX_OUTBOX_BLOCKED, or
FAX_OUTBOX_PAUSED.

0x000003F7

ERROR_REGISTRY_CORRUPT

The registry is corrupted. The structure of one of the files containing
registry data is corrupted, or the system's memory image of the file is
corrupted, or the file could not be recovered because the alternate copy
or log was absent or corrupted.

295 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x80010100

RPC_E_SYS_CALL_FAILED

 The dwQueueStates parameter includes the FAX_OUTBOX_PAUSED
value and the fax server cannot pause the server queue, or the
dwQueueStates parameter does not include the
FAX_OUTBOX_PAUSED value and the fax server cannot resume the
server queue.

0x0000000E

ERROR_OUTOFMEMORY

The fax server cannot allocate sufficient memory for a FAX_EVENT_EX_1
structure that describes a FAX_EVENT_QUEUE_TYPE_QUEUE_STATE
event to be signaled to the client. For more details, see
FAX_ClientEventQueueEx (section 3.2.4.3).

Exceptions Thrown: No exceptions are thrown except those thrown by the underlying RPC protocol,

[MS-RPCE].

3.1.4.1.91 FAX_SetReceiptsConfiguration (Opnum 35)

The FAX_SetReceiptsConfiguration (Opnum 35) method is called by the client. On success, the server
MUST set the receipt configuration information that is used by the fax server to send delivery receipts
for fax transmissions.<171>

 error_status_t FAX_SetReceiptsConfiguration(
 [in] handle_t hFaxHandle,
 [in, ref] const PFAX_RECEIPTS_CONFIGW pReceipts
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle

used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

pReceipts: A pointer to a FAX_RECEIPTS_CONFIGW (section 2.2.47) object.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not
have the access rights (required
FAX_ACCESS_MANAGE_CONFIG) required authorization for
this operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any
of the following conditions are met:

▪ The dwSizeOfStruct member of the pReceipts
parameter is not equal to the correct size, in bytes, for
the FAX_RECEIPTS_CONFIGW structure.

▪ The dwAllowedReceipts member of the pReceipts
parameter contains one or more invalid flag values (not
defined for the
FAX_ENUM_DELIVERY_REPORT_TYPES
enumeration).

▪ The following member values are set in the submitted
pReceipts parameter: the DRT_EMAIL flag is set
within the dwAllowedReceipts member, the
bIsToUseForMSRouteThroughEmailMethod

296 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

member is set to FALSE, and the
lpwstrSMTPPasswordmember is set to a non-NULL
pointer value.

▪ In the submitted pReceipts parameter, the
DRT_EMAIL flag is set within the
dwAllowedReceipts member or the
bIsToUseForMSRouteThroughEmailMethod
member is set to TRUE and the SMTPAuthOption
member is set to a value lower than
FAX_SMTP_AUTH_ANONYMOUS or greater than
FAX_SMTP_AUTH_NTLM.

▪ The fax server tried to return
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU but the
client fax API version (FAX_API_VERSION_0, described
in section 3.1.4.1.10) does not support this error code.

0x000003F7

ERROR_REGISTRY_CORRUPT

The registry is corrupted. The structure of one of the files
containing registry data is corrupted, or the system's
memory image of the file is corrupted, or the file could not
be recovered because the alternate copy or log was absent
or corrupted.

0x00001B63

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU

The fax client module API version (as specified in
FAX_ConnectFaxServer (section 3.1.4.1.10)) is
FAX_API_VERSION_1 or above, and the fax server is
running on a version of the operating system that does not
support the requested operation.<172>

0x00000032

ERROR_NOT_SUPPORTED

The dwAllowedReceipts member of the pReceipts
parameter contains the DRT_MSGBOX flag value (see the
FAX_ENUM_DELIVERY_REPORT_TYPES (section 2.2.76)
enumeration), and the fax server does not support this type
of fax receipts.<173>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.92 FAX_SetRecipientsLimit (Opnum 83)

The FAX_SetRecipientsLimit (Opnum 83) method is called by the client. A fax client application calls
the FAX_SetRecipientsLimit method to set the recipient limit of a single broadcast job. On success, the
server MUST set the recipient limit of a single broadcast job.

Protocol version FAX_API_VERSION_0 (0x00000000) and FAX_API_VERSION_1 (0x00010000) fax
servers SHOULD NOT implement this call. Protocol version FAX_API_VERSION_2 (0x00020000) and
FAX_API_VERSION_3 (0x00030000) fax servers SHOULD fail this call by returning
ERROR_NOT_SUPPORTED (0x00000032). The fax client MUST NOT call this method if the protocol
version reported by the server is FAX_API_VERSION_0 (0x00000000) or FAX_API_VERSION_1

(0x00010000). For more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

 error_status_t FAX_SetRecipientsLimit(
 [in] handle_t hbinding,
 [in] DWORD dwRecipientsLimit
);

297 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

hbinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

dwRecipientsLimit: A DWORD that specifies the maximum number of recipients for the fax.

Return Values: This method SHOULD return 0x00000032 (ERROR_NOT_SUPPORTED).

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.93 FAX_SetRoutingInfo (Opnum 16)

The FAX_SetRoutingInfo (Opnum 16) method is called by the client to set routing information for a fax
routing method.

The server MUST validate that the client's fax user account has access to manage configuration on the
server. The server SHOULD validate that the FaxPortHandle is not NULL. The server MUST validate

that the RoutingGuid is for a valid routing method. The routing information MUST be passed on to the
corresponding routing extension as specified by the RoutingGuid.

On success, the server MUST modify the routing information for the fax routing method that is
associated with a specific fax device.

 error_status_t FAX_SetRoutingInfo(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, string, unique] LPCWSTR RoutingGuid,
 [in, unique, size_is(RoutingInfoBufferSize)]
 const BYTE* RoutingInfoBuffer,
 [in, range(0,FAX_MAX_RPC_BUFFER)]
 DWORD RoutingInfoBufferSize
);

FaxPortHandle: An RPC context handle that references a specified fax port. This context handle

MUST be obtained using the FAX_OpenPort (section 3.1.4.1.65) method.

RoutingGuid: A curly-braced GUID string that uniquely identifies the fax routing method to set the
routing information for. Fax routing methods are defined by a fax routing extension, and the
method is identified by a GUID. For more information about routing methods, see [MSDN-
FRM].For more information about routing methods, see [MSDN-FRM]. The routing methods and

the associated curly-braced GUID string values that can be used for this parameter are
discoverable by calling FAX_EnumRoutingMethods (section 3.1.4.1.31). Included in this list are the
default routing methods described in section 2.2.87.

RoutingInfoBuffer: A pointer to a buffer that contains the new fax routing information. The format
and contents of this buffer depend on the routing method identified by the RoutingGuid
parameter.

RoutingInfoBufferSize: The size, in bytes, of the RoutingInfoBuffer buffer. The maximum size is the

value FAX_MAX_RPC_BUFFER (section 2.2.82).

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client's fax user account does not have the
FAX_ACCESS_MANAGE_CONFIG permission.

298 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x0000000D

ERROR_INVALID_DATA

This error code is returned if any of the following conditions are met:

▪ The FaxPortHandle parameter is not set to a valid fax port handle
obtained with FAX_OpenPort.

▪ The RoutingGuid parameter is not set to a GUID representing a valid
routing method.

0x00000057

ERROR_INVALID_PARAMETER

This error code is returned if any of the following conditions are met:

▪ The RoutingGuid parameter is set to a NULL pointer value.

▪ The RoutingInfoBuffer parameter is set to a NULL pointer value.

▪ The RoutingInfoBufferSize parameter is set to a value of 0.

▪ The FaxPortHandle parameter is set to a NULL value.<174>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC

protocol, [MS-RPCE].

3.1.4.1.94 FAX_SetSecurity (Opnum 24)

The FAX_SetSecurity (Opnum 24) method is called by the client. On success, the server MUST set the
fax server's security descriptor.

Protocol version FAX_API_VERSION_3 (0x00030000) fax servers SHOULD fail this call by returning
ERROR_NOT_SUPPORTED (0x00000032). The fax client SHOULD NOT call this method if the protocol

version reported by the server is FAX_API_VERSION_3 (0x00030000). For more information, see
FAX_ConnectFaxServer (section 3.1.4.1.10). The fax client SHOULD call
FAX_SetSecurityEx2 (section 3.1.4.1.95) instead.

 error_status_t FAX_SetSecurity(
 [in] handle_t hBinding,
 [in] SECURITY_INFORMATION SecurityInformation,
 [in, unique, size_is(dwBufferSize)]
 const LPBYTE pSecurityDescriptor,
 [in, range(0,FAX_MAX_RPC_BUFFER)]
 DWORD dwBufferSize
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or

FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

SecurityInformation: Identifies the components that are included in the security descriptor. The
value of this parameter is a bitwise OR combination of SECURITY_INFORMATION constant values.

pSecurityDescriptor: A pointer to a SECURITY_DESCRIPTOR structure, as specified in [MS-DTYP]
section 2, to be set.

dwBufferSize: A variable to indicate the size, in bytes, of the pSecurityDescriptor security
descriptor buffer. The maximum size is FAX_MAX_RPC_BUFFER 2.2.82.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

299 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the access
rights required for this operation. This error code is returned under any of
the following conditions, listed by required access right:

▪ WRITE_OWNER, when the fax server is a FAX_API_VERSION_1
server and the SecurityInformation parameter contains the
OWNER_SECURITY_INFORMATION value.

▪ WRITE_DAC, when the fax server is a FAX_API_VERSION_1
server and the SecurityInformation parameter contains the
GROUP_SECURITY_INFORMATION or
DACL_SECURITY_INFORMATION values.

▪ READ_CONTROL, when the fax server is a FAX_API_VERSION_2
server and the SecurityInformation parameter contains the
GROUP_SECURITY_INFORMATION,
DACL_SECURITY_INFORMATION, or
OWNER_SECURITY_INFORMATION values.

▪ ACCESS_SYSTEM_SECURITY, when the SecurityInformation
parameter contains the SACL_SECURITY_INFORMATION value.

0x0000000D

ERROR_INVALID_DATA

The data contained in the buffer specified by the pSecurityDescriptor
parameter is not a valid SECURITY_DESCRIPTOR structure.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The pSecurityInformation parameter is set to a NULL pointer
value.

▪ The dwBufferSize parameter is set to a value of 0.

0x000003F7

ERROR_REGISTRY_CORRUPT

The registry is corrupted. The structure of one of the files containing
registry data is corrupted, or the system's memory image of the file is
corrupted, or the file could not be recovered because the alternate copy
or log was absent or corrupted.

0x00000032

ERROR_NOT_SUPPORTED

The fax server does not support this operation. This error SHOULD be
returned by FAX_API_VERSION_3 servers.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

The server MUST validate that the client has the following credentials to set security on the server.

Action Authorization

To set security information on the
object owned by the client

The right to change the owner in the object's security descriptor
(WRITE_OWNER).

To set group security information The right to modify the discretionary access control list (DACL) in the
object's security descriptor (WRITE_DAC).

To set system-wide security
information

The right to modify the system access control list (SACL) in the object's
security descriptor (ACCESS_SYSTEM_SECURITY).

300 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.4.1.95 FAX_SetSecurityEx2 (Opnum 100)

The FAX_SetSecurityEx2 (Opnum 100) method is called by the client. On success, the server MUST
set the fax server's security descriptor.

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and
FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client
MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0
(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For
more information, see FAX_ConnectFaxServer (section 3.1.4.1.10). The fax client SHOULD call
FAX_SetSecurity (section 3.1.4.1.94) instead.

 error_status_t FAX_SetSecurityEx2(
 [in] handle_t hBinding,
 [in] SECURITY_INFORMATION SecurityInformation,
 [in, unique, size_is(dwBufferSize)]
 const LPBYTE pSecurityDescriptor,
 [in, range(0,FAX_MAX_RPC_BUFFER)]
 DWORD dwBufferSize
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

SecurityInformation: Defines the desired entries, which are indicated as a bitwise OR operation, in
the security descriptor to return.

pSecurityDescriptor: A pointer to a SECURITY_DESCRIPTOR structure, as specified in [MS-DTYP]

section 2.

dwBufferSize: A value that indicates the size, in bytes, of the pSecurityDescriptor buffer. The
maximum size is FAX_MAX_RPC_BUFFER (section 2.2.82).

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the access
rights required for this operation:

▪ WRITE_OWNER, when the SecurityInformation parameter
contains the OWNER_SECURITY_INFORMATION value.

▪ WRITE_DAC, when the SecurityInformation parameter contains
the GROUP_SECURITY_INFORMATION or
DACL_SECURITY_INFORMATION values.

▪ ACCESS_SYSTEM_SECURITY, when the SecurityInformation
parameter contains the SACL_SECURITY_INFORMATION value.

0x0000000D

ERROR_INVALID_DATA

The data is invalid. The data contained in the buffer specified by the
pSecurityDescriptor parameter is not a valid SECURITY_DESCRIPTOR
structure.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

301 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

▪ The pSecurityDescriptor parameter is set to a NULL pointer value.

▪ The dwBufferSize parameter is set to 0x00000000.

▪ The SecurityInformation parameter is set to a value that does not
contain any of the following flags:
OWNER_SECURITY_INFORMATION,
GROUP_SECURITY_INFORMATION,
DACL_SECURITY_INFORMATION, or
SACL_SECURITY_INFORMATION.

0x000003F7

ERROR_REGISTRY_CORRUPT

The registry is corrupted. The structure of one of the files that contains
registry data is corrupted, or the system's memory image of the file is
corrupted, or the file could not be recovered because the alternate copy or
log was absent or corrupted.

0x0000000E

ERROR_OUTOFMEMORY

The fax server cannot allocate sufficient memory for a properly constructed
FAX_EVENT_EX_1 structure describing a FAX_EVENT_TYPE_CONFIG
event to be signaled to the client.

A properly constructed structure has the ConfigType member of the
FAX_EVENT_EX_1 structure set to FAX_CONFIG_TYPE_SECURITY. For
more details, see FAX_ClientEventQueueEx (section 3.2.4.3).

The server MUST validate that the client has the following credentials to set security on the server.

Action Authorization

Set security information on the object
owned by the client.

The right to change the owner in the object's security descriptor
(WRITE_OWNER).

Set group security information. The right to modify the DACL in the object's security descriptor
(WRITE_DAC).

Set system-wide security information. The right to modify the SACL in the object's security descriptor
(ACCESS_SYSTEM_SECURITY).

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.96 FAX_StartCopyMessageFromServer (Opnum 69)

The FAX_StartCopyMessageFromServer (Opnum 69) method is called by the fax client to start a copy
operation of a fax message from the Fax Archive Folder (section 3.1.1) or of a fax job from the server

queue directory (section 3.1.1).

In response, the server MUST validate the message ID and the folder. The server MUST also validate
that the client's fax user account has access to query jobs in the queue or query messages in the
archive. The dwlMessageId parameter specifies a particular message and SHOULD be obtained from

FAX_EnumMessages (section 3.1.4.1.24) or FAX_EnumMessagesEx (section 3.1.4.1.25).

To indicate success, the server MUST create and return a copy handle to the client.

The copy handle returned by the fax server with the lpHandle output argument is valid until the fax

client calls FAX_EndCopy (section 3.1.4.1.15), until the fax server is shut down or restarted, or until
an implementation-specific condition occurs that invalidates the copy handle on the fax server.

 error_status_t FAX_StartCopyMessageFromServer(
 [in] handle_t hFaxHandle,

302 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in] DWORDLONG dwlMessageId,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder,
 [out, ref] PRPC_FAX_COPY_HANDLE lpHandle
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

dwlMessageId: A DWORDLONG value that indicates the message identifier to copy to the client.

Folder: This MUST be an enumeration value that indicates the folder from which to copy the message.
For more information, see FAX_ENUM_MESSAGE_FOLDER (section 2.2.2).

lpHandle: The copy handle identifying this copy operation.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return/error code values Description

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. The dwlMessageId specified is 0 and/or the
specified Folder enumeration value is not
FAX_MESSAGE_FOLDER_QUEUE, FAX_MESSAGE_FOLDER_INBOX, or
FAX_MESSAGE_FOLDER_SENTITEMS.

0x00001B61

FAX_ERR_MESSAGE_NOT_FOUND

This error code is returned if any of the following conditions are met:

▪ The fax server cannot find the fax queue entry referenced by the
specified dwMessageId (invalid job identifier) or the user does not
have sufficient rights to access the fax queue.

▪ FAX_MESSAGE_FOLDER_QUEUE was specified for the Folder
parameter, the specified message is not owned by the client's fax
user account, and the client's fax user account does not have
either the FAX_ACCESS_QUERY_OUT_JOBS permission or the
FAX_ACCESS_MANAGE_OUT_JOBS permission.

▪ FAX_MESSAGE_FOLDER_INBOX was specified for the Folder
parameter, the client's fax user account does not have the

FAX_ACCESS_MANAGE_RECEIVE_FOLDER permission, and the
bIncomingMessagesArePublic option is not specified in the server
configuration.

▪ FAX_MESSAGE_FOLDER_SENTITEMS was specified for the
Folder parameter, the client's fax user account does not have the
FAX_ACCESS_QUERY_ARCHIVES permission, and the specified
message is not owned by the client's fax user account.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC

protocol, [MS-RPCE].

3.1.4.1.97 FAX_StartCopyToServer (Opnum 68)

The client calls the FAX_StartCopyToServer (Opnum 68) method to start a copy of a file to the server

queue directory (section 3.1.1) for which the client's fax user account has access to submit faxes.
The server MUST generate a unique file name and create a file with that name in the server queue
directory. Then the server MUST create a copy handle and return it to the client to indicate success.

303 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The copy handle returned by the fax server with the lpHandle output argument is valid until the fax
client calls FAX_EndCopy (section 3.1.4.1.15), until the fax server is shut down or restarted, or until

an implementation-specific condition occurs that invalidates the copy handle on the fax server.

 error_status_t FAX_StartCopyToServer(
 [in] handle_t hFaxHandle,
 [in, string, ref] LPCWSTR lpcwstrFileExt,
 [in, out, string, ref] LPWSTR lpwstrServerFileName,
 [out, ref] PRPC_FAX_COPY_HANDLE lpHandle
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpcwstrFileExt: A null-terminated character string containing the extension of the file to create on
the server. The only file name extensions that are supported by the server are "tif" and "cov".

lpwstrServerFileName: Pointer to the buffer that receives the null-terminated character string
containing the name and specified extension of the file created on the server. The client MUST fill

the buffer with any null-terminated character string of sufficient length to accommodate the
character string that will be received. The server MUST overwrite this buffer with the null-
terminated character string containing the name of the file on the server upon return. The server
SHOULD NOT write more than 255 characters, including the terminating null character, to the
returned character string.

lpHandle: The copy handle identifying this copy operation.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have any of the
access rights required for this operation: FAX_ACCESS_SUBMIT,
FAX_ACCESS_SUBMIT_NORMAL, or FAX_ACCESS_SUBMIT_HIGH.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The lpcwstrFileExt parameter is set to a NULL pointer value.<175>

▪ The file extension that is specified by the lpcwstrFileExt parameter
is not "cov" or "tif".

0x0000006F

ERROR_BUFFER_OVERFLOW

The file name is too long. The buffer specified by the
lpwstrServerFileName parameter does not have sufficient space to
accommodate the server file name.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.98 FAX_StartMessagesEnum (Opnum 63)

The FAX_StartMessagesEnum (Opnum 63) method is called by the client. On success, the server
MUST start enumerating messages in one of the archives.

304 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The server MUST validate that the client's fax user account has access to the server. On success, the
server MUST create an enumeration handle and pass it back to the client so that the client can use the

same enumeration handle for enumerating messages.

 error_status_t FAX_StartMessagesEnum(
 [in] handle_t hFaxHandle,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder,
 [out, ref] PRPC_FAX_MSG_ENUM_HANDLE lpHandle
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

Folder: This MUST be a FAX_ENUM_MESSAGE_FOLDER (section 2.2.2) enumeration that indicates the
type of the archive where the message resides. The FAX_MESSAGE_FOLDER_QUEUE value is
invalid for this parameter.

lpHandle: A pointer to an enumeration handle return value.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The caller does not have the required
ALL_FAX_USERS_ACESS_RIGHTS access right to execute this call.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect.

This error code is returned under any of the following conditions:

▪ The value specified for the level argument is not equal to 1.

▪ The value specified for the Folder argument is not equal to
FAX_MESSAGE_FOLDER_INBOX or
FAX_MESSAGE_FOLDER_SENTITEMS.

▪ The lpcwstrAccountName parameter is not NULL and passes
validation checks but does not correspond to an existing account
name.

▪ The account name specified by the lpcwstrAccountName argument is
a valid account name but it refers to a different user than the caller.

0x00000103

ERROR_NO_MORE_ITEMS

No data is available. There are no messages to be enumerated.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC

protocol, [MS-RPCE].

3.1.4.1.99 FAX_StartMessagesEnumEx (Opnum 90)

The FAX_StartMessagesEnumEx (Opnum 90) method is called by the client. On success, the server
MUST start enumerating messages in the specified archive folder.

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and
FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client

MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0

305 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For
more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

A fax client application calls the FAX_StartMessagesEnumEx (Opnum 90) method to start enumerating
messages from the archives. Each enumerated message has more information than those that are

returned by the FAX_StartMessagesEnum (Opnum 63) method, namely whether or not the message
has a cover page, the type of receipts selected, the email address for receipts, and the flags from
FAX_ENUM_MSG_FLAGS.

The server MUST validate that the client's fax user account has access to the server. If this
enumeration is attempted for all accounts, the server MUST validate that the client can query all
accounts. On success, the server MUST create an enumeration handle and pass it back to the client so
that the client can use the same enumeration handle for enumerating messages.

 error_status_t FAX_StartMessagesEnumEx(
 [in] handle_t hFaxHandle,
 [in] BOOL fAllAccounts,
 [in, string, unique] LPCWSTR lpcwstrAccountName,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder,
 [in] DWORD level,
 [out, ref] PRPC_FAX_MSG_ENUM_HANDLE lpHandle
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

fAllAccounts: A flag indicating whether the messages for all accounts are enumerated. If this
parameter is nonzero, the messages for all accounts are enumerated; otherwise,

lpcwstrAccountName indicates which account is enumerated.

lpcwstrAccountName: A pointer to a constant null-terminated character string that indicates which
account to enumerate. If this value is set to NULL, the current account's jobs are enumerated.
Cross-account enumeration is currently not supported. The value for this parameter can be

obtained using the FAX_EnumAccounts (section 3.1.4.1.18) method.

Folder: A FAX_ENUM_MESSAGE_FOLDER (section 2.2.2) enumeration that indicates the type of
archive where the message resides. The FAX_MESSAGE_FOLDER_QUEUE value is invalid for this

parameter.

level: A DWORD value that indicates the structure to return. This value MUST be set to 1.

lpHandle: A pointer to an enumeration handle return value.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. This error code is returned under any of the following
conditions:

▪ The caller does not have the required basic access rights to execute
this call (ALL_FAX_USERS_ACCESS_RIGHTS).

▪ The client's fax user account does not have access to query messages
for all accounts. The value specified for the fAllAccounts parameter is
not equal to zero, and the caller does not have the

306 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

FAX_ACCESS_QUERY_ARCHIVES rights.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The value specified for the level argument is not equal to 1.

▪ The value specified for the Folder argument is not equal to
FAX_MESSAGE_FOLDER_INBOX or
FAX_MESSAGE_FOLDER_SENTITEMS.

▪ The account name specified for the lpcwstrAccountName argument
appears valid (pointer is not NULL), but the account name is not a
valid fax account name.

▪ The account name specified by the lpcwstrAccountName argument is
a valid account name, but it refers to a different user than the caller.

0x00000103

ERROR_NO_MORE_ITEMS

No data is available. There are no messages to be enumerated.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

A fax client application calls the FAX_StartMessagesEnumEx function to start enumerating messages in
one of the archives. The enumerated messages have more information than those that are returned
by FAX_StartMessagesEnum, namely, whether it has a cover page, the type of receipts selected, the

email address for receipts, and the flags from FAX_ENUM_MSG_FLAGS.

The account name that lpcwstrAccountName indicates MUST be in one of the following formats. Any
other format is invalid.

Format Description

<machine_name>\<user_name> For a local user that has machine_name as the local machine's name.

<domain_name>\<user_name> For a nonlocal user.

3.1.4.1.100 FAX_StartServerNotification (Opnum 73)

The FAX_StartServerNotification (Opnum 73) method is called by the client to get notification about
legacy events. On success, the server MUST start to notify the fax client about the occurring fax
events.

Protocol version FAX_API_VERSION_2 (0x00020000) and FAX_API_VERSION_3 (0x00030000) fax
servers SHOULD fail this call by returning ERROR_NOT_SUPPORTED (0x00000032). The fax client

SHOULD NOT call this method if the protocol version reported by the server is FAX_API_VERSION_2

(0x00020000) or FAX_API_VERSION_3 (0x00030000). For more information, see
FAX_ConnectFaxServer (section 3.1.4.1.10).

 error_status_t FAX_StartServerNotification(
 [in] handle_t hBinding,
 [in, string, ref] LPCWSTR lpcwstrMachineName,
 [in, string, ref] LPCWSTR lpcwstrEndPoint,
 [in] ULONG64 Context,
 [in, ref, string] LPCWSTR lpcwstrProtseqString,

307 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in] BOOL bEventEx,
 [in] DWORD dwEventTypes,
 [out, ref] PRPC_FAX_EVENT_HANDLE lpHandle
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpcwstrMachineName: A pointer to a string that contains the name of the fax client machine. The
machine name MUST be NULL for a local machine and a fully qualified domain name (FQDN) for a
remote machine.

lpcwstrEndPoint: A pointer to a string that contains the client machine RPC server endpoint string.
The endpoint MUST be a TCP port between 1024 and 65534 (in increments of 10).

Context: A ULONG64 value that can be passed to FAX_OpenConnection (section 3.2.4.5) as a
notification context.

lpcwstrProtseqString: A pointer to a string that contains the fax client RPC server's protocol
sequence string. The protocol sequence string MUST be ncalrpc for local and ncan_ip_tcp for

remote.

bEventEx: A Boolean value that indicates which notification method to use for notifications. This
parameter is always set to FALSE.

dwEventTypes: A DWORD value that indicates which events the client needs to receive. This
parameter is always set to FAX_EVENT_TYPE_LEGACY. For more information, see
FAX_ENUM_EVENT_TYPE (section 2.2.63).

lpHandle: Returned subscription context handle. This handle can be used in the

FAX_EndServerNotification (section 3.1.4.1.17) method.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The request is not supported.

0x00000005

ERROR_ACCESS_DENIED

The client's fax user account does not have sufficient rights for this call, which
is ALL_FAX_USER_ACCESS_RIGHTS, or the user account does not exist.

0x0000000B

ERROR_BAD_FORMAT

The length, including the terminating null character, of the string specified by
the lpcwstrMachineName argument is greater than 256 characters. The
length, including the terminating null character, of the string specified by the
lpcwstrEndPoint argument is greater than 11 characters.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

A fax client calls FAX_StartServerNotification (section 3.1.4.1.100) to inform the server that it needs
to receive the notifications of legacy fax events. The fax server SHOULD call

FAX_OpenConnection (section 3.2.4.5) on the client by using the supplied endpoint, protocol sequence
information, and context handle information. The server then sends the notification of legacy events to
the client by using FAX_ClientEventQueue (section 3.2.4.2). When the client no longer needs to

308 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

receive notifications, it calls FAX_EndServerNotification (section 3.1.4.1.17), and the server SHOULD
call FAX_CloseConnection (section 3.2.4.4) to close the connection.

Note This method only supports TCP/IP as the transport protocol.

3.1.4.1.101 FAX_StartServerNotificationEx (Opnum 74)

The FAX_StartServerNotificationEx method is called by the client to get notification about extended or
legacy events. On success, the server MUST start to notify the fax client about the occurring fax
events.

 error_status_t FAX_StartServerNotificationEx(
 [in] handle_t hBinding,
 [in, string, ref] LPCWSTR lpcwstrMachineName,
 [in, string, ref] LPCWSTR lpcwstrEndPoint,
 [in] ULONG64 Context,
 [in, ref, string] LPCWSTR lpcwstrProtSeq,
 [in] BOOL bEventEx,
 [in] DWORD dwEventTypes,
 [out, ref] PRPC_FAX_EVENT_EX_HANDLE lpHandle
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used

as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpcwstrMachineName: A pointer to a string containing the name of the fax client machine. The
machine name MUST be NULL for a local machine and an FQDN for a remote machine.

lpcwstrEndPoint: A pointer to a string containing the client machine RPC server endpoint string. The
endpoint MUST be a TCP port between 1024 and 65534 (in increments of 10).

Context: A ULONG64 value that can be passed to FAX_OpenConnection (section 3.2.4.5) as a

notification context.

lpcwstrProtSeq: A pointer to a string containing the fax client RPC server's protocol sequence string.
The protocol used for sending the notifications is always TCP/IP. The protocol sequence string
MUST be ncalrpc for local and respectively ncan_ip_tcp for remote. <176>

bEventEx: A BOOLEAN value that indicates which notification method to use for notifications. If set
to TRUE, the registration is for extended events (FAX_EVENT_EX (section 2.2.67)). If FALSE, the
registration is for legacy events (FAX_EVENT (section 2.2.66)).

dwEventTypes: A DWORD value containing bitwise OR combination of
FAX_ENUM_EVENT_TYPE (section 2.2.63) event type flags, events the client needs to receive.
During registration the client is allowed to register for multiple events, so that if any of them occur
the client will get a notification. Hence bitwise ORing of events is allowed in this case. For more
information, see FAX_ENUM_EVENT_TYPE (section 2.2.63).

lpHandle: The returned subscription context handle. This handle can be used in the

FAX_EndServerNotification (section 3.1.4.1.17) method.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005 Access is denied. This error code is returned under any of the following

309 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

ERROR_ACCESS_DENIED conditions:

▪ The value specified for the dwEventTypes argument contains the
FAX_EVENT_TYPE_NEW_CALL and/or
FAX_EVENT_TYPE_IN_QUEUE flags and the caller cannot access
unsigned faxes: incoming faxes are not public and the caller does not
have the FAX_ACCESS_MANAGE_RECEIVE_FOLDER rights.

▪ The value specified for the dwEventTypes argument contains the
FAX_EVENT_TYPE_CONFIG,
FAX_EVENT_TYPE_DEVICE_STATUS and/or the
FAX_EVENT_TYPE_ACTIVITY flags and the caller does not have
the FAX_ACCESS_QUERY_CONFIG rights.

0x00000057

ERROR_INVALID_PARAMETER

Invalid parameter. This error code is returned under any of the following
conditions:

▪ Any of these arguments specify a NULL pointer value:
lcpwstrEndPoint, lpcwstrMachineName, lpHandle.<177>

▪ The value specified for the dwEventTypes argument is not a bitwise
OR combination of the following FAX_ENUM_EVENT_TYPE values:

▪ FAX_EVENT_TYPE_IN_QUEUE

▪ FAX_EVENT_TYPE_OUT_QUEUE

▪ FAX_EVENT_TYPE_CONFIG

▪ FAX_EVENT_TYPE_ACTIVITY

▪ FAX_EVENT_TYPE_QUEUE_STATE

▪ FAX_EVENT_TYPE_IN_ARCHIVE

▪ FAX_EVENT_TYPE_OUT_ARCHIVE

▪ FAX_EVENT_TYPE_FXSSVC_ENDED

▪ FAX_EVENT_TYPE_DEVICE_STATUS

▪ FAX_EVENT_TYPE_NEW_CALL

0x0000000B

ERROR_BAD_FORMAT

This error code is returned under any of the following conditions:

▪ The length of the fax client machine name specified by the
lpcwstrMachineName argument, excluding the length of the
terminating null character, is longer than 256 characters.

▪ The length of the endpoint string specified by the lpcwstrEndPoint
argument, excluding the length of the terminating null character, is
longer than or equal to 11 characters.

0x0000000E

ERROR_OUTOFMEMORY

Not enough storage is available to complete this operation.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

A fax client calls FAX_StartServerNotificationEx (section 3.1.4.1.101) to inform the server that it
needs to receive the notifications of extended or legacy fax events. The fax server SHOULD call

310 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FAX_OpenConnection (section 3.2.4.5) on the client by using the supplied endpoint, protocol sequence
information, and context handle information. The server then sends notification of events to the client

by using either FAX_ClientEventQueueEx (section 3.2.4.3) or FAX_ClientEventQueue (section 3.2.4.2)
as specified by the bEventEx parameter. When the client no longer needs to receive notifications, it

calls FAX_EndServerNotification (section 3.1.4.1.17); the server SHOULD call
FAX_CloseConnection (section 3.2.4.4) to close the connection.

3.1.4.1.102 FAX_StartServerNotificationEx2 (Opnum 92)

The FAX_StartServerNotificationEx2 (Opnum 92) method is called by the client to get notification
about extended events. On success, the server MUST start to notify the fax client about the occurring
fax events.

Protocol version FAX_API_VERSION_0 (0x00000000), FAX_API_VERSION_1 (0x00010000), and
FAX_API_VERSION_2 (0x00020000) fax servers SHOULD NOT implement this call. The fax client
MUST NOT call this method if the protocol version reported by the server is FAX_API_VERSION_0
(0x00000000), FAX_API_VERSION_1 (0x00010000), or FAX_API_VERSION_2 (0x00020000). For
more information, see FAX_ConnectFaxServer (section 3.1.4.1.10).

 error_status_t FAX_StartServerNotificationEx2(
 [in] handle_t hBinding,
 [in, string, unique] LPCWSTR lpcwstrAccountName,
 [in, string, ref] LPCWSTR lpcwstrMachineName,
 [in, string, ref] LPCWSTR lpcwstrEndPoint,
 [in] ULONG64 Context,
 [in, ref, string] LPCWSTR lpcwstrProtseqString,
 [in] DWORD dwEventTypes,
 [in] DWORD level,
 [out, ref] PRPC_FAX_EVENT_EX_HANDLE lpHandle
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpcwstrAccountName: A pointer to a constant null-terminated character string that indicates which
account to enumerate. If this value is NULL, the current account's jobs are enumerated. Cross-
account enumeration currently is not supported.

lpcwstrMachineName: A pointer to a null-terminated string that contains the name of the fax client
machine.

lpcwstrEndPoint: A pointer to a null-terminated string that contains the client machine RPC server
endpoint string.

Context: A ULONG64 value that can be passed to FAX_OpenConnection (section 3.2.4.5) as a
notification context.

lpcwstrProtseqString: A pointer to a null-terminated string that contains the fax client RPC server's
protocol sequence string. The protocol that is used for sending the notifications is always

TCP/IP.<178>

dwEventTypes: A DWORD value that indicates which events the client needs to receive. For more

information, see FAX_ENUM_EVENT_TYPE (section 2.2.63). During registration the client is
allowed to register for multiple events, so that if any of them occur the client will get a
notification. Hence bitwise ORing of events is allowed in this case. This value cannot be
FAX_EVENT_TYPE_LEGACY because the method only supports extended events.

level: A DWORD value that indicates the structure to return. The value MUST be set to 1.

311 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lpHandle: A pointer to an RPC_FAX_EVENT_EX_HANDLE (section 2.2.74) that returns a subscription
context handle. This handle can be used in the FAX_EndServerNotification (section 3.1.4.1.17)

method.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. This error is returned when any of the following conditions
occur:

▪ The dwEventTypes parameter is set to a value containing the
FAX_EVENT_TYPE_NEW_CALL or FAX_EVENT_TYPE_IN_QUEUE
flags, the incoming faxes are not public (accessible to all users), and the
client's fax user account does not have the
FAX_ACCESS_MANAGE_RECEIVE_FOLDER permission.

▪ The dwEventTypes parameter is set to a value containing the
FAX_EVENT_TYPE_CONFIG, FAX_EVENT_TYPE_DEVICE_STATUS,
or FAX_EVENT_TYPE_ACTIVITY flags and the client's fax user
account does not have the FAX_ACCESS_QUERY_CONFIG
permission.

0x0000000E

ERROR_OUTOFMEMORY

The fax server failed to allocate the memory required for the internal
server's execution of this operation request.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the

following conditions:

▪ The dwEventTypes parameter is set to a value containing the
FAX_EVENT_TYPE_LEGACY or FAX_EVENT_TYPE_LOCAL_ONLY flags, or
to another value that is not a combination made exclusively from the
flags valid for this operation: FAX_EVENT_TYPE_IN_QUEUE,
FAX_EVENT_TYPE_OUT_QUEUE, FAX_EVENT_TYPE_CONFIG,
FAX_EVENT_TYPE_ACTIVITY, FAX_EVENT_TYPE_QUEUE_STATE,
FAX_EVENT_TYPE_IN_ARCHIVE, FAX_EVENT_TYPE_OUT_ARCHIVE,
FAX_EVENT_TYPE_FXSSVC_ENDED,
FAX_EVENT_TYPE_DEVICE_STATUS, or FAX_EVENT_TYPE_NEW_CALL.

▪ The level parameter is not set to 1.

▪ One or more of the following parameters are set to NULL pointer values:
lpcwstrEndpoint, lpcwstrMachineName, or lpHandle.<179>

▪ The lpcwstrAccountName parameter is set to a non-null character
string pointer value which does not specify a valid fax account name.

▪ The lpcwstrAccountName parameter is set to a non-null character
string pointer value which specifies a valid fax account name for a
different user than the user who is currently logged on the client.

0x0000001F

ERROR_GEN_FAILURE

 The server threw internally an exception during the execution of this
operation, and the server handled this exception.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

The account name is the one on which to listen for events and a level that specifies the type of the
structure that describes each event. The name lpcwstrAccountName is accessed only for account-
based events.

312 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The account name that lpcwstrAccountName indicates MUST be in one of the following formats. Any
other format is invalid.

Format Description

<machine_name>\<user_name> For a local user that has machine_name as the name of the local machine.

<domain_name>\<user_name> For a nonlocal user.

A fax client calls FAX_StartServerNotificationEx2 (section 3.1.4.1.102) to inform the server that it
needs to receive notifications of extended fax events. The fax server SHOULD call
FAX_OpenConnection (section 3.2.4.5) on the client by using the supplied endpoint, protocol sequence
information, and context handle information. The server then sends notification of events to the client
by using FAX_ClientEventQueueEx (section 3.2.4.3). When the client no longer needs to receive
notifications, it calls FAX_EndServerNotification (section 3.1.4.1.17), and the server SHOULD call
FAX_CloseConnection (section 3.2.4.4) to close the connection.

3.1.4.1.103 FAX_UnregisterRoutingExtension (Opnum 62)

The FAX_UnregisterRoutingExtension (Opnum 62) method unregisters an existing inbound routing
extension.<180>

There are no corresponding routing extension registration functions exposed to the FAX client.
Registration is a non-RPC process that is done locally on the fax server using any implementation-
specific method.

On success, the server MUST unregister the specified routing extension.

 error_status_t FAX_UnregisterRoutingExtension(
 [in] handle_t hFaxHandle,
 [in, string, ref] LPCWSTR lpcwstrExtensionName
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpcwstrExtensionName: Specifies the name of the fax routing extension returned by the
FAX_EnumRoutingExtensions (section 3.1.4.1.30) call as the lpcwstrExtensionName field of the

FAX_ROUTING_EXTENSION_INFO (section 2.2.49) structure representing the respective fax
routing extension.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return the following error code, one of the fax-specific errors that are defined in section
2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have sufficient rights
to perform the operation (FAX_ACCESS_MANAGE_CONFIG) or the user
account does not exist.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.104 FAX_UnregisterServiceProviderEx (Opnum 61)

313 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The FAX_UnregisterServiceProviderEx (Opnum 61) method is called when the client needs to
unregister a fax service provider (FSP). In response, the server MUST validate that the client's fax

user account has write access. On success, the server MUST remove the service provider for the fax
server.<181>

 error_status_t FAX_UnregisterServiceProviderEx(
 [in] handle_t hFaxHandle,
 [in, string, ref] LPCWSTR lpcwstrGUID
);

hFaxHandle: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle
used as an input hBinding argument for the FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) method call used to connect to the fax server.

lpcwstrGUID: A pointer to a constant null-terminated character string that contains a valid string
representation of the GUID of the fax service provider. This value can be obtained with the
FAX_EnumerateProviders (section 3.1.4.1.19) method.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The caller does not have the access rights (required
FAX_ACCESS_MANAGE_CONFIG) required authorization for this operation.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.1.105 FAX_WriteFile (Opnum 70)

The FAX_WriteFile (Opnum 70) method is called by the client.

The server MUST validate the hCopy handle to be a copy handle that has been returned by a previous
call to FAX_StartCopyToServer (section 3.1.4.1.97) in the lpHandle output argument. The server
MUST validate that the data size is not 0. On success, the server MUST copy the specified data to the
file specified by the hCopy copy handle in the server queue directory (section 3.1.1).

The fax client SHOULD split the contents of the file in one or multiple parts (chunks) and individually
copy each part (chunk) with a FAX_WriteFile method call<182> until the entire file contents are

copied. When the entire contents of the file are copied, the fax client MUST notify the fax server by
calling the FAX_EndCopy (section 3.1.4.1.15) method as described in Sequencing
Rules (section 3.1.4.1.1).

If the fax server fails a FAX_WriteFile method call returning ERROR_INVALID_HANDLE during a copy
file operation successfully started by the fax client with FAX_StartCopyToServer (section 3.1.4.1.97),
the fax client MAY call FAX_StartCopyToServer (section 3.1.4.1.97) again to restart the copy file

operation from the beginning of the file.

No specific access rights are required for the client's fax user account to successfully call this method.

 error_status_t FAX_WriteFile(
 [in, ref] RPC_FAX_COPY_HANDLE hCopy,
 [in, ref, size_is(dwDataSize)] const LPBYTE lpbData,
 [in, range(0, RPC_COPY_BUFFER_SIZE)] DWORD dwDataSize
);

314 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

hCopy: An RPC context handle that is returned by FAX_StartCopyToServer (section 3.1.4.1.97).

lpbData: A pointer to the buffer from which to copy the file.

dwDataSize: A DWORD value indicating the size, in bytes, of the data buffer pointed by the lpbData
argument. This size MUST be between 1 and RPC_COPY_BUFFER_SIZE (16384) bytes.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.<183>

Return value/code Description

0x00000006

ERROR_INVALID_HANDLE

The handle value specified by the hCopy argument is not a valid copy
handle returned by FAX_StartCopyToServer.

0x0000001F

ERROR_GEN_FAILURE

A device attached to the system is not functioning. The call was unable
to write the full amount of the data that was requested to be written.

0x00000057

ERROR_INVALID_PARAMETER

The following conditions can lead to this value being returned:

▪ The parameter is incorrect.

▪ dwDataSize is 0.

▪ The handle value specified by the hCopy argument is NULL or the
buffer size specified by the dwDataSize is zero.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2 FaxObs Server Interface

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency

check at target level 5.0, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime via the strict_context_handle attribute that it is to
reject the use of context handles created by a method of a different RPC interface than this one, as
specified in section 3 of [MS-RPCE].

Methods in RPC Opnum Order

Method Description

FaxObs_ConnectionRefCount Called by the client to connect or disconnect from the server.

Opnum: 0

FaxObs_GetVersion Called by the client to obtain the version number of the server.

Opnum: 1

FaxObs_GetInstallType Called by the client to obtain information about the fax server installation.

Opnum: 2

FaxObs_OpenPort Called by the client to open a fax port and obtain a fax port handle.

Opnum: 3

FaxObs_ClosePort Called by the client to close a fax port and release the fax port handle
obtained with a FaxObs_OpenPort (section 3.1.4.2.5) call.

Opnum: 4

315 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

FaxObs_SendDocument Called by the client to send a fax document.

Opnum: 5

FaxObs_GetQueueFileName Called by the client to obtain from the server the name of a new file
located in the fax server queue directory. The fax client can copy to this
file fax data to be transmitted and submit the file name to
FaxObs_SendDocument (section 3.1.4.2.7).

Opnum: 6

FaxObs_EnumJobs Called by the client to enumerate the fax jobs on the server.

Opnum: 7

FaxObs_GetJob Called by the client to retrieve information regarding a specific fax job.

Opnum: 8

FaxObs_SetJob Called by the client to request a command to pause, resume, or cancel a
fax job.

Opnum: 9

FaxObs_GetPageData Called by the client to retrieve the data from the first page of an outgoing
fax job.

Opnum: 10

FaxObs_GetDeviceStatus Called by the client to retrieve information about a specified fax device
(port).

Opnum: 11

FaxObs_Abort Called by the client to abort the specified fax job on the server.

Opnum: 12

FaxObs_EnumPorts Called by the client to enumerate the fax ports (devices) on the server and
retrieve information describing these ports (devices).

Opnum: 13

FaxObs_GetPort Called by the client to retrieve status information from the server about
the specified fax port (device).

Opnum: 14

FaxObs_SetPort Called by the client to change the configuration of a fax port (device).

Opnum: 15

FaxObs_EnumRoutingMethods Called by the client to enumerate all routing methods that are registered
with the server for a specified fax port (device).

Opnum: 16

FaxObs_EnableRoutingMethod Called by the client to enable or disable a routing method for a fax port
(device).

Opnum: 17

FaxObs_GetRoutingInfo Called by the client to retrieve information about a fax routing method.

Opnum: 18

FaxObs_SetRoutingInfo Called by the client to set routing information for a fax routing method.

Opnum: 19

FaxObs_EnumGlobalRoutingInfo Called by the client to enumerate global routing information from the
server.

Opnum: 20

316 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

FaxObs_SetGlobalRoutingInfo Called by the client to set global routing properties such as the routing
method priority.

Opnum: 21

FaxObs_GetConfiguration Called by the client to retrieve information about the fax server
configuration.

Opnum: 22

FaxObs_SetConfiguration Called by the client to change the fax server configuration.

Opnum: 23

FaxObs_GetLoggingCategories Called by the client to retrieve the current fax logging categories from the
server,

Opnum: 24

FaxObs_SetLoggingCategories Called by the client to set the current fax logging categories on the server.

Opnum: 25

FaxObs_GetTapiLocations Called by the client to retrieve the current and other available TAPI
locations configured for the server.

Opnum: 26

FaxObs_SetTapiLocations Called by the client to set the current and other available TAPI locations
for the server.

Opnum: 27

FaxObs_GetMapiProfiles Called by the client to retrieve the names of the current MAPI profiles from
the server.

Opnum: 28

FaxObs_StartClientServer Called by the client to register to receive notifications of fax events from
the server,

Opnum: 29

Opnum30NotUsedOnWire Reserved for local use.

Opnum: 30

FaxObs_GetSecurityDescriptor Called by the client to retrieve the fax security descriptor of the server.

Opnum: 31

FaxObs_SetSecurityDescriptor Called by the client to set the fax security descriptor of the server.

Opnum: 32

FaxObs_GetSecurityDescriptorCount Called by the client to retrieve the total number of fax security descriptors
from the server.

Opnum: 33

FaxObs_AccessCheck Called by the client to check whether the currently logged on client user
account has access permissions top execute specific fax operations on the
server.

Opnum: 34

In the table above, the term "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined because it does not affect interoperability.<184>

All methods MUST NOT throw exceptions except those that are thrown by the underlying RPC protocol
[MS-RPCE].

317 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.4.2.1 Sequencing Rules

The successful outcome of a series of RPC method calls depends on the sequence of calls made; this is
because state is maintained on the server throughout the method invocations. It is valid to call RPC

methods concurrently; when this happens, the server MUST ensure that it remains in a consistent
state while processing the concurrent method calls.

The client MUST call the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method to connect to the
server. The client MUST call the same FaxObs_ConnectionRefCount method to close this connection.
The client MUST successfully call the FaxObs_ConnectionRefCount method before calling any of the
following methods:

▪ FaxObs_GetVersion (section 3.1.4.2.3)

▪ FaxObs_GetInstallType (section 3.1.4.2.4)

▪ FaxObs_OpenPort (section 3.1.4.2.5)

▪ FaxObs_ClosePort (section 3.1.4.2.6)

▪ FaxObs_SendDocument (section 3.1.4.2.7)

▪ FaxObs_GetQueueFileName (section 3.1.4.2.8)

▪ FaxObs_EnumJobs (section 3.1.4.2.9)

▪ FaxObs_GetJob (section 3.1.4.2.10)

▪ FaxObs_SetJob (section 3.1.4.2.11)

▪ FaxObs_GetPageData (section 3.1.4.2.12)

▪ FaxObs_GetDeviceStatus (section 3.1.4.2.13)

▪ FaxObs_Abort (section 3.1.4.2.14)

▪ FaxObs_EnumPorts (section 3.1.4.2.15)

▪ FaxObs_GetPort (section 3.1.4.2.16)

▪ FaxObs_SetPort (section 3.1.4.2.17)

▪ FaxObs_EnumRoutingMethods (section 3.1.4.2.18)

▪ FaxObs_EnableRoutingMethod (section 3.1.4.2.19)

▪ FaxObs_GetRoutingInfo (section 3.1.4.2.20)

▪ FaxObs_SetRoutingInfo (section 3.1.4.2.21)

▪ FaxObs_EnumGlobalRoutingInfo (section 3.1.4.2.22)

▪ FaxObs_SetGlobalRoutingInfo (section 3.1.4.2.23)

▪ FaxObs_GetConfiguration (section 3.1.4.2.24)

▪ FaxObs_SetConfiguration (section 3.1.4.2.25)

▪ FaxObs_GetLoggingCategories (section 3.1.4.2.26)

▪ FaxObs_SetLoggingCategories (section 3.1.4.2.27)

▪ FaxObs_GetTapiLocations (section 3.1.4.2.28)

318 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ FaxObs_SetTapiLocations (section 3.1.4.2.29)

▪ FaxObs_GetMapiProfiles (section 3.1.4.2.30)

▪ FaxObs_StartClientServer (section 3.1.4.2.31)

▪ FaxObs_GetSecurityDescriptor (section 3.1.4.2.32)

▪ FaxObs_SetSecurityDescriptor (section 3.1.4.2.33)

▪ FaxObs_GetSecurityDescriptorCount (section 3.1.4.2.34)

▪ FaxObs_AccessCheck (section 3.1.4.2.35)

The client MUST call the FaxObs_OpenPort (section 3.1.4.2.5) method to open a fax port and obtain a
fax port handle. The client MUST call FaxObs_ClosePort (section 3.1.4.2.6) to close a fax port and
release the port handle. The client MUST successfully execute FaxObs_OpenPort (section 3.1.4.2.5) to
obtain a valid fax port handle before calling any of the following methods:

▪ FaxObs_GetPort (section 3.1.4.2.16)

▪ FaxObs_SetPort (section 3.1.4.2.17)

▪ FaxObs_GetDeviceStatus (section 3.1.4.2.13)

▪ FaxObs_EnumRoutingMethods (section 3.1.4.2.18)

▪ FaxObs_EnableRoutingMethod (section 3.1.4.2.19)

▪ FaxObs_GetRoutingInfo (section 3.1.4.2.20)

▪ FaxObs_SetRoutingInfo (section 3.1.4.2.21)

The client SHOULD call FaxObs_EnumJobs (section 3.1.4.2.9) or
FaxObs_SendDocument (section 3.1.4.2.7) to retrieve a valid fax job identifier before calling the
following methods:

▪ FaxObs_GetJob (section 3.1.4.2.10)

▪ FaxObs_SetJob (section 3.1.4.2.11)

▪ FaxObs_GetPageData (section 3.1.4.2.12)

▪ FaxObs_Abort (section 3.1.4.2.14)

3.1.4.2.2 FaxObs_ConnectionRefCount (Opnum 0)

The FaxObs_ConnectionRefCount (Opnum 0) method is called by the client to connect to or disconnect
from the server.

In response the server MUST connect to or disconnect from the client.

If this call is successfully made with a Connect argument value of Connect (0x00000001), the client

SHOULD retain the RPC binding handle used for the hBinding argument and reuse it as the RPC
binding handle input argument for all subsequent fax server calls made, until the connection with the
server is disconnected.

 error_status_t FaxObs_ConnectionRefCount(
 [in] handle_t hBinding,
 [in, out] PRPC_FAX_SVC_HANDLE Handle,
 [in] DWORD Connect,
 [out] LPDWORD CanShare

319 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

);

hBinding: The RPC binding handle that is provided by the client RPC layer when the RPC call is made.
If Connect is set to Disconnect (0x00000000), the client SHOULD reuse the RPC binding handle
used for the FaxObs_ConnectionRefCount method call used to connect to the fax server.

Handle: The connection handle that references a connection between the client and the server. If
Connect is set to 0x00000001 (Connect), a new handle is returned in this parameter. Otherwise,
this parameter MUST be set to a handle returned from a previous call to this method.

Connect: A DWORD value that specifies connection information.

Value Meaning

Disconnect

0x00000000

Close the Fax Server connection.

The handle specified in Handle MUST have been returned by a previous call to
FaxObs_ConnectionRefCount with a Connect value of 0x00000001 (Connect). After this call,
the handle in Handle will be invalid and MUST NOT be used in any subsequent calls.

Connect

0x00000001

Connect to the Fax Server.

CanShare: The fax server MUST return a nonzero value in the DWORD referenced by this parameter
if the fax print queues can be shared as described in section 3.1.1, and a zero value
otherwise.<185>

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the fax-specific errors that are defined in section 2.2.52 or one of the other
standard errors defined in [MS-ERREF] section 2.2. There are no predefined specific error codes to
be returned by this method.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.3 FaxObs_GetVersion (Opnum 1)

The client calls the FaxObs_GetVersion (Opnum 1) method to obtain the version number of the server.

In response the server MUST return its version number.

 error_status_t FaxObs_GetVersion(
 [in] handle_t hBinding,
 [out] LPDWORD Version
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method
call used to connect to the fax server.

Version: A pointer to a DWORD value where on return from this call, the server MUST write its
version number. The server MUST write to the low-order WORD of this DWORD value the major
version number and to the high-order WORD the minor version number. The returned DWORD
value format is as follows:

320 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Minor version number Major version number

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return the following error code, one of the fax-specific errors that are defined in section
2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

The Version parameter is set to a NULL pointer value. <186>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.4 FaxObs_GetInstallType (Opnum 2)

The client calls the FaxObs_GetInstallType (Opnum 2) method to obtain information about the server
installation.

In response, the server MUST return information describing the type of installation, the operating
system platform, and the type of the product.

 error_status_t FaxObs_GetInstallType(
 [in] handle_t hBinding,
 [out] LPDWORD InstallType,
 [out] LPDWORD InstalledPlatforms,
 [out] LPDWORD ProductType
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method
call used to connect to the fax server.

InstallType: A pointer to a DWORD value where, upon return from this call, the fax server MUST
write the install type of the fax server. This value MUST be 0x00000002 for
FAX_INSTALL_SERVER. The values 0x00000001, 0x00000004, and 0x00000008 are reserved for

local use.

InstalledPlatforms: A pointer to a DWORD value where on return from this call, the fax server MUST
write the installed platform (microprocessor type) of the fax server. This value MUST be one of the
following:

Value Meaning

FAX_INSTALLED_PLATFORM_X86

0x00000001

The fax server is running on an Intel x86 platform.

FAX_INSTALLED_PLATFORM_MIPS

0x00000002

The fax server is running on a MIPS platform.

FAX_INSTALLED_PLATFORM_ALPHA

0x00000004

The fax server is running on a DEC Alpha platform.

321 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

FAX_INSTALLED_PLATFORM_PPC

0x00000008

The fax server is running on a PowerPC platform.

ProductType: A pointer to a DWORD value where on return from this call, the fax server MUST write
the installed product type of the fax server. This value MUST be one of the following:

Value Meaning

PRODUCT_TYPE_WINNT

0x00000001

The fax server is a workstation-type operating system.

PRODUCT_TYPE_SERVER

0x00000002

The fax server is a server-type operating system.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return the following error code, one of the fax-specific errors that are defined in section
2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000001

ERROR_INVALID_FUNCTION

The fax server is unable to retrieve the requested installation
information.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.5 FaxObs_OpenPort (Opnum 3)

The client calls the FaxObs_OpenPort (Opnum 3) method to open a fax port and obtain a fax port

handle.

In response the server opens a fax port for subsequent use in other fax methods and returns a fax
port handle for use by the client.

The server MUST validate whether the client's fax user account has access to open the specified fax
port. The server MUST validate that the DeviceId parameter that is passed by the client is for a valid
device. If the Flags parameter specifies PORT_OPEN_MODIFY, the server MUST also confirm that the
specified port has not yet been opened for modification, and if the port is already opened for

modification, the server MUST fail the request by returning ERROR_INVALID_HANDLE. To indicate
success, the server MUST return a new port handle to the client.

 error_status_t FaxObs_OpenPort(
 [in] handle_t hBinding,
 [in] DWORD DeviceId,
 [in] DWORD Flags,
 [out] PRPC_FAX_PORT_HANDLE FaxPortHandle
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method
call used to connect to the fax server.

DeviceId: A DWORD variable that contains the line identifier for the receiving device (port). The client

SHOULD call the FaxObs_EnumPorts (section 3.1.4.2.15) method to retrieve a valid value for this
parameter.

322 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Flags: A DWORD variable that contains a set of bit flags defining the access mode for the port.<187>

Value Meaning

0x00000000 No port access mode flags are specified.

PORT_OPEN_QUERY

0x00000001

The port access mode that is required to obtain a fax port handle. This access level
is also required to call the FaxObs_GetPort (section 3.1.4.2.16) method to query fax
port information. <188>

PORT_OPEN_MODIFY

0x00000002

The port access mode that allows changes to the configuration of a fax port. The fax
server can use this port access mode to allow execution of the
FaxObs_SetPort (section 3.1.4.2.17) method. This access mode also includes the
allowance that is associated with the PORT_OPEN_QUERY access mode.<189>

FaxPortHandle: A pointer to a variable that receives a fax port handle (as defined in section 2.2.74)
that is required on subsequent calls by other fax client methods.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The caller does not have the FAX_PORT_QUERY access
rights required for this operation.

0x00000014

ERROR_BAD_UNIT

The system cannot find the port for the receiving device by using the line
identifier specified by the DeviceId parameter.

0x00000057

ERROR_INVALID_PARAMETER

The FaxPortHandle parameter is set to a NULL pointer value. <190>

0x00000006

ERROR_INVALID_HANDLE

The call was made with the Flags parameter containing the
PORT_OPEN_MODIFY flag, and the port is already opened to be modified by
another call.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.6 FaxObs_ClosePort (Opnum 4)

The client calls the FaxObs_ClosePort (Opnum 4) method to close a fax port and release the fax port
handle obtained with a FaxObs_OpenPort (section 3.1.4.2.5) call.

On success, the server MUST close the specified port and release the handle.

 error_status_t FaxObs_ClosePort(
 [in, out] PRPC_FAX_PORT_HANDLE FaxPortHandle
);

FaxPortHandle: A pointer to a fax port handle obtained with a FaxObs_OpenPort call.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return the following error code, one of the fax-specific errors that are defined in section
2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

323 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_PORT_QUERY access rights required for this operation.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.7 FaxObs_SendDocument (Opnum 5)

The client calls the FaxObs_SendDocument (Opnum 5) method to send a document.

In response, the server MUST initiate sending of the specified document to the specified recipient.

To submit a normal (not broadcast) job, the client SHOULD call the FaxObs_SendDocument method,
specifying a valid FileName parameter value and a valid RecipientNumber member of the JobParams
structure, setting the first value of the Reserved member of the JobParams structure to zero or to

0xFFFFFFFF on 32-bit or 0x00000000FFFFFFFF on 64-bit. If the first Reserved value is not set to
zero, the client SHOULD set the second value of the Reserved member of the JobParams structure to

the device identifier describing one fax device (port). The client can obtain the identifier for one fax
device (port) by calling the FaxObs_EnumPorts (section 3.1.4.2.15) method or the
FaxObs_GetPort (section 3.1.4.2.16) method. If the first Reserved value is zero, the server SHOULD
ignore the other two Reserved values and treat this request as a normal job request. <191>

To start a broadcast sequence, the client MUST call the FaxObs_SendDocument method, specifying a
valid FileName parameter value. The client MUST also set the first value of the Reserved member of
the JobParams structure to 0xFFFFFFFE on 32-bit or 0x00000000FFFFFFFE on 64-bit, set the second

value of the Reserved member of the JobParams structure to 0x00000001 on 32-bit or
0x0000000000000001 on 64-bit, and set the third value of the Reserved member of the JobParams
structure to zero. In this case, the server SHOULD ignore all other members of the JobParams
structure except the SizeOfStruct and Reserved members, queue the job to be broadcast, and on
success return the new job identifier in the FaxJobId output parameter.

To continue and complete a broadcast sequence started as described in the preceding paragraph, the
client MUST call again the FaxObs_SendDocument method once for each intended recipient. For each

of these FaxObs_SendDocument calls, the client MUST specify a valid RecipientNumber member of
the JobParams structure. The client MUST also set the first value of the Reserved member of the
JobParams structure to 0xFFFFFFFE on 32-bit or 0x00000000FFFFFFFE on 64-bit, set the second value
of the Reserved member of the JobParams structure to 0x00000002 on 32-bit or
0x0000000000000002 on 64-bit, and set the third value of the Reserved member of the JobParams
structure to the job identifier returned by the server to the FaxObs_SendDocument call that started

the broadcast sequence. In this case, the server MUST search in the queue for the job identified by
the third value of the Reserved member of the JobParams structure and initiate sending of this job to
the fax recipient described by the JobParams structure. The server MUST return a new job identifier
for each of these FaxObs_SendDocument calls.

When the fax job is successfully queued, the server SHOULD signal to the client a FEI_JOB_QUEUED
fax event (see FAX_EVENT in section 2.2.66) by calling FAX_ClientEventQueue (section 3.2.4.2). If the
FEI_JOB_QUEUED event is sent, the job identifier in the FAX_EVENT structure MUST match the job

identifier returned by the fax server to the FaxObs_SendDocument call in the FaxJobId output
parameter. If the first value of the Reserved field of the JobParams structure is set to 0xFFFFFFFF on
32-bit or 0x00000000FFFFFFFF on 64-bit, the fax server MUST set the DeviceId member of the
corresponding FAX_EVENT data structure to the value received in the second value of this Reserved
member. If the first value of the Reserved member of the JobParams structure is not set to
0xFFFFFFFF (or 0x00000000FFFFFFFF), the fax server MUST set the DeviceId member of the
corresponding FAX_EVENT data structure to 0x00000000.

 error_status_t FaxObs_SendDocument(

324 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in] handle_t hBinding,
 [in, string, unique] LPCWSTR FileName,
 [in] const FAX_JOB_PARAMW* JobParams,
 [out] LPDWORD FaxJobId
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method

call used to connect to the fax server.

FileName: A null-terminated character string that contains the name of the file, without path
information, of the fax document in TIFF format. The server checks the server queue directory for
this file. Before making this call, the client can create a file on the server by calling
FaxObs_GetQueueFileName (section 3.1.4.2.8) and then provide content for the file by using a
protocol outside of this specification, such as [MS-SMB].

JobParams: A pointer to a FAX_JOB_PARAMW (section 2.2.13) structure that contains the

information necessary for the server to send the fax transmission, including information describing

the personal profiles (section 3.1.1) for the sender and the recipient of the fax.

FaxJobId: A pointer to a DWORD that returns the job ID.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_JOB_SUBMIT access rights required for this operation.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The JobParams parameter is set to a NULL pointer value.

▪ The FileName parameter is set to a NULL pointer value.

▪ The FaxJobId parameter is set to a NULL pointer value.<192>

▪ The length of the character string specified by the FileName
parameter (excluding the length of the terminating null character)
plus the length of the fax queue directory path name (excluding the
length of the terminating null character) exceeds 253 characters. This
error can occur if the fax client is not using a file path name obtained
from FaxObs_GetQueueFileName.

▪ Either of the following conditions are true:

▪ The first value of the Reserved field of the structure referenced
by the JobParams parameter is set to 0xFFFFFFFE (32-bit) or
0x00000000FFFFFFFE (64-bit). The second value of this same
Reserved field is set to 0x00000002 (32-bit) or
0x0000000000000002 (64-bit). The RecipientNumber field of
the same structure is set to NULL.

▪ The first value of the Reserved field of the structure referenced
by the JobParams parameter is not set to 0xFFFFFFFE (32-bit) or
0x00000000FFFFFFFE (64-bit). The CallHandle field of the same
structure is not set to 0x00000000. The RecipientNumber field
of the JobParams structure is NULL.

325 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.8 FaxObs_GetQueueFileName (Opnum 6)

The client calls FaxObs_GetQueueFileName (Opnum 6) to obtain from the server the name of a new
file located in the fax server queue directory. The client can copy to this file the fax data to be
transmitted and submit the file name to FaxObs_SendDocument (section 3.1.4.2.7).

The client SHOULD set the FileNameSize parameter to a value of 255 characters. If the client sets the
FileNameSize parameter to a value exceeding 255 characters, the server SHOULD NOT write more
than 255 characters, including the terminating null character, to the FileName output parameter.

The client's fax user account SHOULD have write file access under the fax server queue

directory.<193>

In response, the fax server MUST create a new and unique file within the fax queue directory and
return the name of this file, including the server's local directory path to the file. The file name MUST

have a ".tif" extension.

The client SHOULD construct the fully qualified UNC path to the file created by the server, by
appending the character string returned by this method in the FileName parameter to the server's

fully qualified domain name (FQDN) followed by "\fax$\queue\", where "fax$" is the name of the share
pointing to the local fax queue directory on the server. The server MUST provide the "fax$" share
upon the fax server installation.

 error_status_t FaxObs_GetQueueFileName(
 [in] handle_t hBinding,
 [in, out, unique, size_is(FileNameSize)]
 LPWSTR FileName,
 [in] DWORD FileNameSize
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method
call used to connect to the fax server.

FileName: A buffer that MUST be allocated by the client to hold FileNameSize characters. On
successful return from this call the server MUST write to this buffer a null-terminated character
string containing the path name, including file name and extension, for a new unique file name
within the fax server queue directory.<194>

FileNameSize: A DWORD value that specifies the size, in characters, of the FileName buffer.<195>

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the fax-specific errors that are defined in section 2.2.52 or one of the other

standard errors defined in [MS-ERREF] section 2.2. There are no predefined specific error codes to
be returned by this method.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.9 FaxObs_EnumJobs (Opnum 7)

The FaxObs_EnumJobs (Opnum 7) method is called by the client to enumerate the fax jobs on the

server.

In response, the server MUST validate whether the client's fax user account has access to enumerate
the jobs. On success, the server MUST allocate memory and return information about all the queued

326 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

and active jobs in the Buffer parameter. The server MUST also return the total size of the buffer in
which the information is returned and the number of enumerated jobs.

The client SHOULD free the returned buffer.

 error_status_t FaxObs_EnumJobs(
 [in] handle_t hBinding,
 [in, out, unique, size_is(,*BufferSize)]
 LPBYTE* Buffer,
 [in, out] LPDWORD BufferSize,
 [out] LPDWORD JobsReturned
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method
call used to connect to the fax server.

Buffer: A pointer to the address of the returned buffer containing an array of

_FAX_JOB_ENTRY (section 2.2.6) structures.

BufferSize: A variable to return the size, in bytes, of the job information buffer.

JobsReturned: A pointer to a DWORD variable to receive the number of _FAX_JOB_ENTRY structures
that the method returns in the Buffer parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the FAX_
JOB_QUERY access rights.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The fax server cannot allocate memory for the data to be returned to
the client.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned when any of the
following conditions are met:

▪ The Buffer parameter is set to a NULL pointer value.

▪ The BufferSize parameter is set to a NULL pointer value. <196>

▪ The JobsReturned parameter is set to a NULL pointer value. <197>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC

protocol, [MS-RPCE].

3.1.4.2.10 FaxObs_GetJob (Opnum 8)

The FaxObs_GetJob (Opnum 8) method is called by the client to retrieve information regarding a
specific job. The job is specified by the JobId parameter. The value for the JobId parameter can be
obtained by calling the FaxObs_EnumJobs (section 3.1.4.2.9) or
FaxObs_SendDocument (section 3.1.4.2.7) method.

In response, the server MUST validate that the JobId is for a valid job. The server MUST validate that
the client's fax user account has read access to the job.

327 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

On success, the server MUST return the job information of the specified queued or active job along
with the size.

The client SHOULD free the returned buffer.

 error_status_t FaxObs_GetJob(
 [in] handle_t hBinding,
 [in] DWORD JobId,
 [in, out, unique, size_is(,*BufferSize)]
 LPBYTE* Buffer,
 [in, out] LPDWORD BufferSize
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method
call used to connect to the fax server.

JobId: A number that uniquely identifies a queued or active fax job on the server.

Buffer: A pointer to the address of the returned buffer containing a _FAX_JOB_ENTRY (section 2.2.6)
structure.

BufferSize: A variable to return the size, in bytes, of the job information buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

 Access is denied. The client's fax user account does not have the
FAX_JOB_QUERY access rights.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The fax server cannot allocate memory for the data to be returned to
the client.

Exceptions thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.11 FaxObs_SetJob (Opnum 9)

The FaxObs_SetJob (Opnum 9) method is called by the client to pause, resume, or cancel a fax job.

The value for the JobId parameter can be obtained by calling the
FaxObs_EnumJobs (section 3.1.4.2.9) or FaxObs_SendDocument (section 3.1.4.2.7) method.

On success, the server MUST pause, resume, or cancel the specified fax job and MUST set the job
status (section 3.1.1) to reflect the new job state.

 error_status_t FaxObs_SetJob(
 [in] handle_t hBinding,
 [in] DWORD JobId,
 [in] DWORD Command,
 [in] const FAX_JOB_ENTRY* JobEntry
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method

call used to connect to the fax server.

328 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

JobId: A DWORD containing a value that uniquely identifies the fax job to modify.

Command: A DWORD containing a job command that the fax server is requested to perform.

Value Meaning

JC_DELETE

0x00000001

The fax server MUST cancel the specified fax job. This job can be in an active or queued state.
This is equivalent to calling the FaxObs_Abort (section 3.1.4.2.14) method.

JC_PAUSE

0x00000002

The fax server MUST pause the specified fax job if the job's status is JS_PENDING or
JS_RETRYING.

JC_RESUME

0x00000003

The fax server MUST resume the specified fax job if it is in a paused state and return the job
status to the value it had when the job was paused: JS_PENDING or JS_RETRYING.

Note that JC_RESTART is defined to the same value as JC_RESUME. When receiving a value of
0x00000003 the server MUST treat this as a JC_RESUME request.

JobEntry: A pointer to a FAX_JOB_ENTRY (section 2.2.5) structure. The fax server MUST validate this
pointer to be not NULL, and fail to return ERROR_INVALID_PARAMETER otherwise. Except for this

validation requirement, the fax server SHOULD ignore this parameter. The fax client SHOULD
submit the pointer to a valid FAX_JOB_ENTRY structure. This structure contains data obtained
from FaxObs_GetJob (section 3.1.4.2.10) or FaxObs_EnumJobs (section 3.1.4.2.9). This data
represents the job identified by the JobId parameter.<198>

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. This error code is returned under any of the following
conditions:

▪ The client's fax user account does not have the FAX_ JOB_MANAGE
access rights.

▪ The client's fax user account is not the owner of the fax job identified by
the JobId parameter.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The fax job indicated by the JobId parameter cannot be found by the
fax server.

▪ The specified Command parameter value is not JC_DELETE, JC_PAUSE,
or JC_RESUME.

▪ The specified Command parameter value is JC_DELETE, the specified
JobId represents the job for an outgoing broadcast message, and
aborting outgoing broadcast messages is not supported. For more
information, see FaxObs_Abort (section 3.1.4.2.14)

▪ The JobId parameter is set to a NULL pointer value.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.12 FaxObs_GetPageData (Opnum 10)

329 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The FaxObs_GetPageData (Opnum 10) method is called by the client to retrieve the data from the first
page of an outgoing fax job. The information that is returned in the buffer is an in-memory copy of the

first page of the TIFF file for the job. The value for the JobId parameter can be obtained by calling the
FaxObs_EnumJobs (section 3.1.4.2.9) method.

In response, the server MUST validate that the JobId is for a valid job. The server MUST validate that
the client's fax user account has read access to the job. On success, the server MUST return the first
page of data for the queued or active job in the TIFF 6.0 Class F format in Buffer, along with the
image width and height.

The client SHOULD free the returned buffer.

For information about TIFF, see [RFC3302].

 error_status_t FaxObs_GetPageData(
 [in] handle_t hBinding,
 [in] DWORD JobId,
 [in, out, unique, size_is(,*BufferSize)]
 LPBYTE* Buffer,
 [in, out] LPDWORD BufferSize,
 [in, out] LPDWORD ImageWidth,
 [in, out] LPDWORD ImageHeight
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method
call used to connect to the fax server.

JobId: A DWORD containing the unique number identifying the fax job that is associated with the
page of data.

Buffer: A pointer to the address of the returned buffer containing the first page of data in the fax
document.

BufferSize: A pointer to a DWORD variable to receive the size, in bytes, of the buffer pointed to by
the Buffer parameter.

ImageWidth: A pointer to a DWORD variable to receive the width, in pixels, of the fax image.

ImageHeight: A pointer to a DWORD variable to receive the height, in pixels, of the fax image.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_JOB_QUERY access rights.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The fax server cannot allocate memory for the data to be returned to the
client.

0x0000000D

ERROR_INVALID_DATA

The job identified by the JobId parameter is not an outgoing fax job.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ One or more of the following parameters are set to NULL pointer

330 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

values: Buffer, BufferSize, ImageWidth, and ImageHeight.<199>

▪ The fax server cannot find the fax job indicated by the JobId
parameter.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.13 FaxObs_GetDeviceStatus (Opnum 11)

The FaxObs_GetDeviceStatus (Opnum 11) method is called by the client to retrieve information about

a specified fax device (port).

In response, the server MUST validate that the client's fax user account has access to query
configuration. The server MUST allocate memory for the status buffer to be passed out and to fill it
with data.

To indicate success, the server MUST return the buffer that contains the status information, along with
the buffer size.

The client SHOULD free the buffer.

 error_status_t FaxObs_GetDeviceStatus(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, out, unique, size_is(,*BufferSize)]
 LPBYTE* StatusBuffer,
 [in, out] LPDWORD BufferSize
);

FaxPortHandle: An RPC context handle that references a specified fax port. This context handle
MUST be obtained using the FaxObs_OpenPort (section 3.1.4.2.5) method.

StatusBuffer: A pointer to the address of the returned buffer containing a
FAX_DEVICE_STATUS (section 2.2.10) structure. The structure describes the status of one fax
device.

BufferSize: A variable to return the size, in bytes, of the status buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_PORT_QUERY access rights.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The fax server cannot allocate memory for the data to be returned to the
client.

0x0000000D

ERROR_INVALID_DATA

This error SHOULD be returned if the FaxPortHandle parameter is not a
valid handle obtained using FaxObs_OpenPort.<200>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

331 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.4.2.14 FaxObs_Abort (Opnum 12)

The FaxObs_Abort (Opnum 12) method is called by the client to abort the specified fax job on the
server. The value for the JobId parameter can be obtained by calling the FaxObs_EnumJobs (Opnum

7) or FaxObs_SendDocument (Opnum 5) method.

In response, the server MUST validate that the job identifier specified by the JobId parameter is for a
valid job. The server MUST validate that the client's fax user account has write access to the job. On
success, the server MUST terminate the specified fax job that is queued or in progress.

 error_status_t FaxObs_Abort(
 [in] handle_t hBinding,
 [in] DWORD JobId
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method

call used to connect to the fax server.

JobId: A DWORD containing a unique number that identifies the fax job to terminate.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. This error code is returned under any of the following
conditions:

▪ The client's fax user account does not have the FAX_ JOB_MANAGE
access rights.

▪ The client's fax user account is not the owner of the fax job identified by
the JobId parameter.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned when any of the
following conditions are met:

▪ The fax job identified by the specified JobId cannot be found by the fax
server.

▪ The specified job has already been canceled or is in the process of being
canceled.

▪ The specified JobId represents the job for an outgoing broadcast
message; aborting outgoing broadcast messages is not supported.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC

protocol, [MS-RPCE].

3.1.4.2.15 FaxObs_EnumPorts (Opnum 13)

The FaxObs_EnumPorts (Opnum 13) method is called by the client to enumerate the fax ports

(devices) on the server and retrieve information describing these ports (devices).

In response, the server MUST validate that the client's fax user account has access to enumerate the
ports (devices) on the server. On success, the server MUST return information about all its ports

332 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

(devices) in the PortBuffer buffer. The server MUST also return the total size of the returned data and
the number of ports (devices) it successfully enumerated.

The client SHOULD free the returned buffer.

 error_status_t FaxObs_EnumPorts(
 [in] handle_t hBinding,
 [in, out, unique, size_is(,*BufferSize)]
 LPBYTE* PortBuffer,
 [in, out] LPDWORD BufferSize,
 [out] LPDWORD PortsReturned
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method
call used to connect to the fax server.

PortBuffer: A pointer to the address of the returned buffer containing an array of

_FAX_PORT_INFO (section 2.2.8) structures. Each structure describes one fax port (device).

BufferSize: A variable to return the size, in bytes, of the PortBuffer.

PortsReturned: A pointer to a DWORD variable to receive the number of _FAX_PORT_INFO
structures that the method returns in the PortBuffer parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the FAX_
PORT_QUERY access rights.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The fax server cannot allocate sufficient memory to hold the array of
_FAX_PORT_INFO structures to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The PortsReturned parameter is set to a NULL pointer value.<201>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC

protocol, [MS-RPCE].

3.1.4.2.16 FaxObs_GetPort (Opnum 14)

The FaxObs_GetPort (Opnum 14) method is called by the client to retrieve status information from the
server about the specified fax port (device).

The server MUST validate that the client's fax user account has the access to get port (device) status

information. The client MUST set the FaxPortHandle parameter to a valid fax port handle value

returned by the FaxObs_OpenPort (section 3.1.4.2.5) method. On success, the server MUST return
information for the specified fax port in PortBuffer.

The client SHOULD free the returned buffer.

 error_status_t FaxObs_GetPort(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, out, unique, size_is(,*BufferSize)]
 LPBYTE* PortBuffer,

333 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in, out] LPDWORD BufferSize
);

FaxPortHandle: An RPC context handle that references a fax port.

PortBuffer: A pointer to the address of the returned buffer containing a
_FAX_PORT_INFO (section 2.2.8) structure. The structure describes one fax port (device).

BufferSize: A variable to return the size, in bytes, of the port buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_PORT_QUERY access rights.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The fax server cannot allocate sufficient memory to hold the
_FAX_PORT_INFO structure to be returned to the client.

0x0000000D

ERROR_INVALID_DATA

This error SHOULD be returned if the FaxPortHandle argument is not a
valid handle obtained using FaxObs_OpenPort (section 3.1.4.2.5).<202>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.17 FaxObs_SetPort (Opnum 15)

The client calls the FaxObs_SetPort (Opnum 15) method to change the configuration of a fax port

(device). The function sets extension configuration properties that are stored at the device level, such

as enabling or disabling sending and receiving, and the automatic or manual answering of calls.

The client MUST set the FaxPortHandle parameter to a valid fax port handle value returned by the
FaxObs_OpenPort (section 3.1.4.2.5) method. The server MUST validate that the client's fax user
account has the access to change the port configuration. On success, the server MUST modify the
properties of the port as specified by the client.

 error_status_t FaxObs_SetPort(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in] const FAX_PORT_INFO* PortInfo
);

FaxPortHandle: An RPC context handle that references a fax port.

PortInfo: A pointer to a FAX_PORT_INFO (section 2.2.7) structure. The structure contains data to

modify the configuration of the specified fax port. The server MUST ignore the State field of this
structure.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005 Access is denied. The client's fax user account does not have the

334 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

ERROR_ACCESS_DENIED FAX_PORT_SET access rights.

0x0000000D

ERROR_INVALID_DATA

The handle specified by the FaxPortHandle argument is not a valid fax port
handle obtained by a call to FaxObs_OpenPort.<203>

0x00000057

ERROR_INVALID_PARAMETER

The size of the FAX_PORT_INFO structure specified in the SizeOfStruct field
is incorrect (see section 2.2.7).

0x00000964

ERROR_DEVICE_IN_USE

The specified fax port is currently sending or receiving a fax transmission.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.18 FaxObs_EnumRoutingMethods (Opnum 16)

The FaxObs_EnumRoutingMethods (Opnum 16) method is called by the client to enumerate all of the
routing methods that are registered with the server for a specified port (device). The function returns
detailed information about each enumerated routing method.

The client MUST set the FaxPortHandle parameter to a valid fax port handle value returned by the
FaxObs_OpenPort (section 3.1.4.2.5) method.

In response, the server MUST validate that the client's fax user account has access to query
configuration. The server MUST allocate memory for the routing information array to be returned to

the client. On success, the server MUST fill the buffer with the routing information for the specified
port, along with the buffer size and the number of enumerated methods.

The client SHOULD free the buffer.

 error_status_t FaxObs_EnumRoutingMethods(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, out, unique, size_is(,*RoutingInfoBufferSize)]
 LPBYTE* RoutingInfoBuffer,
 [in, out] LPDWORD RoutingInfoBufferSize,
 [out] LPDWORD PortsReturned
);

FaxPortHandle: An RPC context handle that references a fax port.

RoutingInfoBuffer: A pointer to the address of the returned buffer containing an array of
FAX_ROUTING_METHOD (section 2.2.9) structures. Each structure contains information about one
fax routing method.

RoutingInfoBufferSize: A variable to return the size, in bytes, of the routing method buffer.

PortsReturned: A pointer to a DWORD variable to receive the number of FAX_ROUTING_METHOD

structures that are returned by the RoutingInfoBuffer parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52 or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000001

ERROR_INVALID_FUNCTION

There are no routing methods configured on the fax server for the fax
port specified through the FaxPortHandle parameter.

335 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_PORT_QUERY access rights.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The fax server cannot allocate sufficient memory to hold the array of
FAX_ROUTING_METHOD structures to be returned to the client.

0x0000000D

ERROR_INVALID_DATA

This error SHOULD be returned if the FaxPortHandle argument is not a
valid handle obtained using FaxObs_OpenPort.<204>

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the
following parameters is set to a NULL pointer value: RoutingInfoBuffer,
RoutingInfoBufferSize, PortsReturned.<205>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.19 FaxObs_EnableRoutingMethod (Opnum 17)

The FaxObs_EnableRoutingMethod (Opnum 17) method is called by the client to enable or disable a
routing method for a fax port (device).

The client MUST set the FaxPortHandle parameter to a valid fax port handle value returned by the
FaxObs_OpenPort (section 3.1.4.2.5) method. In response, the server MUST validate that the client's
fax user account has access to enable or disable routing methods. The client MUST set the
RoutingGUID parameter to point to a valid routing method.

On success, the server MUST enable or disable a fax routing method for the specified fax port
(device).

 error_status_t FaxObs_EnableRoutingMethod(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, string, unique] LPCWSTR RoutingGuid,
 [in] BOOL Enabled
);

FaxPortHandle: An RPC context handle that references a fax port.

RoutingGuid: A curly braced GUID string that uniquely identifies the fax routing method on which to
act. For more information about routing methods, see [MSDN-FRM]. The routing methods and
their curly braced GUID string values that can be used for this parameter are discoverable by
calling FaxObs_EnumRoutingMethods (section 3.1.4.2.18) . Included in this list are the default
routing methods described in section 2.2.87.

Enabled: A Boolean variable that indicates whether the client request is to enable (when set to TRUE)
or disable (when set to FALSE) the fax routing method specified by the RoutingGuid parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the FAX_PORT_SET
access rights.

0x0000000D The data is invalid. This error code is returned when any of the following

336 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

ERROR_INVALID_DATA conditions are met:

▪ The FaxPortHandle argument is not a valid handle obtained using
FaxObs_OpenPort.<206>

▪ The GUID specified by the RoutingGuid parameter is not a routing method
GUID.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.20 FaxObs_GetRoutingInfo (Opnum 18)

The FaxObs_GetRoutingInfo (Opnum 18) method is called by the client to retrieve information about a
routing method.

The client MUST set the FaxPortHandle parameter to a valid fax port handle value returned by the
FaxObs_OpenPort (section 3.1.4.2.5) method.

The server MUST validate that the client's fax user account has access to retrieve information about a
routing method. The server MUST validate that the RoutingGuid is for a valid routing method. On
success, the server MUST return the routing information for a fax routing method that is associated

with the specified fax port (device) in the RoutingInfoBuffer parameter.

The client SHOULD free the returned buffer.

 error_status_t FaxObs_GetRoutingInfo(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, string, unique] LPCWSTR RoutingGuid,
 [in, out, unique, size_is(,*RoutingInfoBufferSize)]
 LPBYTE* RoutingInfoBuffer,
 [in, out] LPDWORD RoutingInfoBufferSize
);

FaxPortHandle: An RPC context handle that references a specified fax port.

RoutingGuid: A curly braced GUID string that uniquely identifies the fax routing method for which to
obtain the routing information. Fax routing methods are defined by a fax-routing extension and
each method is identified by a GUID. For more information about routing methods, see [MSDN-
FRM]. The routing methods and their curly braced GUID string values that can be used for this
parameter are discoverable by calling FaxObs_EnumRoutingMethods (section 3.1.4.2.18).
Included in this list are the default routing methods described in section 2.2.87.

RoutingInfoBuffer: A pointer to the address of the returned buffer containing the fax-routing
information. The buffer format and contents depend on the routing method that is identified by
the RoutingGuid parameter.

RoutingInfoBufferSize: A pointer to a DWORD variable that receives the size, in bytes, of the
RoutingInfoBuffer buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005 Access is denied. The client's fax user account does not have the

337 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

ERROR_ACCESS_DENIED FAX_PORT_QUERY access rights.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The fax server cannot allocate sufficient memory for the data to be
returned to the client.

0x0000000D

ERROR_INVALID_DATA

The data is invalid. This error code is returned when any of the following
conditions are met:

▪ The FaxPortHandle argument is not a valid handle obtained using
FaxObs_OpenPort.<207>

▪ The GUID specified by the RoutingGuid parameter is not a routing
method GUID.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. One or more of the following parameters are
set to NULL pointer values: RoutingGuid, RoutingInfoBuffer,
RoutingInfoBufferSize.<208>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.21 FaxObs_SetRoutingInfo (Opnum 19)

The FaxObs_SetRoutingInfo (Opnum 19) method is called by the client to set routing information for a
fax routing method.

The client MUST set the FaxPortHandle parameter to a valid fax port handle value returned by the
FaxObs_OpenPort (section 3.1.4.2.5) method.

The server MUST validate that the client's fax user account has access to configure fax routing
methods on the server.

On success, the server MUST modify the routing information for the fax routing method that is

associated with the specified fax port (device).

 error_status_t FaxObs_SetRoutingInfo(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, string, unique] LPCWSTR RoutingGuid,
 [in, unique, size_is(RoutingInfoBufferSize)]
 const BYTE* RoutingInfoBuffer,
 [in] DWORD RoutingInfoBufferSize
);

FaxPortHandle: An RPC context handle that references a specified fax port.

RoutingGuid: A curly braced GUID string that uniquely identifies the fax routing method to set the
routing information for. Fax routing methods are defined by a fax routing extension, and the
method is identified by a GUID. For more information about routing methods, see [MSDN-FRM].

The routing methods and their curly braced GUID string values, which can be used for this
parameter, are discoverable by calling FaxObs_EnumRoutingMethods (section 3.1.4.2.18).
Included in this list are the default routing methods described in section 2.2.87.

RoutingInfoBuffer: A pointer to a buffer that contains the fax routing information to be set. The
format and contents of this buffer depend on the routing method identified by the RoutingGuid
parameter.

RoutingInfoBufferSize: The size, in bytes, of the RoutingInfoBuffer buffer.

338 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_PORT_SET access rights.

0x0000000D

ERROR_INVALID_DATA

The data is invalid. This error code is returned when any of the following
conditions are met:

▪ The FaxPortHandle argument is not a valid handle obtained using
FaxObs_OpenPort.<209>

▪ The GUID specified by the RoutingGuid parameter is not a routing
method GUID.

▪ The routing extension specified by the RoutingGuid parameter or the
routing extension implementing the routing method specified by the
RoutingGuid parameter denies the request to set the data requested
by the fax client.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. One or more of the following parameters are
set to NULL pointer values: RoutingGuid, RoutingInfoBuffer,
RoutingInfoBufferSize.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.22 FaxObs_EnumGlobalRoutingInfo (Opnum 20)

The FaxObs_EnumGlobalRoutingInfo (Opnum 20) method is called by the client to enumerate global
routing information.

The server MUST validate that the client's fax user account has the access to enumerate the global
routing information. On success, the server MUST enumerate and return information about all its fax
routing methods in RoutingInfoBuffer.

The client SHOULD free the returned buffer.

 error_status_t FaxObs_EnumGlobalRoutingInfo(
 [in] handle_t hBinding,
 [in, out, unique, size_is(,*RoutingInfoBufferSize)]
 LPBYTE* RoutingInfoBuffer,
 [in, out] LPDWORD RoutingInfoBufferSize,
 [out] LPDWORD MethodsReturned
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used

as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method
call used to connect to the fax server.

RoutingInfoBuffer: A pointer to the address of the returned buffer containing an array of
_FAX_GLOBAL_ROUTING_INFOW (section 2.2.33) structures. Each structure contains information
about one fax routing method, as it pertains to the entire fax server.

RoutingInfoBufferSize: A variable to return the size, in bytes, of the routing information buffer.

339 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

MethodsReturned: A pointer to a DWORD variable to receive the number of
_FAX_GLOBAL_ROUTING_INFOW structures that the method returns in the RoutingInfoBuffer

parameter. This number SHOULD equal the total number of fax routing methods installed on the
fax server.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000001

ERROR_INVALID_FUNCTION

There are no routing methods currently configured on the fax server.

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_CONFIG_QUERY access rights.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The fax server cannot allocate sufficient memory to hold the array of
_FAX_GLOBAL_ROUTING_INFOW structures to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. One or more of the following parameters are
set to NULL pointer values: RoutingInfoBuffer, RoutingInfoBufferSize, and
MethodsReturned. <210>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.23 FaxObs_SetGlobalRoutingInfo (Opnum 21)

The fax client calls the FaxObs_SetGlobalRoutingInfo (Opnum 21) method to set global routing
properties, such as the routing method priority.

In response, the server MUST validate that the client's fax user account has access to set the global
routing information. On success, the server MUST modify its global fax routing method data, such as

the routing priority.

 error_status_t FaxObs_SetGlobalRoutingInfo(
 [in] handle_t hBinding,
 [in] const FAX_GLOBAL_ROUTING_INFOW* RoutingInfo
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method
call used to connect to the fax server.

RoutingInfo: A pointer to a buffer that contains a FAX_GLOBAL_ROUTING_INFOW (section 2.2.32)
structure.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it

MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_CONFIG_SET access rights.

0x0000000D The fax server cannot find the routing method specified by the Guid

340 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

ERROR_INVALID_DATA structure field of the RoutingInfo parameter.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if any of the
following conditions are met:

▪ The RoutingInfo parameter is set to a NULL pointer value.

▪ The SizeOfStruct structure field of the RoutingInfo parameter is not
set to the correct size in bytes for the FAX_GLOBAL_ROUTING_INFO
structure.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.24 FaxObs_GetConfiguration (Opnum 22)

The FaxObs_GetConfiguration (Opnum 22) method is called by the client to retrieve information about
the configuration of the fax server.

In response, the server MUST validate that the client's fax user account has access to query
configuration. The server MUST then allocate memory for the configuration information to be returned

to the client and fill the buffer with data.

To indicate success, the server MUST return the buffer that contains the configuration information,
along with the buffer size.

The client SHOULD free the buffer.

 error_status_t FaxObs_GetConfiguration(
 [in] handle_t hBinding,
 [in, out, unique, size_is(,*BufferSize)]
 LPBYTE* Buffer,
 [in, out] LPDWORD BufferSize
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method

call used to connect to the fax server.

Buffer: A pointer to the address of the returned buffer containing a
_FAX_CONFIGURATIONW (section 2.2.29) structure. The structure contains the current
configuration settings for the fax server.

BufferSize: A variable to return the size, in bytes, of the buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_CONFIG_QUERY access rights.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The fax server cannot allocate sufficient memory to hold the
_FAX_CONFIGURATIONW structure to be returned to the client.

341 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned if the Buffer or
BufferSize parameters are set to NULL pointer values.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.25 FaxObs_SetConfiguration (Opnum 23)

The client calls the FaxObs_SetConfiguration (Opnum 23) method to change the fax server

configuration.

In response, the server MUST validate that the client's fax user account has access to change the fax
server configuration. On success, the server MUST set the specified configuration parameters.

 error_status_t FaxObs_SetConfiguration(
 [in] handle_t hBinding,
 [in] const FAX_CONFIGURATIONW* FaxConfig
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method
call used to connect to the fax server.

FaxConfig: A pointer to a FAX_CONFIGURATIONW (section 2.2.28) structure. If the Branding
structure member is TRUE, the fax server SHOULD generate a brand that contains transmission-
related information, such as the transmitting subscriber identifier, date, time, and page count. If
the UseDeviceTsid structure member is TRUE, the server SHOULD use the device's transmitting
subscriber identifier. If the ServerCp structure member is TRUE, the client SHOULD use a
common cover page stored on the fax server; if this member is FALSE, the client SHOULD use a

personal cover page template. If the PauseServerQueue structure member is TRUE, the server

SHOULD pause the outgoing fax queue. If the ArchiveOutgoingFaxes structure member is
TRUE, the server SHOULD archive transmissions in the directory specified by the
ArchiveDirectory member. The fax server SHOULD ignore the ArchiveDirectory structure
member if the ArchiveOutgoingFaxes member is FALSE. The fax server SHOULD retain the
discount time period submitted by the client with the StartCheapTime and StopCheapTime
structure members. <211>

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_CONFIG_SET access rights.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The pointer specified with the FaxConfig argument is NULL.

▪ The dwSizeOfStruct member of the FAX_CONFIGURATIONW data
structure specified by the FaxConfig parameter is set to an incorrect
value.

▪ The ArchiveOutgoingFaxes member of the FaxConfig structure is set

342 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

to TRUE and the ArchiveDirectory member of this same structure is
set to a NULL pointer value.

0x0000000D

ERROR_INVALID_DATA

The fax server failed to add (apply) the new MAPI profile specified by the
Reserved member of the FaxConfig structure.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.26 FaxObs_GetLoggingCategories (Opnum 24)

The FaxObs_GetLoggingCategories (Opnum 24) method is called by the client to retrieve the current
logging categories from the server. A logging category determines the errors or other events that the
fax server records in the application event log.

In response, the server MUST return the current logging categories.

The client SHOULD free the returned buffer.

 error_status_t FaxObs_GetLoggingCategories(
 [in] handle_t hBinding,
 [in, out, unique, size_is(,*BufferSize)]
 LPBYTE* Buffer,
 [in, out] LPDWORD BufferSize,
 [in, out] LPDWORD NumberCategories
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method

call used to connect to the fax server.

Buffer: A pointer to the address of the returned buffer containing an array of
FAX_LOG_CATEGORY (section 2.2.11) structures. The number of structures included in the array
is set by NumberCategories. Each structure describes one current logging category. The Name
strings are appended after the FAX_LOG_CATEGORY entries.

BufferSize: A variable to return the size, in bytes, of the buffer.

NumberCategories: A pointer to a DWORD variable to receive the number of FAX_LOG_CATEGORY

structures that the method returns in the Buffer parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_CONFIG_QUERY access rights.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The fax server cannot allocate sufficient memory to hold the array of
FAX_LOG_CATEGORY structures to be returned to the client.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error is returned if one of more of the
following parameters are set to NULL pointer values: Buffer, BufferSize,
NumberCategories. <212>

343 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.27 FaxObs_SetLoggingCategories (Opnum 25)

The FaxObs_SetLoggingCategories (Opnum 25) method is called by the client to set the current
logging categories on the server. A logging category determines the errors or other events that the fax
server records in the application event log.

On success, the server MUST modify its current logging categories.

 error_status_t FaxObs_SetLoggingCategories(
 [in] handle_t hBinding,
 [in, unique, size_is(BufferSize)]
 const LPBYTE Buffer,
 [in] DWORD BufferSize,
 [in] DWORD NumberCategories
);

hBinding: A handle that is provided by the client RPC layer when the RPC call is made.

Buffer: A pointer to an array of FAX_LOG_CATEGORY (section 2.2.11) structures. Each structure
contains the data to modify one logging category. The data includes a friendly name of the logging
category, a numeric identifier for the category, and the current severity-level threshold for the
category. For more information, see [MSDN-FSCAR].

BufferSize: A DWORD variable that contains the size, in bytes, of the data buffer.

NumberCategories: A DWORD variable that contains the number of FAX_LOG_CATEGORY structures
that the method passes in the Buffer parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_CONFIG_SET access rights.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The value specified for the Buffer parameter is NULL.

▪ The value specified for the BufferSize parameter is 0.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.28 FaxObs_GetTapiLocations (Opnum 26)

The FaxObs_GetTapiLocations (Opnum 26) method is called by the client to retrieve the current and

other available TAPI locations configured for the server. The TAPI locations can be set by the client
with the FaxObs_SetTapiLocations (section 3.1.4.2.29) method.

A TAPI location is described by a FAX_TAPI_LOCATIONS (section 2.2.88) data structure, which
includes information such as a friendly name, country code, and area code for the respective location.
For more information about TAPI see [MSDN-TAPI2.2].

344 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

On success, the server MUST allocate memory for and return the data describing its current and other
available TAPI locations.

The client SHOULD free the buffer.

 error_status_t FaxObs_GetTapiLocations(
 [in] handle_t hBinding,
 [in, out, unique, size_is(,*BufferSize)]
 LPBYTE* Buffer,
 [in, out] LPDWORD BufferSize
);

hBinding: A handle that is provided by the client RPC layer when the RPC call is made.

Buffer: A pointer to the address of the returned buffer containing a
FAX_TAPI_LOCATION_INFO (section 2.2.89) structure that contains a list of
FAX_TAPI_LOCATIONS structures, each FAX_TAPI_LOCATIONS structure describing one location.
Each structure includes information such as a friendly name, country code, and area code. The

current location can be identified in this list of FAX_TAPI_LOCATIONS structures by searching for a
structure with the location identifier value (contained by the PermanentLocationID member)

described by the CurrentLocationID member of the FAX_TAPI_LOCATION_INFO structure.

BufferSize: Pointer to a DWORD variable that receives the size, in bytes, of the data returned in the
buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_CONFIG_QUERY access rights.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error is returned if any of the following
parameters are set to a NULL pointer value: Buffer or BufferSize.<213>

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The fax server cannot allocate sufficient memory to hold the data to be
returned to the client.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.29 FaxObs_SetTapiLocations (Opnum 27)

The FaxObs_SetTapiLocations (Opnum 27) method is called by the client to set the current and other
available TAPI locations for the server. The TAPI locations can be retrieved by the client with the
FaxObs_GetTapiLocations (section 3.1.4.2.28) method.

A TAPI location is described by a FAX_TAPI_LOCATIONS (section 2.2.88) data structure, which
includes information such as a friendly name, country code, and area code for the respective location.

For more information about TAPI, see [MSDN-TAPI2.2].

On success, the server MUST apply the new locations configuration that was requested by the client.

 error_status_t FaxObs_SetTapiLocations(
 [in] handle_t hBinding,
 [in, unique, size_is(BufferSize)]
 LPBYTE Buffer,

345 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in] DWORD BufferSize
);

hBinding: A handle that is provided by the client RPC layer when the RPC call is made.

Buffer: A pointer to a FAX_TAPI_LOCATION_INFO (section 2.2.89) structure containing a list of
FAX_TAPI_LOCATIONS structures, each FAX_TAPI_LOCATIONS structure describing one location.
The current location is identified in this list of FAX_TAPI_LOCATIONS structures by the
FAX_TAPI_LOCATIONS structure with the location identifier value (contained by the
PermanentLocationID member) described by the CurrentLocationID member of the

FAX_TAPI_LOCATION_INFO structure.

BufferSize: Pointer to a DWORD variable that contains the size, in bytes, of the data contained in the
buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_CONFIG_SET access rights.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error is returned if the Buffer parameter is

set to a NULL pointer value.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.30 FaxObs_GetMapiProfiles (Opnum 28)

The FaxObs_GetMapiProfiles (Opnum 28) method is called by the client to retrieve the names of the

current MAPI profiles set for the fax server. For more information about MAPI profiles, see [MSDN-
MAPIPRF].

On success, the server MUST allocate memory for, and return the list of, the current MAPI profile
names. They MUST be formatted as a sequence of null-terminated character strings, with the
sequence terminated by a single empty, null-terminated character string.

The client SHOULD free the buffer.

 error_status_t FaxObs_GetMapiProfiles(
 [in] handle_t hBinding,
 [in, out, unique, size_is(,*BufferSize)]
 LPBYTE* MapiProfiles,
 [in, out] LPDWORD BufferSize
);

hBinding: A handle that is provided by the client RPC layer when the RPC call is made.

MapiProfiles: A pointer to the address of the returned buffer. This buffer contains a sequence of null-
terminated character strings; each of these strings contains the name of a MAPI profile. The
sequence is terminated by an empty null-terminated character string.

BufferSize: Pointer to a DWORD variable that receives the size, in bytes, of the data returned in the
MapiProfiles character strings sequence.

346 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_CONFIG_QUERY access rights.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error is returned if the MapiProfiles or the
BufferSize parameters are set to NULL pointer values. <214>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.31 FaxObs_StartClientServer (Opnum 29)

The FaxObs_StartClientServer (Opnum 29) method is called by the client to register itself to receive
notifications of fax events from the server.

On success, the server MUST start notifying the client about the occurring fax events.

If the server receives a FaxObs_StartClientServer request for a client machine name and client name
that are already registered to receive fax event notifications with a previously executed
FaxObs_StartClientServer call, the fax server MUST consider the new request a success and keep the
existing fax client registration.

To notify the client about a fax event, the server MUST first open a connection with the client by

calling the FAX_OpenConnection (section 3.2.4.5) method. Then the fax server MUST notify the client
by calling the FAX_ClientEventQueue (section 3.2.4.2) method. Finally, the server SHOULD close the
connection with the client by calling the FAX_CloseConnection (section 3.2.4.4) method. <215>

 error_status_t FaxObs_StartClientServer(
 [in] handle_t hBinding,
 [in, string, unique] LPCWSTR MachineName,
 [in, string, unique] LPCWSTR ClientName,
 [in] ULONG64 Context
);

hBinding: A handle that is provided by the client RPC layer when the RPC call is made.

MachineName: A pointer to a null-terminated character string containing the name of the fax client
machine. The machine name MUST be NULL for a local machine and a fully qualified domain name

(FQDN) for a remote machine.

ClientName: A pointer to a null-terminated character string containing the friendly name of the fax
client application. This name MUST be unique for each fax client application running on the same
fax client machine.

Context: A ULONG64 value that can be passed to FAX_OpenConnection (section 3.2.4.5) as a
notification context. This context is equivalent to the subscription context used in the Fax Server
Interface methods FAX_StartServerNotification (section 3.1.4.1.100),

FAX_StartServerNotificationEx (section 3.1.4.1.101), and
FAX_StartServerNotificationEx2 (section 3.1.4.1.102), with the difference that the FaxObs Server
Interface does not have a method similar to FAX_EndServerNotification (section 3.1.4.1.17) that
the client calls to close this context.

347 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return the following error code, one of the fax-specific errors that are defined in section

2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The fax server cannot allocate memory necessary for the fax client
connection.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.32 FaxObs_GetSecurityDescriptor (Opnum 31)

The client calls FaxObs_GetSecurityDescriptor (Opnum 31) method to retrieve the fax security
descriptor of the server. The client can set the fax security descriptor of the server with the
FaxObs_SetSecurityDescriptor (section 3.1.4.2.33) method.

On success, the server MUST allocate memory for the return data buffer and return a

FAX_SECURITY_DESCRIPTOR (section 2.2.90) structure.

The client SHOULD free the buffer.

 error_status_t FaxObs_GetSecurityDescriptor(
 [in] handle_t hBinding,
 [in] DWORD Id,
 [in, out, unique, size_is(,*BufferSize)]
 LPBYTE* FaxSecurityDescriptor,
 [in, out] LPDWORD BufferSize
);

hBinding: A handle that is provided by the client RPC layer when the RPC call is made.

Id: A DWORD containing the identifier of the security descriptor to request. The client MUST set this
parameter to 0.

FaxSecurityDescriptor: A pointer to the address of the returned buffer containing a
FAX_SECURITY_DESCRIPTOR structure.

BufferSize: Pointer to a DWORD variable containing the number of bytes returned in the
FaxSecurityDescriptor buffer.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in
section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_CONFIG_QUERY access rights.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

The server cannot allocate sufficient memory to hold the
FAX_SECURITY_DESCRIPTOR data structure to be returned to the client.

0x00000075

ERROR_INVALID_CATEGORY

The server SHOULD return this error code if the value of the Id parameter
is greater than 0.<216>

348 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.33 FaxObs_SetSecurityDescriptor (Opnum 32)

The client calls FaxObs_SetSecurityDescriptor (Opnum 32) method to set the fax security descriptor of
the server. The client can retrieve the security descriptor of the server with the
FaxObs_GetSecurityDescriptor (section 3.1.4.2.32) method.

On success, the server MUST apply the security descriptor described in the submitted
FAX_SECURITY_DESCRIPTOR (section 2.2.90) structure.

 error_status_t FaxObs_SetSecurityDescriptor(
 [in] handle_t hBinding,
 [in, unique, size_is(BufferSize)]
 const LPBYTE FaxSecurityDescriptor,
 [in] DWORD BufferSize
);

hBinding: A handle that is provided by the client RPC layer when the RPC call is made.

FaxSecurityDescriptor: A pointer to a buffer containing a FAX_SECURITY_DESCRIPTOR structure to
be set.

BufferSize: A DWORD containing the size, in bytes, of the data pointed at by the
FaxSecurityDescriptor parameter.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Access is denied. The client's fax user account does not have the
FAX_CONFIG_SET access rights.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect. This error code is returned under any of the
following conditions:

▪ The value of the BufferSize parameter is less than the size of the
Fixed_Portion block of the FAX_SECURITY_DESCRIPTOR data
structure.

▪ An offset into the Fixed_Portion block of the
FAX_SECURITY_DESCRIPTOR data structure pointed at by the
FaxSecurityDecriptor parameter points to outside of the buffer.

0x0000000D

ERROR_INVALID_DATA

The security descriptor described by the FAX_SECURITY_DESCRIPTOR data
structure pointed at by the FaxSecurityDecriptor parameter is invalid.

0x00000075

ERROR_INVALID_CATEGORY

The fax server SHOULD return this error if the Id member of the
FAX_SECURITY_DESCRIPTOR structure specified by the
FaxSecurityDescriptor argument is set to a value greater than 0.<217>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.34 FaxObs_GetSecurityDescriptorCount (Opnum 33)

349 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The client calls the FaxObs_GetSecurityDescriptorCount (Opnum 33) method to retrieve the total
number of fax security descriptors from the server.

On success, the server MUST return the total number of security descriptors. This number MUST be 1.

 error_status_t FaxObs_GetSecurityDescriptorCount(
 [in] handle_t hBinding,
 [out] LPDWORD Count
);

hBinding: A handle that is provided by the client RPC layer when the RPC call is made.

Count: A pointer to a DWORD value containing on return the number of security descriptors. On a
successful return, the server MUST set this parameter to a value of 1.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the fax-specific errors that are defined in section 2.2.52 or one of the other
standard errors defined in [MS-ERREF] section 2.2. There are no predefined error codes to be

returned by this method.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.4.2.35 FaxObs_AccessCheck (Opnum 34)

The FaxObs_AccessCheck (Opnum 34) method is called by the client to check whether the currently
logged-on client user account has access permissions to execute specific fax operations on the fax
server.

In response, the server MUST validate access of the fax client's currently logged-on user account
against the requested access.

 error_status_t FaxObs_AccessCheck(
 [in] handle_t hBinding,
 [in] DWORD AccessMask,
 [out] LPDWORD fAccess
);

hBinding: The RPC binding handle for this call. The client SHOULD reuse the RPC binding handle used
as an input hBinding argument for the FaxObs_ConnectionRefCount (section 3.1.4.2.2) method
call used to connect to the fax server.

AccessMask: A DWORD containing a set of bit flags that define the fax access permissions to check
for the fax client user account. This parameter MUST be a bitwise OR combination of generic
FaxObs access rights and specific FaxObs access rights that are described in the following tables.

Generic FaxObs
Access Rights Meaning

FAX_READ

0x00020016

Includes the read-only rights that are granted by the following specific FaxObs access
rights in combination with the standard access rights STANDARD_RIGHTS_READ:

FAX_JOB_QUERY

FAX_CONFIG_QUERY

FAX_PORT_QUERY

FAX_WRITE Includes the read-only rights that are granted by the following specific FaxObs access

350 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Generic FaxObs
Access Rights Meaning

0x00020001 rights in combination with the standard access rights STANDARD_RIGHTS_WRITE:

FAX_JOB_SUBMIT

FAX_ALL_ACCESS

0x001F007F

Includes the read-only rights that are granted by the following specific FaxObs access
rights in combination with the standard access rights STANDARD_RIGHTS_ALL:

FAX_JOB_SUBMIT

FAX_JOB_QUERY

FAX_CONFIG_QUERY

FAX_CONFIG_SET

FAX_PORT_QUERY

FAX_PORT_SET

FAX_JOB_MANAGE

The generic FaxObs access rights are bitwise OR combination of specific FaxObs access rights and

standard access rights. For more information about the standard access rights, see [MSDN-SAR].

Specific FaxObs access
rights Meaning

FAX_JOB_SUBMIT

0x00000001

The user can submit documents to be faxed.

Example method: FaxObs_SendDocument (Opnum 5).

FAX_JOB_QUERY

0x00000002

The user can query information about submitted fax jobs.

Example method: FaxObs_EnumJobs (Opnum 7).

FAX_CONFIG_QUERY

0x00000004

The user can query the fax server configuration.

Example method: FaxObs_GetConfiguration (Opnum 22).

FAX_CONFIG_SET

0x00000008

The user can change the fax server configuration.

Example method: FaxObs_SetConfiguration (Opnum 23).

FAX_PORT_QUERY

0x00000010

The user can query information about the fax ports (devices) installed on the
fax server.

Example method: FaxObs_EnumPorts (Opnum 13).

FAX_PORT_SET

0x00000020

The user can change the configuration of the fax ports (devices) installed on the
fax server.

Example method: FaxObs_SetPort (Opnum 15).

FAX_JOB_MANAGE

0x00000040

The user can pause, resume, and cancel submitted fax jobs.

Example method: FaxObs_SetJob (Opnum 9).

fAccess: A pointer to a BOOL variable to receive on successful return the access check return value. A

TRUE value indicates that access is allowed. A FALSE value indicates that access is denied.

Return Values: This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it
MUST return one of the following error codes, one of the fax-specific errors that are defined in

section 2.2.52, or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000057 The parameter is incorrect. This error code is returned if any of the following

351 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

ERROR_INVALID_PARAMETER conditions are met:

▪ The hBinding parameter is set to a NULL value. <218>

▪ The fAccess parameter is set to a NULL pointer value. <219>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.1.5 Timer Events

No protocol timer events are required on the server except the timers that are required in the
underlying RPC protocol.

3.1.6 Other Local Events

This protocol does not attempt to reestablish a connection that is dropped by the lower layers.

3.2 Fax Client Details

3.2.1 Abstract Data Model

No abstract data model is required.

3.2.2 Timers

This protocol uses nondefault behavior for the RPC Call Timeout timer that is defined in [MS-RPCE]
section 3.3.2.2.2. The timer value that this protocol uses is 30000 milliseconds and it applies to all the
methods that are described in this protocol.

3.2.3 Initialization

The server MUST listen on well-defined endpoints, as specified in [C706].

3.2.4 Message Processing Events and Sequencing Rules

The Message Processing Events and Sequencing Rules protocol MUST specify to the RPC runtime that
it is to perform a strict NDR data consistency check at target level 5.0, as specified in [MS-RPCE]
section 3.

Methods in RPC Opnum Order

Method Description

FAX_OpenConnection The FAX_OpenConnection method returns the context handle supplied by the
FAX_StartServerNotification family of calls. This is done to provide a security layer, by
verifying that the notifications are coming from an expected source

Opnum: 0

FAX_ClientEventQueue The fax server (acting as an RPC client for this call) calls this function when it needs
to deliver a fax event to the fax client (acting as an RPC server for this call).

Opnum: 1

352 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

FAX_CloseConnection The fax server (acting as an RPC client for this call) calls this function when it needs
to release the connection to the fax client (acting as an RPC server for this call).
When the fax client calls a FAX_EndServerNotification (section 3.1.4.1.17), the fax
server MUST release the RPC connection to the fax client through this call.

Opnum: 2

FAX_ClientEventQueueEx The fax server (acting as an RPC client for this call) calls this function when it needs
to deliver a fax event to the fax client (acting as an RPC server for this call).

Opnum: 3

All methods MUST NOT throw exceptions except those that are thrown by the underlying RPC protocol

[MS-RPCE].

3.2.4.1 Sequencing Rules

The following methods MUST be used by the fax server to open or close a connection to the fax client.
These connections are used to deliver fax events to the client.

▪ FAX_OpenConnection (section 3.2.4.5)

▪ FAX_CloseConnection (section 3.2.4.4)

FAX_OpenConnection MUST be called to obtain a fax client handle for use with the following methods.
FAX_CloseConnection MUST be called to release the connection to the fax client.

▪ FAX_ClientEventQueue (section 3.2.4.2)

▪ FAX_ClientEventQueueEx (section 3.2.4.3)

3.2.4.2 FAX_ClientEventQueue (Opnum 1)

The fax server (acting as an RPC client for this call) calls this function when it needs to deliver a
legacy fax event to the fax client (acting as an RPC server for this call). The fax client registers for
notifications of legacy events with the fax server by calling FAX_StartServerNotification or

FAX_StartServerNotificationEx. In this call, the fax client MUST pass a fax client notification context,
which the fax server MUST pass back to the fax client when it sends an event. This is done to provide
a security layer, by verifying that the notifications are coming from an expected source.

In response, the fax client MUST validate the notification context in the FaxPortHandle argument that
is sent by the fax server to ensure that this is a valid notification context created with a successful
FAX_OpenConnection (section 3.2.4.5) method call for which FAX_CloseConnection (section 3.2.4.4)
was not already successfully called. If the validation fails, the fax client MUST abort the operation and

MUST return ERROR_SUCCESS. If the notification context is valid, the fax client MUST accept
notifications for fax client events. On success, the fax client MUST accept the fax event notification.

 error_status_t FAX_ClientEventQueue(
 [in] RPC_FAX_HANDLE FaxPortHandle,
 [in] FAX_EVENT FaxEvent
);

FaxPortHandle: A fax data type that indicates a context handle for this call.

FaxEvent: A FAX_EVENT (section 2.2.66) structure that contains the contents of an I/O completion
packet. The fax server sends the completion packet to notify a fax client application about an
asynchronous fax server event. Since the client is to be notified of each event separately, in this

case ORing of events is not allowed.

353 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it MUST return
one of the following error codes, one of the fax-specific errors that are defined in section 2.2.52,

or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.2.4.3 FAX_ClientEventQueueEx (Opnum 3)

The fax server (acting as an RPC client for this call) calls this function when it needs to deliver an
extended fax event to the fax client (acting as an RPC server for this call). The fax client registers for

notifications with the fax server by calling either FAX_StartServerNotificationEx or

FAX_StartServerNotificationEx2. In this call, the fax client MUST pass a fax client notification context,
which the fax server MUST pass back to the fax client when it sends an event. This is done to provide
a security layer, by verifying that the notifications are coming from an expected source.

Data in FAX_ClientEventQueueEx (section 3.2.4.3) is serialized. Pointers to variable-size data (such as
strings) are replaced with offsets from the beginning of the buffer.

In response, the fax client MUST validate the notification context in the hClientContext argument,

which is sent by the fax server, to ensure that this is a valid notification context created with a
successful FAX_OpenConnection (section 3.2.4.5) method call for which
FAX_CloseConnection (section 3.2.4.4) was not already successfully called. If the validation fails, the
fax client MUST abort the operation and MUST return ERROR_SUCCESS. If the notification context is
valid, the fax client MUST accept notifications for fax client events.

 error_status_t FAX_ClientEventQueueEx(
 [in, ref] RPC_FAX_HANDLE hClientContext,
 [in, ref, size_is(dwDataSize)] const LPBYTE lpbData,
 [in] DWORD dwDataSize
);

hClientContext: A fax data type indicating a context handle for this call.

lpbData: A pointer to a FAX_EVENT_EX (section 2.2.67) or FAX_EVENT_EX_1 (section 2.2.68)
structure. The data is serialized. Pointers to variable size data (such as strings) are replaced with
offsets from the beginning of the buffer. Since the client is to be notified of each event separately,

in this case ORing of events is not allowed.

If the client requested extended events by calling
FAX_StartServerNotificationEx (section 3.1.4.1.101), the client MUST use a FAX_EVENT_EX
structure. If the client called FAX_StartServerNotificationEx2 (section 3.1.4.1.102) to receive
these events, the client MUST use a FAX_EVENT_EX_1 structure.

dwDataSize: A DWORD containing the size of the buffer pointed to by the lpbData parameter.

This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it MUST return

one of the following error codes, one of the fax-specific errors that are defined in section 2.2.52,
or one of the other standard errors defined in [MS-ERREF] section 2.2.

354 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return value/code Description

0x0000000D

ERROR_INVALID_DATA

The hClientContext handle is not a valid subscription context handle returned
by FAX_StartServerNotificationEx or FAX_StartServerNotificationEx2.<220>

0x0000000E

ERROR_OUTOFMEMORY

 The fax client needs to make a copy of the data provided by the fax server in
the lpbData buffer, and the fax client failed to allocate dwDataSize bytes to
hold this copy.

0x0000054F

ERROR_INTERNAL_ERROR

The fax client failed to recognize the custom marshaled FAX_EVENT_EX or
FAX_EVENT_EX_1 structure provided by the fax server in the lpbData buffer.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

Data in FAX_ClientEventQueueEx is serialized. Pointers to variable size data (such as strings) are
replaced with offsets from the beginning of the buffer.

3.2.4.4 FAX_CloseConnection (Opnum 2)

The fax server (acting as an RPC client for this call) calls this function when it needs to release the
connection to the fax client (acting as an RPC server for this call). When the fax client calls
FAX_EndServerNotification (Opnum 75) (section 3.1.4.1.17), the fax server MUST release the RPC
connection to the fax client through this call.

In response, the fax client MUST validate the notification context in the FaxPortHandle argument that

is sent by the fax server, to ensure that this is a valid notification context created with a successful
FAX_OpenConnection (section 3.2.4.5) method call for which FAX_CloseConnection (section 3.2.4.4)
was not already successfully called. If validation fails, the fax client MUST abort the operation and
MUST return ERROR_SUCCESS. If the notification context is valid, the fax client MUST close the RPC
connection that is identified by the argument.

 error_status_t FAX_CloseConnection(
 [in, out] PRPC_FAX_HANDLE FaxHandle
);

FaxHandle: A pointer to an RPC_FAX_HANDLE that indicates a context handle to close. For more
information about RPC_FAX_HANDLE, see fax Data Types.

This method returns ERROR_SUCCESS (0x00000000) for success. The ERROR_SUCCESS code is
also returned for failure when the fax handle specified by the FaxHandle argument indicates an

invalid connection context with the intent to mask the failure for a malicious caller. Otherwise, if
an unexpected failure happens for a valid fax handle, the method returns one of the standard
errors that are defined in [MS-ERREF] section 2.2.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, [MS-RPCE].

3.2.4.5 FAX_OpenConnection (Opnum 0)

The FAX_OpenConnection method returns the context handle that is supplied by the
FAX_StartServerNotification family of calls. This is done to provide a security layer, by verifying that
the notifications are coming from an expected source.

In response, the fax client (acting as an RPC server for this call) SHOULD validate the notification

context referred by the Context argument to ensure this is a valid notification context previously
submitted by the fax client to a FAX_StartServerNotification (section 3.1.4.1.100),

355 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FAX_StartServerNotificationEx (section 3.1.4.1.101), or
FAX_StartServerNotificationEx2 (section 3.1.4.1.102) method call through the argument with the

same name (Context). The fax client MUST validate whether the fax server (acting as an RPC client for
this call) uses an authentication scheme better than RPC_C_AUTHN_LEVEL_PKT_PRIVACY. An RPC

client always uses a packet authentication level, as specified in [MS-RPCE] section 3.3.1.5.2.

On success, the fax client MUST open a notification session to the fax server and MUST return the
same Context in the FaxHandle argument that was passed by the fax server in the FaxHandle
argument.

 error_status_t FAX_OpenConnection(
 [in] handle_t hBinding,
 [in] unsigned __int64 Context,
 [out] PRPC_FAX_HANDLE FaxHandle
);

hBinding: Handle provided by the client RPC layer when the RPC call is made.

Context: A ULONG64 containing a context information handle. This handle SHOULD match the one
supplied to the server when using the FAX_StartServerNotification family of calls. For more
information, see the following topics.

▪ FAX_StartServerNotification (section 3.1.4.1.100)

▪ FAX_StartServerNotificationEx (section 3.1.4.1.101)

▪ FAX_StartServerNotificationEx2 (section 3.1.4.1.102)

FaxHandle: A pointer to an RPC_FAX_HANDLE indicating a context handle to open. This value is used
in other fax client calls.

This method MUST return 0x00000000 (ERROR_SUCCESS) for success; otherwise, it MUST return
one of the following error codes, one of the fax-specific errors that are defined in section 2.2.52,
or one of the other standard errors defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The method requires at least packet-level privacy. The server checks the
authentication level of the client. If it is less than
RPC_C_AUTHN_LEVEL_PKT_PRIVACY, refuse access. Or there are other
access-related problems.

0x00000057

ERROR_INVALID_PARAMETER

An invalid AssyncInfo structure is pointed to by the Context parameter or
there are parameter-related problems.

Exceptions Thrown: No exceptions are thrown except those thrown by the underlying RPC protocol,
[MS-RPCE].

The returned PRPC_FAX_HANDLE is the Context parameter cast to a HANDLE.

The FAX_OpenConnection method returns the context handle supplied by the

FAX_StartServerNotification family of calls. This is done to provide a security layer, by verifying that
the notifications are coming from an expected source.

3.2.5 Timer Events

Not applicable.

356 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.2.6 Other Local Events

This protocol does not attempt to re-establish a connection if dropped by the lower layers.

357 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4 Protocol Examples

4.1 Message Exchanges While Sending a Fax

Figure 1: Message exchanges during the sending of a fax

A fax client follows these steps to send a fax using the fax server:

1. The client calls FAX_ConnectFaxServer (section 3.1.4.1.10) to establish a connection to the fax
server. The parameters supplied to this function are the server name and a fax connection handle
object. The server tries to establish the connection and returns false if the call fails, or sets the

fax connection handle object if the call is successful.

The client performs some of the following tasks to create the fax message that needs to be sent:

358 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Setting the recipient information: To describe the recipients of the fax message, the client
creates an array of FAX_PERSONAL_PROFILEW (section 2.2.44). The number of elements in

the array is the number of recipients for the fax message.

This structure is filled with the name of the recipient and the fax number.

▪ Setting the parameters of the fax transmission job: To set the parameters of the fax
message transmission, the client can set the transmission-related fields, such as priority and
receipt information, by using the FAX_JOB_PARAM_EXW (section 2.2.14) structure.

▪ Setting the sender information: The sender's information that would be used with the fax
message can be set by using the FAX_PERSONAL_PROFILEW (section 2.2.44) structure.

▪ Setting the cover page: The fax client can set the cover page that would be used with the
fax message by using the FAX_COVERPAGE_INFO_EX (section 2.2.12) structure.

▪ Setting the body: The client sets the body of the fax message.

2. The client calls FAX_StartCopyToServer (section 3.1.4.1.97) to request the server to create a file.

The server creates the file and returns the file handle.

3. The client then uses the file handle obtained in step 3 and writes the file by using the method
FAX_WriteFile (section 3.1.4.1.105). The server writes the file to the queue.

4. The client calls FAX_EndCopy (section 3.1.4.1.15) to request the server to end the write operation

on the file.

5. The client calls the FAX_SendDocumentEx (section 3.1.4.1.73) method to send the fax.

The server tries to queue the fax for sending and returns false if the call fails. If the call is
successful, the method returns true and sets the message identifier. The client can use the
message identifier to track the status of the submitted fax message and control the fax
transmission.

6. To end the connection to the fax server, the client calls FAX_ConnectionRefCount (section

3.1.4.1.11) by using the faxHandle parameter that was obtained in step 1 and a value of 0 for the
dwConnect argument.

359 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4.2 Message Exchanges During Querying Server Configuration

Figure 2: Message exchanges during the querying of server configuration

A fax client can query the server to obtain its global configuration. The client does this querying to
determine the global settings of the fax server. For example, the client can query for the number of

retries, retry delays, and dirty days, and also for the branding and discount rate settings that are

available as part of the FAX_CONFIGURATION (section 2.2.28) structure.

The client's fax user account needs to have query configuration access to be able to query for the
configuration settings on the server.

The client follows these steps to query for the global configuration settings on the fax server:

1. The client calls FAX_ConnectFaxServer (section 3.1.4.1.10) to establish a connection to the fax
server. The parameters supplied to this function are the server name and a fax connection handle

object. The server tries to establish the connection and returns false if the call fails or sets the fax
connection handle object if successful.

2. The client calls FAX_GetConfiguration (section 3.1.4.1.36) to query the fax server configuration.

3. The server does an access check to determine whether the client's fax user account has the
permissions to query configuration. If the access check fails, the server returns
ERROR_ACCESS_DENIED. If the client's fax user account has the permissions to query for the

server configuration and the call is successful, the server returns the
FAX_CONFIGURATION (section 2.2.28) structure.

4. To end the connection to the fax server, the client calls FAX_ConnectionRefCount (section
3.1.4.1.11) by using the faxHandle parameter that was obtained in step 1 and a value of 0 for the
dwConnect argument.

360 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4.3 Message Exchanges During Enumerating Fax Jobs

Figure 3: Message exchanges when enumerating fax jobs

A fax client can query the server to obtain a list of its queued and active fax jobs. To do so, the client
follows these steps:

1. The client calls FAX_ConnectFaxServer (section 3.1.4.1.10) to establish a connection to the fax
server. The parameters supplied to this function are the server name and a fax connection handle
object. The server tries to establish the connection and returns false if the call fails or sets the fax

connection handle object if successful.

2. The client calls FAX_EnumJobs (section 3.1.4.1.21) to query the list of fax jobs.

3. The server does an access check to determine whether the client's fax user account has the
permissions to enumerate server jobs. If the access check fails, the server returns
ERROR_ACCESS_DENIED. If the client's fax user account has the permissions to query for
server configuration and the call is successful, the server returns the
_FAX_JOB_ENTRY (section 2.2.6) structure.

4. To end the connection to the fax server, the client calls FAX_ConnectionRefCount (section
3.1.4.1.11) by using the faxHandle parameter that was obtained in step 1 and a value of 0 for the
dwConnect argument.

When the client calls FAX_EnumJobs (section 3.1.4.1.21), it receives a list of jobs on the fax queue.
The client can access all the details of the jobs as defined in the _FAX_JOB_ENTRY (section 2.2.6)
structure. If the client already has the job ID of an inbound or an outbound job, the client alternatively
can call the FAX_GetJob (section 3.1.4.1.41) function that returns the details of that particular job.

361 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4.4 Message Exchanges During Modifying Fax Jobs

Figure 4: Message exchanges when modifying fax jobs

A fax client cannot modify the attributes or properties of a fax transmission after the job has been
queued. However, the client can pause, resume, cancel, or restart a queued fax job. To do so, the
client follows these steps:

1. The client calls FAX_ConnectFaxServer (section 3.1.4.1.10) to establish a connection to the fax
server. The parameters supplied to this function are the server name and a fax connection handle
object. The server tries to establish the connection and returns false if the call fails or sets the fax
connection handle object if successful.

2. The client calls FAX_SetJob (section 3.1.4.1.82) by using the particular job ID that the client
needs to modify. As part of the method, the client passes the command that it needs to execute:
delete, pause, resume, or restart.

3. The server does an access check to determine whether the client's fax user account has the
permissions to modify server jobs. If the access check fails, the server returns
ERROR_ACCESS_DENIED. If the client's fax user account has the permissions to modify the job,
the server does the modification and returns nonzero to indicate success or zero to indicate

failure.

4. To end the connection to the fax server, the client calls FAX_ConnectionRefCount (section

3.1.4.1.11) by using the faxHandle parameter that was obtained in step 1 and a value of 0 for the
dwConnect argument.

362 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4.5 Message Exchanges During Adding an Outbound Routing Rule

Figure 5: Message exchanges when adding an outbound routing rule

A fax client can add an outbound routing rule on the server. To do so, the fax client performs the
following steps:

1. The client calls FAX_ConnectFaxServer (section 3.1.4.1.10) to establish a connection to the fax
server. The parameters supplied to this function are the server name and a fax connection handle
object. The server tries to establish the connection and returns false if the call fails or sets the fax

connection handle object if successful.

2. The client calls FAX_AddOutboundRule (section 3.1.4.1.6) to add an outbound routing rule on the
server. The client passes the following parameters:

▪ A handle to the fax connection

▪ The area code of the outbound routing rule

▪ The country/region code of the outbound routing rule

▪ The destination device ID of the rule

▪ The destination group of the rule

▪ A Boolean value that specifies whether the group is used as the destination

3. The server does an access check to determine whether the client's fax user account has the
permissions to add an outbound routing rule. If the access check fails, the server returns
ERROR_ACCESS_DENIED. If the client's fax user account has the permissions to add the rule,
the server does the modification and returns a zero to indicate success.

363 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4. To end the connection to the fax server, the client calls FAX_ConnectionRefCount (section
3.1.4.1.11) by using the faxHandle parameter that was obtained in step 1 and a value of 0 for the

dwConnect argument.

4.6 Message Exchanges During Registering and Unregistering for Server

Notifications

Figure 6: Message exchanges when registering and unregistering for server notifications

A fax client can inform the server that it needs to receive the notifications of fax events. To do so, the
client follows these steps:

1. The client calls FAX_ConnectFaxServer (section 3.1.4.1.10) to establish a connection to the fax
server. The parameters supplied to this function are the server name and a fax connection handle
object. The server tries to establish the connection and returns false if the call fails or sets the fax

connection handle object if successful.

2. The client calls the FAX_StartServerNotification (section 3.1.4.1.100) method to register for server
notifications. The client passes the connection handle , the name of the fax client machine, a
pointer to a string containing the client machine RPC server endpoint, and a pointer to a string
that contains the fax client RPC server's protocol sequence string, among other parameters.

3. The fax server starts an RPC client and calls Fax_OpenConnection (section 3.2.4.5) by using the
supplied endpoint, protocol sequence information, and context handle information.

364 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4. The fax server sends a notification of events to the client by using the
Fax_ClientEventQueue (section 3.2.4.2) method.

5. When the client no longer needs to receive notifications, it calls
FAX_EndServerNotification (section 3.1.4.1.17).

6. The server calls Fax_CloseConnection (section 3.2.4.4) to close the connection with the client.

7. To end the connection to the fax server, the client calls FAX_ConnectionRefCount (section
3.1.4.1.11) by using the faxHandle parameter that was obtained in step 1 and a value of 0 for the
dwConnect argument.

4.7 Message Exchanges During Granting Security Privileges to a User

Figure 7: Message exchanges when granting security privileges to a user

A user requests an additional privilege from a fax administrator (for example, a user might request
permission to send high-priority faxes). The fax administrator follows these steps:

1. From a client machine, the fax administrator calls FAX_ConnectFaxServer (section 3.1.4.1.10) to
establish a connection to the fax server. The parameters supplied to this function are the server

name and a fax connection handle object. The server tries to establish the connection and returns
false if the call fails or sets the fax connection handle object if successful.

2. The client calls the FAX_SetSecurity (section 3.1.4.1.94) method, by passing the connection
handle , the components that are included in the security descriptor, and a
SECURITY_DESCRIPTOR structure that contains the security attributes to be set.

3. The server does an access check to determine whether the client that is calling the method has

the access permissions to modify the security on the fax server.

4. The server sets the security as requested in the SECURITY_DESCRIPTOR and returns zero to
indicate success.

365 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

5. To end the connection to the fax server, the client calls FAX_ConnectionRefCount (section
3.1.4.1.11) by using the faxHandle parameter that was obtained in step 1 and a value of 0 for the

dwConnect argument.

366 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

5 Security

5.1 Security Considerations for Implementers

Security considerations for both authenticated and unauthenticated RPC used in this protocol are as

specified in [MS-RPCE]. The client always performs authenticated RPC.

The RPC connection uses the ncalrpc protocol in the case of a local fax call and ncacn_ip_tcp in the
case of connection with a remote fax server. The RPC connection is made by using
RPC_C_AUTHN_LEVEL_PKT_PRIVACY. The packet authentication level is as specified in [MS-RPCE]
section 3.3.1.5.2.<221>

The server performs access control checks based on the credentials of the client's fax user

account.<222>

5.2 Index of Security Parameters

This protocol defines no security parameters.

367 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

6 Appendix A: Full IDL

For ease of implementation, the full Interface Definition Languages (IDLs) for all interfaces defined in
this protocol are provided in this appendix.

6.1 Appendix A.1: faxdatatypes.idl

For ease of implementation, the full IDL for the data types used by the Fax Server Interface and
FaxObs Server Interface is provided as follows, where "ms-dtyp.idl" is the IDL found in [MS-DTYP]
Appendix A.

 import "ms-dtyp.idl";

 #define FAX_MAX_DEVICES_IN_GROUP 1000

 typedef [context_handle] HANDLE RPC_FAX_HANDLE;
 typedef [ref] RPC_FAX_HANDLE* PRPC_FAX_HANDLE;

 typedef [context_handle] HANDLE RPC_FAX_PORT_HANDLE;
 typedef RPC_FAX_PORT_HANDLE* PRPC_FAX_PORT_HANDLE;

 typedef [context_handle] HANDLE RPC_FAX_SVC_HANDLE;
 typedef RPC_FAX_SVC_HANDLE* PRPC_FAX_SVC_HANDLE;

 typedef [context_handle] HANDLE RPC_FAX_MSG_ENUM_HANDLE;
 typedef RPC_FAX_MSG_ENUM_HANDLE* PRPC_FAX_MSG_ENUM_HANDLE;

 typedef [context_handle] HANDLE RPC_FAX_COPY_HANDLE;
 typedef RPC_FAX_COPY_HANDLE* PRPC_FAX_COPY_HANDLE;

 typedef [context_handle] HANDLE RPC_FAX_EVENT_HANDLE;
 typedef RPC_FAX_EVENT_HANDLE* PRPC_FAX_EVENT_HANDLE;

 typedef [context_handle] HANDLE RPC_FAX_EVENT_EX_HANDLE;
 typedef RPC_FAX_EVENT_EX_HANDLE* PRPC_FAX_EVENT_EX_HANDLE;

 #ifdef SERVER_STUB
 typedef [range(0, RPC_COPY_BUFFER_SIZE)] DWORD RANGED_DWORD;
 typedef RANGED_DWORD * LPRANGED_DWORD;
 #else
 typedef DWORD * LPRANGED_DWORD;
 #endif

 typedef struct {
 DWORD dwSizeOfStruct;
 DWORD dwCoverPageFormat;
 [string] LPWSTR lpwstrCoverPageFileName;
 BOOL bServerBased;
 [string] LPWSTR lpwstrNote;
 [string] LPWSTR lpwstrSubject;
 } FAX_COVERPAGE_INFO_EXW,
 *PFAX_COVERPAGE_INFO_EXW,
 *LPCFAX_COVERPAGE_INFO_EXW;

 typedef struct {
 DWORD SizeOfStruct;
 [string] LPCWSTR RecipientNumber;
 [string] LPCWSTR RecipientName;
 [string] LPCWSTR Tsid;
 [string] LPCWSTR SenderName;
 [string] LPCWSTR SenderCompany;
 [string] LPCWSTR SenderDept;
 [string] LPCWSTR BillingCode;
 DWORD ScheduleAction;
 SYSTEMTIME ScheduleTime;
 DWORD DeliveryReportType;

368 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [string] LPCWSTR DeliveryReportAddress;
 [string] LPCWSTR DocumentName;
 HCALL CallHandle;
 DWORD_PTR Reserved[3];
 } FAX_JOB_PARAMW, *PFAX_JOB_PARAMW;

 typedef enum
 {
 FAX_DEVICE_RECEIVE_MODE_OFF = 0,
 FAX_DEVICE_RECEIVE_MODE_AUTO = 1,
 FAX_DEVICE_RECEIVE_MODE_MANUAL = 2
 }FAX_ENUM_DEVICE_RECEIVE_MODE;

 typedef enum
 {
 FAX_GROUP_STATUS_ALL_DEV_VALID = 0x00000000,
 FAX_GROUP_STATUS_EMPTY = 0x00000001,
 FAX_GROUP_STATUS_ALL_DEV_NOT_VALID = 0x00000002,
 FAX_GROUP_STATUS_SOME_DEV_NOT_VALID = 0x00000003
 } FAX_ENUM_GROUP_STATUS;

 typedef enum
 {
 FAX_MESSAGE_FOLDER_INBOX = 0x00000000,
 FAX_MESSAGE_FOLDER_SENTITEMS = 0x00000001,
 FAX_MESSAGE_FOLDER_QUEUE = 0x00000002
 } FAX_ENUM_MESSAGE_FOLDER;

 typedef enum
 {
 RECIPIENT_PERSONAL_PROF = 1,
 SENDER_PERSONAL_PROF = 2
 }FAX_ENUM_PERSONAL_PROF_TYPES;

 typedef enum
 {
 FAX_PRIORITY_TYPE_LOW = 0x00000000,
 FAX_PRIORITY_TYPE_NORMAL = 0x00000001,
 FAX_PRIORITY_TYPE_HIGH = 0x00000002
 } FAX_ENUM_PRIORITY_TYPE;

 typedef enum
 {
 FAX_SMTP_AUTH_ANONYMOUS = 0,
 FAX_SMTP_AUTH_BASIC = 1,
 FAX_SMTP_AUTH_NTLM = 2
 }FAX_ENUM_SMTP_AUTH_OPTIONS;

 typedef enum
 {
 PRODUCT_SKU_UNKNOWN = 0x00000000,
 PRODUCT_SKU_PERSONAL = 0x00000001,
 PRODUCT_SKU_PROFESSIONAL = 0x00000002,
 PRODUCT_SKU_SERVER = 0x00000004,
 PRODUCT_SKU_ADVANCED_SERVER = 0x00000008,
 PRODUCT_SKU_DATA_CENTER = 0x00000010,
 PRODUCT_SKU_DESKTOP_EMBEDDED = 0x00000020,
 PRODUCT_SKU_SERVER_EMBEDDED = 0x00000040,
 PRODUCT_SKU_WEB_SERVER = 0x00000080
 }PRODUCT_SKU_TYPE;

 typedef enum
 {
 FAX_CONFIG_OPTION_ALLOW_PERSONAL_CP = 0x00000000,
 FAX_CONFIG_OPTION_QUEUE_STATE = 0x00000001,
 FAX_CONFIG_OPTION_ALLOWED_RECEIPTS = 0x00000002,
 FAX_CONFIG_OPTION_INCOMING_FAXES_PUBLIC = 0x00000003
 }FAX_ENUM_CONFIG_OPTION;

 typedef struct {

369 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 WORD Hour;
 WORD Minute;
 } FAX_TIME,
 *PFAX_TIME;

 typedef struct {
 DWORD dwSizeOfStruct;
 DWORD dwAllowedReceipts;
 FAX_ENUM_SMTP_AUTH_OPTIONS SMTPAuthOption;
 [string] LPWSTR lpwstrReserved;
 [string] LPWSTR lpwstrSMTPServer;
 DWORD dwSMTPPort;
 [string] LPWSTR lpwstrSMTPFrom;
 [string] LPWSTR lpwstrSMTPUserName;
 [string] LPWSTR lpwstrSMTPPassword;
 BOOL bIsToUseForMSRouteThroughEmailMethod;
 } FAX_RECEIPTS_CONFIGW,
 *PFAX_RECEIPTS_CONFIGW;

 typedef struct {
 DWORD SizeOfStruct;
 DWORD Retries;
 DWORD RetryDelay;
 DWORD DirtyDays;
 BOOL Branding;
 BOOL UseDeviceTsid;
 BOOL ServerCp;
 BOOL PauseServerQueue;
 FAX_TIME StartCheapTime;
 FAX_TIME StopCheapTime;
 BOOL ArchiveOutgoingFaxes;
 [string] LPCWSTR ArchiveDirectory;
 [string] LPCWSTR ProfileName;
 } FAX_CONFIGURATIONW,
 *PFAX_CONFIGURATIONW;

 typedef struct {
 DWORD SizeOfStruct;
 DWORD Priority;
 [string] LPCWSTR Guid;
 [string] LPCWSTR FriendlyName;
 [string] LPCWSTR FunctionName;
 [string] LPCWSTR ExtensionImageName;
 [string] LPCWSTR ExtensionFriendlyName;
 } FAX_GLOBAL_ROUTING_INFOW,
 *PFAX_GLOBAL_ROUTING_INFOW;

 typedef struct {

 DWORD dwSizeOfStruct;
 DWORD dwScheduleAction;
 SYSTEMTIME tmSchedule;
 DWORD dwReceiptDeliveryType;
 [string] LPWSTR lpwstrReceiptDeliveryAddress;
 FAX_ENUM_PRIORITY_TYPE Priority;
 HCALL hCall;
 DWORD_PTR dwReserved[4];
 [string] LPWSTR lpwstrDocumentName;
 DWORD dwPageCount;
 } FAX_JOB_PARAM_EXW,
 *PFAX_JOB_PARAM_EXW,
 *LPCFAX_JOB_PARAM_EXW;

 typedef struct {

 DWORD dwSizeOfStruct;
 [string] LPWSTR lpwstrGroupName;
 [range(0,FAX_MAX_DEVICES_IN_GROUP)]DWORD dwNumDevices;
 [unique, size_is(dwNumDevices)] LPDWORD lpdwDevices;
 FAX_ENUM_GROUP_STATUS Status;

370 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 } RPC_FAX_OUTBOUND_ROUTING_GROUPW,
 *PRPC_FAX_OUTBOUND_ROUTING_GROUPW;

 typedef struct {
 DWORD SizeOfStruct;
 DWORD DeviceId;
 DWORD State;
 DWORD Flags;
 DWORD Rings;
 DWORD Priority;
 [string] LPCWSTR DeviceName;
 [string] LPCWSTR Tsid;
 [string] LPCWSTR Csid;
 } FAX_PORT_INFO,
 *PFAX_PORT_INFO;

 typedef
 [switch_type(int)]
 union {
 [case(0)]
 DWORD dwDeviceId;
 [default]
 [string] LPWSTR lpwstrGroupName;
 } FAX_RULE_DESTINATION;

 typedef enum {
 FAX_RULE_STATUS_VALID = 0x00000000,
 FAX_RULE_STATUS_EMPTY_GROUP = 0x00000001,
 FAX_RULE_STATUS_ALL_GROUP_DEV_NOT_VALID = 0x00000002,
 FAX_RULE_STATUS_SOME_GROUP_DEV_NOT_VALID = 0x00000003,
 FAX_RULE_STATUS_BAD_DEVICE = 0x00000004
 } FAX_ENUM_RULE_STATUS;

 typedef struct {
 DWORD dwSizeOfStruct;
 DWORD dwAreaCode;
 DWORD dwCountryCode;
 [string] LPWSTR lpwstrCountryName;
 [switch_is(bUseGroup)] FAX_RULE_DESTINATION Destination;
 BOOL bUseGroup;
 } RPC_FAX_OUTBOUND_ROUTING_RULEW,
 *RPC_PFAX_OUTBOUND_ROUTING_RULEW;

 typedef struct {
 DWORD dwSizeOfStruct;
 BOOL bValid;
 WORD wMajorVersion;
 WORD wMinorVersion;
 WORD wMajorBuildNumber;
 WORD wMinorBuildNumber;
 DWORD dwFlags;
 } FAX_VERSION,
 *PFAX_VERSION;

 typedef struct {
 DWORD dwSizeOfStruct;
 BOOL bAllowPersonalCP;
 BOOL bUseDeviceTSID;
 DWORD dwRetries;
 DWORD dwRetryDelay;
 FAX_TIME dtDiscountStart;
 FAX_TIME dtDiscountEnd;
 DWORD dwAgeLimit;
 BOOL bBranding;
 } FAX_OUTBOX_CONFIG,
 *PFAX_OUTBOX_CONFIG;

 typedef struct {
 DWORD dwSizeOfStruct;
 BOOL bLogIncoming;

371 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 BOOL bLogOutgoing;
 [string] LPWSTR lpwstrDBPath;
 } FAX_ACTIVITY_LOGGING_CONFIGW,
 *PFAX_ACTIVITY_LOGGING_CONFIGW;

 typedef struct {
 DWORD dwSizeOfStruct;
 DWORD dwDeviceID;
 [string] LPCWSTR lpcwstrDeviceName;
 [string] LPWSTR lpwstrDescription;
 [string] LPCWSTR lpcwstrProviderName;
 [string] LPCWSTR lpcwstrProviderGUID;
 BOOL bSend;
 FAX_ENUM_DEVICE_RECEIVE_MODE ReceiveMode;
 DWORD dwStatus;
 DWORD dwRings;
 [string] LPWSTR lpwstrCsid;
 [string] LPWSTR lpwstrTsid;
 } FAX_PORT_INFO_EXW,
 *PFAX_PORT_INFO_EXW;

 typedef struct {
 DWORD dwSizeOfStruct;
 DWORD dwIncomingMessages;
 DWORD dwRoutingMessages;
 DWORD dwOutgoingMessages;
 DWORD dwDelegatedOutgoingMessages;
 DWORD dwQueuedMessages;
 DWORD dwErrorEvents;
 DWORD dwWarningEvents;
 DWORD dwInformationEvents;
 } FAX_SERVER_ACTIVITY,
 *PFAX_SERVER_ACTIVITY;

 typedef struct {
 [string] LPCWSTR lpcwstrRecipients;
 [string] LPCWSTR lpcwstrSenderName;
 [string] LPCWSTR lpcwstrSenderFaxNumber;
 [string] LPCWSTR lpcwstrSubject;
 BOOL bHasCoverPage;
 } FAX_REASSIGN_INFO,
 *PFAX_REASSIGN_INFO;

 typedef struct {
 DWORD dwValidityMask;
 DWORD dwMsgFlags;
 } FAX_MESSAGE_PROPS,
 *PFAX_MESSAGE_PROPS;

 typedef struct {
 DWORD SizeOfStruct;
 DWORD JobId;
 LPCWSTR UserName;
 DWORD JobType;
 DWORD QueueStatus;
 DWORD Status;
 DWORD Size;
 DWORD PageCount;
 LPCWSTR RecipientNumber;
 LPCWSTR RecipientName;
 LPCWSTR Tsid;
 LPCWSTR SenderName;
 LPCWSTR SenderCompany;
 LPCWSTR SenderDept;
 LPCWSTR BillingCode;
 DWORD ScheduleAction;
 SYSTEMTIME ScheduleTime;
 DWORD DeliveryReportType;
 LPCWSTR DeliveryReportAddress;
 LPCWSTR DocumentName;

372 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 } FAX_JOB_ENTRY,
 *PFAX_JOB_ENTRY;

6.2 Appendix A.2: fax.idl

For ease of implementation, the full IDL is provided as follows, where "ms-faxdatatypes.idl" is the IDL
listed in section 6.1 of this appendix.

 import "ms-fax_faxdatatypes.idl";
 [
 uuid(ea0a3165-4834-11d2-a6f8-00c04fa346cc),
 version(4.0),
 pointer_default(unique)
]

 #define HCALL DWORD
 #define _FAX_RPC_LIMIT_H
 #define FAX_MAX_RPC_BUFFER (1024*1024)
 #define FAX_MAX_RECIPIENTS 10000
 #define RPC_COPY_BUFFER_SIZE 16384

 interface fax

 {

 error_status_t
 FAX_GetServicePrinters(
 [in] handle_t hBinding,
 [out, size_is(,*lpdwBufferSize)] LPBYTE *lpBuffer,
 [out, ref] LPDWORD lpdwBufferSize,
 [out, ref] LPDWORD lpdwPrintersReturned
);

 error_status_t
 FAX_ConnectionRefCount(
 [in] handle_t hBinding,
 [in, out] PRPC_FAX_SVC_HANDLE Handle,
 [in] DWORD Connect,
 [out] LPDWORD CanShare
);

 error_status_t
 FAX_OpenPort(
 [in] handle_t hBinding,
 [in] DWORD DeviceId,
 [in] DWORD Flags,
 [out] PRPC_FAX_PORT_HANDLE FaxPortHandle
);

 error_status_t
 FAX_ClosePort(
 [in,out] PRPC_FAX_PORT_HANDLE FaxPortHandle
);

 error_status_t
 FAX_EnumJobs(
 [in] handle_t hBinding,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD JobsReturned
);

 error_status_t
 FAX_GetJob(
 [in] handle_t hBinding,
 [in] DWORD JobId,

373 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize
);

 error_status_t
 FAX_SetJob(
 [in] handle_t hBinding,
 [in] DWORD JobId,
 [in] DWORD Command
);

 error_status_t
 FAX_GetPageData(
 [in] handle_t hBinding,
 [in] DWORD JobId,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize,
 [in, out] LPDWORD ImageWidth,
 [in, out] LPDWORD ImageHeight
);

 error_status_t
 FAX_GetDeviceStatus(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [out, size_is(,*BufferSize)] LPBYTE*StatusBuffer,
 [out, ref] LPDWORD BufferSize
);

 error_status_t
 FAX_Abort(
 [in] handle_t hBinding,
 [in] DWORD JobId
);

 error_status_t
 FAX_EnumPorts(
 [in] handle_t hBinding,
 [out, size_is(,*BufferSize)] LPBYTE *PortBuffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD PortsReturned
);

 error_status_t
 FAX_GetPort(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [out, size_is(,*BufferSize)] LPBYTE *PortBuffer,
 [out, ref] LPDWORD BufferSize
);

 error_status_t
 FAX_SetPort(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in] const FAX_PORT_INFO *PortInfo
);

 error_status_t
 FAX_EnumRoutingMethods(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [out, size_is(,*RoutingInfoBufferSize)] LPBYTE *RoutingInfoBuffer,
 [out, ref] LPDWORD RoutingInfoBufferSize,
 [out, ref] LPDWORD PortsReturned
);

 error_status_t
 FAX_EnableRoutingMethod(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, string, unique] LPCWSTR RoutingGuid,
 [in] BOOL Enabled
);

374 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 error_status_t
 FAX_GetRoutingInfo(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, string, unique] LPCWSTR RoutingGuid,
 [out, size_is(,*RoutingInfoBufferSize)] LPBYTE *RoutingInfoBuffer,
 [out, ref] LPDWORD RoutingInfoBufferSize
);

 error_status_t
 FAX_SetRoutingInfo(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, string, unique] LPCWSTR RoutingGuid,
 [in, unique, size_is(RoutingInfoBufferSize)] const BYTE *RoutingInfoBuffer,
 [in, range(0,FAX_MAX_RPC_BUFFER)] DWORD RoutingInfoBufferSize
);

 error_status_t
 FAX_EnumGlobalRoutingInfo(
 [in] handle_t hBinding,
 [out, size_is(,*RoutingInfoBufferSize)] LPBYTE *RoutingInfoBuffer,
 [out, ref] LPDWORD RoutingInfoBufferSize,
 [out, ref] LPDWORD MethodsReturned
);

 error_status_t
 FAX_SetGlobalRoutingInfo(
 [in] handle_t hBinding,
 [in] const FAX_GLOBAL_ROUTING_INFOW *RoutingInfo
);

 error_status_t
 FAX_GetConfiguration(
 [in] handle_t hBinding,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize
);

 error_status_t
 FAX_SetConfiguration(
 [in] handle_t hBinding,
 [in] const FAX_CONFIGURATIONW *FaxConfig
);

 error_status_t
 FAX_GetLoggingCategories(
 [in] handle_t hBinding,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD NumberCategories
);

 error_status_t
 FAX_SetLoggingCategories(
 [in] handle_t hBinding,
 [in, unique, size_is(BufferSize)] const LPBYTE Buffer,
 [in, range(0,FAX_MAX_RPC_BUFFER)] DWORD BufferSize,
 [in] DWORD NumberCategories
);

 error_status_t
 FAX_GetSecurity(
 [in] handle_t hBinding,
 [out, size_is(,*lpdwBufferSize)] LPBYTE * pSecurityDescriptor,
 [out, ref] LPDWORD lpdwBufferSize
);

 error_status_t
 FAX_SetSecurity(
 [in] handle_t hBinding,

375 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in] SECURITY_INFORMATION SecurityInformation,
 [in, unique, size_is(dwBufferSize)] const LPBYTE pSecurityDescriptor,
 [in, range(0,FAX_MAX_RPC_BUFFER)] DWORD dwBufferSize
);

 error_status_t
 FAX_AccessCheck(
 [in] handle_t hBinding,
 [in] DWORD AccessMask,
 [out, ref] BOOL* pfAccess,
 [in, out, unique] LPDWORD lpdwRights
);

 error_status_t
 FAX_CheckServerProtSeq(
 [in] handle_t hbinding,
 [in, out, unique] LPDWORD lpdwProtSeq
);

 error_status_t
 FAX_SendDocumentEx
 (
 [in] handle_t hBinding,
 [in, string, unique] LPCWSTR lpcwstrFileName,
 [in] LPCFAX_COVERPAGE_INFO_EXW lpcCoverPageInfo,
 [in] LPBYTE lpcSenderProfile,
 [in, range(0,FAX_MAX_RECIPIENTS)] DWORD dwNumRecipients,
 [in, size_is(dwNumRecipients)] LPBYTE * lpcRecipientList,
 [in] LPCFAX_JOB_PARAM_EXW lpJobParams,
 [in, out, unique] LPDWORD lpdwJobId,
 [out] PDWORDLONG lpdwlMessageId,
 [out, size_is(dwNumRecipients)] PDWORDLONG lpdwlRecipientMessageIds
);

 error_status_t
 FAX_EnumJobsEx(
 [in] handle_t hBinding,
 [in] DWORD dwJobTypes,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD lpdwJobs
);

 error_status_t
 FAX_GetJobEx(
 [in] handle_t hBinding,
 [in] DWORDLONG dwlMessageID,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize
);

 error_status_t
 FAX_GetCountryList(
 [in] handle_t FaxHandle,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize
);

 error_status_t
 FAX_GetPersonalProfileInfo
 (
 [in] handle_t hBinding,
 [in] DWORDLONG dwlMessageId,
 [in] FAX_ENUM_MESSAGE_FOLDER dwFolder,
 [in] FAX_ENUM_PERSONAL_PROF_TYPES ProfType,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize
);

376 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 error_status_t
 FAX_GetQueueStates (
 [in] handle_t hFaxHandle,
 [out] LPDWORD pdwQueueStates
);

 error_status_t
 FAX_SetQueue (
 [in] handle_t hFaxHandle,
 [in] const DWORD dwQueueStates
);

 error_status_t
 FAX_GetReceiptsConfiguration (
 [in] handle_t hFaxHandle,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize
);

 error_status_t
 FAX_SetReceiptsConfiguration (
 [in] handle_t hFaxHandle,
 [in, ref] const PFAX_RECEIPTS_CONFIGW pReceipts
);

 error_status_t
 FAX_GetReceiptsOptions (
 [in] handle_t hFaxHandle,
 [out, ref] LPDWORD lpdwReceiptsOptions
);

 error_status_t
 FAX_GetVersion (
 [in] handle_t hFaxHandle,
 [in, out] PFAX_VERSION pVersion
);

 error_status_t
 FAX_GetOutboxConfiguration (
 [in] handle_t hFaxHandle,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize
);

 error_status_t
 FAX_SetOutboxConfiguration (
 [in] handle_t hFaxHandle,
 [in, ref] const PFAX_OUTBOX_CONFIG pOutboxCfg
);

 error_status_t
 FAX_GetPersonalCoverPagesOption (
 [in] handle_t hFaxHandle,
 [out, ref] LPBOOL lpbPersonalCPAllowed
);

 error_status_t
 FAX_GetArchiveConfiguration (
 [in] handle_t hFaxHandle,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize
);

 error_status_t
 FAX_SetArchiveConfiguration (

377 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in] handle_t hFaxHandle,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder,
 [in, ref] const LPBYTE pArchiveCfg
);

 error_status_t
 FAX_GetActivityLoggingConfiguration (
 [in] handle_t hFaxHandle,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize
);

 error_status_t
 FAX_SetActivityLoggingConfiguration (
 [in] handle_t hFaxHandle,
 [in, ref] const PFAX_ACTIVITY_LOGGING_CONFIGW pActivLogCfg
);

 error_status_t
 FAX_EnumerateProviders (
 [in] handle_t hFaxHandle,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD lpdwNumProviders
);

 error_status_t
 FAX_GetPortEx (
 [in] handle_t hFaxHandle,
 [in] DWORD dwDeviceId,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize
);

 error_status_t
 FAX_SetPortEx (
 [in] handle_t hFaxHandle,
 [in] DWORD dwDeviceId,
 [in, ref] const PFAX_PORT_INFO_EXW pPortInfo
);

 error_status_t
 FAX_EnumPortsEx (
 [in] handle_t hFaxHandle,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD lpdwNumPorts
);

 error_status_t
 FAX_GetExtensionData (
 [in] handle_t hFaxHandle,
 [in] DWORD dwDeviceId,
 [in,string,ref] LPCWSTR lpcwstrNameGUID,
 [out, size_is(,*lpdwDataSize)] LPBYTE *ppData,
 [out, ref] LPDWORD lpdwDataSize
);

 error_status_t
 FAX_SetExtensionData (
 [in] handle_t hFaxHandle,
 [in,string] LPCWSTR lpcwstrComputerName,
 [in] DWORD dwDeviceId,
 [in,string] LPCWSTR lpcwstrNameGUID,
 [in, ref, size_is(dwDataSize)] LPBYTE pData,
 [in,range(0,FAX_MAX_RPC_BUFFER)] DWORD dwDataSize
);

 error_status_t
 FAX_AddOutboundGroup (

378 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in] handle_t hFaxHandle,
 [in, string,ref] LPCWSTR lpwstrGroupName
);

 error_status_t
 FAX_SetOutboundGroup (
 [in] handle_t hFaxHandle,
 [in, ref] PRPC_FAX_OUTBOUND_ROUTING_GROUPW pGroup
);

 error_status_t
 FAX_RemoveOutboundGroup (
 [in] handle_t hFaxHandle,
 [in, string, ref] LPCWSTR lpwstrGroupName
);

 error_status_t
 FAX_EnumOutboundGroups (
 [in] handle_t hFaxHandle,
 [out, size_is(,*lpdwDataSize)] LPBYTE *ppData,
 [out, ref] LPDWORD lpdwDataSize,
 [out, ref] LPDWORD lpdwNumGroups
);

 error_status_t
 FAX_SetDeviceOrderInGroup (
 [in] handle_t hFaxHandle,
 [in, string, ref] LPCWSTR lpwstrGroupName,
 [in] DWORD dwDeviceId,
 [in] DWORD dwNewOrder
);

 error_status_t
 FAX_AddOutboundRule (
 [in] handle_t hFaxHandle,
 [in] DWORD dwAreaCode,
 [in] DWORD dwCountryCode,
 [in] DWORD dwDeviceId,
 [in, string, unique] LPCWSTR lpwstrGroupName,
 [in] BOOL bUseGroup
);

 error_status_t
 FAX_RemoveOutboundRule (
 [in] handle_t hFaxHandle,
 [in] DWORD dwAreaCode,
 [in] DWORD dwCountryCode
);

 error_status_t
 FAX_SetOutboundRule (
 [in] handle_t hFaxHandle,
 [in, ref] RPC_FAX_OUTBOUND_ROUTING_RULEW* pRule
);

 error_status_t
 FAX_EnumOutboundRules (
 [in] handle_t hFaxHandle,
 [out, size_is(,*lpdwDataSize)] LPBYTE *ppData,
 [out, ref] LPDWORD lpdwDataSize,
 [out, ref] LPDWORD lpdwNumRules
);

 error_status_t
 FAX_RegisterServiceProviderEx (
 [in] handle_t hFaxHandle,
 [in,string,ref] LPCWSTR lpcwstrGUID,
 [in,string,ref] LPCWSTR lpcwstrFriendlyName,
 [in,string,ref] LPCWSTR lpcwstrImageName,
 [in,string,ref] LPCWSTR lpcwstrTspName,

379 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in] DWORD dwFSPIVersion,
 [in] DWORD dwCapabilities
);

 error_status_t
 FAX_UnregisterServiceProviderEx (
 [in] handle_t hFaxHandle,
 [in,string,ref] LPCWSTR lpcwstrGUID
);

 error_status_t
 FAX_UnregisterRoutingExtension (
 [in] handle_t hFaxHandle,
 [in,string,ref] LPCWSTR lpcwstrExtensionName
);

 error_status_t
 FAX_StartMessagesEnum (
 [in] handle_t hFaxHandle,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder,
 [out,ref] PRPC_FAX_MSG_ENUM_HANDLE lpHandle
);

 error_status_t
 FAX_EndMessagesEnum (
 [in,out,ref] PRPC_FAX_MSG_ENUM_HANDLE lpHandle
);

 error_status_t
 FAX_EnumMessages(
 [in,ref] RPC_FAX_MSG_ENUM_HANDLE hEnum,
 [in] DWORD dwNumMessages,
 [out, size_is(,*lpdwBufferSize)] LPBYTE *lppBuffer,
 [out, ref] LPDWORD lpdwBufferSize,
 [out, ref] LPDWORD lpdwNumMessagesRetrieved
);

 error_status_t
 FAX_GetMessage (
 [in] handle_t hFaxHandle,
 [in] DWORDLONG dwlMessageId,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder,
 [out, size_is(,*lpdwBufferSize)] LPBYTE *lppBuffer,
 [out, ref] LPDWORD lpdwBufferSize
);

 error_status_t
 FAX_RemoveMessage (
 [in] handle_t hFaxHandle,
 [in] DWORDLONG dwlMessageId,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder
);

 error_status_t
 FAX_StartCopyToServer (
 [in] handle_t hFaxHandle,
 [in,string,ref] LPCWSTR lpcwstrFileExt,
 [in,out,string,ref] LPWSTR lpwstrServerFileName,
 [out,ref] PRPC_FAX_COPY_HANDLE lpHandle
);

 error_status_t
 FAX_StartCopyMessageFromServer (
 [in] handle_t hFaxHandle,
 [in] DWORDLONG dwlMessageId,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder,
 [out,ref] PRPC_FAX_COPY_HANDLE lpHandle
);

380 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 error_status_t
 FAX_WriteFile (
 [in,ref] RPC_FAX_COPY_HANDLE hCopy,
 [in,ref,size_is(dwDataSize)] const LPBYTE lpbData,
 [in, range(0,RPC_COPY_BUFFER_SIZE)] DWORD dwDataSize
);

 error_status_t
 FAX_ReadFile (
 [in,ref] RPC_FAX_COPY_HANDLE hCopy,
 [in] DWORD dwMaxDataSize,
 [out,ref,size_is(*lpdwDataSize)] LPBYTE lpbData,
 [in,out,ref] LPRANGED_DWORD lpdwDataSize
);

 error_status_t
 FAX_EndCopy (
 [in,out,ref] PRPC_FAX_COPY_HANDLE lphCopy
);

 error_status_t
 FAX_StartServerNotification(
 [in] handle_t hBinding,
 [in, string, ref] LPCWSTR lpcwstrMachineName,
 [in, string, ref] LPCWSTR lpcwstrEndPoint,
 [in] ULONG64 Context,
 [in, ref, string] LPCWSTR lpcwstrProtseqString,
 [in] BOOL bEventEx,
 [in] DWORD dwEventTypes,
 [out,ref] PRPC_FAX_EVENT_HANDLE lpHandle
);

 error_status_t
 FAX_StartServerNotificationEx(
 [in] handle_t hBinding,
 [in, string, ref] LPCWSTR lpcwstrMachineName,
 [in, string, ref] LPCWSTR lpcwstrEndPoint,
 [in] ULONG64 Context,
 [in, ref, string] LPCWSTR lpcwstrProtSeq,
 [in] BOOL bEventEx,
 [in] DWORD dwEventTypes,
 [out,ref] PRPC_FAX_EVENT_EX_HANDLE lpHandle
);

 error_status_t
 FAX_EndServerNotification (
 [in,out,ref] PRPC_FAX_EVENT_EX_HANDLE lpHandle
);

 error_status_t
 FAX_GetServerActivity(
 [in] handle_t hFaxHandle,
 [in, out, ref] PFAX_SERVER_ACTIVITY pServerActivity
);

 error_status_t
 FAX_SetConfigWizardUsed (
 [in] handle_t hFaxHandle,
 [in] BOOL bConfigWizardUsed
);

 error_status_t
 FAX_EnumRoutingExtensions (
 [in] handle_t hFaxHandle,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD lpdwNumExts
);

381 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 error_status_t
 FAX_ConnectFaxServer(
 [in] handle_t hBinding,
 [in] DWORD dwClientAPIVersion,
 [out, ref] LPDWORD lpdwServerAPIVersion,
 [out, ref] PRPC_FAX_SVC_HANDLE pHandle
);

 error_status_t
 FAX_GetSecurityEx(
 [in] handle_t hBinding,
 [in] SECURITY_INFORMATION SecurityInformation,
 [out, size_is(,*lpdwBufferSize)] LPBYTE * pSecurityDescriptor,
 [out, ref] LPDWORD lpdwBufferSize
);

 error_status_t
 FAX_RefreshArchive(
 [in] handle_t hFaxHandle,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder
);

 error_status_t
 FAX_SetRecipientsLimit(
 [in] handle_t hbinding,
 [in] DWORD dwRecipientsLimit
);

 error_status_t
 FAX_GetRecipientsLimit(
 [in] handle_t hbinding,
 [out, ref] LPDWORD lpdwRecipientsLimit
);

 error_status_t
 FAX_GetServerSKU(
 [in] handle_t hbinding,
 [out, ref] PRODUCT_SKU_TYPE* pServerSKU
);

 error_status_t
 FAX_CheckValidFaxFolder(
 [in] handle_t hBinding,
 [in, string, ref] LPCWSTR lpcwstrPath
);

 error_status_t
 FAX_GetJobEx2(
 [in] handle_t hBinding,
 [in] DWORDLONG dwlMessageID,
 [in] DWORD level,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize
);

 error_status_t
 FAX_EnumJobsEx2(
 [in] handle_t hBinding,
 [in] BOOL fAllAccounts,
 [in, string, unique] LPCWSTR lpcwstrAccountName,
 [in] DWORD dwJobTypes,
 [in] DWORD level,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD lpdwJobs
);

 error_status_t
 FAX_GetMessageEx (
 [in] handle_t hFaxHandle,

382 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in] DWORDLONG dwlMessageId,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder,
 [in] DWORD level,
 [out, size_is(,*lpdwBufferSize)] LPBYTE *lppBuffer,
 [out, ref] LPDWORD lpdwBufferSize
);

 error_status_t
 FAX_StartMessagesEnumEx (
 [in] handle_t hFaxHandle,
 [in] BOOL fAllAccounts,
 [in, string, unique] LPCWSTR lpcwstrAccountName,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder,
 [in] DWORD level,
 [out,ref] PRPC_FAX_MSG_ENUM_HANDLE lpHandle
);

 error_status_t
 FAX_EnumMessagesEx(
 [in,ref] RPC_FAX_MSG_ENUM_HANDLE hEnum,
 [in] DWORD dwNumMessages,
 [out, size_is(,*lpdwBufferSize)] LPBYTE *lppBuffer,
 [out, ref] LPDWORD lpdwBufferSize,
 [out, ref] LPDWORD lpdwNumMessagesRetrieved,
 [out, ref] LPDWORD lpdwLevel
);

 error_status_t
 FAX_StartServerNotificationEx2(
 [in] handle_t hBinding,
 [in, string, unique] LPCWSTR lpcwstrAccountName,
 [in, string, ref] LPCWSTR lpcwstrMachineName,
 [in, string, ref] LPCWSTR lpcwstrEndPoint,
 [in] ULONG64 Context,
 [in, ref, string] LPCWSTR lpcwstrProtseqString,
 [in] DWORD dwEventTypes,
 [in] DWORD level,
 [out,ref] PRPC_FAX_EVENT_EX_HANDLE lpHandle
);

 error_status_t
 FAX_CreateAccount(
 [in] handle_t hBinding,
 [in] DWORD level,
 [in, ref, size_is(BufferSize)] const LPBYTE Buffer,
 [in,range(0,FAX_MAX_RPC_BUFFER)] DWORD BufferSize
);

 error_status_t
 FAX_DeleteAccount(
 [in] handle_t hBinding,
 [in, string, unique] LPCWSTR lpcwstrAccountName
);

 error_status_t
 FAX_EnumAccounts(
 [in] handle_t hBinding,
 [in] DWORD level,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize,
 [out, ref] LPDWORD lpdwAccounts
);

 error_status_t
 FAX_GetAccountInfo(
 [in] handle_t hBinding,
 [in, string, unique] LPCWSTR lpcwstrAccountName,
 [in] DWORD level,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize

383 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

);

 error_status_t
 FAX_GetGeneralConfiguration(
 [in] handle_t hBinding,
 [in] DWORD level,
 [out, size_is(,*BufferSize)] LPBYTE *Buffer,
 [out, ref] LPDWORD BufferSize
);

 error_status_t
 FAX_SetGeneralConfiguration(
 [in] handle_t hBinding,
 [in] DWORD level,
 [in, ref, size_is(BufferSize)] const LPBYTE Buffer,
 [in,range(0,FAX_MAX_RPC_BUFFER)] DWORD BufferSize
);

 error_status_t
 FAX_GetSecurityEx2(
 [in] handle_t hBinding,
 [in] SECURITY_INFORMATION SecurityInformation,
 [out, size_is(,*lpdwBufferSize)] LPBYTE * pSecurityDescriptor,
 [out, ref] LPDWORD lpdwBufferSize
);

 error_status_t
 FAX_SetSecurityEx2(
 [in] handle_t hBinding,
 [in] SECURITY_INFORMATION SecurityInformation,
 [in, unique, size_is(dwBufferSize)] const LPBYTE pSecurityDescriptor,
 [in, range(0,FAX_MAX_RPC_BUFFER)] DWORD dwBufferSize
);

 error_status_t
 FAX_AccessCheckEx2(
 [in] handle_t hBinding,
 [in] DWORD AccessMask,
 [out, ref] BOOL* pfAccess,
 [in, out, unique] LPDWORD lpdwRights
);

 error_status_t
 FAX_ReAssignMessage(
 [in] handle_t hBinding,
 [in] DWORDLONG dwlMessageId,
 [in, ref] PFAX_REASSIGN_INFO pReAssignInfo
);

 error_status_t
 FAX_SetMessage(
 [in] handle_t hFaxHandle,
 [in] DWORDLONG dwlMessageId,
 [in] FAX_ENUM_MESSAGE_FOLDER Folder,
 [in, ref] PFAX_MESSAGE_PROPS lpMessageProps
);

 error_status_t
 FAX_GetConfigOption(
 [in] handle_t hFaxHandle,
 [in] FAX_ENUM_CONFIG_OPTION option,
 [out] LPDWORD lpdwValue);

 }

384 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

6.3 Appendix A.3: faxobs.idl

For ease of implementation, the full IDL for the FaxObs Server Interface is provided as follows, where
"ms-faxdatatypes.idl" is the IDL listed in section 6.1 of this appendix.

 import "ms-fax_faxdatatypes.idl";

 [
 uuid(ea0a3165-4834-11d2-a6f8-00c04fa346cc),
 version(4.0),
 pointer_default(unique)
]

 interface faxobs

 {

 error_status_t
 FaxObs_ConnectionRefCount(
 [in] handle_t hBinding,
 [in, out] PRPC_FAX_SVC_HANDLE Handle,
 [in] DWORD Connect,
 [out] LPDWORD CanShare
);

 error_status_t
 FaxObs_GetVersion(
 [in] handle_t hBinding,
 [out] LPDWORD Version
);

 error_status_t
 FaxObs_GetInstallType(
 [in] handle_t hBinding,
 [out] LPDWORD InstallType,
 [out] LPDWORD InstalledPlatforms,
 [out] LPDWORD ProductType
);

 error_status_t
 FaxObs_OpenPort(
 [in] handle_t hBinding,
 [in] DWORD DeviceId,
 [in] DWORD Flags,
 [out] PRPC_FAX_PORT_HANDLE FaxPortHandle
);

 error_status_t
 FaxObs_ClosePort(
 [in,out] PRPC_FAX_PORT_HANDLE FaxPortHandle
);

 error_status_t
 FaxObs_SendDocument(
 [in] handle_t hBinding,
 [in, string, unique] LPCWSTR FileName,
 [in] const FAX_JOB_PARAMW *JobParams,
 [out] LPDWORD FaxJobId
);

 error_status_t
 FaxObs_GetQueueFileName(
 [in] handle_t hBinding,
 [in, out, unique, size_is(FileNameSize)] LPWSTR FileName,
 [in] DWORD FileNameSize
);

 error_status_t

385 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 FaxObs_EnumJobs(
 [in] handle_t hBinding,
 [in, out, unique, size_is(,*BufferSize)] LPBYTE *Buffer,
 [in,out] LPDWORD BufferSize,
 [out] LPDWORD JobsReturned
);

 error_status_t
 FaxObs_GetJob(
 [in] handle_t hBinding,
 [in] DWORD JobId,
 [in, out, unique, size_is(,*BufferSize)] LPBYTE *Buffer,
 [in,out] LPDWORD BufferSize
);

 error_status_t
 FaxObs_SetJob(
 [in] handle_t hBinding,
 [in] DWORD JobId,
 [in] DWORD Command,
 [in] const FAX_JOB_ENTRY *JobEntry
);

 error_status_t
 FaxObs_GetPageData(
 [in] handle_t hBinding,
 [in] DWORD JobId,
 [in, out, unique, size_is(,*BufferSize)] LPBYTE *Buffer,
 [in,out] LPDWORD BufferSize,
 [in,out] LPDWORD ImageWidth,
 [in,out] LPDWORD ImageHeight
);

 error_status_t
 FaxObs_GetDeviceStatus(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, out, unique, size_is(,*BufferSize)] LPBYTE*StatusBuffer,
 [in,out] LPDWORD BufferSize
);

 error_status_t
 FaxObs_Abort(
 [in] handle_t hBinding,
 [in] DWORD JobId
);

 error_status_t
 FaxObs_EnumPorts(
 [in] handle_t hBinding,
 [in, out, unique, size_is(,*BufferSize)] LPBYTE *PortBuffer,
 [in,out] LPDWORD BufferSize,
 [out] LPDWORD PortsReturned
);

 error_status_t
 FaxObs_GetPort(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, out, unique, size_is(,*BufferSize)] LPBYTE *PortBuffer,
 [in,out] LPDWORD BufferSize
);

 error_status_t
 FaxObs_SetPort(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in] const FAX_PORT_INFO *PortInfo
);

 error_status_t
 FaxObs_EnumRoutingMethods(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,

386 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in, out, unique, size_is(,*RoutingInfoBufferSize)] LPBYTE *RoutingInfoBuffer,
 [in,out] LPDWORD RoutingInfoBufferSize,
 [out] LPDWORD PortsReturned
);

 error_status_t
 FaxObs_EnableRoutingMethod(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, string, unique] LPCWSTR RoutingGuid,
 [in] BOOL Enabled
);

 error_status_t
 FaxObs_GetRoutingInfo(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, string, unique] LPCWSTR RoutingGuid,
 [in, out, unique, size_is(,*RoutingInfoBufferSize)] LPBYTE *RoutingInfoBuffer,
 [in,out] LPDWORD RoutingInfoBufferSize
);

 error_status_t
 FaxObs_SetRoutingInfo(
 [in] RPC_FAX_PORT_HANDLE FaxPortHandle,
 [in, string, unique] LPCWSTR RoutingGuid,
 [in, unique, size_is(RoutingInfoBufferSize)] const BYTE *RoutingInfoBuffer,
 [in] DWORD RoutingInfoBufferSize
);

 error_status_t
 FaxObs_EnumGlobalRoutingInfo(
 [in] handle_t hBinding,
 [in, out, unique, size_is(,*RoutingInfoBufferSize)] LPBYTE *RoutingInfoBuffer,
 [in,out] LPDWORD RoutingInfoBufferSize,
 [out] LPDWORD MethodsReturned
);

 error_status_t
 FaxObs_SetGlobalRoutingInfo(
 [in] handle_t hBinding,
 [in] const FAX_GLOBAL_ROUTING_INFOW *RoutingInfo
);

 error_status_t
 FaxObs_GetConfiguration(
 [in] handle_t hBinding,
 [in, out, unique, size_is(,*BufferSize)] LPBYTE *Buffer,
 [in,out] LPDWORD BufferSize
);

 error_status_t
 FaxObs_SetConfiguration(
 [in] handle_t hBinding,
 [in] const FAX_CONFIGURATIONW *FaxConfig
);

 error_status_t
 FaxObs_GetLoggingCategories(
 [in] handle_t hBinding,
 [in, out, unique, size_is(,*BufferSize)] LPBYTE *Buffer,
 [in,out] LPDWORD BufferSize,
 [in,out] LPDWORD NumberCategories
);

 error_status_t
 FaxObs_SetLoggingCategories(
 [in] handle_t hBinding,
 [in, unique, size_is(BufferSize)] const LPBYTE Buffer,
 [in] DWORD BufferSize,
 [in] DWORD NumberCategories
);

387 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 error_status_t
 FaxObs_GetTapiLocations(
 [in] handle_t hBinding,
 [in, out, unique, size_is(,*BufferSize)] LPBYTE *Buffer,
 [in,out] LPDWORD BufferSize
);

 error_status_t
 FaxObs_SetTapiLocations(
 [in] handle_t hBinding,
 [in, unique, size_is(BufferSize)] LPBYTE Buffer,
 [in] DWORD BufferSize
);

 error_status_t
 FaxObs_GetMapiProfiles(
 [in] handle_t hBinding,
 [in, out, unique, size_is(,*BufferSize)] LPBYTE *MapiProfiles,
 [in,out] LPDWORD BufferSize
);

 error_status_t
 FaxObs_StartClientServer(
 [in] handle_t hBinding,
 [in, string, unique] LPCWSTR MachineName,
 [in, string, unique] LPCWSTR ClientName,
 [in] ULONG64 Context
);

 void Opnum30NotUsedOnWire(void);

 error_status_t
 FaxObs_GetSecurityDescriptor(
 [in] handle_t hBinding,
 [in] DWORD Id,
 [in, out, unique, size_is(,*BufferSize)] LPBYTE * FaxSecurityDescriptor,
 [in, out] LPDWORD BufferSize
);

 error_status_t
 FaxObs_SetSecurityDescriptor(
 [in] handle_t hBinding,
 [in, unique, size_is(BufferSize)] const LPBYTE FaxSecurityDescriptor,
 [in] DWORD BufferSize
);

 error_status_t
 FaxObs_GetSecurityDescriptorCount(
 [in] handle_t hBinding,
 [out] LPDWORD Count
);

 error_status_t
 FaxObs_AccessCheck(
 [in] handle_t hBinding,
 [in] DWORD AccessMask,
 [out] LPDWORD fAccess
);

 }

6.4 Appendix A.4: faxclient.idl

For ease of implementation, the full IDL for the Fax Client Interface is provided as follows, where "ms-
dtyp.idl" is the IDL found in [MS-DTYP] Appendix A.

388 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 import "ms-dtyp.idl";
 import "ms-fax_faxdatatypes.idl";

 typedef struct {
 DWORD SizeOfStruct;
 FILETIME TimeStamp;
 DWORD DeviceId;
 DWORD EventId;
 DWORD JobId;
 } FAX_EVENT,
 *PFAX_EVENT;

 [
 uuid(6099fc12-3eff-11d0-abd0-00c04fd91a4e),
 version(3.0),
 pointer_default(unique)
]

 interface faxclient
 {
 error_status_t
 FAX_OpenConnection(
 [in] handle_t hBinding,
 [in] unsigned __int64 Context,
 [out] PRPC_FAX_HANDLE FaxHandle
);

 error_status_t
 FAX_ClientEventQueue(
 [in] RPC_FAX_HANDLE FaxPortHandle,
 [in] FAX_EVENT FaxEvent
);

 error_status_t
 FAX_CloseConnection(
 [in,out] PRPC_FAX_HANDLE FaxHandle
);

 error_status_t
 FAX_ClientEventQueueEx(
 [in, ref] RPC_FAX_HANDLE hClientContext,
 [in, ref, size_is(dwDataSize)] const LPBYTE lpbData,
 [in] DWORD dwDataSize
);
 }

389 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packsupdates to those products.

▪ Microsoft BackOffice Server 2000

▪ Microsoft Small Business Server 2000

▪ Windows Small Business Server 2003 (Windows SBS) server software

▪ Windows Home Server server software

▪ Windows NT operating system

▪ Windows 2000 operating system

▪ Windows XP operating system

▪ Windows Server 2003 operating system

▪ Windows Vista operating system

▪ Windows Server 2008 operating system

▪ Windows 7 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows Home Server 2011 server software

▪ Windows 8 operating system

▪ Windows Server 2012 operating system

▪ Windows 8.1 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows 10 operating system

▪ Windows Server 2016 operating system

▪ Windows Server operating system

Exceptions, if any, are noted below.in this section. If a an update version, service pack or Quick Fix
Engineering (QFEKnowledge Base (KB) number appears with thea product version,name, the behavior
changed in that service pack or QFE.update. The new behavior also applies to subsequent service

packs of the productupdates unless otherwise specified. If a product edition appears with the product
version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.1: In Windows, the fax client opens the underlying RPC over SMB transport for
communication with the fax server before calling FAX_ConnectFaxServer (section 3.1.4.1.10) or
FAX_ConnectionRefCount (section 3.1.4.1.11) with a Connect argument of Connect (0x00000001) to
connect with the fax server. The fax client closes the transport if the call made to connect to the fax
server fails; otherwise, the fax client closes the transport after calling

390 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FAX_ConnectionRefCount (section 3.1.4.1.11) with a Connect argument of Disconnect
(0x00000000) to disconnect from the fax server.

The fax server opens the underlying RPC over SMB transport for communication with the fax client
acting as an RPC server when the fax server executes

FAX_StartServerNotification (section 3.1.4.1.100),
FAX_StartServerNotificationEx (section 3.1.4.1.101), or
FAX_StartServerNotificationEx2 (section 3.1.4.1.102) to connect to the fax client, before calling
FAX_OpenConnection (section 3.2.4.5). The fax server closes the transport if the method call made to
connect to the fax client fails; otherwise, the fax server closes the transport when the fax server
executes FAX_EndServerNotification (section 3.1.4.1.17) to disconnect from the fax client, after calling
FAX_CloseConnection (section 3.2.4.4).

<2> Section 2.2.6: The JT_BROADCAST (0x00000020) job type is not defined or used in Windows NT,
Windows 2000, BackOffice Server 2000, and Small Business Server 2000.

<3> Section 2.2.10: In Windows, this field is not used and is set to zero. The device status is
indicated by the Status field.

<4> Section 2.2.11: On Windows, the log entries are events written to the Windows event log using
the ReportEvent function described in [MSDN-REPEV]. Each logging category configured through the

Category field of the FAX_LOG_CATEGORY structure is passed as the wCategory parameter to the
respective ReportEvent function call.

<5> Section 2.2.25: On Windows, the full paths to the activity logging files are
[lpwstrDBPath]\InboxLOG.txt for the incoming activity and [lpwstrDBPath]\OutboxLOG.txt for the
outgoing activity, where [lpwstrDBPath] is the directory name indicated by the lpwstrDBPath field of
the FAX_ACTIVITY_LOGGING_CONFIGW structure

<6> Section 2.2.28: On Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2

operating system, Windows Home Server 2011, Windows 8, Windows Server 2012, Windows 8.1,
Windows Server 2012 R2, Windows 10, and Windows Server 2016, the<6> Section 2.2.28: The fax
server implementation of the FAX_SetConfiguration (section 3.1.4.1.76) method ignores the value of
the ArchiveOutgoingFaxes field of the FAX_CONFIGURATIONW (section 2.2.28) structure. This

feature is not supported on the following versions of Windows: BackOffice Server 2000, Small
Business Server 2000, Windows SBS 2003, Windows Home Server, Windows NT, Windows 2000,
Windows XP, or Windows Server 2003.

<7> Section 2.2.28: On Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2,
Windows Home Server 2011, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012
R2, Windows 10, and Windows Server 2016, the<7> Section 2.2.28: The fax server implementation of
the FAX_SetConfiguration (section 3.1.4.1.76) method ignores the value of the
ArchiveDirectoryOffset field of the FAX_CONFIGURATIONW (section 2.2.28) structure. This feature
is not supported on the following versions of Windows: BackOffice Server 2000, Small Business Server

2000, Windows SBS 2003, Windows Home Server, Windows NT, Windows 2000, Windows XP, or
Windows Server 2003.

<8> Section 2.2.29: On Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2,
Windows Home Server 2011, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012
R2, , Windows 10, and Windows Server 2016 the<8> Section 2.2.29: The fax server implementation

of the FAX_GetConfiguration (section 3.1.4.1.36) method always sets to zero the value of the
ArchiveDirectoryOffset field of the _FAX_CONFIGURATIONW (section 2.2.29) structure's

Fixed_Portion block. This feature is not supported on the following versions of Windows: BackOffice
Server 2000, Small Business Server 2000, Windows SBS 2003, Windows Home Server, Windows NT,
Windows 2000, Windows XP, or Windows Server 2003.

<9> Section 2.2.30: In Windows, this parameter holds the path to the FSP DLL.

<10> Section 2.2.36: The JT_BROADCAST (0x00000020) job type is not defined or used in Windows
NT, Windows 2000, BackOffice Server 2000, and Small Business Server 2000.

391 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<11> Section 2.2.49: In Windows, this is version information of the fax routing extension's binary.

<12> Section 2.2.52: The FAX_ERR_SRV_OUTOFMEMORY fax-specific error code uses the same

numeric value as the standard Windows error code ERROR_CTX_WINSTATION_NAME_INVALID
defined in [MS-ERREF] section 2.2.

<13> Section 2.2.52: The FAX_ERR_GROUP_NOT_FOUND fax-specific error code uses the same
numeric value as the standard Windows error code ERROR_CTX_INVALID_PD defined in [MS-ERREF]
section 2.2.

<14> Section 2.2.52: The FAX_ERR_BAD_GROUP_CONFIGURATION fax-specific error code uses the
same numeric value as the standard Windows error code ERROR_CTX_PD_NOT_FOUND defined in
[MS-ERREF] section 2.2.

<15> Section 2.2.52: The FAX_ERR_GROUP_IN_USE fax-specific error code uses the same numeric

value as the standard Windows error code ERROR_CTX_WD_NOT_FOUND defined in [MS-ERREF]
section 2.2.

<16> Section 2.2.52: The FAX_ERR_RULE_NOT_FOUND fax-specific error code uses the same

numeric value as the standard Windows error code ERROR_CTX_CANNOT_MAKE_EVENTLOG_ENTRY
defined in [MS-ERREF] section 2.2.

<17> Section 2.2.52: The FAX_ERR_DIRECTORY_IN_USE fax-specific error code uses the same

numeric value as the standard Windows error code ERROR_CTX_CLOSE_PENDING defined in [MS-
ERREF] section 2.2.

<18> Section 2.2.52: The FAX_ERR_FILE_ACCESS_DENIED fax-specific error code uses the same
numeric value as the standard Windows error code ERROR_CTX_NO_OUTBUF defined in [MS-ERREF]
section 2.2.

<19> Section 2.2.52: The FAX_ERR_MESSAGE_NOT_FOUND fax-specific error code uses the same
numeric value as the standard Windows error code ERROR_CTX_MODEM_INF_NOT_FOUND defined in

[MS-ERREF] section 2.2.

<20> Section 2.2.52: The FAX_ERR_DEVICE_NUM_LIMIT_EXCEEDED fax-specific error code uses the

same numeric value as the standard Windows error code ERROR_CTX_INVALID_MODEMNAME defined
in [MS-ERREF] section 2.2.

<21> Section 2.2.52: The FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU fax-specific error code uses the
same numeric value as the standard Windows error code ERROR_CTX_MODEM_RESPONSE_ERROR
defined in [MS-ERREF] section 2.2.

Windows implementations of the fax service check local configuration data, including policy
information and operating system information, to determine whether the service is running on a client
operating system or a server operating system. Windows client operating systems, including Windows
NT, Windows XP, Windows Vista, Windows 7, Windows 8, Windows 8.1, Windows Server 2012 R2,
Windows 10, and Windows Server 2016, returnThe Windows Client operating system returns an error
upon receipt of the following method calls:

▪ FAX_AddOutboundGroup (section 3.1.4.1.5)

▪ FAX_AddOutboundRule (section 3.1.4.1.6)

▪ FAX_EnumOutboundGroups (section 3.1.4.1.26)

▪ FAX_EnumOutboundRules (section 3.1.4.1.27)

▪ FAX_RemoveOutboundRule (section 3.1.4.1.72)

▪ FAX_SendDocumentEx (section 3.1.4.1.73)

392 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ FAX_SetDeviceOrderInGroup (section 3.1.4.1.78)

▪ FAX_SetOutboundGroup (section 3.1.4.1.85)

▪ FAX_SetOutboundRule (section 3.1.4.1.86)

▪ FAX_SetReceiptsConfiguration (section 3.1.4.1.91)

The server returns ERROR_INVALID_PARAMETER to FAX_API_VERSION_0 to clients. The server
returns FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU to clients running other protocol versions.

<22> Section 2.2.52: The FAX_ERR_VERSION_MISMATCH fax-specific error code uses the same
numeric value as the standard Windows error code ERROR_CTX_MODEM_RESPONSE_TIMEOUT
defined in [MS-ERREF] section 2.2.

<23> Section 2.2.52: The FAX_ERR_RECIPIENTS_LIMIT fax-specific error code uses the same
numeric value as the standard Windows error code ERROR_CTX_MODEM_RESPONSE_NO_CARRIER

defined in [MS-ERREF] section 2.2.

<24> Section 2.2.57: In Windows, this indicates that an error was encountered while dynamically
linking to one of the provider's DLL mandatory export functions.

<25> Section 2.2.63: The FAX_ENUM_EVENT_TYPE enumeration is not defined or used in Windows
NT, Windows 2000, BackOffice Server 2000, or Small Business Server 2000.

<26> Section 2.2.63: FAX_EVENT_TYPE_LEGACY is not supported only on the following versions of

Windows: BackOffice Server 2000, Small Business Server 2000, Windows SBS 2003, Windows Vista,
WindowsHome Server 2008, Windows 7NT, Windows Server 2008 R2, Windows Home Server 2011,
Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 102000, and
Windows Server 2016XP.

<27> Section 2.2.63: FAX_EVENT_TYPE_LOCAL_ONLY is only supported in Windows XP.

<28> Section 2.2.75: For Windows, the operating system SKU versions are identified as follows:

▪ PRODUCT_SKU_UNKNOWN: SKU of theThe operating system is unknown.

▪ PRODUCT_SKU_PERSONAL: SKU of the operating system is Windows XP Home Edition operating
system.

▪ PRODUCT_SKU_PROFESSIONAL: SKU of the operating system is Windows XP Professional
operating system.

▪ PRODUCT_SKU_SERVER: SKU of the operating system is Windows Server 2003 Standard Edition
operating system.

▪ PRODUCT_SKU_ADVANCED_SERVER: SKU of the operating system is Windows Server 2003

Advanced Edition.

▪ PRODUCT_SKU_DATA_CENTER: SKU of the operating system is Windows Server 2003 Datacenter
Edition operating system.

▪ PRODUCT_SKU_DESKTOP_EMBEDDED: SKU of the operating system is Windows XP Embedded
Edition.

▪ PRODUCT_SKU_SERVER_EMBEDDED: SKU of the operating system is Windows Server 2003

Embedded Edition.

▪ PRODUCT_SKU_WEB_SERVER: SKU of the operating system is Windows Server 2003 Web Edition
operating system

393 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<29> Section 2.2.76: DRT_MSGBOX is available on BackOffice Server 2000, Small Business Server
2000, Windows XP, Windows Server 2003, Windows Home Server, and Windows SBS 2003.

<30> Section 2.2.85: On Windows, FAX_API_VERSION_0 (0x00000000) is the fax API version used
for Windows NT, Windows 2000, BackOffice Server 2000, and Small Business Server 2000, and

BackOffice Server 2000. FAX_API_VERSION_1 (0x00010000) is used for Windows XP.
FAX_API_VERSION_2 (0x00020000) is used for Windows Server 2003, Windows Home Server, and
Windows SBS 2003. FAX_API_VERSION_3 (0x00030000) is used for Windows Vista, Windows Server
2008, Windows 7, Windows Server 2008 R2, Windows Home Server 2011, Windows 8, Windows
Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 2016all other
implementations of Windows.

<31> Section 2.2.87: For more information about the registration of routing extensions on Windows,

see [MSDN-FRE].

<32> Section 3.1.1: In Windows, the fax server initializes the "archive age limit"Archive Age Limit
setting to a value of 0 (disabled) and saves the setting to Registry as a REG_DWORD value at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\ArchiveAgeLimit.

<33> Section 3.1.1: In Windows NT 4.0 operating system, the archive enabledArchive Enabled
setting is disabled by default.

<34> Section 3.1.1: In Windows, the fax server initializes the "archive enabled setting" to a value of 1
(enabled) and saves the setting to Registry as a REG_DWORD value at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\UseArchive.

<35> Section 3.1.1: In Windows, the fax server initializes the "automatic account creation" setting to
a value of 1 (enabled) and saves the setting to Registry as a REG_DWORD value at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\AutoCreateAccountOnConnect.

<36> Section 3.1.1: In Windows, the fax server initializes the "branding" setting to a value of 1

(enabled) and saves the setting to Registry as a REG_DWORD value at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\Branding.

<37> Section 3.1.1: In Windows, the configuration of the routing rules is initialized to one rule for the
group name "<All devices>" and is saved in Registry under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\Outbound Routing\Rules\.

<38> Section 3.1.1: In Windows, the configuration of the "delivery receipt support" setting is saved in
Registry under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\Receipts\.

<39> Section 3.1.1: In Windows, the fax server ignores the "dirty days" setting and uses instead, for
the same purpose, the "queue age limit" setting.

<40> Section 3.1.1: In Windows, the default location of the Fax Archive Folder is at
%CSIDL_COMMON_APPDATA%\Microsoft\Windows NT\MSFax\, containing a subfolder named Inbox
for the Incoming Archive and another subfolder named SentItems for the Outgoing Archive, where
%CSIDL_COMMON_APPDATA% refers to the special Windows folder identified by

CSIDL_COMMON_APPDATA described in [MSDN-CSIDL].

<41> Section 3.1.1: In Windows, the fax server is initialized by default without any fax ports. When
one or more fax ports are added, the fax server saves the fax port configuration in Registry under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\{F10A5326-0261-4715-B367-2970427BBD99}\.

<42> Section 3.1.1: In Windows, a fax print queue is locally installed on the client computer with
the Microsoft Fax printer driver. The fax client prints to the local Microsoft Fax printer driver using the
FaxStartPrintJob and FaxPrintCoverPage Fax Client API methods (for more information, see

[MSDN-FSCAR]) to a local TIFF file, or the client uses for the same purpose the Print Client API
methods (for more information, see [MSDN-PRNAPI]) such as OpenPrinter, ClosePrinter, or

394 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

StartDoc to print to the Microsoft Fax printer driver as the client would print to any generic printer
device.

<43> Section 3.1.1: In Windows, the configuration of the fax routing extensions and the fax routing
methods is initialized to the default Microsoft Routing Extension containing the default routing

methods listed in section 2.2.87, and is saved in Registry under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\Routing Extensions\.

<44> Section 3.1.1: In Windows, the configuration of the fax routing extensions and the fax routing
methods is initialized to the default Microsoft Routing Extension containing the default routing
methods listed in section 2.2.87 and is saved in Registry under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\Routing Extensions\.

<45> Section 3.1.1: In Windows, the fax server initializes the "fax transmission retries" setting to a

value of 3 and saves the setting to Registry as a REG_DWORD value at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\Retries.

<46> Section 3.1.1: In Windows, the fax server initializes the "fax transmission retry delay" to a

value of 10 (minutes) and saves the setting to Registry as a REG_DWORD value at
HKEY_LOCAL_MACHINE\ SOFTWARE\ Microsoft\Fax\Retry Delay.

<47> Section 3.1.1: In Windows, when the fax server role is installed, the user is asked to select and

confirm which of the user accounts currently available on the server are to be given fax permissions
along with the local administrator account, which is selected by default; once a selection is made, the
fax server creates new fax user accounts for these user accounts, using the default fax access rights
described in section 3.1.4.1.12.

<48> Section 3.1.1: In Windows, the fax server initializes the "incoming fax viewing permission"
setting to a value of 1 (enabled) and saves the setting to Registry as a REG_DWORD value at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\IncomingFaxesArePublic.

<49> Section 3.1.1: The JT_BROADCAST (0x00000020) job type is not defined or used in Windows
NT, Windows 2000, BackOffice Server 2000, and Small Business Server 2000.

<50> Section 3.1.1: In Windows, the fax server initializes the "personal cover page support" setting
to a value of 1 (enabled) and saves the setting to Registry as a REG_DWORD value at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\AllowPersonalCoverPages.

<51> Section 3.1.1: In Windows, the fax server initializes the "profile name" setting to an empty
character string value (meaning that no MAPI profile is currently selected) and saves the setting to

Registry as a REG_SZ value at HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\Routing\Profile
Name.

<52> Section 3.1.1: In Windows, the fax server initializes the "queue age limit" setting to a value of 0
(disabled) and saves the setting to Registry as a REG_DWORD value at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\QueueAgeLimit.

<53> Section 3.1.1: In Windows, the fax server initializes the "Queue State" setting to a value of

0x00000000 (both the incoming and outgoing queues are unblocked) and persists the setting in
Registry as a REG_DWORD value at HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\QueueState.

<54> Section 3.1.1: In Windows, the routing group configuration is initialized to the default "<All
devices>" group and is saved in Registry under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\Outbound Routing\Groups\.

<55> Section 3.1.1: In Windows, the fax server implementation does not support routing strings.

<56> Section 3.1.1: In Windows, the Incoming Queue and the Outgoing Queue are both stored

under the same server queue directory, and the location of the server queue directory is at %
CSIDL_COMMON_APPDATA%\Microsoft\Windows NT\MSFax\Queue\, where

395 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

%CSIDL_COMMON_APPDATA% refers to the special Windows folder identified by
CSIDL_COMMON_APPDATA described in [MSDN-CSIDL].

<57> Section 3.1.1: In Windows, the fax server initializes the "size quota high watermark" setting to
a value of 0 (disabled) and saves the setting to Registry as a REG_DWORD value at

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\HighWatermark.

<58> Section 3.1.1: In Windows, the fax server initializes the "size quota low watermark" setting to a
value of 0 (disabled) and saves the setting to Registry as a REG_DWORD value at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\LowWatermark.

<59> Section 3.1.1: In Windows, the fax server initializes the "size quota warning" setting to a value
of 0 (disabled) and saves the setting to Registry as a REG_DWORD value at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\SizeQuotaWarn.

<60> Section 3.1.1: In Windows, the fax server initializes the "start cheap time" setting to a value of
zero hours, zero minutes and saves the setting to Registry as a REG_DWORD value at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\StartCheapTime.

<61> Section 3.1.1: In Windows, the fax server initializes the "stop cheap time" setting to a value of
zero hours, zero minutes and saves the setting to Registry as a REG_DWORD value at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\StopCheapTime.

<62> Section 3.1.1: In Windows, the fax server initializes the "use device's TSID" setting to a value of
1 (enabled) and saves the setting to Registry as a REG_DWORD value at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fax\UseDeviceTsid.

<63> Section 3.1.4.1: Opnums reserved for local use apply to Windows as follows.

opnum Description

79 Only used locally by Windows; never used remotely on the wire.

<64> Section 3.1.4.1.1: In Windows, the maximum size of each part (chunk) copied in one single
FAX_WriteFile or FAX_ReadFile method call is 16,384 bytes.

<65> Section 3.1.4.1.3: On Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008

R2, Windows Home Server 2011, Windows 8, Windows Server 2012, Windows 8.1, Windows Server
2012 R2, Windows 10, and Windows Server 2016, the<65> Section 3.1.4.1.3: The implementation of
the FAX_AccessCheck method checks for the presence of a valid fax user account and returns
ERROR_ACCESS_DENIED if the calling user (the user logged on the client computer at the time the
FAX_AccessCheck request is made) does not have a valid fax user account on the server. This feature
is not supported on the following versions of Windows: BackOffice Server 2000, Small Business Server

2000, Windows SBS 2003, Windows Home Server, Windows NT, Windows 2000, Windows XP, and
Windows Server 2003.

<66> Section 3.1.4.1.3: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<67> Section 3.1.4.1.5: This method causes the server to create a registry entry for the newly added
group in the system registry. If a group with a blank name ("") is added, no new registry key is
added. This is because a registry key requires at least one character in order to exist in the registry. If

a group with a blank name is added, the server returns ERROR_ACCESS_DENIED when the client calls
FAX_RemoveOutboundGroup (section 3.1.4.1.71).

<68> Section 3.1.4.1.5: A fax server running on a Windows client operating system returns an error
on receipt of this method call. The fax server returns ERROR_INVALID_PARAMETER to

396 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FAX_API_VERSION_0 protocol clients. The fax server returns
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU to protocol clients running other protocol versions.

<69> Section 3.1.4.1.6: A fax server running on a Windows client operating system returns an error
on receipt of this method call. The fax server returns ERROR_INVALID_PARAMETER to

FAX_API_VERSION_0 protocol clients. The fax server returns
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU to protocol clients running other protocol versions.

<70> Section 3.1.4.1.7: ThisThe FAX_CheckServerProtSeq method is implemented but not
supported on BackOffice Server 2000, Small Business Server 2000, Windows Server 2003NT, Windows
Home Server, Windows SBS 2003, Windows Server 2008, Windows Vista, Windows 7, Windows Server
2008 R2, Windows Home Server 2011, Windows 8, Windows Server 2012, Windows 8.1, Windows
Server 2012 R2, Windows 102000, and Windows Server 2016XP. The method returns

ERROR_NOT_SUPPORTED for all versions of Windows that are not supported.

<71> Section 3.1.4.1.9: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<72> Section 3.1.4.1.9: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<73> Section 3.1.4.1.11: The FAX_ConnectionRefCount method is not implemented in Windows XP,

WindowsBackOffice Server 2003, Windows Home2000, Small Business Server, Windows SBS 2003,
Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows Home Server
2011, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and
Windows Server 2016. The FAX_ConnectionRefCount method is not implemented in 2000, Windows
NT, or Windows 2000.

<74> Section 3.1.4.1.11: The FAX_ConnectFaxServer method is not implemented in BackOffice
Server 2000, Small Business Server 2000, Windows XP,NT, or Windows Server 2003, Windows Home

Server, Windows SBS 2003, Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008
R2, Windows Home Server 2011, Windows 8, Windows Server 2012, Windows 8.1, Windows Server
2012 R2, Windows 10, and Windows Server 20162000.

<75> Section 3.1.4.1.11: The FAX_ConnectionRefCount method is implemented in Windows XP,
Windows Server 2003, Windows Home Server, Windows SBS 2003, Windows Vista, Windows Server
2008, Windows 7, Windows Server 2008 R2, Windows Home Server 2011, Windows 8, Windows
Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 2016not

implemented in BackOffice Server 2000, Small Business Server 2000, Windows NT, or Windows 2000.

<76> Section 3.1.4.1.11: In Windows, the fax print queues cannot be shared on the Small Business
Server products.

<77> Section 3.1.4.1.11: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<78> Section 3.1.4.1.11: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<79> Section 3.1.4.1.12: In Windows Server 2003, Windows Home Server, and Windows SBS 2003,

the default fax user access rights applied by the fax server to a new fax user account are the
following.

Authenticated user identity Default fax user access rights

Administrator WRITE_OWNER |

WRITE_DAC |

FAX_GENERIC_ALL

397 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Authenticated user identity Default fax user access rights

Standard user Same as in section 3.1.4.1.12

Interactive logon user READ_CONTROL |

FAX_ACCESS_SUBMIT |

FAX_ACCESS_SUBMIT_NORMAL |

FAX_ACCESS_SUBMIT_HIGH |

FAX_ACCESS_QUERY_CONFIG |

FAX_ACCESS_MANAGE_RECEIVE_FOLDER |

FAX_ACCESS_QUERY_JOBS |

FAX_ACCESS_MANAGE_JOBS |

FAX_ACCESS_QUERY_OUT_ARCHIVE |

FAX_ACCESS_QUERY_IN_ARCHIVE

In Windows Vista and Windows Server 2008, new fax user accounts created for interactive logon users

do not have the FAX_ACCESS_MANAGE_RECEIVE_FOLDER access rights, all other default fax access
rights being the ones described in section 3.1.4.1.12.

In Windows NT, Windows 2000, Small Business Server 2000, BackOffice Server 2000, and Windows
XP, the default fax user access rights applied by the fax server to a new fax user account are the
following.

Authenticated user identity Default fax user access rights

Administrator WRITE_OWNER |

FAX_ACCESS_SUBMIT |

FAX_ACCESS_SUBMIT_NORMAL |

FAX_ACCESS_SUBMIT_HIGH |

FAX_ACCESS_QUERY_JOBS |

FAX_ACCESS_MANAGE_JOBS |

FAX_ACCESS_QUERY_CONFIG |

FAX_ACCESS_MANAGE_CONFIG |

FAX_ACCESS_QUERY_IN_ARCHIVE |

FAX_ACCESS_MANAGE_IN_ARCHIVE |

FAX_ACCESS_QUERY_OUT_ARCHIVE |

FAX_ACCESS_MANAGE_OUT_ARCHIVE

Standard user Same as in section 3.1.4.1.12

Interactive logon user READ_CONTROL |

FAX_ACCESS_SUBMIT |

FAX_ACCESS_SUBMIT_NORMAL |

FAX_ACCESS_SUBMIT_HIGH |

FAX_ACCESS_QUERY_CONFIG |

FAX_ACCESS_QUERY_JOBS |

FAX_ACCESS_MANAGE_JOBS |

FAX_ACCESS_QUERY_OUT_ARCHIVE |

FAX_ACCESS_QUERY_IN_ARCHIVE

<80> Section 3.1.4.1.15: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

398 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<81> Section 3.1.4.1.16: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<82> Section 3.1.4.1.16: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<83> Section 3.1.4.1.17: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<84> Section 3.1.4.1.17: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<85> Section 3.1.4.1.18: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<86> Section 3.1.4.1.18: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<87> Section 3.1.4.1.18: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<88> Section 3.1.4.1.20: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<89> Section 3.1.4.1.21: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<90> Section 3.1.4.1.22: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<91> Section 3.1.4.1.24: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<92> Section 3.1.4.1.25: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<93> Section 3.1.4.1.25: The Windows fax server implementations do not validate the hEnum
parameter except for the NULL check.

<94> Section 3.1.4.1.26: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<95> Section 3.1.4.1.26: A fax server running on a Windows client operating system returns an error
on receipt of this method call. The fax server returns ERROR_INVALID_PARAMETER to
FAX_API_VERSION_0 protocol clients. The fax server returns

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU to protocol clients running other protocol versions.

<96> Section 3.1.4.1.27: A fax server running on a Windows client operating system returns an error
on receipt of this method call. The fax server returns ERROR_INVALID_PARAMETER to
FAX_API_VERSION_0 protocol clients. The fax server returns
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU to protocol clients running other protocol versions.

<97> Section 3.1.4.1.28: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<98> Section 3.1.4.1.29: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<99> Section 3.1.4.1.30: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

399 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<100> Section 3.1.4.1.31: ImplementedThe FAX_EnumRoutingMethods method is not
implemented in WindowsBackOffice Server 2003, Windows SBS 2003, Windows XP, Windows Vista,

Windows2000, Small Business Server 2008, Windows 7, Windows Server 2008 R22000, Windows
Home Server 2011, Windows 8,NT, or Windows Server 2012, Windows 8.1, Windows Server 2012 R2,

Windows 10, and Windows Server 20162000.

<101> Section 3.1.4.1.31: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<102> Section 3.1.4.1.31: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<103> Section 3.1.4.1.33: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<104> Section 3.1.4.1.34: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<105> Section 3.1.4.1.35: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<106> Section 3.1.4.1.36: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<107> Section 3.1.4.1.37: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<108> Section 3.1.4.1.38: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<109> Section 3.1.4.1.38: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<110> Section 3.1.4.1.38: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<111> Section 3.1.4.1.39: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server if any of the
following parameters are set to a NULL pointer value:

▪ lpcwstrNameGUID

▪ ppData

▪ lpdwDataSize

<112> Section 3.1.4.1.41: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<113> Section 3.1.4.1.42: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<114> Section 3.1.4.1.43: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<115> Section 3.1.4.1.44: Fax servers running on 64-bit Windows operating systems send additional
padding bytes between the last Fixed_Portion block of the last FAX_LOG_CATEGORY element in the
array and the Variable_Data block. The number of additional padding bytes is equal to the number
of FAX_LOG_CATEGORY elements multiplied by 4 bytes. These additional padding bytes are ignored.

400 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<116> Section 3.1.4.1.44: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<117> Section 3.1.4.1.44: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<118> Section 3.1.4.1.45: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<119> Section 3.1.4.1.46: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<120> Section 3.1.4.1.46: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<121> Section 3.1.4.1.47: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<122> Section 3.1.4.1.48: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<123> Section 3.1.4.1.49: In Windows, this error code is returned only by the Windows Server 2003
fax server implementation.

<124> Section 3.1.4.1.50: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<125> Section 3.1.4.1.51: The Windows implementation of FAX_GetPort does not require
FAX_OpenPort to be executed with the PORT_OPEN_QUERY access flag.

<126> Section 3.1.4.1.51: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<127> Section 3.1.4.1.51: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<128> Section 3.1.4.1.51: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<129> Section 3.1.4.1.52: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<130> Section 3.1.4.1.53: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<131> Section 3.1.4.1.54: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<132> Section 3.1.4.1.55: The DRT_MSGBOX delivery method is not supported on Windows Vista,
Windowsin BackOffice Server 2008, Windows 7, Windows 2000, Small Business Server 2008 R22000,
Windows SBS 2003, Windows Home Server 2011, Windows 8,NT, Windows 2000, Windows XP, or

Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server
20162003.

<133> Section 3.1.4.1.57: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<134> Section 3.1.4.1.57: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

401 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<135> Section 3.1.4.1.57: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<136> Section 3.1.4.1.59: Implemented in Windows XP, Windows Server 2003, Windows Home
Server, and Windows SBS 2003.

<137> Section 3.1.4.1.63: In Windows, the fax server enumerates printers by calling the
EnumPrinters function (as described in [MSDN-EnumPrinters])] supplying the OR combination of the
PRINTER_ENUM_LOCAL and PRINTER_ENUM_CONNECTIONS values for the Flags argument, a NULL
pointer value for the Name argument, and a value of 2 for the Level argument.

<138> Section 3.1.4.1.63: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<139> Section 3.1.4.1.65: The Windows implementation of FAX_OpenPort does not validate the value

of the Flags argument unless PORT_OPEN_MODIFY is requested and the specified port is in use. In
this case the server returns ERROR_INVALID_HANDLE.

<140> Section 3.1.4.1.65: The Windows implementation of FAX_GetPort does not require that

FAX_OpenPort is executed with the PORT_OPEN_QUERY access flag.

<141> Section 3.1.4.1.65: The Windows implementation of FAX_SetPort does not require that
FAX_OpenPort is executed with the PORT_OPEN_MODIFY access flag.

<142> Section 3.1.4.1.65: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<143> Section 3.1.4.1.66: In Windows, the maximum size of each part (chunk) copied in one single
FAX_ReadFile method call is 16,384 bytes.

<144> Section 3.1.4.1.66: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<145> Section 3.1.4.1.66: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<146> Section 3.1.4.1.67: Supported only by server editions of Windows, including while the client
versions of Windows Server 2008, Windows Server 2008 R2, Windows Home Server 2011, and
Windows Server 2012. Client Windows versions, including Windows Vista, Windows 7, Windows 8,
Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 2016, will return
ERROR_INVALID_OPERATION.

<147> Section 3.1.4.1.68: Implemented in Windows Server 2003, Windows Home Server, Windows

SBS 2003, Windows XP, Windows Vista, and Windows Server 2008 operating system.

<148> Section 3.1.4.1.68: The Folder parameter is not used in the following versions of Windows
Vista, Windows : BackOffice Server 2008, Windows 7, Windows 2000, Small Business Server 2008
R22000, Windows SBS 2003, Windows Home Server 2011, Windows NT, Windows 2000, Windows 8,
Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10XP, and Windows Server
20162003.

<149> Section 3.1.4.1.68: In Windows, the Folder parameter refreshes the root archive folder. Set
the value to a valid enumeration value from FAX_ENUM_MESSAGE_FOLDER (section 2.2.2) for the
RPC call to succeed.

<150> Section 3.1.4.1.69: In Windows, this is a path to the FSP DLL.

<151> Section 3.1.4.1.71: In Windows operating systems, if a group with a blank name ("") has
already been added and this method is used to remove this group (lpwstrGroupName = ""), this
method will return ERROR_ACCESS_DENIED. This is a result of an attempt to remove the blank

registry key corresponding to the blank group name in the system registry. Blank registry keys do not

402 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

exist, so the registry path will actually refer to the parent registry entry, which the user does not have
permission to remove.

<152> Section 3.1.4.1.71: A fax server running on a Windows client operating system returns an
error on receipt of this method call. The fax server returns ERROR_INVALID_PARAMETER to

FAX_API_VERSION_0 protocol clients. The fax server returns
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU to protocol clients running other protocol versions.

<153> Section 3.1.4.1.72: When the fax service is running on a Client Windows build (not a Server
build) and the Fax Service Manager is not installed, the Windows implementation of the fax service
returns the FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU error to
FAX_RemoveOutboundRule (section 3.1.4.1.72) calls (translated to ERROR_INVALID_PARAMETER for
FAX_API_VERSION_0 clients). On Windows Vista, Windows Server 2008, Windows 7, and Windows

Server 2008 R2, the fax service checks whether the "Microsoft-Windows-Fax-Common-
EnableServerPolicy" policy exists and is set to a nonzero value. If the policy exists and is set to a
nonzero value, the fax service determines that the service is running on a Server Windows build and
allows the FAX_RemoveOutboundRule call. If the policy is set to a value of zero or if the policy does
not exist, the fax service determines that the service is running on a Client Windows build and fails the

FAX_RemoveOutboundRule call with the

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU/ERROR_INVALID_PARAMETER error. On all other
Windows versions, the fax service checks the operating system information for the computer it is
running on to determine if the service is running on a Server or Client Windows build. If the fax
service is running on a Client Windows build, the fax service fails the FAX_RemoveOutboundRule call
with the FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU/ERROR_INVALID_PARAMETER error.

<154> Section 3.1.4.1.73: The Windows implementationimplementations returns
ERROR_NOT_SUPPORTED to FAX_SendDocumentEx for the request described by a non-NULL hJob and

a dwReserved[0] value of 0xFFFF1234 in the lpJobParams structure argument.

<155> Section 3.1.4.1.73: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<156> Section 3.1.4.1.73: A fax server running on a Windows client operating system returns an
error on receipt of this method call. The fax server returns ERROR_INVALID_PARAMETER to

FAX_API_VERSION_0 protocol clients. The fax server returns
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU to protocol clients running other protocol versions.

<157> Section 3.1.4.1.76: On Windows Vista, Windows Server 2008, Windows 7, Windows Server
2008 R2, Windows Home Server 2011, Windows 8, Windows Server 2012, Windows 8.1, Windows
Server 2012 R2, Windows 10, and Windows Server 2016, theThe fax server implementation of
FAX_SetConfiguration (section 3.1.4.1.76) ignores the ArchiveOutgoingFaxes and
ArchiveDirectory members of the FAX_CONFIGURATIONW (section 2.2.28) structure, which are
submitted as the FaxConfig parameter. This feature is not supported on BackOffice Server 2000, Small

Business Server 2000, Windows SBS 2003, Windows Home Server, Windows NT, Windows 2000,
Windows XP, and Windows Server 2003.

<158> Section 3.1.4.1.76: In Windows, the fax server implementation of
FAX_SetConfiguration (section 3.1.4.1.76) does not validate the FAX_TIME (section 2.2.61) values
submitted by the client through the StartCheapTime and StopCheapTime FAX_CONFIGURATIONW
structure members. The Fax Client API method FaxSetConfiguration (for more details, see [MSDN-

FSCAR]) does validate the same FAX_CONFIGURATIONW structure members by checking that each

Hour FAX_TIME structure member value is smaller than or equal to 24 hours and that each Minute
FAX_TIME structure member value is smaller than or equal to 60 minutes.

<159> Section 3.1.4.1.76: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<160> Section 3.1.4.1.76: On Windows Vista, Windows Server 2008, Windows 7, Windows Server
2008 R2, Windows Home Server 2011, Windows 8, Windows Server 2012, Windows 8.1, Windows

403 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Server 2012 R2, Windows 10, and Windows Server 2016, the<160> Section 3.1.4.1.76: The fax
server implementation of FAX_SetConfiguration (section 3.1.4.1.76) ignores the

ArchiveOutgoingFaxes and ArchiveDirectory members of the
FAX_CONFIGURATIONW (section 2.2.28) structure, which are submitted as the FaxConfig parameter.

This feature is not supported on BackOffice Server 2000, Small Business Server 2000, Windows SBS
2003, Windows Home Server, Windows NT, Windows 2000, Windows XP, and Windows Server 2003.

<161> Section 3.1.4.1.77: In Windows, the registry entry set by this method is
HKEY_LOCAL_MACHINE\Software\Microsoft\Fax\Client\CfgWzdrDevice .

<162> Section 3.1.4.1.78: A fax server running on a Windows client operating system returns an
error on receipt of this method call. The fax server returns ERROR_INVALID_PARAMETER to
FAX_API_VERSION_0 protocol clients. The fax server returns

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU to protocol clients running other protocol versions.

<163> Section 3.1.4.1.79: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server if any of the
following parameters are set to NULL (or 0, in the case of dwDataSize):

▪ pData

▪ dwDataSize

<164> Section 3.1.4.1.84: Supported onlyThe FAX_SetMessage method is not supported on
Windows Vista, WindowsBackOffice Server 2008, Windows 7, Windows 2000, Small Business Server
2008 R22000, Windows SBS 2003, Windows Home Server 2011, Windows 8NT, Windows Server
20122000, Windows 8.1, Windows Server 2012 R2, Windows 10XP, and Windows Server 20162003.

<165> Section 3.1.4.1.85: A fax server running on a Windows client operating system returns an
error on receipt of this method call. The fax server returns ERROR_INVALID_PARAMETER to
FAX_API_VERSION_0 protocol clients. The fax server returns

FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU to protocol clients running other protocol versions.

<166> Section 3.1.4.1.86: A fax server running on a Windows client operating system returns an

error on receipt of this method call. The fax server returns ERROR_INVALID_PARAMETER to
FAX_API_VERSION_0 protocol clients. The fax server returns
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU to protocol clients running other protocol versions.

<167> Section 3.1.4.1.88: The Windows implementation of FAX_SetPort does not require
FAX_OpenPort to be executed with the PORT_OPEN_MODIFY access flag.

<168> Section 3.1.4.1.88: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<169> Section 3.1.4.1.88: The maximum number of devices is set by policy on Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows Home Server 2011, Windows
8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server
2016.all versions of Windows, with the exceptions listed in the table below. The name of this policy is

"Microsoft-Windows-Fax-Common-DeviceLimit", and the default value is 1 device.

Platform Configuration Device Limit

Windows XP and Windows Server 2003 Web Edition The device limit is hard coded and
is set to one device.

Windows 2000 and BackOffice Server 2000 The device limit is hard coded and
is set to two devices.

Windows Server 2003, Windows Server 2003 Standard Edition, Windows
Home Server, and Small Business Server 2000

The device limit is hard coded and
is set to four devices.

404 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Platform Configuration Device Limit

Windows 2000 Communications Server Edition The device limit is hard coded to
0xFFFFFFFF.

Windows NT, Windows Server 2003 Enterprise Edition, and Windows Server
2003 Datacenter Edition

There is no maximum device
limit.

.

<170> Section 3.1.4.1.89: The maximum number of devices is set by policy on all versions of

Windows, with the exceptions listed in the table below. The name of this policy is "Microsoft-Windows-
Fax-Common-DeviceLimit", and the default value is 1 device.

On Windows XP and Windows Server 2003 Web Server Edition, the device limit is hard-coded and is
set to 1 device.

On Windows 2000 and BackOffice Server 2000, the device limit is hard-coded and is set to 2 devices.

On Windows Server 2003 Embedded Edition, Windows Server 2003 Standard Edition, Windows Home
Server, and Small Business Server 2000, the device limit is hard-coded and is set to 4 devices.

On Windows 2000 Communications Server Edition, the device limit is hard-coded to 0xFFFFFFFF.

On Windows NT, Windows Server 2003 Enterprise Edition, and Windows Server 2003 Datacenter
Edition, there is no maximum device limit.

<170> Section 3.1.4.1.89: The maximum number of devices is set by policy on Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows Home Server 2011, Windows
8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server

2016. The name of this policy is "Microsoft-Windows-Fax-Common-DeviceLimit", and the default value
is 1 device. The following table identifies the device limit for other supported platform configurations.

PlatformPlatfandm Configuration Device Limit

Windows XP orand Windows Server 2003 Web Edition The device limit is hard coded and
is set to one device.

Windows 2000 and BackOffice Server 2000 The device limit is hard coded and
is set to two devices.

Windows Server 2003 Embedded Edition or, Windows Server 2003
Standard Edition, and Small Business Server 2000

The device limit is hard coded and
is set to four devices.

Windows 2000 Communications Server Edition The device limit is hard coded to
0xFFFFFFFF.

Windows NT, Windows Server 2003 Enterprise Edition operating system,
or, and Windows Server 2003 Datacenter Edition

There is no maximum device limit.

<171> Section 3.1.4.1.91: InThe fax server implementations on BackOffice Server 2000, Small

Business Server 2000, Windows Server 2008, Windows Server 2008 R2SBS 2003, Windows Home
Server 2011, Windows Server 2012, Windows Server 2012 R2, Windows 102000, and Windows Server
2016 implementations, only2003 do not support email receipts are valid. In previous Windows fax
server implementations,. DRT_MSGBOX receipts were also validare supported.

<172> Section 3.1.4.1.91: A fax server running on a Windows client operating system returns an
error on receipt of this method call. The fax server returns ERROR_INVALID_PARAMETER to

405 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FAX_API_VERSION_0 protocol clients. The fax server returns
FAX_ERR_NOT_SUPPORTED_ON_THIS_SKU to protocol clients running other protocol versions.

<173> Section 3.1.4.1.91: The fax server implementationimplementations on WindowsBackOffice
Server 2008, Windows2000, Small Business Server 2008 R22000, Windows SBS 2003, Windows Home

Server 2011, Windows Server 2012, Windows Server 2012 R22000, and Windows Server 2016
does2003 do not support DRT_MSGBOX receipts.

<174> Section 3.1.4.1.93: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<175> Section 3.1.4.1.97: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<176> Section 3.1.4.1.101: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<177> Section 3.1.4.1.101: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<178> Section 3.1.4.1.102: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<179> Section 3.1.4.1.102: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<180> Section 3.1.4.1.103: On Windows, the fax server needs to be restarted in order for
unregistration to take place.

<181> Section 3.1.4.1.104: ImplementedThe FAX_UnregisterServiceProviderEx method is not
implemented in WindowsBackOffice Server 20032000, Small Business Server 2000, Windows Home
Server, Windows SBS 2003NT, Windows Vista,2000, or Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows Home Server 2011, Windows 8, Windows Server 2012, Windows 8.1,

Windows Server 2012 R2, Windows 10, and Windows Server 2016XP.

<182> Section 3.1.4.1.105: In Windows, the maximum size of each part (chunk) copied in one single
FAX_WriteFile method call is 16,384 bytes.

<183> Section 3.1.4.1.105: The Windows implementation of FAX_WriteFile does not validate that the
data size does not exceed the maximum allowed value, which is RPC_COPY_BUFFER_SIZE (16384
bytes). If the caller requests a larger data size than RPC_COPY_BUFFER_SIZE to be written with a
single FAX_WriteFile call, the underlying RPC protocol [MS-RPCE] fails the call.

<184> Section 3.1.4.2: Opnums reserved for local use apply to Windows as follows.

Opnum Description

30 Only used locally by Windows, never called remotely.

<185> Section 3.1.4.2.2: In Windows, the fax print queues cannot be shared on the Small Business
Server products.

<186> Section 3.1.4.2.3: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<187> Section 3.1.4.2.5: The Windows implementation of FaxObs_OpenPort (section 3.1.4.2.5) does

not validate the value of the Flags parameter unless PORT_OPEN_MODIFY is requested and the
specified port is in use. In this case, the server returns ERROR_INVALID_HANDLE.

406 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<188> Section 3.1.4.2.5: The Windows implementation of FaxObs_GetPort (section 3.1.4.2.16) does
not require that FaxObs_OpenPort is executed with the PORT_OPEN_QUERY access flag.

<189> Section 3.1.4.2.5: The Windows implementation of FaxObs_SetPort (section 3.1.4.2.17) does
not require that FaxObs_OpenPort is executed with the PORT_OPEN_MODIFY access flag.

<190> Section 3.1.4.2.5: In Windows the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<191> Section 3.1.4.2.7: On Windows the implementation of the FaxObs_SendDocument method
accepts a NULL pointer value for the RecipientNumber member of the JobParams structure. This
occurs when one of the following conditions is true: the CallHandle member of the same structure is
set to 0x00000000, or the first value of the Reserved field of the JobParams structure is set to
0xFFFFFFFF (32-bit), 0x00000000FFFFFFFF (64-bit), or zero.

<192> Section 3.1.4.2.7: In Windows the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<193> Section 3.1.4.2.8: In Windows, the fax server implementation of the

FaxObs_GetQueueFileName method attempts to impersonate the client before creating the file with
generic write access. If the client does not have generic write access to the location, the call fails and
in this case, there is no predefined specific error code to be returned by the server.

<194> Section 3.1.4.2.8: In Windows, the fax server implementation of this method does not validate
that the FileName parameter is set to a valid pointer value.

<195> Section 3.1.4.2.8: In Windows, the fax server implementation of this method does not validate
that the FileNameSize parameter is set to a value greater than zero.

<196> Section 3.1.4.2.9: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<197> Section 3.1.4.2.9: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<198> Section 3.1.4.2.11: In Windows, the fax server implementation of this method does not
validate this condition.

<199> Section 3.1.4.2.12: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<200> Section 3.1.4.2.13: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<201> Section 3.1.4.2.15: In Windows the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<202> Section 3.1.4.2.16: In Windows the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<203> Section 3.1.4.2.17: In Windows the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<204> Section 3.1.4.2.18: In Windows the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<205> Section 3.1.4.2.18: In Windows the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<206> Section 3.1.4.2.19: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

407 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<207> Section 3.1.4.2.20: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<208> Section 3.1.4.2.20: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<209> Section 3.1.4.2.21: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<210> Section 3.1.4.2.22: In Windows the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<211> Section 3.1.4.2.25: In Windows, the fax server implementation of
FaxObs_SetConfiguration (section 3.1.4.2.25) does not validate the FAX_TIME (section 2.2.61) values
submitted by the client through the StartCheapTime and StopCheapTime

FAX_CONFIGURATIONW (section 2.2.28) structure members. The Fax Client API method
FaxSetConfiguration (for more details, see [MSDN-FSCAR]) does validate the same
FAX_CONFIGURATIONW structure members by checking that each Hour FAX_TIME structure member

value is smaller than or equal to 24 hours and that each Minute FAX_TIME structure member value is
smaller than or equal to 60 minutes.

<212> Section 3.1.4.2.26: In Windows the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<213> Section 3.1.4.2.28: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<214> Section 3.1.4.2.30: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<215> Section 3.1.4.2.31: In Windows, the fax server implementation does not call
FAX_CloseConnection to close a connection with the client that was opened with FAX_OpenConnection.

<216> Section 3.1.4.2.32: In Windows, the fax server implementation of this method returns
ERROR_INVALID_CATEGORY when the Id parameter is set to a value greater than 1 but not when the

Id parameter is set to a value of 1.

<217> Section 3.1.4.2.33: In Windows, the fax server implementation of this method returns
ERROR_INVALID_CATEGORY when the Id member is set to a value greater than 1 but not when the
Id member is set to a value of 1.

<218> Section 3.1.4.2.35: In Windows, the underlying RPC protocol [MS-RPCE] implementation can

stop the invalid call and throw an exception before the call reaches the fax server.

<219> Section 3.1.4.2.35: In Windows, the underlying RPC protocol [MS-RPCE] implementation can
stop the invalid call and throw an exception before the call reaches the fax server.

<220> Section 3.2.4.3: In Windows, the underlying RPC protocol [MS-RPCE] implementation can stop
the invalid call and throw an exception before the call reaches the fax server.

<221> Section 5.1: Connection is attempted three times, twice using the

RPC_C_AUTHN_LEVEL_PKT_PRIVACY authentication level and if the connection fails, it drops to the
RPC_C_AUTHN_LEVEL_NONE authentication level. The AS used is RPC_C_AUTHN_WINNT (NTLM SPP
authenticator).

<222> Section 5.1: The following access control entries are used by the fax service:

1. Submit low-priority faxes: This privilege allows the user to submit low-priority fax jobs. Users can
view and manage their jobs in the fax server's queue and their messages in the outgoing fax
archive.

408 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

By default, this privilege is given to interactive users, everyone, and administrators group.

2. Submit normal-priority faxes: This privilege allows the user to submit normal-priority fax jobs.

Users can view and manage their jobs in the fax server's queue and their messages in the
outgoing fax archive.

By default, this privilege is given to interactive users, everyone, and administrators group.

3. Submit high-priority faxes: This privilege allows the user to submit high-priority fax jobs. By virtue
of this privilege, the user can also submit low-priority and normal-priority fax jobs. Users can view
and manage their jobs in the fax server's queue and their messages in the outgoing fax archive.

By default, this privilege is given to interactive users and administrators group.

4. View service configuration: This privilege allows the user to view and query the fax server's
configuration data.

By default, this privilege is given to interactive users and administrators group.

5. Manage service configuration: This privilege allows the user to view, and set the fax server's
configuration data.

By default, this privilege is given to interactive users and administrators group.

6. Manage server receive folder: This privilege allows the user to manage all the messages in the
server's receive folder. This includes the right to reassign and delete messages.

By default, this privilege is given to the administrators group.

This privilege is available only in Windows Vista and is not applicable to other versions of
Windows.

7. View fax jobs: This privilege allows the user to view all outgoing jobs, including the jobs submitted
by other users.

By default, this privilege is given to the administrators group.

8. Manage fax jobs: This privilege allows the user to manage all outgoing jobs, including the jobs

submitted by other users.

By default, this privilege is given to the administrators group.

9. View message archives: This privilege allows the user to view all archived messages, including the
archives of other users.

By default, this privilege is given to the administrators group.

10. Manage message archives: This privilege allows the user to manage all archive messages,
including the archives of other users.

By default, this privilege is given to the administrators group.

11. View outgoing message archive: This privilege allows the user to view all outgoing archived
messages, including the archives of other users.

By default, this privilege is given to the administrators group.

This privilege is not available on Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, and Windows Home Server 2011. This privilege is applicable to Windows NT,

Windows 2000, Windows XP, and Windows Server 2003.

409 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

12. Manage outgoing message archive: This privilege allows the user to manage all outgoing archived
messages, including the archives of other users.

By default, this privilege is given to the administrators group.

This privilege is not available on Windows Vista, Windows Server 2008, Windows 7, Windows

Server 2008 R2, and Windows Home Server 2011. This privilege is applicable to Windows NT,
Windows 2000, Windows XP, and Windows Server 2003.

13. View incoming message archive: This privilege allows the user to view all incoming archived
messages, including the archives of other users.

By default, this privilege is given to the administrators group.

This privilege is not available on Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, and Windows Home Server 2011. This privilege is applicable to Windows NT,

Windows 2000, Windows XP, and Windows Server 2003.

14. Manage incoming message archive: This privilege allows the user to manage all incoming archived

messages, including the archives of other users.

By default, this privilege is given to the administrators group.

This privilege is not available on Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, and Windows Home Server 2011. This privilege is applicable to Windows NT,

Windows 2000, Windows XP, and Windows Server 2003.

410 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

8 Change Tracking

No table of This section identifies changes is available. The that were made to this document is either
new or has had no changes since itsthe last release. Changes are classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

7 Appendix B: Product Behavior 7882 : Added Windows Server to applicability list. Major

411 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

9 Index

_

_ FAX_ACTIVITY_LOGGING_CONFIGW packet 61
_FAX_JOB_ENTRY packet 26
_FAX_PORT_INFO packet 35
_FAX_PORT_INFO_EXW packet 117
_FAX_RECEIPTS_CONFIGW packet 120
_FAX_RULE_DESTINATION_GROUP_NAME packet 109
_FAX_SERVER_ACTIVITY packet 55
_FAX_TIME packet 132
_FAX_VERSION packet 58
_N_INSTANCES_ARRAY packet 21
_REFERENCED_ARRAY packet 21
_RPC_FAX_OUTBOUND_ROUTING_GROUPW packet 105
_RPC_FAX_OUTBOUND_ROUTING_RULEW packet 107
_SINGLE_INSTANCE packet 20

A

Abstract data model
 client 351
 server 168
Applicability 17

C

Capability negotiation 17
Change tracking 410
Client
 abstract data model 351
 FAX_ClientEventQueue (Opnum 1) method 352
 FAX_ClientEventQueueEx (Opnum 3) method 353
 FAX_CloseConnection (Opnum 2) method 354
 FAX_OpenConnection (Opnum 0) method 354
 FaxClient IDL 387
 initialization 351
 local events 356
 message processing 351
 sequencing rules 351
 Sequencing Rules method 352
 timer events 355
 timers 351
Common data types 19
Common fax data types IDL 367

D

Data model - abstract
 client 351
 server 168
Data types

 common - overview 19
 fax 155
 overview 19

E

Enumeration example 360
Errors 126
Events
 local - client 356

412 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 local - server 351
 timer - client 355
 timer - server 351
Examples 357
 message exchanges during adding an outbound routing rule 362
 message exchanges during enumerating fax jobs 360
 message exchanges during granting security privileges to a user 364
 message exchanges during modifying fax jobs 361
 message exchanges during querying server configuration 359
 message exchanges during registering and unregistering for server notifications 363
 message exchanges while sending a fax 357

F

fax
 FAX_Abort method [Protocol] 188
 FAX_AccessCheck method [Protocol] 189

 FAX_AddOutboundGroup method [Protocol] 195
 FAX_CheckServerProtSeq method [Protocol] 197
 FAX_ClosePort method [Protocol] 199
 FAX_ConnectFaxServer method [Protocol] 200
 FAX_ConnectionRefCount method [Protocol] 202
 FAX_EnableRoutingMethod method [Protocol] 206
 FAX_EndCopy method [Protocol] 207
 FAX_EndMessagesEnum method [Protocol] 208
 FAX_EndServerNotification method [Protocol] 208
 FAX_EnumerateProviders method [Protocol] 210
 FAX_EnumGlobalRoutingInfo method [Protocol] 211
 FAX_EnumJobs method [Protocol] 212
 FAX_EnumJobsEx method [Protocol] 213
 FAX_EnumMessages method [Protocol] 217
 FAX_EnumOutboundGroups method [Protocol] 220
 FAX_EnumOutboundRules method [Protocol] 221
 FAX_EnumPorts method [Protocol] 222
 FAX_EnumPortsEx method [Protocol] 223
 FAX_EnumRoutingExtensions method [Protocol] 224
 FAX_EnumRoutingMethods method [Protocol] 225
 FAX_GetActivityLoggingConfiguration method [Protocol] 227
 FAX_GetArchiveConfiguration method [Protocol] 228
 FAX_GetConfiguration method [Protocol] 231
 FAX_GetCountryList method [Protocol] 232
 FAX_GetDeviceStatus method [Protocol] 233
 FAX_GetExtensionData method [Protocol] 234
 FAX_GetJobEx method [Protocol] 238
 FAX_GetLoggingCategories method [Protocol] 240
 FAX_GetMessage method [Protocol] 242
 FAX_GetOutboxConfiguration method [Protocol] 245
 FAX_GetPageData method [Protocol] 246
 FAX_GetPersonalCoverPagesOption method [Protocol] 247
 FAX_GetPersonalProfileInfo method [Protocol] 247
 FAX_GetPort method [Protocol] 249
 FAX_GetPortEx method [Protocol] 250
 FAX_GetQueueStates method [Protocol] 251
 FAX_GetReceiptsConfiguration method [Protocol] 252
 FAX_GetReceiptsOptions method [Protocol] 252
 FAX_GetRoutingInfo method [Protocol] 254
 FAX_GetSecurity method [Protocol] 255
 FAX_GetSecurityEx method [Protocol] 256
 FAX_GetServerActivity method [Protocol] 259
 FAX_GetServicePrinters method [Protocol] 260
 FAX_GetVersion method [Protocol] 261
 FAX_OpenPort method [Protocol] 262

 FAX_ReadFile method [Protocol] 263
 FAX_RefreshArchive method [Protocol] 265
 FAX_RegisterServiceProviderEx method [Protocol] 266

413 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 FAX_RemoveMessage method [Protocol] 267
 FAX_RemoveOutboundGroup method [Protocol] 268
 FAX_RemoveOutboundRule method [Protocol] 270
 FAX_SendDocumentEx method [Protocol] 271
 FAX_SetActivityLoggingConfiguration method [Protocol] 274
 FAX_SetArchiveConfiguration method [Protocol] 275
 FAX_SetConfiguration method [Protocol] 277
 FAX_SetConfigWizardUsed method [Protocol] 278
 FAX_SetDeviceOrderInGroup method [Protocol] 278
 FAX_SetExtensionData method [Protocol] 280
 FAX_SetGlobalRoutingInfo method [Protocol] 283
 FAX_SetLoggingCategories method [Protocol] 285
 FAX_SetOutboundGroup method [Protocol] 288
 FAX_SetOutboundRule method [Protocol] 289
 FAX_SetOutboxConfiguration method [Protocol] 290
 FAX_SetPort method [Protocol] 291
 FAX_SetPortEx method [Protocol] 292
 FAX_SetQueue method [Protocol] 294
 FAX_SetReceiptsConfiguration method [Protocol] 295
 FAX_SetRoutingInfo method [Protocol] 297
 FAX_SetSecurity method [Protocol] 298
 FAX_StartCopyMessageFromServer method [Protocol] 301
 FAX_StartCopyToServer method [Protocol] 302

 FAX_StartMessagesEnum method [Protocol] 303
 FAX_StartServerNotification method [Protocol] 306
 FAX_StartServerNotificationEx method [Protocol] 308
 FAX_UnregisterServiceProviderEx method [Protocol] 312
 FAX_WriteFile method [Protocol] 313
fax [Protocol]
 FAX_AddOutboundRule method [Protocol] 196
 FAX_CheckValidFaxFolder method [Protocol] 198
 FAX_GetJob method [Protocol] 236
 FAX_GetRecipientsLimit method [Protocol] 253
 FAX_GetServerSKU method [Protocol] 259
 FAX_SetJob method [Protocol] 284
 FAX_SetRecipientsLimit method [Protocol] 296
fax data types 155
Fax data types IDL - common 367
fax interface [Protocol]
 FAX_AccessCheckEx2 method 192
 FAX_CreateAccount method 203
 FAX_DeleteAccount method 205
 FAX_EnumAccounts method 209
 FAX_EnumJobsEx2 method 215
 FAX_EnumMessagesEx method 218
 FAX_GetAccountInfo method 226
 FAX_GetGeneralConfiguration method 235
 FAX_GetJobEx2 method 239
 FAX_GetMessageEx method 243
 FAX_GetSecurityEx2 method 257
 FAX_ReAssignMessage method 264
 FAX_SetGeneralConfiguration method 281
 FAX_SetSecurityEx2 method 300
 FAX_StartMessagesEnumEx method 304
 FAX_StartServerNotificationEx2 method 310
Fax Server Interface method 176
FAX_Abort [Protocol] 188
FAX_Abort method 188
FAX_AccessCheck [Protocol] 189
FAX_AccessCheck method 189
FAX_AccessCheckEx2 method 192
FAX_AccessCheckEx2 method [Protocol] 192
FAX_ACCOUNT_INFO_0 packet 59
FAX_ACTIVITY_LOGGING_CONFIGW structure 60
FAX_AddOutboundGroup [Protocol] 195

414 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FAX_AddOutboundGroup method 195
FAX_AddOutboundRule [Protocol] 196
FAX_AddOutboundRule method 196
FAX_API_VERSION_0 162
FAX_API_VERSION_1 162
FAX_API_VERSION_2 162
FAX_API_VERSION_3 162
FAX_ARCHIVE_CONFIGW packet 62
FAX_CheckServerProtSeq [Protocol] 197
FAX_CheckServerProtSeq method 197
FAX_CheckValidFaxFolder [Protocol] 198
FAX_CheckValidFaxFolder method 198
FAX_ClientEventQueue (Opnum 1) method 352
FAX_ClientEventQueue method 352
FAX_ClientEventQueueEx (Opnum 3) method 353
FAX_ClientEventQueueEx method 353
FAX_CloseConnection (Opnum 2) method 354
FAX_CloseConnection method 354
FAX_ClosePort [Protocol] 199
FAX_ClosePort method 199
FAX_CONFIGURATIONW packet 65
FAX_CONFIGURATIONW structure 63
FAX_ConnectFaxServer [Protocol] 200

FAX_ConnectFaxServer method 200
FAX_ConnectionRefCount [Protocol] 202
FAX_ConnectionRefCount method 202
FAX_COVERPAGE_INFO_EXW structure 47
FAX_CreateAccount method 203
FAX_CreateAccount method [Protocol] 203
FAX_DeleteAccount method 205
FAX_DeleteAccount method [Protocol] 205
FAX_DEVICE_PROVIDER_INFO packet 67
FAX_DEVICE_STATUS packet 39
FAX_EnableRoutingMethod [Protocol] 206
FAX_EnableRoutingMethod method 206
FAX_EndCopy [Protocol] 207
FAX_EndCopy method 207
FAX_EndMessagesEnum [Protocol] 208
FAX_EndMessagesEnum method 208
FAX_EndServerNotification [Protocol] 208
FAX_EndServerNotification method 208
FAX_ENUM_CONFIG_OPTION enumeration 22
FAX_ENUM_CONFIG_TYPE enumeration 154
FAX_ENUM_CONFIG_TYPE enumeration [154
FAX_ENUM_COVERPAGE_FORMATS enumeration 158
FAX_ENUM_DELIVERY_REPORT_TYPES enumeration 156
FAX_ENUM_DEVICE_RECEIVE_MODE enumeration 128
FAX_ENUM_DEVICE_STATUS enumeration 133
FAX_ENUM_EVENT_TYPE enumeration 132
FAX_ENUM_GROUP_STATUS enumeration 130
FAX_ENUM_JOB_EVENT_TYPE [Protocol] 152
FAX_ENUM_JOB_EVENT_TYPE enumeration 152
FAX_ENUM_JOB_FIELDS enumeration 157
FAX_ENUM_JOB_OP enumeration 129
FAX_ENUM_MESSAGE_FOLDER enumeration 22
FAX_ENUM_MSG_FLAGS enumeration 127
FAX_ENUM_PERSONAL_PROF_TYPES enumeration 23
FAX_ENUM_PRIORITY_TYPE enumeration 134
FAX_ENUM_PROVIDER_STATUS enumeration 128
FAX_ENUM_RULE_STATUS enumeration 127
FAX_ENUM_SMTP_AUTH_OPTIONS enumeration 128
FAX_EnumAccounts method 209
FAX_EnumAccounts method [Protocol] 209
FAX_EnumerateProviders [Protocol] 210
FAX_EnumerateProviders method 210

415 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FAX_EnumGlobalRoutingInfo [Protocol] 211
FAX_EnumGlobalRoutingInfo method 211
FAX_EnumJobs [Protocol] 212
FAX_EnumJobs method 212
FAX_EnumJobsEx [Protocol] 213
FAX_EnumJobsEx method 213
FAX_EnumJobsEx2 method 215
FAX_EnumJobsEx2 method [Protocol] 215
FAX_EnumMessages [Protocol] 217
FAX_EnumMessages method 217
FAX_EnumMessagesEx method 218
FAX_EnumMessagesEx method [Protocol] 218
FAX_EnumOutboundGroups [Protocol] 220
FAX_EnumOutboundGroups method 220
FAX_EnumOutboundRules [Protocol] 221
FAX_EnumOutboundRules method 221
FAX_EnumPorts [Protocol] 222
FAX_EnumPorts method 222
FAX_EnumPortsEx [Protocol] 223
FAX_EnumPortsEx method 223
FAX_EnumRoutingExtensions [Protocol] 224
FAX_EnumRoutingExtensions method 224
FAX_EnumRoutingMethods [Protocol] 225

FAX_EnumRoutingMethods method 225
FAX_EVENT structure 134
FAX_EVENT_DEVICE_STATUS [Protocol] 150
FAX_EVENT_DEVICE_STATUS packet 150
FAX_EVENT_EX [Protocol] 136
FAX_EVENT_EX packet 136
FAX_EVENT_EX_1 packet 143
FAX_EVENT_EX_1_ACTIVITY_INFO packet 147
FAX_EVENT_EX_1_CONFIG_TYPE packet 146
FAX_EVENT_EX_1_DEVICE_STATUS packet (section 2.2.67.6 143, section 2.2.68.6 150)
FAX_EVENT_EX_1_JOB_INFO packet 145
FAX_EVENT_EX_1_NEW_CALL packet 148
FAX_EVENT_EX_1_QUEUE_STATES packet 149
FAX_EVENT_EX_ACTIVITY_INFO packet 140
FAX_EVENT_EX_CONFIG_TYPE packet 139
FAX_EVENT_EX_JOB_INFO packet 138
FAX_EVENT_EX_NEW_CALL packet 141
FAX_EVENT_EX_QUEUE_STATES packet 142
FAX_EVENT_JOB packet 159
FAX_EVENT_JOB_1 packet 151
FAX_EVENT_NEW_CALLW [Protocol] 153
FAX_EVENT_NEW_CALLW packet 153
FAX_GENERAL_CONFIG packet 69
FAX_GetAccountInfo method 226
FAX_GetAccountInfo method [Protocol] 226
FAX_GetActivityLoggingConfiguration [Protocol] 227
FAX_GetActivityLoggingConfiguration method 227
FAX_GetArchiveConfiguration [Protocol] 228
FAX_GetArchiveConfiguration method 228
FAX_GetConfigOption method 229
FAX_GetConfiguration [Protocol] 231
FAX_GetConfiguration method 231
FAX_GetCountryList [Protocol] 232
FAX_GetCountryList method 232
FAX_GetDeviceStatus [Protocol] 233
FAX_GetDeviceStatus method 233
FAX_GetExtensionData [Protocol] 234
FAX_GetExtensionData method 234
FAX_GetGeneralConfiguration method 235
FAX_GetGeneralConfiguration method [Protocol] 235
FAX_GetJob [Protocol] 236
FAX_GetJob method 236

416 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FAX_GetJobEx [Protocol] 238
FAX_GetJobEx method 238
FAX_GetJobEx2 method 239
FAX_GetJobEx2 method [Protocol] 239
FAX_GetLoggingCategories [Protocol] 240
FAX_GetLoggingCategories method 240
FAX_GetMessage [Protocol] 242
FAX_GetMessage method 242
FAX_GetMessageEx method 243
FAX_GetMessageEx method [Protocol] 243
FAX_GetOutboxConfiguration [Protocol] 245
FAX_GetOutboxConfiguration method 245
FAX_GetPageData [Protocol] 246
FAX_GetPageData method 246
FAX_GetPersonalCoverPagesOption [Protocol] 247
FAX_GetPersonalCoverPagesOption method 247
FAX_GetPersonalProfileInfo [Protocol] 247
FAX_GetPersonalProfileInfo method 247
FAX_GetPort [Protocol] 249
FAX_GetPort method 249
FAX_GetPortEx [Protocol] 250
FAX_GetPortEx method 250
FAX_GetQueueStates [Protocol] 251

FAX_GetQueueStates method 251
FAX_GetReceiptsConfiguration [Protocol] 252
FAX_GetReceiptsConfiguration method 252
FAX_GetReceiptsOptions [Protocol] 252
FAX_GetReceiptsOptions method 252
FAX_GetRecipientsLimit [Protocol] 253
FAX_GetRecipientsLimit method 253
FAX_GetRoutingInfo [Protocol] 254
FAX_GetRoutingInfo method 254
FAX_GetSecurity [Protocol] 255
FAX_GetSecurity method 255
FAX_GetSecurityEx [Protocol] 256
FAX_GetSecurityEx method 256
FAX_GetSecurityEx2 method 257
FAX_GetSecurityEx2 method [Protocol] 257
FAX_GetServerActivity [Protocol] 259
FAX_GetServerActivity method 259
FAX_GetServerSKU [Protocol] 259
FAX_GetServerSKU method 259
FAX_GetServicePrinters [Protocol] 260
FAX_GetServicePrinters method 260
FAX_GetVersion [Protocol] 261
FAX_GetVersion method 261
FAX_GLOBAL_ROUTING_INFOW packet 73
FAX_GLOBAL_ROUTING_INFOW structure 73
FAX_JOB_ENTRY structure 23
FAX_JOB_ENTRY_EX_1 packet 75
FAX_JOB_ENTRY_EXW packet 80
FAX_JOB_EXTENDED_STATUS_ENUM enumeration 130
FAX_JOB_PARAM_EXW structure 49
FAX_JOB_PARAMW structure 47
FAX_JOB_STATUS packet 84
FAX_LOG_CATEGORY packet 45
FAX_MESSAGE_1 packet 89
FAX_MESSAGE_PROPS structure 51
FAX_MESSAGEW packet 97
FAX_OpenConnection (Opnum 0) method 354
FAX_OpenConnection method 354
FAX_OpenPort [Protocol] 262
FAX_OpenPort method 262
FAX_OUTBOX_CONFIG packet 52
FAX_OUTBOX_CONFIG structure 51

417 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FAX_PERSONAL_PROFILEW packet 111
FAX_PORT_INFO packet 35
FAX_PORT_INFO structure 32
FAX_PORT_INFO_EXW packet 117
FAX_PORT_INFO_EXW structure 116
FAX_PRINTER_INFOW packet 110
FAX_ReadFile [Protocol] 263
FAX_ReadFile method 263
FAX_REASSIGN_INFO structure 53
FAX_ReAssignMessage method 264
FAX_ReAssignMessage method [Protocol] 264
FAX_RECEIPTS_CONFIGW structure 119
FAX_RefreshArchive [Protocol] 265
FAX_RefreshArchive method 265
FAX_RegisterServiceProviderEx [Protocol] 266
FAX_RegisterServiceProviderEx method 266
FAX_RemoveMessage [Protocol] 267
FAX_RemoveMessage method 267
FAX_RemoveOutboundGroup [Protocol] 268
FAX_RemoveOutboundGroup method 268
FAX_RemoveOutboundRule [Protocol] 270
FAX_RemoveOutboundRule method 270
FAX_ROUTING_EXTENSION_INFO packet 122

FAX_ROUTING_METHOD packet 37
FAX_RULE_DESTINATION_DEVICE_ID packet 109
FAX_SECURITY_DESCRIPTOR packet 166
FAX_SendDocumentEx [Protocol] 271
FAX_SendDocumentEx method 271
FAX_SERVER_ACTIVITY structure 54
FAX_SetActivityLoggingConfiguration [Protocol] 274
FAX_SetActivityLoggingConfiguration method 274
FAX_SetArchiveConfiguration [Protocol] 275
FAX_SetArchiveConfiguration method 275
FAX_SetConfiguration [Protocol] 277
FAX_SetConfiguration method 277
FAX_SetConfigWizardUsed [Protocol] 278
FAX_SetConfigWizardUsed method 278
FAX_SetDeviceOrderInGroup [Protocol] 278
FAX_SetDeviceOrderInGroup method 278
FAX_SetExtensionData [Protocol] 280
FAX_SetExtensionData method 280
FAX_SetGeneralConfiguration method 281
FAX_SetGeneralConfiguration method [Protocol] 281
FAX_SetGlobalRoutingInfo [Protocol] 283
FAX_SetGlobalRoutingInfo method 283
FAX_SetJob [Protocol] 284
FAX_SetJob method 284
FAX_SetLoggingCategories [Protocol] 285
FAX_SetLoggingCategories method 285
FAX_SetMessage method 286
FAX_SetOutboundGroup [Protocol] 288
FAX_SetOutboundGroup method 288
FAX_SetOutboundRule [Protocol] 289
FAX_SetOutboundRule method 289
FAX_SetOutboxConfiguration [Protocol] 290
FAX_SetOutboxConfiguration method 290
FAX_SetPort [Protocol] 291
FAX_SetPort method 291
FAX_SetPortEx [Protocol] 292
FAX_SetPortEx method 292
FAX_SetQueue [Protocol] 294
FAX_SetQueue method 294
FAX_SetReceiptsConfiguration [Protocol] 295
FAX_SetReceiptsConfiguration method 295
FAX_SetRecipientsLimit [Protocol] 296

418 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FAX_SetRecipientsLimit method 296
FAX_SetRoutingInfo [Protocol] 297
FAX_SetRoutingInfo method 297
FAX_SetSecurity [Protocol] 298
FAX_SetSecurity method 298
FAX_SetSecurityEx2 method 300
FAX_SetSecurityEx2 method [Protocol] 300
FAX_SPECIFIC_ACCESS_RIGHTS enumeration 56
FAX_SPECIFIC_ACCESS_RIGHTS_2 enumeration 159
FAX_StartCopyMessageFromServer [Protocol] 301
FAX_StartCopyMessageFromServer method 301
FAX_StartCopyToServer [Protocol] 302
FAX_StartCopyToServer method 302
FAX_StartMessagesEnum [Protocol] 303
FAX_StartMessagesEnum method 303
FAX_StartMessagesEnumEx method 304
FAX_StartMessagesEnumEx method [Protocol] 304
FAX_StartServerNotification [Protocol] 306
FAX_StartServerNotification method 306
FAX_StartServerNotificationEx [Protocol] 308
FAX_StartServerNotificationEx method 308
FAX_StartServerNotificationEx2 method 310
FAX_StartServerNotificationEx2 method [Protocol] 310

FAX_TAPI_LINECOUNTRY_ENTRY packet 124
FAX_TAPI_LINECOUNTRY_LISTW packet 125
FAX_TAPI_LOCATION_INFO packet 165
FAX_TAPI_LOCATIONS packet 163
FAX_TIME structure 131
FAX_UnregisterRoutingExtension method 312
FAX_UnregisterServiceProviderEx [Protocol] 312
FAX_UnregisterServiceProviderEx method 312
FAX_VERSION structure 57
FAX_WriteFile [Protocol] 313
FAX_WriteFile method 313
FaxClient IDL 387
FaxObs Server IDL 384
FaxObs Server Interface method 314
FaxObs_Abort method 331
FaxObs_AccessCheck method 349
FaxObs_ClosePort method 322
FaxObs_ConnectionRefCount method 318
FaxObs_EnableRoutingMethod method 335
FaxObs_EnumGlobalRoutingInfo method 338
FaxObs_EnumJobs method 325
FaxObs_EnumPorts method 331
FaxObs_EnumRoutingMethods method 334
FaxObs_GetConfiguration method 340
FaxObs_GetDeviceStatus method 330
FaxObs_GetInstallType method 320
FaxObs_GetJob method 326
FaxObs_GetLoggingCategories method 342
FaxObs_GetMapiProfiles method 345
FaxObs_GetPageData method 328
FaxObs_GetPort method 332
FaxObs_GetQueueFileName method 325
FaxObs_GetRoutingInfo method 336
FaxObs_GetSecurityDescriptor method 347
FaxObs_GetSecurityDescriptorCount method 348
FaxObs_GetTapiLocations method 343
FaxObs_GetVersion method 319
FaxObs_OpenPort method 321
FaxObs_SendDocument method 323
FaxObs_SetConfiguration method 341
FaxObs_SetGlobalRoutingInfo method 339
FaxObs_SetJob method 327

419 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

FaxObs_SetLoggingCategories method 343
FaxObs_SetPort method 333
FaxObs_SetRoutingInfo method 337
FaxObs_SetSecurityDescriptor method 348
FaxObs_SetTapiLocations method 344
FaxObs_StartClientServer method 346
FaxServer IDL 372
Fax-specific errors 126
Fields - vendor-extensible 18
Full IDL (section 6 367, section 6.1 367, section 6.2 372, section 6.3 384, section 6.4 387)

G

Glossary 11

I

IDL (section 6 367, section 6.1 367, section 6.2 372, section 6.3 384, section 6.4 387)
Implementer - security considerations 366
Index of security parameters 366
Informative references 15
Initialization
 client 351
 server 176
Introduction 11

L

Local events
 client 356
 server 351
LPCFAX_COVERPAGE_INFO_EXW 47
LPCFAX_JOB_PARAM_EXW 49

M

MAX_FAX_STRING_LEN constant 162
Message exchanges during adding an outbound routing rule example 362
Message exchanges during enumerating fax jobs example 360
Message exchanges during granting security privileges to a user example 364
Message exchanges during modifying fax jobs example 361
Message exchanges during querying server configuration example 359
Message exchanges during registering and unregistering for server notifications example 363
Message exchanges while sending a fax example 357
Message processing

 client 351
 fax server interface 176
 FaxObs server interface 314
Messages
 common data types 19
 data types 19
 examples 357
 routing methods - default 163
 transport 19
Methods
 Fax Server Interface 176
 FAX_ClientEventQueue (Opnum 1) 352
 FAX_ClientEventQueueEx (Opnum 3) 353
 FAX_CloseConnection (Opnum 2) 354
 FAX_OpenConnection (Opnum 0) 354
 FaxObs Server Interface 314
 Sequencing Rules 352
Modifying jobs - example 361

420 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

N

Normative references 15

O

Outbound routing rule example 362
Overview
 client 17
 server 16
 synopsis 16
Overview (synopsis) 16

P

Parameters - security 366
Parameters - security index 366
PFAX_ACTIVITY_LOGGING_CONFIGW 60
PFAX_CONFIGURATIONW 63
PFAX_COVERPAGE_INFO_EXW 47
PFAX_EVENT 134
PFAX_GLOBAL_ROUTING_INFOW 73
PFAX_JOB_ENTRY 23
PFAX_JOB_PARAM_EXW 49
PFAX_JOB_PARAMW 47
PFAX_MESSAGE_PROPS 51
PFAX_OUTBOX_CONFIG 51
PFAX_PORT_INFO 32
PFAX_PORT_INFO_EXW 116
PFAX_REASSIGN_INFO 53
PFAX_RECEIPTS_CONFIGW 119
PFAX_SERVER_ACTIVITY 54
PFAX_TIME 131
PFAX_VERSION 57
Preconditions 17
Prerequisites 17
Privileges - example 364
Product behavior 389
PRODUCT_SKU_TYPE [Protocol] 155
PRODUCT_SKU_TYPE enumeration 155
Protocol Details
 overview 168
PRPC_FAX_OUTBOUND_ROUTING_GROUPW 104
PRPC_FAX_OUTBOUND_ROUTING_RULEW 107

R

READ_CONTROL 161
References 15
 informative 15
 normative 15
Registering for server notifications example 363
Relationship to other protocols 17
Routing methods - default 163
Routing rule example 362
ROUTING_RULE_AREA_CODE_ANY 162
ROUTING_RULE_COUNTRY_CODE_ANY 162
RPC_FAX_OUTBOUND_ROUTING_GROUPW structure 104
RPC_FAX_OUTBOUND_ROUTING_RULEW structure 107

S

Security
 implementer considerations 366

421 / 421

[MS-FAX-Diff] - v20170915
Fax Server and Client Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 parameter index 366
 privileges example 364
Sending - example 357
Sequencing rules
 client 351
 fax server interface (section 3.1.4.1 176, section 3.1.4.1.1 184)
 FaxObs server interface (section 3.1.4.2 314, section 3.1.4.2.1 317)
Sequencing Rules method 352
Server
 abstract data model 168
 configuration query example 359
 Fax Server Interface method 176
 FaxObs Server IDL 384
 FaxObs Server Interface method 314
 FaxServer IDL 372
 initialization 176
 local events 351
 message processing
 fax 176
 FaxObs 314
 notifications example 363
 sequencing rules
 fax (section 3.1.4.1 176, section 3.1.4.1.1 184)

 FaxObs (section 3.1.4.2 314, section 3.1.4.2.1 317)
 timer events 351
 timers 176
Standards assignments 18

T

Timer events
 client 355
 server 351
Timers
 client 351
 server 176
Tracking changes 410
Transport 19
Transport - message 19

U

Unregistering for server notifications example 363
User privileges example 364

V

Vendor-extensible fields 18
Versioning 17

W

WRITE_DAC 161
WRITE_OWNER 161

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Fax Server Protocol
	1.3.2 Fax Client Protocol

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Common Custom-Marshaling Rules
	2.2.1.1 Single Data Type Instance
	2.2.1.2 Array of N Data Type Instances
	2.2.1.3 Marshaling Referenced Data Types

	2.2.2 FAX_ENUM_MESSAGE_FOLDER
	2.2.3 FAX_ENUM_CONFIG_OPTION
	2.2.4 FAX_ENUM_PERSONAL_PROF_TYPES
	2.2.5 FAX_JOB_ENTRY
	2.2.6 _FAX_JOB_ENTRY
	2.2.7 FAX_PORT_INFO
	2.2.8 _FAX_PORT_INFO
	2.2.9 FAX_ROUTING_METHOD
	2.2.10 FAX_DEVICE_STATUS
	2.2.11 FAX_LOG_CATEGORY
	2.2.12 FAX_COVERPAGE_INFO_EXW
	2.2.13 FAX_JOB_PARAMW
	2.2.14 FAX_JOB_PARAM_EXW
	2.2.15 FAX_MESSAGE_PROPS
	2.2.16 FAX_OUTBOX_CONFIG
	2.2.17 _FAX_OUTBOX_CONFIG
	2.2.18 FAX_REASSIGN_INFO
	2.2.19 FAX_SERVER_ACTIVITY
	2.2.20 _FAX_SERVER_ACTIVITY
	2.2.21 FAX_SPECIFIC_ACCESS_RIGHTS
	2.2.22 FAX_VERSION
	2.2.23 _FAX_VERSION
	2.2.24 FAX_ACCOUNT_INFO_0
	2.2.25 FAX_ACTIVITY_LOGGING_CONFIGW
	2.2.26 _FAX_ACTIVITY_LOGGING_CONFIGW
	2.2.27 FAX_ARCHIVE_CONFIGW
	2.2.28 FAX_CONFIGURATIONW
	2.2.29 _FAX_CONFIGURATIONW
	2.2.30 FAX_DEVICE_PROVIDER_INFO
	2.2.31 FAX_GENERAL_CONFIG
	2.2.32 FAX_GLOBAL_ROUTING_INFOW
	2.2.33 _FAX_GLOBAL_ROUTING_INFOW
	2.2.34 FAX_JOB_ENTRY_EX_1
	2.2.35 FAX_JOB_ENTRY_EXW
	2.2.36 FAX_JOB_STATUS
	2.2.37 FAX_MESSAGE_1
	2.2.38 FAX_MESSAGEW
	2.2.39 RPC_FAX_OUTBOUND_ROUTING_GROUPW
	2.2.40 _RPC_FAX_OUTBOUND_ROUTING_GROUPW
	2.2.41 RPC_FAX_OUTBOUND_ROUTING_RULEW
	2.2.42 _RPC_FAX_OUTBOUND_ROUTING_RULEW
	2.2.42.1 _FAX_RULE_DESTINATION_DEVICE_ID
	2.2.42.2 _FAX_RULE_DESTINATION_GROUP_NAME

	2.2.43 FAX_PRINTER_INFOW
	2.2.44 FAX_PERSONAL_PROFILEW
	2.2.45 FAX_PORT_INFO_EXW
	2.2.46 _FAX_PORT_INFO_EXW
	2.2.47 FAX_RECEIPTS_CONFIGW
	2.2.48 _FAX_RECEIPTS_CONFIGW
	2.2.49 FAX_ROUTING_EXTENSION_INFO
	2.2.50 FAX_TAPI_LINECOUNTRY_ENTRYW
	2.2.51 FAX_TAPI_LINECOUNTRY_LISTW
	2.2.52 Fax-Specific Errors
	2.2.53 FAX_ENUM_MSG_FLAGS
	2.2.54 FAX_ENUM_RULE_STATUS
	2.2.55 FAX_ENUM_DEVICE_RECEIVE_MODE
	2.2.56 FAX_ENUM_SMTP_AUTH_OPTIONS
	2.2.57 FAX_ENUM_PROVIDER_STATUS
	2.2.58 FAX_ENUM_JOB_OP
	2.2.59 FAX_ENUM_GROUP_STATUS
	2.2.60 FAX_JOB_EXTENDED_STATUS_ENUM
	2.2.61 FAX_TIME
	2.2.62 _FAX_TIME
	2.2.63 FAX_ENUM_EVENT_TYPE
	2.2.64 FAX_ENUM_DEVICE_STATUS
	2.2.65 FAX_ENUM_PRIORITY_TYPE
	2.2.66 FAX_EVENT
	2.2.67 FAX_EVENT_EX
	2.2.67.1 FAX_EVENT_EX_JOB_INFO
	2.2.67.2 FAX_EVENT_EX_CONFIG_TYPE
	2.2.67.3 FAX_EVENT_EX_ACTIVITY_INFO
	2.2.67.4 FAX_EVENT_EX_NEW_CALL
	2.2.67.5 FAX_EVENT_EX_QUEUE_STATES
	2.2.67.6 FAX_EVENT_EX_DEVICE_STATUS

	2.2.68 FAX_EVENT_EX_1
	2.2.68.1 FAX_EVENT_EX_1_JOB_INFO
	2.2.68.2 FAX_EVENT_EX_1_CONFIG_TYPE
	2.2.68.3 FAX_EVENT_EX_1_ACTIVITY_INFO
	2.2.68.4 FAX_EVENT_EX_1_NEW_CALL
	2.2.68.5 FAX_EVENT_EX_1_QUEUE_STATES
	2.2.68.6 FAX_EVENT_EX_1_DEVICE_STATUS

	2.2.69 FAX_EVENT_DEVICE_STATUS
	2.2.70 FAX_EVENT_JOB_1
	2.2.71 FAX_ENUM_JOB_EVENT_TYPE
	2.2.72 FAX_EVENT_NEW_CALL
	2.2.73 FAX_ENUM_CONFIG_TYPE
	2.2.74 FAX Data Types
	2.2.75 PRODUCT_SKU_TYPE
	2.2.76 FAX_ENUM_DELIVERY_REPORT_TYPES
	2.2.77 FAX_ENUM_JOB_FIELDS
	2.2.78 FAX_ENUM_COVERPAGE_FORMATS
	2.2.79 FAX_SPECIFIC_ACCESS_RIGHTS_2
	2.2.80 FAX_EVENT_JOB
	2.2.81 FAX_RULE_DESTINATION
	2.2.82 FAX_MAX_RPC_BUFFER
	2.2.83 ALL_FAX_USER_ACCESS_RIGHTS
	2.2.84 Generic Outbound Routing Rule Constants
	2.2.85 Protocol and Fax API Version Constants
	2.2.86 MAX_FAX_STRING_LEN
	2.2.87 Default Routing Methods
	2.2.88 FAX_TAPI_LOCATIONS
	2.2.89 FAX_TAPI_LOCATION_INFO
	2.2.90 FAX_SECURITY_DESCRIPTOR

	3 Protocol Details
	3.1 Fax Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 Fax Server Interface
	3.1.4.1.1 Sequencing Rules
	3.1.4.1.2 FAX_Abort (Opnum 9)
	3.1.4.1.3 FAX_AccessCheck (Opnum 25)
	3.1.4.1.4 FAX_AccessCheckEx2 (Opnum 101)
	3.1.4.1.5 FAX_AddOutboundGroup (Opnum 51)
	3.1.4.1.6 FAX_AddOutboundRule (Opnum 56)
	3.1.4.1.7 FAX_CheckServerProtSeq (Opnum 26)
	3.1.4.1.8 FAX_CheckValidFaxFolder (Opnum 86)
	3.1.4.1.9 FAX_ClosePort (Opnum 3)
	3.1.4.1.10 FAX_ConnectFaxServer (Opnum 80)
	3.1.4.1.11 FAX_ConnectionRefCount (Opnum 1)
	3.1.4.1.12 FAX_CreateAccount (Opnum 93)
	3.1.4.1.13 FAX_DeleteAccount (Opnum 94)
	3.1.4.1.14 FAX_EnableRoutingMethod (Opnum 14)
	3.1.4.1.15 FAX_EndCopy (Opnum 72)
	3.1.4.1.16 FAX_EndMessagesEnum (Opnum 64)
	3.1.4.1.17 FAX_EndServerNotification (Opnum 75)
	3.1.4.1.18 FAX_EnumAccounts (Opnum 95)
	3.1.4.1.19 FAX_EnumerateProviders (Opnum 45)
	3.1.4.1.20 FAX_EnumGlobalRoutingInfo (Opnum 17)
	3.1.4.1.21 FAX_EnumJobs (Opnum 4)
	3.1.4.1.22 FAX_EnumJobsEx (Opnum 28)
	3.1.4.1.23 FAX_EnumJobsEx2 (Opnum 88)
	3.1.4.1.24 FAX_EnumMessages (Opnum 65)
	3.1.4.1.25 FAX_EnumMessagesEx (Opnum 91)
	3.1.4.1.26 FAX_EnumOutboundGroups (Opnum 54)
	3.1.4.1.27 FAX_EnumOutboundRules (Opnum 59)
	3.1.4.1.28 FAX_EnumPorts (Opnum 10)
	3.1.4.1.29 FAX_EnumPortsEx (Opnum 48)
	3.1.4.1.30 FAX_EnumRoutingExtensions (Opnum 78)
	3.1.4.1.31 FAX_EnumRoutingMethods (Opnum 13)
	3.1.4.1.32 FAX_GetAccountInfo (Opnum 96)
	3.1.4.1.33 FAX_GetActivityLoggingConfiguration (Opnum 43)
	3.1.4.1.34 FAX_GetArchiveConfiguration (Opnum 41)
	3.1.4.1.35 FAX_GetConfigOption (Opnum 104)
	3.1.4.1.36 FAX_GetConfiguration (Opnum 19)
	3.1.4.1.37 FAX_GetCountryList (Opnum 30)
	3.1.4.1.38 FAX_GetDeviceStatus (Opnum 8)
	3.1.4.1.39 FAX_GetExtensionData (Opnum 49)
	3.1.4.1.40 FAX_GetGeneralConfiguration (Opnum 97)
	3.1.4.1.41 FAX_GetJob (Opnum 5)
	3.1.4.1.42 FAX_GetJobEx (Opnum 29)
	3.1.4.1.43 FAX_GetJobEx2 (Opnum 87)
	3.1.4.1.44 FAX_GetLoggingCategories (Opnum 21)
	3.1.4.1.45 FAX_GetMessage (Opnum 66)
	3.1.4.1.46 FAX_GetMessageEx (Opnum 89)
	3.1.4.1.47 FAX_GetOutboxConfiguration (Opnum 38)
	3.1.4.1.48 FAX_GetPageData (Opnum 7)
	3.1.4.1.49 FAX_GetPersonalCoverPagesOption (Opnum 40)
	3.1.4.1.50 FAX_GetPersonalProfileInfo (Opnum 31)
	3.1.4.1.51 FAX_GetPort (Opnum 11)
	3.1.4.1.52 FAX_GetPortEx (Opnum 46)
	3.1.4.1.53 FAX_GetQueueStates (Opnum 32)
	3.1.4.1.54 FAX_GetReceiptsConfiguration (Opnum 34)
	3.1.4.1.55 FAX_GetReceiptsOptions (Opnum 36)
	3.1.4.1.56 FAX_GetRecipientsLimit (Opnum 84)
	3.1.4.1.57 FAX_GetRoutingInfo (Opnum 15)
	3.1.4.1.58 FAX_GetSecurity (Opnum 23)
	3.1.4.1.59 FAX_GetSecurityEx (Opnum 81)
	3.1.4.1.60 FAX_GetSecurityEx2 (Opnum 99)
	3.1.4.1.61 FAX_GetServerActivity (Opnum 76)
	3.1.4.1.62 FAX_GetServerSKU (Opnum 85)
	3.1.4.1.63 FAX_GetServicePrinters (Opnum 0)
	3.1.4.1.64 FAX_GetVersion (Opnum 37)
	3.1.4.1.65 FAX_OpenPort (Opnum 2)
	3.1.4.1.66 FAX_ReadFile (Opnum 71)
	3.1.4.1.67 FAX_ReAssignMessage (Opnum 102)
	3.1.4.1.68 FAX_RefreshArchive (Opnum 82)
	3.1.4.1.69 FAX_RegisterServiceProviderEx (Opnum 60)
	3.1.4.1.70 FAX_RemoveMessage (Opnum 67)
	3.1.4.1.71 FAX_RemoveOutboundGroup (Opnum 53)
	3.1.4.1.72 FAX_RemoveOutboundRule (Opnum 57)
	3.1.4.1.73 FAX_SendDocumentEx (Opnum 27)
	3.1.4.1.74 FAX_SetActivityLoggingConfiguration (Opnum 44)
	3.1.4.1.75 FAX_SetArchiveConfiguration (Opnum 42)
	3.1.4.1.76 FAX_SetConfiguration (Opnum 20)
	3.1.4.1.77 FAX_SetConfigWizardUsed (Opnum 77)
	3.1.4.1.78 FAX_SetDeviceOrderInGroup (Opnum 55)
	3.1.4.1.79 FAX_SetExtensionData (Opnum 50)
	3.1.4.1.80 FAX_SetGeneralConfiguration (Opnum 98)
	3.1.4.1.81 FAX_SetGlobalRoutingInfo (Opnum 18)
	3.1.4.1.82 FAX_SetJob (Opnum 6)
	3.1.4.1.83 FAX_SetLoggingCategories (Opnum 22)
	3.1.4.1.84 FAX_SetMessage (Opnum 103)
	3.1.4.1.85 FAX_SetOutboundGroup (Opnum 52)
	3.1.4.1.86 FAX_SetOutboundRule (Opnum 58)
	3.1.4.1.87 FAX_SetOutboxConfiguration (Opnum 39)
	3.1.4.1.88 FAX_SetPort (Opnum 12)
	3.1.4.1.89 FAX_SetPortEx (Opnum 47)
	3.1.4.1.90 FAX_SetQueue (Opnum 33)
	3.1.4.1.91 FAX_SetReceiptsConfiguration (Opnum 35)
	3.1.4.1.92 FAX_SetRecipientsLimit (Opnum 83)
	3.1.4.1.93 FAX_SetRoutingInfo (Opnum 16)
	3.1.4.1.94 FAX_SetSecurity (Opnum 24)
	3.1.4.1.95 FAX_SetSecurityEx2 (Opnum 100)
	3.1.4.1.96 FAX_StartCopyMessageFromServer (Opnum 69)
	3.1.4.1.97 FAX_StartCopyToServer (Opnum 68)
	3.1.4.1.98 FAX_StartMessagesEnum (Opnum 63)
	3.1.4.1.99 FAX_StartMessagesEnumEx (Opnum 90)
	3.1.4.1.100 FAX_StartServerNotification (Opnum 73)
	3.1.4.1.101 FAX_StartServerNotificationEx (Opnum 74)
	3.1.4.1.102 FAX_StartServerNotificationEx2 (Opnum 92)
	3.1.4.1.103 FAX_UnregisterRoutingExtension (Opnum 62)
	3.1.4.1.104 FAX_UnregisterServiceProviderEx (Opnum 61)
	3.1.4.1.105 FAX_WriteFile (Opnum 70)

	3.1.4.2 FaxObs Server Interface
	3.1.4.2.1 Sequencing Rules
	3.1.4.2.2 FaxObs_ConnectionRefCount (Opnum 0)
	3.1.4.2.3 FaxObs_GetVersion (Opnum 1)
	3.1.4.2.4 FaxObs_GetInstallType (Opnum 2)
	3.1.4.2.5 FaxObs_OpenPort (Opnum 3)
	3.1.4.2.6 FaxObs_ClosePort (Opnum 4)
	3.1.4.2.7 FaxObs_SendDocument (Opnum 5)
	3.1.4.2.8 FaxObs_GetQueueFileName (Opnum 6)
	3.1.4.2.9 FaxObs_EnumJobs (Opnum 7)
	3.1.4.2.10 FaxObs_GetJob (Opnum 8)
	3.1.4.2.11 FaxObs_SetJob (Opnum 9)
	3.1.4.2.12 FaxObs_GetPageData (Opnum 10)
	3.1.4.2.13 FaxObs_GetDeviceStatus (Opnum 11)
	3.1.4.2.14 FaxObs_Abort (Opnum 12)
	3.1.4.2.15 FaxObs_EnumPorts (Opnum 13)
	3.1.4.2.16 FaxObs_GetPort (Opnum 14)
	3.1.4.2.17 FaxObs_SetPort (Opnum 15)
	3.1.4.2.18 FaxObs_EnumRoutingMethods (Opnum 16)
	3.1.4.2.19 FaxObs_EnableRoutingMethod (Opnum 17)
	3.1.4.2.20 FaxObs_GetRoutingInfo (Opnum 18)
	3.1.4.2.21 FaxObs_SetRoutingInfo (Opnum 19)
	3.1.4.2.22 FaxObs_EnumGlobalRoutingInfo (Opnum 20)
	3.1.4.2.23 FaxObs_SetGlobalRoutingInfo (Opnum 21)
	3.1.4.2.24 FaxObs_GetConfiguration (Opnum 22)
	3.1.4.2.25 FaxObs_SetConfiguration (Opnum 23)
	3.1.4.2.26 FaxObs_GetLoggingCategories (Opnum 24)
	3.1.4.2.27 FaxObs_SetLoggingCategories (Opnum 25)
	3.1.4.2.28 FaxObs_GetTapiLocations (Opnum 26)
	3.1.4.2.29 FaxObs_SetTapiLocations (Opnum 27)
	3.1.4.2.30 FaxObs_GetMapiProfiles (Opnum 28)
	3.1.4.2.31 FaxObs_StartClientServer (Opnum 29)
	3.1.4.2.32 FaxObs_GetSecurityDescriptor (Opnum 31)
	3.1.4.2.33 FaxObs_SetSecurityDescriptor (Opnum 32)
	3.1.4.2.34 FaxObs_GetSecurityDescriptorCount (Opnum 33)
	3.1.4.2.35 FaxObs_AccessCheck (Opnum 34)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Fax Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Sequencing Rules
	3.2.4.2 FAX_ClientEventQueue (Opnum 1)
	3.2.4.3 FAX_ClientEventQueueEx (Opnum 3)
	3.2.4.4 FAX_CloseConnection (Opnum 2)
	3.2.4.5 FAX_OpenConnection (Opnum 0)

	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Message Exchanges While Sending a Fax
	4.2 Message Exchanges During Querying Server Configuration
	4.3 Message Exchanges During Enumerating Fax Jobs
	4.4 Message Exchanges During Modifying Fax Jobs
	4.5 Message Exchanges During Adding an Outbound Routing Rule
	4.6 Message Exchanges During Registering and Unregistering for Server Notifications
	4.7 Message Exchanges During Granting Security Privileges to a User

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	6.1 Appendix A.1: faxdatatypes.idl
	6.2 Appendix A.2: fax.idl
	6.3 Appendix A.3: faxobs.idl
	6.4 Appendix A.4: faxclient.idl

	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

