

1 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MS-EVEN6-Diff]:

EventLog Remoting Protocol Version 6.0

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Revision Summary

Date
Revision
History

Revision
Class Comments

10/22/2006 0.01 New Version 0.01 release

1/19/2007 1.0 Major Version 1.0 release

3/2/2007 1.1 Minor Version 1.1 release

4/3/2007 1.2 Minor Version 1.2 release

5/11/2007 1.3 Minor Version 1.3 release

6/1/2007 2.0 Major Updated and revised the technical content.

7/3/2007 2.0.1 Editorial Changed language and formatting in the technical content.

7/20/2007 2.0.2 Editorial Changed language and formatting in the technical content.

8/10/2007 2.1 Minor Clarified the meaning of the technical content.

9/28/2007 2.2 Minor Clarified the meaning of the technical content.

10/23/2007 3.0 Major Added clarification of server state.

11/30/2007 4.0 Major Updated and revised the technical content.

1/25/2008 5.0 Major Updated and revised the technical content.

3/14/2008 6.0 Major Updated and revised the technical content.

5/16/2008 6.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 6.1 Minor Clarified the meaning of the technical content.

7/25/2008 6.2 Minor Clarified the meaning of the technical content.

8/29/2008 6.3 Minor Removed constants in IDL.

10/24/2008 6.3.1 Editorial Changed language and formatting in the technical content.

12/5/2008 7.0 Major Updated and revised the technical content.

1/16/2009 7.0.1 Editorial Changed language and formatting in the technical content.

2/27/2009 7.0.2 Editorial Changed language and formatting in the technical content.

4/10/2009 7.0.3 Editorial Changed language and formatting in the technical content.

5/22/2009 7.1 Minor Clarified the meaning of the technical content.

7/2/2009 7.1.1 Editorial Changed language and formatting in the technical content.

8/14/2009 7.2 Minor Clarified the meaning of the technical content.

9/25/2009 7.3 Minor Clarified the meaning of the technical content.

11/6/2009 8.0 Major Updated and revised the technical content.

12/18/2009 9.0 Major Updated and revised the technical content.

1/29/2010 9.1 Minor Clarified the meaning of the technical content.

3 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Date
Revision
History

Revision
Class Comments

3/12/2010 9.2 Minor Clarified the meaning of the technical content.

4/23/2010 9.3 Minor Clarified the meaning of the technical content.

6/4/2010 9.4 Minor Clarified the meaning of the technical content.

7/16/2010 10.0 Major Updated and revised the technical content.

8/27/2010 10.1 Minor Clarified the meaning of the technical content.

10/8/2010 10.1 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 11.0 Major Updated and revised the technical content.

1/7/2011 12.0 Major Updated and revised the technical content.

2/11/2011 13.0 Major Updated and revised the technical content.

3/25/2011 14.0 Major Updated and revised the technical content.

5/6/2011 15.0 Major Updated and revised the technical content.

6/17/2011 15.1 Minor Clarified the meaning of the technical content.

9/23/2011 15.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 16.0 Major Updated and revised the technical content.

3/30/2012 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 17.0 Major Updated and revised the technical content.

11/14/2013 18.0 Major Updated and revised the technical content.

2/13/2014 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 19.0 Major Significantly changed the technical content.

10/16/2015 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Date
Revision
History

Revision
Class Comments

9/15/2017 20.0 Major Significantly changed the technical content.

3/16/2018 21.0 Major Significantly changed the technical content.

9/12/2018 22.0 Major Significantly changed the technical content.

4/7/2021 23.0 Major Significantly changed the technical content.

6/25/2021 24.0 Major Significantly changed the technical content.

9/20/2023 25.0 Major Significantly changed the technical content.

4/23/2024 25.0 None
No changes to the meaning, language, or formatting of the
technical content.

5 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Table of Contents

1 Introduction .. 8
1.1 Glossary ... 8
1.2 References .. 9

1.2.1 (Updated Section) Normative References ... 10
1.2.2 Informative References ... 11

1.3 Overview .. 12
1.3.1 Background ... 12
1.3.2 EventLog Remoting Protocol Version 6.0 .. 13

1.4 Relationship to Other Protocols .. 13
1.5 Prerequisites/Preconditions ... 14
1.6 Applicability Statement ... 14
1.7 Versioning and Capability Negotiation ... 14
1.8 Vendor-Extensible Fields ... 14

1.8.1 Channel Names .. 14
1.8.2 Publisher Names ... 15
1.8.3 Event Descriptor ... 15
1.8.4 Error Codes.. 15

1.9 Standards Assignments ... 15

2 Messages ... 16
2.1 Transport .. 16

2.1.1 Server ... 16
2.1.2 Client .. 16

2.2 Common Data Types .. 16
2.2.1 RpcInfo ... 16
2.2.2 BooleanArray ... 17
2.2.3 UInt32Array ... 17
2.2.4 UInt64Array ... 17
2.2.5 StringArray .. 17
2.2.6 GuidArray .. 18
2.2.7 EvtRpcVariant .. 18
2.2.8 EvtRpcVariantType .. 19
2.2.9 EvtRpcVariantList ... 19
2.2.10 EvtRpcAssertConfigFlags Enumeration ... 20
2.2.11 EvtRpcQueryChannelInfo ... 20
2.2.12 BinXml .. 20

2.2.12.1 Emitting Instruction for the Element Rule ... 25
2.2.12.2 Emitting Instruction for the Attribute Rule .. 26
2.2.12.3 Emitting Instruction for the Substitution Rule ... 26
2.2.12.4 Emitting Instruction for the CharRef Rule ... 27
2.2.12.5 Emitting Instruction for the EntityRef Rule ... 27
2.2.12.6 Emitting Instruction for the CDATA Section Rule 27
2.2.12.7 Emitting Instruction for the PITarget Rule .. 27
2.2.12.8 Emitting Instruction for the PIData Rule ... 27
2.2.12.9 Emitting Instruction for the CloseStartElement Token Rule 27
2.2.12.10 Emitting Instruction for the CloseEmptyElement Token Rule 27
2.2.12.11 Emitting Instruction for the EndElement Token Rule 28
2.2.12.12 Emitting Instruction for the TemplateInstanceData Rule 28

2.2.13 Event .. 28
2.2.14 Bookmark .. 32
2.2.15 Filter ... 33

2.2.15.1 Filter XPath 1.0 Subset .. 33
2.2.15.2 Filter XPath 1.0 Extensions ... 34

2.2.16 Query.. 36
2.2.17 Result Set .. 37
2.2.18 BinXmlVariant Structure .. 39

6 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.19 error_status_t .. 40
2.2.20 Handles ... 40
2.2.21 Binding Handle ... 40

2.3 Message Syntax ... 40
2.3.1 Common Values ... 40

3 Protocol Details ... 42
3.1 Server Details .. 42

3.1.1 Abstract Data Model .. 42
3.1.1.1 Events ... 42
3.1.1.2 Publishers .. 42
3.1.1.3 Publisher Tables .. 43
3.1.1.4 Channels .. 44
3.1.1.5 Channel Table .. 46
3.1.1.6 Logs .. 46
3.1.1.7 Localized Logs .. 47
3.1.1.8 Queries .. 49
3.1.1.9 Subscriptions .. 49
3.1.1.10 Control Object .. 49
3.1.1.11 Context Handles ... 49
3.1.1.12 Handle Table .. 53
3.1.1.13 Localized String Table .. 53
3.1.1.14 Publisher Resource, Message, and Parameter Files 53

3.1.2 Timers .. 55
3.1.3 Initialization ... 55
3.1.4 Message Processing Events and Sequencing Rules .. 55

3.1.4.1 Subscription Sequencing .. 57
3.1.4.2 Query Sequencing ... 58
3.1.4.3 Log Information Sequencing ... 58
3.1.4.4 Publisher Metadata Sequencing ... 58
3.1.4.5 Event Metadata Enumerator Sequencing .. 59
3.1.4.6 Cancellation Sequencing .. 59

3.1.4.6.1 Canceling Subscriptions .. 59
3.1.4.6.2 Canceling Queries .. 59
3.1.4.6.3 Canceling Clear or Export Methods .. 59

3.1.4.7 BinXml... 60
3.1.4.7.1 BinXml Templates .. 60
3.1.4.7.2 Optional Substitutions .. 61
3.1.4.7.3 Type System ... 62
3.1.4.7.4 BinXml Type ... 64
3.1.4.7.5 Array Types .. 64
3.1.4.7.6 Prescriptive Details .. 65

3.1.4.8 EvtRpcRegisterRemoteSubscription (Opnum 0) ... 66
3.1.4.9 EvtRpcRemoteSubscriptionNextAsync (Opnum 1) 69
3.1.4.10 EvtRpcRemoteSubscriptionNext (Opnum 2) .. 70
3.1.4.11 EvtRpcRemoteSubscriptionWaitAsync (Opnum 3) 73
3.1.4.12 EvtRpcRegisterLogQuery (Opnum 5) ... 73
3.1.4.13 EvtRpcQueryNext (Opnum 11) .. 76
3.1.4.14 EvtRpcQuerySeek (Opnum 12) ... 78
3.1.4.15 EvtRpcGetLogFileInfo (Opnum 18) .. 80
3.1.4.16 EvtRpcClearLog (Opnum 6) .. 82
3.1.4.17 EvtRpcExportLog (Opnum 7) .. 84
3.1.4.18 EvtRpcLocalizeExportLog (Opnum 8) ... 86
3.1.4.19 EvtRpcOpenLogHandle (Opnum 17) ... 88
3.1.4.20 EvtRpcGetChannelList (Opnum 19) ... 89
3.1.4.21 EvtRpcGetChannelConfig (Opnum 20).. 90
3.1.4.22 EvtRpcPutChannelConfig (Opnum 21) .. 94
3.1.4.23 EvtRpcGetPublisherList(Opnum 22) .. 100

7 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.24 EvtRpcGetPublisherListForChannel (Opnum 23) 100
3.1.4.25 EvtRpcGetPublisherMetadata (Opnum 24) ... 101
3.1.4.26 EvtRpcGetPublisherResourceMetadata (Opnum 25) 103
3.1.4.27 EvtRpcGetEventMetadataEnum (Opnum 26) .. 106
3.1.4.28 EvtRpcGetNextEventMetadata (Opnum 27) ... 106
3.1.4.29 EvtRpcAssertConfig (Opnum 15) .. 108
3.1.4.30 EvtRpcRetractConfig (Opnum 16) ... 110
3.1.4.31 EvtRpcMessageRender (Opnum 9) ... 111
3.1.4.32 EvtRpcMessageRenderDefault (Opnum 10) .. 115
3.1.4.33 EvtRpcClose (Opnum 13) .. 116
3.1.4.34 EvtRpcCancel (Opnum 14) .. 117
3.1.4.35 EvtRpcRegisterControllableOperation (Opnum 4) 118
3.1.4.36 EvtRpcGetClassicLogDisplayName (Opnum 28) .. 118

3.1.5 Timer Events ... 120
3.1.6 Other Local Events ... 120

3.2 Client Details .. 120
3.2.1 Abstract Data Model ... 120
3.2.2 Timers ... 120
3.2.3 Initialization .. 120
3.2.4 Message Processing Events and Sequencing Rules ... 120
3.2.5 Timer Events ... 120
3.2.6 Other Local Events ... 120
3.2.7 Changing Publisher Configuration Data ... 121

4 Protocol Examples ... 122
4.1 Query Example ... 122
4.2 Get Log Information Example ... 123
4.3 Bookmark Example ... 124
4.4 Simple BinXml Example ... 125
4.5 Structured Query Example ... 126
4.6 Push Subscription Example ... 127
4.7 Pull Subscription Example .. 128
4.8 BinXml Example Using Templates .. 130
4.9 Render Localized Event Message Example .. 134
4.10 Get Publisher List Example ... 136
4.11 Get Channel List Example... 137
4.12 Get Event Metadata Example .. 137
4.13 Publisher Table and Channel Table Example ... 141
4.14 Backup and Archive the Event Log Example .. 142

5 Security ... 144
5.1 Security Considerations for Implementers .. 144
5.2 Index of Security Parameters ... 144

6 Appendix A: Full IDL .. 145

7 (Updated Section) Appendix B: Product Behavior .. 151

8 Change Tracking .. 158

9 Index ... 159

8 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1 Introduction

The EventLog Remoting Protocol Version 6.0, originally available in the Windows Vista operating
system, is a remote procedure call (RPC)–based protocol that exposes RPC methods for reading
events in both live event logs and backup event logs on remote computers. This protocol also specifies
how to get general information for a log, such as number of records in the log, oldest records in the
log, and if the log is full. It may also be used for clearing and backing up both types of event logs.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

backup event log: An event log that cannot be written to, only read from. Backup event logs are
typically used for archival purposes, or for copying to another computer for use by support

personnel.

channel: A destination of event writes and a source for event reads. The physical backing store is
a live event log.

cursor: The current position within a result set.

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol

sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

event: A discrete unit of historical data that an application exposes that may be relevant to other
applications. An example of an event would be a particular user logging on to the computer.

event descriptor: A structure indicating the kind of event. For example, a user logging on to the

computer could be one kind of event, while a user logging off would be another, and these
events could be indicated by using distinct event descriptors.

event log: A collection of records, each of which corresponds to an event.

event metadata: The metadata of an event provider including the event definition, events,
channels the provider generates the events into, the unique identifier of the provider, and the
localized string tables for this provider.

globally unique identifier (GUID): A term used interchangeably with universally unique

identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique

identifier (UUID).

Interface Definition Language (IDL): The International Standards Organization (ISO) standard

language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

live event log: An event log that can be written to and read from.

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS-RPCE].

9 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

publisher: In the context of events: The source of event generation. An application or component
that writes to one or more event logs. An application that publishes events.

publisher metadata: The metadata of an event that includes the predefined property values of
one event and the event user-defined data definition.

query: A context-dependent term commonly overloaded with three meanings, defined as follows:
The act of requesting records from a set of records or the request itself. The particular string
defining the criteria for which records are to be returned. This string can either be an XPath, as
specified in [XPATH], (for more information, see [MS-EVEN6] section 2.2.15) or a structured
XML query, as specified in [XML10], (for more information, see [MS-EVEN6] section 2.2.16).

record: The data structure that contains an event that is currently represented in an event log.

remote procedure call (RPC): A communication protocol used primarily between client and

server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the

single message from an RPC exchange (the RPC message). For more information, see [C706].

result set: A set of records that are selected by a query.

RPC dynamic endpoint: A network-specific server address that is requested and assigned at run

time, as described in [C706].

RPC endpoint: A network-specific address of a server process for remote procedure calls (RPCs).
The actual name of the RPC endpoint depends on the RPC protocol sequence being used. For
example, for the NCACN_IP_TCP RPC protocol sequence an RPC endpoint might be TCP port
1025. For more information, see [C706].

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as

described in [C706] and [MS-RPCE].

structured XML query: An XML document that specifies a query that can contain multiple
subqueries. For more information, see section 2.2.16.

subquery: A component of a structured XML query. For more information, see section 2.2.16.

subscription filter: An XPath query expression used in a subscription to filter out events that do
not meet certain criteria from the client.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple

purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of

this term does not imply or require that the algorithms described in [RFC4122] or [C706] must

be used for generating the UUID.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

10 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 (Updated Section) Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

https://publications.opengroup.org/c706

Note Registration is required to download the document.

[ISO/IEC-8859-1] International Organization for Standardization, "Information Technology -- 8-Bit
Single-Byte Coded Graphic Character Sets -- Part 1: Latin Alphabet No. 1", ISO/IEC 8859-1, 1998,
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=28245

Note There is a charge to download the specification.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-EVEN] Microsoft Corporation, "EventLog Remoting Protocol".

[MS-GPSI] Microsoft Corporation, "Group Policy: Software Installation Protocol Extension".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SPNG] Microsoft Corporation, "Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
Extension".

[PRA-CreateDirectory] Microsoft Corporation, "CreateDirectory function",
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363855(v=vs.85).aspx

[PRA-CreateFile] Microsoft Corporation, "CreateFile function", https://msdn.microsoft.com/en-
us/library/windows/desktop/aa363858(v=vs.85).aspx

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc-editor.org/info/rfc2119

[RFC3986] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (URI): Generic

Syntax", STD 66, RFC 3986, January 2005, httphttps://www.rfc-editor.org/rfcinfo/rfc3986.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN
Namespace", RFC 4122, July 2005, https://www.rfc-editor.org/info/rfc4122

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, https://www.rfc-editor.org/info/rfc4234

[UNICODE] The Unicode Consortium, "The Unicode Consortium Home Page", http://www.unicode.org/

11 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[XML10] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0 (Third Edition)",
February 2004, http://www.w3.org/TR/2004/REC-xml-20040204/

[XMLSCHEMA2/2] Biron, P., and Malhotra, A., Eds., "XML Schema Part 2: Datatypes Second Edition",
W3C Recommendation, October 2004, https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

[XPATH] Clark, J. and DeRose, S., "XML Path Language (XPath), Version 1.0", W3C Recommendation,
November 1999, http://www.w3.org/TR/1999/REC-xpath-19991116/

1.2.2 Informative References

[MSDN-BNDHNDLS] Microsoft Corporation, "Binding Handles", http://msdn.microsoft.com/en-
us/library/aa373566.aspx

[MSDN-CH] Microsoft Corporation, "Context Handles", http://msdn.microsoft.com/en-
us/library/aa373605(VS.85).aspx

[MSDN-CONSUMEVTS] Microsoft Corporation, "Consuming Events", http://msdn.microsoft.com/en-

us/library/dd996910.aspx

[MSDN-CreateFile] Microsoft Corporation, "CreateFile function", http://msdn.microsoft.com/en-
us/library/aa363858(VS.85).aspx

[MSDN-EVENTRECORD] Microsoft Corporation, "EVENT_RECORD structure",
http://msdn.microsoft.com/en-us/library/aa363769(VS.85).aspx

[MSDN-EVENTS] Microsoft Corporation, "Event Schema", http://msdn.microsoft.com/en-
us/library/aa385201.aspx

[MSDN-EVENT] Microsoft Corporation, "Event Logging", http://msdn.microsoft.com/en-
us/library/aa363652.aspx

[MSDN-EVENT_DESCRIPTOR] Microsoft Corporation, "EVENT_DESCRIPTOR structure",

http://msdn.microsoft.com/en-us/library/aa363754(VS.85).aspx

[MSDN-EVENT_HEADER] Microsoft Corporation, "EVENT_HEADER structure",
http://msdn.microsoft.com/en-us/library/aa363759(v=VS.85).aspx

[MSDN-EvntManifestSE] Microsoft Corporation, "EventManifest Schema Elements",
http://msdn.microsoft.com/en-us/library/aa382753(v=VS.85).aspx

[MSDN-EVTLGCHWINEVTLG] Microsoft Corporation, "Event Logs and Channels in Windows Event Log",
http://msdn.microsoft.com/en-us/library/aa385225.aspx

[MSDN-EVTSCT] Microsoft Corporation, "Event Schema Complex Types",
http://msdn.microsoft.com/en-us/library/aa384343(v=VS.85).aspx

[MSDN-EVTSST] Microsoft Corporation, "Event Schema Simple Types", http://msdn.microsoft.com/en-
us/library/aa385204(v=VS.85).aspx

[MSDN-FILEATT] Microsoft Corporation, "GetFileAttributes function", http://msdn.microsoft.com/en-

us/library/aa364944.aspx

[MSDN-FMT] Microsoft Corporation, "FormatMessage function", http://msdn.microsoft.com/en-
us/library/ms679351.aspx

[MSDN-GETTHDPREUILANG] Microsoft Corporation, "GetThreadPreferredUILanguages function",
http://msdn.microsoft.com/en-us/library/dd318128(v=vs.85).aspx

12 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MSDN-MUIResrcMgmt] Microsoft Corporation, "MUI Resource Management",
http://msdn.microsoft.com/en-us/library/dd319070(VS.85).aspx

[MSDN-ProcessTrace] Microsoft Corporation, "ProcessTrace function", http://msdn.microsoft.com/en-
us/library/aa364093.aspx

[MSDN-ProvEvts] Microsoft Corporation, "Providing Events", http://msdn.microsoft.com/en-
us/library/aa364098(v=VS.85).aspx

[MSDN-RpcAsyncCompleteCall] Microsoft Corporation, "RpcAsyncCompleteCall function",
http://msdn.microsoft.com/en-us/library/aa375572(v=VS.85).aspx

[MSDN-stringTable] Microsoft Corporation, "stringTable (LocalizationType) Element",
http://msdn.microsoft.com/en-us/library/aa384125(v=VS.85).aspx

[MSDN-WAIM] Microsoft Corporation, "Writing an Instrumentation Manifest",
http://msdn.microsoft.com/en-us/library/dd996930.aspx

[MSDN-WPPST] Microsoft Corporation, "WPP Software Tracing", http://msdn.microsoft.com/en-
us/library/ff556204.aspx

[MSFT-CVE-2021-31958] Microsoft Corporation, "Windows NTLM Elevation of Privilege Vulnerability",

CVE-2021-31958, June 8, 2021, https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-
2021-31958

[MSKB-113996] Microsoft Corporation, "INFO: Mapping NT Status Error Codes to Win32 Error Codes",
March 2005, http://support.microsoft.com/kb/113996

[PE-COFF] Microsoft Corporation, "Microsoft Portable Executable and Common Object File Format
Specification", May2006,
https://github.com/tpn/pdfs/blob/master/Microsoft%20Portable%20Executable%20and%20Common
%20Object%20File%20Format%20Specification%20-%201999%20(pecoff).pdf

1.3 Overview

1.3.1 Background

Event logs allow applications or the operating system to store historical information that is of interest
to administrators. The information is organized in separate, discrete pieces of information, which are
referred to as events. An example of an event is a user logging on to the computer.

The events represented in an event log are referred to as records. The records in a log are numbered.
The first event written has its record number (that is, a field in the record) set to 1, the second event
has its record number set to 2, and so on. Logs can be configured to be circular. A circular log is one

in which the oldest records are overwritten once the logs reach some maximum size. Once a record is
written, it is never again updated and is thereafter treated as read-only.

A computer can have several event logs. One log might be devoted to security events while another

can be for general application use.

Applications or components that write to event logs are known as publishers. A single event log might
contain events from many publishers. A single publisher can write to multiple logs. Publishers play the
role played by event sources in the EventLog Remoting Protocol [MS-EVEN].

Publishers write several kinds of events. For example, a user logging on to the computer could be one
kind of event while a user logging off would be another. When a publisher writes an event, it specifies
an event descriptor, which indicates what kind of event is being written. Event
descriptors (section 1.8.3) subsume the eventID and event category fields used in the EventLog

13 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Remoting Protocol. Publishers also specify message files that are used to define localized messages
that can be used to display events using localized strings.

An event log can be either a live event log or a backup event log. A live event log is one that can be
used for both reading and writing. A live event log can be used to create a backup event log, which is

a read-only snapshot of a live event log. Backup event logs are typically used for archival purposes or
are copied to another computer for use by support personnel.

Each live event log corresponds to a channel. A channel is a logical data stream of event records.
Publishers write to channels, and each channel has a live event log as its physical backing store.
Events can be read from either a backup event log or a channel corresponding to a live event log. A
backup event log cannot be associated with a channel.

1.3.2 EventLog Remoting Protocol Version 6.0

The EventLog Remoting Protocol Version 6.0 provides a way to access event logs on remote
computers.

For both live logs and backup logs, the protocol exposes RPC (as specified in [MS-RPCE]) methods for

reading event and for getting basic information about the log, such as the number of records in the
log, the oldest record in the log, and whether the log is full, and therefore can no longer accept
additional events. When reading events, a filter can be specified so that only desired records are
returned.

The EventLog Remoting Protocol Version 6.0 does not support writing events to either live event logs
or backup event logs.

For live event logs only, the protocol also exposes RPC methods for subscriptions, clearing logs, and

creating backup logs. Subscriptions are similar to normal reading except the subscription can be used
to get events asynchronously as they arrive.

The protocol provides the methods for reading publisher and event logs settings and it also provides
the methods to change the settings of event logs. Additionally, the protocol provides methods for

converting events into localized messages suitable for display to users.

A query can be done in which a filter is applied. The result set is the set of records that satisfy the

filter. The cursor is the location in the result set that is the last record retrieved by the caller. A filter is
composed by using selectors and suppressors. A selector specifies records to include, while a
suppressor specifies records to exclude. Suppressors override selectors.

For more information and an overview of methods used, see section 3.1.4.

1.4 Relationship to Other Protocols

The EventLog Remoting Protocol Version 6.0 is dependent on RPC (as specified in [MS-RPCE]) for
message transport.

The EventLog Remoting Protocol Version 6.0 is a replacement for the EventLog Remoting Protocol
[MS-EVEN]. The EventLog Remoting Protocol Version 6.0 supports a number of new features not

present in the original EventLog Remoting Protocol, such as query processing with filters,
subscriptions, localized message support, and configuration support.

The EventLog Remoting Protocol Version 6.0 allows access to all the event logs accessible by the
EventLog Remoting Protocol, plus some additional event logs not accessible via the EventLog
Remoting Protocol.

The server-side dependency on the Local Security Authority (Domain Policy) Remote Protocol [MS-
LSAD] is a shared-state dependency resulting from EventLog Remoting Protocol Version 6.0 depending
on the Access Check algorithm pseudocode (as specified in Windows Data Types [MS-DTYP] section

14 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.5.3.2), which in turn depends on state in the Local Security Authority (Domain Policy) Remote
Protocol.

1.5 Prerequisites/Preconditions

The EventLog Remoting Protocol Version 6.0 has the prerequisites, as specified in [MS-RPCE], that are
common to protocols depending on RPC.

1.6 Applicability Statement

The EventLog Remoting Protocol Version 6.0 is well-suited for reading event logs.Event logs can be
used for many purposes; for example, recording local security events and application start/stop
events.

An eventlog user can retrieve events from an eventlog server, but an eventlog server cannot retrieve
events from a remote publisher's eventlog server.

The EventLog Remoting Protocol Version 6.0 is typically preferred over the original EventLog Remoting
Protocol whenever both parties support it because it offers numerous improvements, such as
subscriptions and improved configurability, as specified in section 3.1.4.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

 Protocol Version: A client wanting to use the EventLog Remoting Protocol Version 6.0 can attempt
to connect to the UUID for the EventLog Remoting Protocol Version 6.0. If this UUID does not
exist, the EventLog Remoting Protocol [MS-EVEN] UUID can still exist, and the client can attempt
to connect to it.

The EventLog Remoting Protocol Version 6.0 RPC interface has a single version number. The

version number can change, but this version of the protocol requires it to be a specific value (for

more information, see section 2.1.1). The EventLog Remoting Protocol Version 6.0 can be
extended by adding RPC messages to the interface with opnums lying numerically beyond those
defined here. An RPC client determines whether such methods are supported by attempting to
invoke the method; if the method is not supported, the RPC run time returns an "opnum out of
range" error, as specified in [C706] and [MS-RPCE]. Details on RPC versioning and capacity
negotiation in this situation are specified in [C706] section 6.3 and [MS-RPCE] section 1.7.

 Security and Authentication Methods: RPC servers and clients in the EventLog Remoting Protocol
Version 6.0 use an RPC authentication service, as specified in section 2.1.

 Localization: The EventLog Remoting Protocol Version 6.0 defines several methods that support
localization. These methods each take a locale identifier (ID) (as specified in [MS-GPSI] Appendix
A), which is used to determine the language preferences for localization.

1.8 Vendor-Extensible Fields

1.8.1 Channel Names

Each channel has a name that is a [UNICODE] string. This name MUST be unique across all channels
on the same server. The set of channel names also includes all names of live event logs, as specified
in the original EventLog Remoting Protocol. Event logs are specified in section 3.1.1.2. Event log
naming constraints are specified in section 1.8.2.

Channel names are treated in a case-insensitive manner, are limited to 255 characters, and cannot
begin with the character \ (backslash). No restrictions other than these exist on the characters that

15 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

are included in a channel name. However, channel names SHOULD<1> be prefixed with a unique
value (such as the name of the entity that created the channel) so that the channels are easily

identifiable and readable.

1.8.2 Publisher Names

Each publisher has a name that is a [UNICODE] string. This name MUST be unique across all
publishers on the same server. Publisher names MUST be treated in a case-insensitive manner, MUST
be limited to 255 characters, and MUST NOT begin with the backslash \. The set of publisher names

also includes all event sources (for more information, see [MSDN-EVENTS]). Apart from these
restrictions, there are no character restrictions on publisher names. However, publisher names
SHOULD<2> be prefixed with a unique value (such as the name of the entity that created the
publisher) so that the publishers are easily identifiable and readable.

1.8.3 Event Descriptor

Each publisher uses event descriptors to identify the different types of events that it writes. Publishers
do not need to be concerned with using the same event descriptors as other publishers do, because
the meaning of a particular event descriptor's value is determined on a per-publisher basis.

1.8.4 Error Codes

The EventLog Remoting Protocol Version 6.0 uses Win32 error codes, specifically, the subset
designated as "NTSTATUS". These values are taken from the Windows error number space, as
specified in [MS-ERREF] section 2.3. Vendors SHOULD reuse those values with their indicated
meanings.<3> Choosing any other value runs the risk of a collision in the future.

1.9 Standards Assignments

The EventLog Remoting Protocol Version 6.0 has no standards assignments, only private assignments
made by Microsoft by using allocation procedures, as specified in other protocols.

Microsoft has allocated to the EventLog Remoting Protocol Version 6.0 an interface GUID by using the
procedure specified in [C706] section 6.2.2. It also allocates an RPC endpoint name, as specified in

[C706]. The assignments are as follows.

 Parameter Value

RPC Interface UUID {F6BEAFF7-1E19-4FBB-9F8F-B89E2018337C}

RPC Endpoint Name Eventlog

16 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2 Messages

2.1 Transport

This protocol uses RPC as the transport protocol.

2.1.1 Server

The server interface is identified by UUID F6BEAFF7-1E19-4FBB-9F8F-B89E2018337C version 1.0,
using the RPC dynamic endpoint EventLog. The server MUST specify RPC over TCP/IP (that is,
ncacn_ip_tcp) as the RPC protocol sequence to the RPC implementation, as specified in [MS-RPCE].
The server MUST specify both the Simple and Protected GSS-API Negotiation Mechanism [MS-SPNG]

(0x9) and Kerberos [MS-KILE] (0x10) as the RPC authentication service, as specified in [MS-RPCE].

The EventLog Remoting Protocol Version 6.0 allows any user to establish a connection to the RPC
server. The server uses the underlying RPC protocol to retrieve the identity of the caller that made the

method call, as specified in the second bullet of section 3.3.3.4.3 of [MS-RPCE]. The server SHOULD
use this identity to perform method-specific access checks, as specified in section 3.1.4.

The server MAY require the client connection to specify an authentication level of at least packet-level
authentication (0x4), as specified in [MS-RPCE] section 2.2.1.1.8. The server SHOULD require the

connection to use the packet-privacy authentication level (0x6). <4>

2.1.2 Client

The client MUST use RPC over TCP/IP (that is, ncacn_ip_tcp), as specified in [MS-RPCE], as the RPC
protocol sequence to communicate with the server. The higher-level protocol or client application

MUST specify the Simple and Protected GSS-API Negotiation Mechanism [MS-SPNG] (0x9), NTLM [MS-
NLMP] (0xA), or Kerberos [MS-KILE] (0x10) as the RPC authentication service, as specified in [MS-
RPCE], and the protocol client MUST pass this choice unmodified to the RPC layer. The client MUST
specify packet-level integrity authentication (0x5) or higher, as specified in [MS-RPCE] section

2.2.1.1.8. <5>

2.2 Common Data Types

In addition to RPC base types, the following sections use the definitions of FILETIME, DWORD, and
GUID, as specified in [MS-DTYP] Appendix A.

2.2.1 RpcInfo

The RpcInfo structure is used for certain methods that return additional information about errors.

 typedef struct tag_RpcInfo {
 DWORD m_error,
 m_subErr,
 m_subErrParam;
 } RpcInfo;

m_error: A Win32 error code that contains a general operation success or failure status. A value of
0x00000000 indicates success; any other value indicates failure. Unless noted otherwise, all
failure values MUST be treated equally.

m_subErr: MUST be zero unless specified otherwise in the method using this structure. Unless noted
otherwise, all nonzero values MUST be treated equally.

17 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

m_subErrParam: MUST be zero unless specified otherwise in the method using this structure.
Unless noted otherwise, all nonzero values MUST be treated equally.

2.2.2 BooleanArray

The BooleanArray structure is defined as follows.

 typedef struct _BooleanArray {
 [range(0, MAX_RPC_BOOL_ARRAY_COUNT)]
 DWORD count;
 [size_is(count)] boolean* ptr;
 } BooleanArray;

count: A 32-bit unsigned integer that contains the number of BOOLEAN values pointed to by ptr.

ptr: A pointer to an array of BOOLEAN values.

2.2.3 UInt32Array

The UInt32Array structure is defined as follows.

 typedef struct _UInt32Array {
 [range(0, MAX_RPC_UINT32_ARRAY_COUNT)]
 DWORD count;
 [size_is(count)] DWORD* ptr;
 } UInt32Array;

count: An unsigned 32-bit integer that contains the number of unsigned 32-bit integers pointed to by
ptr.

ptr: A pointer to an array of unsigned 32-bit integers.

2.2.4 UInt64Array

The UInt64Array structure is defined as follows.

 typedef struct _UInt64Array {
 [range(0, MAX_RPC_UINT64_ARRAY_COUNT)]
 DWORD count;
 [size_is(count)] DWORD64* ptr;
 } UInt64Array;

count: A 32-bit unsigned integer that contains the number of 64-bit integers pointed to by ptr.

ptr: A pointer to an array of unsigned 64-bit integers.

2.2.5 StringArray

The StringArray structure is defined as follows.

 typedef struct _StringArray {
 [range(0, MAX_RPC_STRING_ARRAY_COUNT)]
 DWORD count;
 [size_is(count), string] LPWSTR* ptr;
 } StringArray;

18 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

count: A 32-bit unsigned integer that contains the number of strings pointed to by ptr.

ptr: A pointer to an array of null-terminated Unicode (as specified in [UNICODE]) strings.

2.2.6 GuidArray

The GuidArray structure is defined as follows.

 typedef struct _GuidArray {
 [range(0, MAX_RPC_GUID_ARRAY_COUNT)]
 DWORD count;
 [size_is(count)] GUID* ptr;
 } GuidArray;

count: A 32-bit unsigned integer that contains the number of GUIDs pointed to by ptr.

ptr: A pointer to an array of GUIDs.

2.2.7 EvtRpcVariant

The EvtRpcVariant structure is defined as follows.

 typedef struct tag_EvtRpcVariant {
 EvtRpcVariantType type;
 DWORD flags;
 [switch_is(type)] union {
 [case(EvtRpcVarTypeNull)]
 int nullVal;
 [case(EvtRpcVarTypeBoolean)]
 boolean booleanVal;
 [case(EvtRpcVarTypeUInt32)]
 DWORD uint32Val;
 [case(EvtRpcVarTypeUInt64)]
 DWORD64 uint64Val;
 [case(EvtRpcVarTypeString)]
 [string] LPWSTR stringVal;
 [case(EvtRpcVarTypeGuid)]
 GUID* guidVal;
 [case(EvtRpcVarTypeBooleanArray)]
 BooleanArray booleanArray;
 [case(EvtRpcVarTypeUInt32Array)]
 UInt32Array uint32Array;
 [case(EvtRpcVarTypeUInt64Array)]
 UInt64Array uint64Array;
 [case(EvtRpcVarTypeStringArray)]
 StringArray stringArray;
 [case(EvtRpcVarTypeGuidArray)]
 GuidArray guidArray;
 };
 } EvtRpcVariant;

type: Indicates the actual type of the union.

flags: This flag MUST be set to either 0x0000 or 0x0001. If this flag is set to 0x0001, it indicates

that an EvtRpcVariant structure has been changed by the client. For an example of how this flag
might be set, suppose the client application retrieved an EvtRpcVariantList structure by calling
EvtRpcGetChannelConfig, changed one or more EvtRpcVariant structures in the list, and then sent
the list back to the server via EvtRpcPutChannelConfig. In this example, the server updates the
values corresponding to the EvtRpcVariant structures with this flag set.

19 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

0x0000 A flag indicating that no instance of an EvtRpcVariant structure was changed by the client.

0x0001 A flag indicating that an EvtRpcVariant structure was changed by the client.

RpcVariant: The data type to be passed.

nullVal: MUST be set to 0x00000000.

booleanVal: A BOOLEAN value.

uint32Val: A 32-bit unsigned integer.

uint64Val: A 64-bit unsigned integer.

stringVal: A null-terminated UNICODE string.

guidVal: A GUID.

booleanArray: An array of BOOLEAN values that are stored as a BooleanArray.

uint32Array: An array of 32-bit unsigned integers that are stored as a UInt32Array.

uint64Array: An array of 64-bit unsigned integers that are stored as a UInt64Array.

stringArray: An array of strings that are stored as a StringArray.

guidArray: An array of GUIDs that are stored as a GuidArray.

2.2.8 EvtRpcVariantType

The EvtRpcVariantType enumeration is used by the EvtRpcVariant (section 2.2.7) type.

 typedef [v1_enum] enum tag_EvtRpcVariantType
 {
 EvtRpcVarTypeNull = 0,
 EvtRpcVarTypeBoolean,
 EvtRpcVarTypeUInt32,
 EvtRpcVarTypeUInt64,
 EvtRpcVarTypeString,
 EvtRpcVarTypeGuid,
 EvtRpcVarTypeBooleanArray,
 EvtRpcVarTypeUInt32Array,
 EvtRpcVarTypeUInt64Array,
 EvtRpcVarTypeStringArray,
 EvtRpcVarTypeGuidArray
 } EvtRpcVariantType;

2.2.9 EvtRpcVariantList

The EvtRpcVariantList data type is a wrapper for multiple EvtRpcVariant (section 2.2.7) data types.

 typedef struct tag_EvtRpcVariantList {
 [range(0, MAX_RPC_VARIANT_LIST_COUNT)]
 DWORD count;
 [size_is(count)] EvtRpcVariant* props;
 } EvtRpcVariantList;

count: Number of EvtRpcVariant values pointed to by the props field.

20 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

props: Pointer to an array of EvtRpcVariant values.

2.2.10 EvtRpcAssertConfigFlags Enumeration

The EvtRpcAssertConfigFlags Enumeration members specify how the path and channelPath parameters
(used by a number of the methods in 3.1.4) are to be interpreted.

 typedef [v1_enum] enum tag_EvtRpcAssertConfigFlags
 {
 EvtRpcChannelPath = 0,
 EvtRpcPublisherName = 1
 } EvtRpcAssertConfigFlags;

EvtRpcChannelPath: The associated parameter string contains a path to a channel.

EvtRpcPublisherName: The associated parameter string contains a publisher name.

2.2.11 EvtRpcQueryChannelInfo

The format of the EvtRpcQueryChannelInfo data type is as follows.

 typedef struct tag_EvtRpcQueryChannelInfo {
 LPWSTR name;
 DWORD status;
 } EvtRpcQueryChannelInfo;

name: Name of the channel to which the status applies.

status: A Win32 error code that indicates the channel status. A value of 0x00000000 indicates
success; any other value indicates failure. Unless otherwise noted, all failure values MUST be
treated equally.

2.2.12 BinXml

BinXml is a token representation of text XML 1.0, which is specified in [XML10]. Here, BinXml encodes
an XML document so that the original XML text can be correctly reproduced from the encoding. For
information about the encoding algorithm, see section 3.1.4.7.

The binary format for all numeric values is always little-endian. No alignment is required for any data.

The format is given in the following Augmented Backus-Naur Form (ABNF) example, as specified in
[RFC4234]).

In addition to defining the layout of the binary XML binary large objects (BLOBs), the following ABNF
example has additional annotations that suggest a way to convert the binary to text. To convert to
text, a tool is needed to evaluate the BinXml according to ABNF and to emit text for certain key rules.
That text is emitted before evaluating the rule. The actual text to emit is defined in the sections as

noted.

When processing the Attribute rule, the text generated is as specified in section 2.2.12.2.

Note When the emit rules specify emitting a literal string, that string is surrounded by quotes. The
quotation marks shown are not part of the output. They are included in the text to delineate the
characters that are sent on the wire. For example, an instruction might specify that "/>" is output.

 ; ==== Top-level Definitions ======================================
 ;

21 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Document = 0*1Prolog Fragment 0*1Misc EOFToken
 Prolog = PI
 Misc = PI
 Fragment = 0*FragmentHeader (Element / TemplateInstance)
 FragmentHeader = FragmentHeaderToken MajorVersion MinorVersion Flags
 MajorVersion = OCTET
 MinorVersion = OCTET
 Flags = OCTET

 ;
 ; ==== Basic XML Definitions ======================================
 ;
 Element =
 (StartElement CloseStartElementToken Content EndElementToken) /
 (StartElement CloseEmptyElementToken) ; Emit using Element Rule
 Content =
 0*(Element / CharData / CharRef / EntityRef / CDATASection / PI)
 CharData = ValueText / Substitution
 StartElement =
 OpenStartElementToken 0*1DependencyId ElementByteLength
 Name 0*1AttributeList
 DependencyId = WORD
 ElementByteLength = DWORD
 AttributeList = AttributeListByteLength 1*Attribute
 Attribute =
 AttributeToken Name AttributeCharData ; Emit using Attribute Rule
 AttributeCharData =
 0*(ValueText / Substitution / CharRef / EntityRef)
 AttributeListByteLength = DWORD
 ValueText = ValueTextToken StringType LengthPrefixedUnicodeString
 Substitution =
 NormalSubstitution / OptionalSubstitution
 ; Emit using Substitution Rule
 NormalSubstitution =
 NormalSubstitutionToken SubstitutionId ValueType
 OptionalSubstitution =
 OptionalSubstitutionToken SubstitutionId ValueType
 SubstitutionId = WORD
 CharRef = CharRefToken WORD ; Emit using CharRef Rule
 EntityRef = EntityRefToken Name ; Emit using EntityRef Rule
 CDATASection = CDATASectionToken LengthPrefixedUnicodeString
 ; Emit using CDATA Section Rule
 PI = PITarget PIData
 PITarget = PITargetToken Name ; Emit using PITarget Rule
 PIData = PIDataToken LengthPrefixedUnicodeString
 ; Emit using PIData Rule
 Name = NameHash NameNumChars NullTerminatedUnicodeString
 NameHash = WORD
 NameNumChars = WORD

 ;
 ; ==== Token Types ==
 ;
 EOFToken = %x00
 OpenStartElementToken = %x01 / %x41
 CloseStartElementToken = %x02 ;Emit using CloseStartElementToken Rule
 CloseEmptyElementToken = %x03 ;Emit using CloseEmptyElementToken Rule
 EndElementToken = %x04 ; Emit using EndElementToken Rule

 ValueTextToken = %x05 / %x45
 AttributeToken = %x06 / %x46
 CDATASectionToken = %x07 / %x47
 CharRefToken = %x08 / %x48
 EntityRefToken = %x09 / %x49

 PITargetToken = %x0A
 PIDataToken = %x0B
 TemplateInstanceToken = %x0C
 NormalSubstitutionToken = %x0D

22 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 OptionalSubstitutionToken = %x0E
 FragmentHeaderToken = %x0F

 ;
 ; ==== Template-related definitions ===============================
 ;
 TemplateInstance =
 TemplateInstanceToken TemplateDef TemplateInstanceData
 TemplateDef =
 %b0 TemplateId TemplateDefByteLength
 0*FragmentHeader Element EOFToken
 TemplateId = GUID

 ;
 ; The full length of the value section of the TemplateInstanceData
 ; can be obtained by adding up all the lengths described in the
 ; value spec.
 ;
 TemplateInstanceData =
 ValueSpec *Value; Emit using TemplateInstanceDataRule
 ValueSpec = NumValues *ValueSpecEntry
 NumValues = DWORD
 ValueSpecEntry = ValueByteLength ValueType %x00
 ValueByteLength = WORD

 TemplateDefByteLength = DWORD

 ;
 ; ==== Value Types ===
 ;
 ValueType =
 NullType / StringType / AnsiStringType / Int8Type / UInt8Type /
 Int16Type / UInt16Type / Int32Type / UInt32Type / Int64Type /
 Int64Type / Real32Type / Real64Type / BoolType / BinaryType /
 GuidType / SizeTType / FileTimeType / SysTimeType / SidType /
 HexInt32Type / HexInt64Type / BinXmlType / StringArrayType /
 AnsiStringArrayType / Int8ArrayType / UInt8ArrayType /
 Int16ArrayType / UInt16ArrayType / Int32ArrayType / UInt32ArrayType/
 Int64ArrayType / UInt64ArrayType / Real32ArrayType /
 Real64ArrayType / BoolArrayType / GuidArrayType / SizeTArrayType /
 FileTimeArrayType / SysTimeArrayType / SidArrayType /
 HexInt32ArrayType / HexInt64ArrayType
 NullType = %x00
 StringType = %x01
 AnsiStringType = %x02
 Int8Type = %x03
 UInt8Type = %x04
 Int16Type = %x05
 UInt16Type = %x06
 Int32Type = %x07
 UInt32Type = %x08
 Int64Type = %x09
 UInt64Type = %x0A
 Real32Type = %x0B
 Real64Type = %x0C
 BoolType = %x0D
 BinaryType = %x0E
 GuidType = %x0F
 SizeTType = %x10
 FileTimeType = %x11
 SysTimeType = %x12
 SidType = %x13
 HexInt32Type = %x14
 HexInt64Type = %x15
 BinXmlType = %x21
 StringArrayType = %x81
 AnsiStringArrayType = %x82
 Int8ArrayType = %x83
 UInt8ArrayType = %x84

23 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Int16ArrayType = %x85
 UInt16ArrayType = %x86
 Int32ArrayType = %x87
 UInt32ArrayType = %x88
 Int64ArrayType = %x89
 UInt64ArrayType = %x8A
 Real32ArrayType = %x8B
 Real64ArrayType = %x8C
 BoolArrayType = %x8D
 GuidArrayType = %x8F
 SizeTArrayType = %x90
 FileTimeArrayType = %x91
 SysTimeArrayType = %x92
 SidArrayType = %x93
 HexInt32ArrayType = %x00 %x94
 HexInt64ArrayType = %x00 %x95

 ;
 ; === Value Formats ==
 ;
 Value =
 StringValue / AnsiStringValue / Int8Value / UInt8Value /
 Int16Value / UInt16Value / Int32Value / UInt32Value / Int64Value /
 UInt64Value / Real32Value / Real64Value / BoolValue / BinaryValue /
 GuidValue / SizeTValue / FileTimeValue / SysTimeValue / SidValue /
 HexInt32Value / HexInt64Value / BinXmlValue / StringArrayValue /
 AnsiStringArrayValue / Int8ArrayValue / UInt8ArrayValue /
 Int16ArrayValue / UInt16ArrayValue / Int32ArrayValue /
 UInt32ArrayValue / Int64ArrayValue / UInt64ArrayValue /
 Real32ArrayValue / Real64ArrayValue / BoolArrayValue /
 GuidArrayValue / SizeTArrayValue / FileTimeArrayValue /
 SysTimeArrayValue / SidArrayValue / HexInt32ArrayValue /
 HexInt64ArrayValue
 StringValue = 0*WORD
 AnsiStringValue = 0*OCTET
 Int8Value = OCTET
 UInt8Value = OCTET
 Int16Value = 2*2OCTET
 UInt16Value = 2*2OCTET
 Int32Value = 4*4OCTET
 UInt32Value = 4*4OCTET
 Int64Value = 8*8OCTET
 UInt64Value = 8*8OCTET
 Real32Value = 4*4OCTET
 Real64Value = 8*8OCTET
 BoolValue = OCTET
 BinaryValue = *OCTET
 GuidValue = GUID
 SizeTValue = UInt32Value / UInt64Value
 FileTimeValue = 8*8OCTET
 SysTimeValue = 16*16OCTET
 SidValue = *OCTET
 HexInt32Value = UInt32Value
 HexInt64Value = UInt64Value
 BinXmlValue = Fragment EOFToken

 StringArrayValue = *NullTerminatedUnicodeString
 AnsiStringArrayValue = *NullTerminatedAnsiString
 Int8ArrayValue = *Int8Value
 UInt8ArrayValue = *UInt8Value
 Int16ArrayValue = *Int16Value
 UInt16ArrayValue = *UInt16Value
 Int32ArrayValue = *Int32Value
 UInt32ArrayValue = *UInt32Value
 Int64ArrayValue = *Int64Value
 UInt64ArrayValue = *UInt64Value
 Real32ArrayValue = *Real32Value
 Real64ArrayValue = *Real64Value
 BoolArrayValue = *BoolValue

24 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 GuidArrayValue = *GuidValue
 SizeTArrayValue = *SizeTValue
 FileTimeArrayValue = *FileTimeValue
 SysTimeArrayValue = *SysTimeValue
 SidArrayValue = *SidValue
 HexInt32ArrayValue = *HexInt32Value
 HexInt64ArrayValue = *HexInt64Value

 ;
 ; ==== Base Types ===
 ;
 NullTerminatedUnicodeString = StringValue %x00 %x00
 NullTerminatedAnsiString = AnsiStringValue %x00
 LengthPrefixedUnicodeString = NumUnicodeChars StringValue
 NumUnicodeChars = WORD
 OCTET = %x0
 WORD = 2*2OCTET
 DWORD = 4*4OCTET
 GUID = 16*16OCTET

Entity Description

MajorVersion The major version of BinXml. MUST be set to 1.

MinorVersion The minor version of BinXml. MUST be set to 1.

Flags The reserved value in the BinXml header. Not used currently and MUST be 0.

DependencyID Specifies the index into the ValueSpec list of an instance of the TemplateDefinition
(TemplateInstance). If the ValueType at that index is NullType, the element MUST
NOT be included for rendering purposes. If the index is 0xFFFF, there is no
dependency for the element.

ElementByteLength The number of bytes that is after ElementByteLength and that makes up the entire
element definition, including the EndElementToken or CloseEmptyElementToken for
the element.

AttributeListByteLength The number of bytes in the attribute list that is after AttributeListByteLength and is
up to, but not including, the CloseStartElementToken or CloseEmptyElementToken;
typically used for jumping to the end of the enclosing start element tag.

AttributeCharData The character data that appears in an attribute value.

SubstitutionId A 0-based positional identifier into the set of substitution values. Zero indicates the
first substitution value; 1 indicates the second substitution value, and so on.

CharRef An XML 1.0 character reference value.

NameHash The low order 16 bits of the value that is generated by performing a hash of the
binary representation of Name (in which NameNumChars * 2 is the hash input
length).

The hash function is implemented by initially setting the value of the hash to zero.
For each character in Name, multiply the previous value of the hash by 65599 and
add the binary representation of the character to the hash value.

The following pseudocode shows how to implement this hash function.

 hash(str)
 {
 hashVal = 0;
 for(i=0; i < strLen; i++)
 hashVal = hashVal*65599 + str[i];
 return hashVal;

25 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Entity Description

 }

NameNumChars The number of Unicode characters for the NameData, not including the null
terminator.

OpenStartElementToken A value of 0x01 indicates that the element start tag contains no elements; a value
of 0x41 indicates that an attribute list can be expected in the element start tag.

ValueTextToken A value of 0x45 indicates that more data can be expected to follow in the current
content of the element or attribute; a value of 0x05 indicates that no more such
data follows.

AttributeToken A value of 0x46 indicates that there is another attribute in the attribute list; a value
of 0x06 indicates that no more attributes exist.

CDATASectionToken A value of 0x47 indicates that more data can be expected to follow in the current
content of the element or attribute; a value of 0x07 indicates that no more such
data follows.

CharRefToken A value of 0x48 indicates that more data can be expected to follow in the current
content of the element or attribute; a value of 0x08 indicates that no more such
data follows.

EntityRefToken A value of 0x49 indicates that more data can be expected to follow in the current
content of the element or attribute; a value of 0x09 indicates that no more such
data follows.

TemplateId The raw data of the GUID that identifies a template definition.

NumValues The number of substitution values that make up the Template Instance Data.

ValueByteLength The length, in bytes, of a substitution value as it appears in the Template Instance
Data.

TemplateDefByteLength The number of bytes after the TemplateDefByteLength up to and including the
EOFToken (end of fragment or document) element for the template definition.

ValueType The type of a substitution value, as it appears in the Template Instance Data.

Value The raw data of the substitution value.

NumUnicodeChars The number of wide characters in LengthPrefixedUnicodeString. The Length MUST
include the null terminator if one is present in the string; however, length-prefixed
strings are not required to have a null terminator.

2.2.12.1 Emitting Instruction for the Element Rule

Before emitting anything, the tool SHOULD determine whether there is an optional substitution that is
NULL. If there is such a substitution, the tool MUST NOT emit anything for this element. The
DependencyId rule (as specified in 2.2.12) determines whether there are any optional substitutions. If

there are optional substitutions, the tool MUST emit the character "<" and the text, as specified by the
Name rule (as specified in 2.2.12), as defined in the StartElement rule (also specified in 2.2.12). If the
element contains array data (for more information, see section 3.1.4.7.5), the tool MUST emit multiple
instances of the element, with one instance for each element of the array.

26 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.12.2 Emitting Instruction for the Attribute Rule

Before emitting anything, the tool SHOULD verify that the attribute data, as specified by the
AttributeCharData rule in 2.2.12, is not empty. If the attribute data is empty, the tool SHOULD NOT

emit anything. If the attribute data is not empty, emit the space character " " and the text, as
specified by the Name rule in 2.2.12, the character "=", the character "'", the text, as specified by the
AttributeCharData rule in 2.2.12, and, finally, the character "'".

2.2.12.3 Emitting Instruction for the Substitution Rule

BinXml uses templates, as specified in section 3.1.4.7.1. Substitutions are done only inside a template
instance definition. Any data needed for substitutions is in the template instance data, which comes
immediately after the template instance definition. The template instance definition is defined by the
TemplateDef rule in 2.2.12, and the template instance data is defined by the TemplateInstanceData
rule in 2.2.12.

To emit a substitution in a template, the tool needs to extract the string value from the instance data

section. The tool can use the TemplateDefByteLength (specified in 2.2.12) to locate the template
instance data quickly.

One special case is when the substitution is of type BinXml. In that case, the tool MUST use the
BinXmlValue rule, which is a recursive call. A typical BinXml document contains a template that
contains another template in itself.

The other data types MUST be output as follows.

Type Output format

NullType Empty string

StringType Text

AnsiStringType Text

Int8Type Signed integer

UInt8Type Unsigned integer

Int16Type Signed integer

UInt16Type Unsigned integer

Int32Type Signed integer

UInt32Type Unsigned integer

Int64Type Signed integer

UInt64Type Unsigned integer

Real32Type Signed value having the form [-]dddd.dddd, where ddd3 is one or more decimal digits.

Real64Type Signed value having the form [-]dddd.dddd, where ddd3 is one or more decimal digits.

BoolType "true" or "false"

BinaryType Each byte is displayed as a hexadecimal number with a single space separating each pair of
bytes.

GuidType GUID. Definitions of the fields are as specified in [MS-DTYP]. The text format is {aaaa-bb-cc-
dddddd} where aaaa is the hexadecimal value of Data1; bb is the hexadecimal value of

27 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Type Output format

Data2; cc is the hexadecimal value of Data3; and dddddd is the hexadecimal value of Data4.
For each of the hexadecimal values, all the digits MUST be shown, even if the value is 0.

SizeTType Hexadecimal integer. The number portion is preceded by the characters "0x". For example,
the number 18 is displayed as 0x12.

FileTimeType Four-digit year "-", 2-digit month "-", 2-digit day "T", 2-digit hour ":", 2-digit seconds "." and
3-digit milliseconds "Z". For example, 2006-10-20T03:23:54.248Z is 3:23:34 am of October
20, 2006.

SysTimeType Same as FileTimeType.

SidType Security ID. A SID type description including the text representation is specified in [MS-
DTYP].

HexInt32Type Hexadecimal integer. The number portion is preceded by the characters "0x". For example,

the number 18 is displayed as 0x12.

HexInt64Type Hexadecimal integer. The number portion is preceded by the characters "0x". For example,
the number 18 is displayed as 0x12.

2.2.12.4 Emitting Instruction for the CharRef Rule

Emit the characters "&" and "#" and the decimal string representation of the value.

2.2.12.5 Emitting Instruction for the EntityRef Rule

Emit the character "&" and the text, as specified by the Name rule in 2.2.12.

2.2.12.6 Emitting Instruction for the CDATA Section Rule

Emit the text "<[CDATA[" followed by the text (as specified by the NullTerminatedUnicodeString rule

in 2.2.12), and then the string "]]".

2.2.12.7 Emitting Instruction for the PITarget Rule

Emit the text "<?", the text (as specified by the Name rule in 2.2.12), and then the space character "

".

2.2.12.8 Emitting Instruction for the PIData Rule

Emit the text (as specified by the NullTerminatedUnicodeString rule in 2.2.12), and then the text "?>".

2.2.12.9 Emitting Instruction for the CloseStartElement Token Rule

Emit the character ">".

2.2.12.10 Emitting Instruction for the CloseEmptyElement Token Rule

Emit the text "/>".

28 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.12.11 Emitting Instruction for the EndElement Token Rule

Emit the character "<" followed by the text for the element name, and then the text "/>".

2.2.12.12 Emitting Instruction for the TemplateInstanceData Rule

Emitting is suppressed by this rule or any rules invoked recursively.

2.2.13 Event

The Event type is specified to be well-formed XML fragments, as specified in [XML10]. The Event type
MUST also conform to the following XML schema, as specified in [XMLSCHEMA2/2].

The protocol does not interpret any of the fields in the XML fragment. Client applications (that is, the
higher-layer application using the protocol client) that call EvtRpcMessageRender or
EvtRpcMessageRenderDefault MUST extract the values specified in the EVENT_DESCRIPTOR structure

specified in [MS-DTYP] section 2.3.1. But client applications do not need to interpret these values to

call these functions.

 <xs:schema
 targetNamespace=
 "http://schemas.microsoft.com/win/2004/08/events/event"
 elementFormDefault=
 "qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:evt=
 "http://schemas.microsoft.com/win/2004/08/events/event">
 <xs:simpleType name="GUIDType">
 <xs:restriction base="xs:string">
 <xs:pattern
 value="\{[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-
 [0-9a-fA-F]{4}-[0-9a-fA-F]{12}\}"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="DataType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="Name" type="xs:string" use="optional"/>
 <xs:attribute name="Type" type="xs:QName" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:simpleType name="HexInt32Type">
 <xs:annotation>
 <xs:documentation> Hex 1-8 digits in size</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:pattern value="0[xX][0-9A-Fa-f]{1,8}"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="HexInt64Type">
 <xs:annotation>
 <xs:documentation> Hex 1-16 digits in size</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:pattern value="0[xX][0-9A-Fa-f]{1,16}"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="ComplexDataType">
 <xs:sequence>
 <xs:element name="Data" type="evt:DataType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Name" type="xs:string" use="optional"/>
 </xs:complexType>
 <xs:complexType name="SystemPropertiesType">

29 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 <xs:sequence>
 <xs:element name="Provider">
 <xs:complexType>
 <xs:attribute name="Name" type="xs:anyURI"
 use="optional"/>
 <xs:attribute name="Guid" type="evt:GUIDType"
 use="optional"/>
 <xs:attribute name="EventSourceName" type="xs:string"
 use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="EventID">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:unsignedShort">
 <xs:attribute name="Qualifiers"
 type="xs:unsignedShort"
 use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Version" type="xs:byte" minOccurs="0"/>
 <xs:element name="Level" type="xs:byte" minOccurs="0"/>
 <xs:element name="Task" type="xs:unsignedShort"
 minOccurs="0"/>
 <xs:element name="Opcode" type="xs:byte" minOccurs="0"/>
 <xs:element name="Keywords" type="evt:HexInt64Type"
 minOccurs="0"/>
 <xs:element name="TimeCreated" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="SystemTime" type="xs:dateTime"
 use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="EventRecordID" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:unsignedLong"/>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Correlation" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="ActivityID" type="evt:GUIDType"
 use="optional"/>
 <xs:attribute name="RelatedActivityID"
 type="evt:GUIDType"
 use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Execution" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="ProcessID" type="xs:unsignedInt"
 use="required"/>
 <xs:attribute name="ThreadID" type="xs:unsignedInt"
 use="required"/>
 <xs:attribute name="ProcessorID" type="xs:byte"
 use="optional"/>
 <xs:attribute name="SessionID" type="xs:unsignedInt"
 use="optional"/>
 <xs:attribute name="KernelTime" type="xs:unsignedInt"
 use="optional"/>
 <xs:attribute name="UserTime" type="xs:unsignedInt"
 use="optional"/>
 <xs:attribute name="ProcessorTime" type="xs:unsignedInt"
 use="optional"/>
 </xs:complexType>
 </xs:element>

30 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 <xs:element name="Channel" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="Computer" type="xs:string"/>
 <xs:element name="Container" type="xs:string" minOccurs="0"/>
 <xs:element name="Security" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="UserID" type="xs:string"
 use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other"/>
 </xs:complexType>
 <xs:complexType name="EventDataType">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="Data" type="evt:DataType"/>
 <xs:element name="ComplexData" type="evt:ComplexDataType"/>
 </xs:choice>
 <xs:element name="Binary" type="xs:hexBinary" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Classic eventlog binary data
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="Name" type="xs:string" use="optional"/>
 </xs:complexType>
 <xs:complexType name="UserDataType">
 <xs:sequence>
 <xs:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other"/>
 </xs:complexType>
 <xs:complexType name="DebugDataType">
 <xs:sequence>
 <xs:element name="SequenceNumber" type="xs:unsignedInt"
 minOccurs="0"/>
 <xs:element name="FlagsName" type="xs:string" minOccurs="0"/>
 <xs:element name="LevelName" type="xs:string" minOccurs="0"/>
 <xs:element name="Component" type="xs:string"/>
 <xs:element name="SubComponent" type="xs:string"
 minOccurs="0"/>
 <xs:element name="FileLine" type="xs:string" minOccurs="0"/>
 <xs:element name="Function" type="xs:string" minOccurs="0"/>
 <xs:element name="Message" type="xs:string"/>
 <xs:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other"/>
 </xs:complexType>
 <xs:complexType name="ProcessingErrorDataType">
 <xs:sequence>
 <xs:element name="ErrorCode" type="xs:unsignedInt"/>
 <xs:element name="DataItemName" type="xs:string"/>
 <xs:element name="EventPayload" type="xs:hexBinary"/>
 <xs:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other"/>
 </xs:complexType>
 <xs:complexType name="RenderingInfoType">
 <xs:sequence>
 <xs:element name="Message" type="xs:string" minOccurs="0"/>
 <xs:element name="Level" type="xs:string" minOccurs="0"/>
 <xs:element name="Opcode" type="xs:string" minOccurs="0"/>
 <xs:element name="Task" type="xs:string" minOccurs="0"/>

31 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 <xs:element name="Channel" type="xs:string" minOccurs="0"/>
 <xs:element name="Publisher" type="xs:string" minOccurs="0"/>
 <xs:element name="Keywords" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Keyword" type="xs:string"
 minOccurs="0"
 maxOccurs="64"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Culture" type="xs:language" use="required"/>
 <xs:anyAttribute namespace="##other"/>
 </xs:complexType>
 <xs:complexType name="EventType">
 <xs:sequence>
 <xs:element name="System" type="evt:SystemPropertiesType"/>
 <xs:choice>
 <xs:element name="EventData" type="evt:EventDataType"
 minOccurs="0">
 <xs:annotation>
 <xs:documentation>Generic event</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="UserData" type="evt:UserDataType"
 minOccurs="0">
 <xs:annotation>
 <xs:documentation>Custom event</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="DebugData" type="evt:DebugDataType"
 minOccurs="0">
 <xs:annotation>
 <xs:documentation>WPP debug event</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="BinaryEventData" type="xs:hexBinary"
 minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 Non schematized event
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="ProcessingErrorData"
 type="evt:ProcessingErrorDataType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Instrumentation event
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:choice>
 <xs:element name="RenderingInfo"
 type="evt:RenderingInfoType"
 minOccurs="0"/>
 <xs:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other"/>
 </xs:complexType>
 <xs:element name="Event" type="evt:EventType"/>
 </xs:schema>

32 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.14 Bookmark

The bookmark type specifies the cursor position in the event query or subscription result set. Note
that bookmarks are passed from the client to the server by using the XML representation that is

specified in this section. In contrast, the server passes a binary representation of bookmarks to the
client as specified in section 2.2.16.

The bookmark type is specified to be well-formed XML fragments as specified in [XML10] and that
conforms to the following XML schema as specified in [XMLSCHEMA2/2].

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="BookmarkType">
 <xs:attribute name="Channel" type="xs:anyURI" use="required"/>
 <xs:attribute name="RecordId" type="xs:long" use="required"/>
 <xs:attribute name="IsCurrent" type="xs:boolean" use="optional"
 default="false"/>
 </xs:complexType>
 <xs:complexType name="BookmarkListType">
 <xs:sequence>
 <xs:element name="Bookmark" type="BookmarkType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="BookmarkList" type="BookmarkListType"/>
 </xs:schema>

 <!-- Example bookmark for the Application Log: -->

 <BookmarkList>
 <Bookmark Channel="Application" RecordId="2004" IsCurrent="True"/>
 </BookmarkList>

Elements

BookmarkList The top-level element that contains a list of bookmarks for the individual event logs.

Bookmark Defines the cursor position in an event log specified by the Channel attribute.

Attributes

Channel The name of the channel. If the channel contains events from a container, then the container
identifier will be appended to the name of the channel.

RecordId The logical event record number in the event log specified by the Channel attribute.

IsCurrent Specifies if the event at the cursor position corresponds to the channel corresponding to the
element. A subscription or query can apply to several channels. In this case, there is a Bookmark
element for each channel. However, only one channel can be the one with the last event, and its
IsCurrent attribute MUST be set to true.

33 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.15 Filter

The filter type is an XPath filter used to select events in the event logs, and is specified to be a subset
of XPath 1.0, as specified in [XPATH].

2.2.15.1 Filter XPath 1.0 Subset

The filter type supports the following XPath 1.0 subset:

Location Paths:

 Axis

 Child

 Attribute

 Node tests"*" - wildcard

 NCName

 text

Expressions:

 or

 and

 =, !=

 <=, <, >=, >

 "('Expr')"

 Literal

 Number

 FunctionCall

Core Function Library: position()

The data model supported by the EventLog filter for representing XML events is a restricted form of
what is used for XPath 1.0. Evaluation of each event MUST be restricted to forward-only, in-order,
depth-first traversal of the XML.

The data model used differs in the following specific ways:

 Because only the child and attribute axes are supported, generating a string value for nodes is not

supported.

 Generating an expanded name for nodes is not supported.

 Evaluation of nodes in forward document order is supported, but reverse document order is not.

 Node sets are not supported.

 The stream of XML events is represented as the set of top-level elements in a "virtual" document.
The root of this document is implied and does not have a formal name. This implies that absolute

location paths are not supported. The current context node at the start/end of each XML event
evaluation is this root node.

34 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 The evaluation context is a restricted version of that for XPath 1.0. It contains a current context
node and a nonzero positive integer representing the current position. It does not contain the

context size, nor does it contain variable bindings. It has a smaller function library, and it has no
namespace scoping support.

 Namespace, processing, and comment nodes are not supported.

2.2.15.2 Filter XPath 1.0 Extensions

This protocol's filter type defines the following functions that are not part of the set defined by the

XPath 1.0 specification, but are specific to this protocol.

Core Function Library:

 Boolean band(bitfield, bitfield)

The band(bitfield, bitfield) bitwise AND function takes two bitfield arguments, performs a bitwise
AND.

 number timediff(SYSTEM_TIME)

The timediff(SYSTEM_TIME) function calculates the difference in milliseconds between the

argument-supplied time and the current system time. The result MUST be positive if the system
time is greater than the argument time, zero if the system time is equal to the argument time,
and negative if the system time is less than the argument time.

 number timediff(SYSTEM_TIME, SYSTEM_TIME)

The timediff(SYSTEM_TIME, SYSTEM_TIME) function calculates the difference in milliseconds
between the first and second argument-supplied times. The result MUST be positive if the
second argument is greater than the first, zero if they are equal, and negative if the second

argument is less than the first.

Data Model:

This protocol's filter supports an expanded set of data types. These are:

 Unicode (as specified in [UNICODE]) string

 ANSI string. In this specification, ANSI strings refer to multi-byte strings in which the encoding is
controlled by the current system code page. One of the most common code pages is ANSI Latin-1,

as specified in [ISO/IEC-8859-1].

 BOOLEAN

 Double

 UINT64, which is an unsigned 64-bit integer

 GUID, as specified in [MS-RPCE]

 SID, as specified in [MS-DTYP]

 SYSTEMTIME, as specified in [MS-DTYP]

 FILETIME, as specified in [MS-DTYP]

 Binary large object (BLOB)

 Bitfield (64 bits)

35 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

In XPath expressions, the additional data types are expressed as strings and converted to the wanted
type for expression evaluation. The conversion is based on the syntax of the string literal.

During evaluation of an XPath expression, a data string is determined to represent one of these
additional types if it conforms to the syntactical representation for that type. The scopes of syntactic

representations overlap such that it is possible for a string to have a valid representation as more than
one type. In this case, a representation for each such type is retained and used in accordance with the
following implicit conversion rules at event evaluation time.

The GUID type is converted to and from a string, as specified in [RFC4122]. The SID type is converted
as specified in [MS-DTYP].

The ABNF for the remaining types is as follows, where DIGIT and HEXDIGIT are as specified in
[RFC4234] Appendix B.

 Double = 0*1(SIGN) 0*(DIGIT) 0*1("." 1*(DIGIT))
 0*1(("d" / "D" / "e" / "E") 0*1(SIGN) 0*1(DIGIT))
 SIGN = "+" / "-"
 UINT64 = "0" ("x" / "X") 1*DIGIT
 SYSTEMTIME = FILETIME
 FILETIME = date-time
 date-fullyear = 4DIGIT
 date-month = 2DIGIT ; 01-12
 date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31 based on month-year
 time-hour = 2DIGIT ; 00-23
 time-minute = 2DIGIT ; 00-59
 time-second = 2DIGIT ; 00-59
 time-msecs = "." 1*3DIGIT
 time-offset = "Z"
 partial-time = time-hour ":" time-minute ":" time-second [time-msecs]
 full-date = date-fullyear "-" date-month "-" date-mday
 full-time = partial-time time-offset
 date-time = full-date "T" full-time
 BinaryBlob = 1*HEXDIG
 bitfield = UINT64

Additionally, if the string is determined to be of a numeric type, it is determined to be of Boolean type
with value false if its numeric value is zero, and true otherwise. If the string is not of numeric type but
is a string of value "true" or "false", it is determined to be of Boolean type with value true or false,

respectively.

FILETIME and SYSTEMTIME are interpreted as GMT times.

All of the comparison operators are type-wise aware of the additional data types. For the cases of
string (both Unicode and ASCII), Boolean, and Double, evaluation is the same as for XPath 1.0.

For the remaining types, implicit type coercion in the expression L1 op L2 is governed by the following
exhaustive rule set:

 If L2 is a string, L1 MUST be converted to a string.

 If L2 is a Boolean, L1 MUST be converted to a Boolean.

 If L2 is a GUID, SID, SYSTEMTIME, or FILETIME, L1 MUST be converted to a literal of the same
type, if possible. If the conversion cannot be performed, the result of the evaluation MUST be
false.

 If L2 is of numeric type, including bitfield, and L1 is of type double, L2 MUST be converted to
double.

 If L2 is of numeric type, including bitfield, and L1 is of an unsigned integral type, L2 MUST be

converted to an unsigned type.

36 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.16 Query

The query type specifies an XML document used to select events in the event log by using well-formed
XML (as specified in [XML10]) and is defined by the following XSD (as specified in [XMLSCHEMA2/2]).

 <?xml version="1.0" encoding="utf-8"?>
 <xs:schema targetNamespace=
 "http://schemas.microsoft.com/win/2004/08/events/eventquery"
 elementFormDefault="qualified"
 xmlns="http://schemas.microsoft.com/win/2004/08/events/eventquery"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="QueryType">
 <xs:choice maxOccurs="unbounded">
 <xs:element name="Select">
 <xs:complexType mixed="true">
 <xs:attribute name="Path" type="xs:anyURI"
 use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Suppress">
 <xs:complexType mixed="true">
 <xs:attribute name="Path" type="xs:anyURI"
 use="optional"/>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 <xs:attribute name="Id" type="xs:long" use="optional"/>
 <xs:attribute name="Path" type="xs:anyURI" use="optional"/>
 <xs:attribute name="Target" type="xs:string" use="optional"/>
 </xs:complexType>
 <xs:complexType name="QueryListType">
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="Query" type="QueryType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="QueryList" type="QueryListType"/>
 </xs:schema>

Elements Description

QueryList Lists the query elements. The event query result set contains events matched by any of the query
elements.

Query Defines a set of selectors and suppressors. Query elements are referred to as subqueries.

Select Defines an event filter for events included in the result set (unless rejected by a suppressor in the
same query element), as specified in section 2.2.15.

Suppress Defines an event filter for events omitted from the result set (even if the same events were
selected by a selector in the same query element), as specified in section 2.2.15.

Attributes Description

ID Defines the ID of a subquery so that a consumer can determine what subquery out of many
caused the record to be included in a result set. Multiple subqueries using the same IDs are not
distinguished in the result set. For information on subquery IDs, see section 2.2.17.

Path Specifies either the name of a channel or a path to a backup event log for query elements,
selectors, and suppressors. A path specified for the query element applies to the selectors and
suppressors it contains that do not specify a path of their own.

37 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Attributes Description

If a path begins with file://, it MUST be interpreted as a Uniform Resource Identifier (URI) path
to a backup event log file, as specified in [RFC3986], that uses file as a scheme; for example,
file://c:/dir1/dir2/file.evt. Otherwise, a path MUST be interpreted as a channel name.

Target Specifies whether the query element applies only to events from a container host, only to events
from containers hosted on the current computer, or both. The target applies only to live event
logs.<6>

If the target is “Container”, then the subquery will match only events from Microsoft Windows
containers running on the machine that have been configured to forward their events to the
container host.

If the target is “Host”, then the subquery will not match any events from Windows containers.

If the target is “Both”, then the subquery will match events from either the host OS or Windows
containers.

If not specified or if the target is an unrecognized value, the target will be “Host”.

2.2.17 Result Set

An event query or subscription returns multiple events in the result set. The result set is a buffer
containing one or more variable length EVENT_DESCRIPTOR structures, as specified in [MS-DTYP]

section 2.3.1. Methods that return multiple events always return an array of offsets into the buffer for
the individual events.

The records are transferred as a set of bytes. All integer fields in this structure MUST be in little-
endian byte order (that is, least significant byte first).

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

totalSize

headerSize

eventOffset

bookmarkOffset

binXmlSize

eventData (variable)

...

numberOfSubqueryIDs

subqueryIDs (variable)

...

bookMarkData (variable)

38 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

...

totalSize (4 bytes): A 32-bit unsigned integer that contains the total size in bytes of this structure,
including the header.

headerSize (4 bytes): This MUST always be set to 0x00000010.

eventOffset (4 bytes): This MUST always be set to 0x00000010.

bookmarkOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the start of
this structure to bookMarkData.

binXmlSize (4 bytes): Size in bytes of the BinXml data in the eventData field.

eventData (variable): A byte-array that contains variable length BinXml data.

numberOfSubqueryIDs (4 bytes): Number of subqueryIDs fields that follow. This is 0 if the

event is selected by an XPath expression (rather than a structured XML query).

subqueryIDs (variable): An array of subquery IDs. Events that are selected using a structured XML
query can be selected by one or more subqueries. Each subquery has either an ID specified in the
XML element that defines the subquery, or defaults to 0xFFFFFFFF. This list has an entry for each
subquery that matches the event. If two subqueries select the event, and both use the same ID,
the ID only is listed once.

bookMarkData (variable): A byte-array that contains variable length bookmark data, as specified:

A query can refer to several channels or backup event logs. A subscription can refer to several
channels. To accurately record the state of a query, it is necessary to know where the file cursor
(bookmark) is with respect to those channels or backup event logs. The bookmark data is encoded
as follows. Note that all integer fields in this structure MUST be in little-endian byte order (that is,
least significant byte first).

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

bookmarkSize

headerSize

channelSize

currentChannel

readDirection

recordIdsOffset

logRecordNumbers (variable)

...

bookmarkSize (4 bytes): A 32-bit unsigned integer that contains the total size in bytes of the

bookmark, including the header and logRecordNumbers.

headerSize (4 bytes): A 32-bit unsigned integer, and MUST be set to 0x00000018.

39 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

channelSize (4 bytes): A 32-bit unsigned integer that contains the number of channels in the
query. This is the number of elements in logRecordNumbers.

currentChannel (4 bytes): A 32-bit unsigned integer that indicates what channel the current
event is from.

readDirection (4 bytes): A 32-bit unsigned integer that contains the read direction. 0x00000000
indicates chronological order based on time written, and 0x00000001 indicates reverse order.

recordIdsOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the start
of the header to logRecordNumbers.

logRecordNumbers (variable): An array of 64-bit unsigned integers that contain the record
numbers for each of the channels or backup event logs. The order of the record numbers
MUST match the order of the channels or backup event logs in the query (for example, the

first channel in the query corresponds to the first member of the array).

2.2.18 BinXmlVariant Structure

Some of the methods use the following structures for returning data. In particular, the BinXmlVariant

structure is used for returning information about a channel or backup event log. This structure is
custom-marshaled. The integer fields in this structure MUST be in little-endian byte order (that is,
least significant byte first).

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

union

...

count

type

union (8 bytes): 8 bytes of data. Interpretation is based on type.

count (4 bytes): Not used. Can be set to any arbitrary value when sent and MUST be ignored on
receipt.

type (4 bytes): Specifies the union type.

Value Meaning

BinXmlVarUInt32

0x00000008

The union field contains an unsigned long int, followed by 4 bytes of arbitrary data that
MUST be ignored.

BinXmlVarUInt64

0x0000000A

The union field contains an unsigned __int64.

BinXmlVarBool

0x0000000D

The union field contains an unsigned long int, followed by 4 bytes of arbitrary data that
MUST be ignored.

BinXmlVarFileTime

0x00000011

The union field contains a FILETIME, as specified in [MS-DTYP] Appendix A.

40 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.19 error_status_t

The error_status_t return type is used for all methods. This is a Win32 error code.

This type is declared as follows:

 typedef unsigned long error_status_t;

2.2.20 Handles

The following handles are used when a client connects to the server.

 typedef [context_handle] void* PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION;
 typedef [context_handle] void* PCONTEXT_HANDLE_LOG_QUERY;
 typedef [context_handle] void* PCONTEXT_HANDLE_LOG_HANDLE;
 typedef [context_handle] void* PCONTEXT_HANDLE_OPERATION_CONTROL;
 typedef [context_handle] void* PCONTEXT_HANDLE_PUBLISHER_METADATA;
 typedef [context_handle] void* PCONTEXT_HANDLE_EVENT_METADATA_ENUM;

For information on handle security, see section 5.1.

2.2.21 Binding Handle

This protocol reuses the RPC binding handle as the logical connection between the client and server.
Numerous methods described in section 3.1.4 take the binding handle as the first parameter.

This type is declared as follows:

 typedef I_RPC_HANDLE RPC_BINDING_HANDLE;

This data type declares a binding handle containing information that the RPC run-time library uses to
access binding information. For more information about the RPC binding handle, see [MSDN-
BNDHNDLS].

2.3 Message Syntax

2.3.1 Common Values

The following common values are used throughout this specification.

 Name Value

MAX_PAYLOAD (2 * 1024 * 1024)

MAX_RPC_QUERY_LENGTH (MAX_PAYLOAD / sizeof(WCHAR))

MAX_RPC_CHANNEL_NAME_LENGTH 512

MAX_RPC_QUERY_CHANNEL_SIZE 512

MAX_RPC_EVENT_ID_SIZE 256

MAX_RPC_FILE_PATH_LENGTH 32768

MAX_RPC_CHANNEL_PATH_LENGTH 32768

41 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Name Value

MAX_RPC_BOOKMARK_LENGTH (MAX_PAYLOAD / sizeof(WCHAR))

MAX_RPC_PUBLISHER_ID_LENGTH 2048

MAX_RPC_PROPERTY_BUFFER_SIZE MAX_PAYLOAD

MAX_RPC_FILTER_LENGTH MAX_RPC_QUERY_LENGTH

MAX_RPC_RECORD_COUNT 1024

MAX_RPC_EVENT_SIZE MAX_PAYLOAD

MAX_RPC_BATCH_SIZE MAX_PAYLOAD

MAX_RPC_RENDERED_STRING_SIZE MAX_PAYLOAD

MAX_RPC_CHANNEL_COUNT 8192

MAX_RPC_PUBLISHER_COUNT 8192

MAX_RPC_EVENT_METADATA_COUNT 256

MAX_RPC_VARIANT_LIST_COUNT 256

MAX_RPC_BOOL_ARRAY_COUNT (MAX_PAYLOAD / sizeof(BOOL))

MAX_RPC_UINT32_ARRAY_COUNT (MAX_PAYLOAD / sizeof(UINT32))

MAX_RPC_UINT64_ARRAY_COUNT (MAX_PAYLOAD / sizeof(UINT64))

MAX_RPC_STRING_ARRAY_COUNT (MAX_PAYLOAD / 512)

MAX_RPC_GUID_ARRAY_COUNT (MAX_PAYLOAD / sizeof(GUID))

MAX_RPC_STRING_LENGTH (MAX_PAYLOAD / sizeof(WCHAR))

42 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3 Protocol Details

3.1 Server Details

The server handles client requests for any of the messages specified in section 2, and operates on the
logs and configuration on the server. For each of those messages, the behavior of the server is
specified in section 3.1.4.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
specification.

3.1.1.1 Events

An event is an entity that describes some occurrence in the system. All events in the system can be
represented as XML (though in the protocol they only appear as BinXml, as specified in section
3.1.4.7).

An event is identified by a numeric code (EventID) and a set of attributes (qualifiers, task, opcode,
level, version, and keywords). It also contains its publisher name and originating channel, and can
also contain event specific data. See [MSDN-EVENTRECORD], [MSDN-EVENT_HEADER], and [MSDN-
EVENT_DESCRIPTOR], for a description of the layout of event data structures which contains this

information.

3.1.1.2 Publishers

Events are raised to the system by a publisher (though this is not through the EventLog Remoting

Protocol Version 6.0). For more information on how to provide events, see [MSDN-ProvEvts].

The publisher is registered within the system and has an identifier and a publisher name. The identifier
of a publisher is a UUID, which is 16 bytes. For example, {10ccdb74-baf6-4164-b765-c292096626df}
can be served as the identifier for a publisher. The publisher resource file contains all the metadata
information for the publisher (as specified in section 3.1.1.14). The message file of a publisher
contains all the description strings of a publisher (as specified in section 3.1.1.14). The publisher
parameter file is another message file that is used for parameter substitution (as specified in section

3.1.1.14). The publisher name is an arbitrary Unicode string. The publisher provides the events into
channels (as specified in section 3.1.1.4), it declares the channels that can be used during the
registration. The server saves all the channels a publisher declares and associates them with the
publisher.

The following is an example of two registered publishers and their associated channels:

Publisher1: Publisher1 Name, Publisher1 Identifier, Publisher1 Resource File, Publisher1 Message File,

Publisher1 Parameter File

 Channel A: Channel A reference ID, Channel A reference flag, Channel A start index

 Channel B: Channel B reference ID, Channel B reference flag, Channel B start index

Publisher2: Publisher2 Name, Publisher2 Identifier

 Channel C: Channel C reference ID, Channel C reference flag, Channel C start index

43 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Channel B: Channel B reference ID, Channel B reference flag, Channel B start index

In this example, Publisher1 indicates that it will provide events to two channels, Channel A and
Channel B. Publisher2 indicates that it will provide events to Channel C and Channel B. So in this case,
Channel B is shared between two publishers and it can contain the events from both publishers.

The channel reference ID is the relative index number of a channel, while the channel start index is an
absolute start offset for the channel in the channel table. For example, publisher 1 declares two
channels: Channel A and Channel B. Thus the channel A reference ID is 0 because it is the first
channel of publisher 1 and the channel B reference ID is 1 since it is the second one relative to the
publisher. But at the same time, the declared channels have to be registered in the channel table (as
specified in section 3.1.1.5). The same channel will get a different index number when the channels
are registered to the channel table. For example, when the channel table contains 10 channels

already, and when channel A is registered, it will get an index of 11, and channel B will get an index
12. As such, the start index of channel A is 11 and the start index of channel B is 12.

The channel reference flag is a numeric value used for the purpose of extension. There is no
recommendation on how the server SHOULD use it. By default, all the channel reference flags are 0.

The server can use it for any special purpose.

The publisher is only registered on the local machine. It cannot be registered to a remote server.

Publisher identifiers can be obtained through the protocol and from events that conform to the event
XSD, as specified in section 2.2.13. Publisher identifiers MUST be unique.

Also, publishers can have additional metadata registered in the system, consisting of a set of
attribute/value pairs, as specified in sections 3.1.4.25 and 3.1.4.26. This can be obtained through the
protocol by using the publisher identifier. This metadata typically includes message tables that are
used for displaying localized messages. The metadata information is registered to the server when the
publisher is installed on the server. Installing a publisher is not in the scope of this protocol.

Note A subset of the set of publishers is logically shared with the abstract data model of the obsolete
EventLog Remoting Protocol, if it is also supported. That is, all event sources registered with the
original EventLog Remoting Protocol can be enumerated via this protocol (the EventLog Remoting

Protocol Version 6.0), but not vice versa.

3.1.1.3 Publisher Tables

A publisher table is an array of registered publishers on the server. Each publisher in the table
SHOULD contain the publisher name, the publisher identifier, and the channels to which the publisher
will write events.

A typical publisher table structure is as follows:

<Publisher1 Name><Publisher1 Identifier><Channel List for Publisher 1><Resource File of Publisher

1><Parameter File of Publisher 1><Message File of Publisher 1>

<Publisher2 Name><Publisher2 Identifier><Channel List for Publisher 2><Resource File of Publisher
2><Parameter File of Publisher 2><Message File of Publisher 2>

<Publisher n Name><Publisher n Identifier><Channel List for Publisher n><Resource File of Publisher
n><Parameter File of Publisher n><Message File of Publisher n>

The channel list for each publisher is a list of channels. The channel list format is specified in the
publisher examples in section 3.1.1.2.

The publisher table is saved on the server's disk and is permanent. Adding or removing entries in this
table can only be executed by the server or some automatic configuration tool provided by the server.

44 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The server reads the table from disk at start up and loads it into memory for fast processing and
lookup. The client MAY be able to change some information in the memory but cannot touch the

information saved on disk. A changed memory snapshot can only be applied toward the copy on disk
through the EvtRpcAssertConfig method (as specified in section 3.1.4.29) or EvtRpcRetractConfig

(as specified in section 3.1.4.30).

The server can also add access control of the publisher table entry, or the server MAY define the
access rights for the table entry. By doing this, the server can control the client access rights to the
publishers in the table. For example, the server can set the publisher 1's information to be accessed
only by administrators. If a non-administrator client wants to get the information for publisher 1, the
server can deny access with an error.

3.1.1.4 Channels

A channel is a named stream of events. It serves as a logical pathway for transporting events from the
event publisher to a log file and possibly a subscriber. It is a sink that collects events.

Publishers declare the channels they are going to generate events into. The channels they declare

MUST have an identifier and that identifier MUST be unique. The publishers can also import the
existing channels in the server simply by referencing the channel identifier. Each channel MUST have a
unique name (also called a Channel Path). The name of the channel is a string and the server SHOULD
register the channel with the identifier and its name. The server keeps the table of registered
channels.

A channel name can be obtained through the protocol method EvtRpcGetChannelList as specified in
section 3.1.4.20 and from events that conform to event schema, as specified in section 2.2.13.

Channels have a set of configurable properties (as specified in section 3.1.4.21) that affect the
behavior of the channel within the system. The configurable properties are the channel interface to the
client. The channel data structure SHOULD contain these properties as internal data fields so that the
server can track the changes of the value of these properties and adjust the behavior based on the
latest property values. The required channel properties are specified in the following table:

Name Meaning

Enabled If true, the channel can accept new events. If false, any attempts to write events into this
channel are automatically dropped.

Channel Isolation One of three values:

0: Application. Use security setting (channel access property) of Application channel.

1: System. Use security setting (channel access property) of System channel.

2: Custom. The channel has its own explicit security settings.

type One of four values:

0: Admin

1: Operational

2: Analytic

3: Debug

For more information, see [MSDN-EVTLGCHWINEVTLG].

OwningPublisher Name of the publisher that defines and registers the channel with the system.

Classic If true, the channel represents an event log created according to the EventLog Remoting
Protocol, not this protocol (EventLog Remoting Protocol Version 6.0).

Access A Security Descriptor Description Language (SDDL) string, as specified in [MS-DTYP],
which represents access permissions to the channels. The server uses the Access Check
algorithm (as specified in [MS-DTYP] section 2.5.3.2) to perform the access control.

45 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Meaning

A client with read access to the channel can read the properties of the channel and read
the events from the channel. A client with write access to the channel can change the
properties of the channel and write the events into the channel. A client with clear access
to the channel can perform the clear log operation toward the channel. Note that the only
access permissions defined for channels are read, write, and clear.

Retention If set to true, events can never be overwritten unless explicitly cleared. If set to false,
events are overwritten as needed when the event log is full.

AutoBackup When set to true, the event log file associated with the channel is closed as soon as it
reaches the maximum size specified by the MaxSize property, and a new file is opened to
accept new events. If the new file reaches maximum size, another new file will be
generated and the previous new file will be backed up. The events in backed up files

cannot be queried from this channel in the server unless the client specifies the backup log
file names in a separate query.

MaxSize The value that indicates at which point the size (in bytes) of the event log file stops
increasing. When the size is greater than or equal to this value, the file growth stops.

LogFilePath File path to the event log file for the channel.

Level Events with a level property less than or equal to this specified value are logged to the
channel.

Keywords Events with a keyword bit contained in the Keywords bitmask set are logged to the
channel.

ControlGuid A GUID value. For more information on the server behavior for this property, see section
3.1.4.22

BufferSize Size of the events buffer (in kilobytes) used for asynchronous event delivery. This property
is for providing events. Typically the events generated by a publisher are first written to
memory buffers on the server. Once the buffer used is full, that buffer is written to a disk
file. The BufferSize is used to specify the size of the buffer. The server allocates buffers
according to the BufferSize value. The number of buffers the server can allocate is
controlled by the MinBuffers and MaxBuffers properties. The server's specific
implementation can allocate any number of buffers between MinBuffers and MaxBuffers.

MinBuffers The minimum number of buffers used for asynchronous event delivery. For more
information, see the preceding BufferSize description.

MaxBuffers The maximum number of buffers used for asynchronous event delivery. For more
information, see the preceding BufferSize description.

Latency The number of seconds of inactivity (if events are delivered asynchronously and no new
events are arriving) after which the event buffers MUST be flushed to the server. As
specified in the description for BufferSize property, the server keeps a number of buffers
when writing events. If the buffers are full, the server writes the buffers to disk file.
However, if a certain amount of time elapses and the buffers are still not full, the server
SHOULD write the buffers to disk. That certain amount of time is the latency property.

ClockType One of two values:

 0: SystemTime. Use the system time. When set to this value, the server uses the

system time type (which is low-resolution on most platforms) for a time stamp field of
any event it writes into this channel.

 1: Query Performance Counter. The server uses a high-resolution time type for the
time stamp field of any event it writes into this channel.

SIDType One of two values:

46 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Name Meaning

 0: The events written by the server to this channel will not include the publisher's
SID.

 1: The events written by the server to this channel will include the publisher's SID.

PublisherList List of publishers that can raise events into the channel. For more information on this field,
see section 3.1.4.24.

FileMax Maximum number of log files associated with an analytic or debug channel. When the
number of logs reaches the specified maximum, the system begins to overwrite the logs,
beginning with the oldest. A FileMax value of 0 or 1 indicates that only one file is
associated with this channel. A FileMax of 0 is default.

These properties can be observed or modified through this protocol. The methods to observe and

modify the channel properties are EvtRpcGetChannelConfig (as specified in section 3.1.4.21) and
EvtRpcPutChannelConfig (as specified in section 3.1.4.22).

3.1.1.5 Channel Table

A channel table is an array of registered channels. Each channel's table item SHOULD contain the
channel identifier which is a Unicode string of the channel name and its properties (as specified in
section 3.1.4.21).

A typical channel table structure is as follows:

<Channel1 Identifier><Properties list>

<Channel2 Identifier><Properties list>

<Channel n Identifier><Properties list>

Each properties list is a list of configurable channel properties (as specified in section 3.1.4.22).

The channel table is saved on the server's disk and is permanent. Adding or removing entries in this
table can only be executed by the server or some automatic configuration tool provided by the server.

The server reads the table from disk at start up and loads it into memory for fast processing and
lookup. The client MAY be able to change some information in the memory but can't touch the

information saved on disk. A changed memory snapshot can only be applied toward the copy on disk
through the EvtRpcAssertConfig method (as specified in section 3.1.4.29) or EvtRpcRetractConfig
(as specified in section 3.1.4.30).

3.1.1.6 Logs

A log is a file system file containing events. Any channel has a log associated with it. In this case, the

log is identified by using the channel identifier and is a live event log.

A log can also exist as a standalone file. In this case, the log is identified by using the file system path
of that log file, which has no associated channel.

Logs have a set of properties which can be retrieved through the protocol method EvtGetLogFileInfo
(as specified in section 3.1.4.15). Such properties are log creation time, last access time, last written

time, log file size, extra attributes of the log, number of events in the log, oldest event record in the
log, and the log full flag.

47 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

A log file usually consists of file header and file body. The header SHOULD contain metadata
information of the event log itself. A recommended header SHOULD at least contain the following:

BOOL isLogFull: This flag indicates the log is full.

unsigned__int64 oldestRecordNumber: The oldest event log record ID in the log file.

unsigned__int64 numberOfRecords: The number of event log records in the log file.

unsigned__int64 curPhysicalRecordNumber: The physical record number of the latest record in
the log file.

The server does not maintain these fields. These fields are maintained by publishers as events are
added to the log file.

The log body consists of all the event records in binXML format (as specified in section 3.1.4.7).

The log file associated with a channel is maintained and updated by the server. This protocol assumes

that the log files associated with channels are in the format described above. Note that rules for
creating such files are out of scope for this protocol.

Through this protocol, the events in a channel (which are stored in a live event log file) can be
exported into a standalone log file by the method EvtRpcExportLog as specified in section 3.1.4.17.
This protocol defines other methods by which clients can manage log files and obtain information
about them.

Note A subset of the log files is logically shared with the abstract data model of the obsolete Eventlog
Remote Protocol (as specified in [MS-EVEN]), if it is also supported. That is, all log files accessible with
the original Eventlog Remote Protocol (as specified in [MS-EVEN]) are also accessible via this protocol
(Eventlog Remote Protocol Version 6.0), but not necessarily vice versa.

3.1.1.7 Localized Logs

A log file that is exported from a channel does not contain the message strings for event levels,

opcodes, tasks, keywords, and event descriptions. Support engineers often need to read the events
from a customer's exported event log, including these strings, in order to diagnose issues on the
customer's system. This protocol provides for localizing an exported log file in order to provide
localized versions of those strings in whatever locale the support engineer requires. The

EvtRpcLocalizeExportLog (section 3.1.4.18) protocol method generates the locale-dependent file.

A localized log is composed of two files. One is the standalone exported log file, as specified in section
3.1.1.6. The other is a locale-dependent file that contains all the localized strings.

The locale-dependent file groups localized strings into sections that correspond to the fields of events.
For each publisher represented in the file, there is a section for event levels, opcodes, tasks,
keywords, and event descriptions. Within each section, localized strings are presented in ordered
records that include additional information, such that tools for viewing localized log files (which are out

of scope for this protocol) can match each string with its corresponding event in the standalone
exported log file. Following the final publisher in the file, is an event section that contains the localized

event description strings for each event in the standalone exported log file.

The locale-dependent file has the following structure:

[Publisher Section]

<Publisher Name 0>

 [Level Section]

 <0> <Level value 0> <MessageID of level 0> <Localized string for Level 0>

48 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 ...

 <n> <Level value n> <MessageID of level n> <Localized string for Level n>

 [Tasks Section]

 <0> <Task value 0> <MessageID of task 0> <Localized string for task 0>

 …

 <m> <Task value m> <MessageID of task m> <Localized string for task m>

 [Opcodes Section]

 <0> <Opcode value 0> <MessageID of opcode 0> <Localized string for opcode 0>

 …

 <k> <Opcode value k> <MessageID of opcode k> <Localized string for opcode k>

 [Keywords Section]

 <0> <Keyword value 0> <MessageID of keyword 0> <Localized string of keyword 0>

 …

 <t> <Keyword value t> <MessageID of keyword t> <Localized string of keyword t>

…

<Publisher Name n>

 [Level Section]

 <0> <Level value 0> <MessageID of level 0> <Localized string for Level 0>

 ...

 <n> <Level value n> <MessageID of level n> <Localized string for Level n>

 [Tasks Section]

 <0> <Task value 0> <MessageID of task 0> <Localized string for task 0>

 …

 <m> <Task value m> <MessageID of task m> <Localized string for task m>

 [Opcodes Section]

 <0> <Opcode value 0> <MessageID of opcode 0> <Localized string for opcode 0>

 …

 <k> <Opcode value k> <MessageID of opcode k> <Localized string for opcode k>

 [Keywords Section]

 <0> <Keyword value 0> <MessageID of keyword 0> <Localized string of keyword 0>

 …

 <t> <Keyword value t> <MessageID of keyword t> <Localized string of keyword t>

49 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[Event Section]

 <Event Record Id 0> <Localized event description string for event 0>

 …

 <Event Record Id n> <Localized event description string for event n>

3.1.1.8 Queries

Events within log files can be queried through the protocol. The protocol methods for querying the
events are EvtRpcRegisterLogQuery (as specified in section 3.1.4.12) and EvtRpcQueryNext (as

specified in section 3.1.4.13). An event query is an expression string that selects events within the log
file or files. Because all events in the system have an event XML representation, the expression string
can be based on this representation.

The syntax of the filter for a query is specified in sections 2.2.15 and 2.2.16.

3.1.1.9 Subscriptions

Clients can be notified of events occurring on the system through this protocol by using a subscription.
Here, a subscriber establishes interest in a set of events selected through an event query. The system
delivers the selected events when they occur to the subscriber through the protocol. In this protocol, a
client can use the EvtRpcRegisterRemoteSubscription method (as specified in section 3.1.4.8) to
set up the subscription. There are two types of subscriptions: pull and push subscriptions. The server
knows the type of the subscription from the client subscription flag when it is created. The system

delivers the events through the methods EvtRpcRemoteSubscriptionNext (as specified in section
3.1.4.9) for pull subscription or EvtRpcRemoteSubscriptionNextAsync (as specified in section
3.1.4.10) for push subscription.

3.1.1.10 Control Object

The control object is used by the client to cancel a server call that is taking too long to return any
result to the client. A control object is an object which is created on the server side when a client
registers some heavy operations such as subscription or query. The following example shows a typical
workflow such as a subscription or a query:

1. A client tries to register a query job by calling EvtRpcRegisterLogQuery (as specified in section
3.1.4.12).

2. That method returns a control object through the PCONTEXT_HANDLE_OPERATION_CONTROL
context handle (as specified in section 3.1.4.7).

3. The client issues the call EvtRpcQueryNext (as specified in section 3.1.4.13) to query the events,
and this operation takes a long time before returning a result to the client. If the client wants to
abandon the operation, it can call EvtRpcCancel (as specified in section 3.1.4.34) to cancel the
query operation by providing the context handle it receives from the server in the first step.

4. Since this protocol describes only one cancel operation for the control object, the control object

SHOULD keep the pointer of the operation object, such as a subscription, and a Boolean flag to
indicate whether the operation is canceled or not.

For information on how many types of operations can be canceled, see section 3.1.4.6.

3.1.1.11 Context Handles

Sometimes operations such as querying a channels' subscription to new events for that channel can't
be finished with one method call from clients. The server maintains the state information for the

50 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

clients across several method calls to finish a complete workflow. The state information is server-
related details and SHOULD NOT be seen by the clients. Thus, the server passes back a handle to

clients and that handle maps the state information in the server. Such handles are called context
handles. When clients pass back the context handle, the server knows this handle and knows the state

information so that it can serve the subsequent method calls from clients.

This protocol uses the following types of context handles, and does not allow handles of different types
to be interchanged:

 PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION: This context handle is dedicated to subscription
operation for the client. The client specifies a set of events to the server when setting up the
subscription connection. For example, the client can ask to receive all the future events from a
specified channel. The client passes that to the server and the server passes a context handle

back to the client. Subsequently, the client can keep using this handle for requesting delivery of
new events from the server for as long as that subscription connection is established. For this
handle, the server logically needs to create an object to stand for this context handle to serve the
client requests. In this protocol, this object is called the subscription object. A subscription object
is a logical representation of a subscription in server memory. For detail content information on

the subscription object, see the processing rules in section 3.1.4. A subscription object SHOULD

contain the following information:

1. HandleType: An integer value that describes the type of the context handle this object stands
for. For the subscription object, the server SHOULD always keep this value to be the
predefined type value for the type of PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION. For
example, if the server decides to use 1 as the type value for
PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION, it sets the HandleType to 1.

2. Channels: An array of client subscribed channels. Each channel contains its name, log file

path, and configuration properties. All the channel information can be retrieved from the
corresponding channel table entry. As described in section 3.1.1.4, the channels are all
registered to the server and kept in the server's channel table.

3. IsPullType: A Boolean value to indicate pull or push subscription.

4. Filter: The XPath query expression serving as the filter for delivering the events which meet
certain criteria as specified by the filter expression. The filter is the subscription filter.

5. Positions: An array of numeric LONGLONG values to indicate the next record ID of events for

each channel that is to be delivered to the client. This array has the same size as the channels
array.

A subscription object is created by the server and cast to
PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION context handle by the server before being passed
to the client. The server tracks the client state inside the subscription object so that the server
knows how to serve the next requests from the client.

 PCONTEXT_HANDLE_LOG_QUERY: This context handle serves the query operation. To maintain
the client state, the server SHOULD create a corresponding log query object. A log query object is
a class instance that resides in the server's memory to represent the query object for the client.

Inside the query object, the server SHOULD maintain the following data fields:

1. HandleType: An integer value that describes the type of the context handle this object stands
for. For the query object, the server SHOULD always set this value to the predefined type
value for the type of PCONTEXT_HANDLE_LOG_QUERY. For example, if the server uses 2 as

the type value for PCONTEXT_HANDLE_LOG_QUERY, it sets the HandleType to 2.

2. The channel path: The channel name or the log file name.

3. The query filter: The XPATH query from the client input.

51 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4. Position: The numeric value served as a cursor to indicate where the next return event
SHOULD be. The cursor SHOULD be set to 0 initially and be updated each time the client calls

the EvtRpcQuerySeek (as specified in section 3.1.4.14) or EvtRpcQueryNext (as specified
in section 3.1.4.13).

The log query object is created by the server and cast into the PCONTEXT_HANDLE_LOG_QUERY
as a handle. When the client passes back the context handle, the server can cast it back to a log
query object and all the internal state information is then retrieved by the server.

 PCONTEXT_HANDLE_LOG_HANDLE: This context handle serves all the operations related to
channels or logs. To do this, the server SHOULD maintain a log object mapped for this handle. The
object SHOULD contain following fields:

1. HandleType: An integer value that describes the type of the context handle this object stands

for. For the query object, the server SHOULD always set this value to the predefined type
value for the type of PCONTEXT_HANDLE_LOG_HANDLE. For example, if the server uses 3 as
the type value for PCONTEXT_HANDLE_LOG_HANDLE, it sets the HandleType to 3.

2. LogType: A numeric integer type value that indicates the log information object is a live
channel or a backup event log.

3. Channel: A void* pointer. When the object is a live channel, the pointer points to the channel

entry in the server's channel table. When it is a backup event log, the pointer is the handle of
the opened event log file.

The object is created by the server and cast to the PCONTEXT_HANDLE_LOG_HANDLE. When the
client returns the handle, the server has all the internal state information by casting it back to the
log object.

 PCONTEXT_HANDLE_PUBLISHER_METADATA: The state includes the identity of the publisher as
well as the locale to be used. Sometimes the client is interested in information about a publisher

that produces an event. The client sends the server the publisher's name to monitor and thus
retrieves information on that publisher by issuing subsequent method calls. The server MUST open
the publisher's information when the client sends the publisher's name and maintain that opened

information so that subsequent methods from the client can pass back publisher information. To
do this, the server maintains a publisher metadata object. The publisher metadata object is a
logical representation of publisher metadata (as specified in section 3.1.1.14). The publisher
metadata object SHOULD contain the following data fields:

1. HandleType: An integer value that describes the type of the context handle this object stands
for. For the query object, the server SHOULD always set this value to the predefined type
value for the type of PCONTEXT_HANDLE_PUBLISHER_METADATA. For example, if the server
uses 4 as the type value for PCONTEXT_HANDLE_PUBLISHER_METADATA, it sets the
HandleType to 4.

2. ResourceFile: A Unicode string for the publisher resource file name (as specified in 3.1.1.14).

3. MessageFile: A Unicode string for the message file name (as specified in 3.1.1.14).

4. ParameterFile: A Unicode string for the parameter file name (as specified in 3.1.1.14).

5. Locale: An unsigned short value for the requested locale.

6. ResourceFileHandle: The opened resource file handle so that the server can read the file.

The publisher metadata object is created by the server and cast into the
PCONTEXT_HANDLE_PUBLISHER_METADATA handle type. When the client passes the handle, the
server can cast it back to the publisher metadata object.

52 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 PCONTEXT_HANDLE_EVENT_METADATA_ENUM: The state includes the identity of the publisher as
well as the position of the enumeration. As events provider, the publisher MUST save its events in

a predefined XML template (see [MSDN-ProvEvts] for information on providing events). This
template is the event metadata. When clients want to enumerate the metadata of an event from a

publisher, they MUST get the PCONTEXT_HANDLE_EVENT_METADATA_ENUM context handle. The
server MUST maintain the client enumeration status and the publisher identity to complete this
task. To maintain that state, the server maintains an event metadata object. The event metadata
object is a logical representation of event metadata (as specified in section 3.1.1.14). The event
metadata object SHOULD contain the following data fields:

1. HandleType: An integer value that describes the type of the context handle this object stands
for. For the query object, the server SHOULD always set this value to the predefined type

value for the type of PCONTEXT_HANDLE_EVENT_METADATA_ENUM. For example, if the
server uses 5 as the type value for PCONTEXT_HANDLE_EVENT_METADATA_ENUM, it sets the
HandleType to 5.

2. EventsMetaData: A memory buffer that holds the data content of the events information
section of a publisher resource file (as specified in 3.1.1.14).

3. Enumerator: A numeric integer value serving as a cursor to track the position in the event

metadata section.

The event metadata object SHOULD contain the following data fields: the events information
section of a publisher resource plus a cursor (numeric value) to track the position in the event
metadata section. The event metadata object is created by the server and cast into the
PCONTEXT_HANDLE_EVENT_METADATA handle type. When the client passes the handle, the
server can cast it back to the event metadata object.

 PCONTEXT_HANDLE_OPERATION_CONTROL: The state includes the method calls that can be

controlled by the handle. Sometimes, the client sends a method that has a long run time on the
server. The client can cancel such calls that take too long to return. The client can use the
PCONTEXT_HANDLE_OPERATION_CONTROL context handle to control whether the server keeps
serving the call or cancels it. The server uses this context handle to maintain which operation it is

serving any given client so that calls from that client are acted on. The server SHOULD maintain a
control object (as specified in section 3.1.1.10) for this handle. The control object SHOULD contain
the following data fields:

1. HandleType: An integer value that describes the type of the context handle this object stands
for. For the query object, the server SHOULD always set this value to be the predefined type
value for the type of PCONTEXT_HANDLE_OPERATION_CONTROL. For example, if the server
uses 6 as the type value for PCONTEXT_HANDLE_OPERATION_CONTROL, it sets the
HandleType to 6.

2. OperationPointer: A pointer that points to a server operation object such as a query object or

a subscription object.

3. Canceled: A Boolean value indicating whether the client has required the server to cancel the
operation.

The operation control object is created by the server and cast into the
PCONTEXT_HANDLE_OPERATION_CONTROL handle type. When the client passes the handle, the
server can cast it back to the control object.

These context handles are defined as pointers as specified in section 2.2.20.

53 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.1.12 Handle Table

The server MAY have a table of context handles it creates for the client. When the client passes a
handle to the server and the server cannot find the handle in the table, it is designated an invalid

handle.<7>

3.1.1.13 Localized String Table

The server MUST have a table of localized strings for each publisher and a default table. A table of
localized strings is declared by the publisher in the event manifest (event manifest is specified in

[MSDN-EvntManifestSE]). The string table declaration is specified in [MSDN-stringTable].

The declared string table is built into the publisher's language-specific resource file. There is one
language-specific resource file for each language. See [MSDN-MUIResrcMgmt] for more information
about the language-specific resource file. The language-specific resource files are stored on the server
pre-generated. language-specific resource file generation is out of the scope of this protocol.

Since there is one language-specific resource file for each language, there is one string table for each

language. The default table is the language-specific resource file for the default language. If the
server's default language is English, the default string table is the English string table. If the server's
default language is simplified Chinese, the default string table is the simplified Chinese string table.

3.1.1.14 Publisher Resource, Message, and Parameter Files

The server MUST keep the resource files for all the publishers who register themselves to the server.
It is the publisher's responsibility to register itself to the server, registering a publisher to the server is
not in the scope of this protocol. The publisher resource files are DLL files that are generated by the
publishers when they designate events. In order to designate events, the publisher needs to specify
the channel, provider, and events information in a manifest. For each event, it also needs to specify
the level, opcode, task, keyword, and event description information. All this information is written into
an instrumentation manifest file. For information on writing the manifest file, see [MSDN-WAIM]. Next,

the information is compiled and saved into the publisher resource file. All publishers MUST have a DLL

file with a name like publishername.dlll that saves all the events and channels as well as its own
name. This file MUST also store the description strings for those events and channels.

The description strings can be localizable. To make localized sets of strings, all the description strings
are moved from the publisher resource file (as specified in section 3.1.1.13) and packed into a
localized string table and then moved into a corresponding language-specific resource files resource

file for each language (as specified in [MSDN-MUIResrcMgmt]). The publisher resource file only saves
a messageId, which is used as an index to locate the real string in the language-specific resource file
for each description string. Then all the levels descriptions are packed into a level table with the level
information and the messageId. Similarly, all the opcodes, tasks, keywords, event descriptions, and
channels are packed as tables in the language-specific resource file.

The following shows a typical instrumentation part of a publisher resource file:

[Publisher Information]

<Publisher Identifier><MessageId for publisher name string><Publisher helper link string>

[Channel Information]

<Channel Identifier 1><Channel 1 name><MessageId for channel 1 description string>

<Channel Identifier n><Channel n name><MessageId for channel n description string>

[Events information]

<Event 1 Identifier><version><MessageId for event 1 description string>

54 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<Level Value of Event 1><Level Name of Event 1><MessageId for level description string>

<Opcode Value of Event 1><Opcode Name of Event 1><MessageId for opcode description string>

<Task Value of Event 1><Task Name of Event 1><MessageId for task description string>

<Keyword Value of Event 1><Keyword Name of Event 1><MessageId for keyword description string>

<event 1 definition template>

<channel identifier>

<publisher identifier>

…

<Event m Identifier><version><MessageId for event m description string>

<Level Value of Event m><Level Name of Event m><MessageId for level description string>

<Opcode Value of Event m><Opcode Name of Event m><MessageId for opcode description string>

<Task Value of Event m><Task Name of Event m><MessageId for task description string>

<Keyword Value of Event m><Keyword Name of Event m><MessageId for keyword description
string>

<event m definition template>

<channel identifier>

<publisher identifier>

In a publisher's language-specific resource file, the real strings are saved and indexed by the
messageId.

All the information in this section for a publisher is also called publisher metadata, and the part of
each event in Events information is called event metadata.

Published resource files are DLL or EXE files, as specified in [PE-COFF]. The format of publisher
resource files is outside the scope of this protocol.

By default, the server SHOULD provide a default publisher and that publisher can provide common

channels, events, and so forth. The default publisher is built in with the server and does not have to
be installed. The format of its resource file is the same as any publisher resource file. Although
recommended, the server does not have to provide a default publisher.

The publisher resource file only saves the message Id of any string. The server SHOULD have another
file that saves all the real strings. That would be a publisher message file, which takes the following
form:

<MessageId 1><The language neutral string 1>

…

<MessageId n><The language-neutral string n>

These language-neutral strings can then be translated into different languages and put into localized
string tables (section 3.1.1.13).

The publisher parameter file has the same format as the publisher message file and can take this
form:

55 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<Value 1><String 1>

…

<Value n><String n>

The strings in the publisher parameter file cannot be localized. It is used for parameter substitution.

For example, if a publisher defines the description string of an event as "The system has found %%2",
when the server tries to expand the string with the EvtRpcMessageRender method (section
3.1.4.31), it sees %%2 and knows that this part is replaced with a real string from the publisher's
parameter file. It then uses 2 as the index and finds the string for the value 2 in the parameter file
and replaces %%2 with that string.

3.1.2 Timers

None.

3.1.3 Initialization

The EventLog Remoting Protocol Version 6.0 server MUST be initialized by registering the RPC
interface and listening on the RPC endpoint, as specified in section 2.1. Then, the server MUST wait for
client requests.

3.1.4 Message Processing Events and Sequencing Rules

Because the server MUST make access control decisions as part of responding to EventLog Remoting
Protocol Version 6.0 requests, the client MUST authenticate to the server. This is the responsibility of
the lower-layer protocol, RPC over TCP/IP (as specified in [C706]). The access control decisions
affecting the EventLog Remoting Protocol Version 6.0 are made based on the identity conveyed by this
lower-layer protocol.

The following sections first provide an informative overview of the message sequences before giving

the prescriptive details of processing for each message.

The following table lists the IDL members in opcode order.

Methods in RPC Opnum Order

Method Description

EvtRpcRegisterRemoteSubscription Used by a client to create either a push or a pull subscription.

Opnum: 0

EvtRpcRemoteSubscriptionNextAsync Used by a client to request asynchronous delivery of events that are
delivered to a subscription.

Opnum: 1

EvtRpcRemoteSubscriptionNext Used for pull subscriptions in which the client polls for events.

Opnum: 2

EvtRpcRemoteSubscriptionWaitAsync Used to enable the client to only poll when results are likely.

Opnum: 3

EvtRpcRegisterControllableOperation Obtains a CONTEXT_HANDLE_OPERATION_CONTROL handle that can
be used to cancel other operations.

Opnum: 4

56 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Method Description

EvtRpcRegisterLogQuery Used to query one or more channels. It can also be used to query a
specific file.

Opnum: 5

EvtRpcClearLog Instructs the server to clear a live event log.

Opnum: 6

EvtRpcExportLog Instructs the server to create a backup event log at a specified file
name.

Opnum: 7

EvtRpcLocalizeExportLog Used by a client to add localized information to a previously created
backup event log.

Opnum: 8

EvtRpcMessageRender Used by a client to get localized descriptive strings for an event.

Opnum: 9

EvtRpcMessageRenderDefault Used by a client to get localized strings for common values of
opcodes, tasks, or keywords, as specified in section 3.1.4.31.

Opnum: 10

EvtRpcQueryNext Used by a client to get the next batch of records from a query result
set.

Opnum: 11

EvtRpcQuerySeek Used by a client to move a query cursor within a result set.

Opnum: 12

EvtRpcClose Used by a client to close context handles opened by other methods in
this protocol.

Opnum: 13

EvtRpcCancel Used by a client to cancel another method.

Opnum: 14

EvtRpcAssertConfig Indicates to the server that publisher or channel configuration has
been updated.

Opnum: 15

EvtRpcRetractConfig Indicates to the server that publisher or channel configuration is to be
removed.

Opnum: 16

EvtRpcOpenLogHandle Used by a client to get information on a live or backup log.

Opnum: 17

EvtRpcGetLogFileInfo Used by a client to get information on an event log.

Opnum: 18

EvtRpcGetChannelList Used to enumerate the set of available channels.

Opnum: 19

EvtRpcGetChannelConfig Used by a client to get the configuration for a channel.

Opnum: 20

EvtRpcPutChannelConfig Used by a client to update the configuration for a live event log.

57 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Method Description

Opnum: 21

EvtRpcGetPublisherList Used by a client to get the list of publishers.

Opnum: 22

EvtRpcGetPublisherListForChannel Used by a client to get the list of publishers that write events to a
particular live event log.

Opnum: 23

EvtRpcGetPublisherMetadata Used by a client to open a handle to publisher metadata. It also gets
some initial information from the metadata.

Opnum: 24

EvtRpcGetPublisherResourceMetadata Used by a client to obtain information from the publisher metadata.

Opnum: 25

EvtRpcGetEventMetadataEnum Used by a client to obtain a handle for enumerating a publisher's
event metadata.

Opnum: 26

EvtRpcGetNextEventMetadata Used by a client to get details on a particular possible event, and also
returns the next event metadata in the enumeration.

Opnum: 27

EvtRpcGetClassicLogDisplayName Used to obtain a descriptive name of a channel.

Opnum: 28

All methods MUST NOT throw exceptions. All return values use the NTSTATUS numbering space (as
specified in [MS-ERREF] section 2.3) and, in particular, a value of 0x00000000 indicates success, and
any other return value indicates an error. For a mapping of Windows NT operating system status error
codes to Win32 error codes, see [MSKB-113996]. All error values MUST<8> be treated the same,

unless specified otherwise.

Within the sections that follow this one, methods are presented in the order typically implemented to

accomplish the following operations:

 Subscription

 Queries

 Log Maintenance

 Configuration and Metadata

 Message Rendering

 Miscellaneous Operations

3.1.4.1 Subscription Sequencing

Subscriptions can be either pull or push model. The pull model is essentially a polling model in which
the client requests new events; in the push mode, the server delivers events as they occur.

In all models, the subscription starts with a client application (that is, the higher layer above the

protocol client) calling the EvtRpcRegisterRemoteSubscription (section 3.1.4.8) method to get a
CONTEXT_HANDLE_REMOTE_SUBSCRIPTION handle. The subscription ends when that handle is closed
by using the EvtRpcClose (section 3.1.4.33) method.

58 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

In between these calls, the two models vary. All methods used in the two models use the
CONTEXT_HANDLE_REMOTE_SUBSCRIPTION handle.

In the pull model, the client loops by using the EvtRpcRemoteSubscriptionNext (section 3.1.4.10)
method to get events. Optionally, the client can use the

EvtRpcRemoteSubscriptionWaitAsync (section 3.1.4.11) method to delay calling the
EvtRpcRemoteSubscriptionNext (section 3.1.4.10) method until events are ready. The server
completes the EvtRpcRemoteSubscriptionWaitAsync (section 3.1.4.11) method call when new events
are ready.

In the push model, the client loops by using the
EvtRpcRemoteSubscriptionNextAsync (section 3.1.4.9) method to get events. The call MUST be
completed by the server when a new event is ready.

Note that there is also a CONTEXT_HANDLE_OPERATION_CONTROL handle returned by the
EvtRpcRegisterRemoteSubscription (section 3.1.4.8) method. The sequencing and use of these
handles are specified in section 3.1.4.6.

The application ends the subscription by passing the CONTEXT_HANDLE_REMOTE_SUBSCRIPTION
handle to the EvtRpcClose (section 3.1.4.33) method.

3.1.4.2 Query Sequencing

Queries begin with a client application calling the EvtRpcRegisterLogQuery (section 3.1.4.12) method,
which returns a handle of type CONTEXT_HANDLE_LOG_QUERY.

The client application can then use the handle for subsequent calls to the
EvtRpcQueryNext (section 3.1.4.13) method or the EvtRpcQuerySeek (section 3.1.4.14) method.

The application then closes the handle at the end of the query using EvtRpcClose.

Note that there is also a CONTEXT_HANDLE_OPERATION_CONTROL handle returned by
EvtRpcRegisterLogQuery. The sequencing and use of these handles are specified in section 3.1.4.6.

3.1.4.3 Log Information Sequencing

To get information on a log, a client application calls the EvtRpcOpenLogHandle (section 3.1.4.19)
method first to get a handle of type CONTEXT_HANDLE_LOG_HANDLE.

The application can then use the handle for subsequent calls to the
EvtRpcGetLogFileInfo (section 3.1.4.15) method.

Finally, the application closes the handle by using the EvtRpcClose (section 3.1.4.33) method.

3.1.4.4 Publisher Metadata Sequencing

To get information on a publisher, a client application calls the
EvtRpcGetPublisherMetadata (section 3.1.4.25) method to get a handle of type

CONTEXT_HANDLE_PUBLISHER_METADATA.

The application can then use the handle for subsequent calls to the

EvtRpcMessageRender (section 3.1.4.31), EvtRpcGetPublisherResourceMetadata (section 3.1.4.26),
and EvtRpcGetEventMetadataEnum (Opnum 26) methods.

Finally, the application closes the handle by using the EvtRpcClose (section 3.1.4.33) method.

59 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.5 Event Metadata Enumerator Sequencing

To enumerate information on a publisher's events, a client application calls the
EvtRpcGetEventMetadataEnum (Opnum 26) method to get a handle of type

CONTEXT_HANDLE_EVENT_METADATA_ENUM.

The application can then use the handle for subsequent calls to the
EvtRpcGetNextEventMetadata (section 3.1.4.28) method.

Finally, the application closes the handle by using the EvtRpcClose (section 3.1.4.33) method.

3.1.4.6 Cancellation Sequencing

A client application can use CONTEXT_HANDLE_OPERATION_CONTROL to cancel a method by passing
CONTEXT_HANDLE_OPERATION_CONTROL to the EvtRpcCancel (section 3.1.4.34) method. The
EvtRpcClose (section 3.1.4.33) method is then used when the application no longer needs the handle.

3.1.4.6.1 Canceling Subscriptions

The CONTEXT_HANDLE_OPERATION_CONTROL handle is obtained at the same time a
CONTEXT_HANDLE_REMOTE_SUBSCRIPTION handle is obtained by calling the
EvtRpcRegisterRemoteSubscription (Opnum 0) (section 3.1.4.8) method. Any calls to the
EvtRpcRemoteSubscriptionNext (Opnum 2) (section 3.1.4.10), EvtRpcRemoteSubscriptionNextAsync
(Opnum 1) (section 3.1.4.9), and EvtRpcRemoteSubscriptionWaitAsync (Opnum 3) (section 3.1.4.11)
methods using the CONTEXT_HANDLE_REMOTE_SUBSCRIPTION handle can be canceled by using the
CONTEXT_HANDLE_OPERATION_CONTROL handle in a call to the EvtRpcCancel (section 3.1.4.34)

method.

3.1.4.6.2 Canceling Queries

The CONTEXT_HANDLE_OPERATION_CONTROL handle is obtained at the same time a
CONTEXT_HANDLE_LOG_QUERY handle is obtained by calling the EvtRpcRegisterLogQuery (Opnum

5) (section 3.1.4.12) method. Any calls to the EvtRpcQueryNext (Opnum 11) method or the
EvtRpcQuerySeek (Opnum 12) (section 3.1.4.14) method by using the

CONTEXT_HANDLE_LOG_QUERY handle can be canceled by using the
CONTEXT_HANDLE_OPERATION_CONTROL handle in a call to the EvtRpcCancel (section 3.1.4.34)
method.

3.1.4.6.3 Canceling Clear or Export Methods

Any calls to the EvtRpcClearLog (Opnum 6) (section 3.1.4.16), EvtRpcExportLog (Opnum
7) (section 3.1.4.17), and EvtRpcLocalizeExportLog (Opnum 8) (section 3.1.4.18) methods can be

canceled by using a CONTEXT_HANDLE_OPERATION_CONTROL handle. Normally, the
CONTEXT_HANDLE_OPERATION_CONTROL handle used for these functions is obtained via the
EvtRpcRegisterControllableOperation (Opnum 4) (section 3.1.4.35) method.

There is a single type of CONTEXT_HANDLE_OPERATION_CONTROL handle. A handle obtained by the
EvtRpcRegisterRemoteSubscription (Opnum 0) (section 3.1.4.8) method or the

EvtRpcRegisterLogQuery (Opnum 5) (section 3.1.4.12) method can be used to cancel the

EvtRpcClearLog (Opnum 6) (section 3.1.4.16), EvtRpcExportLog (Opnum 7) (section 3.1.4.17), and
EvtRpcLocalizeExportLog (Opnum 8) (section 3.1.4.18) methods. There is no restriction on how many
methods a CONTEXT_HANDLE_OPERATION_CONTROL handle can control. One handle can be used to
cancel any number of calls.

60 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.7 BinXml

The event information returned by the query and subscription methods is in a binary format named
BinXml. BinXml is a token representation of text XML 1.0, as specified in [XML10].

Here BinXml encodes an XML document so that the original XML text can be correctly reproduced from
the encoding. There is no requirement for a server to use or understand the text XML. The protocol
can be implemented end to end by treating BinXml as a method to transmit name-value pairs, instead
of as an encoding of XML. However, after the data has been received, it is common for third-party
applications to convert from binary XML to text XML independent of the protocol. Therefore, for
informative purposes only, an overview of the relationship is provided.

Note that this translation is not required by either the client or the server in this protocol.

What follows is a greatly simplified example of a fragment of text XML encoding in binary XML.

Text Binary

<SomeEvent> 01 SomeEvent 02

<PropA> 99 </PropA> 01 PropA 02 05 "99" 04

<PropB> 101 </PropB> 01 PropB 02 05 "101" 04

</SomeEvent> 04 00

The binary bytes in the preceding example have the following meaning.

 00 - eof
 01 - open start tag
 02 - close start tag
 04 - end tag
 05 - value text

BinXml also includes more information that allows for fast navigation of the XML. For example, lengths

of elements and attribute lists allow the user to jump forward in the BinXml stream. Another example
is that BinXml encoding of Names includes length and hash values that allow for fast comparisons of
the XML names.

3.1.4.7.1 BinXml Templates

BinXml encoding supports a way to use a template of a BinXml fragment and apply it to a set of
values. A BinXml template describes the format and contents of an event independent of the values

contained in a specific instance of the event being described. It contains property names and
placeholders for the event properties.

The primary advantage of this is that the values (set of data) can remain in native form and only need
to be converted to text if the BinXml encoding is actually rendered into XML text.

A BinXml encoding of an XML fragment that uses templates and a set of substitution values is referred
to as a Template Instance. A Template Definition is a BinXml fragment that contains substitution

tokens, and the Template Instance Data refers to the set of values.

Continuing the example from BinXml (section 3.1.4.7) with a possible sample Template Definition,
note the following:

 This example uses two substitution tokens, %1 and %2, that are replaced by specific event values
at rendering time.

61 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 These tokens map to substitution identifiers in the BinXML template.

 The substitution identifiers are 0-based, whereas the substitution tokens are 1-based.

 The Text column of the following table shows the XML representation of the various fields.

 The Binary column of the following table shows the binary representation of those fields encoded

in BinXML.

Text Binary

<SomeEvent> 01 SomeEvent 02

<PropA> %1 </PropA> 01 PropA 02 05 0D 00 04

<PropB> %3 </PropB> 01 PropB 02 05 0D 01 04

</SomeEvent> 04 00

Where the substitution token is 0D, and is followed by a substitution identifier (00 or 01 in the
example).

This template definition can be combined with raw UINT8 values { 0x63, 0x65 } to form a Template
Instance such as the following example. The ordering of the values is significant: the first value
encountered maps to the first substitution identifier; the second value maps to the second substitution
identifier, and so on. In the following example, the value 0x63 replaces the identifier 00 at rendering

time, and the 0x65 replaces identifier 01.

Text Binary

 0C

<SomeEvent> 01 SomeEvent 02

<PropA> %1 </PropA> 01 PropA 02 05 0D 00 04

<PropB> %2 </PropB> 01 PropB 02 05 0D 01 04

</SomeEvent> 04 00

 0 01 04 01 04

 63 65 00

Note The beginning Template Instance token (0x0C) and the trailing end of fragment or document
token (EOFToken, 0x00) for the Template Instance immediately following the Template Definition is
information about the type and length of the values that make up the Template Instance data. This is
called the Value Spec of the Template Instance. In this example, there are 2 values, each of UINT8
integer type (04) and each of length 1.

If the BinXml in the preceding example is rendered as XML text, it looks identical to the first example,

as follows.

 <SomeEvent>
 <PropA> 99 </PropA>
 <PropB> 101 </PropB>
 </SomeEvent>

Substitutions can occur in attribute values as well as any other place where XML character data is

allowed (for example, in element content). Within these regions, there are no restrictions on the
number of substitutions that can exist.

3.1.4.7.2 Optional Substitutions

Another feature of BinXml templates is that substitutions can be specified such that the enclosing
element or attribute MUST be omitted from rendered XML text (or other processing) if the value

62 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

identified by the substitution is NULL in the Template Instance data. If this type of rendering from the
BinXml is wanted, the substitution needs to be specified by using an optional substitution token. The

optional substitution token is 0x0E, as compared to the normal substitution token 0x0D.

The server MAY determine whether to use the optional substitution token based on the event

definition.<9>

The following table contains an example where %1 and %2 represent the optional substitution tokens.

Text Binary

 0C

<SomeEvent> 01 SomeEvent 02

<PropA> %1 </PropA> 01 PropA 02 05 0E 00 04

<PropB> %2 </PropB> 01 PropB 02 05 0E 01 04

</SomeEvent> 04 00

 02 00 00 01 04

 65 00

This tells any processor of the encoded BinXml to use the following XML representation.

 <SomeEvent>
 <PropB> 101 </PropB>
 </SomeEvent>

Note The preceding Value Spec for the optional element PropA specifies that the substitution value is
NULL (see Type System (section 3.1.4.7.3)), and this is how the BinXml processor knows to omit this

element.

The optional substitution applies only to the element or attribute immediately enclosing it.

Note If an element contains an optional substitution, and that substitution value is NULL, the element
cannot appear in rendered XML, even if that element has attributes containing content, other

(nonNULL) substitution values, and so on.

3.1.4.7.3 Type System

Each value (in BinXml encoding) of templates has an accompanying type. Likewise, each value has an
accompanying byte length. This is redundant for fixed size types, but is necessary for variable-length
types such as strings and binary large objects (BLOBs).

Each BinXml type has a canonical XML representation. This is the format used to represent the value

when the BinXml is rendered as XML text. The following table gives the meaning of each type and also

lists its canonical XML representation by association with XSD types. An XS: prefix specifies the XML
Schema namespace (as specified in [XMLSCHEMA2/2]), and an EVT: prefix specifies types defined in
the event.xsd (as specified in [MSDN-EVENTS]).

The binary encoding of all number types MUST be little-endian. Additionally, no alignment is assumed
in the binary encoding for any of these types.

This table can be used to convert between BinXml and canonical XML. That is, if an application

converts BinXml to text, the binary form on the left is replaced with the type on the right, where the
type column corresponds to a field in the ABNF, as specified in section 2.2.12.

63 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 BinXml type Meaning
 Canonical XML
representation

NullType No value. "" (Empty String)

StringType A sequence of [UNICODE] characters. Not assumed to be null
terminated. The string length is derived from the byte length
accompanying value.

xs:String

AnsiStringType A sequence of ANSI characters. Not assumed to be null terminated.
The string length is derived from the Byte length accompanying
value.

xs:String

Int8Type A signed 8-bit integer. xs:byte

UInt8Type An unsigned 8-bit integer. xs:unsignedByte

Int16Type A signed 16-bit integer. xs:short

UInt16Type An unsigned 16-bit integer. xs:unsignedShort

Int32Type A signed 32-bit integer. xs:int

UInt32Type An unsigned 32-bit integer. xs:unsignedInt

HexInt32Type An unsigned 32-bit integer. evt:hexInt32

Int64Type A signed 64-bit integer. xs:long

UInt64Type An unsigned 64-bit integer. xs:unsignedLong

HexInt64Type An unsigned 64-bit integer. evt:hexInt64

Real32Type An IEEE 4-byte floating point number. xs:float

Real64Type An IEEE 8-byte floating point number. xs:double

BoolType An 8-bit integer that MUST be 0x00 or 0x01 (mapping to true or
false, respectively).

xs:Boolean

BinaryType A variable size sequence of bytes. xs:hexBinary

GuidType A 128-bit UUID, as specified in [C706], for example, {2d4d81d2-
94bd-4667-a2af-2343f9d83462}. The canonical form in XML contains
braces.

evt:GUID

SizeTType A 32-bit unsigned integer, if the server is a 32-bit platform; or a 64-
bit unsigned integer, if the server is a 64-bit platform.

evt:hexInt32 or
Evt::hexInt64

FileTimeType An 8-byte FILETIME structure, as specified in [MS-DTYP] Appendix A. xs:dateTime

SysTimeType A 16-byte SYSTEMTIME structure, as specified [MS-DTYP]. xs:dateTime

SidType A binary representation of the SID, as specified in [MS-DTYP]. While
the structure has variable size, its length is contained within the data
itself. The canonical form is the output of the Security Descriptor
Definition Language (SDDL) string SID representation, as specified in
[MS-DTYP].

xs:string

BinXmlTyp

e

Specified in section 3.1.4.7.4.

64 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.7.4 BinXml Type

The BinXml type MUST be used for values that are themselves BinXml encoding of XML fragments or
TemplateInstances. This allows embedding of TemplateInstances.

The byte length for the value specifies the length of the BinXml fragment, up to and including its EOF
token.

This type MUST only be used when substituting into element content. For example, given the following
template instance.

Text Binary

 0C

<InnerTemplate> 01 InnerTemplate 02

<PropA> %1 </PropA> 01 PropA 02 05 0D 00 04

<PropB> %2 </PropB> 01 PropB 02 05 0D 01 04

</InnerTemplate> 04 00

 02 01 04 01 04

 63 65 00

And the following outer template definition.

Text Binary

<OuterTemplate> 01 OuterTemplate 02

<PropA> %1 </PropA> 01 PropA 02 05 0D 00 04

<PropB> %2 </PropB> 01 PropB 02 05 0D 01 04

</OuterTemplate>

If the set of values for the outer template instance is the BinXml for InnerTemplate TemplateInstance,
and the UINT8 value is 0x67, the resultant BinXml is the following.

 0C
 01 OuterTemplate 02
 01 PropA 02 05 0D 00 04
 01 PropB 02 05 0D 01 04
 04 00
 02 30 21 01 04 <- value spec for Outer Template
 0C
 01 InnerTemplate 02
 01 PropA 02 05 0D 00 04
 01 PropB 02 05 0D 01 04
 04 00
 02 01 04 01 04 <- value spec for inner template
 63 65 00
 67 00

Note the value spec for the Inner Template. The template is 0x30 long, and is of type 0x21
("BinXmlType"). It is followed by one UINT8 value.

3.1.4.7.5 Array Types

65 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

In addition to the base types, arrays of most base types can be specified in BinXml encoding. The only
basic types that are not allowed are binary, non-null-terminated AnsiStringType string, non-null-

terminated StringType string, and BinXml.

The array itself is considered a single value of the set of values that make up the Template Instance.

As with all values, there is an accompanying type and a byte length. Elements of an array MUST all be
of the same type.

The binary representation of the array MUST be the serialized representation of each element of the
array.

The byte length MUST be used to derive the number of elements in the array. This is trivial for fixed
size types. Arrays of variable length types are supported, but only if the length of each element in the
array can be derived for the data itself. The only variable length types that can be used in arrays are:

 Null-terminated ANSI strings

 Null-terminated [UNICODE] strings

 SIDs

Consider the original template example. If the set of values is { [97,99], 101} (where the first value is
an array of two elements of type UINT8, and the second value is of type UINT8), the resultant BinXml
is shown in the following table.

Text 0C

<SomeEvent> 01 SomeEvent 02

<PropA> %1 </PropA> 01 PropA 02 05 0D 00 04

<PropB> %2 </PropB> 01 PropB 02 05 0D 01 04

</SomeEvent> 04 00

 02 02 84 01 04

61 63 65 00

And the resultant XML text representation of this encoding is the following.

 <SomeEvent>
 <PropA> 97 </PropA>
 <PropA> 99 </PropA>
 <PropB> 101 </PropB>
 </SomeEvent>

3.1.4.7.6 Prescriptive Details

The server MUST return all event information encoded in BinXml format according to the BinXml

ABNF.

Additionally, the server MUST organize the data encoded by the BinXml in such a way that if the
BinXml is transformed to XML text, this XML text is valid according to the Event.xsd Schema (as
specified in [MSDN-EVENTS]).

The Type System table (for more information, see section 3.1.4.7.3) MUST be used to map
Substitution values onto XSD Schema types (as specified in [MSDN-EVTSST] and [MSDN-EVTSCT]).

66 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.8 EvtRpcRegisterRemoteSubscription (Opnum 0)

The EvtRpcRegisterRemoteSubscription (Opnum 0) method is used by a client to create either a push
or a pull subscription. In push subscriptions, the server calls the client when new events are ready. In

pull subscriptions, the client polls the server for new events. Subscriptions can be to either a single
channel and its associated log, or to multiple channels and their logs.

A client can use bookmarks to ensure a reliable subscription even if the client is not continuously
connected. A client can create a bookmark locally based on the contents of an event that the client
has processed. If the client disconnects and later reconnects, it can use the bookmark to pick up
where it left off. For information on bookmarks, see section 2.2.14.

 error_status_t EvtRpcRegisterRemoteSubscription(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, unique, range(0, MAX_RPC_CHANNEL_NAME_LENGTH), string]
 LPCWSTR channelPath,
 [in, range(1, MAX_RPC_QUERY_LENGTH), string]
 LPCWSTR query,
 [in, unique, range(0, MAX_RPC_BOOKMARK_LENGTH), string]
 LPCWSTR bookmarkXml,
 [in] DWORD flags,
 [out, context_handle] PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION* handle,
 [out, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL* control,
 [out] DWORD* queryChannelInfoSize,
 [out, size_is(, *queryChannelInfoSize), range(0, MAX_RPC_QUERY_CHANNEL_SIZE)]
 EvtRpcQueryChannelInfo** queryChannelInfo,
 [out] RpcInfo* error
);

binding: An RPC binding handle as specified in section 2.2.21.

channelPath: A pointer to a string that contains a channel name or is a null pointer. In the case of a
null pointer, the query field indicates the channels to which the subscription applies.

query: A pointer to a string that contains a query that specifies events of interest to the application.

The pointer MUST be either an XPath filter, as specified in section 2.2.15, or a query as specified

in section 2.2.16.

bookmarkXml: Either NULL or a pointer to a string that contains a bookmark indicating the last event
that the client processed during a previous subscription. The server MUST ignore the
bookmarkXML parameter unless the flags field has the bit 0x00000003 set.

flags: Flags that determine the behavior of the query.

Value Meaning

EvtSubscribeToFutureEvents

0x00000001

Get events starting from the present time.

EvtSubscribeStartAtOldestRecord

0x00000002

Get all events from the logs, and any future events.

EvtSubscribeStartAfterBookmark

0x00000003

Get all events starting after the event indicated by the bookmark.

The following bits control other aspects of the subscription. These bits are set independently of the
flags defined for the lower two bits, and independently of each other.

67 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

EvtSubscribeTolerateQueryErrors

0x00001000

The server does not fail the function as long as there is one valid channel.

EvtSubscribeStrict

0x00010000

Fail if any events are missed for reasons such as log clearing.

EvtSubscribePull

0x10000000

Subscription is going to be a pull subscription. A pull subscription requires
the client to call the EvtRpcRemoteSubscriptionNext (as specified in
section 3.1.4.10) method to fetch the subscribed events. If this flag is not
set, the subscription is a push subscription. A push subscription requires
the client to call the EvtRpcRemoteSubscriptionNextAsync (as
specified in section 3.1.4.9) to receive notifications from the server when
the subscribed events arrive.

handle: A context handle for the subscription. This parameter is an RPC context handle, as specified
in [C706], Context Handles.

control: A context handle for the subscription. This parameter is an RPC context handle, as specified
in [C706], Context Handles.

queryChannelInfoSize: A pointer to a 32-bit unsigned integer that contains the number of

EvtRpcQueryChannelInfo structures returned in queryChannelInfo.

queryChannelInfo: A pointer to an array of EvtRpcQueryChannelInfo (section 2.2.11) structures that
indicate the status of each channel in the subscription.

error: A pointer to an RpcInfo (section 2.2.1) structure in which to place error information in the case
of a failure. The RpcInfo (section 2.2.1) structure fields MUST be set to nonzero values if the error
is related to parsing the query. If the method succeeds, the server MUST set all of the values in
the structure to 0.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it

MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST fail the method if any of the following
conditions occur:

 The flags parameter specifies that the bookmarkXML parameter is used; and the bookmarkXML
parameter is NULL or does not contain a valid bookmark. For more information, see section
2.2.14. The server SHOULD return ERROR_INVALID_PARAMETER (0x00000057) in this case.<10>

 The channelPath argument specifies a channel that does not exist. The server MAY return
ERROR_EVT_INVALID_CHANNEL_PATH (0x00003A98).<11>

 The query parameter is syntactically incorrect. The server SHOULD return
ERROR_EVT_INVALID_QUERY (0x00003A99) in this case. The query argument MUST be either of
the following:

 A simple XPath

For information on the specification of the protocol's support of XPath, see section 2.2.15.

 A query

For more information, see section 2.2.16). The server MUST verify the validity of any channel
names specified in the query, and any invalid channels MUST be returned via the
QueryChannelInfo parameter.

68 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If there is at least one invalid channel path and the 0x00010000 bit (EvtSubscribeStrict) is set
in the flags parameter, the server MUST fail the method with the error

ERROR_EVT_INVALID_CHANNEL_PATH (0x00003A98).

If the client specifies the 0x00000003 bit (EvtSubscribeStartAfterBookmark) and the

0x00010000 bit (EvtSubscribeStrict) is set in the flags parameter, the server MUST fail the
method with the error ERROR_EVT_INVALID_QUERY (0x00003A99) if the events position
specified by the bookmark is missing in the event channel.

If the 0x00001000 bit (EvtSubscribeTolerateQueryErrors) is set, the function SHOULD NOT
fail if the channelPath is valid although the query parameter is invalid. The method also SHOULD
NOT fail if the query parameter is a structure query (as specified in section 2.2.16) that contains
at least one valid channel.

If both EvtSubscribeStrict and EvtSubscribeTolerateQueryErrors are specified in the flags
parameter, the server ignores the EvtSubscribeTolerateQueryErrors and only uses the
EvtSubscribeStrict flag.

Next, the server MUST verify that the caller has read access to the files, and MUST fail the
method if the caller does not have read access with the error code ERROR_ACCESS_DENIED
(0x00000005).

 If bookmarkXML is non-NULL and the EvtSubscribeStartAfterBookmark flag is set, and the log
has been cleared or rolled over since the bookmark was obtained, the server MUST fail the method
and return ERROR_EVT_QUERY_RESULT_STALE (0x00003AA3).

 The server SHOULD fail the method if both the path and query parameters are NULL.<12>

The server SHOULD fail the method with the error code ERROR_INVALID_PARAMETER (0x00000057)
if the flags parameter is 0 or does not contain one of the following values:

 0x00000001 (EvtSubscribeToFutureEvents)

 0x00000002 (EvtSubscribeStartAtOldestRecord)

 0x00000003 (EvtSubscribeStartAfterBookmark)

If the above checks all succeed, the server MUST attempt to do the following:

 Create a CONTEXT_HANDLE_REMOTE_SUBSCRIPTION handle to the subscription.

 Create a CONTEXT_HANDLE_OPERATION_CONTROL handle.

The server MUST set the name element to the name of the queryChannelInfo parameter to the name
of the channels in question, and the status element to the status for that particular channel. For

example, if the query contains the "Application" channel, the server MUST return an
EvtRpcQueryChannelInfo struct with the name set to "Application"; if the query against that channel
was successfully registered, the server MUST set the status element to ERROR_SUCCESS
(0x00000000); if the query for that channel failed, the server MUST set the status element to an
NTSTATUS error code indicating the reason for failure.

When creating the CONTEXT_HANDLE_REMOTE_SUBSCRIPTION handle, the server SHOULD create a

subscription object. A subscription object is a class instance that logically stands for a subscription in
the server memory as specified in section 3.1.1.11. The server SHOULD set the positions in the
subscription object where the events SHOULD start in the channels based on the bookmark value if
the bookmark is provided. If the bookmark is not provided, the position values are set either to be the
beginning of channels if the flags contains EvtSubscribeStartAtOldestRecord, or set to be the
latest position values of channels if the flags contain EvtSubscribeToFutureEvents. If the client
specifies the EvtSubscribePull bit in the flags parameter, the server SHOULD set the IsPullType field in

the subscription object to be true, otherwise the value SHOULD be false. The channel array in the

69 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

subscription object SHOULD be set as all the client subscribed channels and the subscription filter is
set to be the XPath query expression from the parameter.

When creating the CONTEXT_HANDLE_OPERATION_CONTROL handle, the server SHOULD create an
operation control object. The server SHOULD set the operational pointer of the control object to be the

pointer of the subscription object that the server creates so that it can perform control operations on
that object. The server SHOULD also set the canceled field in the control object initially to false. If the
client waits too long for the subscription, it can use the EvtRpcCancel method (as specified in section
3.1.4.34) to cancel the subscription. Since the operation control object contains the subscription
pointer, it can request the subscription to stop on the server side.

The server SHOULD only fail the creation of handles in the case of not enough memory and return
ERROR_OUTOFMEMORY (0x0000000E). The server SHOULD add the newly created handles to its

handle table in order to track them.

The server MUST return a value that indicates success or failure for this operation.

3.1.4.9 EvtRpcRemoteSubscriptionNextAsync (Opnum 1)

The EvtRpcRemoteSubscriptionNextAsync (Opnum 1) method is used by a client to request
asynchronous delivery of events that are delivered to a subscription.

 error_status_t EvtRpcRemoteSubscriptionNextAsync(
 [in, context_handle] PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION handle,
 [in] DWORD numRequestedRecords,
 [in] DWORD flags,
 [out] DWORD* numActualRecords,
 [out, size_is(,*numActualRecords), range(0, MAX_RPC_RECORD_COUNT)]
 DWORD** eventDataIndices,
 [out, size_is(,*numActualRecords), range(0, MAX_RPC_RECORD_COUNT)]
 DWORD** eventDataSizes,
 [out] DWORD* resultBufferSize,
 [out, size_is(, *resultBufferSize), range(0, MAX_RPC_BATCH_SIZE)]
 BYTE** resultBuffer
);

handle: A handle to the subscription. This parameter is an RPC context handle, as specified in [C706],
Context Handles.

numRequestedRecords: A 32-bit unsigned integer that contains the number of events to return.

flags: A 32-bit unsigned integer that MUST be set to zero when sent and MAY be ignored on
receipt.<13>

numActualRecords: A pointer to a 32-bit unsigned integer that contains the value that, on success,

MUST be set to the number of events retrieved. This might be used, for example, if the method
times out without receiving the full number of events specified in numRequestedRecords.

eventDataIndices: A pointer to an array of 32-bit unsigned integers that contain the offsets for the
event. An event's offset is its position relative to the start of resultBuffer.

eventDataSizes: A pointer to an array of 32-bit unsigned integers that contain the event sizes in
bytes.

resultBufferSize: A pointer to a 32-bit unsigned integer that contains the number of bytes of data

returned in resultBuffer.

resultBuffer: A pointer to a byte-array that contains the result set of one or more events. The events
MUST be in binary XML format, as specified in section 2.2.17.

70 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST first validate the handle. The server
SHOULD fail the operation if the handle is not valid. The server SHOULD save the handle value it

creates and returns to the client via the handle parameter in the
EvtRpcRegisterRemoteSubscription method (as specified in section 3.1.4.8) in its handle table (as
specified in section 3.1.1.12) and compare it with the handle passed here to perform the check.<14>
The server MUST return ERROR_INVALID_PARAMETER (0x00000057) if the handle is invalid.

After the server validates the handle, it casts the handle value to the subscription object. The server
then MUST check whether the subscription object is a push subscription. Since the subscription object
contains the type of subscription, the server checks its type and SHOULD fail the method if it is not a

push type subscription with the error ERROR_INVALID_OPERATION(0x000010DD).

If the preceding check succeeds, the server MUST determine whether there are any events the client
has not received that pass the subscription filters. The subscription filters are the XPath queries that
the client specifies in the query parameter in the EvtRpcRegisterRemoteSubscription method (as

specified in section 3.1.4.8). For information on how the server applies the filter, see [MSDN-
CONSUMEVTS]. The server MUST wait until there is at least one event the client has not received

before completing this call. Once there is at least one event, the server MUST return the event or
events, and then update its subscription object state to keep track of what events have been delivered
to the subscription. As specified in section 3.1.4.8, the subscription object contains the position where
the events start in the channels, once the new event is delivered to the client, the server is able to
update the position value it saves in the subscription object so that it can perform the tracking task of
the events delivery. The server SHOULD track the new events generation from any of the registered
publishers in order for it to deliver the coming events to the client in a timely manner. See [MSDN-

ProcessTrace] for a suggested implementation.

The server returns the result in the five output parameters: numActualRecords, eventDataIndices,
eventDataSizes, resultBufferSize, and resultBuffer. On successful return, the numActualRecords
contains the number of events in the resultBuffer. All the returned events are in BinXML format and
they are packed as one binary blob in the resultBuffer. The total size of all these events are marked by

resultBufferSize. Since all the events are packed together, there is a need to identify where the
separator is for each event in the result. To do this, the server fills two arrays: eventDataIndices and

eventDataSizes. Both arrays contain the numActualRecords of elements. For the eventDataIndices
array, each array element is a 32-bit value which is the start position of each event in the resultBuffer.
For the eventDataSizes array, each element is a 32-bit value which is the size of every event.

The server SHOULD be notified by the underlying network that the connection is lost from the client if
the client abnormally terminates the connection. The server abandons its operation for the client in
such a case. The server releases the subscription object it creates and free all associated resources.

The associated resources are described in EvtRpcRegisterRemoteSubscription (Opnum
0) (section 3.1.4.8).

The server MUST return a value that indicates success or failure for this operation.

3.1.4.10 EvtRpcRemoteSubscriptionNext (Opnum 2)

This EvtRpcRemoteSubscriptionNext (Opnum 2) method is a synchronous request for events that have
been delivered to a subscription. This method is only used for pull subscriptions in which the client
polls for events. The EvtRpcRemoteSubscriptionWaitAsync (section 3.1.4.11) method can be used
along with this method to minimize the frequency of polling.

 error_status_t EvtRpcRemoteSubscriptionNext(
 [in, context_handle] PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION handle,
 [in] DWORD numRequestedRecords,
 [in] DWORD timeOut,
 [in] DWORD flags,

71 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [out] DWORD* numActualRecords,
 [out, size_is(,*numActualRecords), range(0, MAX_RPC_RECORD_COUNT)]
 DWORD** eventDataIndices,
 [out, size_is(,*numActualRecords), range(0, MAX_RPC_RECORD_COUNT)]
 DWORD** eventDataSizes,
 [out] DWORD* resultBufferSize,
 [out, size_is(,*resultBufferSize), range(0, MAX_RPC_BATCH_SIZE)]
 BYTE** resultBuffer
);

handle: A handle to a subscription. This parameter is an RPC context handle, as specified in [C706]
Context Handles.

numRequestedRecords: A 32-bit unsigned integer that contains the maximum number of events to
return.

timeOut: A 32-bit unsigned integer that contains the maximum number of milliseconds to wait before
returning.

flags: A 32-bit unsigned integer that MUST be set to zero when sent and MAY be ignored on
receipt.<15>

numActualRecords: A pointer to a 32-bit unsigned integer that contains the value that, on success,
MUST be set to the number of events that are retrieved. This is useful in the case in which the
method times out without receiving the full number of events specified in numRequestedRecords.
If the method fails, the client MUST NOT use the value.

eventDataIndices: A pointer to an array of 32-bit unsigned integers that contain the offsets for the

events. An event offset is its position relative to the start of resultBuffer.

eventDataSizes: A pointer to an array of 32-bit unsigned integers that contain the event sizes in
bytes.

resultBufferSize: A pointer to a 32-bit unsigned integer that contains the number of bytes of data

returned in resultBuffer.

resultBuffer: A pointer to a byte-array that contains the result set of one or more events. The events

MUST be in binary XML format, as specified in section 2.2.17.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success. The method
MUST return ERROR_TIMEOUT (0x000005b4) if fewer than numRequestedRecords records are found
within the time-out period. Otherwise, it MUST return a different implementation-specific nonzero
value as specified in [MS-ERREF].

In response to this request from the client, the server MUST do the following:

 Validate the handle. For processing rules for handle validation, see the remarks in section 3.1.4.9.

The server MUST fail the method with the return code ERROR_INVALID_PARAMETER
(0x00000057) if the handle is invalid or there is no state for this handle on the server.

 After the server validates the handle, it casts the handle value to the subscription object. The
server then MUST check whether the subscription object is a push subscription. Because the
subscription object contains the type of subscription, the server checks its type and SHOULD fail
the method if it is not a push type subscription with the error
ERROR_INVALID_OPERATION(0x000010DD).

 If the handle passes the check, the server MUST determine if the log file contains events to send
to the client. These events pass the subscription filters but have not been sent to the client. The
subscription filters are the XPath queries that the client specifies in the query parameter in the

72 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

EvtRpcRegisterRemoteSubscription method (as specified in section 3.1.4.8). For information
on how the server applies the filter, see [MSDN-CONSUMEVTS].

 If the log file contains events to send to the client, EvtRpcRemoteSubscriptionNext (Opnum 2)
starts collecting events to send to the client. Three factors determine the number of events that

the server sends to the client:

 The maximum number of records to send to the client. This value is specified by using the
numRequestedRecords parameter.

 The timeout interval. This value is specified by using the timeOut parameter and defines the
maximum time interval that the caller will wait for a query result. Complex queries and
queries that inspect large log files are most likely to encounter the limit specified by the
timeout value. If the execution time for delivering the next batch of events through the

subscription exceeds the timeout value, the server MUST stop working and SHOULD return to
the client immediately with the return code ERROR_TIMEOUT (0x000005B4). The server
SHOULD treat a timeout parameter value of 0xFFFFFFFF as infinite, and process up to the limit
of numRequestedRecords or the end of the log file regardless of the amount of time such

processing takes.

 The end of the log file.

 If the server collects the maximum number of events to send to the client before reaching the end
of the log file and before the timeout interval expires, the server MUST send the number of events
specified in numRequestedRecords to the client.

 If the timeout interval expires before the server reaches the end of the log file, the server MUST
send the collected events to the client. The number of events is less than or equal to the number
of events specified in numRequestedRecords.

 If the server reaches the end of the log file before the timeout interval expires, the server MUST

send the collected events to the client. The number of events is less than or equal to the number
of events specified in numRequestedRecords.

The server returns the result in the five output parameters: numActualRecords, eventDataIndices,
eventDataSizes, resultBufferSize, and resultBuffer. On successful return, the numActualRecords
contains the number of events in the resultBuffer. All the returned events are in BinXML format and
they are packed as one binary blob in the resultBuffer. The total size of all these events are marked by
resultBufferSize. Since all the events are packed together, there is a need to identify where the

separator is for each event in the result. To do this, the server fills two arrays: eventDataIndices and
eventDataSizes. Both arrays contain the numActualRecords of elements. For the eventDataIndices
array, each array element is a 32-bit value which is the start position of each event in the resultBuffer.
For the eventDataSizes array, each element is a 32-bit value which is the size of every event.

The server MUST update the position value in the subscription object to keep track of the events
received by the client so that subsequent calls can retrieve the rest of the result set. As specified in

section 3.1.4.8, the subscription object keeps the positions where the events SHOULD start in the
channels. Then the server can update the position value so that it can perform the task of tracking the
delivered events. The entire result set in the log file can be retrieved by making a series of calls using

EvtRpcRemoteSubscriptionNext (Opnum 2), including entries added to the log file during retrieval of
the result set.

The server SHOULD be notified by the underlying network that the connection is lost from the client if
the client abnormally terminates the connection. The server abandons its operation for the client in

such a case. The server SHOULD release the subscription object it creates and free all associated
resources. The associated resources are described in EvtRpcRegisterRemoteSubscription (Opnum
0) (section 3.1.4.8).

The server MUST return a value that indicates success or failure for this operation.

73 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.11 EvtRpcRemoteSubscriptionWaitAsync (Opnum 3)

Pull subscriptions are subscriptions in which the client requests records. The requests can be done by
using a polling mechanism. The EvtRpcRemoteSubscriptionWaitAsync (Opnum 3) method can be used

to enable the client to only poll when results are likely, and is typically used in conjunction with the
EvtRpcRemoteSubscriptionNext (Opnum 2) (section 3.1.4.10) method, which is a blocking call; so this
asynchronous method is used to provide a way for the caller to not have to block or continuously poll
the server.

 error_status_t EvtRpcRemoteSubscriptionWaitAsync(
 [in, context_handle] PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION handle
);

handle: A handle to a subscription, as obtained from the
EvtRpcRegisterRemoteSubscription (section 3.1.4.8) method. This parameter MUST be an RPC
context handle, as specified in [C706] Context Handles.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST first validate the handle. For processing

rules for handle validation, see the remarks in section 3.1.4.9. The server SHOULD fail the method
with the return code ERROR_INVALID_PARAMETER (0x00000057) if it has no state for the
handle.<16>

After the server validates the handle, it casts the handle value to the subscription object. The server
then MUST check whether the subscription object is a push subscription. Because the subscription
object contains the type of subscription, the server checks its type and SHOULD fail the method if it is

not a push type subscription with the error ERROR_INVALID_OPERATION(0x000010DD).

If the preceding check is successful, the server MUST determine whether there are any events the
client has not received that pass the subscription filters. The subscription object contains the
information of the last event since its last delivery to the client. If there is no new event from the last

time the server returned events to the client until the current moment, the server does not complete
the call and SHOULD return anything to the client. If there are new events coming in, the server
applies the subscription filters and if those events pass the filters, the server SHOULD call

RpcAyncCompleteCall (see [MSDN-RpcAsyncCompleteCall]) to complete the async call so that the
client will receive notification. Then the client will use EvtRpcRemoteSubscriptionNext (as specified
in section 3.1.4.10) to get those new events from the server. The subscription filters are the XPath
queries that the client specifies in the query parameter in the EvtRpcRegisterRemoteSubscription
method (as specified in section 3.1.4.8). For information on how the server applies the filter, see
[MSDN-CONSUMEVTS]. If there are no events meeting that criteria, the server MUST NOT complete
this operation.

The server SHOULD be notified by the underlying network that the connection is lost from the client if
the client abnormally terminates the connection. The server abandons its operation for the client in
such a case. The server SHOULD release the subscription object it creates and free all associated
resources. The associated resources are described in EvtRpcRegisterRemoteSubscription (Opnum

0) (section 3.1.4.8).

The server MUST return a value indicating success or failure for this operation.

3.1.4.12 EvtRpcRegisterLogQuery (Opnum 5)

The EvtRpcRegisterLogQuery (Opnum 5) method is used to query one or more channels. It can also be
used to query a specific file. Actual retrieval of events is done by subsequent calls to the
EvtRpcQueryNext (section 3.1.4.13) method.

74 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 error_status_t EvtRpcRegisterLogQuery(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, unique, range(0, MAX_RPC_CHANNEL_PATH_LENGTH), string]
 LPCWSTR path,
 [in, range(1, MAX_RPC_QUERY_LENGTH), string]
 LPCWSTR query,
 [in] DWORD flags,
 [out, context_handle] PCONTEXT_HANDLE_LOG_QUERY* handle,
 [out, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL* opControl,
 [out] DWORD* queryChannelInfoSize,
 [out, size_is(,*queryChannelInfoSize), range(0, MAX_RPC_QUERY_CHANNEL_SIZE)]
 EvtRpcQueryChannelInfo** queryChannelInfo,
 [out] RpcInfo* error
);

binding: An RPC binding handle as specified in section 2.2.21.

path: A pointer to a string that contains a channel or file path.

query: A pointer to a string that contains a query that specifies events of interest to the application.
The pointer MUST be either an XPath filter, as specified in section 2.2.15, or a query, as specified
in section 2.2.16.

flags: The flags field MUST be set as follows. The first two bits indicate how the path argument MUST
be interpreted. Callers MUST specify one and only one value.

Value Meaning

EvtQueryChannelPath

0x00000001

Path specifies a channel name.

EvtQueryFilePath

0x00000002

Path specifies a file name.

These bits control the direction of the query. Callers MUST specify one and only one value.

Value Meaning

0x00000100 Events are read from oldest to newest.

0x00000200 Events are read from newest to oldest.

The following bit can be set independently of the previously mentioned bits.

Value Meaning

0x00001000 Specifies to return the query result set even if one or more errors result from the query.

For example, if a structured XML query specifies multiple channels, some channels are valid while
others are not. A query that is used on many computers might be sent to a computer that is
missing one or more channels in the query. If this bit is not set, the server MUST fail the query. If
this bit is set, the query MUST succeed even if all channels are not present.

handle: A pointer to a query handle. This parameter MUST be an RPC context handle, as specified in
[C706], Context Handles.

opControl: A pointer to a control handle. This parameter MUST be an RPC context handle, as

specified in [C706], Context Handles.

75 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

queryChannelInfoSize: A pointer to a 32-bit unsigned integer that contains the number of
EvtRpcQueryChannelInfo structures returned in queryChannelInfo.

queryChannelInfo: A pointer to an array of section EvtRpcQueryChannelInfo structures, as specified
in section 2.2.11.

error: A pointer to an RpcInfo (section 2.2.1) structure in which to place error information in the case
of a failure. The RpcInfo (section 2.2.1) structure fields MUST be set to nonzero values if the error
is related to parsing the query; in addition, the server MAY set the structure fields to nonzero
values for errors unrelated to query parsing (for example, for an invalid channel name). All
nonzero values MUST be treated the same. If the method succeeds, the server MUST set all the
fields in the structure to 0.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it

MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST fail the method if the path parameter is
non-NULL and invalid. The server checks the syntax of the query by checking whether the query string

is either a valid XPath query (specified in section 2.2.15) or an XML query (specified in section
2.2.16). The server MUST interpret the path to be either a channel name or file path name, depending
on the flags parameter.

The server SHOULD validate all flag values and return the error ERROR_INVALID_PARAMETER
(0x00000057) if any of the following conditions occur:<17>

 Neither EvtQueryChannelPath or EvtQueryFilePath is set.

 Both EvtQueryChannelPath and EvtQueryFilePath are set.

 Neither 0x00000100 nor 0x00000200 is set.

 Both 0x00000100 and 0x00000200 are set.

 Any flag that is not specifically defined in this list is set.

 Both the query and the path parameters are NULL.

The server MUST fail the method if the query argument is syntactically incorrect. The server checks
the syntax of the query by checking if the query string is either a valid XPath query (specified in
section 2.2.15) or an XML query (specified in section 2.2.16). The server MAY not validate the
semantics of the query.

For example, a client could compose a query that was intended to select all events concerning squares
with more than five corners. This is an impossible situation, and the query will never return matching

events. But the server has no inherent knowledge about squares; therefore, it has no way to
determine that the query is invalid.

The query argument MUST be either a simple XPath (for information on the specification of the
protocol's support of XPath, see section 2.2.15) or a query (for more information, see section 2.2.16).
If the query is not a valid XPath (as specified in section 2.2.15) or allowed query (as specified in

section 2.2.16), the server MUST fail the method with the return error ERROR_EVT_INVALID_QUERY

(0x00003A99).

In the case of a query, the server MUST verify the validity of any channels or file paths specified in the
query. The server SHOULD check whether the given channel is registered or the file path exists for
performing the validation of channel or file path. The server SHOULD return the status of all channels
found in the query via the QueryChannelInfo parameter, along with a return code that specifies the
results of querying against that channel (that is, ERROR_SUCCESS (0x00000000) if the channel exists
and is accessible). <18> If there is at least one invalid channel or file path in the query and the

0x00001000 bit is not set in the flags parameter, the server MUST fail the method either with the

76 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

error ERROR_EVT_INVALID_CHANNEL_PATH (0x00003A98) or the error ERROR_EVT_INVALID_QUERY
(0x00003A99), respectively.

Next, the server MUST verify that the caller has read access to the channel or the specified event log
file and MUST fail the method if the caller does not have read access with the error code

ERROR_ACCESS_DENIED (0x00000005). To perform the access check, the server SHOULD first
determine the identity of the caller. Information determining the identity of the caller for the purpose
of performing an access check is specified in [MS-RPCE] section 3.2.3.4.2. Then, if the client specifies
a channel, the server SHOULD read the channel's access property (as specified in section 3.1.4.21) as
the security descriptor string. Next, the server SHOULD be able to perform the read access check
using the Access Check algorithm (as specified in [MS-DTYP] section 2.5.3.2).

If the preceding checks succeed, the server MUST attempt to create a

CONTEXT_HANDLE_LOG_QUERY and return it to the caller via the handle parameter, and attempt to
create a CONTEXT_HANDLE_OPERATION_CONTROL and return it in the opControl parameter. When
creating the CONTEXT_HANDLE_LOG_QUERY, the server SHOULD create a log query object. The log
query object is a class instance that resides in the server's memory to represent the query object for
the client (as specified in section 3.1.1.11). Inside the query object, the server SHOULD set the

channel path to the channel name or the event log file name the client specified, set the query filter as

the XPATH query from the query parameter, and set the position to 0 initially. The position SHOULD
be updated each time the client calls EvtRpcQuerySeek (as specified in section 3.1.4.14) or
EvtRpcQueryNext (as specified in section 3.1.4.13). When creating the
CONTEXT_HANDLE_OPERATION_CONTROL handle, the server SHOULD create an operation control
object (as specified in section 3.1.1.10). The server SHOULD set the operational pointer of the control
object to be the pointer of the log query object that the server creates so that it can perform control
operations on that object. The server SHOULD also initially set the canceled field in the control object

to false. If successful, the server MUST add the created handles to its handle table to track the issued
handles. If any of the preceding checks fail, the server MUST NOT create the context handles or add
them to the handle table.

The server SHOULD fail to create the two handles only in the case of memory limitation, and the
server SHOULD return ERROR_OUTOFMEMORY(0x0000000E) in such case.

The server MUST return a value indicating success or failure for this operation.

3.1.4.13 EvtRpcQueryNext (Opnum 11)

The EvtRpcQueryNext (Opnum 11) method is used by a client to get the next batch of records from a
query result set.

 error_status_t EvtRpcQueryNext(
 [in, context_handle] PCONTEXT_HANDLE_LOG_QUERY logQuery,
 [in] DWORD numRequestedRecords,
 [in] DWORD timeOutEnd,
 [in] DWORD flags,
 [out] DWORD* numActualRecords,
 [out, size_is(,*numActualRecords), range(0, MAX_RPC_RECORD_COUNT)]
 DWORD** eventDataIndices,
 [out, size_is(,*numActualRecords), range(0, MAX_RPC_RECORD_COUNT)]
 DWORD** eventDataSizes,
 [out] DWORD* resultBufferSize,
 [out, size_is(,*resultBufferSize), range(0, MAX_RPC_BATCH_SIZE)]
 BYTE** resultBuffer
);

logQuery: A handle to an event log. This parameter is an RPC context handle, as specified in [C706],
Context Handles.

77 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

numRequestedRecords: A 32-bit unsigned integer that contains the number of events to
return.<19>

timeOutEnd: A 32-bit unsigned integer that contains the maximum number of milliseconds to wait
before returning, starting from the time the server begins processing the call.

flags: A 32-bit unsigned integer that MUST be set to zero when sent and MAY be ignored on
receipt.<20>

numActualRecords: A pointer to a 32-bit unsigned integer that contains the value that, on success,
MUST be set to the number of events that are retrieved. This is useful when the method times out
without receiving the full number of events specified in numRequestedRecords. If the method fails,
the client MUST NOT use the value.

eventDataIndices: A pointer to an array of 32-bit unsigned integers that contain the offsets (in

bytes) within the resultBuffer for the events that are read.

eventDataSizes: A pointer to an array of 32-bit unsigned integers that contain the sizes (in bytes)

within the resultBuffer for the events that are read.

resultBufferSize: A pointer to a 32-bit unsigned integer that contains the number of bytes of data
returned in resultBuffer.

resultBuffer: A pointer to a byte-array that contains the result set of one or more events. The events

MUST be in binary XML format, as specified in section 2.2.17.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success. The method
MUST return ERROR_TIMEOUT (0x000005bf) if no records are found within the time-out period. The
method MUST return ERROR_NO_MORE_ITEMS (0x00000103) once the query has finished going
through all the log(s); otherwise, it MUST return a different implementation-specific nonzero value as
specified in [MS-ERREF].

In response to this request from the client, the server MUST first validate the handle. The server

MUST fail the operation if the handle is invalid. The server SHOULD save the log handle value it

creates in the EvtRpcRegisterLogQuery method (as specified in section 3.1.4.12) in its handle table
(as specified in section 3.1.1.12) and compare it with the handle passed here to perform the
check.<21>

The server MUST return ERROR_INVALID_PARAMETER (0x00000057) if the handle is invalid.

If the above check is successful, the server MUST attempt to read through the event log(s) and copy
any events that pass the filter into resultBuffer. As mentioned in section 3.1.4.12, the context handle

corresponds to the log query object on the server side. So the server casts the logQuery handle to its
internal log query object after the validation of the handle. The log query object contains the position
which indicates how many records the client has already received. The server reads the next record
after the position in the event log file. For each record it reads, it tries to match the query filter. If the
event passes the filter, the server copies that event record into the client resultBuffer. The server
MUST continue the operation until the number of events copied equals the number of events specified

by the numRequestedRecords parameter, or until the duration of the call exceeds the number of
milliseconds specified by the timeOutEnd parameter, or until there are no more records to be read.

The server MUST update its position in the log query object to keep track of the next event record the
server needs to return the next time a client calls this method. If the timeOutEnd parameter is
0xFFFFFFFF, the server SHOULD ignore the time-out and process the call as long as it needs without
checking the time-out.

If the server cannot find any records in the time specified by the timeOutEnd parameter, it MUST

return ERROR_TIMEOUT (0x000005bf).

If the server cannot find any records because it reached the end of the file, it MUST return
ERROR_NO_MORE_ITEMS (0x00000103).

78 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The server returns the result in the five output parameters: numActualRecords, eventDataIndices,
eventDataSizes, resultBufferSize, and resultBuffer. On successful return, the numActualRecords

contains the number of events in the resultBuffer. All the returned events are in BinXML format and
they are packed as one binary blob in the resultBuffer. The total size of all these events are marked by

resultBufferSize. Since all the events are packed together, there is a need to identify where the
separator is for each event in the result. To do this, the server fills two arrays: eventDataIndices and
eventDataSizes. Both arrays contain the numActualRecords of elements. For the eventDataIndices
array, each array element is a 32-bit value which is the start position of each event in the resultBuffer.
For the eventDataSizes array, each element is a 32-bit value which is the size of every event.

The server MUST return a value indicating success or failure for this operation.

3.1.4.14 EvtRpcQuerySeek (Opnum 12)

The EvtRpcQuerySeek (Opnum 12) method is used by a client to move a query cursor within a result
set.

 error_status_t EvtRpcQuerySeek(
 [in, context_handle] PCONTEXT_HANDLE_LOG_QUERY logQuery,
 [in] __int64 pos,
 [in, unique, range(0, MAX_RPC_BOOKMARK_LENGTH), string]
 LPCWSTR bookmarkXml,
 [in] DWORD timeOut,
 [in] DWORD flags,
 [out] RpcInfo* error
);

logQuery: A handle to an event log. This parameter is an RPC context handle, as specified in [C706],
Context Handles.

pos: The number of records in the result set to move by. If the number is positive, the movement is

the same as the direction of the query that was specified in the
EvtRpcRegisterLogQuery (section 3.1.4.12) method call that was used to obtain the handle

specified by the logQuery parameter. If the number is negative, the movement is in the opposite
direction of the query.

bookmarkXml: A pointer to a string that contains a bookmark.

timeOut: A 32-bit unsigned integer that MUST be set to 0x00000000 when sent and MAY be ignored
on receipt.

flags: This MUST be set as follows: this 32-bit unsigned integer contains flags that describe the
absolute position from which EvtRpcQuerySeek (Opnum 12) starts its seek. The origin flags (the
first four flags that follow) are mutually exclusive; however, the last flag can be set independently.
The pos parameter specifies the offset used in the definitions of these flags.

Value Meaning

EvtSeekRelativeToFirst

0x00000001

The offset is relative to the first entry in the result set and SHOULD be
nonnegative. Therefore, if an offset of 0 is specified, the cursor is moved to the
first entry in the result set.

EvtSeekRelativeToLast

0x00000002

The offset is relative to the last entry in the result set and SHOULD be nonpositive.
Therefore, if an offset of 0 is specified, the cursor is moved to the last entry in the
result set.

EvtSeekRelativeToCurrent

0x00000003

The offset is relative to the current cursor location. If an offset of 0 is specified,
the cursor is not to be moved. A positive or negative number can be used in this
case to move the cursor to any other location.

79 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

EvtSeekRelativeToBookmark

0x00000004

The offset is relative to the bookmark location. If an offset of 0 is specified, the
cursor is positioned at the bookmark. A positive or negative number can be used
in this case to move the cursor to any other location. The server MUST fail the
operation if the bookmarkXml parameter does not specify a valid position in the
log.

The presence of the EvtSeekStrict flag SHOULD influence the behavior of this flag,
as specified below.

EvtSeekStrict

0x00010000

If this is set, the query fails if the seek cannot go to the record indicated by the
other flags/parameters. If not set, the seek uses a best effort.

For example, if 99 records remain in the result set and the pos parameter specifies
100 with the EvtSeekRelativeToCurrent flag set, the 99th record is selected.

error: A pointer to an RpcInfo (section 2.2.1) structure in which to place error information in the case

of a failure. The RpcInfo structure fields MUST be set to nonzero values if the error is related to
parsing the query. In addition, the server MAY set the structure fields to nonzero values for errors

unrelated to query parsing. All nonzero values MUST be treated the same by the client.

If the method succeeds, the server MUST set all the values in the structure to zero.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST first validate the handle. For processing

rules for handle validation, see the remarks in section 3.1.4.13. The server SHOULD fail the method
with the return code ERROR_INVALID_PARAMETER (0x00000057) if the handle is invalid.

The server SHOULD<22> validate that the sign of the pos parameter makes sense for the search
direction. That is, the server returns ERROR_INVALID_PARAMETER (0x00000057) if a negative pos
value is specified along with the EvtSeekRelativeToFirst flag and if a positive pos value is specified
along with the EvtSeekRelativeToLast flag.

The server SHOULD validate that the bookmarkXML parameter has the correct syntax for the book
mark. If it is not correct, the server SHOULD return ERROR_INVALID_PARAMETER (0x00000057).

The server MUST validate that one and only one of the mutually exclusive flags are specified and
return ERROR_INVALID_PARAMETER (0x00000057) if this condition is not met. The mutually exclusive
flags are:

 EvtSeekRelativeToFirst

 EvtSeekRelativeToLast

 EvtSeekRelativeToCurrent

 EvtSeekRelativeToBookmark

If validation succeeds, the server uses the address of the logQuery context handle as a pointer to the

log query object, with implementation-specific typecasting as necessary. Then the following operations
SHOULD be done:

1. Set the position value in the log query object to the initial value based on the flags.

1. EvtSeekRelativeToFirst: Position set to 0.

2. EvtSeekRelativeToLast: Position set to the number of records in the channel.

3. EvtSeekRelativeToCurrent: Position unchanged.

80 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4. EvtSeekRelativeToBookmark: Read the event record Id from the bookmark XML, read every
event from the beginning and try to find the same event record Id as specified in the

bookmark XML. The position is the value of how many records the server has read before
finding the same event record Ids.

2. When pos parameter is bigger than 0, the server reads one event record from its current position
and increments the position value by 1. With the event record, the server tries to match the query
filter (the XPath expression). If the event matches the filter requirement, the server decreases the
pos value by 1. If the event does not match, the pos value is kept the same. Then the server
reads the next record, and repeats the process until the pos value becomes 0. Then the server
returns to the client indicating the seek operation is finished.

3. When pos parameter is a negative value, the server reads the event record in reverse order. It

reads the previous event record from its current position and decrements the position value by 1
each time it reads a previous record. With the record it reads, it tries to match the query filter (the
XPath expression). If the event matches the filter requirement, the server increases the pos value
by 1. If the event does not match, the pos value is kept the same. Next, the server reads the next
previous record. This process is repeated until the pos value becomes 0. Then the server returns

the value to the client indicating that the seek operation is finished.

If the client specifies the EvtSeekRelativeToBookmark flag and the server can't find the event record
Id that matches the record Id in the bookmark XML, the server SHOULD return ERROR_NOT_FOUND
(0x00000490) if the client specifies the EvtSeekStrict at the same time. Otherwise, the server tries to
set the position to the nearest record matching the record Id specified in the bookmark. For example,
if the record Id in the bookmark is 1000, and the event records in the log only has 999, 1002, 1003 as
the record Ids, the server SHOULD stops at the event record whose record Id is 999.

In the previous server mutually exclusive flags validation, steps 2 or 3, if the server reaches either the

beginning or the end of the event log file before the pos parameter reaches 0, the server SHOULD
check if the client has specified the flag EvtSeekSrict. If so, the server will not return error. Otherwise,
the server SHOULD return ERROR_NOT_FOUND (0x00000490).

The server MUST return a value indicating success or failure for this operation.

3.1.4.15 EvtRpcGetLogFileInfo (Opnum 18)

The EvtRpcGetLogFileInfo (Opnum 18) method is used by a client to get information about a live
channel or a backup event log.

 error_status_t EvtRpcGetLogFileInfo(
 [in, context_handle] PCONTEXT_HANDLE_LOG_HANDLE logHandle,
 [in] DWORD propertyId,
 [in, range(0, MAX_RPC_PROPERTY_BUFFER_SIZE)]
 DWORD propertyValueBufferSize,
 [out, size_is(propertyValueBufferSize)]
 BYTE* propertyValueBuffer,
 [out] DWORD* propertyValueBufferLength
);

logHandle: A handle to an event log. This parameter is an RPC context handle, as specified in
[C706], Context Handles. For more information about the server-side object that maps to this
handle, see section 3.1.4.19.

propertyId: A 32-bit unsigned integer that indicates what log file property (as specified in section
3.1.1.6) needs to be retrieved.

81 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

EvtLogCreationTime

0x00000000

A FILETIME containing the creation time of the file. This is the creation time of a
log file associated with the channel or the creation time of the backup event log
file in the server's file system.

EvtLogLastAccessTime

0x00000001

A FILETIME containing the last access time of the file. This is the last access time
of a log file associated with the channel or the last access time of the backup
event log file in the server's file system.

EvtLogLastWriteTime

0x00000002

A FILETIME containing the last write time of the file. This is the last written time of
a log file associated with the channel or the last written time of the backup event
log file in the server's file system.

EvtLogFileSize

0x00000003

An unsigned 64-bit integer containing the size of the file. This is the file size of a
log file associated with the channel or the file size of the backup event log file in
the server's file system.

EvtLogAttributes

0x00000004

An unsigned 32-bit integer containing the attributes of the file. The attributes are
implementation-specific, and clients MUST<23> treat all values equally. The
attributes are tracked by the server's file system and SHOULD be able to be
retrieved from the file system.

EvtLogNumberOfLogRecords

0x00000005

An unsigned 64-bit integer containing the number of records in the file. See the
following processing rules for how the server gets this value.

EvtLogOldestRecordNumber

0x00000006

An unsigned 64-bit integer containing the oldest record number in the file. See the
following processing rules for how the server gets this value.

EvtLogFull

0x00000007

A BOOLEAN value; MUST be true if the log is full, and MUST be false otherwise.
See the following processing rules for how the server gets this value.

propertyValueBufferSize: A 32-bit unsigned integer that contains the length of caller's buffer in
bytes.

propertyValueBuffer: A byte-array that contains the buffer for returned data.

propertyValueBufferLength: A pointer to a 32-bit unsigned integer that contains the size in bytes of
the returned data.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success. The method

MUST return ERROR_INSUFFICIENT_BUFFER (0x0000007A) if the buffer is too small; otherwise, it
MUST return a different implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST first validate the handle. The server
SHOULD save the log handle value it creates in the EvtRpcOpenLogHandle (section 3.1.4.19) method
in its handle table (as specified in section 3.1.1.12) so that it can compare that value with the value in
the logHandle parameter to perform the check. If the values differ, the handle is invalid.<24> The
server MUST fail the operation if the handle is invalid with the error code

ERROR_INVALID_PARAMETER (0x00000057).

Next, the server MUST verify the propertyId value as one specified in the preceding propertyId's fields
table. Otherwise, it SHOULD return ERROR_INVALID_PARAMETER (0x00000057).

If propertyValueBufferSize is too small, the server MUST return the size needed in the
propertyValueBufferLength parameter and fail the method with a return code of
ERROR_INSUFFICIENT_BUFFER (0X0000007A).

If the preceding checks succeed, the server MUST attempt to return the request information. The
server SHOULD first cast the logHandle into the log object. The server SHOULD decide if the Channel
pointer points to a live channel or the handle to a backup event log file based on the LogType field. If

82 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

it is a live channel, the server SHOULD get the associated log file path and open the file to get a file
handle. If it is a backup event log file, the log object contains the handle to the file. Then the server

SHOULD get the EvtLogCreationTime, EvtLogLastAccessTime, EvtLogLastWriteTime, EvtLogFileSize,
and EvtLogAttributes information by querying the file system to get the creation time, last access

time, last written time, file size, and file attributes of the specified log file (if channel is specified, the
log file is the disk file which associates with the channel).

Note This information is tracked by the file system automatically and the server does not need to
touch any files for any operation, such as exporting events from the channel or clearing events in a
channel.

The server keeps the number of event records, the oldest event record, and the log full flag in its live
channel file (log file associated with the channel) or backup event log file header (as specified in

section 3.1.1.6). The server reads the information directly when returning the mentioned properties to
the client.

The server MUST pack the return data into a single BinXmlVariant structure, as specified in section
2.2.18, and copy it into the buffer that is pointed to by the propertyValueBuffer parameter. The server

MUST NOT update its state.

The server MUST return a value indicating success or failure for this operation.

3.1.4.16 EvtRpcClearLog (Opnum 6)

The EvtRpcClearLog (Opnum 6) method instructs the server to clear all the events in a live channel,
and optionally, to create a backup event log before the clear takes place.

 error_status_t EvtRpcClearLog(
 [in, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL control,
 [in, range(0, MAX_RPC_CHANNEL_NAME_LENGTH), string]
 LPCWSTR channelPath,
 [in, unique, range(0, MAX_RPC_FILE_PATH_LENGTH), string]
 LPCWSTR backupPath,
 [in] DWORD flags,
 [out] RpcInfo* error
);

control: A handle to an operation control object. This parameter is an RPC context handle, as
specified in [C706], Context Handles.

channelPath: A pointer to a string that contains the path of the channel to be cleared.

backupPath: A pointer to a string that contains the path of the file in which events are to be saved
before the clear is performed. A value of NULL indicates that no backup event log is to be created
(the events to be cleared are not to be saved).

flags: A 32-bit unsigned integer that MUST be set to zero when sent and MAY be ignored on
receipt.<25>

error: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it MUST
return an implementation-specific nonzero value as specified in [MS-ERREF].<26>

Return Values: The method returns 0 (ERROR_SUCCESS) on success; otherwise, it MUST return an
implementation-specific nonzero value as specified in [MS-ERREF].

The server does not validate the control handle passed to EvtRpcClearLog and it SHOULD assume
that this parameter is always valid when the method is invoked.

The server MUST verify that the channelPath parameter specifies a correct channel name by looking
up the channel name in its channel table. The server SHOULD fail the call if the channelPath

83 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

parameter is not an entry in its channel table with the error code ERROR_EVT_CHANNEL_NOT_FOUND
(0x00003A9F).

If the backupPath parameter is non-NULL and non-empty, the server MUST validate the path and fail
the call if it is not a file path (an illegal file path for the server's file system) or if it specifies a file that

already exists. If the path is an illegal file path, the server SHOULD return the error
ERROR_INVALID_PARAMETER (0x00000057). If the path specifies a file which exists on the server,
the server SHOULD return the error ERROR_FILE_EXISTS (0x00000050).

Next, the server MUST verify if the client has write and clear access to the channel and write access to
the backup file if specified. To perform the access check, the server SHOULD first determine the
identity of the caller. Information determining the identity of the caller for the purpose of performing
an access check is specified in [MS-RPCE] section 3.2.3.4.2. Then, if the client specifies a channel, the

server SHOULD read the channel's access property (as specified in section 3.1.4.21) as the security
descriptor string. Next, the server SHOULD be able to perform the write and clear access check using
the Access Check algorithm (as specified in [MS-DTYP] section 2.5.3.2). The server MUST fail the
method with the error ERROR_ACCESS_DENIED (0x00000005) if the client does not have write and
clear access to the channel.

If the client specifies the backupPath, the server SHOULD first impersonate the identity of the caller.

For information on how to impersonate the client's identity for the purpose of performing an
authorization or security check, see [MS-RPCE] (section 3.3.3.4.3). Then the server SHOULD call the
file system component to attempt to create the backup file. Once the server impersonates the client's
identity, it can determine whether the client has write access because the file creation will fail with
ERROR_ACCESS_DENIED (0x00000005) if the client does not have write access. If the server fails to
create the backup file, it MUST return the error (a nonzero value as specified in [MS-ERREF]) reported
by the underlying file system component.<27> Otherwise, the server MUST successfully create the

backup file.

If the backupPath parameter is valid, the server MUST attempt to back up the log to the path specified
in the backupPath parameter before the log is cleared. The method MUST fail and not clear the log if
the backup does not succeed with any possible implementation-based error code.

If the backupPath parameter is NULL or empty, the method MUST NOT attempt to back up the event
log but SHOULD still clear the events in the channel.

If the previous checks are successful and if there are no problems in creating a backup log, the server

MUST attempt to clear the associated event log. All events MUST be removed during clearing. During
this process, the server SHOULD check the Canceled field of the operation control object in the
control parameter periodically, for example, once every 100 milliseconds. If the Canceled field
becomes TRUE and the clearing operation has not been finished, the server SHOULD abandon the
current operation and return to the client immediately with the error code ERROR_CANCELLED
(0x000004C7) without updating any state. On a successful return, the server SHOULD reset the

numberOfRecords to 0 and isLogFull to false for the header of its associated log file for the
channel. The server does not need to update the curPhysicalRecordNumber and
oldestEventRecordNumber. The LogCreationTime, LogLastAccessTime, LogLastWriteTime,
LogFileSize, and LogAttributes attributes of the associated log file for the channel are tracked by
the server's file system.

If all events are successfully deleted ("cleared"), the server MUST return ERROR_SUCCESS to indicate
success. This method SHOULD only fail in extreme conditions, such as lack of system resources, file

system error, or hardware error, and such issues are not part of the processing for the EventLog
Remoting Protocol Version 6.0. In these cases, the method MUST return an implementation-specific
error, as specified in [MS-ERREF], from lower level components unchanged. Depending on the server's
implementation detail, the protocol has no specific error return recommendation other than it MUST
come from [MS-ERREF].

Note The server does not need to update any state or information for the created backup event log
file.

84 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.17 EvtRpcExportLog (Opnum 7)

The EvtRpcExportLog (Opnum 7) method instructs the server to create a backup event log at a
specified file name.

 error_status_t EvtRpcExportLog(
 [in, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL control,
 [in, unique, range(0, MAX_RPC_CHANNEL_NAME_LENGTH), string]
 LPCWSTR channelPath,
 [in, range(1, MAX_RPC_QUERY_LENGTH), string]
 LPCWSTR query,
 [in, range(1, MAX_RPC_FILE_PATH_LENGTH), string]
 LPCWSTR backupPath,
 [in] DWORD flags,
 [out] RpcInfo* error
);

control: A handle to an operation control object. This parameter is an RPC context handle, as

specified in [C706] Context Handles.

channelPath: A pointer to a string that contains the channel name (for a live event log) or file path
(for an existing backup event log) to be used to create a backup event log.

query: A pointer to a string that contains a query that specifies events to be included in the backup
event log.

backupPath: A pointer to a string that contains the path of the file for the backup event logs to be
created.

flags: The client MUST set the flags parameter to one of the following values.

Value Meaning

EvtQueryChannelPath

0x00000001

Channel parameter specifies a channel name.

EvtQueryFilePath

0x00000002

Channel parameter specifies a file name.

In addition, the client MAY set the following value in the flags parameter:

Value Meaning

EvtQueryTolerateQueryErrors

0x00001000

The query MUST succeed even if not all the channels or backup event logs that
are specified in the query are present, or if the channelPath parameter specifies
channels that do not exist.

The server MAY ignore unrecognized flag combinations.<28>

error: A pointer to an RpcInfo (section 2.2.1) structure in which to place error information in the case
of a failure. The RpcInfo (section 2.2.1) structure fields MUST be set to a nonzero value if the
error is related to parsing the query. In addition, the server MAY set the suberror fields to nonzero

values for other types of errors. All nonzero values MUST be treated the same. If the method
succeeds, the server MUST set all of the values in the structure to 0.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

85 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The server does not validate the control handle passed to EvtRpcExportLog, and it SHOULD assume
that this parameter is always valid when the method is invoked.

In response to this request from the client, if the flags parameter contains the value 0x00000001
(flags & 0x00000001 != 0), the server MUST interpret the channel parameter as a channel name. The

server then SHOULD search its channel table to find the corresponding entry which has the same
channel name. If the server can't find the entry, the specified channel name is invalid and the server
SHOULD return ERROR_EVT_CHANNEL_NOT_FOUND (0x00003A9F). If the flags parameter contains
the value 0x00000002 (flags & 0x00000002 != 0), the server MUST interpret channel as an existing
backup event log file name. The server SHOULD then check if the specified file exists on the server. If
the file does not exist, the file path is invalid and the server SHOULD return ERROR_FILE_NOT_FOUND
(0x00000002).

The server SHOULD validate that the flags contain one and only one of EvtQueryChannelPath and
EvtQueryFilePath; and that no flags which are not defined above are specified. The server SHOULD
return error code ERROR_INVALID_PARAMTER (0x00000057) if the flag validation fails.<29>

The server MUST verify that the query parameter is a valid XPath expression with correct syntax,

based on the grammar definition provided in section 2.2.15 and if it is not, fail the operation with the
error code ERROR_INVALID_PARAMETER (0x00000057). For information on XPath filters supported by

this protocol, see section 2.2.15.

The server MUST verify that backupPath is a valid path (a legal file name for the server's file system),
and fail the method if it is not valid or if it specifies a file that already exists. The server SHOULD
return ERROR_INVALID_PARAMETER (0x00000057) if the path is invalid or ERROR_FILE_EXISTS
(0x00000050) if the specified file already exists on the server.

Next, the server MUST verify that the caller has read access to the channel or the backup event log
file and MUST fail the method if the caller does not have read access with the error code

ERROR_ACCESS_DENIED (0x00000005). To perform the access check, the server SHOULD first
determine the identity of the caller. Information determining the identity of the caller for the purpose
of performing an access check is specified in [MS-RPCE] section 3.2.3.4.2. Then, if the client specifies
a channel, the server SHOULD read the channel's access property (as specified in section 3.1.4.21) as

the security descriptor string. Next, the server SHOULD be able to perform the write and clear access
check using the Access Check algorithm (as specified in [MS-DTYP] section 2.5.3.2).

During the exporting log process, the server SHOULD check the Canceled field of the operation

control object in the control parameter periodically, for example, once every 100 milliseconds. If the
Canceled field becomes TRUE and the exporting operation has not been finished, the server SHOULD
abandon the current operation and return to the client immediately with the error code
ERROR_CANCELLED (0x000004C7) without updating any state. If the server has created a new
backup file and the operation has been canceled, the created file SHOULD be deleted. Failure to delete
the file SHOULD NOT trigger the server to take any further actions in response.

If the checks above are successful, the server MUST attempt to create a new backup event log that
contains only the records selected by the filter specified by the query parameter. The server SHOULD
first impersonate the identity of the client. For information on how to impersonate the client's identity
for the purpose of performing an authorization or security check, see [MS-RPCE] (section 3.3.3.4.3).
Then the server SHOULD call the file system component to create a new backup event log file. Once

the server impersonates the client's identity, it can determine whether the client has write access
because the file creation will fail with ERROR_ACCESS_DENIED (0x00000005) if the client does not

have write access. If the server fails to create the new backup event log file, it MUST return the error
(a nonzero value as specified in [MS-ERREF]) reported by the underlying file system component.<30>
Otherwise, the server MUST successfully create the file. There is no server state that needs to be
updated by this method. However, the server SHOULD ensure the LogNumberOfRecords,
LogOldestRecordNumber, and LogFull properties of the created backup log are the correct value. If
the query parameter is NULL, the created backup event log file SHOULD be the copy of the event log
file associated with the live channel so that the LogNumberOfRecords, LogOldestRecordNumber,

86 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

and LogFull properties are kept in the backup event log file and consequently have the same values
as in the event log file associated with the live channel.

If the query parameter is not NULL, the server SHOULD then read each event from the log file
associated with the live channel and determine whether it meets the criteria specified by the query

parameter. For every event that passes the filter given in the query parameter, the server SHOULD
write it to the created backup file. The event record number of the first event that is written into the
created backup file SHOULD be the value of LogOldestRecordNumber. The LogNumberOfRecords
property SHOULD be set to the number of total events the server writes to the backup file. The server
SHOULD set the isLogFull property to be FALSE and SHOULD set the curPhysicalRecordNumber
property to the value of (LogNumberOfRecords - 1).

The created backup file SHOULD be treated as read-only and never modified subsequently.

The LogCreationTime, LogLastAccessTime, LogLastWriteTime, LogFileSize, and LogAttributes
attributes of the created backup event log file are tracked by the server's file system. The
LogNumberOfRecords, LogOldestRecordNumber, and LogFull attributes are tracked by
numberOfRecords, oldestRecordNumber, and isLogFull in the backup event log file header.

The server MUST return a value indicating success or failure for this operation.

Note The exported backup event log file does not contain the localized event description strings

because the localized strings would consume considerable storage space if included in the exported log
file. If the backup log is consumed on the same machine where it is created or on other machines
where the publisher is registered, the strings can be retrieved from the publisher on demand.
Localized event description strings only need to be added to an exported backup event log file when
that file is moved to a different machine where the publisher is not registered. Localized event
description strings can be added to an exported backup event log file by calling the
EvtRpcLocalizeExportLog (section 3.1.4.18) method.

3.1.4.18 EvtRpcLocalizeExportLog (Opnum 8)

The EvtRpcLocalizeExportLog (Opnum 8) method is used by a client to add localized information to a

previously created backup event log, because the backup event log does not contain the localized

strings for event descriptions. An example of how this can be useful is if a backup event log needs to
be copied to other computers so that support personnel on those other computers can access it; if this
method has been called, such support personnel can access or view the localized backup event log,
which will then contain events with localized strings. Note that a discussion of tools by which
administrators or support personnel can work with localized backup event log files in scenarios such as
this is out of scope with respect to this protocol specification.

 error_status_t EvtRpcLocalizeExportLog(
 [in, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL control,
 [in, range(1, MAX_RPC_FILE_PATH_LENGTH), string]
 LPCWSTR logFilePath,
 [in] LCID locale,
 [in] DWORD flags,
 [out] RpcInfo* error
);

control: A handle to an operation control object. This parameter MUST be an RPC context handle, as
specified in [C706], Context Handles.

logFilePath: A pointer to a string that contains the path of the backup event log to be localized.

locale: Locale, as specified in [MS-GPSI] Appendix A, to be used for localizing the log.

flags: A 32-bit unsigned integer that MUST be set to zero when sent and MAY be ignored on
receipt.<31>

87 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

error: A pointer to an RpcInfo (section 2.2.1) structure in which to place error information in the case
of a failure. The RpcInfo (section 2.2.1) structure fields MUST be set to nonzero values if the error

is related to loading localization information. All nonzero values MUST be treated the same. If the
method succeeds, the server MUST set all of the values in the structure to zero.<32>

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an error value as specified in the processing rules in this section.<33> Callers SHOULD
treat all return values other than ERROR_SUCCESS equally and not alter their behavior based on any
specific error values.

The server does not validate the control handle passed to EvtRpcLocalizeExportLog, and it SHOULD
assume that this parameter is always valid when the method is invoked.

In response to this request from the client, the server MUST verify that the logFilePath parameter

specifies a valid path to a backup event log. A valid path MUST be a legal file name of the server's file
system. The server MUST fail the operation if the logFilePath parameter is invalid with the error
ERROR_INVALID_PARAMETER (0x00000057).<34> The server MUST fail the method if the specified
backup event log does not exist in the server with the error ERROR_FILE_NOT_FOUND (0x00000002).

Next the server MUST verify that the caller has read access to the log file (specified by the logFilePath
parameter) and MUST fail the method if the caller does not have read access with the error

ERROR_ACCESS_DENIED (0x00000005). To perform the access check, the server SHOULD first
determine the identity of the caller. Information determining the identity of the caller for the purpose
of performing an access check is specified in [MS-RPCE] section 3.2.3.4.2. Then the server SHOULD
get the security descriptor string from the file system for the log file. Next the server SHOULD perform
the read access check using the Access Check algorithm (as specified in [MS-DTYP] section 2.5.3.2).

If the checks above are successful, the server MUST perform the following operations:

1. The server creates a subdirectory "LocaleMetaData", if the directory does not exist, under the

directory where the backup event log file is located (see [PRA-CreateDirectory]). If the directory
already exists, the server does nothing. The only expected failures for subdirectory creation are
critical system errors, such as file system errors. If the server cannot create the directory, it MUST
return the error from the CreateDirectory method that is reporting the error. Otherwise, the server

MUST successfully create the subdirectory.

2. The server creates a file with the name LogFilePath_<Locale>.MTA under the directory
LocaleMetaData (see [PRA-CreateFile]). If the file already exists, the server SHOULD always

overwrite it. The only expected failures for file creation or overwriting are critical system errors,
such as file system errors. If the server can't create the file or overwrite an existing one, it MUST
return the error from the CreateFile method that is reporting the error. Otherwise, the server
MUST successfully create the file.

3. The server then opens the backup event log file, reads every event and uses the same internal
functionality by which it implements the EvtRpcMessageRender method (section 3.1.4.31) to

obtain the localized strings for event levels, keywords, tasks, opcode, and descriptions. The server
then saves those localized strings of each event in the newly created file. Note that the
EvtRpcMessageRender method needs the PCONTEXT_HANDLE_PUBLISHER_METADATA handle
as its first parameter. When the server gets each event, it can get the event publisher name from

the event content (see section 2.2.13), thus the server is able to get the context handle by using
the internal functionality by which it implements the EvtRpcGetPublisherMetadata method
(specified in section 3.1.4.25). The internal functionality by which the server implements

EvtRpcGetPublisherMetadata SHOULD use the value of the locale parameter in its processing;
the server SHOULD make this value available to that internal functionality by appropriate
platform-specific means so that the value can be stored in the publisher metadata object.

After getting the publisher metadata context handle, the server SHOULD extract the eventId,
level, keywords, tasks, and opcode values from the event and fill an EVENT_DESCRIPTOR
structure, specified in [MS-DTYP] section 2.3.1. With the context handle and the

88 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

EVENT_DESCRIPTOR structure, the server can use the internal functionality by which it
implements the EvtRpcMessageRender method five times to obtain the localized level,

keyword, tasks, opcode, and event description strings. If the server receives an error from the
internal functionality by which it implements the EvtRpcMessageRender method, it SHOULD

ignore the error and continue processing the next event.

During the preceding process, the server SHOULD check the Canceled field of the operation control
object in the control parameter periodically, for example, once every 100 milliseconds. If the
Canceled field becomes TRUE and the whole operation has not been finished, the server SHOULD
abandon the current operation and return to the client immediately with the error code
ERROR_CANCELLED (0x000004C7) without updating any state. Any directory or file that has been
created SHOULD be deleted. Failure to delete the directory or file SHOULD NOT trigger the server to

take any further actions in response.

The server MUST return a value indicating success or failure for this operation.

The server SHOULD create a separate file with the name LogFilePath_<Locale>.MTA to hold the
localized strings for the events in the log file with the name of LogFilePath. This method does not

change anything in the unlocalized, exported log file. Instead, it generates a separate file that
contains the localized strings for the events in the exported log file. The user needs to keep both files

together when copying them to another computer in order to consume the events with the localized
strings. Any protocol method that can access the exported log file will also be able to access the
copied exported file. However, correlating the localized strings with the unlocalized event information
in the exported log file in a meaningful way for the user is outside of the scope of this protocol. This
protocol provides no methods for integrating the localized strings and the exported event log into a
single format for presentation.

3.1.4.19 EvtRpcOpenLogHandle (Opnum 17)

The EvtRpcOpenLogHandle (Opnum 17) method is used by a client to get information about a channel
or a backup event log.

 error_status_t EvtRpcOpenLogHandle(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, range(1, MAX_RPC_CHANNEL_NAME_LENGTH), string]
 LPCWSTR channel,
 [in] DWORD flags,
 [out, context_handle] PCONTEXT_HANDLE_LOG_HANDLE* handle,
 [out] RpcInfo* error
);

binding: An RPC binding handle as specified in section 2.2.21.

channel: A pointer to a string that contains a channel or a file path.

flags: MUST be one of the following two values.

Value Meaning

0x00000001 Channel parameter specifies a channel name.

0x00000002 Channel parameter specifies a file name.

handle: A pointer to a log handle. This parameter is an RPC context handle, as specified in [C706],
Context Handles.

error: A pointer to an RpcInfo (section 2.2.1) structure in which to place error information in the case
of a failure. The server MAY set the suberror fields to supply more comprehensive error

89 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

information.<35> If the method succeeds, the server MUST set all of the values in the structure to
0.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST first validate the channel parameter. The
server SHOULD search for the given channel name in its channel table. If the server doesn't find the
name, the specified channel name is not valid. If the specified channel name is invalid, the server
SHOULD return the error code ERROR_EVT_CHANNEL_NOT_FOUND (0x00003A9F). If the flags
parameter is set to 0x00000001, the server MUST interpret the channel parameter as a channel
name. If the flags parameter is set to 0x00000002, the server MUST interpret channel as the path to
an existing event log file. The server SHOULD return ERROR_INVALID_PARAMETER (0x00000057) if

the flags parameter is not 0x00000001 or 0x00000002.<36> The server checks this by calling the file
system to check if the file exists. If the event log file does not exist on the server, the server SHOULD
return the error code ERROR_FILE_NOT_FOUND (0x00000002).

Next the server MUST verify that the caller has read access to the channel or the file and MUST fail the

method if the caller does not have read access. To perform the access check, the server SHOULD first
determine the identity of the caller. Information determining the identity of the caller for the purpose

of performing an access check is specified in [MS-RPCE] section 3.2.3.4.2. Then, if the client specifies
a channel, the server SHOULD read the channel's access property (as specified in section 3.1.4.21) as
the security descriptor string. Next, the server SHOULD be able to perform the write and clear access
check using the Access Check algorithm (as specified in [MS-DTYP] section 2.5.3.2). The server MUST
fail the method with the error code ERROR_ACCESS_DENIED (0x00000005) if the client does not have
read access to the channel or the file.

If the preceding checks succeed, the server MUST attempt to create a

CONTEXT_HANDLE_LOG_HANDLE. To perform this operation, the server SHOULD create a log object
as specified in section 3.1.1.11. This object is the server-side object for
CONTEXT_HANDLE_LOG_HANDLE. The server SHOULD add the newly created handle to its handle
table in order to track it.

The server SHOULD set the LogType field of the log object to be either a channel or a backup event
log based on the client's input flags value. If the type is channel, the server SHOULD try to find the
channel in its channel table and SHOULD fail the method with ERROR_CHANNEL_NOT_FOUND

(0x00003A9F) if the server cannot find the channel. After the channel is found, the server SHOULD set
the Channel field of the log object to be the pointer that points to the channel entry in the channel
table. If the type is backup event log file, the server SHOULD try to check if the file exists and
SHOULD fail the method with the ERROR_FILE_NOT_FOUND (0x00000002) if the backup event log file
does not exist. If the backup event log file exists, the server SHOULD try to open the backup event log
file (see [PRA-CreateFile]) and set the Channel field of the log object to be the file handle if the

server successfully opens the file. If the server fails to open the file, it MUST return the error from the
CreateFile method that is reporting the error.

If any of the preceding checks fail, the server MUST NOT create the context handle.

The server MUST return a value indicating success or failure for this operation.

3.1.4.20 EvtRpcGetChannelList (Opnum 19)

The EvtRpcGetChannelList (Opnum 19) method is used to enumerate the set of available channels.

 error_status_t EvtRpcGetChannelList(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in] DWORD flags,
 [out] DWORD* numChannelPaths,
 [out, size_is(,*numChannelPaths), range(0, MAX_RPC_CHANNEL_COUNT), string]
 LPWSTR** channelPaths

90 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

);

binding: An RPC binding handle as specified in section 2.2.21.

flags: A 32-bit unsigned integer that MUST be set to zero when sent and MAY be ignored on
receipt.<37>

numChannelPaths: A pointer to a 32-bit unsigned integer that contains the number of channel
names.

channelPaths: A pointer to an array of strings that contain all the channel names.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it

MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST verify that the caller has read access to
the channel list and MUST fail the method with the error ERROR_ACCESS_DENIED (0x00000005) if

the caller does not have read access. To perform the access check, the server SHOULD first determine
the identity of the caller. Information determining the identity of the caller for the purpose of
performing an access check is specified in [MS-RPCE] section 3.2.3.4.2. Then, if the client specifies a
channel, the server SHOULD read the channel's access property (as specified in section 3.1.4.21) as

the security descriptor string. Next, the server SHOULD be able to perform the write and clear access
check using the Access Check algorithm (as specified in [MS-DTYP] section 2.5.3.2).

If the above check succeeds, the server MUST return a list of channel name strings. The server
SHOULD enumerate all the channels in its channel table (section 3.1.1.5) and read out the channel
name strings as the result for the out parameter channelPaths. Meanwhile, the value pointed to by
numChannelPaths SHOULD be set to the number of channel name strings in the server channel table.

The server SHOULD only fail the method due to shortage of memory in which case the server SHOULD
return ERROR_OUTOFMEMORY (0x0000000E). The server MUST NOT update its state.

The server MUST return a value indicating success or failure for this operation.

3.1.4.21 EvtRpcGetChannelConfig (Opnum 20)

The EvtRpcGetChannelConfig (opnum 20) method is used by a client to get the configuration for a
channel.

 error_status_t EvtRpcGetChannelConfig(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, range(1, MAX_RPC_CHANNEL_NAME_LENGTH), string]
 LPCWSTR channelPath,
 [in] DWORD flags,
 [out] EvtRpcVariantList* props
);

binding: An RPC binding handle as specified in section 2.2.21.

channelPath: A pointer to a string that contains the name of a channel for which the information is
needed.

flags: A 32-bit unsigned integer that MUST be set to zero when sent and MAY be ignored on
receipt.<38>

props: A pointer to an EvtRpcVariantList structure to be filled with channel properties, as defined in
the following table.

91 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Note The index column in the following table is the array index, not the actual field of the
EvtRpcVariantList structure. The returned data is an array of EvtRpcVariantList for which the

index value is used to identify the elements in the array. For example, index 0 means the first
element of the returned array.

Index Type Meaning

0 EvtRpcVarTypeBoolean Enabled. If true, the channel can accept new events. If false, any
attempts to write events into this channel are automatically
dropped.

1 EvtRpcVarTypeUInt32 Channel Isolation. It defines the default access permissions for the
channel. Three values are allowed:

 0: Application.

 1: System.

 2: Custom.

The default isolation is Application. The default permissions for
Application are (shown using SDDL):

 L"O:BAG:SYD:"

 L"(A;;0xf0007;;;SY)" // local system (read, write, clear)

 L"(A;;0x7;;;BA)" // built-in admins (read, write, clear)

 L"(A;;0x7;;;SO)" // server operators (read, write, clear)

 L"(A;;0x3;;;IU)" // INTERACTIVE LOGON (read, write)

 L"(A;;0x3;;;SU)" // SERVICES LOGON (read, write)

 L"(A;;0x3;;;S-1-5-3)" // BATCH LOGON (read, write)

 L"(A;;0x3;;;S-1-5-33)" // write restricted service (read,write)

 L"(A;;0x1;;;S-1-5-32-573)"; // event log readers (read)

The default permissions for System are (shown using SDDL):

 L"O:BAG:SYD:"

 L"(A;;0xf0007;;;SY)" // local system (read, write, clear)

 L"(A;;0x7;;;BA)" // built-in admins (read, write, clear)

 L"(A;;0x3;;;BO)" // backup operators (read, write)

 L"(A;;0x5;;;SO)" // server operators (read, clear)

 L"(A;;0x1;;;IU)" // INTERACTIVE LOGON (read)

 L"(A;;0x3;;;SU)" // SERVICES LOGON (read, write)

 L"(A;;0x1;;;S-1-5-3)" // BATCH LOGON (read)

 L"(A;;0x2;;;S-1-5-33)" // write restricted service (write)

 L"(A;;0x1;;;S-1-5-32-573)"; // event log readers (read)

92 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Index Type Meaning

When the Custom value is used, the Access property will contain
the defined SDDL.

2 EvtRpcVarTypeUInt32 Channel type. One of four values:

 0: Admin

 1: Operational

 2: Analytic

 3: Debug

For more information, see [MSDN-EVTLGCHWINEVTLG].

3 EvtRpcVarTypeString OwningPublisher. Name of the publisher that defines and registers

the channel with the system. For more information on how the
server reacts to changes of this property, see section 3.1.4.22.

4 EvtRpcVarTypeBoolean ClassicEventlog. If true, the channel represents an event log
created according to the EventLog Remoting Protocol, not this
protocol (EventLog Remoting Protocol Version 6.0). The server
maintains two channel tables: one for the EventLog Remoting
Protocol Version 6.0 and one for the legacy EventLog Remoting
Protocol. The table for the legacy EventLog Remoting Protocol is
called "log table". For more information on the legacy "log table",
see [MS-EVEN]. Any channel coming from the new "channel table"
gets the value as false, any channel name that is in the legacy "log
table" gets the value as true.

5 EvtRpcVarTypeString Access. A Security Descriptor Description Language (SDDL) string,
as specified in [MS-DTYP], that represents access permissions to
the channels. If the isolation attribute is set to Application or

System, the access descriptor controls read access to the file (the
write permissions are ignored). If the isolation attribute is set to
Custom, the access descriptor controls write access to the channel
and read access to the file.

6 EvtRpcVarTypeBoolean Retention. If set to true, events can never be overwritten unless
explicitly cleared. If set to false, events are overwritten as needed
when the event log is full.

7 EvtRpcVarTypeBoolean AutoBackup. When set to true, the event log file associated with the
channel is closed as soon as it reaches the maximum size specified
by the MaxSize property, and a new file is opened to accept new
events. If the new file reaches maximum size, another new file will
be generated and the previous new file will be backed up. The
events in backed up files cannot be queried from this channel in the
server unless the client specifies the backup log file names in a
separate query.

8 EvtRpcVarTypeUInt64 MaxSize. The value that indicates at which point the size (in bytes)
of the event log file stops increasing. When the size is greater than
or equal to this value, the file growth stops.

9 EvtRpcVarTypeString LogFilePath. File path to the event log file for the channel. The path
is saved in the channel config and read out by the server when
client requests it.

93 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Index Type Meaning

10 EvtRpcVarTypeUInt32 Level. Events with a level property less than or equal to this
specified value are logged to the channel.

11 EvtRpcVarTypeUInt64 Keywords. Events with a keyword bit contained in the Keywords
bitmask set are logged to the channel.

12 EvtRpcVarTypeGuid ControlGuid. A GUID value. The client SHOULD ignore this value.

13 EvtRpcVarTypeUInt64 BufferSize. Size of the events buffer (in kilobytes) used for
asynchronous event delivery. This property is for providing events.
Typically the events generated by a publisher are first written to
memory buffers on the server. Once the buffer used is full, that
buffer is written to a disk file. The BufferSize is used to specify the
size of the buffer. The server allocates buffers according to the
BufferSize value. The number of buffers the server can allocate is
controlled by the MinBuffers and MaxBuffers properties. The
server's specific implementation can allocate any number of buffers
between MinBuffers and MaxBuffers.

14 EvtRpcVarTypeUInt32 MinBuffers. The minimum number of buffers used for asynchronous
event delivery. For more information, see the preceding BufferSize
information.

15 EvtRpcVarTypeUInt32 MaxBuffers. The maximum number of buffers used for
asynchronous event delivery. For more information, see the
preceding BufferSize information.

16 EvtRpcVarTypeUInt32 Latency. The number of seconds of inactivity (if events are
delivered asynchronously and no new events are arriving) after
which the event buffers MUST be flushed to the server. As specified
in the description for BufferSize property, the server keeps a
number of buffers when writing events. If the buffers are full, the
server writes the buffers to disk file. However, if a certain amount
of time elapses and the buffers are still not full, the server SHOULD
write the buffers to disk. That certain amount of time is the latency
property.

17 EvtRpcVarTypeUInt32 ClockType. One of two values:

 0: SystemTime. Use the system time. When set to this value,
the server uses the system time type (which is low-resolution
on most platforms) for a time stamp field of any event it writes
into this channel.

 1: Query Performance Counter. The server uses a high-
resolution time type for the time stamp field of any event it
writes into this channel.

Note The timestamp is simply written into the event without
any special handling. Which is to say, the server behavior
does not change if a channel's Clock type is SystemTime or
Query Performance Counter.

18 EvtRpcVarTypeUInt32 SIDType. One of two values:

 0: The events written by the server to this channel will not
include the publisher's SID.

 1: The events written by the server to this channel will include
the publisher's SID.

94 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Index Type Meaning

19 EvtRpcVarTypeStringArray PublisherList. List of publishers that can raise events into the
channel. This returns the same list as is returned by the
EvtRpcGetPublisherList method, as specified in section 3.1.4.24.

20 EvtRpcVarTypeUint32 FileMax. Maximum number of log files associated with an analytic or
debug channel. When the number of logs reaches the specified
maximum, the system begins to overwrite the logs, beginning with
the oldest. A FileMax value of 0 or 1 indicates that only one file is
associated with this channel. A FileMax of 0 is default.<39>

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST verify that the channelPath parameter

specifies a valid channel name. The server MUST fail the method if the parameter is invalid with the
error ERROR_INVALID_PARAMETER (0x00000057). The server checks if a channel name is valid by
searching the given name in its channel table.

Next, the server MUST verify that the caller has read access to the information and MUST fail the
method if the caller does not have read access with the error ERROR_ACCESS_DENIED (0x00000005).
To perform the access check, the server SHOULD first determine the identity of the caller. Information
determining the identity of the caller for the purpose of performing an access check is specified in
[MS-RPCE] section 3.2.3.4.2. Then, if the client specifies a channel, the server SHOULD read the
channel's access property (as specified in section 3.1.4.21) as the security descriptor string. Next, the

server SHOULD be able to perform the write and clear access check using the Access Check algorithm
(as specified in [MS-DTYP] section 2.5.3.2).

If the previous checks succeed, the server MUST attempt to return the list of a channel's properties.
The server MUST fill the output parameter props with all the properties for the channel (which are
specified in the preceding props properties table) into an EvtRpcVariant list. The server SHOULD only

fail the method if the system memory is inadequate with the error ERROR_OUTOFMEMORY
(0x0000000E). The client MUST NOT interpret the values in this list. They MUST be passed

uninterpreted to the higher-layer protocol or client application. For more information, see [MSDN-
EVENTS].

Note that in the interval between a client calling the EvtRpcPutChannelConfig and EvtRpcAssertConfig
methods, the server holds two copies of the channel properties. One copy is held in the channel table.
The other copy is an encapsulated but inactive set of properties created by EvtRpcPutChannelConfig
that is held in temporary storage. The server MUST return the properties held in the channel table. It
MUST NOT return the encapsulated but inactive set of properties created by EvtRpcPutChannelConfig.

See EvtRpcAssertConfig (section 3.1.4.29) for more information.

The server MUST NOT update its state as a result of this method, nor SHOULD the server apply any
channel properties. The server SHOULD always return ERROR_SUCCESS (0x00000000) if the inputs
are valid, because reading the channel properties SHOULD never fail.

The server MUST return a value indicating success or failure for this operation.

3.1.4.22 EvtRpcPutChannelConfig (Opnum 21)

The EvtRpcPutChannelConfig (Opnum 21) method is used by a client to update the configuration for a
channel.

 error_status_t EvtRpcPutChannelConfig(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, range(1, MAX_RPC_CHANNEL_NAME_LENGTH), string]

95 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 LPCWSTR channelPath,
 [in] DWORD flags,
 [in] EvtRpcVariantList* props,
 [out] RpcInfo* error
);

binding: An RPC binding handle as specified in section 2.2.21.

channelPath: A pointer to a string that contains a channel name (this is not a file path as the
parameter name might suggest).

flags: A 32-bit unsigned integer that indicates what to do depending on the existence of the channel.
This MUST be set to one of the following, and the server SHOULD return
ERROR_INVALID_PARAMETER (0x00000057) if the flag is not one of the following values.<40>

Value Meaning

0x00000000 The server MUST open the existing channel entry in its channel table or create a new entry
if the specified channel is not in the table.

0x00000001 The server MUST open the existing channel entry in its channel table.

0x00000002 Always create a new channel entry in the server's channel table and delete the existing
entry.

0x00000003 Only create a new channel entry in the server's channel table.

props: A pointer to an EvtRpcVariantList (section 2.2.9) structure containing channel properties, as

defined in the following table.

Index Type Meaning

0 EvtRpcVarTypeBoolean Enabled. If true, the channel can accept new events. If false, any
attempts to write events into this channel are automatically
dropped.

1 EvtRpcVarTypeUInt32 Channel Isolation. It defines the default access permissions for the
channel. Three values are allowed:

 0: Application.

 1: System.

 2: Custom.

The default isolation is Application. The default permissions for
Application are (shown using SDDL):

 L"O:BAG:SYD:"

 L"(A;;0xf0007;;;SY)" // local system (read, write, clear)

 L"(A;;0x7;;;BA)" // built-in admins (read, write, clear)

 L"(A;;0x7;;;SO)" // server operators (read, write, clear)

 L"(A;;0x3;;;IU)" // INTERACTIVE LOGON (read, write)

 L"(A;;0x3;;;SU)" // SERVICES LOGON (read, write)

96 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Index Type Meaning

 L"(A;;0x3;;;S-1-5-3)" // BATCH LOGON (read, write)

 L"(A;;0x3;;;S-1-5-33)" // write restricted service (read,write)

 L"(A;;0x1;;;S-1-5-32-573)"; // event log readers (read)

The default permissions for System are (shown using SDDL):

 L"O:BAG:SYD:"

 L"(A;;0xf0007;;;SY)" // local system (read, write, clear)

 L"(A;;0x7;;;BA)" // built-in admins (read, write, clear)

 L"(A;;0x3;;;BO)" // backup operators (read, write)

 L"(A;;0x5;;;SO)" // server operators (read, clear)

 L"(A;;0x1;;;IU)" // INTERACTIVE LOGON (read)

 L"(A;;0x3;;;SU)" // SERVICES LOGON (read, write)

 L"(A;;0x1;;;S-1-5-3)" // BATCH LOGON (read)

 L"(A;;0x2;;;S-1-5-33)" // write restricted service (write)

 L"(A;;0x1;;;S-1-5-32-573)"; // event log readers (read)

When the Custom value is used, the Access property will contain
the defined SDDL.

2 EvtRpcVarTypeUInt32 Channel Type. One of four values:

 0: Admin

 1: Operational.

 2: Analytic

 3: Debug

For more information, see [MSDN-EVTLGCHWINEVTLG].

3 EvtRpcVarTypeString OwningPublisher. The name of the publisher that defines and
registers the channel with the system.

4 EvtRpcVarTypeBoolean ClassicEventlog. If true, the channel represents an event log
created according to the EventLog Remoting Protocol, not this
protocol (EventLog Remoting Protocol Version 6.0).

5 EvtRpcVarTypeString Access. A Security Descriptor Description Language (SDDL) string,
as specified in [MS-DTYP], that represents access permissions to
the channels. If the isolation attribute is set to Application or
System, the access descriptor controls read access to the file (the
write permissions are ignored). If the isolation attribute is set to
Custom, the access descriptor controls write access to the channel
and read access to the file.

6 EvtRpcVarTypeBoolean Retention. If set to true, events can never be overwritten unless
explicitly cleared. This is the way to configure the logs to be

97 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Index Type Meaning

circular. If set to false, events are overwritten as needed when the
event log is full.

7 EvtRpcVarTypeBoolean AutoBackup. When set to true, the event log file associated with the
channel is closed as soon as it reaches the maximum size specified
by the MaxSize property, and a new file is opened to accept new
events. If the new file reaches maximum size, another new file will
be generated and the previous new file will be backed up. The
events in backed up files cannot be queried from this channel in the
server unless the client specifies the backup log file names in a
separate query.

8 EvtRpcVarTypeUInt64 MaxSize. The value that indicates at which point the size (in bytes)

of the event log file stops increasing. When the size is greater than
or equal to this value, the file growth stops.

9 EvtRpcVarTypeString LogFilePath. The server changes the file path to the event log file
for the channel.

10 EvtRpcVarTypeUInt32 Level. Events with a level property less than or equal to this
specified value are logged to the channel.

11 EvtRpcVarTypeUInt64 Keywords. Events with a keyword bit contained in the keywords
bitmask set are logged to the channel.

12 EvtRpcVarTypeGuid ControlGuid. A GUID value. The server SHOULD ignore this
value.<41>

19 EvtRpcVarTypeStringArray PublisherList. A list of publishers that can raise events into the
channel.

20 EvtRpcVarTypeUInt32 FileMax. The maximum number of log files associated with an
analytic or debug channel. When the number of logs reaches the
specified maximum, the system begins to overwrite the logs,
beginning with the oldest. A FileMax value of 0 or 1 indicates that
only one file is associated with this channel. A MaxFile of 0 is the
default.

error: A pointer to an RpcInfo (section 2.2.1) structure in which to place error information in the case
of a failure. The RpcInfo (section 2.2.1) structure fields MUST be set to nonzero values if the error
is related to a particular property. All nonzero values MUST be treated the same. If the method

succeeds, the server MUST set all of the values in the structure to 0.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation-specific nonzero value as specified in [MS-ERREF].<42>

In response to this request from the client, the server MUST verify that the channelPath parameter
specifies a valid channel name. The server MUST fail the method if the parameter is invalid with the
error ERROR_INVALID_PARAMETER (0x00000057). The server checks if a channel name is valid by

searching the given name in its channel table.

Next, the server MUST verify that the caller has write access to the information and MUST fail the
method with the error ERROR_ACCESS_DENIED (0x00000005) if the caller does not have write
access. To perform the access check, the server SHOULD first determine the identity of the caller.
Information determining the identity of the caller for the purpose of performing an access check is
specified in [MS-RPCE] section 3.2.3.4.2. Then, if the client specifies a channel, the server SHOULD
read the channel's access property (as specified in section 3.1.4.21) as the security descriptor string.

Next, the server SHOULD be able to perform the write and clear access check using the Access Check
algorithm (as specified in [MS-DTYP] section 2.5.3.2).

98 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the client specifies 0x00000000 for the flags value, the server MUST try to find the channel entry
specified by the channelPath parameter in its channel table. If the server does not find the channel

entry in the table, it creates a new entry with the parameter channelPath as the new channel name.
The creation of a new channel table entry SHOULD only fail when there is inadequate memory. The

server SHOULD return ERROR_OUTOFMEMORY (0x0000000E) in that case. When a new channel is
created, the server SHOULD assign the default property values to the channel as in the following
table.

Property Default Value

Enabled true

Isolation 0

ChannelType 0

OwningPublish
er

null

Classic false

Access "O:BAG:SYD:(A;;0xf0007;;;SY)(A;;0x7;;;BA)(A;;0x7;;;SO)"(A;;0x3;;;IU)(A;;0x3;;;SU)(A;;
0x3;;;S-1-5-3)(A;;0x3;;;S-1-5-33)(A;;0x1;;;S-1-5-32-573)"

Retention false

Autobackup false

maxSize 20 * 1024 * 1024

LogFilePath %systemfolder%\winevt\<channelname>.evtx

Level 0

Keywords 0xFFFFFFFFFFFFFFFF

ControlGuid {00000000-0000-0000-0000-000000000000}

BufferSize 64K

MinBuffers 2 * Number of the CPUs.

MaxBuffers 22 + MinBuffers

Latency 1

ClockType 0

SidType 1

PublisherList null

FileMax 0

If the client specifies 0x00000001 for the flags value and the specified channel entry is not found in
the channel table, the server MUST return ERROR_NOT_FOUND (0x00000490).

If the client specifies 0x00000002 for the flags value, the processing rule is similar to processing rule

1 except that when the server finds the exiting channel entry, it SHOULD delete it first before creating
a new one. Delete an existing entry SHOULD never fail.

99 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the client specifies the 0x00000003 for the flags value, the server MUST fail the method if the
specified channel is already in the channel table with the error code ERROR_ALREADY_EXISTS

(0x000000B7).

The server SHOULD check if the publisher specified has already registered in its publisher table when

the client tries to update the owning publisher property. If not, the server SHOULD fail the method
with ERROR_INVALID_PARAMETER (0x00000057).<43>

Note The configuration properties for BufferSize, MinBuffers, MaxBuffers, Latency, ClockType, and
SIDType can't be updated by the client. These properties are maintained by the server administrator
on the physical machine only and cannot be updated through the remote protocol methods. The
server administrator can specify these properties with any allowable values.<44> The server SHOULD
make sure the client does not update these properties. The server SHOULD fail the method with the

error ERROR_INVALID_OPERATION (0x000010DD) in this case.

If the previous checks succeed, the server MUST attempt to update the channel's properties using the
value specified in the props parameter. The server SHOULD proceed in the following manner to update
the data for each channel property:

The server SHOULD allocate a memory block with the same size as the
EvtRpcVariantList (section 2.2.9) pointed to by the props parameter. If the memory allocation fails,

the server SHOULD return ERROR_OUTOFMEMORY (0x0000000E). The server then copies all the data
in the props parameter into the new allocated memory block. Before copying the data, the server
SHOULD validate the data as follows:

 The Isolation property SHOULD be either 0, 1, or 2, if the client has specified that property.

 The Channel type property SHOULD be either 0, 1, 2, or 3, if the client has specified that property.

 The Access property string SHOULD be a valid security descriptor as specified in section [MS-
DTYP], if the client specifies that property. Note that the only access permissions defined for

channels are read, write, and clear; if a client attempts to specify any other access permissions in
the security descriptor, the server SHOULD ignore them.

 The LogFilePath property MUST be a valid file path string for the server's file system, if the client
specifies that property.

 The server SHOULD verify that the publishers specified in the PublisherList property exist in the
server's publisher table. If so, the server SHOULD add the current channel to the publisher entries
in the server's publisher table for every publisher specified by the PublisherList property so that as

soon as the new settings are applied, the server is prepared for those publishers to publish events
to this channel.

If any of the validation checks fail, the server SHOULD return ERROR_INVALID_DATA. After copying
the data, the server SHOULD return to the client with ERROR_SUCCESS (0x00000000), but SHOULD
NOT apply the new channel properties until EvtRpcAssertConfig is called or the server restarts.
EvtRpcAssertConfig causes the server to apply an in-memory copy of the channel configuration,

whereas when the server restarts, it loads channel configuration data from persistent storage as
specified in section 3.1.1.5. Before applying the properties, all the server's behaviors are still the same
as they were originally, even after the method has successfully returned to the client. For information

on the server saving the configuration and then applying the changes with the EvtRpcAssertConfig
method, see the processing rules in EvtRpcAssertConfig (section 3.1.4.29). The server SHOULD check
if the value passed by the client is within the allowed range. If not, the server SHOULD return
ERROR_INVALID_PARAMETER (0x00000057). The server will not fail the method if all the previous

checks are passed.

The server MUST return a value indicating success or failure for this operation.

100 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.23 EvtRpcGetPublisherList(Opnum 22)

The EvtRpcGetPublisherList (Opnum 22) method is used by a client to get the list of publishers.

 error_status_t EvtRpcGetPublisherList(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in] DWORD flags,
 [out] DWORD* numPublisherIds,
 [out, size_is(,*numPublisherIds), range(0, MAX_RPC_PUBLISHER_COUNT), string]
 LPWSTR** publisherIds
);

binding: An RPC binding handle as specified in section 2.2.21.

flags: A 32-bit unsigned integer that MUST be set to zero when sent and MAY be ignored on
receipt.<45>

numPublisherIds: A pointer to a 32-bit unsigned integer that contains the number of publisher

names.

publisherIds: A pointer to an array of strings that contain publisher names.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST verify that the caller has read access to
the publisher table and MUST fail the method with the error ERROR_ACCESS_DENIED (0x00000005) if

the caller does not have read access. To perform the access check, the server SHOULD first determine
the identity of the caller. Information determining the identity of the caller for the purpose of
performing an access check is specified in [MS-RPCE] section 3.2.3.4.2. Then the server MAY get the
security descriptor of the publisher table. The server MAY assign a security descriptor when the
publisher table is created or if the publisher table is built on the server's file system, it can get its
security descriptor from the file system.<46> Next, the server SHOULD be able to perform the read

access check using the Access Check algorithm (as specified in [MS-DTYP] section 2.5.3.2).

If the above check succeeds, the server MUST go to its publisher table and read all the publisher
names and use the results to fill the publisherIds parameter. The server MUST also set the
numberPublisherIds parameter value to be the number of the publisher names it returns. The server
SHOULD only fail if it has inadequate memory to allocate for the publisherIds parameter to copy all
the publisher names from its publisher table into the buffer that is pointed to by publisherIds. In that
case, the server SHOULD return ERROR_OUTOFMEMORY (0x0000000E).

The server MUST return a value indicating success or failure for this operation.

3.1.4.24 EvtRpcGetPublisherListForChannel (Opnum 23)

The EvtRpcGetPublisherListForChannel (Opnum 23) method is used by a client to get the list of
publishers that write events to a particular channel.

 error_status_t EvtRpcGetPublisherListForChannel(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in] LPCWSTR channelName,
 [in] DWORD flags,
 [out] DWORD* numPublisherIds,
 [out, size_is(,*numPublisherIds), range(0, MAX_RPC_PUBLISHER_COUNT), string]
 LPWSTR** publisherIds
);

binding: An RPC binding handle as specified in section 2.2.21.

101 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

channelName: A pointer to a string that contains the name of the channel for which the publisher
list is needed.

flags: A 32-bit unsigned integer that MUST be set to zero when sent and MAY be ignored on
receipt.<47>

numPublisherIds: A pointer to a 32-bit unsigned integer that contains the number of publishers that
are registered and that can write to the log.

publisherIds: A pointer to an array of strings that contain publisher names.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST verify that the channelName parameter
specifies a correct channel name. The server MUST fail the method if the channelName parameter is

invalid with the error ERROR_INVALID_PARAMETER (0x00000057). The server checks if a channel
name is valid by searching the given name in its channel table.

Next, the server MUST verify that the caller has read access to the channel and MUST fail the method
with the error ERROR_ACCESS_DENIED (0x00000005) if the caller does not have read access. To
perform the access check, the server SHOULD first determine the identity of the caller. Information
determining the identity of the caller for the purpose of performing an access check is specified in

[MS-RPCE] section 3.2.3.4.2. Then, if the client specifies a channel, the server SHOULD read the
channel's access property (as specified in section 3.1.4.21) as the security descriptor string. Next, the
server SHOULD be able to perform the read access check using the Access Check algorithm (as
specified in [MS-DTYP] section 2.5.3.2).

If the previous checks succeed, the server MUST attempt to return a list of publishers for the channel
specified by the channelName parameter. In order to do this, the server searches all the publisher
entries in its publisher table. For each publisher, the server checks if the publisher declares that it will

generate events to the given channel. If that is true, the server adds this publisher to the result
parameter publisherIds and the numPublisherIds (initialized as 0) is increased by 1. The server
SHOULD only fail when not enough memory space can be allocated to copy the matched publisher

names into the publisherIds parameter. In that case, the server SHOULD return
ERROR_OUTOFMEMORY (0x0000000E). The server MUST NOT update its state.

The server MUST return a value indicating success or failure for this operation.

3.1.4.25 EvtRpcGetPublisherMetadata (Opnum 24)

The EvtRpcGetPublisherMetadata (Opnum 24) method is used by a client to open a handle to publisher
metadata. It also gets some initial information from the metadata.

 error_status_t EvtRpcGetPublisherMetadata(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, unique, range(0, MAX_RPC_PUBLISHER_ID_LENGTH), string]
 LPCWSTR publisherId,
 [in, unique, range(0, MAX_RPC_FILE_PATH_LENGTH), string]
 LPCWSTR logFilePath,
 [in] LCID locale,
 [in] DWORD flags,
 [out] EvtRpcVariantList* pubMetadataProps,
 [out, context_handle] PCONTEXT_HANDLE_PUBLISHER_METADATA* pubMetadata
);

binding: An RPC binding handle as specified in section 2.2.21.

publisherId: A pointer to a string that contains the publisher for which information is needed.

102 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

logFilePath: A pointer to a null string that MUST be ignored on receipt.

locale: A Locale value, as specified in [MS-GPSI]. This is used later if the pubMetadata handle is used
for rendering.

flags: A 32-bit unsigned integer that MUST be set to zero when sent and MAY be ignored on

receipt.<48>

pubMetadataProps: A pointer to an EvtRpcVariantList (section 2.2.9) structure containing publisher
properties.

pubMetadata: A pointer to a publisher handle. This parameter is an RPC context handle, as specified
in [C706], Context Handles. For information on handle security and authentication considerations,
see sections 2.2.20 and 5.1.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it

MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST verify that the publisherID parameter
specifies either a publisher name or NULL. The server MUST fail the method if the publisherID is non-
NULL and is not the name of a publisher with the error code ERROR_INVALID_PARAMETER
(0x00000057). The server SHOULD check whether the non-NULL publisherID is in the publisher table
to verify whether the publisherID is a publisher name. If the publisherID parameter is NULL, the

server MUST use the default publisher (as specified in section 3.1.1.14).

Next, the server MUST verify that the caller has read access to the information and MUST fail the
method with the error ERROR_ACCESS_DENIED (0x00000005) if the caller does not have read access.
To perform the access check, the server SHOULD first determine the identity of the caller. Information
determining the identity of the caller for the purpose of performing an access check is specified in
[MS-RPCE] section 3.2.3.4.2. Then the server MAY get the security descriptor of the publisher table.
The server MAY assign a security descriptor when the publisher is registered in its publisher table or if

the publisher entry is built on the server's file system, it can get its security descriptor from the file
system.<49> Next, the server SHOULD be able to perform the read access check using the Access
Check algorithm (as specified in [MS-DTYP] section 2.5.3.2).

If the previous checks succeed, the server MUST attempt to create a
CONTEXT_HANDLE_PUBLISHER_METADATA for the publisher. As specified in section 3.1.1.11, the
server SHOULD create a publisher metadata object and then cast it to the context and assign the
handle to the pubMetadata parameter. The server SHOULD add the newly created handle to its handle

table in order to track it. The server SHOULD only fail the creation of handles in the case of
inadequate memory and return ERROR_OUTOFMEMORY (0x0000000E). The server MUST store the
locale value in the publisher metadata object.

The server MUST fill an EvtRpcVariantList (for more information, see section 2.2.9) that contains 29
EvtRpcVariants and save them in the pubMetadataProps parameter. As noted in the pubMetadataProps
description, not all of the EvtRpcVariant entries are actually used, and all unused ones MUST be set to

type EvtRpcVarTypeNULL. The following table lists those entries that are used.

Index Type Description

0 EvtVarTypeGuid PublisherGuid: This is the identifier of the publisher which is mentioned in
section 3.1.1.2.

1 EvtVarTypeString ResourceFilePath: This is the publisher resource file path which is specified
in section 3.1.1.14.

2 EvtVarTypeString ParameterFilePath: This is the publisher parameter file which is specified in
section 3.1.1.14.

103 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Index Type Description

3 EvtVarTypeString MessageFilePath: This is the publisher message file which is specified in
section 3.1.1.14.

7 EvtVarTypeStringArray ChannelReferencePath: This is the array of the channel paths into which
the publisher generates events.

8 EvtVarTypeUInt32Array ChannelReferenceIndex: The channel start index values, as specified in
section 3.1.1.2.

9 EvtVarTypeUInt32Array ChannelReferenceID: The channel reference ID values, as specified in
section 3.1.1.2.

10 EvtVarTypeUInt32Array ChannelReferenceFlags: The channel reference flags, as specified in section
3.1.1.2.

11 EvtVarTypeUInt32Array ChannelReferenceMessageID: This is the message Ids for the channels.

As specified earlier in this section, the server SHOULD find the publisher entry in its publisher table
based on the specified publisherId parameter from the client. Once the server locates the publisher
entry, the server SHOULD get the publisherGUID, ResourceFilePath, ParameterFilePath,
MessageFilePath, ChannelReferenceIndex, ChannelReferenceID and ChannelReferenceFlags directly
from the publisher table entry (as specified in sections 3.1.1.3 for publisher tables and 3.1.1.2 for

publishers). Then the server SHOULD open the publisher resource file and locate the channel
information in the resource file (as specified in section 3.1.1.14). Next, the server reads the channel
name strings and channel message IDs, returning them as the result for the ChannelReferencePath
and ChannelReferenceMessageID. See section 4.12 for an example EvtRpcVariantList containing all 29
EvtRpcVariants.

If the server can't allocate enough memory for the returning parameter pubMetadataProps, it SHOULD
return the error ERROR_OUTOFMEMORY (0x0000000E).

The server MUST return a value indicating success or failure for this operation.

If the server can't find the corresponding information from the publisher resource, the server SHOULD
set the entry to EvtRpcVarTypeNULL to indicate some of the values are not retrieved, but SHOULD still
proceed with the other eleven data fields without returning any error. Even if all of the eleven fields
are all not found, the server SHOULD still return ERROR_SUCCESS (0x00000000).

3.1.4.26 EvtRpcGetPublisherResourceMetadata (Opnum 25)

The EvtRpcGetPublisherResourceMetadata (Opnum 25) method obtains information from the publisher
metadata.

 error_status_t EvtRpcGetPublisherResourceMetadata(
 [in, context_handle] PCONTEXT_HANDLE_PUBLISHER_METADATA handle,
 [in] DWORD propertyId,
 [in] DWORD flags,
 [out] EvtRpcVariantList* pubMetadataProps
);

handle: A handle to an event log. This handle is returned by the EvtRpcGetPublisherMetadata (Opnum
24) method. This parameter is an RPC context handle, as specified in [C706], Context Handles.

propertyId: Type of information as specified in the following table.

104 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

0x00000004 Publisher help link.

0x00000005 Publisher friendly name.

0x0000000C Level information.

0x00000010 Task information.

0x00000015 Opcode information.

0x00000019 Keyword information.

flags: A 32-bit unsigned integer that MUST be set to zero when sent and MAY be ignored on
receipt.<50>

pubMetadataProps: Pointer to an EvtRpcVariantList (section 2.2.9) structure. This list MUST contain

multiple entries.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST first validate the handle. The server
SHOULD save the context handle value that it creates in the EvtRpcGetPublisherMetadata method
(as specified in section 3.1.4.25) in its handle table and compare it with the handle passed here to
perform that check.<51> The server MUST return ERROR_INVALID_PARAMETER (0x00000057) if the
handle is invalid.

The server MUST return an error if propertyID is anything other than 0x00000004, 0x00000005,
0x0000000C, 0x00000010, 0x00000015, or 0x00000019.

If all the above checks succeed, the server MUST attempt to return a list of properties for the
publisher specified by the handle. If the publisher does not have metadata, this method SHOULD fail

with the error ERROR_INVALID_DATA (0x0000000D).<52> Note that any one publisher that does
have metadata can optionally specify only a subset of the metadata described herein. For example,
not all publishers with metadata specify help links or keywords. For those cases, the server MUST
return ERROR_SUCCESS (0x00000000) along with a complete EvtRpcVariantList having the
corresponding entries set to EvtVarTypeNull.<53>

The EvtRpcVariantList (for more information, see section 2.2.9) MUST contain 29 EvtRpcVariants
whenever this function returns success. As indicated below, not all of those EvtRpcVariant entries are
used, and all unused entries MUST be set to EvtVarTypeNull.

The set of entries used depends on the value specified by the propertyID parameter. For the sake of
brevity, the unused entries are not shown.

Note The indexes referenced below are 0-based; for example, index 4 refers to the fifth variant that

is returned in the EvtRpcVariantList.

When propertyID = 0x00000004, the following entries MUST be set in pubMetadataProps.

To do this, the server SHOULD get the helperlink string from the publisher resource file (as specified in
section 3.1.1.14).

Index Type Description

4 EvtVarTypeString HelpLink

When propertyID = 0x00000005, the following entries MUST be set in pubMetadataProps.

105 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

To do this, the server gets the messageId of the publisher name from the resource file (as specified in
the section 3.1.1.14).

Index Type Description

5 EvtVarTypeUInt32 PublisherMessageID

When propertyID = 0x0000000C, the following entries MUST be set in pubMetadataProps.

To do this, the server SHOULD get all the levels' names, values, and messageId and pack them into
the array from the publisher resource file (as specified in the section 3.1.1.14).

Index Type Description

13 EvtVarTypeStringArray LevelName

14 EvtVarTypeUInt32Array LevelValue

15 EvtVarTypeUInt32Array LevelMessageID

When propertyID = 0x00000010, the following entries MUST be set in pubMetadataProps.

To do this, the server SHOULD get all the tasks' names, values, and messageIds and pack them into

the array from the publisher resource file (as specified in the section 3.1.1.14).

Index Type Description

17 EvtVarTypeStringArray TaskName

18 EvtVarTypeGuidArray TaskEventGuid

19 EvtVarTypeUInt32Array TaskValue

20 EvtVarTypeUInt32Array TaskMessageID

When propertyID = 0x00000015, the following entries MUST be set in pubMetadataProps.

To do this, the server SHOULD get all the Opcodes' names, values, and messageIds and pack them
into the array from the publisher resource file (as specified in the section 3.1.1.14).

Index Type Description

22 EvtVarTypeStringArray OpcodeName

23 EvtVarTypeUInt32Array OpcodeValue

24 EvtVarTypeUInt32Array OpcodeMessageID

When propertyID = 0x00000019, the following entries MUST be set in pubMetadataProps.

To do this, the server SHOULD get all the Keywords' names, values, and messageIds and pack them
into the array from the publisher resource file (as specified in the section 3.1.1.14).

Index Type Description

26 EvtVarTypeStringArray KeywordName

27 EvtVarTypeUInt64Array KeywordValue

28 EvtVarTypeUInt32Array KeywordMessageID

106 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The server MUST NOT update its state.

The server MUST return a value indicating success or failure for this operation.

3.1.4.27 EvtRpcGetEventMetadataEnum (Opnum 26)

The EvtRpcGetEventMetadataEnum (Opnum 26) method obtains a handle for enumerating a
publisher's event metadata.

 error_status_t EvtRpcGetEventMetadataEnum(
 [in, context_handle] PCONTEXT_HANDLE_PUBLISHER_METADATA pubMetadata,
 [in] DWORD flags,
 [in, unique, range(0, MAX_RPC_FILTER_LENGTH), string]
 LPCWSTR reservedForFilter,
 [out, context_handle] PCONTEXT_HANDLE_EVENT_METADATA_ENUM* eventMetaDataEnum
);

pubMetadata: This parameter is an RPC context handle, as specified in [C706], Context Handles. For
information on handle security and authentication considerations, see sections 2.2.20 and 5.1.

flags: A 32-bit unsigned integer that MUST be set to zero when sent and MAY be ignored on
receipt.<54>

reservedForFilter: A pointer to a null string that MUST be ignored on receipt.

eventMetaDataEnum: A pointer to an event numeration handle. This parameter is an RPC context
handle, as specified in [C706], Context Handles.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST first validate the handle. The server
SHOULD save the context handle value it creates in the EvtRpcGetPublisherMetadata method (as

specified in section 3.1.4.25) in its handle table and compare it with the handle passed here to
perform the check.<55> The server MUST return ERROR_INVALID_PARAMETER (0x00000057) if the
handle is invalid.

If the previous check succeeds, the server MUST attempt to create an event metadata object and
assign it to the eventMetadataEnum parameter after casting to a
CONTEXT_HANDLE_EVENT_METADATA_ENUM handle (see section 3.1.1.11 for the content of an event
metadata object). The server SHOULD add the newly created handle to its handle table in order to

track it. If the previous check fails, the server MUST NOT create the context handle or add it to the
handle table. Creating the context handle SHOULD only fail due to a shortage of memory, in which
case the server SHOULD return ERROR_OUTOFMEMORY (0x0000000E).

After the server creates the event metadata object, it SHOULD preload the EventsMetaData field for
the metadata object. First, the server SHOULD cast the pubMetadata context handle into the publisher
metadata object and then read out the ResourceFile value. Next, the server SHOULD open the
resource file and find the events information section (as specified in section 3.1.1.14). The server

SHOULD read all the events information into memory and assign the start address to the
EventsMetaData field and then set the Enumerator field to 0.

The server MUST return a value indicating success or failure for this operation.

3.1.4.28 EvtRpcGetNextEventMetadata (Opnum 27)

The EvtRpcGetNextEventMetadata (Opnum 27) method gets details about a possible event and also
returns the next event metadata in the enumeration. It is used to enumerate through the event

107 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

definitions for the publisher associated with the handle. The enumeration is in the forward direction
only, and there is no reset functionality.

 error_status_t EvtRpcGetNextEventMetadata(
 [in, context_handle] PCONTEXT_HANDLE_EVENT_METADATA_ENUM eventMetaDataEnum,
 [in] DWORD flags,
 [in] DWORD numRequested,
 [out] DWORD* numReturned,
 [out, size_is(,*numReturned), range(0, MAX_RPC_EVENT_METADATA_COUNT)]
 EvtRpcVariantList** eventMetadataInstances
);

eventMetaDataEnum: A handle to an event metadata enumerator. This parameter is an RPC context

handle, as specified in [C706], Context Handles. For information on handle security and
authentication considerations, see sections 2.2.20 and 5.1. This is the value which comes from the
return parameter eventMetaDataEnum of function EvtRpcGetEventMetadataEnum (as specified
in 3.1.4.27).

flags: A 32-bit unsigned integer that MUST be set to 0x00000000 when sent and MAY be ignored on
receipt.<56>

numRequested: A 32-bit unsigned integer that contains the number of events for which the
properties are needed.

numReturned: A pointer to a 32-bit unsigned integer that contains the number of events for which
the properties are retrieved.

eventMetadataInstances: A pointer to an array of EvtRpcVariantList (section 2.2.9) structures.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST first validate the handle. The server
SHOULD save the context handle value that it creates in the EvtRpcGetPublisherMetadata method

(as specified in section 3.1.4.25) in its handle table and compare it with the handle passed here to
perform the check.<57> The server MUST return ERROR_INVALID_PARAMETER (0x00000057) if the
handle is invalid.

The server MUST verify that event metadata entries remain in the publisher metadata that have not
yet been enumerated. As specified in section 3.1.1.11, the event metadata context handle

(eventsMetaDataEnum parameter) is an event metadata object in the server. The server SHOULD cast
the context handle into the event metadata object. In the object, the Enumerator field tracks the
delivered entries and remaining entries. If the enumeration has already returned the metadata for
every event, the method SHOULD fail with the error ERROR_NO_DATA (0x000000E8).<58> Note that
it is acceptable for a publisher to have no event metadata entries. In this case, the server MUST
respond to the first call to EvtRpcGetNextEventMetadata with a return code of ERROR_SUCCESS

(0x00000000) with numReturned set to zero. In particular, Windows event publishers that use the
legacy protocol documented in [MS-EVEN] will not have event metadata associated with them. These
include, but are not limited to, the events reported in the Application, System, and Security logs.

If the preceding checks succeed, the server MUST attempt to return the metadata for as many events
as are specified in the numRequested, or until all the event metadata has been returned.

The server MUST fill an array of EvtRpcVariantList (section 2.2.9) objects, with an EvtRpcVariantList
for each event's metadata, and assign the array to the eventMetadataInstances parameter. The server

SHOULD only fail in creation of the array EvtRpcVariantList due to shortness of memory. In that case,
the server SHOULD return ERROR_OUTOFMEMORY (0x000000E). Each EvtRpcVariantList MUST
contain the following nine EvtVariant entries.

108 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Index Type Description

0 EvtVarTypeUInt32 Event identifier

1 EvtVarTypeUInt32 Version

2 EvtVarTypeUInt32 Channel identifier

3 EvtVarTypeUInt32 Level value of event

4 EvtVarTypeUInt32 Opcode value of event

5 EvtVarTypeUInt32 Task value of event

6 EvtVarTypeUInt32 Keyword value of event

7 EvtVarTypeUInt64 MessageID for event description string

8 EvtVarTypeString Event definition template

The preceding nine entries SHOULD be retrieved from the event information section in the publisher
resource file (as specified in section 3.1.1.14).

If the preceding checks succeed and the server successfully creates the array of EvtRpcVariantList
objects, the server MUST update the cursor value in the event metadata object to keep track of the
event metadata that has already been enumerated. If the checks fail, or if the server is unable to
create the array, the server MUST NOT update anything.

The server MUST return a value indicating success or failure for this operation.

3.1.4.29 EvtRpcAssertConfig (Opnum 15)

The EvtRpcAssertConfig (Opnum 15) method indicates to the server that the publisher or channel

configuration has been updated.

 error_status_t EvtRpcAssertConfig(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, range(1, MAX_RPC_CHANNEL_NAME_LENGTH), string]
 LPCWSTR path,
 [in] DWORD flags
);

binding: An RPC binding handle as specified in section 2.2.21.

path: A pointer to a string that contains a channel or publisher name to be updated.

flags: The client MUST specify exactly one of the following.

Value Meaning

EvtRpcChannelPath

0x00000000

Path specifies a channel name.

EvtRpcPublisherName

0x00000001

Path specifies a publisher name.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

109 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

In response to this request from the client, the server SHOULD first validate the path parameter. The
server MUST interpret the path parameter as a channel name if the flags parameter is equal to

0x00000000. The server SHOULD try to determine if the specified channel name has been already
registered in its channel table (as specified in section 3.1.1.5). If the flags value is 0x00000001, the

server MUST interpret path as a publisher name. The server SHOULD then check if the publisher has
been registered in its publisher table (as specified in section 3.1.1.3). The server SHOULD fail the
operation if the validation of path fails. The server MAY<59> return the error
ERROR_INVALID_PARAMETER (0x00000057) to indicate such failure.

Next, the server MUST verify that the caller has write access to the information and MUST fail the
method if the caller does not have write access with the error ERROR_ACCESS_DENIED
(0x00000005). To perform the access check, the server SHOULD first determine the identity of the

caller. Information determining the identity of the caller for the purpose of performing an access check
is specified in [MS-RPCE] section 3.2.3.4.2. Then, if the client specifies a channel, the server SHOULD
read the channel's access property (as specified in section 3.1.4.21) as the security descriptor string.
Next, the server SHOULD be able to perform the write and clear access check using the Access Check
algorithm (as specified in [MS-DTYP] section 2.5.3.2). If the access property is not present for the

channel, the channel gets a default SDDL which is

"O:BAG:SYD:(A;;0xf0005;;;SY)(A;;0x5;;;BA)(A;;0x1;;;S-1-5-32-573)".

The server assumes that something has changed some properties of a publisher or channel before
processing this call. Such changes can be made by the EvtRpcPutChannelConfig method (as
specified in section 3.1.4.22). The changes made by EvtRpcPutChannelConfig only create an in-
memory copy of the new properties of the publisher or channel, but do not impact the server's
immediate behavior. EvtRpcAssertConfig puts the in-memory copy created by
EvtRpcPutChannelConfig into effect. When applying the changes from the in-memory copy, the

server SHOULD check the potential conflicts of the new settings with existing settings. The following is
a list of checks the server SHOULD make before accepting the changes:

1. If the channel type is set, the server SHOULD check whether the new value is one of the four
allowed values which are specified in section 3.1.4.22.

2. If the owning publisher is set, the server SHOULD check whether the publisher exists and also

check whether the channel is owned by another publisher. The server SHOULD go through its
channel table and make sure the OwningPublisher field points to a different publisher's name

and no two channels have the same publisher name.

After that, the server activates the new properties of the channel or the publisher based on the latest
settings and frees the memory associated with the in-memory copy of the new channel or publisher
properties allocated during the call to EvtRpcPutChannelConfig.

In the interval between the calls to EvtRpcPutChannelConfig and EvtRpcAssertConfig, there are
effectively two copies of the channel or publisher properties. One copy is the encapsulated but inactive

set of properties created by EvtRpcPutChannelConfig, waiting to be made active. The other copy is
the unencapsulated set of active property values that are stored in individual run-time variables within
the implementation. It is an implementation-specific detail whether these variables exist in a form that
resembles the encapsulated representation in terms of memory layout or other matters not germane
to the semantics of the properties. The encapsulated property set is by definition ephemeral, serving
only as a temporary holding vessel for the updated channel or publisher properties until the

EvtRpcAssertConfig method is called.

When this method is called, the server activates the new properties of the channel or publisher in a
two-stage process. First, the server stores the values in the encapsulated property set into whatever
persistent storage the server uses to store channel and publisher properties between invocations of
the server itself. Second, the server loads the new property values from persistent storage, using
them to update the unencapsulated, active variables that implement the properties at run time. In this
way, the server simultaneously puts the new values into effect and ensures that those values will
remain in effect if the server is restarted.

110 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

When this two-stage process is complete, the encapsulated property set serves no further purpose
and the server frees the memory associated with it.

Note that this protocol does not include a method for changing publisher configuration data. The client
SHOULD provide this functionality if it wants to call this function specifying the publisher. For more

information, see section 3.2.7.

The configuration properties of the channels and publishers SHOULD include the following:

 Physical location of the publisher's event definition binaries

 Channel security settings

 Channel and publisher names

 Enabled/disabled state or any other implementation-dependent configurable settings

The server MUST NOT change those states until this method is called.

The server MUST return a value indicating success or failure for this operation.

3.1.4.30 EvtRpcRetractConfig (Opnum 16)

The EvtRpcRetractConfig (Opnum 16) method indicates to the server that the publisher or channel is

to be removed.

 error_status_t EvtRpcRetractConfig(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, range(1, MAX_RPC_CHANNEL_NAME_LENGTH), string]
 LPCWSTR path,
 [in] DWORD flags
);

binding: An RPC binding handle as specified in section 2.2.21.

path: A pointer to a string that contains a channel or publisher name to be removed.

flags: A 32-bit unsigned integer that indicates how the path parameter is to be interpreted. This
MUST be set as follows.

Value Meaning

EvtRpcChannelPath

0x00000000

Path specifies a channel name.

EvtRpcPublisherName

0x00000001

Path specifies a publisher name.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it

MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server SHOULD first validate the path parameter.<60>
The server MUST interpret the path parameter as a channel name if the flags parameter is equal to
0x00000000. The server SHOULD try to find if the specified channel name has been already registered
in its channel table (as specified in section 3.1.1.5). If the flags value is 0x00000001, the server MUST

interpret path as a publisher name. The server SHOULD then check if the publisher has been
registered in its publisher table (as specified in section 3.1.1.3). The server SHOULD fail the operation
if the validation of path fails. The server MAY return the error ERROR_INVALID_PARAMETER
(0x00000057) to indicate such failure.<61>

111 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Next, the server MUST verify that the caller has delete access to the information and MUST fail the
method with the error ERROR_ACCESS_DENIED (0x00000005) if the caller does not have delete

access. To perform the access check, the server SHOULD first determine the identity of the caller.
Information determining the identity of the caller for the purpose of performing an access check is

specified in [MS-RPCE] section 3.2.3.4.2. Then, if the client specifies a channel, the server SHOULD
read the channel's access property (as specified in section 3.1.4.21) as the security descriptor string.
Next, the server SHOULD be able to perform the write and clear access check using the Access Check
algorithm (as specified in [MS-DTYP] section 2.5.3.2). If the access property is not present for the
channel, the channel gets a default SDDL, which is
"O:BAG:SYD:(A;;0xf0005;;;SY)(A;;0x5;;;BA)(A;;0x1;;;S-1-5-32-573)".

If the above checks succeed, the server MUST delete the publisher entry from its publisher table or

delete the channel from the channel table. Operations like deleting entries from the table SHOULD
always be successful.

Any information in the channel table and publisher table MUST not be removed until this method is
called.

The server MUST return a value indicating success or failure for this operation.

3.1.4.31 EvtRpcMessageRender (Opnum 9)

The EvtRpcMessageRender (Opnum 9) method is used by a client to get localized descriptive strings
for an event.

 error_status_t EvtRpcMessageRender(
 [in, context_handle] PCONTEXT_HANDLE_PUBLISHER_METADATA pubCfgObj,
 [in, range(1, MAX_RPC_EVENT_ID_SIZE)]
 DWORD sizeEventId,
 [in, size_is(sizeEventId)] BYTE* eventId,
 [in] DWORD messageId,
 [in] EvtRpcVariantList* values,
 [in] DWORD flags,
 [in] DWORD maxSizeString,
 [out] DWORD* actualSizeString,
 [out] DWORD* neededSizeString,
 [out, size_is(,*actualSizeString), range(0, MAX_RPC_RENDERED_STRING_SIZE)]
 BYTE** string,
 [out] RpcInfo* error
);

pubCfgObj: A handle to a publisher object. This parameter is an RPC context handle, as specified in
[C706], Context Handles. This value comes from the return parameter pubMetadata of the
function EvtRpcGetPublisherMetadata (section 3.1.4.25).

sizeEventId: A 32-bit unsigned integer that contains the size, in bytes, of the data in the eventId
field. The server MUST ignore this value if EvtFormatMessageId is specified as the flags
parameter. If EvtFormatMessageId is not specified in the flags parameter, the server MUST use
the sizeEventId parameter and ignore the messageId parameter.

eventId: A pointer to an EVENT_DESCRIPTOR structure, as specified in [MS-DTYP] section 2.3.1.

messageId: A 32-bit unsigned integer that specifies the required message. This is an alternative to
using the eventID parameter used by a client application that has obtained the value through

some method outside those documented by this protocol. The server MUST ignore this value
unless the flags value is set to EvtFormatMessageId; in which case, the server MUST use this
value to determine the required message and ignore the eventID parameter.

112 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

values: An array of strings used as substitution values for event description strings. The number of
strings submitted is determined by the number of description strings contained in the event

message specified by the eventID or messageId parameter.<62>

flags: For all options except EvtFormatMessageId, the eventId parameter is used to specify an event

descriptor. For the EvtFormatMessageId option, the messageId is used for locating the message.
This MUST be set to one of the values in the following table, which indicates the action a server is
requested to perform.

Value Meaning

EvtFormatMessageEvent

0x00000001

Locate the message for the event that corresponds to eventID, and then
insert the values specified by the values parameter.

EvtFormatMessageLevel

0x00000002

Extract the level field from eventID, and then return the localized name for
that level.

EvtFormatMessageTask

0x00000003

Extract the task field from eventID, and then return the localized name for
that task.

EvtFormatMessageOpcode

0x00000004

Extract the opcode field from eventID, and then return the localized name
for that opcode.

EvtFormatMessageKeyword

0x00000005

Extract the keyword field from eventID, and then return the localized name
for that keyword.

EvtFormatMessageChannel

0x00000006

Extract the channel field from eventID, and then return the localized name
for that channel.

EvtFormatMessageProvider

0x00000007

Return the localized name of the publisher.

EvtFormatMessageId

0x00000008

Locate the message for the event corresponding to the messageId
parameter, and then insert the values specified by the values parameter.

maxSizeString: A 32-bit unsigned integer that contains the size, in bytes, of the string that is
provided by the caller.

actualSizeString: A pointer to a 32-bit unsigned integer that, on return, contains the actual size, in
bytes, of the resulting description (including null termination).

neededSizeString: A pointer to a 32-bit unsigned integer that, on return, contains the needed size,
in bytes (including null termination).

string: A pointer to a bytearray that, on return, contains a localized string containing the message

requested. This can contain a simple string, such as the localized name of a keyword, or a fully
rendered message that contains multiple inserts.

error: A pointer to an RpcInfo (section 2.2.1) structure in which to place error information in the case

of a failure. The RpcInfo (section 2.2.1) structure fields MUST be set to nonzero values if the error
is related to loading the necessary resource. All nonzero values MUST be treated the same. If the
method succeeds, the server MUST set all the fields in the structure to 0.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success. The method
MUST return ERROR_INSUFFICIENT_BUFFER (0x0000007A) if maxSizeString is too small to hold the
result string. In that case, neededSizeString MUST be set to the necessary size. Otherwise, the
method MUST return a different implementation-specific nonzero value as specified in [MS-ERREF].

113 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

In response to this request from the client, the server MUST first validate the handle. The server
SHOULD save the context handle value it creates in the EvtRpcGetPublisherList method (as

specified in section 3.1.4.25) in its handle table (as specified in 3.1.1.12) and compare it with the
handle passed here to perform the handle validation work.<63> The server MUST return

ERROR_INVALID_PARAMETER (0x00000057) if the handle is invalid or there is no such handle on the
server.

The server MUST then check the flags parameter. If flags is not one of the 8 values in the flags table
in this section, the server MUST fail the method with the error
ERROR_INAVLID_PARAMETER(0x00000057).

The server MUST ignore the eventId parameter if EvtFormatMessageId is specified as the flags
parameter. If EvtFormatMessageId is not specified in the flags parameter, the server MUST use

eventId parameter and ignore the messageId parameter.

If validation is successful, the server SHOULD cast the pubCfgObj context handle into the publisher
metadata object. The publisher metadata object contains the ResourceFileHandle which the server
SHOULD use to read the publisher resource information (as specified in section 3.1.1.14) to serve this

method. The server MUST attempt to return a localized string. If the string being requested is for the
level, task, opcode, and keyword choices, the server MUST use its own localized string table if the

value is within the range of the server (the value is retrieved from the eventId parameter). The server
MUST define range values as the following:

 Levels 0 through 15

 Task 0

 Opcodes 0 through 9, and 240

 The following keywords for levels 0 through 15.

 0

 0x1000000000000

 0x2000000000000

 0x4000000000000

 0x8000000000000

 0x10000000000000

 0x20000000000000

 0x40000000000000

 0x80000000000000.

For example, if the level requested is 2, the server's list of strings for levels MUST be used since 2 is in
the range [0,15]. The server MUST NOT change any state.

The server MUST prepare the description strings for these defined values itself. There are no formal
recommendations about what strings to assign for these reserved values. The server can assign any
strings for the keywords for the levels 0 through 15 values or it can assign part of them for its own

development purpose and leave the remaining as dummy strings. The assigned strings MUST be kept
by the server in dedicated files. The dedicated files which keep the predefined strings are the server's
own localized string tables. Thus the server can be a default publisher. It maintains these predefined
strings for every language. The server can then have multiple language-specific resource files and
each language-specific resource file contains all the predefined strings for one language. For more
information on language-specific resource files, see [MSDN-MUIResrcMgmt].

114 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

When the EvtFormatMessageId is specified in the flags parameter, the server SHOULD use the
messageId parameter and search through the language-specific resource file (as specified in section

3.1.1.13) to find the messageId that the client specified. Once the server locates the messageId in the
language-specific resource file, it gets the localized string associated with that messageId and returns

the result to the client.<64>

When the EvtFormatMessageId is not specified in the flags parameter, the server SHOULD first use the
eventId parameter to find the messageId in the publisher resource file. Depending on the flags value,
processing is as follows:

 If EvtFormatMessageEvent is specified in the flags parameter, the server SHOULD search the
events information (as specified in section 3.1.1.14) in the publisher resource file to get the
messageId for that event and then get the event description string from the language-specific

resource file using the messageId.

 If EvtFormatMessageLevel, EvtFormatMessageTask, EvtFormatMessageOpcode, or
EvtFormatMessageKeyword is specified in the flags parameter, the server SHOULD first get the
event information based on the eventId and then locate the level messageId, task messageId,

opcode messageId, or the keyword messageId for that event based on the flags value. Next, it
uses the messageId to get the description string from the language-specific resource file.

 If EvtFormatMessageProvider is specified in the flags parameter, the server SHOULD first get the
events information (as specified in section 3.1.1.14) based on the eventId. Next, it SHOULD
search the publisher information (as specified in the section 3.1.1.14) in the publisher resource file
to get the messageId for that publisher name based on the publisher identifier it gets from the
first step and then get the publisher name string from the language-specific resource file using the
messageId.

 If EvtFormatMessageChannel is specified in the flags parameter, the server SHOULD first get the

events information (as specified in section 3.1.1.14) based on the eventId. Next, it SHOULD
search the channel information (as specified in section 3.1.1.14) in the publisher resource file to
get the messageId parameter for that channel name based on the publisher identifier it gets from
the first step and then get the localized channel name string from the language-specific resource

file using the messageId parameter.

The message string that the server gets is from the publisher localized string table on the server.
Because the publisher object contains the locale value that the client requires when opening the

publisher through the EvtRpcGetPublisherMetadata function, the server determines which localized
string table (as specified in section 3.1.1.13) is needed to fetch the localized string.

If the server can't find the localized string either because it can't find the corresponding messageId or
the localized string is missing for the messageId, it SHOULD fail the method with the error code
ERROR_EVT_MESSAGE_ID_NOT_FOUND (0x00003AB4) or ERROR_EVT_MESSAGE_NOT_FOUND
(0x00003AB3).

The message strings that the server gets from the language-specific resource file can contain some
"%" symbols, which are symbol indicators of substitutions. If the client specifies the values parameter,
which is an array of string values, those values will replace the "%" symbols in the message string.
For example, the following could be a raw message string:

 "The file system has failed to locate the file %1 with the error %2." And if the values contain 2
elements, one is "sample.evtx", the other is "access denied". Then the string will be expanded into
"The file system has failed to locate the file sample.evtx with the error access denied". If the

values array contains more elements than the required substitution, the server SHOULD discard
the extra ones. If the values array contains less elements than the required substitution, the
server SHOULD replace with as many as possible and leave the left one as %number for the final
result string. The server SHOULD NOT fail the method regardless of what is specified for the
values parameter.

115 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

By checking the flags parameter, the server knows which information (level, task, opcode, keywords,
and so on) the client requests. The server MUST fail the method with the error

ERROR_INVALID_PARAMETER(0x00000057) if the flags parameter is not one of the values specified in
this section.

When EvtFormatMessageId is specified in the flags parameter, the server SHOULD use the messageId
parameter and search through the publisher resource file to find the messageId the client specified.
Once the server locates the messageId in the publisher resource file, it will get the localized string
associated with that messageId and return the result to the client.<65>

The server MUST return a value indicating success or failure for this operation.

3.1.4.32 EvtRpcMessageRenderDefault (Opnum 10)

The EvtRpcMessageRenderDefault (Opnum 10) method is used by a client to get localized strings for
common values of opcodes, tasks, or keywords, as specified in section 3.1.4.31.

 error_status_t EvtRpcMessageRenderDefault(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, range(1, MAX_RPC_EVENT_ID_SIZE)]
 DWORD sizeEventId,
 [in, size_is(sizeEventId)] BYTE *eventId,
 [in] DWORD messageId,
 [in] EvtRpcVariantList *values,
 [in] DWORD flags,
 [in] DWORD maxSizeString,
 [out] DWORD *actualSizeString,
 [out] DWORD *neededSizeString,
 [out, size_is(,*actualSizeString), range(0, MAX_RPC_RENDERED_STRING_SIZE)]
 BYTE** string,
 [out] RpcInfo *error
);

binding: An RPC binding handle as specified in section 2.2.21.

sizeEventId: A 32-bit unsigned integer that contains the size in bytes of the eventId field.

eventId: A pointer to an EVENT_DESCRIPTOR structure, as specified in [MS-DTYP] section 2.3.1.

messageId: A 32-bit unsigned integer that specifies the required message. This is an alternative to
using the eventID parameter that can be used by a client application that has obtained the value
through some method outside those documented by this protocol. The server MUST ignore this
value unless the flags value is set to EvtFormatMessageId, in which case the server MUST use this
value to determine the required message and ignore the eventID parameter.

values: An array of strings to be used as substitution values for event description strings. Substitution
values MUST be ignored by the server except when the flags are set to either

EvtFormatMessageEvent or EvtFormatMessageId.

flags: This field MUST be set to a value from the following table, which indicates the action that the

server is requested to perform.

Value Meaning

EvtFormatMessageEvent

0x00000001

Locate the message for the event corresponding to eventId, and then insert
the values specified by the values parameter.

EvtFormatMessageLevel

0x00000002

Extract the level field from eventId, and then return the localized name for
that level.

116 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Value Meaning

EvtFormatMessageTask

0x00000003

Extract the task field from eventId, and then return the localized name for
that task.

EvtFormatMessageOpcode

0x00000004

Extract the opcode field from eventId, and then return the localized name
for that opcode.

EvtFormatMessageKeyword

0x00000005

Extract the keyword field from eventId, and then return the localized name
for that keyword.

EvtFormatMessageId

0x00000008

Locate the message for the event corresponding to the messageId
parameter, and then insert the values specified by the values parameter.

maxSizeString: A 32-bit unsigned integer that contains the maximum size in bytes allowed for the
string field.

actualSizeString: A pointer to a 32-bit unsigned integer that contains the actual size of the resulting
description string returned in the string. It MUST be set to the size in bytes of the string returned

in the string parameter, including the NULL ('\0') terminating character. If the description string
cannot be retrieved, actualSizeString MUST be set to zero.

neededSizeString: A pointer to a 32-bit unsigned integer that contains the size in bytes of the fully
instantiated description string, even if the length of the description string is greater than
maxSizeString. The returned value MUST be zero when the description string cannot be computed
by the server.

string: A buffer in which to return either a null-terminated string or multiple null-terminated strings,
terminated by a double NULL in the case of keywords. In the case of failure, the client MUST
ignore this value.

error: A pointer to an RpcInfo (section 2.2.1) structure in which to place error information in the case
of a failure. The RpcInfo (section 2.2.1) structure fields MUST be set to nonzero values if the error

is related to loading the necessary resource. All nonzero values MUST be treated the same. If the
method succeeds, the server MUST set all of the values in the structure to 0.

Return Values: The method MUST return the following value on success.

ERROR_SUCCESS (0x00000000)

The method MUST return ERROR_INSUFFICIENT_BUFFER (0x0000007A) if maxSizeString is too small
to hold the result string. In that case, neededSizeString MUST be set to the necessary size.

Otherwise, the method MUST return a different implementation-specific nonzero value as specified in
[MS-ERREF].

This method is the same as the EvtRpcMessageRender (section 3.1.4.31) method, except that this

method always uses the server's default strings (default strings come from the server's default
publisher, so a publisher handle is not required), whereas the

EvtRpcMessageRender (section 3.1.4.31) method uses only the default strings in the case of level,
task, opcode, and keyword values that fall in certain ranges. Therefore it takes only 6 possible format
flags. The server MUST fail the method with ERROR_INVALID_PARAMETER (0x00000057) for any
other flags than the 6 values given in the flags table.

3.1.4.33 EvtRpcClose (Opnum 13)

The EvtRpcClose (Opnum 13) method is used by a client to close context handles that are opened by
other methods in this protocol.

117 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 error_status_t EvtRpcClose(
 [in, out, context_handle] void** handle
);

handle: This parameter is an RPC context handle, as specified in [C706], Context Handles.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST first validate the handle. The server
SHOULD save the handle value in its handle table (as specified in section 3.1.1.12) when the handle is
created so that it can look up the handle in its table to determine if it is valid.<66> The server MUST
fail the operation with the error ERROR_INVALID_PARAMETER (0x00000057) if the handle is not in its

handle table. For more information on handle security and authentication considerations, see sections
2.2.20 and 5.1.

If the above check succeeds, the server MUST remove the handle from its handle table. The server

SHOULD NOT fail the operation of removing the handle.

The server MUST return a value indicating success or failure for this operation.

3.1.4.34 EvtRpcCancel (Opnum 14)

The EvtRpcCancel (Opnum 14) method is used by a client to cancel another method. This can be used
to terminate long-running methods gracefully. Methods that can be canceled include the subscription
and query functions, and other functions that take a CONTEXT_HANDLE_OPERATION_CONTROL
argument.

 error_status_t EvtRpcCancel(
 [in, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL handle
);

handle: A handle obtained by any of the other methods in this interface. This parameter is an RPC
context handle, as specified in [C706], Context Handles.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it

MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, the server MUST first validate the handle. The server
SHOULD save the handle value it created in the handle table (as specified in section 3.1.1.12) and
compare it with the handle passed here to perform the validation check.<67>

The server MUST return ERROR_INVALID_PARAMETER (0x00000057) if the handle is invalid. For
information on handle security and authentication considerations, see sections 2.2.20 and 5.1.

If the above check succeeds, the server MUST attempt to cancel the outstanding call associated with

this handle. As specified in section 3.1.1.10, the context handle SHOULD be a control object on the

server. The control object contains the detail operation object pointers such as query object pointer,
subscription object pointer, and so forth, plus the Boolean flag. The server SHOULD check if the
Boolean flag is true. If the flag is true, the server does nothing and returns success. If this flag is not
true, the server SHOULD get the operation object pointer and cancel the operation by stopping
operation object processing. That would include stopping processing of the query or subscription tasks

and then setting its cancelation Boolean flag to true. For information, see section 3.1.4.

In response to this call, the server MUST NOT remove the associated handle from its handle table.

118 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

If the server is too busy to process the outstanding operation, it might not be able to cancel the call.
The server SHOULD then return ERROR_CANCELLED (0x00004C7) or other implementation-dependent

error codes. If there is no outstanding call or operation, or if the outstanding call or operation has
already been canceled, the server SHOULD return ERROR_SUCCESS (0x00000000).

The server MUST return a value indicating success or failure for this operation.

3.1.4.35 EvtRpcRegisterControllableOperation (Opnum 4)

The EvtRpcRegisterControllableOperation (Opnum 4) method obtains a

CONTEXT_HANDLE_OPERATION_CONTROL handle that can be used to cancel other operations.

 error_status_t EvtRpcRegisterControllableOperation(
 [out, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL* handle
);

handle: A context handle for a control object. This parameter MUST be an RPC context handle, as
specified in [C706], Context Handles. For information on handle security and authentication

considerations, see sections 2.2.20 and 5.1.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, for a successful operation, the server MUST attempt to
create a CONTEXT_HANDLE_OPERATION_CONTROL handle. The server SHOULD create a control
object. The control object SHOULD initialize its operation pointer to be NULL and Canceled flag to be
FALSE. Then the server SHOULD save the control object pointer in its handle table and return the

pointer as the context handle to the client. If it cannot create the handle, the server MUST fail the
operation with the error ERROR_OUTOFMEMORY (0x0000000E).

The control handle created with this method can be used by the client when it issues the
EvtRpcClearLog (section 3.1.4.16), EvtRpcExportLog (section 3.1.4.17), and

EvtRpcLocalizeExportLog (section 3.1.4.18) methods so that the client can cancel those operations if
the server takes too long to return. Those methods take the control object as their first parameter,
and periodically check the object's Canceled field during the processes. The server SHOULD NOT

change the control object's operational pointer data field in its implementation of the
EvtRpcClearLog, EvtRpcExportLog, and EvtRpcLocalizeExportLog methods. If the client sets the
Canceled field to be TRUE by using the method (section EvtRpcCancel (section 3.1.4.34), the server
SHOULD respond to the change by halting the process of clearing, exporting, or localizing the log file.

Note The control object created by this method SHOULD only be used in the EvtRpcClearLog,
EvtRpcExportLog, and EvtRpcLocalizeExportLog methods; it is not updated or consumed by any

other methods. As specified in sections 3.1.4.8 and 3.1.4.12, operation control objects are created by
the server when processing calls to the EvtRpcRegisterRemoteSubscription and
EvtRpcRegisterLogQuery methods; those are the only situations in which the server sets the
operational pointer data field for the control object. For more information, see sections 3.1.4.8 and
3.1.4.12.

The server MUST return a value indicating success or failure for this operation.

3.1.4.36 EvtRpcGetClassicLogDisplayName (Opnum 28)

The EvtRpcGetClassicLogDisplayName (Opnum 28) method obtains a descriptive name for a channel.

 error_status_t EvtRpcGetClassicLogDisplayName(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, range(1, MAX_RPC_CHANNEL_NAME_LENGTH), string]

119 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 LPCWSTR logName,
 [in] LCID locale,
 [in] DWORD flags,
 [out] LPWSTR* displayName
);

binding: An RPC binding handle as specified in section 2.2.21.

logName: The channel name for which the descriptive name is needed.

locale: The locale, as specified in [MS-GPSI] Appendix A, to be used for localizing the log.

flags: A 32-bit unsigned integer that MUST be set to one of the following values:

Value Meaning

0x0 If a locale is specified, that locale will be used and no fallback locale will be attempted if the
locale is not present.

0x100 If set, instructs the server to pick the best locale, if the locale specified by the locale parameter is
not present. Please see the following processing rules for more information on how the server
picks the best locale.

displayName: Returned display name.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation-specific nonzero value as specified in [MS-ERREF].

In response to this request from the client, for a successful operation, the server MUST attempt to
retrieve a display name for a channel. In [MS-EVEN] section 3.1.1.2, there are two configuration
entries for a classic event log: DisplayNameFile and DisplayNameID. The server tries to use the log
name passed here to find the log entry in the registry and then locate the DisplayNameID and

DisplayNameFile. The DisplayNameID is the message ID for the display name. The file which is

pointed at by DisplayNameFile contains the localized string for the display name. The server uses the
messageId and locale as the combination key to look for the string inside the file and then retrieve the
classic event log display name. The server verifies that the channel name, as specified by the logName
parameter, is a known classic event log. If the logName parameter does not specify a registered event
log (the log name can't be located in the registry described in [MS-EVEN]), the server MUST fail the
method with the error ERROR_NOT_FOUND (0x00000490). If the server can't find the DisplayNameID

or the DisplayNameFile, the server SHOULD fail the method with the error ERROR_INVALID_DATA
(0x0000000D).

If the locale is not specified (that is, the caller passes zero for the locale parameter) and the flags
parameter is 0x0, the server MUST substitute the locale of its own execution thread as the value of
the locale parameter.

If the display name is not present in the specified locale as specified above and the flags parameter is
set to 0x100, the server makes a best effort attempt to find a localized display name string by

following these steps:

1. The server SHOULD attempt to find a fallback locale with the same base language which does
contain the localized display name.<68> For example, if the caller requested the U.S. English "en-
US" locale but the display name was only available in another "en" prefixed locale such as the
British English "en-GB" locale, the server would return the British English version of the display
name.

2. Using the fallback locale, the server SHOULD attempt to find a localized display name string by
searching the appropriate DisplayNameFile in the same manner as specified above.

120 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3. If the server cannot determine an appropriate fallback locale or cannot find a localized display
name string using the fallback locale, the server MUST return ERROR_NOT_FOUND (0x00000490).

The server SHOULD validate the flags to ensure that no flags are present other than 0x0 and
0x100.<69>

Otherwise, the server MUST fail the method with the error ERROR_INVALID_PARAMETER
(0x00000057).

This API only succeeds if called for a log name that is exposed by the obsolete Eventlog Remote
protocol. If called on logs that are not exposed by the obsolete Eventlog Remote protocol, the method
will fail with the error ERROR_NOT_FOUND (0x00000490). For more information, see section 3.1.1.6.

The server MUST return a value indicating success or failure for this operation.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

3.2 Client Details

The client side of this protocol is simply a pass-through.

3.2.1 Abstract Data Model

The client does not maintain state as part of this protocol.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Message Processing Events and Sequencing Rules

Calls made by the higher-layer protocol or application MUST be passed directly to the transport. All
return values from method invocations MUST be returned uninterpreted to the higher-layer protocol or
application.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

121 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.2.7 Changing Publisher Configuration Data

The configuration property for a publisher contains only the publisher resource file location. For the
client to change a publisher configuration property, the client and the server MUST be on the same

machine. The client MAY access the server's memory and locate the resource file in the server's
memory for a specified publisher and change its value. The memory used by the server to save the
resource file location of a publisher can be a shared memory so that the client can also read that
memory and access the data. After the client changes the resource file location, it can call the
EvtRpcAssertConfig method (as specified in section 3.1.4.29) to apply the change to the server's
disk.<70>

122 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4 Protocol Examples

4.1 Query Example

In this example, the client wants to obtain events from a channel log file and render the resultant
events as XML text.

This involves the following steps:

1. The client registers with RPC to obtain an RPC binding handle to the service based on the endpoint
information specified in section 2.1. For information on how to get the RPC binding handle, see
[MSDN-BNDHNDLS].

2. The client calls the EvtRpcRegisterLogQuery (section 3.1.4.12) method to establish a query over
the log file and to obtain a query result and operation control handles.

 error_status_t
 EvtRpcRegisterLogQuery(
 [in] RPC_BINDING_HANDLE binding = {binding handle from step 1.},
 [in, unique, range(0, MAX_RPC_CHANNEL_PATH_LENGTH)]
 LPCWSTR path = "Application",
 [in, range(1, MAX_RPC_QUERY_LENGTH)] LPCWSTR query = "*",
 [in] DWORD flags = 0x00000101
 [out, context_handle] PCONTEXT_HANDLE_LOG_QUERY* handle,
 [out, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL*
 opControl,
 [out] DWORD* queryChannelInfoSize,
 [out, size_is(,*queryChannelInfoSize),
 range(0,MAX_RPC_QUERY_CHANNEL_SIZE)]
 EvtRpcQueryChannelInfo** queryChannelInfo,
 [out] RpcInfo *error
);

3. When the server processes this call, it opens the Application channel, saves the * as the query
expression, and creates two handles.

Note This example uses * as the query; see sections 4.5 and 4.6 for examples of structured

queries.

The call returns successfully, and the client is given two handles: a query result handle and an
operation control handle. The former is used to enumerate the results, and the latter is used to
cancel a currently executing control handle.

As noted in section 3.1.4.12, the query result handle is a query object from the server side. It
contains the channel path, the query filter XPath expression, and the result cursor value. For this

example, the channel path is "Application", the XPath filter expression is "*" and the result cursor
value is 0. The operation control handle is a control object that contains only one Boolean field
which indicates whether the query operation has been canceled or not. In this example, the value
is currently false which means the operation has not yet been canceled by the client.

4. The client enumerates events in the resultant list by calling the
EvtRpcQueryNext (section 3.1.4.13) method by using the query handle obtained in the previous
step.

 error_status_t
 EvtRpcQueryNext(
 [in, context_handle] PCONTEXT_HANDLE_LOG_QUERY logQuery
 = { handle obtained by the call to EvtRpcRegisterLogQuery },
 [in] DWORD numRequestedRecords = 5,

123 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in] DWORD timeOutEnd = 3000,
 [in] DWORD flags = 0,
 [out] DWORD* numActualRecords,
 [out, size_is(,*numActualRecords),
 range(0, MAX_RPC_RECORD_COUNT)] DWORD** eventDataIndices,
 [out, size_is(,*numActualRecords),
 range(0, MAX_RPC_RECORD_COUNT)] DWORD** eventDataSizes,
 [out] DWORD* resultBufferSize,
 [out, size_is(,*resultBufferSize),
 range(0, MAX_RPC_BATCH_SIZE)] BYTE** resultBuffer
);

5. The server implements this call by returning the requested number of events (or as many events
as it has) in BinXml form.

See section 4.8 for an example in BinXml form.

The client enumerates through the events, using multiple calls to the
EvtRpcQueryNext (section 3.1.4.13) method, until it no longer responds to events, or it reaches
the end of the log file.

If the client's query expression selects sparse events, and the log file contains a huge number of
events, the EvtRpcQueryNext can take a long time to complete. In this case, the client has the
option to cancel the EvtRpcQueryNext call by passing the query result handle to the

EvtRpcCancel (section 3.1.4.34) method.

6. For each event, it is translated from BinXml encoding to the XML representation.

This is done according to the BinXml ABNF, as specified in section 3.1.4.7.

The server is not involved in this step.

If the event XML representation conforms to event.xsd (for more information, see section 2.2.13),

standard attributes can be retrieved either directly from the BinXml representation or after
translating to text XML.

The client optionally translates the event into text XML. See section 4.8 for an example of how to
translate from BinXml form into XML event format.

7. When the client is done enumerating, it closes both the query and operation control handles using
EvtRpcClose. In this call, the server frees all resources related to the query result.

 error_status_t EvtRpcClose(
 [in, out, context_handle] void** handle = {query handle}
);

 error_status_t EvtRpcClose(
 [in, out, context_handle] void** handle
 = {operation control handle}
);

4.2 Get Log Information Example

In this example, the client wants to get information about a channel or log file.

This involves the following steps:

124 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1. The client registers with RPC to obtain an RPC binding handle to the service based on the endpoint
information specified in section 2.1. For information on how to get the RPC binding handle, see

[MSDN-BNDHNDLS].

2. The client calls the EvtRpcOpenLogHandle (as specified in section 3.1.4.19) method to open the

log handle from which it wants to get information.

 error_status_t
 EvtRpcOpenLogHandle(
 [in, range(1, MAX_RPC_CHANNEL_PATH_LENGTH), string]
 LPCWSTR channel = "Application",
 [in] DWORD flags = 1,
 [out, context_handle] PCONTEXT_HANDLE_LOG_HANDLE* handle,
 [out] RpcInfo* error
);

After this function returns successfully, the client receives the log context handle. As mentioned

in section 3.1.1.11, the context handle is a log information object. For this example, its content
is:

 LogType = {A value which means it is a channel}

 Channel = {Pointer to the "application" entry in the channel table}

3. The client then calls the EvtRpcGetLogFileInfo (as specified in section 3.1.4.12) method to get
the necessary information. For the following example, assume the client wants to know the
number of events in the channel.

 error_status_t
 EvtRpcGetLogFileInfo(
 [in, context_handle] PCONTEXT_HANDLE_LOG_HANDLE logHandle = {The handle received above},
 [in] DWORD propertyId = 0x00000005(EvtLogNumberOfLogRecords),
 [in, range(0, MAX_RPC_PROPERTY_BUFFER_SIZE)]
 DWORD propertyValueBufferSize = sizeof(BinXmlVariant),
 [out, size_is(propertyValueBufferSize)]
 BYTE* propertyValueBuffer = {The pointer which points to the result buffer},
 [out] DWORD* propertyValueBufferLength
);

After the method returns successfully, the propertyValueBuffer contains the required value and is
packed in the following data format:

 0x0000000000000020 -------- There are 32 records totally.
 0x0001 -------- There is only one result in the returned data
 0x000A -------- The data type is BinXmlVarUInt64.

4.3 Bookmark Example

The following is an example of Bookmark use.

 <?xml version="1.0" encoding="UTF-8"?>
 <BookmarkList>
 <Bookmark Channel=" Microsoft-Windows-PrintSpooler/Operational"
 RecordId="9"/>
 <Bookmark Channel="c:/dir1/dir2/file.evtx" RecordId="1"/>
 <Bookmark Channel="System" RecordId="26" IsCurrent="true"/>
 </BookmarkList>

125 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4.4 Simple BinXml Example

The following is an example of a simple BinXml fragment (without use of templates):

 <Event>
 <Element1>abc</Element1>
 <Element2> def &< ghi </Element2>
 <Element3 AttrA='abc' AttrB='def&<ghi'/>
 </Event>
 00 : 0f 01 01 00 01 f2 00 00-00 ba 0c 05 00 45 00 76 <Event>
 10 : 00 65 00 6e 00 74 00 00-00 02 01 22 00 00 00 b5
 20 : 79 08 00 45 00 6c 00 65-00 6d 00 65 00 6e 00 74
 30 : 00 31 00 00 00 02 05 01-03 00 61 00 62 00 63 00
 40 : 04 01 44 00 00 00 b6 79-08 00 45 00 6c 00 65 00
 </Element1> <Element2>
 50 : 6d 00 65 00 6e 00 74 00-32 00 00 00 02 45 01 05
 60 : 00 20 00 64 00 65 00 66-00 20 00 49 24 fb 03 00
 70 : 61 00 6d 00 70 00 00 00-48 3c 00 05 01 05 00 20
 80 : 00 67 00 68 00 69 00 20-00 04 41 6b 00 00 00 b7
 </Element2> <Element3>
 90 : 79 08 00 45 00 6c 00 65-00 6d 00 65 00 6e 00 74
 A0 : 00 33 00 00 00 50 00 00-00 46 90 d8 05 00 41 00
 B0 : 74 00 74 00 72 00 41 00-00 00 05 01 03 00 61 00
 C0 : 62 00 63 00 06 91 d8 05-00 41 00 74 00 74 00 72
 D0 : 00 42 00 00 00 45 01 03-00 64 00 65 00 66 00 49
 E0 : 24 fb 03 00 61 00 6d 00-70 00 00 00 48 3c 00 05
 F0 : 01 03 00 67 00 68 00 69-00 03 04 00
 <Element3/> </Event>

 Token
offset Token type Comments on encoding

00 0F - FragmentHeaderToken Version 1.1, flags=0

04 01 - OpenStartElementToken <Event> start tag. There is no Dependency ID because this is
not a template definition.

The length of the data for the entire element is 0xF2, and this
data starts at offset 0x09.

The data consists of three parts: name hash (2 bytes), string
length (2 bytes), and name itself (the rest of the data).

At offset 0x09, the name begins for the start tag. The length of
the name is five Unicode characters (does not include a null-
terminator).

Note, the more bit is not set on the OpenStartElementToken,
so attributes do not follow.

19 02 - CloseStartElementToken Close <Event> start tag.

1A 01 - OpenStartElementToken <Element1> start tag, no attributes to follow.

35 02 - CloseStartElementToken Close <Element1> start tag.

36 05 - ValueTextToken The character data abc. It has a length of three Unicode
characters (character data strings are not null- terminated).

40 04 - EndElementToken End </Element1>.

41 01 - OpenStartElementToken <Element2>.

5C 02 - CloseStartElementToken Close <Element2> start tag.

126 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Token
offset Token type Comments on encoding

5D 45 - ValueTextToken (MoreBit) The character data "def ". Spaces surround def so its length is
five Unicode characters. The more bit is set, so there is more
character data that follows.

6B 49 - EntityRefToken (MoreBit) An entity reference with Name amp. More character data
follows.

78 48 - CharRefToken (MoreBit) The character reference for "&". More character data follows.

7B 05 - ValueTextToken The character data "ghi " (again with spaces). No more
character data appears before the next markup token.

89 04 - EndElementToken End </Element2>.

8A 41 - OpenStartElementToken (

MoreBit - AttrList)

<Element3>. The more bit is set, so an attribute list follows.

The first attribute starts at offset 0xA9.

A9 46 - AttributeToken (More Bit) This is AttrA, and more attributes follow.

BA 05 - ValueTextToken This is abc.

C4 06 - AttributeToken (No More
Bit)

This is AttrB, and no more attributes follow.

D5 45 - ValueTextToken (More Bit) The character data def, with more character data to follow.

DF 49 - EntityRefToken (MoreBit) The entity ref with Name amp with more character data to
follow.

EC 48 - CharRefToken (MoreBit) The character reference for ampersand (&) with more
character data to follow.

EF 05 - ValueTextToken The character data ghi, with no more character data before the
next markup token.

F9 03 - CloseEmptyElementToken Close empty <Element3/>.

FA 04 - EndElementToken End </Event>.

FB 00 - EOFToken End of fragment / document.

4.5 Structured Query Example

The following is an example of a structured XML query. It contains two subqueries with the IDs of 1
and 2.

 <?xml version="1.0" encoding="UTF-8"?>
 <QueryList>
 <Query Id="1" Path="System">
 <Select Path="Microsoft-Windows-PrintSpooler/Operational">
 *[System/Level=1]
 </Select>
 <Select>*[System/Level=2]</Select>
 <Suppress>*[UserData/*/PrinterName="MyPrinter"]</Suppress>
 </Query>
 <Query Id="2" Path="file://c:/dir1/dir2/file.evtx">
 <Select>*[System/Level=2]</Select>
 </Query>

127 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 </QueryList>

4.6 Push Subscription Example

In this example, the client asks to get all future events from the "Application" and "Microsoft-
Windows-Backup/Operational" channel through push mode. This involves the following steps:

1. The client registers with RPC to obtain an RPC binding handle to the service based on the endpoint

information specified in section 2.1. For information on how to get the RPC binding handle, see
[MSDN-BNDHNDLS].

2. The client calls the EvtRpcRegisterRemoteSubscription method (section 3.1.4.8) to establish a
subscription connection and to obtain a subscription context and operation control handles.

 error_status_t EvtRpcRegisterRemoteSubscription(
 [in] RPC_BINDING_HANDLE binding = {binding handle from step 1.},
 [in, unique, range(0, MAX_RPC_CHANNEL_NAME_LENGTH), string] LPCWSTR channelPath = NULL,
 [in, range(1, MAX_RPC_QUERY_LENGTH), string]
 LPCWSTR query = {pointer to a structure query which describes the two channels.},
 [in, unique, range(0, MAX_RPC_BOOKMARK_NG,] LPCWSTR bookmarkXml = NULL,
 [in] DWORD flags = 0x00000001,
 [out, context_handle] PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION* handle,
 [out, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL* control,
 [out] DWORD* queryChannelInfoSize,
 [out, size_is(, *queryChannelInfoSize), range(0, MAX_RPC_QUERY_CHANNEL_SIZE)]
 EvtRpcQueryChannelInfo** queryChannelInfo,
 [out] RpcInfo*error
);

The structure query content for parameter query in this example would be as follows:

 <?xml version="1.0" encoding="UTF-8"?>
 <QueryList>
 <Query Id="1" Path="Application">
 <Select Path="Application">*</Select>
 </Query>
 <Query Id="2" Path="Microsoft-Windows-Backup/Operational">
 <Select Path="Microsoft-Windows-Backup/Operational">*</Select>
 </Query>
 </QueryList>

3. The server handles the registration request from the client and the server creates a subscription

object and a control object and casts them to remote subscription context handle and operation
control context handle. As described in section 3.1.4.8, the subscription object contains the list of
client subscribed channels. In this example, the subscription object contains "Application" and
"Microsoft-Windows-Backup/Operational". Because these two channels are registered with the

server already, the server finds and opens both of them to read how many events there are for
each channel. Suppose the Application channel contains 200 existing events and the other one
contains 100 existing events. The subscription object then has two longlong type of numeric

cursor values for each channel, one is 201 and the other is 101. Because the client asks to get the
future events, the subscription object sets the two cursors to the end of the channel to indicate
that only future events will be delivered to the client. Then the subscription object sees that the
flag does not specify the pull mode, and it sets the push mode flag to be true. For information on
the operation control handle value, see section 4.1.

128 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

After the server has completed these steps, it passes the subscription handle and control handle to
the client.

4. Once the client gets the subscription handle, it calls the EvtRpcRemoteSubscriptionNextAsync
method (section 3.1.4.9) to fetch its subscribed events in the asynchronized way.

 error_status_t EvtRpcRemoteSubscriptionNextAsync(
 [in, context_handle] PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION handle = {handle from step 2},
 [in] DWORD numRequestedRecords = 5,
 [in] DWORD flags = 0,
 [out] DWORD* numActualRecords,
 [out, size_is(,*numActualRecords), range(0, MAX_RPC_RECORD_COUNT)]
 DWORD** eventDataIndices,
 [out, size_is(,*numActualRecords), range(0, MAX_RPC_RECORD_COUNT)]
 DWORD** eventDataSizes,
 [out] DWORD* resultBufferSize,
 [out, size_is(, *resultBufferSize), range(0, MAX_RPC_BATCH_SIZE)]
 BYTE** resultBuffer
);

5. On the server, it first checks if there are any new events in either of the channels. If there are no
new events, the server returns the call immediately but does not complete the call. In this way the
client does not need to wait when there are no new events coming into either of the channels. But
the server keeps monitoring the channel. The server implements that by either checking the latest
event in the channel periodically or registering a callback function from a system component that

accepts the events from a provider. Note that for applicable Windows Server releases, the server
registers its callback to the system component so that it can receive notification when a provider
generates events. Later, if a provider generates a new event into the Application channel, with
that information the server fills the event data in the resultBuffer and notifies the client that the
events are coming now.

6. The client then gets notified by RPC that the result is ready in its supplies buffer, as described in

step 4. The client can then access the event data in its buffer. For more information on how the

client interprets the data in the result buffer, see section 4.1.

This example shows the benefits of the push subscription. The client is not blocked by the server if
there are no events that match the criteria of the client's subscriber requirement. Instead, the client
can perform its own tasks while the server is waiting for the new events, and get notified when the
server has new events ready.

4.7 Pull Subscription Example

In this example, the client asks to get all the events from the "Application" channel after its supplied
bookmark comes through pull mode. This involves the following steps:

1. The client registers with RPC to obtain an RPC binding handle to the service based on the endpoint

information specified in section 2.1. For information on how to get the RPC binding handle, see
[MSDN-BNDHNDLS].

2. The client calls the EvtRpcRegisterRemoteSubscription method (section 3.1.4.8) to establish a
subscription connection and to obtain a subscription context and operation control handles.

 error_status_t EvtRpcRegisterRemoteSubscription(
 [in] RPC_BINDING_HANDLE binding = {binding handle from step 1.},
 [in, unique, range(0, MAX_RPC_CHANNEL_NAME_LENGTH), string] LPCWSTR channelPath =
L"Application",

 [in, range(1, MAX_RPC_QUERY_LENGTH), string]
 LPCWSTR query = NULL,
 [in, unique, range(0, MAX_RPC_BOOKMARK_LENGTH), string]

129 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 LPCWSTR bookmarkXml = {pointer to the bookmark XML text},
 [in] DWORD flags = 0x10000003,{Pull mode and after bookmark}
 [out, context_handle] PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION* handle,
 [out, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL* control,
 [out] DWORD* queryChannelInfoSize,
 [out, size_is(, *queryChannelInfoSize), range(0, MAX_RPC_QUERY_CHANNEL_SIZE)]
 EvtRpcQueryChannelInfo** queryChannelInfo,
 [out] RpcInfo* error
);

The bookmark XML for the example could be as follows:

 <?xml version="1.0" encoding="UTF-8"?>
 <BookmarkList>
 <Bookmark Channel="Application" RecordId="10"/>
 </BookmarkList>

3. On the server, the EvtRpcRegisterRemoteSubscription method creates the subscription object
and control object. The subscription object contains one channel called "Application". Because the
client requires the events after the bookmark, the server parses the bookmark XML and finds that
the client requests the events whose record ID is larger than 10. Thus it sets its cursor value for

the Application channel to 11. Then the server notes that the flag contains a pull mode so it sets
its push mode flag to be false. For information on the control object content, see section 4.1.

After EvtRpcRegisterRemoteSubscription creates the two objects, the server casts them to the
subscription context handle and the operation control handle.

4. After the client gets the subscription context handle, it calls the
EvtRpcRemoteSubscriptionNext method (section 3.1.4.10) to fetch the events in a
synchronized way.

 error_status_t EvtRpcRemoteSubscriptionNext(
 [in, context_handle] PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION handle = {the handle from step 2},
 [in] DWORD numRequestedRecords = 5,
 [in] DWORD timeOut = 1000,
 [in] DWORD flags = 0,
 [out] DWORD* numActualRecords,
 [out, size_is(,*numActualRecords), range(0, MAX_RPC_RECORD_COUNT)] DWORD**
eventDataIndices,

 [out, size_is(,*numActualRecords), range(0, MAX_RPC_RECORD_COUNT)] DWORD** eventDataSizes,
 [out] DWORD* resultBufferSize,
 [out, size_is(,*resultBufferSize), range(0, MAX_RPC_BATCH_SIZE)]
 BYTE** resultBuffer
);

Unlike the EvtRpcRemoteSubscriptionNextAsync method, this method will block the client if

there are no events that match the criteria of the client's subscriber requirement. In this example,
the timeOut value is 1000 (which means one second), so the client waits for one second if there
are no events after the 10th record in the Application channel. Next, suppose there are events

after the 10th record, the server then fills the result buffer with the available events (but not
exceeding 5 because the client only demands 5 events), and then completes the call.

5. For information on how the events in the result buffer are interpreted by the client, see section
4.1.

130 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4.8 BinXml Example Using Templates

This example demonstrates the use of BinXml templates. There is one outer template <Event> and
one inner template <MyEvent>. The outer template has substitutions (shown in bold) under the

<System> element. However, it also has a BinXml substitution within the <UserData> element. In
other words, the BinXml that describes <MyEvent> is contained as a value for the outer <Event>
template instance. The BinXml for <MyEvent> happens to also be another template instance
(although it could have been a normal fragment). The MyEvent template substitutions are also shown
in bold.

Also, the outer template substitutions are all optional, and some values of that template are NULL;
therefore, some of the BinXml elements or attributes are not present in the following XML text.

 <Event xmlns=
 "'http: //schemas.microsoft.com/win/2004/08/events/event'">
 <System>
 <Provider Name="'Microsoft-Windows-Wevttest'"
 Guid="'{03f41308-fa7b-4fb3-98b8-c2ed0a40d1ef}'"/>
 <EventID>100</EventID>
 <Version>0</Version>
 <Level>1</Level>
 <Task>100</Task>
 <Opcode>1</Opcode>
 <Keywords>0x4000000000e00000</Keywords>
 <TimeCreated SystemTime="'2006-0614T21:40:16.312Z'"/>
 <EventRecordID>5</EventRecordID>
 <Correlation/>
 <Execution ProcessID="'2088'" ThreadID="'2464'"/>
 <Channel>Microsoft-Windows-Wevttest/Operational/Wevttest</Channel>
 <Computer>michaelm4-lh.ntdev.corp.microsoft.com</Computer>
 <Security
 UserID="'S-1-5-21-397955417-626881126-188441444-2967838'"/>
 </System>
 <UserData>
 <MyEvent xmlns:autons2=
 "'http: //schemas.microsoft.com/win/2004/08/events'"
 xmlns='myNs'><Property>1</Property>
 <Property2>2</Property2>
 </MyEvent>
 </UserData>
 </Event>

Start of <Event> TemplateInstance ...

 00 : 0f 01 01 00 0c 00 4a 46-4c cc 16 dc 46 8e 80 a2
 10 : dc 45 ea 94 9c bd ef 04-00 00 0f 01 01 00 41 ff <Event>
 20 : ff e3 04 00 00 ba 0c 05-00 45 00 76 00 65 00 6e
 30 : 00 74 00 00 00 7f 00 00-00 06 bc 0f 05 00 78 00
 40 : 6d 00 6c 00 6e 00 73 00-00 00 05 01 35 00 68 00
 50 : 74 00 74 00 70 00 3a 00-2f 00 2f 00 73 00 63 00
 60 : 68 00 65 00 6d 00 61 00-73 00 2e 00 6d 00 69 00
 70 : 63 00 72 00 6f 00 73 00-6f 00 66 00 74 00 2e 00
 80 : 63 00 6f 00 6d 00 2f 00-77 00 69 00 6e 00 2f 00
 90 : 32 00 30 00 30 00 34 00-2f 00 30 00 38 00 2f 00
 A0 : 65 00 76 00 65 00 6e 00-74 00 73 00 2f 00 65 00
 B0 : 76 00 65 00 6e 00 74 00-02 01 ff ff 24 04 00 00 <System>
 C0 : 6f 54 06 00 53 00 79 00-73 00 74 00 65 00 6d 00
 D0 : 00 00 02 41 ff ff c1 00-00 00 f1 7b 08 00 50 00 <Provider>
 E0 : 72 00 6f 00 76 00 69 00-64 00 65 00 72 00 00 00
 F0 : a6 00 00 00 46 4b 95 04-00 4e 00 61 00 6d 00 65
 100: 00 00 00 05 01 1a 00 4d-00 69 00 63 00 72 00 6f
 110: 00 73 00 6f 00 66 00 74-00 2d 00 57 00 69 00 6e
 120: 00 64 00 6f 00 77 00 73-00 2d 00 57 00 65 00 76
 130: 00 74 00 74 00 65 00 73-00 74 00 06 29 15 04 00

131 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 140: 47 00 75 00 69 00 64 00-00 00 05 01 26 00 7b 00
 150: 30 00 33 00 66 00 34 00-31 00 33 00 30 00 38 00
 160: 2d 00 66 00 61 00 37 00-62 00 2d 00 34 00 66 00
 170: 62 00 33 00 2d 00 39 00-38 00 62 00 38 00 2d 00
 180: 63 00 32 00 65 00 64 00-30 00 61 00 34 00 30 00
 190: 64 00 31 00 65 00 66 00-7d 00 03 41 03 00 3d 00
 <Provider/> <EventID>
 1A0: 00 00 f5 61 07 00 45 00-76 00 65 00 6e 00 74 00
 1B0: 49 00 44 00 00 00 1f 00-00 00 06 29 da 0a 00 51
 1C0: 00 75 00 61 00 6c 00 69-00 66 00 69 00 65 00 72
 1D0: 00 73 00 00 00 0e 04 00-06 02 0e 03 00 06 04 01 </EventID>
 1E0: 0b 00 1a 00 00 00 18 09-07 00 56 00 65 00 72 00
 1F0: 73 00 69 00 6f 00 6e 00-00 00 02 0e 0b 00 04 04
 200: 01 00 00 16 00 00 00 64-ce 05 00 4c 00 65 00 76
 210: 00 65 00 6c 00 00 00 02-0e 00 00 04 04 01 02 00
 220: 14 00 00 00 45 7b 04 00-54 00 61 00 73 00 6b 00
 230: 00 00 02 0e 02 00 06 04-01 01 00 18 00 00 00 ae
 240: 1e 06 00 4f 00 70 00 63-00 6f 00 64 00 65 00 00
 250: 00 02 0e 01 00 04 04 01-05 00 1c 00 00 00 6a cf
 260: 08 00 4b 00 65 00 79 00-77 00 6f 00 72 00 64 00
 270: 73 00 00 00 02 0e 05 00-15 04 41 ff ff 40 00 00
 280: 00 3b 8e 0b 00 54 00 69-00 6d 00 65 00 43 00 72
 290: 00 65 00 61 00 74 00 65-00 64 00 00 00 1f 00 00
 2A0: 00 06 3c 7b 0a 00 53 00-79 00 73 00 74 00 65 00
 2B0: 6d 00 54 00 69 00 6d 00-65 00 00 00 0e 06 00 11
 2C0: 03 01 0a 00 26 00 00 00-46 03 0d 00 45 00 76 00
 2D0: 65 00 6e 00 74 00 52 00-65 00 63 00 6f 00 72 00
 2E0: 64 00 49 00 44 00 00 00-02 0e 0a 00 0a 04 41 ff
 2F0: ff 6d 00 00 00 a2 f2 0b-00 43 00 6f 00 72 00 72
 300: 00 65 00 6c 00 61 00 74-00 69 00 6f 00 6e 00 00
 310: 00 4c 00 00 00 46 0a f1-0a 00 41 00 63 00 74 00
 320: 69 00 76 00 69 00 74 00-79 00 49 00 44 00 00 00
 330: 0e 07 00 0f 06 35 c5 11-00 52 00 65 00 6c 00 61
 340: 00 74 00 65 00 64 00 41-00 63 00 74 00 69 00 76
 350: 00 69 00 74 00 79 00 49-00 44 00 00 00 0e 12 00
 360: 0f 03 41 ff ff 55 00 00-00 b8 b5 09 00 45 00 78
 370: 00 65 00 63 00 75 00 74-00 69 00 6f 00 6e 00 00
 380: 00 38 00 00 00 46 0a d7-09 00 50 00 72 00 6f 00
 390: 63 00 65 00 73 00 73 00-49 00 44 00 00 00 0e 08
 3A0: 00 08 06 85 39 08 00 54-00 68 00 72 00 65 00 61
 3B0: 00 64 00 49 00 44 00 00-00 0e 09 00 08 03 01 ff
 3C0: ff 78 00 00 00 83 61 07-00 43 00 68 00 61 00 6e
 3D0: 00 6e 00 65 00 6c 00 00-00 02 05 01 2f 00 4d 00
 3E0: 69 00 63 00 72 00 6f 00-73 00 6f 00 66 00 74 00
 3F0: 2d 00 57 00 69 00 6e 00-64 00 6f 00 77 00 73 00
 400: 2d 00 57 00 65 00 76 00-74 00 74 00 65 00 73 00
 410: 74 00 2f 00 4f 00 70 00-65 00 72 00 61 00 74 00
 420: 69 00 6f 00 6e 00 61 00-6c 00 2f 00 57 00 65 00
 430: 76 00 74 00 74 00 65 00-73 00 74 00 04 01 ff ff
 440: 66 00 00 00 3b 6e 08 00-43 00 6f 00 6d 00 70 00
 450: 75 00 74 00 65 00 72 00-00 00 02 05 01 25 00 6d
 460: 00 69 00 63 00 68 00 61-00 65 00 6c 00 6d 00 34
 470: 00 2d 00 6c 00 68 00 2e-00 6e 00 74 00 64 00 65
 480: 00 76 00 2e 00 63 00 6f-00 72 00 70 00 2e 00 6d
 490: 00 69 00 63 00 72 00 6f-00 73 00 6f 00 66 00 74
 4A0: 00 2e 00 63 00 6f 00 6d-00 04 41 ff ff 32 00 00
 4B0: 00 a0 2e 08 00 53 00 65-00 63 00 75 00 72 00 69
 4C0: 00 74 00 79 00 00 00 17-00 00 00 06 66 4c 06 00
 4D0: 55 00 73 00 65 00 72 00-49 00 44 00 00 00 0e 0c </System>
 4E0: 00 13 03 04 01 13 00 1c-00 00 00 35 44 08 00 55 <UserData>
 4F0: 00 73 00 65 00 72 00 44-00 61 00 74 00 61 00 00
 500: 00 02 0e 13 00 21 04 04-00 </UserData> </Event> EOF

Start of <Event> TemplateInstanceData ValueSpec ...

 14 00 00 00 01 00 04

132 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 510: 00 01 00 04 00 02 00 06-00 02 00 06 00 00 00 00
 520: 00 08 00 15 00 08 00 11-00 00 00 00 00 04 00 08
 530: 00 04 00 08 00 08 00 0a-00 01 00 04 00 1c 00 13
 540: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
 550: 00 00 00 00 00 00 00 00-00 83 01 21 00

Start of <Event> TemplateInstanceData Values ...

 01 01 64
 560: 00 64 00 00 00 e0 00 00-00 00 40 9c f4 d6 36 fb
 570: 8f c6 01 28 08 00 00 a0-09 00 00 06 00 00 00 00
 580: 00 00 00 00 01 05 00 00-00 00 00 05 15 00 00 00
 590: 59 51 b8 17 66 72 5d 25-64 63 3b 0b 1e 49 2d 00

Start of <MyEvent> inner TemplateInstance ...

 5A0: 0f 01 01 00 0c 00 a7 65-05 7a 02 84 f0 a1 67 ab
 5B0: 96 df 09 0d 39 a7 54 01-00 00 41 ff ff 04 01 00 <MyEvent>
 5C0: 00 4e c0 07 00 4d 00 79-00 45 00 76 00 65 00 6e
 5D0: 00 74 00 00 00 a2 00 00-00 46 4d 77 0e 00 78 00
 5E0: 6d 00 6c 00 6e 00 73 00-3a 00 61 00 75 00 74 00
 5F0: 6f 00 2d 00 6e 00 73 00-32 00 00 00 05 01 2f 00
 600: 68 00 74 00 74 00 70 00-3a 00 2f 00 2f 00 73 00
 610: 63 00 68 00 65 00 6d 00-61 00 73 00 2e 00 6d 00
 620: 69 00 63 00 72 00 6f 00-73 00 6f 00 66 00 74 00
 630: 2e 00 63 00 6f 00 6d 00-2f 00 77 00 69 00 6e 00
 640: 2f 00 32 00 30 00 30 00-34 00 2f 00 30 00 38 00
 650: 2f 00 65 00 76 00 65 00-6e 00 74 00 73 00 06 bc
 660: 0f 05 00 78 00 6d 00 6c-00 6e 00 73 00 00 00 05
 670: 01 04 00 6d 00 79 00 4e-00 73 00 02 01 ff ff 1c <Property>
 680: 00 00 00 b5 db 08 00 50-00 72 00 6f 00 70 00 65
 690: 00 72 00 74 00 79 00 00-00 02 0d 00 00 08 04 01
 </Property> <Property2>
 6A0: ff ff 1e 00 00 00 bd 11-09 00 50 00 72 00 6f 00
 6B0: 70 00 65 00 72 00 74 00-79 00 32 00 00 00 02 0d
 6C0: 01 00 08 04 04 00 </Property2> </MyEvent> EOF

Waste bytes that could occur after template definition EOF but included in TemplateDefLength ...

 00 00-00 00 08 08 00 00 00 00
 6D0: 00 00 00 00 00 00 08 07-00 00 00 00 00 00 08 08
 6E0: 00 00 00 00 00 00 00 00-00 00 18 07 00 00 10 00
 6F0: 00 00 50 00 72 00 6f 00-70 00 31 00 00 00 10 00
 700: 00 00 50 00 72 00 6f 00-70 00 32 00 00 00

Start of <MyEvent> inner TemplateInstanceData ...

 02 00
 710: 00 00 04 00 08 00 04 00-08 00 01 00 00 00 02 00
 720: 00 00 00 00

133 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Token
offset Token type Comments on encoding

0x00 0x0F -
FragmentHeaderToken

Version1.1, Flags = 0. This is at the "document" level, and it is likely
that an EOFToken will occur at the end.

0x04 0x0C -
TemplateInstanceToken

Outer template instance <Event>. The TempleDefByteLength is
0x4EF and the template definition starts at 0x1A. This means that
the end of the template definition will be at 0x1A + 0x4EF = 0x509
(which is the start of the TemplateInstanceData).

The ValueSpec of the TemplateInstanceData specifies that there are
0x14 values with a total length of 0x1C6 bytes. This length is
calculated by adding up all the lengths of the values specified in the
value spec entries.

The actual raw values of the template instance data start just after
the value spec entries (at offset 0x55D).

Offset 0x55D + 0x1C6 bytes leave us at the EOF token for the outer
fragment containing the TemplateInstance.

0x1A 0x0F -
FragmentHeaderToken

Version for template definition BinXml. This could be different from
the template instance version.

0x1E 0x41 -
OpenStartElementToken
(more Bit)

<Event>. Note that because this is a template definition, the
dependency ID is included, but 0xFFFF indicates no dependency. This
value actually consists of two parts. The 0x01 indicates that it is an
OpenStartElementToken, and the 0x40 is the "more" bit, which
indicates that there are additional attributes.

0xB9 0x1 -
OpenStartElementToken

<System>. This has a dependency of 0xFFFF.

0x19B 0x41 -
OpenStartElementToken
(more Bit)

<EventID>. This does have a dependency (of 0x03). This means that
if the template instance value at index 3 (the fourth value), in the
ValueSpec, is of NULL type, then this element is to be omitted from
the XML text. In this case, the type is non-NULL and so the element
is included in the XML text representation. This value actually
consists of two parts. The 0x01 indicates that it is an
OpenStartElementToken. The 0x40 is the "more" bit, which indicates
that there are additional attributes.

0x1BA 0x06 - AttributeToken Attribute called EventIDQualifiers. Note that it does not appear in the
XML text due to the OptionalSubstitutionToken specified next.

0x1D5 0x0E -
OptionalSubstitutionToken

Optional substitution of the value specified at index 4 in the value
spec. Looking forward into the TemplateInstanceData shows that this
value is of NULL type, and so the enclosing attribute is not included
in the XML text representation.

0x1D9 0x02 -
CloseStartElementToken

Close <EventID> start tag.

0x1DA 0x0E -

OptionalSubstitutionToken

OptionalSubstitution of the value specified at index 3 in the value

spec. The value is 100 (in decimal).

0x4E4 0x01 -
OpenStartElementToken

<UserData> start tag. It specifies that it is dependent on the value
at index 0x13 in the value spec. This value is the BinXml for the
inner template <MyEvent>. Because it is present, <UserData> is
included in the XML representation.

0x502 0x0E -
OptionalSubstitutionToken

This is the substitution for the BinXml, and its expected type is
BinXmlType. The index into the value spec is 0x13.

0x506 0x04 - EndElementToken End <UserData>.

134 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Token
offset Token type Comments on encoding

0x507 0x04 - EndElementToken End <Event>.

0x508 0x00 - EOFToken EOF for the outer template definition.

0x5A0 0x0F -
FragmentHeaderToken

This is actually the last value that is specified in the outer
TemplateInstance; however, because this value is itself BinXml, it
starts with an (optional) header token and ends with an EOFToken.

0x5A4 0x0C -
TemplateInstanceToken

For the inner template instance <MyEvent>, the
TempleDefByteLength is 0x154 and the template definition itself
starts at 0x5BA.

This means that end of template definition will be at offset 0x5BA +
0x154 = 0x70E (which is the offset of the start of the
TemplateInstanceData).

The ValueSpec of the TemplateInstanceData specifies that there are
2 values with a total length of 8 bytes. This length is calculated by
adding up all the lengths of the values specified in the value spec
entries.

The actual raw values of the template instance data start just after
the value spec entries (at offset 0x71A).

Adding the offset 0x71A to 0x8 bytes leaves us at the EOFToken for
the inner fragment containing the TemplateInstance.

0x722 0x00 - EOFToken EOF for the inner TemplateInstance.

0x723 0x00 - EOFToken EOF for the outer TemplateInstance.

4.9 Render Localized Event Message Example

In this example, the client asks to get the event description from a known publisher. This involves the
following steps:

1. The client registers with RPC to obtain an RPC binding handle to the service based on the endpoint
information specified in section 2.1. For information on how to get the RPC binding handle, see
[MSDN-BNDHNDLS].

2. The client calls the EvtRpcGetPublisherMetadata method (section 3.1.4.25) to open the
publisher metadata context handle.

 error_status_t EvtRpcGetPublisherMetadata(
 [in] RPC_BINDING_HANDLE binding = {binding handle from step 1.},
 [in, unique, range(0, MAX_RPC_PUBLISHER_ID_LENGTH), string]
 LPCWSTR publisherId = "Microsoft-Windows-TestProvider",
 [in, unique, range(0, MAX_RPC_FILE_PATH_LENGTH), string] LPCWSTR logFilePath = NULL,
 [in] LCID locale = 1033,
 [in] DWORD flags = 0,
 [out] EvtRpcVariantList* pubMetadataProps,
 [out, context_handle] PCONTEXT_HANDLE_PUBLISHER_METADATA* pubMetadata
);

3. In the response to the client call, the server finds the registered publisher "Microsoft-Windows-
TestProvider" and opens its resource file. The server then creates a publisher metadata object,
which contains the publisher name "Microsoft-Windows-TestProvider", the resource file location

135 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

such as "c:\windows\system32\TestProvider.dll", the opened file handle, and the locale value
1033. The server then casts the object into the publisher metadata context handle.

At the same time, the server reads the publisher resource file and extracts some of the publisher
metadata and saves them in the pubMetadataProps parameter. Suppose this test publisher

declares two channels: "Microsoft-Windows-TestProvider/Operational" and "Microsoft-Windows-
TestProvider/Admin". The publisher message file and parameter file are the same file as the
resource file (a publisher usually uses the same file for all the resource, message, and parameter
files). Then the data in pubMetadataProps will look as follows:

 EvtCarTypeGuid {836e133c-493c-4885-a780-4f0c61430fb9}
 EvtVarTypeString c:\windows\system32\TestProvider.dll
 EvtVarTypeString c:\windows\system32\TestProvider.dll
 EvtVarTypeString c:\windows\system32\Testrovider.dll

 EvtTypeStringArray
 2 (array count)
 Microsoft-Windows-TestProvider/Operational
 Microsoft-Windows-TestProvider/Admin

 EvtVarTypeUInt32Array
 2 (array count)
 0
 1

 EvtVarTypeUInt32Array
 2 (array count)
 1
 2

 EvtVarTypeUInt32Array
 2 (array count)
 0
 0

 EvtVarTypeUInt32Array
 2 (array count)
 1001 (message Id for the channel)
 1002 (message Id for the channel)

4. After the client gets the publisher metadata context handle, it calls the EvtRpcMessageRender
method (section 3.1.4.31) to render the desired event description.

 error_status_t EvtRpcMessageRender(
 [in, context_handle] PCONTEXT_HANDLE_PUBLISHER_METADATA pubCfgObj = {handlefrom step 2},
 [in, range(1, MAX_RPC_EVENT_ID_SIZE)] DWORD sizeEventId = sizeof(EVENT_DESCRIPTOR),
 [in, size_is(sizeEventId)] BYTE* eventId = {pointer to the event descriptor for an event},
 [in] DWORD messageId = 0,
 [in] EvtRpcVariantList* values = {pointer to values which will be used for substituion},
 [in] DWORD flags = 0x00000001 ({Format the event),
 [in] DWORD maxSizeString = 1024,
 [out] DWORD* actualSizeString,
 [out] DWORD* neededSizeString,
 [out, size_is(,*actualSizeString), range(0, MAX_RPC_RENDERED_STRING_SIZE)] BYTE** string,
 [out] RpcInfo* error
);

For the eventId parameter in this example, the values can look as follows:

 0x0010 --- EventId
 0x02 --- Level

136 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 0x00 --- Channel
 0x20 --- OpCode
 0x1000 --- Task
 0x8000000000000000 --- Keyword

5. In response to the client call, the server finds the event according to the passing event descriptor
and reads out the raw event description strings from the provider publisher resource file. Because
in step 2, the client requests the locale value as 1033, the server opens the English publisher
resource file. Suppose the raw event description is "The system has been restarted after applying
the updates of %1". The server then reads the data from the values provided by the client
(assume it is "Adobe Flash") and replaces the %1 with the value it reads out. Thus, the returned

string is:

 "The system has been restarted after applying the updates of Adobe Flash".

6. Later, if the client needs to get the localized message for the event level, it calls the same

EvtRpcMessageRender method (section 3.1.4.31) with the same parameters except the flags
value is 0x00000002.

7. In response to the client call, the server finds the event according to the passing event descriptor
and reads out the level value. The level is 2, which means it falls into the system defined

category. Suppose the system defined string for a level with the value 2 is "Error" for English.
Thus, the resulting string is "Error".

8. When the client is done, it closes the publisher metadata handle by calling EvtRpcClose (section
3.1.4.33). In this call, the server frees all resources related to the publisher and closes the
resource file.

 error_status_t EvtRpcClose(
 [in, out, context_handle] void** handle = {publisher metadata handle}
);

4.10 Get Publisher List Example

In this example, the client obtains a list of registered publishers on the server. This involves the
following steps.

1. The client registers with RPC to obtain an RPC binding handle to the service based on the endpoint
information specified in section 2.1. For information on how to get the RPC binding handle, see

[MSDN-BNDHNDLS].

2. The client calls the EvtRpcGetPublisherList (section 3.1.4.23) method to receive the results.

 error_status_t EvtRpcGetPublisherList(
 [in] RPC_BINDING_HANDLE binding = {handle from step 1},
 [in] DWORD flags = 0,
 [out] DWORD* numPublisherIds,
 [out, size_is(,*numPublisherIds), range(0, MAX_RPC_PUBLISHER_COUNT), string]
 LPWSTR** publisherIds
);

3. The server then goes to the publisher table and enumerates all the publisher names from the table
to fill the publisherIds parameter as the result. At the same time, the numPublisherIds parameter
is also set to the number of publishers in the server. Assuming the server has four publishers, a
sample result for publisherIds looks as follows:

137 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

"TestPublisher""Microsoft-Windows-EventLog""NTFSProvider""Microsoft-Windows-Firewall".

The numPublisherIds is set to 4.

4.11 Get Channel List Example

In this example, the client tries to obtain a list of registered channels on the server.

This involves the following steps:

1. The client registers with RPC to obtain an RPC binding handle to the service based on the endpoint
information specified in section 2.1. For information on how to get the RPC binding handle, see

[MSDN-BNDHNDLS].

2. The client calls the EvtRpcGetChannelList method (section 3.1.4.20) to receive the results.

 error_status_t EvtRpcGetChannelList(
 [in] RPC_BINDING_HANDLE binding = {handle from step 1},
 [in] DWORD flags = 0,
 [out] DWORD* numChannelPaths,
 [out, size_is(,*numChannelPaths), range(0, MAX_RPC_CHANNEL_COUNT), string]
 LPWSTR** channelPaths
);

3. The server then goes to the channel table and enumerates all the channel names from the table to

fill the channelPaths parameter as the result. At the same time, the numPublisherIds parameter is
also set to the number of publishers in the server. Assuming that the server has 5 channels, a
sample resulting value in channelPaths might looks like the following:

 "Application""System""Microsoft-Windows-EventLog/Admin""Microsoft-Windows-
NTFS/operational""Setup".

In this case, the numChannelPaths value is 5.

4.12 Get Event Metadata Example

In this example, the client retrieves the event metadata information from a known publisher on the
server.

This involves the following steps:

1. The client registers with RPS to obtain an RPC binding handle to the service based on the endpoint
information specified in section 2.1. For information about how to obtain an RPC binding handle,

see [MSDN-BNDHNDLS].

2. The client calls the EvtRpcGetPublisherMetadata method (section 3.1.4.25) to obtain a
publisher metadata context handler.

 error_status_t EvtRpcGetPublisherMetadata(
 [in] RPC_BINDING_HANDLE binding = {handle from step 1},
 [in, unique, range(0, MAX_RPC_PUBLISHER_ID_LENGTH), string]
 LPCWSTR publisherId = L"Microsoft-Windows-SamplePublisher",
 [in, unique, range(0, MAX_RPC_FILE_PATH_LENGTH), string]
 LPCWSTR logFilePath = NULL,
 [in] LCID locale = 1033,
 [in] DWORD flags = 0,
 [out] EvtRpcVariantList* pubMetadataProps,
 [out, context_handle] PCONTEXT_HANDLE_PUBLISHER_METADATA* pubMetadata
);

138 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3. The server then opens the publisher resource file for the publisher whose name is "Microsoft-
Windows-SamplePublisher" and creates a publisher metadata object. In this example, the
publisher's resource file is %SystemDrive%\windows\SamplePublisher.dll; thus, the server sets
the values for the data fields in the publisher metadata object as follows:

HandleType: 4. Indicates the publisher metadata type.

ResourceFile: %SystemDrive%\windows\SamplePublisher.dll.

MessageFile: %SystemDrive%\windows\SamplePublisher.dll.

ParameterFile: %SystemDrive\windows\SamplePublisher.dll.

Locale: 1033.

ResourceFileHandle: 0x00000AF0. Indicates the handle for the resource file.

The server also fills the pubMetadataProps parameter with an EvtRpcVariantList containing 29
EvtRpcVariants as specified in section 3.1.4.25. The server obtains the data for these
EvtRpcVariants from two sources, its publisher table and the publisher resource file. The server
locates the publisher entry in its publisher table based on the specified publisherId parameter from

the client. The server reads the publisherGUID, ResourceFilePath, ParameterFilePath,
MessageFilePath, ChannelReferenceIndex, ChannelReferenceID, and ChannelReferenceFlags
values directly from the publisher entry in the publisher table. The server locates the channel
information in the publisher resource file in order to obtain the channel name strings and channel
message IDs, which correspond to the ChannelReferencePath and ChannelReferenceMessageID
entries of the pubMetadataProps list. In this example, the data is as follows:

 [0]
 15 ---- EvtVarTypeGuid
 {59206ea5-6655-4ffa-8426-a2ce213b26f5} ---- The publisher GUID
 [1]
 1 ---- EvtVarTypeString
 "%SystemDrive%\windows\SamplePublisher.dll"
 [2]
 1 ---- EvtVarTypeString
 "%SystemDrive%\windows\SamplePublisher.dll"
 [3]
 1 ---- EvtVarTypeString
 "%SystemDrive%\windows\SamplePublisher.dll"
 [4]
 0 ---- EvtVarTypeNull
 [5]
 0 ---- EvtVarTypeNull
 [6]
 0 ---- EvtVarTypeNull
 [7]
 5 ---- ArrayCount
 1 ---- EvtVarTypeString
 "Application"
 1 ---- EvtVarTypeString
 "System"
 1 ---- EvtVarTypeString
 "Microsoft-Windows-EventLog/Admin"
 1 ---- EvtVarTypeString
 "Microsoft-Windows-NTFS/operational"
 1 ---- EvtVarTypeString
 "Setup"
 [8]
 5 ---- ArrayCount
 8 ---- EvtVarTypeUint32

139 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 10 ---- ChannelReferenceIndex
 8 ---- EvtVarTypeUint32
 10 ---- ChannelReferenceIndex
 8 ---- EvtVarTypeUint32
 10 ---- ChannelReferenceIndex
 8 ---- EvtVarTypeUint32
 10 ---- ChannelReferenceIndex
 8 ---- EvtVarTypeUint32
 10 ---- ChannelReferenceIndex
 [9]
 5 ---- ArrayCount
 8 ---- EvtVarTypeUint32
 0 ---- ChannelreferenceID
 8 ---- EvtVarTypeUint32
 1 ---- ChannelreferenceID
 8 ---- EvtVarTypeUint32
 2 ---- ChannelreferenceID
 8 ---- EvtVarTypeUint32
 3 ---- ChannelreferenceID
 8 ---- EvtVarTypeUint32
 4 ---- ChannelreferenceID
 [10]
 5 ---- ArrayCount
 8 ---- EvtVarTypeUint32
 0 ---- ChannelreferenceFlags
 8 ---- EvtVarTypeUint32
 0 ---- ChannelreferenceFlags
 8 ---- EvtVarTypeUint32
 0 ---- ChannelreferenceFlags
 8 ---- EvtVarTypeUint32
 0 ---- ChannelreferenceFlags
 8 ---- EvtVarTypeUint32
 0 ---- ChannelreferenceFlags
 [11]
 5 ---- ArrayCount
 8 ---- EvtVarTypeUint32
 10000 ---- ChannelreferenceMessageID
 8 ---- EvtVarTypeUint32
 10001 ---- ChannelreferenceMessageID
 8 ---- EvtVarTypeUint32
 10002 ---- ChannelreferenceMessageID
 8 ---- EvtVarTypeUint32
 10003 ---- ChannelreferenceMessageID
 8 ---- EvtVarTypeUint32
 10004 ---- ChannelreferenceMessageID
 [12]
 0 ---- EvtVarTypeNull
 [13]
 0 ---- EvtVarTypeNull
 [14]
 0 ---- EvtVarTypeNull
 [...] ---- Entries 15 through 27, which are also EvtVarTypeNull, have been omitted
 [28]
 0 ---- EvtVarTypeNull

4. The server assigns the pointer of the publisher metadata object to the output parameter

pubMetadata as the publisher metadata context handle.

5. After obtaining the publisher metadata context handle, the client calls the

EvtRpcGetEventMetadataEnum method (section 3.1.4.27) to open the enumeration for the
publisher's event metadata.

 error_status_t EvtRpcGetEventMetadataEnum(
 [in, context_handle] PCONTEXT_HANDLE_PUBLISHER_METADATA pubMetadata = {handle from step
2},

 [in] DWORD flags = 0,

140 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in, unique, range(0, MAX_RPC_FILTER_LENGTH), string]
 LPCWSTR reservedForFilter = NULL,
 [out, context_handle] PCONTEXT_HANDLE_EVENT_METADATA_ENUM* eventMetaDataEnum
);

6. The server reads the publisher resource file and locates the event metadata section (as specified
in section 3.1.1.14). The server then creates the event metadata object. After the server creates
the object, it sets the values of the data fields in the object as follows:

HandleType: 5. Indicates the event metadata type.

EventsMetaData: 0x001ABEC8. A pointer to the event metadata section.

Enumerator: 0

7. The server assigns the pointer of the event metadata object to the output parameter
eventMetadataEnum as the event metadata enumeration context handle.

8. After obtaining the eventMetaDataEnum context handle, the client calls the
EvtRpcGetNextEventMetadata method (section 3.1.4.28) to get the event metadata

information.

 error_status_t EvtRpcGetNextEventMetadata(
 [in, context_handle] PCONTEXT_HANDLE_EVENT_METADATA_ENUM eventMetaDataEnum = {handle from
step 3},

 [in] DWORD flags = 0,
 [in] DWORD numRequested = 2,
 [out] DWORD* numReturned,
 [out, size_is(,*numReturned), range(0, MAX_RPC_EVENT_METADATA_COUNT)]
 EvtRpcVariantList** eventMetadataInstances
);

In this example method call, the client requests metadata for the first two events.

9. The server reads the metadata for the first two events from the publisher's resource file and fills
the data into the eventMetadataInstances output parameter as follows:

 8 ---- The count of the EvtRpcVariant of the first EvtRpcVariant list.
 1001 ---- The EventID value.
 1 ---- The Event version.
 0 ---- The ChannelIndex value.
 16 ---- The Level value.
 10 ---- The Opcode value.
 5 ---- The Task value.
 0xFFFFFFFF ---- The keywords mask value.
 10001 ---- The MessageID value for the event description string.
 <template tid="T22">
 <data inType="win:UInt32" name="ErrorCode"/>
 <data inType="win:UnicodeString" name="Path"/>
 <UserData>
 <Error Code="%1"/>
 <ChannelPath>%2</ChannelPath>
 </UserData>
 </template> ---- The EvtVarTypeString value.

 8 ---- The count of the EvtRpcVariant of the second EvtRpcVariant list.
 1002 ---- The EventID value.
 1 ---- The Event version.
 0 ---- The ChannelIndex value.
 16 ---- The Level value.
 11 ---- The Opcode value.

141 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 6 ---- The Task value.
 0xFFFFFFFF ---- The keywords mask value.
 10002 ---- The MessageID value for the event description string.
 <template tid="T22">
 <data inType="win:UInt32" name="ErrorCode"/>
 <data inType="win:UnicodeString" name="Path"/>
 <data inType="win:UnicodeString" name="NewLogFilePath"/>
 <UserData>
 <Error Code="%1"/>
 <ChannelPath>%2</ChannelPath>
 <NewLogFilePath>%3</NewLogFilePath>
 </template> ---- The EvtVarTypeString value.

10. The client can call the EvtRpcGetNextEventMetadata method repeatedly to obtain metadata for
additional events.

11. When the client finishes, it calls the EvtRpcClose method (section 3.1.4.33) to close both the
event metadata enumeration context handle and the publisher metadata context handle.

 error_status_t EvtRpcClose(
 [in, out, context_handle] void** handle = eventMetaDataEnum
);

 error_status_t EvtRpcClose(
 [in, out, context_handle] void** handle = pubMetaData
);

4.13 Publisher Table and Channel Table Example

A publisher table is a list of publishers. The following example shows a publisher table with two
entries.

 {0063715b-eeda-4007-9429-ad526f62696e} ------------- Publisher ID
 "Microsoft-Windows-Services" ------ Publisher Name
 "%SystemRoot%\system32\services.exe" ------ Resource File
 "%SystemRoot%\system32\services.exe" ------ Message File
 "w ------ Parameter File(empty)
 Channels
 1 ---------- channel count
 0x10 --------- channel ID for the channel 1
 0 --------- channel flags for the channel 1
 0 --------- channel start index for the channel 1
 "Microsoft-Windows-Services/Operational" -------- channel name for channel 1

 {134ea407-755d-4a93-b8a6-f290cd155023} ------------- Publisher ID
 "Microsoft-Windows-HomeGroup-ControlPanel" ------ Publisher Name
 "%SystemRoot%\system32\hgcpl.dll" ------ Resource File
 "%SystemRoot%\system32\hgcpl.dll" ------ Message File
 "" ------ Parameter File(empty)
 Channels
 2 ---------- channel count
 0x10 --------- channel ID for the channel 1
 0 --------- channel flags for the channel 1
 0 --------- channel start index for the channel 1
 "Microsoft-Windows-HomeGroup-ControlPanel/operational" ---- channel name for channel
1

 0x11 --------- channel ID for the channel 2
 0 --------- channel flags for the channel 2
 0 --------- channel start index for the channel 2
 "Microsoft-Windows-HomeGroup-ControlPanel/admin" ---- channel name for channel 2

142 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

A channel table is a list of registered channels on the server. The following example shows a channel
table with one channel entry:

 ForwardedEvents ---- Name of the channel
 Enabled: 0
 Isolation: 2
 Type: 1
 OwningPublisher: {b977cf02-76f6-df84-cc1a-6a4b232322b6}
 Classic: 0
 Access: O:BAG:SYD:(A;;0x2;;;S-1-15-2-
1)(A;;0xf0007;;;SY)(A;;0x7;;;BA)(A;;0x7;;;SO)(A;;0x3;;;IU)(A;;0x3;;;SU)(A;;0x3;;;S-1-5-

3)(A;;0x3;;;S-1-5-33)(A;;0x1;;;S-1-5-32-573)

 Retention: 0
 Autobackup: 0
 MaxSize: 0x01400000
 FilePath: "%SystemRoot%\system32\winevt\logs\forwardedevents.evtx"
 Level: 0x0000FFFF
 Keywords: 0xFFFFFFFFFFFFFFFF
 ControlGuid: {00000000-0000-0000-0000-000000000000}
 BufferSize: 0x000000000000FFFF
 MinBuffers: 4
 MaxBuffers: 10
 Latency: 1
 ClockType: 0
 SIDType: 1
 FileMax: 16

Note The list of the publishers is not in the channel table entry because the channel table entry is
built at runtime using the publisher table and the channel name.

4.14 Backup and Archive the Event Log Example

In this example, the client wants to export all the events in the application channel into a backup
event log file and then bring the backup file to another computer to view the events with no publisher

registered on the destination computer. This involves the following steps:

1. The client calls the EvtRpcRegisterControllableOperation method (section 3.1.4.35) to get an
operation control handle.

 error_status_t EvtRpcRegisterControllableOperation(
 [out, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL* handle
);

2. The client calls the EvtRpcExportLog method (section 3.1.4.17) to export the events into a
backup log file.

 error_status_t EvtRpcExportLog(
 [in, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL control = {handle from step 1},
 [in, unique, range(0, MAX_RPC_CHANNEL_NAME_LENGTH), string]
 LPCWSTR channelPath = L"Application",
 [in, range(1, MAX_RPC_QUERY_LENGTH), string]
 LPCWSTR query = L"*",
 [in, range(1, MAX_RPC_FILE_PATH_LENGTH), string]
 LPCWSTR backupPath = L"c:\\backup\\application.evtx",
 [in] DWORD flags = 0x00000001 (EvtExportLogChannelPath),
 [out] RpcInfo* error
);

143 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3. In the implementation of the server, it opens the application channel and reads every event and
copies the events from the channel into the file "c:\backup\application.evtx". Now the backup

event log file contains all the events from the application channel except the localized strings for
each event's level, task, opcode, keyword, and description.

4. To get those localized strings, the client calls the EvtRpcLocalizeExportLog method (section
3.1.4.18) to save the localized strings in a separate file in a subdirectory of the directory where
the backup file is located.

 error_status_t EvtRpcLocalizeExportLog(
 [in, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL control = {handle from step 1},
 [in, range(1, MAX_RPC_FILE_PATH_LENGTH), string]
 LPCWSTR logFilePath = L"c:\\backup\\application.evtx",
 [in] LCID locale = 1033,
 [in] DWORD flags = 0,
 [out] RpcInfo* error
);

After the server returns, there file is created on the server under with the name
"c:\backup\LocalMedadata\Application_1033.MTA". The file contains all the localized English strings for

all events.

144 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

5 Security

5.1 Security Considerations for Implementers

Implementers are required to enforce the read/write permissions, as specified in section 3.1.4.21, to
prevent unauthorized access to event logs.

Servers authenticate the caller and verify that the caller has proper access before returning a handle.

When the handle is subsequently used, the server verifies that the client created the handle, that it
was created by a method of this interface, and that the handle is appropriate for the operation.

5.2 Index of Security Parameters

 Security parameter Section

Authentication service Transport (section 2.1)

145 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided as follows, where "ms-dtyp.idl" is the IDL found in
[MS-DTYP] Appendix A. Please note that the binding handle is commented out for each method with
the binding handle as the first parameter because that parameter is automatically added by the IDL
compiler to the method signature in the resulting header (.h) file.

 import "ms-dtyp.idl";

 const int MAX_PAYLOAD = 2 * 1024 * 1024;
 const int MAX_RPC_QUERY_LENGTH = MAX_PAYLOAD / sizeof(WCHAR);
 const int MAX_RPC_CHANNEL_NAME_LENGTH = 512;
 const int MAX_RPC_QUERY_CHANNEL_SIZE = 512;
 const int MAX_RPC_EVENT_ID_SIZE = 256;
 const int MAX_RPC_FILE_PATH_LENGTH = 32768;
 const int MAX_RPC_CHANNEL_PATH_LENGTH = 32768;
 const int MAX_RPC_BOOKMARK_LENGTH = MAX_PAYLOAD / sizeof(WCHAR);
 const int MAX_RPC_PUBLISHER_ID_LENGTH = 2048;
 const int MAX_RPC_PROPERTY_BUFFER_SIZE = MAX_PAYLOAD;
 const int MAX_RPC_FILTER_LENGTH = MAX_RPC_QUERY_LENGTH;
 const int MAX_RPC_RECORD_COUNT = 1024;
 const int MAX_RPC_EVENT_SIZE = MAX_PAYLOAD;
 const int MAX_RPC_BATCH_SIZE = MAX_PAYLOAD;
 const int MAX_RPC_RENDERED_STRING_SIZE = MAX_PAYLOAD;
 const int MAX_RPC_CHANNEL_COUNT = 8192;
 const int MAX_RPC_PUBLISHER_COUNT = 8192;
 const int MAX_RPC_EVENT_METADATA_COUNT = 256;
 const int MAX_RPC_VARIANT_LIST_COUNT = 256;
 const int MAX_RPC_BOOL_ARRAY_COUNT = MAX_PAYLOAD / sizeof(BOOL);
 const int MAX_RPC_UINT32_ARRAY_COUNT = MAX_PAYLOAD / sizeof(UINT32);
 const int MAX_RPC_UINT64_ARRAY_COUNT = MAX_PAYLOAD / sizeof(UINT64);
 const int MAX_RPC_STRING_ARRAY_COUNT = MAX_PAYLOAD / 512;
 const int MAX_RPC_GUID_ARRAY_COUNT = MAX_PAYLOAD / sizeof(GUID);
 const int MAX_RPC_STRING_LENGTH = MAX_PAYLOAD / sizeof(WCHAR);

 [
 uuid (f6beaff7-1e19-4fbb-9f8f-b89e2018337c),
 version(1.0),
 pointer_default(unique)
]
 interface IEventService
 {
 typedef [context_handle] void* PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION;
 typedef [context_handle] void* PCONTEXT_HANDLE_LOG_QUERY;
 typedef [context_handle] void* PCONTEXT_HANDLE_LOG_HANDLE;
 typedef [context_handle] void* PCONTEXT_HANDLE_OPERATION_CONTROL;
 typedef [context_handle] void* PCONTEXT_HANDLE_PUBLISHER_METADATA;
 typedef [context_handle] void* PCONTEXT_HANDLE_EVENT_METADATA_ENUM;

 typedef struct tag_RpcInfo
 {
 DWORD m_error,
 m_subErr,
 m_subErrParam;
 } RpcInfo;

 typedef struct _BooleanArray
 {
 [range(0, MAX_RPC_BOOL_ARRAY_COUNT)] DWORD count;
 [size_is(count)] boolean* ptr;
 } BooleanArray;

 typedef struct _UInt32Array
 {

146 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [range(0, MAX_RPC_UINT32_ARRAY_COUNT)] DWORD count;
 [size_is(count)] DWORD* ptr;
 } UInt32Array;

 typedef struct _UInt64Array
 {
 [range(0, MAX_RPC_UINT64_ARRAY_COUNT)] DWORD count;
 [size_is(count)] DWORD64* ptr;
 } UInt64Array;

 typedef struct _StringArray
 {
 [range(0, MAX_RPC_STRING_ARRAY_COUNT)] DWORD count;
 [size_is(count),string] LPWSTR *ptr;
 } StringArray;

 typedef struct _GuidArray
 {
 [range(0, MAX_RPC_GUID_ARRAY_COUNT)] DWORD count;
 [size_is(count)] GUID* ptr;
 } GuidArray;

 typedef [v1_enum] enum tag_EvtRpcVariantType
 {
 EvtRpcVarTypeNull = 0,
 EvtRpcVarTypeBoolean,
 EvtRpcVarTypeUInt32,
 EvtRpcVarTypeUInt64,
 EvtRpcVarTypeString,
 EvtRpcVarTypeGuid,
 EvtRpcVarTypeBooleanArray,
 EvtRpcVarTypeUInt32Array,
 EvtRpcVarTypeUInt64Array,
 EvtRpcVarTypeStringArray,
 EvtRpcVarTypeGuidArray

 } EvtRpcVariantType;

 typedef [v1_enum] enum tag_EvtRpcAssertConfigFlags
 {
 EvtRpcChannelPath = 0,
 EvtRpcPublisherName = 1

 } EvtRpcAssertConfigFlags;

 cpp_quote("#define EvtRpcSubscribePull 0x10000000")

 cpp_quote("#define EvtRpcVarFlagsModified 0x0001")

 typedef struct tag_EvtRpcVariant
 {
 EvtRpcVariantType type;
 DWORD flags;
 [switch_is(type)] union
 {
 [case(EvtRpcVarTypeNull)] int nullVal;
 [case(EvtRpcVarTypeBoolean)] boolean booleanVal;
 [case(EvtRpcVarTypeUInt32)] DWORD uint32Val;
 [case(EvtRpcVarTypeUInt64)] DWORD64 uint64Val;
 [case(EvtRpcVarTypeString)] [string]LPWSTR stringVal;
 [case(EvtRpcVarTypeGuid)] GUID* guidVal;
 [case(EvtRpcVarTypeBooleanArray)] BooleanArray booleanArray;
 [case(EvtRpcVarTypeUInt32Array)] UInt32Array uint32Array;
 [case(EvtRpcVarTypeUInt64Array)] UInt64Array uint64Array;
 [case(EvtRpcVarTypeStringArray)] StringArray stringArray;
 [case(EvtRpcVarTypeGuidArray)] GuidArray guidArray;
 };
 } EvtRpcVariant;

147 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 typedef struct tag_EvtRpcVariantList
 {
 [range(0, MAX_RPC_VARIANT_LIST_COUNT)] DWORD count;
 [size_is(count)] EvtRpcVariant* props;
 } EvtRpcVariantList;

 typedef struct tag_EvtRpcQueryChannelInfo
 {
 LPWSTR name;
 DWORD status;
 } EvtRpcQueryChannelInfo;

 error_status_t EvtRpcRegisterRemoteSubscription(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, unique, range(0, MAX_RPC_CHANNEL_NAME_LENGTH),string] LPCWSTR channelPath,
 [in, range(1, MAX_RPC_QUERY_LENGTH),string] LPCWSTR query,
 [in, unique, range(0, MAX_RPC_BOOKMARK_LENGTH),string] LPCWSTR bookmarkXml,
 [in] DWORD flags,
 [out, context_handle] PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION* handle,
 [out, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL* control,
 [out] DWORD* queryChannelInfoSize,
 [out, size_is(,*queryChannelInfoSize),
 range(0, MAX_RPC_QUERY_CHANNEL_SIZE)]
 EvtRpcQueryChannelInfo** queryChannelInfo,
 [out] RpcInfo *error);

 error_status_t EvtRpcRemoteSubscriptionNextAsync(
 [in, context_handle] PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION handle,
 [in] DWORD numRequestedRecords,
 [in] DWORD flags,
 [out] DWORD* numActualRecords,
 [out, size_is(,*numActualRecords), range(0, MAX_RPC_RECORD_COUNT)]
 DWORD** eventDataIndices,
 [out, size_is(,*numActualRecords), range(0, MAX_RPC_RECORD_COUNT)]
 DWORD** eventDataSizes,
 [out] DWORD* resultBufferSize,
 [out, size_is(,*resultBufferSize), range(0, MAX_RPC_BATCH_SIZE)]
 BYTE** resultBuffer);

 error_status_t EvtRpcRemoteSubscriptionNext(
 [in, context_handle] PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION handle,
 [in] DWORD numRequestedRecords,
 [in] DWORD timeOut,
 [in] DWORD flags,
 [out] DWORD* numActualRecords,
 [out, size_is(,*numActualRecords), range(0, MAX_RPC_RECORD_COUNT)]
 DWORD** eventDataIndices,
 [out, size_is(,*numActualRecords), range(0, MAX_RPC_RECORD_COUNT)]
 DWORD** eventDataSizes,
 [out] DWORD* resultBufferSize,
 [out, size_is(,*resultBufferSize), range(0, MAX_RPC_BATCH_SIZE)]
 BYTE** resultBuffer);

 error_status_t EvtRpcRemoteSubscriptionWaitAsync(
 [in, context_handle] PCONTEXT_HANDLE_REMOTE_SUBSCRIPTION handle);

 error_status_t EvtRpcRegisterControllableOperation(
 [out, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL* handle);

 error_status_t EvtRpcRegisterLogQuery(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, unique, range(0, MAX_RPC_CHANNEL_PATH_LENGTH),string] LPCWSTR path,
 [in, range(1, MAX_RPC_QUERY_LENGTH),string] LPCWSTR query,
 [in] DWORD flags,
 [out, context_handle] PCONTEXT_HANDLE_LOG_QUERY* handle,
 [out, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL* opControl,
 [out] DWORD* queryChannelInfoSize,
 [out, size_is(,*queryChannelInfoSize),

148 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 range(0, MAX_RPC_QUERY_CHANNEL_SIZE)]
 EvtRpcQueryChannelInfo** queryChannelInfo,
 [out] RpcInfo *error);

 error_status_t EvtRpcClearLog(
 [in, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL control,
 [in, range(0, MAX_RPC_CHANNEL_NAME_LENGTH),string] LPCWSTR channelPath,
 [in, unique, range(0, MAX_RPC_FILE_PATH_LENGTH),string] LPCWSTR backupPath,
 [in] DWORD flags,
 [out] RpcInfo *error);

 error_status_t EvtRpcExportLog(
 [in, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL control,
 [in, unique, range(0, MAX_RPC_CHANNEL_NAME_LENGTH),string] LPCWSTR channelPath,
 [in, range(1, MAX_RPC_QUERY_LENGTH),string] LPCWSTR query,
 [in, range(1, MAX_RPC_FILE_PATH_LENGTH),string] LPCWSTR backupPath,
 [in] DWORD flags,
 [out] RpcInfo *error);

 error_status_t EvtRpcLocalizeExportLog(
 [in, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL control,
 [in, range(1, MAX_RPC_FILE_PATH_LENGTH),string] LPCWSTR logFilePath,
 [in] LCID locale,
 [in] DWORD flags,
 [out] RpcInfo *error);

 error_status_t EvtRpcMessageRender(
 [in, context_handle] PCONTEXT_HANDLE_PUBLISHER_METADATA pubCfgObj,
 [in, range(1, MAX_RPC_EVENT_ID_SIZE)] DWORD sizeEventId,
 [in, size_is(sizeEventId)] BYTE *eventId,
 [in] DWORD messageId,
 [in] EvtRpcVariantList *values,
 [in] DWORD flags,
 [in] DWORD maxSizeString,
 [out] DWORD *actualSizeString,
 [out] DWORD *neededSizeString,
 [out, size_is(,*actualSizeString), range(0, MAX_RPC_RENDERED_STRING_SIZE)]
 BYTE** string,
 [out] RpcInfo *error);

 error_status_t EvtRpcMessageRenderDefault(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, range(1, MAX_RPC_EVENT_ID_SIZE)] DWORD sizeEventId,
 [in, size_is(sizeEventId)] BYTE *eventId,
 [in] DWORD messageId,
 [in] EvtRpcVariantList *values,
 [in] DWORD flags,
 [in] DWORD maxSizeString,
 [out] DWORD *actualSizeString,
 [out] DWORD *neededSizeString,
 [out, size_is(,*actualSizeString), range(0, MAX_RPC_RENDERED_STRING_SIZE)]
 BYTE** string,
 [out] RpcInfo *error);

 error_status_t EvtRpcQueryNext(
 [in, context_handle] PCONTEXT_HANDLE_LOG_QUERY logQuery,
 [in] DWORD numRequestedRecords,
 [in] DWORD timeOutEnd,
 [in] DWORD flags,
 [out] DWORD* numActualRecords,
 [out, size_is(,*numActualRecords), range(0, MAX_RPC_RECORD_COUNT)]
 DWORD** eventDataIndices,
 [out, size_is(,*numActualRecords), range(0, MAX_RPC_RECORD_COUNT)]
 DWORD** eventDataSizes,
 [out] DWORD* resultBufferSize,
 [out, size_is(,*resultBufferSize), range(0, MAX_RPC_BATCH_SIZE)]
 BYTE** resultBuffer);

 error_status_t EvtRpcQuerySeek(

149 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in, context_handle] PCONTEXT_HANDLE_LOG_QUERY logQuery,
 [in] __int64 pos,
 [in, unique, range(0, MAX_RPC_BOOKMARK_LENGTH),string] LPCWSTR bookmarkXml,
 [in] DWORD timeOut,
 [in] DWORD flags,
 [out] RpcInfo *error);

 error_status_t EvtRpcClose(
 [in, out, context_handle] void** handle);

 error_status_t EvtRpcCancel(
 [in, context_handle] PCONTEXT_HANDLE_OPERATION_CONTROL handle);

 error_status_t EvtRpcAssertConfig(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, range(1, MAX_RPC_CHANNEL_NAME_LENGTH),string] LPCWSTR path,
 [in] DWORD flags);

 error_status_t EvtRpcRetractConfig(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, range(1, MAX_RPC_CHANNEL_NAME_LENGTH),string] LPCWSTR path,
 [in] DWORD flags);

 error_status_t EvtRpcOpenLogHandle(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, range(1, MAX_RPC_CHANNEL_NAME_LENGTH),string] LPCWSTR channel,
 [in] DWORD flags,
 [out, context_handle] PCONTEXT_HANDLE_LOG_HANDLE* handle,
 [out] RpcInfo *error);

 error_status_t EvtRpcGetLogFileInfo(
 [in, context_handle] PCONTEXT_HANDLE_LOG_HANDLE logHandle,
 [in] DWORD propertyId,
 [in, range(0, MAX_RPC_PROPERTY_BUFFER_SIZE)]
 DWORD propertyValueBufferSize,
 [out, size_is(propertyValueBufferSize)] BYTE * propertyValueBuffer,
 [out] DWORD* propertyValueBufferLength);

 error_status_t EvtRpcGetChannelList(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in] DWORD flags,
 [out] DWORD* numChannelPaths,
 [out, size_is(,*numChannelPaths), range(0, MAX_RPC_CHANNEL_COUNT),string]
 LPWSTR** channelPaths);

 error_status_t EvtRpcGetChannelConfig(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, range(1, MAX_RPC_CHANNEL_NAME_LENGTH),string] LPCWSTR channelPath,
 [in] DWORD flags,
 [out] EvtRpcVariantList* props);

 error_status_t EvtRpcPutChannelConfig(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, range(1, MAX_RPC_CHANNEL_NAME_LENGTH),string] LPCWSTR channelPath,
 [in] DWORD flags,
 [in] EvtRpcVariantList* props,
 [out] RpcInfo *error);

 error_status_t EvtRpcGetPublisherList(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in] DWORD flags,
 [out] DWORD* numPublisherIds,
 [out, size_is(,*numPublisherIds), range(0, MAX_RPC_PUBLISHER_COUNT),string]
 LPWSTR** publisherIds);

 error_status_t EvtRpcGetPublisherListForChannel(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in] LPCWSTR channelName,
 [in] DWORD flags,

150 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [out] DWORD* numPublisherIds,
 [out, size_is(,*numPublisherIds), range(0, MAX_RPC_PUBLISHER_COUNT),string]
 LPWSTR** publisherIds);

 error_status_t EvtRpcGetPublisherMetadata(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, unique, range(0, MAX_RPC_PUBLISHER_ID_LENGTH),string] LPCWSTR publisherId,
 [in, unique, range(0, MAX_RPC_FILE_PATH_LENGTH),string] LPCWSTR logFilePath,
 [in] LCID locale,
 [in] DWORD flags,
 [out] EvtRpcVariantList* pubMetadataProps,
 [out, context_handle] PCONTEXT_HANDLE_PUBLISHER_METADATA* pubMetadata);

 error_status_t EvtRpcGetPublisherResourceMetadata(
 [in, context_handle] PCONTEXT_HANDLE_PUBLISHER_METADATA handle,
 [in] DWORD propertyId,
 [in] DWORD flags,
 [out] EvtRpcVariantList* pubMetadataProps);

 error_status_t EvtRpcGetEventMetadataEnum(
 [in, context_handle] PCONTEXT_HANDLE_PUBLISHER_METADATA pubMetadata,
 [in] DWORD flags,
 [in, unique, range(0, MAX_RPC_FILTER_LENGTH),string] LPCWSTR reservedForFilter,
 [out, context_handle] PCONTEXT_HANDLE_EVENT_METADATA_ENUM* eventMetaDataEnum);

 error_status_t EvtRpcGetNextEventMetadata(
 [in, context_handle] PCONTEXT_HANDLE_EVENT_METADATA_ENUM eventMetaDataEnum,
 [in] DWORD flags,
 [in] DWORD numRequested,
 [out] DWORD* numReturned,
 [out, size_is(,*numReturned), range(0, MAX_RPC_EVENT_METADATA_COUNT)]
 EvtRpcVariantList** eventMetadataInstances);

 error_status_t EvtRpcGetClassicLogDisplayName(
 /* [in] RPC_BINDING_HANDLE binding, {the binding handle will be generated by MIDL} */
 [in, range(1, MAX_RPC_CHANNEL_NAME_LENGTH),string] LPCWSTR logName,
 [in] LCID locale,
 [in] DWORD flags,
 [out] LPWSTR* displayName);
 }

151 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

7 (Updated Section) Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

The following tables show the relationships between Microsoft product versions or supplemental
software and the roles they perform.

Windows Client Client role Server role

Windows Vista operating system Yes Yes

Windows 7 operating system Yes Yes

Windows 8 operating system Yes Yes

Windows 8.1 operating system Yes Yes

Windows 10 operating system Yes Yes

Windows 11 operating system Yes Yes

Windows Server Client role Server role

Windows Server 2008 operating
system

Yes Yes

Windows Server 2008 R2 operating
system

Yes Yes

Windows Server 2012 operating
system

Yes Yes

Windows Server 2012 R2 operating
system

Yes Yes

Windows Server 2016 operating

system

Yes Yes

Windows Server operating system Yes Yes

Windows Server 2019 operating
system

Yes Yes

Windows Server 2022 operating
system

Yes Yes

Windows Server 2025 operating
system

Yes Yes

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base

(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

152 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1.8.1: Windows prefixes the names of some of the channels it creates with the string
Microsoft-Windows-. For more information, see [MSDN-EVENT].

<2> Section 1.8.2: Windows prefixes the names of some of the publishers it creates with the string
Microsoft-Windows-. For more information, see [MSDN-EVENTS].

<3> Section 1.8.4: Windows uses only the values specified in [MS-ERREF] section 2.3.

<4> Section 2.1.1: For more information about the significance of packet-level authentication, see
Windows NTLM Elevation of Privilege Vulnerability security update June 2021 [MSFT-CVE-2021-

31958]. Applies to all versions of client and server, Windows Vista operating system and Windows
Server 2008 operating system and later.

<5> Section 2.1.2: For more information about the significance of packet-level authentication, see
Windows NTLM Elevation of Privilege Vulnerability security update June 2021 [MSFT-CVE-2021-
31958]. Applies to all versions of client and server, Windows Vista and Windows Server 2008 and
later.

<6> Section 2.2.16: Windows 10 v1703 operating system and earlier ignore the Target attribute.

<7> Section 3.1.1.12: In applicable Windows Server releases, the server leverages the context handle
table provided by RPC. For more information about RPC context handles, see [MSDN-CH].

<8> Section 3.1.4: All errors are as specified in [MS-ERREF] section 2.3.

<9> Section 3.1.4.7.2: In a Windows implementation, the event definition is part of a compiled
binary image, and as such is external to this protocol.

<10> Section 3.1.4.8: In applicable Windows Server releases, the server returns ERROR_NOT_FOUND

(0x00000490) when the bookmark is invalid and the EvtSubscribeStrictrestrict flag is set. The server
does not return an error if the bookmark is invalid and the EvtSubscribeStrict flag is not set. The
server ignores the bookmark parameter.

<11> Section 3.1.4.8: In applicable Windows Server releases, the server returns
ERROR_EVT_INVALID_QUERY (0x00003A99).

<12> Section 3.1.4.8: In Windows, if query parameter is not null the server will attempt to determine
if the channel is valid. If the channel string contains one or more invalid characters (any character

whose ASCII value is less than 32 or character '<', '>', '|', '\', '"', ':', ''', '*', '?'), the server will return
ERROR_EVT_INVALID_CHANNEL_PATH (0x00003A98). If the channel does not exist, the server will
return ERROR_EVT_CHANNEL_NOT_FOUND (0x00003A9F). If the channel is valid, and the non-null
query parameter is invalid, the server will return ERROR_EVT_INVALID_QUERY (0x00003A99).

<13> Section 3.1.4.9: Windows Vista and Windows Server 2008 ignore this flags field.

<14> Section 3.1.4.9: In Windows, the server does not do a thorough validation of the handle. It

verifies that the handle can be transformed into a pointer in the proper address space, and that the
pointer points to a buffer that states a correct context handle type, and fails with
ERROR_INVALID_PARAMETER (0x00000057) if the handle type does not match. As such, it is possible
to circumvent the server, especially if the handle has been obtained from a different method in this
specification. In that case, the server's behavior is undefined and could potentially cause system
issues.

<15> Section 3.1.4.10: Windows Vista and Windows Server 2008 ignore this flags field.

153 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<16> Section 3.1.4.11: In Windows, the server does not do a thorough validation of the handle. It
verifies that the handle can be transformed into a pointer in the proper address space, and that the

pointer points to a buffer that states a correct context handle type, and fails with
ERROR_INVALID_PARAMETER (0x00000057) if the handle type does not match. As such, it is possible

to circumvent the server, especially if the handle has been obtained from a different method in this
specification. In that case, the server's behavior is undefined and could potentially cause system
issues.

<17> Section 3.1.4.12: In Windows Vista and Windows Server 2008, the server does not validate the
flags. It ignores any unrecognized flags, assumes that the path is a file if not specified, and iterates
from oldest to newest if a direction flag is unspecified.

In Windows 7 and later and Windows Server 2008 R2 operating system and later, the server does not

completely validate the flags. It does not return an error when neither the EvtQueryChannelPath nor
EvtQueryFilePath bits are set, and does not return an error when neither the 0x00000100 nor
0x00000200 bits are set. The server assumes that the path is a file if not specified, and iterates from
oldest to newest if a direction flag is not specified.

<18> Section 3.1.4.12: In Windows, the server can omit the invalid channels.

<19> Section 3.1.4.13: Windows limits the numRequestedRecords to 1024. If numRequestedRecords

is greater than 1024, ERROR_INVALID_PARAPMETER is returned.

<20> Section 3.1.4.13: Windows Vista and Windows Server 2008 ignore this flag.

<21> Section 3.1.4.13: In Windows, the server does not do a thorough validation of the handle. It
verifies that the handle can be transformed into a pointer in the proper address space and that the
pointer points to a buffer that states the correct context handle type, and fails with
ERROR_INVALID_PARAMETER (0x00000057) if the handle type does not match. As such, it is possible
to circumvent the server, especially if the handle has been obtained from a different method in the

EventLog Remoting Protocol Version 6. In that case, the server's behavior is undefined and can
potentially cause system issues.

<22> Section 3.1.4.14: In the Windows implementation, the sign of the pos parameter is validated

against the seek direction by the server. Windows Vista and Windows Server 2008 return
ERROR_NOT_FOUND (0x00000490) in the above cases if the EvtSeekStrict flag is set. If the
EvtSeekStrict flag is not set, Windows Vista and Windows Server 2008 will not return an error in the
two cases above. In Windows Vista and Windows Server 2008, if the EvtSeekRelativeToFirst flag is set

and the pos parameter has a negative value, the cursor of the result set remains at the first record. If
the EvtSeekRelativeToLast flag is set and the pos parameter has a positive value, the cursor remains
at the last record.

Except for Windows Vista and Windows Server 2008, Windows always returns
ERROR_INVALID_PARAMETER (0x00000057) when errors are encountered validating the pos
parameter and will not change the cursor position.

<23> Section 3.1.4.15: For more information on attributes, see [MSDN-FILEATT].

<24> Section 3.1.4.15: In Windows, the server does not do a thorough validation of the handle. It
verifies that the handle can be transformed into a pointer in the appropriate address space, and that

the pointer points to a buffer that states a correct context handle type, and fails with
ERROR_INVALID_PARAMETER (0x00000057) if the handle type does not match. As such, it is possible
to circumvent the server, especially if the handle has been obtained from a different method in this
specification. In that case, the server's behavior is undefined and can potentially cause system issues.

<25> Section 3.1.4.16: Windows Vista and Windows Server 2008 ignore this flags field.

:<26> Section 3.1.4.16: In the case of the failure of an internal function about which Windows doesn't
receive detailed error information, it will fill the sub-error fields with 0xFFFFFFFF, which is often used
as a generic error return code.

154 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<27> Section 3.1.4.16<27> Section 3.1.4.16:: In applicable Windows Server releases, the server
uses the CreateFile function [MSDN-CreateFile] to create the backup file and return any error code the

CreateFile function can possibly set to the last error code when it fails.

<28> Section 3.1.4.17: In the Windows implementation, the client API layer typically validates the

flags, and the server does not. Therefore, the onus is on the RPC client either to validate flags or to
restrict support to valid flag combinations.

<29> Section 3.1.4.17: In Windows Vista and Windows Server 2008, the server does not validate the
flags. It will ignore any unrecognized flags; and will assume that the path is a file if not specified.

<30> Section 3.1.4.17: In applicable Windows Server releases, the server returns any possible error
code from the last errors set by CreateFile function [MSDN-CreateFile] if the method fails.

<31> Section 3.1.4.18: Windows Vista and Windows Server 2008 ignore this flags field.

<32> Section 3.1.4.18: Windows can erroneously return ERROR_SUCCESS. In such cases, the fields
of the RpcInfo structure "error" will be set to nonzero values to specify the detail error. For example,

the function EvtRpcLocalizeExportLog can return ERROR_SUCCESS with the RpcInfo structure
containing the error ERROR_EVT_MESSAGE_NOT_FOUND (0x00003AB3).

<33> Section 3.1.4.18: Windows can erroneously return ERROR_SUCCESS. In such cases, the fields
of the RpcInfo structure "error" will be set to nonzero values to specify the detail error. For example,

the function EvtRpcLocalizeExportLog can return ERROR_SUCCESS with the RpcInfo structure
containing the error ERROR_EVT_MESSAGE_NOT_FOUND (0x00003AB3).

<34> Section 3.1.4.18: Applicable Windows Server releases return ERROR_INVALID_NAME when the
logFilePath parameter is not valid for the underlying file system.

<35> Section 3.1.4.19: In the case of the failure of an internal function about which Windows does
not receive detailed error information, it will fill the sub-error fields with 0xFFFFFFFF, which is often
used as a generic error return code.

<36> Section 3.1.4.19: Windows Vista and Windows Server 2008 ignore this flags field.

<37> Section 3.1.4.20: Windows Vista and Windows Server 2008 ignore this flags field.

<38> Section 3.1.4.21: Windows Vista and Windows Server 2008 ignore this flags field.

<39> Section 3.1.4.21: The FileMax property is not supported by Windows Vista and Windows Server
2008. Windows Vista and Windows Server 2008 call EvtRpcGetChannelConfig to receive the
EvtRpcVariantList structure. FileMax is ignored by Windows Vista and Windows Server 2008. The value
of FileMax received in the EvtRpcVariantList structure is passed back unmodified by calls to

EvtRpcPutChannelConfig on Windows 7 and later and Windows Server 2008 R2 and later.

<40> Section 3.1.4.22: In Windows Vista and Windows Server 2008, the server does not validate the
flag.

<41> Section 3.1.4.22: Windows based implementations of this protocol use the ControlGuid property
to identify the WPP provider, a special publisher that is used to log debugging events. The WPP

provider is not intended for general use. See [MSDN-WPPST] for more information about this

publisher.

<42> Section 3.1.4.22: Windows will erroneously return ERROR_SUCCESS. In such cases the fields of
the RpcInfo structure "error" will be set to nonzero values.

<43> Section 3.1.4.22: Applicable Windows Server releases do not check whether the publisher is
already registered in the publisher table and will return ERROR_SUCCESS for unregistered publishers.

:<44> Section 3.1.4.22: In applicable Windows Server releases, the initial value for BufferSize is 64k.
Initial MinBuffers value is twice the number of processors of the system. Initial MaxBuffers value is the

155 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

MinBuffers value plus 22. The initial Latency value is 1 second. The initial clocktype value is 0 and the
initial value for SIDType is 1.

<45> Section 3.1.4.23: Windows Vista and Windows Server 2008 ignore this flags field.

<46> Section 3.1.4.23: In Windows, the server uses registry to implement the publisher table. The

security descriptor for the publisher table is provided by the Windows registry system.

<47> Section 3.1.4.24: Windows Vista and Windows Server 2008 ignore this flags field.

<48> Section 3.1.4.25: Windows Vista and Windows Server 2008 ignore this flags field.

<49> Section 3.1.4.25: In Windows, the server uses a registry entry to save the publisher in the
publisher table. The security descriptor for the publisher is the security descriptor for the registry
entry.

<50> Section 3.1.4.26: Windows Vista and Windows Server 2008 ignore this flags field.

<51> Section 3.1.4.26: In Windows, the server does not do a complete validation of the handle. It
verifies that the handle can be transformed into a pointer in the proper address space and that the
pointer points to a buffer that states a correct context handle type, and fails with
ERROR_INVALID_PARAMETER (0x00000057) if the handle type does not match. Therefore, it is
possible to circumvent the server, especially if the handle has been obtained from a different method
in this specification. In that case, the server's behavior is undefined and can potentially cause system

issues.

<52> Section 3.1.4.26: In applicable Windows Server releases, the server does not return an error in
this case and sets nothing in the pubMetadataProps parameter.

<53> Section 3.1.4.26: A Windows implementation wraps the RPC calls with an API layer that
provides default values for metadata that are not supplied by the publisher. For example, Windows
provides a helplink based on the executable name for a particular provider if that provider does not
supply a helplink.

<54> Section 3.1.4.27: Windows Vista and Windows Server 2008 ignore this flags field.

<55> Section 3.1.4.27: In Windows, the server does not do a thorough validation of the handle. It
verifies that the handle can be transformed into a pointer in the proper address space, and that the
pointer points to a buffer that states a correct context handle type, and fails with
ERROR_INVALID_PARAMETER (0x00000057) if the handle type does not match. Therefore, it is
possible to circumvent the server, especially if the handle has been obtained from a different method
in this specification. In that case, the server's behavior is undefined and can potentially cause system

issues.

<56> Section 3.1.4.28: Windows Server 2008 does not validate this flag.

<57> Section 3.1.4.28: In Windows, the server does not do a thorough validation of the handle. It
verifies that the handle can be transformed into a pointer in the proper address space and that the
pointer points to a buffer that states a correct handle type, and fails with
ERROR_INVALID_PARAMETER (0x00000057) if the handle type does not match. Therefore, it is

possible to circumvent the server, especially if the handle has been obtained from a different method
in this specification. In that case, the server's behavior is undefined and can potentially cause system
issues.

<58> Section 3.1.4.28: In Windows, the method does not fail when there is no metadata to return.

<59> Section 3.1.4.29: In Windows, the server does not validate the path parameter, and will start a
new, partially configured channel or publisher registration if supplied with an invalid name.

156 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<60> Section 3.1.4.30: In Windows, the server only validates that the path parameter is syntactically
correct; it does not validate that the channel exists. The server returns ERROR_SUCCESS

(0x00000000) if it is passed a channel name which is syntactically correct but nonexistent.

<61> Section 3.1.4.30: In applicable Windows Server releases, the server returns

ERROR_INVALID_PARAMETER (0x00000057). When the path is NULL, the server returns any possible
error codes a RegOpenKeyEx function could return.

<62> Section 3.1.4.31: In the Windows implementation, substitution parameters are denoted by
"%1", "%2", and so on. An event message can be "Error number %1 occurred on disk drive %2." To
format this message, the client could specify the eventId that denotes this event in the eventId
parameter and supply the strings "5" and "C:" in the values parameter. If the client supplied a buffer
that is large enough in the strings parameter, the server would set that buffer to "Error number 5

occurred on disk drive C".

:<63> Section 3.1.4.31: In Windows, the server does not do a complete validation of the handle. It
verifies that the handle can be transformed into a pointer in the proper address space and that the
pointer points to a buffer that states a correct handle type, and fails with

ERROR_INVALID_PARAMETER (0x00000057) if the handle type does not match. Therefore, it is
possible to circumvent the server, especially if the handle has been obtained from a different method

in this specification. In that case, the server's behavior is undefined and can potentially cause system
issues.

<64> Section 3.1.4.31<64> Section 3.1.4.31:: In applicable Windows Server releases, the server
uses the FormatMessage function (see [MSDN-FMT]) to perform this task.

<65> Section 3.1.4.31: In applicable Windows Server releases, the server uses the FormatMessage
function (see [MSDN-FMT]) to perform this task.

<66> Section 3.1.4.33: In Windows, the server does not do a complete validation of the handle. It

verifies that the handle can be transformed into a pointer in the proper address space and that the
pointer points to a buffer that states a correct context handle type, and fails with
ERROR_INVALID_PARAMETER (0x00000057) if the handle type does not match. Therefore, it is
possible to circumvent the server, especially if the handle has been obtained from a different method

in this specification. In that case, the server's behavior is undefined and can potentially cause system
issues.

<67> Section 3.1.4.34: In Windows, the server does not do a complete validation of the handle. It

verifies that the handle can be transformed into a pointer in the proper address space and that the
pointer points to a buffer that states a correct context handle type, and fails with
ERROR_INVALID_PARAMETER (0x00000057) if the handle type does not match. Therefore, it is
possible to circumvent the server, especially if the handle has been obtained from a different method
in this specification. In that case, the server's behavior is undefined and can potentially cause system
issues.

<68> Section 3.1.4.36: Windows implementations of this protocol use the
GetThreadPreferredUILanguages function [MSDN-GETTHDPREUILANG] to determine the fallback
locale.

<69> Section 3.1.4.36: In Windows Vista and Windows Server 2008, the server does not validate the
flags parameter. The server responds to flags 0x0 and 0x100, and ignores all others.

<70> Section 3.2.7: In a Windows client implementation, because applicable Windows Server releases
keep the publisher table in the registry, the client accesses the registry directly and finds the resource

file location for a given publisher and changes the registry value directly. The resource file location is
saved in the registry:
"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\WINEVT\Publishers\<Publish
er Identifier>\ResourceFileName". When the EvtRpcAssertConfig method (section 3.1.4.29) is
issued, the server locates the same key, reads the ResourceFileName, and tries to open it. If the file

157 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

can be opened, applicable Windows Server releases accept the change and save it. Otherwise, the
registry change is reverted and the client's change is discarded.

158 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

159 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

9 Index

A

Abstract data model
 client 120
 server 42
Applicability 14
Attribute Rule 26

B

Background 12
Backup and archive the event log example example 142
BinXml 20
BinXml - server
 array type 64
 BinXml templates 60
 BinXml type 64
 optional substitutions 61
 overview 60
 prescriptive details 65
 type system 62
Binxml example using templates example 130
BinXml method 60
BinXml sample (section 4.4 125, section 4.8 130)
BinXmlVariant_Structure packet 39
Bookmark 32
Bookmark example example 124
Bookmark sample 124
BooleanArray structure 17

C

Cancellation sequencing
 canceling clear or export methods 59
 canceling queries 59
 canceling subscriptions 59
 overview 59
Cancellation Sequencing method 59
Capability negotiation 14
CDATA Section Rule 27
Change tracking 158
Channel names 14
Channels 44
CharRef Rule 27
Client
 abstract data model 120
 initialization 120
 local events 120
 message processing 120
 overview 120
 sequencing rules 120
 timer events 120
 timers 120
 transport 16
CloseEmptyElement Token Rule 27
CloseStartElement Token Rule 27
Common data types 16
Common values 40

D

Data model - abstract
 client 120

160 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 server 42
Data types 16
 common - overview 16
Description 13
Descriptor - event 15

E

Element Rule 25
EndElement Token Rule 28
EntityRef Rule 27
Error codes 15
Event 28
Event descriptor 15
Event metadata enumerator sequencing 59
Event Metadata Enumerator Sequencing method 59
Events 42

 local - client 120
 local - server 120
 timer - client 120
 timer - server 120
EvtRpcAssertConfig (Opnum 15) method 108
EvtRpcAssertConfig method 108
EvtRpcAssertConfigFlags enumeration 20
EvtRpcCancel (Opnum 14) method 117
EvtRpcCancel method 117
EvtRpcClearLog (Opnum 6) method 82
EvtRpcClearLog method 82
EvtRpcClose (Opnum 13) method 116
EvtRpcClose method 116
EvtRpcExportLog (Opnum 7) method 84
EvtRpcExportLog method 84
EvtRpcGetChannelConfig (Opnum 20) method 90
EvtRpcGetChannelConfig method 90
EvtRpcGetChannelList (Opnum 19) method 89
EvtRpcGetChannelList method 89
EvtRpcGetClassicLogDisplayName (Opnum 28) method 118
EvtRpcGetClassicLogDisplayName method 118
EvtRpcGetEventMetadataEnum (Opnum 26) method 106
EvtRpcGetEventMetadataEnum method 106
EvtRpcGetLogFileInfo (Opnum 18) method 80
EvtRpcGetLogFileInfo method 80
EvtRpcGetNextEventMetadata (Opnum 27) method 106
EvtRpcGetNextEventMetadata method 106
EvtRpcGetPublisherList method 100
EvtRpcGetPublisherList(Opnum 22) method 100
EvtRpcGetPublisherListForChannel (Opnum 23) method 100
EvtRpcGetPublisherListForChannel method 100
EvtRpcGetPublisherMetadata (Opnum 24) method 101
EvtRpcGetPublisherMetadata method 101
EvtRpcGetPublisherResourceMetadata (Opnum 25) method 103
EvtRpcGetPublisherResourceMetadata method 103
EvtRpcLocalizeExportLog (Opnum 8) method 86
EvtRpcLocalizeExportLog method 86
EvtRpcMessageRender (Opnum 9) method 111
EvtRpcMessageRender method 111
EvtRpcMessageRenderDefault (Opnum 10) method 115
EvtRpcMessageRenderDefault method 115
EvtRpcOpenLogHandle (Opnum 17) method 88
EvtRpcOpenLogHandle method 88
EvtRpcPutChannelConfig (Opnum 21) method 94
EvtRpcPutChannelConfig method 94

EvtRpcQueryChannelInfo structure 20
EvtRpcQueryNext (Opnum 11) method 76
EvtRpcQueryNext method 76

161 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

EvtRpcQuerySeek (Opnum 12) method 78
EvtRpcQuerySeek method 78
EvtRpcRegisterControllableOperation (Opnum 4) method 118
EvtRpcRegisterControllableOperation method 118
EvtRpcRegisterLogQuery (Opnum 5) method 73
EvtRpcRegisterLogQuery method 73
EvtRpcRegisterRemoteSubscription (Opnum 0) method 66
EvtRpcRegisterRemoteSubscription method 66
EvtRpcRemoteSubscriptionNext (Opnum 2) method 70
EvtRpcRemoteSubscriptionNext method 70
EvtRpcRemoteSubscriptionNextAsync (Opnum 1) method 69
EvtRpcRemoteSubscriptionNextAsync method 69
EvtRpcRemoteSubscriptionWaitAsync (Opnum 3) method 73
EvtRpcRemoteSubscriptionWaitAsync method 73
EvtRpcRetractConfig (Opnum 16) method 110
EvtRpcRetractConfig method 110
EvtRpcVariant structure 18
EvtRpcVariantList structure 19
Examples
 backup and archive the event log example 142
 binxml example using templates 130
 BinXml sample (section 4.4 125, section 4.8 130)
 bookmark example 124

 Bookmark sample 124
 get channel list example 137
 get event metadata example 137
 get log information example 123
 get publisher list example 136
 publisher table and channel table example 141
 pull subscription example 128
 push subscription example 127
 query example 122
 query sample 122
 render localized event message example 134
 simple binxml example 125
 structured query example 126

F

Fields - vendor-extensible 14
Filter 33
Filter XPath 1.0 extensions 34
Filter XPath 1.0 subset 33
Full IDL 145

G

Get channel list example example 137
Get event metadata example example 137
Get log information example example 123
Get publisher list example example 136
Glossary 8
GuidArray structure 18

H

Handles 49

I

IDL 145
Implementer - security considerations 144
Index of security parameters 144
Informative references 11
Initialization

162 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 client 120
 server 55
Introduction 8

L

Local events
 client 120
 server 120
Localized string table 53
Log information sequencing 58
Log Information Sequencing method 58
Logs 46

M

Message processing
 client 120
 server 55
Messages
 common data types 16
 common values 40
 data types 16
 syntax 40
 transport 16
 client 16
 overview 16
 server 16
Methods
 BinXml 60
 Cancellation Sequencing 59
 Event Metadata Enumerator Sequencing 59
 EvtRpcAssertConfig (Opnum 15) 108
 EvtRpcCancel (Opnum 14) 117
 EvtRpcClearLog (Opnum 6) 82
 EvtRpcClose (Opnum 13) 116
 EvtRpcExportLog (Opnum 7) 84
 EvtRpcGetChannelConfig (Opnum 20) 90
 EvtRpcGetChannelList (Opnum 19) 89
 EvtRpcGetClassicLogDisplayName (Opnum 28) 118
 EvtRpcGetEventMetadataEnum (Opnum 26) 106
 EvtRpcGetLogFileInfo (Opnum 18) 80
 EvtRpcGetNextEventMetadata (Opnum 27) 106
 EvtRpcGetPublisherList(Opnum 22) 100
 EvtRpcGetPublisherListForChannel (Opnum 23) 100
 EvtRpcGetPublisherMetadata (Opnum 24) 101
 EvtRpcGetPublisherResourceMetadata (Opnum 25) 103
 EvtRpcLocalizeExportLog (Opnum 8) 86
 EvtRpcMessageRender (Opnum 9) 111
 EvtRpcMessageRenderDefault (Opnum 10) 115
 EvtRpcOpenLogHandle (Opnum 17) 88
 EvtRpcPutChannelConfig (Opnum 21) 94
 EvtRpcQueryNext (Opnum 11) 76
 EvtRpcQuerySeek (Opnum 12) 78
 EvtRpcRegisterControllableOperation (Opnum 4) 118
 EvtRpcRegisterLogQuery (Opnum 5) 73
 EvtRpcRegisterRemoteSubscription (Opnum 0) 66

 EvtRpcRemoteSubscriptionNext (Opnum 2) 70
 EvtRpcRemoteSubscriptionNextAsync (Opnum 1) 69
 EvtRpcRemoteSubscriptionWaitAsync (Opnum 3) 73
 EvtRpcRetractConfig (Opnum 16) 110
 Log Information Sequencing 58
 Publisher Metadata Sequencing 58
 Query Sequencing 58
 Subscription Sequencing 57

163 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

N

Names
 channel 14
 publisher 15
Normative references 10

O

Overview (synopsis) 12

P

Parameters - security index 144
PIData Rule 27
PITarget Rule 27
Preconditions 14
Prerequisites 14
Product behavior 151
Publisher metadata sequencing 58
Publisher Metadata Sequencing method 58
Publisher names 15
Publisher table and channel table example example 141
Publishers 42
Pull subscription example example 128
Push subscription example example 127

Q

Queries (section 2.2.16 36, section 3.1.1.8 49)
Query example 126
Query example example 122
Query sample 122
Query sequencing 58
Query Sequencing method 58

R

References 9
 informative 11
 normative 10
Relationship to other protocols 13
Render localized event message example example 134
Result_Set packet 37
RpcInfo structure 16

S

Security
 implementer considerations 144
 parameter index 144
Sequencing rules
 client 120
 server 55
Server
 abstract data model 42
 BinXml - overview 60
 BinXml method 60
 Cancellation Sequencing method 59
 Event Metadata Enumerator Sequencing method 59
 EvtRpcAssertConfig (Opnum 15) method 108
 EvtRpcCancel (Opnum 14) method 117
 EvtRpcClearLog (Opnum 6) method 82

164 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 EvtRpcClose (Opnum 13) method 116
 EvtRpcExportLog (Opnum 7) method 84
 EvtRpcGetChannelConfig (Opnum 20) method 90
 EvtRpcGetChannelList (Opnum 19) method 89
 EvtRpcGetClassicLogDisplayName (Opnum 28) method 118
 EvtRpcGetEventMetadataEnum (Opnum 26) method 106
 EvtRpcGetLogFileInfo (Opnum 18) method 80
 EvtRpcGetNextEventMetadata (Opnum 27) method 106
 EvtRpcGetPublisherList(Opnum 22) method 100
 EvtRpcGetPublisherListForChannel (Opnum 23) method 100
 EvtRpcGetPublisherMetadata (Opnum 24) method 101
 EvtRpcGetPublisherResourceMetadata (Opnum 25) method 103
 EvtRpcLocalizeExportLog (Opnum 8) method 86
 EvtRpcMessageRender (Opnum 9) method 111
 EvtRpcMessageRenderDefault (Opnum 10) method 115
 EvtRpcOpenLogHandle (Opnum 17) method 88
 EvtRpcPutChannelConfig (Opnum 21) method 94
 EvtRpcQueryNext (Opnum 11) method 76
 EvtRpcQuerySeek (Opnum 12) method 78
 EvtRpcRegisterControllableOperation (Opnum 4) method 118
 EvtRpcRegisterLogQuery (Opnum 5) method 73
 EvtRpcRegisterRemoteSubscription (Opnum 0) method 66
 EvtRpcRemoteSubscriptionNext (Opnum 2) method 70

 EvtRpcRemoteSubscriptionNextAsync (Opnum 1) method 69
 EvtRpcRemoteSubscriptionWaitAsync (Opnum 3) method 73
 EvtRpcRetractConfig (Opnum 16) method 110
 initialization 55
 local events 120
 Log Information Sequencing method 58
 message processing 55
 overview 42
 Publisher Metadata Sequencing method 58
 Query Sequencing method 58
 sequencing rules 55
 Subscription Sequencing method 57
 timer events 120
 timers 55
 transport 16
Simple binxml example example 125
Simple BinXml sample 125
Standards assignments 15
StringArray structure 17
Structured query example 126
Structured query example example 126
Subscription sequencing 57
Subscription Sequencing method 57
Subscriptions 49
Substitution Rule 26
Syntax (section 2.3 40, section 2.3.1 40)

T

tag_EvtRpcVariantType enumeration 19
TemplateInstanceData Rule 28
Templates - BinXml sample 130
Timer events
 client 120
 server 120
Timers
 client 120
 server 55
Tracking changes 158

Transport 16
 client 16
 overview 16

165 / 165

[MS-EVEN6-Diff] - v20240423
EventLog Remoting Protocol Version 6.0
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 server 16

U

UInt32Array structure 17
UInt64Array structure 17

V

Values - common 40
Vendor-extensible fields 14
Versioning 14

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 (Updated Section) Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Background
	1.3.2 EventLog Remoting Protocol Version 6.0

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.8.1 Channel Names
	1.8.2 Publisher Names
	1.8.3 Event Descriptor
	1.8.4 Error Codes

	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 Server
	2.1.2 Client

	2.2 Common Data Types
	2.2.1 RpcInfo
	2.2.2 BooleanArray
	2.2.3 UInt32Array
	2.2.4 UInt64Array
	2.2.5 StringArray
	2.2.6 GuidArray
	2.2.7 EvtRpcVariant
	2.2.8 EvtRpcVariantType
	2.2.9 EvtRpcVariantList
	2.2.10 EvtRpcAssertConfigFlags Enumeration
	2.2.11 EvtRpcQueryChannelInfo
	2.2.12 BinXml
	2.2.12.1 Emitting Instruction for the Element Rule
	2.2.12.2 Emitting Instruction for the Attribute Rule
	2.2.12.3 Emitting Instruction for the Substitution Rule
	2.2.12.4 Emitting Instruction for the CharRef Rule
	2.2.12.5 Emitting Instruction for the EntityRef Rule
	2.2.12.6 Emitting Instruction for the CDATA Section Rule
	2.2.12.7 Emitting Instruction for the PITarget Rule
	2.2.12.8 Emitting Instruction for the PIData Rule
	2.2.12.9 Emitting Instruction for the CloseStartElement Token Rule
	2.2.12.10 Emitting Instruction for the CloseEmptyElement Token Rule
	2.2.12.11 Emitting Instruction for the EndElement Token Rule
	2.2.12.12 Emitting Instruction for the TemplateInstanceData Rule

	2.2.13 Event
	2.2.14 Bookmark
	2.2.15 Filter
	2.2.15.1 Filter XPath 1.0 Subset
	2.2.15.2 Filter XPath 1.0 Extensions

	2.2.16 Query
	2.2.17 Result Set
	2.2.18 BinXmlVariant Structure
	2.2.19 error_status_t
	2.2.20 Handles
	2.2.21 Binding Handle

	2.3 Message Syntax
	2.3.1 Common Values

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Events
	3.1.1.2 Publishers
	3.1.1.3 Publisher Tables
	3.1.1.4 Channels
	3.1.1.5 Channel Table
	3.1.1.6 Logs
	3.1.1.7 Localized Logs
	3.1.1.8 Queries
	3.1.1.9 Subscriptions
	3.1.1.10 Control Object
	3.1.1.11 Context Handles
	3.1.1.12 Handle Table
	3.1.1.13 Localized String Table
	3.1.1.14 Publisher Resource, Message, and Parameter Files

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 Subscription Sequencing
	3.1.4.2 Query Sequencing
	3.1.4.3 Log Information Sequencing
	3.1.4.4 Publisher Metadata Sequencing
	3.1.4.5 Event Metadata Enumerator Sequencing
	3.1.4.6 Cancellation Sequencing
	3.1.4.6.1 Canceling Subscriptions
	3.1.4.6.2 Canceling Queries
	3.1.4.6.3 Canceling Clear or Export Methods

	3.1.4.7 BinXml
	3.1.4.7.1 BinXml Templates
	3.1.4.7.2 Optional Substitutions
	3.1.4.7.3 Type System
	3.1.4.7.4 BinXml Type
	3.1.4.7.5 Array Types
	3.1.4.7.6 Prescriptive Details

	3.1.4.8 EvtRpcRegisterRemoteSubscription (Opnum 0)
	3.1.4.9 EvtRpcRemoteSubscriptionNextAsync (Opnum 1)
	3.1.4.10 EvtRpcRemoteSubscriptionNext (Opnum 2)
	3.1.4.11 EvtRpcRemoteSubscriptionWaitAsync (Opnum 3)
	3.1.4.12 EvtRpcRegisterLogQuery (Opnum 5)
	3.1.4.13 EvtRpcQueryNext (Opnum 11)
	3.1.4.14 EvtRpcQuerySeek (Opnum 12)
	3.1.4.15 EvtRpcGetLogFileInfo (Opnum 18)
	3.1.4.16 EvtRpcClearLog (Opnum 6)
	3.1.4.17 EvtRpcExportLog (Opnum 7)
	3.1.4.18 EvtRpcLocalizeExportLog (Opnum 8)
	3.1.4.19 EvtRpcOpenLogHandle (Opnum 17)
	3.1.4.20 EvtRpcGetChannelList (Opnum 19)
	3.1.4.21 EvtRpcGetChannelConfig (Opnum 20)
	3.1.4.22 EvtRpcPutChannelConfig (Opnum 21)
	3.1.4.23 EvtRpcGetPublisherList(Opnum 22)
	3.1.4.24 EvtRpcGetPublisherListForChannel (Opnum 23)
	3.1.4.25 EvtRpcGetPublisherMetadata (Opnum 24)
	3.1.4.26 EvtRpcGetPublisherResourceMetadata (Opnum 25)
	3.1.4.27 EvtRpcGetEventMetadataEnum (Opnum 26)
	3.1.4.28 EvtRpcGetNextEventMetadata (Opnum 27)
	3.1.4.29 EvtRpcAssertConfig (Opnum 15)
	3.1.4.30 EvtRpcRetractConfig (Opnum 16)
	3.1.4.31 EvtRpcMessageRender (Opnum 9)
	3.1.4.32 EvtRpcMessageRenderDefault (Opnum 10)
	3.1.4.33 EvtRpcClose (Opnum 13)
	3.1.4.34 EvtRpcCancel (Opnum 14)
	3.1.4.35 EvtRpcRegisterControllableOperation (Opnum 4)
	3.1.4.36 EvtRpcGetClassicLogDisplayName (Opnum 28)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.5 Timer Events
	3.2.6 Other Local Events
	3.2.7 Changing Publisher Configuration Data

	4 Protocol Examples
	4.1 Query Example
	4.2 Get Log Information Example
	4.3 Bookmark Example
	4.4 Simple BinXml Example
	4.5 Structured Query Example
	4.6 Push Subscription Example
	4.7 Pull Subscription Example
	4.8 BinXml Example Using Templates
	4.9 Render Localized Event Message Example
	4.10 Get Publisher List Example
	4.11 Get Channel List Example
	4.12 Get Event Metadata Example
	4.13 Publisher Table and Channel Table Example
	4.14 Backup and Archive the Event Log Example

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 (Updated Section) Appendix B: Product Behavior
	8 Change Tracking
	9 Index

