

1 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[MS - EMF]:
Enhanced Metafile Format

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

Á Copyrights. This documentation is covered by Microsoft copyrights. Regardles s of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute p ortions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDLôs, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

Á No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

Á Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise . If you would prefer a written license, or if the te chnologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com .

Á Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
associatio n with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specific ally described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Micr osoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Revision Summary

Date

Revision

History

Revision

Class Comments

04/03/2007 0.01 MCPP Milestone Longhorn Initial Availability

07/03/2007 1.0 Major MLonghorn+90

07/20/2007 2.0 Major Restructured record sections according to category; other

updates.

08/10/2007 2.1 Minor Updated the technical content.

09/28/2007 2.2 Minor Updated the technical content.

10/23/2007 3.0 Major Added new sections describing the

EMR_COMMENT_EMFPLUS and EMR_COMMENT_EMFSPOOL

records.

11/30/2007 3.1 Minor Standardized art.

01/25/2008 3.2 Minor Reconstructed record categories for clarity.

03/14/2008 4.0 Major Abstract data model and Windows version -specific behavior

added.

05/16/2008 4.0.1 Editorial Revised and edited the technical content.

06/20/2008 4.1 Minor Updated the technical content.

07/25/2008 4.1.1 Editorial Revised and edited the technical content.

08/29/2008 4.2 Minor Updated the technical content.

10/24/2008 5.0 Major Updated and revised the technical content.

12/05/2008 5.1 Minor Updated the technical content.

01/16/2009 6.0 Major Updated and revised the technical content.

02/27/2009 6.1 Minor Updated the technical content.

04/10/2009 6.2 Minor Updated the technical content.

05/22/2009 6.2.1 Editorial Revised and edited the technical content.

07/02/2009 6.3 Minor Updated the technical content.

08/14/2009 6.4 Minor Updated the technical content.

09/25/2009 6.5 Minor Updated the technical content.

11/06/2009 6.5.1 Editorial Revised and edited the technical content.

12/18/2009 6.6 Minor Updated the technical content.

3 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Date

Revision

History

Revision

Class Comments

01/29/2010 6.6.1 Editorial Revised and edited the technical content.

03/12/2010 6.7 Minor Updated the technical content.

04/23/2010 6.7.1 Editorial Revised and edited the technical content.

06/04/2010 6.8 Minor Updated the technical content.

07/16/2010 6.8 No change No changes to the meaning, language, or formatting of the

technical content.

08/27/2010 6.8 No change No changes to the meaning, language, or formatting of the

technical content.

10/08/2010 6.9 Minor Clarified the meaning of the technical content.

11/19/2010 7.0 Major Significantly changed the technical content.

01/07/2011 7.0 No change No changes to the meaning, language, or formatting of the

technical content.

02/11/2011 7.0 No change No cha nges to the meaning, language, or formatting of the

technical content.

03/25/2011 7.0 No change No changes to the meaning, language, or formatting of the

technical content.

05/06/2011 7.0 No change No changes to the meaning, language, or formatting of the

technical content.

06/17/2011 7.1 Minor Clarified the meaning of the technical content.

09/23/2011 7.1 No change No changes to the meaning, language, or formatting of the

technical content.

12/16 /2011 8.0 Major Significantly changed the technical content.

03/30/2012 8.0 No change No changes to the meaning, language, or formatting of the

technical content.

07/12/2012 8.0 No change No changes to the meaning, language, or formatting of the

technical content.

10/25/2012 8.0 No change No changes to the meaning, language, or formatting of the

technical content.

01/31/2013 8.0 No change No changes to the meaning, language, or formatting of the

technical content.

08/08/2013 9.0 Major Significantly changed the technical content.

11/14/2013 9.0 No change No changes to the meaning, language, or formatting of the

technical content.

4 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Date

Revision

History

Revision

Class Comments

02/13/2014 9.0 No change No changes to the meaning, language, or formatting of the

technical content.

05/15/2014 10.0 Major Significantly changed the technical content.

5 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Contents

1 Introduction 10
1.1 Glossary 10
1.2 References 17

1.2.1 Normative References 17
1.2.2 Informative References 17

1.3 Overview 17
1.3.1 Metafile Structure 17
1.3.2 Graphics Objects 19
1.3.3 Byte Ordering 20

1.4 Relationship to Protocols and Other Structures 20
1.5 Applicability Statement 20
1.6 Version ing and Localization 20
1.7 Vendor -Extensible Fields 21

2 Structures 22
2.1 EMF Enumerations 22

2.1.1 RecordType Enumeration 22
2.1.2 ArcDirection Enumeration 30
2.1.3 ArmStyle Enumeration 31
2.1.4 BackgroundMode Enumeration 32
2.1.5 ColorAdjustment Enumeration 32
2.1.6 ColorMatchToTarget Enumeration 32
2.1.7 ColorSpace Enumeration 33
2.1.8 Contrast Enumeration 33
2.1.9 DIBColors Enumeration 34
2.1.10 EmrComment Enumeration 34
2.1.11 ExtTextOutOptions Enumeration 35
2.1.12 FamilyType Enu meration 36
2.1.13 FloodFill Enumeration 36
2.1.14 FormatSignature Enumeration 36
2.1.15 GradientFill Enumeration 37
2.1.16 GraphicsMode Enumeration 37
2.1.17 HatchStyle Enumeration 38
2.1.18 ICMMode Enumeration 39
2.1.19 Illuminant Enumeration 39
2.1.20 Letterform Enumeration 40
2.1.21 MapMode Enumeration 41
2.1.22 MetafileVersion Enumer ation 42
2.1.23 MidLine Enumeration 42
2.1.24 ModifyWorldTransformMode Enumeration 43
2.1.25 PenStyle Enumeration 43
2.1.26 Point Enumerat ion 45
2.1.27 PolygonFillMode Enumeration 45
2.1.28 Proportion Enumeration 45
2.1.29 RegionMode Enumeration 46
2.1.30 SerifType Enumeration 47
2.1.31 StockObject Enumeration 48
2.1.32 StretchMode Enumeration 50
2.1.33 StrokeVariation Enumeration 51
2.1.34 Weight Enumeration 51

6 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.1.35 XHeight Enumeration 52
2.2 EMF Objects 53

2.2.1 BitFIX28_4 Object 53
2.2.2 ColorAdjustment Object 53
2.2.3 DesignVector Object 55
2.2.4 EmrFormat Object 55
2.2.5 EmrText Object 56
2.2.6 EpsData Object 58
2.2.7 GradientRectangle Object 59
2.2.8 GradientTriangle Object 59
2.2.9 Header Object 60
2.2.10 HeaderExtension1 Object 62
2.2.11 HeaderExtens ion2 Object 62
2.2.12 LogBrushEx Object 63
2.2.13 LogFont Object 63
2.2.14 LogFontEx Object 66
2.2.15 LogFontExDv Object 68
2.2.16 LogFontPanose Object 69
2.2.17 LogPalette Object 71
2.2.18 LogPaletteEntry Object 71
2.2.19 LogPen Object 72
2.2 .20 LogPenEx Object 72
2.2.21 Panose Object 74
2.2.22 PixelFormatDescriptor Object 75
2.2.23 Point28_4 Object 78
2.2.24 RegionData Object 79
2.2.25 RegionDataHeader Object 79
2.2.26 TriVertex Object 80
2.2.27 UniversalFontId Object 81
2.2.28 XForm Object 82

2.3 EMF Records 83
2.3.1 Bitmap Record Types 83

2.3.1.1 EMR_ALPHABLEND Record 86
2.3.1.2 EMR_BITBLT Record 90
2.3.1.3 EMR_MASKBLT Record 93
2.3.1.4 EMR_PLGBLT Record 98
2.3.1.5 EMR_SETDIBITSTO DEVICE Record 102
2.3.1.6 EMR_STRETCHBLT Record 104
2.3.1.7 EMR_STRETCHDIBITS Record 108
2.3.1.8 EMR_TRANSPARENTBLT Record 111

2.3.2 Clipping Record Types 114
2.3.2.1 EMR_EXCLUDECLIPRECT Record 115
2.3.2.2 EMR_EXTSELECTCLIPRGN Record 116
2.3.2.3 EMR_INTERSECTCLIPRECT Record 117
2.3.2.4 EMR_OFFSETCLIPRGN Record 117
2.3.2.5 EMR_SELECTCLIPPATH Record 118

2.3.3 Comment R ecord Types 118
2.3.3.1 EMR_COMMENT Record 120
2.3.3.2 EMR_COMMENT_EMFPLUS Record 120
2.3.3.3 EMR_COMMENT_EMFSPOOL Record 121
2.3.3.4 EMR_COMMENT_PUBLIC Record Types 122

2.3.3.4.1 EMR_COMMENT_BEGINGROUP Record 123
2.3.3.4.2 EMR_COMMENT_ENDGROUP Record 124

7 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.3.3.4.3 EMR_COMMENT_MULTIFORMATS Record 125
2.3.3.4.4 EMR_COMMENT_WINDOWS_METAFILE Record 126

2.3.4 Control Record Types 127
2.3.4.1 EMR_EOF Record 128
2.3.4.2 EMR_HEADER Record Types 129

2.3.4.2.1 EmfMetafileHeader Record 133
2.3.4.2.2 EmfMetafileHeaderExtension1 Record 134
2.3.4.2.3 EmfMetafileHeaderExtension2 Record 136

2.3.5 Drawing Record Types 139
2.3.5.1 EMR_ANGLEARC Record 143
2.3.5.2 EMR_ARC Record 144
2.3.5.3 EMR_ARCTO Record 145
2.3.5.4 EMR_CHORD Record 146
2.3.5.5 EMR_ELLIPSE Record 147
2.3.5.6 EMR_EXTFLOODFILL Record 147
2.3.5.7 EMR_EXTTEXTOUTA Record 148
2.3.5.8 EMR_EXTTEXTOUTW Record 149
2.3.5.9 EMR_FILLPATH Record 150
2.3.5.10 EMR_FILLRGN Record 151
2.3.5.11 EMR_FRAMERGN Record 152
2.3.5.12 EMR_GRADIENTFILL Record 153
2.3.5.13 EMR_LINETO Record 155
2.3.5.14 EMR_PAINTRGN Record 155
2.3.5.15 EMR_PIE Record 156
2.3.5.16 EMR_POLYBEZIER Record 157
2.3.5.17 EMR_POLYBEZIER16 Record 158
2.3.5.18 EMR_POLYBEZIERTO Record 159
2.3.5.19 EMR_POLYBEZIERTO16 Record 160
2.3.5.20 EMR_POLYDRAW Record 161
2.3.5.21 EMR_POLYDR AW16 Record 162
2.3.5.22 EMR_POLYGON Record 163
2.3.5.23 EMR_POLYGON16 Record 164
2.3.5.24 EMR_POLYLINE Record 165
2.3.5.25 EMR_POLYLINE 16 Record 166
2.3.5.26 EMR_POLYLINETO Record 167
2.3.5.27 EMR_POLYLINETO16 Record 168
2.3.5.28 EMR_POLYPOLYGON Record 169
2.3.5.29 EMR_POLYPOLYGON16 Record 170
2.3.5.30 EMR_POLYPOLYLINE Record 171
2.3.5.31 EMR_POLYPOLYLINE16 Record 172
2.3.5.32 EMR_POLYTEXTOUTA Record 174
2.3.5.33 EMR_POLYTEXTOUTW Record 175
2.3.5.34 EMR_RECTANGLE Record 176
2.3.5.35 EMR_ROUNDR ECT Record 177
2.3.5.36 EMR_SETPIXELV Record 177
2.3.5.37 EMR_SMALLTEXTOUT Record 178
2.3.5.38 EMR_STROKEANDFILLPATH Record 180
2.3.5.39 EMR_STROKEPATH Record 180

2.3.6 Escape Record Types 181
2.3.6.1 EMR_DRAWESCAP E Record 182
2.3.6.2 EMR_EXTESCAPE Record 183
2.3.6.3 EMR_NAMEDESCAPE Record 183

2.3.7 Object Creation Record Types 184

8 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.3.7.1 EMR_CRE ATEBRUSHINDIRECT Record 186
2.3.7.2 EMR_CREATECOLORSPACE Record 187
2.3.7.3 EMR_CREATECOLORSPACEW Record 188
2.3.7.4 EMR_CREATEDIBPATTERNBRUSHPT Record 189
2.3.7.5 EMR_CREATEMONOBRUSH Record 190
2.3.7.6 EMR_CREATEPALETTE Record 192
2.3.7.7 EMR_CREATEPEN Record 193
2.3.7.8 EMR_EXTCREATEFONTINDIRECTW Record 193
2.3.7.9 EMR_EXTCREATEPEN Record 195

2.3.8 Object Manipulation Record Types 197
2.3.8.1 EMR _COLORCORRECTPALETTE Record 198
2.3.8.2 EMR_DELETECOLORSPACE Record 199
2.3.8.3 EMR_DELETEOBJECT Record 200
2.3.8.4 EMR_RESIZEPALETTE Record 200
2.3.8.5 EMR_SELECTOBJECT Record 201
2.3.8.6 EMR_SELECTPALETTE Record 201
2.3.8.7 EMR_SETCO LORSPACE Record 202
2.3.8.8 EMR_SETPALETTEENTRIES Record 203

2.3.9 OpenGL Record Types 203
2.3.9.1 EMR_GLSBOUNDEDRECORD Record 205
2.3.9.2 EMR_GLSRECORD Record 205

2.3.10 Path Bracket Record Types 206
2.3.11 State Record Types 207

2.3.11.1 EMR_COLORMATCHTOTARGETW Record 211
2.3.11.2 EMR_FORCEUFIMAPPING Record 212
2.3.11.3 EMR_INVERTRGN Record 213
2.3.11.4 EMR_MOVETOEX Record 214
2.3.11.5 EMR_PIXELFORMAT Record 214
2.3.11.6 EMR_RESTOREDC Record 215
2.3.11.7 EMR_SCALEVIEWPORTEXTEX Record 216
2.3.11.8 EM R_SCALEWINDOWEXTEX Record 216
2.3.11.9 EMR_SETARCDIRECTION Record 217
2.3.11.10 EMR_SETBKCOLOR Record 218
2.3.11.11 EMR_SETBKMODE Record 219
2.3.11.12 EMR_SETBRUSHORGEX Record 219
2.3.11.13 EMR_SETCOLORADJUSTMENT Record 220
2.3.11.14 EMR_SETICMMODE Record 220
2.3.11.15 EMR_SETICMPROFILEA Record 221
2.3.11.16 EMR_SETICMPROFILEW Record 222
2.3.11.17 EMR_SETLAYOUT Record 223
2.3.11.18 EMR_SETLI NKEDUFIS Record 223
2.3.11.19 EMR_SETMAPMODE Record 224
2.3.11.20 EMR_SETMAPPERFLAGS Record 225
2.3.11.21 EMR_SETMITERLIMIT Record 225
2.3.11.22 EMR_SETPOLYFILLMODE Record 226
2.3.11.23 EMR_SETROP2 Record 226
2.3.11.24 EMR_S ETSTRETCHBLTMODE Record 227
2.3.11.25 EMR_SETTEXTALIGN Record 228
2.3.11.26 EMR_SETTEXTCOLOR Record 228
2.3.11.27 EMR_SETTEXTJUSTIFICATION Record 229
2.3.11.28 EMR_SETVIEWPORTEXTEX Record 229
2.3.11.29 E MR_SETVIEWPORTORGEX Record 230
2.3.11.30 EMR_SETWINDOWEXTEX Record 230

9 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.3.11.31 EMR_SETWINDOWORGEX Record 231
2.3.12 Transform Record Types 231

2.3.12.1 EMR_MODIFY WORLDTRANSFORM Record 232
2.3.12.2 EMR_SETWORLDTRANSFORM Record 233

3 Structure Examples 235
3.1 Metafile Design 235

3.1.1 Managing Objects 235
3.1.1.1 EMF Object Table 235

3.1.2 Byte Ordering 236
3.2 EMF Metafile Example 237

3.2.1 EMR_HEADER Example 252
3.2.2 EMR_CREATEBRUSHINDIRECT Example 255
3.2.3 EMR_SELECTOBJECT Example 256
3.2.4 EMR_BITBLT Exam ple 256
3.2.5 EMR_SELECTOBJECT Example 258
3.2.6 EMR_BITBLT Example 259
3.2.7 EMR_SETBKMODE Example 274
3.2.8 EMR_EXTCREATEFO NTINDIRECTW Example 274
3.2.9 EMR_SELECTOBJECT Example 277
3.2.10 EMR_EXTTEXTOUTW Example 278
3.2.11 EMR_EXTCREATEFONTINDIRECTW Example 279
3.2.12 EMR_SELECTOBJECT Example 282
3.2.13 EMR_EXTCREATEFONTINDIRECTW Example 283
3.2.14 EMR_SELECTOBJECT Example 286
3.2.15 EMR_DELETEOBJECT Example 286
3.2.16 EMR_EXTCREATEFONTINDIRECTW Example 287
3.2.17 EMR_SELECTOBJECT Example 289
3.2.18 EMR_SELECT OBJECT Example 290
3.2.19 EMR_DELETEOBJECT Example 290
3.2.20 EMR_DELETEOBJECT Example 291
3.2.21 EMR_SELECTOBJECT Example 291
3.2.22 EMR_EOF Example 291

4 Security Considerations 293

5 Appendix A: Product Behavior 294

6 Change Tracking 302

7 Index 304

10 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1 Introduction

This is a specification of the Enhanced Metafile Format (EMF) structure. The EMF structure specifies
a metafile format that can store a picture in device - independent form. The stored picture can be
rendered by parsing and processing the metafile.

An EMF metafile is a series of variable - length records, called EMF records, which contain graphics
drawing commands, obj ect definitions, and properties. The metafile begins with a header record,
which includes the metafile version, its size, the resolution of the device on which the picture was
created, and the dimensions of the picture. An EMF metafile is "played back" whe n its records are

converted to a format understood by a specific graphics device. The image defined in an EMF
structure maintains its dimensions, shape, and proportions on any output device, including printers,
plotters, and desktops, or in the client area s of applications.

Sections 1.7 and 2 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. All other sections and examples in this
specification are informative.

1.1 Glossary

The following terms are defined in [MS -GLOS] :

American National Standards Institute (ANSI) character set
ASCII
big - endian

color profile
enhanced metafile format (EMF)
enhanced metafile format plus extensions (EMF+)
enhanced metafile spool format (EMFSPOOL)
Graphics Device Interface (GDI)
Graphics Device Interface, Extended (GDI+)

Image Color Management (ICM)

little - endian
original equipment manufacturer (OEM) character set
PostScript
print job
print server
printer driver
spool file

Unicode
UTF - 16LE (Unicode Transformation Format, 16 bits, little - endian)
Windows metafile format (WMF)

The following terms are specific to this document:

28.4 bit FIX notation: A notation for representing the location of a point on a device surface to

within one -sixteenth of a pixel. Each point coordinate is a 32 -bit value, of which the 28 higher -

order bits are the signed integral part and the 4 lower -order bits are the unsigned fractional
part , in one -sixteenth units of distance.

For example, the number 0x0000003C is a coordinate value of 3.75, because the fractional
part is 12 sixteenths, or 0.75.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

11 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

additive color model: A color model that involves light emitted directly from a source or
illumin ant of some sort. The additive reproduction process usually uses red, green, and blue

light to produce the other colors.

alpha transparency: An alpha value is a transparency value represented by a number between

zero and one. Each pixel has an alpha value that represents its level of transparency, which is
multiplied by the color values to get the final value.

anti - aliasing: The smoothing of the jagged appearance of font characters and lines, which is an
artifact of the limited resolution on an output devic e. The pixels that surround the edges of the
character glyph or line are changed to varying shades of color in order to blend the sharp
edge into the background.

ascent: The distance that characters of a font typeface extend above the top of a lowercase "x ".

aspect ratio: The ratio that is computed by dividing the width of a pixel on a given output device
by its height.

baseline: The imaginary line to which the bottom of the lowercase "x" character in a font
typeface is aligned.

Bezier curve: A type of curv e defined by a mathematical formula and a number of points
greater than or equal to 2, used in computer graphics and in the mathematical field of

numeric analysis. A cubic Bezier curve is defined by four points: two endpoints and two
control points. The cu rve does not pass through the control points, but the control points act
like magnets, pulling the curve in certain directions and influencing the way the curve bends.
With multiple Bezier curves, the endpoint of one is the starting point of the next.

bitm ap: A collection of structures that contains a device - independent representation of a
graphical image, a logical palette , dimensions, and other information.

brightness: The relative lightness or darkness of an image, or of a particular color in an image.

cell height: A vertical measure of font size, which is the sum of the font height and internal

leading . It might not be the same as the distance between two lines of text.

color channel: A component color from which all colors in an image are rendered. In an RGB
color space , there are color channels for red, green, and blue. In a grayscale color space ,
the color channels are black and white. Color channel values typically range from 0 to 255.

color correction: Altering the colors in an image in order to pri nt or display it such that the
colors correctly match reality.

colorfulness: A concept referring to the perceived intensity of a specific color, the difference
between a color against gray.

color gamut: The entire range of colors that is available on a pa rticular graphics output device
such as a display or printer.

color matching: The conversion of a color, sent from its original color space , to its visually

closest color in the destination color space . See also Image Color M anagement (ICM) .

color model: See color space .

color plane: In bitmap graphics, all pixel information for a single color. See color channel .

color proofing: The process of previewing, or "proofing" colors, which were developed on one
device, on a differen t device.

%5bMS-GLOS%5d.pdf

12 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

color space: A mapping of color components to a multidimensional coordinate system. The
number of dimensions is generally two, three, or four. For example, grayscales, which are

combinations of only black and white, can be mapped to a two -dimensi onal color space. If
colors are expressed as a combination of the three components red, green, and blue, a three -

dimensional space is sufficient to describe all possible colors. If transparency is considered one
of the components of an RGB color, four dime nsions are appropriate.

color table: An array of data that maps pixel values into a color space .

compositing: The process that takes place during image rendering, which combines color data
from multiple graphics region .

contrast: The relative difference be tween lightness and darkness in an area of an image.

coordinate space: A space based on Cartesian coordinates, which provides a means of

specifying the location of each point in the space. A two -dimensional coordinate space requires
two axes that are perpendicular and equal in length. Three two -dimensional coordinate spaces
are generally used to describe an output surface: world , page , and device . To scale device -

independent output for a particular physical device, a rectangular area in the world or page
coordinate space is mapped into the device coordinate space using a trans form .

design vector: A set of specific values for the properties of a multiple master font.

device context: A structure that defines a set of graphic objects and their associated attributes,
and the graphic modes that affect output. The graphic objects include a pen for line drawing, a
brush for painting and filling, a bitmap for copying or scrolling parts of th e screen, a palette
for defining the set of available colors, a region for clipping and other operations, and a path
for painting and drawing operations. All of these device context properties and objects
together define the environment for graphics output .

device - independent bitmap (DIB): A container for bitmapped graphics, which specifies

characteristics of the bitmap such that it can be created using one application and loaded and
displayed in another application, while retaining an identical appearance ([MS -WMF] section
2.2.2.9).

device space: The output space for graphics transforms . It usually refers to the client area of
an application window; however, it can also include the entire desktop, a complete window, or
a page of printer or plotter paper. Physical device space dimensions vary according to the
dimensions set by the display, printer, or plotter technology.

diacritic: A small sign such as an accent mark that is added to a letter to alter pronunciation or
to distingu ish between similar usages.

dithering: A digital representation of continuous - tone graphics using halftones .

ducking: A ducking font is one that has been designed to be short enough to fit under diacritical
marks or accent marks.

em size: A measure of font size, which is the cell height minus the internal leading . An "em"

is a term that has been used historically as a unit of typeset size.

encapsulated PostScript (EPS): A file of PostScript raw data that describes the appearanc e
of a single page. EPS data can describe text, graphics, and images; but the primary purpose
of an EPS file is to be encapsulated within another PostScript page definition.

%5bMS-WMF%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

13 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

font axis: A property of font design that can assume a linear range of values. In general, a font
has multiple axes. For example, a font may define an axis for weight , along which are the

possible values for the property.

font hinting: The use of mathematical operations to manipulate the appearance of an ou tline

font so that it lines up with a rasterized grid. At small resolutions, with or without anti -
aliasing , hinting is critical for producing clear, legible text for human readers.

font mapper: An operating system component that maps specified font attribu tes to available,
installed fonts on the system.

gamma: The way brightness is distributed across the intensity spectrum by a graphics device.
Depending on the device, the gamma may have a significant effect on the way colors are
perceived. Technically, gam ma is an expression of the relationship between input voltage and

resulting output intensity .

A perfect linear device would have a gamma of 1.0; a monitor or printer typically has a
gamma in the range of 1.8 to 2.6, which affects midrange tones.

gamma corr ection: An adjustment to the light intensity (brightness) of a graphics device in
order to match the output more closely to the original image.

halftone: A color representation consisting of a discrete gray or tone level.

inclusive - inclusive: When referrin g to the bounds of a rectangle that consists of two
coordinates ðone coordinate for one corner and the other coordinate for the opposite corner ð
the coordinates are considered part of the rectangle.

If not inclusive - inclusive, the coordinates are not part of the rectangle, and instead are one
logical unit outside the bounds of the rectangle along both coordinate axes.

intensity: The magnitude of a component color in the color space .

internal leading: The amount of space inside a character cell, within the bounds set by the font

ascent . Accent marks and other diacritics can occur in this area.

JPEG: Joint Photographic Experts Group (JPEG): A standard still - image format that is very
popular due to its ex cellent compression capabilities. JPEG files are widely used for
photographic images, but are not as well suited for compressing charts and diagrams, because
text can become fuzzy. JPEG files use the JPEG File Interchange Format (JFIF) [JFIF] , and
their file extensions are .JPG or .JFF.

line cap: The shape to use at the end of a line drawn by a graphics pen.

line join: The shape to use at the intersection of two lines drawn by a graphics pen.

logi cal palette: A palette that defines colors as device - independent values. Unlike the system
palette , which has predefined, device -specific color definitions, a logical palette contains color
values that can be defined entirely by an application.

A logical p alette entry must be mapped to the system palette in order for the custom colors
to appear. Thus, a logical palette allows an application to use as many colors as needed

without interfering with colors displayed by other applications.

mapping mode: The uni t of measure for transforming logical units into device units, and also for
defining the orientation of the x -axis and y -axis of the device surface.

http://go.microsoft.com/fwlink/?LinkId=89925

14 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

metafile: A collection of structures that can store an image in an application - independent
format. The stor ed image can be recreated by processing the metafile structures. A metafile

contains a sequence of drawing commands, object definitions, and configuration settings.

The commands, objects, and settings recorded in a metafile can be used to render its

conten ts on a display, as output by a printer or plotter, stored in memory, or saved to a file or
stream.

miter length: At the intersection of two lines, the distance from the intersection of the line walls
on the inside of the line join to the intersection of the line walls on the outside of the line
join . The miter length can be large when the angle between two lines is small. If the miter
length of the join of an intersection exceeds a specified limit, the join can be beveled to keep
it within the limit of the join of the intersection.

monoscopic: The property of an image that conveys a lack of the illusion of depth, as if the
image were two -dimensional.

multiple master: A font technology that is a variation of the PostScript Type 1 font format.

Multiple master fonts are outline fonts , so changing their size does not affect the quality of
their output.

Multiple master technology supports the creation of an unlimited number of custom variations

of a font, cal led instances, as well as the emulation of typefaces that might not be present
on the user's system.

OpenGL: A software API for graphics hardware that supports the rendering of multidimensional
graphical objects. The Windows implementation of OpenGL [OPENGL] is industry -standard
graphics software with which implementers can create high -quality still and animated three -
dimensional color images.

OpenType: A Unicode -base d font technology that is an extension to TrueType and Type 1

font technologies. OpenType allows PostScript and TrueType glyph definitions to reside in a
common container format.

outline font: A font that is defined with mathematical equations, which makes it possible for a
printer or other output device to generate the characters at any size. Besides being arbitrarily
scalable, the appearance of an outline font improves in proportion to the res olution of an
output device. TrueType and PostScript are examples of outline font technology.

packed DIB: A device - independent bitmap (DIB) in which the bit array immediately follows

the header ([M S-WMF] section 2.2.2.9).

page space: The next logical space closer to the mapping of a physical device after world
space . It determines the mapping mode . Page space is defined with device - independent
units, such as millimeters or inches.

palette: An array of elements, each of which contains the definition of a color. The color
elements in a palette are often indexed so that clients can refer to the colors, each of which

can occupy 24 bits or more, by a number that requires less storage space.

PANOSE: A clas sification system for font typefaces that is based on certain specific visual
characteristics of the font, including weight (emphasis) and serif style.

path: A graphics object that is a container for a series of line and curve segments and regions
in an im age.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90241
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-WMF%5d.pdf

15 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

path bracket: A series of paths that composes a larger figure. A path bracket specifies the
current path that is defined in the playback device context .

pitch: A property of a font that describes the horizontal density of characters in a font; that is ,
the number of characters that can fit in a given unit of space. When all the characters in a font

have the same width, the font is called "fixed -pitch"; if characters can have various widths,
the font is "variable -pitch".

"Times New Roman" is a variable -pitch font; it is easy to see that the characters in the font
may have different widths. For example, the width of a lowercase "i" is visibly less than the
width of an uppercase "W".

playback device context: The device_context that defines the current grap hics state during
playback of the metafile . Although the data in an EMF metafile is device - independent,

playback is always associated with an output device with specific properties, such as
resolution, color support, etc.

PNG: Portable Network Graphics (PNG): A bitmapped graphics file format [RFC2083] that

provides advanced graphics features such as 48 -bit color, alpha channels, built - in gamma
and color correction , ti ght compression, and the ability to display at one resolution and print
at another.

raster operation: The process of combining the bits in a source bitmap with the bits in a
destination bitmap and the bits in a specified pattern, to achieve a desired graphical output.

rasterized font: A font produced with matrixes of discrete pixel settings. Such fonts are not
scalable, but must define glyph bitmaps at specific sizes. Because of this, the appe arance of
rasterized fonts does not improve in proportion to the resolution of an output device and,
when magnified, appear significantly worse than vector fonts .

rasterizer: A program that converts geometric shapes into matrixes of discrete pixel settings on

a graphics object such as a font.

reflection transform: A transform that is used to create a mirror image of an object with

respect to either the horizontal or vertical axis.

region: A graphics object that is nonrectilinear in shape and is defined by an array of scanlines.

RGB: red -green -blue (RGB): An additive color model in which red, green and blue are
combined in various ways to reproduce other colors.

RGBA: A color space in which each pixel is a group of four components in the following order:

red, green, blue, alpha . The red, green, and blue values specify the intensity of each color;
the values range from 0.0 (least intense) to 1.0 (most intense). The number of bits for each
component varies depends on the pixel format. The color displayed is a result of the sum of
the three color values. If all three values are 0.0, the result is black. If all three values are
1.0, the result is white.

rotation transform: A transform that is used to rotate an object. When rotation occurs, the

points that make up an object are rotated with respect to the coordinate space origin.

scaling transform: A transform that is used to stretch or compress an object horizontally or
vertically.

shear transform: A transform that is used to shear or cut an object. There are two
components of a shear transform : The first alters the vertical lines in an object, and the
second alters the horizontal lines.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90313

16 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

stereoscopic: The property of an image that gives the illusion of depth, as if the image were
three -dimensional. The pixels that compose such an image can include a color plane that is

designed to add that illusion.

stock object: A predefined graphics object. Stock objects are standard, commonly -used objects,

such as a black brush and pen. The set of predefined stock objects is spec ified in the
StockObject enumeration (section 2.1.31) . Stock objects are neither created nor dele ted.

system palette: The palette that is actually in use on an output device such as a display
terminal. The structure of a system palette and the format of colors are device -dependent.
Contrast with a logical palette .

tint: The amount of a neutral color, such as black or white, which is mixed with another color.
Changing the tint increases or decreases the intensity and saturation, and leaves the

coordinates of the color in the color space unchanged.

transform: An algorithm that transforms the size, orientation, and shape of objects that are
copied from one coordinate space into another. Although a transform affects an object as a

whole, it is applied to each point, or to each line, in the object.

transformation: See transform .

translation transform: A transform that is used to shift each point in an object vertically,

horizontally, or both, by a specified amount.

TrueType: A scalable font technology that renders fonts for both the printer and the screen.
Originally de veloped by Apple, it was enhanced jointly by Apple and Microsoft. Each TrueType
font contains its own algorithms for converting printer outlines into screen bitmaps , which
means both the outline and bitmap information is rasterized from the same font data. The
lower - level language embedded within the TrueType font allows great flexibility in its design.
Both TrueType and Type 1 font technologies are part of the OpenType format.

Type 1 font: A public, standard type format originally developed for use with PostScript
printers. Type 1 fonts contain two components ðthe outline font , used for printing; and the

bitmap font set, used for screen display.

typeface: The primary design of a set of printed characters such as Courier , Helveti ca , and
Times Roman .

The terms typeface and font are sometimes used interchangeably. A font is the particular
implementation and variation of the typeface such as normal, bold, or italics. The

distinguishing characteristic of a typeface is often the presen ce or absence of serifs.

vector font: A font that is defined with geometrical primitives such as points, lines, curves, and
polygons, which are all based on mathematical equations instead of collections of discrete
pixel settings. Vector fonts can be rende red in high quality at arbitrary sizes. Outline fonts
are vector fonts. Contrast with rasterized fonts .

weight: A property of a font that specifies the degree of emphasis or boldness of the characters.

Windows Color System (WCS): A superset of ICM APIs and functionality. <1>

world space: The most abstract logical coordinate space for graphics transform .

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317

17 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other

documents include a publishing year when one is available .

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com . We
will assist you in finding the relevant information.

[ISO/IEC -8859 -1] International Organization for Standardization, "Information Technology -- 8-Bit

Single -Byte Coded Graphic Character Sets -- Part 1: Latin Alphabet No. 1", ISO/ IEC 8859 -1, 1998,
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=28245

Note There is a charge to download the specification.

[JFIF] Hamilton, E., "JPEG File Interch ange Format, Version 1.02", September 1992,
http://www.w3.org/Graphics/JPEG/jfif.txt

[MS -WMF] Microsoft Corporation, " Windows Metafile Format ".

[RFC2083] Boutell, T., "PNG (Portable Network Graphics) Specification Version 1.0", RFC 2083,
March 1997, http://www.ietf.org/rfc/rfc2083.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement L evels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

[UNICODE] The Unicode Consortium, "Unicode Home Page", 2006, http://www.unicode.org/

1.2.2 Informative References

[MS -EMFPLUS] Microsoft Corporation, " Enhanced Metafile Format Plus Extensions ".

[MS -EMFSPOOL] Microsoft Corporation, " Enhanced Metafile Spool Format ".

[MS -GLOS] Microsoft Corporation, " Windows Protocols Master Glossary ".

[MSDN -GDI+] Microsoft Corporation, "GDI+", http://msdn.microsoft.com/en -
us/library/ms533798.asp x

[MSDN -WRLDPGSPC] Microsoft Corporation, "World -Space to Page -Space Transformations",
http://msdn.microsoft.com/en -us/library/ms532657.aspx

[OPENGL] Segal, M. and Akeley, K., "The OpenGL Graphic s System: A Specification, Version 2.1",
December 2006, http://www.opengl.org/registry/doc/glspec21.20061201.pdf

1.3 Overview

1.3.1 Metafile Structure

The EMF specifies a collection of data records that contain graphics drawing commands and object

definitions. EMF metafiles provide true device independence; the image defined in an EMF metafile
maintains its dimensions, shape, and proportions on any output device, including printers, plotters,
desktops, and in the client areas of many applications.

mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=90689
http://go.microsoft.com/fwlink/?LinkId=89925
%5bMS-WMF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90313
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90550
%5bMS-EMFPLUS%5d.pdf
%5bMS-EMFSPOOL%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90013
http://go.microsoft.com/fwlink/?LinkId=90013
http://go.microsoft.com/fwlink/?LinkId=90169
http://go.microsoft.com/fwlink/?LinkId=90241

18 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

An EMF metafile consists of a sequence of EMF records. The first record in the metafile is always an
EMF header record, and the last is always an EMF end -of - file record. Between these are records that

specify drawing operations, the configuration of properties, and the creation of graphics objects, all
of which together compose a device - independent picture.

The different versions of EMF metafiles are:

Á Original : This is the first version of EMF metafile, which supports device - independent drawing

commands and objects. <2>

Á Extension 1 : The first extension to EMF adds a pixel format record and support for OpenGL

commands, enhancing the dev ice independence and flexibility of EMF metafiles. <3>

Á Extension 2 : The second extension to EMF adds the capability to measure distances on device

surfaces in micrometers, enhancing the resolution and scalability supported by EMF met afiles.
<4>

The following diagram qualitatively depicts the structures of the different versions of EMF metafiles.

19 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 1: EMF metafile structures

Thus, all EMF metafiles can be considered to ha ve three sections:

Á EMF Header : The metafile header with extensions that correspond to this type of EMF metafile.

The header record contains information concerning the structure and contents of the metafile,
including an optional description string and pixe l format descriptor. See section 2.3.4.2 for details
concerning the EMF header.

Á EMF Records : An array of EMF records that contains drawing orders, graphics state information,

and graphics object definiti ons. At least one record has to be present ðnot counting the EMF
header or EMF end -of - file records ðor the metafile is invalid. See sections 2.3.10 and 2.3.5 for
specifications of all EMF record types.

Á EMF End - of - File : The EMF end -of - file record signals the end of all EMF metafiles. It has to be

the last record in the metafile. If the EMF metafile contains an optional palette , it is in the form
of an array of LogPaletteEntry (section 2.2.18) objects located in the EMF end -of - file record.
Offsets to the palette are present in both the EMF header and EMF end -of - file records.

Within the portions of these files identified as EMF header records, the description and pixel format
substructures are o ptional, and they can be placed in any order. Their presence, location, and

relative order in a given EMF file are determined by offset values in the EMF header record. If
present, they are part of the EMF header record, and cannot be located at some arbit rary location in
the EMF metafile, such as between EMF records.

EMF records are contiguous; this is required, because the information that is available for traversing
the file from record to record depends on it. That is, from any given EMF record, includi ng the
header record, in order to move to the next sequential record in the file, the length of the record is

used.

1.3.2 Graphics Objects

Graphics objects, which are used in the drawing and painting operations specified in the records of
an EMF metafile, are created by Object Creation record types , specified in section 2.3.7 , prior to the

records that specify their use. These objects are designed to be reusable during the course of
processing the EMF metafile.

Throughout this specification, it is assumed that these previously defined, reusable graphics objects
are available when needed for the processing of particular metafile records. This store of available
objects is referred to in the text as the EMF Object Table , which is described in section 3.1.1.1 . The
exact characteristics of an object store for EMF objects can be determined by the particular
implementation that parses or writes EMF me tafiles.

The types of reusable objects that can be created and managed during EMF metafile playback
include:

Á Brushes, specified in section 2.2.12

Á Color spaces, specified in [MS-WMF] sections 2.2.2.11 and 2.2.2.12

Á Fonts, specified in sections 2.2.13 , 2.2.14 , 2.2.15 , and 2.2.16

Á Palettes, specified in section 2.2.17

Á Pens, specified in sections 2.2.19 and 2.2.20

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

20 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

When one of these objects is created, it is assigned a 32 -bit index in the EMF Object Table. An
object can be "activated" by an EMR_SELECTOBJECT record that refers to the index it was assigned.

There are also stock objects that can be selected for use in graphics operations. Stock objects are
also assigned 32 -bit indexes, but not at run time ðtheir indexes are predefined. They are

distinguished from the indexes of dynamically created graphics objects by having the most -
signi ficant bit set to 1. The other 31 bits of the index define the particular stock object, according to
the StockObject enumeration, specified in section 2.1.31 .

1.3.3 Byte Ordering

Data in metafile records is stored in little - endian format.

Some computer architectures number bytes in a binary word from left to right, which is referred to

as big - endian . The byte numbering used for bitfields in this specification is big -endian. Other
architectures number the bytes in a binary word from right to left, which is referred to as little -
endian. The byte numbering used for enumerations, objects, and records in this specification is
little -endian.

Using the big -endian and little -endian methods, the number 0x12345678 would be stored as shown
in the following table.

Byte order Byte 0 Byte 1 Byte 2 Byte 3

Big -endian 0x12 0x34 0x56 0x78

Little -endian 0x78 0x56 0x34 0x12

1.4 Relationship to Protocols and Other Structures

EMF is related to the following file formats:

Á Windows metafile format (WMF) [MS -WMF] uses similar graphics, commands, and objects,

but WMF files are not device - independent. <5>

Á Enhanced metafile spool format (EMFSPOOL) [MS -EMFSPOOL] is an application of EMF for

print job spooling.

Á Enhanced metafile format plus extensions (EMF+) [MS -EMFPLUS] specifies object -oriented

structures that can be embedded in EMF metafiles .<6>

1.5 Applicability Statement

Files that adhere to the EMF metafile format can be used as portable, device - independent containers
for images. The graphics supported in EMF metafiles are applicable to document content
representation, including printing and plotting.

1.6 Versioning and Localization

This specification covers versioning issues in the following areas:

Versioning: The EMF structure has been revised twice. The different versions are:

Á Original: The first version of the EMF structure, supporting records that define drawing

commands and graphics objects.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-EMFSPOOL%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-EMFPLUS%5d.pdf

21 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Á Extension 1: Added support for OpenGL records and an optional internal pixel format

descriptor. <7>

Á Extension 2: Added the capability of measuring display dimensions in micrometers. <8>

Localization: This structure defines no locale -specific processes or data.

1.7 Vendor - Extensible Fields

EMF metafiles define a mechanism for the encapsulation of arbitrary vendor -defined data. The
record type EMR_COMMENT can contain arbitrary private data that is unknown to EMF. This data is
meaningful only to applications that can decode the format of the data.

22 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2 Structures

The following sections specify various types of EMF metafile records and enumerations.

Note All character strings specified in this section are encoded in Unicode UTF16 - LE format, as
specified in [UNICODE] , unless stated otherwise.

2.1 EMF Enumerations

2.1.1 RecordType Enumeration

The RecordType enumeration defines values that uniquely identify EMF records. These values are
provided in the Type field of each record.

typedef enum

{

 EMR_HEADER = 0x00000001,

 EMR_POLYBEZIER = 0x00000002,

 EMR_POLYGON = 0x00000003,

 EMR_POLYLINE = 0x00000004,

 EMR_POLYBEZIERTO = 0x00000005,

 EMR_POLYLINETO = 0x00000006,

 EMR_POLYPOLYLINE = 0x00000007,

 EMR_POLYPOLYGON = 0x00000008,

 EMR_SETWINDOWEXTEX = 0x00000009,

 EMR_SETWINDOWORGEX = 0x0000000A,

 EMR_SETVIEWPORTEXTEX = 0x0000000B,

 EMR_SETVIEWPORTORGEX = 0x0000000C,

 EMR_SETBRUSHORGEX = 0x0000000D,

 EMR_EOF = 0x0000000E,

 EMR_SETPIXELV = 0x0000000F,

 EMR_SETMAPPERFLAGS = 0x00000010,

 EMR_SETMAPMODE = 0x00000011,

 EMR_SETBKMODE = 0x00000012,

 EMR_SETPOLYFILLMODE = 0x00000013,

 EMR_SETROP2 = 0x00000014,

 EMR_SETSTRETCHBLTMODE = 0x00000015,

 EMR_SETTEXTALIGN = 0x00000016,

 EMR_SETCOLORADJUSTMENT = 0x00000017,

 EMR_SETTEXTCOLOR = 0x00000018,

 EMR_SETBKCOLOR = 0x00000019,

 EMR_OFFSETCLIPRGN = 0x0000001A,

 EMR_MOVETOEX = 0x0000001B,

 EMR_SETMETARGN = 0x0000001C,

 EMR_EXCLUDECLIPRECT = 0x0000001D,

 EMR_INTERSECTCLIPRECT = 0x0000001E,

 EMR_SCALEVIEWPORTEXTEX = 0x0000001F,

 EMR_SCALEWINDOWEXTEX = 0x00000020,

 EMR_SAVEDC = 0x00000021,

 EMR_RESTOREDC = 0x00000022,

 EMR_SETWORLDTRANSFORM = 0x00000023,

 EMR_MODIFYWORLDTRANSFORM = 0x00000024,

 EMR_SELECTOBJECT = 0x00000025,

 EMR_CREATEPEN = 0x00000026,

 EMR_CREATEBRUSHINDIRECT = 0x00000027,

 EMR_DELETEOBJECT = 0x00000028,

 EMR_ANGLEARC = 0x00000029,

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90550

23 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 EMR_ELLIPSE = 0x0000002A,

 EMR_RECTANGLE = 0x0000002B,

 EMR_ROUNDRECT = 0x0000002C,

 EMR_ARC = 0x0000002D,

 EMR_CHORD = 0x0000002E,

 EMR_PIE = 0x0000002F,

 EMR_SELECTPALETTE = 0x00000030,

 EMR_CREATEPALETTE = 0x00000031,

 EMR_SETPALETTEENTRIES = 0x00000032,

 EMR_RESIZEPALETTE = 0x00000033,

 EMR_REALIZEPALETTE = 0x00000034,

 EMR_EXTFLOODFILL = 0x00000035,

 EMR_LINETO = 0x00000036,

 EMR_ARCTO = 0x00000037,

 EMR_POLYDRAW = 0x00000038,

 EMR_SETARCDIRECTION = 0x00000039,

 EMR_SETMITERLIMIT = 0x0000003A,

 EMR_BEGINPATH = 0x0000003B,

 EMR_ENDPATH = 0x0000003C,

 EMR_CLOSEFIGURE = 0x0000003D,

 EMR_FILLPATH = 0x0000003E,

 EMR_STROKEANDFILLPATH = 0x0000003F,

 EMR_STROKEPATH = 0x00000040,

 EMR_FLATTENPATH = 0x00000041,

 EMR_WIDENPATH = 0x00000042,

 EMR_SELECTCLIPPATH = 0x00000043,

 EMR_ABORTPATH = 0x00000044,

 EMR_COMMENT = 0x00000046,

 EMR_FILLRGN = 0x00000047,

 EMR_FRAMERGN = 0x00000048,

 EMR_INVERTRGN = 0x00000049,

 EMR_PAINTRGN = 0x0000004A,

 EMR_EXTSELECTCLIPRGN = 0x0000004B,

 EMR_BITBLT = 0x0000004C,

 EMR_STRETCHBLT = 0x0000004D,

 EMR_MASKBLT = 0x0000004E,

 EMR_PLGBLT = 0x0000004F,

 EMR_SETDIBITSTODEVICE = 0x00000050,

 EMR_STRETCHDIBITS = 0x00000051,

 EMR_EXTCREATEFONTINDIRECTW = 0x00000052,

 EMR_EXTTEXTOUTA = 0x00000053,

 EMR_EXTTEXTOUTW = 0x00000054,

 EMR_POLYBEZIER16 = 0x00000055,

 EMR_POLYGON16 = 0x00000056,

 EMR_POLYLINE16 = 0x00000057,

 EMR_POLYBEZIERTO16 = 0x00000058,

 EMR_POLYLINETO16 = 0x00000059,

 EMR_POLYPOLYLINE16 = 0x0000005A,

 EMR_POLYPOLYGON16 = 0x0000005B,

 EMR_POLYDRAW16 = 0x0000005C,

 EMR_CREATEMONOBRUSH = 0x0000005D,

 EMR_CREATEDIBPATTERNBRUSHPT = 0x0000005E,

 EMR_EXTCREATEPEN = 0x0000005F,

 EMR_POLYTEXTOUTA = 0x00000060,

 EMR_POLYTEXTOUTW = 0x00000061,

 EMR_SETICMMODE = 0x00000062,

 EMR_CREATECOLORSPACE = 0x00000063,

 EMR_SETCOLORSPACE = 0x00000064,

 EMR_DELETECOLORSPACE = 0x00000065,

24 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 EMR_GLSRECORD = 0x00000066,

 EMR_GLSBOUNDEDRECORD = 0x00000067,

 EMR_PIXELFORMAT = 0x00000068,

 EMR_DRAWESCAPE = 0x00000069,

 EMR_EXTESCAPE = 0x0000006A,

 EMR_SMALLTEXTOUT = 0x0000006C,

 EMR_FORCEUFIMAPPING = 0x0000006D,

 EMR_NAMEDESCAPE = 0x0000006E,

 EMR_COLORCORRECTPALETTE = 0x0000006F,

 EMR_SETICMPROFILEA = 0x00000070,

 EMR_SETICMPROFILEW = 0x00000071,

 EMR_ALPHABLEND = 0x00000072,

 EMR_SETLAYOUT = 0x00000073,

 EMR_TRANSPARENTBLT = 0x00000074,

 EMR_GRADIENTFILL = 0x00000076,

 EMR_SETLINKEDUFIS = 0x00000077,

 EMR_SETTEXTJUSTIFICATION = 0x00000078,

 EMR_COLORMATCHTOTARGETW = 0x00000079,

 EMR_CREATECOLORSPACEW = 0x0000007A

} RecordType;

EMR_HEADER: This record defines the start of the metafile and specifies its characteristics; its

contents, including the dimensions of the embedded image; the numbe r of records in the
metafile; and the resolution of the device on which the embedded image was created. These
values make it possible for the metafile to be device - independent.

EMR_POLYBEZIER: This reco rd defines one or more Bezier curves . Cubic Bezier curves are
defined using specified endpoints and control points, and are stroked with the current pen.

EMR_POLYGON: This record defines a polygon consisting of two or more vertexes c onnected by
straight lines. The polygon is outlined by using the current pen and filled by using the current
brush and polygon fill mode. The polygon is closed automatically by drawing a line from the
last vertex to the first.

EMR_POLYLINE: This record de fines a series of line segments by connecting the points in the
specified array.

EMR_POLYBEZIERTO: This record defines one or more Bezier curves based upon the current
position.

EMR_POLYLINETO: This record defines one or more straight lines based upon th e current
position. A line is drawn from the current position to the first point specified by the points field
by using the current pen. For each additional line, drawing is performed from the ending point
of the previous line to the next point specified b y points.

EMR_POLYPOLYLINE: This record defines multiple series of connected line segments. The line

segments are drawn by using the current pen. The figures formed by the segments are not
filled. The current position is neither used nor updated by this r ecord.

EMR_POLYPOLYGON: This record defines a series of closed polygons. Each polygon is outlined

by using the current pen and filled by using the current brush and polygon fill mode. The
polygons defined by this record can overlap.

EMR_SETWINDOWEXTEX: This record defines the window extent.

EMR_SETWINDOWORGEX: This record defines the window origin.

25 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EMR_SETVIEWPORTEXTEX: This record defines the viewport extent.

EMR_SETVIEWPORTORGEX: This record defines the viewport origin.

EMR_SETBRUSHORGEX: This record defines the origin of the current brush.

EMR_EOF: This record indicates the end of the metafile.

EMR_SETPIXELV: This record defines the color of the pixel at the specified logical coordinates.

EMR_SETMAPPERFLAGS: This record specifies parame ters of the process of matching logical
fonts to physical fonts, which is performed by the font mapper .<9>

EMR_SETMAPMODE: This record defines the mapping mode of the playback device
context . The mapping mode defines the unit of measure used to transform page space units
into device space units, and also defines the orientation of the device's x -axis and y -axis.

EMR_SET BKMODE: This record defines the background mix mode of the playback device

context. The background mix mode is used with text, hatched brushes, and pen styles that
are not solid lines.

EMR_SETPOLYFILLMODE: This record defines polygon fill mode.

EMR_SETRO P2: This record defines binary raster operation mode.

EMR_SETSTRETCHBLTMODE: This record defines bitmap stretch mode.

EMR_SETTEXTALIGN: This record defines text alignment.

EMR_SETCOLORADJUSTMENT: This record defines the color adjustment values for the
playback device context using the specified values.

EMR_SETTEXTCOLOR: This record defines the current text color.

EMR_SETBKCOLOR: This record defines the background color.

EMR_OFFSETCLIPRGN: This r ecord redefines the clipping region of the playback device
context by the specified offsets.

EMR_MOVETOEX: This record defines coordinates of the new current position, in logical units.

EMR_SETMETARGN: This record intersects the current clipping region for the playback device
context with the current metaregion and saves the combined region as the new metaregion.
The clipping region is reset to a null region.

EMR_EXCLUDECLIPRECT: This record defines a n ew clipping region that consists of the
existing clipping region minus the specified rectangle.

EMR_INTERSECTCLIPRECT: This record defines a new clipping region from the intersection of
the current clipping region and the specified rectangle.

EMR_SCALEVIE WPORTEXTEX: This record redefines the viewport for the playback device
context using the ratios formed by the specified multiplicands and divisors.

EMR_SCALEWINDOWEXTEX: This record redefines the window for the playback device
context using the ratios fo rmed by the specified multiplicands and divisors.

26 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EMR_SAVEDC: This record saves the current state of the playback device context by copying
data describing selected objects and graphic modes ðincluding the bitmap, brush, palette,

font, pen, region, drawing mode, and mapping mode ðto a stack of saved device contexts.

EMR_RESTOREDC: This record restores the playback device context to the specified saved

state. The playback device context is restored by popping state information off a stack of
saved device con texts created by earlier EMR_SAVEDC (section 2.3.11) records.

EMR_SETWORLDTRANSFORM: This record defines a two -dimensional linear transformation
between world space and page space (for more information, see [MSDN -WRLDPGSPC]) for
the playback dev ice context. This transformation can be used to scale , rotate , shear , or
translate graphics output.

EMR_MODIFYWORLDTRANSFORM: This record redefines the world trans formation for the

playback device context using the specified mode.

EMR_SELECTOBJECT: This record adds an object to the playback device context, identifying it
by its index in the EMF Object Table (sect ion 3.1.1.1) .

EMR_CREATEPEN: This record defines a logical pen that has the specified style, width, and
color. The pen can subsequently be selected into the playback device context and used to
draw lines and curves.

EMR_CREATEBRUSHINDIRECT: This record defines a logical brush for fig ure filling in graphics
operations.

EMR_DELETEOBJECT: This record deletes a graphics object, clearing its index in the EMF
Object Table. If the deleted object is selected in the playback device context, the default
object for that context property MUST be restored.

EMR_ANGLEARC: This record defines a line segment of an arc. The line segment is drawn from
the current position to the beginning of the arc. The arc is drawn along the perimeter of a

circle with the given radius and center. The length of the ar c is defined by the given start and
sweep angles.

EMR_ELLIPSE: This record defines an ellipse. The center of the ellipse is the center of the
specified bounding rectangle. The ellipse is outlined by using the current pen and is filled by
using the current brush.

EMR_RECTANGLE: This record defines a rectangle. The rectangle is outlined by using the
current pen and filled by using the current brush.

EMR_ROUNDRECT: This record defines a rectangle with rounded corners. The rectangle is
outlined by using the current pen and filled by using the current brush.

EMR_ARC: This record defines an elliptical arc.

EMR_CHORD: This record defines a chord (a region bounded by the intersection of an ellipse
and a line segment, called a secant). The chord is outlined by u sing the current pen and filled
by using the current brush.

EMR_PIE: This record defines a pie -shaped wedge bounded by the intersection of an ellipse and
two radials. The pie is outlined by using the current pen and filled by using the current brush.

EMR_ SELECTPALETTE: This record adds a LogPalette (section 2.2.17) object to the playback
device cont ext, identifying it by its index in the EMF Object Table.

http://go.microsoft.com/fwlink/?LinkId=90169

27 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EMR_CREATEPALETTE: This record defines a LogPalette object.

EMR_SETPALETTEENTRIES: This record defines RGB (red -green -blue) color values in a range
of entries in a LogPalett e object.

EMR_RESIZEPALETTE: This record increases or decreases the size of a logical palette .

EMR_REALIZEPALETTE: This record maps entries from the current logical palette to the
system palette .

EMR_EXTFLOODFILL: This record fills an area of the display surface with the current brush.

EMR_LINETO: This record defines a line from the current position up to, but not including, the
specified point. It resets the current position to the specified poi nt.

EMR_ARCTO: This record defines an elliptical arc. It resets the current position to the end point
of the arc.

EMR_POLYDRAW: This record defines a set of line segments and Bezier curves.

EMR_SETARCDIRECTION: This record defines the drawing direction to be used for arc and
rectangle operations.

EMR_SETMITERLIMIT: This record defines the limit for the length of miter joins for the
playback device context.

EMR_BEGINPATH: This record opens a path bracket in the playback device context.

EMR_ENDPATH: This record closes a path bracket and selects the path defined by the bracket
into the playback device context.

EMR_CLOSEFIGURE: This record closes an open figure in a path.

EMR_FILLPATH: This record closes any open figures in the current path and fills the path's
interior by using the current brush and polygon - filling mode.

EMR_STROKEANDFILLPATH: This record closes any open figures in a path, strokes the outline
of the path by using the current pen, and fills its interior by using the current brush.

EMR _STROKEPATH: This record renders the specified path by using the current pen.

EMR_FLATTENPATH: This record transforms any curve in the path that is selected into the
playback device context, turning each curve into a sequence of lines.

EMR_WIDENPATH: This record redefines the current path as the area that would be painted if
the path were stroked using the pen currently selected into the playback device context.

EMR_SELECTCLIPPATH: This record defines the current path as a clipping region for the
playba ck device context, combining the new region with any existing clipping region using the

specified mode.

EMR_ABORTPATH: This record aborts a path bracket or discards the path from a closed path
bracket.

EMR_COMMENT: This record specifies arbitrary private data.

EMR_FILLRGN: This record fills the specified region by using the specified brush.

28 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EMR_FRAMERGN: This record draws a border around the specified region using the specified
brush.

EMR_INVERTRGN: This record inverts the colors in the specified regio n.

EMR_PAINTRGN: This record paints the specified region by using the brush currently selected

into the playback device context.

EMR_EXTSELECTCLIPRGN: This record combines the specified region with the current clip
region using the specified mode.

EMR_BI TBLT: This record specifies a block transfer of pixels from a source bitmap to a
destination rectangle, optionally in combination with a brush pattern, according to a specified
raster operation.

EMR_STRETCHBLT: This record specifies a block transfer of p ixels from a source bitmap to a

destination rectangle, optionally in combination with a brush pattern, according to a specified
raster operation, stretching or compressing the output to fit the dimensions of the destination,

if necessary.

EMR_MASKBLT: Thi s record specifies a block transfer of pixels from a source bitmap to a
destination rectangle, optionally in combination with a brush pattern and with the application
of a color mask bitmap, according to specified foreground and background raster operation s.

EMR_PLGBLT: This record specifies a block transfer of pixels from a source bitmap to a
destination parallelogram, with the application of a color mask bitmap.

EMR_SETDIBITSTODEVICE: This record specifies a block transfer of pixels from specified
scanl ines of a source bitmap to a destination rectangle.

EMR_STRETCHDIBITS: This record specifies a block transfer of pixels from a source bitmap to
a destination rectangle, optionally in combination with a brush pattern, according to a
specified raster operation, stretching or compressing the output to fit the dimensions of the

destination, if necessary.

EMR_EXTCREATEFONTINDIRECTW: This record defines a logical font that has the specified
characteristics. The font can subsequently be selected as the current font for the playback
device context.

EMR_EXTTEXTOUTA: This record draws an ASCII text string using the current font and text
colors.

Note EMR_EXTTEXTOUTA SHOULD be emulated with an EMR_EXTTEXTOUTW record (section

2.3.5.8). <10> This requires the ASCII text string in the EmrText object to be converted to
Unicode UTF16 -LE encoding.

EMR_EXTTEXTOUTW: This record draws a Unicode text string using the current font and text
colors.

EMR_POLYBEZIER16: This record defines one or more Bezier curves. The curves are drawn

using the current pen.

EMR_POLYGON16: This record d efines a polygon consisting of two or more vertexes connected
by straight lines. The polygon is outlined by using the current pen and filled by using the
current brush and polygon fill mode. The polygon is closed automatically by drawing a line
from the la st vertex to the first.

%5bMS-GLOS%5d.pdf

29 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EMR_POLYLINE16: This record defines a series of line segments by connecting the points in
the specified array.

EMR_POLYBEZIERTO16: This record defines one or more Bezier curves based on the current
position.

EMR_POLYLINETO16: Thi s record defines one or more straight lines based upon the current
position. A line is drawn from the current position to the first point specified by the Points
field by using the current pen. For each additional line, drawing is performed from the ending
point of the previous line to the next point specified by Points .

EMR_POLYPOLYLINE16: This record defines multiple series of connected line segments.

EMR_POLYPOLYGON16: This record defines a series of closed polygons. Each polygon is
outlined by using t he current pen and filled by using the current brush and polygon fill mode.

The polygons specified by this record can overlap.

EMR_POLYDRAW16: This record defines a set of line segments and Bezier curves.

EMR_CREATEMONOBRUSH: This record defines a logica l brush with the specified bitmap
pattern. The bitmap can be a device - independent bitmap (DIB) section bitmap or it can be
a device -dependent bitmap.

EMR_CREATEDIBPATTERNBRUSHPT: This record defines a logical brush that has the patt ern

specified by the DIB.

EMR_EXTCREATEPEN: This record defines a logical cosmetic or geometric pen that has the
specified style, width, and brush attributes.

EMR_POLYTEXTOUTA: This record draws one or more ASCII text strings using the current font
and t ext colors.

Note EMR_POLYTEXTOUTA SHOULD be emulated with a series of EMR_EXTTEXTOUTW
records, one per string. <11>

EMR_POLYTEXTOUTW: This record draws one or more Unicode text s trings using the current
font and text colors.

Note EMR_POLYTEXTOUTW SHOULD be emulated with a series of EMR_EXTTEXTOUTW
records, one per string. <12>

EMR_SETICMMODE: This record specifies the mode of Image Color Management (ICM) for
graphics operations. <13>

EMR_CREATECOLORSPACE: This record creates a logical color space object from a color

profile with a name consisting of ASCII characters. <14>

EMR_SETCOLORSPACE: This record defines the current logical color space object for graphics
operations. <15>

EMR_DELETE COLORSPACE: This record deletes a logical color space object. <16>

Note An EMR_DELETEOBJECT record SHOULD be used instead of EMR_DELETECOLORSPACE
to delete a logical color space object. <17>

EMR_GLSRECORD: This record specifies an OpenGL function. <18>

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

30 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EMR_GLSBOUNDEDRECORD: This record specifies an OpenGL function with a bounding
rectangle for output. <19>

EMR_PIXELFORMAT: This record specifies the pixel format to use for graphics
operations. <20>

EMR_DRAWESCAPE: This record passes arbitrary information to the driver. The intent is tha t
the information will result in drawing being done.

EMR_EXTESCAPE: This record passes arbitrary information to the driver. The intent is that the
information will not result in drawing being done.

EMR_SMALLTEXTOUT: This record outputs a string.

EMR_FORCEUFIMAPPING: This record forces the font mapper to match fonts based on their
UniversalFontId in preference to their LogFont information.

EMR_NAMEDESCAPE: This record passes arbitrary information to the given named driver.

EMR_COLORCORRECTPALETTE: This record specifies how to correct the entries of a logical
palette object using Windows Color System (WCS) 1.0 values. <21>

EMR_SETICMPROFILEA: This record specifies a color profil e in a file with a name consisting of
ASCII characters, for graphics output. <22>

EMR_SETICMPROFILEW: This record specifies a color profile in a file with a name consisting of

Unicode characters, for graphics output. <23>

EMR_ALPHABLEND: This record specifies a block transfer of pixels from a source bitmap to a
destination rectangle, including alpha transparency data, according to a specified blending
operation. <24 >

EMR_SETLAYOUT: This record specifies the order in which text and graphics are drawn. <25>

EMR_TRANSPARENTBLT: This record specifies a block transfer of pixels from a source bitmap

to a destination rectangle, treating a specified color as transparent, stretching or compressing

the output to fit the dimensions of the destination, if necessary. <26>

EMR_GRADIENTFILL: This record specifies filling rectangles or triangles with gradients of
color. <27>

EMR_SETLINKEDUFIS: This record sets the UniversalFontIds of linked fonts to use during
character lookup.

EMR_SETTEXTJUSTIFICATION: This record specifies the amount of extra space to add to
break characters for justification purposes. <28>

EMR_COLORMATCHTOTARGETW: This record specifies whether to perform color matching
with a color profile that is specified in a file with a name consisting of Unicode
characters. <29>

EMR_CRE ATECOLORSPACEW: This record creates a logical color space object from a color
profile with a name consisting of Unicode characters. <30>

2.1.2 ArcDirection Enumeration

The ArcDirection enumeration is used in setting the drawing direction for arc and rectangle output.

31 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

typedef enum

{

 AD_COUNTERCLOCKWISE = 0x0001,

 AD_CLOCKWISE = 0x0002

} ArcDirection;

AD_COUNTERCLOCKWISE: Figures drawn counterclockwise.

AD_CLOCKWISE: Figures drawn clockwise.

2.1.3 ArmStyle Enumeration

The ArmStyle enumeration defines values for one of the characteristics in the PANOSE system for
classifying typefaces .

typedef enum

{

 PAN_ANY = 0x00,

 PAN_NO_FIT = 0x01,

 PAN_STRAIGHT_ARMS_HORZ = 0x02,

 PAN_STRAIGHT_ARMS_WEDGE = 0x03,

 PAN_STRAIGHT_ARMS_VERT = 0x04,

 PAN_STRAIGHT_ARMS_SINGLE_SERIF = 0x05,

 PAN_STRAIGHT_ARMS_DOUBLE_SERIF = 0x06,

 PAN_BENT_ARMS_HORZ = 0x07,

 PAN_BENT_ARMS_WEDGE = 0x08,

 PAN_BENT_ARMS_VERT = 0x09,

 PAN_BENT_ARMS_SINGLE_SERIF = 0x0A,

 PAN_BENT_ARMS_DOUBLE_SERIF = 0x0B

} ArmStyle;

PAN_ANY: Any.

PAN_NO_FIT: No fit.

PAN_STRAIGHT_ARMS_HORZ: Straight arms/horizontal.

PAN_STRAIGHT_ARMS_WEDGE: Straight arms/wedge.

PAN_STRAIGHT_ARMS_VERT: Straight arms/vertical.

PAN_STRAIGHT_ARMS_SINGLE_SERIF: Straight arms/single -serif.

PAN_STRAIGHT_ARMS_DOUBLE_SERIF: Straight arms/double -serif.

PAN_BENT_ARMS_HORZ: Nonstraight arms/horizontal.

PAN_BENT_ARMS_WEDGE: Nonstraight arms/wedge.

PAN_BENT_ARM S_VERT: Nonstraight arms/vertical.

PAN_BENT_ARMS_SINGLE_SERIF: Nonstraight arms/single -serif.

PAN_BENT_ARMS_DOUBLE_SERIF: Nonstraight arms/double -serif.

32 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.1.4 BackgroundMode Enumeration

The BackgroundMode enumeration is used to specify the background mode to be used with text,
hatched brushes, and pen styles that are not solid. The background mode determines how to

combine the background with foreground text, hatched brushes, and pen styles that are not so lid
lines.

typedef enum

{

 TRANSPARENT = 0x0001,

 OPAQUE = 0x0002

} BackgroundMode;

TRANSPARENT: Background remains untouched.

OPAQUE: Background is filled with the current background color before the text, hatched brush,
or pen is drawn.

2.1.5 ColorAdjustment Enumeration

The ColorAdjustment enumeration is used to specify how the output image should be prepared
when the stretch mode is HALFTONE .

typedef enum

{

 CA_NEGATIVE = 0x0001,

 CA_LOG_FILTER = 0x0002

} ColorAdjustment;

CA_NEGATIVE: Specifies that the negative of the original image SHOULD be displayed.

CA_LOG_FILTER: Specifies that a logarithmic process SHOULD be applied to the final density

of the output colors. This will increase the color contrast when the luminance is low.

2.1.6 ColorMatchToTarget Enumeration

The ColorMatchToTarget enumeration is used to determine whether a color profile has been
embedded in the metafile.

typedef enum

{

 COLORMATCHTOTARGET_NOTEMBEDDED = 0x00000000,

 COLORMATCHTOTARGET_EMBEDDED = 0x00000001

} ColorMatchToTarget;

COLORMATCHTOTARGET_NOTEMBEDDED: Indicates that a color profile has not been

embedded in the metafile.

COLORMATCHTOTARGET_EMBEDDED: Indicates that a color profile has been embedded in
the me tafile.

33 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.1.7 ColorSpace Enumeration

The ColorSpace enumeration is used to specify when to turn color proofing on and off, and when
to delete transforms .

typedef enum

{

 CS_ENABLE = 0x00000001,

 CS_DISABLE = 0x00000002,

 CS_DELETE_TRANSFORM = 0x00000003

} ColorSpace;

CS_ENABLE: Maps colors to the target device's color gamut . This enables color proofing. All

subsequent draw commands to the playback device context will ren der colors as they would
appear on the target device.

CS_DISABLE: Disables color proofing.

CS_DELETE_TRANSFORM: If color management is enabled for the target profile, disables it
and deletes the concatenated transform.

2.1.8 Contrast Enumeration

The Contrast enumeration defines values for one of the characteristics in the PANOSE system for
classifying typefaces.

typedef enum

{

 PAN_ANY = 0x00,

 PAN_NO_FIT = 0x01,

 PAN_CONTRAST_NONE = 0x02,

 PAN_CONTRAST_VERY_LOW = 0x03,

 PAN_CONTRAST_LOW = 0x04,

 PAN_CONTRAST_MEDIUM_LOW = 0x05,

 PAN_CONTRAST_MEDIUM = 0x06,

 PAN_CONTRAST_MEDIUM_HIGH = 0x07,

 PAN_CONTRAST_HIGH = 0x08,

 PAN_CONTRAST_VERY_HIGH = 0x09

} Contrast;

PAN_ANY: Any.

PAN_NO_FIT: No fit.

PAN_CONTRAST_NONE: None.

PAN_CONTRAST_VERY_LOW: Very low.

PAN_CONTRAST_LOW: Low.

PAN_CONTRAST_MEDIUM_LOW: Medium low.

PAN_CONTRAST_MEDIUM: Medium.

PAN_CONTRAST_MEDIUM_HIGH: Medium high.

34 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

PAN_CONTRAST_HIGH: High.

PAN_CONTRAST_VERY_HIGH: Ver y high.

2.1.9 DIBColors Enumeration

The DIBColors enumeration defines how to interpret the values in the color table of a DIB.

typedef enum

{

 DIB_RGB_COLORS = 0x00,

 DIB_PAL_COLORS = 0x01,

 DIB_PAL_INDICES = 0x02

} DIBColors;

DIB_RGB_COLORS: The color table contains literal RGB values.

DIB_PAL_COLORS: The color table consists of an array of 16 -bit indexes into the LogPalette
object (section 2.2.17) that is currently defined in the playback device context.

DIB_PAL_INDICES: No color table exists. The pixels in the DIB are indices into the current
logical palette in the playback device context.

DIBs are specified by DeviceIndependentBitmap objects ([MS -WMF] section 2.2.2.9).

2.1.10 EmrComment Enumeration

The EmrComment enumeration defines the types of data that a public comment record can
contain, as specified in section 2.3.3.4 .

typedef enum

{

 EMR_COMMENT_WINDOWS_METAFILE = 0x80000001,

 EMR_COMMENT_BEGINGROUP = 0x00000002,

 EMR_COMMENT_ENDGROUP = 0x00000003,

 EMR_COMMENT_MULTIFORMATS = 0x40000004,

 EMR_COMMENT_UNICODE_STRING = 0x00000040,

 EMR_COMMENT_UNICODE_END = 0x00000080

} EmrComment ;

EMR_COMMENT_WINDOWS_METAFILE: This comment record contains a specification of an

image in WMF. See [MS -WMF] for more information.

EMR_COMMENT_BEGINGROUP: This comment record identifies the beginning of a group of
drawing re cords. It identifies an object within an EMF metafile.

EMR_COMMENT_ENDGROUP: This comment record identifies the end of a group of drawing
records. For every EMR_COMMENT_BEGINGROUP record, an EMR_COMMENT_ENDGROUP

record MUST be included in the metafile, and they MAY be nested.

EMR_COMMENT_MULTIFORMATS: This comment record allows multiple definitions of an

image to be included in the metafile. Using thi s comment, for example, an application can
include encapsulated PostScript text as well as an EMF definition of an image.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-GLOS%5d.pdf

35 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EMR_COMMENT_UNICODE_STRING: This comment record is reserved and MUST NOT be
used in an EMF metafile.

EMR_COMMENT_UNICODE_END: This comment record is reserved and MUST NOT be used in
an EMF metafile.

2.1.11 ExtTextOutOptions Enumeration

The ExtTextOutOptions enumeration specifies parameters that control various aspects of the
output of text by EMR_SMALLTEXTOUT (section 2.3.5.37) records and in EmrText objects.

typedef enum

{

 ETO_OPAQUE = 0x00000002,

 ETO_CLIPPED = 0x00000004,

 ETO_GLYPH_INDEX = 0x00000010,

 ETO_RTLREADING = 0x00000080,

 ETO_NO_RECT = 0x00000100,

 ETO_SMALL_CHARS = 0x00000200,

 ETO_NUMERICSLOCAL = 0x00000400,

 ETO_NUMERICSLATIN = 0x00000800,

 ETO_IGNORELANGUAGE = 0x00001000,

 ETO_PDY = 0x0 0002000,

 ETO_REVERSE_INDEX_MAP = 0x00010000

} ExtTextOutOptions;

ETO_OPAQUE: This bit indicates that the current background color SHOULD be used to fill the

rectangle.

ETO_CLIPPED: This bit indicates that the text SHOULD be clipped to the rectangle.

ETO_GLYPH_INDEX: This bit indicates that the codes for characters in an output text string
are actually indexes of the character glyphs in a TrueType font. Glyph indexes are font -

specific, so to display the correct characters on playb ack, the font that is used MUST be
identical to the font used to generate the indexes. <31>

ETO_RTLREADING: This bit indicates that the text MUST be laid out in right - to - left reading
order, instead of the default left - to - right order . This SHOULD be applied only when the font
selected into the playback device context is either Hebrew or Arabic. <32>

ETO_NO_RECT: This bit indicates that the record does not specify a bounding rectangle for the
text output.

ETO_SM ALL_CHARS: This bit indicates that the codes for characters in an output text string
are 8 bits, derived from the low bytes of 16 -bit Unicode UTF16 -LE character codes, in which
the high byte is assumed to be 0.

ETO_NUMERICSLOCAL: This bit indicates that to display numbers, digits appropriate to the
locale SHOULD be used. <33>

ETO_NUMERICSLATIN: This bit indicates that to display numbers, European digits SHOULD be

used. <34>

ETO_IGNORELANGUAGE: This bit indicates that no special operating system processing for
glyph placement should be performed on right - to - left strings; that is, all glyph positioning
SHOULD be taken care of by drawing and state records in the metafile. <35 >

36 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

ETO_PDY: This bit indicates that both horizontal and vertical character displacement values
SHOULD be provided. <36>

ETO_REVERSE_INDEX_MAP: This bit is reserved and SHOULD NOT be used. <37>

2.1.12 FamilyType Enumeration

The FamilyType enumeration defines values for one of the characteristics in the PANOSE system
for classifying typefaces.

typedef enum

{

 PAN_ANY = 0x00,

 PAN_NO_FIT = 0x01,

 PAN_FAMILY_TEXT_DISPLAY = 0x02,

 PAN_FAMILY_SCRIPT = 0x03,

 PAN_FAMILY_DECORATIVE = 0x04,

 PAN_FAMILY_PICTORIAL = 0x05

} FamilyType;

PAN_ANY: Any.

PAN_NO_FIT: No fit.

PAN_FAMILY_TEXT_DISPLAY: Text and display.

PAN_FAMILY_SCRIPT: Script.

PAN_FAMILY_DECORATIVE: Decorative.

PAN_FAMI LY_PICTORIAL: Pictorial.

2.1.13 FloodFill Enumeration

The FloodFill enumeration defines values that specify how to determine the area for a flood fill
operation.

typedef enum

{

 FLOODFILLBORDER = 0x00000000,

 FLOODFILLSURFACE = 0x00000001

} FloodFill;

FLOODFILLBORDER: The fill area is bounded by a specific color.

FLOODFILLSURFACE: The fill area is defined by a specific color. Filling continues outward in all
directions as long as the color is encountered. This style is useful for filling areas with
multicolored boundar ies.

2.1.14 FormatSignature Enumeration

The FormatSignature enumeration defines values that are used to identify the format of
embedded data in EMF records.

typedef enum

37 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

{

 ENHMETA_SIGNATURE = 0x464D4520,

 EPS_SIGNATURE = 0x46535045

} FormatSignature;

ENHMETA_SIGNATURE: The value of this member is the sequence of ASCII characters "FME ",

which happens to be the reverse of the string "EMF", and it denotes EMF record data.

Note The space character in the string is significant and MUST be present.

This s ignature is used in an EMR_HEADER record (section 2.3.4.2) to identify the EMF
metafile, and it i s used in an EmrFormat object (section 2.2.4) to specify embedded EMF
record data in an EMR_COMMENT_MULTIFORMATS record (section 2.3.3.4.3) .

EPS_SIGNATURE: The value of this member is the seque nce of ASCII characters "FSPE", which
happens to be the reverse of the string "EPSF", and it denotes encapsulated PostScript
(EPS) format data.

This signature is used in an EmrFormat object to specify embedded PostScript data in an

EpsData object (section 2.2.6) in an EMR_COMMENT_MULTIFORMATS record.

2.1.15 GradientFill Enumeration

The GradientFill enumeration defines the modes for gradient fill operations.

typedef enum

{

 GRADIENT_FILL_RECT_H = 0x00000000,

 GRADIENT_FILL_RECT_V = 0x00000001,

 GRADIENT_FILL_TRIANGLE = 0x00000002

} GradientFill;

GRADIENT_FILL_RECT_H: A mode in which color interpolation is performed along a gradient

from the left to the right edges of a rectangle.

GRADIENT_FILL_RECT_V: A mode in which color interpolation is performed along a gradient
from the top to the bottom e dges of a rectangle.

GRADIENT_FILL_TRIANGLE: A mode in which color interpolation is performed between
vertexes of a triangle.

2.1.16 GraphicsMode Enumeration

The GraphicsMode enumeration is used to specify how to interpret shape data such as rectangle
coordinates.

typedef enum

{

 GM_COMPATIBLE = 0x00000001,

 GM_ADVANCED = 0x00000002

} GraphicsMode;

GM_COMPATIBLE: TrueType text MUST be written from left to right and right side up, even if

the rest of the graphics are rotated about the x -axis or y -axis because of the current world - to -

38 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

device transformation in the playback device context. Only the height of the text SHOULD be
scaled.

Arcs MUST be drawn using the current arc direction in the playback device context, but they
MUST NOT respect the current world - to -device transformation, which might require a rotation

along the x -axis or y -axis.

The world - to -device transformation S HOULD only be modified by changing the window and
viewport extents and origins, using the EMR_SETWINDOWEXTEX (section 2.3.11.30) and
EMR_SETVIEWPORTEXTEX (section 2.3.11.28) records, and the EMR_SETWINDOWORGEX
(section 2.3.11.31) and EMR_SETVIEWPORTORGEX (section 2.3.11.30) records, respectively.

Changing the transformation directly by using the EMR_MODIFYWORLDTRANSFORM (section
2.3.12.1) or EMR_SETWORLDTRANSFORM (section 2.3.12.2) records MAY NOT <38> be

supported.

In GM_COMPATIBLE graphics mode, bottom and rightmost edges MUST be excluded when
rec tangles are drawn.

GM_ADVANCED: TrueType text output MUST fully conform to the current world - to -device
transformation in the playback device context.

Arcs MUST be drawn in the counterclockwise direction in world space; however, both arc

control points and the arcs themselves MUST fully respect the current world - to -device
transformation in the playback device context.

The world - to -device transform MAY <39> be modified directly by using the
EMR_MODIFYWORLDTRANSFORM or EMR_SETWORLDTRANS FORM records, or indirectly by
changing the window and viewport extents and origins, using the EMR_SETWINDOWEXTEX
(section 2.3.11.30) and EMR_SETVIEWPORTEXTEX (section 2.3.11.28) records, and th e
EMR_SETWINDOWORGEX (section 2.3.11.31) and EMR_SETVIEWPORTORGEX (section

2.3.11.30) records, respectively.

In GM_ADVANCED graphics mode, bottom and rightmost edges MUST be included when

rectan gles are drawn.

2.1.17 HatchStyle Enumeration

The HatchStyle enumeration is an extension to the WMF HatchStyle enumeration ([MS -WMF]
section 2.1.1.12).

typedef enum

{

 HS_SOLIDCLR = 0x0006,

 HS_DITHEREDCLR = 0x0007,

 HS_SOLIDTEXTCLR = 0x0008,

 HS_DITHEREDTEXTCLR = 0x0009,

 HS_SOLIDBKCLR = 0x000A,

 HS_DITHEREDBKCLR = 0x000B

} HatchStyle;

HS_SOLIDCLR: The hatch is not a pattern, but is a solid color.

HS_DITHEREDCLR: The hatch is not a pattern, but is a dithered co lor.

%5bMS-WMF%5d.pdf

39 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

HS_SOLIDTEXTCLR: The hatch is not a pattern, but is a solid color, defined by the current text
(foreground) color.

HS_DITHEREDTEXTCLR: The hatch is not a pattern, but is a dithered color, defined by the
current text (foreground) color.

HS_SOLIDBKCLR : The hatch is not a pattern, but is a solid color, defined by the current
background color.

HS_DITHEREDBKCLR: The hatch is not a pattern, but is a dithered color, defined by the
current background color.

2.1.18 ICMMode Enumeration

The ICMMode enumeration defines values that specify when to turn on and off ICM.

typedef enum

{

 ICM_OFF = 0x01,

 ICM_ON = 0x02,

 ICM_QUERY = 0x03,

 ICM_DONE_OUTSIDEDC = 0x04

} ICMMode;

ICM_OFF: Turns off Image Color Management (ICM) in the playback device context. Turns on
old -style color correction of halftones .<40>

ICM_ON: Turns on ICM in the playback device context. Turns o ff old -style color correction of
halftones. <41>

ICM_QUERY: Queries the current state of color management in the playback device
context. <42>

ICM_DONE_OUTSIDEDC: Turns off ICM in the playback device context, and turns off old -style
color correction of halftones. <43>

2.1.19 Illuminant Enumeration

The Illuminant enumeration defines values that specify the illuminant value of an image, which
determines the standard light source under which the image is viewed so that the color can be
adjusted appropriately.

typedef enum

{

 ILLUMINANT_DEVICE_DEFAULT = 0x00,

 ILLUMINANT_TUNGSTEN = 0x01,

 ILLUMINANT_B = 0x02,

 ILLUMINANT_DAYLIGHT = 0x03,

 ILLUMINANT_D50 = 0x04,

 ILLUMINANT_D55 = 0x05,

 ILLUMINANT_D65 = 0x06,

 ILLUMINANT_D75 = 0x07,

 ILLUMINANT_FLUORESCENT = 0x08

} Illuminant;

40 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

ILLUMINANT_DEVICE_DEFAULT: Device's default. Standard used by output devices.

ILLUMINANT_TUNGSTEN: Tungsten lamp.

ILLUMINANT_B: Noon sunlight.

ILLUMINANT_DAYLIGHT: Daylight.

ILLUMINANT_D50: Normal print.

ILLUMINANT_D55: Bond paper print.

ILLUMINANT_D65: Standard daylight. Standard for CRTs and pictures.

ILLUMINANT_D75: Northern daylight.

ILLUMINANT_FLUORESCENT: Cool white lamp.

2.1.20 Letterform Enumeration

The Letterform enumeration defines values for one of the characteristics in the PANOSE system for
classifying typefaces.

typedef enum

{

 PAN_ANY = 0x00,

 PAN_NO_FIT = 0x01,

 PAN_LETT_NORMAL_CONTACT = 0x02,

 PAN_LETT_NORMAL_WEIGHTED = 0x03,

 PAN_LETT_NORMAL_BOXED = 0x04,

 PAN_LETT_NORMAL_FLATTENED = 0x05,

 PAN_LETT_NORMAL_ROUNDED = 0x06,

 PAN_LETT_NORMAL_OFF_CENTER = 0x07,

 PAN_LETT_NORMAL_SQUARE = 0x08,

 PAN_LETT_OBLIQUE_CONTACT = 0x09,

 PAN_LETT_OBLIQUE_WEIGHTED = 0x0A,

 PAN_LETT_OBLIQUE_BOXED = 0x0B,

 PAN_LETT_OBLIQUE_FLATTENED = 0x0C,

 PAN_LETT_OBLIQUE_ROUNDED = 0x0D,

 PAN_LETT_OBLIQUE_OFF_CENTER = 0x0E,

 PAN_LETT_OBLIQUE_SQUARE = 0x0F

} Letterform;

PAN_ANY: Any.

PAN_NO_FIT: No fit.

PAN_LETT _NORMAL_CONTACT: Normal/contact.

PAN_LETT_NORMAL_WEIGHTED: Normal/weighted.

PAN_LETT_NORMAL_BOXED: Normal/boxed.

PAN_LETT_NORMAL_FLATTENED: Normal/flattened.

PAN_LETT_NORMAL_ROUNDED: Normal/rounded.

PAN_LETT_NORMAL_OFF_CENTER: Normal/off center.

41 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

PAN_LETT_NORMAL_SQUARE: Normal/square

PAN_LETT_OBLIQUE_CONTACT: Oblique/contact.

PAN_LETT_OBLIQUE_WEIGHTED: Oblique/weighted.

PAN_LETT_OBLIQUE_BOXED: Oblique/boxed.

PAN_LETT_OBLIQUE_FLATTENED: Oblique/flattened.

PAN_LETT_OBLIQUE_ROUNDED: Oblique/roun ded.

PAN_LETT_OBLIQUE_OFF_CENTER: Oblique/off center.

PAN_LETT_OBLIQUE_SQUARE: Oblique/square.

2.1.21 MapMode Enumeration

The MapMode enumeration is used to define the unit of measure for transforming page space units

into device space units and for defining the orientation of the drawing axes.

typedef enum

{

 MM_TEXT = 0x01,

 MM_LOMETRIC = 0x02,

 MM_HIMETRIC = 0x03,

 MM_LOENGLISH = 0x04,

 MM_HIENGLISH = 0x05,

 MM_TWIPS = 0x06,

 MM_ISOTROPIC = 0x07,

 MM_ANISOTROPIC = 0x08

} MapMode;

MM_TEXT: Each logical unit is mapped to one device pixel. Positive x is to the right; po sitive y

is down.

MM_LOMETRIC: Each logical unit is mapped to 0.1 millimeter. Positive x is to the right; positive
y is up.

MM_HIMETRIC: Each logical unit is mapped to 0.01 millimeter. Positive x is to the right;

positive y is up.

MM_LOENGLISH: Each log ical unit is mapped to 0.01 inch. Positive x is to the right; positive y
is up.

MM_HIENGLISH: Each logical unit is mapped to 0.001 inch. Positive x is to the right; positive y
is up.

MM_TWIPS: Each logical unit is mapped to one - twentieth of a printer's p oint (1/1440 inch, also
called a "twip"). Positive x is to the right; positive y is up.

MM_ISOTROPIC: Logical units are mapped to arbitrary units with equally scaled axes; that is,
one unit along the x -axis is equal to one unit along the y -axis. The EMR_SETWINDOWEXTEX
and EMR_SETVIEWPORTEXTEX records SHOULD be used to specify the units and the
orientation of the axes.

42 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Adjustments MUST be made as necess ary to ensure that the x and y units remain the same
size. For example, when the window extent is set, the viewport MUST be adjusted to keep the

units isotropic.

MM_ANISOTROPIC: Logical units are mapped to arbitrary units with arbitrarily scaled axes.

The EMR_SETWINDOWEXTEX and EMR_SETVIEWPORTEXTEX records SHOULD be used to
specify the units, orientation, and scaling.

2.1.22 MetafileVersion Enumeration

The MetafileVersion enumeration defines the interoperability version for EMF metafile.

typedef enum

{

 META_FORMAT_ENHANCED = 0x00010000

} MetafileVersion;

META_FORMAT_ENHANCED: Specifies EMF metafile interoperability.

2.1.23 MidLine Enumeration

The MidLine enumeration defines values for one of the characteristics in the PANOSE system for
classifying typefaces.

typedef enum

{

 PAN_ANY = 0x00,

 PAN_NO_FIT = 0x01,

 PAN_MIDLINE_STANDARD_TRIMMED = 0x02,

 PAN_MIDLINE_STANDARD_POINTED = 0x03,

 PAN_MIDLINE_STANDARD_SERIFED = 0x04,

 PAN_MIDLINE_HIGH_TRIMMED = 0x05,

 PAN_MIDLINE_HIGH_POINTED = 0x06,

 PAN_MIDLINE_HIGH_SERIFED = 0x07,

 PAN_MIDLINE_CONSTANT_TRIMMED = 0x08,

 PAN_MIDLINE_CONSTANT_POINTED = 0x09,

 PAN_MIDLINE_CONSTANT_SERIFED = 0x0A,

 PAN_MIDLINE_LOW_TRIMMED = 0x0B,

 PAN_MIDLINE_LOW_POINTED = 0x0C,

 PAN_MIDLINE_LOW_SERIFED = 0x0D

} MidLine;

PAN_ANY: Any.

PAN_NO_FIT: No fit.

PAN_MIDLINE_STANDARD_TRIMMED: Standard/trimmed.

PAN_MIDLINE_STA NDARD_POINTED: Standard/pointed.

PAN_MIDLINE_STANDARD_SERIFED: Standard/serifed.

PAN_MIDLINE_HIGH_TRIMMED: High/trimmed.

PAN_MIDLINE_HIGH_POINTED: High/pointed.

43 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

PAN_MIDLINE_HIGH_SERIFED: High/serifed.

PAN_MIDLINE_CONSTANT_TRIMMED: Constant/trimmed.

PAN_MIDLINE_CONSTANT_POINTED: Constant/pointed.

PAN_MIDLINE_CONSTANT_SERIFED: Constant/serifed.

PAN_MIDLINE_LOW_TRIMMED: Low/trimmed.

PAN_MIDLINE_LOW_POINTED: Low/pointed.

PAN_MIDLINE_LOW_SERIFED: Low/serifed.

2.1.24 ModifyWorldTransformMode Enumeration

The ModifyWorldTransformMode enumeration defines modes for using specified transform data
to modify the world -space to page -space transform that is currently defined in the playback device

context.

typedef enum

{

 MWT_IDENTITY = 0x01,

 MWT_LEFTMULTIPLY = 0x02,

 MWT_RIGHTMULTIPLY = 0x03,

 MWT_SET = 0x04

} ModifyWorldTransformMode;

MWT_IDENTITY: Reset the current transform using the identity matrix. In this mode, the

specified transform data is ignored.

MWT_LEFTMULTIPLY: Multiply the current transform. In this mode, the specified transform
data is the left multiplicand, and the transform that is currently defined in the playback device

context is the right multiplicand.

MWT_RIGHTMULTIPLY: Multi ply the current transform. In this mode, the specified transform
data is the right multiplicand, and the transform that is currently defined in the playback
device context is the left multiplicand.

MWT_SET: Perform the function of an EMR_SETWORLDTRANSFORM record (section 2.3.12.2).

A transform is specified in the form of an XForm object (section 2.2.28). The modes specified by this
enumeration apply to EMR_MODIFYWORLDTRANSFORM records (section 2.3.12.1).

For more information concerning transforms and coordinate spaces , see [MSDN -WRLDPGSPC].

2.1.25 PenStyle Enumeration

The PenStyle enumeration defines the attributes of pens that can be used in graphics operations. A

pen style is a combination of pen type, line style, line cap , and line join .

typedef enum

{

 PS_COSMETIC = 0x00000000,

 PS_ENDCAP_ROUND = 0x00000000,

 PS_JOIN_ROUND = 0x00000000,

http://go.microsoft.com/fwlink/?LinkId=90169

44 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 PS_SOLID = 0x00000000,

 PS_DASH = 0x00000001,

 PS_DOT = 0x00000002,

 PS_DASHDOT = 0x00000003,

 PS_DASHDOTDOT = 0x00000004,

 PS_NULL = 0x000000 05,

 PS_INSIDEFRAME = 0x00000006,

 PS_USERSTYLE = 0x00000007,

 PS_ALTERNATE = 0x00000008,

 PS_ENDCAP_SQUARE = 0x00000100,

 PS_ENDCAP_FLAT = 0x00000200,

 PS_JOIN_BEVEL = 0x00001000,

 PS_JOIN_MITER = 0x00002000,

 PS_GEOMETRIC = 0x00010000

} PenStyle;

PS_COSMETIC: A pen type that specifies a line with a width of one logical unit and a style that
is a solid color.

PS_ENDCAP_ROUND: A line cap that specifies round ends.

PS_JOIN_ROUND: A line join that specifies round joins.

PS_SOLID: A line sty le that is a solid color.

PS_DASH: A line style that is dashed.

PS_DOT: A line style that is dotted.

PS_DASHDOT: A line style that consists of alternating dashes and dots.

PS_DASHDOTDOT: A line style that consists of dashes and double dots.

PS_NULL: A line style that is invisible.

PS_INSIDEFRAME: A line style that is a solid color. When this style is specified in a drawing
record that takes a bounding rectangle, the dimensions of the figure are shrunk so that it fits
entirely in the bounding rectangl e, taking into account the width of the pen.

PS_USERSTYLE: A line style that is defined by a styling array, which specifies the lengths of
dashes and gaps in the line.

PS_ALTERNATE: A line style in which every other pixel is set. This style is applicable only to a
pen type of PS_COSMETIC .

PS_ENDCAP_SQUARE: A line cap that specifies square ends.

PS_ENDCAP_FLAT: A line cap that specifies flat ends.

PS_JOIN_BEVEL: A line join that spe cifies beveled joins.

PS_JOIN_MITER: A line join that specifies mitered joins when the lengths of the joins are
within the current miter length limit that is set in the playback device context. If the lengths

of the joins exceed the miter limit, beveled joins are specified.

The miter length limit is a metafile state property that is set by the EMR_SETMITERLIMIT
record.

45 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

PS_GEOMETRIC: A pen type that specifies a line with a width th at is measured in logical units
and a style that can contain any of the attributes of a brush.

2.1.26 Point Enumeration

The Point enumeration is used to specify how a point is to be used in a drawing call.

typedef enum

{

 PT_CLOSEFIGURE = 0x01,

 PT_LINETO = 0x02,

 PT_BEZIERTO = 0x04,

 PT_MOVETO = 0x06

} Point;

PT_CLOSEFIGURE: A PT_LINETO or PT_BEZIERTO type can be combined with this value by

using the bitwise operator OR to indicate that the corresponding point is the last point in a

figure and the figure is closed.

The current position is set to the ending point of the closing line.

PT_L INETO: Specifies that a line is to be drawn from the current position to this point, which
then becomes the new current position.

PT_BEZIERTO: Specifies that this point is a control point or ending point for a Bezier curve.

PT_BEZIERTO types always occur in sets of three. The current position defines the starting

point for the Bezier curve. The first two PT_BEZIERTO points are the control points, and the
third PT_BEZIERTO point is the ending point. The ending point becomes the new current
position. If the re are not three consecutive PT_BEZIERTO points, an error results.

PT_MOVETO: Specifies that this point starts a disjoint figure. This point becomes the new
current position.

2.1.27 PolygonFillMode Enumeration

The PolygonFillMode enumeration defines values that specify how to calculate the region of a
polygon that is to be filled.

typedef enum

{

 ALTERNATE = 0x01,

 WINDING = 0x02

} PolygonFillMode;

ALTERNATE: Selects alternate mode (fills the area between odd -numbered and even -numbered

polygon sides on each scan line).

WINDING: Selects winding mode (fills any region with a nonzero winding value).

2.1.28 Proportion Enumeration

The Proportion enumeration defines values for one of the characteristics in the PANOSE system for
classifying typefaces.

46 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

typedef enum

{

 PAN_ANY = 0x00,

 PAN_NO_FIT = 0x01,

 PAN_PROP_OLD_STYLE = 0x02,

 PAN_PROP_MODERN = 0x03,

 PAN_PROP_EVEN_WIDTH = 0x04,

 PAN_PROP_EXPANDED = 0x05,

 PAN_PROP_CONDENSED = 0x06,

 PAN_PROP_VERY_EXPANDED = 0x07,

 PAN_PROP_VERY_CONDENSED = 0x08,

 PAN_PROP_MONOSPACED = 0x09

} Proportion;

PAN_ANY: Any.

PAN_NO_FIT: No fi t.

PAN_PROP_OLD_STYLE: Old style.

PAN_PROP_MODERN: Modern.

PAN_PROP_EVEN_WIDTH: Even width.

PAN_PROP_EXPANDED: Expanded.

PAN_PROP_CONDENSED: Condensed.

PAN_PROP_VERY_EXPANDED: Very expanded.

PAN_PROP_VERY_CONDENSED: Very condensed.

PAN_PROP_MONOSPAC ED: Monospaced.

2.1.29 RegionMode Enumeration

The RegionMode enumeration defines values that are used with EMR_SELECTCLIPPATH and
EMR_EXTSELECTCLIPRGN, specifying the current path or a new region that is being combined with
the current clip region.

typedef enum

{

 RGN_AND = 0x01,

 RGN_OR = 0x02,

 RGN_XOR = 0x03,

 RGN_DIFF = 0x04,

 RGN_COPY = 0x05

} RegionMode;

RGN_AND: The new clipping region in cludes the intersection (overlapping areas) of the current

clipping region and the current path (or new region).

RGN_OR: The new clipping region includes the union (combined areas) of the current clipping
region and the current path (or new region).

47 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

RGN_X OR: The new clipping region includes the union of the current clipping region and the
current path (or new region) but without the overlapping areas.

RGN_DIFF: The new clipping region includes the areas of the current clipping region with those
of the cu rrent path (or new region) excluded.

RGN_COPY: The new clipping region is the current path (or the new region).

2.1.30 SerifType Enumeration

The SerifType enumeration defines values for one of the characteristics in the PANOSE system for
classifying typefaces.

typedef enum

{

 PAN_ANY = 0x00,

 PAN_NO_FIT = 0x01,

 PAN_SERIF_COVE = 0x02,

 PAN_SERIF_OBTUSE_COVE = 0x03,

 PAN_SERIF_SQUARE_COVE = 0x04,

 PAN_SERIF_OBTUSE_SQUARE_COVE = 0x05,

 PAN_SERIF_SQUARE = 0x06,

 PAN_SERIF_THIN = 0x07,

 PAN_SERIF_BONE = 0x08,

 PAN_SERIF_EXAGGERATED = 0x09,

 PAN_SERIF_TRIANGLE = 0x0A,

 PAN_SERIF_NORMAL_SANS = 0x0B,

 PAN_SERIF_OBTUSE_SANS = 0x0C,

 PAN_SERIF_PERP_SANS = 0x0D,

 PAN_SERIF_FLARED = 0x0E,

 PAN_SERIF_ROUNDED = 0x0F

} SerifType;

PAN_ANY: Any.

PAN_NO_FIT: No fit.

PAN_SERIF_COVE: Cove.

PAN_SERIF_OBTUSE_COVE: Obtuse cove.

PAN_SERIF_SQUA RE_COVE: Square cove.

PAN_SERIF_OBTUSE_SQUARE_COVE: Obtuse square cove.

PAN_SERIF_SQUARE: Square.

PAN_SERIF_THIN: Thin.

PAN_SERIF_BONE: Bone.

PAN_SERIF_EXAGGERATED: Exaggerated.

PAN_SERIF_TRIANGLE: Triangle.

PAN_SERIF_NORMAL_SANS: Normal sans.

PAN_SERIF_OBTUSE_SANS: Obtuse sans.

48 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

PAN_SERIF_PERP_SANS: Perp sans.

PAN_SERIF_FLARED: Flared.

PAN_SERIF_ROUNDED: Rounded.

2.1.31 StockObject Enumeration

The StockObject enumeration specifies the indexes of predefined logical graphics objects that can
be used in graphics operations.

The specific structures of stock objects are implementation -dependent; however, the properties of
stock objects SHOULD be equivalent to the properties of explicitly created objects of the same type.
These properties are specified where possible for the stock objects defined in this enumeration.

typedef enum

{

 WHITE_BRUSH = 0x80000000,

 LTGRAY_BRUSH = 0x80000001,

 GRAY_BRUSH = 0x80000002,

 DKGRAY_BRUSH = 0x80000003,

 BLACK_BRUSH = 0x80000004,

 NULL_BRUSH = 0x80000005,

 WHITE_PEN = 0x80000006,

 BLACK_PEN = 0x80000007,

 NULL_PEN = 0x8000 0008,

 OEM_FIXED_FONT = 0x8000000A,

 ANSI_FIXED_FONT = 0x8000000B,

 ANSI_VAR_FONT = 0x8000000C,

 SYSTEM_FONT = 0x8000000D,

 DEVICE_DEFAULT_FONT = 0x8000000E,

 DEFAULT_PALETTE = 0x8000000F,

 SYSTEM_FIXED_FONT = 0x80000010,

 DEFAULT_GUI_FONT = 0x8000 0011,

 DC_BRUSH = 0x80000012,

 DC_PEN = 0x80000013

} StockObject;

WHITE_BRUSH: A white, solid -color brush that is equivalent to a logical brush (LogBrushEx

object , section 2.2.12) with the following properties:

Á BrushStyle : BS_SOLID (WMF BrushStyle enumeration , [MS -WMF] section 2.1.1.4)

Á Color : 0x00FFFFFF (WMF ColorRef object , [MS -WMF] section 2.2.2.8)

LTGRAY_BRUSH: A light gray, solid -color brush that is equivalent to a logical brush with the
following properties:

Á BrushStyle : BS_SOLID

Á Color : 0x00C0C0C0

GRAY_BRUSH: A gray, solid -color brush that is equivalent to a logical brush with the following

properties:

Á BrushStyle : BS_SOLID

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

49 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Á Color : 0x00808080

DKGRAY_BRUSH: A dark gray, solid color brush that is equivalent to a logical brush with the
following properties:

Á BrushSt yle : BS_SOLID

Á Color : 0x00404040

BLACK_BRUSH: A black, solid color brush that is equivalent to a logical brush with the following
properties:

Á BrushStyle : BS_SOLID

Á Color : 0x00000000

NULL_BRUSH: A null brush that is equivalent to a logical brush with the fo llowing
properties: <44>

Á BrushStyle : BS_NULL

WHITE_PEN: A white, solid -color pen that is equivalent to a logical pen (LogPen object , section
2.2.19) with the following properties:

Á PenStyle : PS_COSMETIC + PS_SOLID (PenStyle enumeration , section 2.1.25)

Á ColorRef : 0x00FFFFFF (WM F ColorRef object).

BLACK_PEN: A black, solid -color pen that is equivalent to a logical pen with the following
properties:

Á PenStyle : PS_COSMETIC + PS_SOLID

Á ColorRef : 0x00000000

NULL_PEN: A null pen that is equivalent to a logical pen with the following properties:

Á PenStyle : PS_NULL

OEM_FIXED_FONT: A fixed -width, OEM character set font that is equivalent to a logical font
(LogFont object , section 2.2.13) with the following properties:

Á Charset : OEM_CHARSET (WMF CharacterSet enumeration , [MS -WMF] secti on 2.1.1.5)

Á PitchAndFamily : FF_DONTCARE (WMF FamilyFont enumeration , [MS -WMF] section

2.1.1.8) + FIXED_PITCH (WMF PitchFont enumeration , [MS -WMF] section 2.1.1.24)

ANSI_FIXED_FONT: A fixed -width font that is equivalent to a logical font with the following
properties: <45>

Á Charset : ANSI_CHARSET

Á PitchAndFamily : FF_DONTC ARE + FIXED_PITCH

ANSI_VAR_FONT: A variable -width font that is equivalent to a logical font with the following
properties: <46>

Á Charset : ANSI_CHARSET

%5bMS-GLOS%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

50 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Á PitchAndFamily : FF_DONTCARE + VARIABLE_PITCH

SYSTEM_FONT: A font that is guaranteed to be available in the operating system. The actual
font that is specified by this value is implementation -dependent. <47>

DEVICE_DEFAULT_FONT: The default font that is provided by the graphics device drive r for
the current output device. The actual font that is specified by this value is implementation -
dependent. <48>

DEFAULT_PALETTE: The default palette that is defined for the current output device. The
actual palette that is specif ied by this value is implementation -dependent. <49>

SYSTEM_FIXED_FONT: A fixed -width font that is guaranteed to be available in the operating
system. The actual font that is specified by this value is implementation -dependent.

DEFAU LT_GUI_FONT: The default font that is used for user interface objects such as menus
and dialog boxes. The actual font that is specified by this value is implementation -
dependent. <50>

DC_BRUSH: The solid -color brush that is current ly selected in the playback device
context. <51>

DC_PEN: The solid -color pen that is currently selected in the playback device context. <52>

During metafile processing, stock object indexes can be used by object manipulation records

(section 2.3.8) to select objects into the playback device context in the same way as indexes of
graphics objects that are exp licitly created by object creation records (section 2.3.7). The index of a
stock object can be distinguished from the index of an explicit object by t he value of the most -
significant bit. If that bit is set, the object is a stock object; if the bit is clear, the object was created
by a previous metafile record.

2.1.32 StretchMode Enumeration

The StretchMode enumeration is used to specify how color data is added to or removed from

bitmaps that are stretched or compressed. <53>

typedef enum

{

 STRETCH_ANDSCANS = 0x01,

 STRETCH_ORSCANS = 0x02,

 STRETCH_DELETESCANS = 0x03,

 STRETCH_HALFTONE = 0x04

} StretchMode;

STRETCH_ANDSCANS: Performs a Boolean AND operation using the color values for the

eliminated and existing pixels. If the bitmap is a monochrome bitmap, this m ode preserves
black pixels at the expense of white pixels.

STRETCH_ORSCANS: Performs a Boolean OR operation using the color values for the

eliminated and existing pixels. If the bitmap is a monochrome bitmap, this mode preserves
white pixels at the expens e of black pixels.

STRETCH_DELETESCANS: Deletes the pixels. This mode deletes all eliminated lines of pixels

without trying to preserve their information.

51 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

STRETCH_HALFTONE: Maps pixels from the source rectangle into blocks of pixels in the
destination re ctangle. The average color over the destination block of pixels approximates the

color of the source pixels.

After setting the STRETCH_HALFTONE stretching mode, the brush origin SHOULD be

defined by an EMR_SETBRUSHORGEX record. If it fails to do so, brush misalignment can
occur.

2.1.33 StrokeVariation Enumeration

The StrokeVariation enumeration defines values for one of the characteristics in the PANOSE
system for classifying typefaces.

typedef enum

{

 PAN_ANY = 0x00,

 PAN_NO_FIT = 0x01,

 PAN_STROKE_GRADUAL_DIAG = 0x02,

 PAN_STROKE_GRADUAL_TRAN = 0x03,

 PAN_STROKE_GRADUAL_VERT = 0x04,

 PAN_STROKE_GRADUAL_HORZ = 0x05,

 PAN_STROKE_RAPID_VERT = 0x06,

 PAN_STROKE_RAPID_HORZ = 0x07,

 PAN_STROKE_INSTANT_VERT = 0x08

} StrokeVariation;

PAN_ANY: Any.

PAN_NO_FIT: No fit.

PA N_STROKE_GRADUAL_DIAG: Gradual/diagonal.

PAN_STROKE_GRADUAL_TRAN: Gradual/transitional.

PAN_STROKE_GRADUAL_VERT: Gradual/vertical.

PAN_STROKE_GRADUAL_HORZ: Gradual/horizontal.

PAN_STROKE_RAPID_VERT: Rapid/vertical.

PAN_STROKE_RAPID_HORZ: Rapid/horizo ntal.

PAN_STROKE_INSTANT_VERT: Instant/vertical.

2.1.34 Weight Enumeration

The Weight enumeration defines values for one of the characteristics in the PANOSE system for
classifying typefaces.

typedef enum

{

 PAN_ANY = 0x00,

 PAN_NO_FIT = 0x01,

 PAN_WEIGHT_VERY_LIGHT = 0x02,

 PAN_WEIGHT_LIGHT = 0x03,

 PAN_WEIGHT_THIN = 0x04,

52 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 PAN_WEIGHT_BOOK = 0x05,

 PAN_WEIGHT_MEDIUM = 0x06,

 PAN_WEIGHT_DEMI = 0x07,

 PAN_WEIGHT_BOLD = 0x08,

 PAN_WEIGHT_HEAVY = 0x09,

 PAN_WEIGHT_BLACK = 0x0A,

 PAN_WEIGHT_NORD = 0x0B

} Weight;

PAN_ANY: Any.

PAN_NO_FIT: No fit.

PAN_WEIGHT_VERY_LIGHT: Very light.

PAN_WEIGHT_LIGHT: Light.

PAN_WEIGHT_THIN: Thin.

PAN_WEIGHT_BOOK: Book.

PAN_WEIGHT_MEDIUM: Medium.

PAN_WEIGHT_DEMI: Demi.

PAN_WEIGHT_BOLD: Bold.

PAN_WEIGHT_HEAVY: Heavy.

PAN_WEIGHT_BLACK : Black.

PAN_WEIGHT_NORD: Nord.

2.1.35 XHeight Enumeration

The XHeight enumeration defines values for one of the characteristics in the PANOSE system for
classifying typefaces.

typedef enum

{

 PAN_ANY = 0x00,

 PAN_NO_FIT = 0x01,

 PAN_XHEIGHT_CONSTANT_SMALL = 0x02,

 PAN_XHEIGHT_CONSTANT_STD = 0x03,

 PAN_XHEIGHT_CONSTANT_LARGE = 0x04,

 PAN_XHEIGHT_DUCKING_SMALL = 0x05,

 PAN_XHEIGHT_DUCKING_STD = 0x06,

 PAN_XHEIGHT_DUCKING_LARGE = 0x07

} XHeight;

PAN_ANY: Any.

PAN_NO_FIT: No fit.

PAN_XHEIGHT_CONSTANT_SMALL: Constant/small.

PAN_XHEIGHT_CONSTANT_STD: Constant/standard.

53 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

PAN_XHEIGHT_CONSTANT_LARGE: Constant/large.

PAN_XHEIGHT_DUCKING_SMALL: Ducking /small

PAN_XHEIGHT_DUCKING_STD: Ducking/standard.

PAN_XHEIGHT_DUCKING_LARGE: Ducking/large.

2.2 EMF Objects

2.2.1 BitFIX28_4 Object

The BitFIX28_4 object defines a numeric value in 28.4 bit FIX notation .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

IntValue FracValue

IntValue (28 bits): The signed, integral part of the number.

FracValue (4 bits): The unsigned fractional part of the number, in units of one -sixteenth.

The floating -point number represented by this object is computed as follows:

IntValue + (FracValue / 1 6)

2.2.2 ColorAdjustment Object

The ColorAdjustment object defines values for adjusting the colors in source bitmaps in bit -block
transfers. <54>

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Size Values

IlluminantIndex RedGamma

GreenGamma BlueGamma

ReferenceBlack ReferenceWhite

Contrast Brightness

Colorfulness RedGreenTint

Size (2 bytes): A 16 -bit unsigned integer that specifies the size in bytes of this object. This

MUST be 0x0018.

54 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Values (2 bytes): A 16 -bit unsigned integer that specifies how to prepare the output image.
This field can be set to NULL or to any combination of values in th e ColorAdjustment

enumeration (section 2.1.5).

IlluminantIndex (2 bytes): A 16 -bit unsigned integer that specifies the type of standard light

source under which the image is viewed, from the Illuminant enumeration (section 2.1.19).

RedGamma (2 bytes): A 16 -bit unsigned integer that specifies the n th power gamma
correction value for the red primary of the source colors. This value SHOULD be in the range
from 2,500 to 65,000. <55> A value of 10,000 means gamma correction MUST NOT be
performed.

GreenGamma (2 bytes): A 16 -bit unsigned integer that specifies the nth power gamma
correction value for the green primary of the source colors. This value SHOULD be in the

range from 2,500 to 65,000. A value of 10,000 means gamma correction MUST NOT be
performed.

Bl ueGamma (2 bytes): A 16 -bit unsigned integer that specifies the nth power gamma

correction value for the blue primary of the source colors. This value SHOULD be in the range
from 2,500 to 65,000. A value of 10,000 means gamma correction MUST NOT be perfor med.

ReferenceBlack (2 bytes): A 16 -bit unsigned integer that specifies the black reference for the

source colors. Any colors that are darker than this are treated as black. This value SHOULD be
in the range from zero to 4,000.

ReferenceWhite (2 bytes): A 16 -bit unsigned integer that specifies the white reference for the
source colors. Any colors that are lighter than this are treated as white. This value SHOULD be
in the range from 6,000 to 10,000.

Contrast (2 bytes): A 16 -bit signed integer that specif ies the amount of contrast to be applied
to the source object. This value SHOULD be in the range from ï100 to 100. A value of zero

means contrast adjustment MUST NOT be performed.

Brightness (2 bytes): A 16 -bit signed integer that s pecifies the amount of brightness to be

applied to the source object. This value SHOULD be in the range from ï100 to 100. A value of
zero means brightness adjustment MUST NOT be performed.

Colorfulness (2 bytes): A 16 -bit signed int eger that specifies the amount of colorfulness to
be applied to the source object. This value SHOULD be in the range from ï100 to 100. A value
of zero means colorfulness adjustment MUST NOT be performed.

RedGreenTint (2 bytes): A 16 -bit signed integer that specifies the amount of red or green tint
adjustment to be applied to the source object. This value SHOULD be in the range from ï100
to 100. Positive numbers adjust towards red and negative numbers adjust tow ards green. A
value of zero means tint adjustment MUST NOT be performed.

The ColorAdjustment object is used in bit -block transfers performed by EMR_STRETCHBLT and
EMR_STRETCHDIBITS records when the StretchMode enumeration (section 2.1.32) value is

STRETCH_HALFTO NE . The color adjustment values can apply a color filter or lighten or darken an
image.

An EMR_SETCOLORADJUSTMENT record (section 2.3.11.13) sets the current ColorAdjustment object
in the playback device context. That ColorAdjustment object affects all subsequent
EMR_STRETCHBLT and EMR_STRETCHDIBITS records until a different ColorAdjustment object is
specified by another EMR_SETCOLORADJUSTMENT record, o r until the object is removed by a
EMR_DELETEOBJECT record.

55 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.3 DesignVector Object

The DesignVector (section 2.2.3) object defines the design vector , which specifies values for the
font axes of a multiple master font.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Signature

NumAxes

Values (variable)

...

Signature (4 bytes): A 32 -bit unsigned integer that MUST be set to the value 0x08007664.

NumAxes (4 bytes): A 32 -bit unsigned integer that specifies the number of elements in the
Values array. It MUST be in the range 0 to 16, inclusive.

Values (variable): An optional array of 32 -bit signed integers that specify the values of the
font axes of a multiple master, OpenType font. The maximum number of values in the array
is 16.

2.2.4 EmrFormat Object

The EmrFormat object contains information that identifies the format of image data in an
EMR_COMMENT_MULTIFORMATS record (section 2.3.3.4.3) .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Signature

Version

SizeData

offData

Signature (4 bytes): A 32 -bit unsigned integer that specifies the format of the image data.
This value MUST be in the FormatSignature enumeration (section 2.1.14) .

Version (4 bytes): A 32 -bit unsigned integer that specifies the format version number. If the

Signature field specifies encapsulated PostScrip t (EPS), this value MUST be 0x00000001;
otherwise, this value MUST be ignored.

SizeData (4 bytes): A 32 -bit unsigned integer that specifies the size of the data in bytes.

56 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

offData (4 bytes): A 32 -bit unsigned integer that specifies the offset to the data from the start
of the identifier field in an EMR_COMMENT_PUBLIC record (section 2.3.3.4) . The off set MUST

be 32 -bit aligned.

2.2.5 EmrText Object

The EmrText object contains values for text output.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Reference

...

Chars

offString

Options

Rectangle

...

...

...

offDx

StringBuffer (variable)

...

DxBuffer (variable)

...

Reference (8 bytes): A WMF PointL object ([MS -WMF] section 2.2.2.15) that specifies the
coordinates of the reference point used to position the string. The reference point is defined
by the last EMR_SETTEXTALIGN record (section 2.3.11.25) . If no such record has been set,

the default alignment is TA_LEFT,TA_TOP.

Chars (4 bytes): A 32 -bit unsigned integer that specifies the number of characters in the

string.

offString (4 bytes): A 32 -bit unsigned integer that specifies the offset to the output string, in
bytes, from the start of the record in which this object is contained. This value MUST be 8 - or
16 -bit aligned, according to the character format.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

57 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Options (4 bytes): A 32 -bit unsigned integer that specifies how to use the rectangle specified
in the Rectangle field. This field can be a combination of more than one ExtTextOutOptions

enumeration (sect ion 2.1.11) values.

Rectangle (16 bytes): An optional WMF RectL object ([MS -WMF] section 2.2.2.19) that defines

a clipping and/or opaquing recta ngle in logical units. This rectangle is applied to the text
output performed by the containing record. <56>

offDx (4 bytes): A 32 -bit unsigned integer that specifies the offset to an intercharacter spacing
array, in bytes, from the start of the record in which this object is contained. This value MUST
be 32 -bit aligned.

StringBuffer (variable): The character string buffer.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UndefinedSpace1 (variable)

...

OutputString (variable)

...

UndefinedSpace1 (variable): An optional number of unused bytes. The OutputString

field is not required to follow immediately the preceding portion of this structure.

OutputString (variable): An array of characters that specify the string to output. The
location of this field is specified by the value of offString in bytes from the start of this
record. The number of characters is specified by the value of Chars .

DxBuffer (variable): The optio nal character spacing buffer.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UndefinedSpace2 (variable)

...

OutputDx (variable)

...

UndefinedSpace2 (variable): An optional number of unused bytes. The OutputDx field

is not required to follow immediately the preceding portion of this structure.

OutputDx (variable): An array of 32 -bit unsigned integers that specify the output
spacing between the origins of adjacent character cells in logical units. The location of
this field is specified by the value of offDx in bytes from the start of this record. If

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

58 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

spacing is defined, this field contains the same number of values as characters in the
output string.

If the Options field of the EmrText object contains the ETO_PDY flag, then this buffer
contains twice as many values as there are characters in the output string, one

horizontal and one vertical offset for each, in that order.

If ETO_RTLREADING is specified, characters are laid right to left instead of left to right.
No other options affect the interpretation of this field.

The size and encoding of the characters in the OutputString is determined by the type of record
that contains the EmrText object, as follows:

Á EMR_EXTTEXTOUTA (section 2.3.5.7) and EMR_POLYTEXTOUTA (section 2.3.5.32) records: 8 -bit

ASCII characters.

Á EMR_EXTTEXTOUTW and EMR_POLYTEXTOUTW records: 16 -bit Unicode UTF16 -LE characters.

2.2.6 EpsData Object

The EpsData object is a container for EPS data.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SizeData

Version

Points

...

...

...

...

...

PostScriptData (variable)

...

SizeData (4 bytes): A 32 -bit unsigned integer that specifies the total size of this object, in

bytes.

Version (4 bytes): A 32 -bit unsigned integer that specifies the PostScript language level. This
value MUST be 0x00000001.

59 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Points (24 bytes): An array of three Point28_4 objects (section 2.2.23) that defines the
coordinates of the output p arallelogram using 28.4 bit FIX notation.

The upper - left corner of the parallelogram is the first point in this array, the upper - right
corner is the second point, and the lower - left corner is the third point. The lower - right corner

of the parallelogram is computed from the first three points (A, B, and C) by treating them as
vectors.

D = B + C A

PostScriptData (variable): An array of bytes of PostScript data. The length of this array can

be computed from the SizeData field. This data MAY be used to render an image. <57>

An EpsData object can be used to embed a PostScript image in an EMF metafile as follows:

Á An EMF metafile contains an EMR_COMMENT_MULTIFORMATS record (section 2.3.3.4.3) .

Á The EMR_COMMENT_MULTIFORMATS record specifies an aFormats field that contains an

EmrFormat o bject (section 2.2.4) .

Á The EmrFormat object specifies a Signature field that is set to EPS_SIGNATURE from the

FormatSignature enumeration (section 2.1.14) .

Á The EPS_SIGNATURE value specifies that the FormatData field in the

EMR_COMMENT_MULTIFORMATS record contains an EpsData object.

Á The EmrFormat object also specifies an offData field that indicates where the EpsData object is

in the FormatData field in the EMR_COMMENT_MULTIFORMATS record.

2.2.7 GradientRectangle Object

The GradientRectangle object defines a rectangle using TriVertex objects (section 2.2.26) in an
EMR_GRADIENTFILL record (section 2.3.5.12) .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UpperLeft

LowerRight

UpperLeft (4 bytes): An index into an array of TriVertex objects that specifies the upper - left
vertex of a rectangle. The index MUST be smaller than the size of the array, as defined by the
nVer field of the EMR_GRADIENTFILL record.

LowerRight (4 bytes): An index into an arra y of TriVertex objects that specifies the lower - right
vertex of a rectangle. The index MUST be smaller than the size of the array, as defined by the

nVer field of the EMR_GRADIENTFILL record.

2.2.8 GradientTriangle Object

The GradientTriangle object defines a triangle using TriVertex objects (section 2.2.26) in an
EMR_GRADIENTFILL record (section 2.3.5.12) .

60 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Vertex1

Vertex2

Vertex3

Vertex1 (4 bytes): An index into an array of TriVertex objects that specifies a vertex of a
triangle. The index MUST be smaller than the size of the array, as defined by the nVer field of
the EMR_GRADIENTFILL record.

Vertex2 (4 bytes): An index into an array of TriVertex ob jects that specifies a vertex of a
triangle. The index MUST be smaller than the size of the array, as defined by the nVer field of
the EMR_GRADIENTFILL record.

Vertex3 (4 bytes): An index into an array of TriVertex objects that specifies a vertex of a

tri angle. The index MUST be smaller than the size of the array, as defined by the nVer field of
the EMR_GRADIENTFILL record.

2.2.9 Header Object

The Header object defines the EMF metafile header. It specifies properties of the device on which
the image in the metafile was created.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Bounds

...

...

...

Frame

...

...

...

RecordSignature

Version

61 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Bytes

Records

Handles Reserved

nDescription

offDescription

nPalEntries

Device

...

Millimeters

...

Bounds (16 bytes): A WMF RectL object ([MS -WMF] section 2.2.2.19) that specifies the
rectangular inclusive - inclusive bounds in device units of the smallest rectangle that can be
drawn around the image stored in the metafile.

Frame (16 bytes): A WMF RectL object that spec ifies the rectangular inclusive - inclusive
dimensions, in .01 millimeter units, of a rectangle that surrounds the image stored in the
metafile.

RecordSignature (4 bytes): A 32 -bit unsigned integer that specifies the record signature. This

MUST be ENHMETA_S IGNATURE , from the FormatSignature enumeration (section
2.1.14) .

Version (4 bytes): A 32 -bit uns igned integer that specifies EMF metafile interoperability. This
SHOULD be 0x00010000. <58>

Bytes (4 bytes): A 32 -bit unsigned integer that specifies the size of the metafile, in bytes.

Records (4 bytes): A 32 -bit unsigned integer that specifies the number of records in the
metafile.

Handles (2 bytes): A 16 -bit unsigned integer that specifies the number of graphics objects that
will be used during the processing of the metafile.

Reserved (2 bytes): A 16 -bit unsigned integer that M UST be 0x0000 and MUST be ignored.

nDescription (4 bytes): A 32 -bit unsigned integer that specifies the number of characters in
the array that contains the description of the metafile's contents. This is zero if there is no
description string.

offDescript ion (4 bytes): A 32 -bit unsigned integer that specifies the offset from the
beginning of this record to the array that contains the description of the metafile's contents.

%5bMS-WMF%5d.pdf

62 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

nPalEntries (4 bytes): A 32 -bit unsigned integer that specifies the number of entr ies in the
metafile palette. The palette is located in the EMR_EOF record.

Device (8 bytes): A WMF SizeL object ([MS -WMF] section 2.2.2.22) that specifies the size of
the reference device, in pixels.

Millimeters (8 bytes): A WMF SizeL object that specifies the size of the reference device, in
millimeters.

2.2.10 HeaderExtension1 Object

The HeaderExtension1 object defines the first extension to the EMF metafile header. It adds support
for a PixelFormatDescriptor object (section 2.2.22) and OpenGL [OPENGL] records (section 2.3.9).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

cbPixelFormat

offPixelFormat

bOpenGL

cbPixelFormat (4 bytes): A 32 -bit unsigned integer that specifies the size of the
PixelFormatDescriptor object. This MUST be 0x00000000 if no pixel format is set.

offPixelFormat (4 bytes): A 32 -bit unsigned integer that specifies the offset to the
PixelFormatDescriptor object. Th is MUST be 0x00000000 if no pixel format is set.

bOpenGL (4 bytes): A 32 -bit unsigned integer that indicates whether OpenGL commands are
present in the metafile.

Value Meaning

0x00000000 OpenGL records are not present in the metafile.

0x00000001 OpenGL records are present in the metafile.

2.2.11 HeaderExtension2 Object

The HeaderExtension2 object defines the second extension to the EMF metafile header. It adds the
ability to measure device surfaces in micrometers, which enhances the resolution and scalability of
EMF metafiles.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MicrometersX

MicrometersY

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90241

63 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

MicrometersX (4 bytes): The 32 -bit horizontal size of the display device for which the metafile
image was generated, in micrometers.

MicrometersY (4 bytes): The 32 -bit vertical size of the display device for which the metafile
image was generated, in micrometers.

2.2.12 LogBrushEx Object

The LogBrushEx object defines the style, color, and pattern of a device - independent brush.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

BrushStyle

Color

BrushHatch

BrushStyle (4 bytes): A 32 -bit unsigned integer that specifies the brush style. The value MUST
be an enumeration from WMF BrushStyle enumeration ([MS -WMF] section 2.1.1.4). The style
values that are supported in this structure are listed later in this section. The BS_NULL style
SHOULD be used to specify a brush that has no effect. <59>

Color (4 bytes): A 32 -bit WMF ColorRef object ([MS -WMF] section 2.2.2.8) that specifies a
color. The interpretation of this field depends on the value of BrushStyle , as explained in the
following table.

BrushHatch (4 bytes): A 32 -bit unsigned field that contains the brush hatch data. Its
interpretation depen ds on the value of BrushStyle , as explained in the following table.

The following table shows the relationship between the BrushStyle , Color , and BrushHatch fields

in a LogBrushEx object. Only supported brush styles are listed.

BrushStyle Color BrushHatch

BS_SOLID SHOULD be a WMF ColorRef

object, which specifies the color of

the brush.

Not used, and SHOULD be ignored.

BS_NULL Not used, and SHOULD be

ignored.

Not used, and SHOULD be ignored.

BS_HATCHED SHOULD be a WMF ColorRef

object, which specifies the

foreground color of the hatch

pattern.

SHOULD be a value from the EMF HatchStyle

(section 2.1.17) enumeration, which specifies

the orientation of lines used to create the hatch.

2.2.13 LogFont Object

The LogFont object specifies the basic attributes of a logical font.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

64 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Height

Width

Escapement

Orientation

Weight

Italic Underline StrikeOut CharSet

OutPrecision ClipPrecision Quality PitchAndFamily

Facename

...

...

...

...

...

...

...

(Facename cont'd for 8 rows)

Height (4 bytes): A 32 -bit signed integer that specifies the height, in logical units, of the font's
character cell or character. The character height value, also known as the em size , is the
character cell height value minus th e internal leading value. The font mapper SHOULD
interpret the value specified in the Height field in the following manner.

Value Meaning

0x00000000 <

value

The font mapper transforms this value into device units and matches it aga inst

the cell height of the available fonts.

0x00000000 The font mapper uses a default height value when it searches for a match.

value < The font mapper transforms this value into device units and matches its

65 / 30 7

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

0x00000000 absolute value against the character height of the available fonts.

For all height comparisons, the font mapper SHOULD look for the largest font that does not
exceed the requested siz e.

Width (4 bytes): A 32 -bit signed integer that specifies the average width, in logical units, of
characters in the font. If the Width field value is zero, an appropriate value SHOULD be

calculated from other LogFont values to find a font that has the ty pographer's intended
aspect ratio .<60>

Escapement (4 bytes): A 32 -bit signed integer that specifies the angle, in tenths of degrees,
between the escapement vector and the x -axis of the device. The escapement v ector is
parallel to the baseline of a row of text.

When the graphics mode is set to GM_ADVANCED , the escapement angle of the string can

be specified independently of the orientation angle of the string's characters. Graphics modes

are specified in section 2.1.16

Orientation (4 bytes): A 32 -bit signed integer that specifies the angle, in tenths of degrees,
between each character's baseline and the x -axis of the device.

Weight (4 byt es): A 32 -bit signed integer that specifies the weight of the font in the range
zero through 1000. For example, 400 is normal and 700 is bold. If this value is zero, a default
weight can be used. <61>

Italic (1 byte): An 8 -bit unsigned integer that specifies an italic font if set to 0x01; otherwise,
it MUST be set to 0x00.

Underline (1 byte): An 8 -bit unsigned integer that specifies an underlined font if set to 0x01;
otherwise, it MUST be set to 0x00.

StrikeOut (1 byte): An 8 -bit unsigned integer that specifies a strikeout font if set to 0x01;

otherwise, it MUST be set to 0x00.

CharSet (1 byte): An 8 -bit unsigned integer that specifies the set of character glyphs. It MUST

be a value in the WMF CharacterSet enumeration ([MS -WMF] section 2.1.1.5). If the
character set is unknown, metafile processing SHOULD NOT attempt to translate or interpret
strings that are rendered with that font.

If a typefa ce name is specified in the Facename field, the CharSet field value MUST match
the character set of that typeface.

OutPrecision (1 byte): An 8 -bit unsigned integer that specifies the output precision. The
output precision defines how closely the font is r equired to match the requested height, width,

character orientation, escapement, pitch , and font type. It MUST be a value from the WMF
OutPrecision enumeration ([MS -WMF] secti on 2.1.1.21).

Applications can use the output precision to control how the font mapper chooses a font when

the operating system contains more than one font with a specified name. For example, if an
operating system contains a font named Symbol in rasterized and TrueType forms, an
output precision value of OUT_TT_PRECIS forces the font mapper to choose the TrueType

version. A value of OUT_TT_ONLY_PRECIS forces the font mapper to choose a TrueType
font, even if it is necessary to substi tute a TrueType font with another name.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

66 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

ClipPrecision (1 byte): An 8 -bit unsigned integer that specifies the clipping precision. The
clipping precision defines how to clip characters that are partially outside the clipping region.

It can be one or more of the WMF ClipPrecision Flags ([MS -WMF] section 2.1.2.1).

Quality (1 byte): An 8 -bit unsigned integer that specifies the output quality. The output quality

defines how closely to attempt to match th e logical - font attributes to those of an actual
physical font. It MUST be one of the values in the WMF FontQuality enumeration ([MS -WMF]
section 2.1.1.10).

PitchAndFamily (1 byte): A WMF PitchAndFamily object ([MS -WMF] section 2.2.2.14) that
specifies the pitch and family of the font. Font families describe the look of a font in a general
way. They are intended for specifying a font w hen the specified typeface is not available.

Facename (64 bytes): A string of no more than 32 Unicode characters that specifies the

typeface name of the font. If the length of this string is less than 32 characters, a terminating
NULL MUST be present, aft er which the remainder of this field MUST be ignored.

2.2.14 LogFontEx Object

The LogFontEx object specifies the extended attributes of a logical font.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

LogFont

...

...

...

...

...

...

...

(LogFont cont'd for 15 rows)

FullName

...

...

...

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

67 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

...

...

...

...

(FullName cont'd for 24 rows)

Style

...

...

...

...

...

...

...

(Style cont'd for 8 rows)

Script

...

...

...

...

...

...

...

(Script cont'd for 8 rows)

68 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

LogFont (92 bytes): A LogFont (section 2.2.13) object that specifies the basic attributes of the
logical font.

FullName (128 bytes): A string of 64 Unicode characters that contains the font's full name. If
the length of this string is less than 64 characters, a terminating NULL MUST be present, after

which the remainder of this field MUST be ignored .

Style (64 bytes): A string of 32 Unicode characters that defines the font's style. If the length of
this string is less than 32 characters, a terminating NULL MUST be present, after which the
remainder of this field MUST be ignored.

Script (64 bytes): A string of 32 Unicode characters that defines the character set of the font.
If the length of this string is less than 32 characters, a terminating NULL MUST be present,
after which the remainder of this field MUST be ignored.

2.2.15 LogFontExDv Object

The LogFontExDv object specifies the design vector for an extended logical font.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

LogFontEx

...

...

...

...

...

...

...

(LogFontEx cont'd for 79 rows)

DesignVector (variable)

...

LogFontEx (348 bytes): A LogFontEx object (section 2.2.14) that specifies the extended
attributes of the logical font.

DesignVector (variable): A DesignVector object (section 2.2.3) . This field MUST NOT be
longer than 72 bytes.

A design vector SHOULD be specified only for a multiple master OpenType font.

69 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.16 LogFontPanose Object

The LogFontPanose object specifies the PANOSE characteristics of a logical font.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

LogFont

...

...

...

...

...

...

...

(LogFont cont'd for 15 rows)

FullName

...

...

...

...

...

...

...

(FullName cont'd for 24 rows)

Style

...

70 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

...

...

...

...

...

...

(Style cont'd for 8 rows)

Version

StyleSize

Match

Reserved

VendorId

Culture

Panose

...

... Padding

LogFont (92 bytes): A LogFont (section 2.2.13) object that specifies the basic attributes of th e
logical font.

FullName (128 bytes): A string of 64 Unicode characters that defines the font's full name. If

the length of this string is less than 64 characters, a terminating NULL MUST be present, after
which the remainder of this field MUST be ignored .

Style (64 bytes): A string of 32 Unicode characters that defines the font's style. If the length of
this string is less than 32 characters, a terminating NULL MUST be present, after which the
remainder of this field MUST be ignored.

Version (4 bytes): This field MUST be ignored.

StyleSize (4 bytes): A 32 -bit unsigned integer that specifies the point size at which font
hinting is performed. If set to zero, font hinting is performed at the point size corresponding
to the Height fie ld in the LogFont object in the LogFont field.

71 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Match (4 bytes): This field MUST be ignored.

Reserved (4 bytes): A 32 -bit unsigned integer that MUST be set to zero and MUST be ignored.

VendorId (4 bytes): This field MUST be ignored.

Culture (4 bytes): A 32 -bit unsigned integer that MUST be set to zero and MUST be ignored.

Panose (10 bytes): A Panose object (section 2.2.21) that specifies the PANOSE characteristics
of the logical font. If all fields of this object are zero, it MUST be ignored.

Padding (2 bytes): A field that exists only to ensure 32 -bit alignment of this structure. It MUST
be igno red.

2.2.17 LogPalette Object

The LogPalette object specifies a logical_palette that contains device - independent color definitions.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Version NumberOfEntries

PaletteEntries (variable)

...

Version (2 bytes): A 16 -bit unsigned integer that specifies the version number of the system.
This MUST be 0x0300.

NumberOfEntries (2 bytes): A 16 -bit unsigned integer that specifies the number of

LogPaletteEntry objects (section 2.2.18) in the PaletteEntries field.

PaletteEntries (variable): An array of LogPaletteEntry objects that defines the color and
usage of each entry in the logical_palette.

EMF MUST define colors as device - independent values because the metafile itself is device -
independent.

2.2.18 LogPaletteEntry Object

The LogPaletteEntry object defines the values that make up a single entry in a LogPalette object
(section 2.2.17).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Reserved Blue Green Red

Reserved (1 byte): An 8 -bit unsigned integer that SHOULD NOT be used and SHOULD be

ignored.

72 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Blue (1 byte): An 8 -bit unsigned integer that defines the blue intensity value for the entry in a
LogPalette object.

Green (1 byte): An 8 -bit unsigned integer that defines the green intensity value for the
LogPalette entry.

Red (1 byte): An 8 -bit unsigned integer that defines the red intensity value for the LogPalette
entry.

EMF MUST define colors as device - independent values because the metafile itself is device -
independent.

2.2.19 LogPen Object

The LogPen object defines the style, width, and color of a logical pen.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

PenStyle

Width

...

ColorRef

PenStyle (4 bytes): A 32 -bit unsigned integer that specifies the PenStyle. The value MUST be
defined from the PenStyle enumeration table, specified in section 2.1.25 .

Width (8 bytes): A WMF PointL object ([MS -WMF] section 2.2.2.15) that specifies the width of

the pen by the value of its x field. The value of its y field MUST be ignored.

If the pen type in the PenStyle field is PS_GEOMETRIC , this value is the width in logical
units ; otherwise, the width is specified in device units. If the pen type in the PenStyle field is

PS_COSMETIC , this value MUST be 0x00000001.

ColorRef (4 bytes): A WMF ColorRef object ([MS -WMF] section 2.2.2.8) that specifies the pen
color value.

2.2.20 LogPenEx Object

The LogPenEx object specifies the style, width, and color of an extended logical pen.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

PenStyle

Width

BrushStyle

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

73 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

ColorRef

BrushHatch

NumStyleEntries

StyleEntry (variable)

...

PenStyle (4 bytes): A 32 -bit unsigned integer that specifies the pen style. This value MUST be
defined from the PenStyle enumeration (section 2.1.25).

T A pen style is a combination of pen type, line style, line cap, and line join.

Width (4 bytes): A 32 -bit unsigned integer that specifies the width of the line drawn by the
pen.

If the pen type in the PenStyle field is PS_GEOMETRIC , this value is the width in logical

units; otherwise, the width is specified in device units. If the pen type in the PenStyle field is
PS_COSMETIC , this value MUST be 0x00000001.

BrushStyle (4 bytes): A 32 -bit unsigne d integer that specifies a brush style for the pen from
the WMF BrushStyle enumeration ([MS -WMF] section 2.1.1.4).

If the pen type in the PenStyle field is PS_GEOMETRIC , this value MUST be either
BS_SOLID or BS_HATCHED . The va lue of this field can be BS_NULL , but only if the line
style specified in PenStyle is PS_NULL . The BS_NULL style SHOULD be used to specify a

brush that has no effect. <62>

ColorRef (4 bytes): A WMF ColorRef object ([MS -WMF] section 2.2.2.8). The interpretation of

this field depends on the BrushStyle value, as shown in the table later in this section.

BrushHatch (4 bytes): The brush hatch pattern. The definition of this field depends on the
BrushStyle val ue, as shown in the table later in this section.

NumStyleEntries (4 bytes): The number of elements in the array specified in the StyleEntry

field. This value SHOULD be zero if PenStyle does not specify PS_USERSTYLE .

StyleEntry (variable): An optional arr ay of 32 -bit unsigned integers that defines the lengths of
dashes and gaps in the line drawn by this pen, when the value of PenStyle is
PS_USERSTYLE line style for the pen. The array contains a number of entries specified by
NumStyleEntries , but it is used as if it repeated indefinitely.

The first entry in the array specifies the length of the first dash. The second entry specifies
the length of the first gap. Thereafter, lengths of dashes and gaps alternate.

If the pen type in the PenStyle field is PS_GEOMETRIC , the lengths are specified in logical
units; otherwise, the lengths are specified in device units.

The LogPenEx object includes the specification of brush attributes, so it can be used to draw lines
that consist of custom or predefined pattern s. The following table shows the relationship between
the BrushStyle , ColorRef , and BrushHatch fields in a LogPenEx object. Only supported brush
styles are listed.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

74 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

BrushStyle ColorRef BrushHatch

BS_SOLID SHOULD be a WMF

ColorRef (section 2.2.2.8)

object ([MS -WMF]), which

specifies the color of lines

drawn by the pen.

Not used, and SHOULD be ignored.

BS_NULL Not used, and SHOULD be

ignored.

Not used, and SHOULD be ignored.

BS_HATCHED SHOULD be a WMF

Color Ref (section 2.2.2.8)

object, which specifies the

foreground color of the

hatch pattern.

SHOULD be a value from the EMF HatchStyle

(section 2.1.17) enumeration that specifies the

orientation of lines used to create the hatch. If

PS_GEOMETRIC is not set in the PenStyle field,

this field MUST be either HS_SOLIDTEXTCLR

(0x0008) or HS_SOLIDBKCLR (0x000A) .

BS_PATTERN The low -order word

SHOULD be a value from

the WMF ColorUsage

(section 2.1.1.6)

enumeration ([MS -WMF]

section 2.1.1.6).

Not used , and SHOULD be ignored. The brush

pattern is specified by a packed DIB ([MS -WMF]

section 2.2.2.9).

BS_DIBPATTERN The low -order word

SHOULD be a value from

the WMF ColorUsage

enumeration.

Not used, and SHOULD be ignored. The brush

pattern is specified by a packed DIB.

BS_DIBPATTERNPT The low -order word

SHOULD be a value from

the WMF ColorUsage

(section 2.1.1.6)

enumeration.

Not used, and SHOULD be ignored. The brush

pattern is specified by a packed DIB.

2.2.21 Panose Object

The Panose object describes the PANOSE font -classification values for a TrueType font. These

characteristics are used to associate the font with other fonts of similar appearance but different
names.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

FamilyType SerifStyle Weight Proportion

Contrast StrokeVariation ArmStyle Letterform

Midline XHeight

FamilyType (1 byte): An 8 -bit unsigned integer that specifies the family type. The value MUST

be in the FamilyType (section 2.1.12) enumeration table.

SerifStyle (1 byte): An 8 -bit unsigned integer that specifies the serif style. The value MUST be
in the SerifType (section 2.1.30) enumeration table.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

75 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Weight (1 byte): An 8 -bit unsigned integer that specifies the weight of the font. The value
MUST be in the Weight (section 2.1.34) enumeration table.

Proportion (1 byte): An 8 -bit unsigned integer that specifies the proportio n of the font. The
value MUST be in the Proportion (section 2.1.28) enumeration table.

Contrast (1 byte): An 8 -bit unsigned integer that specifies the contrast of the font. The value
MUST be in the Contrast (section 2.1.8) enumeration table.

StrokeVariation (1 byte): An 8 -bit unsigned integer that specifies the stroke variation for the
font. The value MUST be in the StrokeVariation (section 2.1.33) enumeration table.

ArmStyle (1 byte): An 8 -bit unsigned integer that specifies the arm style of the font. The value
MUST be in the ArmStyle (section 2.1.3) enumeration table.

Letterform (1 byte): An 8 -bit unsigned integer that sp ecifies the letterform of the font. The

value MUST be in the Letterform (section 2.1.20) enumerat ion table.

Midline (1 byte): An 8 -bit unsigned integer that specifies the midline of the font. The value
MUST be in the MidLine (section 2.1.23) enumeration table.

XHeight (1 byte): An 8 -bit unsigned integer that specifies the x height of the font. The value
MUST be in the XHeight (section 2.1.35) enumeration table.

2.2.22 PixelFormatDescriptor Object

The PixelFormatDescriptor object specifies the pixel format of a drawing surface.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

nSize nVersion

dwFlags

iPixelType cColorBits cRedBits cRedShift

cGreenBits cGreenShift cBlueBits cBlueShift

cAlphaBits cAlphaShift cAccumBits cAccumRedBits

cAccumGreenBits cAccumBlueBits cAccumAlphaBits cDepthBits

cStencilBits cAuxBuffers iLayerType bReserved

dwLayerMask

dwVisibleMask

dwDamageMask

nSize (2 bytes): A 16 -bit integer that specifies the size, in bytes, of this data structure.

76 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

nVersion (2 bytes): A 16 -bit integer that MUST be set to 0x0001.

dwFlags (4 bytes): A set of bit flags that specify properties of t he pixel buffer that is used for
output to the drawing surface. These properties are not all mutually exclusive; combinations
of flags are allowed, except where noted otherwise.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

P F S

O

G M W S D C D

A

D

S

A S

L

S

C

S

E

S

P

0 0 0 0 0 0 0 0 0 0 0 0 S

D

D

D

D

P

0

The following bit flag constants are defined.

Value Description

D

PFD_DOUBLEBUFFER

The pixel buffer is double -buffered. This flag and

PFD_SUPPORT_GDI MUST NOT both be set.

S

PFD_STEREO

The pixel buffer MAY be stereoscopic ; that is, it MAY specify a

color plane that is used to create the illusion of depth in an

image. < 63>

W

PFD_DRAW_TO_WINDOW

The pixel buffer can draw to a window or device surface.

M

PFD_DRAW_TO_BITMAP

The pixel buffer can draw to a memory bitmap.

G

PFD_SUPPORT_GDI

This flag SHOULD be clear, but it MAY be set. <64> The

PFD_SUPPORT_GDI flag and PFD_DOUBLEBUFFER MUST

NOT both be set.

SO

PFD_SUPPORT_OPENGL

The pixel buffer supports OpenGL drawing. See [OPENGL] for

more information.

F

PFD_GENERIC_FORMAT

The pixel format is natively supported by the operating

system; this is known as the "generic" implementation. <65>

If clear, the pixel format is supported by a device driver or

hardware.

P

PFD_NEED_PALETTE

The buffer uses RGBA pixels on a palette -managed device. A

LogPalette object (section 2.2.17) is required to achieve the

best results for this pixel type. Colors in the palette SHOULD

be specified according to the values of the cRedBits ,

cRedShift , cGreenBits , cGreenShift , cBlueBits , and

cBlueShift fields.

SP

PFD_NEED_SYSTEM_PALETTE

The output device supports one hardware palette in 256 -color

mode only. For such systems to use hardware acceleration, the

hardware palette MUST be in a fixed order (for example, 3 -3-

2) when in RGBA mode, or MUST match the LogPalette object

when in color table mode.

SE The contents of the back buffer have been exchanged with the

http://go.microsoft.com/fwlink/?LinkId=90241

77 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Description

PFD_SWAP_EXCHANGE contents of the front buffer in a double -buffered color plane.

SC

PFD_SWAP_COPY

The contents of the back buffer have been copied to the front

buffer in a double -buffered color plane. The contents of the

back buffer have not been affected.

SL

PFD_SWAP_LAYER_BUFFERS

A device can swap individual color planes with pixel formats

that incl ude double -buffered overlay or underlay color planes.

Otherwise all color planes are swapped together as a group.

A

PFD_GENERIC_ACCELERATED

The pixel format is supported by a device driver that

accelerates the generic implementation. If this flag is clear and

the PFD_GENERIC_FORMAT flag is set, the pixel format is

supported by the generic implementation only.

DS

PFD_SUPPORT_DIRECTDRAW

The pixel buffer supports DirectDraw drawing, which allows

applications to have low - level control of the output drawing

surface.

DA

PFD_DIRECT3D_ACCELERATED

The pixel buffer supports Direct3D drawing, which accellerated

rendering in three dimensions.

C

PFD_SUPPORT_COMPOSITION

The pixel buffer supports compositing , which indicates that

source pixels MAY overwrite or be combined with background

pixels. <66>

DP

PFD_DEPTH_DONTCARE

The pixel buffer is not required to include a color plane for

depth effects.

DD

PFD_DOUBLEBUFFER_DONTCARE

The pixe l buffer can be either single or double buffered.

SD

PFD_STEREO_DONTCARE

The pixel buffer MAY be either monoscopic or stereoscopic.

iPixelType (1 byte): The type of pixel data.

Value Meaning

PFD_TYPE_RGBA

0x00

The pixel format is RGBA.

PFD_TYPE_COLORINDEX

0x01

Each pixel is an index in a color table.

cColorBits (1 byte): The number of bits per pixel for RGBA pixel types, excluding the alpha
bitplanes. For color table pixels, it is the size of each color table index.

cRedBits (1 byte): Specifies the number of red bitplanes in each RGBA color buffer.

cRedShift (1 byte): Specifies the shift count in bits for red bitplanes in each RGBA color b uffer.

cGreenBits (1 byte): Specifies the number of green bitplanes in each RGBA color buffer.

cGreenShift (1 byte): Specifies the shift count for green bitplanes in each RGBA color buffer.

78 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

cBlueBits (1 byte): Specifies the number of blue bitplanes in e ach RGBA color buffer.

cBlueShift (1 byte): Specifies the shift count for blue bitplanes in each RGBA color buffer.

cAlphaBits (1 byte): Specifies the number of alpha bitplanes in each RGBA color buffer. <67>

cAlphaShift (1 byte): Specifies the shift count for alpha bitplanes in each RGBA color

buffer. <68>

cAccumBits (1 byte): Specifies the total number of bitplanes in the accumulation buffer.

cAccumRedBits (1 byte): Specifies the number of red bitplanes i n the accumulation buffer.

cAccumGreenBits (1 byte): Specifies the number of green bitplanes in the accumulation
buffer.

cAccumBlueBits (1 byte): Specifies the number of blue bitplanes in the accumulation buffer.

cAccumAlphaBits (1 byte): Specifies the number of alpha bitplanes in the accumulation

buffer. <69>

cDepthBits (1 byte): Specifies the depth of the depth (z -axis) buffer.

cStencilBits (1 byte): Specifies the depth of the stencil buffer.

cAuxBuffers (1 byte): Specifies the number of auxiliary buffers. Auxiliary buffers are not
supported.

iLayerType (1 byte): This field MAY be ignored.

bReserved (1 byte): Specifies the number of overlay and underlay planes. Bits 0 through 3
specify up to 15 overlay planes an d bits 4 through 7 specify up to 15 underlay planes.

dwLayerMask (4 bytes): This field MAY be ignored.

dwVisibleMask (4 bytes): Specifies the transparent color or index of an underlay plane. When
the pixel type is RGBA, dwVisibleMask is a transparent RGB color value. When the pixel type
is color index, it is a transparent index value.

dwDamageMask (4 bytes): This field MAY be ignored.

The PixelFormatDescriptor object can be used in EMR_HEADER records (section 2.3.4.2) to specify
the pixel format of the output surface for the playback device context.

2.2.23 Point28_4 Object

The Point28_4 object represents the location of a point on a device surface with coordinates in 28.4
bit FIX notation.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

x

y

79 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

x (4 bytes): A BitFIX28_4 object (section 2.2.1) that represents the horizontal coordinate of th e
point.

y (4 bytes): A BitFIX28_4 object that represents the vertical coordinate of the point.

2.2.24 RegionData Object

The RegionData object specifies data that defines a region, which is made of non -overlapping
rectangles.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RegionDataHeader

...

...

...

...

...

...

...

Data (variable)

...

RegionDataHeader (32 bytes): A 256 -bit RegionDataHeader object that describes the
following data.

Data (variable): An array of WMF RectL objects ([MS -WMF] section 2.2.2.19); the objects are
merged to create the region.

2.2.25 RegionDataHeader Object

The RegionDataHeader object describes the properties of a RegionData object.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Size

Type

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

80 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

CountRects

RgnSize

Bounds

...

...

...

Size (4 bytes): A 32 -bit unsigned integer that specifies the size of this object in bytes. This
MUST be 0x00000020.

Type (4 bytes): A 32 -bit unsigned integer that specifies the region type. This SHOULD be

RDH_RECTANGLES (0x00000001).

CountRects (4 bytes): A 32 -bit unsigned integer that specifies the number of rectangles in this
region.

RgnSize (4 bytes): A 32 -bit unsigned integer that specifies the size of the buffer of rectangles
in bytes.

Bounds (16 bytes): A 128 -bit WMF RectL object ([MS -WMF] section 2.2.2.19), which specifies

the bounds of the region.

2.2.26 TriVertex Object

The TriVertex object specifies color and position information for the definition of a rectangle or

triangle vertex.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

x

y

Red Green

Blue Alpha

x (4 bytes): A 32 -bit signed integer that specifies the horizontal position, in logical units.

y (4 bytes): A 32 -bit signed integer that specifies the vertical position, in logical units.

Red (2 bytes): A 16 -bit unsigned integer that specifies the red color value for the point.

Green (2 bytes): A 16 -bit unsigned integer that specifies the green color value for the point.

%5bMS-WMF%5d.pdf

81 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Blue (2 bytes): A 16 -bit unsigned integer that specifies the blue color value for t he point.

Alpha (2 bytes): A 16 -bit unsigned integer that specifies the alpha transparency value for the
point.

2.2.27 UniversalFontId Object

The UniversalFontId object defines a mechanism for identifying fonts in EMF metafiles.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Checksum

Index

Checksum (4 bytes): A 32 -bit unsigned integer that is the checksum of the font. The
checksum value has the following meanings.

Value Meaning

0x00000000 The object is a device font.

0x00000001 The object is a Type 1 font that has been installed on the client machine and is

enumerated by the PostScript printer driver as a device font.

0x00000002 The object is not a font but is a Type 1 rasterizer .

3 Ò value The object is a bitmap, vector , or TrueType font, or a Type 1 rasterized font that

was created by a Type 1 rasterizer.

A checksum value SHOULD be computed for the font and compared to the value in

this field. If it matches, it is considered to be the same as the font referenced by

this metafile record. If it does not match, the system font mapper MAY use a default

mechanism to select a back -up font. <70>

If a checksum value is computed, it SHOULD be computed using the fo llowing algorithm.

Note For the purpose of this computation, the font is considered simply to be a stream of
bytes that is external to this EMF record. Any larger file structure in which the font might
reside is system -dependent or implementation -dependen t.

ULONG ComputeFileviewCheckSum(PVOID pvView, ULONG cjView)

{

 ULONG sum;

 PULONG pulCur,pulEnd;

 pulCur = (PULONG) pvView;

 for (sum = 0, pulEnd = pulCur + cjView / sizeof(ULONG);

 pulCur < pulEnd; pulCur += 1)

 {

 sum += 256 * sum + *pulCur;

 }

 return (sum < 2) ? 2 : sum;

}

%5bMS-GLOS%5d.pdf

82 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

pvView : A pointer to the start of the font.

cjView : The length of the font in bytes.

Index (4 bytes): A 32 -bit unsigned integer that is an index associated with the font object . The
meaning of this field is determined by the type of font.

2.2.28 XForm Object

The XForm object defines a two -dimensional, linear transform matrix.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

M11

M12

M21

M22

Dx

Dy

M11 (4 bytes): A 32 -bit floating -point value of the transform matrix.

M12 (4 bytes): A 32 -bit floating -point value of the transform matrix.

M21 (4 bytes): A 32 -bit floating -point value of the transform matrix.

M22 (4 bytes): A 32 -bit floating -point value of the transf orm matrix.

Dx (4 bytes): A 32 -bit floating -point value that contains a horizontal translation component, in
logical units.

Dy (4 bytes): A 32 -bit floating -point value that contains a vertical translation component, in

logical units.

The following equations specify how the matrix values are used to transform a point (X,Y) to a new
point (X',Y'):

X' = M11 * X + M21 * Y + Dx

Y' = M12 * X + M22 * Y + Dy

For more information concerning transforms and coordinate spaces, see [MSDN -WRLDPGSPC] .

http://go.microsoft.com/fwlink/?LinkId=90169

83 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.3 EMF Records

This section specifies the types of EMF metafile records, which have been grouped into the following
categories.

Name Section Description

Bitmap record types 2.3.1 Manage and output bitmap images.

Clipping record types 2.3.2 Specify and manage clipping regions.

Comment record

types

2.3.3 Define formats for specifying arbitrary p rivate data, embedding

records in other metafile formats, and adding new or special -purpose

commands.

Control record types 2.3.4 Define the start and end of an EMF metafile and its properties.

Drawing record types 2.3.5 Perform graphics drawing.

Escape record types 2.3.6 Execute printer driver functions.

Object creation

record types

2.3.7 Create graphics objects.

Object manipulation

record types

2.3.8 Manage and modify graphics objects.

OpenGL record types 2.3.9 Specify metafile records generated by OpenGL.

Path bracket record

types

2.3.10 Specify and manipulate paths in path brackets .

State record types 2.3.11 Specify and manage graphics properties.

Transform record

types

2.3.12 Specify and modify world -space to page -space transf orms.

Note All EMF records MUST have a length that is a multiple of 4 bytes. This is depicted in the

generic structures of the preceding EMF record types by including AlignmentPadding fields where
appropriate at the ends of these structures. The contents of AlignmentPadding fields MUST always
be ignored. For brevity, these fields are not shown in every individual EMF record definition.

2.3.1 Bitmap Record Types

The bitmap record types perform block transfers of bitmap images.

The following are EMF bitmap record types.

Name Section Description

EMR_ALPHABLEND 2.3.1.1 Specifies a block transfer of pixels from a source bitmap to a

destination rectangle, including alpha transparency data,

according to a specified blending operation.

EMR_BITBLT 2.3.1.2 Specifies a block transfer of pixels from a source bitmap to a

destination rectangle, optionally in combination with a brush

pattern, according to a specified raster operation.

84 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Name Section Description

EMR_MASKBLT 2.3.1.3 Specifies a block transfer of pixels from a source bitmap to a

destination rectangle, optionally in combination with a brush

pattern and with the application of a color mask bitmap,

according to specified foreground and background raster

operations.

EMR_PLGBLT 2.3.1.4 Specifies a block transfer of pixels from a source bitmap to a

destination parallelogram, with the application of a color mask

bitmap.

EMR_SETDIBITSTODEVICE 2.3.1.5 Specifies a block transfer of pixels from specified scanlines of a

source bitmap to a destination rectangle.

EMR_STRETCHBLT 2.3.1.6 Specifies a block transfer of pixels fro m a source bitmap to a

destination rectangle, optionally in combination with a brush

pattern, according to a specified raster operation, stretching or

compressing the output to fit the dimensions of the destination, if

necessary.

EMR_STRETCHDIBITS 2.3.1.7 Specifies a block transfer of pixels from a source bitmap to a

destination rectangle, optionally in combination with a brush

pattern, according to a specified raster operation, stretching or

compressing the output to fit the dimensions of the destination, if

necessary.

EMR_TRANSPARENTBLT 2.3.1.8 Specifies a block transfer of pixels from a source bitmap to a

destination rectangle, treating a specified color as transparent,

stretching or compressing the output to fit the dimensions of the

destination, if necessary.

The generic structure of bitmap records is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

BitmapRecordBuffer (variable)

...

Type (4 bytes): A 32 -bit unsigned integer that defines the type of record. The bitmap record
types are listed in the following table. See the preceding table for descriptions of these record
types.

Name Value

EMR_BITBLT 0x0000004C

EMR_STRETCHBLT 0x0000004D

85 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Name Value

EMR_MASKBLT 0x0000004E

EMR_PLGBLT 0x0000004F

EMR_SETDIBITSTODEVICE 0x00000050

EMR_STRETCHDIBITS 0x00000051

EMR_ALPHABLEND 0x00000072

EMR_TRANSPARENTBLT 0x00000074

Size (4 bytes): A 32 -bit unsigned integer that specifies the size in bytes of this record in the
metafile. This value MUST be a multiple of 4 bytes.

BitmapRecordBuffer (variable): An array of bytes that contains the remainder of the bitmap

record. The size of this field MUST be a multiple of 4 bytes.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

BitmapRecordParm (variable)

...

AlignmentPadding (variable)

...

BitmapRecordParm (variable): An array of bytes that contains the parameters for the
bitmap record.

AlignmentPadding (variable): An optional array of up to 3 bytes that pads the record so
that its total size is a multiple of 4 bytes. This field MUST be ignored.

The following notes apply generally to EMF bitmap block transfers, unless specified otherwise:

Á Source and mask bitmaps are in DIB format. DIBs are specified by DeviceIndependentBitmap

objects ([MS -WMF] section 2.2.2.9).

Á The properties that describe the structure of the destination of the block transfer are defined in

the playback device context.

Á If the color format of the source or pattern bitmap does not match the color format of the

destination, the source pr pattern bi ts MUST be converted to the destination format prior to

performing the block transfer.

Á If the source and destination rectangles are not the same size, the source bitmap MUST be

expanded or compressed to match the destination rectangle. This stretching func tion is
performed according to a property in the playback device context, which is from the
StretchMode enumeration (section 2.1.32).

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

86 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Á If an XForm object (section 2.2.28) is specified, a world -space to page -space transform SHOULD

be applied to the source bitmap. Scaling, translation, and reflection transforms SHOULD be

supported, and rotation and shear transforms MAY be supported. <71>

For more information concerning transforms and coordinate spaces, see [MSDN -WRLDPGSPC] .

See section 2.3 for additional EMF record types.

2.3.1.1 EMR_ALPHABLEND Record

The EMR_ALPHABLEND record specifies a block transfer of pixels from a source bitmap to a
destination rectangle, including alpha transparency data, according to a specified blending
operation. <72>

Note Fields that are not described in this section are specified in section 2.3.1 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

Bounds

...

...

...

xDest

yDest

cxDest

cyDest

BLENDFUNCTION

xSrc

ySrc

XformSrc

...

http://go.microsoft.com/fwlink/?LinkId=90169

87 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

...

...

...

...

BkColorSrc

UsageSrc

offBmiSrc

cbBmiSrc

offBitsSrc

cbBitsSrc

cxSrc

cySrc

BitmapBuffer (variable)

...

Type (4 bytes): A 32 -bit unsigned integer that identifies this record type as
EMR_ALPHABLEND . This MUST be 0x00000072.

Bounds (16 bytes): A WMF RectL object ([MS -WMF] section 2.2.2.19) that defines the

destination bounding rectangle in device units.

xDest (4 bytes): A 32 -bit signed integer that specifies the logical x -coordinate of the upper - left
corner of the destination rectangle.

yDest (4 bytes): A 32 -bit signed i nteger that specifies the logical y -coordinate of the upper - left
corner of the destination rectangle.

cxDest (4 bytes): A 32 -bit signed integer that specifies the logical width of the destination

rectangle. This value MUST be greater than zero.

cyDest (4 bytes): A 32 -bit signed integer that specifies the logical height of the destination
rectangle. This value MUST be greater than zero.

BLENDFUNCTION (4 bytes): A structure that specifies the blending operations for source and
destination bitmaps.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

88 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

BlendOperation BlendFlags SrcConstantAlpha AlphaFormat

BlendOperation (1 byte): The blend operation code. The only source and destination
blend operation that has been defined is 0x00, which specifies that the source bitmap
MUST be combined with the destination bitmap based on the alpha transparency values
of the source pixels. See th e following equations for details.

BlendFlags (1 byte): This value MUST be 0x00 and MUST be ignored.

SrcConstantAlpha (1 byte): An 8 -bit unsigned integer that specifies alpha transparency,
which determines the blend of the source and destination bitmaps. This value MUST be

used on the entire source bitmap. The minimum alpha transparency value, zero,
corresponds to completely transparent; the maximum value, 0xFF, corresponds to

completely opaque. In effect, a value of 0xFF specifies that the per -pixel alph a values
determine the blend of the source and destination bitmaps. See the equations later in
this section for details.

AlphaFormat (1 byte): A structure that specifies how source and destination pixels are
interpreted with respect to alpha transparency.

Value Meaning

0x00 The pixels in the source bitmap do not specify alpha transparency. In this

case, the SrcConstantAlpha value determines the blend of the source

and destination bitmaps. Note that in the following equations

SrcConstantAlpha is divided by 255, which produces a value in the

range 0 to 1.

AC_SRC_ALPHA

0x01

Indicates that the source bitmap is 32 bits -per -pixel and specifies an alpha

transparency value for each pixel.

xSrc (4 bytes): A 32 -bit signed integer that specifies the logical x -coor dinate of the upper - left
corner of the source rectangle.

ySrc (4 bytes): A 32 -bit signed integer that specifies the logical y -coordinate of the upper - left

corner of the source rectangle.

XformSrc (24 bytes): An XForm object (section 2.2.28) that specifies a world -space to page -
space transform to apply to the source bitmap.

BkColorSrc (4 bytes): A WMF ColorRef object ([MS -WMF] section 2.2.2.8 that specifies the
background color of the source bitmap.

UsageSrc (4 bytes): A 32 -bit unsigned integer that specifies how to interpret values in the
color table in the source bitmap header. This value MUST be in the DIBColors enumeration

(section 2.1.9).

offBmiSrc (4 bytes): A 32 -bit unsigned integer that speci fies the offset in bytes from the start
of this record to the source bitmap header in the BitmapBuffer field.

cbBmiSrc (4 bytes): A 32 -bit unsigned integer that specifies the size in bytes of the source
bitmap header.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

89 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

offBitsSrc (4 bytes): A 32 -bit unsigned integer that specifies the offset in bytes from the start
of this record to the source bitmap bits in the BitmapBuffer field.

cbBitsSrc (4 bytes): A 32 -bit unsigned integer that specifies the size in bytes of the source
bitmap bits.

cxSr c (4 bytes): A 32 -bit signed integer that specifies the logical width of the source rectangle.
This value MUST be greater than zero.

cySrc (4 bytes): A 32 -bit signed integer that specifies the logical height of the source
rectangle. This value MUST be gr eater than zero.

BitmapBuffer (variable): A buffer containing the source bitmap, which is not required to be
contiguous with the fixed portion of the EMR_ALPHABLEND record. Accordingly, fields in this
buffer that are labeled "UndefinedSpace" are optional and MUST be ignored.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UndefinedSpace1 (variable)

...

BmiSrc (variable)

...

UndefinedSpace2 (variable)

...

BitsSrc (variable)

...

BmiSrc (variable): The source bitmap header.

BitsSrc (variable): The source bitmap bits.

The following equations show how destination pixels are computed from source pixels using
BLENDFUNCTION . In the equations, "dst" refers to the destination bitmap, and "src" refers to th e
source bitmap. The color and transparency values of the source and destination pixels are denoted
by "Red", "Green", "Blue", and "Alpha".

Case I : The AlphaFormat value is 0, which means the SrcConstantAlpha value MUST be used to
blend the source and dest ination bitmaps, as follows.

dst.Red = src.Red * (SrcConstantAlpha/255.0) +

 dst.Red * (1.0 - (SrcConstantAlpha/255.0))

dst.Green = src.Green * (SrcConstantAlpha/255.0) +

 dst.Green * (1.0 - (SrcConstantAlpha/255.0))

90 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

dst.Blue = src.Blue * (SrcConst antAlpha/255.0) +

 dst.Blue * (1.0 - (SrcConstantAlpha/255.0))

If the destination bitmap has an alpha channel, then it is blended as follows.

dst.Alpha = src.Alpha * (SrcConstantAlpha/255.0) +

 dst.Alpha * (1.0 - (SrcConstantAlpha/255.0))

Note that if SrcConstantAlpha is 0xFF, these equations reduce to a simple source copy to the

destination.

Case II : The AlphaFormat value is AC_SRC_ALPHA , which means the source pixels MUST be
premultiplied by SrcConstantAlpha , and then the blend MUST be ba sed on the per -pixel source
alpha channel, as follows.

src.Red = src.Red * (SrcConstantAlpha/255.0)

src.Green = src.Green * (SrcConstantAlpha/255.0)

src.Blue = src.Blue * (SrcConstantAlpha/255.0)

dst.Red = src.Red + (1.0 - (src.Alpha/255.0)) * dst.Red

dst.Green = src.Green + (1.0 - (src.Alpha/255.0)) * dst.Green

dst.Blue = src.Blue + (1.0 - (src.Alpha/255.0)) * dst.Blue

If the destination bitmap has an alpha channel, it is blended as follows.

src.Alpha = src.Alpha * (SrcConstantAlpha)/255.0)

dst.Al pha = src.Alpha + (1.0 - (src.Alpha/255.0)) * dst.Alpha

Note If SrcConstantAlpha is 0xFF, there is in effect no premultiplication of the source values.

See section 2.3.1 for additional bitmap record ty pes.

2.3.1.2 EMR_BITBLT Record

The EMR_BITBLT record specifies a block transfer of pixels from a source bitmap to a destination
rectangle, optionally in combination with a brush pattern, according to a specified raster operation.

Note Fields that are not described in this section are specified in section 2.3.1 .

91 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

Bounds

...

...

...

xDest

yDest

cxDest

cyDest

BitBltRasterOperation

xSrc

ySrc

XformSrc

...

...

...

...

...

BkColorSrc

UsageSrc

offBmiSrc

92 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

cbBmiSrc

offBitsSrc

cbBitsSrc

BitmapBuffer (variable)

...

Type (4 bytes): A 32 -bit unsigned integer that identifies this record type as EMR_BITBLT. This
MUST be 0x0000004C.

Bounds (16 bytes): A WMF RectL object ([MS -WMF] section 2.2.2.19) that defines the
destination bou nding rectangle in device units.

xDest (4 bytes): A 32 -bit signed integer that specifies the logical x -coordinate of the upper - left
corner of the destination rectangle.

yDest (4 bytes): A 32 -bit signed integer that specifies the logical y -coordinate of t he upper - left
corner of the destination rectangle.

cxDest (4 bytes): A 32 -bit signed integer that specifies the logical width of the source and
destination rectangles.

cyDest (4 bytes): A 32 -bit signed integer that specifies the logical height of the source and
destination rectangles.

BitBltRasterOperation (4 bytes): A 32 -bit unsigned integer that specifies the raster operation

code. This code defines how the color data of the source rec tangle is to be combined with the
color data of the destination rectangle and optionally a brush pattern, to achieve the final

color.

The value MUST be in the WMF Ternary Raster Operation enumeration ([MS -WMF] section
2.1.1.31).

xSrc (4 bytes): A 32 -bit signed integer that specifies the logical x -coordinate of the upper - left

corner of the source rectangle.

ySrc (4 bytes): A 32 -bit signed integer that specifies the logical y -coordinate of the upper - left
corner of the source rectangle.

XformSrc (24 bytes): An XForm object (section 2.2.28) that specifies a world -space to page -
space transform to apply to the source bitmap.

BkColorSrc (4 bytes): A WMF ColorRef object ([MS -WMF] section 2.2.2.8 that specifies the
background color of the source bitmap.

UsageSrc (4 bytes): A 32 -bit unsigne d integer that specifies how to interpret values in the
color table in the source bitmap header. This value MUST be in the DIBColors enumeration
(section 2.1.9).

offBmiSrc (4 bytes): A 32 -bit unsigned integer that specifies the offset, in bytes, from the
start of this record to the source bitmap header in the BitmapBuffer field.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

93 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

cbBmiSrc (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the source
bitmap header.

offBitsSrc (4 bytes): A 32 -bit unsigned integer that specifies the offset, in bytes, from the
start of this record to the source bitmap bits in the BitmapBuffer field.

cbBitsSrc (4 bytes): A 32 -bit unsigned integer th at specifies the size, in bytes, of the source
bitmap bits.

BitmapBuffer (variable): A buffer containing the source bitmap, which is not required to be
contiguous with the fixed portion of the EMR_BITBLT record. Accordingly, fields in this buffer
that ar e labeled "UndefinedSpace" are optional and MUST be ignored.

Note If the raster operation specified by BitBltRasterOperation does not require a source
bitmap, the source bitmap can be omitted.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UndefinedSpace1 (variable)

...

BmiSrc (variable)

...

UndefinedSpace2 (variable)

...

BitsSrc (variable)

...

BmiSrc (variable): The source bitmap header.

BitsSrc (variable): The source bitmap bits.

See section 2.3.1 for additional bitmap record types.

2.3.1.3 EMR_MASKBLT Record

The EMR_MASKBLT record specifies a block transfer of pixels from a source bitmap to a destination

rectangle, optionally in combination with a brush pattern and with the application of a color mask
bitmap, according to specified foreground and background raster operations.

Note Fields that are not described in this section are specifi ed in section 2.3.1 .

94 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

Bounds

...

...

...

xDest

yDest

cxDest

cyDest

ROP4

xSrc

ySrc

XformSrc

...

...

...

...

...

BkColorSrc

UsageSrc

offBmiSrc

95 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

cbBmiSrc

offBitsSrc

cbBitsSrc

xMask

yMask

UsageMask

offBmiMask

cbBmiMask

offBitsMask

cbBitsMask

BitmapBuffer (variable)

...

Type (4 bytes): A 32 -bit unsigned integer that identifies this record type as EMR_MASKBLT .
This MUST be 0x0000004E.

Bounds (16 bytes): A WMF RectL object ([MS -WMF] section 2.2.2.19) that defines the

destination bo unding rectangle in device units.

xDest (4 bytes): A 32 -bit signed integer that specifies the logical x -coordinate of the upper - left
corner of the destination rectangle.

yDest (4 bytes): A 32 -bit signed integer that specifies the logical y -coordinate of the upper - left
corner of the destination rectangle.

cxDest (4 bytes): A 32 -bit signed integer that specifies the logical width of the destination

rectangle.

cyDest (4 bytes): A 32 -bit signed integer that specifies the logical height of the destination
rectangle.

ROP4 (4 bytes): A quaternary raster operation, which specifies ternary raster operations for
the foreground and background colors of a bitmap. These values define how the color data of

the source rectangle is to be combined with the color data of the destination rectangle.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Reserved BackgroundROP3 ForegroundROP3

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

96 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Reserved (2 bytes): This field SHOULD be 0x0000 and MUST be ignored. <73>

BackgroundROP3 (1 byte): The unsigned, most -significant 8 bits of a 24 -bit ternary
raster operation value from the WMF Ternary Raster Operation enumeration ([MS -
WMF] sect ion 2.1.1.31). This code defines how to combine the background color data of

the source and destination bitmaps and brush pattern.

ForegroundROP3 (1 byte): The unsigned, most -significant 8 bits of a 24 -bit ternary
raster operation value from the WMF Terna ry Raster Operation enumeration. This
code defines how to combine the foreground color data of the source and destination
bitmaps and brush pattern.

xSrc (4 bytes): A 32 -bit signed integer that specifies the logical x -coordinate of the upper - left
corner o f the source rectangle.

ySrc (4 bytes): A 32 -bit signed integer that specifies the logical y -coordinate of the upper - left
corner of the source rectangle.

XformSrc (24 bytes): An XForm object (section 2.2.28) that specifies a world -space to page -
space transform to apply to the source bitmap.

BkColorSrc (4 bytes): A WMF ColorRef object ([MS -WMF] section 2.2.2.8 that specifies the
background color of the source bitmap.

UsageSrc (4 bytes): A 32 -bit unsigned integer that specifies how to interpret values in the
color table in the source bitmap header. This value MUST be in the DIBColors enumeration
(section 2.1.9).

offBmiSrc (4 bytes): A 32 -bit unsigned integer that specifies the offset, in bytes, from the
start of this record to the source bit map header in the BitmapBuffer field.

cbBmiSrc (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes of the source
bitmap header.

offBitsSrc (4 bytes): A 32 -bit unsigned integer that specifies the offset, in bytes, from the
start of this record to the source bitmap bits in the BitmapBuffer field.

cbBitsSrc (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the source
bitmap bits.

xMask (4 bytes): A 32 -bit signed integer that specifies the logical x -coordinate of the upper -
left corner of the mask bitmap.

yMask (4 bytes): A 32 -bit signed integer that specifies the logical y -coordinate of the upper -

left corner of the mask bitmap.

UsageMask (4 bytes): A 32 -bit unsigned integer that specifies how to interpret values in the
color table in the mask bitmap header. This value MUST be in the DIBColors enumeration.

offBmiMask (4 bytes): A 32 -bit unsigned integer that specifies the offset, in bytes, from the

start of this record to the mask bitmap header in the BitmapBuffer field.

cbBmiMask (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the mask

bitmap header.

offBitsMask (4 bytes): A 32 -bit unsigned integer that specifies the offset in bytes, from the
start of this record to the mas k bitmap bits in the BitmapBuffer field.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

97 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

cbBitsMask (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the mask
bitmap bits.

BitmapBuffer (variable): A buffer containing the source and mask bitmaps, which are not
required to be c ontiguous with the fixed portion of the EMR_MASKBLT record or with each

other. Accordingly, fields in this buffer that are labeled "UndefinedSpace" are optional and
MUST be ignored.

Note The source and mask bitmaps can be present in this buffer in any ord er.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UndefinedSpace1 (variable)

...

BmiSrc (variable)

...

UndefinedSpace2 (variable)

...

BitsSrc (variable)

...

UndefinedSpace3 (variable)

...

BmiMask (variable)

...

UndefinedSpace4 (variable)

...

BitsMask (variable)

...

BmiSrc (variable): The source bitmap header.

BitsSrc (variable): The source bitmap bits.

98 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

BmiMask (variable): The mask bitmap header.

BitsMask (variable): The mask bitmap bits.

The mask bitmap MUST be monochrome; that is, each pixel value MUST be zero or one. A pixel
value of one in the mask indicates that the color of the corresponding pixel in the source bitmap

SHOULD be copied to the destination. A value of zero in the mask indicates that the destination pixel
color SHOULD NOT be changed. If the mask rectangle is smaller than the source and destination
rectangles, the mask pattern MUST be replicated as necessary.

See section 2.3.1 for additional bitmap record types.

2.3.1.4 EMR_PLGBLT Record

The EMR_PLGBLT record specifies a block transfer of pixels from a source bitmap to a destination

parallelogram, with the application of a color mask bitmap.

Note Fields that are not described in this section are specified in section 2.3.1 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

Bounds

...

...

...

aptlDest

...

...

...

...

...

xSrc

ySrc

99 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

cxSrc

cySrc

XformSrc

...

...

...

...

...

BkColorSrc

UsageSrc

offBmiSrc

cbBmiSrc

offBitsSrc

cbBitsSrc

xMask

yMask

UsageMask

offBmiMask

cbBmiMask

offBitsMask

cbBitsMask

BitmapBuffer (variable)

...

100 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Type (4 bytes): A 32 -bit unsigned integer that identifies this record type as EMR_PLGBLT .
This MUST be 0x0000004F.

Bounds (16 bytes): A WMF RectL object ([MS -WMF] section 2.2.2.19) that defines the
bounding rectangle, in device units, for output to the destination.

aptlDest (24 bytes): An array of three WMF PointL objects ([MS -WMF] section 2.2.2.15) that
specif ies three corners a parallelogram destination area for the block transfer.

The upper - left corner of the source rectangle is mapped to the first point in this array, the
upper - right corner to the second point, and the lower - left corner to the third point. T he lower -
right corner of the source rectangle is mapped to the implicit fourth point in the
parallelogram, which is computed from the first three points (A, B, and C) by treating them as
vectors.

D = B + C A

xSrc (4 bytes): A 32 -bit signed integer that specifies the logical x -coordinate of the upper - left
corner of the source rectangle.

ySrc (4 bytes): A 32 -bit signed integer that specifies the logical y -coordinate of the upper - left

corner of the source rectangle.

cxSrc (4 by tes): A 32 -bit signed integer that specifies the logical width of the source rectangle.

cySrc (4 bytes): A 32 -bit signed integer that specifies the logical height of the source
rectangle.

XformSrc (24 bytes): An XForm object (section 2.2.28) that specifies a world -space to page -
space transform to apply to the source bitmap.

BkColorSrc (4 bytes): A WMF ColorRef object ([MS -WMF] section 2.2.2.8) that specifies the
background color of the source bitmap.

UsageSrc (4 bytes): A 32 -bit unsigned integer that specifies how to interpret values in the
color table i n the source bitmap header. This value MUST be in the DIBColors enumeration
(section 2.1.9).

offBmiSrc (4 bytes): A 32 -bit unsigned integer that spec ifies the offset, in bytes, from the
start of this record to the source bitmap header in the BitmapBuffer field.

cbBmiSrc (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the source
bitmap header.

offBitsSrc (4 bytes): A 32 -bit unsigned integer that specifies the offset, in bytes, from the
start of this record to the source bitmap bits in the BitmapBuffer field.

cbBitsSrc (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the source
bitmap.

xMask (4 bytes): A 32 -bit signed integer that specifies the logical x -coordinate of the upper -

left corner of the mask bitmap.

yMask (4 bytes): A 32 -bit signed integer that specifies the logical y -coordinate of the upper -
left corner of the mask bitmap.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

101 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

UsageMask (4 byt es): A 32 -bit unsigned integer that specifies how to interpret values in the
color table in the mask bitmap header. This value MUST be in the DIBColors enumeration.

offBmiMask (4 bytes): A 32 -bit unsigned integer that specifies the offset, in bytes, from the
start of this record to the header of the mask bitmap in the BitmapBuffer field.

cbBmiMask (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the mask
bitmap header.

offBitsMask (4 bytes): A 32 -bit unsigned integer that speci fies the offset, in bytes, from the
start of this record to the mask bitmap bits in the BitmapBuffer field.

cbBitsMask (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the mask
bitmap bits.

BitmapBuffer (variable): A buffer containing the source and mask bitmaps, which are not

required to be contiguous with the fixed portion of the EMR_PLGBLT record or with each other.
Accordingly, fields in this buffer that are labeled "UndefinedSpace" are optional and MUST be

ignor ed.

Note The source and mask bitmaps can be present in this buffer in any order.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UndefinedSpace1 (variable)

...

BmiSrc (variable)

...

UndefinedSpace2 (variable)

...

BitsSrc (variable)

...

UndefinedSpace3 (variable)

...

BmiMask (variable)

...

UndefinedSpace4 (variable)

102 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

...

BitsMask (variable)

...

BmiSrc (variable): The source bitmap header.

BitsSrc (variable): The source bitmap bits.

BmiMask (variable): The mask bitmap header.

BitsMask (variable): The mask bitmap bits.

The mask bitmap MUST be monochrome; that is, each pixel value MUST be zero or one. A pixel
value of one in the mask indicates that the color of the corresponding pixel in the source bitmap

SHOULD be copied to the destination. A value of zero in the mask indicates that the destination pixel
color SHOULD NOT be changed. If the mask rectangle is smaller than the source and destination
rectangles, th e mask pattern MUST be replicated as necessary.

See section 2.3.1 for additional bitmap record types.

2.3.1.5 EMR_SETDIBITSTODEVICE Record

The EMR_SETDIBITSTODEVICE record specifies a block transfer of pixels from specified scanlines of

a source bitmap to a destination rectangle.

Note Fields that are not described in this section are specified in section 2.3.1 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

Bounds

...

...

...

xDest

yDest

xSrc

103 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

ySrc

cxSrc

cySrc

offBmiSrc

cbBmiSrc

offBitsSrc

cbBitsSrc

UsageSrc

iStartScan

cScans

BitmapBuffer (variable)

...

Type (4 bytes): A 32 -bit unsigned integer that identifies this record type as
EMR_SETDIBITSTODEVICE . This MUST be 0x00000050.

Bounds (16 bytes): A WMF RectL object ([MS -WMF] section 2.2.2.19) that defines the

destination bounding rectangle in device units.

xDest (4 bytes): A 32 -bit signed integ er that specifies the logical x -coordinate of the upper - left
corner of the destination rectangle.

yDest (4 bytes): A 32 -bit signed integer that specifies the logical y -coordinate of the upper - left
corner of the destination rectangle.

xSrc (4 bytes): A 32 -bit signed integer that specifies the x -coordinate in pixels of the lower - left

corner of the source rectangle.

ySrc (4 bytes): A 32 -bit signed integer that specifies the y -coordinate in pixels of the lower - left
corner of the source rectangle.

cxSrc (4 by tes): A 32 -bit signed integer that specifies the width in pixels of the source
rectangle.

cySrc (4 bytes): A 32 -bit signed integer that specifies the height in pixels of the source
rectangle.

offBmiSrc (4 bytes): A 32 -bit unsigned integer that specifies the offset, in bytes, from the
start of this record to the source bitmap header in the BitmapBuffer field.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

104 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

cbBmiSrc (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the source
bitmap header.

offBitsSrc (4 bytes): A 32 -bit unsig ned integer that specifies the offset, in bytes, from the
start of this record to the source bitmap bits in the BitmapBuffer field.

cbBitsSrc (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the source
bitmap bits.

UsageSrc (4 by tes): A 32 -bit unsigned integer that specifies how to interpret values in the
color table in the source bitmap header. This value MUST be in the DIBColors enumeration
(section 2.1.9).

iStartScan (4 bytes): A 32 -bit unsigned integer that specifies the first scan line in the array.

cScans (4 bytes): A 32 -bit unsigned integer that specifies the number of scan lines.

BitmapBuffer (variable): A buffer containing the source bitmap, which is not required to be

contiguous with the fixed portion of the EMR_SETDIBITSTODEVICE record. Accordingly, fields
in this buffer that are labeled "UndefinedSpace" are optional and MUST be ignored.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UndefinedSpace1 (variable)

...

BmiSrc (variable)

...

UndefinedSpace2 (variable)

...

BitsSrc (variable)

...

BmiSrc (variable): The source bitmap header.

BitsSrc (variable): The source bitmap bits.

This record supports source images in JPEG and PNG format. The Compression field in the source

bitmap header specifies the image format.

See section 2.3.1 for additional bitmap record types.

2.3.1.6 EMR_STRETCHBLT Record

The EMR_STRETCHBLT record specifies a block transfer of pixels from a source bitmap to a
destination rectangle, optionally in combination with a brush pattern, according to a specified raster

105 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

operation , stretching or compressing the output to fit the dimensions of the destination, if
necessary.

Note Fields that are not described in this section are specified in section 2.3.1 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

Bounds

...

...

...

xDest

yDest

cxDest

cyDest

BitBltRasterOperation

xSrc

ySrc

XformSrc

...

...

...

...

...

BkColorSrc

106 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

UsageSrc

offBmiSrc

cbBmiSrc

offBitsSrc

cbBitsSrc

cxSrc

cySrc

BitmapBuffer (variable)

...

Type (4 bytes): A 32 -bit unsigned integer that identifies this record type as
EMR_STRETCHBLT . This MUST be 0x0000004D.

Bounds (16 bytes): A WMF RectL object ([MS -WMF] section 2.2.2.19) that defines the
destination bounding rectangle in device units.

xDest (4 bytes): A 32 -bit signed integer that specifies the logical x -coordinate of the upper - left
corner of the destination rectangle .

yDest (4 bytes): A 32 -bit signed integer that specifies the logical y -coordinate of the upper - left
corner of the destination rectangle.

cxDest (4 bytes): A 32 -bit signed integer that specifies the logical width of the destination
rectangle.

cyDest (4 b ytes): A 32 -bit signed integer that specifies the logical height of the destination
rectangle.

BitBltRasterOperation (4 bytes): A 32 -bit unsigned integer that specifies the raster operation

code. This code defines how the color data of the source rectang le is to be combined with the
color data of the destination rectangle and optionally a brush pattern, to achieve the final
color.

This value MUST be in the WMF Ternary Raster Operation enumeration ([MS -WMF] section
2.1.1.31).

x Src (4 bytes): A 32 -bit signed integer that specifies the logical x -coordinate of the upper - left

corner of the source rectangle.

ySrc (4 bytes): A 32 -bit signed integer that specifies the logical y -coordinate of the upper - left
corner of the source rectan gle.

XformSrc (24 bytes): An XForm object (section 2.2.28) that specifies a world -space to page -
space transform to apply to the source bitmap.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

107 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

BkColorSrc (4 bytes): A WMF ColorRef object ([MS -WMF] section 2.2.2.8 that specifies the
background color of the source bitmap.

UsageSrc (4 bytes): A 32 -bit unsigned integer that specifies how to interpret values in the
color table in the source bitmap header. This value MUST be in the DIBColors enumeration

(section 2.1.9).

offBmiSrc (4 bytes): A 32 -bit unsigned integer that specifies the offset, in bytes, from the
start of this record to the source bitmap header.

cbBmiSrc (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the source
bitmap header.

offBitsSrc (4 bytes): A 32 -bit unsigned integer that specifies the offset, in bytes, from the
start of this record to the source bitmap bits.

cbBitsSrc (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the source
bitmap bits.

cxSrc (4 bytes): A 32 -bit signed integer that specifies the logical width of the source rectangle.

cySrc (4 bytes): A 32 -bit signed integer that specifies the logical height of the source
rectangle.

BitmapBuffer (variable): A buffer containing the source bitmap, which is not r equired to be

contiguous with the fixed portion of the EMR_STRETCHBLT record. Accordingly, fields in this
buffer that are labeled "UndefinedSpace" are optional and MUST be ignored.

Note If the raster operation specified by BitBltRasterOperation does not r equire a source
bitmap, the source bitmap can be omitted.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UndefinedSpace1 (variable)

...

BmiSrc (variable)

...

UndefinedSpace2 (variable)

...

BitsSrc (variable)

...

BmiSrc (variable): The source bitmap header.

BitsSrc (variable): The source bitmap bits.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

108 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

See section 2.3.1 for additional bitmap record types.

2.3.1.7 EMR_STRETCHDIBITS Record

The EMR_STRETCHDIBITS record specifies a block transfer of pixels from a source bitmap to a

destination rectangle, optionally in combination with a brush pattern, according to a specified raster
operation , stretching or compressing the output to fit the dimensions of the destination, if
necessary.

Note Fields that are not described in this section are specified in section 2.3.1 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

Bounds

...

...

...

xDest

yDest

xSrc

ySrc

cxSrc

cySrc

offBmiSrc

cbBmiSrc

offBitsSrc

cbBitsSrc

UsageSrc

109 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

BitBltRasterOperation

cxDest

cyDest

BitmapBuffer (variable)

...

Type (4 bytes): A 32 -bit unsigned integer that identifies this record type as
EMR_STRETCHDIBITS . This MUST be 0x00000051.

Bounds (16 bytes): A WMF RectL object ([MS -WMF] section 2.2.2.19) that defines the
destination bounding rectangle in device units.

xDest (4 bytes): A 32 -bit signed integer that specifies the logical x -coordinate of the upper - left
corner of the destination rectangle.

yDest (4 bytes): A 32 -bit signe d integer that specifies the logical y -coordinate of the upper - left
corner of the destination rectangle.

xSrc (4 bytes): A 32 -bit signed integer that specifies the x -coordinate in pixels of the upper - left
corner of the source rectangle.

ySrc (4 bytes): A 32 -bit signed integer that specifies the y -coordinate in pixels of the upper - left
corner of the source rectangle.

cxSrc (4 bytes): A 32 -bit signed integer that specifies the width in pixels of the source

rectangle.

cySrc (4 bytes): A 32 -bit signed integ er that specifies the height in pixels of the source
rectangle.

offBmiSrc (4 bytes): A 32 -bit unsigned integer that specifies the offset, in bytes from the start
of this record to the source bitmap header.

cbBmiSrc (4 bytes): A 32 -bit unsigned integer th at specifies the size, in bytes, of the source

bitmap header.

offBitsSrc (4 bytes): A 32 -bit unsigned integer that specifies the offset, in bytes, from the
start of this record to the source bitmap bits.

cbBitsSrc (4 bytes): A 32 -bit unsigned integer tha t specifies the size, in bytes, of the source
bitmap bits.

UsageSrc (4 bytes): A 32 -bit unsigned integer that specifies how to interpret values in the

color table in the source bitmap header. This value MUST be in the DIBColors enumeration

(section 2.1.9).

BitBltRasterOperation (4 bytes): A 32 -bit unsigned integer that specifies a raster operation
code. These codes define how the color data of the sou rce rectangle is to be combined with
the color data of the destination rectangle and optionally a brush pattern, to achieve the final
color.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

110 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The value MUST be in the WMF Ternary Raster Operation enumeration ([MS -WMF] section
2.1.1.31).

cxDest (4 bytes): A 32 -bit signed integer that specifies the logical width of the destination
rectangle.

cyDest (4 bytes): A 32 -bit signed integer that specifies the logical height of the destination
rectangle.

BitmapBuffer (variable): A buffer containing the source bitmap, which is not required to be
contiguous with the fixed portion of the EMR_STRETCHDIBITS record. Accordingly, fields in
this buffer that are labeled "UndefinedSpace" are optional and MUST be ig nored.

Note If the raster operation specified by BitBltRasterOperation does not require a source
bitmap, the source bitmap can be omitted.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UndefinedSpace1 (variable)

...

BmiSrc (variable)

...

UndefinedSpace2 (variable)

...

BitsSrc (variable)

...

BmiSrc (variable): The source bitmap header.

BitsSrc (variable): The source bitmap bits.

This record supports source images in JPEG and PNG formats. The Compression field in the source
bitmap header specifies the image format.

If the signs of the source and destination height and width fields differ, this record specifies a
mirror - image copy of the source bitmap to the destination. That is, i f cxSrc and cxDest have

different signs, a mirror image of the source bitmap along the x -axis is specified. If cySrc and
cyDest have different signs, a mirror image of the source bitmap along the y -axis is specified.

See section 2.3.1 for additional bitmap record types.

%5bMS-WMF%5d.pdf

111 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.3.1.8 EMR_TRANSPARENTBLT Record

The EMR_TRANSPARENTBLT record specifies a block transfer of pixels from a source bitmap to a
destination rectangle, treating a specified color as transparent, stretching or compressing the output

to fit the dimensions of the destination, if necessary. <74>

Note Fields that are not described in this section are specifi ed in section 2.3.1 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

Bounds

...

...

...

xDest

yDest

cxDest

cyDest

TransparentColor

xSrc

ySrc

XformSrc

...

...

...

...

...

112 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

BkColorSrc

UsageSrc

offBmiSrc

cbBmiSrc

offBitsSrc

cbBitsSrc

cxSrc

cySrc

BitmapBuffer (variable)

...

Type (4 bytes): A 32 -bit unsigned integer that identifies this record type as
EMR_TRANSPARENTBLT . This MUST be 0x00000074.

Bounds (16 bytes): A WMF RectL object ([MS -WMF] section 2.2.2.19) that defines the

destination bounding rectangle in device units.

xDest (4 bytes): A 32 -bit signed integer that specifies the logical x -coordinate of the upper - left
corner of the destination rectangle.

yDest (4 bytes): A 32 -bit signed integer that specifies the logical y -coordinate of the upper - left
corner of the destination rectangle.

cxDest (4 bytes): A 32 -bit signed integer that specifies the logical width of the destination

rectangle.

cyDest (4 bytes): A 32 -bit signed integer that specifies the logical height of the destination
rectangle.

TransparentColor (4 bytes): A WMF ColorRef object ([MS -WMF] section 2.2.2.8) that specifies
the color in the source bitmap to be treated as transparent.

xSrc (4 bytes): A 32 -bit signed integer that specifies the logical x -coordinate of the upper - left
corner of the source rectangle.

ySrc (4 bytes): A 32 -bit signed integer that specifies the logical y -coordinate of the upper - left

corner of the source rectangle.

XformSrc (24 bytes): An XForm object (section 2.2.28) that specifies a world -space to page -
space transform to apply to the source bitmap.

BkColorSrc (4 bytes): A WMF ColorRef object that specifies the background color of the s ource
bitmap.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

113 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

UsageSrc (4 bytes): A 32 -bit unsigned integer that specifies how to interpret values in the
color table in the source bitmap header. This value MUST be in the DIBColors enumeration

(sectio n 2.1.9).

offBmiSrc (4 bytes): A 32 -bit unsigned integer that specifies the offset, in bytes, from the

start of this record to the source bitmap header.

cbBmiSrc (4 bytes): A 32 -bit unsigned integer th at specifies the size, in bytes, of the source
bitmap header.

offBitsSrc (4 bytes): A 32 -bit unsigned integer that specifies the offset, in bytes, from the
start of this record to the source bitmap bits.

cbBitsSrc (4 bytes): A 32 -bit unsigned integer tha t specifies the size, in bytes, of the source
bitmap bits.

cxSrc (4 bytes): A 32 -bit signed integer that specifies the logical width of the source rectangle.

cySrc (4 bytes): A 32 -bit signed integer that specifies the logical height of the source
rectan gle.

BitmapBuffer (variable): A buffer containing the source bitmap, which is not required to be
contiguous with the fixed portion of the EMR_TRANSPARENTBLT record. Accordingly, fields in
this buffer that are labeled "UndefinedSpace" are optional and MUST be ignored.

Note If the source bitmap color format is 32 bits -per -pixel, only the alpha transparency value
in each pixel SHOULD be copied to the destination. <75>

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UndefinedSpace1 (variable)

...

BmiSrc (variable)

...

UndefinedSpace2 (variable)

...

BitsSrc (variable)

...

BmiSrc (variable): The source bitmap header.

BitsSrc (variable): The source bitmap bits.

See section 2.3.1 for additional bitmap record types.

114 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.3.2 Clipping Record Types

The clipping record types specify and manage clipping regions.

Note The EMR_SETMETARGN record does not specify parameters.

The following are EMF clipping record types.

Name Section Description

EMR_EXCLUDECLIPRECT 2.3.2.1 Specifies a new clipping region that consists of the existing

clipping region minus the specified rectangle.

EMR_EXTSELECTCLIPRGN 2.3.2.2 Combi nes the specified region with the current clip region using

the specified mode.

EMR_INTERSECTCLIPRECT 2.3.2.3 Specifies a new clipping region from the intersection of the

current clipping region and the specified rectangle.

EMR_OFFSETCLIPRGN 2.3.2.4 Specifies the clipping region with the specified offsets.

EMR_SELECTCLIPPATH 2.3.2.5 Specifies the current path as a clipping region for the playback

device context, combining the new region with any existing

clipping region using the specified mode.

EMR_SETMETARGN 2.3.2 Intersets the current metaregion with the current clipping region

to form a new metaregion for the playback device context. The

current clipping region SHOULD be reset to null.

This EMF record specifies no parameters.

The generic structure of clipping records is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

ClippingRecordBuffer (variable)

...

Type (4 bytes): A 32 -bit unsigned integer that defines the type of record. The clipping record

types are listed in the following table. See the preceding table for descriptions of these record
types.

Name Value

EMR_OFFSETCLIPRGN 0x0000001A

EMR_SETMETARGN 0x0000001C

EMR_EXCLUDECLIPRECT 0x0000001D

115 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Name Value

EMR_INTERSECTCLIPRECT 0x0000001E

EMR_SELECTCLIPPATH 0x00000043

EMR_EXTSELECTCLIPRGN 0x0000004B

Size (4 bytes): A 32 -bit unsigned integer that specifies the size in bytes of this record in the
m etafile. This value MUST be a multiple of 4 bytes.

ClippingRecordBuffer (variable): An optional array of bytes that contains the remainder of
the clipping record. The size of this field MUST be a multiple of 4 bytes.

Note The EMR_SETMETARGN record does n ot contain this field.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ClippingRecordParm (variable)

...

AlignmentPadding (variable)

...

ClippingRecordParm (variable): An optional array of bytes that contains the

parameters for the clipping record.

AlignmentPadding (variable): An optional array of up to 3 bytes that pads the record so

that its total size is a multiple of 4 bytes. This field MUST be ignored.

See section 2.3 for additional EMF record types.

2.3.2.1 EMR_EXCLUDECLIPRECT Record

The EMR_EXCLUDECLIPRECT record specifies a new clipping region that consists of the existing

clipping region minus the specified rectangle.

Note Fields that are not described in this section are specified in section 2.3.2 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

Clip

116 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

...

...

...

Type (4 bytes): A 32 -bit unsigned integer that identifies this record type as
EMR_EXCLUDECLIPRECT . This MUST be 0x0000001D.

Clip (16 bytes): A WMF RectL object ([MS -WMF] section 2.2.2.19) that specifies the clipping
rectangle in logical units.

The lower and right edges of the specified rectangle are not excluded from the clipping region.

See section 2.3.2 for additional clipping record types.

2.3.2.2 EMR_EXTSELECTCLIPRGN Record

The EMR_EXTSELECTCLIPRGN record combines the specified region with the current clip region
using the specified mode.

Note Fields that are not described in this section are specified in section 2.3.2 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

RgnDataSize

RegionMode

RgnData (variable)

...

Type (4 bytes): A 32 -bit unsigned integer that identifies this record type as
EMR_EXTSELECTCLIPRGN . This MUST be 0x0000004B.

RgnDataSize (4 bytes): A 32 -bit unsigned integer that specifies the size of region data in
bytes.

RegionMode (4 bytes): A 32 -bit unsigned integer that specifies the way to use the region. The
value MUST be in the RegionMode (section 2.1.29) enumeration.

RgnData (variable): A RgnDataSize length array of bytes that specifies a RegionData object
in logical units. If RegionMode is RGN_COPY , this data can be omitted and the clip region
SHOULD be set to the default (NULL) c lip region.

%5bMS-WMF%5d.pdf

117 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

See section 2.3.2 for additional clipping record types.

2.3.2.3 EMR_INTERSECTCLIPRECT Record

The EMR_INTERSECTCLIPRECT record specifies a new clipping region from the intersection of the

current clipping region and the specified rectangle.

Note Fields that are not described in this section are specified in section 2.3.2 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

Clip

...

...

...

Type (4 bytes): A 32 -bit unsigned integer that identifies this record type as
EMR_INTERSECTCLIPRECT . This MUST be 0x0000001E.

Clip (16 bytes): A WMF RectL object ([MS -WMF] section 2.2.2.19) that specifies the rectangle
in logical units.

The lower and right edges of the specified rectangle are excluded from the clipping region.

See section 2.3.2 for additional clipping rec ord types.

2.3.2.4 EMR_OFFSETCLIPRGN Record

The EMR_OFFSETCLIPRGN record moves the current clipping region in the playback device context
by the specified offsets.

Note Fields that are not described in this section are specified in section 2.3.2 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

Offset

...

%5bMS-WMF%5d.pdf

118 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Type (4 bytes): A 32 -bit unsigned integer that identifies this record type as
EMR_OFFSETCLIPRGN . This MUST be 0x0000001A.

Offset (8 bytes): A WMF PointL object ([MS -WMF] section 2.2.2.15) that specifies the
horizontal and vertical offsets in logical units.

See section 2.3.2 for additional clipping record types.

2.3.2.5 EMR_SELECTCLIPPATH Record

The EMR_SELECTCLIPPATH record specifies the current path as a clipping region for a playback
device context, combining the new region with any existing clipping region using the specified mode.

Note Fields that are not described in this section are specified in section 2.3.2 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

RegionMode

Type (4 bytes): A 32 -bit unsigned integer that identifies this record type as
EMR_SELECTCLIPPATH . This MUST be 0x00000043.

RegionMode (4 bytes): A 32 -bit unsigned integer that specifies the way to use the path. The
value MUST be in the RegionMode enumeration (section 2.1.29).

See section 2.3.2 for additional clipping record types.

2.3.3 Comment Record Types

The comment record types define formats for specifying arbitrary private data, embedding records
in other metafile formats, and adding new or special -purpose commands.

The following are EMF comment record types.

Name Section Description

EMR_COMMENT 2.3.3.1 Contains arbitrary private data.

EMR_COMMENT_EMFPLUS 2.3.3.2 Contains embedded EMF+ records.

EMR_COMMENT_EMFSPOOL 2.3.3.3 Contains embedded EMFSPOOL records.

EMR_COMMENT_PUBLIC 2.3.3.4 Specifies extensions to EMF processing.

The generic structure of comment records is specified as follows.

%5bMS-WMF%5d.pdf

119 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

DataSize

CommentRecordBuffer (variable)

...

Type (4 bytes): A 32 -bit unsigned integer from the RecordType enumeration (section
2.1.1) that identifies this re cord as a comment record. This value MUST be 0x00000046.

Size (4 bytes): A 32 -bit unsigned integer that specifies the size in bytes of this record in the
metafile. This value MUST be a multiple of 4 bytes.

DataSize (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
CommentIdentifier and CommentRecordParm fields in the RecordBuffer field that
follows. It MUST NOT include the size of itself or the size of the AlignmentPadding field, if

present.

CommentRecordBuffer (variable): An array of bytes that contains the remainder of the
comment record. The size of this field MUST be a multiple of 4 bytes.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

CommentIdentifier (optional)

CommentRecordParm (variable)

...

AlignmentPadding (variable)

...

CommentIdentifier (4 bytes): An optional, 32 -bit unsigned integer that identifies the

type of comment record. See the preceding table for descriptions of these record types.

Valid commen t identifier values are listed in the following table. If this field contains any

other value, the comment record MUST be an EMR_COMMENT record (section 2.3.3.1).

Name Value

EMR_COMMENT_EMFSPOOL 0x00000000

120 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Name Value

EMR_COMMENT_EMFPLUS 0x2B464D45

EMR_COMMENT_PUBLIC 0x43494447

CommentRecordParm (variable): An array of bytes that contains the parameters for
the comment record.

AlignmentPadding (variable): An optional array of up to 3 bytes that pads the record so
that its total size is a multiple of 4 bytes. This field MUST be ignored.

See section 2.3 for additional EMF record types.

2.3.3.1 EMR_COMMENT Record

The EMR_COMMENT record contains arbitrary private data.

Note Fields that are not described in this section are specified in section 2.3.3 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

DataSize

PrivateData (variable)

...

PrivateData (variable): An optional array of bytes that specifies the private data. The first
DWORD of this data MUST NOT be one of the predefined comment identifier values specified
in section 2.3.3 .

Private data is unknown to EMF ; it is meaningful only to applications that know the format of the
data and how to use it. EMR_COMMENT private data records MAY be ignored. <76>

See section 2.3.3 for additional c omment record types.

2.3.3.2 EMR_COMMENT_EMFPLUS Record

The EMR_COMMENT_EMFPLUS record contains embedded EMF+ records.

Note Fields that are not described in this section are specified in section 2.3.3 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

%5bMS-DTYP%5d.pdf

121 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Size

DataSize

CommentIdentifier

EMFPlusRecords (variable)

...

CommentIdentifier (4 bytes): A 32 -bit unsigned integer that identifies this comment record
as containing EMF+ records. The value 0x2B464D45, which is the ASCII string "+FME",
identifies this as an EMR_COMMENT_EMFPLUS record.

EMFPlusRecords (variable): An array of bytes that contains one or more EMF+ records ([MS -

EMFPLUS] section 2.3.1).

See section 2.3.3 for additional comment record types.

2.3.3.3 EMR_COMMENT_EMFSPOOL Record

The EMR_COMMENT_EMFSPOOL record contains embedded EMFSPOOL records.

Note Fields that are not described in this section are specified in section 2.3.3 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

DataSize

CommentIdentifier

EMFSpoolRecordIdentifier

EMFSpoolRecords (variable)

...

CommentIdentifier (4 bytes): A 32 -bit unsigned integer that identifies this comment record

as containing EMFSPOOL records. The value 0x00000000 identifies this as an
EMR_COMMENT_EMFSPOOL record.

EMFSpoolRecordIdentifier (4 bytes): A 32 -bit unsigned integer that identifies the type of
EMR_COMMENT_EMFSPOOL record. The following value is defined.

%5bMS-EMFPLUS%5d.pdf
%5bMS-EMFPLUS%5d.pdf

122 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

EMFSpoolFontDefinition

0x544F4E46

The ASCII string "TONF", which identifies this as a record that contains

embedded EMFSPOOL font definition data.

EMFSpoolRecords (variable): A variable - length array of bytes that contains one or more
EMFSPOOL font definition records ([MS -EMFSPOOL] section 2.2.3.3).

See section 2.3.3 for additional comment record types.

2.3.3.4 EMR_COMMENT_PUBLIC Record Types

The EMR_COMMENT_PUBLIC record types specify extensions to EMF processing.

Following are the EMF public comment record types that have been defined.

Name Section Description

EMR_COMMENT_BEGINGROUP 2.3.3.4.1 Specifies the beginning of a group of drawing

records.

EMR_COMMENT_ENDGROUP 2.3.3.4.2 Specifies the end of a group of drawing records.

EMR_COMMENT_MULTIFORMATS 2.3.3.4.3 Specifies an image in multiple graphics formats.

EMR_COMMENT_WINDOW_METAFILE 2.3.3.4.4 Specifies an image in an embedded WMF metafile.

The generic structure of EMR_COMMENT_PUBLIC records is specified as follows.

Note Fields that are not described in this section are specified in section 2.3.3 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

DataSize

CommentIdentifier

PublicCommentIdentifier

PublicCommentRecordBuffer (variable)

...

CommentIdentifier (4 bytes): A 32 -bit unsigned integer that identifies this comment record
as specifying public data. The value 0x43494447, which is the ASCII string "CIDG", identifies
this as an EMR_COMMENT_PUBLIC record.

%5bMS-EMFSPOOL%5d.pdf

123 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

PublicCommentIdentifier (4 bytes): A 32 -bit unsigned integer that identifies the type of
public comment record. This SHOULD be one of the values listed in the preceding table, which

are specified in the EmrComment enumeration (section 2.1.10) , unless additional public
comment record types have been implemented on the print server .

PublicCommentRecordBuffer (variable): An optional array of bytes that contains the
remainder of the public comment record. The size of this field MUST be a multiple of 4 bytes.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

PublicCommentRecordParm (variable)

...

AlignmentPadding (variable)

...

PublicCommentRecordParm (variable): An optional array of bytes that contains the
parameters for the public comment record.

AlignmentPadding (variable): An optional array of up to 3 bytes that pads the record so
that its total size is a multiple of 4 bytes. This field MUST be ignored.

See section 2.3.3 for additional comment record types.

2.3.3.4.1 EMR_COMMENT_BEGINGROUP Record

The EMR_COMMENT_BEGINGROUP record specifies the beginning of a group of drawing records.

Note Fields that are not described in this section are specified in section 2.3.3 or 2.3.3.4 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

DataSize

CommentIdentifier

PublicCommentIdentifier

Rectangle

...

%5bMS-GLOS%5d.pdf

124 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

...

...

nDescription

Description (variable)

...

PublicCommentIdentifier (4 bytes): A 32 -bit unsigned integer that identifies the type of
public comment record. This MUST be EMR_COMMENT_BEGINGROUP from the
EmrComment enumeration (section 2.1.10) , which is 0x00000002.

Rec tangle (16 bytes): A WMF RectL object ([MS -WMF] section 2.2.2.19) that specifies the

output rectangle in logical coordinates.

nDescription (4 bytes): The number of Unicode characters in the option al description string

that follows.

Description (variable): An optional, null - terminated Unicode string that describes this group of
records.

Every EMR_COMMENT_BEGINGROUP record MUST be followed by an EMR_COMMENT_ENDGROUP
(section 2.3.3.4.2) record in the metafile.

See section 2.3.3.4 for addition al public comment record types.

2.3.3.4.2 EMR_COMMENT_ENDGROUP Record

The EMR_COMMENT_ENDGROUP record specifies the end of a group of drawing records.

Note Fields that are not described in this section are specified in section 2.3.3 or 2.3.3.4 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

DataSize

CommentIdentifier

PublicCommentIdentifier

PublicCommentIdentifier (4 bytes): A 32 -bit unsigned integer that identifies the type of
public comment record. This MUST be EMR_COMMENT_ENDGROUP from the
EmrComment enumeration (section 2.1.10) , which is 0x00000003.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

125 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Every EMR_COMMENT_ENDGROUP record MUST be preceded by an EMR_COMMENT_BEGINGROUP
(section 2.3.3.4.1) record in the metafile.

See section 2.3.3.4 for additi onal public comment record types.

2.3.3.4.3 EMR_COMMENT_MULTIFORMATS Record

The EMR_COMMENT_MULTIFORMATS record specifies an image in multiple graphics formats.

Note Fields that are not described in this section are specified in section 2.3.3 or 2.3.3.4 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

DataSize

CommentIdentifier

PublicCommentIdentifier

OutputRect

...

...

...

CountFormats

aFormats (variable)

...

FormatData (variable)

...

PublicCommentIdentifier (4 bytes): A 32 -bit unsigned integer that identifies the type of

public comment record. This MUST be EMR_COMMENT_MULTIFORMATS from the
EmrComment enumeration (section 2.1.10) , which is 0x40000004.

OutputRect (16 bytes): A WMF RectL object ([MS -WMF] section 2.2.2.19) that specifies the

output rectangle, i n logical coordinates.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

126 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

CountFormats (4 bytes): A 32 -bit unsigned integer that specifies the number of graphics
formats contained in this record.

aFormats (variable): A CountFormats length array of graphics formats, specified by
EmrFormat objects (section 2.2.4) , in order of preference.

FormatData (variable): A variable - length array of bytes of imag e data for all graphics formats
contained in this record.

The size of the data for each image is provided by the DataSize field in the corresponding
EmrFormat object. Thus, the total size of this field is the sum of DataSize values in all
EmrFormat objects .

The graphics format of the data for each image is specified by the Signature field in the
corresponding EmrFormat object.

For example, an application can use this record type to specify an image in EPS format using
EpsData objects (section 2.2.6) . Subsequently, the PostScript version of the image MAY <77> be

rendered if that graphics format is supported by the printer driver on the playback system.

See section 2.3.3.4 for additional public comment record types.

2.3.3.4.4 EMR_COMMENT_WINDOWS_METAFILE Record

The EMR_COMMENT_WINDOWS_METAFILE record specifies an image in an embedded WMF metafile.

Note Fields that are not described in this section are specified in section 2.3.3 or 2.3.3.4 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

DataSize

CommentIdentifier

PublicCommentIdentifier

Version Reserved

Checksum

Flags

WinMetafileSize

WinMetafile (variable)

127 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

...

PublicCommentIdentifier (4 bytes): A 32 -bit unsigned integer that identifies the type of
public comment record. This MUST be EMR_COMMENT_WINDOWS_METAFILE from the
EmrComment enumeration (section 2.1.10) , which is 0x8000000 1.

Version (2 bytes): A 16 -bit unsigned integer that specifies the WMF metafile version in terms
of support for device - independent bitmaps (DIBs), from the WMF MetafileVersion
enumeration ([MS -WMF] section 2.1.1.19).

Reserved (2 bytes): A 16 -bit value that MUST be 0x0000 and MUST be ignored.

Checksum (4 bytes): A 32 -bit unsigned integer that specifies the checksum for this record.

Flags (4 bytes): A 32 -bit value that MUST be 0x00000000 and MUST b e ignored.

WinMetafileSize (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the

WMF metafile in the WinMetafile field.

WinMetafile (variable): A buffer that contains the WMF metafile.

See section 2.3.3.4 for additional public comment record types.

2.3.4 Control Record Types

The control record types define the start and end of an EMF metafile and properties of the metafile.

The following are EMF control record types.

Name Section Description

EMR_EOF 2.3.4.1 Indicates the end of the metafile and specifies a palette.

EMR_HEADER 2.3.4.2 Indicates the start of the metafile and specifies properties of the device on

which the metafile was created.

The generic structure of control records is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

RecordBuffer (variable)

...

Type (4 bytes): A 32 -bit unsigned integer that defines the type of record. The control record
types are listed in the following table. See the preceding table for descriptions of these record
types.

%5bMS-WMF%5d.pdf
%5bMS-WMF%5d.pdf

128 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Name Value

EMR_HEADER 0x00000001

EMR_EOF 0x0000000E

Size (4 bytes): A 32 -bit unsigned integer that specifies the size in bytes of this record in the
metafile. This value MUST be a multiple of 4 bytes.

RecordBuffer (variable): An array of bytes that contains the remainder of the control record.
The size o f this field MUST be a multiple of 4 bytes.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ControlRecordParm (variable)

...

AlignmentPadding (variable)

...

ControlRecordParm (variable): An array of bytes that contains the parameters for the

control record.

AlignmentPadding (variable): An optional array of up to 3 bytes that pads the record so
that its total size is a multiple of 4 bytes. This field MUST be ignored.

See section 2.3 for additional EMF record types.

2.3.4.1 EMR_EOF Record

The EMR_EOF record indicates the end of the metafile and specifies a palette.

Note Fields that are not described in this section are specified in section 2.3.4 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

nPalEntries

offPalEntries

PaletteBuffer (variable)

129 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

...

SizeLast

Type (4 bytes): A 32 -bit unsigned integer that identifies this record type as EMR_EOF . This
MUST be 0x0000000E.

nPalEntries (4 bytes): A 32 -bit unsigned integer that specifies the number of palette entries.

offPalEntries (4 bytes): A 32 -bit unsigned integer that specifies the offset to the palette
entries from the start of this record.

PaletteBuffer (variable): An optional buffer that contains palette data, which is not required
to be contiguous with the fixed portion of the EMR_EOF record. Accordingly, fields in this
buffer that are labeled "UndefinedSpace" are optional and MUST be igno red. The size of this
field MUST be a multiple of 4 bytes.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UndefinedSpace1 (variable)

...

PaletteEntries (variable)

...

UndefinedSpace2 (variable)

...

PaletteEntries (variable): An array of LogPaletteEntry objects (section 2.2.18) that
specifies the palette data.

SizeLast (4 bytes): A 32 -bit unsigned integer that MUST be the same as Size and MUST be the
last field of the record and hence the metafile. LogPaletteEntry objects, if they exist, MUST
precede this field.

See section 2.3.4 for additional control record types.

2.3.4.2 EMR_HEADER Record Types

The EMR_HEADER record types define the starting points of EMF metafiles and specify properties of

the device on which the image in the metafile was created. The information in the header record
makes it possible for EMF metafiles to be independent of any specific output device.

The following are EMR_HEADER record types.

130 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Name Section Description

EmfMetafileHeader 2.3.4.2.1 The header record present in the original version of EMF

metafiles. <78>

EmfMetafileHeaderExtension1 2.3.4.2.2 The header record used in the first extension to EMF

metafiles. <79>

EmfMetafileHeaderExtension2 2.3.4.2.3 The header record used in the second extension to EMF

metafiles. <80>

The generic structure of EMR_HEADER records is specified as follows.

Note Fields that are not described in this section are specified in section 2.3.4 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

EmfHeader

...

...

...

...

...

...

...

(EmfHeader cont'd for 12 rows)

EmfHeaderRecordBuffer (variable)

...

Type (4 bytes): A 32 -bit unsigned integer that identifies this record type as EMR_HEADER .
This MUST be 0x00000001.

EmfHeader (80 bytes): A Header object (section 2.2.9), which contains information about the
content and structure of the metafile.

131 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EmfHeaderRecordBuffer (variable): An optional array of bytes that contains the remainder of
the EMF header record. T he size of this field MUST be a multiple of 4 bytes.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

EmfHeaderRecordParm (variable)

...

AlignmentPadding (variable)

...

EmfHeaderRecordParm (variable): An optional array of bytes that contains additional

parameters for the EMF header record.

AlignmentPadding (variable): An optional array of up to 3 bytes that pads the record so
that its total size is a multiple of 4 bytes . This field MUST be ignored.

The value of the Size field can be used to distinguish between the different EMR_HEADER record
types listed earlier in this section. There are three possible headers:

Á The base header, which is the EmfMetafileHeader record. Th e fixed -size part of this header is 88

bytes, and it contains a Header object.

Á The first extension header, which is the EmfMetafileHeaderExtension1 record. The fixed -size part

of this header is 100 bytes, and it contains a Header object and a HeaderExtension1 object
(section 2.2.10).

Á The second extension header, which is the EmfMetafileHeaderExtension2 record. The fixed -size

part of this header is 108 bytes, and it contains a Header object, a HeaderExtension1 object, and
a HeaderExtension2 object (section 2.2.11).

Note that there are one or two optional, variable - length fields that are possible in a given header: a
description string and a pixel format field. In all three types of headers, the fixed -size part comes
first, followed by the variable - length fields.

The algorithm shown in the following figure computes a non -negative integer variable called
HeaderSize from the offsets and lengths of the variable - length data. The type of header is
determined from that value.

132 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 2: H eader Type Determination Algorithm

After applying the algorithm, consider the value of HeaderSize :

Á If HeaderSize >= 108, the record type is EmfMetafileHeaderExtension2.

133 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Á If HeaderSize >= 100, the record type is EmfMetafileHeaderExtension1.

Á Otherwise, the record type is EmfMetafileHeader.

See section 2.3.4 for additional control record types.

2.3.4.2.1 EmfMetafileHeader Record

The EmfMetafileHeader record is the header record used in the original version of EMF metafiles.

Note Fields that are not described in this section are specified in section 2.3.4 or 2.3.4.2 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

EmfHeader

...

...

...

...

...

...

...

(EmfHeader cont'd for 12 rows)

EmfDescriptionBuffer (variable)

...

EmfDescriptionBuffer (variable): An optional array of bytes that contains the EMF description
string, which is not required to be contiguous with the fixed portion of the EmfMetafileHeader

record. Accordingly, the field in this buffer that is labeled "UndefinedSpace" is optional and
MUST be ignored.

134 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UndefinedSpace (variable)

...

EmfDescription (variable)

...

EmfDescription (variable): An optional, null - terminated Unicode UTF16 -LE string of
arbitrary length and content. Its location in the record and number of characters are
specified by the offDescription and nDescription fields, respectively, in EmfHeader .
If the value of either field is zero, no description string is present.

The value of the Size field can be used to distinguish between the different EMR_HEADER record
types. See EMR_HEADER record types (section 2.3.4.2) for details.

See section 2.3.4.2 for additional header record types.

2.3.4.2.2 EmfMetafileHeaderExtension1 Record

The EmfMetafileHeaderExtension1 record is the header record used in the first extension to EMF
metafiles. <81> Following the EmfHeaderExtension1 field, the remaining fields are optional and

can be present in any order.

Note Fields that are not described in this section are specified in section 2.3.4 or 2.3.4.2 .

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

EmfHeader

...

...

...

...

...

...

135 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

...

(EmfHeader cont'd for 12 rows)

EmfHeaderExtension1

...

...

EmfDescriptionBuffer (variable)

...

EmfPixelFormatBuffer (variable)

...

EmfHeaderExtension1 (12 bytes): A HeaderExtension1 object, which specifies additional
information about the image in the metafile.

EmfDescriptionBuffer (variable): An optional array of bytes that contains the EMF description
string, which is not required to be contiguous with the fixed portion of the
Emf MetafileHeaderExtension1 record. Accordingly, the field in this buffer that is labeled
"UndefinedSpace" is optional and MUST be ignored.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UndefinedSpace1 (variable)

...

EmfDescription (variable)

...

EmfDescription (variable): An optional, null - terminated Unicode UTF16 -LE string of
arbitrary length and content. Its location in the record and number of characters are
specified by the offDescription and nDescription fields, respectively, in EmfHeader .
If the value of either field is zero, no description string is present.

EmfPixelFormatBuffer (variable): An optional array of bytes that contains the EMF pixel
format descriptor, which is not required to be contiguous with the fixed portion of the
EmfMetafileHeaderExtension1 record or with the EMF description string. Accordingly, the field

in this buffer that is labeled "UndefinedSpace" is optional and MUST be ignored.

136 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UndefinedSpace2 (variable)

...

EmfPixelFormat (optional)

...

...

...

...

...

...

...

(EmfPixelFormat (optional) cont'd for 2 rows)

EmfPixelFormat (40 bytes): An optional PixelFormatDescriptor object (section 2.2.22)
that specifies the last pixel format that was defined when the metafile was recorded. Its
size and location in the record are specified by the cbPixelFormat and offPixelFormat

fields, respectively, in EmfHeaderExtension1 . If the value of either field is zero, no
pixel format descriptor is present.

Note No single structure definition can accurate ly represent every possible combination of optional
fields. Therefore, the implementer is responsible for writing software that determines which fields

are actually present in a given metafile, and for unmarshaling the contents of each field
appropriately.

The value of the Size field can be used to distinguish between the different EMR_HEADER record
types. See EMR_HEADER record types (section 2.3.4.2) for details.

See section 2.3.4.2 for additional header record types.

2.3.4.2.3 EmfMetafileHeaderExtension2 Record

The EmfMetafileHeaderExtension2 record is the header record used in the second extension to EMF

metafiles. <82> Following the EmfHeaderExtension2 field, the remaining fields are optional and
can be present in any order.

Note Fields that are not described in this section are specified in section 2.3.4 or 2.3.4.2 .

137 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Size

EmfHeader

...

...

...

...

...

...

...

(EmfHeader cont'd for 12 rows)

EmfHeaderExtension1

...

...

EmfHeaderExtension2

...

EmfDescriptionBuffer (variable)

...

EmfPixelFormatBuffer (variable)

...

EmfHeaderExtension1 (12 bytes): A HeaderExtension1 object, which specifies additional
information about the image in the metafile.

138 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EmfHeaderExtension2 (8 bytes): A HeaderExtension2 object, which specifies additional
information about the image in the m etafile.

EmfDescriptionBuffer (variable): An optional array of bytes that contains the EMF description
string, which is not required to be contiguous with the fixed portion of the

EmfMetafileHeaderExtension2 record. Accordingly, the field in this buffer t hat is labeled
"UndefinedSpace" is optional and MUST be ignored.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UndefinedSpace1 (variable)

...

EmfDescription (variable)

...

EmfDescription (variable): An optional, null - terminated Unicode UTF16 -LE string of
arbitrary length and content. Its location in the record and number of characters are
specified by the offDescription and nDescription fields, respectively, in EmfHeader .
I f the value of either field is zero, no description string is present.

EmfPixelFormatBuffer (variable): An optional array of bytes that contains the EMF pixel

format descriptor, which is not required to be contiguous with the fixed portion of the
EmfMetaf ileHeaderExtension2 record or with the EMF description string. Accordingly, the field
in this buffer that is labeled "UndefinedSpace" is optional and MUST be ignored.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UndefinedSpace2 (variable)

...

EmfPixelFormat (optional)

...

...

...

...

...

...

139 / 307

[MS -EMF] ð v20140502
 Enhanced Metafile Format

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

...

(EmfPixelFormat (optional) cont'd for 2 rows)

EmfPixelFormat (40 bytes): An optional PixelFormatDescriptor object (section 2.2.22)
that specifies the last pixel format that was defined when the metafile was recorded. Its
size and location in the record are specified by the cbPixelFormat and offPixelFormat

fields, respectively, in EmfHeaderExtension1 . If the value of either field is zero, no
pixel format descriptor is present.

Note No single structure definition can accurately represent every possible combination of optional
fields. There fore, the implementer is responsible for writing software that determines which fields
are actually present in a given metafile, and for unmarshaling the contents of each field
appropriately.

The value of the Size field can be used to distinguish between t he different EMR_HEADER record

types. See EMR_HEADER record types (section 2.3.4.2) for details.

See section 2.3.4.2 for additional header record types.

2.3.5 Drawing Record Types

The drawing record types perform graphics drawing.

The following are EMF drawing record types.

Name Section Description

EMR_ANGLEARC 2.3.5.1 Draws a line segment of an arc.

EMR_ARC 2.3.5.2 Draws an elliptical arc.

EMR_ARCTO 2.3.5.3 Draws an elliptical arc, resetting the current drawing position to

the end point of the arc.

EMR_CHORD 2.3.5.4 Draws a chord, which is a region bounded by the intersection of

an ellipse and a line segme nt, called a secant.

EMR_ELLIPSE 2.3.5.5 Draws an ellipse.

EMR_EXTFLOODFILL 2.3.5.1 Draws a line segment of an arc.

EMR_EXTTEXTOUTA 2.3.5.7 Draws an ASCII text string using the current font and text

colors.

EMR_EXTTEXTOUTW 2.3.5.8 Draws a Unicode text string using the current font and text

colors.

EMR_FILLPATH 2.3.5.9 Closes any open figures in the current path and fills the path's

interior with the current brush and polygon - filling mode.

EMR_FILLRGN 2.3.5.10 Fills the specified region with the specified brush.

EMR_FRAMERGN 2.3.5.11 Draws a border around the specified region with the specified

brush .

