
1 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS - DTYP]:

Windows Data Types

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation (ñthis
documentationò) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter -protocol relationships and interactions.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your i mplementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.

Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.

Á Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
thi s documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promis e or the Microsoft Community Promise . If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Communit y Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com .

Á Trademarks . The names of companies and products contained in this documentation might be
covered by trademarks or similar i ntellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, o rganizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, o r event is intended or should be inferred.

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specific ations documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of th em. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immed iate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

2/14/2008 3.1.2 Editorial Changed language and formatting in the technical content.

3/14/2008 4.0 Major Updated and revised the technical content.

6/20/2008 5.0 Major Updated and revised the technical content.

7/25/2008 6.0 Major Updated and revised the technical content.

8/29/2008 7.0 Major Updated and revised the technical content.

10/24/2008 8.0 Major Updated and revised the technical content.

12/5/2008 9.0 Major Updated and revised the technical content.

1/16/2009 9.0.1 Editorial Changed language and formatting in the technical content.

2/27/2009 10.0 Major Updated and revised the technical content.

4/10/2009 10.1 Minor Clarified the meaning of the technical content.

5/22/2009 11.0 Major Updated and revised the technical content.

7/2/2009 11.1 Minor Clarified the meaning of the technical content.

8/14/2009 11.2 Minor Clarified the meaning of the technical content.

9/25/2009 12.0 Major Updated and revised the technical content.

11/6/2009 12.1 Minor Clarified the meaning of the technical content.

12/18/2009 12.2 Minor Clarified the meaning of the technical content.

1/29/2010 13.0 Major Updated and revised the technical content.

3/12/2010 13.1 Minor Clarified the meaning of the technical content.

4/23/2010 13.2 Minor Clarified the meaning of the technical content.

6/4/2010 14.0 Major Updated and revised the technical content.

7/16/2010 15.0 Major Updated and revised the technical content.

8/27/2010 16.0 Major Updated and revised the technical content.

10/8/2010 17.0 Major Updated and revised the technical content.

11/19/2010 18.0 Major Updated and revised the technical content.

1/7/2011 19.0 Major Updated and revised the technical content.

2/11/2011 20.0 Major Updated and revised the technical content.

3/25/2011 21.0 Major Updated and revised the technical content.

5/6/2011 21.1 Minor Clarified the meaning of the technical content.

6/17/2011 22.0 Major Updated and revised the technical content.

9/23/2011 22.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

12/16/2011 23.0 Major Updated and revi sed the technical content.

3/30/2012 24.0 Major Updated and revised the technical content.

7/12/2012 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 25.0 Major Updated and revised the technical content.

1/31/2013 25.1 Minor Clarified the meaning of the technical content.

8/8/2013 26.0 Major Updated and revised the technical content.

11/14/2013 27.0 Major Updated and revised the technical content.

2/13/2014 27.1 Minor Clarified the meaning of the technical content.

5/15/2014 28.0 Major Updated and revised the technical content.

6/30/2015 29.0 Major Significantly changed the technical content.

10/16/2015 30.0 Major Significantly changed the technical content.

7/14/2016 31.0 Major Significantly changed the technical content.

4 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction 8
1.1 Glossary 8
1.2 References 11

1.2.1 Normative References 11
1.2.2 Informative Reference s 12

1.3 Overview 12
1.4 Relationship to Protocols and Other Structures 13
1.5 Applicability Statement 13
1.6 Versioning and Localization 13
1.7 Vendor -Extensible Fields 13

2 Data Types 14
2.1 Common Base Types 14

2.1.1 bit 14
2.1.2 byte 14
2.1.3 handle_t 15
2.1.4 Integer T ypes 15

2.1.4.1 __int8 15
2.1.4.2 __int16 15
2.1.4.3 __int32 15
2.1.4.4 __int64 15
2.1.4.5 hyper 15

2.1.5 octet 15
2.1.6 wchar_t 16

2.2 Common Data Types 16
2.2.1 __int3264 16
2.2.2 ADCONNECTION_HANDLE 16
2.2.3 BOOL 16
2.2.4 BOOLEAN 16
2.2.5 BSTR................................ 17
2.2.6 BYTE 17
2.2.7 CHAR 17
2.2.8 DOUBLE 17
2.2.9 DWORD 17
2.2.10 DWORD_PT R 18
2.2.11 DWORD32 18
2.2.12 DWORD64 18
2.2.13 DWORDLONG 18
2.2.14 error_status_t 18
2.2.15 FLOAT 18
2.2.16 HANDLE 19
2.2.17 HCALL 19
2.2.18 HRESULT 19
2.2.19 IN T 19
2.2.20 INT8 19
2.2.21 INT16 20
2.2.22 INT32 20
2.2.23 INT64 20
2.2.24 LDAP_UDP_HANDLE 20
2.2.25 LMCSTR 20
2.2.26 LMSTR................................ 20
2.2.27 LONG 21
2.2.28 LONGLONG 21
2.2.29 LONG_PTR 21
2.2.30 LONG32 21

5 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.31 LONG64 21
2.2.32 LPCSTR 21
2.2.33 LPCVOID 22
2.2.34 LPCWSTR................................ 22
2.2.35 LPSTR 22
2.2.36 LPWSTR 22
2. 2.37 NET_API_STATUS 23
2.2.38 NTSTATUS 23
2.2.39 PCONTEXT_HANDLE 23
2.2.40 QWORD 23
2.2.41 RPC_BINDING_HANDLE 24
2.2.42 SHORT 24
2.2.43 SIZE_T 24
2.2.44 STRING 24
2.2.45 UCHAR 25
2.2.46 UI NT 25
2.2.47 UINT8 25
2.2.48 UINT16 25
2.2.49 UINT32 25
2.2.50 UINT64 25
2.2.51 ULONG 26
2.2.52 ULONG_PTR 26
2.2.53 ULONG32 26
2.2.54 ULONG64 26
2.2.55 ULONGLONG 26
2.2.56 UNICODE 26
2.2.57 UNC 27
2.2.58 USHORT 28
2.2.59 VOID 28
2.2.60 WCHAR 28
2.2.61 WORD 28

2.3 Common Data Structures 28
2.3.1 EVENT_DESCRIPTOR 28
2.3.2 EVENT_HEADER 29
2.3.3 FILETIME 31
2.3.4 GUID and UUID 31

2.3.4.1 GUID -- RPC IDL representat ion 31
2.3.4.2 GUID -- Packet Representation 32
2.3.4.3 GUID -- Curly Braced String Representation 32

2.3.5 LARGE_INTEGER 32
2.3.6 LCID 33
2.3.7 LUID 33
2.3.8 MULTI_SZ 33
2.3.9 OBJECT_TYPE_LIST 33
2.3.10 RPC_UNICODE_STRING 34
2.3.11 SERVER_INFO_100 34
2.3.12 SERVER_INFO_101 35
2.3.13 SYSTEMTIME 38
2.3.14 UINT128 38
2.3.15 ULARGE_INTEGER 38

2.4 Constructed Security Types 38
2.4.1 SID_IDENTIFIER_AUTHORITY 38

2.4.1.1 RPC_SID_IDENTIFIER_AUTHORITY 39
2.4.2 SID 40

2.4.2.1 SID Str ing Format Syntax 40
2.4.2.2 SID -- Packet Representation 41
2.4.2.3 RPC_SID 41
2.4.2.4 Well -Known SID Structures 42

6 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.4.3 ACCESS_MASK 50
2.4.4 ACE 52

2.4.4.1 ACE_HEADER 52
2.4.4.1.1 ACE_HEADER-- RPC representation 55

2.4.4.2 ACCESS_ALLOWED_ACE 55
2.4.4.3 ACCESS_ALLOWED_OBJECT_ACE 55
2.4.4.4 ACCESS_DENI ED_ACE 57
2.4.4.5 ACCESS_DENIED_OBJECT_ACE 57
2.4.4.6 ACCESS_ALLOWED_CALLBACK_ACE 59
2.4.4.7 ACCESS_DENIED_CALLBACK_ACE 60
2.4.4.8 ACCESS_ALLOWED_CALLBACK_OBJECT_ACE 60
2.4.4.9 ACCESS_DENIED_CALLBACK_OBJECT_ACE 62
2.4.4.10 SYSTEM_AUDIT_ACE 63
2.4.4.11 SYSTEM_AUDIT_OBJECT_ACE 64
2.4.4.12 SYSTEM_AUDIT_CALLBACK_ACE 66
2.4.4.13 SYSTEM_MANDATORY_LABEL_ACE 66

2.4.4.13.1 SYSTEM_MANDATORY_LABEL_ACE -- RPC Representation 67
2.4.4.14 SYSTEM_AUDIT_CALLBACK_OBJECT_ACE 68
2.4.4.15 SYSTEM_RESOURCE_ATTRIBUTE_ACE 69
2.4.4.16 SYSTEM_SCOPED_POLICY_ID_ACE 70
2.4.4.17 Conditional ACEs 70

2.4.4.17.1 Conditional ACE Expressions 71
2.4.4.17.2 Security Attributes 71
2.4.4.17.3 Conditional ACE Applicability 71
2.4.4.17.4 Conditional AC E Binary Formats 72
2.4.4.17.5 Literal Tokens 72
2.4.4.17.6 Relational Operator Tokens 73
2.4.4.17.7 Logi cal Operator Tokens 75
2.4.4.17.8 Attribute Tokens 77
2.4.4.17.9 Examples: Conditional Expression Binary Representation 77

2.4.5 ACL 80
2.4.5.1 ACL-- RPC Representation 82

2.4.6 SECURITY_DESCRIPTOR 82
2.4.6.1 SECURITY_DESCRIPTOR -- RPC Representation 85

2.4.7 SECURITY_INFORMATION 85
2.4.8 TOKEN_MANDATORY_POLICY 86
2.4.9 MANDATORY_INFORMATI ON 87
2.4.10 CLAIM_SECURITY_ATTRIBUTE 87

2.4.10.1 CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 87
2.4.10.2 CLAIM_SECURITY_ATTRIBUTE_OCTET_STRING_RELATIVE 89

2.5 Additional Information for Security Types 90
2.5.1 Security Descriptor Description Language 90

2.5.1.1 Syntax 90
2.5.1.2 Security Attribute Names 98

2.5.1.2.1 Simple Attribute Name Form 98
2.5.1.2.2 @Prefix ed Attribute Name Form 98

2.5.1.3 Parentheses and Order of Precedence 98
2.5.1.4 SDDL String to Binary Security Descriptor Examples 99

2.5.2 Token/Authorization Context 102
2.5.2.1 Token/Authorization Context Algorithms 103

2.5.2.1.1 GatherGroupMembershipForSystem 103
2.5.2.1.2 AddPrivilegesToToken 104

2.5.3 Security Descriptor Algorithms 104
2.5.3.1 Support Functions 105

2.5.3.1.1 SidInToken 105
2.5.3.1.2 SidDominates 105
2.5.3.1.3 GetScopedPolicySid 106
2.5.3.1.4 GetCentralizedAccessPolicy 106

7 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.5.3.1.5 EvaluateAceCondition 107
2.5.3.1.6 LookupAttributeInToken 110
2.5.3.1.7 LookupAttributeInSacl 111
2.5.3.1.8 PushStackOperand 111
2.5.3.1.9 PushStackResult 112
2.5.3.1.10 PopStack 112

2.5.3.2 Access Check Algorithm Pseudocode 112
2.5.3.3 MandatoryIntegrityCheck Algorithm Pseudocode 119

2.5.3.3.1 FindAceByType 121
2.5.3.4 Algorithm for Creating a Security Descriptor 121

2.5.3.4.1 CreateSecurityDescriptor 122
2.5.3.4.2 ComputeACL 124
2.5.3.4.3 ContainsInheritableACEs 127
2.5.3.4.4 ComputeInheritedACLfromParent 127
2.5.3.4.5 Com puteInheritedACLfromCreator 129
2.5.3.4.6 PreProcessACLfromCreator 130
2.5.3.4.7 PostProcessACL 131

2.6 ServerGetInfo Abstract Interface 132
2.7 Impersonation Abstract Interfaces 133

2.7.1 StartImpersonation 133
2.7.2 EndImpersonation 134
2.7.3 GetAccessToken 134

3 Structure Examples 135

4 Security Considerations 136

5 Appendix A: Full MS - DTYP IDL 137

6 Appendix B: Product Behavior 142

7 Change Tracking 148

8 Index 150

8 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

This document provides a collection of commonly used data types, which are categorized into two
basic types: common base types and common data types. The common base types are those types
that Microsoft compilers natively support. The common data types are data types that are frequently
used by many protocols. These data type s are user -defined types.

1.1 Glossary

This document uses the following terms:

Active Directory : A general -purpose network directory service. Active Directory also refers to
the Win dows implementation of a directory service. Active Directory stores information about

a variety of objects in the network. Importantly, user accounts, computer accounts, groups, and
all related credential information used by the Windows implementation of Kerberos are stored in
Active Directory . Active Directory is either dep loyed as Active Directory Domain Services (AD
DS) or Active Directory Lightweight Directory Services (AD LDS). [MS -ADTS] describes both

forms. For more information, see [MS -AUTHSOD] section 1.1.1.5.2, Lightweight Directory
Access Protocol (LDAP) versions 2 and 3, Kerberos, and DNS.

American National Standards Institute (ANSI) character set : A charac ter set defined by a

code page approved by the American National Standards Institute (ANSI). The term "ANSI" as
used to signify Windows code pages is a historical reference and a misnomer that persists in the
Windows community. The source of this misnomer stems from the fact that the Windows code
page 1252 was originally based on an ANSI draft, which became International Organization for
Standardization (ISO) Standard 8859 -1 [ISO/IEC -8859 -1] . I n Windows, the ANSI character set
can be any of the following code pages: 1252, 1250, 1251, 1253, 1254, 1255, 1256, 1257,
1258, 874, 932, 936, 949, or 950. For example, "ANSI application" is usually a reference to a

non -Unicode or code -page -based application. Therefore, "ANSI character set" is often misused
to refer to one of the character sets defined by a Windows code page that can be used as an
active system code page; for example, character s ets defined by code page 1252 or character
sets defined by code page 950. Windows is now based on Unicode , so the use of ANSI

character sets is strongly discouraged unless they are used to interoperate with legacy
applications or legacy data.

big - endian : Multiple -byte values that are byte -ordered with the most significant byte stored in the
memory location wi th the lowest address.

binary large object (BLOB) : A discrete packet of data that is stored in a database and is treated
as a sequence of uninterpreted bytes.

Component Object Model (COM) : An object -oriented programming model that defines how
objects inter act within a single process or between processes. In COM , clients have access to an
object through interfaces implemented on the object. For more information, see [MS -DCOM] .

curly braced GUID string : The string representation of a 128 -bit globally unique identifier
(GUID) using the form {XXXXXXXX -XXXX-XXXX-XXXX-XXXXXXXXXXXX}, where X denotes a
hexadecimal digit. The string representation between the enclosing braces is the standard

representation of a GUID as described in [RFC4122] section 3. Unl ike a GUIDString, a curly
braced GUID string includes enclosing braces.

discretionary access control list (DACL) : An access control list (ACL) that is controlled by the
owner of an object and that specifies the access particular users or groups can have to the

object.

Distributed File System (DFS) : A file system that logically groups physical shared folders located
on different servers by transparently connecting them to one or more hierarchical namespaces.

%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
%5bMS-AUTHSOD%5d.pdf#Section_953d700a57cb4cf7b0c3a64f34581cc9
http://go.microsoft.com/fwlink/?LinkId=90689
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
http://go.microsoft.com/fwlink/?LinkId=90460

9 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DFS also provides fault - tolerance and load -sharing capabilities. DFS refers to the Microsoft DFS
available in Windows Server operating system platforms.

domain : A set of users and co mputers sharing a common namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)

and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain controller provides authentication (2) of members,
creating a unit of trust for its members. Each domain has an identifier that is shared among its
members. For more info rmation, see [MS -AUTHSOD] section 1.1.1.5 and [MS -ADTS].

fully qualified domain name (FQDN) : An unambiguous domain name (2) that gives an absolute
location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section
3.1 and [RFC2181] section 11.

globally unique identifier (GUID) : A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this ter m does not imply or require that the algorithms described in

[RFC4122] or [C706] must be used for generating the GUID . See also universally unique
identifier (UUID) .

handle : Any token that can be used to identify and access an object such as a device, file, or a
window.

Interface Definition Language (IDL) : The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

Internet host name : The name of a host as defined in [RFC1123] section 2.1, with the extensions
described in [MS -HNDS] .

little - endian : Multiple -byte values that are byte -ordered with the least significan t byte stored in
the memory location with the lowest address.

marshaling : The act of formatting COM parameters for transmission over a remote procedure
call (RPC) . For more information, see [MS -DCOM].

Microsoft Interface Definition Language (MIDL) : The Microsoft implementation and extension
of the OSF -DCE Interface Definition Language (IDL) . MIDL can also mean the Interface
Definition Language (IDL) compiler provided by Microsoft. For more information, see [MS -

RPCE].

NetBIOS host name : The NetBIOS name of a host (as specified in [RFC1001] section 14 and
[RFC1002] section 4), with the extensions described in [MS -NBTE] .

organization : A security group that contains additional fields (1) for describing hierarchical
relationships between org anizations.

Remote Access Service (RAS) server : A type of network access server (NAS) that provides

modem dial -up or virtual private network (VPN) access to a network.

remote procedure call (RPC) : A context -dependent term commonly overloaded with three
mea nings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The pref erred usage for this
meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC

exchange". (*) A single message from an exchange as defined in the previous definition. The
preferred usage for this term is "RPC message". For more information about RPC, see [C706].

http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=127732
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90268
%5bMS-HNDS%5d.pdf#Section_eff5b201ad32485dbbed1d07ad069d5c
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
%5bMS-NBTE%5d.pdf#Section_3461cfa83d284fa38163131bf1046fa3

10 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

resource manager (RM) : The participant that is responsible for coordinating the state of a
resource with the outcome of ato mic transactions. For a specified transaction, a resource

manager enlists with exactly one transaction manager to vote on that transaction outcome and
to obtain the final outcome. A resource manager is either durable or volatile, depending on its

resource.

security identifier (SID) : An identifier for security principals in Windows that is used to identify
an account or a group. Conceptually, the SID is composed of an account authority portion
(ty pically a domain) and a smaller integer representing an identity relative to the account
authority, termed the relative identifier (RID). The SID format is specified in [MS -DTYP] section
2.4.2; a string representation of SIDs is specified in [MS -DTYP] section 2.4.2 and [MS -AZOD]
section 1.1.1.2.

share : A resource offered by a Common Internet File System (CIFS) server for access by CIFS
clients over the network. A share typically represents a directory tree and its included files
(referred to commonly as a "disk share" or "file share") or a printer (a "print shar e"). If the
information about the share is saved in persistent store (for example, Windows registry) and
reloaded when a file server is restarted, then the share is referred to as a "sticky share". Some

share names are reserved for specific functions and are referred to as special shares : IPC$,

reserved for interprocess communication, ADMIN$, reserved for remote administration, and A$,
B$, C$ (and other local disk names followed by a dollar sign), assigned to local disk devices.

system access control list (SACL) : A n access control list (ACL) that controls the generation of
audit messages for attempts to access a securable object. The ability to get or set an object's
SACL is controlled by a privilege typi cally held only by system administrators.

Unicode : A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]

provides three forms (UTF -8, UTF -16, and UTF -32) and seven schemes (UTF -8, UTF -16, UTF -16
BE, UTF-16 LE, UTF -32, UTF -32 LE, and UTF -32 BE).

Unicode character : Un less otherwise specified, a 16 -bit UTF -16 code unit.

Unicode string : A Unicode 8-bit string is an ordered sequence of 8 -bit units, a Unicode 16 -bit

string is an ordered sequence of 16 -bit code units, and a Unicode 32 -bit string is an ordered
sequence of 32 -bit code units. In some cases, it could be acceptable not to terminat e with a
terminating null character. Unless otherwise specified, all Unicode strings follow the UTF -16LE

encoding scheme with no Byte Order Mark (BOM).

universally unique identifier (UUID) : A 128 -bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross -process communication such as client and server interfaces, manager
entry -point vector s, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these term s are used interchangeably in

the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does
not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or re quire that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

unmarshal : The process of deserializing one or more data structures from an octet stream using a

specific transfer syntax (for example, unmarshaling a 32 -bit i nteger).

UTF - 16 : A standard for encoding Unicode characters , defined in the Unicode standard, in which

the most commonly used characters are defined as double -byte characters. Unless specified
otherwise, this term refers to the UTF -16 encoding form specified in [UNICODE5.0.0/2007]
section 3.9.

UTF - 8 : A byte -oriented standard for encoding Unicode characters , defined in the Unicode
stand ard. Unless specified otherwise, this term refers to the UTF -8 encoding form specified in
[UNICODE5.0.0/2007] section 3.9.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-AZOD%5d.pdf#Section_5a0a0a3ec7a742e1b5f2cc8d8bd9739e
http://go.microsoft.com/fwlink/?LinkId=154659

11 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of th e referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with findin g a normative reference, please contact dochelp@microsoft.com . We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

https://www2.opengroup.org/ogsys/catalog/c706

[IEEE754] IEEE, "IEEE Standard for Binary Floating -Point Arithmetic", IEEE 754 -1985, October 1985,
http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[IETFDRAFT -PK-FRESH] Moore, S., Miller, P., and Short, M., Ed., "Public Key Cryptography for Initial
Authentication in Kerberos (PKINIT), Freshness Extension", draft -short -pkinit - freshness -00, October
2014, https://tools.ietf.org/html/draft -short -pkinit - freshness

[ISO/IEC -8859 -1] International Organization for Standardization, "Information Technology -- 8-Bit
Single -Byte Coded Graphic Character Sets -- Part 1: Latin Alphabet No. 1", ISO/IEC 88 59 -1, 1998,
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=28245

Note There is a charge to download the specification.

[ISO/IEC -9899] International Organization for Standardization, "Programming Languages - C",

ISO/IEC 9899:TC2, May 2005, http://www.open -std.org/jtc1/sc22/wg14/www/docs/n1124.pdf

[MS -ADTS] Micr osoft Corporation, " Active Directory Technical Specification ".

[MS -APDS] Microsoft Corporation, " Authentication Protocol Domain Support ".

[MS -ERREF] Microsoft Corporation, " Windows Error Codes ".

[MS -GPCAP] Microsoft Corporation, " Group Policy: Central Access Policies Protocol Extension ".

[MS -KILE] Microsoft Corporation, " Kerberos Protocol Extensions ".

[MS -LCID] Microso ft Corporation, " Windows Language Code Identifier (LCID) Reference ".

[MS -NBTE] Microsoft Corporation, " NetBIOS over TCP (NBT) Extensions ".

[MS -NLMP] Microsoft Corporation, " NT LAN Manager (NTLM) Authentication Protocol ".

[MS -PAC] Microsoft Corporation, " Privilege Attribute Certificate Data Structure ".

[MS -RPCE] Microsoft Corporation, " Remote Procedure Call Protocol Extens ions ".

[MS -SFU] Microsoft Corporation, " Kerberos Protocol Extensions: Service for User and Constrained
Delegation Protocol ".

[MS -SMB2] Microsoft Corporation, " Server Message Block (SMB) Protocol Versions 2 and 3 ".

http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89903
http://go.microsoft.com/fwlink/?LinkId=534982
http://go.microsoft.com/fwlink/?LinkId=90689
http://go.microsoft.com/fwlink/?LinkId=89921
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
%5bMS-APDS%5d.pdf#Section_dd444344fd7e430eb3137e95ab9c338e
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-GPCAP%5d.pdf#Section_5189d5c912c2491cbf16f7008c46c6fb
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
%5bMS-LCID%5d.pdf#Section_70feba9f294e491eb6eb56532684c37f
%5bMS-NBTE%5d.pdf#Section_3461cfa83d284fa38163131bf1046fa3
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-PAC%5d.pdf#Section_166d8064c86341e19c23edaaa5f36962
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-SFU%5d.pdf#Section_3bff58648135400ebdd933b552051d94
%5bMS-SFU%5d.pdf#Section_3bff58648135400ebdd933b552051d94
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

12 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS -TLSP] Microsoft Corporation, " Transport Layer Security (TLS) Profile ".

[RFC1035] Mockapetris, P., "Domain Names - Implementation and Specification", STD 13, RFC 1035,

November 1987, http://www.ietf.org/rfc/rfc1035.txt

[RFC1123] Braden, R., "Requirements for Internet Hosts - Application and Support", RFC 1123,
October 1989, http://www.ietf.org/rfc/rfc1123.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

[RFC3986] Berners -Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (U RI): Generic

Syntax", STD 66, RFC 3986, January 2005, http://www.ietf.org/rfc/rfc3986.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN
Namespace ", RFC 4122, July 2005, http://www.ietf.org/rfc/rfc4122.txt

[RFC4291] Hinden, R. and Deering, S., "IP Version 6 Addressing Architecture", RFC 4291, February

2006, http://www.ietf.org/rfc/rfc4291.txt

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD
68, RFC 5234, January 2008, http://www.rfc -editor.org/rfc/rfc5234.txt

1.2.2 Informative References

[DALB] Dalbey, J., "Pseudocode Standard", May 2008,
http:// users.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html

[MS -ADOD] Microsoft Corporation, " Active Directory Protocols Overview ".

[MS -SMB] Microsoft Corporation, " Server Message Block (SMB) Protocol ".

[MSDN -ACCTOKENS] Microsoft Corporation, "Access Tokens", http://msdn.microsoft.com/en -

us/library/aa374909.aspx

[MSDN -AuthzAccessCheck] Microsoft Corporation, "AuthzAccessCheck function",

http://msdn.microsoft.com/en -us/library/aa375788%28v=VS.85%29 .aspx

[MSDN -SDDLforDevObj] Microsoft Corporation, "SDDL for Device Objects",
http://msdn.microsoft.com/en -us/library/ff563667.aspx

[RFC3530] Shepler, S., et al., "Network File System (NFS) ve rsion 4 Protocol", RFC 3530, April 2003,
http://www.ietf.org/rfc/rfc3530.txt

[Tanenbaum] Tanenbaum, A.S., "Modern Operating Systems", Prentice Hall, 2001, ISBN 0 -13 -
092641 -8.

1.3 Overview

Two types of data structures are specified in this document: data structures that are specified in terms
of the wire format and data structures that are RPC -marshaled as specified in [MS -RPCE]. The latter

are specified by using the Interface Definition Language (IDL) that is defined in [MS -RPCE]
section 2.2.4.

For some types of data, both f ormats are shown. For example, both formats are shown if some
protocols use the raw wire format but other protocols use the RPC -marshaled format. Any protocol
that uses a data structure name in its IDL necessarily implies the use of the IDL version of the data

%5bMS-TLSP%5d.pdf#Section_58aba05b62b04cd1b88bdc8a24920346
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=90268
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90453
http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=90464
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=89842
%5bMS-ADOD%5d.pdf#Section_5ff67bf4c14548cb89cd4f5482d94664
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
http://go.microsoft.com/fwlink/?LinkId=89949
http://go.microsoft.com/fwlink/?LinkId=89949
http://go.microsoft.com/fwlink/?LinkId=204597
http://go.microsoft.com/fwlink/?LinkId=114214
http://go.microsoft.com/fwlink/?LinkId=90430
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

13 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

structure. Any other use implies the use of the wire format version unless otherwise specified by the
protocol that uses the data structure.

1.4 Relationship to Protocols and Other Structures

The data structures in this document are generic data structures that are used by many protocols.

1.5 Applicability Statement

Not applicable.

1.6 Versioning and Localization

Not applicable.

1.7 Vendor -Extensible Fields

HRESULT: Vendors can choose their own values, as long as the C bit (0x20000000) is set, indicating it
is a customer code.

NTSTATUS: Vendors can choose their own values for this field, as long as the C bit (0x20000000) is

set, indicating it is a customer code.

SECURITY_DESCRIPTOR : Vendors can extend Sbz1 by setting RM Control Valid to 0x1.

14 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Data Types

The following sections describe data types that include common base types, data types, and data
structures.

Many protocols are intended to be extensions of local programming models. Other protocols have a
distinct purpose but share many common elements. This section is a discussion of data types that are
common to many protocols.

In some cases, a component might not follow the typical practice and where that applies, the relevant
specification specifies the actual practice.

Integer names often have an alias, which is interchangeable with the integer name; there is no
difference in using either th e name or its alias.

2.1 Common Base Types

This section contains commonly used primitive data types.

The use of the Interface Definition Language (IDL) implies RPC marshaling unless custom marshaling
is specified.

Unless explicitly noted in this document, any integer, either signed or unsigned, is in memory order
before RPC marshalling. It is implementation dependent <1> whether the memory order is little -

endian or big - endian .

For packets, the bit numbering convention fol lowed is the same as that used in RFCs, namely: the
high (most significant) bit of the first byte to hit the wire is in packet bit 0, and the low bit of the last
byte to hit the wire is in packet bit 31 (so that the bits are shown from left - to - right in the order they
naturally appear over the network).

Figure 1 : Packet byte/bit order

Unless otherwise specified, the bytes of a multi -byte integer field are assumed to be transmitted in
big -endian order, also referred to as Network Byte Order. That is, if the packet shown above
represented a 32 -bit integer, then Byte 1 would be its high -order byte and Byte 4 its low -order byte.

Certain protocols use little -endian order, as specified in the correspo nding technical documents; for
example, [MS -SMB2] .

2.1.1 bit

A bit is a single binary digit, which is the smallest primitive element of any data structure.

2.1.2 byte

The byte type specifie s an 8 -bit data item.

A byte is a base IDL type as specified in [C706] section 4.2.9.5. A byte item is opaque in that its
contents are not interpreted, as a character data type might be.

%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
http://go.microsoft.com/fwlink/?LinkId=89824

15 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.1.3 handl e_t

The handle_t data type is used to represent an explicit RPC binding handle, as specified in [C706]
and [MS -RPCE] section 2. This data type is a predefined type of the IDL and does not require an

explicit declaration.

A primitive binding handle is a data object that can be used by the application to represent the
binding. It can appear as a type specifier in type def declarations, general declarations, and function
declarations (as a function - return - type specifier and a parameter - type specifier).

2.1.4 Integer Types

Microsoft C/C++ supports different sizes of integer types. An 8 -bit, 16 -bit, 32 -bit, or 64 -bit integer
var iable can be declared by using the __int n type specifier, where n is 8, 16, 32, or 64.

The types __int8 , __int16 , and __int32 are synonyms for the ANSI /ISO C types (as specified in
[ISO/IEC -9899]) that have the same size. They are useful for writing portable code that behaves
identically across multiple platforms.

2.1.4.1 __int8

An 8 -bit signed integer (range: ï128 to 127 decimal). The first bit, the most significant bit (MSB), is
the signing bit. Th is type can be specified as unsigned by using the unsigned data - type modifier. As an
unsigned __int8, the range is from 0 to 255 decimal.

2.1.4.2 __int16

A 16 -bit signed integer (range: ï32768 to 32767 decimal). The first bit (MSB) is the signing bit.

This type c an be specified as unsigned by using the unsigned data - type modifier. As an unsigned

__int16, the range is from 0 to 65535 decimal.

2.1.4.3 __int32

A 32 -bit signed integer (range: ï2147483648 to 2147483647 decimal). The first bit (MSB) is the
signing bit.

This typ e can be specified as unsigned by using the unsigned data - type modifier. As an unsigned
__int32, the range is from 0 to 4294967295 decimal.

2.1.4.4 __int64

A 64 -bit signed integer (range: ï9223372036854775808 to 9223372036854775807 decimal). The

first bit (MSB) is the signing bit.

This type can be specified as unsigned by using the unsigned data - type modifier. As an unsigned
__int64, the range is from 0 to 18446744073709551615 decimal.

2.1.4.5 hyper

The keyword hyper indicates a 64 -bit integer that can be declared as eithe r signed or unsigned.

2.1.5 octet

The octet type specifies an 8 -bit data item.

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
http://go.microsoft.com/fwlink/?LinkId=89921

16 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

An octet is an 8 -bit data type as specified in [C706] section 14.2.

2.1.6 wchar_t

A Unicode character for use with the Microsoft Interface Definition Language (MIDL) compiler.

This type is declared as follows:

 typedef unsigned short wchar_t;

2.2 Common Data Types

This section contains simple data types that are defined by either a C/C++ typedef or #define
statement. The data types in this section are essentially a liases for C/C++ primitive data types.

2.2.1 __int3264

An alias that is resolved to either:

Á An __int32 in a 32 -bit translation and execution environment, or

Á An __int64 in a 64 -bit translation and execution environment. For backward compatibility, it is 32 -

bit on the wire. The higher 4 bytes MUST be truncated on the sender side during marshaling and
MUST be extended appropriately (signed or unsigned), as specified in [C706] section 14.2.5, on
the receiving side during unmarshaling .

2.2.2 ADCONNECTION_HANDLE

A handle to an ADConnection object that is used to manage the TCP connections that are used for
communication between a client and Active Directory servers.

This type is declared as follows:

 typedef void* ADCONNECTION_HANDLE;

2.2.3 BOOL

A BOOL is a 32 -bit field that is set to 1 to indicate TRUE , or 0 to indicate FALSE .

This type is declared as follows:

 typedef int BOOL, *P BOOL, *LPBOOL;

2.2.4 BOOLEAN

A BOOLEAN is an 8 -bit field that is set to 1 to indicate TRUE , or 0 to indicate FALSE .

This type is declared as follows:

 typedef BYTE BOOLEAN, *PBOOLEAN;

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

17 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.5 BSTR

A BSTR is a pointer to a null - terminated character string in which the st ring length is stored with the
string. This type is declared as follows:

 typedef WCHAR* BSTR;

Because the length is stored with the string, BSTR variables can contain embedded null characters.
For example:

 [4 bytes (length prefix)],

 wchar_t[length], [\ 0]

2.2.6 BYTE

A BYTE is an 8 -bit unsigned value that corresponds to a single octet in a network protocol.

This type is declared as follows:

 typedef unsigned char BYTE, *PBYTE, *LPBYTE;

2.2.7 CHAR

A CHAR is an 8 -bit block of data that typically contains an ANSI character, as specified in [ISO/IEC -

8859 -1] . For information on the char keyword, see [C706] section 4.2.9.3.

This type is declared as follows:

 typedef char CHAR, *PCHAR;

2.2.8 DOUBLE

A DOUBLE is an 8 -byte, double -precision, floating -point number that represents a double -precision,
64 -bit [IEEE754] value with the approximate range: +/ ï5.0 x 10 -324 through +/ ï1.7 x 10 308 .

The DOUBLE type can also represent not a number (NAN); positive and negative infinity; or positive

and negativ e 0.

This type is declared as follows:

 typedef double DOUBLE;

2.2.9 DWORD

A DWORD is a 32 -bit unsigned integer (range: 0 through 4294967295 decimal). Because a DWORD is
unsigned, its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned long DWORD, *PDWORD, *LPDWORD;

http://go.microsoft.com/fwlink/?LinkId=90689
http://go.microsoft.com/fwlink/?LinkId=90689
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89903

18 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.10 DWORD_PTR

A DWORD_PTR is an unsigned long type used for pointer precision. It is used when casting a pointer
to an unsigned long type to perform pointer arithmetic. DWORD_PTR is also c ommonly used for

general 32 -bit parameters that have been extended to 64 bits in 64 -bit Windows. For more
information, see ULONG_PTR.

This type is declared as follows:

 typedef ULONG_PTR DWORD_PTR;

2.2.11 DWORD32

A DWORD32 is a 32 -bit unsigned integer.

This type is declared as follows:

 typedef unsigned int DWORD32;

2.2.12 DWORD64

A DWORD64 is a 64 -bit unsigned integer.

This type is declared as follows:

 typedef unsigned __int64 DWORD64, *PDWORD64;

2.2.13 DWORDLONG

A DWORDLONG is a 64 -bit unsigned integer (range: 0 through 18446744073709551615 decimal).

This type is declared as follows:

 typedef ULONGLONG DWORDLONG, *PDWORDLONG;

2.2.14 error_status_t

The error_status_t return type is used for all methods. This is a Win32 erro r code.

This type is declared as follows:

 typedef unsigned long error_status_t;

2.2.15 FLOAT

A float is a base type that is specified the IEEE Format section of [C706] .section 14.2.

This type is decl ared as follows:

 typedef float FLOAT;

http://go.microsoft.com/fwlink/?LinkId=89824

19 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.16 HANDLE

A Handle to an object

This type is declared as follows:

 typedef void* HANDLE;

2.2.17 HCALL

An HCALL is an alias for a DWORD used to specify a handle to a call, typically used in telephony -
related applications.

An HCALL is a 32 -bit unsigned integer used to store a handle to a call.

This type is declared as follows:

 typedef DWORD HCALL;

2.2.18 HRESULT

An HRESULT is a 32 -bit value that is used to describe an error or warning and contains the following

fields:

Á A 1 -bit code that indicates severity, where 0 represents success and 1 represents failure.

Á A 4 -bit reserved value.

Á An 11 -bit code, also know n as a facility code, that indicates responsibility for the error or warning.

Á A 16 -bit code that describes the error or warning.

For details on HRESULT values, see [MS -ERREF].

This type is declared as follows:

 typedef LONG HRESULT;

2.2.19 INT

An INT is a 32 -bit signed integer (range: ï2147483648 through 2147483647 decimal).

This type is declared as follows:

 typedef int INT, *LPINT;

2.2.20 INT8

An INT8 is an 8 -bit signed integer (range: ï128 through 127 decimal). The first bit (Most Significant
Bit (MSB)) is the signing bit.

This type is declared as follows:

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

20 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef signed char INT8;

2.2.21 INT16

An INT16 is a 16 -bit signed integer (range: ï32768 through 32767 decimal). The first bit (Most
Significan t Bit (MSB)) is the signing bit.

This type is declared as follows:

 typedef signed short INT16;

2.2.22 INT32

An INT32 is a 32 -bit signed integer (range: ï2147483648 through 2147483647 decimal). The first bit
(Most Significant Bit (MSB)) is the signing bit.

This type is declared as follows:

 typedef signed int INT32;

2.2.23 INT64

An INT64 is a 64 -bit signed integer (range: ï9223372036854775808 through 9223372036854775807
decimal). The first bit (Most Significant Bit (MSB)) is the signing bit.

This type is declared as foll ows:

 typedef signed __int64 INT64;

2.2.24 LDAP_UDP_HANDLE

A handle to an ADUDPHandle object that is used to represent the parameters used for
communication between a client and Active Directory servers.

This type is declared as follows:

 typedef void* LDAP_UDP_HANDLE;

2.2.25 LMCSTR

A LMCSTR is a 32 -bit pointer to a constant null - terminated string of 16 -bit Unicode characters.

This type is declared as follows:

 typedef const wchar_t* LMCSTR;

2.2.26 LMSTR

A LMSTR is a 32 -bit pointer to a null - terminated string of 16 -bit Unicode characters.

21 / 15 2

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This type is declared as follows:

 typedef WCHAR* LMSTR;

2.2.27 LONG

A LONG is a 32 -bit signed integer, in twos -complement format (range: ï2147483648 through
2147483647 decimal). The fi rst bit (Most Significant Bit (MSB)) is the signing bit.

This type is declared as follows:

 typedef long LONG, *PLONG, *LPLONG;

2.2.28 LONGLONG

A LONGLONG is a 64 -bit signed integer (range: ï9223372036854775808 through
9223372036854775807 decimal).

This type is d eclared as follows:

 typedef signed __int64 LONGLONG;

2.2.29 LONG_PTR

A LONG_PTR is a long type used for pointer precision. It is used when casting a pointer to a long type

to perform pointer arithmetic.

This type is declared as follows:

 typedef __int3264 LONG_PTR;

2.2.30 LONG32

A LONG32 is a 32 -bit signed integer.

This type is declared as follows:

 typedef signed int LONG32;

2.2.31 LONG64

A LONG64 is a 64 -bit signed integer.

This type is declared as follows:

 typedef signed __int64 LONG64, *PLONG64;

2.2.32 LPCSTR

An LPCSTR is a 32 -bit pointer to a constant null - terminated string of 8 -bit Windows (ANSI) characters.

22 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This type is declared as follows:

 typedef const char* LPCSTR;

2.2.33 LPCVOID

An LPCVOID is a 32 -bit pointer to a constant of any type.

This type is declared as follows:

 typedef const void* LPCVOID;

2.2.34 LPCWSTR

An LPCWSTR is a 32 -bit pointer to a constant string of 16 -bit Unicode characters, which MAY be null -

terminated.

This type is declared as follows:

 typedef const wchar_t* LPCWSTR;

2.2.35 LPSTR

The LPSTR type and its alias PSTR specify a pointer to an array of 8 -bit characters, which MAY be
terminated by a null character.

In some protocols, it is acceptable to not terminate with a null character, and this option will be
indicated in the specification. In this case, the LPSTR or P STR type MUST either be tagged with the
IDL modifier [string], that indicates string semantics, or be accompanied by an explicit length

specifier, for example [size_is()].

The format of the characters MUST be specified by the protocol that uses them. Two common 8 -bit
formats are ANSI and UTF - 8 .

A 32 -bit pointer to a string of 8 -bit characters, which MAY be null - terminated.

This type is declared as follows:

 typedef char* PSTR, *LPSTR;

2.2.36 LPWSTR

The LPWSTR type is a 32 -bit pointer to a string of 16 -bit Unicode characters, which MAY be null -
terminated. The LPWSTR type specifies a pointer to a sequence of Unicode characters, which MAY be

terminated by a null character (usually referred to as "null - termi nated Unicode").

In some protocols, an acceptable option is to not terminate a sequence of Unicode characters with a

null character. Where this option applies, it is indicated in the protocol specification. In this situation,
the LPWSTR or PWSTR type MUST either be tagged with the IDL modifier [string], which indicates
string semantics, or MUST be accompanied by an explicit length specifier, as specified in the
RPC_UNICODE_STRING (section 2.3.10) structure.

This type is declared as follows:

23 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef wchar_t* LPWSTR, *PWSTR;

2.2.37 NET_API_STATUS

The NET_API_STATUS type is commonly used as the return value of RPC methods in Microsoft
network proto cols. See the Win32 error codes as specified in [MS -ERREF] for details.

This type is declared as follows:

 typedef DWORD NET_API_STATUS;

2.2.38 NTSTATUS

NTSTATUS is a standard 32 -bit d atatype for system -supplied status code values.

NTSTATUS values are used to communicate system information. They are of four types: success
values, information values, warnings, and error values, as specified in [MS -ERREF].

This type is declared as follows:

 typedef long NTSTATUS;

2.2.39 PCONTEXT_HANDLE

The PCONTEXT_HANDLE type keeps state information associated with a given client on a server. The

state information is called the server's context. Clients can obtain a context handle to identify the
server's context for their individual RPC sessions.

A context handle must be of the void * type, or a type that resolves to void *. The server program

casts it to the required type.

The IDL attribute [context_handle] , as specified in [C706] , is used to declare PCONTEXT_HANDLE.

An interface that uses a context handle must have a binding han dle for the initial binding, which has
to take place before the server can return a context handle. The handle_t type is one of the

predefined types of the interface definition language (IDL), whi ch is used to create a binding handle.

 typedef [context_handle] void* PCONTEXT_HANDLE;

 typedef [ref] PCONTEXT_HANDLE* PPCONTEXT_HANDLE;

2.2.40 QWORD

A QWORD is a 64 -bit unsigned integer.

This type is declared as follows:

 typedef unsigned __int64 QWORD;

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
http://go.microsoft.com/fwlink/?LinkId=89824

24 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.41 RPC_BINDIN G_HANDLE

An RPC_BINDING_HANDLE is an untyped 32 -bit pointer containing information that the RPC run - time
library uses to access binding information. It is directly equivalent to the type rpc_binding_handle_t

described in [C706] section 3.1.4.

The RPC_BINDING_HANDLE data type declares a binding handle containing information that the RPC
run - time library uses to access binding information.

The run - time library use s binding information to establish a client/server relationship that allows the
execution of remote procedure calls. Based on the context in which a binding handle is created, it is
considered a server -binding handle or a client -binding handle.

A server -binding handle contains the information necessary for a client to establish a relationship with

a specific server. Any number of RPC API run - time routines return a server -binding handle that can be
used for making a remote procedure call.

A client -binding handle cannot be used to make a remote procedure call. The RPC run - time library

creates and provides a client -binding handle to a called -server procedure (also called a server -
manager routine) as the RPC_BINDING_HANDLE parameter. The client -binding handle contains
information about the calling client.

This type is declared as follows:

 typedef void* RPC_BINDING_HANDLE;

2.2.42 SHORT

A SHORT is a 16 -bit signed integer(range: ï32768 through 32767 decimal). The first bit (Most
Significant Bit (MSB)) is the signing bit.

This type is declared as follows:

 typedef short SHORT;

2.2.43 SIZE_T

SIZE_T is a ULONG_PTR representing the maximum number of bytes to which a pointer can point.

This type is declared as follows:

 typedef ULONG_PTR SIZE_T;

2.2.44 STRING

Unless otherwise noted, a STRING is a UCHAR buffer that represents a null - terminated string of 8 -bit
characters.

This type is declared as follows:

 typedef UCHAR* STRING;

http://go.microsoft.com/fwlink/?LinkId=89824

25 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.45 UCHAR

A UCHAR is an 8 -bit integer with the range: 0 through 255 decimal. Because a UCHAR is unsigned, its
first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned char UCHAR, *PUCHAR;

2.2.46 UIN T

A UINT is a 32 -bit unsigned integer (range: 0 through 4294967295 decimal). Because a UINT is
unsigned, its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned int UINT;

2.2.47 UINT8

A UINT8 is a n 8 -bit unsigned integer (range: 0 through 255 decimal). Because a UINT8 is unsigned,

its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned char UINT8;

2.2.48 UINT16

A UINT16 is a 16 -bit unsigne d integer (range: 0 through 65535 decimal). Because a UINT16 is
unsigned, its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned short UINT16;

2.2.49 UINT32

A UINT32 is a 32 -bit unsigned integer (range: 0 through 4294967295 decimal). Because a UINT32 is
unsigned, its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned int UINT32;

2.2.50 UINT64

A UINT64 is a 64 -bit unsigned integer (range: 0 through 18446744073709551615 decimal). Because
a UINT64 is unsigned, its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

26 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef unsigned __int64 UINT64;

2.2.51 ULONG

A ULONG is a 32 -bit unsigned integer (range: 0 through 4294967295 decimal). Because a ULONG is
unsigned, its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned long ULONG, *PULONG;

2.2.52 ULONG_PTR

A ULONG_PTR is an unsigned long type used for pointer precision. It is used when casting a pointer to
a long type to perform pointer arithmetic.

This type is declared as follows:

 typedef unsigned __int3264 ULONG_PTR;

2.2.53 ULONG32

A ULONG32 is an unsigned LONG3 2 .

This type is declared as follows:

 typedef unsigned int ULONG32;

2.2.54 ULONG64

A ULONG64 is a 64 -bit unsigned integer (range: 0 through 18446744073709551615 decimal).
Because a ULONG64 is unsigned, its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned __int64 ULONG64;

2.2.55 ULONGLONG

A ULONGLONG is a 64 -bit unsigned integer (range: 0 through 18446744073709551615 decimal).
Because a ULONGLONG is unsigned, its first bit (Most Significant Bit (MSB)) is not reserved for

signing.

This type is declared as follows:

 typedef unsigned __int64 ULONGLONG;

2.2.56 UNICODE

A single Unicode character.

27 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This type is declared as follows:

 typedef wchar_t UNICODE;

2.2.57 UNC

A Universal Naming Convention (UNC) string is used to speci fy the location of resources such as
shared files or devices.

For RPC implementations, this type is declared as follows:

 typedef STRING UNC;

There are three UNC schemes based on namespace selectors: filespace selector, Win32API selector,
and device selecto r. Only the filespace selector is parsed for on -wire traffic, the other two pass opaque

BLOBs to the consuming entity. The filespace selector is a null - terminated Unicode character string in
the following ABNF syntax:

 UNC = " \ \ " host - name " \ " share - name [" \ " object - name]

 host - name = "[" IPv6address ']" / IPv4address / reg - name

 ; IPv6address, IPv4address, and reg - name as specified in [RFC3986]

 share - name = 1*80pchar

 pchar = %x20 - 21 / %x23 - 29 / %x2D - 2E / %x30 - 39 / %x40 - 5A / %x5E - 7B / %x7D - FF

 object - name = *path - name [" \ " file - name]

 path - name = 1*255pchar

 file - name = 1*255fchar [":" stream - name [":" stream - type]]

 f char = %x20 - 21 / %x23 - 29 / %x2B - 2E / %x30 - 39 / %x3B / %x3D / %x40 - 5B / %x5D - 7B

/ %x7D- FF

 stream - name = *schar

 schar = %x01 - 2E / %x30 - 39 / %x3B - 5B /%x5D - FF

 stream - type = 1*schar

host - name: The host name of a server or the domain name of a domain hosting resource, using
the syntax of IPv6address, IPv4address, and reg -name as specified in [RFC3986] ,. The host -name
string MUST be a NetBIOS name as specified in [MS -NBTE] section 2.2.1, a fully qualified
domain name (FQDN) as specified in [RFC1035] and [RFC1123] , or an IPv4 address as specified
in [RFC1123] s ection 2.1 or an IPv6 address as specified in [RFC4291] section 2.2.

share - name: The name of a share or a resource to be accesse d. The format of this name depends

on the actual file server protocol that is used to access the share. Examples of file server protocols
include SMB (as specified in [MS -SMB]), NFS (as specified in [RFC3530]), and NCP (as specified in
[NOVELL]).

object - name: The name of an object; this name depends on the actual resource accessed.

The notation "[\ object - name]*" ind icates that zero or more object names exist in the path, and
each object -name is separated from the immediately preceding object - name with a backslash

path separator. In a UNC path used to access files and directories in an SMB share, for example,

object - n ame can be the name of a file or a directory. The host - name , share - name , and
object - name are referred to as "pathname components" or "path components". A valid UNC path
consists of two or more path components. The host - name is referred to as the "first pat hname
component", the share - name as the "second pathname component", and so on. The last
component of the path is also referred to as the "leaf component". The protocol that is used to
access the resource, and the type of resource that is being accessed, d efine the size and valid
characters for a path component. The only limitations that a Distributed File System (DFS)

places on path components are that they MUST be at least one character in leng th and MUST NOT
contain a backslash or null.

http://go.microsoft.com/fwlink/?LinkId=90453
%5bMS-NBTE%5d.pdf#Section_3461cfa83d284fa38163131bf1046fa3
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=90268
http://go.microsoft.com/fwlink/?LinkId=90464
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
http://go.microsoft.com/fwlink/?LinkId=90430

28 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

path - name : One or more pathname components separated by the " \ " backslash character. All
pathname components other than the last pathname component denote directories or reparse

points.

file - name : The "leaf component" of the path, optionally followed by a ":" colon character and a

stream - name , optionally followed by a ":" colon character and a stream type . The stream -
name , if specified, MAY be zero - length only if stream - type is also specified; otherwise, it MUST
be at least one character. The stream - type , if specified, MUST be at least one character.

2.2.58 USHORT

A USHORT is a 16 -bit unsigned integer (range: 0 through 65535 decimal). Because a USHORT is
unsigned, its first bit (Mos t Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned short USHORT;

2.2.59 VOID

VOID is an alias for void .

This type is declared as follows:

 typedef void VOID, *PVOID, *LPVOID;

2.2.60 WCHAR

A WCHAR is a 16 -bit Unicode c haracter.

This type is declared as follows:

 typedef wchar_t WCHAR, *PWCHAR;

2.2.61 WORD

A WORD is a 16 -bit unsigned integer (range: 0 through 65535 decimal). Because a WORD is unsigned,
its first bit (Most Significant Bit (MSB)) is not reserved for signing.

This type is declared as follows:

 typedef unsigned short WORD, *PWORD, *LPWORD;

2.3 Common Data Structures

This section contains common data structures that are defined in either C, C++, or ABNF .

2.3.1 EVENT_DESCRIPTOR

The EVENT_DESCRIPTOR structure specifies the metadata that defines an event.

 typedef struct _EVENT_DESCRIPTOR {

29 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 USHORT Id;

 UCHAR Version;

 UCHAR Channel;

 UCHAR Level;

 UCHAR Opcode;

 USHORT Task;

 ULONGLONG Keyword;

 } EVENT_DESCRIPTOR,

 *PEVENT_DESCRIPTOR,

 *PCEVENT_DESCRIPTOR;

Id: The event identifier.

Version: The version of the event, which indicates a revision to the event definition. The Version and

Id members uniquely identify the event within the scope of a provider.

Channel: Defines the audience for the event (for example, administrator or developer).

Level: Specifies the severity or level of detail included in the event (for example, informational or
fatal).

Opcode: Identifies a step in a sequence of operations being performed within a Task.

Task: Identifies a larger unit of work within an application or component (broader in scope than the
Opcode).

Keyword: A bitmask that specifies a logical group of related events. Each bit corresponds to one
group. An event can belong to one or more groups. The keyword can contain one or more
provider -defined keywords, standard keywords, or both.

This structure represents an event defined in a manifest and is included in the EVENT_HEADER
structure.

2.3.2 EVENT_HEADER

The EVENT_HEADER structure d efines the main parameters of an event.

 typedef struct _EVENT_HEADER {

 USHORT Size;

 USHORT HeaderType;

 USHORT Flags;

 USHORT EventProperty;

 ULONG ThreadId;

 ULONG ProcessId;

 LARGE_INTEGER TimeStamp;

 GUID ProviderId;

 EVENT_DESCRIPTOR EventDe scriptor;

 union {

 struct {

 ULONG KernelTime;

 ULONG UserTime;

 };

 ULONG64 ProcessorTime;

 };

 GUID ActivityId;

 } EVENT_HEADER,

 *PEVENT_HEADER;

Size: Size of the event record, in bytes.

HeaderType: Reserved.

30 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Flags: Flags that p rovide information about the event such as the type of session it was logged to
and whether the event contains extended data. This member can contain one or more of the

following flags.

Value Meaning

EVENT_HEADER_FLAG_EXTENDED_INFO The ExtendedData member of the event record contains data.

EVENT_HEADER_FLAG_PRIVATE_SESSION The event was logged to a private session.

EVENT_HEADER_FLAG_STRING_ONLY The event data is a null - terminated Unicode string.

EVENT_HEADER_FLAG_TRACE_MESSAGE The provider used an impl ementation -specific trace message
function to log the event.Typically indicates that the event was
written by the Windows software trace preprocessor.

EVENT_HEADER_FLAG_NO_CPUTIME Indicates that elapsed execution time was not recorded; the
ProcessorTime member can be used to determine the elapsed
execution time.

EVENT_HEADER_FLAG_32_BIT_HEADER Indicates that the provider was running on a 32 -bit computer or
in a WOW64 session.

EVENT_HEADER_FLAG_64_BIT_HEADER Indicates that the provider was running on a 64 -bit computer.

EVENT_HEADER_FLAG_CLASSIC_HEADER Indicates that provider used a trace event function to log the
event.

EventProperty: Indicates the source to use for parsing the event data.

Value Meaning

EVENT_HEADER_PROPERTY_XML Indicates that you ne ed a manifest to parse the event
data.

EVENT_HEADER_PROPERTY_FORWARDED_XML Indicates that the event data contains within itself a fully
rendered XML description of the data, so you do not need
a manifest to parse the event data.

EVENT_HEADER_PROPERTY_LEGACY_EVENTLOG Indicates that you need a WMI MOF class to parse the
event data.

ThreadId: Identifies the thread that generated the event.

ProcessId: Identifies the process that generated the event.

TimeStamp: Contains the time th at the event occurred. The resolution is system time unless the
ProcessTraceMode member of EVENT_TRACE_LOGFILE contains the
PROCESS_TRACE_MODE_RAW_TIMESTAMP flag, in which case the resolution depends on the

value of the Wnode.ClientContext member of EVENT_ TRACE_PROPERTIES at the time the
controller created the session.

ProviderId: GUID that uniquely identifies the provider that logged the event.

EventDescriptor: Defines information about the event such as the event identifier and severity level.

KernelTim e: Elapsed execution time for kernel -mode instructions, in CPU time units. For private
sessions, the value in the ProcessorTime member can be used instead.

UserTime: Elapsed execution time for user -mode instructions, in CPU time units. For private

sessio ns, the value in the ProcessorTime member can be used instead.

31 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ProcessorTime: For private sessions, the elapsed execution time for user -mode instructions, in CPU
ticks.

ActivityId: Identifier that relates two events.

The KernelTime and UserTime members c an be used to determine the CPU cost in units for a set of

instructions (the values indicate the CPU usage charged to that thread at the time of logging). For
example, if Event A and Event B are consecutively logged by the same thread and they have CPU
usa ge numbers 150 and 175, then the activity that was performed by that thread between events A
and B cost 25 CPU time units (175 ï 150).

2.3.3 FILETIME

The FILETIME structure is a 64 -bit value that repre sents the number of 100 -nanosecond intervals that
have elapsed since January 1, 1601, Coordinated Universal Time (UTC).

 typedef struct _FILETIME {

 DWORD dwLowDateTime;

 DWORD dwHighDateTime;

 } FILETIME,

 *PFILETIME,

 *LPFILETIME;

dwLowDateTime: A 32 -bit unsigned integer that contains the low -order bits of the file time.

dwHighDateTime: A 32 -bit unsigned integer that contains the high -order bits of the file time.

2.3.4 GUID and UUID

A GUID , also known as a UUID , is a 16 -byte structure, intended to serve as a unique identifier for an
object. There are three representations of a GUID, as described in the following sections.

2.3.4.1 GUID -- RPC IDL representation

The following structure is an IDL representation of GUID equivalent to and compatible with a DCE
UUID ([C706] section A.1) according to the following mappings.

 typedef struct _GUID {

 unsigned long Data1;

 unsigned short Data2;

 unsigned short Data3;

 byte Data4[8];

 } GUID,

 UUID,

 *PGUID;

Data1: This member is generally treated as an opaque value. This member is equival ent to the

time_low field of a DCE UUID ([C706] section A.1).

Data2: This member is generally treated as an opaque value. This member is equivalent to the
time_mid field of a DCE UUID ([C706] section A.1).

Data3: This member is generally treated as an op aque value. This member is equivalent to the
time_hi_and_version field of a DCE UUID ([C706] section A.1).

http://go.microsoft.com/fwlink/?LinkId=89824

32 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Data4: This array is generally treated as a sequence of opaque values. This member is equivalent to
the following sequence of fields of a DCE UUID ([C706] section A.1) in this order:

clock_seq_hi_and_reserved, clock_seq_low, and the sequence of bytes in the node field.

2.3.4.2 GUID -- Packet Representation

The packet version is used within block protocols. The following diagram represents a G UID as an
opaque sequence of bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Data1

Data2 Data3

Data4

...

Data1 (4 bytes): The value of the Data1 member (section 2.3.4), in little -endian byte order.

Data2 (2 bytes): The value of the Data2 member (section 2.3.4), in little -endian byte order.

Data3 (2 bytes): The value of the Data3 member (section 2.3.4), in little -endian byte order.

Data4 (8 bytes): The value of the Data4 member (section 2.3.4), in little -endian byte order.

2.3.4.3 GUID -- Curly Braced String Representation

The curly braced GUID string representation is a format commonly used for a string representation of

the GUID type (as specified in section 2.3.4.1) is described by the following ABNF syntax, as specified
in [RFC5234] .

 CurlyBraceGuidString = "{" UUID "}"

 Where UUID r epresents the string form of a UUID, as specified in [RFC4122] section 3. The non -
terminal symbol CurlyBraceGuidString represents (that is, generates) strings that satisfy the definition
of curly braced GUID string .

By way of illustration, the UUID string specified in [RFC4122] section 3 as an example would have the
following representation as a curly braced GUID string.

 {f81d4fae - 7dec - 11d0 - a765 - 00a0c91e6bf6}

2.3.5 LARGE_INTEGER

The LARGE_INTEGER structure is used to represent a 64 -bit signed integer value.

 typedef struct _LARGE_INTEGER {

 signed __int64 QuadPart;

 } LARGE_INT EGER,

 *PLARGE_INTEGER;

http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=90460

33 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.3.6 LCID

A language code identifier structure is stored as a DWORD. The lower word contains the language
identifier, and the upper word contains both the sorting identifier (ID) and a reserved value. For

additional details about the structure and possible values, see [MS -LCID] .

This type is declared as follows:

 typedef DWORD LCID;

2.3.7 LUID

The LUID structure is 64 -bit value guaranteed to be unique only on the system on which it was
generated. The uniqueness of a locally unique identifier (LUID) is guaranteed only until the system is
restarted.

 typedef struct _LUID {

 DWORD LowPart;

 LONG HighPart;

 } LUID,

 *PLUID;

LowPart: The low -order bits of the structure.

HighPart: The high -order bits of the structure.

2.3.8 MULTI_SZ

The MULTI_SZ structure defines an implementation -specific <2> type that contains a sequence of null -
terminated strings, terminated by an empty string (\ 0) so that the last two characters are both null
terminators.

 typedef struct _MULTI_SZ {

 wchar_t* Value;

 DWORD nChar;

 } MULTI_SZ;

Value: A data buffer, which is a string literal containing multiple null - terminated strings serially.

nChar: The length, in characters, including the two terminating nulls.

2.3.9 OBJECT_TYPE_LIST

The OBJECT_TYPE_LIST structure identifies an object type element in a hierarchy of object types. The

Access Check Algorithm Pseudocode functions (section 2.5.3.2) use an array of OBJECT_TYPE_LIST
structures to define a hierarchy of an object and its sub -objects, such as property sets and properties.

 typedef struct _OBJECT_TYPE_LIST {

 WORD Level;

 ACCESS_MASK Remaining;

 GUID* ObjectType;

 } OBJECT_TYPE_LIST,

 *POBJECT_TYPE_LIST;

%5bMS-LCID%5d.pdf#Section_70feba9f294e491eb6eb56532684c37f

34 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Level: Specifies the level of the object type in the hierarchy of an object and its sub -objects. Level
zero indicates the object itself. Level one indicates a sub -object of the object, such as a property

set. Level two indicates a sub -object of the level one sub -object, such as a property. There can be
a maximum of five levels numbered zero through four.

Value Meaning

ACCESS_OBJECT_GUID

0x0

Indicates the object itself at level zero.

ACCESS_PROPERTY_SET_GUID

0x1

Indicates a property set at level one.

ACCESS_PROPERTY_GUID

0x2

Indicates a property at level two.

ACCESS_MAX_LEVEL

0x4

Maximum level.

Remaining: Remaining access bits for this element, used by the access check algorithm, as specified
in section 2.5.3.2.

ObjectType: A pointer to the GUID for the object or sub -object.

2.3.10 RPC_UNICODE_STRING

The RPC_UNICODE_STRING structure specifies a Unicode string . This structure is defined in IDL as
follows:

 typedef struct _RPC_UNICODE_STRING {

 unsigned short Length;

 unsigned short MaximumLength;

 [size_is(MaximumLength/2), length_is(Length/2)]

 WCHAR* Buffer ;

 } RPC_UNICODE_STRING,

 *PRPC_UNICODE_STRING;

Length: The length, in bytes, of the string pointed to by the Buffer member, not including the
terminating null character if any. The length MUST be a multiple of 2. The length SHOULD equal
the entire size of the Buffer , in which case there is no terminating null character. Any method
that accesses this structure MUST use the Length specified instead of relying on the presence or
absence of a null character.

MaximumLength: The maximum size, in bytes, of the string pointed to by Buffer . The size MUST be

a multiple of 2. If not, the size MUST be decremented by 1 prior to use. This value MUST not be
less than Length .

Buffer: A pointer to a string buffer. If MaximumLength is greater than zero, the buffer MUST

contain a non -null value.

2.3.11 SERVER_INFO_100

The SERVER_INFO_100 structure contains information about the specified server, including the name
and platform.

 typedef struct _SERVER_INFO_100 {

 DWORD sv100_p latform_id;

35 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [string] wchar_t* sv100_name;

 } SERVER_INFO_100,

 *PSERVER_INFO_100,

 *LPSERVER_INFO_100;

sv100_platform_id: Specifies the information level to use for platform -specific information.

Name Value

PLATFORM_ID_DOS 300

PLATFORM_ID_OS2 400

PLATFORM_ID_NT 500

PLATFORM_ID_OSF 600

PLATFORM_ID_VMS 700

sv100_name: A pointer to a null - terminated Unicode UTF - 16 Internet host name or NetBIOS
host name of a server.

2.3.12 SERVER_INFO_101

The SERVER_INFO_101 structure contains information about the specified server, including the name,

platform, type of server, and associated software.

 typedef struct _SERVER_INFO_101 {

 DWORD sv101_platform_id;

 [string] wchar_t* sv101_name;

 DWORD sv101_version_major;

 DWORD sv101_version_minor;

 DWORD sv101_version_type;

 [string] wchar_t* sv101_comment;

 } SERVER_INFO_101,

 *PSERVER_INFO_101,

 *LPSERVER_INFO_101;

sv101_platform_id: Specifies the information level to use for platform -specific information.

Name Value

PLATFORM_ID_DOS 300

PLATFORM_ID_OS2 400

PLATFORM_ID_NT 500

PLATFORM_ID_OSF 600

PLATFORM_ID_VMS 700

sv101_name: A pointer to a null - terminated Unicode UTF -16 Internet host name or NetBIOS host

name of a server.

sv101_version_major: Specifies the major release version number of the operating system. The
server MUST set this field to an implementation -specific major release version number that
corresponds to the host operating system as specified in the following table.

36 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Operating System Major version

Windows NT 4.0 operating system 4

Windows 2000 operating system 5

Windows XP operating system 5

Windows Server 2003 operating system 5

Windows Vista operating system 6

Windows Server 2008 operating system 6

Windows Server 2008 R2 operating system 6

sv101_version_minor: Specifies the minor release version number of the operating system. The
server MUST set this field to an implementation -specific minor release version number that
corresponds to the host operating system as specified in the following table.

Operating System Minor version

Windows NT 4.0 0

Windows 2000 0

Windows XP 1

Windows Server 2003 2

Windows Vista 0

Windows Server 2008 0

Windows Server 2008 R2 1

sv101_version_type: The sv101_version_type field specifies the SV_TYPE flags, which indicate the

software services that are available (but not necessarily running) on the server. This member
MUST be a combination of one or more of the following values.

Constant/Value Description

SV_TYPE_WORKSTATION

0x00000001

A server running the WorkStation Service.

SV_TYPE_SERVER

0x00000002

A server running the Server Service.

SV_TYPE_SQLSERVER

0x00000004

A server running SQL Server.

SV_TYPE_DOMAIN_CTRL

0x00000008

A primary domain controller.

SV_TYPE_DOMAIN_BAKCTRL

0x00000010

A backup domain controller.

SV_TYPE_TIME_SOURCE

0x00000020

A server is available as a time source for network time synchronization.

37 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/Value Description

SV_TYPE_AFP

0x00000040

An Apple File Protocol server.

SV_TYPE_NOVELL

0x00000080

A Novell server.

SV_TYPE_DOMAIN_MEMBER

0x00000100

A LAN Manager 2.x domain member.

SV_TYPE_PRINTQ_SERVER

0x00000200

A server sharing print queue.

SV_TYPE_DIALIN_SERVER

0x00000400

A server running a dial - in service.

SV_TYPE_XENIX_SERVER

0x00000800

A Xenix server.

SV_TYPE_NT

0x00001000

Windows Server 2003, Windows XP, Windows 2000, or Windows NT operating
system.

SV_TYPE_WFW

0x00002000

A server running Windows for Workgroups.

SV_TYPE_SERVER_MFPN

0x00004000

Microsoft File and Print for NetWare.

SV_TYPE_SERVER_NT

0x00008000

Windows Server 2003, Windows 2000 Server operating system, or a server
that is not a domain controller.

SV_TYPE_POTENTIAL_BROWSER

0x00010000

A server that can run the browser service.

SV_TYPE_BACKUP_BROWSER

0x00020000

A server running a browser service as backup.

SV_TYPE_MASTER_BROWSER

0x00040000

A server running the master browser service.

SV_TYPE_DOMAIN_MASTER

0x00080000

A server running the domain master browser.

SV_TYPE_WINDOWS

0x00400000

Windows Millennium Edition operating system, Microsoft Windows 98
operating system, or Windows 95.

SV_TYPE_TERMINALSERVER

0x02000000

Terminal Server.

SV_TYPE_CLUSTER_VS_NT

0x04000000

Cluster virtual servers available in the domain.

SV_TYPE_LOCAL_LIST_ON LY

0x40000000

Servers maintained by the browser.

SV_TYPE_DOMAIN_ENUM

0x80000000

Primary domain.

38 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/Value Description

SV_TYPE_ALL

0xFFFFFFFF

All servers.

sv101_comment: A pointer to a null - terminated Unicode UTF -16 string that specifies a comment
that describes the server.

2.3.13 SYSTEMTIME

 The SYSTEMTIME structure is a date and time, in Coordinated Universal Time (UTC), represented by
using individual WORD-sized structure members for the month, day, year, day of week, hour, minute,
second, and millisecond.

 typedef struct _SYSTEMTIME {

 WORD wYear;

 WORD wMonth;

 WORD wDayOfWeek;

 WORD wDay;

 WORD wHour;

 WORD wMinute;

 WORD wSecond;

 WORD wMilliseconds;

 } SYSTEMTIME,

 *PSYSTEMTIME;

2.3.14 UINT128

The UINT128 structure is intended to hold 128 -bit unsigned integers, such as an IPv6 destination
address.

 typedef struct _UINT128 {

 UINT64 lower;

 UINT64 upper;

 } UINT128,

 *PUINT128;

2.3.15 ULA RGE_INTEGER

The ULARGE_INTEGER structure is used to represent a 64 -bit unsigned integer value.

 typedef struct _ULARGE_INTEGER {

 unsigned __int64 QuadPart;

 } ULARGE_INTEGER,

 *PULARGE_INTEGER;

2.4 Constructed Security Types

The following types are used to specify structures that are specific to the Windows security model.

2.4.1 SID_IDENTIFIER_AUTHORITY

The SID_IDENTIFIER_AUTHORITY structure represents the top - level authority of a security identifier
(SID).

39 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Value

...

Value (6 bytes): An array of six 8 -bit unsigned integers that specify the top - level authority of a SID ,
RPC_SID , and LSAPR_SID_INFORMATION.

The identifie r authority value identifies the domain security authority that issued the SID. The

following identifier authorities are predefined for wire traffic.

Identifier Authority Meaning

NULL_SID_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x00}

Specifies the NULL SID authority. It defines only the NULL
well -known -SID: S -1-0-0.

WORLD_SID_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x01}

Specifies the World SID authority. It only defines the
Everyone well -known -SID: S -1-1-0.

LOCAL_SID_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x02}

Specifies the Local SID authority. It defines only the Local
well -known -SID: S -1-2-0.

CREATOR_SID_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}

Specifies the Creator SID authority. It defines the Creator

Owner , Creator Group , and Creator Owner Server well -
known -SIDs: S -1-3-0, S -1-3-1, and S -1-3-2. These SIDs are
used as placeholders in an access control list (ACL) and are
replaced by the user, group, and machine SIDs of the
security principal.

NON_UNIQUE_AUTHORITY

{0x00, 0x00, 0x0 0, 0x00, 0x00, 0x04}

Not used.

SECURITY_NT_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x05}

Specifies the Windows NT security subsystem SID authority.
It defines all other SIDs in the forest.

SECURITY_APP_PACKAGE_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x 0F}

Specifies the application package authority. It defines
application capability SIDs.

SECURITY_MANDATORY_LABEL_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x10}

Specifies the Mandatory label authority. It defines the
integrity level SIDs.

SECURITY_SCOPED_POLICY_ID_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x11}

Specifies the Scoped Policy Authority. It defines all other
scoped policy SIDs in the forest. <3>

SECURITY_AUTHENTICATI ON_AUTHORITY

{0x00, 0x00, 0x00, 0x00, 0x00, 0x12}

Specifies the authentication authority asserting the clientôs
identity. It defines only the following well -known SIDs: S -1-
18 -1, and S -1-18 -2. <4>

2.4.1.1 RPC_SID_IDENTIFIER_AUTHORITY

The RPC_SID_IDENTIFIER_AUTHORITY structure is a representation of a security identifier (SID)
authority, as specified by the SID_IDENTIFIER_AUTHORITY structure. This structure is defined in IDL
as follows.

40 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef struct _RPC_SID_IDENTIFIER_AUTHORITY {

 byte Value[6];

 } RPC_SID_IDENTIFIER_AUTHORITY;

For individual member semantics of the SID_IDENTIFIER_AUTHORITY struc ture, see section 2.4.1.

2.4.2 SID

A security identifier (SID) uniquely identifies a security principal. Each security principal has a unique
SID that is issued by a security agent. The agent can be a Windows local system or domain. The agent

generates the SID when the security principal is created. The SID can be represented as a character
string or as a structure. When represented as strings, for example in documentation or logs, SIDs are
expressed as follows:

 S- 1- IdentifierAuthority - SubAuthority1 - SubAuthorit y2 - ... - SubAuthorityn

The top - level issuer is the authority. Each issuer specifies, in an implementation -specific manner, how
many integers identify the next issuer.

A newly created account store is assigned a 96 -bit identifier (a cryptographic strength (ps eudo)
random number).

A newly created security principal in an account store is assigned a 32 -bit identifier that is unique
within the store.

The last item in the series of SubAuthority values is known as the relative identifier (RID) .

Differences in the RID are what distinguish the different SIDs generated within a domain.

Consumers of SIDs SHOULD NOT rely on anything more than that the SID has the appropriate
structure.

The formal string syntax is given in section 2.4.2.1 .

The packet representation of the SID structure used by block protocols is defined in section 2.4.2.2 .

The RPC marshaled version o f the SID structure is defined in section 2.4.2.3 .

2.4.2.1 SID String Format Syntax

The SID string format syntax, a format commonly used for a string representation of the SID type (as
specified in section 2.4.2), is described by the following ABNF syntax, as specified in [RFC5234] .

 SID= "S - 1- " IdentifierAuthority 1*SubAuthority

 Iden tifierAuthority= IdentifierAuthorityDec / IdentifierAuthorityHex

 ; If the identifier authority is < 2^32, the

 ; identifier authority is represented as a decimal

 ; number

 ; If the identifier authority is >= 2^32,

 ; the identifier authority is rep resented in

 ; hexadecimal

 IdentifierAuthorityDec = 1*10DIGIT

 ; IdentifierAuthorityDec, top level authority of a

 ; security identifier is represented as a decimal number

 IdentifierAuthorityHex = "0x" 12HEXDIG

 ; IdentifierAuthorityHex, the top - lev el authority of a

 ; security identifier is represented as a hexadecimal number

 SubAuthority= " - " 1*10DIGIT

 ; Sub - Authority is always represented as a decimal number

 ; No leading "0" characters are allowed when IdentifierAuthority

http://go.microsoft.com/fwlink/?LinkId=123096

41 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ; or SubAuthority is represented as a decimal number

 ; All hexadecimal digits must be output in string format,

 ; pre - pended by "0x"

2.4.2.2 SID -- Packet Representation

This is a packet representation of the SID type (as specified in section 2.4.2) for use by block
protocols. Multiple -byte fields are transmitted on the wire with an endianness specified by the protocol
in question.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Revision SubAuthorityCount IdentifierAuthority

...

SubAuthority (variable)

...

Revision (1 byte): An 8 -bit unsigned integer that specifies the revision level of the SID. This value
MUST be set to 0x01.

SubAuthorityCount (1 byte): An 8 -bit unsigned integer that specifies the number of elements in the
SubAuthority array. The maximum number of elements allowed is 15.

IdentifierAuthority (6 bytes): A SID_IDENTIFIER_AUTHORITY structure that indicates the authority
under which the SID was created. It describes the entity that created the SID. The Identifier
Authority value {0,0,0,0,0,5} denotes SIDs created by the NT SID authority.

SubAuthority (variable): A variable length array of unsigned 32 -bit integers that uniquely identifies

a principal relative to the IdentifierAuthority . Its length is determined by SubAuthorityCount .

2.4.2.3 RPC_SID

The RPC_SID structure is an IDL representation of the SID type (as specified in section 2.4.2) for use
by RPC-based protocols.

 typedef struct _RPC_SID {

 unsigned char Revision;

 unsigned char SubAuthorit yCount;

 RPC_SID_IDENTIFIER_AUTHORITY IdentifierAuthority;

 [size_is(SubAuthorityCount)] unsigned long SubAuthority[];

 } RPC_SID,

 *PRPC_SID,

 *PSID;

Revision: An 8 -bit unsigned integer that specifies the revision level of the SID. This value MUST be
set to 0x01.

SubAuthorityCount: An 8 -bit unsigned integer that specifies the number of elements in the
SubAuthority array. The maximum number of elements allowed is 15.

42 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

IdentifierAuthority: An RPC_SID_IDENTIFIER_AUTHORITY structure that indicates the authority
under which the SID was created. It describes the entity that created the SID. The Identifier

Authority value {0,0,0,0,0,5} denotes SIDs created by the NT SID authority.

SubAuthority: A va riable length array of unsigned 32 -bit integers that uniquely identifies a principal

relative to the IdentifierAuthority . Its length is determined by SubAuthorityCount .

2.4.2.4 Well -Known SID Structures

Well -known SID structures are a group of SIDs that identify generic users or generic groups. Their

values remain constant across all operating systems.

The <root -domain> identifier represents the thre e sub -authority values associated with the root
domain, which is the first domain that is created in an Active Directory forest infrastructure. The
<domain> identifier represents the three sub -authority values associated with any domain, and the
<machine> identifier represents the three sub -authority values associated with a specific machine.
Root domain ïbased groups like the Enterprise and Schema administrators have forestwide
permissions.

For example, given a SID defined in the table below as S -1-5-21 -<do main> -513, and the actual
instance of the domain having the three sub authority values of 1, 2, and 3:

S- 1 : Indicates a revision or version 1 SID.

5 : SECURITY_NT_AUTHORITY, indicates it's a Windows specific SID.

21 : SECURITY_NT_NON_UNIQUE, indicates a doma in id will follow.

1 - 2 - 3 : The next three SubAuthority arrays contain 32 -bit random numbers to uniquely identify the
domain.

RID : Indicates a unique object ID within the domain.

The actual constructed SID would be S -1-5-21 -1-2-3-513.

The following table lis ts well -known SID structure values and their matching descriptions.

Constant/value Description

NULL

S-1-0-0

No Security principal.

EVERYONE

S-1-1-0

A group that includes all users.

LOCAL

S-1-2-0

A group that includes all users who have
logged on locally.

CONSOLE_LOGON

S-1-2-1

A group that includes users who are logged
on to the physical console. This SID can be
used to implement security policies that grant
different rights based on whether a user has
been granted physical access to the
console. <5>

CREATOR_OWNER

S-1-3-0

A placeholder in an inheritable access control
entry (ACE) . When the ACE is inherited, the
system replaces this SID with the SID for the
object's creator.

43 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

CREATOR_GROUP

S-1-3-1

A placeholder in an inheritable ACE. When the
ACE is inherited, the system replaces this SID
with the SID for the primary group of the
object's creator.

OWNER_SERVER

S-1-3-2

A placeholder in an inheritable ACE. When the
ACE is inherited, the system replaces this SID
with the SID for the object's owner
server. <6>

GROUP_SERVER

S-1-3-3

A placeholder in an inheritabl e ACE. When the
ACE is inherited, the system replaces this SID
with the SID for the object's group

server. <7>

OWNER_RIGHTS

S-1-3-4

A group that represents the current owner of
the object. Whe n an ACE that carries this SID
is applied to an object, the system ignores the
implicit READ_CONTROL and WRITE_DAC
permissions for the object owner.

NT_AUTHORITY

S-1-5

A SID containing only the
SECURITY_NT_AUTHORITY identifier
authority.

DIALUP

S-1-5-1

A group that includes all users who have
logged on through a dial -up connection.

NETWORK

S-1-5-2

A group that includes all users who have
logged on through a network connection.

BATCH

S-1-5-3

A group that includes all users who have
logged on through a batch queue facility.

INTERACTIVE

S-1-5-4

A group that includes all users who have
logged on interactively.

LOGON_ID

S-1-5-5-x-y

A logon session. The X and Y values for these
SIDs are different for each logon session and
are recycled when the operating system is
restarted.

SERVICE

S-1-5-6

A group that includes all security principals
that have logged on as a service.

ANONYMOUS

S-1-5-7

A group that represents an anonymous logon.

PROXY

S-1-5-8

Identifies a SECURITY_NT_AUTHORITY
Proxy. <8>

ENTERPRISE_DOMAIN_CONTROLLERS

S-1-5-9

A group that includes all domain controllers in
a forest that uses an Active Directory
directory service.

PRINCIPAL_SELF

S-1-5-10

A placeholder in an inheritable ACE on an
account object or group object in Active
Directory. When the ACE is inherited, the
system replaces this SID with the SID for the
security principal that holds the account .

44 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

AUTHENTICATED_USERS

S-1-5-11

A group that includes all users whose
identities were authenticated when they
logged on.

RESTRICTED_CODE

S-1-5-12

This SID is used to control access by
untrusted code. ACL validation against tokens
with RC consists of two checks, one against
the token's normal list of SIDs and one
against a second list (typically containing RC -
the "RESTRICTED_CODE" token - and a
subset of the original token SIDs). Access is
grant ed only if a token passes both tests. Any
ACL that specifies RC must also specify WD -
the "EVERYONE" token. When RC is paired
with WD in an ACL, a superset of
"EVERYONE", including untrusted code, is
described.

TERMINAL_SERVER_USER

S-1-5-13

A group that includes all users who have
logged on to a Terminal Services server.

REMOTE_INTERACTIVE_LOGON

S-1-5-14

A group that includes all users who have
logged on through a terminal services logon.

THIS_ORGANIZATION

S-1-5-15

A group that includes all users from the same
organization . If this SID is present, the
OTHER_ORGANIZATION SID MUST NOT be
present. <9>

IUSR

S-1-5-17

An account that is used by the default
Internet Information Services (IIS) user.

LOCAL_SYSTEM

S-1-5-18

An account that is used by the operating
system.

LOCAL_SERVICE

S-1-5-19

A local service account.

NETWORK_SERVICE

S-1-5-20

A network service account.

ENTERPRISE_READONLY_DOMAIN_CONTROLLERS

S-1-5-21 -<root domain> -498

A universal group containing all read -only
domain controllers in a forest.

COMPOUNDED_AUTHENTICATION

S-1-5-21 -0-0-0-496

Device identity is included in the Kerberos
service ticket. If a forest boundary was
crossed, then claims transformation
occurred. <10>

CLAIMS_VALID

S-1-5-21 -0-0-0-497

Claims were queried for in the account's
domain, and if a forest boundary was crossed,
then claims transformation occurred. <11>

ADMINISTRATOR

S-1-5-21 -<machine> -500

A user account for the system administrator.
By default, it is the only user account that is
given full control over the system.

GUEST

S-1-5-21 -<machine> -501

A user account for people who do not have
individual accounts. This user account does
not require a password. By default, the Guest

45 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

account is disabled.

DOMAIN_ADMINS

S-1-5-21 -<domain> -512

A global group whose members are
authorized to administer the domain. By
default, the DOMAIN_ADMINS group is a
member of the Administrators group on all
computers that have joined a domain,
including the domain controllers.
DOMAIN_ADMINS is the default owner of any
object that is created by any member of the
group.

DOMAIN_USERS

S-1-5-21 -<domain> -513

A global group that includes all user accounts

in a domain.

DOMAIN_GUESTS

S-1-5-21 -<domain> -514

A global group that has only one member,
which is the built - in Guest account of the
domain.

DOMAIN_COMPUTERS

S-1-5-21 -<domain> -515

A global group that includes all clients and
servers that have joined the domain.

DOMAIN_DOMAIN_CONTROLLERS

S-1-5-21 -<domain> -516

A global group that includes all domain
controllers in the domain.

CERT_PUBLISHERS

S-1-5-21 -<domain> -517

A global group that includes all computers
that are running an enterprise certification
authority. Cert Publishers are authorized to
publish certific ates for User objects in Active
Directory.

SCHEMA_ADMINISTRATORS

S-1-5-21 -<root -domain> -518

A universal group in a native -mode domain,
or a global group in a mixed -mode domain.

The group is authorized to make schema
changes in Active Directory.

ENTERPRISE_ADMINS

S-1-5-21 -<root -domain> -519

A universal group in a native -mode domain,
or a global group in a mixed -mode domain.
The group is authorized to make forestwide
changes in Active Directory, such as adding
child domains.

GROUP_POLICY_CREATOR_OWNERS

S-1-5-21 -<domain> -520

A global group that is authorized to create
new Group Policy Objects in Active Directory.

READONLY_DOMAIN_CONTROLLERS

S-1-5-21 -<domain> -521

A global group that includes all read -only
domain controllers.

CLONEABLE_CONTROLLERS

S-1-5-21 -<domain> -522

A global group that includes all domain
controllers in the domain that can be cloned.

PROTECTED_USERS

S-1-5-21 -<domain> -525

A global group that are afforded additional
protections against authentication security

threats. <12> For more information, see [MS -
APDS] and [MS -KILE] .

RAS_SERVERS

S-1-5-21 -<domain> -553

A domain local group for Remote Access
Services (RAS) servers . Servers in this
group have Read Account Restrictions and
Read Logon Information access to User
objects in the Active Directory domain local

%5bMS-APDS%5d.pdf#Section_dd444344fd7e430eb3137e95ab9c338e
%5bMS-APDS%5d.pdf#Section_dd444344fd7e430eb3137e95ab9c338e
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9

46 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

group.

BUILTIN_ADMINISTRATORS

S-1-5-32 -544

A built - in group. After the initial installation of
the operating system, the only member of the
group is the Administrator account. When a
computer joins a domain, the Domain
Administrators group is added to the
Administrators group. When a server becomes
a domain controller, the Enterprise
Administrators group also is added to the
Administrators group.

BUILTIN_USERS

S-1-5-32 -545

A built - in group. After the initial installation of

the operating system, the only member is the
Authenticated Users group. When a computer
joins a domain, the Domain Users group is
added to the Users group on the computer.

BUILTIN_GUESTS

S-1-5-32 -546

A built - in group. The Guests gr oup allows
users to log on with limited privileges to a
computer's built - in Guest account.

POWER_USERS

S-1-5-32 -547

A built - in group. Power users can perform the
following actions:

Á Create local users and groups.

Á Modify and delete accounts that they
have c reated.

Á Remove users from the Power Users,
Users, and Guests groups.

Á Install programs.

Á Create, manage, and delete local
printers.

Á Create and delete file shares.

ACCOUNT_OPERATORS

S-1-5-32 -548

A built - in group that exists only on domain
controllers. Accoun t Operators have
permission to create, modify, and delete
accounts for users, groups, and computers in
all containers and organizational units of
Active Directory except the Built - in container
and the Domain Controllers OU. Account
Operators do not have pe rmission to modify
the Administrators and Domain
Administrators groups, nor do they have
permission to modify the accounts for
members of those groups.

SERVER_OPERATORS

S-1-5-32 -549

A built - in group that exists only on domain
controllers. Server Operators can perform the
following actions:

Á Log on to a server interactively.

Á Create and delete network shares.

Á Start and stop services.

47 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

Á Back up and restore files.

Á Format the hard disk of a computer.

Á Shut down the computer.

PRINTER_OPERATORS

S-1-5-32 -550

A built - in group that exists only on domain
controllers. Print Operators can manage
printers and document queues.

BACKUP_OPERATORS

S-1-5-32 -551

A built - in group. Backup Operators can back
up and restore all files on a computer,
regardless of the permissions that protect
those files.

REPLICATOR

S-1-5-32 -552

A built - in group that is used by the File
Replication Service (FRS) on domain
controllers.

ALIAS_PREW2KCOMPACC

S-1-5-32 -554

A backward compatibility group that allows
read access on all users and groups in the
domain. <13>

REMOTE_DESKTOP

S-1-5-32 -555

An alias. Members of this group are granted
the right to log on remotely. <14>

NETWORK_CONFIGURATION_OPS

S-1-5-32 -556

An alias. Members of this group can have
some administrative privileges to manage
configuration of networking features. <15>

INCOMING_FOREST_TRUST_BUILDERS

S-1-5-32 -557

An alias. Members of this group can create
incoming, one -way trusts to this forest. <16>

PERFMON_USERS

S-1-5-32 -558

An alias. Members of this grou p have remote
access to monitor this computer. <17>

PERFLOG_USERS

S-1-5-32 -559

An alias. Members of this group have remote
access to schedule the logging of performance
counters on this comp uter. <18>

WINDOWS_AUTHORIZATION_ACCESS_GROUP

S-1-5-32 -560

An alias. Members of this group have access
to the computed
tokenGroupsGlobalAndUniversal attribute on
User objects. <19>

TERMINAL_SERVER_LICENSE_SERVERS

S-1-5-32 -561

An alias. A group for Terminal Server License
Servers. <20>

DISTRIBUTED_COM _USERS

S-1-5-32 -562

An alias. A group for COM to provide
computer -wide access controls that govern
access to all call, activation, or launch
requests on the computer. <21>

IIS_IUSRS

S-1-5-32 -568

A built - in group account for IIS users.

CRYPTOGRAPHIC_OPERATORS

S-1-5-32 -569

A built - in group account for cryptographic
operators. <22>

EVENT_LOG_READERS A built - in local group. Members of this group
can read event logs from the local

48 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

S-1-5-32 -573 machine. <23>

CERTIFICATE_SERVICE_DCOM_ACCESS

S-1-5-32 -574

A built - in local group. Members of this group
are allowed to connect to Certification
Authorities in the enterprise. <24>

RDS_REMOTE_ACCESS_SERVERS

S-1-5-32 -575

A group that allows members use of Remote
Application Services resources.

RDS_ENDPOINT_SERVERS

S-1-5-32 -576

A group that enables member servers to run
virtual machines and host sessions.

RDS_MANAGEMENT_SERVERS

S-1-5-32 -577

A group that allows members to access WMI
resources over manag ement protocols (such
as WS -Management via the Windows Remote
Management service).

HYPER_V_ADMINS

S-1-5-32 -578

A group that gives members access to all
administrative features of Hyper -V.

ACCESS_CONTROL_ASSISTANCE_OPS

S-1-5-32 -579

A local group that allo ws members to
remotely query authorization attributes and
permissions for resources on the local
computer.

REMOTE_MANAGEMENT_USERS

S-1-5-32 -580

Members of this group can access Windows
Management Instrumentation (WMI)
resources over management protocols (such
as WS -Management [DMTF -DSP0226]). This
applies only to WMI namespaces that grant
access to the user.

WRITE_RESTRICTED_CODE

S-1-5-33

A SID that allows objects to have an ACL that
lets any service process with a write -
restricted token to write to the object.

NTLM_AUTHENTICATION

S-1-5-64 -10

A SID that is used when the NTLM
authentication package authenticated the
client.

SCHANNEL_AUTHENTICATION

S-1-5-64 -14

A SID that is used when the SChannel
authentication package authenticated the
client.

DIGEST_A UTHENTICATION

S-1-5-64 -21

A SID that is used when the Digest
authentication package authenticated the
client.

THIS_ORGANIZATION_CERTIFICATE

S-1-5-65 -1

A SID that indicates that the client's Kerberos
service ticket's PAC contained a
NTLM_SUPPLEMENTAL_CREDENTIAL structure
(as specified in [MS -PAC] section 2.6.4). If
the OTHER_ORGANIZATION SID is present,

then this SID MUST NOT be present. <25>

NT_SERVICE

S-1-5-80

An NT Service account prefix.

USER_MODE_DRIVERS

S-1-5-84 -0-0-0-0-0

Identifies a user -mode driver process.

%5bMS-PAC%5d.pdf#Section_166d8064c86341e19c23edaaa5f36962

49 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

LOCAL_ACCOUNT

S-1-5-113

A group that includes all users who are local
accounts. <26>

LOCAL_ACCOUNT_AND_MEMBER_OF_ADMINISTRATORS_GROUP

S-1-5-114

A group that includes all users who are local
accounts and members of the administrators
group. <27>

OTHER_ORGANIZATION

S-1-5-1000

A group that includes all users and computers
from another organization. If this SID is
present, THIS_ORGANIZATION SID MUST
NOT be present. <28>

ALL_APP_PACKAGES

S-1-15 -2-1

All applications running in an app package
context.

ML_UNTRUSTED

S-1-16 -0

An untrusted integrity level.

ML_LOW

S-1-16 -4096

A low integrity level.

ML_MEDIUM

S-1-16 -8192

A medium integrity level.

ML_MEDIUM_PLUS

S-1-16 -8448

A medium -plus integrity level.

ML_HIGH

S-1-16 -12288

A high integrity level.

ML_SYSTEM

S-1-16 -16384

A system integrity level.

ML_PROTECTED_PROCESS

S-1-16 -20480

A protected -process integrity level.

AUTHENTICATION_AUTHORITY_ASSERTED_IDENTITY

S-1-18 -1

A SID that means the client's identity is
asserted by an authentication authority based
on proof of possession of client
credentials. <29> <30>

SERVICE_ASSERTED_IDENTITY

S-1-18 -2

A SID that means the client's identity is
asserted by a service. <31> <32>

FRESH_PUBLIC_KEY_IDENTITY

S-1-18 -3

A SID that means the client's identity is
asserted by an authentication authority based
on proof of current possession of client public
key credentials. <33>

KEY_TRUST_IDENTITY

S-1-18 -4

A SID that means the client's identity is based
on proof of possession of public key
credentials using the key trust object. <34>

KEY_PROPERTY_MFA

S-1-18 -5

A SID that means the key trust object had the

multifactor authentication (MFA)

property. <35>

KEY_PROPERTY_ATTESTATION

S-1-18 -6

A SID that means the key trust object had the

attestation property. <36>

50 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.4.3 ACCESS_MASK

An ACCESS_MASK is a 32 -bit set of flags that are used to encode the user rights to an object. An
access mask i s used both to encode the rights to an object assigned to a principal and to encode the
requested access when opening an object.

The bits with an X value in the table below are used for object -specific user rights. A file object would
encode, for example, Read Access and Write Access. A registry key object would encode Create

Subkey and Read Value, for example.

Note The bits with a value of X are reserved for use by specific protocols that make use of the
ACCESS_MASK data type. The nature of this usage dif fers according to each protocol and is
implementation -specific.

The bits in positions 0 through 3 in the following table are generic rights that can be mapped to
object -specific user rights by the resource manager for the requested object. The mapping of these

rights is implementation -specific.

The bits with an R value in the table below are reserved.

The bits in positions 6 and 7 are for maximum allowed and access system security rights.

The bit s in positions 11 through 15 are standard rights that are common to all objects.

If the GR / GW / GX / GA bits are set in an ACE structure that is already attached to an object, requesting
access might produce unintended results. This is because the Access Check algorithm does not map
generic rights to object -specific rights for ACE structures. This mapping is only made for the req uested
ACCESS_MASK passed as a parameter to the Access Check algorithm, as specified in section 2.5.3.2 .

 typedef DWORD ACCESS_MASK;

 typedef ACCESS_MASK* PACCESS_MASK;

Figure 2 : Access mask bitmap table

Where the bits are defined as shown in the following table.

Value Description

GR

GENERIC_READ

0x80000000L

When used in an Access Request operation: When read access to an
object is requested, this bit is translated to a combination of bits. These are
most often set in the lower 16 bits of the ACCESS_MASK. (Individual
protocol specifications MAY specify a different configuration.) The bits that
are set are implementation dependent. During this translation, the GR bit is
cleared. The resulting ACCESS_MASK bits are the actual permissions that
are checked against the ACE structures in the security descriptor that
attached to the object.

When used to set th e Security Descriptor on an object: When the GR bit
is set in an ACE that is to be attached to an object, it is translated into a
combination of bits, which are usually set in the lower 16 bits of the
ACCESS_MASK. (Individual protocol specifications MAY sp ecify a different

51 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

configuration.) The bits that are set are implementation dependent. During
this translation, the GR bit is cleared. The resulting ACCESS_MASK bits are
the actual permissions that are granted by this ACE.

GW

GENERIC_WRITE

0x4000000L

When used in an Access Request operation: When write access to an
object is requested, this bit is translated to a combination of bits, which are
usually set in the lower 16 bits of the ACCESS_MASK. (Individual protocol
specifications MAY specify a different c onfiguration.) The bits that are set
are implementation dependent. During this translation, the GW bit is
cleared. The resulting ACCESS_MASK bits are the actual permissions that
are checked against the ACE structures in the security descriptor that
attache d to the object.

When used to set the Security Descriptor on an object: When the GW bit
is set in an ACE that is to be attached to an object, it is translated into a
combination of bits, which are usually set in the lower 16 bits of the
ACCESS_MASK. (Indiv idual protocol specifications MAY specify a different
configuration.) The bits that are set are implementation dependent. During
this translation, the GW bit is cleared. The resulting ACCESS_MASK bits are
the actual permissions that are granted by this ACE .

GX

GENERIC_EXECUTE

0x20000000L

When used in an Access Request operation: When execute access to an
object is requested, this bit is translated to a combination of bits, which are
usually set in the lower 16 bits of the ACCESS_MASK . (Individual protocol
specifications MAY specify a different configuration.) The bits that are set
are implementation dependent. During this translation, the GX bit is
cleared. The resulting ACCESS_MASK bits are the actual permissions that
are checked aga inst the ACE structures in the security descriptor that
attached to the object.

When used to set the Security Descriptor on an object: When the GX bit
is set in an ACE that is to be attached to an object, it is translated into a
combination of bits, which are usually set in the lower 16 bits of the
ACCESS_MASK. (Individual protocol specifications MAY specify a different
configuration.) The bits that are set are implementation dependent. During
this translation, the GX bit is cleared. The resulting ACCESS_MA SK bits are
the actual permissions that are granted by this ACE.

GA

GENERIC_ALL

0x10000000L

When used in an Access Request operation: When all access permissions
to an object are requested, this bit is translated to a combination of bits,
which are usual ly set in the lower 16 bits of the ACCESS_MASK. (Individual
protocol specifications MAY specify a different configuration.) Objects are
free to include bits from the upper 16 bits in that translation as required by

the objects semantics. The bits that are set are implementation dependent.
During this translation, the GA bit is cleared. The resulting ACCESS_MASK
bits are the actual permissions that are checked against the ACE structures
in the security descriptor that attached to the object.

When used to set the Security Descriptor on an object: When the GA bit
is set in an ACE that is to be attached to an object, it is translated into a
combination of bits, which are usually set in the lower 16 bits of the
ACCESS_MASK. (Individual protocol sp ecifications MAY specify a different
configuration.) Objects are free to include bits from the upper 16 bits in
that translation, if required by the objects semantics. The bits that are set
are implementation dependent. During this translation, the GA bit is
cleared. The resulting ACCESS_MASK bits are the actual permissions that
are granted by this ACE.

MA When used in an Access Request operation: When requested, this bit
grants the requestor the maximum permissions allowed to the object

52 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

MAXIMUM_ALLOWED

0x02000000L

through the Access Check Algorithm. This bit can only be requested; it
cannot be set in an ACE.

When used to set the Security Descriptor on an object: Specifying the
Maximum Allowed bit in the SECURITY_DESCRIPTOR has no meaning. The
MA bit SHOULD NOT be set and SHOULD be ignored when part of a
SECURITY_DESCRIPTOR structure.

AS

ACCESS_SYSTEM_SECURITY

0x01000000L

When used in an Access Request operation: When requested, this bit
grants the requestor the right to change the SACL of an object. This bit
MUST NOT be set in an ACE that is part of a DACL. When set in an ACE that
is part of a SACL, this bit controls auditing of accesses to the SACL itself.

SY

SYNCHRONIZE

0x00100000L

Specifies access to the object sufficient to synchronize or wait on the object.

WO

WRITE_OWNER

0x00080000L

Specifies access to change the owner of the object as listed in the security
descriptor.

WD

WRITE_DACL

0x00040000L

Specifie s access to change the discretionary access control list of the security
descriptor of an object.

RC

READ_CONTROL

0x00020000L

Specifies access to read the security descriptor of an object.

DE

DELETE

0x00010000L

Specifies access to delete an object.

2.4.4 ACE

An access control entry (ACE) is used to encode the user rights afforded to a principal, either a user or
group. This is generally done by combining an ACCESS_MASK and the SID of the principal. There are

some variations to accommodate other groupings, which are specified in the following sections.

2.4.4.1 ACE_HEADER

The ACE_HEADER structure defines the type and size of an access control entry (ACE).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AceType AceFlags AceSize

AceType (1 byte): An unsigned 8 -bit integer that specifies the ACE types. This field MUST be one of
the following values.

53 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

ACCESS_ALLOWED_ACE_TYPE

0x00

Access -allowed ACE that uses the
ACCESS_ALLOWED_ACE (section 2.4.4.2) structure.

ACCESS_DENIED_ACE_TYPE

0x01

Access -denied ACE that uses the
ACCESS_DENIED_ACE (section 2.4.4.4) structure.

SYSTEM_AUDIT_ACE_TYPE

0x02

System -audit ACE that uses the
SYSTEM_AUDIT_ACE (section 2.4.4. 10) structure.

SYSTEM_ALARM_ACE_TYPE

0x03

Reserved for future use.

ACCESS_ALLOWED_COMPOUND_ACE_TYPE

0x04

Reserved for future use.

ACCESS_ALLOWED_OBJECT_ACE_TYPE

0x05

Object -specific access -allowed ACE that uses the

ACCESS_ALLOWED_OBJECT_ACE (section 2.4.4.3)
structure. <37>

ACCESS_DENIED_OBJECT_ACE_TYPE

0x06

Object -specific access -denied ACE that uses the
ACCESS_DENIED_OBJECT_ACE (section 2.4.4.5)
structure. <38>

SYSTEM_AUDIT_OBJECT_ACE_TYPE

0x07

Object -specific system -audit ACE that u ses the
SYSTEM_AUDIT_OBJECT_ACE (section 2.4.4.11)
structure. <39>

SYSTEM_ALARM_OBJECT_ACE_TYPE

0x08

Reserved for future use.

ACCESS_ALLOWED_CALLBACK_ACE_TYPE

0x09

Access -allowed callback ACE that uses the
ACCESS_ALLOWED_CALLBACK_ACE (section 2.4.4.6)
structure. <40>

ACCESS_DENIED_CALLBACK_ACE_TYPE

0x0A

Access -denied callback ACE that uses the
ACCESS_DENIED_CALLBACK_ACE (section 2.4.4.7)

structure. <41>

ACCESS_ALLOWED_CALLBACK_OBJECT_ACE_TYPE

0x0B

Object -specific access -allowed callback ACE that uses
the
ACCESS_ALLOWED_CALLBACK _OBJECT_ACE (section 2
.4.4.8) structure. <42>

ACCESS_DENIED_CALLBACK_OBJECT_ACE_TYPE

0x0C

Object -specific access -denied callback ACE that uses
the
ACCESS_DENIED_CALLBACK_OBJECT_ACE (section 2.4
.4.9) structure. <43>

SYSTEM_AUDIT_CALLBACK_ACE_TYPE

0x0D

System -audit callback ACE th at uses the
SYSTEM_AUDIT_CALLBACK_ACE (section 2.4.4.12)
structure. <44>

SYSTEM_ALARM_CALLBACK_ACE_TYPE

0x0E

Reserved for future u se.

SYSTEM_AUDIT_CALLBACK_OBJECT_ACE_TYPE

0x0F

Object -specific system -audit callback ACE that uses the
SYSTEM_AUDIT_CALLBACK_OBJECT_ACE (section 2.4.

4.14) structure.

SYSTEM_ALARM_CALLBACK_OBJECT _ACE_TYPE Reserved for future use.

54 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x10

SYSTEM_MANDATORY_LABEL_ACE_TYPE

0x11

Mandatory label ACE that uses the
SYSTEM_MANDATORY_LABEL_ACE (section 2.4.4.13)
structure.

SYSTEM_RESOURCE_ATTRIBUTE_ACE_TYPE

0x12

Resource attribute ACE that uses the
SYSTEM_RESOURCE_ATTRIBUTE_ACE (section
2.4.4.15)

SYSTEM_SCOPED_POLICY_ID_ACE_TYPE

0x13

A central policy ID ACE that us es the
SYSTEM_SCOPED_POLICY_ID_ACE (section 2.4.4.16)

The term "callback" in this context does not relate to RPC call backs. <45>

AceFlags (1 byte): An unsigned 8 -bit integer that specifies a set of ACE type -specific control flags.
This field can be a combination of the following values.

Value Meaning

CONTAINER_INHERIT_ACE

0x02

Child objects that are containers, such as directories, inherit the ACE as
an effective ACE. The inherited ACE is inheritable unless the
NO_PROPAGATE_INHERIT_ACE bit flag is also set.

FAILED_ACCESS_ACE_FLAG

0x80

Used with system -audit ACEs in a system access control list (SACL) to
generate audit m essages for failed access attempts.

INHERIT_ONLY_ACE

0x08

Indicates an inherit -only ACE, which does not control access to the object
to which it is attached. If this flag is not set, the ACE is an effective ACE
that controls access to the object to which it is attached.

Both effective and inherit -only ACEs can be inherited depending on the
state of the other inheritance flags.

INHERITED_ACE

0x10

Indicates that the ACE was inherited. The system sets this bit when it
propagates an inherited ACE to a child o bject. <46>

NO_PROPAGATE_INHERIT_ACE

0x04

If the ACE is inherited by a child object, the system clears the
OBJECT_INHERIT_ACE and CONTAINER_INHERIT_ACE flags in the
inherited ACE. This preve nts the ACE from being inherited by subsequent
generations of objects.

OBJECT_INHERIT_ACE

0x01

Noncontainer child objects inherit the ACE as an effective ACE.

For child objects that are containers, the ACE is inherited as an inherit -
only ACE unless the NO _PROPAGATE_INHERIT_ACE bit flag is also set.

SUCCESSFUL_ACCESS_ACE_FLAG

0x40

Used with system -audit ACEs in a SACL to generate audit messages for
successful access attempts.

AceSize (2 bytes): An unsigned 16 -bit integer that specifies the size, in bytes, of the ACE. The
AceSize field can be greater than the sum of the individual fields, but MUST be a multiple of 4 to

ensure alignment on a DWORD boundary. In cases where the AceSize field encompasses
additional data for the callback ACEs types, that data is implementation -specific. Otherwise, this
additional data is not interpreted and MUST be ignored.

2.4.4.1.1 ACE_HEADER -- RPC representation

The RPC representation of the ACE_HEADER defines the type and size of an ACE. The members and
values are as specified in section 2.4.4.1.

55 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef struct _ACE_HEADER {

 UCHAR AceType;

 UCHAR AceFlags;

 USHORT AceSize;

 } ACE_HEADER,

 *PACE_HEADER;

2.4.4.2 ACCESS_ALLOWED_ACE

The ACCESS_ALLOWED_ACE structure defines an ACE for the discretionary access control list (DACL)
that controls access to an object. An access -allowed ACE allows access to an object for a specific
trustee identified by a security identifier (SID).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains

flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK that specifies the user rights allow ed by this ACE.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

2.4.4.3 ACCESS_ALLOWED_OBJECT_ACE

The ACCESS_ALLOWED_OBJECT_ACE structure defines an ACE that controls allowed access to an
object, a property set, or property. The ACE contains a set of access rights, a GUID that identifies the
type of object, and a SID that identifies the trustee to whom the system will grant access. The ACE
also contains a GUID and a set of flags that control inheritance of the ACE by child objects.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Flags

ObjectType (16 bytes)

...

...

56 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

InheritedObjectType (16 bytes)

...

...

Sid (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK that specifies the user rights allow ed by this ACE.

Value Meaning

ADS_RIGHT_DS_CONTROL_ACCESS

0X00000100

The ObjectType GUID identifies an extended access right.

ADS_RIGHT_DS_CREATE_CHILD

0X00000001

The ObjectType GUID identifies a type of child object. The ACE
controls the trustee's right to create this type of child object.

ADS_RIGHT_DS_DELETE_CHILD

0X00000002

The ObjectType GUID identifies a type of child object. The ACE
controls the trustee's right to delete this type of child object.

ADS_RIGHT_DS_READ_PROP

0x00000010

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's ri ght to read the property or
property set.

ADS_RIGHT_DS_WRITE_PROP

0x00000020

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's right to write the property or
property set.

ADS_RIGHT_DS_SELF

0x00000008

The ObjectType GUID identifies a validated write.

Flags (4 bytes): A 32 -bit unsigned integer that specifies a set of bit flags that indicate whether the

ObjectType and InheritedObjectType fields contain valid data. This parameter can be one or
more of the following values.

Value Meaning

0x00000000 Neither ObjectType nor InheritedObjectType are valid.

ACE_OBJECT_TYPE_PRESENT

0x00000001

ObjectType is valid.

ACE_INHERITED_OBJECT_TYPE_PRESENT

0x00000002

InheritedObjectType is valid. If this value is not specified, all
types of child objects can inherit the ACE.

ObjectType (16 bytes): A GUID that identifies a property set, property, extended right, or type of
child object. The purpose of this GUID depends on the user rights specified in the Mask field. This
field is valid only if the ACE _OBJECT_TYPE_PRESENT bit is set in the Flags field. Otherwise, the
ObjectType field is ignored. For information on access righ ts and for a mapping of the control

57 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

access rights to the corresponding GUID value that identifies each right, see [MS -ADTS] sections
5.1.3.2 and 5.1.3.2.1.

ACCESS_MASK bits are not mutually exclusive. Therefore, the ObjectType field can be set in an ACE
with any ACCESS_MASK. If the AccessCheck algorithm calls this ACE and does not find an appropriate

GUID, then that ACE will be ignored. For more information on access checks and object access, see
[MS -ADTS] section 5.1.3.3.3.

InheritedObjectType (16 bytes): A GUID that identifies the type of child object that can inherit the
ACE. Inheritance is also controlled by the inher itance flags in the ACE_HEADER, as well as by any
protection against inheritance placed on the child objects. This field is valid only if the
ACE_INHERITED_OBJECT_TYPE_PRESENT bit is set in the Flags member. Otherwise, the
InheritedObjectType field is igno red.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

2.4.4.4 ACCESS_DENIED_ACE

The ACCESS_DENIED_ACE structure defines an ACE for the DACL that controls access to an object. An

access -denied ACE denies access to an object for a specific trustee identified by a SID .

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK that specifies the user rights denied by this ACE.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

2.4.4.5 ACCESS_DENIED_OBJECT_ACE

The ACCESS_DENIED_OBJECT_ACE structure defines an ACE that controls denied access to an object,
a property set, or a property. The ACE contains a set of access rights, a GUID that identifies the type
of object, and a SID that identifies the trustee to whom the system will deny access. The ACE also

contains a GUID and a set of flags that control inheritance of the ACE by child objects.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Flags

%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a

58 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ObjectType (16 bytes)

...

...

InheritedObjectType (16 bytes)

...

...

Sid (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK that specifies the user rights allow ed by this ACE.

Value Meaning

ADS_RIGHT_DS_CONTROL_ACCESS

0X00000100

The ObjectType GUID identifies an extended access right.

ADS_RIGHT_DS_CREATE_CHILD

0X00000001

The ObjectType GUID identifies a type of child object. The ACE
controls the trustee's right to create this type of child object.

ADS_RIGHT_DS_DELETE_CHILD

0X00000002

The ObjectType GUID identifies a type of child object. The ACE
controls the trustee's right to delete t his type of child object.

ADS_RIGHT_DS_READ_PROP

0x00000010

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's right to read the property or
property set.

ADS_RIGHT_DS_WRITE_PROP

0x00000020

The ObjectT ype GUID identifies a property set or property of the
object. The ACE controls the trustee's right to write the property or
property set.

ADS_RIGHT_DS_SELF

0x00000008

The ObjectType GUID identifies a validated write.

Flags (4 bytes): A 32 -bit unsigned i nteger that specifies a set of bit flags that indicate whether the

ObjectType and InheritedObjectType fields contain valid data. This parameter can be one or
more of the following values.

Value Meaning

0x00000000 Neither ObjectType nor InheritedObjectType is valid.

ACE_OBJECT_TYPE_PRESENT

0x00000001

ObjectType is valid.

ACE_INHERITED_OBJECT_TYPE_PRESENT InheritedObjectType is valid. If this value is not specified, all types
of child objects can inherit the ACE.

59 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x00000002

ObjectType (16 bytes): A GUID t hat identifies a property set, a property, an extended right, or a
type of child object. The purpose of this GUID depends on the user rights specified in the Mask
field. This field is valid only if the ACE _OBJECT_TYPE_PRESENT bit is set in the Flags field .
Otherwise, the ObjectType field is ignored. For information about access rights and for a mapping
of the control access rights to the corresponding GUID value that identifies each right, see [MS -

ADTS] sections 5.1.3.2 and 5.1.3.2.1.

ACCESS_MASK bits are not mutually exclusive. Therefore, the ObjectType field can be set in an
ACE with any ACCESS_MASK. If the AccessCheck algorithm calls this ACE and does not find an
appropriate GUID, that ACE will be ignored. For more information about access checks and object
access, see [MS -ADTS] section 5.1.3.3.3.

InheritedObjectType (16 bytes): A GUID that identifies the type of child object that can inherit the

ACE. Inheritance is also controlled by the inheritance flags in the ACE_HEADER, as well as by any

protection against inheritance placed on the child objects. This field is valid only if the
ACE_INHERITED_OBJECT_TYPE_PRESENT bit is set in the Flags member. Otherwise, the
InheritedObjectType field is ignored.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

2.4.4.6 ACCESS_ALLOWED_CALLBACK_ACE

The ACCESS_ALLOWED_CALLBACK_ACE structure defines an ACE for the DACL that controls access to
an object. An access -allowed ACE allows access to an object for a specific trustee identified by a SID .

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

ApplicationData (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK that specifies the user rights allow ed by this ACE.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

ApplicationData (variable): Optional application data. The size of the application data is determined
by the AceSize field of the ACE_HEADER.

%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a

60 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.4.4.7 ACCESS_DENIED _CALLBACK_ACE

The ACCESS_DENIED_CALLBACK_ACE structure defines an ACE for the DACL that controls access to
an object. An access -denied ACE denies access to an object for a specific trustee identified by a SID .

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

ApplicationData (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK that specifies the user rights denied by this ACE.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

ApplicationData (variable): Optional application data. The size of the application data is determined
by the AceSize field of the ACE_HEADER.

2.4.4.8 ACCESS_ALLOWED_CALLBACK_OBJECT_ACE

The ACCESS_ALLOWED_CALLBACK_OBJECT_ACE structure defines an ACE that controls allowed
access to an object, property se t, or property. The ACE contains a set of user rights, a GUID that

identifies the type of object, and a SID that identifies the trustee to whom the system will grant
access. The ACE also contains a GUID and a set of flags that control inheritance of the ACE by child
objects.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Flags

ObjectType (16 bytes)

...

...

61 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

InheritedObjectType (16 bytes)

...

...

Sid (variable)

...

ApplicationData (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains

flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK structure that specifies the user ri ghts allowed by this ACE.

Value Meaning

ADS_RIGHT_DS_CONTROL_ACCESS

0X00000100

The ObjectType GUID identifies an extended access right.

ADS_RIGHT_DS_CREATE_CHILD

0X00000001

The ObjectType GUID identifies a type of child object. The ACE
controls the trustee's right to create this type of child object.

ADS_RIGHT_DS_READ_PROP

0x00000010

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's ri ght to read the property or
property set.

ADS_RIGHT_DS_WRITE_PROP

0x00000020

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's right to write the property or
property set.

ADS_RIGHT_DS_SELF

0x00000008

The ObjectType GUID identifies a validated write.

Flags (4 bytes): A 32 -bit unsigned integer that specifies a set of bit flags that indicate whether the
ObjectType and InheritedObjectType fields contain valid data. This parameter can be one or
more of th e following values.

Value Meaning

0x00000000 Neither ObjectType nor InheritedObjectType are valid.

ACE_OBJECT_TYPE_PRESENT

0x00000001

ObjectType is valid.

ACE_INHERITED_OBJECT_TYPE_PRESENT

0x00000002

InheritedObjectType is valid. If this value is not specified, all
types of child objects can inherit the ACE.

ObjectType (16 bytes): A GUID that identifies a property set, property, extended right, or type of
child object. The purpose of this GUID depends on the user rights specified in the Mask field. This
field is valid only if the ACE _OBJECT_TYPE_PRESENT bit is set in the Flags field. Otherwise, the

ObjectType field is ignored.

62 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

InheritedObjectType (16 bytes): A GUID that identifies the type of child object that can inhe rit the
ACE. Inheritance is also controlled by the inheritance flags in the ACE_HEADER, as well as by any

protection against inheritance placed on the child objects. This field is valid only if the
ACE_INHERITED_OBJECT_TYPE_PRESENT bit is set in the Flags member. Otherwise, the

InheritedObjectType field is ignored.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

ApplicationData (variable): Optional application data. The size of the application data is determined
by the AceSize field of the ACE_HEADER.

2.4.4.9 ACCESS_DENIED_CALLBACK_OBJECT_ACE

The ACCESS_DENIED_CALLBACK_OBJECT_ACE structure defines an ACE that controls denied access
to an object, a property set, or property. The ACE contains a set of user rights, a GUID that identifies
the type of object, and a SID that id entifies the trustee to whom the system will deny access. The ACE
also contains a GUID and a set of flags that control inheritance of the ACE by child objects.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Flags

ObjectType (16 bytes)

...

...

InheritedObjectType (16 bytes)

...

...

Sid (variable)

...

ApplicationData (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK structure that specifies the user ri ghts denied by this ACE.

63 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

ADS_RIGHT_DS_CONTROL_ACCESS

0X00000100

The ObjectType GUID identifies an extended access right.

ADS_RIGHT_DS_CREATE_CHILD

0X00000001

The ObjectType GUID identifies a type of child object. The ACE
controls the trustee's right to create this type of child object.

ADS_RIGHT_DS_READ_PROP

0x00000010

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's ri ght to read the property or
property set.

ADS_RIGHT_DS_WRITE_PROP

0x00000020

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's right to write the property or
property set.

ADS_RIGHT_DS_SELF

0x00000008

The ObjectType GUID identifies a validated write.

Flags (4 bytes): A 32 -bit unsigned integer that specifies a set of bit flags that indicate whether the

ObjectType and InheritedObjectType fields contain valid data. This parameter can be one or
more of the following values.

Value Meaning

0x00000000 Neither ObjectType nor InheritedObjectType are valid.

ACE_OBJECT_TYPE_PRESENT

0x00000001

ObjectType is valid.

ACE_INHERITED_OBJECT_TYPE_PRESENT

0x00000002

InheritedObjectType is valid. If this value is not specified, all
types of child objects can inherit the ACE.

ObjectType (16 bytes): A GUID that identifies a property set, property, extended right, or type of

child object. The purpose of this GUID depends on the user rights specified in the Mask field. This
field is valid only if the ACE _OBJECT_TYPE_PRESENT bit is set in the Flags field. Otherwise, the
ObjectType field is ignored.

InheritedObjectType (16 bytes): A GUID that identifies the type of child object that can inherit the
ACE. Inheritance is also controlled by the inheritance flags in the ACE_HEADER, as well as by any
protection against inheritance placed on the child objects. This field is valid only i f the

ACE_INHERITED_OBJECT_TYPE_PRESENT bit is set in the Flags member. Otherwise, the
InheritedObjectType field is ignored.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

ApplicationData (variable): Optional applicati on data. The size of the application data is determined
by the AceSize field of the ACE_HEADER.

2.4.4.10 SYSTEM_AUDIT_ACE

The SYSTEM_AUDIT_ACE structure defines an access ACE for the system access control list (SACL)
that specifies wh at types of access cause system - level notifications. A system -audit ACE causes an
audit message to be logged when a specified trustee attempts to gain access to an object. The trustee
is identified by a SID .

64 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK structure that specifies the user ri ghts that cause audit messages

to be generated.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4. An access
attempt of a kind specified by the Mask field by any trustee whose SID matches the Sid field
causes the system to generate an audit message. If an application does not specify a SID for this
field, audit messages are generated for the specified access rights for all trustees.

2.4.4.11 SYSTEM_AUDIT_OBJECT_ACE

The SYSTEM_AUDIT_OBJECT_ACE structure defines an ACE for a SACL. The ACE can audit access to
an object or subobjects, such as property sets or properties. The ACE contains a set of user rights, a
GUID that identifies the type of object or subobject, and a SID that identifies the trustee for whom the
system will audit access. The ACE also contains a GUID and a set of flags that control inheritance of

the ACE by child objects.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Flags

ObjectType (16 bytes)

...

...

InheritedObjectType (16 bytes)

...

...

Sid (variable)

65 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

ApplicationData (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK structure that specifies the user rights that cause audit messages

to be generated.

Value Meaning

ADS_RIGHT_DS_CONTROL_ACCESS

0X00000100

The ObjectType GUID identifies an extended access right.

ADS_RIGHT_DS_CREATE_CHILD

0X00000001

The ObjectType GUID identifies a type of child object. The ACE
controls the trustee's right to create this type of child object.

ADS_RIGHT_DS_READ_PROP

0x00000010

The ObjectT ype GUID identifies a property set or property of the
object. The ACE controls the trustee's right to read the property or
property set.

ADS_RIGHT_DS_WRITE_PROP

0x00000020

The ObjectType GUID identifies a property set or property of the
object. The ACE co ntrols the trustee's right to write the property or
property set.

ADS_RIGHT_DS_SELF

0x00000008

The ObjectType GUID identifies a validated write.

Flags (4 bytes): A 32 -bit unsigned integer that specifies a set of bit flags that indicate whether the

Object Type and InheritedObjectType fields contain valid data. This parameter can be one or

more of the following values.

Value Meaning

0x00000000 Neither ObjectType nor InheritedObjectType is valid.

ACE_OBJECT_TYPE_PRESENT

0x00000001

ObjectType is valid.

ACE_INHERITED_OBJECT_TYPE_PRESENT

0x00000002

InheritedObjectType is valid. If this value is not specified, all
types of child objects can inherit the ACE.

ObjectType (16 bytes): A GUID that identifies a property set, a property, an extended right, or a
ty pe of child object. The purpose of this GUID depends on the user rights specified in the Mask

field. This field is valid only if the ACE_OBJECT_TYPE_PRESENT bit is set in the Flags field.
Otherwise, the ObjectType field is ignored.

InheritedObjectType (16 bytes): A GUID that identifies the type of child object that can inherit the
ACE. Inheritance is also controlled by the inheritance flags in the ACE_HEADER, as well as by any
protection against inheritance placed on the child objects. This field is valid only if the
ACE_INHERITED_OBJECT_TYPE_PRESENT bit is set in the Flags member. Otherwise, the
InheritedObjectType field is ignored.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

66 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ApplicationData (variable): Optional application data. The size of the application data is determined
by the AceSize field of the ACE_HEADER.

2.4.4.12 SYSTEM_AUDIT_CALLBACK_ACE

The SYSTEM_AUDIT_CALLBACK_ACE structure defines an ACE for the SACL that specifies what types
of access cause system - level notifications. A system -audit ACE causes an audit message to be logged
when a specified trustee attempts to gain access to an object. The trustee is identified by a SID .

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

ApplicationData (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK structure that specifies the user rights that cause audit messages
to be generated.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4. An access

attempt of a kind specified by the Mask field by any trustee whose SID matches the Sid field
causes the system to generate an audit message. If an application does not specify a SID for this

field, audit messages are generated for the specified access rights for all trustees.

ApplicationData (variabl e): Optional application data. The size of the application data is determined
by the AceSize field of the ACE_HEADER.

2.4.4.13 SYSTEM_MANDATORY_LABEL_ACE

The SYSTEM_MANDATORY_LABEL_ACE structure defines an ACE for the SACL t hat specifies the
mandatory access level and policy for a securable object. <47>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

67 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK structure that specifies the access policy for principals with a
mandatory integrity level lower than the object associated with the SACL that contains this ACE.

Value Meaning

SYSTEM_MANDATORY_LABEL_N O_WRITE_UP

0x00000001

A principal with a lower mandatory level than the object
cannot write to the object.

SYSTEM_MANDATORY_LABEL_NO_READ_UP

0x00000002

A principal with a lower mandatory level than the object
cannot read the object.

SYSTEM_MANDATORY_LABEL_NO_EXECUTE_UP

0x00000004

A principal with a lower mandatory level than the object
cannot execute the object.

Sid (variable): The SID of a trustee. The length of the SID MU ST be a multiple of 4. The identifier

authority of the SID must be SECURITY_MANDATORY_LABEL_AUTHORITY. The RID of the SID

specifies the mandatory integrity level of the object associated with the SACL that contains this
ACE. The RID must be one of the foll owing values.

Value Meaning

0x00000000 Untrusted integrity level.

0x00001000 Low integrity level.

0x00002000 Medium integrity level.

0x00003000 High integrity level.

0x00004000 System integrity level.

0x00005000 Protected process integrity level.

2.4.4.13.1 SYSTEM_MANDATORY_LABEL_ACE -- RPC Representation

The RPC representation of the SYSTEM_MANDATORY_LABEL_ACE type defines an access control entry
(ACE) for the system access control list (SACL) that specifies the mandatory access level and
policy for a sec urable object.

 typedef struct _SYSTEM_MANDATORY_LABEL_ACE {

 ACE_HEADER Header;

 ACCESS_MASK Mask;

 DWORD SidStart;

 } SYSTEM_MANDATORY_LABEL_ACE,

 *PSYSTEM_MANDATORY_LABEL_ACE;

Header: An ACE_HEADER structure, as specified in section 2.4.4.13.

Mask: An ACCESS_MASK as specified in section 2.4.4.13.

SidStart: Specifies the first DWORD of the SID . The remaining bytes of the SID are stored in
contiguous memory after the SidStart member. The IdentifierAuthority and RID MUST be as
specified 2.4.4.13.

68 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.4.4.14 SYSTEM_AUDIT_CALLB ACK_OBJECT_ACE

The SYSTEM_AUDIT_CALLBACK_OBJECT_ACE structure defines an ACE for a SACL. The ACE can audit
access to an object or subobjects, such as property sets or properties. The ACE contains a set of user

rights, a GUID that identifies the type of object or subobject, and a SID that identifies the trustee for
whom the system will audit access. The ACE also contains a GUID and a set of flags that c ontrol
inheritance of the ACE by child objects.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Flags

ObjectType (16 bytes)

...

...

InheritedObjectType (16 bytes)

...

...

Sid (variable)

...

ApplicationData (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It contains
flags that control inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK structure that specifies the user rights that cause audit messages

to be generated.

Value Meaning

ADS_RIGHT_DS_CONTROL_ACCESS

0X00000100

The ObjectType GUID identifies an extended acces s right.

ADS_RIGHT_DS_CREATE_CHILD

0X00000001

The ObjectType GUID identifies a type of child object. The ACE
controls the trustee's right to create this type of child object.

ADS_RIGHT_DS_READ_PROP

0x00000010

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's right to read the property or
property set.

69 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

ADS_RIGHT_DS_WRITE_PROP

0x00000020

The ObjectType GUID identifies a property set or property of the
object. The ACE controls the trustee's right to write the property or
property set.

ADS_RIGHT_DS_SELF

0x00000008

The ObjectType GUID identifies a validated write.

Flags (4 bytes): A 32 -bit unsigned integ er that specifies a set of bit flags that indicate whether the
ObjectType and InheritedObjectType fields contain valid data. This parameter can be one or

more of the following values.

Value Meaning

0x00000000 Neither ObjectType nor InheritedObjectType are valid.

ACE_OBJECT_TYPE_PRESENT

0x00000001

ObjectType is valid.

ACE_INHERITED_OBJECT_TYPE_PRESENT

0x00000002

InheritedObjectType is valid. If this value is not specified, all
types of child objects can inherit the ACE.

ObjectType (16 bytes): A GUID that identifies a property set, property, extended right, or type of

child object. The purpose of this GUID depends on the user rights specified in the Mask field. This
field is valid only if the ACE_OBJECT_TYPE_PRESENT bit is set in the Flags field. Othe rwise, the
ObjectType field is ignored.

InheritedObjectType (16 bytes): A GUID that identifies the type of child object that can inherit the
ACE. Inheritance is also controlled by the inheritance flags in the ACE_HEADER, as well as by any
protection again st inheritance placed on the child objects. This field is valid only if the
ACE_INHERITED_OBJECT_TYPE_PRESENT bit is set in the Flags member. Otherwise, the

InheritedObjectType field is ignored.

Sid (variable): The SID of a trustee. The length of the SID MUST be a multiple of 4.

ApplicationData (variable): Optional application data. The size of the application data is determined
by the AceSize field of the ACE_HEADER.

2.4.4.15 SYSTEM_RESOURCE_ATTRIBUTE_ACE

The SYSTEM_RES OURCE_ATTRIBUTE_ACE structure defines an ACE for the specification of a resource
attribute associated with an object. A SYSTEM_RESOURCE_ATTRIBUTE_ACE is used in conditional
ACEs in specifying access or audit policy for the resource.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

70 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Attribute Data (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of the ACE. It also
contains flags that control applicability and inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK that MUST be s et to zero.

Sid (variable): The SID corresponding to the Everyone SID (S -1-1-0) in binary form.

Attribute Data (variable): Data describing a resource attribute type, name, and value(s). This data
MUST be encoded in CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 format as described in section
2.4.10.1

2.4.4.16 SYSTEM_SCOPED_POLICY_ID_ACE

The SYSTEM_SCOPED_POLICY_ID_ACE structure defines an ACE for the purpose of applying a central
access policy to the resource.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

Mask

Sid (variable)

...

Header (4 bytes): An ACE_HEADER structure that specifies the size and type of ACE. It also contains
flags that control applicability and inheritance of the ACE by child objects.

Mask (4 bytes): An ACCESS_MASK that MUST be set to zero.

Sid (variable): A SID that identifies a central access policy. For a SYSTEM_SCOPED_POLICY_ID_ACE
to be applicable on a r esource, this SID MUST match a CAPID of a CentralAccessPolicy contained
in the CentralAccessPoliciesList (as specified in [MS -GPCAP] section 3.2.1.1) of the machine on
which th e access evaluation will be performed.

2.4.4.17 Conditional ACEs

Conditional ACEs are a form of CALLBACK ACEs with a special format of the application data. A
Conditional ACE allows a conditional expression to be evaluated when an access check (as specified in

sect ion 2.5.3.2) is performed. <48>

The following ACE types can be formatted as a Conditional ACE:

Á ACCESS_ALLOWED_CALLBACK_ACE

Á ACCESS_ALLOWED_CALLBACK_OBJECT_ACE

Á ACCESS_DENIED_CALLBACK_ACE

Á ACCESS_DENIED_CALLBACK_OBJECT_ACE

%5bMS-GPCAP%5d.pdf#Section_5189d5c912c2491cbf16f7008c46c6fb

71 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á SYSTEM_AUDIT_CALLBACK_ACE

Á SYSTEM_AUDIT_CALLBACK_OBJECT_ACE

A Conditional ACE is a CALLBACK ACE in which the first four bytes of the ApplicationData field in the
CALLBACK ACE structure are set to the following byte value sequence: 0x61 0x72 0x74 0x78. The

remaining contents of the ApplicationData field specify a conditional expression. The conditional
expression language constructs and binary representation are defined in this section.

The security descriptor definition language (SDDL) (section 2.5.1) pr ovides syntax for defining
conditional ACEs in a string format in section 2.5.1.1 .

2.4.4.17.1 Conditional ACE Expressions

This section defines the semantics and format of the ApplicationData field of a callb ack ACE holding a

conditional expression.

Conditional expressions are logical expressions that are part of a conditional ACE (section 2.4.4.17)

and are evaluated during an access check evaluation to determine if the effect (to allow or deny the
specified permissions) of the conditional ACE is to apply in the access check valuation.

A conditional expression is composed of a series of one or more simpler conditional expressions or
expression terms in syntactical relation to logical operators and security attributes such that when

evaluated, the expression will produce TRUE, FALSE, or UNKNOWN. Conditional expressions can be
operands to the AND, OR, or NOT logical operators. (Logical operators are defin ed in section
2.4.4.17.7 .)

2.4.4.17.2 Security Attributes

Conditional expression terms contain references to security attributes (also known as claims) of an
authenticated principal or a resource. Security a ttributes that are associated with authenticated user

principal and device principal entities are referred to as "user claims" and "device claims",
respectively, and are defined as an instance of a CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1
structure associated with a token/authorization context. User claims are associated with the

UserClaims[] array, and device claims are associated with the DeviceClaims[] array as described in
section 2.5.2 . An attribu te associated with a resource is referred to as a "resource attribute" and is
defined as a CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 (section 2.4.10.1) structure within a
SYSTEM_RESOURCE_ATTRIBUTE_ACE contained in the Security Descriptor SACL associated with a

resource.

2.4.4.17.3 Conditional ACE Applicability

If the result evaluation of the conditional expression is FALSE, then the corresponding conditio nal ACE
does not apply in the access check evaluation.

If the result of evaluation of the conditional expression is TRUE, then the conditional ACE applies in
the access check evaluation. If the conditional ACE is an ACCESS_ALLOWED_CALLBACK_ACE type and

the ACE applies, then the permissions in the Mask member of the ACE_HEADER structure are
granted. If the conditional ACE is an ACCESS_DENIED_CALLBACK_ACE and the ACE applies, then the

permissions are denied in the access check evaluation.

If the result of the evaluation of the conditional expression is UNKNOWN and the conditional ACE is an
ACCESS_ALLOWED_CALLBACK_ACE type, then the permissions in the Mask member variable are not
granted by this ACE in the access check evaluation.

If the result of the evaluatio n of the conditional expression is UNKNOWN and the conditional ACE is an
ACCESS_DENIED_CALLBACK_ACE type, then the permissions in the Mask member variable are
denied in the access check evaluation.

72 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.4.4.17.4 Conditional ACE Binary Formats

Conditional expressions are stored in the ApplicationData member of certain CALLBACK ACE types
(section 2.4.4.17) where each operator ID and operand is persisted in postfix notation.

A CALLBACK ACE contains a conditional ex pression if the ApplicationData member is prefixed by
0x61, 0x72, 0x74, 0x78 (the ACE_CONDITION_SIGNATURE) and the remainder of the data in the
ApplicationData member immediately following the conditional ACE signature specifies a conditional
expression (s ection 2.4.4.17.1).

Conditional expressions are encoded in contiguous memory as a series of tokens. The first byte of
each token must be a byte -code identifying the token type. The token type determines the format of
the token in memory. Tokens take one of three formats:

1. Operator: A single byte -code, which identifies a logical or relational operator.

2. Literal: A token byte -code that identifies a built - in data type and implies a token type of "li teral",
followed by the encoded representation of the literal. Literal tokens can be single values or

multivalued. A multivalued literal is encoded as a composite byte -code followed by each contained
literal value.

3. Attribute Name: A byte -code identifying a n attribute type and name.

The following tables provide the set of valid tokens and each token's syntax. The first byte of a token
is the byte -code and the remainder of the token is the token -data and is formatted according the
token's syntax. All multibyt e integers, including any Unicode characters, MUST be stored least -
significant byte (LSB) first.

Conditional expressions are at the end of the ACE in contiguous memory; the ending of the ACEs
MUST align on a DWORD boundary. Any additional bytes needed to achieve DWORD boundary
alignment MUST be set to 0x00.

For tokens representing literal values, the base and sign MUST be specified from the possible values
specified in the following tables.

2.4.4.17.5 Literal Tokens

Token Type
Byte -
Code Token Data Encoding

Invalid token 0x00 Padding value.

Signed int8 0x01 1 QWORD, least significant byte first, for the value, 2's complement, -128 to +127.

1 BYTE for sign. (possible values for sign in the following table) .

1 BYTE for base. (possible values for base in the following table).

Signed int16 0x02 1 QWORD, least significant byte first, 2's c omplement, -32768 to +32767.

1 BYTE for sign.

1 BYTE for base.

Signed int32 0x03 1 QWORD, least significant byte first, 2's complement.

1 BYTE for sign.

1 BYTE for base.

Signed int64 0x04 1 QWORD, least significant byte first, 2's complement.

1 BYTE for sign.

1 BYTE for base.

Unicode 0x10 1 DWORD for the length in bytes.

73 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Token Type
Byte -
Code Token Data Encoding

String 1 WORD for each Unicode character. Characters are stored LSB first. Strings are not
null - terminated.

Octet String 0x18 Custom data is represented as a contiguous sequence of bytes.

1 DWORD for the length in bytes.

1 BYTE for each data octet.

Composite 0x50 1 D WORD that specifies the entire length in bytes of the entire set of elements.

List type -- can be heterogeneous. Elements are stored in contiguous fashion according
to the built - in data type storage rules.

SID 0x51 1 DWORD that specifies the entire length i n bytes of the SID.

SID in binary representation (as specified in section 2.4.2.2 .)

Tokens in the preceding table that contain a base MUST include a base code from the following table.

Base Code Description

8 0x01 Octal

10 0x02 Decimal

16 0x03 Hexadecimal

Tokens in the preceding table that contain signs MUST include a sign code from the following table.

Relational operators interpret no sign (0x03) as positive.

Relational operators MUST use th is to determine the sign of the literal during evaluation.

Sign Code Description

+ 0x01 Plus sign in condition.

- 0x02 Minus sign in condition.

None 0x03 No sign in condition.

Thus the decimal value -1 encoded as a signed int64 would have the following binary representation
(byte code, QWORD, sign byte, base byte):

 0x04 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0x02 0x02

2.4.4.17.6 Relational Operator Tokens

Each relational operator examines one or more attribute values and evaluates to TRUE, FALSE or

UNKNOWN, according to the defined behavior of the operator in the following table. In addition to the
TRUE and FALSE values specified for each operator in the table, each relational operator MUST return
"UNKNOWN" if the attribute tested does not exist in the securi ty context.

For all operators other than the relational operators ==, Contains, and Any_of, and the logical
operator Exists, when multivalued attributes are on the left - and/or right -hand side of an operator, the
operation will fail and produce an UNKNOWN value.

74 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If any processing rule returns an error, then the entire conditional expression evaluates to UNKNOWN,
regardless of the rest of the expression.

Unary Relational Operators:

The operand type MUST be either a SID literal, or a composite, each of whose elements is a SID

literal.

The operand for unary operators is the variable on the top of the evaluation stack as specified in the
Evalua teAceCondition algorithm in section 2.5.3.1.5.

Token Type
Byte -
Code Processing

Member_of 0x89 SDDL Form: Member_of operand

Return TRUE if SIDs[] array (section 2.5.2) contains all of the
SIDs in the operand; FALSE otherwise.

Device_Member_of <49> 0x8a SDDL Form: Device_Member_of operand

Return TRUE if DeviceSIDs[] array (section 2.5.2) contains all
of the SIDs in the operand; FALSE otherwise.

Member_of_Any <50> 0x8b SDDL Form: Member_of_Any operand

Return TRUE if SIDs[] array (section 2.5.2) contains any of the

SIDs in the operand; FALSE otherwise.

Device_Member_of_An y<51> 0x8c SDDL Form: Device_Member_of_Any operand

Return TRUE if DeviceSIDs[] array (section 2.5.2) contains any
of the SIDs in the operand; FALSE otherwise.

Not_Member_of <52> 0x90 SDDL Form: Not_Member_of operand

Logical inverse of Member_of .

Not_Device_Member_of <53> 0x91 SDDL Form: Not_Device_ Member_of operand

Logical inverse of Device_Member_of .

Not_Member_of_Any <54> 0x92 SDDL Form: Not_Member_of_Any operand

Logical inverse of Not_Member_of_Any .

Not_Device_Member_of_Any <55> 0x93 SDDL Form: Not_Device_Member_of_Any operand

Logical inverse of Device_Member_of_Any .

Binary Relational Operators

Binary relational operators compare left -hand -side (LHS) and right -hand -side (RHS) operands. The
LHS MUST contain an attribute name in simple or @Prefixed form. <56> The RHS MUST contain an
attribute in @Prefixed form or literals representing values of the sa me value type as the attribute
variable on the LHS. If the LHS and RHS operands are of different types, then the entire conditional
expression evaluates to UNKNOWN. Note, however, that BOOLEAN values TRUE and FALSE can be

compared to the literal integers " 1" and "0", but only when using the == or != operators.

Relational operators that compare string and octet string values compare each string operand byte by
byte, terminating when the compared bytes differ in value. If a string is a prefix of a string it i s
compared to, the longer string is considered greater. The comparison is case - insensitive, unless the
CLAIM_SECURITY_ATTRIBUTE_VALUE_CASE_SENSITIVE flag value is set in the
CLAIM_SECURITY_ATTRIBU TE_RELATIVE_V1 structure (section 2.4.10.1). <57>

If the type of an operand is "Result Value" then the operation returns an error.

75 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the type of an operand is "Local Attribute", "Resource Attribute", "Device Attribute" or "User
Attribute" and the value is null then the logical value of the operand is UNKNOWN.

If the value of either operand is UNKNOWN then the operation returns UNKNOWN.

In the following processing rules, the LHS is the secon d variable on the stack and the RHS is the top of

the stack as specified in the EvaluateAceCondition algorithm in section 2.5.3.1.5.

Token Type
Byte -
Code Processing

== 0x80 SDDL form: (LHS == RHS)

MUST evaluate to TRUE if the argument on the RHS evaluates to the exact value
(single or set value) of the argument on the LHS; otherwise, FALSE.

!= 0x81 SDDL form: (LHS != RHS)

MUST evaluate to FALSE if the argument on the RHS evaluates to the exact
value of the argument on LHS; otherwise, TRUE.

< 0x82 SDDL f orm: (LHS < RHS)

MUST evaluate to TRUE if the argument on the LHS is less than the argument on
the RHS; otherwise, FALSE.

<= 0x83 SDDL form: (LHS <= RHS)

MUST evaluate to TRUE if the argument on the LHS is less than, or equal to, the
argument on the RHS; otherwise, FALSE.

> 0x84 SDDL form: (LHS > RHS)

MUST evaluate to TRUE if the argument on the LHS is greater than the argument
on the RHS; otherwise, FALSE.

>= 0x85 SDDL form: (LHS >= RHS)

MUST evaluate to TRUE if the argument on the LHS is greater than, or equal to,
the argument on the RHS; otherwise, FALSE.

Contains 0x86 SDDL Form: LHS Contains RHS

LHS MUST be an attribute name in simple or @Prefixed form.

RHS MUST be a set of one or more literals, or an attribute name in @Prefixed
form.

MUST ev aluate to TRUE if the value(s) for the specified LHS includes value(s)
identical to each of the value(s) specified by the RHS; otherwise, FALSE. <58>

Any_of 0x88 SDDL Form: LHS Any_of RHS

LHS MUST be an attribute name in simple or @Prefixed form. RHS MUST be a
set of one or more literals, or an attribute name in @Prefixed form.

MUST evaluate to TRUE if the RHS value set includes one or more of the value(s)
of the specified LHS; otherwise, F ALSE. RHS can be either a set or a single
value. <59>

Not_Contains <60> 0x8e SDDL Form: LHS Not_Contains RHS

Logical inverse of Contains .

Not_Any_of <61> 0x8f Form: LHS Not_Any_of RHS

Logical inverse of Any_of .

2.4.4.17.7 Logical Operator Tokens

76 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Logical operators test the logical value of operands and produ ce TRUE, FALSE, or UNKNOWN according
to the defined behavior of the operator. The operands of logical operators must be conditional

expressions and/or expression terms. The logical value of an operand is the tri -state logical value it
receives when evaluat ed according to the following:

Á If the type of the operand is "Literal" then the operation returns an error.

Á If the type of the operand is "Local Attribute", "Resource Attribute", "Device Attribute" or "User
Attribute" and the value is null then the logical value of the operand is UNKNOWN.

Á If an operand is a "Local Attribute", "Resource Attribute", "Device Attribute" or "User Attribute"
and the value is an integer, the logical value of the operand is TRUE if the value is nonzero, and
FALSE otherwise.

Á If an o perand is a "Local Attribute", "Resource Attribute", "Device Attribute" or "User Attribute"

and the value is string, the logical value of the operand is TRUE if the length of the string is
nonzero, and FALSE otherwise.

Á If the type of an operand is "Result Value", the logical value of the operand is the value of the

operand.

Á If any processing rule returns an error, then the entire conditional expression evaluates to
UNKNOWN regardless of the rest of the expression.

Unary Logical Operators

The operand for una ry operators is the variable on the top of the evaluation stack as specified in the
EvaluateAceCondition algorithm in section 2.5.3.1.5 .

Token Type Byte - Code Processing

Exists 0x87 SDDL Form: Exists operand

 If the type of the operand is "Local Attribute"

 If the value is non - null return TRUE

 Else return FALSE

 Else if the type of the operand is "Resource

Attribute"

 Return TRUE if value is non - null; FALSE otherwise.

 Else return Error

Not_E xists <62> 0x8d SDDL Form: Not_Exists operand

Logical inverse of Exists .

Logical NOT (!) 0xa2
 If the logical value of the operand is TRUE

 Return FALSE

 If the logical value of the operand is FALSE

 Return TRUE

 If the logical value of the operand is UNKNOWN

 Return UNKNOWN

Binary Logical Operators

In the processing rules that follow, the LHS is the second element on the stack and the RHS is the top
of the stack as specified in the Evalua teAceCondition algorithm in section 2.5.3.1.5.

77 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Token Type Byte - Code Processing

logical AND (&&) 0xa0 SDDL Form: LHS && RHS

 If the logical value of either operand is FALSE

 Return FALSE

 Else if the logical value of either operand is

UNKNOWN

 Return UNKNOWN

 Else Return TRUE

logical OR (||) 0xa1 SDDL Form: LHS || RHS

 If the logical value of either operand is TRUE

 Return TRUE

 Else if the logical value of either operand is

UNKNOWN

 Return UNKNOWN

 Else Return FALSE

2.4.4.17.8 Attribute Tokens

Attributes can be associated with local environments, users, resources, or devices.

Token Type Byte - Code Token Data Encoding

Local Attribute 0xf8 Encoding same as Unicode string.

Lookup based on string name.

User Attribute 0xf9 Encoding same as Unicode String.

Lookup based on string name.

Resource Attribute 0xfa Encoding same as Unicode String.

Lookup based on string name.

Device Attribute 0xfb Encoding same as Unicode String.

Lookup based on string name.

2.4.4.17.9 Examples: Conditional Expression Binary Repr esentation

Example 1: Attributes in Simple Form

For the following conditional expression:

 (Title=="VP")

The ApplicationData member of the CALLBACK ACEs structure will have the following physical
packing (numbers are in hexadecimal):

78 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 3 : Components of the Application Data member for the conditional expression
(Title=="VP")

The following hexadecimal byte dump shows the contents of the ApplicationData in contiguous
memory for the preceding conditional expression (with three added bytes for padding).

 61 72 74 78 f8 0a 00 00 artx....

 00 54 00 69 00 74 00 6c .T.i.t.l

 00 65 00 10 04 00 00 00 .e......

 56 00 50 00 80 00 00 00 V.P.....

Example 2: @Prefixed Attribute Names and Multiple Terms

For t he following conditional expression illustrates @Prefixed attribute names and use of multiple
terms as expressed in SDDL:

 (@User.smartcard==1 || @Device.managed==1) && (@Resource.dept Any_of{"Sales","HR"})

SDDL strings encoded into an ApplicationData field MUST be ordered to maintain SDDL precedence

rules as specified in section 2.5.1.3 . The preceding conditional expression expressions can be
reordered in postfix notation as follows:

@User.smartca
rd 1

=
=

@Device.manag
ed 1

=
=

|
|

@Resource.de
pt

{Sales,HR
}

Any_o
f

&
&

The following figure shows the mapping from the above postfix expression to the layout in memory:

79 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 4 : Postfix to memory mapping for "(@User.smartcard == 1 || @Device.managed ==
1) && (@Resource.dept Any_of {"Sales","HR"})"

Example 3: RHS Attribute Variables and SID - based Operators

The following conditional expression illustrates @Prefixed attribute names with an attribute variable on
the RHS of the operator and the use of a SID -based operator (Member_Of) as expressed in SDDL:

 (@User.clearanceLevel>=@Resource.requiredClearance) || (Member_of{SID(BA)})

80 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SDDL strings encoded into an ApplicationData field MUST be ordered to maintain SDDL pre cedence
rules as specified in section 2.5.1.3. The preceding conditional expression can be reordered in postfix

notation as follows:

@User.clearanceLevel @Resource.requiredClearance >= {SID(BA)} Member_of ||

The following figure shows the mapping from the preceding postfix expression to the layout in
memory.

Figure 5 : Postfix to memory mapping for (@User.clearanceLevel >=
@Resource.requiredClearance) || (Member_of {SID(BA)})

2.4.5 ACL

The access control list (ACL) pac ket is used to specify a list of individual access control entries (ACEs).

An ACL packet and an array of ACEs comprise a complete access control list.

The individual ACEs in an ACL are numbered fr om 0 to n, where n+1 is the number of ACEs in the

ACL. When editing an ACL, an application refers to an ACE within the ACL by the ACE index.

In the absence of implementation -specific functions to access the individual ACEs, access to each ACE
MUST be compu ted by using the AclSize and AceCount fields to parse the wire packets following the
ACL to identify each ACE_HEADER, which in turn contains the information needed to obtain the
specific ACEs.

An ACL is said to be in canonical form if:

Á All explicit ACEs are placed before inherited ACEs.

81 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á Within the explicit ACEs, deny ACEs come before grant ACEs.

Á Deny ACEs on the object come before deny ACEs on a child or property.

Á Grant ACEs on the object come befo re grant ACEs on a child or property.

Á Inherited ACEs are placed in the order in which they were inherited.

There are two types of ACL:

Á A discretionary access control list (DACL) is controlled by the owner of an object or anyone
granted WRITE_DAC access to the object. It specifies the access particular users and groups can
have to an object. For example, the owner of a file can use a DACL to control which users and
groups can and cannot have acces s to the file.

Á A system access control list (SACL) is similar to the DACL, except that the SACL is used to audit
rather than control access to an object. When an audited action occurs, the operating system

records the event in the security log. Each ACE in a SACL has a header that indicates whether
auditing is triggered by success, failure, or both; a SID that specifies a particular user or security

group to monitor; and an access mask that lists the operations to audit.

The SACL also MAY contain <63> a label ACE that defines the integrity level of the object.

The only valid ACE types for a SACL are the auditing types (SYSTEM_AUDIT_ACE_TYPE,
SYSTEM_AUDIT_OBJECT_ACE_TYPE, SYSTEM_AUDIT_CALLBACK_A CE_TYPE, and

SYSTEM_AUDIT_CALLBACK_OBJECT_ACE_TYPE), the label type
(SYSTEM_MANDATORY_LABEL_ACE_TYPE), the system resource attribute type
(SYSTEM_RESOURCE_ATTRIBUTE_ACE_TYPE), and the scoped policy type
(SYSTEM_SCOPED_POLICY_ID_ACE_TYPE), as specified in s ection 2.4.4.1.

The SACL MUST NOT contain ACEs that belong in the DACL, and the DACL MUST NOT contain
ACE types that belong in the SACL. Doing so results in unspecified behavior.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AclRevision Sbz1 AclSize

AceCount Sbz2

AclRevision (1 byte): An unsigned 8 -bit value that specifies the revision of the ACL. The only two
legitimate forms of ACLs supported for on - the -wire management or manipulation are type 2 and
type 4. No other form is valid for manipulation on the wire. Therefore this field MUST be set to one
of the following values.

Value Meaning

ACL_REVISION

0x02

When set to 0x02, only AceTypes 0x00, 0x01, 0x02, 0x03, 0x11, 0x12, and 0x13 can
be present in the ACL. An AceType of 0 x11 is used for SACLs but not for DACLs. For
more information about ACE types, see section 2.4.4.1.

ACL_REVISION_DS

0x04

When set to 0x04, AceTypes 0x05, 0x06, 0x07, 0x08, and 0x11 are allowed. ACLs of
revision 0x04 are applicable only to directory servic e objects. An AceType of 0x11 is
used for SACLs but not for DACLs.

Sbz1 (1 byte): An unsigned 8 -bit value. This field is reserved and MUST be set to zero.

AclSize (2 bytes): An unsigned 16 -bit integer that specifies the size, in bytes, of the complete ACL ,
including all ACEs.

82 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

AceCount (2 bytes): An unsigned 16 -bit integer that specifies the count of the number of ACE
records in the ACL.

Sbz2 (2 bytes): An unsigned 16 -bit integer. This field is reserved and MUST be set to zero.

2.4.5.1 ACL -- RPC Representation

The RPC representation of the ACL data type specifies the elements needed to access a complete
access control list, including both the ACL header structure and the arra y of ACEs. The individual
members are as specified in section 2.4.5.

The ACL structure MUST be aligned on a 32 -bit boundary.

In the absence of implementation -specific functions to access the indiv idual ACEs, access to each ACE
MUST be computed by using the AclSize and AceCount members to parse the memory following the
ACL to identify each ACE_HEADER, which in turn contains the information needed to obtain the
specific ACEs.

 typedef struct _ACL {

 unsigned char AclRevision;

 unsigned char Sbz1;

 unsigned short AclSize;

 unsigned short AceCount;

 unsigned short Sbz2;

 } ACL,

 *PACL;

2.4.6 SECURITY_DESCRIPTOR

The SECURITY_DESCRIPTOR structure defines the security attributes of an object. These attributes
specify who owns the object; who can access the object and what they can do with it; what level of
audit logging can be applied to the object; and what kind of restrictions apply to the use of the
security descriptor.

Security descriptors appear in one of two forms, absolute or self - relative.

A security descriptor is said to be in absolute format if it stores all of its security information via
pointer fields, a s specified in the RPC representation in section 2.4.6.1 .

A security descriptor is said to be in self - relative format if it stores all of its security information in a
contiguous block of memory a nd expresses all of its pointer fields as offsets from its beginning. The
order of appearance of pointer target fields is not required to be in any particular order; the location of

the OwnerSid, GroupSid, Sacl, and/or Dacl is only based on OffsetOwner, O ffsetGroup, OffsetSacl,
and/or OffsetDacl pointers found in the fixed portion of the relative security descriptor. <64>

The self - relative form of the security descriptor is required if one wa nts to transmit the
SECURITY_DESCRIPTOR structure as an opaque data structure for transmission in communication
protocols over a wire, or for storage on secondary media; the absolute form cannot be transmitted
because it contains pointers to objects that a re generally not accessible to the recipient.

When a self - relative security descriptor is transmitted over a wire, it is sent in little -endian format and

requires no padding.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Revision Sbz1 Control

83 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

OffsetOwner

OffsetGroup

OffsetSacl

OffsetDacl

OwnerSid (variable)

...

GroupSid (variable)

...

Sacl (variable)

...

Dacl (variable)

...

Revision (1 byte): An unsigned 8 -bit value that specifies the revision of the SECURITY_DESCRIPTOR
structure. This field MUST be set to one.

Sbz1 (1 byte): An unsigned 8 -bit value with no meaning unless the Control RM bit is set to 0x1. If

the RM bit is set to 0x1, Sbz1 is interpreted as the resource manager control bits that contain

specific information <65> for the specific resource manager that is accessing the structure. The
permissible values and meanings of these bits are determined by the implementation of the
res ource manager.

Control (2 bytes): An unsigned 16 -bit field that specifies control access bit flags. The Self Relative
(SR) bit MUST be set when the security descriptor is in self - relative format.

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

S

R

R

M

P

S

P

D

S

I

D

I

S

C

D

C

D

T

S

S

S

D

S

P

D

D

D

P

G

D

O

D

Where the bits are defined as:

Value Description

SR

Self -Relative

Set when the security descriptor is in self - relative format. Cleared when the
security descriptor is in absolute format.

RM

RM Control Valid

Set to 0x1 when the Sbz1 field is to be interpreted as resource manager control
bits.

PS Set when the SACL will be protected from inherit operations.

84 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

SACL Protected

PD

DACL Protected

Set when the DACL will be protected from inherit operatio ns.

SI

SACL Auto -Inherited

Set when the SACL was created through inheritance.

DI

DACL Auto -Inherited

Set when the DACL was created through inheritance.

SC

SACL Computed
Inheritance Required

Set when the SACL is to be computed through inheritance. When both SC and SI
are set, the resulting security descriptor sets SI; the SC setting is not preserved.

DC

DACL Computed
Inheritance Required

Set when the DACL is to be computed through inheritance. When both DC and DI

are set, the resulting security descript or sets DI; the DC setting is not preserved.

DT

DACL Trusted

Set when the ACL that is pointed to by the DACL field was provided by a trusted
source and does not require any editing of compound ACEs.

SS

Server Security

Set when the caller wants the system to create a Server ACL based on the input
ACL, regardless of its source (explicit or defaulting).

SD

SACL Defaulted

Set when the SACL was established by default means.

SP

SACL Present

Set when the SACL is present on the object.

DD

DACL Defaulted

Set when the DACL was established by default means.

DP

DACL Present

Set when the DACL is present on the object.

GD

Group Defaulted

Set when the group was established by default means.

OD

Owner Defaulted

Set when the owner was established by default means.

OffsetOwner (4 bytes): An unsigned 32 -bit integer that specifies the offset to the SID . This SID
specifies the owner of the object to which the security descriptor is associated. This must be a
va lid offset if the OD flag is not set. If this field is set to zero, the OwnerSid field MUST not be
present.

OffsetGroup (4 bytes): An unsigned 32 -bit integer that specifies the offset to the SID. This SID

specifies the group of the object to which the secu rity descriptor is associated. This must be a
valid offset if the GD flag is not set. If this field is set to zero, the GroupSid field MUST not be
present.

OffsetSacl (4 bytes): An unsigned 32 -bit integer that specifies the offset to the ACL that contains
system ACEs. Typically, the system ACL contains auditing ACEs (such as SYSTEM_AUDIT_ACE ,
SYSTEM_AUDIT_CALLBACK_ACE , or SYSTEM_AUDIT_CALLBACK_OBJECT_ACE), and at most one
Label ACE (as specified in section 2.4.4.13). This must be a valid offset if the SP flag is set; if the

85 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SP flag is not set, this field MUST be set to zero. If this field is set to zero, the Sacl field MUST not
be present.

OffsetDacl (4 bytes): An unsign ed 32 -bit integer that specifies the offset to the ACL that contains
ACEs that control access. Typically, the DACL contains ACEs that grant or deny access to principals

or groups. This must be a valid offset if the DP flag is set; if the DP flag is not set , this field MUST
be set to zero. If this field is set to zero, the Dacl field MUST not be present.

OwnerSid (variable): The SID of the owner of the object. The length of the SID MUST be a multiple
of 4. This field MUST be present if the OffsetOwner field is not zero.

GroupSid (variable): The SID of the group of the object. The length of the SID MUST be a multiple
of 4. This field MUST be present if the GroupOwner field is not zero. <66>

Sacl (variable): The SACL of the object. The length of the SID MUST be a multiple of 4. This field

MUST be present if the SP flag is set.

Dacl (variable): The DACL of the object. The length of the SID MUST be a multiple of 4. This field
MUST be present if the DP flag is set.

2.4.6.1 SECURITY_DESCRIPTOR -- RPC Representation

The RPC representation of the SECURITY_DESCRIPTOR structure defines the in -memory
representation of the SECURITY_DESCRIPTOR message. The individual member semantics for the
Revision , Sbz1 , Control , Owner , Group , Sacl and Dacl members are as specified in section 2.4.6,
with the exceptions that Owner co rresponds to OwnerSid, and Group corresponds to GroupSid,
respectively.

 typedef struct _SECURITY_DESCRIPTOR {

 UCHAR Revision;

 UCHAR Sbz1;

 USHORT Control;

 PSID Owner;

 PSID Group;

 PACL Sacl;

 PACL Dacl;

 } SECURITY_DESCRIPTOR,

 *PSECURITY_DESCRIPTOR;

Revision: As specified in section 2.4.6.

Sbz1: As specified in section 2.4.6.

Control: As specified in section 2.4.6.

Owner: Pointer to the Owner SID (OwnerSid), as specified in section 2.4.6.

Group: Pointer to the Group SID (GroupSid), as specified in section 2.4.6.

Sacl: Pointer to the Sacl, as specified in section 2.4.6.

Dacl: Pointer to the Dacl, as specified in section 2.4.6.

2.4.7 SECURITY_INFORMATION

The SECURITY_INFORMATION data type identifies t he object - related security information being set or
queried. This security information includes:

Á The owner of an object.

86 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á The primary group of an object.

Á The discretionary access control list (DACL) of an object.

Á The system access control list (SACL) of an object.

An unsigned 32 -bit integer specifies portions of a SECURITY_DESCRIPTOR by means of bit flags.

Individual bit values (combinable with the bitwise OR operation) are as shown in the following table.

Value Meaning

OWNER_SECURITY_INFORMATION

0x00000001

The owner identifier of the object is being referenced.

GROUP_SECURITY_INFORMATION

0x00000002

The primary group identifier of the object is being referenced.

DACL_SECURITY_INFORMATION

0x00000004

The DACL of the object is being referenced.

SACL_SECURITY_INFORMATION

0x00000008

The SACL of the object is being referenced.

LABEL_SECURITY_INFORMATION

0x00000010

The mandatory integrity label is being referenced.

UNPROTECTED_SACL_SECURITY_INFORMATION

0x10000000

The SACL inherits access control entries (ACEs) from the
parent object.

UNPROTECTED_DACL_SECURITY_INFORMATION

0x20000000

The DACL inherits ACEs from the parent object.

PROTECTED_SACL_SECURITY_INFORMATION

0x40000000

The SACL cannot inherit ACEs.

PROTECTED_DACL_SECURITY_INFORMATION

0x80000000

The DACL cannot inherit ACEs.

ATTRIBUTE_SECURITY_INFORMATION

0x00000020

A SYSTEM_RESOURCE_ATTRIBUTE_ACE (section 2.4.4.15) is
being referenced.

SCOPE_SECURITY_INFORMATION

0x00000040

A SYSTEM_SCOPED_POLICY_ID_ACE (section 2.4.4.16) is
being referenced.

BACKUP_SECURITY_INFORMATION

0x00010000

The security descriptor is being accessed for use in a backup

operation.

This type is declared as follows:

 typedef DWORD SECURITY_INFORMATION, *PSECURITY_INFORMATION;

2.4.8 TOKEN_MANDATORY_POLICY

The TOKEN_MANDATORY_POLICY structure specifies the mandatory integrity policy for a token .

 typedef struct _TOKEN_MANDATORY_POLICY {

 DWORD Policy;

 } TOKEN_MANDATORY_POLICY,

87 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 *PTOKEN_MANDATORY_POLICY;

Policy: The Policy member contains a value denoting the mandatory integrity policy of the token;
these values are mutually exclusive.

Value Meaning

TOKEN_MANDATORY_POLICY_OFF

0x00000000

No mandatory integrity policy is enforced for the
token.

TOKEN_MANDATORY_POLICY_NO_WRITE_UP

0x00000001

A process associated with the token cannot write to
objects that have a greater mandatory integrity level.

TOKEN_MANDATORY_POLICY_NEW_PROCESS_MIN

0x00000002

A process created with the token has an integrity le vel
that is the lesser of the parent -process integrity level
and the executable - file integrity level.

2.4.9 MANDATORY_INFORMATION

The MANDATORY_INFORMATION structure defines mandatory securit y information for a securable
object.

 typedef struct _MANDATORY_INFORMATION {

 ACCESS_MASK AllowedAccess;

 BOOLEAN WriteAllowed;

 BOOLEAN ReadAllowed;

 BOOLEAN ExecuteAllowed;

 TOKEN_MANDATORY_POLICY MandatoryPolicy;

 } MANDATORY_INFORMATION,

 *PMANDATORY_INFORMATION;

AllowedAccess: The AllowedAccess member specifies the access mask that is used to encode the
user rights to an object.

WriteAllowed: Specifies write properties for the object.

ReadAllowed: Specifies read properties for the obje ct.

ExecuteAllowed: Specifies execution properties for the object.

MandatoryPolicy: Specifies the integrity policy for the object.

2.4.10 CLAIM_SECURITY_ATTRIBUTE

The CLAIM_SECURITY_ATTRIBUTE type specifies a security attribute (also called a security claim) in

various formats.

2.4.10.1 CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1

The CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 structure defines a resource attribute that is defined
in con tiguous memory for persistence within a serialized Security Descriptor.

 typedef struct _CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 {

 DWORD Name;

88 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 WORD ValueType;

 WORD Reserved;

 DWORD Flags;

 DWORD ValueCount;

 union {

 PLONG64 pInt64[];

 PDWORD64 pUint64[];

 PWSTR ppString[];

 PCLAIM_SECURITY_ATTRIBUTE_OCTET_STRING_RELATIVE pOctetString[];

 } Values;

 } CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1,

 *PCLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1;

Name: A DWORD value indicating an offset from the beginning of the
CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 structure to a string of Unicode characters containing

the name of the claim security attribute. The s tring MUST be at least 4 bytes in length.

ValueType: A union tag value indicating the type of information referred to by the Values member.

The Values member MUST be an array of offsets from the beginning of the
CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 struct ure to the specified ValueType . ValueType
MUST be one of the following values:

Value Meaning

CLAIM_SECURITY_ATTRIBUTE_TYPE_INT64

0x0001

Values member refers to an array of offsets to
LONG64 value (s).

CLAIM_SECURITY_ATTRIBUTE_TYPE_UINT64

0x0002

Values member refers to an array of offsets to
ULONG64 value(s).

CLAIM_SECURITY_ATTRIBUTE_TYPE_STRING

0x0003

Values member refers to an array of offsets to
Unicode character string value(s).

CLAIM_SECURITY_ATTRIBUTE_TYPE_SID

0x0005

The Values member refers to an array of offsets to
CLAIM_SECURITY_ATTRIBUTE_OCTET_STRING_RELA
TIVE value(s) where the OctetString value is a SID
string.

CLAIM_SECURITY_ATTRIBUTE_TYPE_BOOLEAN

0x0006

The Values member refers to an array of offsets t o
ULONG64 values where each element indicates a
Boolean value. The value 1 indicates TRUE, and the

value 0 indicates FALSE.

CLAIM_SECURITY_ATTRIBUTE_TYPE_OCTET_STRING

0x0010

Values member contains an array of
CLAIM_SECURITY_ATTRIBUTE_OCTET_STRING_RELA
TIVE value(s) as specified in section 2.4.10.2.

Reserved: Reserved. This member MUST be set to zero when sent and MUST be ignored when
received.

Flags: The upper two bytes of this DWORD are available for application -specific data. The two lowest -

order bits in the lower of these two bytes are reserved. These two bytes MAY <67> contain only
one of the following values in those two bits:

Value Meaning

FCI_CLAIM_SECURITY_ATTRIBUTE_MANUAL The CLAIM_SECURITY_ATTRIBUTE has been
manually assigned.

89 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x0001

FCI_CLAIM_SECURITY_ATTRIBUTE_POLICY_DERIVED

0x0002

The CLAIM_SECURITY_ATTRIBUTE has been
determined by a central policy.

The lower two bytes of this DWORD MUST be zero or a bitwise combination of o ne or more of the
following values: <68>

Value Meaning

CLAIM_SECURITY_ATTRIBUTE_NON_INHERITABLE

0x0001

This claim security attribute is not inherited across
processes. <69>

CLAIM_SECURITY_ATTRIBUTE_VALUE_CASE_SENSITIVE

0x0002

The value of the claim security attribute is case
sensitive. This flag is valid for values that contain
string types.

CLAIM_SECURITY_ATTRIBUTE_USE_FOR_DENY_ONLY

0x0004

Reserved for future use.

CLAIM_SECURITY_ATTRIBUTE_DISABLED_BY_DEFAULT

0x0008

The claim security attribute is disabled by default.

CLAIM_SECURITY_ATTRIBUTE_DISABLED

0x0010

Reserved for future use.

CLAIM_SECURITY_ATTRIBUTE_MANDATORY

0x0020

The claim security attribute is mandatory.

ValueCount: The number of values contained in the Values member.

Values: An array of offsets from the beginning of the CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1
structure. E ach offset indicates the location of a claim security attribute value of type specified in
the ValueType member.

2.4.10.2 CLAIM_SECURITY_ATTRIBUTE_OCTET_STRING_RELATIVE

The CLAIM_SECURITY_ATTRIBUTE_OCTET_STRING_RELATIVE structure specifies an octet
string. <70>

 typedef struct _CLAIM_SECURITY_ATTRIBUTE_OCTET_STRING_RELATIVE {

 DWORD Length;

 BYTE OctetString[];

 } CLAIM_SECURITY_ATTRIBUTE_OCTET_STRING_RELATIVE,

 *PCLAIM_SECURITY_ATTRIBUTE_OCTET_STRING_RELATIVE;

Length: The length, in bytes, of the value contained in the OctetString field.

OctetString: An array of bytes containing the octet string value. The length of the value is specified
by the Length field.

90 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.5 Additional Information for Security Types

2.5.1 Security Descriptor Description Language

The SECURITY_DESCRIPTOR structure is a compact binary representation of the security associated
with an object in a directory or on a file system, or in other stores. It is not, however, convenient for
use in tools that operate primarily on text strings. Therefore, a text -based form of the security
descriptor is available for situations when a security descriptor must be carried by a text method. This
format is the Security Descriptor Description Lan guage (SDDL). <71>

 For more information on SDDL for Device Objects, see [MSDN -SDDLforDevObj] .

2.5.1.1 Syntax

An SDDL string is a single sequence of characters. The format can be ANSI or Unicode; the actual

protocol MUST specify the character set that is used. Regardless of the character set used, the
characters that can be used are alphanumeric and punctuation.

The format for an SDDL string is described by the following ABNF (as specified in [RFC5234])
grammar, where the elements are as shown here. <72>

 sddl = [owner - string] [group - string] [dacl - string] [sacl - string]

 owner - string = "O:" sid - string

 group - string = "G:" sid - string

 dacl - string = "D:" [acl - flag - string] [aces]

 sacl - string = "S:" [acl - flag - string] [aces]

 sid - strin g = sid - token / sid - value

 sid - value = SID;defined in section 2.4.2.1

 sid - token = "DA"/ "DG" / "DU" / "ED" / "DD" / "DC" / "BA" / "BG" / "BU" /

 "LA" / "LG" / "AO" / "BO" / "PO" / "SO" / "AU" / "PS" / "CO" / "CG" / "SY" /

 "PU" / "WD" / "RE" / "IU" / " NU" / "SU" / "RC" / "WR" / "AN" / "SA" / "CA" /

 "RS" / "EA" / "PA" / "RU" / "LS" / "NS" / "RD" / "NO" / "MU" / "LU" / "IS" /

 "CY" / "OW" / "ER" / "RO" / "CD" / "AC" / "RA" / "ES" / "MS" / "UD" / "HA" /

 "CN" / "AA" / "RM" / "LW" / "ME" /"MP" / "HI" / "S I"

 acl - flag - string = *acl - flag

 acl - flag = "P" / "AR" / "AI"

 aces = *(ace / conditional - ace / resource - attribute - ace)

 ace = "(" ace - type ";" [ace - flag - string] ";" ace - rights ";"

 [object - guid] ";" [inherit - object - guid] ";" sid - string ")"

 ace - type = "A" / "D" / "OA" / "OD" / "AU" / "OU" / "ML" / "SP"

 conditional - ace = "(" conditional - ace - type ";" [ace - flag - string] ";" ace - rights

 ";" [object - guid] ";" [inherit - object - guid] ";" sid - string ";" "(" cond - expr ")" ")"

 conditional - ace - type = "XA" / "XD" / "Z A" / "XU"

 central - policy - ace = "(" "SP" ";" [ace - flag - string] ";;;;" capid - value - sid")"

 capid - value - sid = "S - 1- 17- " 1*SubAuthority

 ; SubAuthority defined in section 2.4.2.1

 resource - attribute - ace = "(" "RA" ";" [ace - flag - string] ";;;;" ("WD" /

http://go.microsoft.com/fwlink/?LinkId=114214
http://go.microsoft.com/fwlink/?LinkId=123096

91 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 " S- 1- 1- 0") ";(" attribute - data "))"

 attribute - data = DQUOTE 1*attr - char2 DQUOTE "," (TI - attr / TU - attr / TS - attr /

 TD- attr / TX - attr / TB - attr)

 TI - attr = "TI" "," attr - flags *("," int - 64)

 TU- attr = "TU" "," attr - flags *("," uint - 64)

 TS- attr = "TS" " ," attr - flags *("," char - string)

 TD- attr = "TD" "," attr - flags *("," sid - string)

 TX- attr = "TX" "," attr - flags *("," octet - string)

 TB- attr = "TB" "," attr - flags *("," ("0" / "1"))

 attr - flags = "0x" ([*4HEXDIG "00"] sys - attr - flags / *"0" sys - attr - flags /

 *"0" HEXDIG)

 sys - attr - flags = ("0"/ "1" / "2" / "3") HEXDIG

 ace - flag - string = ace - flag ace - flag - string / ""

 ace - flag = "CI" / "OI" / "NP" / "IO" / "ID" / "SA" / "FA"

 ace - rights = (*text - rights - string) / ("0x" 1*8HEXDIG) / ("0" 1*%x30 - 37) /

 (1*DIGIT)

 ; numeric values must fit within 64 bits

 text - rights - string = generic - rights - string / standard - rights - string /

 object - specific - rights - string

 generic - rights - string = generic - right / generic - rights - string / ""

 generic - right = "GA" / "GW" / "GR" / "GX"

 standard - rights - string = standard - right / standard - rights - string / ""

 standard - right = "WO" / "WD" / "RC" / "SD"

 object - specific - rights - string = object - specific - right / object - specific -

 rights - string / ""

 object - specific - right = <any object - specific right, for objects like files,

 registry keys, directory objects, and others>

 guid = "" / 8HEXDIG " - " 4HEXDIG " - " 4HEXDIG " - " 4HEXDIG " - " 12HEXDIG

 ; The second option is the GUID of the object in the form

 ; "XXXXXXXX - XXXX- XXXX- XXXX- XXXXXXXXXXXX" Where each "X" is a Hex digit

 object - guid = guid

 inherit - object - guid = guid

 wspace = 1*(%x09 - 0D / %x20)

 term = [wspace] (memberof - op / exists - op / rel - op / contains - op / anyof - op / attr - name

 / rel - op2) [wspace]

 cond - expr = term / term [wspace] ("||" / "&&") [wspace] cond - expr / (["!"] [wspace]

 "(" cond - expr ")")

 memberof - op = ("Member_of" / "Not_Member_of" / "Member_of_Any" /

 "Not_Member_of_Any" / "Device_Member_of" / "De vice_Member_of_Any" /

 "Not_Device_Member_of" / "Not_Device_Member_of_Any") wspace sid - array

 exists - op = ("Exists" / "Not_exists") wspace attr - name

92 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 rel - op = attr - name [wspace] ("<" / "<=" / ">" / ">=") [wspace] (attr - name2 / value)

 ; only scalars

 rel - op2 = attr - name [wspace] ("==" / "!=") [wspace] (attr - name2 / value - array)

 ; scalar or list

 contains - op = attr - name wspace ("Contains" / "Not_Contains") wspace (attr - name2 / value -

array)

 anyof - op = attr - name wspace ("Any_of" / "Not_Any_of") wspace (attr - name2 / value - array)

 attr - name1 = attr - char1 *(attr - char1 / "@")

 ; old simple name

 attr - char1 = 1*(ALPHA / DIGIT / ":" / "." / "/" / "_")

 attr - name2 = ("@user." / "@device." / "@resource.") 1*attr - char2

 ; new prefixed name form

 attr - char2 = attr - char1 / lit - char

 attr - name = attr - name1 / attr - name2

 ; either name form

 sid - array = literal - SID [wspace] / "{" [wspace] literal - SID [wspace] *("," [wspace] literal -

SID [wspace]) "}"

 literal - SID = "SID(" sid - string ")"

 value - array = value [wspace] / "{" [wspace] value [wspace] *("," [wspace] value [wspace]) "}"

 value = int - 64 / char - string / octet - string

 int - 64 = ["+" / " - "] ("0x" 1*HEXDIG) / ("0" 1*%x30 - 37) / 1*DIGIT

 ; values must fit within 64 bits in tw o's complement form

 uint - 64 = ("0x" 1*HEXDIG) / ("0" 1*%x30 - 37) / 1*DIGIT

 ; values must fit within 64 bits

 char - string = DQUOTE *(CHAR) DQUOTE

 octet - string = "#" *(2HEXDIG)

 lit - char = "#" / "$" / "'" / "*" / "+" / " - " / "." / "/" / ":" / ";" / "?" /

 "@" / "[" / " \ " / "]" / "^" / "_" / "`" / "{" / "}" / "~" / %x0080 - FFFF /

 ("%" 4HEXDIG)

 ; 4HEXDIG can have any value except 0000 (NULL)

sid - token : An abbreviated form of a well -known SID, per the following table.

SDDL alias Well -Known SID name

"DA" DOMAIN_ADMINS

"DG" DOMAIN_GUESTS

"DU" DOMAIN_USERS

"ED" ENTERPRISE_DOMAIN_CONTROLLERS

"DD" DOMAIN DOMAIN CONTROLLERS

"DC" DOMAIN_COMPUTERS

"BA" BUILTIN_ADMINISTRATORS

93 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SDDL alias Well -Known SID name

"BG" BUILTIN_GUESTS

"BU" BUILTIN_USERS

"LA" ADMINISTRATOR <73>

"LG" GUEST

"AO" ACCOUNT_OPERATORS

"BO" BACKUP_OPERATORS

"PO" PRINTER_OPERATORS

"SO" SERVER_OPERATORS

"AU" AUTHENTICATED_USERS

"PS" PRINCIPAL_SELF

"CO" CREATOR_OWNER

"CG" CREATOR_GROUP

"SY" LOCAL_SYSTEM

"PU" POWER_USERS

"WD" EVERYONE

"RE" REPLICATOR

"IU" INTERACTIVE

"NU" NETWORK

"SU" SERVICE

"RC" RESTRICTED_CODE

"WR" WRITE_RESTRICTED_CODE

"AN" ANONYMOUS

"SA" SCHEMA_ADMINISTRATORS

"CA" CERT_PUBLISHERS

"RS" RAS_SERVERS

"EA" ENTERPRISE_ADMINS

"PA" GROUP_POLICY_CREATOR_OWNER

"RU" ALIAS_PREW2KCOMPACC

"LS" LOCAL_SERVICE

"NS" NETWORK_SERVICE

"RD" REMOTE_DESKTOP

"NO" NETWORK_CONFIGURATION_OPS

94 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SDDL alias Well -Known SID name

"MU" PERFMON USERS

"LU" PERFLOG USERS

"IS" IIS USERS

"CY" CRYPTO OPERATORS

"OW" OWNER_RIGHTS

"ER" EVENT LOG READERS

"RO" ENTERPRISE RO DCS

"CD" CERTSVC DCOM ACCESS

"AC" ALL APP PACKAGES

"RA" REMOTE ACCESS SERVERS

"ES" RDS ENDPOINT SERVERS

"MS" RDS MANAGEMENT SERVERS

"UD" USER MODE DRIVERS

"HA" HYPER V ADMINS

"CN" CLONEABLE CONTROLLERS

"AA" ACCESS CONTROL ASSISTANCE OPS

"RM" REMOTE_MANAGEMENT_USERS

"LW" ML_LOW

"ME" ML_MEDIUM

"MP" ML MEDIUM PLUS

"HI" ML_HIGH

"SI" ML_SYSTEM

acl - flag : Flags for the SECURITY_DESCRIPTOR structure, context dependent on whether a SACL or
DACL is being processed. These flags are derived from the SECURITY_DESCRIPTOR Control flags

specified in section 2.4.6. "P" indicates Protected PS or PD flags from that section, "AR"
corresponds to SC or DC, and "AI" indicates SI or DI.

ace - type : String that indicates the type of ACE that is bei ng presented.

String ACE type

"A" Access Allowed

"D" Access Denied

"AU" Audit

"OA" Object Access Allowed

95 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

String ACE type

"OD" Object Access Denied

"OU" Object Audit

"ML" Mandatory Label

"SP" Central Policy ID

conditional - ace - type : String that indicates the type of SDDL -supported conditional ACE that is being
presented. <74>

String ACE type Numeric value

"XA" Access Allowed Callback 0x9

"XD" Access Denied Callback 0xA

"XU" Access Allowed Object C allback 0xB

"ZA" Audit Callback 0xD

central - policy - ace : An ACE type that identifies a central policy to be applied to the resource. Also
called a SYSTEM_SCOPED_POLICY_ID ACE (see section 2.4.4.16). <75>

capid - value - sid : A SID with an Authority value of 17 that refers to a CentralAccessPolicy within a

CentralAccessPolicysList ([MS -GPCAP] section 3.2.1.1). <76>

resource - attribute - ace : An ACE type that defines a resource attribute (sometimes referred to as a
resource property or resource claim.) See section 2.4.4.15 .<77>

attribute - data : A string specifying the name of a resource attribute and data defining the type and
value of the attribute. A resource attribute type can be identified with one of the following

strings: <78>

String Resource Attribute Type

"TI" 64 -bit Integer

"TU" Unsigned 64 -bit integer

"TS" String of Unicode characters

"TD" A SID in string form

"TX" A string of single byte (octet) values

"TB" A string containing a Boolean value represented by a "1" (True) or a "0" (False.)

attr - flags : A 32 -bit number containing flag values w ithin a resource attribute. The bits 16 -31 can

contain custom values. Bits 0 through 15 are specified by sys -attr - flags.

sys - attr - flags : A two -byte integer that MAY be zero or any combination of the hexadecimal flag

values of the CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 structure (section 2.4.10.1)

ace - flag - string : A set of ACE flags that define the behavior of the ACE. The strings correlate exactly
to the flags as specified in section 2.4.4.1 .

generic - rights - string : A set of generic user rights used to perform generic mappings to object -
specific rights.

%5bMS-GPCAP%5d.pdf#Section_5189d5c912c2491cbf16f7008c46c6fb

96 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

String Access right Hex value

"GR" Generic Read 0x80000000

"GW" Generic Write 0x40000000

"GX" Generic Execute 0x20000000

"GA" Generic All 0x10000000

standard - rights - string : A set of SDDL -supported standard user rights.

String Access right Hex value

"WO" Write Owner 0x00080000

"WD" Write DAC 0x00040000

"RC" Read Control 0x00020000

"SD" Delete 0x00010000

object - specific - rights - string : A set of object -specific rights; some common ones are shown, but the
it is recommended that the reader consult a specific protocol for applicable values, if any, in that
protocol.

String Object type Access right Hex value

"FA" File File All Access 0x001F01FF

"FX" File File Execute 0x001200A0

"FW" File File Write 0x00100116

"FR" File File Read 0x00120089

"KA" Registry Key Key All Access 0x00000019

"KR" Registry Key Key Read 0x0000003F

"KX" Registry Key Key Execute 0x00000019

"KW" Registry Key Key Write 0x00000006

"CR" Directory Object Control Access 0x00000100

"LO" Directory Object List Object 0x00000080

"DT" Directory Object Delete Tree 0x00000040

"WP" Directory Object Write Property 0x00000020

"RP" Directory Object Read Property 0x00000010

"SW" Directory Object Self Write 0x00000008

"LC" Directory Object List Children 0x00000004

"DC" Directory Object Delete Child 0x00000002

"CC" Directory Object Create Child 0x00000001

97 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

term : A string specifying a stand -alone logical expression, which is the simplest form of conditional
expression, or a part of a more complex conditional expression.

cond - expr : A conditional expression in textual form. Conditional expressions are specified in section
2.4.4.17 .

memberof - op : A string identifying a Member_of type of operator as described in section 2.4.4.17.6 .
<79>

exists - op : A string identifying an exists type operator as described in section 2.4.4.17.7 .

rel - op : A string specifying a binar y relational operation containing an attribute name or reference,
one of the following relational operators, "==" , "!=" , "<" , "<=" , ">" , ">=" (without quotes)
identifying a relational operator as described in section 2.4.4.17.6, and an attribute name or literal
value.

rel - op2 : A string specifying a binary operator for certain operators that support set comparisons. The
string contains an attribute name, a string specifying the operator, "==" or "!=", and a string
specifying an array of values (value - ar ray). <80>

contains - op : A string specifying a relational operator term using a Contains or Not_Contains
operator. <81>

anyof - op : A string specifying a relational operator term using an Any_of or Not_Any_of

operator. <82>

sid - array : A string representation of an array of string SIDs.

literal - SID : A string specifying a literal SID. A literal -SID MUST be prefixed by the string "SID"
followed by a sid -value enclosed in parentheses.

attr - name1 : A string representing a valid attribute name in simple form. <83 > An attribute name in
simple form MUST not begin with the "@" character and MUST be comprised only of characters
defined by attr -char1. An example of an attribute in simple form is "Title" (without quotes.) See

section 2.5.1.2.1 .

attr - name2 : A string representing a valid attribute name in @Prefixed form. An attribute name is in
@Prefixed form when it is prefixed with the string "@User.", "@Device.", or "@Resource." and is
comprised only of charact ers defined by attr -char2. An example of an attribute in @Prefixed form
is "@User.Title" (without quotes.) See section 2.5.1.2.2 .< 84>

attr - char1 : A character valid for use in an attribute name in simple form. Valid characters include any
ALPHA or DIGIT (as specified in [RFC5234]) or any of the following: ":", ".", "/", "_".

attr - char2 : A character valid for use in an attribute name i n @Prefixed form. Valid characters include
all ASCII and UNICODE characters of the range 0x0 -0xFFFF. Characters MAY be encoded either as
literals or be encoded with a five -character sequence %XXXX, where XXXX are hexadecimal digits
that represent the corre sponding 16 -bit Unicode value of the character with the following
exceptions:

1. The following characters: "!", "&", "(", ")", ">", "<", "=", "|", "%", SP (space) and DQUOTE (as

specified in [RFC5234]) MUST be encoded in the preceding five -character sequence.

2. The following characters MUST be encoded as literals: "#", "$", "'", "*", "+", " - ", ".", "/", ":",
";", "?", "@", "[", " \ ", "]", "^", "_", "`", "{", "}", "~" and any characters in the ASCII ranges
0x41 -0x5A (A -Z), 0x61 -0x7A (a -z) and 0x30 -0x39 (0 -9.)

valu e- array : A string specifying an array of values. A value -array can be a single value or a set of
one or more comma -delineated values where the entire set of values is enclosed between the "{"
and "}" symbols.

98 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.5.1.2 Security Attribute Names

Attribute names are sp ecially formatted strings used within conditional expressions to reference the
attributes of a user, device, or resource. Attribute Names can be in simple or "@Prefixed" form.

2.5.1.2.1 Simple Attribute Name Form

An attribute name in simple form is limited to referencing an attribute in the LocalClaims[] array
(section 2.5.2) of the same name in simple form. An attribute name in simple form is case - insensi tive
and MAY contain any ALPHA or DIGIT (as specified in [RFC5234]) characters as well as the following
characters: ":", ".", ", "_". An attribute name in simple form MAY also contain the "@" character in
any position other than the first character of the attribute name. See attr - char1 in section 2.5.1.1 for

encoding requirements.

2.5.1.2.2 @Prefixed Attribute Name Form

The @Prefixed Attribute name form allows an attribute name to identify an attribute as b eing of type
"User", "Device" or "Resource" and MUST follow the pattern:

 @<attribute type>.<attribute name>

During policy evaluation, an attribute name in @Prefixed form references a user or device claim or
resource attribute according to the following:

"@ "prefix
Policy evaluation reference

@User. Claim of same name in UserClaims[] array of token/authorization context (section 2.5.2 .)

@Device. Claim of same name in DeviceClaims[] array of token/authorization context (section 2.5.2.)

@Resource. Resource attribute of the same name encoded in the System Access Control List of the evaluated

security descriptor as a SYSTEM_RESOURCE_ATTRIBUTE_ACE (section 2.4.4.15.)

An attribute name in @Prefixed form is case - insensitive and valid characters include all ANSI and
Unicode characters of the range 0x0 -0xFFFF. See attr - char2 in section 2.5.1.1 for encoding
requirements.

2.5.1.3 Parentheses and Order of Precedence

SDDL expressions MUST be interpreted in the following order of precedence, with operations of equal
precedence being evaluated from lef t to right. In addition, any term or conditional expression within a
conditional expression can be enclosed in parentheses. Expressions within parentheses MUST be
evaluated first.

1. Exists, Not_Exists

2. Member_of, Not_Member_of, Device_Member_of, Not_Device_Me mber_of, Member_of_Any,

Not_Member_of_Any, Device_Member_of_Any, Not_Device_Member_of_Any, Contains,
Not_Contains, Any_of, Not_Any_of, ==, !=, <, <=, >, >=

3. !

4. &&

5. ||

99 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.5.1.4 SDDL String to Binary Security Descriptor Examples

The following SDDL string:
"O:BAG:BAD:P(A ;CIOI;GRGX;;;BU)(A;CIOI;GA;;;BA)(A;CIOI;GA;;;SY)(A;CIOI;GA;;;CO)S:P(AU;FA;G

R;;;WD)"

yields the following, which is an encoded output of the security descriptor in self - relative form ordered
as little -endian.

 00000000 01 00 14 b0 90 00 00 00 a0 00 00 00 1 4 00 00 00

 00000010 30 00 00 00 02 00 1c 00 01 00 00 00 02 80 14 00 0...............

 00000020 00 00 00 80 01 01 00 00 00 00 00 01 00 00 00 00

 00000030 02 00 60 00 04 00 00 00 00 03 18 00 00 00 00 a0 ..'.............

 00000040 01 02 00 00 00 00 00 05 20 00 00 00 21 02 00 00 !...

 00000050 00 03 18 00 00 00 00 10 01 02 00 00 00 00 00 05

 00000060 20 00 00 00 20 02 00 00 00 03 14 00 00 00 00 10

 00000070 01 01 00 00 00 00 00 05 12 00 00 00 00 03 14 00

 00000080 00 00 00 10 01 01 00 00 00 00 00 03 00 00 00 00

 00000090 01 02 00 00 00 00 00 05 20 00 00 00 20 02 00 00

 000000a0 01 02 00 00 00 00 00 05 20 00 00 00 20 02 00 00

The SECURITY_DESCRIPTOR starts with the SD revision number (1 byte long) at address 0x00,
followed by reserved bits and the SD control flags (2 bytes long). As mentioned prev iously, this is
followed by owner, group, SACL, and DACL offsets.

 01 00 14 b0 90 00 00 00 a0 00 00 00 14 00 00 00

Figure 6 : Security descriptor field offsets example

Control Flags

Control flags for the DACL are represented as a bitmask, and the resultant set of flags is computed by

a logical OR of the flags. In this example, the control flag value is set to the following.

 1011000000010100

This control flag value maps to the meaning that is shown in the following table.

BIT Me aning

0 OD: Owner defaulted

0 GD: Group defaulted

1 DP: DACL present

100 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

BIT Me aning

0 DD: DACL defaulted

1 SP: SACL present

0 SD: SACL defaulted

0 SS: Server Security

0 DT: DACL Trusted

0 DR: DACL Inheritance Required

0 SR: Inheritance Required

0 DI: DACL auto - inherited

0 SI: SACL auto - inherited

1 PD: DACL -protected

1 PS: SACL -protected

0 RM: Control Valid

1 SR: Self -Relative

SACL

The control flags are followed by the SACL, which in this example is "S:P(AU;FA;GR;;;WD)"

DACL

The SACL is followed by the SECURITY_DESCRIPTOR DACL, which in this example is:

 (A;CIOI;GRGX;;;BU)(A;CIOI;GA;;;BA)(A;CIOI;GA;;;SY)(A;CIOI;GA;;;CO)

Note The string representation for the DACL (D:) and the DACL control flags are consumed not as
part of th e DACL structure in the SD, but instead as the security descriptor control flags. The same

applies for SACL.

Figure 7 : Security access control list data example

The ACL can be further dissected into the ACL header and the individ ual ACEs. For more information,
see section 2.4.5 .

101 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ACL HEADER

 02 00 60 00 04 00 00 00

 AclRevision (1 byte): 0x02

 Reserved : 0x00

 AclSize : 0x0060

 AceCount : 0x000 4

 Reserved : 0x0000

ACE Structure

This is followed by the ACES in the ACL. For more information about the ACE structure, see section
2.4.4.1 .

In this example, there are four ACEs for the DACL.

 (A;CIOI;GRGX;;;BU)(A;CIOI;GA;;;BA)(A;CIOI;GA;;;SY)(A;CIOI;GA;;;CO)

First, look at the first access control entry (ACE) as an example. "(A;CIOI;GRGX;;;BU)" maps to the

following in the binary structure (in little -endian order).

 00 03 18 00 00 00 00 a0 01 02 00 00 00 00 00 05 - 20 00 00 00 21 02 00 00

Figure 8 : ACE field offsets

Owner

The owner begins at offset 0x90. In this example, owner is set to "BA" (Built - in Admin).

Figure 9 : ACE owner fie ld offsets example

Group

The group begins at offset 0xA0. In this example, group is set to "BA" (Built - in Admin).

102 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 10 : ACE group field offsets example

2.5.2 Token/Authorization Context

For a server implementation of an authenticated protocol, the result of the authentication produces a
variety of data. Some of the data is related to the authentication protocol, such as keys for encrypted
communication, and is covered in the relevant authentication protocol specification. Additionally, after
the identity of the client is determined, additional data corresponding to authorization of the client to
the server is derived. This additional information can be from the domain controller, server - local

information, or a combination of the two, depending on implementation choices. This additional
information is termed an authorization context.

The authorization context, also referred to as a Token, is a collection of the groups associated with the
client principal, as well as addition al optional policy information. The authorization context is central to
determining access through the evaluation of a security descriptor, as shown in section 2.5.3 . Note
that the Token is never passed directly across the network; tokens are local information and the actual
representation is up to the implementation. This Token is represented as an abstract data structure as

follows:

Á Sids[] : An array of SIDs that indicate the SID of the user account, the SIDs of all groups to which
the user belongs, and SIDs that indicate contextual information such as logon type. The Sids[]
array always contains at least the SID of the account; it is an e rror to have an empty set. The
order of the SIDs is not specified, nor is it required that the array be treated logically as a set of
SIDs. For the purposes of this document, the SIDs can be considered instances of the RPC_SID
structure.

Á UserClaims[] : An optional array of CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 (defined in
section 2.4.10.1) which have been issued to the user. The UserClaims[] array can be empty. The
order of the Claims is not specified or required.

Á LocalClaims[] : An optional array of CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 (defined in
section 2.4.10.1) which have been issued to the authenticated principal. The LocalClaims[] array
can be empty. The order of the Claims is not specified or required.

Á Privileges[] : An array of LUIDs that is a set of administrative or security - relevant privileges
associated with this authorizat ion context. A set of logical privileges associated with the user, the
privileges are administrative or security relevant in nature. It might be convenient to an
implementation to represent a privilege as a LUID.

Á DeviceSids[] : An optional array of SIDs tha t indicate the SID of the account of the computer
which the user is connecting from, the SIDs of all groups to which that computer account belongs,
and SIDs that indicate contextual information such as logon type. If the DeviceSids[] array is

present, it a lways contains at least the SID of the computer account. The order of the SIDs is
neither specified nor required. For the purposes of this document, the SIDs can be considered
instances of the RPC_SID structure.

Á DeviceClaims[] : An optional array of CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 (defined in
section 2.4.10.1) which have been issued to the account of the computer which the user is
connecting from. The DeviceClaims[] array can be empty. The order of the DeviceClaims is not

specified or required.

Á UserIndex : An unsigned __int32 that is an index into the Sids[] array that indicates which SID
is the SID that represents the user account.

Á OwnerIndex : An unsigned __int32 that is an index into the Sids[] array that indicates which
SID to assign as the owne r for new objects. This value is determined by local policy in an
implementation -specific manner. Ownership is often used, by way of example, for accounting for
file storage space on a file server. This value can be the same as the UserIndex attribute, but is

103 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

not required to be; this allows, for example, quota or ownership of objects to be assigned to
groups rather than individuals. <85>

Á PrimaryGroup : An unsigned __int32 that is an index into the Sids[] array that indicates which
SID to use as the primary group of the user.

Á DefaultDACL : A DACL , as defined in section 2.4.5 , that can be applied to new objects when
there is no parent secu rity descriptor for inheritance and no explicit new security descriptor was
supplied by the client.

An Authorization context can optionally include mandatory integrity information and policy. This is not
required for all instances, and can depend on the a bility of the authentication protocol used to carry
the necessary information. If an implementation also chooses to implement mandatory integrity in the
same way as Windows does, the following additional fields are necessary.

Á IntegrityLevelSID : A separate SID, not used for general access decisions like the Sids[] array
above, that indicates the mandatory integrity level of this principal.

Á MandatoryPolicy : An unsigned __int32, the access policy for principals with a mandatory

integrity level lower than the o bject associated with the SACL that contains this ACE. The possible
values of this field are the same as those specified for the Policy field of
TOKEN_MANDATORY_POLICY (section 2.4.8) .

Note For more information about tokens in Windows, see [MSDN -ACCTOKENS] .

2.5.2.1 Token/Authorization Context Algorithms

2.5.2.1.1 GatherGroupMembershipForSystem

The GatherGroupMembershipForSystem function accepts an array of SIDs and invokes
GatherLocalGroupMembership, which in turn invokes GatherLocalGr oupMembershipFromLocalDomain
for the local account domain and again for the built - in domain.

An array of SIDs is returned that includes all input SIDs and the SIDs for all local groups of which the

input SIDs are members.

 GatherGroupMembershipForSystem(In itialMembership, FinalMembership)

 --

 -- On entry InitialMembership is a non - empty array of SIDs

 --

 -- On exit FinalMembership is a array of SIDs

 --

 CALL GatherLocalGroupMembership (InitialMembership, FinalMembership)

 END_SUBROUTINE

The InitialMembership and FinalMembership parameters are arrays of SIDs. This method is called by
authentication protocols during the process of authentication (see [MS -KILE] section 3.4.5.3 and [MS -
APDS] section 3.1.5.

 GatherLocalGroupMembership(InitialMembership, FinalMembership)

 --

 -- On entry

 -- InitialMembership is a non - empty set of SIDs

 --

 -- On exit

 -- FinalMembership is a set of SIDs

 --

 GatherLocalGroupMembershipFromLocalDomain(InitialMembership,

 LocalDomainSid,

 FinalMembership)

http://go.microsoft.com/fwlink/?LinkId=89949
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
%5bMS-APDS%5d.pdf#Section_dd444344fd7e430eb3137e95ab9c338e
%5bMS-APDS%5d.pdf#Section_dd444344fd7e430eb3137e95ab9c338e

104 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 GatherLocalGroupMembershipFromLocalDomain(FinalMembership,

 BuiltinDomainSid,

 FinalMembership)

 END_SUBROUTINE

 GatherLocalGroupMembershipFromLocalDomain(InitialMembership,

 LimitingDomain,

 FinalMembership)

 --

 -- On entry

 -- InitialMembership is an array of SIDs

 -- LimitingDomain is a domain SID

 --

 -- On exit

 -- FinalMembership is an array of SIDs including any SID from InitialMembership

 -- plus all SIDs of groups of which SIDs in Ini tialMembership are members.

 --

 Domain d is the domain in Local Domains with objectSid equal LimitingDomain

 AdditionalMembership is a set of sids initially empty

 Set FinalMembership equal to InitialMembership

 FOR EACH GROUP g in d DO

 FOR EACH SID m in g.members DO

 FOR EACH SID s in InitialMembership DO

 if m equals s

 Set AdditionalMembership equal to the union of

 AdditionalMembership and g.objectSid

 END IF

 END FOR

 END FOR

 END FOR

 Set FinalMembership equal to the union of

 InitialMembership and AdditionalMembership

 END_SUBROUTINE

2.5.2.1.2 AddPrivilegesToToken

The AddPrivilegesToToken function returns a token with pri vileges based on the local PrivilegeMapping
array using the SID in the token passed to the function, as shown in the following pseudocode.

 AddPrivilegesToToken(Token)

 -- On entry

 -- Token is an authorization context containing all sids that re present the security

principal

 FOR EACH SID s in Token DO

 FOR EACH MAPPING mapping in PrivilegeMapping DO

 IF mapping.SID equals s

 Token.Privileges is a union of Token.Privileges and mapping.Privileges

 END IF

 END FOR

 END FOR

 END- SUBROUTINE

2.5.3 Security Descriptor Algorithms

 The security descriptor is the basis for specifying the security associated with an object. The client
makes a request to the server that indicates a particular requested access, and the server that "owns"

the object is responsible for verifying that a cl ient has sufficient access to the object in order to open

105 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

or manipulate the object. In order to create a server that maintains the same guarantees of
authorization to clients, the access check algorithm has to produce the same results.

The algorithms are s traightforward, but are best served by extracting certain support functions out of
the main path of the algorithm for clarity. These support functions are documented in the first section.

Note For more information about tokens in Windows, see [MSDN -ACCTOKENS] .

When creating new objects, the security descriptor from the parent container of the new object is used
as the template for the security descriptor of the new object.

2.5.3.1 Support Functions

The following pseudo - functions are used in the main access check and new security descriptor
algorithms below.

2.5.3.1.1 SidInToken

A support function, SidInToken, takes the authorization context, a SID (re ferenced below as the
SidToTest parameter), and an optional PrincipalSelfSubstitute parameter, and returns TRUE if the

SidToTest is present in the authorization context; otherwise, it returns FALSE. The well -known SID
PRINCIPAL_SELF, if passed as SidToTest , is replaced by the PrincipalSelfSubstitute SID prior to the
examination of the authorization context.

Any plug - in replacement is required to use this exact algorithm, which is described using the
pseudocode syntax as specified in [DALB] .

 BOOLEAN SidInToken(

 Token,

 SidToTest,

 PrincipalSelfSubstitute)

 --

 -- On entry

 -- Token is an authorization context containing all SIDs

 -- that represent the security p rincipal

 -- SidToTest, the SID for which to search in Token

 -- PrincipalSelfSubstitute, a SID with which SidToTest may be

 -- replaced

 IF SidToTest is the Well Known SID PRINCIPAL_SELF THEN

 set SidToTest to be PrincipalS elfSubstitute

 END IF

 FOR EACH SID s in Token.Sids[] DO

 IF s equals SidToTest THEN

 return TRUE

 END IF

 END FOR

 Return FALSE

 END- SUBROUTINE

2.5.3.1.2 SidDominates

A support function, SidDominates, compares the mandatory integrity levels expressed in two SIDs.
The function returns TRUE if the first SID dominates the second SID or is equal to the second SID, or
FALSE if the first SID is subordinate to the second SID. This function can be used only on SIDs that

encode integrity levels (the SID_IDENTIFIER_AUTHORITY field is
SECURITY_MANDATORY_LABEL_AUTHORITY); any other use is unsupported.

http://go.microsoft.com/fwlink/?LinkId=89949
http://go.microsoft.com/fwlink/?LinkId=89842

106 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Any plug - in replacement is required to use this exact algorithm, which is described using the
pseudocode syntax as specified in [DALB] .

 BOOLEAN

 SidDominates(

 SID sid1,

 SID sid2)

 -- On entrance, both sid1 and sid2 MUST be SIDs representing integrity levels

 -- as specified in section 2.4.4.11. Use of any other SID is a logic error.

 -- On exit, a value of TRUE indicates that sid1 dominates or is equivalent to sid2.

 -- A value of FALSE indicates that sid1 is dominated by sid2. Dominance in

 -- this context is determination of the dominance of one integrity level over

 -- another in a manner as broadly described, for example, in the Biba Integrity Model.

 IF sid1 equals sid2 THEN

 Return TRUE

 END IF

 -- If Sid2 has more SubAuthorities than Sid1, Sid1 cannot dominate.

 IF sid2.SubAuthorityCount GREATER THAN sid1.SubAuth orityCount THEN

 Return FALSE

 END IF

 -- on entry, index is zero and is incremented for each iteration of the loop.

 FOR each SubAuthority in sid1

 IF sid1.SubAuthority[index] GREATER THAN or EQUAL TO sid2.SubAuthority[index] THEN

 Return TRUE

 END IF

 END FOR

 Return FALSE

2.5.3.1.3 GetScopedPolicySid

A support function, GetScopedPolicySid , locates the first non - inherit -only scoped policy ACE in the
ACL passed in, if one is present, and returns the SID it contains. If one is not pr esent, then NULL is

returned.

Only the SID of the first non - inherit -only scoped policy ACE is returned and enforced, but inherit -only
scoped policy ACEs are allowed to be present in the ACL, because they might be inherited and applied
to child objects.

 SID

 GetScopedPolicySid(

 ACL Sacl)

 --

 -- On entry

 -- Sacl is the Sacl from the security descriptor used for Access Check.

 --

 FOR EACH ACE in Sacl DO

 IF ACE.Type is SYSTEM_SCOPED_POLICY_ID_ACE THEN

 IF ACE.AceFlags does not contain INHERIT_ONLY_ACE flag THEN

 Return ACE.Sid

 END IF

 END FOR

 Return NULL

 END- SUBROUTINE

2.5.3.1.4 GetCentralizedAccessPolicy

http://go.microsoft.com/fwlink/?LinkId=89842

107 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

A support function, GetCentralizedAccessPolicy, determines if there is a central access policy and, if
so, returns it based on the policy SID in the SACL. If no policy matches the policy SID, the function

returns an implementation -specific local recovery policy. <86>

 Centralized AccessPolicy

 GetCentralizedAccessPolicy(

 ACL Sacl)

 --

 -- On entry

 -- Sacl is the Sacl from the security descriptor used for Access Check.

 --

 -- Returns

 -- NULL - there is no policy

 -- The policy from the configuration if one exists and matches the scoped SID

 -- The default (recovery) policy if none match the scoped SID

 --

 Dim SID CentralizedAccessPolicySid

 Dim CentralAccessPolicy CentralizedAccessPolicy

 IF No central access policy is present in the configuration THEN

 return NULL

 END IF

 IF SACL is not NULL THEN

 CALL GetScopedPolicySid(SACL) returning CentralizedAccessPolicySid

 IF CentralizedAccessPolicySid is not NULL THE N

 Get CentralizedAccessPolicy using CentralizedAccessPolicySid

 IF CentralizedAccessPolicy is NULL THEN

 Set CentralizedAccessPolicy to RecoveryCentralizedAccessPolicy

 END IF

 END IF

 END IF

 return CentralizedAccessPolicy

 END- SUBROUTINE

2.5.3.1.5 EvaluateAceCondition

A support function, EvaluateAceCondition , evaluates the ACE ApplicationData field utilizing the
authorization information passed in as parameters. The ApplicationData is stored in bina ry format in
Postfix notation. In this notation, every operator follows all of its required operands and the notion of
parenthesis is built into the construction of this data.

The evaluation takes place by scanning the ApplicationData from left to right. O perands are pushed
onto the stack, and when an operator is encountered, the appropriate items are popped off the stack.
The result of the operation is then pushed back onto the stack.

 INT32 Result

 AuthzBasepEvaluateAceCondition(

 TOKEN Token,

 ACL Sacl,

 BYTE[] ApplicationData,

 ULONG ApplicationDataSize)

 --

 -- On entry

 -- Token - the Authz context or NT Token representing the user.

 -- Sacl ï SecurityDescriptor SACL field containting ACEôs with resource claims.

 -- ApplicationData ï the condition to be evaluated.

 -- ApplicationDataSize ï the length of the condition passed in.

 -- Result - The result of the evaluation. 1: true; 0: false; - 1: unknown.

 "unknown" is returned when the Token/Sacl doesn't contain enough information

 to e valuate the ApplicationData.

108 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Dim StackElement

 {

 STRING Type

 -- Could be "User Attribute" from Token

 -- or "Device Attribute" from the Token

 -- or "Local Attribute" from the Token

 -- or "Resource Attribute" from the Sacl

 -- or a "Literal" from ApplicationData stream

 -- or a processed "Result Value"

 CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 Operand

 -- Unprocessed attribute or literal data

 INT32 Result

 -- Processed result of an operator evaluation

 }

 Dim StackElement ResultStack[]

 Dim WCHAR AttributeName

 Dim BYTE TokenType

 Set StackPos to 0

 IF ApplicationData does not begin with ACE_CONDITION_SIGNATURE THEN

 Set Result to - 1

 Return Result

 END IF

 Set i to size of ACE_CONDITION_SIGNATURE

 WHILE i le ss than ApplicationDataSize

 - Begin scanning the ApplicationData byte stream.

 Set TokenType to ApplicationData[i]

 CASE TokenType OF

 -- Byte codes for attributes are defined in Byte - Code column in the table in section

2.4.4.17.8.

 -- ATTRIBUTE TOKEN

 CASE 0xf8 - 0xfb:

 -- Extraction rules for these byte codes are defined in Token Data Encoding

 -- column in the table in section 2.4.4.17.8.

 Set AttributeName to unicode string extracted from ApplicationData stream

 IF TokenType equals 0xfa THEN

 -- Resource attributes

 CALL LookupAttributeInSacl(AttributeName, Sacl)

 ELSE

 -- User/Device/Legacy attributes

 CALL LookupAttributeInToken(AttributeName, Token, TokenType)

 ENDIF

 Set TempOperand to return value of above lookup

 CALL PushStackOperand(ResultStack, StackPos, TokenType, TempOperand)

 -- Bytes consu med for these byte codes are defined in Token Data Encoding column

 -- in the table in section 2.4.4.17.8.

 Increment i by ApplicationData consumed + 1

 -- Byte codes for literals are defined in Byte - code column in the table in section

 -- 2.4.4.17.5

 -- LITERALS

 CASE 0x01 - 0x04,0x10,0x18,0x50,0x51:

 -- Extraction rules for these byte codes are defined in Token Data Encoding column

in

109 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 -- the table in section 2.4.4.17.5

 Set TempOperand to extracted literal from ApplicationData stream

 CALL PushStackOperand(ResultStack, StackPos, "Literal", TempOperand)

 -- Bytes consumed for these byte codes are defined in Token Data Encoding column

 -- in the table in section 2.4.4.17.5

 Increment i by ApplicationData consumed + 1

 -- Byte codes for unary logical operators are d efined in Byte - code column in the

 -- Unary Logical Operators table in section 2.4.4.17.7

 -- UNARY LOGICAL OPERATORS

 CASE 0xa2,0x87,0x8d:

 -- Requires 1 operand

 CALL PopStack(ResultStack, StackPos)

 Set Operand to popped stack item

 -- Validation and evaluation rules for these byte codes are defined in Processing

 -- column in the Unary Logical Operators table in section 2.4.4.17.7

 Set TempResult to evaluation of Operand for this operator

 -- Push the result onto the stack

 CALL PushStackResult(ResultStack, StackPos, TempResult)

 -- Bytes consumed for these operators is 1

 Inc rement i by 1

 -- BINARY LOGICAL OPERATORS

 -- Byte codes for binary logical operators are defined in Byte - code column in the

 -- Binary Logical Operators table in section 2.4.4.17.7

 CASE 0xa0,0xa1:

 -- Requires 2 operands

 CALL PopStack(ResultStack, StackPos)

 Set RHS to popped stack item

 CALL PopStack(ResultStack, StackPos)

 Set LHS to popped stack item

 -- Validation and evaluation rules for these byte co des are defined in Processing

 -- column in the Binary Logical Operators table in section 2.4.4.17.7

 Set TempResult to evaluation of LHS & RHS for this operator

 -- Push the result onto the stack

 CALL PushSta ckResult(ResultStack, StackPos, TempResult)

 -- Bytes consumed for these operators is 1

 Increment i by 1

 -- Byte codes for unary relational operators are defined in Byte - code column in the

 -- Unary Relational Operators table in section 2.4.4.17.6

 -- UNARY RELATIONAL OPERATORS

 CASE 0x89 - 0x8c, 0x90 - 0x93:

 -- Requires 1 operand

 CALL PopStack(ResultStack, StackPos)

 Set Operand to poppe d stack item

 -- Validation and evaluation rules for these byte codes are defined in Processing

 -- column in the Unary Relational Operators table in section 2.4.4.17.6

 Set TempResult to evaluation of Operand for this op erator

 -- Push the result onto the stack

 CALL PushStackResult(ResultStack, StackPos, TempResult)

110 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 -- Bytes consumed for these operators is 1

 Increment i by 1

 -- Byte codes for binary relational o perators are defined in Byte - code column in the

 -- Binary Relational Operators table in section 2.4.4.17.6

 -- BINARY RELATIONAL OPERATORS

 CASE 0x80 - 0x86,0x88,0x8e,0x8f:

 -- Requires 1 operand

 CALL PopStack(ResultStack, StackPos)

 Set RHS to popped stack item

 CALL PopStack(ResultStack, StackPos)

 Set LHS to popped stack item

 -- Validation and evaluation rules for these byte codes are de fined in Processing

 -- column in the Binary Relational Operators table in section 2.4.4.17.6

 Set TempResult to evaluation of LHS & RHS for this operator

 -- Push the result onto the stack

 CALL PushStackResul t(ResultStack, StackPos, TempResult)

 -- Bytes consumed for these operators is 1

 Increment i by 1

 DEFAULT CASE

 Set Result to - 1

 Return Result

 END CASE

 END WHILE

 IF StackPos is equal to 1 THEN

 Set Result to ResultStack[0].Result

 ELSE

 Set Result to - 1

 ENDIF

 Return Result

 END- SUBROUTINE

2.5.3.1.6 LookupAttributeInToken

A support function, LookupAttributeInToken , locates an attribute in the token based on the
AttributeName passed in, if one is present. If one is not present then NULL is returned.

 CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1

 LookupAttributeInToken (

 WCHAR AttributeName,

 TOKEN Token,

 BYTE Source

)

 --

 -- On entry

 -- AttributeName is th e Unicode string attribute.

 -- Token is the Authz context or NT Token representing the user

 -- Source indicates which section of the token to look for the attributes.

 Dim CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 LookupList[]

 IF Source i s equal to 0xf8 THEN

 Set LookupList to Token.LocalClaims

 ENDIF

111 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 IF Source is equal to 0xf9 THEN

 Set LookupList to Token.UserClaims

 ENDIF

 IF Source is equal to 0xfb THEN

 Set LookupList to Token.DeviceClaims

 ENDIF

 FOR EACH Attribute in LookupList DO

 IF Attribute.Name equals AttributeName THEN

 Return Attribute

 END IF

 END FOR

 Return NULL

 END- SUBROUTINE

2.5.3.1.7 LookupAttributeInSacl

A support function, LookupAttributeInSacl , locates an attribute in the Sacl based on the
AttributeName passed in, if one is present. If one is not present then NULL is returned.

 CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1

 LookupAttributeInSacl (

 WCHAR AttributeName,

 ACL Sacl

)

 --

 - - On entry

 -- AttributeName is the Unicode string attribute.

 -- Sacl containing the attribute information.

 Dim CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 SaclAttribute

 FOR EACH ACE in Sacl DO

 IF ACE.Type is SYSTEM_RESOURCE_ATTRIBUTE_ACE_TYPE THEN

 -- Refer section 2.4.4.15

 Set TempAttribute to Ace.AttributeData

 IF TempAttribute.Name equals AttributeName THEN

 Return TempAttri bute

 END IF

 END IF

 END FOR

 Return NULL

 END- SUBROUTINE

2.5.3.1.8 PushStackOperand

A support function, PushStackOperand , pushes the input Operand on the stack.

 PushStackOperand (

 STACK ResultStack,

 INT32 StackPos,

 BYTE Ty pe,

 CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 TempOperand

)

 --

 -- On entry

 -- ResultStack is the stack.

112 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 -- StackPos is the stack position

 -- Type is the type of operand, either attribute type or literal

 -- TempOperand is the value to be stored on the stack

 Set ResultStack[StackPos].Operand to TempOperand

 Set ResultStack[StackPos].Type to Type

 Increment StackPos by 1

 END- SUBROUTINE

2.5.3.1.9 PushStackResult

A support function, PushStackResult , pushes the input Result on the stack.

 PushStackResult (

 STACK ResultStack,

 INT32 StackPos,

 INT32 ResultValue

)

 --

 -- On entry

 -- ResultStack is the stack.

 -- StackPos is the stack position

 -- ResultValue is the result value to be stored on the stack

 Set ResultStack[StackPos].Result to ResultValue

 Set ResultStack[StackPos].Type to "Result Value"

 Increment StackPos by 1

 END- SUBROUTINE

2.5.3.1.10 PopStack

A support function, PopStack , pops the topmost operand from the s tack.

 STACKELEMENT

 PopStack (

 STACK ResultStack,

 INT32 StackPos

)

 --

 -- On entry

 -- ResultStack is the stack.

 -- StackPos is the stack position

 IF StackPos equals 0 THEN

 Return NULL

 END IF

 Decrement StackPos by 1

 Return ResultStack[StackPos]

 END- SUBROUTINE

2.5.3.2 Access Check Algorithm Pseudocode

In overview, the Access Check algorithm takes an access request and a security descriptor. It iterates
through the DACL of the security descriptor , processing each ACE. If the ACE contains a SID that is
also in the Token authorization context, then the ACE is processed, otherwise i t is skipped. If an ACE
grants access to that SID, then those access rights from the Access Request Mask are considered
satisfied, and removed from the mask. If the ACE denies access to that SID, and the access rights in

the ACE are present in the request mask, the whole request is denied. At the end of the algorithm, if

113 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

there are any access rights still pending in the Access Request Mask, then the request is considered
denied.

There are two noteworthy configurations of the security descriptor in light of t he access check
algorithm: an empty DACL , and a NULL (or absent) DACL . No DACL in the security descriptor implies

that there is no policy in place to govern access to the object; any access check will succeed. An
empty DACL , where the DACL is marked as being present but contains no ACEs, means that no
principal can gain access to the object, except through the implied access of the owner.

If the access request is MAXIMUM_ALLOWED, the algorithm operates in a different mode. It iterates
thro ugh every ACE in the DACL of the security descriptor, remembering which access rights were
granted or denied for each ACE. After all ACEs have been examined, the complete set of grantable
access rights is computed and returned via the GrantedAccess paramet er (described later in this

section).

Note that the use of MAXIMUM_ALLOWED is not recommended; instead, callers can request the
specific minimum level of access required to accomplish their requirements.

The detailed processing of the list is as follows.

On entrance:

Á SecurityDescriptor: SECURITY_DESCRIPTOR structure that is assigned to the object.

Á Token: Authorization context as described above.

Á Access Request mask: Set of permissions requested on the object.

Á Object Tree: An array of OBJECT_TYPE_LIST structures representing a hierarchy of objects for
which to check access. Each node represents an object with three values: A GUID that represents
the object itself; a value called Remaining, which can be zero, and which specifies the user rights
requests for that node that have not yet been satisfied; and a value called Level, which indicates
the level of the object type in the hierarchy.

Á PrincipalSelfSubst SID: A SID that logically replaces the SID in any ACE that contains the well -

known PRINCIPAL_SELF SID. It can be null.

Á GrantedAccess: An optional ACCESS_MASK output parameter used when the Access Request Mask
parameter equals MAXIMUM_ALLOWED. Upon return this parameter contains the set of
permissions granted to Token by the SecurityDescriptor .

 STATUS_CODE

 EvaluateTokenAgainstDescriptor(

 TOKEN Token,

 SECURITY_DESCRIPTOR SecurityDescriptor,

 ACCESS_MASK Access_Request_mask,

 OBJECT_TYPE_LIST Object Tree,

 Sid PrincipalSelfSubstitute,

 [out] ACCESS_MASK GrantedAccess)

 Dim OBJECT_TYPE_LIST LocalTree

 Dim ULONG Result

 Set DACL to SecurityDescriptor Dacl field

 Set SACL to SecurityDescriptor Sacl field

 Set RemainingAccess to Access Request mask

 Set AllowedAccesses to 0

 Set DeniedAccesses to 0

 Set MaxAllowedMode to FALSE

 IF RemainingAccess contains ACCESS_SYSTEM_SECURITY access bit THEN

 IF Token.Privileges contains SeSecurityP rivilege THEN

 Remove ACCESS_SYSTEM_SECURITY access bit from RemainingAccess

114 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set GrantedAccess to GrantedAccess or ACCESS_SYSTEM_SECURITY

 IF RemainingAccess to 0 THEN

 Return success

 Else

 ELSE

 Set GrantedAccess to 0

 Return access_denied

 END IF

 END IF

 IF RemainingAccess contains WRITE_OWNER access bit and Token.Privileges is not NULL THEN

 IF Token.Privileges contains SeTakeOwnershipPrivilege THEN

 Remove WRITE_OWNER access bit from RemainingAccess

 Set GrantedAccess to GrantedAccess or WRITE_OWNER

 END IF

 END IF

 -- the owner of an object is always g ranted READ_CONTROL and WRITE_DAC.

 CALL SidInToken(Token, SecurityDescriptor.Owner, PrincipalSelfSubst)

 IF SidInToken returns True THEN

 IF DACL does not contain ACEs from object owner THEN

 Remove READ_CONTROL and WRITE_DAC from RemainingAccess

 Set GrantedAccess to GrantedAccess or READ_CONTROL or WRITE_OWNER

 END IF

 END IF

 -- Support for MAXIMUM_ALLOWED

 IF RemainingAccess contains MAXIMUM_ALLOWED access bit THEN

 Set MaxAllowedMode to TRUE

 END IF

 IF Object Tree is not NULL THEN

 Set LocalTree to Object Tree

 -- node is of type OBJECT_TYPE_LIST

 FOR each node in LocalTree DO

 Set node.Remaining to RemainingAccess

 END FOR

 END IF

 FOR each ACE in DACL DO

 IF ACE.AceFlags does not contain INHERIT_ONLY_ACE THEN

 CASE ACE.Type OF

 CASE Allow Access:

 CALL SidInToken(Token, ACE.Sid, and PrincipalSelfSubst)

 IF SidInToken returns True THEN

 IF MaxAllowedMode equals TRUE THEN

 Set AllowedAccesses to AllowedAccesses or ACE.AccessMask

 Set GrantedAccess to GrantedAccess or ACE.AccessM ask

 ELSE

 Remove ACE.AccessMask from RemainingAccess

 Set GrantedAccess to GrantedAccess or(RemainingAccess and

 ACE.AccessMask)

 FOR each node in LocalTree DO

 Remove ACE.AccessMask from node.Remaining

 END FOR

 END IF

 END IF

 CASE Deny Access:

 IF ACE.AccessMask equals 0 returns True THEN Break

115 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 CALL SidInToken(Token, ACE.Sid, PrincipalSelfSubst)

 IF SidInToken returns True THEN

 IF MaxAllowedMode equals TRUE THEN

 Set DeniedAccesses to DeniedAccesses or ACE.AccessMask

 ELSE

 IF any bit of RemainingAccess is in ACE.AccessMask THEN

 Set GrantedAccess to 0

 Return access_denied

 END IF

 END IF

 END IF

 CASE Object Allow Access:

 CALL SidInToken(Token, ACE.Sid, PrincipalSelfSubst)

 IF SidInToken returns True THEN

 IF ACE.Object is contained in LocalTree THEN

 Locate node n in LocalTree such that

 n.GUID is the same as ACE.Object

 Remove ACE.AccessMask from n.Remaining

 FOR each node ns such that ns is a descendent of n DO

 Remove ACE.A ccessMask from ns.Remaining

 END FOR

 FOR each node np such that np is an ancestor of n DO

 Set np.Remaining to np.Remaining or np - 1.Remaining

 -- the 'or' above is a logical bitwise OR operator. For

 -- Some uses (like Active Directory), a hierarchical list

 -- of types can be passed in; if the requestor is granted

 -- access to a specific node, this will grant access to

 -- all its children. The preceding lines implement this by

 -- removing, from each child, the permissions just found for

 -- the parent. The change is propagated upwards in

 -- the tree: once a permission request has been satisfied

 -- we can tell the next - higher node that we do not need

 -- to inherit it from the higher node (we already have it

 -- in the current node). And since we must not blindly

 -- replace the parent's RemainingAccess, we BIT_OR the

 -- parent's RemainingAccess with the current node's. This

 -- way, if the parent needs, say, READ_CONTROL, and the

 -- current node was just granted that, the parent's

 -- RemainingAccess still contains this bit since satisfying

 -- the request at a lower level does nothing to affect

 -- the higher level node. Active Directory has its own

 -- checking rules -- see [MS - ADTS] section 3.1.1.4.3.

 END FOR

 END IF

 END IF

 CASE Object Deny Access:

 CALL SidInToken(Token, ACE.Sid, PrincipalSelfSubst)

 IF SidInToken returns True THEN

 Locate node n in LocalTree such that

 n.GUID is the same as ACE.Object

 IF n exists THEN

 If any bit of n.Remaining is in ACE.AccessMask THEN

 Set GrantedAccess to 0

 Return access_denied

 END IF

 END IF

 END IF

 CASE Allow Access Callback Ace:

 EvaluateAceCondition(Token,

 Sacl,

 ApplicationD ata,

116 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ApplicationDataSize) returning Result

 IF Result is 1 THEN

 IF (SidInToken(Token, ACE.Sid, PrincipalSelfSubst)) THEN

 IF MaxAllowedMode equ als TRUE THEN

 Set GrantedAccess to GrantedAccess or ACE.AccessMask

 Set AllowedAccesses to AllowedAccesses or ACE.AccessMask

 ELSE

 Remove ACE.AccessMask from RemainingAccess

 SET n = root node of object tree

 FOR each node np such that np is an ancestor of n DO

 Set np.Remaining to np.Remain ing or np - 1.Remaining

 -- the 'or' above is a logical bitwise OR operator. For

 -- Some uses (like Active Directory), a hierarchical list

 -- of types can be passed in; if the requestor is granted

 -- access to a specific node, this will grant access to

 -- all children. The preceding lines implement this by

 -- removing, from each child, the permissions just found for

 -- the parent. The change is propagated upwards in

 -- the tree: once a permission request has been satisfied

 -- we can tell the next - higher node that we do not need

 -- to inherit it from the higher node (we already have it

 -- in the current node). And since we must not blindly

 -- replace the parent's RemainingAccess, we BIT_OR the

 -- parent's RemainingAccess with the current node's. This

 -- way, if the parent needs, say, READ_CONTROL, and the

 -- current node was just granted that, the parent's

 -- RemainingAccess still contains this bit since satisfying

 -- the request at a lower level does nothing to affect

 -- the higher level node.

 END FOR

 END IF

 END IF

 END IF

 END CASE

 END IF

 END FOR

 IF MaxAllowedMode equals TRUE THEN

 -- The not operator below is a bit - wise operator

 Set GrantedAccess to AllowedAccesses and (not DeniedAccesses)

 IF GrantedAccess not equals 0 THEN

 Return success

 ElSE

 Return access_denied

 END IF

 SET GrantedAccess to 0

 IF RemainingAccess to 0 THEN

 Return success

 Else

 Return access_denied

 END IF

 END- SUBROUTINE

 STATUS_CODE

 AccessCheck(

 TOKEN Token,

 SECURITY_DESCRIPTOR SecurityDescriptor,

 ACCESS_MASK Access Request mask,

 OBJECT_TYPE_LIST Object Tree,

 Sid PrincipalSelfSubstitute,

117 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [out] ACCESS_MASK GrantedAccess)

 Dim CentralAccessPolicy CentralizedAccessPolicy

 Dim SECURITY_DESCRIPTOR CaprSecurityDescriptor

 Dim SECURITY_DESCRIPTOR StagedCaprSecurityDescriptor

 Dim ACCESS_MASK DesiredAccess

 Dim ACCESS_MASK CentralAccessPolicyEffectiveAccess

 Dim ACCESS_MASK CentralAccessPolicyEntryEffectiveAccess

 Dim ACCESS_MASK Centr alAccessPolicyStagedAccess

 Dim ACCESS_MASK CentralAccessPolicyEntryStagedAccess

 Dim ULONG Result

 Dim STATUS_CODE Status

 Set DACL to SecurityDescriptor Dacl field

 Set SACL to SecurityDescriptor Sacl field

 Set RemainingAccess to Access Request mask

 Set AllowedAccesses to 0

 Set DeniedAccesses to 0

 Set DesiredAccess to Access Request mask

 CALL EvaluateTokenAgainstDescriptor(Token,

 SecurityDescriptor,

 DesiredAccess,

 Object Tree,

 PrincipalSelfSubstitute,

 GrantedAccess) returning Status

 IF St atus is access_denied THEN

 return Status

 END IF

 CALL GetCentralizedAccessPolicy(SACL) returning CentralizedAccessPolicy

 IF CentralizedAccessPolicy is not NULL THEN

 Set CentralAccessPolicyEffectiveAccess to GrantedAccess

 Set CentralAccessPolicyStagedAccess to GrantedAccess

 FOR each CentralAccessPolicyRule in CentralAccessPolicy.RulesList

 EvaluateAceCondition(Token,

 SACL,

 AppliesTo,

 AppliesToSize) returning Result

 IF Result is not 1 THEN

 GOTO NextRule

 END IF

 Copy SecurityDescriptor to CaprSecurityDescriptor

 Set CaprSecurityDescriptor.DAC L to

 CentralAccessPolicyRule.EffectiveCentralAccessPolicy.AccessCondition.DACL

 EvaluateTokenAgainstDescriptor

 (Token,

 CaprSecurityDescriptor,

 DesiredAccess,

 NULL,

 PrincipalSelfSubstitute,

 CentralAccessPolicyEntryEffectiveAccess)

 -- The and operator below is a bit - wis e operator

 Set CentralAccessPolicyEffectiveAccess to

 CentralAccessPolicyEffectiveAccess and CentralAccessPolicyEntryEffectiveAccess

 -- StagingLocalPolicyEnabled = True if MS - GPAC ADM variable

 -- "System Advanced Audit Policy" (MS - GPAC section 3.2.1.1) contains the GUID

 -- for "Central Access Policy Staging" as specified in MS - GPAC section 2.2.1.2

118 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 IF IfStagingLocalPolicyEnabled THEN

 Copy SecurityDescriptor to StagedCaprSecurityDescriptor

 Set StagedCaprSecurityDescriptor.DACL to

 CentralAccessPolicyRule.StagedCentralAccessPolicy.AccessControl.DACL

 EvaluateTokenAgainstDescriptor

 (Token,

 StagedCaprSecurityDescriptor,

 DesiredAccess,

 NULL,

 PrincipalSelfSubstitute,

 CentralAccessPolicyEntryStagedAccess)

 -- The and operator below is a bit - wise operator

 Set CentralAccessPolicyStagedAccess to CentralAccessPolicyStagedAcc ess

 and CentralAccessPolicyEntryStagedAccess

 ELSE IF CentralAccessPolicyEffectiveAccess is 0 THEN

 Set GrantedAccess to 0

 return access_denied

 END IF

 NextRule:

 END FOR

 IF CentralAccessPolicyEffectiveAccess is not equal to

 CentralAccessPolicyStagedAccess THEN

 -- Log the difference between the Effective and Staged Access

 END IF

 -- The "not" and "and" operator below is a bit - wise operator

 Set AllowedAccess to AllowedAccess and CentralAccessPolicyEffectiveAccess

 Set RemainingAccess to DesiredAccess and not CentralAccessPolicyEffectiveAccess

 FOR eac h node in Object Tree DO

 Set node.Remaining to RemainingAccess

 END FOR

 ELSE

 Return success

 END IF

 IF MaxAllowedMode equals TRUE THEN

 -- The not operator below is a bit - wise operator

 Set GrantedAccess to AllowedAccesses and (not DeniedAccesses)

 IF GrantedAccess is 0 THEN

 Return access_denied

 Else

 Return success

 END IF

 END IF

 SET GrantedAccess to 0

 IF RemainingAccess is 0 THEN

 Return success

 Else

 Return access_denied

 END IF

 END- SUBROUTINE

119 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.5.3.3 MandatoryIntegrityCheck Algorithm Pseudocode

The Windows integrity mechanism extends the security architecture by defining a new ACE type to
represent an integrity level in an object's security descriptor. <87> The new ACE represents the object
integrity level. An integrity level is also ass igned to the security access token when the access token is

initialized. The integrity level in the access token represents a subject integrity level. The integrity
level in the access token is compared against the integrity level in the security descripto r when the
security reference monitor performs an access check. The Access Check algorithm determines what
access rights are allowed to a securable object. Windows restricts the allowed access rights depending
on whether the subject's integrity level is eq ual to, higher than, or lower than the object, and
depending on the integrity policy flags in the new access control ACE. The security subsystem
implements the integrity level as a mandatory label to distinguish it from the discretionary access

(under user control) that DACLs provide.

The MandatoryIntegrityCheck Algorithm examines the global Mandatory Integrity Check policy and
applies the policy to the passed token and security descriptor of a securable object. It determines the
set of access bits that can be granted by the DACL to a security principal.

 -- On entrance to the MandatoryIntegrityCheck Algorithm

 -- IN IntegrityLevelSID Mandatory Integrity SID of the Token

 -- IN AceIntegritySID Mandatory Integrity SID of the Security Descriptor of the securable

object

 -- OUT MandatoryInformation MANDATORY_INFORMATION value, output of the

MandatoryIntegrityCheck

 -- Algorithm describing the allowable bits for the caller

 -- Token Security Context for the calling security principal

 -- IN ObjectSecurityDescriptor SEC URITY_DESCRIPTOR structure that is assigned to the object

 Dim Boolean TokenDominates

 -- TokenDominates value indicating that the IntegrityLevelSID is higher than the

AceIntegritySID

 Dim TOKEN_MANDATORY_POLICY TokenPolicy

 Set TokenPolicy to Token.MandatoryPolicy field

 Dim SYSTEM_MANDATORY_LABEL_ACE ObjectIntegrityACE

 -- Find the Manadatory ACE of ObjectSecurityDescriptor in the Sacl

 Call FindAceByType WITH ObjectSecurityDescriptor.Sacl,

 SYSTEM_MANDATORY_LABEL_ACE_TYPE, 0

 RETURNING MandatoryACE, FoundIndex

 Set ObjectIntegrityACE = MandatoryACE

 Dim ACCESS_MASK ObjectIntegrityAceMask

 -- Set ObjectIntegrityAceMask to the Access Mask field of the

 -- SYSTEM_MANDATORY_LABEL_ACE of the ObjectSecurityDescriptor

 Set ObjectInteg rityAceMask to MandatoryACE.Mask

 IF TokenPolicy.Policy EQUAL TOKEN_MANDATORY_POLICY_OFF OR

 TokenPolicy.Policy EQUAL TOKEN_MANDATORY_POLICY_NEW_PROCESS_MIN THEN

 Set MandatoryInformation.AllowedAccess to GENERIC_ALL

 Return success

 END IF

 Dim PACE_HEADER ACE

 Set ACE to the ObjectSecurityDescriptor SACL of the

 SYSTEM_MANDATORY_LABEL_ACE

 Dim ACCESS_MASK AceMask

 Set AceMask to zero

 IF (ACE.AceFlags does not contain INHERIT_ONLY_ACE) THEN

120 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set AceMask to ObjectIntegrityAceMask

 Set AceIntegritySID to the SID whose first DWORD is given by

 ObjectIntegrityACE SidStart

 ELSE

 Set AceMask to SYSTEM_MANDATORY_LABEL_NO_WRITE_UP

 -- The DefaultMandatorySID is derived from policy managed in an

 -- implementation - specific manner. The SID for ML_MEDIUM is used by

 -- Windows S - 1- 16- 8192.

 Set AceIntegritySID to DefaultMandatorySID

 END IF

 IF CALL CompareSid (IntegrityLevelSID, AceIntegritySID,)returns TRUE

 THEN

 Set TokenDominates t o TRUE

 ELSE

 CALL SidDominates (IntegrityLevelSID, AceIntegritySID)

 IF SidDominates returns TRUE THEN

 Set TokenDominates to TRUE

 ELSE

 Set TokenDominates to FALSE

 END IF

 END IF

 IF TokenPolicy EQUAL TOKEN_MANDATORY_POLICY_NO _WRITE_UP THEN

 Add GENERIC_READ to MandatoryInformation.AllowedAccess

 Add GENERIC_EXECUTE to MandatoryInformation.AllowedAccess

 IF TokenDominates is TRUE THEN

 Add GENERIC_WRITE to MandatoryInformation.AllowedAccess

 END IF

 END IF

 IF TokenDominates is FALSE THEN

 IF AceMask & SYSTEM_MANDATORY_LABEL_NO_READ_UP THEN

 Remove GENERIC_READ from MandatoryInformation.AllowedAccess

 END IF

 IF AceMask & SYSTEM_MANDATORY_LABEL_NO_WRITE_UP THEN

 Remove GENERIC_WRITE f rom MandatoryInformation.AllowedAccess

 END IF

 IF AceMask & SYSTEM_MANDATORY_LABEL_NO_EXECUTE_UP THEN

 Remove GENERIC_EXECUTE from MandatoryInformation.AllowedAccess

 END IF

 END IF

 -- SeRelabelPrivilege see [MS - LSAD] 3.1.1.2.1 Pr ivilege Data Model

 IF Token.Privileges contains SeRelabelPrivilege THEN

 Add WRITE_OWNER to MandatoryInformation.AllowedAccess

 END IF

 BOOLEAN CompareSid (

 SID Sid1,

 SID Sid2)

 -- On entrance, both sid1 and sid2 MUST be S IDs representing integrity levels

 IF Sid1 Revision does not equal Sid2 Revision

 return (false);

 END IF

 Dim integer SidLength = 0;

 SidLength = (8 + (4 *(Sid1 SubAuthorityCount)))

 -- Compare the Sidlength bytes of Sid1 to Sidlength bytes of Sid2

 -- Return TRUE if Sid1 equals Sid2

 return(!memcmp(Sid1, Sid2, SidLength))

121 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.5.3.3.1 FindAceByType

The FindAceByType support function finds an ACE based on the given ACE type and index and returns
it along w ith the index of its location.

Parameters

Á Acl : the ACL on which to search.

Á AceType : the type of ACE to search.

Á Index : the index at which to start searching.

Returns

Á FoundAce : The first instance of the specified ACE type to appear at or after the given index.

Á FoundIndex : The index of FoundAce or -1 if no such ACE exists.

 Initialize NewACE to Empty ACE

 Initialize FoundIndex to Index

 FOR each ACE in Acl DO

 IF ACE.AceType = AceType

 THEN

 RETURN ACE, FoundIndex

 ELSE

 FoundIndex = FoundIndex +1

 ENDIF // End If AceType

 END FOR // End of FOR each Ace in Acl

 RETURN NULL, - 1

 // END FindAceByType

2.5.3.4 Algorithm for Creating a Security Descriptor

An important element of the overall security model is the manner in which security descriptors are
created for new objects. In the trivial case, the creator of a new object simply supplies a new security
descriptor for the new object, and the two are associat ed by the resource manager or server that

owns the object. The trivial case is not the common case, however, and the security model has
specific behavior involved in deriving the security descriptor for a new object from the security
descriptors for existi ng objects.

The derivation of a new security descriptor in this security model is called inheritance, and refers to
the concept that the new security descriptor inherits some or all of its characteristics from the security
descriptor of a parent or contain er object. Individual ACEs can contain indicators that specify whether
it can be passed on to child objects, this indicator is called inheritable. Additionally, they can have an

indicator as to wh ether the ACE was derived from a parent during its creation, this indicator is called
inherited.

In overview, the process is fairly straightforward. During the creation of a new security descriptor
where inheritance is possible, the parent security descrip tor is examined. For each ACE in the parent
security descriptor, the process checks whether it is marked as inheritable. If so, it is included in the
new security descriptor. This is done for both the DACL and SACL portions of the security descriptor.

The algorithm for computing the system and discretionary ACL (SACL and DACL respectively) in the

security descriptor for the new object is governed by the logic that is illustrated in the following fi gure.

122 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 11 : ACL inheritance logic

1. Any ACEs with the INHERITED_ACE bit set are NOT copied to the assigned security descriptor.

2. If AutoInheritFlags , as specified in section 2.5.3.4.1 , is set to automatically inherit ACEs from the

parent (DACL_AUTO_INHERIT or SACL_AUTO_INHERIT), inherited ACEs from the parent are
appended after explicit ACEs from the CreatorDescriptor . For further details, see the parameter list
for Cre ateSecurityDescriptor (section 2.5.3.4.1).

3. The preceding table describing ACL inheritance logic holds true if the ACL is not protected. If the
ACL is protected, all the ACEs from the Explicit ACL are copied into the assigned security
descriptor, resetting any ACEs with the INHERITED_ACE bit set as well. The Inheritable ACL is not
considered.

Note An explicitly specified ACL, whether a default ACL or not, can be empty or null. <88>

The remainder of this section documents the details of the algorithm outlined above as a set of nested
subprocedures.

2.5.3.4.1 CreateSecurityDescriptor

This is the top - level routine that assembles the contributions from the parent security descriptor and
the creator de scriptor and possibly the default DACL from the token. This is fairly high - level, and

relies primarily upon the subroutine ComputeACL , specified in section 2.5.3.4.2.

Parameters

Á ParentDescriptor : Security descriptor for the parent (container) object of the new object. If the
object has no parent, this parameter is null.

Á CreatorDescriptor : Security descriptor for the new object provided by the creator of the object.
Caller can pass null.

Á IsContaine rObject : BOOLEAN: TRUE when the object is a container; otherwise, FALSE.

Á ObjectTypes : An array of pointers to GUID structures that identify the object types or classes of
the object associated wit h NewDescriptor (the return value). For Active Directory objects, this
array contains pointers to the class GUIDs of the object's structural class and all attached auxiliary
classes. If the object for which this descriptor is being created does not have a GUID, this field
MUST be set to null.

Á AutoInheritFlags : A set of bit flags that control how access control entries (ACEs) are inherited

from ParentDescriptor . This parameter can be a combination o f the following values:

Á DACL_AUTO_INHERIT: If set, inheritable ACEs from the parent security descriptor DACL are
merged with the explicit ACEs in the CreatorDescriptor .

Á SACL_AUTO_INHERIT: If set, inheritable ACEs from the parent security descriptor SACL are
merged with the explicit ACEs in the CreatorDescriptor .

123 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á DEFAULT_DESCRIPTOR_FOR_OBJECT: Selects the CreatorDescriptor as the default security
descriptor provided that no object type specific ACEs are inherited from the parent. If such

ACEs do get inher ited, CreatorDescriptor is ignored.

Á DEFAULT_OWNER_FROM_PARENT: Relevant only when the owner field is not specified in

CreatorDescriptor . If this flag is set, the owner field in NewDescriptor is set to the owner of
ParentDescriptor . If not set, the owner fr om the token is selected.

Á DEFAULT_GROUP_FROM_PARENT: Relevant only when the primary group field is not specified
in CreatorDescriptor . If this flag is set, the primary group of NewDescriptor is set to the
primary group of ParentDescriptor . If not set, the default group from the token is selected.

Á Token : Authorization context supplied that contains the ownership information as well as the
default DACL if the default DACL is necessary.

Á GenericMapping : Mapping of generic permissions to resource manager -specifi c permissions
supplied by the caller.

Returns

Á NewDescriptor : Output security descriptor for the object computed by the algorithm.

 // Step 1:Compute the Owner field. If there is no specified owner,

 // then determine an appropriate owner.

 IF CreatorDescriptor.Owner is NULL THEN

 IF AutoInheritFlags contains DEFAULT_OWNER_FROM_PARENT THEN

 Set NewDescriptor.Owner to ParentDescriptor.Owner

 ELSE

 Set NewDescriptor.Owner to Token.SIDs[Token.OwnerIndex]

 ENDIF

 ELSE

 Set NewDescriptor.Owner to CreatorDescriptor.Owner

 ENDIF

 // Step 2:Compute the Group field. If there is no specified groups,

 // then determine the appropriate group.

 IF CreatorDescriptor.Group is NULL THEN

 IF AutoInheritFlags contains DEFAULT_GROUP_FRO M_PARENT THEN

 Set NewDescriptor.Group to ParentDescriptor.Group

 ELSE

 Set NewDescriptor.Group to Token.SIDs[Token.PrimaryGroup]

 ENDIF

 ELSE

 Set NewDescriptor.Group to CreatorDescriptor.Group

 ENDIF

 // Step 3:Compute the DACL

 CALL ComputeACL WITH

 ComputeType set to COMPUTE_DACL,

 ParentACL set to ParentDescriptor.DACL,

 AuthoInheritFlags set to AutoInheritFlags,

 ParentControl set to ParentDescriptor.Control,

 CreatorACL set to CreatorDescriptor.DACL ,

 CreatorControl set to CreatorDescriptor.Control

 IsContainerObject set to IsContainerObject,

 ObjectTypes set to ObjectTypes,

 GenericMapping set to GenericMapping,

 Owner set to NewDescriptor.Owner,

 Group set to NewDesc riptor.Group,

 Token set to Token

124 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 RETURNING NewDACL, NewControl

 Set NewDescriptor.DACL to NewDACL

 Set NewDescriptor.Control to NewControl

 // Step 4:Compute the SACL

 CALL ComputeACL WITH

 ComputeType set to COMPUTE_SACL,

 ParentACL set to ParentDescriptor.SACL,

 AutoInheritFlags set to AutoInheritFlags,

 ParentControl set to ParentDescriptor.Control,

 CreatorACL set to CreatorDescriptor.SACL,

 CreatorControl set to CreatorDescriptor.Control,

 IsContainerObject set to IsContainerObject,

 ObjectTypes set to ObjectTypes,

 GenericMapping set to GenericMapping,

 Owner set to NewDescriptor.Owner,

 Group set to NewDescriptor.Group,

 Token set to Token

 RETURNING NewSACL, NewControl

 Set NewDescriptor.SACL to NewSACL

 Set NewDescriptor.Control to (NewDescriptor.Control OR NewControl)

 RETURN NewDescriptor

 // END CreateSecurityDescriptor

2.5.3.4.2 ComputeACL

The ComputeACL subroutine determines the new ACL based on supplied Parent ACL, Creator ACL, and

possibly the Token's DefaultDACL, depending on the supplied parameters and policy. This function is
generally applicable to both the DACL and SACL portions of the security descr iptor, although there
are some specific behaviors that differ between the two types of DACL , so care has to be taken during
implementation to honor the ComputeType parameter.

Parameters

Á ComputeType : Enumeration of COMPUTE_DACL and COMPUTE_SACL.

Á ParentACL : ACL from the parent security descriptor.

Á AutoInheritFlags : as specified in section 2.5.3.4.1 . Note that it is possible to have the
DACL_AUTO_INHERIT flag set when ComputeType is set to COMPUTE_SAC L (or vice -versa).

Á ParentControl : Control flags from the parent security descriptor.

Á CreatorACL : ACL supplied in the security descriptor by the creator.

Á CreatorControl : Control flags supplied in the security descriptor by the creator.

Á IsContainerObject : TR UE if the object is a container; otherwise, FALSE.

Á ObjectTypes : Array of GUIDs for the object type being created.

Á GenericMapping : Mapping of generic permissions to resource manager -specific permissions
supplied by the caller.

Á Owner : Owner to use in substit uting the CreatorOwner SID.

Á Group : Group to use in substituting the CreatorGroup SID.

125 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á Token : Token for default values.

Returns

Á Computed ACL

Á ComputedControl

 // The details of the algorithm to merge the parent ACL and the supplied ACL.

 // The Control flags c omputed are slightly different based on whether it is the

 // ACL in the DACL or the SACL field of the descriptor.

 // The caller specifies whether it is a DACL or a SACL using the parameter,

 // ComputeType.

 Set ComputedACL to NULL

 Set ComputedControl to NULL

 CALL ContainsInheritableACEs WITH ParentACL RETURNING ParentHasInheritableACEs

 IF ParentHasInheritableACEs = TRUE THEN

 // The Parent ACL has inheritable ACEs. The Parent ACL should be used if no Creator

 // ACL is supplied, or if the Creato r ACL was supplied AND it is a default ACL based

 // on object type information

 IF(CreatorACL is not present) OR

 ((CreatorACL is present) AND

 (AutoInheritFlags contains DEFAULT_DESCRIPTOR_FOR_OBJECT))

 THEN

 // Use only the inherited ACEs from the parent. First compute the ACL from the

 // parent ACL, then clean it up by resolving the generic mappings etc.

 CALL ComputeInheritedACLFromParent WITH

 ACL set to ParentACL,

 IsContainerObject set to IsContainerObject,

 ObjectTypes set to ObjectTypes

 RETURNING NextACL

 CALL PostProcessACL WITH

 ACL set to NextACL,

 CopyFilter set to CopyInheritedAces,

 Owner set to Owner,

 Group set to Group,

 GenericMapping set to GenericMapping

 RETURNING FinalACL

 Set ComputedACL to FinalACL

 RETURN

 ENDIF

 IF ((CreatorACL is present) AND

 (AutoInheritFlags does not contain DEFAULT_DESCRIPTOR_FOR_OBJECT))

 THEN

 // Since a creator ACL is present, and we're not defaulting the

 // descriptor, determine which ACEs are inherited and compute the new ACL

 CALL PreProc essACLFromCreator WITH

 ACL set to CreatorACL

 RETURNING PreACL

 CALL ComputeInheritedACLFromCreator WITH

 ACL set to PreACL,

 IsContainerObject set to IsContainerObject,

 ObjectTypes set to ObjectTyp es

 RETURNING TmpACL

 // Special handling for DACL types of ACLs

126 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 IF (ComputeType = DACL_COMPUTE) THEN

 // DACL - specific operations

 IF (CreatorControl does not have DACL_PROTECTED flag set) AND

 (AutoInheritFlags contains DACL_AUTO_INHERIT)

 THEN

 // We're not working from a protected DACL, and we're supposed to

 // allow automatic inheritance. Compute the inherited ACEs from

 // Parent ACL this time, and append that to the ACL that we're building

 CALL ComputeInheritedACLFromParent WITH

 ACL set to ParentACL,

 IsContainerObject set to IsContainerObject,

 ObjectTypes set to ObjectTypes

 RETURNING InheritedParentACL

 Append InheritedParentACL.ACEs to TmpACL.ACE

 Set DACL_AUTO_INHERITED flag in ComputedControl

 ENDIF

 ENDIF / / DACL - Specific behavior

 IF (ComputeType = SACL_COMPUTE) THEN

 // Similar to the above, perform SACL - specific operations

 IF (CreatorControl does not have SACL_PROTECTED flag set) AND

 (AutoInheritFlags contain s SACL_AUTO_INHERIT flag)

 THEN

 // We're not working from a protected SACL, and we're supposed to

 // allow automatic inheritance. Compute the inherited ACEs from

 // Parent ACL this time, and a ppend that to the ACL that we're building

 CALL ComputeInheritedACLFromParent WITH

 ACL set to ParentACL,

 IsContainerObject set to IsContainerObject,

 ObjectTypes set to ObjectTypes

 RETURNING InheritedParentACL

 Append InheritedParentACL.ACEs to TmpACL.ACE

 Set SACL_AUTO_INHERITED flag in ComputedControl

 ENDIF

 ENDIF // SACL - Specific behavior

 CALL PostProcessACL WITH

 ACL set to TmpACL,

 CopyFilter set to CopyInheritedAces,

 Owner set to Owner,

 Group set to Group,

 GenericMapping set to GenericMapping

 RETURNING ProcessedACL

 Set ComputedACL to ProcessedACL

 RETURN

 ENDIF // CreatorACL is present

 ELSE // ParentACL does not contain inheritable ACEs

 IF CreatorACL = NULL THEN

127 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 // No ACL supplied for the object

 IF (ComputeType = DACL_COMPUTE) THEN

 Set TmpACL to Token.DefaultDACL

 ELSE

 // No default for SACL; left as NULL

 ENDIF

 ELSE

 // Explicit ACL was supplied for the object - either default or not.

 // In either case, use it for the object, since there are no inherited ACEs.

 CALL PreProcessACLFromCreator WITH CreatorACL

 RETURNING TmpACL

 ENDIF

 CALL PostProcessACL WITH

 ACL set to TmpACL,

 CopyFilter set to CopyAllAces,

 Owner set to Owner,

 Group set to Group,

 GenericMapping set to GenericMapping

 RETURNING ProcessedACL

 Set ComputedACL to ProcessedACL

 ENDIF

 // END ComputeACL

2.5.3.4.3 ContainsInheritableACEs

Parameters

Á ACL

Returns

Á TRUE or FALSE

 // Computes whether the ACL parameter contains any ACEs that are inheritable

 // by a child

 // True: if it contains any inheritable ACEs

 // False: otherwise

 FOR each ACE in ACL DO

 IF(ACE.AceFlags contains CONTAINER_INHERIT_ACE) OR

 (ACE.AceFlags contains OBJECT_INHERIT_ACE)

 THEN

 RETURN TRUE

 ENDIF

 END FOR

 RETURN FALSE

 // END ContainsInheritableACEs

2.5.3.4.4 ComputeInheritedACLfromParent

This subroutine copies the ACEs from an ACL that are marked as inheritable. These ACEs are
assembled into a new ACL that is returned.

Parameters

Á ACL: An ACL that contains the parent's ACEs from which to compute the inherited ACL.

128 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á IsContainerObject : TRUE if the object i s a container; otherwise, FALSE.

Á ObjectTypes : An array of GUIDs for the object type being created.

Returns

Á The computed ACL that also includes the inherited ACEs.

 // Computes the inheritable and inherited ACEs to propagate to the new object

 // from the inheritable ACEs in the parent container object

 Initialize ExplicitACL to Empty ACL

 FOR each ACE in ACL DO

 IF ACE.AceFlags contains INHERIT_ONLY_ACE

 THEN

 CONTINUE

 ENDIF

 IF(((ACE.AceFlags contains CONTAINER_INHERIT_ACE) AND

 (IsContainerObject = TRUE))OR

 ((ACE.AceFlags contains OBJECT_INHERIT_ACE) AND

 (IsContainerObject = FALSE)))

 THEN

 CASE ACE.Type OF

 ACCESS_ALLOWED_ACE_TYPE:

 ACCESS_DENIED_ACE_TYPE:

 Creat e empty NewACE

 Copy ACE to NewACE

 Clear NewACE.AceFlags ï- no flags set

 NewACE.AceFlags = INHERITED_ACE

 Append NewACE to ExplicitACL

 ACCESS_ALLOWED_OBJECT_ACE_TYPE:

 ACCESS_DENIED_OBJECT_ACE_TYPE:

 IF (ObjectTypes contains ACE.ObjectGUID) THEN

 Create empty NewACE

 Copy ACE to NewACE

 Clear NewACE.AceFlags ï- no flags set

 NewACE.AceFlags = INHERITED_ACE

 Append NewACE to ExplicitACL

 ENDIF

 ENDCASE

 ENDIF

 END FOR

 Initialize InheritableACL to Empty ACL

 IF (IsContainerObject = TRUE) THEN

 FOR each ACE in ACL DO

 I F ACE.AceFlags does not contain NO_PROPAGATE_INHERIT_ACE THEN

 IF((ACE.AceFlags contains CONTAINER_INHERIT_ACE) OR

 (ACE.AceFlags contains OBJECT_INHERIT_ACE))

 THEN

 Set NewACE to ACE

 Add I NHERITED_ACE to NewACE.AceFlags

 Add INHERIT_ONLY_ACE to NewACE.AceFlags

 Append NewACE to InheritableACL

 ENDIF

 ENDIF

 END FOR

 ENDIF

 RETURN concatenation of ExplicitACL and InheritableACL

129 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 // END ComputeInheritedACLFromParent

There are seven flags that can appear in an ACE. Of the seven flags, the following pertain to
inheritance.

Á CI : CONTAINER_INHERIT_ACE

Á OI : OBJECT_INHERIT_ACE

Á NP : NO_PROPAGATE_INHERIT_ACE

Á IO : INHERIT_ONLY_ACE

Á ID : INHERITED_ACE

IO and ID do not play a part when it comes to making decisions about inheritance. The ID flag is
added to any ACE that is inherited to indicate that it was inherited. The IO flag is used to indicate that

an ACE is not effective for the child that inherits the ACE. An ACE that has the IO flag can be

inherited, but the decision is based on other flags, if present.

The following table summarizes the inherited ACE flags for the child container and child leaf (non -
container) object based on the parent ACE flags.

Parent ACE flags Child container object Child leaf object

No Flags, IO No Inheritance No Inheritance

OI IO,OI Inherited, No flags

OI,NP No Inheritance Inherited, No flags

CI CI No Inheritance

CI,NP Inherited, No flags No Inheritance

CI,OI IO,CI,OI Inherited, No flags

CI,OI,NP Inherited, No flags Inherited, No flags

For the cases in which a container inherits an ACE that is both effective on the container and
inheritable by its descendents, the container can inherit two ACEs. This occurs when an inheritable
ACE contains generic information. The container inherits an ACE with an additional IO flag with
generic information and an effective -only ACE in which the generic information has been mapped.

2.5.3.4.5 ComputeInheritedACLfromCreator

Parameters

Á ACL: An ACL supplied i n the security descriptor by the caller.

Á IsContainerObject : TRUE if the object is a container; otherwise, FALSE.

Á ObjectTypes : An array of GUIDs for the object type being created.

Returns

Á The computed ACL that also includes the inherited ACEs.

 // Computes the inheritable and inherited ACEs to propagate to the new object

130 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 // from any inheritable ACEs in the ACL supplied by the caller

 Initialize ExplicitACL to Empty ACL

 FOR each ACE in ACL DO

 IF((ACE.AceFlags contains CONTAINER_INHERIT_ACE) AND

 (I sContainerObject = TRUE))OR

 ((ACE.AceFlags contains OBJECT_INHERIT_ACE) AND

 (IsContainerObject = FALSE))

 THEN

 CASE ACE.Type OF

 ALLOW:

 DENY:

 Set NewACE to ACE

 Set NewACE.AceFlags to NULL

 Append NewACE to ExplicitACL

 OBJECT_ALLOW

 OBJECT_DENY:

 IF (ObjectTypes contains ACE.ObjectGUID) THEN

 Set NewACE to ACE

 Set NewACE.AceFlags to NULL

 Append NewACE to ExplicitACL

 ENDIF

 ENDCASE

 ENDIF

 END FOR

 Initialize InheritableACL to Empty ACL

 IF (IsContainerObject = TRUE) THEN

 FOR each ACE in ACL DO

 IF((AC E.AceFlags contains CONTAINER_INHERIT_ACE) OR

 (ACE.AceFlags contains OBJECT_INHERIT_ACE))

 THEN

 Set NewACE to ACE

 Add INHERIT_ONLY_ACE to NewACE.AceFlags

 Append NewACE to InheritableACL

 ENDIF

 END FOR

 ENDIF

 RETURN concatenation of ExplicitACL and InheritableACL

 // END ComputeInheritedACLFromCreator

2.5.3.4.6 PreProcessACLfromCreator

This subroutine processes an input ACL, removing all ACEs that were inherited previously, yielding an
ACL with only explicit ACEs.

Parameters

Á ACL: ACL to preprocess.

Returns

Á Processed ACL.

 Initialize NewACL to Empty ACL

131 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 FOR each ACE in ACL DO

 IF ACE.AceFlags does not contain INHERITED_ACE THEN

 Append ACE to NewACL

 ENDIF

 END FOR

 RETURN NewACL

 // END PreProcessACLFromCreator

2.5.3.4.7 PostProcessACL

The purpose of this subroutine is to process the ACL and make it concrete by replacing certain macro
SIDs with the actual SIDs for the principals involved, and to translate from generic access bit flags to
the actual object -specific access flags. The caller specifies a filter to apply, namely whether only
inherited ACEs, only explicit ACEs, or all ACEs will be copied.

Parameters

Á ACL: ACL on which to substitute SIDs.

Á CopyFilter: Enumeration of the following filters for post -processing the ACL: CopyAllAces ,
CopyInheritedAces , CopyExplicitAces .

Á Owner : Owner to use in substituting the CreatorOwner SID.

Á Group : Group to use in substituting the CreatorGroup SID.

Á GenericMapp ing : Mapping of generic permissions to resource manager -specific permissions

supplied by the caller.

Returns

Á The computed ACL with the SID substitutions performed.

 // Substitute CreatorOwner and CreatorGroup SIDs and do GenericMapping in ACL

 Initialize Ne wACL to Empty ACL

 FOR each ACE in ACL DO

 // Determine if this ACE passes the filter to be copied to the new ACL

 SET CopyThisAce = FALSE

 CASE CopyFilter OF

 CopyAllAces:

 BEGIN

 SET CopyThisAce = TRU E

 END

 CopyInheritedAces:

 BEGIN

 IF (ACE.AceFlags contains INHERITED_ACE) THEN

 SET CopyThisAce = TRUE

 ENDIF

 END

 CopyExplicitAces:

 BEGIN

 IF (ACE.AceFlags does not contain INHERITED_ACE) THEN

 SET CopyThisAce = TRUE

 ENDIF

132 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 END

 ENDCASE

 Set NewACE to ACE

 IF (CopyThisAce) THEN

 CASE ACE.Sid OF

 CREATOR_OWNER:

 NewACE.Sid = Owner

 CREATOR_GROUP:

 NewACE.Sid = Group

 ENDCASE

 IF (ACE.Mask contains GENERIC_READ) THEN

 Add GenericMapping.GenericRead to NewACE.Mask

 ENDIF

 IF (ACE.Mask contains GENERIC_WRITE) THEN

 Add GenericMapping.GenericWrite to NewACE.Mask

 ENDIF

 IF (ACE.Mask contains GENERIC_EXECUTE) THEN

 Add GenericMapping.GenericExecute to NewACE.Mask

 ENDIF

 Append NewACE to NewACL

 ENDIF

 END FOR

 RETURN NewACL

 // END PostProcessACL

2.6 ServerGetInfo Abstract Interface

The ServerGetInfo abstract interface retrieves current configuration information for the local machine.

 DWORD ServerGet Info(

 [in] DWORD level,

 [out] LPBYTE* bufptr

);

level : Specifies the information level of the data. This parameter can be one of the following values.

Value Meaning

100 Return the machine name and platform information. The bufptr parameter points to a
SERVER_INFO_100 structure.

101 Return the machine name, type, and associated software. The bufptr parameter points to a
SERVER_INFO_101 structure.

bufptr : Pointer to the buffer that receives the data. The format of this data depends on the value of
the level parameter.

Note When the 101 information level is request ed, the machine is considered to be a domain
controller (SV_TYPE_DOMAIN_CTRL or SV_TYPE_DOMAIN_BAKCTRL) when it supports the protocols

133 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

required by the Active Directory Domain Service system (either with or without Web Services) as
described in [MS -ADOD] section 2.8. Once it is established that the machine is a domain controller, it

is considered to be a primary domain controller (SV_TYPE_DOMAIN_CTRL) if it is currently hosting th e
PdcEmulationMasterRole FSMO role (as specified in [MS -ADTS] section 3.1.1.1.11); otherwise it is

considered to be a backup domain controller (SV_TYPE_DOMAIN_BAKCTRL). The mach ine determines
whether it is hosting the PdcEmulationMasterRole by invoking the IsEffectiveRoleOwner function
with the roleObject parameter set to RoleObject(Default NC, PdcEmulationMasterRole) (see [MS -
ADTS] section 3.1.1.5.1.8). When the 101 information level is requested, and the machine is not
considered to be a domain controller as specified above, then it is considered to be a workstation
(SV_TYPE_WORKSTATION). Additional SV_TYPE_* values can be returned as appropriate.

Return Values : If the function succeeds, the return value is NERR_Success.

If the function fails, the return value can be one of the following error codes:

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The user does not have access to the requested information.

0x0000007C

ERROR_INVALID_LEVEL

The value specified for the level parameter is invalid.

0x00000057

ERROR_INVALID_PARAMETER

The specified parameter is invalid.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Sufficient memory is not available.

2.7 Impersonation Abstract Interfaces

2.7.1 StartImpersonation

The StartImpersonation abstract interface causes the underlying security infrastructure for a server
role to use the supplied ImpersonationAccessToken for access checks on secured objects until
either the EndImpersonation abstract interface is called or a further call to StartImpersonation is

called with a new ImpersonationAccessToken. When the EndImpersonation abstract interface is called,
the secur ity infrastructure reverts to using the primary token (see [MSDN -ACCTOKENS]). The
invocation of the StartImpersonation interface is the equivalent to supplying the
ImpersonationAccessToken as the Token parameter to the Access Check Algorithm defined in section
2.5.3.2 .

See also [MS -RPCE], Abstract Interface RpcImpersonateClient (section 3.3.3.4.3.2) and Abstract

Interface RpcRevertToSelf (section 3.3.3.4.3.3), for RPC -specific versions of the impersonation
abstraction, and [Tanenbaum] section 11.8, Security in Windows 2000.

 void StartImpers onation(

 [in] Token ImpersonationAccessToken

);

ImpersonationAccessToken : An authorization context token as specified in section 2.5.2 .

This method has no return values.

%5bMS-ADOD%5d.pdf#Section_5ff67bf4c14548cb89cd4f5482d94664
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
http://go.microsoft.com/fwlink/?LinkId=89949
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

134 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.7.2 EndImpersonation

The E ndImpersonation abstract interface causes the underlying security infrastructure for a server role
to revert to using the primary access token (see [MSDN -ACCTOKENS]) for access checks on secur ed

objects.

 void EndImpersonation(

 void

);

This method has no return values.

2.7.3 GetAccessToken

The GetAccessToken abstract interface causes the underlying security infrastructure for the server role
to return the Token/Authorization Context , as specified in section 2.5.2, of the current execution
context.

If no prior call has been made to StartImpersonation() in the current execution con text, the call
returns the primary access token (see [MSDN -ACCTOKENS]) of the security principal that is associated
with the current execution context.

If a call to StartImpersonation() has be en performed without a subsequent call to
EndImpersonation() , the call returns the impersonation access token as the Token parameter to the
Access Check Algorithm defined in section 2.5.3.2 .

 Token GetAccessToken();

Return Values : This method returns a Token/Authorization Context, as specified in section 2.5.2, of
the current execution context.

http://go.microsoft.com/fwlink/?LinkId=89949
http://go.microsoft.com/fwlink/?LinkId=89949

135 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Structure Examples

 There are no structure examples.

136 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Security Considerations

There are no security considerations.

137 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Appendix A: Full MS -DTYP IDL

For ease of implementation and to allow re -use of the common data types and structure in other
protocols, a full IDL is provided.

 typedef unsigned short wchar_t;

 typedef void* ADCONNECTION_HANDLE;

 typedef int BOOL, *PBOOL, *LPBOOL;

 typedef unsigned char BYTE, *PBYTE, *LPBYTE;

 typedef BYTE BOOLEAN, *PBOOLEAN;

 typedef wchar_t WCHAR, *PWCHAR;

 typedef WCHAR* BSTR;

 typedef char CHAR, *PCHAR;

 typedef double DOUBLE;

 typedef unsigned long DWORD, *PDWORD, *LPDWORD;

 typedef unsigned i nt DWORD32;

 typedef unsigned __int64 DWORD64, *PDWORD64;

 typedef unsigned __int64 ULONGLONG;

 typedef ULONGLONG DWORDLONG, *PDWORDLONG;

 typedef unsigned long error_status_t;

 typedef float FLOAT;

 typedef unsigned char UCHAR, *PUCHAR;

 typedef short SHORT;

 ty pedef void* HANDLE;

 typedef DWORD HCALL;

 typedef int INT, *LPINT;

 typedef signed char INT8;

 typedef signed short INT16;

 typedef signed int INT32;

 typedef signed __int64 INT64;

 typedef void* LDAP_UDP_HANDLE;

 typedef const wchar_t* LMCSTR;

 typedef WCHAR* LMSTR;

 typedef long LONG, *PLONG, *LPLONG;

 typedef signed __int64 LONGLONG;

 typedef LONG HRESULT;

 typedef __int3264 LONG_PTR;

 typedef unsigned __int3264 ULONG_PTR;

 typedef signed int LONG32;

 typedef signed __int64 LONG64, *PLONG64;

 typedef const char* LPCSTR;

 typedef const void* LPCVOID;

 typedef const wchar_t* LPCWSTR;

 typedef char* PSTR, *LPSTR;

 typedef wchar_t* LPWSTR, *PWSTR;

 typedef DWORD NET_API_STATUS;

 typedef long NTSTATUS;

 typedef [context_handle] void* PCONTEXT_HANDLE;

 typedef [ref] PCONTEXT_HANDLE* PPCONTEXT_HANDLE;

 typedef unsigned __int64 QWORD;

 typedef void* RPC_BINDING_HANDLE;

 typedef UCHAR* STRING;

 typedef unsigned int UINT;

 typedef unsigned char UINT8;

 typedef unsigned short UINT16;

 typedef unsigned int UINT32;

 typedef unsig ned __int64 UINT64;

 typedef unsigned long ULONG, *PULONG;

 typedef ULONG_PTR DWORD_PTR;

 typedef ULONG_PTR SIZE_T;

138 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef unsigned int ULONG32;

 typedef unsigned __int64 ULONG64;

 typedef wchar_t UNICODE;

 typedef unsigned short USHORT;

 typedef void VOID, *PVOID, *LPVOID;

 typedef unsigned short WORD, *PWORD, *LPWORD;

 typedef struct _FILETIME {

 DWORD dwLowDateTime;

 DWORD dwHighDateTime;

 } FILETIME,

 *PFILETIME,

 *LPFILETIME;

 typedef struct _GUID {

 unsigned long Data1;

 unsigned short Data2;

 unsi gned short Data3;

 byte Data4[8];

 } GUID,

 UUID,

 *PGUID;

 typedef struct _LARGE_INTEGER {

 signed __int64 QuadPart;

 } LARGE_INTEGER, *PLARGE_INTEGER;

 typedef struct _EVENT_DESCRIPTOR {

 USHORT Id;

 UCHAR Version;

 UCHAR Channel;

 UCHAR Level;

 UCHAR Opcode;

 USHORT Task;

 ULONGLONG Keyword;

 } EVENT_DESCRIPTOR,

 *PEVENT_DESCRIPTOR,

 *PCEVENT_DESCRIPTOR;

 typedef struct _EVENT_HEADER {

 USHORT Size;

 USHORT HeaderType;

 USHORT Flags;

 USHORT EventProperty;

 ULONG ThreadId;

 ULONG ProcessId;

 LARGE_INTEGER TimeStamp;

 GUID ProviderId;

 EVENT_DESCRIPTOR EventDescriptor;

 union {

 struct {

 ULONG KernelTime;

 ULONG UserTim e;

 };

 ULONG64 ProcessorTime;

 };

 GUID ActivityId;

 } EVENT_HEADER,

 *PEVENT_HEADER;

 typedef DWORD LCID;

 typedef struct _LUID {

 DWORD LowPart;

 LONG HighPart;

 } LUID,

 *PLUID;

 typedef struct _MULTI_SZ {

139 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 wchar_t* Value;

 DWORD nChar;

 } MULTI_SZ;

 typedef struct _RPC_UNICODE_STRING {

 unsigned short Length;

 unsigned short MaximumLength;

 [size_is(MaximumLength/2), length_is(Length/2)]

 WCHAR* Buffer;

 } RPC_UNICODE_STRING,

 *PRPC_UNICODE_STRING;

 typedef struct _ SERVER_INFO_100 {

 DWORD sv100_platform_id;

 [string] wchar_t* sv100_name;

 } SERVER_INFO_100,

 *PSERVER_INFO_100,

 *LPSERVER_INFO_100;

 typedef struct _SERVER_INFO_101 {

 DWORD sv101_platform_id;

 [string] wchar_t* sv101_name;

 DWORD sv101_version_major;

 DWORD sv101_version_minor;

 DWORD sv101_version_type;

 [string] wchar_t* sv101_comment;

 } SERVER_INFO_101,

 *PSERVER_INFO_101,

 *LPSERVER_INFO_101;

 typedef struct _SYSTEMTIME {

 WORD wYear;

 WORD wMonth;

 WORD wDayOfWeek;

 WORD wDay;

 WORD wHour;

 WORD wMinute;

 WORD wSecond;

 WORD wMilliseconds;

 } SYSTEMTIME,

 *PSYSTEMTIME;

 typedef struct _UINT128 {

 UINT64 lower;

 UINT64 upper;

 } UINT128,

 *PUINT128;

 typedef struct _ULARGE_INTEGER {

 unsigned __int64 QuadPart;

 } ULARGE_INTEGER, *PULARGE_INTEGER;

 typedef struct _RPC_SID_IDENTIFIER_AUTHORITY {

 byte Value[6];

 } RPC_SID_IDENTIFIER_AUTHORITY;

 typedef DWORD ACCESS_MASK;

 typedef ACCESS_MASK *PACCESS_MASK;

 typedef struct _OBJECT_TYPE _LIST {

 WORD Level;

 ACCESS_MASK Remaining;

 GUID* ObjectType;

 } OBJECT_TYPE_LIST,

 *POBJECT_TYPE_LIST;

 typedef struct _ACE_HEADER {

 UCHAR AceType;

 UCHAR AceFlags;

140 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 USHORT AceSize;

 } ACE_HEADER,

 *PACE_HEADER;

 typedef struct _SYSTEM_MANDATORY_ LABEL_ACE {

 ACE_HEADER Header;

 ACCESS_MASK Mask;

 DWORD SidStart;

 } SYSTEM_MANDATORY_LABEL_ACE,

 *PSYSTEM_MANDATORY_LABEL_ACE;

 typedef struct _TOKEN_MANDATORY_POLICY {

 DWORD Policy;

 } TOKEN_MANDATORY_POLICY,

 *PTOKEN_MANDATORY_POLICY;

 typedef struct _MANDATORY_INFORMATION {

 ACCESS_MASK AllowedAccess;

 BOOLEAN WriteAllowed;

 BOOLEAN ReadAllowed;

 BOOLEAN ExecuteAllowed;

 TOKEN_MANDATORY_POLICY MandatoryPolicy;

 } MANDATORY_INFORMATION,

 *PMANDATORY_INFORMATION;

 typedef struct _CLAIM_SECURITY_ATTRIBUTE_OCTET_STRING_RELATIVE {

 DWORD Length;

 BYTE OctetString[];

 } CLAIM_SECURITY_ATTRIBUTE_OCTET_STRING_RELATIVE,

 *PCLAIM_SECURITY_ATTRIBUTE_OCTET_STRING_RELATIVE;

 typedef struct _CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 {

 DWORD Name;

 WORD ValueType;

 WORD Reserved;

 DWORD Flags;

 DWORD ValueCount;

 union {

 PLONG64 pInt64[];

 PDWORD64 pUint64[];

 PWSTR ppString[];

 PCLAIM_SECURITY_ATTRIBUTE_OCTET_STRING_RELATIVE pOctetString[];

 } Values;

 } CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1,

 *PCLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1;

 typedef DWORD SECURITY_INFORMATION, *PSECURITY_INFORMATION;

 typedef struct _RPC_SID {

 unsigned char Revision;

 unsigned char SubAuthorityCount;

 RPC_SID_IDENTIFIER_AUT HORITY IdentifierAuthority;

 [size_is(SubAuthorityCount)] unsigned long SubAuthority[];

 } RPC_SID,

 *PRPC_SID,

 *PSID;

 typedef struct _ACL {

 unsigned char AclRevision;

 unsigned char Sbz1;

 unsigned short AclSize;

 unsigned short AceCount;

 unsigned short Sbz2;

 } ACL,

 *PACL;

 typedef struct _SECURITY_DESCRIPTOR {

 UCHAR Revision;

141 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 UCHAR Sbz1;

 USHORT Control;

 PSID Owner;

 PSID Group;

 PACL Sacl;

 PACL Dacl;

 } SECURITY_DESCRIPTOR,

 *PSECURITY_DESCRIPTOR;

142 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix B: Product Behavior

Á Windows NT operating system

Á Windows 2000 operating system

Á Windows XP operating system

Á Windows Server 2003 operating system

Á Windows Vista operating system

Á Windows Server 2008 oper ating system

Á Windows 7 operating system

Á Windows Server 2008 R2 operating system

Á Windows 8 operating system

Á Windows Server 2012 operating system

Á Windows 8.1 operating system

Á Windows Server 2012 R2 operating system

Á Windows 10 operating system

Á Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent se rvice packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescr ibed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 2.1 : Windows is implemented on little -endian systems.

<2> Section 2.3.8 : Windows implementations access the Value field with non -standard string
functions to add or extract strings from the b uffer. If standard C conventions were followed, the Value

datatype would nominally be wchar_t**.

<3> Section 2.4.1 : Only Windows Server 2012 and Windows Server 2012 R2, Kerberos KDCs support
this value.

<4> Section 2.4.1 : Only Windows Server 2012 and Windows Server 2012 R2, Kerberos KDCs support
this value for protocol transition (S4U2Self) -based service tickets

<5> Section 2.4.2.4 : Not supported in Windows NT, Windows 2000, Windows XP, Windows Server

2003, Windows Vista, Windows Server 2012 operating system, and Windows Server 2008 R2.

<6> Section 2.4.2.4 : Not supported by Windows 2000.

<7> Section 2.4.2.4 : Not supported by Windows 2000.

<8> Section 2.4.2.4 : Not supported by Windows 2000.

143 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<9> Section 2.4.2.4 : Supported in Windows Server 2003 and Windows Server 2008. The DC adds this
SID :

Á When the user is a member of the forest.

Á When the user is not a member of the forest and the TRUST_ATTRIBUTE_CROSS_ORGANIZATION

bit of the Trust Attribute ([MS -ADTS] section 6.1.6.7.9) of the trusted domain object is not set.

< 10> Section 2.4.2.4 : The COMPOUNDED_AUTHENTICATION SID is not supported in Windows NT,
Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows
7, and Windows Server 2008 R2.

<11> Section 2.4.2.4 : The CLAIMS_VALID SID is not supported in Windows NT, Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2.

<12> Section 2.4.2.4 : Supported by Windows 8.1, Windows Server 2012 R2, Windows 10, and
Windows Server 2016.

<13> Section 2.4.2.4 : A built - in group that is created when a domain controller is added to the
domain. Supported by Windows 2000, Windows Server 2003, Windows Server 2008, Windows Server
2008 R2 operating system, and Windows Server 2012.

<14> Section 2.4.2.4 : A built - in group that is created when a domain controller is added to the

domain. Supported by Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and
Windows Server 2012.

<15> Section 2.4.2.4 : A built - in group that is created when a domain controller is added to the
domain. Supported by Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and
Windows Server 2012.

<16> Section 2.4.2.4 : A built - in group that is created when a domain controller is added to the
domain. Supp orted by Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and

Windows Server 2012.

<17> Section 2.4.2.4 : A built - in group that is created when a domain controller is added to the
domain. Supported by Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and
Windows Server 2012.

<18> Section 2.4.2.4 : A built - in group that is created when a domain controller is added to the
domain. Supported by W indows Server 2003, Windows Server 2008, Windows Server 2008 R2, and
Windows Server 2012.

<19> Section 2.4.2.4 : A built - in group that is created when a domain controller is added to the
domain. Supported by Window s Server 2003, Windows Server 2008, Windows Server 2008 R2, and
Windows Server 2012.

<20> Section 2.4.2.4 : A new local group is created for Windows Server 2003 operating system with
Service Pack 1 (SP1), Windows S erver 2003 operating system with Service Pack 2 (SP2), Windows
Server 2003 operating system with Service Pack 3 (SP3), Windows Server 2008, Windows Server

2008 R2, and Windows Server 2012.

<21> Section 2.4.2.4 : A built - in group that is created when a domain controller is added to the
domain. Supported by Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and
Windows Server 2012.

<22> Section 2.4.2.4 : A bui lt - in group that is created when a domain controller is added to the
domain. Supported by Windows Server 2008, Windows Server 2008 R2, and Windows Server 2012.

<23> Section 2.4.2.4 : A built - in group that is create d when a domain controller is added to the

domain. Supported by Windows Server 2008, Windows Server 2008 R2, and Windows Server 2012.

%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a

144 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<24> Section 2.4.2.4 : A built - in group that is created when a domain controller is added to the
domain. Supported by Windows Server 2008, Windows Server 2008 R2, and Windows Server 2012.

<25> Section 2.4.2.4 : The THIS_ORGANIZATION_CERT IFICATE SID is not supported in Windows NT,
Windows 2000, Windows XP, Windows Server 2003, Windows Vista, and Windows Server 2008.

<26> Section 2.4.2.4 : Supported only in Windows 8.1, Windows Server 2012 R2, Wind ows 10, and
Windows Server 2016.

<27> Section 2.4.2.4 : Supported only in Windows 8.1, Windows Server 2012 R2, Windows 10, and
Windows Server 2016.

<28> Section 2.4.2.4 : Supported in Windows Server 2003 and Windows Server 2008. When the
TRUST_ATTRIBUTE_CROSS_ORGANIZATION bit of the Trust Attribute ([MS -ADTS] section 6.1.6.7.9)
of the trusted domain object is set:

Á If the forest boundary is crossed, Windows domain controller s add this SID.

Á If Windows domain controllers receive requests to authenticate to resources in their domain, they

check the computer object to ensure that this SID is allowed. In Windows, by default this applies
to NTLM (as specified in [MS -NLMP] and [MS -APDS]), to Kerberos (as specified in [MS -KILE] and
[MS -APDS]), and to TLS (as specified in [MS -TLSP] and [MS -SFU]).

<29> Section 2.4.2.4 : Not supported in Windows NT, Windows 2000, Windows XP, Windows Server

2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<30> Section 2.4.2.4 : In Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016,
only Kerberos KDCs provide this SID.

<31> Section 2.4.2.4 : Not supported in Windows NT, Windows 2000, Windows XP, Wind ows Server
2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<32> Section 2.4.2.4 : In Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016,
only Kerberos KDCs provide this SID for protocol transition (S4U2Self) based service tickets.

<33> Section 2.4.2.4 : Only Kerberos KDCs provide this SID for tickets based on [IETFDRAFT -PK-
FRESH] . FRESH_PUBLIC_KEY_IDENTITY is not supported in Windows NT, Windows 2000, Windows
Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows
Server 2012 R2.

<34> Section 2.4.2.4 : Only Kerberos KDCs provide this SID when key trust attributes are used for
validation. KEY_TRUST_ IDENTITY is not supported in Windows NT, Windows 2000, Windows Server
2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 201 2, and Windows Server

2012 R2.

<35> Section 2.4.2.4 : Only Kerberos KDCs provide this SID when key trust attributes for MFA is true.
KEY_PROPERTY_MFA is not supported in Windows NT, Windows 2000, Windows Server 2003, Windows
Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2.

<36> Section 2.4.2.4 : Only Kerberos KDCs provide this SID when key trust attributes for attestati on
is true. KEY_PROPERTY_ATTESTATION is not supported in Windows NT, Windows 2000, Windows

Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows
Server 2012 R2.

<37> Section 2. 4.4.1 : Windows NT 4.0 operating system: Not supported.

<38> Section 2.4.4.1 : Windows NT 4.0: Not supported.

<39> Section 2.4.4.1 : Windows NT 4.0: Not supported.

<40> Section 2.4.4.1 : Windows NT 4.0 and Windows 2000: Not supported.

%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-APDS%5d.pdf#Section_dd444344fd7e430eb3137e95ab9c338e
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
%5bMS-TLSP%5d.pdf#Section_58aba05b62b04cd1b88bdc8a24920346
%5bMS-SFU%5d.pdf#Section_3bff58648135400ebdd933b552051d94
http://go.microsoft.com/fwlink/?LinkId=534982
http://go.microsoft.com/fwlink/?LinkId=534982

145 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<41> Section 2.4.4.1 : Windows NT 4.0 and Windows 2000: Not supported.

<42> Section 2.4.4.1 : Windows NT 4.0 and Windows 2000: Not supported.

<43> Section 2.4.4.1 : Windows NT 4.0 and Windows 2000: Not supported.

<44> Section 2.4.4.1 : Wind ows NT 4.0 and Windows 2000: Not supported.

<45> Section 2.4.4.1 : Callback in this context relates to the local -only AuthzAccessCheck function, as
described in [MSDN -AuthzAccessCheck] .

<46> Section 2.4.4.1 : Windows NT 4.0: Not supported.

<47> Section 2.4.4.13 : This construct is supported only by Windows Vista, Windows Server 2008,
Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows
Server 2012 R2, Windows 10, and Windows Server 2016.

<48> Section 2.4.4.17 : Conditional ACEs are only su pported in Windows 7, Windows Server 2008 R2,

Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows

Server 2016.

<49> Section 2.4.4.17.6 : Supported in Windows 8, Windows Serv er 2012, Windows 8.1, Windows
Server 2012 R2, Windows 10, and Windows Server 2016 only.

<50> Section 2.4.4.17.6 : Supported in Windows 8, Windows Server 2012, Windows 8.1, Windows
Server 2012 R2, Windows 10, and Windows Server 2016 only.

<51> Section 2.4.4.17.6 : Supported in Windows 8, Windows Server 2012, Windows 8.1, Windows
Server 2012 R2, Windows 10, and Windows Server 2016 only.

<52> Section 2.4.4.17.6 : Supported in Windows 8, Windows Server 2012, Windows 8.1, Windows
Server 2012 R2, Windows 10, and Windows Server 2016 only.

<53> Section 2.4.4.17.6 : Supported in Windows 8, Windows Se rver 2012, Windows 8.1, Windows
Server 2012 R2, Windows 10, and Windows Server 2016 only.

<54> Section 2.4.4.17.6 : Supported in Windows 8, Windows Server 2012, Windows 8.1, Windows

Server 2012 R2, Windows 10, and Windows Server 2016 only.

<55> Section 2.4.4.17.6 : Supported in Windows 8, Windows Server 2012, Windows 8.1, Windows
Server 2012 R2, Windows 10, and Windows Server 2016 only.

<56> Section 2.4.4.17.6 : Only Windows 8, Windows Server 2012, Windows 8.1, Windows Server
2012 R2, Windows 10, and Windows Server 2016 support @Prefixed form.

<57> Section 2.4.4.17.6 : Windows implementations do not set this flag by default.

<58> Section 2.4.4.17.6 : For Windows 7 and Windows Server 2008 R2, the LHS is an attribute name

in simple form and RHS is a single literal value. Evaluates to TRUE if the set of va lues for the specified
LHS includes a value identical to the specified literal; otherwise, FALSE.

<59> Section 2.4.4.17.6 : For Windows 7 and Windows Server 2008 R2, the RHS is either a list of
literals or a single literal value. Evaluates to TRUE if the LHS is a superset of the value of the specified
RHS; otherwise, FALSE.

<60> Section 2.4.4.17.6 : Supported in Windows 8, Windows Server 2012, Windows 8.1, Windows

Server 201 2 R2, Windows 10, and Windows Server 2016 only.

<61> Section 2.4.4.17.6 : Supported in Windows 8, Windows Server 2012, Windows 8.1, Windows
Server 2012 R2, Windows 10, and Windows Server 2016 only.

http://go.microsoft.com/fwlink/?LinkId=204597

146 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<62> Section 2.4.4.17.7 : Supported in Windows 8, Windows Server 2012, Windows 8.1, Windows
Server 2012 R2, Windows 10, and Windows Server 2016 only.

<63> Section 2.4.5 : This is applicabl e for Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows

10, and Windows Server 2016.

<64> Section 2.4.6 : Windows ty pically presents the target fields in this order: Sacl, Dacl, OwnerSid,
GroupSid.

<65> Section 2.4.6 : Windows sets Sbz1 to zero for Windows resources.

<66> Section 2.4.6 : This field is intended only for use by the POSIX subsystem and is otherwise
ignored by the Windows access control components.

<67> Section 2.4.10.1 : These values are only supported in Windows 8, Windows Server 2 012,

Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 2016. They are ignored by
the access check algorithm (section 2.5.3.2).

<68> Sec tion 2.4.10.1 : These values are only supported in Windows 8, Windows Server 2012,
Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 2016.

<69> Section 2.4.10.1 : This value is ignored by Windows when set on a security descriptor.

<70> Section 2.4.10.2 : Supported only in Windows 7, Windows Server 2008 R2, Windows 8, Windows

Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 20 16.

<71> Section 2.5.1 : SDDL was introduced in Windows 2000.

<72> Section 2.5.1.1 : GUIDs are only supported on Windows 8, Windows Server 2012, Windows 8.1,
Windows Server 2012 R2, Windows 10, and Windows Server 2016.

<73> Section 2.5.1.1 : For the domain built - in ADMINISTRATOR (S -1-5-21 -<domain> -500), Windows
passes the actual SID, not the "LA" token. Reporting tools might convert this back to a token when
examining the SDDL.

<74> Section 2.5.1.1 : Not all conditional ACE types are supported in the SDDL. Only the conditional
ACE types ACE ACCESS_ALLOWED_CALLBACK_ACE and ACCESS_DENIED_CALLBAC K_ACE are
supported in Windows 7 and Windows Server 2008 R2. The ACCESS_ALLOWED_CALLBACK_ACE,
ACCESS_DENIED_CALLBACK_ACE, ACCESS_ALLOWED_CALLBACK_OBJECT_ACE, and
SYSTEM_AUDIT_CALLBACK_ACE types are supported only in Windows 8, Windows Server 2012,
Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 2016.

<75> Section 2.5.1.1 : Supported in Windows 8, Windows Server 2012, Windows 8.1, Windows Server

2012 R2, Windows 10, and Windows Server 2016 only.

<76> Section 2.5.1.1 : Supported in Windows 8, Windows Server 2012, Windows 8.1, Windows Server
2012 R2, Windows 10, and Windows Server 2016 only.

<77> Section 2.5.1.1 : Sup ported in Windows 8, Windows Server 2012, Windows 8.1, Windows Server
2012 R2, Windows 10, and Windows Server 2016 only.

<78> Section 2.5.1.1 : Supported in Windows 8, Windows Server 2012, Windows 8.1, Windows Serv er

2012 R2, Windows 10, and Windows Server 2016 only.

<79> Section 2.5.1.1 : Only "Member_of" is supported in Windows 7 and Windows Server 2008 R2.
"Member_of", "Not_Member_of", "Member_of_Any", "Not_Member_of_Any" , "Device_Member_of",
"Device_Member_of_Any", "Not_Device_Member_of", and "Not_Device_Member_of_Any" are
supported in Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10,
and Windows Server 2016.

147 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<80> Section 2.5.1.1 : Supported in Windows 8, Windows Server 2012, Windows 8.1, Windows Server
2012 R2, Windows 10, and Windows Server 2016 only.

<81> Section 2.5.1.1 : Not_Contains is supported in Windows 8, Windows Server 2012, Windows 8.1,
Windows Server 2012 R2, Windows 10, and Windows Server 2016 only.

<82> Section 2.5.1.1 : Not_Any is supported in Windows 8, Windows Server 2012, Windows 8.1,
Windows Ser ver 2012 R2, Windows 10, and Windows Server 2016 only.

<83> Section 2.5.1.1 : Use of the @ symbol in the simple form is supported only in Windows 8,
Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server
2016.

<84> Section 2.5.1.1 : Supported in Windows 8, Windows Server 2012, Windows 8.1, Windows Server
2012 R2, Windows 10, and Windows Server 2016 only.

<85> Section 2.5.2 : For Windows 2000, Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows
10, and Windows Server 2016, the policy is that OwnerIndex is al ways the same as UserIndex ,

except for members of the local Administrators group, in which case the OwnerIndex is set to the
index for the SID representing the Administrators group. For Windows XP and Windows Server 2003,
there is a policy that allows the OwnerIndex to be the UserIndex under all conditions.

<86> Section 2.5.3.1.4 : An implementation -specific local recovery policy is a central access policy
that allows the implementation itself, and the authorities t hat manage it, access to the resource being
protected in disaster recovery scenarios. The Windows local recovery policy ensures administrators
and the system have access to resources while Windows is booted in safe mode.

<87> Section 2.5.3.3 : The Windows integrity mechanism extension is supported in Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Serv er 2016.

<88> Section 2.5.3.4 : Assigning the owner and group fields in the security descriptor uses the
following logic:

1. If the security descriptor that is supplied for the object by the caller includes an owner, it is
assigned as the owner of the new object. Otherwise, if the DEFAULT_OWNER_FROM_PARENT flag
(see section 2.5.3.4.1) is set, the new object is assigned the same owner as the parent object. If
this flag is not set, the default owner specified by the token (see section 2.5.3.4.1) is assigned.

2. If the security descriptor that is supplied for the object by the caller includes a group, it is

assigned as the group of the new object. Otherwise, if the D EFAULT_GROUP_FROM_PARENT flag
(see section 2.5.3.4.1) is set, the new object is assigned the same primary group as the parent
object. If this flag is not set, the default group specified by the token (see section 2.5.3.4.1) is
assigned.

148 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as New, Major, Minor, Editorial, or No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

Á A document revision that incorporates cha nges to interoperability requirements or functionality.

Á The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or i mplementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed. Editorial

changes apply to grammatical, forma tting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor editorial
and formatting changes may have been made, but the technical content of the document is identical
to the last released version.

Major and minor changes can be described further using the following change types:

Á New content added.

Á Content updated.

Á Content removed.

Á New product behavior note added.

Á Product behavior note updated.

Á Product behavior note removed.

Á New protocol syntax added.

Á Protocol syntax updated.

Á Protocol syntax removed.

Á New content added due to protocol revision.

Á Content updated due to protocol revision.

Á Content removed due to protocol revision.

Á New protocol syntax added due to protocol revision.

Á Protocol syntax updated du e to protocol revision.

Á Protocol syntax removed due to protocol revision.

Á Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated .

Some important terms used in the change type descriptions are defined as follows:

149 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á Protocol syntax refers to data elements (such as packets, structures, enumerations, and
methods) as well as interfaces.

Á Protocol revision refers to changes made to a protocol that affect the bits that are sent over the
wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com .

Section
Tracking number (if applicable) and
description

Major
chang
e (Y
or N)

Chan g
e type

2.4.4.17.6 Relational Operator Tokens
72785 : Clarified possible values for Any_of
token type.

Y
Conten
t
update.

2.4.10.1
CLAIM_SECURITY_ATTRIBUTE_RELATIV
E_V1

73098 : Clarified that the

CLAIM_SECURITY_ATTRIBUTE_NON_INHERIT
ABLE flag is ignored by Windows when set on
a security descriptor.

Y

New
product
behavi
or note
added.

mailto:dochelp@microsoft.com

150 / 152

[MS -DTYP] - v201 60714
Windows Data Types
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Index

A

ACCESS_ALLOWED_ACE packet 55
ACCESS_ALLOWED_CALLBACK_ACE packet 59
ACCESS_ALLOWED_CALLBACK_OBJECT_ACE packet

60
ACCESS_ALLOWED_OBJECT_ACE packet 55
ACCESS_CONTROL_ASSISTANCE_OPS 42
ACCESS_DENIED_ACE packet 57
ACCESS_DENIED_CALLBACK_ACE packet 60
ACCESS_DENIED_CALLBACK_OBJECT_ACE packet

62
ACCESS_DENIED_OBJECT_ACE packet 57
ACCOUNT_OPERATORS 42
ACE_HEADER packet 52
ACE_HEADER struc ture 55
ACL packet 80
ACL structure 82
ADMINISTRATOR 42
ALIAS_PREW2KCOMPACC 42
ALL_APP_PACKAGES 42
ANONYMOUS 42
Applicability 13

AUTHENTICATED_USERS 42
AUTHENTICATION_AUTHORITY_ASSERTED_IDENTIT

Y 42

B

BACKUP_OPERATORS 42
BATCH 42
BUILTIN_ADMINISTRATORS 42
BUILTIN_GUESTS 42
BUILTIN_USERS 42

C

Capability negotiation 13
CERT_PUBLISHERS 42
CERTIFICATE_SERVICE_DCOM_ACCESS 42
Change tracking 148
CLAIM_SECURITY_ATTRIBUTE_OCTET_STRING_REL

ATIVE structure 89
CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1

structure 87
CLAIMS_VALID 42
CLONEABLE_CONTROLLERS 42
Common base types 14
Common data structures 28
Common data types 16
COMPOUNDED_AUTHENTICATION 42
CONSOLE_LOGON 42
Constructed security types 38
CREATOR_GROUP 42
CREATOR_OWNER 42
CRYPTOGRAPHIC_OPERATORS 42

D

Data types 14
 common base types 14

 common data structures 28
 common data types 16
 constructed security types 38
 security types - additional information 90
DIALUP 42
DIGEST_AUTHENTICATION 42
DISTRIBUTED_COM_USERS 42
DOMAIN_ADMINS 42
DOMAIN_COMPUTERS 42
DOMAIN_DOMAIN_CONTROLLERS 42
DOMAIN_GUESTS 42
DOMAIN_USERS 42

E

ENTERPRISE_ADMINS 42
ENTERPRISE_DOMAIN_CONTROLLERS 42
ENTERPRISE_READONLY_DO MAIN_CONTROLLERS

42
EVENT_DESCRIPTOR structure 28
EVENT_HEADER structure 29
EVENT_LOG_READERS 42
EVERYONE 42

Examples - structure 135

F

Fields - vendor -extensible 13
FILETIME structure 31

G

Glossary 8
GROUP_POLICY_CREATOR_OWNERS 42
GROUP_SERVER 42
GUEST 42
GUID packet 32
GUID structure 31

H

HYPER_V_ADMINS 42

I

IIS_IUSRS 42
Implementer - security considerations 136
INCOMING_FOREST_TRUST_BUILDERS 42
Informative references 12
INTERACTIVE 42
Introduction 8
IUSR 42

L

LARGE_INTEGER stru cture 32
LOCAL 42
LOCAL_ACCOUNT 42
LOCAL_ACCOUNT_AND_MEMBER_OF_ADMINISTRAT

ORS_GROUP 42
LOCAL_SERVICE 42

