
1 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

[MS-EERR]:

ExtendedError Remote Data Structure

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Revision Summary

Date
Revision
History

Revision
Class Comments

3/2/2007 1.0 New Version 1.0 release

4/3/2007 1.1 Minor Version 1.1 release

5/11/2007 1.2 Minor Version 1.2 release

6/1/2007 1.2.1 Editorial Changed language and formatting in the technical content.

7/3/2007 2.0 Major Added new normative reference.

8/10/2007 2.0.1 Editorial Changed language and formatting in the technical content.

9/28/2007 2.1 Minor Clarified the meaning of the technical content.

10/23/2007 3.0 Major Converted document to unified format.

1/25/2008 3.0.1 Editorial Changed language and formatting in the technical content.

3/14/2008 3.0.2 Editorial Changed language and formatting in the technical content.

6/20/2008 3.1 Minor Clarified the meaning of the technical content.

7/25/2008 3.2 Minor Clarified the meaning of the technical content.

8/29/2008 3.3 Minor Clarified the meaning of the technical content.

10/24/2008 4.0 Major Updated and revised the technical content.

12/5/2008 4.1 Minor Clarified the meaning of the technical content.

1/16/2009 4.1.1 Editorial Changed language and formatting in the technical content.

2/27/2009 4.1.2 Editorial Changed language and formatting in the technical content.

4/10/2009 4.1.3 Editorial Changed language and formatting in the technical content.

5/22/2009 4.2 Minor Clarified the meaning of the technical content.

7/2/2009 4.2.1 Editorial Changed language and formatting in the technical content.

8/14/2009 4.2.2 Editorial Changed language and formatting in the technical content.

9/25/2009 5.0 Major Updated and revised the technical content.

11/6/2009 5.0.1 Editorial Changed language and formatting in the technical content.

12/18/2009 5.0.2 Editorial Changed language and formatting in the technical content.

1/29/2010 5.1 Minor Clarified the meaning of the technical content.

3/12/2010 5.1.1 Editorial Changed language and formatting in the technical content.

4/23/2010 5.1.2 Editorial Changed language and formatting in the technical content.

6/4/2010 6.0 Major Updated and revised the technical content.

7/16/2010 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 6.0 None No changes to the meaning, language, or formatting of the

3 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Date
Revision
History

Revision
Class Comments

technical content.

10/8/2010 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 6.0 None
No changes to the meaning, language, or formatting of the

technical content.

5/6/2011 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 6.1 Minor Clarified the meaning of the technical content.

9/23/2011 6.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 7.0 Major Updated and revised the technical content.

3/30/2012 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 8.0 Major Updated and revised the technical content.

11/14/2013 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 9.0 Major Significantly changed the technical content.

10/16/2015 10.0 Major Significantly changed the technical content.

7/14/2016 11.0 Major Significantly changed the technical content.

6/1/2017 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 12.0 Major Significantly changed the technical content.

9/12/2018 13.0 Major Significantly changed the technical content.

4 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Date
Revision
History

Revision
Class Comments

4/7/2021 14.0 Major Significantly changed the technical content.

6/25/2021 15.0 Major Significantly changed the technical content.

5 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.3.1 Extended Error Data Model .. 8

1.4 Relationship to Protocols and Other Structures .. 8
1.5 Applicability Statement ... 8
1.6 Versioning and Capability Negotiation ... 8
1.7 Vendor-Extensible Fields ... 8

2 Structures ... 9
2.1 Transport .. 9
2.2 Structure Syntax .. 9

2.2.1 Common Types .. 9
2.2.1.1 EEAString .. 9
2.2.1.2 EEUString .. 9
2.2.1.3 BinaryEEInfo .. 9
2.2.1.4 ExtendedErrorParamTypesInternal .. 10
2.2.1.5 ExtendedErrorParam ... 10
2.2.1.6 EEComputerNamePresent .. 11
2.2.1.7 EEComputerName ... 11
2.2.1.8 ExtendedErrorInfo ... 12

2.2.2 Extended Error Interface ... 12
2.2.2.1 Encoding an Extended Error ... 13
2.2.2.2 Decoding an Extended Error ... 13

2.2.3 Well-Known Detection Locations ... 13

3 Structure Examples ... 14
3.1 Using the Data Model with a Fictitious Extended Error ... 14

4 Security Considerations ... 15

5 Appendix A: Full IDL .. 16

6 Appendix B: Product Behavior ... 18

7 Change Tracking .. 19

8 Index ... 20

6 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1 Introduction

This specification for encoding extended error information assumes that the reader has familiarity with
the concepts and the requirements that are detailed in [MS-RPCE] and [C706].

The purpose of the encoding that this specification defines is to allow a software agent on one network
node to communicate a rich (or extended) error to a software agent on another network node. This
specification does not define how an extended error is transmitted between network nodes. A protocol

outside this specification is used for that purpose. This specification only defines the encoding rules for
an extended error.

Sections 1.7 and 2 of this specification are normative. All other sections and examples in this
specification are informative.

1.1 Glossary

This document uses the following terms:

error record: A structured description of an occurrence of an error. For more information, see
section 1.3.

error sequence: An ordered sequence of error records, such that error record N+1 is the
immediate error cause for error record N.

immediate error cause: An error in a protocol layer within a software agent that prevents the
successful completion of a task in the same or different protocol layer/software agent. Any error
resulting from such failure is also said to be caused by the immediate error cause.

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

marshal: To encode one or more data structures into an octet stream using a specific remote

procedure call (RPC) transfer syntax (for example, marshaling a 32-bit integer).

marshaling: The act of formatting COM parameters for transmission over a remote procedure
call (RPC). For more information, see [MS-DCOM].

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set

of request-and-response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

root error: The last error in an error sequence. For more information, see section 1.3.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16

BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

unmarshal: In remote procedure call (RPC), the process of decoding one or more data
structures from an octet stream using a specific RPC Transfer Syntax.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90317

7 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[ISO/IEC-8859-1] International Organization for Standardization, "Information Technology -- 8-Bit
Single-Byte Coded Graphic Character Sets -- Part 1: Latin Alphabet No. 1", ISO/IEC 8859-1, 1998,
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=28245

Note There is a charge to download the specification.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-RPCH] Microsoft Corporation, "Remote Procedure Call over HTTP Protocol".

1.3 Overview

In complex distributed systems, a situation can arise where an error encountered on one network
node has to be communicated to another network node. A protocol that is used to transmit data

between network nodes usually has some provisions to transmit errors in its messages, but often the
error that is being communicated is a single unsigned integer or a single unsigned integer plus a short
string. As the complexity of the system and/or the number of network nodes that are involved grows,
a single unsigned integer and/or a short string might prove insufficient for quick and efficient
troubleshooting of all possible scenarios.

This specification defines an encoding for a rich, structured error called an extended error. After the
extended error is encoded, it has to be transmitted between network nodes by a protocol outside this

specification.

The extended error itself is used for troubleshooting a malfunctioning system and is intended to be
used by a human reader or an automated failure diagnostic system. This specification does not
prescribe what the extended error should be; it specifies the fields and field values that are used for
encoding the extended error (see section 2). Protocols and systems are free to create and encode any
extended error a support engineer or an expert user of the system might find useful to troubleshoot a

malfunctioning system.

https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=90689
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-RPCH%5d.pdf#Section_c0f4c9c51a614d10b8e2005378d1d212

8 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1.3.1 Extended Error Data Model

An extended error is one or more error records from an error sequence. Each error record in the
error sequence contains up to four values that software agents can use to encode additional

information about the error that occurred. These values are called parameters for the error in the
error record. For example, if a file cannot be found, which causes a failure in a system, a parameter in
the error record might be the name of the file that was not found.

Besides the four parameters, the error record contains the following data elements: a generating
component, a detection location, and an error code.

The generating component is a unique numeric value that identifies the component or protocol layer
where the error or failure occurred. It is recommended that the generating component be unique

within all implementations of this protocol.

The detection location is a numeric value that is unique within a given generating component and
identifies the location in the component or protocol layer where the error occurred. Location can be
any identifier inside a component or protocol layer that unambiguously describes where the error

occurred or was detected. For example, a software agent can assign one detection location for each
module or function inside that software agent. Alternately, a software agent can use line numbers to

identify the location where the failure occurred or was detected. Any detection location is meaningful
only within the context of a specific generating component; thus, the generating component is part of
the namespace definition for a detection location.

The error code is an implementation-specific numeric value that specifies the error that occurred.

1.4 Relationship to Protocols and Other Structures

This specification uses type serialization, as specified in [MS-RPCE] section 2.2.6, to do the actual
encoding of the extended error. In turn, [MS-RPCE] and [MS-RPCH] use this specification to transmit
extended errors. The processing rules and the placement of the encoded extended error inside the
[MS-RPCE] and [MS-RPCH] messages are defined in [MS-RPCE] sections 2.2.2.8 and 2.2.2.9 and in
[MS-RPCH] section 2.1.2.1.

1.5 Applicability Statement

This specification is applicable in complex, distributed systems where the benefit of quick and efficient
troubleshooting outweighs the cost of the increase in message size that transmitting additional
troubleshooting information causes. Because this specification makes no assumptions about network

topology or network communication, it is applicable in a broad range of scenarios.

1.6 Versioning and Capability Negotiation

None.

1.7 Vendor-Extensible Fields

The generating component and detection location as specified in section 1.3 are vendor-extensible.

Generating components in the inclusive range of 0 to 255 are reserved by Microsoft. A vendor
SHOULD define new generating components by using any value that is not reserved by Microsoft. This

specification does not prescribe how vendors can avoid collisions in the generating components they
choose.

A vendor SHOULD NOT use a detection location from a generating component that is not provided by
that vendor.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCH%5d.pdf#Section_c0f4c9c51a614d10b8e2005378d1d212

9 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2 Structures

2.1 Transport

This specification defines only encoding rules and does not define how the encoded data is transmitted

on the network. As such, it does not have a transport. It relies upon other protocols that use it (see
section 1.4) to carry it as its transport.

2.2 Structure Syntax

This section defines the syntax for encoding the extended errors.

2.2.1 Common Types

This section defines the types and structures used by this specification.

2.2.1.1 EEAString

The EEAString structure encodes strings of ANSI characters, as specified in [ISO/IEC-8859-1], that
contain troubleshooting information.

 typedef struct tagEEAString {
 short nLength;
 [size_is(nLength)] byte* pString;
 } EEAString;

nLength: This field MUST contain the size of pString in bytes.

pString: A NULL-terminated ANSI string that contains troubleshooting information.

2.2.1.2 EEUString

The EEUString structure encodes Unicode strings that contain troubleshooting information. The

EEComputerName structure uses this type.

 typedef struct tagEEUString {
 short nLength;
 [size_is(nLength)] unsigned short* pString;
 } EEUString;

nLength: This field MUST contain the length of pString in characters.

pString: A NULL-terminated Unicode string that contains troubleshooting information.

2.2.1.3 BinaryEEInfo

The BinaryEEInfo structure encodes binary data that contains troubleshooting information.

 typedef struct tagBinaryEEInfo {
 short nSize;
 [size_is(nSize)] unsigned char* pBlob;
 } BinaryEEInfo;

https://go.microsoft.com/fwlink/?LinkId=90689

10 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

nSize: This field MUST contain the size of pBlob in bytes.

pBlob: Binary data that contains troubleshooting information.

2.2.1.4 ExtendedErrorParamTypesInternal

The ExtendedErrorParamTypesInternal enumeration defines the values that are valid for the Type
field in the ExtendedErrorParam structure.

 typedef enum tagExtendedErrorParamTypesInternal
 {
 eeptiAnsiString = 1,
 eeptiUnicodeString = 2,
 eeptiLongVal = 3,
 eeptiShortValue = 4,
 eeptiPointerValue = 5,
 eeptiNone = 6,
 eeptiBinary = 7
 } ExtendedErrorParamTypesInternal;

eeptiAnsiString: The ANSIString member of the union is valid.

eeptiUnicodeString: The UnicodeString member of the union is valid.

eeptiLongVal: The LVal member of the union is valid. LVal is used to encode a long.

eeptiShortValue: The IVal member of the union is valid. IVal is used to encode a short.

eeptiPointerValue: The PVal member of the union is valid. PVal is used to encode an __int64.

eeptiNone: No additional details are present in this parameter.

eeptiBinary: The Blob member of the union is valid.

2.2.1.5 ExtendedErrorParam

The ExtendedErrorParam structure contains a parameter, as described in section 1.3.1, that provides
additional details about the error record.

 typedef struct tagParam {
 ExtendedErrorParamTypesInternal Type;
 [switch_type(short), switch_is(Type)]
 union {
 [case(1)]
 EEAString AnsiString;
 [case(2)]
 EEUString UnicodeString;
 [case(3)]
 long LVal;
 [case(4)]
 short IVal;
 [case(5)]
 __int64 PVal;
 [case(6)]
 ;
 [case(7)]
 BinaryEEInfo Blob;
 };
 } ExtendedErrorParam;

11 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Type: Indicates which member of the union is valid. ExtendedErrorParamTypesInternal lists all of the
possible values.

AnsiString: A parameter of type EEAString.

UnicodeString: A parameter of type EEUString.

LVal: This parameter MUST be used to encode long values that contain troubleshooting information.

IVal: This parameter MUST be used to encode integer values that contain troubleshooting
information.

PVal: This parameter MUST be used to encode 64-bit integer values that contain troubleshooting
information.

Blob: A parameter of type BinaryEEInfo.

2.2.1.6 EEComputerNamePresent

The EEComputerNamePresent enumeration defines the allowed values for the Type field in the
EEComputerName structure.

 typedef enum tagEEComputerNamePresent
 {
 eecnpPresent = 1,
 eecnpNotPresent
 } EEComputerNamePresent;

eecnpPresent: Name member of the EEComputerName structure is valid and contains a network
node identifier.

eecnpNotPresent: This structure does not contain a network node identifier.

2.2.1.7 EEComputerName

The EEComputerName structure identifies the network node on which the error record was
generated.

 typedef struct tagEEComputerName {
 EEComputerNamePresent Type;
 [switch_type(short), switch_is(Type)]
 union {
 [case(1)]
 EEUString Name;
 [case(2)]
 ;
 };
 } EEComputerName;

Type: Indicates the contents of a union.

Value Meaning

eecnpPresent

1

Network Node Identifier

Name member of the union is valid and contains a network node identifier.

eecnNotPresent

2

No Network Node Identifier

This structure does not contain a network node identifier.

12 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Name: Unicode string that identifies the network node on which the error record was generated.
The format in which the network node is identified is implementation-specific, and this information

MUST be used for display purposes only. This specification does not define what the format is.
Software agents who use this structure SHOULD use a network node identifier that is unique

within a specific topology and is descriptive to a human reader. If Type is equal to
eecnpNotPresent, the error record MUST be interpreted as generated on the local network node.

2.2.1.8 ExtendedErrorInfo

The ExtendedErrorInfo structure represents an error record.

 typedef struct tagExtendedErrorInfo{
 struct tagExtendedErrorInfo* Next;
 EEComputerName ComputerName;
 unsigned long ProcessID;
 __int64 TimeStamp;
 unsigned long GeneratingComponent;
 unsigned long Status;
 unsigned short DetectionLocation;
 unsigned short Flags;
 short nLen;
 [size_is(nLen)] ExtendedErrorParam Params[];
 } ExtendedErrorInfo;

Next: An error record for the immediate error cause for this error record. For the root error, it
MUST be set to NULL.

ComputerName: Network node identifier as specified in section 2.2.1.7.

ProcessID: The ID of the process in which the error occurred.

TimeStamp: Time at which the error record was generated, which is expressed as the number of
100-nanosecond intervals since January 1, 1601. It MUST be interpreted as Coordinated Universal
Time (UTC).

GeneratingComponent: Component or protocol layer identifier where the error occurred as
described in section 1.3.1.

Status: Error code as described in section 1.3.1.

DetectionLocation: Location where the error occurred as described in section 1.3.1.

Flags: One or more flags that specify the presence or absence of other error records in the error
sequence.

Value Meaning

0x0000 All of the error records from the error sequence are present in the encoding.

0x0001 One or more error records from the error sequence before the current record are not present in the
encoding.

0x0002 One or more error records from the error sequence after the current record are not present in the
encoding.

nLen: Number of elements in the Params array. MUST be less than or equal to 4.

Params: Array of error parameters as described in the data model in section 1.3.1.

13 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.2 Extended Error Interface

 The Extended Error Interface supports two operations: encoding and decoding.

It does not contain any remote procedure call (RPC) methods. It only contains a type that MUST be

encoded/decoded by using the type serialization functionality as specified in [MS-RPCE] section 2.2.6.

2.2.2.1 Encoding an Extended Error

The encoding of the extended error is the output of marshaling the first element of the error
sequence by using type serialization version 1, as specified in [MS-RPCE] section 2.2.6. Because the

error records are linked by the Next field of the ExtendedErrorInfo structure, marshaling the first
element marshals the entire error sequence.

2.2.2.2 Decoding an Extended Error

The decoding of the extended error is done by unmarshaling the encoded extended error by using

type serialization version 1, as specified in [MS-RPCE] section 2.2.6. Any violation of this specification
MUST cause the entire decoding to fail.

2.2.3 Well-Known Detection Locations

This specification defines the following well-known detection locations and generating components that
automated troubleshooting software agents can use for automatic failure diagnosis. If an
implementation uses these detection locations and generating components, it MUST use them to
encode error information whose meaning is consistent with the meaning in the following table.<1>

Detection
location

Generating
component Description

0x000005A0 0x0000000E An attempt by an RPC over HTTP proxy was made to connect to an RPC
over HTTP server, and the connect attempt failed. For more information,
see [MS-RPCH] section 3.2.3 and section 3.2.4.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCH%5d.pdf#Section_c0f4c9c51a614d10b8e2005378d1d212

14 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3 Structure Examples

3.1 Using the Data Model with a Fictitious Extended Error

The following example illustrates how the data model is used with a fictitious extended error taken

from a Windows environment. In this example, the RPC runtime encountered a failure reading a
registry key and generated an error record by using the following field values:

Next: Because this failure is a root cause failure, the software agent will not link this to an
immediate error cause and will set the Next field to NULL.

ComputerName: The failure originated on the local node, and the Type field in the ComputerName
structure is set to eecnNotPresent.

TimeStamp: This field is set to the current time at the occurrence of the failure.

GeneratingComponent: This field is set to 0x00000049, which is a Microsoft reserved generating

component.

Status: This field is set to 0x00000002, which is the Win32 error code for the
ERROR_FILE_NOT_FOUND error.

DetectionLocation: This field is set to 0x00000BF0, which uniquely identifies the place in the RPC
runtime where this registry key is being read.

Flags: This field is set to 0x0000.

nLen: This field is set to 0x0001 as one parameter with additional details is present.

Params: An array of one element, which has the following field values:

Type: This field is set to "eeptiUnicodeString", which indicates that the parameter is of type
EEUString. The pString member of the UnicodeString structure is set to

"\Software\Policies\Microsoft\Windows NT\Rpc\RestrictRemoteClients", which is the name of the
registry key that the RPC runtime tried to open.

15 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

4 Security Considerations

This specification has no security protection. It is recommended that software agents who use this
specification evaluate the sensitivity of the data that is being encoded and provide protection from
tampering and information disclosure if sensitive data is being encoded and transmitted through a
public network.

16 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

5 Appendix A: Full IDL

For ease of implementation, this specification provides the full IDL, where "ms-dtyp.idl" is the IDL
found in [MS-DTYP] Appendix A.

 import "ms-dtyp.idl";

 [

 uuid(14a8831c-bc82-11d2-8a64-0008c7457e5d),
 version(1.0),
 pointer_default(unique)
]
 interface ExtendedError
 {

 typedef struct tagEEAString
 {
 short nLength;
 [size_is(nLength)] byte *pString;
 } EEAString;

 typedef struct tagEEUString
 {
 short nLength;
 [size_is(nLength)] unsigned short *pString;
 } EEUString;

 typedef struct tagBinaryEEInfo
 {
 short nSize;
 [size_is(nSize)] unsigned char *pBlob;
 } BinaryEEInfo;

 typedef enum tagExtendedErrorParamTypesInternal
 {
 eeptiAnsiString = 1,
 eeptiUnicodeString = 2,
 eeptiLongVal = 3,
 eeptiShortValue = 4,
 eeptiPointerValue = 5,
 eeptiNone = 6,
 eeptiBinary = 7
 } ExtendedErrorParamTypesInternal;

 typedef struct tagParam
 {
 ExtendedErrorParamTypesInternal Type;
 [switch_type(short),switch_is(Type)] union {
 [case(1)] EEAString AnsiString;
 [case(2)] EEUString UnicodeString;
 [case(3)] long LVal;
 [case(4)] short IVal;
 [case(5)] __int64 PVal;
 [case(6)] ;
 [case(7)] BinaryEEInfo Blob;
 };
 } ExtendedErrorParam;

 typedef enum tagEEComputerNamePresent
 {
 eecnpPresent = 1,
 eecnpNotPresent
 } EEComputerNamePresent;

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

17 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 typedef struct tagEEComputerName
 {
 EEComputerNamePresent Type;
 [switch_type(short),switch_is(Type)] union {
 [case(1)] EEUString Name;
 [case(2)] ;
 };
 } EEComputerName;

 typedef struct tagExtendedErrorInfo
 {
 struct tagExtendedErrorInfo * Next;
 EEComputerName ComputerName;
 unsigned long ProcessID;
 __int64 TimeStamp;
 unsigned long GeneratingComponent;
 unsigned long Status;
 unsigned short DetectionLocation;
 unsigned short Flags;
 short nLen;
 [size_is(nLen)] ExtendedErrorParam Params[];
 } ExtendedErrorInfo;

 typedef ExtendedErrorInfo *ExtendedErrorInfoPtr;
 }

18 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

6 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Windows 2000 operating system

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

 Windows Server operating system

 Windows Server 2019 operating system

 Windows Server 2022 operating system

 Windows 11 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.2.3: Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2,
Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, Windows

Server 2016, Windows Server operating system, and Windows Server 2019 use these generating
components and detection locations to provide automatic diagnosis of failures.

19 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

6 Appendix B: Product Behavior Updated for this version of Windows Client. Major

mailto:dochelp@microsoft.com

20 / 20

[MS-EERR] - v20210625
ExtendedError Remote Data Structure
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

8 Index

A

Applicability 8
Applicability statement 8

B

BinaryEEInfo structure 9

C

Capability negotiation 8

Change tracking 19
Common types 9

D

Decoding extended error 13
Detection locations 13

E

EEAString structure 9
EEComputerName structure 11
EEComputerNamePresent enumeration 11
EEUString structure 9
Encoding extended error 13
Examples
 Using the Data Model with a Fictitious Extended

Error 14
Extended error
 decoding 13
 defined 8
 encoding 13
 example 14
 interface 12
ExtendedErrorInfo structure 12
ExtendedErrorParam structure 10
ExtendedErrorParamTypesInternal enumeration 10

F

Fields - vendor-extensible 8
Fields – vendor-extensible 8
Full IDL 16

G

Glossary 6

I

IDL 16
Implementer - security considerations 15
Implementers – security considerations 15
Informative references 7
Introduction 6

M

Messages
 syntax 9
 transport 9

N

Normative references 7

O

Overview (synopsis) 7

P

Product behavior 18

R

References 7
 informative 7
 normative 7
Relationship to other protocols 8
Relationship to protocols and other structures 8

S

Security - implementer considerations 15
Syntax – message 9

T

Tracking changes 19
Transport – message 9

U

Using the Data Model with a Fictitious Extended Error

example 14

V

Vendor-extensible fields 8
Versioning 8

W

Well-known detection locations 13

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Extended Error Data Model

	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.6 Versioning and Capability Negotiation
	1.7 Vendor-Extensible Fields

	2 Structures
	2.1 Transport
	2.2 Structure Syntax
	2.2.1 Common Types
	2.2.1.1 EEAString
	2.2.1.2 EEUString
	2.2.1.3 BinaryEEInfo
	2.2.1.4 ExtendedErrorParamTypesInternal
	2.2.1.5 ExtendedErrorParam
	2.2.1.6 EEComputerNamePresent
	2.2.1.7 EEComputerName
	2.2.1.8 ExtendedErrorInfo

	2.2.2 Extended Error Interface
	2.2.2.1 Encoding an Extended Error
	2.2.2.2 Decoding an Extended Error

	2.2.3 Well-Known Detection Locations

	3 Structure Examples
	3.1 Using the Data Model with a Fictitious Extended Error

	4 Security Considerations
	5 Appendix A: Full IDL
	6 Appendix B: Product Behavior
	7 Change Tracking
	8 Index

