
1 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

[MS - DTYP]:

Windows Data Types

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation (ñthis
documentationò) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter -protocol relationships and interactions.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your i mplementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.
Á Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
thi s documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promi se or the Microsoft Community Promise . If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Commun ity Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com .

Á License Programs . To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map .

Á Trademarks . The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under t hose rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, email
addresses, logos, people, place s, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require the use of Microsoft programming
tool s or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjuncti on with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com .

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Revision Summary

Date
Revision
History

Revision
Class Comments

2/14/2008 3.1.2 Editorial Changed language and formatting in the technical content.

3/14/2008 4.0 Major Updated and revised the technical content.

6/20/2008 5.0 Major Updated and revised the technical content.

7/25/2008 6.0 Major Updated and revised the technical content.

8/29/2008 7.0 Major Updated and revised the technical content.

10/24/2008 8.0 Major Updated and revised the technical content.

12/5/2008 9.0 Major Updated and revised the technical content.

1/16/2009 9.0.1 Editorial Changed language and formatting in the technical content.

2/27/2009 10.0 Major Updated and revised the technical content.

4/10/2009 10.1 Minor Clarified the meaning of the technical content.

5/22/2009 11.0 Major Updated and revised the technical content.

7/2/2009 11.1 Minor Clarified the meaning of the technical content.

8/14/2009 11.2 Minor Clarified the meaning of the technical content.

9/25/2009 12.0 Major Updated and revised the technical content.

11/6/2009 12.1 Minor Clarified the meaning of the technical content.

12/18/2009 12.2 Minor Clarified the meaning of the technical content.

1/29/2010 13.0 Major Updated and revised the technical content.

3/12/2010 13.1 Minor Clarified the meaning of the technical content.

4/23/2010 13.2 Minor Clarified the meaning of the technical content.

6/4/2010 14.0 Major Updated and revised the technical content.

7/16/2010 15.0 Major Updated and revised the technical content.

8/27/2010 16.0 Major Updated and revised the technical content.

10/8/2010 17.0 Major Updated and revised the technical content.

11/19/2010 18.0 Major Updated and revised the technical content.

1/7/2011 19.0 Major Updated and revised the technical content.

2/11/2011 20.0 Major Updated and revised the technical content.

3/25/2011 21.0 Major Updated and revised the technical content.

5/6/2011 21.1 Minor Clarified the meaning of the technical content.

6/17/2011 22.0 Major Updated and revised the technical content.

9/23/2011 22.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Date
Revision
History

Revision
Class Comments

12/16/2011 23.0 Major Updated and revised the technical content.

3/30/2012 24.0 Major Updated and revised the technical content.

7/12/2012 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 25.0 Major Updated and revised the technical content.

1/31/2013 25.1 Minor Clarified the meaning of the technical content.

8/8/2013 26.0 Major Updated and revised the technical content.

11/14/2013 27.0 Major Updated and revised the technical content.

2/13/2014 27.1 Minor Clarified the meaning of the technical content.

5/15/2014 28.0 Major Updated and revised the technical content.

6/30/2015 29.0 Major Significantly changed the technical content.

10/16/2015 30.0 Major Significantly changed the technical conten t.

7/14/2016 31.0 Major Significantly changed the technical content.

6/1/2017 32.0 Major Significantly changed the technical content.

9/15/2017 33.0 Major Significantly changed the technical content.

12/1/2017 34.0 Major Significantly changed the technical content.

9/12/2018 35.0 Major Significantly changed the technical content.

4/7/2021 36.0 Major Significantly changed the technical content.

6/25/2021 37.0 Major Significantly changed the technical content.

4/29/2022 38.0 Major Significantly changed the technical content.

4/4/2023 39.0 Major Significantly changed the technical content.

4 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Table of Contents

1 Introduction 8
1.1 Glossary 8
1.2 References 11

1.2.1 Normative References 11
1.2.2 Informative Reference s 12

1.3 Overview 12
1.4 Relationship to Protocols and Other Structures 13
1.5 Applicability Statement 13
1.6 Versioning and Localization 13
1.7 Vendor -Extensible Fields 13

2 Data Types 14
2.1 Common Base Types 14

2.1.1 bit 14
2.1.2 byte 14
2.1.3 handle_t 15
2.1.4 Integer T ypes 15

2.1.4.1 __int8 15
2.1.4.2 __int16 15
2.1.4.3 __int32 15
2.1.4.4 __int64 15
2.1.4.5 hyper 15

2.1.5 octet 15
2.1.6 wchar_t 16

2.2 Common Data Types 16
2.2.1 __int3264 16
2.2.2 ADCONNECTION_HANDLE 16
2.2.3 BOOL 16
2.2.4 BOOLEAN 16
2.2.5 BSTR................................ 17
2.2.6 BYTE 17
2.2.7 CHAR 17
2.2.8 DOUBLE 17
2.2.9 DWORD 17
2.2.10 DWORD_PT R 18
2.2.11 DWORD32 18
2.2.12 DWORD64 18
2.2.13 DWORDLONG 18
2.2.14 error_status_t 18
2.2.15 FLOAT 18
2.2.16 HANDLE 19
2.2.17 HCALL 19
2.2.18 HRESULT 19
2.2.19 IN T 19
2.2.20 INT8 19
2.2.21 INT16 20
2.2.22 INT32 20
2.2.23 INT64 20
2.2.24 LDAP_UDP_HANDLE 20
2.2.25 LMCSTR 20
2.2.26 LMSTR................................ 20
2.2.27 LONG 21
2.2.28 LONGLONG 21
2.2.29 LONG_PTR 21
2.2.30 LONG32 21

5 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

2.2.31 LONG64 21
2.2.32 LPCSTR 22
2.2.33 LPCVOID 22
2.2.34 LPCWSTR................................ 22
2.2.35 LPSTR 22
2.2.36 LPWSTR 22
2. 2.37 NET_API_STATUS 23
2.2.38 NTSTATUS 23
2.2.39 PCONTEXT_HANDLE 23
2.2.40 QWORD 23
2.2.41 RPC_BINDING_HANDLE 24
2.2.42 SHORT 24
2.2.43 SIZE_T 24
2.2.44 STRING 24
2.2.45 UCHAR 25
2.2.46 UI NT 25
2.2.47 UINT8 25
2.2.48 UINT16 25
2.2.49 UINT32 25
2.2.50 UINT64 25
2.2.51 ULONG 26
2.2.52 ULONG_PTR 26
2.2.53 ULONG32 26
2.2.54 ULONG64 26
2.2.55 ULONGLONG 26
2.2.56 UNICODE 26
2.2.57 UNC 27
2.2.58 USHORT 28
2.2.59 VOID 28
2.2.60 WCHAR 28
2.2.61 WORD 28

2.3 Common Data Structures 28
2.3.1 EVENT_DESCRIPTOR 29
2.3.2 EVENT_HEADER 29
2.3.3 FILETIME 31
2.3.4 GUID and UUID 31

2.3.4.1 GUID -- RPC IDL representat ion 31
2.3.4.2 GUID -- Packet Representation 32
2.3.4.3 GUID -- Curly Braced String Representation 32

2.3.5 LARGE_INTEGER 33
2.3.6 LCID 33
2.3.7 LUID 33
2.3.8 MULTI_SZ 33
2.3.9 OBJECT_TYPE_LIST 34
2.3.10 RPC_UNICODE_STRING 34
2.3.11 SERVER_INFO_100 35
2.3.12 SERVER_INFO_101 35
2.3.13 SYSTEMTIME 38
2.3.14 UINT128 38
2.3.15 ULARGE_INTEGER 38

2.4 Constructed Security Types 39
2.4.1 SID_IDENTIFIER_AUTHORITY 39

2.4.1.1 RPC_SID_IDENTIFIER_AUTHORITY 40
2.4.2 SID 40

2.4.2.1 SID Str ing Format Syntax 40
2.4.2.2 SID -- Packet Representation 41
2.4.2.3 RPC_SID 41
2.4.2.4 Well -Known SID Structures 42

6 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

2.4.3 ACCESS_MASK 51
2.4.4 ACE 53

2.4.4.1 ACE_HEADER 53
2.4.4.1.1 ACE_HEADER-- RPC representation 55

2.4.4.2 ACCESS_ALLOWED_ACE 56
2.4.4.3 ACCESS_ALLOWED_OBJECT_ACE 56
2.4.4.4 ACCESS_DENI ED_ACE 58
2.4.4.5 ACCESS_DENIED_OBJECT_ACE 58
2.4.4.6 ACCESS_ALLOWED_CALLBACK_ACE 60
2.4.4.7 ACCESS_DENIED_CALLBACK_ACE 61
2.4.4.8 ACCESS_ALLOWED_CALLBACK_OBJECT_ACE 61
2.4.4.9 ACCESS_DENIED_CALLBACK_OBJECT_ACE 63
2.4.4.10 SYSTEM_AUDIT_ACE 64
2.4.4.11 SYSTEM_AUDIT_OBJECT_ACE 65
2.4.4.12 SYSTEM_AUDIT_CALLBACK_ACE 67
2.4.4.13 SYSTEM_MANDATORY_LABEL_ACE 67

2.4.4.13.1 SYSTEM_MANDATORY_LABEL_ACE -- RPC Representation 68
2.4.4.14 SYSTEM_AUDIT_CALLBACK_OBJECT_ACE 69
2.4.4.15 SYSTEM_RESOURCE_ATTRIBUTE_ACE 70
2.4.4.16 SYSTEM_SCOPED_POLICY_ID_ACE 71
2.4.4.17 Conditional ACEs 71

2.4.4.17.1 Conditional ACE Expressions 72
2.4.4.17.2 Security Attributes 72
2.4.4.17.3 Conditional ACE Applicability 72
2.4.4.17.4 Conditional AC E Binary Formats 73
2.4.4.17.5 Literal Tokens 73
2.4.4.17.6 Relational Operator Tokens 74
2.4.4.17.7 Logi cal Operator Tokens 77
2.4.4.17.8 Attribute Tokens 78
2.4.4.17.9 Examples: Conditional Expression Binary Representation 78

2.4.5 ACL 81
2.4.5.1 ACL-- RPC Representation 83

2.4.6 SECURITY_DESCRIPTOR 83
2.4.6.1 SECURITY_DESCRIPTOR -- RPC Representation 86

2.4.7 SECURITY_INFORMATION 87
2.4.8 TOKEN_MANDATORY_POLICY 88
2.4.9 MANDATORY_INFORMATI ON 88
2.4.10 CLAIM_SECURITY_ATTRIBUTE 89

2.4.10.1 CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 89
2.4.10.2 CLAIM_SECURITY_ATTRIBUTE_OCTET_STRING_RELATIVE 90

2.5 Additional Information for Security Types 91
2.5.1 Security Descriptor Description Language 91

2.5.1.1 Syntax 91
2.5.1.2 Security Attribute Names 98

2.5.1.2.1 Simple Attribute Name Form 98
2.5.1.2.2 @Prefix ed Attribute Name Form 98

2.5.1.3 Parentheses and Order of Precedence 98
2.5.1.4 SDDL String to Binary Security Descriptor Examples 99

2.5.2 Token/Authorization Context 102
2.5.2.1 Token/Authorization Context Algorithms 103

2.5.2.1.1 GatherGroupMembershipForSystem 103
2.5.2.1.2 AddPrivilegesToToken 104

2.5.3 Security Descriptor Algorithms 105
2.5.3.1 Support Functions 105

2.5.3.1.1 SidInToken 105
2.5.3.1.2 SidDominates 106
2.5.3.1.3 GetScopedPolicySid 106
2.5.3.1.4 GetCentralizedAccessPolicy 107

7 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

2.5.3.1.5 EvaluateAceCondition 107
2.5.3.1.6 LookupAttributeInToken 111
2.5.3.1.7 LookupAttributeInSacl 111
2.5.3.1.8 PushStackOperand 112
2.5.3.1.9 PushStackResult 112
2.5.3.1.10 PopStack 112

2.5.3.2 Access Check Algorithm Pseudocode 113
2.5.3.3 MandatoryIntegrityCheck Algorithm Pseudocode 119

2.5.3.3.1 FindAceByType 121
2.5.3.4 Algorithm for Creating a Security Descriptor 121

2.5.3.4.1 CreateSecurityDescriptor 122
2.5.3.4.2 ComputeACL 124
2.5.3.4.3 ContainsInheritableACEs 127
2.5.3.4.4 ComputeInheritedACLfromParent 128
2.5.3.4.5 Com puteInheritedACLfromCreator 130
2.5.3.4.6 PreProcessACLfromCreator 131
2.5.3.4.7 PostProcessACL 131

2.5.3.5 Setting the INHERITED_ACE Flag 133
2.6 ServerGetInfo Abstract Interface 133
2.7 Impersonation Abstract Interfaces 134

2.7.1 StartImpers onation 134
2.7.2 EndImpersonation 135
2.7.3 GetAccessToken 135

3 Structure Examples 136

4 Security Considerations 137

5 Appendix A: Full MS - DTYP IDL 138

6 Appendix B: Product Behavior 143

7 Change Tracking 150

8 Index 151

8 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

1 Introduction

This document provides a collection of commonly used data types, which are categorized into two
basic types: common base types and common data types. The common base types are those types
that Microsoft compilers natively support. The common data types are data types th at are frequently
used by many protocols. These data types are user -defined types.

1.1 Glossary

This document uses the following terms:

Active Directory : The Windows implementation of a general -purpose directory service, which uses
LDAP as its primary access protocol. Active Directory stores information about a variety of

objects in the network such as user accounts, computer accounts, groups, and all related
credential information u sed by Kerberos [MS -KILE] . Active Directory is either deployed as
Active Directory Domain Services (AD DS) or Activ e Directory Lightweight Directory Services
(AD LDS), which are both described in [MS -ADOD] : Active Directory Protocols Overview.

American National Standards Institute (ANSI) cha racter set : A character set defined by a
code page approved by the American National Standards Institute (ANSI). The term "ANSI" as
used to signify Windows code pages is a historical reference and a misnomer that persists in the

Windows community. The sour ce of this misnomer stems from the fact that the Windows code
page 1252 was originally based on an ANSI draft, which became International Organization for
Standardization (ISO) Standard 8859 -1 [ISO/IEC -8859 -1] . In Windows, the ANSI character set
can be any of the following code pages: 1252, 1250, 1251, 1253, 1254, 1255, 1256, 1257,
1258, 874, 932, 936, 949, or 950. For example, "ANSI application" is usually a reference to a
non -Unicode or code -page -based application. Therefore, "ANSI character set" is often misused
to refer to one of the character sets defined by a Windows code page that can be used as an

active system code page; for example, character sets defined by code page 1252 or character
sets defined by code page 950. Windows is now based on Unicode , so the use of ANSI
character sets is strongly discouraged unless t hey are used to interoperate with legacy
applications or legacy data.

big - endian : Multiple -byte values that are byte -ordered with the most significant byte stored in the
memory location with the lowest address.

binary large object (BLOB) : A discrete packet of data that is stored in a database and is treated
as a sequence of uninterpreted bytes.

Component Object Model (COM) : An object -oriented programming model that defines how
objects interact within a single process or between processes. In COM , clients have access to an
object through interfaces implemented on the object. For more information, see [MS -DCOM] .

curly braced GUID string : The string representation of a 128 -bit globally unique identifier
(GUID) using the form {XXXXXXXX -XXXX-XXXX-XXXX-XXXXXXXXXXXX}, where X denotes a

hexadecimal digit. The string representation between the enclosing braces is the standard
representation of a GUID as described in [RFC4122] section 3. Unlike a GUIDString, a curly
braced GUID string includes encl osing braces.

discretionary access control list (DACL) : An access control list (ACL) that is controlled by the
owner of an object and that specifies the access particular users or groups can have to the
object.

Distributed File System (DFS) : A file system that logically groups physical shared folders located

on different servers by transparently connecting them to one or more hierarchical namespaces.
DFS also provides fault - tolerance and load -sha ring capabilities.

%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
%5bMS-ADOD%5d.pdf#Section_5ff67bf4c14548cb89cd4f5482d94664
https://go.microsoft.com/fwlink/?LinkId=90689
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
https://go.microsoft.com/fwlink/?LinkId=90460

9 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

domain : A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)

and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain controller provides authentication of members,

creating a unit of trust for its members. Each domain has an identifier tha t is shared among its
members. For more information, see [MS -AUTHSOD] section 1.1.1.5 and [MS -ADTS] .

fully qualified domain name (FQDN) : An unambiguous domain name that gives an absolute
location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section
3.1 and [RFC2181] section 11.

globally unique identifier (GUID) : A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of

these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms descr ibed in
[RFC4122] or [C706] must be used for generating the GUID . See also universally unique
identifier (UUID) .

handle : Any token that can be used to identify and access an object such as a device, file, or a
window.

Interface Definition Language (IDL) : The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

Internet host name : The name of a host as defined in [RFC1123] section 2.1, with the extensions
described in [MS -HNDS] .

little - endian : Multiple -byte values that are byte -ordered with the least significant byte stored in
the memory location with the lowest address.

marshaling : The act of formatting COM parameters for transmission over a remote procedure
call (RPC) . For more information, see [MS -DCOM].

Microsoft Interface Definitio n Language (MIDL) : The Microsoft implementation and extension

of the OSF -DCE Interface Definition Language (IDL) . MIDL can also mean the Interface
Definition Language (IDL) compiler provided by Microsoft. For more information, see [MS -
RPCE].

NetBI OS host name : The NetBIOS name of a host (as described in [RFC1001] section 14 and

[RFC1002] section 4), with the extensions d escribed in [MS -NBTE] .

organization : A security group that contains additional fields for describing hierarchical
relationships between organizations.

Remote Access Service (RAS) server : A type of network access server (NAS) that provides
modem dial -up or virtual private network (VPN) access to a network.

remote procedure call (RPC) : A communication protocol used primarily between client and

server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set

of request -and - response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

resource manager (RM) : The participant that is responsible for coordinating the state of a
resource with the outcome of atomic transactions. For a specified transaction, a resource
manager enl ists with exactly one transaction manager to vote on that transaction outcome and

to obtain the final outcome. A resource manager is either durable or volatile, depending on its
resource.

%5bMS-AUTHSOD%5d.pdf#Section_953d700a57cb4cf7b0c3a64f34581cc9
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
https://go.microsoft.com/fwlink/?LinkId=90264
https://go.microsoft.com/fwlink/?LinkId=127732
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=90268
%5bMS-HNDS%5d.pdf#Section_eff5b201ad32485dbbed1d07ad069d5c
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90260
https://go.microsoft.com/fwlink/?LinkId=90261
%5bMS-NBTE%5d.pdf#Section_3461cfa83d284fa38163131bf1046fa3

10 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

security identifier (SID) : An identifier for security principals tha t is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a

domain) and a smaller integer representing an identity relative to the account authority,
termed the relative identifier (RID). The SID format is specified in [MS -DTYP] section 2.4.2; a

string representation of SIDs is specified in [MS -DTYP] section 2.4.2 and [MS -AZOD] section
1.1.1.2.

share : A resource offered by a Common Internet File System (CIFS) server for access by CIFS
clients over the network. A share typically represents a directory tree and its included files
(referred to commonly as a "disk share" or "file share") or a printer (a "print share"). If the
information about the share is saved in persistent store (for example, Windows registry) and
reloaded when a file server is restarted, then the share is referred to as a "sticky share". Some

share names are reserved for specific functions and are referred to as special shares : IPC$,
reserved for interprocess communication, ADMIN$, reserved for remote administration, and A$,
B$, C$ (and other local disk names followed by a dollar sign), assigned to local disk devices.

system access control list (SACL) : An access control list (ACL) that controls the generation of
audit messages for attempts to access a securable object. The ability to get or set an object's

SACL is controlled by a privilege typically held only by system administrators.

Uni code : A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF -8, UTF -16, and UTF -32) and seven schemes (UTF -8, UTF -16, UTF -16
BE, UTF-16 LE, UTF -32, UTF -32 LE, and UTF -32 BE).

Unicode character : Unless otherwise specified, a 16 -bit UTF -16 co de unit.

Unicode string : A Unicode 8-bit string is an ordered sequence of 8 -bit units, a Unicode 16 -bit
string is an ordered sequenc e of 16 -bit code units, and a Unicode 32 -bit string is an ordered

sequence of 32 -bit code units. In some cases, it could be acceptable not to terminate with a
terminating null character. Unless otherwise specified, all Unicode strings follow the UTF -16LE
encoding scheme with no Byte Order Mark (BOM).

universally unique identifier (UUID) : A 128 -bit value. UUIDs can be used for multiple

purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross -process communication such as client and server interfaces, manager
entry -point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also

known as globally unique identifiers (GUIDs) and these terms are used interchangeably in
the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does
not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

unmarshal : The process of deserializing one or more data structures from an octet stream using a

specific transfer syntax (for example, unmarsha ling a 32 -bit integer).

UTF - 16 : A standard for encoding Unicode characters , defined in the Unicode standard, in which
the most commonly used characters are defined as double -byte characters. Unl ess specified
otherwise, this term refers to the UTF -16 encoding form specified in [UNICODE5.0.0/2007]
section 3.9.

UTF - 8 : A byte -oriented standard for encoding Unicode characters , defined in th e Unicode
standard. Unless specified otherwise, this term refers to the UTF -8 encoding form specified in

[UNICODE5.0.0/2007] section 3.9.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-AZOD%5d.pdf#Section_5a0a0a3ec7a742e1b5f2cc8d8bd9739e
https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90317

11 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently publish ed version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue wi th finding a normative reference, please contact dochelp@microsoft.com . We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[IEEE754] IEEE, "IEEE Standard for Binary Floating -Point Arithmetic", IEEE 754 -1985, October 1985,
http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[IETFDRAFT -PK-FRESH] Moore, S., Miller, P., and Short, M., Ed., "Public Key Cryptography for Initial

Authentication in Kerberos (PKINIT), F reshness Extension", draft -short -pkinit - freshness -00, October
2014, https://tools.ietf.org/html/draft -short -pkinit - freshness

[ISO/IEC -8859 -1] International Organization for Standardization, "Information Technology -- 8-Bit
Single -Byte Coded Graphic Character Sets -- Part 1: Latin Alphabet No. 1", ISO/IEC 8859 -1, 1998,
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_deta il.htm?csnumber=28245

Note There is a charge to download the specification.

[ISO/IEC -9899] International Organization for Standardization, "Programming Languages - C",
ISO/IEC 9899:TC2, May 2005, http://www.open -std.org/jtc1/sc22/wg14/www/docs/n1124.pdf

[MS -ADTS] Microsoft Corporation, " Active Directory Techn ical Specification ".

[MS -APDS] Microsoft Corporation, " Authentication Protocol Domain Support ".

[MS -ERREF] Microsoft Corporation, " Windows Error Codes ".

[MS -GPCAP] Microsoft Corporation, " Group Policy: Central Access Policies Protocol Extension ".

[MS -KILE] Microsoft Corpor ation, " Kerberos Protocol Extensions ".

[MS -LCID] Microsoft Corporation, " Windows Language Code Ide ntifier (LCID) Reference ".

[MS -NBTE] Microsoft Corporation, " NetBIOS over TCP (NBT) Extensions ".

[MS -NLMP] Microsoft Corporation, " NT LAN Manager (NTLM) Authentication Protocol ".

[MS -PAC] Microsoft Corporation, " Privilege Attribute Certificate Data Structure ".

[MS -RPCE] Microsoft Corporation, " Remote Procedure Call Protocol Extensions ".

[MS -SFU] Microsoft Corporation, " Kerberos Protocol Extensions: Service for User and Constrained
Delegation Protocol ".

[MS -SMB2] Microsoft Corporation, " Server Message Bl ock (SMB) Protocol Versions 2 and 3 ".

https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=89903
https://go.microsoft.com/fwlink/?LinkId=534982
https://go.microsoft.com/fwlink/?LinkId=90689
https://go.microsoft.com/fwlink/?LinkId=89921
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
%5bMS-APDS%5d.pdf#Section_dd444344fd7e430eb3137e95ab9c338e
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-GPCAP%5d.pdf#Section_5189d5c912c2491cbf16f7008c46c6fb
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
%5bMS-LCID%5d.pdf#Section_70feba9f294e491eb6eb56532684c37f
%5bMS-NBTE%5d.pdf#Section_3461cfa83d284fa38163131bf1046fa3
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-PAC%5d.pdf#Section_166d8064c86341e19c23edaaa5f36962
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-SFU%5d.pdf#Section_3bff58648135400ebdd933b552051d94
%5bMS-SFU%5d.pdf#Section_3bff58648135400ebdd933b552051d94
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

12 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

[MS -TLSP] Microsoft Corporation, " Transport Layer Security (TLS) Profile ".

[RFC1035] Mockapetris, P., "Domain Names - Implementation and Specification", STD 13, RFC 1035,

November 1987, http://www.ietf.org/rfc/rfc1035.txt

[RFC1123] Braden, R., "Requirements for Inte rnet Hosts - Application and Support", RFC 1123,
October 1989, http://www.ietf.org/rfc/rfc1123.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, R FC
2119, March 1997, https://www.rfc -editor.org/rfc/rfc2119.html

[RFC3986] Berners -Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (URI): Generic

Syntax", STD 66, RFC 39 86, January 2005, http://www.rfc -editor.org/rfc/rfc3986.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN
Namespace", RFC 4122, July 2005, http://www.rfc -editor.org/rfc/rfc4122.txt

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD

68, RFC 5234, January 2008, http://www.rfc -editor.org/rfc/rfc5234.txt

1.2.2 Informative References

[DALB] Dalbey, J., "Pseudocode Standard", May 2008,
http://users.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html

[MS -ADOD] Microsoft Corporation, " Active Directory Protocols Overview ".

[MS -SMB] Microsoft Corpo ration, " Server Message Block (SMB) Protocol ".

[MSDN -ACCTOKENS] Microsoft Corporation, "Access Tokens", http://ms dn.microsoft.com/en -
us/library/aa374909.aspx

[MSDN -AuthzAccessCheck] Microsoft Corporation, "AuthzAccessCheck function",
http://msdn.microsoft.com/en -us/library/aa375788%28v=VS.85%29.aspx

[M SDN-SDDLforDevObj] Microsoft Corporation, "SDDL for Device Objects",

http://msdn.microsoft.com/en -us/library/ff563667.aspx

[RFC3530] Shepler, S., et al., "Network File System (NFS) version 4 Protocol", RFC 3530, April 2003,
http://www.ietf.org/rfc/rfc3530.txt

[Tanenbaum] Tanenbaum, A.S., "Modern Operating Systems", Prentice Hall, 2001, ISBN 0 -13 -
092641 -8.

1.3 Overview

Two types of data structures are specified in this document: data structures that are specified in terms
of the wire format and data structures that are RPC -marshaled as specified in [MS -RPCE]. The latter
are specified by using the Interface Definition Language (IDL) that is defined in [MS -RPCE]

section 2.2.4.

For some types of data, both formats are shown. For example, both formats are shown if some
protocols use the raw wire format but other protocols use the RPC -marshaled format. Any protocol

that uses a data structure name in its IDL necessarily implies the use of the IDL version of the data
structure. Any other use implies the use of the wire format version unless otherwise specified by the
protocol that uses the data structure.

%5bMS-TLSP%5d.pdf#Section_58aba05b62b04cd1b88bdc8a24920346
https://go.microsoft.com/fwlink/?LinkId=90264
https://go.microsoft.com/fwlink/?LinkId=90268
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90453
https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=89842
%5bMS-ADOD%5d.pdf#Section_5ff67bf4c14548cb89cd4f5482d94664
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
https://go.microsoft.com/fwlink/?LinkId=89949
https://go.microsoft.com/fwlink/?LinkId=89949
https://go.microsoft.com/fwlink/?LinkId=204597
https://go.microsoft.com/fwlink/?LinkId=114214
https://go.microsoft.com/fwlink/?LinkId=90430
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

13 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

1.4 Relationship to Protocols and Other Structures

The data structures in this document are generic data structures that are used by many protocols.

1.5 Applicability Statement

Not applicable.

1.6 Versioning and Localization

Not applicable.

1.7 Vendor -Extensible Fields

HRESULT: Vendors can choose their own values, as long as the C bit (0x20000000) is set, indicating it
is a customer code.

NTSTATUS: Vendors can choose their own values for this field, as long as the C bit (0x20000000) is
set, indicating it is a customer code.

SECURITY_DESCRIPTOR : Vendors can extend Sbz1 by setting RM Control Valid to 0x1.

14 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

2 Data Types

The following sections describe data types that include common base types, data types, and data
structures.

Many protocols are intended to be extensions of local programming models. Other protocols have a
distinct purpose but share many common elements. This section is a discussion of data types that a re
common to many protocols.

In some cases, a component might not follow the typical practice and where that applies, the relevant
specification specifies the actual practice.

Integer names often have an alias, which is interchangeable with the integer nam e; there is no
difference in using either the name or its alias.

2.1 Common Base Types

This section contains commonly used primitive data types.

The use of the Interface Definition Language (IDL) implies RPC marshaling unless custom
marshaling is specified.

Unless explicitly noted in this document, any integer, either signed or unsigned, is in memory order
before RPC marshalling. It is impl ementation dependent <1> whether the memory order is little -

endian or big - endian .

For packets, the bit numbering convention followed is the same as that used in RFCs, namely: the
high (most significant) bit of the first byte to hit the wire is in packet bit 0, and the low bit of the last
byte to hit the wire is in packet bi t 31 (so that the bits are shown from left - to - right in the order they
naturally appear over the network).

Figure 1 : Packet byte/bit order

Unless otherwise specified, the bytes of a multi -byte integer field are assumed to be trans mitted in
big -endian order, also referred to as Network Byte Order. That is, if the packet shown above
represented a 32 -bit integer, then Byte 1 would be its high -order byte and Byte 4 its low -order byte.

Certain protocols use little -endian order, as speci fied in the corresponding technical documents; for
example, [MS -SMB2] .

2.1.1 bit

A bit is a single binary digit, which is the smallest primitive element of any data structure.

2.1.2 byte

The byte type specifies an 8 -bit data item.

A byte is a base IDL type as specified in [C706] section 4.2.9.5. A byte item is opaque in that its
contents are not interpreted, as a character data type might be.

%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
https://go.microsoft.com/fwlink/?LinkId=89824

15 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

2.1.3 handle_t

The handle_t data type is used to represent an explicit RPC binding handle, as specified in [C706]
and [MS -RPCE] section 2. This data type is a predefined type of the IDL and does not require an

explicit declaration.

A primitive binding handle is a data object that can be used by the application to represent the
binding. It can appear as a type specifier in typedef declarations, general declarations, and function
declarations (as a function - return - type specifier and a p arameter - type specifier).

2.1.4 Integer Types

Microsoft C/C++ supports different sizes of integer types. An 8 -bit, 16 -bit, 32 -bit, or 64 -bit integer
variable can be declared by using the __int n type specifier, where n is 8, 16, 32, or 64.

The types __int8 , __int16 , and __int32 are synonyms for the ANSI /ISO C types (as specified in
[ISO/IEC -9899]) that have the same size. They are useful for writing portable code that behaves
identically across multiple platforms.

2.1.4.1 __int8

An 8 -bit signed integer (range: ï128 to 127 decimal). The first bit, the most significant bit (MSB), is
the signing bit. This type can be specified as unsigned by using the unsigned data - type modifier. As an
uns igned __int8, the range is from 0 to 255 decimal.

2.1.4.2 __int16

A 16 -bit signed integer (range: ï32768 to 32767 decimal). The first bit (MSB) is the signing bit.

This type can be specified as unsigned by using the unsigned data - type modifier. As an unsigned

__i nt16, the range is from 0 to 65535 decimal.

2.1.4.3 __int32

A 32 -bit signed integer (range: ï2147483648 to 2147483647 decimal). The first bit (MSB) is the
signing bit.

This type can be specified as unsigned by using the unsigned data - type modifier. As an unsigned
__int32, the range is from 0 to 4294967295 decimal.

2.1.4.4 __int64

A 64 -bit signed integer (range: ï9223372036854775808 to 9223372036854775807 decimal). The

first bit (MSB) is the signing bit.

This type can be specified as unsigned by using the unsigned data - type modifier. As an unsigned
__int64, the range is from 0 to 18446744073709551615 decimal.

2.1.4.5 hyper

The keyword hyper indicates a 64 -bit integer that can be declared as either signed or unsigned.

2.1.5 octet

The octet type specifies an 8 -bit data item.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89921

16 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

An octet is an 8-bit data type as specified in [C706] section 14.2.

2.1.6 wchar_t

A Unicode character for use with the Microsoft Interface Definition Language (MIDL) compiler.

This type is declared as follows:

 typedef unsigned short wchar_t;

2.2 Common Data Types

This section contains s imple data types that are defined by either a C/C++ typedef or #define
statement. The data types in this section are essentially aliases for C/C++ primitive data types.

2.2.1 __int3264

An alias that is resolved to either:

Á An __int32 in a 32 -bit translation and execution environment, or

Á An __int64 in a 64 -bit translation and execution environment. For backward compatibility, it is 32 -

bit on the wire. The higher 4 bytes MUST be truncated on the sender side during marshaling and
MUST be ex tended appropriately (signed or unsigned), as specified in [C706] section 14.2.5, on
the receiving side during unmarshaling .

2.2.2 ADCO NNECTION_HANDLE

A handle to an ADConnection object that is used to manage the TCP connections that are used for
communication between a client and Active Directory servers.

This type is declared as follows:

 typedef void* ADCONNECTION_HANDLE;

2.2.3 BOOL

A BOOL is a 32 -bit field that is set to 1 to indicate TRUE , or 0 to indicate FALSE .

This type is declared as follows:

 typedef int BOOL, *PBOOL, *LPBOOL;

2.2.4 BOOLEAN

A BOOLEAN is an 8 -bit field that is set t o 1 to indicate TRUE , or 0 to indicate FALSE .

This type is declared as follows:

 typedef BYTE BOOLEAN, *PBOOLEAN;

https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=89824

17 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

2.2.5 BSTR

A BSTR is a pointer to a null - terminated character string in which the string length is stored with the
string. This type is declared as follows:

 typedef WCHAR* BSTR;

Because the length is stored with the string, BSTR variables can contain embedded null characters.
For example:

 [4 bytes (length prefix)],

 wchar_t[length], [\ 0]

2.2.6 BYTE

A BYTE is an 8 -bit unsigned value that corresponds to a sin gle octet in a network protocol.

This type is declared as follows:

 typedef unsigned char BYTE, *PBYTE, *LPBYTE;

2.2.7 CHAR

A CHAR is an 8 -bit block of data that typically contains an ANSI character, as specified in [ISO/IEC -

8859 -1] . For information on the char keyword, see [C706] section 4.2.9.3.

This type is declared as follows:

 typedef char CHAR, *PCHAR;

2.2.8 DOUBLE

A DOUBLE is an 8 -byte, double -precision, floating -point number that represents a double -precision,
64 -bit [IEEE754] value with the approximate range: +/ ï5.0 x 10 -324 through +/ ï1.7 x 10 308 .

The DOUBL E type can also represent not a number (NAN); positive and negative infinity; or positive

and negative 0.

This type is declared as follows:

 typedef double DOUBLE;

2.2.9 DWORD

A DWORD is a 32 -bit unsigned integer (range: 0 through 4294967295 decimal). Because a D WORD is
unsigned, its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned long DWORD, *PDWORD, *LPDWORD;

https://go.microsoft.com/fwlink/?LinkId=90689
https://go.microsoft.com/fwlink/?LinkId=90689
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=89903

18 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

2.2.10 DWORD_PTR

A DWORD_PTR is an unsigned long type used for pointer precision. It is us ed when casting a pointer
to an unsigned long type to perform pointer arithmetic. DWORD_PTR is also commonly used for

general 32 -bit parameters that have been extended to 64 bits in 64 -bit Windows. For more
information, see ULONG_PTR.

This type is declared as follows:

 typedef ULONG_PTR DWORD_PTR;

2.2.11 DWORD32

A DWORD32 is a 32 -bit unsigned integer.

This type is declared as follows:

 typedef unsigned int DWORD32;

2.2.12 DWORD64

A DWORD64 is a 64 -bit unsigned int eger.

This type is declared as follows:

 typedef unsigned __int64 DWORD64, *PDWORD64;

2.2.13 DWORDLONG

A DWORDLONG is a 64 -bit unsigned integer (range: 0 through 18446744073709551615 decimal).

This type is declared as follows:

 typedef ULONGLONG DWORDLONG, *PDWORDLONG;

2.2.14 error_status_t

The error_status_t return type is used for all methods. This is a Win32 error code.

This type is declared as follows:

 typedef unsigned long error_status_t;

2.2.15 FLOAT

A float is a base type that is specified the IEEE Format section of [C706] .section 14.2.

This type is declared as follows:

 typedef float FLOAT;

https://go.microsoft.com/fwlink/?LinkId=89824

19 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

2.2.16 HANDLE

A Handle to an object

This type is declared as follows:

 typedef void* HANDLE;

2.2.17 HCALL

An HCALL is an alias for a DWORD used to specify a handle to a call, typically used in telephony -
related applications.

An HCALL is a 32 -bit un signed integer used to store a handle to a call.

This type is declared as follows:

 typedef DWORD HCALL;

2.2.18 HRESULT

An HRESULT is a 32 -bit value that is used to describe an error or warning and contains the following

fields:

Á A 1 -bit code that indicates severit y, where 0 represents success and 1 represents failure.

Á A 4 -bit reserved value.

Á An 11 -bit code, also known as a facility code, that indicates responsibility for the error or warning.

Á A 16 -bit code that describes the error or warning.

For details on HRESULT values, see [MS -ERREF].

This type is declared as follows:

 typedef LONG HRESULT;

2.2.19 INT

An INT is a 32 -bit signed integer (range: ï2147483648 through 2147483647 decimal).

This ty pe is declared as follows:

 typedef int INT, *LPINT;

2.2.20 INT8

An INT8 is an 8 -bit signed integer (range: ï128 through 127 decimal). The first bit (Most Significant
Bit (MSB)) is the signing bit.

This type is declared as follows:

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

20 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

 typedef signed char INT8;

2.2.21 INT16

An INT16 is a 16 -bit signed integer (range: ï32768 through 32767 decimal). The first bit (Most
Significant Bit (MSB)) is the signing bit.

This type is declared as follows:

 typedef signed short INT16;

2.2.22 INT32

An INT32 is a 32 -bit signed integer (range: ï2147 483648 through 2147483647 decimal). The first bit
(Most Significant Bit (MSB)) is the signing bit.

This type is declared as follows:

 typedef signed int INT32;

2.2.23 INT64

An INT64 is a 64 -bit signed integer (range: ï9223372036854775808 through 92233720368547758 07
decimal). The first bit (Most Significant Bit (MSB)) is the signing bit.

This type is declared as follows:

 typedef signed __int64 INT64;

2.2.24 LDAP_UDP_HANDLE

A handle to an ADUDPHandle object that is used to represent the parameters used for
communication between a client and Active Directory servers.

This type is declared as follows:

 typedef void* LDAP_UDP_HANDLE;

2.2.25 LMCSTR

A LMCSTR is a 32 -bit pointer to a constant null - terminated string of 16 -bit Unicode characters .

This type is declared as follows:

 typedef const wchar_t* LMCSTR;

2.2.26 LMSTR

A LMSTR is a 32 -bit pointer to a null - terminated string of 16 -bit Unicode characters .

21 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

This type is declared as follows:

 typedef WCHAR* LMSTR;

2.2.27 LONG

A LONG is a 32 -bit signed integer, in twos -complement format (range: ï2147483 648 through
2147483647 decimal). The first bit (Most Significant Bit (MSB)) is the signing bit.

This type is declared as follows:

 typedef long LONG, *PLONG, *LPLONG;

2.2.28 LONGLONG

A LONGLONG is a 64 -bit signed integer (range: ï9223372036854775808 through
9223372036854775807 decimal).

This type is declared as follows:

 typedef signed __int64 LONGLONG;

2.2.29 LONG_PTR

A LONG_PTR is a long type used for pointer precision. It is used when casting a poin ter to a long type

to perform pointer arithmetic.

This type is declared as follows:

 typedef __int3264 LONG_PTR;

2.2.30 LONG32

A LONG32 is a 32 -bit signed integer.

This type is declared as follows:

 typedef signed int LONG32;

2.2.31 LONG64

A LONG64 is a 64 -bit signed inte ger.

This type is declared as follows:

 typedef signed __int64 LONG64, *PLONG64;

22 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

2.2.32 LPCSTR

An LPCSTR is a 32 -bit pointer to a constant null - terminated string of 8 -bit Windows (ANSI)
characters.

Thi s type is declared as follows:

 typedef const char* LPCSTR;

2.2.33 LPCVOID

An LPCVOID is a 32 -bit pointer to a constant of any type.

This type is declared as follows:

 typedef const void* LPCVOID;

2.2.34 LPCWSTR

An LPCWSTR is a 32 -bit pointer to a constant string of 16 -bit Unicode characters , which MAY be
null - terminated.

This type is declared as follows:

 typedef const wchar_t* LPCWSTR;

2.2.35 LPSTR

The LPSTR type and its alias PSTR specify a pointer to an array of 8 -bit characters, which MAY be

terminated by a null character.

In some protocols, it is acceptable to not terminate with a null character, and this option will be
indicated in the specification. In this case, the LPSTR or PSTR type MUST either be tagged with the
IDL modifier [string], that indicates string semantics, or be accompanied by an explicit length

specifier, for example [size_is()].

The format of the characters MUST be specified by the protocol that uses them. Two common 8 -bit
formats are ANSI and UTF - 8 .

A 32 -bit pointer to a string of 8 -bit characters, which MAY be null - terminated.

This type is declared as follows:

 typedef char* PSTR, *LPSTR;

2.2.36 LPWSTR

The LPWSTR type is a 32 -bit pointer to a string of 16 -bit Unicode characters , which MAY be null -
terminated. The LPWSTR type specifies a pointer to a sequence of Unicode characters, which MAY be
terminated by a null character (usually referred to as "null - terminated Unicode").

In some protocols, an accept able option is to not terminate a sequence of Unicode characters with a
null character. Where this option applies, it is indicated in the protocol specification. In this situation,
the LPWSTR or PWSTR type MUST either be tagged with the IDL modifier [string], which indicates

23 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

string semantics, or MUST be accompanied by an explicit length specifier, as specified in the
RPC_UNICODE_STRING (section 2.3.10) structure.

This type is declared as follows:

 typedef wchar_t* LPWSTR, *PWSTR;

2.2.37 NET_API_STATUS

The NET_API_STATUS type is commonly used as the return value of RPC methods in Micros oft
network protocols. See the Win32 error codes as specified in [MS -ERREF] for details.

This type is declared as follows:

 typedef DWORD NET_API_STATUS;

2.2.38 NTSTATUS

NTSTATUS is a standard 32 -bit datatype for system -supplied status code values.

NTSTATUS values are used to communicate system information. They are of four types: success
values, information values, warnings, and error values, as specified in [MS -ERREF].

This type is declared as follows:

 typedef long NTSTATUS;

2.2.39 PCONTEXT_HANDLE

The PCONTEXT_HANDLE type keeps state information associated with a given client on a server. The

state informati on is called the server's context. Clients can obtain a context handle to identify the
server's context for their individual RPC sessions.

A context handle must be of the void * type, or a type that resolves to void *. The server program
casts it to the required type.

The IDL attribute [context_handle] , as specified in [C 706] , is used to declare PCONTEXT_HANDLE.

An interface that uses a context handle must have a binding handle for the initial binding, which has
to take place before the server can return a context handle. The handle_t type is one of the
predefined types of the interface definition language (IDL), which is used to create a binding handle.

 typedef [context_handle] void* PCONTEXT_HANDLE;

 typedef [ref] PCONTEXT_HANDLE* PPCONTEXT_HANDLE;

2.2.40 QWORD

A QWORD is a 64 -bit unsigned integer.

This type is declared as follows:

 typedef unsigned __int64 QWORD;

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=89824

24 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

2.2.41 RPC_BINDING_HANDLE

An RPC_BINDING_HANDLE is an untyped 32 -bit pointer containing information that the RPC run - time
library uses to access binding information. It is directly equivalent to the type rpc_binding_handle_t

described in [C 706] section 3.1.4.

The RPC_BINDING_HANDLE data type declares a binding handle containing information that the RPC
run - time library uses to access binding information.

The run - time library uses binding information to establish a client/server relationship that allows the
execution of remote procedure calls. Based on the context in which a binding handle is created, it is
considered a server -binding handle or a client -binding handle.

A server -binding handle contains the information necessary for a client to establish a relationship with

a specific server. Any number of RPC API run - time routines return a server -binding handle that can be
used for making a remote procedure call.

A client -binding handle cannot be used to make a remote procedure call. The RPC r un - time library
creates and provides a client -binding handle to a called -server procedure (also called a server -

manager routine) as the RPC_BINDING_HANDLE parameter. The client -binding handle contains
information about the calling client.

This type is decl ared as follows:

 typedef void* RPC_BINDING_HANDLE;

2.2.42 SHORT

A SHORT is a 16 -bit signed integer(range: ï32768 through 32767 decimal). The first bit (Most
Significant Bit (MSB)) is the signing bit.

This type is declared as follows:

 typedef short SHORT;

2.2.43 SIZE_T

SIZE_T is a ULONG_PTR representing the maximum number of bytes to which a pointer can point.

This type is declared as follows:

 typedef ULONG_PTR SIZE_T;

2.2.44 STRING

Unless otherwise noted, a STRING is a UCHAR buffer that represents a null - terminated string of 8 -bit
characters.

This type is declared as follows:

 typedef UCHAR* STRING;

https://go.microsoft.com/fwlink/?LinkId=89824

25 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

2.2.45 UCHAR

A UCHAR is an 8 -bit integer with the range: 0 through 25 5 decimal. Because a UCHAR is unsigned, its
first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned char UCHAR, *PUCHAR;

2.2.46 UINT

A UINT is a 32 -bit unsigned integer (range: 0 through 4294967295 de cimal). Because a UINT is
unsigned, its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned int UINT;

2.2.47 UINT8

A UINT8 is an 8 -bit unsigned integer (range: 0 through 255 decimal). Because a UINT8 is unsigned,

its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned char UINT8;

2.2.48 UINT16

A UINT16 is a 16 -bit unsigned integer (range: 0 through 65535 decimal). Because a UINT16 is
uns igned, its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned short UINT16;

2.2.49 UINT32

A UINT32 is a 32 -bit unsigned integer (range: 0 through 4294967295 decimal). Because a UINT32 is
unsigned , its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned int UINT32;

2.2.50 UINT64

A UINT64 is a 64 -bit unsigned integer (range: 0 through 18446744073709551615 decimal). Because
a UINT64 is unsig ned, its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

26 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

 typedef unsigned __int64 UINT64;

2.2.51 ULONG

A ULONG is a 32 -bit unsigned integer (range: 0 through 4294967295 decimal). Because a ULONG is
unsigned, i ts first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned long ULONG, *PULONG;

2.2.52 ULONG_PTR

A ULONG_PTR is an unsigned long type used for pointer precision. It is used when casting a pointer to
a long type to perform pointer arithmetic.

This type is declared as follows:

 typedef unsigned __int3264 ULONG_PTR;

2.2.53 ULONG32

A ULONG32 is an unsigned LONG32 .

This type is declared as follows:

 typedef unsigned int ULONG32;

2.2.54 ULONG64

A ULONG64 is a 64 -bit unsigned integer (range: 0 through 18446744073709551615 decimal).
Because a ULONG64 is unsigned, its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned __int64 ULONG64;

2.2.55 ULONGL ONG

A ULONGLONG is a 64 -bit unsigned integer (range: 0 through 18446744073709551615 decimal).
Because a ULONGLONG is unsigned, its first bit (Most Significant Bit (MSB)) is not reserved for

signing.

This type is declared as follows:

 typedef unsigned __int 64 ULONGLONG;

2.2.56 UNICODE

A single Unicode character .

27 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

This type is declared as follows:

 typedef wchar_t UNICODE;

2.2.57 UNC

A Universal Naming Convention (UNC) string is used to specify the location of res ources such as
shared files or devices.

For RPC implementations, this type is declared as follows:

 typedef STRING UNC;

There are three UNC schemes based on namespace selectors: filespace selecto r, Win32API selector,
and device selector. Only the filespace selector is parsed for on -wire traffic, the other two pass opaque

BLOBs to the consuming entity. The filespace selector is a null - te rminated Unicode character string
in the following ABNF syntax:

 UNC = " \ \ " host - name " \ " share - name [" \ " object - name]

 host - name = IPv6address / IPv4address / reg - name

 ; IPv4address, and reg - name are as specified in [RFC3986], see following for IPV6

 share - name = 1*80pchar

 pchar = %x20 - 21 / %x23 - 29 / %x2D - 2E / %x30 - 39 / %x40 - 5A / %x5E - 7B / %x7D - FF

 object - name = *path - name [" \ " file - name]

 path - name = 1*255pchar

 file - name = 1*255fchar [":" stream - name [":" stream - type]]

 fchar = %x20 - 21 / %x23 - 29 / %x2B - 2E / %x30 - 39 / %x3B / %x3D / %x40 - 5B / %x5D - 7B

/ %x7D - FF

 stream - name = *schar

 schar = %x01 - 2E / %x30 - 39 / %x3B - 5B /%x5D - FF

 stream - type = 1*schar

host - name: The host name of a server or the domain name of a domain hosting resource, using
the syntax of IPv4address, and reg -name as specified in [RFC3986] , or an IPV6 address. The
host -name string MUST be a NetBIOS name as specified in [MS -NBTE] section 2.2.1, a fully

qualified domain name (FQDN) as specified in [RFC1035] and [RFC1123] , an IPv4 address as
specified in [RFC1123] section 2.1, or a string formed from the IPV6 address.

An IPV6 address host -name is formed by sub stituting hyphens for the colons and appending
".ipv6 - literal.net". For example, the IPV6 address 2001:DB8:D87:FFFF:CCAA:132B:1:221B
becomes 2001 -DB8 -D87 -FFFF-CCAA-132B -1-221B.ipv6 - literal.net.

share - name: The name of a share or a resource to be accessed. The format of this name depends
on the actual file server protocol that is used to access the share. Examples of file server protocols

include SMB (as specified in [MS -SMB]), NFS (as specified in [RFC3530]), and NCP (as specified in
[NOVELL]).

object - name: The name of an object; this name depends on th e actual resource accessed.

The notation "[\ object - name]*" indicates that zero or more object names exist in the path, and
each object -name is separated from the immediately preceding object - name with a backslash
path separator. In a UNC path used to acces s files and directories in an SMB share, for example,

object - name can be the name of a file or a directory. The host - name , share - name , and
object - name are referred to as "pathname components" or "path components". A valid UNC path
consists of two or more p ath components. The host - name is referred to as the "first pathname
component", the share - name as the "second pathname component", and so on. The last

https://go.microsoft.com/fwlink/?LinkId=90453
%5bMS-NBTE%5d.pdf#Section_3461cfa83d284fa38163131bf1046fa3
https://go.microsoft.com/fwlink/?LinkId=90264
https://go.microsoft.com/fwlink/?LinkId=90268
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
https://go.microsoft.com/fwlink/?LinkId=90430

28 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

component of the path is also referred to as the "leaf component". The protocol that is used to
access th e resource, and the type of resource that is being accessed, define the size and valid

characters for a path component. The only limitations that a Distributed File System (DFS)
places on path c omponents are that they MUST be at least one character in length and MUST NOT

contain a backslash or null.

path - name : One or more pathname components separated by the " \ " backslash character. All
pathname components other than the last pathname component denote directories or reparse
points.

file - name : The "leaf component" of the path, optionally followed by a ":" colon character and a
stream - name , optionally followed by a ":" colon character and a stream type . The stream -
name , if specified, MAY be zer o- length only if stream - type is also specified; otherwise, it MUST

be at least one character. The stream - type , if specified, MUST be at least one character.

2.2.58 USHORT

A USHORT is a 16 -bit unsigned integer (range: 0 through 65535 decimal). Because a USHORT is

unsigned, its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned short USHORT;

2.2.59 VOID

VOID is an alias for void .

This type is declared as follows:

 typedef void VOID, *PVOID, *LPVOID;

2.2.60 WCHAR

A WCHAR is a 16 -bit Unicode character .

This type is declared as follows:

 typedef wchar_t WCHAR, *PWCHAR;

2.2.61 WORD

A WORD is a 16 -bit unsigned integer (range: 0 through 65535 decimal). Because a WORD is unsigned,
its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned short WORD, *PWORD, *LPWORD;

2.3 Common Data Structures

This section contains common data structures that are defined in either C, C++, or ABNF.

29 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

2.3.1 EVENT_DESCRIPTOR

The EVENT_DESCRIPTOR structure specifies the metadata that de fines an event.

 typedef struct _EVENT_DESCRIPTOR {

 USHORT Id;

 UCHAR Version;

 UCHAR Channel;

 UCHAR Level;

 UCHAR Opcode;

 USHORT Task;

 ULONGLONG Keyword;

 } EVENT_DESCRIPTOR,

 *PEVENT_DESCRIPTOR,

 *PCEVENT_DESCRIPTOR;

Id: The event identifier.

Version: The version of the event, which indicates a revision to the event definition. The Version and

Id members uniquely identify the event within the scope of a provider.

Channel: Defines the audience for the event (for example, administrator or devel oper).

Level: Specifies the severity or level of detail included in the event (for example, informational or
fatal).

Opcode: Identifies a step in a sequence of operations being performed within a Task.

Task: Identifies a larger unit of work within an ap plication or component (broader in scope than the
Opcode).

Keyword: A bitmask that specifies a logical group of related events. Each bit corresponds to one
group. An event can belong to one or more groups. The keyword can contain one or more
provider -defi ned keywords, standard keywords, or both.

This structure represents an event defined in a manifest and is included in the EVENT_HEADER
structure.

2.3.2 EVENT_HEADER

The EVENT_HEADER structure defines the main parameters of an event.

 typedef struct _EVENT_HEADER {

 USHORT Size;

 USHORT HeaderType;

 USHORT Flags;

 USHORT EventProperty;

 ULONG ThreadId;

 ULONG ProcessId;

 LARGE_INTEGER TimeStamp;

 GUID ProviderId;

 EVENT_DESCRIPTOR EventDescriptor;

 union {

 struct {

 ULONG KernelTime;

 ULONG UserTime;

 };

 ULONG64 ProcessorTime;

 };

 GUID ActivityId;

 } EVENT_HEADER,

30 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

 *PEVENT_HEADER;

Size: Size of the event record, in bytes.

HeaderType: Reserved.

Flags: Flags that provide information about the event such as the type of session it was logged to
and whether the event contains extended data. This member can contain one or more of the
following flags.

Value Mea ning

EVENT_HEADER_FLAG_EXTENDED_INFO The ExtendedData member of the event record contains data.

EVENT_HEADER_FLAG_PRIVATE_SESSION The event was logged to a private session.

EVENT_HEADER_FLAG_STRING_ONLY The event data is a null - terminated Unicode string.

EVENT_HEADER_FLAG_TRACE_MESSAGE The provider used an implementation -specific trace message
function to log the event. Typically indicates that the event
was written by the Windows software trace preproc essor.

EVENT_HEADER_FLAG_NO_CPUTIME Indicates that elapsed execution time was not recorded; the
ProcessorTime member can be used to determine the
elapsed execution time.

EVENT_HEADER_FLAG_32_BIT_HEADER Indicates that the provider was running on a 32 -bit computer
or in a WOW64 session.

EVENT_HEADER_FLAG_64_BIT_HEADER Indicates that the provider was running on a 64 -bit computer.

EVENT_HEADER_FLAG_DECODE_GUID Indicates that the ProviderId member of the event record is a
decode GUID rather than a control GU ID. <2>

EVENT_HEADER_FLAG_CLASSIC_HEADER Indicates that provider used a trace event function to log the
event.

EVENT_HEADER_FLAG_PROCESSOR_INDEX If this flag is set, the identifier for the CPU that logged the
event MUST be accessed using the ProcessorIndex member of
the BufferContext member of the event record.

If this flag is not set, the identifier for the CPU that logged the
event MUST be read from the ProcessorNumber member of the
Buffer Context member of the event record. <3>

EventProperty: Indicates the source to use for parsing the event data.

Value Meaning

EVENT_HEADER_PROPERTY_XML Indicates that you need a manifest to p arse the event
data.

EVENT_HEADER_PROPERTY_FORWARDED_XML Indicates that the event data contains within itself a fully
rendered XML description of the data, so you do not need
a manifest to parse the event data.

EVENT_HEADER_PROPERTY_LEGACY_EVENTLOG Indicates that you need a WMI MOF class to parse the
event data.

ThreadId: Identifies the thread that generated the event.

ProcessId: Identifies the process that generated the event.

31 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

TimeStamp: Contains the time that the event occurred. The resolution is system time unless the
ProcessTraceMode member of EVENT_TRACE_LOGFILE contains the

PROCESS_TRACE_MODE_RAW_TIMESTAMP flag, in which case the resolution depends on the
value of the Wnode.ClientContext member of EVENT_TRACE_PROPERTIES at the time the

contr oller created the session.

ProviderId: GUID that uniquely identifies the provider that logged the event.

EventDescriptor: Defines information about the event such as the event identifier and severity level.

KernelTime: Elapsed execution time for kernel -mode instructions, in CPU time units. For private
sessions, the value in the ProcessorTime member can be used instead.

UserTime: Elapsed execution time for user -mode instructions, in CPU time units. For private
sessions, the value in the ProcessorTime mem ber can be used instead.

ProcessorTime: For private sessions, the elapsed execution time for user -mode instructions, in CPU
ticks.

ActivityId: Identifier that relates two events.

The KernelTime and UserTime members can be used to determine the CPU cost i n units for a set of
instructions (the values indicate the CPU usage charged to that thread at the time of logging). For
example, if Event A and Event B are consecutively logged by the same thread and they have CPU

usage numbers 150 and 175, then the activ ity that was performed by that thread between events A
and B cost 25 CPU time units (175 ï 150).

2.3.3 FILETIME

The FILETIME structure is a 64 -bit value that represents the number of 100 -nanosecond int ervals that

have elapsed since January 1, 1601, Coordinated Universal Time (UTC).

 typedef struct _FILETIME {

 DWORD dwLowDateTime;

 DWORD dwHighDateTime;

 } FILETIME,

 *PFILETIME,

 *LPFILETIME;

dwLowDateTime: A 32 -bit unsigned integer that contains the low -order bits of the file time.

dwHighDateTime: A 32 -bit unsigned integer that contains the high -order bits of the file time.

2.3.4 GUID and UUID

A GUID , also known as a UUID , is a 16 -byte structure, intended to serve as a unique identifier for an
object. There are three representations of a GUID, as described in the following sections.

2.3.4.1 GUID -- RPC IDL representatio n

The following structure is an IDL representation of GUID equivalent to and compatib le with a DCE
UUID ([C706] section A.1) according to the following mappings.

 typedef struct _GUID {

 unsigned long Data1;

 unsigned short Data2;

 unsigned short Data3;

 byte Data4[8];

https://go.microsoft.com/fwlink/?LinkId=89824

32 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

 } G UID,

 UUID,

 *PGUID;

Data1: This member is generally treated as an opaque value. This member is equivalent to the
time_low field of a DCE UUID ([C706] section A.1).

Data2: This member is generally treated as an opaque value. This member is equivalent to the
time_mid field of a DCE UUID ([C706] section A.1).

Data3: This member is generally treated as an opaque value. This member is equivalent to the
time_hi_and_version field of a DCE UUID ([C706] section A.1).

Data4: This array is generally treated as a sequence of opaque values. This member is equivalent to

the following sequence of fields of a DCE UUID ([C706] section A.1) in this order:
clock_seq_hi_and_reserved, clock_seq_low, and the sequence of bytes in the node field.

2.3.4.2 GUID -- Packet Representation

The packet version is used within block protocols. The following diagram represents a GUID as an
opaque sequence of bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Data1

Data2 Data3

Data4

...

Data1 (4 bytes): The value of the Data1 member (section 2.3.4), in little -endian byte order.

Data2 (2 bytes): The value of the Data2 member (section 2.3.4), in little -endian byte order.

Data3 (2 bytes): The value of the Data3 member (section 2.3.4), in little -endian byte order.

Data4 (8 bytes): The value of the Data4 member (section 2.3.4), in little -endian byte order.

2.3.4.3 GUID -- Curly Brac ed String Representation

The curly braced GUID string representation is a format commonly used for a string representation of
the GUID type (as specified in section 2.3.4.1) is described by the following ABNF syntax, as specified
in [RFC5234] .

 CurlyBraceGuidString = "{" UUID "}"

 Where UUID represents the string form of a UUID, as specified in [RFC4122] section 3. The non -
terminal symbol CurlyBraceGuidString represents (that is, generates) strings that satisfy the definition
of curly braced GUID string .

By way of illustration, the UUID string specified in [RFC4122] section 3 as an example would have the
followi ng representation as a curly braced GUID string.

https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=90460

33 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

 {f81d4fae - 7dec - 11d0 - a765 - 00a0c91e6bf6}

2.3.5 LARGE_INTEGER

The LARGE_INTEGER structure is used to represent a 64 -bit signed integer value.

 typedef struct _LARGE_INTEGER {

 signed __int64 QuadPart;

 } LARGE_INTEGER,

 *PLARGE_INTEGER;

2.3.6 LCID

A language code identifier structure is stored as a DWORD. The lower word contains the language
identifier, and the up per word contains both the sorting identifier (ID) and a reserved value. For

additional details about the structure and possible values, see [MS -LCID] .

This type is declared as follows:

 typedef DWORD LCID;

2.3.7 LUID

The LUID structure is 64 -bit value guaranteed to be unique only on the system on which it was
generated. The uniqueness of a locally unique identifier (LUID) is guaranteed only until the system is
restarted.

 typedef struct _LUID {

 DWORD LowPart;

 LONG HighPart;

 } LUID,

 *PLUID;

LowPart: The low -order bits of the structure.

HighPart: The high -order bits of the structure.

2.3.8 MULTI_SZ

The MULTI_SZ structure defines an implementation -specific <4> type that contains a sequence of null -
terminated strings, terminated by an empty string (\ 0) so that the last two characters are both null
term inators.

 typedef struct _MULTI_SZ {

 wchar_t* Value;

 DWORD nChar;

 } MULTI_SZ;

Value: A data buffer, which is a string literal containing multiple null - terminated strings serially.

nChar: The length, in characters, including the two terminating nulls.

%5bMS-LCID%5d.pdf#Section_70feba9f294e491eb6eb56532684c37f

34 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

2.3.9 OBJECT_TYPE_LIST

The OBJECT_TYPE_LIST structure identifies an object type element in a hierarchy of object types. The
Access Check Algori thm Pseudocode functions (section 2.5.3.2) use an array of OBJECT_TYPE_LIST

structures to define a hierarchy of an object and its sub -objects, such as property sets and properties.

 typedef struct _OBJECT_TYPE_LIST {

 WORD Level;

 ACCESS_MASK Remaining;

 GUID* ObjectType;

 } OBJECT_TYPE_LIST,

 *POBJECT_TYPE_LIST;

Level: Specifies the level of the object type in the hierarchy of an object and its sub -objects. Level
zero indicates the object itself. Level one indicates a sub -object of the object, such as a property
set. Level two indicates a sub -object of the level one sub -object, such as a property. There can be
a maximum of five levels numbered zero through four.

Value Meaning

ACCESS_OBJECT_GUID

0x0

Indicates the object itself at level zero.

ACCESS_PROPERTY_SET_GUID

0x1

Indicates a property set at level one.

ACCESS_PROPERTY_GUID

0x2

Indicates a property at level two.

ACCESS_MAX_LEVEL

0x4

Maximum level.

Remaining: Remaining access bits for this element, used by the access check algorithm, a s specified

in section 2.5.3.2.

ObjectType: A pointer to the GUID for the object or sub -object.

2.3.10 RPC_UNICODE_STRING

The RPC_UNICODE_STRING structure specifies a Unicode string . This structure is defined in IDL as
follows:

 typedef struct _RPC_UNICODE_STRING {

 unsigned short Length;

 unsigned short MaximumLength;

 [size_is(MaximumLength/2), length_is(Length/2)]

 WCHAR* Buffer;

 } RPC_UNICODE_STRING,

 *PRPC_UNICODE_STRING;

Length: The length, in bytes, of the string pointed to by the Buffer member. The length MUST be a

multiple of 2. The length MUST equal the entire size of the buffer.

MaximumLength: The maximum size, in bytes, of the string pointed to by Buffer . The size MUST be
a multiple of 2. If not, the size MUST be decremented by 1 pr ior to use. This value MUST not be
less than Length .

35 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Buffer: A pointer to a string buffer. The string pointed to by the buffer member MUST NOT include a
terminating null character.

2.3.11 SERVER_INFO_100

The SERVER_INFO_100 structure contains information about the specified server, including the name
and platform.

 typedef struct _SERVER_INFO_100 {

 DWORD sv100_platform_id;

 [string] wchar_t* sv100_name;

 } SERVER_INFO_100,

 *PSERVER_INFO_100,

 *LPSERVER_INFO_100;

sv100_platform_id: Specifies the information level to use for platform -specific information.

Name Value

PLATFORM_ID_DOS 300

PLATFORM_ID_OS2 400

PLATFORM_ID_NT 500

PLATFORM_ID_OSF 600

PLATFORM_ID_VMS 700

sv100_name: A pointer to a null - terminated Unicode UTF - 16 Internet host name or NetBIOS
host name of a server.

2.3.12 SERVER_INFO_101

The SERVER_INFO_101 structure contains information about the spec ified server, including the name,
platform, type of server, and associated software.

 typedef struct _SERVER_INFO_101 {

 DWORD sv101_platform_id;

 [string] wchar_t* sv101_name;

 DWORD sv101_version_major;

 DWORD sv101_version_minor;

 DWORD sv101_versio n_type;

 [string] wchar_t* sv101_comment;

 } SERVER_INFO_101,

 *PSERVER_INFO_101,

 *LPSERVER_INFO_101;

sv101_platform_id: Specifies the information level to use for platform -specific information.

Name Value

PLATFORM_ID_DOS 300

PLATFORM_ID_OS2 400

PLATFORM_ID_NT 500

36 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Name Value

PLATFORM_ID_OSF 600

PLATFORM_ID_VMS 700

sv101_name: A pointer to a null - terminated Unicode UTF - 16 Internet host name or NetBIOS
host name of a server.

sv101_version_major: Specifies the major release version number of the operating system. The
server MUST set this field to an implementation -specific major release version number that
corresponds to the host operating system as specified in the following table.

Operating System Major version

Windows NT 4.0 operating system 4

Windows 2000 operating system 5

Windows XP operating system 5

Windows Server 2003 operating system 5

Windows Vista operating system 6

Windows Server 2008 operating system 6

Windows Server 2008 R2 operating system 6

sv101_version_minor: Specifies the minor release version number of the operating system. The
server MUST set this field to an implementation -specific minor release version number that
corresponds to the host operating system as specified in the following table.

Operating System Minor version

Windows NT 4.0 0

Windows 2000 0

Windows XP 1

Windows Server 2003 2

Windows Vista 0

Windows Server 2008 0

Windows Server 2008 R2 1

sv101_version_type: The sv101_version_type field specifies the SV_TYPE flags, which indicate the

software services that are available (but not necessarily running) on the server. This member

MUST be a combination of one or more of the following values.

Constant/Value Description

SV_TYPE_WORKSTATION

0x00000001

A server running the WorkStation Service.

SV_TYPE_SERVER

0x00000002

A server running the Server Service.

37 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Constant/Value Description

SV_TYPE_SQLSERVER

0x00000004

A server running SQL Server.

SV_TYPE_DOMAIN_CTRL

0x00000008

A primary domain controller.

SV_TYPE_DOMAIN_BAKCTRL

0x00000010

A backup domain controller.

SV_TYPE_TIME_SOURCE

0x00000020

A server is available as a time source for network time synchronization.

SV_TYPE_AFP

0x00000040

An Apple File Protocol server.

SV_TYPE_NOVELL

0x00000080

A Novell server.

SV_TYPE_DOMAIN_MEMBER

0x00000100

A LAN Manager 2.x domain member.

SV_TYPE_PRINTQ_SERVER

0x00000200

A server sharing print queue.

SV_TYPE_DIALIN_SERVER

0x00000400

A server running a dial - in service.

SV_TYPE_XENIX_SERVER

0x00000800

A Xenix server.

SV_TYPE_NT

0x00001000

Windows Server 2003, Windows XP, Windows 2000, or W indows NT operating
system.

SV_TYPE_WFW

0x00002000

A server running Windows for Workgroups.

SV_TYPE_SERVER_MFPN

0x00004000

Microsoft File and Print for NetWare.

SV_TYPE_SERVER_NT

0x00008000

Windows Server 2003, Windows 2000 Server operating system, or a server
that is not a domain controller.

SV_TYPE_POTENTIAL_BROWSER

0x00010000

A server that can run the browser service.

SV_TYPE_BACKUP_BROWSER

0x00020000

A server running a browser service as backup.

SV_TYPE_MASTER_BROWSER

0x00040000

A server running t he master browser service.

SV_TYPE_DOMAIN_MASTER

0x00080000

A server running the domain master browser.

SV_TYPE_WINDOWS

0x00400000

Windows Millennium Edition operating system, Windows 98 operating system,
or Windows 95.

38 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Constant/Value Description

SV_TYPE_TERMINALSERVER

0x02000000

Terminal Server.

SV_TYPE_CLUSTER_VS_NT

0x04000000

Cluster virtual servers available in the domain.

SV_TYPE_LOCAL_LIST_ONLY

0x40000000

Servers maintained by the browser.

SV_TYPE_DOMAIN_ENUM

0x80000000

Primary domain.

SV_TYPE_ALL

0xFFFFFFFF

All servers.

sv101_comment: A pointer to a null - terminated Unicode UTF -16 string that specifies a comment

that describes the server.

2.3.13 SYSTEMTIME

 The SYSTEMTIME structure is a date and time, in Coordinated Universal Time (UTC), represented by
using individual WORD-sized structure members for the month, day, year, day of week, hour, minute,

second, and mi llisecond.

 typedef struct _SYSTEMTIME {

 WORD wYear;

 WORD wMonth;

 WORD wDayOfWeek;

 WORD wDay;

 WORD wHour;

 WORD wMinute;

 WORD wSecond;

 WORD wMilliseconds;

 } SYSTEMTIME,

 *PSYSTEMTIME;

2.3.14 UINT128

The UINT1 28 structure is intended to hold 128 -bit unsigned integers, such as an IPv6 destination
address.

 typedef struct _UINT128 {

 UINT64 lower;

 UINT64 upper;

 } UINT128,

 *PUINT128;

2.3.15 ULARGE_INTEGER

The ULARGE_INTEGER structure is used to represent a 64 -bit unsigned integer value.

 typedef struct _ULARGE_INTEGER {

 unsigned __int64 QuadPart;

 } ULARGE_INTEGER,

39 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

 *PULARGE_INTEGER;

2.4 Constructed Security Types

The following types are used to specify structures that are specific to the Windows security model.

2.4.1 SID_IDENTIFIER_AUTHORITY

The SID_IDENTIFIER_AUTHORITY structure represe nts the top - level authority of a security identifier
(SID).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Value

...

Value (6 bytes): An array of six 8 -bit unsigned integers that specify the top - level authority of a SID ,

RPC_SID , and LSAPR_SID_INFORMATION.

The identifier authority value identifies the domain security authority that issued the SID. The
following identifier authorities are predefined for wire traffic.

Identifier Authority Meaning

NULL_SID_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x00}

Specifies the NULL SID authority. It defines only the NULL
well -known -SID: S -1-0-0.

WORLD_SID_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x01}

Specifies the World SID authority. It only defines the
Everyone well -known -SID: S -1-1-0.

LOCAL_SID_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x02}

Specifies the Local SID authority. It defines only the Local
well -known -SID: S -1-2-0.

CREATOR_SID_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}

Specifies the Creator SID authority. It defines the Creator
Owner , Creator Group , and Creator Owner Server well -
known -SIDs: S -1-3-0, S -1-3-1, and S -1-3-2. These SIDs are
used as placeholders in an access control list (ACL) and are
replaced by the user, group, and machine SIDs of the
security principal.

NON_UNIQUE_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x04}

Not used.

SECURITY_NT_AUTHORITY

{0x00, 0x00, 0x00, 0x 00, 0x00, 0x05}

Specifies the Windows NT security subsystem SID authority.
It defines all other SIDs in the forest.

SECURITY_APP_PACKAGE_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x0F}

Specifies the application package authority. It defines
application capability SIDs.

SECURITY_MANDATORY_LABEL_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x10}

Specifies the Mandatory label authority. It defines the
integrity level SIDs.

SECURITY_SCOPED_POLICY_ID_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x11}

Specifies the Scoped Policy Authority. It defines all other
scoped policy SIDs in the forest. <5>

40 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Identifier Authority Meaning

SECURITY_AUTHENTICATION_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x12}

Specifies the authentication authority asserting the clientôs
identity. It defines only the following well -known SIDs: S -1-
18 -1, and S -1-18 -2. <6>

2.4.1.1 RPC_SID _IDENTIFIER_AUTHORITY

The RPC_SID_IDENTIFIER_AUTHORITY structure is a representation of a security identifier (SID)
authority, as specified by the SID _IDENTIFIER_AUTHORITY structure. This structure is defined in IDL
as follows.

 typedef struct _RPC_SID_IDENTIFIER_AUTHORITY {

 byte Value[6];

 } RPC_SID_IDENTIFIER_AUTHORITY;

For individual membe r semantics of the SID_IDENTIFIER_AUTHORITY structure, see section 2.4.1.

2.4.2 SID

A security identifier (SID) uniquely identifies a security principal. Each security principal has a unique

SID that is issued by a security agent. The agent can be a Windows local system or domain. The agent
generates the SID when the security principal is created. The SID can be represented as a character
string or as a structure. When represented as strings, for example in documentation or logs, SIDs are
expressed as follow s:

 S- 1- IdentifierAuthority - SubAuthority1 - SubAuthority2 - ... - SubAuthorityn

The top - level issuer is the authority. Each issuer specifies, in an implementation -specific manner, how
many integers identify the next issuer.

A newly created account store is assign ed a 96 -bit identifier (a cryptographic strength (pseudo)
random number).

A newly created security principal in an account store is assigned a 32 -bit identifier that is unique
within the store.

The last item in the series of SubAuthority values is known as the relative identifier (RID) .
Differences in the RID are what distinguish the different SIDs generated within a domain.

Consumers of SIDs SHOULD NOT rely on anything more than that the SID has the appropriate
structure.

The formal string syntax is given in section 2.4.2.1 .

The packet representation of the SID structure used by block protocols is defined in section 2.4.2.2 .

The RPC marsha led version of the SID structure is defined in section 2.4.2.3 .

2.4.2.1 SID String Format Syntax

The SID string format syntax, a format commonly used for a string representation of the SID type (as
specified in section 2.4.2), is described by the following ABNF syntax, as specified in [RFC5234] .

https://go.microsoft.com/fwlink/?LinkId=123096

41 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

 SID= "S - 1- " IdentifierAuthority 1*Sub Authority

 IdentifierAuthority= IdentifierAuthorityDec / IdentifierAuthorityHex

 ; If the identifier authority is < 2^32, the

 ; identifier authority is represented as a decimal

 ; number

 ; If the identifier authority is >= 2^32,

 ; the identifier authority is represented in

 ; hexadecimal

 IdentifierAuthorityDec = 1*10DIGIT

 ; IdentifierAuthorityDec, top level authority of a

 ; security identifier is represented as a decimal number

 IdentifierAuthorityHex = "0x" 12HEXDIG

 ; IdentifierAuthorityHex, the top - level authority of a

 ; security identifier is represented as a hexadecimal number

 SubAuthority= " - " 1*10DIGIT

 ; Sub - Authority is always represented as a decimal number

 ; No leading "0" characters are allowed when Iden tifierAuthority

 ; or SubAuthority is represented as a decimal number

 ; All hexadecimal digits must be output in string format,

 ; pre - pended by "0x"

2.4.2.2 SID -- Packet Representation

This is a packet representation of the SID type (as specified in section 2.4.2) for use by block
protocols. Multiple -byte fields are transmitted on the wire with an endianness specified by the protocol
in question.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Revision SubAuthorityCount IdentifierAuthority

...

SubAuthority (variable)

...

Revision (1 byte): An 8 -bit unsigned integer that specifies the revision level of the SID. This value
MUST be set to 0x01.

SubAuthorityCount (1 byte): An 8 -bit unsigned integer that specifies the number of elements in the

SubAuthority array. The maximum number of elements allowed is 15.

IdentifierAuthority (6 bytes): A SID_IDENTIFIER_AUTHORITY structure that indicates the authority
under which the SID was created. It describes the entity that created the SID. The Identifier
Authority value {0,0,0,0,0,5} denotes SIDs created by the NT SID authority.

SubAuthority (variab le): A variable length array of unsigned 32 -bit integers that uniquely identifies
a principal relative to the IdentifierAuthority . Its length is determined by SubAuthorityCount .

2.4.2.3 RPC_SID

The RPC_SID struc ture is an IDL representation of the SID type (as specified in section 2.4.2) for use
by RPC-based protocols.

 typedef struct _RPC_SID {

42 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

 unsigned char Revision;

 unsigned char SubAuthorityCount ;

 RPC_SID_IDENTIFIER_AUTHORITY IdentifierAuthority;

 [size_is(SubAuthorityCount)] unsigned long SubAuthority[];

 } RPC_SID,

 *PRPC_SID,

 *PSID;

Revision: An 8 -bit unsigned integer that specifies the revision level of the SID. This value MUST be
set to 0x01.

SubAuthorityCount: An 8 -bit unsigned integer that specifies the number of elements in the
SubAuthority array. The maximum number of elements allowed is 15.

IdentifierAuthority: An RPC_SID_IDENTIFIER_AUTHORITY structure that indicates the authority
under which the SID was created. It describes the entity that created the SID. The Identifier

Authority value {0,0,0,0,0,5} denotes SIDs created by the NT SID authority.

SubAuthority: A v ariable length array of unsigned 32 -bit integers that uniquely identifies a principal
relative to the IdentifierAuthority . Its length is determined by SubAuthorityCount .

2.4.2.4 Well -Known SID Structures

Well -known SID structures are a group of SIDs that identify generic users or generic groups. Their
values remain constant across all operating systems.

The <root -domain> identifier represents the three sub -authority values associated with the root
domain, which is the first domain that is created in an Active Directory forest infrastructure. The
<domain> identifier represents the three sub -authority values as sociated with any domain, and the
<machine> identifier represents the three sub -authority values associated with a specific machine.

Root domain ïbased groups like the Enterprise and Schema administrators have forestwide
permissions.

For example, given a SI D defined in the table below as S -1-5-21 -<domain> -513, and the actual
instance of the domain having the three sub authority values of 1, 2, and 3:

S- 1 : Indicates a revision or version 1 SID.

5 : SECURITY_NT_AUTHORITY, indicates it's a Windows specific SID.

21 : SECURITY_NT_NON_UNIQUE, indicates a domain id will follow.

1 - 2 - 3 : The next three SubAuthority arrays contain 32 -bit random numbers to uniquely identify the
domain.

RID : Indicates a unique object ID within the domain.

The actual constructed SID would be S-1-5-21 -1-2-3-513.

The following table lists well -known SID structure values and their matching descriptions.

Constant/value Description

NULL

S-1-0-0

No Security principal.

EVERYONE

S-1-1-0

A group that includes all users.

43 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Constant/value Description

LOCAL

S-1-2-0

A group that includes all users who have
logged on locally.

CONSOLE_LOGON

S-1-2-1

A group that includes users who are logged
on to the physical console. This SID can be
used to implement security policies that grant
different rights based on whether a user has
been gr anted physical access to the
console. <7>

CREATOR_OWNER

S-1-3-0

A placeholder in an inheritable access control
entry (ACE) . When the ACE is inherited, the
system replaces this SID with the SID for the

object's creator.

CREATOR_GROUP

S-1-3-1

A placeholder in an inheritable ACE. When the
ACE is inherited, the system replaces this SID
with the SID for the primary group of the
object's creator.

OWNER_SERVER

S-1-3-2

A placeholder in an inheritable ACE. When the
ACE is inherited, the system replaces this SID
with the SID for the object's owner
server. <8>

GROUP_SERVER

S-1-3-3

A placeholder in an inheritable ACE. When the
ACE is inherited, the system replaces this SID
with the SID for the object's group
server. <9>

OWNER_RIGHTS

S-1-3-4

A group that represents the current owner of
the object. When an ACE that carries this SID
is applied to an object, the system ignores the
implicit READ_CONTROL and WRITE_DAC
permissions for the obj ect owner.

NT_AUTHORITY

S-1-5

A SID containing only the
SECURITY_NT_AUTHORITY identifier
authority.

DIALUP

S-1-5-1

A group that includes all users who have
logged on through a dial -up connection.

NETWORK

S-1-5-2

A group that includes all users who have
logged on through a network connection.

BATCH

S-1-5-3

A group that includes all users who have
logged on through a batch queue facility.

INTERACTIVE

S-1-5-4

A group that includes all users who have
logged on interactively.

LOGON_ID

S-1-5-5-x-y

A logon session. The X and Y values for these

SIDs are different for each logon session and
are recycled when the operating system is
restarted.

SERVICE

S-1-5-6

A group that includes all security principals
that have logged on as a service.

ANONYMOUS A group that represents an anonymous logon.

44 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Constant/value Description

S-1-5-7

PROXY

S-1-5-8

Identifies a SECURITY_NT_AUTHORITY
Proxy. <10>

ENTERPRISE_DOMAIN_CONTROLLERS

S-1-5-9

A group that includes all domain controllers in
a forest that uses an Active Directory
directory service.

PRINCIPAL_SELF

S-1-5-10

A placeholder in an inheritable ACE on an
account object or group object in Active
Directory. When the ACE is inherited, the
system replaces this SID with the SID for the
security principal that holds the account.

AUTHENTICATED_USERS

S-1-5-11

A group that includes all users whose
identities were authenticated when they
logged on. Users authenticated as Guest or
Anonymous are not members of this
group. <11>

RESTRICTED_CODE

S-1-5-12

This SID is used to control access by
untrusted code. ACL validation against tokens
with RC consis ts of two checks, one against
the token's normal list of SIDs and one
against a second list (typically containing RC -
the "RESTRICTED_CODE" token - and a
subset of the original token SIDs). Access is
granted only if a token passes both tests. Any
ACL that specifies RC must also specify WD -
the "EVERYONE" token. When RC is paired
with WD in an ACL, a superset of
"EVERYONE", including untrusted code, is
described.

TERMINAL_SERVER_USER

S-1-5-13

A group that includes all users who have
logged on to a Termina l Services server.

REMOTE_INTERACTIVE_LOGON

S-1-5-14

A group that includes all users who have
logged on through a terminal services logon.

THIS_ORGANIZATION

S-1-5-15

A group that includes all users from the same
organization . If this SID is present, the
OTHER_ORGANIZATION SID MUST NOT be
present. <12>

IUSR

S-1-5-17

An account that is used b y the default
Internet Information Services (IIS) user.

LOCAL_SYSTEM

S-1-5-18

An account that is used by the operating
system.

LOCAL_SERVICE

S-1-5-19

A local service account.

NETWORK_SERVICE

S-1-5-20

A network service account.

ENTERPRISE_READONLY_DOMAI N_CONTROLLERS

S-1-5-21 -<root domain> -498

A universal group containing all read -only
domain controllers in a forest.

45 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Constant/value Description

COMPOUNDED_AUTHENTICATION

S-1-5-21 -0-0-0-496

Device identity is included in the Kerberos
service ticket. If a forest boundary was
crossed, then claims transformation
occurred. <13>

CLAIMS_VALID

S-1-5-21 -0-0-0-497

Claims were queried for in the account's
domain, and if a forest boundary was crossed,
then claims transformation occurred. <14>

ADMINISTRATOR

S-1-5-21 -<machine> -500

A user account for the system administrator.
By default, it is the only user account that is
given full control over the system.

GUEST

S-1-5-21 -<machine> -501

A user account for people who do not have
individual accounts. This user account does
not require a password. By default, the Guest
account is disabled.

KRBTGT
S-1-5-21 -<domain> -502

A service account that is used by the Key
Distributi on Center (KDC) service.

DOMAIN_ADMINS

S-1-5-21 -<domain> -512

A global group whose members are
authorized to administer the domain. By
default, the DOMAIN_ADMINS group is a
member of the Administrators group on all
computers that have joined a domain,
incl uding the domain controllers.
DOMAIN_ADMINS is the default owner of any
object that is created by any member of the
group.

DOMAIN_USERS

S-1-5-21 -<domain> -513

A global group that includes all user accounts
in a domain.

DOMAIN_GUESTS

S-1-5-21 -<domain> -514

A global group that has only one member,
which is the built - in Guest account of the
domain.

DOMAIN_COMPUTERS

S-1-5-21 -<domain> -515

A global group that includes all clients and
servers that have joined the domain.

DOMAIN_DOMAIN_CONTROLLERS

S-1-5-21 -<doma in> -516

A global group that includes all domain
controllers in the domain.

CERT_PUBLISHERS

S-1-5-21 -<domain> -517

A global group that includes all computers
that are running an enterprise certification
authority. Cert Publishers are authorized to
publish certificates for User objects in Active
Directory.

SCHEMA_ADMINISTRATORS

S-1-5-21 -<root -domain> -518

A universal group in a native -mode domain,
or a global group in a mixed -mode domain.
The group is authorized to make schema
changes in Active Directory.

ENTERPRISE_ADMINS

S-1-5-21 -<root -domain> -519

A universal group in a native -mode domain,
or a global group in a mixed -mode domain.
The group is authorized to make forestwide
changes in Active Directory, such as adding
child domains.

GROUP_POLICY_CREATOR_OWNERS A global group that is authorized to create

46 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Constant/value Description

S-1-5-21 -<domain> -520 new Group Policy Objects in Active Directory.

READONLY_DOMAIN_CONTROLLERS

S-1-5-21 -<domain> -521

A global group that includes all read -only
domain controllers.

CLONEABLE_CONTROLLERS

S-1-5-21 -<domain> -522

A global group that includes all domain
controllers in the domain that can be cloned.

PROTECTED_USERS

S-1-5-21 -<domain> -525

A global group that is afforded additional
protections against authentication security
threats. <15> For more information, see [MS -
APDS] and [MS -KILE] .

KEY_ADMINS

S-1-5-21 -<domain> -526

A security group for delegated write access on
the msdsKeyCredentialLink attribute only. The
group is intended for use in scenarios where
trusted external authorities (for example,
Active Di rectory Federated Services) are
responsible for modifying this attribute. Only
trusted administrators should be made a
member of this group. <16>

ENTERPRISE_KEY_ADMINS

S-1-5-21 -<domain> -527

A security group for delegated write access on
the msdsKeyCredentialLink attribute only. The
group is intended for use in scenarios where
trusted external authorities (for example,
Active Directory Federated Services) are
responsible for modifying this att ribute. Only
trusted enterprise administrators should be
made a member of this group. <17>

RAS_SERVERS

S-1-5-21 -<domain> -553

A domain local group for Remote Access
Services (RAS) servers . By default, this
group has no members. Servers in this group
have Read Account Restrictions and Read
Logon Information access to User objects in
the Active Directory domain local group.

ALLOWED_ RODC_PASSWORD_REPLICATION_GROUP

S-1-5-21 -<domain> -571

Members in this group can have their
passwords replicated to all read -only domain
controllers in the domain. <18>

DENIED_RODC_PASSWORD_REPLICATION_GROUP

S-1-5-21 -<domain> -572

Members in this group cannot have their
passwords replicated to all read -only domain
controllers in the domain. <19>

BUILTIN_ADMI NISTRATORS

S-1-5-32 -544

A built - in group. After the initial installation of
the operating system, the only member of the
group is the Administrator account. When a
computer joins a domain, the Domain

Administrators group is added to the
Administrators grou p. When a server becomes
a domain controller, the Enterprise
Administrators group also is added to the
Administrators group.

BUILTIN_USERS

S-1-5-32 -545

A built - in group. After the initial installation of
the operating system, the only member is the
Authen ticated Users group. When a computer
joins a domain, the Domain Users group is
added to the Users group on the computer.

%5bMS-APDS%5d.pdf#Section_dd444344fd7e430eb3137e95ab9c338e
%5bMS-APDS%5d.pdf#Section_dd444344fd7e430eb3137e95ab9c338e
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9

47 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Constant/value Description

BUILTIN_GUESTS

S-1-5-32 -546

A built - in group. The Guests group allows
users to log on with limited privileges to a
computer's built - in Guest account.

POWER_USERS

S-1-5-32 -547

A built - in group. Power users can perform the
following actions:

Á Create local users and groups.

Á Modify and delete accounts that they
have created.

Á Remove users from the Power Users,
Users, and Guests groups.

Á Instal l programs.

Á Create, manage, and delete local
printers.

Á Create and delete file shares.

ACCOUNT_OPERATORS

S-1-5-32 -548

A built - in group that exists only on domain
controllers. Account Operators have
permission to create, modify, and delete
accounts for user s, groups, and computers in
all containers and organizational units of
Active Directory except the Built - in container
and the Domain Controllers OU. Account
Operators do not have permission to modify
the Administrators and Domain
Administrators groups, nor do they have
permission to modify the accounts for
members of those groups.

SERVER_OPERATORS

S-1-5-32 -549

A built - in group that exists only on domain
controllers. Server Operators can perform the
following actions:

Á Log on to a server interactively.

Á Creat e and delete network shares.

Á Start and stop services.

Á Back up and restore files.

Á Format the hard disk of a computer.

Á Shut down the computer.

PRINTER_OPERATORS

S-1-5-32 -550

A built - in group that exists only on domain
controllers. Print Operators can manage
printers and document queues.

BACKUP_OPERATORS

S-1-5-32 -551

A built - in group. Backup Operators can back
up and restore all files on a computer,
regardless of the permissions that protect
those files.

REPLICATOR

S-1-5-32 -552

A built - in group that is used by the File
Replication Service (FRS) on domain

48 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Constant/value Description

controllers.

ALIAS_PREW2KCOMPACC

S-1-5-32 -554

A backward compatibility group that allows
read access on all users and groups in the
domain. < 20>

REMOTE_DESKTOP

S-1-5-32 -555

An alias. Members of this group are granted
the right to log on remotely. <21>

NETWORK_CONFIGURATION_OPS

S-1-5-32 -556

An alias. Members of this group can have
some administrative privileges to manage
configuration of networking features. <22>

INCOMING_FOREST_TRUST_BUILDERS

S-1-5-32 -557

An alias. Members of this group can create
incoming, one -way trusts to this forest. <23>

PERFMON_USERS

S-1-5-32 -558

An alias. Members of this group have remote
access to monitor this computer. <24>

PERFLOG_USERS

S-1-5-32 -559

An alias. Members of this group have remote
access to schedule the logging of performance
counters on this computer. <25>

WINDOWS_AUTHORIZATION_AC CESS_GROUP

S-1-5-32 -560

An alias. Members of this group have access
to the computed
tokenGroupsGlobalAndUniversal attribute on
User objects. <26>

TERMINAL_SERVER_LICENSE_SERVERS

S-1-5-32 -561

An alias. A group for Terminal Server License
Servers. <27>

DISTRIBUTED_COM_USERS

S-1-5-32 -562

An alias. A group for COM to provide
computer -wide access controls that govern
access to all call, activation, or launch
requests on the computer. <28>

IIS_IUSRS

S-1-5-32 -568

A built - in group account for IIS users.

CRYPTOGRAPHIC_OPERATORS

S-1-5-32 -569

A built - in group account for cryptographic
operators. <29>

EVENT_LOG_READERS

S-1-5-32 -573

A built - in local group. Members of this group
can read event logs from the local
machine. <30>

CERTIFICATE_SERVICE_DCOM_ACCESS

S-1-5-32 -574

A built - in local group. Members of this group
are allowed to connect to Certification
Authorities in the enterp rise. <31>

RDS_REMOTE_ACCESS_SERVERS

S-1-5-32 -575

Servers in this group enable users of
RemoteApp programs and personal virtual
desktops access to these resources. This
group needs to be populated on servers
running RD Connection Broker. RD Gateway
servers and RD Web Access servers used in
the deployment need to be in this group.

RDS_ENDPOINT_SERVERS

S-1-5-32 -576

A group that enables member servers to run
virtual machines and host session s.

49 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Constant/value Description

RDS_MANAGEMENT_SERVERS

S-1-5-32 -577

A group that allows members to access WMI
resources over management protocols (such
as WS -Management via the Windows Remote
Management service).

HYPER_V_ADMINS

S-1-5-32 -578

A group that gives members access to all
administrative features of Hyper -V.

ACCESS_CONTROL_ASSISTANCE_OPS

S-1-5-32 -579

A local group that allows members to
remotely query authorization attributes and
permissions for resources on the local
computer.

REMOTE_MANAGEMENT_USERS

S-1-5-32 -580

Members o f this group can access Windows
Management Instrumentation (WMI)
resources over management protocols (such
as WS -Management [DMTF -DSP0226]). This
applies only to WMI namespaces that grant
access to the user.

WRITE_RESTRICTED_CODE

S-1-5-33

A SID that allows objects to have an ACL that
lets any service process with a write -
restricted token to write to the object.

NTLM_AUTHENTICATION

S-1-5-64 -10

A SID that is used when the NTLM
authentication package authenticated the
client.

SCHANNEL_AUTHENTICAT ION

S-1-5-64 -14

A SID that is used when the SChannel
authentication package authenticated the
client.

DIGEST_AUTHENTICATION

S-1-5-64 -21

A SID that is used when the Digest

authentication package authenticated the
client.

THIS_ORGANIZATION_CERTIFICATE

S-1-5-65 -1

A SID that indicates that the client's Kerberos
service ticket's PAC contained a
NTLM_SUPPLEMENTAL_CREDENTIAL structure
(as specified in [MS -PAC] section 2.6.4). If
th e OTHER_ORGANIZATION SID is present,
then this SID MUST NOT be present. <32>

NT_SERVICE

S-1-5-80

An NT Service account prefix.

USER_MODE_DRIVERS

S-1-5-84 -0-0-0-0-0

Identifies a user -mode driver process.

LOCAL_ACCOUNT

S-1-5-113

A group that includes all users who are local
accounts. <33>

LOCAL_ACCOUNT_AND_MEMBER_OF_ADMINISTRATORS_GROUP

S-1-5-114

A group that includes all use rs who are local

accounts and members of the administrators
group. <34>

OTHER_ORGANIZATION

S-1-5-1000

A group that includes all users and computers
from another organization. If this SID is
present, THIS_ORGANIZATION SID MUST
NOT be present. <35>

%5bMS-PAC%5d.pdf#Section_166d8064c86341e19c23edaaa5f36962

50 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Constant/value Description

ALL_APP_PACKAGES

S-1-15 -2-1

All applications running in an app package
context.

ML_UNTRUSTED

S-1-16 -0

An untrusted integrity level.

ML_LOW

S-1-16 -4096

A low integrity level.

ML_MEDIUM

S-1-16 -8192

A medium integrity level.

ML_MEDIUM_PLUS

S-1-16 -8448

A medium -plus integrity level.

ML_HIGH

S-1-16 -12288

A high integrity level.

ML_SYSTEM

S-1-16 -16384

A system integrity level.

ML_PROTECTED_PROCESS

S-1-16 -20480

A protected -process integrity level.

ML_SECURE_PROCESS

S-1-16 -28672

A secure process integrity level. <36>

AUTHENTICATION_AUTHORITY_ASSERTED_IDENTITY

S-1-18 -1

A SID that means the client's identity is
asserted by an authentication authority based
on proof of possession of client
credentials. <37> <38>

SERVICE_ASSERTED_IDENTITY

S-1-18 -2

A SID that means the client's identity is
asserted by a service. <39> <40>

FRESH_PUBLIC_KEY_IDENTITY

S-1-18 -3

A SID that means the client's identity is
asserted by an authentication authority based
on proof of current possession of client public
key credentials. <41>

KEY_TRUST_IDENTITY

S-1-18 -4

A SID that means the client's identity is based
on proof of possession of public key
credentials using the key trust object. <42>

KEY_PROPERTY_MFA

S-1-18 -5

A SID that means the key trust object had the

multifactor authentication (MFA)

property. <43>

KEY_PROPERTY_ATTESTATION

S-1-18 -6

A SID that means the key trust object had the

attestation property. <44>

2.4.3 ACCESS_MASK

An ACCESS_MASK is a 32 -bit set of flags that are used to encode the user rights to an object. An
access mask is used both to encode the rights to an object assigned to a principal and to encode the
requested access when opening an object.

51 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

The bits with an X value in the table below are used for object -specific user rights. A file object would
encode, for example, Read Access and Write Access. A registry key object would encode Create

Subkey and Read Value, for example.

Note The bits with a value of X are reserved for us e by specific protocols that make use of the

ACCESS_MASK data type. The nature of this usage differs according to each protocol and is
implementation -specific.

The bits in positions 0 through 3 in the following table are generic rights that can be mapped t o
object -specific user rights by the resource manager for the requested object. The mapping of these
rights is implementation -specific.

The bits with an R value in the table below are reserved.

The bits in positions 6 and 7 are for maximum allowed and access system security rights.

The bits in positions 11 through 15 are standard rights that are common to all objects.

If the GR / GW / GX / GA bits are set in an ACE structure that is already attached to an object, requesting

access might produce unintended results. This is because the Access Check algorithm does not map
generic rights to object -specific rights for ACE structures. This mapping is only made for the requested
ACCESS_MASK passed as a parameter to the Access Check algorithm, as specified in section 2.5.3.2 .

 typedef DWORD ACCESS_MASK;

 typedef ACCESS_MASK* PACCESS_MASK;

Figur e 2 : Access mask bitmap table

Where the bits are defined as shown in the following table.

Value Description

GR

GENERIC_READ

0x80000000L

When used in an Access Request operation: When read access to an
object is requested, this bit is translated to a combination of bits. These are
most often set in the lower 16 bits of the ACCESS_MASK. (Individual
protocol specifications MAY specify a different configuration.) The bits that
are set are implementation dependent. During this translation, the GR bit is
cleared. The resulting ACCESS_MASK bits are the actual permissions that
are checked against the ACE structures in the security descriptor that
attached to the object.

When used to set th e Security Descriptor on an object: When the GR bit
is set in an ACE that is to be attached to an object, it is translated into a
combination of bits, which are usually set in the lower 16 bits of the
ACCESS_MASK. (Individual protocol specifications MAY sp ecify a different
configuration.) The bits that are set are implementation dependent. During
this translation, the GR bit is cleared. The resulting ACCESS_MASK bits are
the actual permissions that are granted by this ACE.

GW

GENERIC_WRITE

0x4000000L

When used in an Access Request operation: When write access to an
object is requested, this bit is translated to a combination of bits, which are
usually set in the lower 16 bits of the ACCESS_MASK. (Individual protocol
specifications MAY specify a different c onfiguration.) The bits that are set

52 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Value Description

are implementation dependent. During this translation, the GW bit is
cleared. The resulting ACCESS_MASK bits are the actual permissions that
are checked against the ACE structures in the security descriptor that
attached to the object.

When used to set the Security Descriptor on an object: When the GW bit
is set in an ACE that is to be attached to an object, it is translated into a
combination of bits, which are usually set in the lower 16 bits of the
ACCESS_MASK. (Individual protocol specifications MAY specify a different
configuration.) The bits that are set are implementation dependent. During
this translation, the GW bit is cleared. The resulting ACCESS_MASK bits are
the actual permissions that are granted by this ACE.

GX

GENERIC_EXECUTE

0x20000000L

When used in an Access Request operation: When execute access to an
object is requested, this bit is translated to a combination of bits, which are
usually set in the lower 16 bits of the ACCESS_MASK. (Individual protocol
specifications MAY specify a different configuration.) The bits that are set
are implementation dependent. During this translation, the GX bit is
cleared. The resulting ACCESS_MASK bits are the actual permissions that
are checked against the ACE structures in the security descriptor that
attached to the object.

When used to set th e Security Descriptor on an object: When the GX bit
is set in an ACE that is to be attached to an object, it is translated into a
combination of bits, which are usually set in the lower 16 bits of the
ACCESS_MASK. (Individual protocol specifications MAY sp ecify a different
configuration.) The bits that are set are implementation dependent. During
this translation, the GX bit is cleared. The resulting ACCESS_MASK bits are

the actual permissions that are granted by this ACE.

GA

GENERIC_ALL

0x10000000L

When used in an Access Request operation: When all access permissions
to an object are requested, this bit is translated to a combination of bits,
which are usually set in the lower 16 bits of the ACCESS_MASK. (Individual
protocol specifications MAY specify a d ifferent configuration.) Objects are
free to include bits from the upper 16 bits in that translation as required by
the objects semantics. The bits that are set are implementation dependent.
During this translation, the GA bit is cleared. The resulting ACC ESS_MASK
bits are the actual permissions that are checked against the ACE structures
in the security descriptor that attached to the object.

When used to set the Security Descriptor on an object: When the GA bit
is set in an ACE that is to be attached to a n object, it is translated into a
combination of bits, which are usually set in the lower 16 bits of the
ACCESS_MASK. (Individual protocol specifications MAY specify a different
configuration.) Objects are free to include bits from the upper 16 bits in
tha t translation, if required by the objects semantics. The bits that are set
are implementation dependent. During this translation, the GA bit is
cleared. The resulting ACCESS_MASK bits are the actual permissions that
are granted by this ACE.

MA

MAXIMUM_AL LOWED

0x02000000L

When used in an Access Request operation: When requested, this bit
grants the requestor the maximum permissions allowed to the object
through the Access Check Algorithm. This bit can only be requested; it
cannot be set in an ACE.

When use d to set the Security Descriptor on an object: Specifying the
Maximum Allowed bit in the SECURITY_DESCRIPTOR has no meaning. The
MA bit SHOULD NOT be set and SHOULD be ignored when part of a
SECURITY_DESCRIPTOR structure.

53 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Value Description

AS

ACCESS_SYSTEM_SECURITY

0x01000000L

When used in an Access Request operation: When requested, this bit
grants the requestor the right to change the SACL of an object. This bit
MUST NOT be set in an ACE that is part of a DACL. When set in an ACE that
is part of a SACL, this bit controls auditing of accesses to the SACL itself.

SY

SYNCHRONIZE

0x00100000L

Specifies access to the object sufficient to synchronize or wait on the object.

WO

WRITE_OWNER

0x0 0080000L

Specifies access to change the owner of the object as listed in the security
descriptor.

WD

WRITE_DACL

0x00040000L

Specifies access to change the discretionary access control list of the security
descriptor of an object.

RC

READ_CONTROL

0x00020000L

Specifies access to read the security descriptor of an object.

DE

DELETE

0x00010000L

Specifies access to delete an object.

2.4.4 ACE

An access control entry (ACE) is used to encode the user rights afforded to a principal, either a user or
group. T his is generally done by combining an ACCESS_MASK and the SID of the principal. There are
some variations to accommodate other groupings , which are specified in the following sections.

2.4.4.1 ACE_HEADER

The ACE_HEADER structure defines the type and size of an access control entry (ACE).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AceType AceFlags AceSize

AceType (1 byte): An unsigned 8 -bit integer that specifies the ACE types. This field MUST be one of
the following values.

Value Meaning

ACCESS_ALLOWED_ACE_TYPE

0x00

Access -allowed ACE that uses the
ACCESS_ALLOWED_ACE (section 2.4.4.2) structure.

ACCESS_DENIED_ACE_TYPE

0x01

Access -denied ACE that uses the
ACCESS_DENIED_ACE (section 2. 4.4.4) structure.

54 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Value Meaning

SYSTEM_AUDIT_ACE_TYPE

0x02

System -audit ACE that uses the
SYSTEM_AUDIT_ACE (section 2.4.4.10) structure.

SYSTEM_ALARM_ACE_TYPE

0x03

Reserved for future use.

ACCESS_ALLOWED_COM POUND_ACE_TYPE

0x04

Reserved for future use.

ACCESS_ALLOWED_OBJECT_ACE_TYPE

0x05

Object -specific access -allowed ACE that uses the
ACCESS_ALLOWED_OBJECT_ACE (section 2.4.4.3)
structure. <45>

ACCESS_DENIED_OBJECT_ACE_TYPE

0x06

Object -specific access -denied ACE that uses the
ACCESS_DENIED_OBJECT_ACE (section 2.4.4.5)
structure. <46>

SYSTEM_AUDIT_OBJECT_ACE_TYPE

0x07

Object -specific system -audit ACE that uses the
SYSTEM_AUDIT_OBJECT_ACE (section 2.4.4.11)
structure. <47>

SYSTEM_ALARM_OBJECT_ACE_TYPE

0x08

Reserved for future use.

ACCESS_ALLOWED_CALLBACK_ACE_TYPE

0x09

Access -allowed callback ACE that uses the
ACCESS_ALLOWED_CALLBACK_ACE (section 2.4.4.6)
structure. <48>

ACCESS_DENIED_CALLBACK_ACE_TYPE

0x0A

Access -denied callback ACE that uses the
ACCESS_DENIED_CALLBACK_ACE (section 2.4.4.7)
structure. <49>

ACCESS_ALLOWED_CALLBACK_OBJECT_ACE_TYPE

0x0B

Objec t -specific access -allowed callback ACE that uses
the
ACCESS_ALLOWED_CALLBACK_OBJECT_ACE (section 2
.4.4.8) structure. <50>

ACCESS_DENIED_CALLBACK_OBJECT_ACE_TYPE

0x0C

Object -specific access -denied callback ACE that uses
the
ACCESS_DENIED_CALLBACK_OBJECT_ACE (section 2.4
.4.9) structure. <51>

SYSTEM_AUDIT_CALLBACK_ACE_TYPE

0x0D

System -audit callback ACE that uses the
SYSTEM_AUDIT_CALLBACK_ACE (section 2.4.4.12)
structure. <52>

SYSTEM_ALARM_CALLBACK_ACE_TYPE

0x0E

Reserved for future use.

SYSTEM_AUDIT_CALLBACK_OBJECT_ACE_TYPE

0x0F

Object -specific system -audit callback ACE that uses the
SYSTEM_AUDIT_CALLBACK_OBJECT_ACE (section 2.4.
4.14) structure.

SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE

0x10

Reserved for future use.

SYSTEM_MANDATORY_LABEL_ACE_TYPE

0x11

Mandatory label ACE that uses the

SYSTEM_MANDATORY_LABEL_ACE (section 2.4.4.13)
structure.

SYSTEM_RESOURCE_ATTRIBUTE_ACE_TYPE Resource attribute ACE that uses the

55 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Value Meaning

0x12 SYSTEM_RESOURCE_ATTRIBUTE_ACE (section
2.4.4.15)

SYSTEM_SCOPED_POLICY_ID_ACE_TYPE

0x13

A central policy ID ACE that uses the
SYSTEM_SCOPED_POLICY_ID_ACE (section 2.4.4.16)

The term "callback" in this context does not relate to RPC call backs. <53>

AceFlags (1 byte): An unsigned 8 -bit integer that specifies a set of ACE type -specific control flags.

This field can be a combination of the following values.

Value Meaning

CONTAINER_INHERIT_ACE

0x02

Child objects that are containers, such as directories, inherit the ACE as
an effective ACE. The inherited ACE is inheritable unless the
NO_PROPAGATE_INHERIT_ACE bit flag is also set.

FAILED_ACCESS_ACE_FLAG

0x80

Used with system -audit ACEs in a system access control list (SACL) to
generate audit messages for failed access attempts.

INHERIT_ONLY_ACE

0x08

Indicates an inherit -only ACE, which does not control access to the object
to which it is attached. If this flag is not set, the ACE is an effective ACE
that controls access to the object to which it is attached.

Both effective and inherit -only ACEs can be inherited depending on the
state of the other inheritance flags.

INHERITED_ACE

0x10

Used to indicate that the ACE was inherited. <54> See section 2.5.3.5 for
processing rules for setting this flag.

NO_PROPAGATE_INHERIT_ACE

0x04

If the ACE is inherited by a child object, the system clears the
OBJECT_INHERIT_ACE and CONTAINER_INHERIT_ACE flags in the
inherited ACE. This prevents the ACE from being inherited by subsequent
generations of objects.

OBJECT_INHERIT_AC E

0x01

Noncontainer child objects inherit the ACE as an effective ACE.

For child objects that are containers, the ACE is inherited as an inherit -
only ACE unless the NO_PROPAGATE_INHERIT_ACE bit flag is also set.

SUCCESSFUL_ACCESS_ACE_FLAG

0x40

Used with system -audit ACEs in a SACL to generate audit messages for
successful access attempts.

AceSize (2 bytes): An unsigned 16 -bit integer that specifies the size, in bytes, of the ACE. The
AceSize field can be greater than the sum of the individual fields, but MUST be a multiple of 4 to
ensure alignment on a DWORD boundary. In cases where the AceSize field encompasses
additional data for the callback ACEs types, that data is implementation -specific. Ot herwise, this
additional data is not interpreted and MUST be ignored.

2.4.4.1.1 ACE_HEADER -- RPC representation

The RPC representation of the ACE_HEADER defines the type and size of an ACE. The members and
values are as specified in section 2.4.4.1.

 typedef struct _ACE_HEADER {

 UCHAR AceType;

 UCHAR AceFlags;

 USHORT AceSize;

 } ACE_HEADER,

56 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

 *PACE_HEADER;

2.4.4.2 ACCESS_ALLOWED_ACE

The ACCESS_ALLOWED_ACE structure defines an ACE for the discretionary access control list (DACL)
that controls access to an object. An access -allowed ACE allows access to an object for a specific
tru stee identified by a security identifier (SID).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK that specifies the user rights allow ed by this ACE.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

2.4.4.3 ACCESS_ALLOWED_OBJECT_ACE

The ACCESS_ALLOWED_OBJECT_ACE structure defines an ACE that controls allowed access to an
object, a property set, or property. The ACE contains a set of access rights, a GUID that identifies the

type of object, and a SID that identifies the trustee to whom the system will grant access. The ACE
also contains a GUID and a set of flags that control inheritance of the ACE by child objects.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Flags

ObjectType (16 bytes)

...

...

InheritedObjectType (16 bytes)

...

57 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

...

Sid (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK that specifies the user rights allow ed by this ACE.

Value Meaning

ADS_RIGHT_DS_CONTROL_ACCESS

0X00000100

The ObjectType GUID identifies an extended access right.

ADS_RIGHT_DS_CREATE_CHILD

0X00000001

The ObjectType GUID identifies a type of child object. The ACE
controls the trustee's right to create this type of child object.

ADS_RIGHT_DS_DELETE_CHILD

0X00000002

The ObjectType GUID identifies a type of child object. The ACE
controls the trustee's right to delete t his type of child object.

ADS_RIGHT_DS_READ_PROP

0x00000010

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's right to read the property or
property set.

ADS_RIGHT_DS_WRITE_PROP

0x00000020

The ObjectT ype GUID identifies a property set or property of the
object. The ACE controls the trustee's right to write the property or
property set.

ADS_RIGHT_DS_SELF

0x00000008

The ObjectType GUID identifies a validated write.

Flags (4 bytes): A 32 -bit unsigned integer that specifies a set of bit flags that indicate whether the

ObjectType and InheritedObjectType fields contain valid data. This parameter can be one or
more of the following values.

Value Meaning

0x00000000 Neither ObjectType nor InheritedObjectType are valid.

ACE_OBJECT_TYPE_PRESENT

0x00000001

ObjectType is valid.

ACE_INHERITED_OBJECT_TYPE_PRESENT

0x00000002

InheritedObjectType is valid. If this value is not specified, all
types of child objects can inherit the ACE.

ObjectType (16 bytes): A GUID that identifies a property set, property, extended right, or type of

child object. The purpose of this GUID depends on the user rights specified in the Mask field. This
field is valid only if the ACE _OBJECT_TYPE_PRESENT bit i s set in the Flags field. Otherwise, the
ObjectType field is ignored. For information on access rights and for a mapping of the control
access rights to the corresponding GUID value that identifies each right, see [MS -ADTS] sections
5.1.3.2 and 5.1.3.2.1.

ACCESS_MASK bits are not mutually exclusive. Therefore, the ObjectType field can be set in an ACE

with any ACCESS_MAS K. If the AccessCheck algorithm calls this ACE and does not find an appropriate

%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a

58 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

GUID, then that ACE will be ignored. For more information on access checks and object access, see
[MS -ADTS] section 5.1.3.3.3.

InheritedObjectType (16 bytes): A GUID that ident ifies the type of child object that can inherit the
ACE. Inheritance is also controlled by the inheritance flags in the ACE_HEADER, as well as by any

protection against inheritance placed on the child objects. This field is valid only if the
ACE_INHERITED_ OBJECT_TYPE_PRESENT bit is set in the Flags member. Otherwise, the
InheritedObjectType field is ignored.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

2.4.4.4 ACCESS_DENIED_ACE

The ACCESS_DENIE D_ACE structure defines an ACE for the DACL that controls access to an object. An
access -denied ACE denies access to an object for a specific trustee identified by a SID .

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK that specifies the user rights denie d by this ACE.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

2.4.4.5 ACCESS_DENIED_OBJECT_ACE

The ACCESS_DENIED_OBJECT_ACE structure defines an ACE that controls denied access to an obje ct,

a property set, or a property. The ACE contains a set of access rights, a GUID that identifies the type
of object, and a SID that identifies the trustee to whom the system will deny access. The ACE also
contains a GUID and a set of flags that control inheritance of the ACE by child objects.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Flags

ObjectType (16 bytes)

...

59 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

...

InheritedObjectType (16 bytes)

...

...

Sid (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK that specifies the user rights allow ed by this ACE.

Value Meaning

ADS_RIGHT_DS_CONTROL_ACCESS

0X00000100

The ObjectType GUID identifies an extended access right.

ADS_RIGHT_DS_CREATE_CHILD

0X00000001

The ObjectType GUID identifies a type of child object. The ACE
controls the trustee's right to create this type of child object.

ADS_RIGHT_DS_DELETE_CHILD

0X00000002

The ObjectType GUID identifies a type of child object. The ACE
controls the trustee's right to delete t his type of child object.

ADS_RIGHT_DS_READ_PROP

0x00000010

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's right to read the property or
property set.

ADS_RIGHT_DS_WRITE_PROP

0x00000020

The ObjectT ype GUID identifies a property set or property of the
object. The ACE controls the trustee's right to write the property or
property set.

ADS_RIGHT_DS_SELF

0x00000008

The ObjectType GUID identifies a validated write.

Flags (4 bytes): A 32 -bit unsigned i nteger that specifies a set of bit flags that indicate whether the

ObjectType and InheritedObjectType fields contain valid data. This parameter can be one or
more of the following values.

Value Meaning

0x00000000 Neither ObjectType nor InheritedObjectType is valid.

ACE_OBJECT_TYPE_PRESENT

0x00000001

ObjectType is valid.

ACE_INHERITED_OBJECT_TYPE_PRESENT

0x00000002

InheritedObjectType is valid. If this value is not specified, all types
of child objects can inherit the ACE.

ObjectType (16 bytes): A GUID t hat identifies a property set, a property, an extended right, or a
type of child object. The purpose of this GUID depends on the user rights specified in the Mask
field. This field is valid only if the ACE _OBJECT_TYPE_PRESENT bit is set in the Flags field .

60 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Otherwise, the ObjectType field is ignored. For information about access rights and for a mapping
of the control access rights to the corresponding GUID value that identifies each right, see [MS -

ADTS] sections 5.1.3.2 and 5.1.3.2.1.

ACCESS_MASK bits are not mutually exclusive. Therefore, the ObjectType field can be set in an

ACE with any ACCESS_MASK. If the AccessCheck algorithm calls this ACE and does not find an
appropriate GUID, that ACE will be ignored. For more information about access checks and object
access, see [MS -ADTS] section 5.1.3.3.3.

InheritedObjectType (16 bytes): A GUID that identifies the type of child object that can inherit the
ACE. Inheritance is also controlled by the inheritance flags in the ACE_HEADER, as well as by any
protection against inheritance placed on the child objects. This field is valid only if the
ACE_INHERITED_OBJECT_TYPE_PRESENT bit is set in the Flags member. Otherwise, the

InheritedObjectType field is ignored.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

2.4.4.6 ACCESS_ALLOWED_CALLBACK_ACE

The ACCESS_ALLOWED_CALLBACK_ACE structure defines an ACE for the DACL that controls access to
an object. An access -allowed ACE allows access to an object for a specific trustee identified by a SID .

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

ApplicationData (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK that specifies the user rights allowed by this ACE.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

ApplicationData (variable): Optional application data. The size of the application data is determined
by the AceSize field of the ACE_HEADER.

2.4.4.7 ACCESS_DENIED_CALLBACK_ACE

The ACCESS_DENIED_CALLBACK_ACE structure defines an ACE for the DACL that controls access to
an object. An access -denied ACE denies a ccess to an object for a specific trustee identified by a SID .

%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a

61 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

ApplicationData (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK that specifies the user rights denied by this ACE.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

ApplicationData (variable): Optional application data. The size of the application data is determined
by the AceSize field of the ACE_HEADER.

2.4.4.8 ACCESS_ALLOWED_CALLBACK_OBJECT_ACE

The ACCESS_ALLOWED_CALLBACK_OBJECT_ACE structure defines an ACE that controls allowed
access to an object, property set, or property. The ACE contains a set of user rights, a GUID that
identifies the type of object, and a SID that identifies the trustee to whom the system will grant
access. The ACE also contains a GUID and a set of flags that control inheritance of the ACE by child

objects.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Flags

ObjectType (16 bytes)

...

...

InheritedObjectType (16 bytes)

...

62 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

...

Sid (variable)

...

ApplicationData (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK structure that specifies the user ri ghts allowed by this ACE.

Value Meaning

ADS_RIGHT_DS_CONTROL_ACCESS

0X00000100

The ObjectType GUID identifies an extended access right.

ADS_RIGHT_DS_CREATE_CHILD

0X00000001

The ObjectType GUID identifies a type of child object. The ACE
controls the trustee's right to create this type of child object.

ADS_RIGHT_DS_READ_PROP

0x00000010

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's ri ght to read the property or
property set.

ADS_RIGHT_DS_WRITE_PROP

0x00000020

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's right to write the property or
property set.

ADS_RIGHT_DS_SELF

0x00000008

The ObjectType GUID identifies a validated write.

Flags (4 bytes): A 32 -bit unsigned integer that specifies a set of bit flags that indicate whether the
ObjectType and InheritedObjectType fields contain valid data. This parameter can be one or
more of th e following values.

Value Meaning

0x00000000 Neither ObjectType nor InheritedObjectType are valid.

ACE_OBJECT_TYPE_PRESENT

0x00000001

ObjectType is valid.

ACE_INHERITED_OBJECT_TYPE_PRESENT

0x00000002

InheritedObjectType is valid. If this value is not specified, all
types of child objects can inherit the ACE.

ObjectType (16 bytes): A GUID that identifies a property set, property, extended right, or type of
child object. The purpose of this GUID depends on the user rights specified in the Mask field. This
field is valid only if the ACE _OBJECT_TYPE_PRESENT bit is set in the Flags field. Otherwise, the

ObjectType field is ignored.

InheritedObjectType (16 bytes): A GUID that identifies the type of child object that can inhe rit the
ACE. Inheritance is also controlled by the inheritance flags in the ACE_HEADER, as well as by any
protection against inheritance placed on the child objects. This field is valid only if the

63 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

ACE_INHERITED_OBJECT_TYPE_PRESENT bit is set in the Flags member. Otherwise, the
InheritedObjectType field is ignored.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

ApplicationData (variable): Optional application data. The size of the application data is determined

by the AceSize field of the ACE_HEADER.

2.4.4.9 ACCESS_DENIED_CALLBACK_OBJECT_ACE

The ACCESS_DENIED_CALLBACK_OBJECT_ACE structure defines an ACE that controls denied access

to an object, a property set, or property. The ACE contains a set of user rights, a GUID that identifies
the type of object, and a SID that identifies the trustee to whom the system will deny access. The ACE
also contains a GUID and a set of flags that control inheritance of the ACE by child objects.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Flags

ObjectType (16 bytes)

...

...

InheritedObjectType (16 bytes)

...

...

Sid (variable)

...

ApplicationData (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK structure that specifies the user rights denied by this ACE.

Value Meaning

ADS_RIGHT_DS_CONTROL_ACCESS

0X00000100

The ObjectType GUID identifies an extended access right.

64 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Value Meaning

ADS_RIGHT_DS_CREATE_CHILD

0X00000001

The ObjectType GUID identifies a type of child object. The ACE
controls the trustee's right to create this type of child object.

ADS_RIGHT_DS_READ_PROP

0x00000010

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's ri ght to read the property or
property set.

ADS_RIGHT_DS_WRITE_PROP

0x00000020

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's right to write the property or
property set.

ADS_RIGHT_DS_SELF

0x00000008

The ObjectType GUID identifies a validated write.

Flags (4 bytes): A 32 -bit unsigned integer that specifies a set of bit flags that indicate whether the
ObjectType and InheritedObjectType fields contain valid data. This parameter can be one or

more of th e following values.

Value Meaning

0x00000000 Neither ObjectType nor InheritedObjectType are valid.

ACE_OBJECT_TYPE_PRESENT

0x00000001

ObjectType is valid.

ACE_INHERITED_OBJECT_TYPE_PRESENT

0x00000002

InheritedObjectType is valid. If this value is not specified, all
types of child objects can inherit the ACE.

ObjectType (16 bytes): A GUID that identifies a property set, property, extended right, or type of
child object. The purpose of this GUID depends on the user rights specified in the Mask field. This
field is valid only if the ACE _OBJECT_TYPE_PRESENT bit is set in the Flags field. Otherwise, the

ObjectType field is ignored.

InheritedObjectType (16 bytes): A GUID that identifies the type of child object that can inherit the
ACE. Inheritance is also controlled by the inheritance flags in the ACE_HEADER, as well as by any
protection against inheritance placed on the child objects. This field is valid only if the
ACE_INHERITED_OBJECT_TYPE_PRESE NT bit is set in the Flags member. Otherwise, the
InheritedObjectType field is ignored.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

ApplicationData (variable): Optional application data. The size of the application data is determined
by the AceSize field of the ACE_HEADER.

2.4.4.10 SYSTEM_AUDIT_ACE

The SYSTEM_AUDIT_ACE structure defines an access ACE for the system access control list (SACL)

that specifies what types of access cause system - level notifications. A system -audit ACE causes an
audit message to be logged when a specified trustee attempts to gain access to an object. The trustee
is identified by a SID .

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

65 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Mask

Sid (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK structure that specifies the user ri ghts that cause audit messages

to be generated.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4. An access
attempt of a kind specified by the Mask field by any trustee whose SID matches the Sid field
causes the system to generate an audit message. If an application does not specify a SID for this
field, audit messages are generated for the specified access rights for all trustees.

2.4.4.11 SYSTEM_AUDIT_OBJECT_ACE

The SYSTEM_AUDIT_OBJECT_ACE structure defines an ACE for a SACL. The ACE can audit access to
an object or subobjects, such as property sets or properties. The ACE contains a set of user rights, a
GUID that identifies the type of object or subobject, and a SID that identifies the trustee for whom
the system will audit access. The ACE also contains a GUID and a set of flags that control inheritance

of the ACE by child objects.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Flags

ObjectType (16 bytes)

...

...

InheritedObjectType (16 bytes)

...

...

Sid (variable)

...

ApplicationData (variable)

66 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK structure that specifies the user rights that cause audit messages

to be generated.

Value Meaning

ADS_RIGHT_DS_CONTROL_ACCESS

0X00000100

The ObjectType GUID identifies an extended access right.

ADS_RIGHT_DS_CREATE_CHILD

0X00000001

The ObjectType GUID identifies a type of child object. The ACE
controls the trustee's right to create this type of child object.

ADS_RIGHT_DS_READ_PROP

0x00000010

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's right to read the property or
property set.

ADS_RIGHT_DS_WRITE_PROP

0x00000020

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's right to write the property or
property set.

ADS_RIGHT_DS_SELF

0x00000008

The ObjectType GUID identifies a validated write.

Flags (4 bytes): A 32 -bit unsigned integer that specifies a set of bit flags that indicate whether the
ObjectType and InheritedObjectType fields contain valid data. This parameter can be one or

more of the following values.

Value Meaning

0x00000000 Neither ObjectType nor InheritedObjectType is valid.

ACE_OBJECT_TYPE_PRESENT

0x00000001

ObjectType is valid.

ACE_INHERITED_OBJECT_TYPE_PRESENT

0x00000002

InheritedObjectType is valid. If this value is not specified, all
types of child objects can inherit the ACE.

ObjectType (16 bytes): A GUID that identifies a property set, a property, an extended ri ght, or a
type of child object. The purpose of this GUID depends on the user rights specified in the Mask

field. This field is valid only if the ACE_OBJECT_TYPE_PRESENT bit is set in the Flags field.
Otherwise, the ObjectType field is ignored.

InheritedOb jectType (16 bytes): A GUID that identifies the type of child object that can inherit the
ACE. Inheritance is also controlled by the inheritance flags in the ACE_HEADER, as well as by any

protection against inheritance placed on the child objects. This fie ld is valid only if the
ACE_INHERITED_OBJECT_TYPE_PRESENT bit is set in the Flags member. Otherwise, the
InheritedObjectType field is ignored.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

ApplicationData (variable): Optional application data. The size of the application data is determined
by the AceSize field of the ACE_HEADER.

67 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

2.4.4.12 SYSTEM_AUDIT_CALLBACK_ACE

The SYSTEM_AUDIT_CALLBACK_ACE structure defines an ACE for the SACL that specifies what types
of access cause system - level notifications. A system -audit ACE causes an audit message to be logged

when a specified trustee attempts to gain access to an object. The trustee is identified by a SID .

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

ApplicationData (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK structure that specifies the user rights that cause audit messages
to be generated.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4. An access

attempt of a kind specified by the Mask field by any trustee whose SID matches the Sid field
causes the system to generate an audit message. If an application does not specify a SID for this
field, audit messages are generated for the specified access rights for all trustees.

ApplicationData (variable): Optional application data. The size of the application data is determined
by the AceSize field of the ACE_HEADER.

2.4.4.13 SYSTEM_MANDATORY_LABEL_ACE

The SYSTEM_MANDATORY_LABEL_ACE structure defin es an ACE for the SACL that specifies the
mandatory access level and policy for a securable object. <55>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains

flags that control inheritance of the ACE by child objects.

68 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Mask (4 bytes): An ACCESS_MASK structure that specifies the access policy for principals with a
mandatory integrity level lower than the object associated with the SACL that contains this ACE.

Val ue Meaning

SYSTEM_MANDATORY_LABEL_NO_WRITE_UP

0x00000001

A principal with a lower mandatory level than the object
cannot write to the object.

SYSTEM_MANDATORY_LABEL_NO_READ_UP

0x00000002

A principal with a lower mandatory level than the object
cannot read the object.

SYSTEM_MANDATORY_LABEL_NO_EXECUTE_UP

0x00000004

A principal with a lower mandatory level than the object
cannot execute the object.

Sid (variable): The SID of a trustee. The le ngth of the SID MUST be a multiple of 4. The identifier
authority of the SID must be SECURITY_MANDATORY_LABEL_AUTHORITY. The RID of the SID
specifies the mandatory integrity level of the object associated with the SACL that contains this
ACE. The RID must be one of the following values.

Value Meaning

0x00000000 Untrusted integrity level.

0x00001000 Low integrity level.

0x00002000 Medium integrity level.

0x00003000 High integrity level.

0x00004000 System integrity level.

0x00005000 Protected process integrity level.

2.4.4.13.1 SYSTEM_MANDATORY_LABEL_ACE -- RPC Representation

The RPC representation of the SYSTEM_MANDATORY_LABE L_ACE type defines an access control entry
(ACE) for the system access control list (SACL) that specifies the mandatory access level and
policy for a securable object.

 typedef struct _SYSTEM_MANDATORY_LABEL_ACE {

 ACE_HEADER Header;

 ACCESS_MASK Mask;

 DWORD SidStart;

 } SYSTEM_MANDATORY_LABEL_ACE,

 *PSYSTEM_MANDATORY_LABEL_ACE;

Header: An ACE_HEADER structure, as specified in section 2.4.4.13.

Mask: An ACCESS_MASK as specified in section 2.4.4.13.

SidStart: Specifies the first DWORD of the SID . The remaining bytes of the SID are stored in
contiguous memory after the SidStart member. The IdentifierAuthorit y and RID MUST be as
specified 2.4.4.13.

69 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

2.4.4.14 SYSTEM_AUDIT_CALLBACK_OBJECT_ACE

The SYSTEM_AUDIT_CALLBACK_OBJECT_ACE structure defines an ACE for a SACL. The ACE can audit
access to an object or subobjects, such as property sets or properties. The ACE contains a set of user

rights, a GUID that identifies the type of object or subobject, and a SID that identifies the trustee for
whom the system will audit access. The ACE also contains a GUID and a set of flags that control
inheritance of the ACE by child objects.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Flags

ObjectType (16 bytes)

...

...

InheritedObjectType (16 bytes)

...

...

Sid (variable)

...

ApplicationData (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK structure that specifies the user rights that cause audit messages

to be generated.

Value Meaning

ADS_RIGHT_DS_CONTROL_ACCESS

0X00000100

The ObjectType GUID identifies an extended access right.

ADS_RIGHT_DS_CREATE_CHILD

0X00000001

The ObjectType GUID identifies a type of child object. The ACE
controls the trustee's right to create this type of child object.

ADS_RIGHT_DS_READ_PROP

0x00000010

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's ri ght to read the property or
property set.

70 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Value Meaning

ADS_RIGHT_DS_WRITE_PROP

0x00000020

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's right to write the property or
property set.

ADS_RIGHT_DS_SELF

0x00000008

The ObjectType GUID identifies a validated write.

Flags (4 bytes): A 32 -bit unsigned integer that specifies a set of bit flags that indicate whether the
ObjectType and InheritedObjectType fields contain valid data. This parameter can be one or

more of th e following values.

Value Meaning

0x00000000 Neither ObjectType nor InheritedObjectType are valid.

ACE_OBJECT_TYPE_PRESENT

0x00000001

ObjectType is valid.

ACE_INHERITED_OBJECT_TYPE_PRESENT

0x00000002

InheritedObjectType is valid. If this value is not specified, all
types of child objects can inherit the ACE.

ObjectType (16 bytes): A GUID that identifies a property set, property, extended right, or type of

child object. The purpose of this GUID depends on the user rights specified in the Mask field. This
field is valid only if the ACE_OBJECT_TYPE_PRESENT bit is set in the Flags field. Otherwise, the
ObjectType field is ignored.

InheritedObjectType (16 bytes): A GUID that identifies the type of child object that can inher it the
ACE. Inheritance is also controlled by the inheritance flags in the ACE_HEADER, as well as by any
protection against inheritance placed on the child objects. This field is valid only if the
ACE_INHERITED_OBJECT_TYPE_PRESENT bit is set in the Flags m ember. Otherwise, the

InheritedObjectType field is ignored.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

ApplicationData (variable): Optional application data. The size of the application data is determined
by the Ac eSize field of the ACE_HEADER.

2.4.4.15 SYSTEM_RESOURCE_ATTRIBUTE_ACE

The SYSTEM_RESOURCE_ATTRIBUTE_ACE structure defines an ACE for the specification of a resource
attribute associated with an object. A SYSTEM_RESOURCE_A TTRIBUTE_ACE is used in conditional
ACEs in specifying access or audit policy for the resource.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

71 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Attribute Data (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of the ACE. It also
contains flags that control applicability and inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK that MUST be set to zero.

Sid (variable): The SID corresponding to the Everyone SID (S -1-1-0) in binary form.

Attribute Data (variable): Data describing a resource attribute type, name, and value(s). This data
MUST be encoded in CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 format as described in section
2.4.10.1

2.4.4.16 SYSTEM_SCOPED_POLICY_ID_ACE

The SYSTEM_SCOPED_POLICY_ID_ACE structure defines an ACE for the purpose of applying a central
access policy to the resource.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control applicability and inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK that MUST be set t o zero.

Sid (variable): A SID that identifies a central access policy. For a SYSTEM_SCOPED_POLICY_ID_ACE
to be applicable on a resource, this SID MUST match a CAPID of a CentralAccessPolicy contai ned
in the CentralAccessPoliciesList (as specified in [MS -GPCAP] section 3.2.1.1) of the machine on
which the access evaluation will be performed.

2.4.4.17 Conditional ACEs

Conditional ACEs are a form of CALLBACK ACEs with a special format of the application data. A
Conditional ACE allows a conditional expression to be evaluated when an access check (as specified in
section 2.5. 3.2) is performed. <56>

The following ACE types can be formatted as a Conditional ACE:

Á ACCESS_ALLOWED_CALLBACK_ACE

Á ACCESS_ALLOWED_CALLBACK_OBJECT_ACE

Á ACCESS_DENIED_CALLBACK_ACE

Á ACCESS_DENIED_CALLBACK_OBJECT_ ACE

%5bMS-GPCAP%5d.pdf#Section_5189d5c912c2491cbf16f7008c46c6fb

72 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Á SYSTEM_AUDIT_CALLBACK_ACE

Á SYSTEM_AUDIT_CALLBACK_OBJECT_ACE

A Conditional ACE is a CALLBACK ACE in which the first four bytes of the ApplicationData field in the
CALLBACK ACE structure are set to the following byte value sequence: 0x61 0x72 0x74 0x78. The

remaining contents of the ApplicationData field specify a conditional expression. The conditional
expression language constructs a nd binary representation are defined in this section.

The security descriptor definition language (SDDL) (section 2.5.1) provides syntax for defining
conditional ACEs in a string format in section 2.5.1.1 .

2.4.4.17.1 Conditional ACE Expressions

This section defines the semantics and format of the ApplicationData field of a callback ACE holding a

conditional expression.

Conditional expressions are logical expressions that are part of a conditional ACE (section 2.4.4.17)

and are evaluated during an access check evaluation to determine if the effect (to allow or de ny the
specified permissions) of the conditional ACE is to apply in the access check valuation.

A conditional expression is composed of a series of one or more simpler conditional expressions or
expression terms in syntactical relation to logical operators and security attributes such that when

evaluated, the expression will produce TRUE, FALSE, or UNKNOWN. Conditional expressions can be
operands to the AND, OR, or NOT logical operators. (Logical operators are defined in section
2.4.4.17.7 .)

2.4.4.17.2 Security Attributes

Conditional expression terms contain references to security attributes (also known as claims) of an
authenticated principal or a resource. Security attributes that are associated with authent icated user

principal and device principal entities are referred to as "user claims" and "device claims",
respectively, and are defined as an instance of a CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1
structure associated with a token/authorization context. User c laims are associated with the

UserClaims[] array, and device claims are associated with the DeviceClaims[] array as described in
section 2.5.2 . An attribute associated with a resource is referred to as a "resource attribute" and is
defined as a CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 (section 2.4.10.1) structure within a
SYSTEM_RESOURCE_ATTRIBUTE_ACE contained in the Security Descriptor SACL associated with a

resource.

2.4.4.17.3 Conditional ACE Applicability

If the result evaluation of the conditional expression is FALSE, then the corresponding conditional ACE
does not apply in the access check evaluation.

If the result of evaluation of the conditional expression is TRUE, then the conditional ACE applies in
the access check evaluation. If the conditional ACE is an ACCESS_ALLOWED_CALLBACK_ACE type and

the ACE applies, then the permissions in the Mask member of the ACE_HEADER structure are
granted. If the conditional ACE is an ACCESS_DENIED_CALLBACK_ACE and the ACE applies, then the

permissions are denied in the access check evaluation.

If the result of the evaluation of the conditional expression is UNKNOWN and the conditional ACE is an
ACCESS_ALLOWED_CALLBACK_ACE type, then the permissions in the Mask member variable are not
granted by this ACE in the access check evaluation.

If the result of the evaluation of the conditional expression is UNKNOWN and the conditional ACE is an
ACCESS_DENIED_CALLBACK_ACE type, then the permissions in the Mask member variable are
denied in the access check evaluation.

73 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

2.4.4.17.4 Conditional ACE Binary Formats

Conditional expressions are stored in the ApplicationData member of c ertain CALLBACK ACE types
(section 2.4.4.17) where each operator ID and operand is persisted in postfix notation.

A CALLBACK ACE contains a conditional expression if the ApplicationData member is prefixed by
0x61, 0x72, 0x74, 0x78 (the ACE_CONDITION_SIGNATURE) and the remainder of the data in the
ApplicationData member immediately following the conditional ACE signature specifies a conditional
expression (section 2.4.4.17.1).

Conditional expressions are encoded in contiguous memory as a series of tokens. The first byte of
each token must be a byte -code identifying the token type. The token type determines the format of
the token in memory. Tokens take one of three formats:

1. Operator: A single byte -code, which identifies a logical or relational operator.

2. Literal: A token byte -code that identifies a built - in data type and implies a token type of "literal",
followed by the encoded representation of the literal. Literal tokens can be single values or
multivalued. A multivalued literal is encoded as a composite byte -code followed by each contained

literal value.

3. Attribute Name: A byte -code identifying an attribute type and name.

The following table s provide the set of valid tokens and each token's syntax. The first byte of a token
is the byte -code and the remainder of the token is the token -data and is formatted according the
token's syntax. All multibyte integers, including any Unicode characters, MUST be stored least -
significant byte (LSB) first.

Conditional expressions are at the end of the ACE in contiguous memory; the ending of the ACEs
MUST align on a DWORD boundary. Any additional byt es needed to achieve DWORD boundary
alignment MUST be set to 0x00.

For tokens representing literal values, the base and sign MUST be specified from the possible values
specified in the following tables.

2.4.4.17.5 Literal Tokens

Token Type
Byte -
Code Token Data Encoding

Invalid token 0x00 Padding value.

Signed int8 0x01 1 QWORD, least significant byte first, for the value, 2's complement, -128 to +127.

1 BYTE for sign. (possible values for sign in the following table) .

1 BYTE for base. (possible values for base in the following table).

Signed int16 0x02 1 QWORD, least significant byte first, 2's c omplement, -32768 to +32767.

1 BYTE for sign.

1 BYTE for base.

Signed int32 0x03 1 QWORD, least significant byte first, 2's complement.

1 BYTE for sign.

1 BYTE for base.

Signed int64 0x04 1 QWORD, least significant byte first, 2's complement.

1 BYTE for sign.

1 BYTE for base.

Unicode 0x10 1 DWORD for the length in bytes.

74 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Token Type
Byte -
Code Token Data Encoding

String 1 WORD for each Unicode character. Characters are stored LSB first. Strings are not
null - terminated.

Octet String 0x18 Custom data is represented as a contiguous sequence of bytes.

1 DWORD for the length in bytes.

1 BYTE for each data octet.

Composite 0x50 1 DWORD that specifies the entire length in bytes of the entire set of elements.

List type -- can be heterogeneous. Elements are stored in contiguous fashion according
to the built - in data type storage rules.

SID 0x51 1 DWORD that specifies the entire length in bytes of the SID.

SID in binary representation (as specified in section 2.4.2.2 .)

Tokens in the preceding table that contain a base MUST include a base code from the following table.

Base Code Description

8 0x01 Octal

10 0x02 Decimal

16 0x03 Hexadecimal

Tokens in the preceding table that contain signs MUST include a sign code from the following table.

Relational operators interpret no sign (0x03) as positive.

Relational operators MUST use t his to determine the sign of the literal during evaluation.

Sign Code Description

+ 0x01 Plus sign in condition.

- 0x02 Minus sign in condition.

None 0x03 No sign in condition.

Thus the decimal value -1 encoded as a signed int64 would have the following binary representation
(byte code, QWORD, sign byte, base byte):

 0x04 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0x02 0x02

There are several things to note in the example. The sign and base bytes are used for display of the
value. Even though the base byte indicates base 10, the value is stored as a 2's complement binary

value. However, it will be displayed as a base 10 number.

The sign byte is handled similarly though with one important difference. If the sign byte indicates no
sign, the value is treated as a positive number when displayed but appears with no explicit sign.
However, when the value is used with a relational operator, the sign byte overrides the 2's
complement sign.

2.4.4.17.6 Relational Operator Tokens

75 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Each relational operator examines one or more attribute values and evaluates to TRUE, FALSE or
UNKNOWN, according to the defined behavior of the operator in the following table. In addition to the

TRUE and FALSE values specified for each operator in the table, each relational operator MUST return
"UNKNOWN" if the attribute tested does not exist in the security context.

For all operators other than the relational operators ==, Contains, and Any_of, and the logical
operator Exists, when multivalued attributes are on the left - and/or right -hand side of an operator, the
operation will fail and produce an UNKNOWN value.

If any processing rule returns an error, then the entire conditional expression evaluates to UNKNOWN,
regardless of the rest of the expression.

Unary Relational Operators:

The operand ty pe MUST be either a SID literal, or a composite, each of whose elements is a SID

literal.

The operand for unary operators is the variable on the top of the evaluation stack as specified in the
EvaluateAceCondition algorithm in section 2.5.3.1.5.

Token Type
Byte -
Code Processing

Member_of 0x89 SDDL Form: Member_of operand

Return TRUE if SIDs[] array (section 2.5.2) contains all of the
SIDs in the operand; FALSE otherwise.

Device_Member_of <57> 0x8a SDDL Form: Device_Member_of operand

Return TRUE if DeviceSIDs[] array (section 2.5.2) contains all
of the SIDs in the operand; FALSE otherwise.

Member_of_Any <58> 0x8b SDDL Form: Member_of_Any operand

Return TRUE if SIDs[] array (section 2.5.2) contains any of the
SIDs in the operand; FALSE otherwise.

Device_Member_of_Any <59> 0x8c SDDL Form: Device_Member_of_Any operand

Return TRUE if DeviceSIDs[] array (section 2.5.2) contains any
of the SIDs in the operand; FALSE otherwise.

Not_Member_of <60> 0x90 SDDL Form: Not_Member_of operand

Logical inverse of Member_of .

Not_Device_Member_of <61> 0x91 SDDL Form: Not_Device_Member_of operand

Logical inverse of Device_Member_of .

Not_Member_of_Any <62> 0x92 SDDL Form: Not_Member_of_Any operand

Logical inverse of Not_Member_of_Any .

Not_Device_Member_of_Any <63> 0x93 SDDL Form: Not_Device_Member_of_Any operand

Logical inverse of Device_Member_of_Any .

Binar y Relational Operators

Binary relational operators compare left -hand -side (LHS) and right -hand -side (RHS) operands. The
LHS MUST contain an attribute name in simple or @Prefixed form. <64> The RHS MUST contain an
attribute in @Prefixed form or literals representing values of the same value type as the attribute
variable on the LHS. If the LHS and RHS operands are of different types, then the entire conditional
expression evaluates to UNKNOWN. Note, however, that BOOLEAN values TRUE and FALSE can be

compared to the literal integers "1" and "0", but only when using the == or != operators.

76 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Relational operators that compare string and octet string values compare each string operand byte by
byte, te rminating when the compared bytes differ in value. If a string is a prefix of a string it is

compared to, the longer string is considered greater. The comparison is case - insensitive, unless the
CLAIM_SECURITY_ATTRIBUTE_VALUE_CASE_SENSITIVE flag value is se t in the

CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 structure (section 2.4.10.1). <65>

If the type of an operand is "Result Value" then t he operation returns an error.

If the type of an operand is "Local Attribute", "Resource Attribute", "Device Attribute" or "User
Attribute" and the value is null then the logical value of the operand is UNKNOWN.

If the value of either operand is UNKNOWN th en the operation returns UNKNOWN.

In the following processing rules, the LHS is the second variable on the stack and the RHS is the top of
the stack as specified in the EvaluateAceCondition algorithm in section 2.5.3.1.5.

Token Type
Byte -
Code Processing

== 0x80 SDDL form: (LHS == RHS)

MUST evaluate to TRUE if the argument on the RHS evaluates to the exact value
(single or set value) of the argument on the LHS; otherwise, FALSE.

!= 0x81 SDDL form: (LHS != RHS)

MUST evaluate to FALSE if the argument on th e RHS evaluates to the exact
value of the argument on LHS; otherwise, TRUE.

< 0x82 SDDL form: (LHS < RHS)

MUST evaluate to TRUE if the argument on the LHS is less than the argument on
the RHS; otherwise, FALSE.

<= 0x83 SDDL form: (LHS <= RHS)

MUST evaluate to TRUE if the argument on the LHS is less than, or equal to, the

argument on the RHS; otherwise, FALSE.

> 0x84 SDDL form: (LHS > RHS)

MUST evaluate to TRUE if the argument on the LHS is greater than the argument
on the RHS; otherwise, FALSE.

> = 0x85 SDDL form: (LHS >= RHS)

MUST evaluate to TRUE if the argument on the LHS is greater than, or equal to,
the argument on the RHS; otherwise, FALSE.

Contains 0x86 SDDL Form: LHS Contains RHS

LHS MUST be an attribute name in simple or @Prefixed form.

RHS MUST be a set of one or more literals, or an attribute name in @Prefixed
form.

MUST evaluate to TRUE if the value(s) for the specified LHS includes value(s)
identical to each of the value(s) specified by the RHS; otherwise, FALSE. <66>

Any_of 0x88 SDDL Form: LHS Any_of RHS

LHS MUST be an attribute name in simple or @Prefixed form. RHS MUST be a
set of one or more literals, or an attribute name in @Prefixed form.

MUST evaluate to TRUE if the RHS value set includes one or more of the value(s)
of the specified LHS; otherwise, FALSE. RHS can be either a set or a single
value. <67>

Not_Contains <68> 0x8e SDDL Form: LHS Not_Contains RHS

Logical inverse of Contains .

77 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Token Type
Byte -
Code Processing

Not_Any_of <69> 0x8f Form: LHS Not_Any_of RHS

Logical i nverse of Any_of .

2.4.4.17.7 Logical Operator Tokens

Logical operators test the logical value of operands and produce TRUE, FALSE, or UNKNOWN according
to the defined behavior of the operator. The operands of logical operators must be conditional

expressions and/or expression terms. The logical value of an operand is the tri -state logical value it
receives when evaluated according to the following:

Á If the type of the operand is "Literal" then the operation returns an error.

Á If the type of the operand is "Local Attri bute", "Resource Attribute", "Device Attribute" or "User

Attribute" and the value is null then the logical value of the operand is UNKNOWN.

Á If an operand is a "Local Attribute", "Resource Attribute", "Device Attribute" or "User Attribute"

and the value is an integer, the logical value of the operand is TRUE if the value is nonzero, and
FALSE otherwise.

Á If an operand is a "Local Attribute", "Resource Attribute", "Device Attribute" or "User Attribute"
and the value is string, the logical value of the operand is TRUE if the length of the string is
nonzero, and FALSE otherwise.

Á If the type of an operand is "Result Value", the logical value of the operand is the value of the
operand.

Á If any processing rule returns an error, then the entire conditional expression evaluates to
UNKNOWN regardless of the rest of the expression.

Unary Logical Operators

The operand for unary operators is the variable on the top of the evaluation stack as specified in the
EvaluateAceCondition algorithm in section 2.5.3.1.5 .

Token Type Byte - Code Processing

Exists 0x87 SDDL Form: Exists operand

 If the type of the operand is "Local Attribute"

 If the value is non - null return TRUE

 Else return FALSE

 Else if the type of the operand is "Resource

Attribute"

 Return TRUE if value is non - null; FALSE otherwise.

 Else return Error

Not_Exists <70> 0x8d SDDL Form: Not_Exists operand

Logical inverse of Exists .

Logical NOT (!) 0xa2
 If the logical value of the operand is TRUE

 Return FALSE

 If the logical value of the operand is FALSE

 Return TRUE

 If the logical value of the operand is UNKNOWN

78 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Token Type Byte - Code Processing

 Return UNKNOWN

Binary Logical Operators

In the processing rules that follow, the LHS is the second element on the stack and the RHS is the top
of the stack as specified in the EvaluateAceCondition algorithm in section 2.5.3.1.5.

Token Type Byte - Code Processing

logical AND (&&) 0xa0 SDDL Form: LHS && RHS

 If the logical value of either operand is FALSE

 Return FALSE

 Else if the logical value of either operand is

UNKNOWN

 Return UNKNOWN

 Else Return TRUE

logical OR (||) 0xa1 SDDL Form: LHS || RHS

 If the logical value of either operand is TRUE

 Return TRUE

 Else if the logical va lue of either operand is

UNKNOWN

 Return UNKNOWN

 Else Return FALSE

2.4.4.17.8 Attribute Tokens

Attributes can be associated with local environments, users, resources, or devices.

Token Type Byte - Code Token Data Encoding

Local Attribute 0xf8 Encoding same as Unicode string.

Lookup based on string name.

User Attribute 0xf9 Encoding same as Unicode String.

Lookup based on string name.

Resource Attribute 0xfa Encoding same as Unicode String.

Lookup based on string name.

Device Attribute 0xfb Encoding same as Unicode String.

Lookup based on string name.

2.4.4.17.9 Examples: Conditional Expression Binary Representation

Example 1: Attributes in Simple Form

79 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

For the following conditional expression:

 (Title=="VP")

The ApplicationData member of the CALLBACK ACEs structure will have the following physical
packing (numbers are in hexadecimal):

Figure 3 : Components of the Application Data member for the conditional expression
(Title=="VP")

The following hexadecimal byte dump shows the contents of the ApplicationData in contiguous
memory for the preceding conditional expression (with three added bytes for padding).

 61 72 74 78 f8 0a 00 00 artx....

 00 54 00 69 00 74 00 6c .T.i.t.l

 00 65 00 10 04 00 00 00 .e..... .

 56 00 50 00 80 00 00 00 V.P.....

Example 2: @Prefixed Attribute Names and Multiple Terms

For the following conditional expression illustrates @Prefixed attribute names and use of multiple
terms as expressed in SDDL:

 (@User.smartcard==1 || @Devi ce.managed==1) && (@Resource.dept Any_of{"Sales","HR"})

SDDL strings encoded into an ApplicationData field MUST be ordered to maintain SDDL precedence
rules as specified in section 2.5.1.3 . The pr eceding conditional expression expressions can be
reordered in postfix notation as follows:

@User.smartca
rd 1

=
=

@Device.manag
ed 1

=
=

|
|

@Resource.de
pt

{Sales,HR
}

Any_o
f

&
&

The following figure shows the mapping from the above postfix expression to the layout in memory:

80 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

Figure 4 : Postfix to memory mapping for "(@User.smartcard == 1 || @Device.managed ==
1) && (@Resource.dept Any_of {"Sales","HR"})"

Example 3: RHS Attribute Variables and SID - based Operators

The following conditi onal expression illustrates @Prefixed attribute names with an attribute variable on
the RHS of the operator and the use of a SID -based operator (Member_Of) as expressed in SDDL:

81 / 153

[MS -DTYP] - v20230404
Windows Data Types
Copyright © 2023 Microsoft Corporation
Release: April 4, 2023

 (@User.clearanceLevel>=@Resource.requiredClearance) || (Member_of{SID(BA)})

SDDL strings encoded into an ApplicationData field MUST be ordered to maintain SDDL precedence
rules as specified in section 2.5.1.3. The preceding conditional expression can be reordered in postfix
notation as follows:

@User.clearanceLevel @Resource.require dClearance >= {SID(BA)} Member_of ||

The following figure shows the mapping from the preceding postfix expression to the layout in

memory.

Figure 5 : Postfix to memory mapping for (@User.clearanceLevel >=
@Resource.requiredClearance) || (Member_of {SID(BA)})

2.4.5 ACL

The access control list (ACL) packet is used to specify a list of individual access control entries (ACEs).
An ACL packe t and an array of ACEs comprise a complete access control list.

The individual ACEs in an ACL are numbered from 0 to n, where n+1 is the number of ACEs in the
ACL. When editing an ACL, an application refers to an ACE within the ACL by the ACE index.

In the absence of implementation -specific functions to access the individual ACEs, access to each ACE
MUST be computed by using the AclSize and AceCount fields to parse the wire packets following the

