[MS-DTAGT:

Device Trust Agreement Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

* Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

* Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

* No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

* Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

* License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

* Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

* Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

1/53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

Revision Summary

Revision Revision

Date History Class Comments

11/6/2009 0.1 Major First Release.

12/18/2009 | 0.1.1 Editorial Changed language and formatting in the technical content.

1/29/2010 0.2 Minor Clarified the meaning of the technical content.

3/12/2010 0.2.1 Editorial Changed language and formatting in the technical content.

4/23/2010 1.0 Major Updated and revised the technical content.

6/4/2010 1.0.1 Editorial Changed language and formatting in the technical content.

7/16/2010 2.0 Major Updated and revised the technical content.

8/27/2010 2.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

10/8/2010 2.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

11/19/2010 | 2.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

1/7/2011 2.0 None No ch_anges to the meaning, language, or formatting of the
technical content.
No changes to the meaning, language, or formatting of the

2/11/2011 2.0 None technical content.
No changes to the meaning, language, or formatting of the

3/25/2011 2.0 None technical content.

5/6/2011 2.0 None No chgnges to the meaning, language, or formatting of the
technical content.

6/17/2011 2.1 Minor Clarified the meaning of the technical content.

9/23/2011 21 None No chgnges to the meaning, language, or formatting of the
technical content.

12/16/2011 | 3.0 Major Updated and revised the technical content.
No changes to the meaning, language, or formatting of the

3/30/2012 3.0 None technical content.

7/12/2012 3.0 None No chgnges to the meaning, language, or formatting of the
technical content.

10/25/2012 | 3.0 None No chgnges to the meaning, language, or formatting of the
technical content.

1/31/2013 3.0 None No chfanges to the meaning, language, or formatting of the
technical content.

8/8/2013 4.0 Major Updated and revised the technical content.

11/14/2013 | 4.1 Minor Clarified the meaning of the technical content.

2/13/2014 41 None No ch_anges to the meaning, language, or formatting of the
technical content.

2/53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revision Revision

Date History Class Comments

5/15/2014 4.1 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/30/2015 4.1 None No ch_anges to the meaning, language, or formatting of the
technical content.

10/16/2015 | 4.1 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/14/2016 4.1 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/1/2017 4.1 None No changes to the meaning, language, or formatting of the

technical content.

[MS-DTAG] - v20170601

Device Trust Agreement Protocol

Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3/53

Table of Contents

B N 112 1o T [T T ot f ' Y 4 7
1 [0 T1== 1 PP 7
2 3] =T =T g Lol PP 9
1.2.1 NOrMative RefEIENCES . ovii ittt e e e e e e e anans 9
1.2.2 INfOrmative REfEIENCES .. vttt e aans 10
1.3 L Y] YT 10
1.4 Relationship to Other ProtoCoIS ..uvuiirii i e e 11
1.5 Prerequisites/Preconditionsovieiiiiiiii e 12
1.6 Applicability Statement ... s 12
1.7 Versioning and Capability Negotiation ..o 12
1.8 Vendor-EXtensible Fieldso.viieiiiiii i e e 12
1.9 Standards ASSIGNMENTS. e 13
A 1 [T =T T o 1= 14
1 I r= 1 .17 oo] o o PP 14
2 ComMmMON MESSAGE SYNTAX .eiuiuiitiiitiiiti it et e e s e e r e 14
2.2.1 NN F= g g =TS o= [ol PP 14
2.2.2 TS T = 14
2.2.2.1 LU o] o 14
2.2.3] =T T o | P 15
2.2.3.1 L o o o] o o 15
2.2.3.2 [o 1] o 1 PP 15
2.2.3.3 o= = | o P 16
2.2.3.4 TteratioNSREQUITEA ...iiiiii i 16
2.2.4 (00T g¥ o] 1=t QN NV 0T PP, 16
2.2.5 Y1 0.0Y o] ES T 1Y 1 PP 16
2.2.5.1 A ARG _TYPE_ROUNGAS .ttt sttt et et e e e e e e e e e e eeeas 16
2.2.5.2 A ARG _TYPE _TEeration .uiiieiiieii it e e e e 17
2.2.5.3 A_ARG_TYPE_ENAPOINTID ...uuiiiiiiitiieitsiies et res e ts e e e e s e rae e aae e 17
2.2.5.4 A_ARG_TYPE_AULhentiCator ...oiiiiii i e 17
2.2.5.5 FAN A G I 4 o = o] [PP 17
2.2.5.6 A_ARG_TYPE_CertifiCate ..cuviiiiiiiiiii i 17
2.2.6 AT D UL S ottt 18
2.2.7 L] (o 11 o 1= PP, 18
2.2.8 F AN] 0T8I €] o 18 o 1= P 18
C I o 4 1 o Yoo I 0 1= - T 19
1 ComMMON DELAIlS «.uvieiie i e 19
3.1.1 AbSEract Data Model.....cvieiiii i 19
3.1.2 LT P 22
3.1.3 |1 I 1 4= o] o PP 22
3.1.4 Message Processing Events and Sequencing Rulescoovviiiiiiiiiiiiiiienie e, 23
3.1.4.1 One-time Password (OTP) EVENE ... e 23
3.1.5 LI L L= == L PP 23
3.1.6 (O a1 ol o Tor= 1 B Y =T o | PP 23
2 DEVICE DAttt e 23
3.2.1 AbStract Data MOdel.....c.viniiiii i 23
3.2.2 LI L. L= 1= PP 23
3.2.3 |- 1 4= o] o PP 23
3.2.4 Message Processing Events and Sequencing Rulesc.cocviiiiiiiiiiiiiineeene, 23
3.2.4.1 EXChange ACLION ...cuvieiii i 24
3.24.1.1 MBS SAGES ottt e 24
3.24.1.1.1 EXChange MeSSageouiuieiiiiii it 24
3.24.1.1.2 Exchange Response MeSSage......couvuiiiiiiiiniiiiii e eienereneeenes 25
3.2.4.1.2 B MBS ettt 25
4/53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.1.2.1 DEVICEID . ittt 26
3.2.4.1.2.2 HOSECertifiCate. . 26
3.2.4.1.2.3 DeviceCertificate. ... 26
3.2.4.1.2.4 HostConfirmAuthenticator......cvviiiii 26
3.2.4.1.2.5 DeviceConfirmAuthenticator........ooviviiiiii 26
3.2.4.2 (6o 0] 0 0 11 Y o (o] 1 27
3.2.4.2.1 N LTSS T = PPN 27
3.24.2.1.1 ComMMIt MESSAGE ..eieiniiiii i 27
3.2.4.2.1.2 Commit RESPONSE MESSAGE .. viiiiiiiiti it iit i ei e eaae e e raneaans 28
3.2.4.2.2 [1= = P 28
3.2.4.2.2.1 HostValidateAuthenticator.......coovviiiiiii 28
3.2.4.2.2.2 DeviceValidateAuthenticator........ccooviiiiiiiii 29
3.2.4.3 Validate ACHION v e 29
3.2.4.3.1 LTS T = S 29
3.2.4.3.1.1 Validate MESSage .. .uiiiiiiii i 29
3.2.4.3.1.2 Validate RESPONSE MESSAGE .. .iiviiii ittt e 30
3.2.4.3.2 [1= = P 30
3.2.4.3.2.1 HOStValidateNONCE .. cvi i e e e e 31
3.2.4.3.2.2 DeviceValidateNONCEviviiiiii e 31
3.2.4.4 CONfIrM ACH 0N ettt e 31
3.2.4.4.1 [N FSTSET= o 1< 31
3.24.4.1.1 (@0e] oY 10 g T\ 1= TT=Y o P 32
3.2.4.4.1.2 Confirm RESPONSE MESSAGE u.uuiiiiiiii ittt aaeeaes 32
3.2.4.4.2 [1= =T = PP 33
3.2.4.4.2.1 HOSECONFIrMNONCE ..oiviiii i e 33
3.2.4.4.2.2 DeviceConfirmMNONCEviiiiiii e e 33
3.2.5 LT = ==) = 33
3.2.6 (0o =T ol W Tor= Y I V=T o | = PP 33
3.3 Control Point (HOSE) Details . .uvriiieiiiii e e 33
3.3.1 AbStract Data Model.....ooviuiiiii e 33
3.3.2 LT 33
3.3.3 | T =] 2= [o PP 34
3.3.4 Message Processing Events and Sequencing Rulescccvoviiiiiiiiiiiiiienneen, 34
3.3.4.1 EXChange RESPONSE. .. .t 34
3.3.4.2 (0] 2 910 VLA 2 U=TS] oo o = < PP 34
3.3.4.3 Validate RESPONSE 35
3.3.4.4 (o] 0T g 0 I 2T oo o 1-T= P 35
3.3.4.5 One-time Password (OTP) EVENt ..cviiiiiiii i e 36
3.3.5 LT = 2]) o= 36
3.3.6 Other LOCal EVENES .. vttt e e e e e e e e 36
4 Protocol EXamples ..ccicrieiarierrimsesiasessnsassnsssssassnsassssassnsassnsassnsansasassnsansnsassnsansnsannnras 37
4.1 Trust Channel Establishmentccoiiiiii e 37
4.1.1 EXchange ACtion MESSAgeuiiiiiiiiiiii et 37
4.1.2 EXchange ReSPONSE MESSAGE ..uuiuiiiiiiieiiiitiie ittt it a e e aeaaaeaeeenes 37
4.1.3 CommMIt ACLION MESSAGE. .. ettt sttt e e ane s 38
4.1.4 COoMMIt RESPONSE MESSAGE .. uiutiii ittt ettt s e e e e e e e aneneaess 38
4.1.5 Validate ACtiON MESSAGE ..uiuiiiiii it 39
4.1.6 Validate RESPONSE MESSAGE. .. .uuiiuiiiiii ittt e e e e 39
4.1.7 Confirm ACLION MESSAGE ...vuiiiieie it e et r e a e nas 39
4.1.8 Confirm RESPONSE MESSAGE .. .iuuiuiieiiiitie ittt e e nanerens 40
4.2 ErrOr MESSAGE uiiuiiiiitii i e 40
L <V oL T | o 41
5.1 Security Considerations for Implementerscocoiiiiiiiiii 41
5.2 Index of Security Parametersouieieiiiiii et 41
6 Appendix A: FUll WSDLc.cciiimirieiernmsesnssa s sssss s sassssansassssssansassnsssnnsassnsssnnsnsnns 42
7 Appendix B: UPNP Device DescCription...c.icvcriereriererimreriessssssassassssasassassssasassasssnnsannns 43
5/53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

8 Appendix C: Full UPnP Service Descriptioncccivmiiarersnsnsimsmimsssas s snssssasanasns 46

9 Appendix D: Product Behavior....cciciieiimmmimimimiemasmsssasssssssssassassassansasssnssnssansnnsans 49

0 T 5 T T 4 e L= - Lol T 50

B 1 T = 51
6/53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 Introduction
This document specifies the Device Trust Agreement Protocol (DTAG).

DTAG enables two UPnP endpoints to securely exchange certificates over an unsecure network and to
establish a trust relationship by means of a simple, one-time shared secret.

DTAG is compliant with UPnP architecture and is implemented as a UPnP service [UPNPARCH1].
Therefore, this protocol does not have a specific WSDL declaration.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

action: A command exposed by a service which takes one or more input or output arguments and
which may have a return value. For more information, see [UPNPARCH1.1] sections 2 and 3.

authenticator: A large value (160 bits), which is generated from the payload, a shared secret,
and a nonce; and which 1) reveals nothing of the payload, shared secret, or nonce; and 2) is
impractical to generate from any other payload, shared secret, or nonce.

base64 encoding: A binary-to-text encoding scheme whereby an arbitrary sequence of bytes is
converted to a sequence of printable ASCII characters, as described in [RFC4648].

certificate: A certificate is a collection of attributes and extensions that can be stored persistently.
The set of attributes in a certificate can vary depending on the intended usage of the certificate.
A certificate securely binds a public key to the entity that holds the corresponding private key. A
certificate is commonly used for authentication and secure exchange of information on open
networks, such as the Internet, extranets, and intranets. Certificates are digitally signed by the
issuing certification authority (CA) and can be issued for a user, a computer, or a service. The
most widely accepted format for certificates is defined by the ITU-T X.509 version 3
international standards. For more information about attributes and extensions, see [RFC3280
and [X509] sections 7 and 8.

control point: A control point retrieves device and service descriptions, sends actions to services,
polls for service state variables, and receives events from services.

device: A logical device and/or a container that can embed other logical devices and that embeds
one or more services and advertises its presence on network(s). For more information, see
[UPNPARCH1.1] sections 1 and 2.

endpoint: In the context of a web service, a network target to which a SOAP message can be
addressed. See [WSADDR].

Hash-based Message Authentication Code (HMAC): A mechanism for message authentication
using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash
function (for example, MD5 and SHA-1) in combination with a secret shared key. The
cryptographic strength of HMAC depends on the properties of the underlying hash function.

nonce: A number that is used only once. This is typically implemented as a random number large
enough that the probability of number reuse is extremely small. A nonce is used in
authentication protocols to prevent replay attacks. For more information, see [RFC2617].

one-time password (OTP): A simple secret shared by two endpoints and delivered out-of-band
by some means outside of the Device Trust Agreement Protocol (typically, via user input).

7/53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

https://go.microsoft.com/fwlink/?LinkId=90554
https://go.microsoft.com/fwlink/?LinkId=166166
https://go.microsoft.com/fwlink/?LinkId=90487
https://go.microsoft.com/fwlink/?LinkId=90414
https://go.microsoft.com/fwlink/?LinkId=90590
https://go.microsoft.com/fwlink/?LinkId=113065
https://go.microsoft.com/fwlink/?LinkId=90373

service: A logical functional unit that represents the smallest units of control and that exposes
actions and models the state of a physical device with state variables. For more information, see
[UPNPARCH1.1] section 3.

service description: A formal definition of a logical service, expressed in the UPnP Template
language and written in XML syntax. A service description is specified by a UPnP vendor by
filling in any placeholders in a UPnP Service Template (was SCPD). For more information, see
[UPNPARCH1.1] section 2.6.

service type: Denoted by "urn:schemas-upnp-org:service:" followed by a unique name assigned
by a UPnP forum working committee, a colon, and an integer version number. A service type
has a one-to-one relationship with UPnP Service Templates. UPnP vendors can specify
additional services; these are denoted by "urn:domain-name:service: " followed by a unique
name assigned by the vendor, a colon, and a version number, where domain-name is a Vendor
Domain Name. For more information, see [UPNPARCH1.1] section 2.

SHA-1 hash: A hashing algorithm as specified in [FIPS180-2] that was developed by the National
Institute of Standards and Technology (NIST) and the National Security Agency (NSA).

SOAP: A lightweight protocol for exchanging structured information in a decentralized, distributed
environment. SOAP uses XML technologies to define an extensible messaging framework,
which provides a message construct that can be exchanged over a variety of underlying
protocols. The framework has been designed to be independent of any particular programming
model and other implementation-specific semantics. SOAP 1.2 supersedes SOAP 1.1. See
[SOAP1.2-1/2003].

SOAP action: The HTTP request header field used to indicate the intent of the SOAP request,
using a URI value. See [SOAP1.1] section 6.1.1 for more information.

SOAP body: A container for the payload data being delivered by a SOAP message to its recipient.
See [SOAP1.2-1/2007] section 5.3 for more information.

SOAP fault: A container for error and status information within a SOAP message. See [SOAP1.2-
1/2007] section 5.4 for more information.

SOAP message: An XML document consisting of a mandatory SOAP envelope, an optional SOAP
header, and a mandatory SOAP body. See [SOAP1.2-1/2007] section 5 for more information.

state variable: A single facet of a model of a physical service that is exposed by a service and
which has a hame, data type, optional default value, optional constraints values, and which can
trigger events when its value changes. For more information, see [UPNPARCH1.1] sections 2
and 3.

Universal Plug and Play (UPnP): A set of computer network protocols, published by the UPnP
Forum [UPnP], that allow devices to connect seamlessly and that simplify the implementation of
networks in home (data sharing, communications, and entertainment) and corporate
environments. UPnP achieves this by defining and publishing UPnP device control protocols built
upon open, Internet-based communication standards.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [REC4122] or [C706] must
be used for generating the UUID.

8/53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

https://go.microsoft.com/fwlink/?LinkId=89868
https://go.microsoft.com/fwlink/?LinkId=90521
https://go.microsoft.com/fwlink/?LinkId=90520
https://go.microsoft.com/fwlink/?LinkId=94664
https://go.microsoft.com/fwlink/?LinkId=90553
https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=89824

UTF-8: A byte-oriented standard for encoding Unicode characters, defined in the Unicode standard.
Unless specified otherwise, this term refers to the UTF-8 encoding form specified in
[UNICODES5.0.0/2007] section 3.9.

Web Services Description Language (WSDL): An XML format for describing network services
as a set of endpoints that operate on messages that contain either document-oriented or
procedure-oriented information. The operations and messages are described abstractly and are
bound to a concrete network protocol and message format in order to define an endpoint.
Related concrete endpoints are combined into abstract endpoints, which describe a network
service. WSDL is extensible, which allows the description of endpoints and their messages
regardless of the message formats or network protocols that are used.

XML: The Extensible Markup Language, as described in [XML1.0].

XML namespace: A collection of names that is used to identify elements, types, and attributes in
XML documents identified in a URI reference [RFC3986]. A combination of XML namespace and
local name allows XML documents to use elements, types, and attributes that have the same
names but come from different sources. For more information, see [XMLNS-2ED].

XML Schema (XSD): A language that defines the elements, attributes, namespaces, and data
types for XML documents as defined by [XMLSCHEMA1/2] and [W3C-XSD] standards. An XML
schema uses XML syntax for its language.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFEC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed-Hashing for Message
Authentication", RFC 2104, February 1997, http://www.ietf.org/rfc/rfc2104.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC3629] Yergeau, F., "UTF-8, A Transformation Format of ISO 10646", STD 63, RFC 3629,
November 2003, http://www.ietf.org/rfc/rfc3629.txt

[SOAP1.1] Box, D., Ehnebuske, D., Kakivaya, G., et al., "Simple Object Access Protocol (SOAP) 1.1",
W3C Note, May 2000, http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/

[UPNPARCH1.1] UPnP Forum, "UPnP Device Architecture 1.1", October 2008,
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf

[UPNPARCH1] UPnP Forum, "UPnP Device Architecture 1.0", October 2008,
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf

9/53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90599
https://go.microsoft.com/fwlink/?LinkId=90453
https://go.microsoft.com/fwlink/?LinkId=90602
https://go.microsoft.com/fwlink/?LinkId=90607
https://go.microsoft.com/fwlink/?LinkId=90563
https://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=90314
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90439
https://go.microsoft.com/fwlink/?LinkId=90520
https://go.microsoft.com/fwlink/?LinkId=166166
https://go.microsoft.com/fwlink/?LinkId=90554

[WSASB] Gudgin, M., Hadley, M., and Rogers, T., Eds., "Web Services Addressing 1.0 - SOAP
Binding", W3C Recommendation, May 2006, http://www.w3.0rg/TR/2006/REC-ws-addr-soap-

20060509/

[WSDL] Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S., "Web Services Description
Language (WSDL) 1.1", W3C Note, March 2001, http://www.w3.0rg/TR/2001/NOTE-wsdI-20010315

[XMLNS-2ED] World Wide Web Consortium, "Namespaces in XML 1.0 (Second Edition)", August 2006,
http://www.w3.0rg/TR/2006/REC-xml-names-20060816/

[XMLSCHEMA1] Thompson, H., Beech, D., Maloney, M., and Mendelsohn, N., Eds., "XML Schema Part
1: Structures", W3C Recommendation, May 2001, http://www.w3.0org/TR/2001/REC-xmlschema-1-
20010502/

[XMLSCHEMAZ2] Biron, P.V., Ed. and Malhotra, A., Ed., "XML Schema Part 2: Datatypes", W3C
Recommendation, May 2001, http://www.w3.0rg/TR/2001/REC-xmlschema-2-20010502/

1.2.2 Informative References

[MSDN-XDR] Microsoft Corporation, "XDR Schema Data Types Reference",
http://msdn.microsoft.com/en-us/library/ms256049(v=VS.85).aspx

1.3 Overview

A common method for establishing a trust relationship between one device and another unknown
device is for the devices to exchange and verify each other's certificate. However, if the devices are
connected over an unsecure network, the success of this method is challenged by the fact that the
exchanged information can be exposed to a third party or could even be tampered with. DTAG is
designed to ensure the integrity of the SOAP message and to enable the establishment of a trust
relationship between networked devices by means of a simple, one-time shared secret. The shared
secret, called a one-time password (OTP), is transferred in an out-of-band manner, such as
through user interaction.

DTAG is implemented as a UPnP service consisting of four actions that are performed in the following
order:

1. Exchange: The two endpoints exchange certificates and endpoint identifiers.

2. Commit, then Validate: The two endpoints perform a series of authentications based on the OTP,
the OTP substrings, the endpoint identifiers, and the certificates.

3. Confirm: The two endpoints finalize the trust agreement process and store each other's certificate
in secure storage.

Each action results in a pair of SOAP request and response messages in the network, as specified in
[UPNPARCH1.17 section 3.1.1. The following diagram illustrates the flow of DTAG messages between
the devices and control points until the trust agreement is established successfully.

10/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

https://go.microsoft.com/fwlink/?LinkId=120449
https://go.microsoft.com/fwlink/?LinkId=120449
https://go.microsoft.com/fwlink/?LinkId=90577
https://go.microsoft.com/fwlink/?LinkId=90602
https://go.microsoft.com/fwlink/?LinkId=90608
https://go.microsoft.com/fwlink/?LinkId=90608
https://go.microsoft.com/fwlink/?LinkId=90610
https://go.microsoft.com/fwlink/?LinkId=193478
https://go.microsoft.com/fwlink/?LinkId=166166

Device

xchange action

Control Point (MSTA Service)
I |
| TP :
: Transferred :
I out-of-band) I
I I
I I
M I
I I
| -_-_-_-_-_-_-—.1
|

1
eply

|

3
E
=
[=1]
ﬁ
[=]
j

eply

|

]
5
b
T}
5
o
j

|

eply

\

Commit — Validate

(Two to 20 rounds of)
actions are performed

]
3
=2
=
=)
T
Fy
=
&
j

epw—'—'—'_'_'_'_'_-_-_-—:

\

Figure 1: DTAG message sequence to establish trust agreement

1.4 Relationship to Other Protocols

DTAG is a UPnP service over SOAP/HTTP as shown in the following diagram:

11/53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

DTAG This protocol

UPnP

SOAP

HTTP > Industry standard
TCP

IP

Y

Figure 2: Relationship of DTAG to other protocols

DTAG is built on UPnP architecture version 1.0 [UPNPARCH1] and version 1.1 [UPNPARCH1.1]. For the
purposes of this specification, descriptions of the XML and SOAP schema are provided via references
to UPnP architecture version 1.1 [UPNPARCH1.1].

1.5 Prerequisites/Preconditions
DTAG requires support for storing trusted certificates in a tamper-proof manner.

DTAG requires the support of a UPnP stack on device and control point. The device is required to
have the service description for DTAG. The full UPnP service description of DTAG is provided in
section 8. The device description is also required to include the information about the DTAG service,
for which the service type is "mstrustagreement”, the service identifier is "MSTA", and the version
number is as specified in section 1.7. The protocol server endpoint is formed by appending
"/_vti_bin/pptws.asmx".

Before DTAG can be used, all of the necessary, initial UPnP operations are required to be completed,
including discovery of devices and publication of service/device descriptions as specified in
[UPNPARCH1.117.

1.6 Applicability Statement

Use of DTAG is suitable when the UPnP device and control point are required to ensure the secure
exchange of certificates over an unsecure network where the messages can be exposed to a third
party or even tampered with.

1.7 Versioning and Capability Negotiation

This document specifies DTAG version 1. The version number is recommended to be included where
DTAG service information is presented in a device description, as specified in [UPNPARCH1.1] section
2.3.

This protocol does not have a specific WSDL declaration.

1.8 Vendor-Extensible Fields

None.

12 /53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

https://go.microsoft.com/fwlink/?LinkId=90554
https://go.microsoft.com/fwlink/?LinkId=166166
https://go.microsoft.com/fwlink/?LinkId=166166
https://go.microsoft.com/fwlink/?LinkId=166166

1.9 Standards Assignments

None.

13/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Messages

2.1 Transport

DTAG is implemented as a UPnP service and does not specify any transport details beyond what is
specified by [UPNPARCH1] section 3.

2.2 Common Message Syntax

This section contains common definitions used by this protocol. The syntax of the definitions uses XML
schema (XSD) as defined in [XMLSCHEMA1] and [XMLSCHEMAZ2], and Web Services Description
Language (WSDL) as defined in [WSDL].

2.2.1 Namespaces

This specification defines and references various XML namespaces using the mechanisms specified in

XMLNS-2ED]. Although this specification associates a specific XML namespace prefix for each XML
namespace that is used, the choice of any particular XML namespace prefix is implementation-specific
and not significant for interoperability.

Prefix Namespace URI Reference
s, SOAP-ENV | http://schemas.xmlsoap.org/soap/envelope/ SOAP1.1

m urn:schemas-microsoft-com:service:mstrustagreement:1

dt urn:schemas-microsoft-com:datatypes MSDN-XDR

2.2.2 Messages

The following table summarizes the set of common SOAP message definitions defined by this
specification. SOAP message definitions that are specific to a particular operation are described with
the operation.

Message Description

UPnP Sends a UPnP error message using a SOAP 1.1 UPnP profile, as specified in [UPNPARCH1.1] section
Error 3.1.

2.2.2.1 UPNP Error

DTAG error messages MUST be expressed in XML using a SOAP 1.1 UPnP profile, as specified in
[UPNPARCH1.1] section 3.1. For the purpose of this specification, this section specifies the SOAP
fault message that is used to support UPnP error reporting.

All SOAP faults defined in this specification MUST be sent as described in [WSASB] section 6. For
compatible UPnP error reporting, the values of the SOAP fault elements MUST be set as follows.

SOAP Fault Element | Value

<faultcode> s:Client

<faultstring> UPnPError

<detail> <UPnPError> element (section 2.2.3.1)

14/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

https://go.microsoft.com/fwlink/?LinkId=90554
https://go.microsoft.com/fwlink/?LinkId=90608
https://go.microsoft.com/fwlink/?LinkId=90610
https://go.microsoft.com/fwlink/?LinkId=90577
https://go.microsoft.com/fwlink/?LinkId=90602
https://go.microsoft.com/fwlink/?LinkId=90520
https://go.microsoft.com/fwlink/?LinkId=193478
https://go.microsoft.com/fwlink/?LinkId=166166
https://go.microsoft.com/fwlink/?LinkId=166166
https://go.microsoft.com/fwlink/?LinkId=120449

2.2.3 Elements

The following table summarizes the set of common XML schema element definitions defined by this
specification. XML schema element definitions that are specific to a particular operation are described
with the operation.

Element Description

<UPnPError> A wrapper used to support the UPnP error reporting format.
<HostID> The unique identifier of the control point.

<Iteration> The iteration number of the current Validate action.
<IterationsRequired> | The number of rounds of Validate actions.

2.2.3.1 UPnPError

DTAG error messages MUST be expressed in XML using a SOAP 1.1 UPnP profile, as specified in
[UPNPARCH1.1] section 3.1. For this expression, the <UPnPError> element can be defined as follows
and included as part of the <detail> element of the SOAP fault message, as specified in section
2.2.2.1.

<xs:element name="UPnPError">
<xs:complexType>
<xs:sequence>
<xs: element name="ErrorCode" type="xs:integer"/>
<xs: element name="ErrorDescription" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

The following table lists the possible values of the <ErrorCode> and <ErrorDescription> elements. If
an action results in multiple errors, the most specific error MUST be returned.

ErrorCode | ErrorDescription | Explanation

401 Invalid Action See the description of Control in [UPNPARCH1.1] section 3.

402 Invalid Args Parameters are missing, extra, or are invalid for this action. See the
description of Control in [UPNPARCH1.1] section 3.

403 Out of Sync See the description of Control in [UPNPARCH1.1] section 3.

501 Action Failed The service was not able to process this action, or the action is not allowed in
the current state. See the description of Control in [UPNPARCH1.1] section 3.

801 Invalid Endpoint The parameter, <HostID>, has an invalid format or is inconsistent with
previous usage.

802 Invalid Certificate | The parameter, <HostCertificate>, has an invalid format or does not reference
the <HostID>.

803 Invalid Nonce The authentication process failed.

2.2.3.2 HostID

This element contains the state variable _HostID, described in section 3.1.1, which is the unique
identifier information specific to the control point.

15/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

https://go.microsoft.com/fwlink/?LinkId=166166

<xs:element name="HostID" type="A ARG TYPE EndpointID"/>

2.2.3.3 Iteration

This element contains the state variable Iter, described in section 3.1.1, indicating the iteration
number of the current Validate action.

<xs:element name="Iteration" type="A ARG TYPE Iteration"/>

2.2.3.4 IterationsRequired

This element contains the state variable N, described in section 3.1.1, which is used to negotiate the
number of rounds of Validate actions to complete the trust agreement process.

<xs:element name="IterationsRequired" type="A ARG TYPE Rounds"/>

2.2.4 Complex Types

This specification does not define any common XML schema complex type definitions.

2.2.5 Simple Types

The following table summarizes the set of common XML schema simple type definitions defined by this
specification. XML schema simple type definitions that are specific to a particular operation are
described with the operation.

Simple type Description
<A_ARG_TYPE_Rounds> The number of rounds required for the Validate action.
<A_ARG_TYPE_Iteration> The iteration number for the current Validate action.

<A_ARG_TYPE_EndpointID> The UUID of the device (or the control point).

<A_ARG_TYPE_Authenticator> | A 20-octet authentication code.

<A_ARG_TYPE_Nonce> An array of 20 octets (for a total of 160 bits) that contains cryptographically
strong random values.
<A_ARG_TYPE_Certificate> The certificate of the device (or the control point).

2.2.5.1 A_ARG_TYPE_Rounds

This type of element is used to negotiate the number of rounds required for Validate actions to be
performed by the protocol.

<xs:simpleType name="A ARG TYPE Rounds" >
<xs:restriction base="xs:unsignedByte" >
<xs:minInclusive value="2"/>
<xs:maxInclusive value="20"/>
</xs:restriction>
</xs:simpleType>

16 /53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The number of rounds MUST be in the range of 2 to 20, inclusive.

2.2.5.2 A_ARG_TYPE_Iteration

This type of element is limited to the values between 1 and 20. These values correspond to each of
the N times that the Commit and Validate actions are called.

<xs:simpleType name="A ARG TYPE Iteration" >
<xs:restriction base="xs:unsignedByte" >
<xs:minInclusive value="1"/>
<xs:maxInclusive value="20"/>
</xs:restriction>
</xs:simpleType>

2.2.5.3 A_ARG_TYPE_EndpointID

This type of element is a string that uniquely identifies an endpoint. It has to remain stable for the
lifetime of the device.

<xs:simpleType name="A ARG TYPE EndpointID" >
<xs:restriction base="xs:string"/>
</xs:simpleType>

2.2.5.4 A_ARG_TYPE_Authenticator

This type of element is an authenticator and is the 160-bit (20-octet) result of the HMAC-SHA-1
message authentication code [RFC2104], as specified in section 3.1.1, encoded as a base64 string.

<xs:simpleType name="A ARG TYPE Authenticator" >
<xs:restriction base="xs:string"/>
</xs:simpleType>

2.2.5.5 A_ARG_TYPE_Nonce

This type of element is an array of 20 octets (160 bits) that contains cryptographically-strong random
values, encoded as a base64 string.

<xs:simpleType name="A ARG TYPE Nonce" >
<xs:restriction base="xs:string"/>
</xs:simpleType>

2.2.5.6 A_ARG_TYPE_Certificate
This type of element is a string and contains a certificate encoded as a base64 string.
<xs:simpleType name="A ARG TYPE Certificate" >

<xs:restriction bage:"xs:string"/>
</xs:simpleType>

17/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

https://go.microsoft.com/fwlink/?LinkId=90314

2.2.6 Attributes

This specification does not define any common XML schema attribute definitions.

2.2.7 Groups

This specification does not define any common XML schema group definitions.

2.2.8 Attribute Groups

This specification does not define any common XML schema attribute group definitions.

18/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Protocol Details

The operations of the device and control point are almost symmetric because they examine each
other using the same types of information.

3.1 Common Details

This section describes protocol details that are common between the device and control point.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The device and control point start the trust agreement process when a one-time password (OTP)
is made available to the two endpoints. Throughout the trust agreement process, the device and
control point MUST synchronize the state to perform each action.

The following diagram provides an overview of the state machine common to the device and control
point.

19/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Exchange action
Commit action
‘Walidate action
Confirm action

Idle

Caonfirm action
(valid parameters and nonce)
Add endpeint ID and
certificate to trusted store

Walidate action
(walid parameters,
not final iteration)

oTP

Exchanging

Exchange action
{valid parameters)
Start 1 minute timer

Timeout

Committing 1 minute—™
Commit action
{valld parameters)
. Timeout
Validating R
Walidate action
(valid parameters, final iteration)
— Timeout
Confirming 1 minute——™

Figure 3: DTAG message sequence to establish trust agreement

TrustState: The current setting of the service's state machine. The following states are specified for
this state variable.

TrustState | State Description

0 Idle The trust agreement process is not started. The device and control point wait for
a one-time password (OTP) event.

1 Exchanging | The device and control point exchange certificates and endpoint identifiers,
along with the authentication code based on the entire OTP string. This
authentication code will be examined in the last Confirming state. The

[MS-DTAG] - v20170601

Device Trust Agreement Protocol

20/ 53

Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

TrustState | State Description

Exchange action is processed in this state.

2 Committing | The device and control point exchange the authentication code based on OTP
substrings. The Commit action and timeout event are processed in this state.

3 Validating The device and control point validate the authentication code exchanged on the
previous Commit action. The Validate action and timeout event are processed
in this state.

4 Confirming | The device and control point finalize the validation of the authentication code

obtained in the Exchange action. The Confirm action and timeout event are
processed in this state.

N: The number of rounds required for the Commit-Validate actions that will be perfomed by the
protocol. The value of this state variable is selected at run-time.

Iter: The current iteration number at which Commit-Validate actions are performed. This state
variable is only valid up to N.

OTP: The one-time password (OTP).
OTPIter: The substring OTP for the indicated iteration.
The OTP and its substrings are obtained by the following rule.

The OTP is divided up into N substrings. These substrings are denoted as OTP;, OTPy, ... OTPx.
The rule for generating the substring OTPs from the OTP is as follows:

= Individual characters in an OTP are not broken up.

= The number of characters in the OTP MUST be greater than or equal to the number of rounds
specified in the state variable N.

= If L is the number of characters in the OTP, then each substring will be either L divN or L
divN+1 characters long. The last L modN substrings will have L divN+1 characters. All of the
other substrings will have L divN characters.

= The characters of the OTP are broken up in order into their substrings.

For example, if the value of N is 4 and the value of the OTP is "ThatCat", then the first substring,
OTP1 would be "T", the second, OTP2 would be "ha", the third, OTP3 would be "tC", and the
fourth, OTP4 would be "at".

_DeviceCertificate: The certificate of the device that is associated with the _DevicelID state
variable and which MUST remain stable for the lifetime of the device.

_DeviceConfirmAuthenticator: The authentication code made by the device for the Exchange and
Confirm actions.

_DeviceConfirmNonce: A 20-octet nonce made by the device for the Exchange and Confirm
actions.

_DevicelID: The UUID of the device.

_DeviceValidateAuthenticatorIter: The authentication code of the device for the indicated iteration
of Commit-Validate actions.

_DeviceValidateNoncelter: A 20-octet nonce of the device for the indicated iteration of Commit-
Validate actions.

_HostCertificate: The certificate of the control point that is associated with the _HostID state
variable and which MUST remain stable for the lifetime of the control point.

21/53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

_HostConfirmAuthenticator: The authentication code of the control point for the Exchange and
Confirm actions.

_HostConfirmNonce: A 20-octet nonce of the control point for the Exchange and Confirm actions.
_HostID: The UUID of the control point.

_HostValidateAuthenticatorIter: The authentication code of the control point for the indicated
iteration of the Commit-Validate action.

_HostValidateNoncelter: A 20-octet nonce of the control point for the indicated iteration of the
Commit-Validate action.

The _DeviceValidateAuthenticatorIter, _DeviceConfirmAuthenticator,
_HostValidateAuthenticatorIter, and _HostConfirmAuthenticator are the 160-bit (20-octet)
result of the HMAC-SHA-1 message authentication code [RFC2104]. The HMAC-SHA-1 function takes
two parameters, a 20-octet key and some variable-length text, and returns a 20-octet message
authentication code.

The HMAC-SHA-1 function key is a nonce.

The HMAC-SHA-1 function text is the UTF-8 representation [RFC3629] of the concatenation of the
following items in the order presented:

= N (or Iter), encoded as a decimal number string

= An OTP string (or OTPIter substring)

= The endpoint identifier

= A certificate, encoded as a base64 string

Therefore, the HMAC-SHA-1 results are denoted in this specification as:
_DeviceConfirmAuthenticator

= HMAC(_DeviceConfirmNonce, UTF-8(N + OTP + _DevicelD + _DeviceCertificate)
_HostConfirmAuthenticator

= HMAC(_HostConfirmNonce, UTF-8(N + OTP + _HostID + _HostCertificate)
_DeviceValidateAuthenticatorIter

= HMAC(_DeviceValidateNoncelter, UTF-8(IterIter + OTPIter + _DevicelID +
_DeviceCertificate)

_HostValidateAuthenticatorIter

= HMAC(_HostValidateNoncelter, UTF-8(IterIter + OTPIter + _HostID + _HostCertificate)

3.1.2 Timers

None.

3.1.3 Initialization

Before startup, the device and control point keep the TrustState state variable set to 0 (Id/e). In
this state, any of the service's actions MUST NOT be called, and invoking any one of them MUST
return an error.

22 /53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

https://go.microsoft.com/fwlink/?LinkId=90314
https://go.microsoft.com/fwlink/?LinkId=90439

3.1.4 Message Processing Events and Sequencing Rules

3.1.4.1 One-time Password (OTP) Event

An OTP event outside of the scope of this specification (for example, human interaction) triggers the
start of the trust agreement process. When the trigger event occurs, the service MUST initiate the
process as follows:

1. The device and control point MUST terminate any ongoing DTAG process, discarding all locally
saved OTPs, nonces, endpoint identifiers, and certificates.

2. The device and control point MUST acquire and locally save the endpoint identifier (in other words,
_DevicelID and _HostID, respectively).

3. The device and control point MUST acquire and locally save the certificate (in other words,
_DeviceCertificate and _HostCertificate, respectively).

4. The device and control point MUST acquire and locally save the OTP, and generate the substrings,
as described in section 3.1.1.

5. The device and control point MUST change TrustState from 0 (Idle) to 1 (Exchanging), as
described in section 3.1.1.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

3.2 Device Details

In addition to the protocol details specified in section 3.1, the following details are also applied to the
device.

3.2.1 Abstract Data Model

None.

3.2.2 Timers

The device and control point each have a 1 minute timer "TimeOut" for the maximum interval
allowed for the transition between actions.

3.2.3 Initialization

None.

3.2.4 Message Processing Events and Sequencing Rules

On each action, the control point sends a request message to the device, and the device returns a
response or error message to the control point, as specified in [UPNPARCH1.1] section 3.1.

23/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

https://go.microsoft.com/fwlink/?LinkId=166166

3.2.4.1 Exchange Action

In order to perform the Exchange action, the control point MUST attach an <Exchange> body to
the DTAG SOAP message that contains the <HostID>, <HostCertificate>, <IterationsRequired>, and
<HostConfirmAuthenticator> elements. This action is supported only when TrustState is 1
(Exchanging).

On this action, the following checks MUST be performed:

1. The <HostID>, <HostCertificate>, <IterationsRequired>, and <HostConfirmAuthenticator>
elements MUST be syntactically validated.

2. The <HostCertificate> (_HostCertificate) MAY be validated as per any vendor-defined rules.

3. The <IterationsRequired> (N) MAY additionally be checked per vendor-defined rules.

If successful, the device:

1. MUST locally save the values of _HostID, _ HostCertificate, and _HostConfirmAuthenticator.
2. MUST generate and locally save _DeviceConfirmNonce.

3. MUST change TrustState from 1 (Exchanging) to 2 (Committing).

4. MUST start a one-minute timer.

5. MUST set the following elements and return with status 200 (success):

= The <DevicelD>, the UUID of the enclosing UPnP device, as specified in
A ARG Type EndpointID (section 2.2.5.3), and as acquired in section 3.1.4.1.

= The <DeviceCertificate>, as specified in A ARG TYPE Certificate (section 2.2.5.6), and as
acquired in section 3.1.4.1.

= The <DeviceConfirmAuthenticator>, an HMAC as specified in section 3.1.1, calculated as:

Base64 (HMAC(_DeviceConfirmNonce, UTF-8 (N + OTP + _DevicelD +
_DeviceCertificate)).

If this action fails, the device MUST find the appropriate error code from the table in section 2.2.3.1
and send a SOAP fault message to the control point, as specified in section 2.2.2.1.

3.2.4.1.1 Messages

Message Description
Exchange Contains the request for the Exchange action.

Exchange Response | Contains the response of the Exchange action.

3.2.4.1.1.1 Exchange Message
The HTTP header MUST specify the SOAPACTION for the Exchange action as follows:
SOAPACTION: "urn:schemas-microsoft-com:service: mstrustagreement:1#Exchange"

Where "urn:schemas-microsoft-com:service: mstrustagreement:1" is the service type that comes
from the device description, as specified in section 7, and "#Exchange" is the SOAP action.

The following XML session shows the <Hostld>, <HostCertificate>, <IterationsRequired>, and
<HostConfirmAuthenticator> elements in a SOAP Exchange message.

24 /53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:Exchange xmlns:m="urn:schemas-microsoft-com:service:mstrustagreement:1">
<HostID xmlns:dt="urn:schemas-microsoft-com:datatypes" dt:dt="string">
Control point identifier
</HostID>
<HostCertificate xmlns:dt="urn:schemas-microsoft-com:datatypes" dt:dt="string">
Host Certificate payload
</HostCertificate>
<IterationsRequired xmlns:dt="urn:schemas-microsoft-com:datatypes" dt:dt="uil">
Number of iterations required
</IterationsRequired>
<HostConfirmAuthenticator xmlns:dt="urn:schemas-microsoft-com:datatypes"
dt:dt="string">
HostConfirmAuthenticator payload
</HostConfirmAuthenticator>
</m:Exchange>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

HostID: The <HostID> element, as specified in section 2.2.3.2.
HostCertificate: The <HostCertificate> element, as specified in section 3.2.4.1.2.2.
IterationsRequired: The <IterationsRequired> element, as specified in section 2.2.3.4.

HostConfirmAuthenticator: The <HostConfirmAuthenticator> element, as specified in section
3.2.4.1.2.4.

3.2.4.1.1.2 Exchange Response Message

The device MUST reply with an ExchangeResponse SOAP response message, which contains the
<DevicelD>, <DeviceCertificate>, and <DeviceConfirmAuthenticator> elements.

<s:Envelope xmlns:s=http://schemas.xmlsoap.org/soap/envelope/
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:ExchangeResponse xmlns:u="urn:schemas-microsoft-com:service:mstrustagreement:1">
<DeviceID>
Device identifier
</DevicelD>
<DeviceCertificate>
Device Certificate payload
</DeviceCertificate>
<DeviceConfirmAuthenticator>
DeviceConfirmAuthenticator payload
</DeviceConfirmAuthenticator>
</u:ExchangeResponse>
</s:Body>
</s:Envelope>

DevicelID: The <DevicelD> element, as specified in section 3.2.4.1.2.1.
DeviceCertificate: The <DeviceCertificate> element, as specified in section 3.2.4.1.2.3.

DeviceConfirmAuthenticator: The <DeviceConfirmAuthenticator> element, as specified in section
3.2.4.1.2.5.

3.2.4.1.2 Elements

25/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The following table summarizes the XML Schema element definitions that are specific to this
operation.

Element Description

<DevicelD> A string that contains the _DevicelD, as described in section 3.1.1.

<HostCertificate> A base64 encoded string that contains the _HostCertificate, as described in
section 3.1.1.

<DeviceCertificate> A base64 encoded string that contains the _DeviceCertificate, as described in
section 3.1.1.

<HostConfirmAuthenticator> A base64 encoded string that contains the _HostConfirmAuthenticator, as

described in section 3.1.1.

<DeviceConfirmAuthenticator> | A base64 encoded string that contains the _DeviceConfirmAuthenticator, as
described in section 3.1.1.

3.2.4.1.2.1 DevicelD

This element provides the unique identifier information specific to the device (_DevicelID). This
element is contained in the SOAP body of the ExchangeResponse message.

<xs:element name="DeviceID" type="A ARG_TYPE_EndipointID"/>

3.2.4.1.2.2 HostCertificate

This element provides the control point certificate (_HostCertificate). This element is contained in
the SOAP body of the ExchangeResponse message and is encoded as a base64 string.

<xs:element name="HostCertificate" type="A ARG TYPE Certificate"/>

3.2.4.1.2.3 DeviceCertificate

This element provides the certificate of the device associated with the <DevicelD>
(_DeviceCertificate) encoded as a base64 string. This element is contained in the SOAP body of
the ExchangeResponse message and is encoded as a base64 string.

<xs:element name="HostCertificate" type="A ARG TYPE Certificate"/>

3.2.4.1.2.4 HostConfirmAuthenticator

This element is an authenticator that provides the 160-bit (20-octet) authentication code for the
control point (_HostConfirmAuthenticator). This element is contained in the SOAP body of the
Exchange message that and is encoded as a base64 string.

<xs:element name="HostConfirmAuthenticator" type="A ARG TYPE Authenticator"/>

3.2.4.1.2.5 DeviceConfirmAuthenticator

This element is an authenticator that provides the 160-bit (20-octet) authentication code made by
the device (_DeviceConfirmAuthenticator), specified in section 3.2.4.1. This element is contained
in the SOAP body of the ExchangeResponse message and is encoded as a base64 string.

26/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<xs:element name="HostConfirmAuthenticator" type="A ARG TYPE Authenticator"/>

3.2.4.2 Commit Action

In order to perform the Commit action, the control point MUST attach a <Commit> body to the
DTAG SOAP message that contains the <HostID>, <Iteration>, and <HostValidateAuthenticator>
elements. This action is only supported when TrustState is 2 (Committing).

On this action, the following checks MUST be performed:

1. The <HostID>, <Iteration>, and <HostValidateAuthenticator>
(_HostValidateAuthenticatorIter) elements MUST be syntactically validated.

2. The <HostID> MUST match the value of the _HostID obtained in the Exchange action.
If successful, the service:

1. MUST change TrustState from 2 (Committing) to 3 (Validating).

2. MUST generate _DeviceValidateNoncelter.

3. MUST set the following element and return with status 200 (success).

= The <DeviceValidateAuthenticator>, an HMAC as specified in section 3.1.1, calculated as:

Base64 (HMAC(_DeviceValidateNoncelter, UTF-8(Iter + OTPIter + _DevicelID +
_DeviceCertificate)).

If this action fails, the device MUST find the appropriate error code from the table in section 2.2.3.1
and send a SOAP fault message to the control point, as specified in section 2.2.2.1.

3.2.4.2.1 Messages

Message Description
Commit Contains the request for the Commit action.
Commit Response | Contains the response of the Commit action.

3.2.4.2.1.1 Commit Message
The HTTP header MUST specify the SOAPACTION for the Commit action as follows:
SOAPACTION: "urn:schemas-microsoft-com:service: mstrustagreement: 1#Commit"

Where "urn:schemas-microsoft-com:service: mstrustagreement:1" is the service type which comes
from the device description as specified in section 7 and "#Commit" is the SOAP action.

The following XML session shows the <Hostld>, <Iteration>, and <HostValidateAuthenticator>
elements in a SOAP Commit message.

<SOAP-ENV:Envelope xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:Commit xmlns:m="urn:schemas-microsoft-com:service:mstrustagreement:1">
<HostID xmlns:dt="urn:schemas-microsoft-com:datatypes" dt:dt="string">
Host identifier
</HostID>

27/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<Iteration xmlns:dt="urn:schemas-microsoft-com:datatypes" dt:dt="uil">
Current iteration
</Iteration>
<HostValidateAuthenticator xmlns:dt="urn:schemas-microsoft-com:datatypes"
dt:dt="string">
HostValidateAuthenicator payload
</HostValidateAuthenticator>
</m:Commit>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

HostID: The <HostID> element, as specified in section 2.2.3.2.
Iteration: The <Iteration> element, as specified in section 2.2.3.3.

HostValidateAuthenticator: The <HostValidateAuthenticator> element, as specified in section
3.2.4.2.2.1.

3.2.4.2.1.2 Commit Response Message

The server MUST reply with a CommitResponse SOAP response message that containis the
<DeviceValidateAuthenticator> element.

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:CommitResponse xmlns:u="urn:schemas-microsoft-com:service:mstrustagreement:1">
<DeviceValidateAuthenticator>
DeviceValidateAuthenticator payload
</DeviceValidateAuthenticator>
</u:CommitResponse>
</s:Body>
</s:Envelope>

DeviceValidateAuthenticator: The <DeviceValidateAuthenticator> element, as specified in section
3.2.4.2.2.2.

3.2.4.2.2 Elements

The following table summarizes the XML Schema element definitions that are specific to this
operation.

Element Description

<HostValidateAuthenticator> A base64 encoded string that contains the _HostValidateAuthenticatorlter,
as described in section 3.1.1.

<DeviceValidateAuthenticator> | A base64 encoded string that contains the
_DeviceValidateAuthenticatorlIter, as described in section 3.1.1.

3.2.4.2.2.1 HostValidateAuthenticator

This element is an authenticator that provides the 160-bit (20-octet) authentication code for the
control point (_HostValidateAuthenticatorIter). This element is contained in the SOAP body of
the Commit message and is encoded as a base64 string.

28/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<xs:element name="HostValidateAuthenticator" type="A ARG TYPE Authenticator"/>

3.2.4.2.2.2 DeviceValidateAuthenticator

This element is an authenticator that provides the 160-bit (20-octet) authentication code for the
device (_DeviceValidateAuthenticatorIter), as specified in section 3.2.4.2. This element is
contained in the SOAP body of the CommitResponse message and is encoded as a base64 string.

<xs:element name="DeviceValidateAuthenticator" type="A ARG TYPE Authenticator"/>

3.2.4.3 Validate Action

In order to perform the Validate action, the control point MUST attach a <Validate> body to the
DTAG SOAP message that contains the <HostID>, <Iteration>, and <HostValidateNonce> elements.
This action is only valid if TrustState is 3 (Validating).

On this action, the following checks MUST be performed:

1. The <HostID>, <Iteration>, and <HostValidateNonce> (_HostValidateNoncelter) elements
MUST be syntactically validated.

2. The <HostID> MUST match the value of the _HostID obtained in the Exchange action.
3. The <Iteration> number MUST be equal to the device's current iteration number, Iter.

4. The value of HMAC(_HostValidateNoncelter, UTF-8(Iter + OTPIter + _HostID +
_HostCertificate)) calculated as specified in section 3.1.1, MUST match the
_HostValidateAuthenticatorIter obtained in the Commit action.

If successful, the service:
1. MUST increment the iteration number, Iter.

2. MUST change TrustState from 3 (Validating) to 4 (Confirming), if this is the last iteration, or to 2
(Committing) if this is not the last iteration.

3. MUST set the following element and return with status 200 (success).

= <DeviceValidateNonce>, a base64 encoded string of _DeviceValidateNoncelter, which is
the 20-octet random number acquired in section 3.2.4.2.

If this action fails, the device MUST find the appropriate error code from the table in section 2.2.3.1
and send a SOAP fault message to the control point, as specified in section 2.2.2.1.

3.2.4.3.1 Messages
Message Description
Validate Contains the request for the Validate action.
Validate Response | Contains the response of the Validate action.

3.2.4.3.1.1 Validate Message

The HTTP header MUST specify the SOAPACTION for the Validate action as follows:

29/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

SOAPACTION: "urn:schemas-microsoft-com:service: mstrustagreement:1#Validate"

Where "urn:schemas-microsoft-com:service: mstrustagreement:1" is the service type, which comes
from the device description, as specified in section 7 and "#Validate" is the SOAP action.

The following XML session shows the <HostID>, <Iteration>, and <HostValidateNonce> elements in
a SOAP Validate message.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:Validate xmlns:m="urn:schemas-microsoft-com:service:mstrustagreement:1">
<HostID xmlns:dt="urn:schemas-microsoft-com:datatypes" dt:dt="string">
Host identifier
</HostID>
<Iteration xmlns:dt="urn:schemas-microsoft-com:datatypes" dt:dt="uil">
Current iteration
</Iteration>
<HostValidateNonce xmlns:dt="urn:schemas-microsoft-com:datatypes" dt:dt="string">
HostValidateNonce payload
</HostValidateNonce>
</m:Validate>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

HostID: The <HostID> element, as specified in section 2.2.3.2.
Iteration: The <Iteration> element, as specified in section 2.2.3.3.

HostValidateNonce: The <HostValidateNonce> element, as specified in section 3.2.4.3.2.1.

3.2.4.3.1.2 Validate Response Message

The server MUST reply with a ValidateResponse SOAP response message that contains the
<DeviceValidateNonce> element.

<s:Envelope.. xmlns:s=http://schemas.xmlsoap.org/soap/envelope/
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:ValidateResponse xmlns:u="urn:schemas-microsoft-com:service:mstrustagreement:1">
<DeviceValidateNonce>
DeviceValidateNonce payload
</DeviceValidateNonce>
</u:ValidateResponse>
</s:Body>
</s:Envelope>

DeviceValidateNonce: The <DeviceValidateNonce> element, as specified in section 3.2.4.3.2.2.

3.2.4.3.2 Elements

The following table summarizes the XML Schema element definitions that are specific to this
operation.

Element Description

<HostValidateNonce> A base64 encoded string that contains the _HostValidateNoncelter, as described in
section 3.1.1.

<DeviceValidateNonce> | A base64 encoded string that contains the _DeviceValidateNoncelter, as described

30/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Element Description

in section 3.1.1.

3.2.4.3.2.1 HostValidateNonce

This element provides the nonce of the control point for the indicated iteration of the Commit-
Validate action (_HostValidateNoncelter). This element is contained in the SOAP body of the
Validate message and is encoded as a base64 string.

<xs:element name="HostValidateNonce" type="A ARG TYPE Nonce"/>

3.2.4.3.2.2 DeviceValidateNonce

This element provides the nonce of the device for the indicated iteration of the Commit-Validate
action (_DeviceValidateNoncelter). This element is contained in the SOAP body of the
ValidateResponse message and is encoded as a base64 string.

<xs:element name="DeviceValidateNonce" type="A ARG TYPE Nonce"/>

3.2.4.4 Confirm Action

In order to perform the Confirm action, the control point MUST attach a <Confirm> body to the
DTAG SOAP message that contains the <HostID>, <IterationsRequired>, and <HostConfirmNonce>
elements. This action is only valid if TrustState is 4 (Confirming).

On this action, the following checks MUST be performed:
The <HostID>, <HostConfirmNonce>, and <IterationsRequired> (N) MUST be syntactically validated.
The <HostID> MUST match the value of the _HostID obtained in the Exchange action.

The value of HMAC(_HostConfirmNonce, UTF-8 (N + OTP + _HostID + _HostCertificate)), as
specified in section 3.1.1, MUST match the _HostConfirmAuthenticator acquired in the Exchange
action.

If successful, then trust has been established, and the service:

MUST store _HostID and _HostCertificate in a tamper-proof, persistent store.
MUST change TrustState from 4 (Confirming) to 0 (Idle).

MUST set the following element and return with status 200 (success):

<DeviceConfirmNonce>, a base64 encoded string of _DeviceConfirmNonce, which is the 20 octet
random number acquired in section 3.1.4.1.

If this action fails, the device MUST find the appropriate error code from the table in section 2.2.3.1
and send a SOAP fault message to the control point, as specified in section 3.1.1.

3.2.4.4.1 Messages

Message Description
Confirm Contains the request for the Confirm action.

31/53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Message Description
Confirm Response | Contains the response of the Confirm action.

3.2.4.4.1.1 Confirm Message
The HTTP header MUST specify the SOAPACTION for the Confirm action as follows:
SOAPACTION: "urn:schemas-microsoft-com:service: mstrustagreement:1#Confirm"

Where "urn:schemas-microsoft-com:service: mstrustagreement:1" is the service type that comes
from the device description, as specified in section 7, and "#Confirm" is the SOAP action.

The following XML session shows the <HostID>, <IterationsRequired>, and <HostConfirmNonce> in
a SOAP Confirm message.

<SOAP-ENV:Envelope xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:Confirm xmlns:m="urn:schemas-microsoft-com:service:mstrustagreement:1">
<HostID xmlns:dt="urn:schemas-microsoft-com:datatypes" dt:dt="string">
Host identifier
</HostID>
<IterationsRequired xmlns:dt="urn:schemas-microsoft-com:datatypes" dt:dt="uil">
Number of iterations requested
</IterationsRequired>
<HostConfirmNonce xmlns:dt="urn:schemas-microsoft-com:datatypes" dt:dt="string">
HostConfirmationNonce payload
</HostConfirmNonce>
</m:Confirm>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

HostID: The <HostID> element, as specified in section 2.2.3.2.
IterationsRequired: The <IterationsRequired> element, as specified in section 2.2.3.4.

HostConfirmNonce: The <HostConfirmNonce> element, as specified in section 3.2.4.4.2.1.

3.2.4.4.1.2 Confirm Response Message

The server MUST reply with a ConfirmResponse SOAP response message that contains the
<DeviceConfirmNonce> element.

<s:Envelope xmlns:s=http://schemas.xmlsoap.org/soap/envelope/
..s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:ConfirmResponse xmlns:u="urn:schemas-microsoft-com:service:mstrustagreement:1">
<DeviceConfirmNonce>
DeviceConfirmNonce payload
</DeviceConfirmNonce>
</u:ConfirmResponse>
</s:Body>
</s:Envelope>

DeviceConfirmNonce: The <DeviceConfirmNonce> element, as specified in section 3.2.4.4.2.2

32/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.4.2 Elements

The following table summarizes the XML Schema element definitions that are specific to this
operation.

Element Description

<HostConfirmNonce> A base64 encoded string that contains the _HostConfirmNonce,as described in
section 3.1.1.

<DeviceConfirmNonce> | A base64 encoded string that contains the _DeviceConfirmNonce, as described in
section 3.1.1.

3.2.4.4.2.1 HostConfirmNonce

This element provides the nonce of the control point for the indicated iteration of the Exchange and
Confirm actions (_HostConfirmNonce). This element is contained in the SOAP body of the Confirm
message and is encoded as a base64 string.

<xs:element name="HostConfirmNonce" type="A ARG_TYPE_ Nonce"/>

3.2.4.4.2.2 DeviceConfirmNonce

This element provides the nonce of the device for the indicated iteration of the Exchange and
Confirm actions (_DeviceConfirmNonce). This element is contained in the SOAP body of the
ConfirmResponse message and is encoded as a base64 string.

<xs:element name="DeviceConfirmNonce" type="A ARG TYPE Nonce"/>

3.2.5 Timer Events

After sending each response message, if the device does not receive the message of the next action
within one minute, the device MUST stop DTAG and reset TrustState to 0 (Idle).

3.2.6 Other Local Events

None.

3.3 Control Point (Host) Details

In addition to the protocol details specified in section 3.1, the following details are applied to the
control point.

3.3.1 Abstract Data Model

None.

3.3.2 Timers

None.

33/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.3.3 Initialization

None.
3.3.4 Message Processing Events and Sequencing Rules

3.3.4.1 Exchange Response

This response is supported only when TrustState is 1 (Exchanging). On this response, the following
checks MUST be performed:

1. The <DevicelD>, <DeviceCertificate>, and <DeviceConfirmAuthenticator> elements MUST be
syntactically validated.

2. The <DeviceCertificate> (_DeviceCertificate) MAY be validated as per any vendor-defined rules.
If successful, the control point:

1. MUST locally save the values of _DevicelD, _DeviceCertificate, and
_DeviceConfirmAuthenticator.

MUST set Iter to 1.
MUST generate _HostValidateNoncelter.

MUST change TrustState from 1 (Exchanging) to 2 (Committing).

i & W N

MUST set the following elements and send them in a Commit Message (section 3.2.4.2.1.1):

= <HostID>, as acquired in section 3.1.4.1.
= <Iteration>, as of the current Iter value.

= <HostValidateAuthenticator>, an HMAC, as specified in section 3.1.1, calculated as:

Base64(HMAC(_HostValidateNoncelter, UTF-8(Iter + OTPIter + _HostID +
_HostCertificate)).

If this action fails, the control point MUST change TrustState to 0 (Id/e), cancel the DTAG protocol,
and report an error to the control point user of this protocol.

3.3.4.2 Commit Response

This response is supported only when TrustState is 2 (Committing). On this response, the following
checks MUST be performed:

1. The <DeviceValidateAuthenticator> element MUST be syntactically validated.
If successful, the service:
1. MUST change TrustState from 2 (Committing) to 3 (Validating).

2. MUST set the following element and send them in a Validate Message (section 3.2.4.3.1.1):

= <HostID>, acquired as specified in section 3.1.4.1.
= <Iteration>, as the current Iter value.

= <HostValidateNonce>, as the current _HostValidateNoncelter value.

34 /53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If this action fails, the control point MUST change TrustState to 0 (Id/e), cancel the DTAG protocol,
and report an error to the control point user of this protocol.

3.3.4.3 Validate Response

This action is supported only when TrustState is 3 (Validating). On this action, the following checks
MUST be performed:

1. The <DeviceValidateNonce> (_DeviceValidateNoncelter) element MUST be syntactically
validated.

2. The <Iteration> number MUST be equal to the device's current iteration number, Iter.

3. The value of HMAC(_DevicetValidateNoncelter, UTF-8(Iter + OTPIter + _DevicelD +
_DeviceCertificate)), calculated as specified in section 3.1.1, MUST match the
_DeviceValidateAuthenticatorIter obtained in the Commit response.

If successful, and this is not the last iteration, the service:
1. MUST increment the iteration number, Iter.
2. MUST change TrustState from 3 (Validating) to 2 (Committing).

3. MUST set the following elements and send them in a Commit Message (section 3.2.4.2.1.1):

= <HostID>, as acquired in section 3.1.4.1.
= <Iteration>, as the new Iter value.
= <HostValidateAuthenticator>, an HMAC, as specified in section 3.1.1, calculated as:

Base64(HMAC(_HostValidateNoncelter, UTF-8 (Iter + OTPIter + _HostID +
_HostCertificate)).

If successful and this is the last iteration, the service:
1. MUST increment the iteration number, Iter.
2. MUST change TrustState from 3 (Validating) to 4 (Committing).

3. MUST set the following elements and send them in a Confirm Message (section 3.2.4.4.1.1):

= <HostID>, as acquired in section 3.1.4.1.

= <IterationsRequired>, as acquired in section 3.1.4.1.

= <HostConfirmNonce>, as used in section 3.2.4.4.2.1.
If this action fails, the control point MUST change TrustState to 0 (Id/e), cancel the DTAG protocol,
and report an error to the control point user of this protocol.
3.3.4.4 Confirm Response

This action is supported only when TrustState is 4 (Confirming). On this action, the following checks
MUST be performed:

1. The <DeviceConfirmNonce> (_DeviceConfirmNonce) element MUST be syntactically validated.

2. The value of HMAC(_DeviceConfirmNonce, UTF-8(N + OTP + _DevicelID +
_DeviceCertificate)), calculated as specified in section 3.1.1, MUST match the
_DeviceValidateAuthenticator obtained in the Exchange response.

35/53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If successful then trust has been established, and the service:

1. MUST store _DevicelID and _DeviceCertificate in a tamper-proof, persistent store.
2. MUST change TrustState from 4 (Confirming) to 0 (Idle).

3. MUST report the success to the control point user of this protocol.

If this action fails, the control point MUST change TrustState to 0 (Id/e), cancel the DTAG protocol,
and report an error to the control point user of this protocol.

3.3.4.5 One-time Password (OTP) Event
In addition to the local events specified in section 3.1.4.1, the control point:
1. MUST generate _HostConfirmNonce.

2. MUST set the following elements and send them in an Exchange Message (section 3.2.4.1.1.1):

= <HostID>, as acquired in section 3.1.4.1.
= <HostCertificate>, as acquired in section 3.1.4.1.

= <HostConfirmAuthenticator>, an HMAC as specified in section 3.1.1, calculated as:

Base64(HMAC(_HostConfirmNonce, UTF-8 (N+ OTP+ _HostID+ _HostCertificate)).

3.3.5 Timer Events

None.

3.3.6 Other Local Events

None.

36/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4 Protocol Examples

4.1 Trust Channel Establishment

This subsection demonstrates a sequence of DTAG messages for a successful exchange of
certificates between the device and the control point when the out-of-band one-time password
(OTP) is "7495".

4.1.1 Exchange Action Message

Upon the receipt of an out-of-band one-time password (OTP), the control point sends the
Exchange SOAP request message to the device. The following example demonstrates an Exchange
message where the <HostCertificate> and <HostConfirmAuthenticator> elements are encoded in a
Multipurpose Internet Mail Extensions (MIME) base64 scheme and the requested iteration for the
Commit-Validate action is four:

<?xml version="1.0"?2>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:Exchange xmlns:m="urn:schemas-microsoft-com:service:mstrustagreement:1">
<HostID xmlns:dt="urn:schemas-upnp-org:service-1-0" dt:dt="string">
uuid:fe8a7384-68fe-40£d-8996-f£f49e24d7e9d

</HostID>
<HostCertificate xmlns:dt="urn:schemas-upnp-org:service-1-0" dt:dt="string">

AAABAANiIMIIDXjCCAkagAWIBAgIQbrzUERI6GKVGrYOAYsWLpzANBgkaghkiGOwOBAQUFADA3MTUWMwYDVQQD
EyxNaWNyb3NvZnQgV21uZG93cyBNZWRpYSBDZWS50ZXIgRXh0ZW5kZXIgSGO9zdDAeFwOWOTASMTAXNZzIzNTZa
FwOzOTASMTAYMZzQ2NT1aMDcxNTAzZBgNVBAMTLE 1pY3Jvc29mdCBXaWbkb3dzIE11ZG1hIEN1bnR1ciBFeHR1
bmR1ciBIb3NOMIIBIjANBgkghkiGOwOBAQEFAAOCAQ8AMIIBCgKCAQEAOWSimH/kXu9cO0pCrm3UpoW2 9AY5Y
R303W30CaeFwyMaj6YNQsuPj7GymtOwX65rUE6LFENSNUI6TrtsN+FHrelLl1lr3yyeQGhsTsnc3nrCNNh5Z2J
QuWotzeAWrvXmRkbPy6IEQMkG]kpg9v104Ugyn+KLGpaonBIMOANSzu20h7hJgqiBKGAXQHeRY LpWhgOk7xdm
gr8hGzacdjqdEYbL2FGx1RMhzPsswL5bghIgz/KmyZv39V7xtHOMEQRyed41QrsH+KD+8daXm2JQnayHO0TaME
aggKz4eMEIEArX4a8LxRNkOxTWkinsI5xfUZzyUZ8BPXygksQkPOuxpoFsFIJwIDAQABO2YWZDAOBgNVHREELT
ArhilldwlkOmZ1OGE3MzgOLTY4ZmUtNDBmZCO040Tk2LWZmND11MjRkN2USZDALBgNVHQS8EBAMCBPAWHWYDVRO
1BBgwFgYIKwYBBQUHAWEGC1isGAQOBg]jcKBQwWwDQYJK0OZ IThvcNAQEFBOADggEBATIO7K/9Pjxp4CLP8gitnlcE3
MbX6c4BH8OVWRW1azM7t0OL7GKgqgDAKOIAIAOy/MSkGBOIMOaVHLVosOjxAlsCX6EdVoTeL2abvBww/nrxXSDA
TKrVsmT3VP39vnD67YYacLEfLJtCGDNIHWWTLEOXy3pG+Dn/0ueVezwEv466TQaQgxgqd J30A VaxxZ/8xpUEL
bJoGiJJs2+QH)sZHZatV1kTUtnlRjXz77P3/NdKVHSPXW1FmzDT19A01ludhyL9g57/1iHB3doylgoA3xwkgb2Q
ArbWz5rF1NHCemmfow8iboPdazRhju7b6én7/hCt3S9X0rLhXDV/ghD2XohfCYWXo=
</HostCertificate>
<IterationsRequired xmlns:dt="urn:schemas-upnp-org:service-1-0" dt:dt="uil">
4
</IterationsRequired>
<HostConfirmAuthenticator xmlns:dt="urn:schemas-upnp-org:service-1-0" dt:dt="string">
rijVFIBZrc+pGmkffVDRk4fIpjFc=
</HostConfirmAuthenticator>
</m:Exchange>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

4.1.2 Exchange Response Message

If the Exchange message is verified without error, the device sends an ExchangeResponse SOAP
response message to the control point. The following example demonstrates an ExchangeResponse
message where the <DeviceCertificate> and <DeviceConfirmAuthenticator> elements are encoded in
a MIME base64 scheme:

<s:Envelope xmlns:s=http://schemas.xmlsoap.org/soap/envelope/
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

37/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<s:Body>
<u:ExchangeResponse xmlns:u="urn:schemas-microsoft-com:service:mstrustagreement:1">
<DevicelID>
uuid:20000000-0000-0000-0200-00125A846322
</DevicelID>
<DeviceCertificate>

AAABAAPYMIID1IDCCAOGgAWIBAgGIHEIgEYyIAATAJBgUrDgMCHQUAMBOXGZzAZBgNVBAMTEk1pY3Jvc29mdCBYQkOYIDM2
MDAeFwOWNTEXMTYxODQONDFaFw0yNTExXMTYxNTAwWMDNaMB0xGzAZBgNVBAMTEk1pY3Jvc29ImdCBYQkOYIDM2MDCBNnzAN
BgkghkiGOwOBAQEFAAOBIQAWGYKCgYEAL jmbxABdzTP452Z052ryhSQpWCPgg69Z 9BKHopG9ul/xBudClbtrfjONsyEQ
/JriFGWiOnD3kJHMLIONJyl1BtxOLXWy+ryyxrXUaDaABchlLVcHsPQjR65JHUJ 9KDFA/ZD7DBVvOiFF1A7aU2P7PUsVEL
LRUV23Tr3BG50H8xXCVUCAWEAAAOCAIQwggIgMDQGALUJEQQtMCUGKXV1aWQ6MjAWMDAWMDAtMDAWMC OWMDAWLTAYMDAL
MDAxMjVBODQ2Mz I yMAsGA1UdDwQEAwIESDAfBgNVHSUEGDAWBGgrBgEFBQCDAGYKKWYBBAGCNWwoFDDCCAbgGC1sGAQQB
gjc3AQEEggGoAagDGEYyJFg4MDM5NTUtMDAYAARAAAAAAAAAAATAZLTAOLTA2AAEAAdWRUAB/MQr18SItFS/bdOtA7aU2
P7PUsmQ+wwb9ThRdkkdSPOoMUDILVCcHSPQjR6611Gg2gAXIdE4tdbL6VLLHMLIONIy1BtxR10jpwISCRNA2ZzITT8mulx
BudClbtrfvQSh6KRvbtfJClYI+qrgpn45z205zryhbY5m8QAXc0zw5S8ShVnyroKIP£JwCO1ZeTkZK90gl7R26VkO3n8
0149g3AJsHD119Cw/HKE/L+N9QVUOe0iwLHTLG7P27rhul5ytY1XJUVVkmzhxTUPPsicKanij/5YvhYBFYS/80GWMgrg
WjOAPXFt2a201LK7£5Gvx501+DLdDUapAd+fIe+YJDjForQutlal79bkecdZEdPTMabjYWRazZkuGBTfaBPnClgHT0o01Z
0eRx3HKAO9UZz0AEMSPVWM/uSqw+ZpM6I2ioy8FmmcT7JkbIKh5+nLpL0mz+E29tJ/guDLrBuQD8JwuZwQjjCka/£73hA
vx4Qvwgs72vEhvzFzNNhAVb1 JDAJBgUr DgMCHQUAAAGBADe1 jvbLfV5zW78fER/T70P05TL3pXDgwIXBCpKZOL1F1jMS
SS1WhdYSperuFbnmmExrMva/KXP2x7LXVXAL627bAUBReAcn5/gHcCy9/LMH1S5WsfY fndpcCr9J1uRM409Qs31iza6adb
8+QDRIg]jkdOB8U2FFWRkOg8puQQ5x1 69

</DeviceCertificate>

<DeviceConfirmAuthenticator>

4W309KV4SGjcRhdOhO 7TW8HWxtM8=
</DeviceConfirmAuthenticator>
</u:ExchangeResponse>
</s:Body>

</s:Envelope>

4.1.3 Commit Action Message

If the ExchangeResponse message is verified without error, the control point sends a Commit SOAP
request message to the device. The following example demonstrates a Commit message where the
<HostValidateAuthenticator> element is encoded in a MIME base64 scheme:

<?xml version="1.0"?2>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:Commit xmlns:m="urn:schemas-microsoft-com:service:mstrustagreement:1">
<HostID xmlns:dt="urn:schemas-upnp-org:service-1-0" dt:dt="string">
uuid:fe8a7384-68fe-40£d-8996-f£f49e24d7e9d
</HostID>
<Iteration xmlns:dt="urn:schemas-upnp-org:service-1-0" dt:dt="uil">
1
</Iteration>
<HostValidateAuthenticator xmlns:dt="urn:schemas-upnp-org:service-1-0"
dt:dt="string">
XI2NfwUSRAKuwgnkrF8MK7jAPPw=
</HostValidateAuthenticator>
</m:Commit>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

4.1.4 Commit Response Message
If the Commit message is verified without error, the device returns a CommitResponse SOAP

response message to the control point. The following example demonstrates a CommitResponse
message where the <DeviceValidateAuthenticator> element is encoded in a MIME base64 format:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

38/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:CommitResponse xmlns:u="urn:schemas-microsoft-com:service:mstrustagreement:1">
<DeviceValidateAuthenticator>
9% 7dIZOLWXOgL1lmr1SAOVNn1NNZ8=
</DeviceValidateAuthenticator>
</u:CommitResponse>
</s:Body>
</s:Envelope>

4.1.5 Validate Action Message

If the CommitResponse message is verified without error, the control point sends a Validate SOAP
request message to the device. The following example demonstrates a Validate message where the
<HostValidateNonce> element is encoded in a MIME base64 scheme:

<?xml version="1.0"?2>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:Validate xmlns:m="urn:schemas-microsoft-com:service:mstrustagreement:1">
<HostID xmlns:dt="urn:schemas-upnp-org:service-1-0" dt:dt="string">
uuid:fe8a7384-68fe-40£fd-8996-££f49e24d7e9d
</HostID>
<Iteration xmlns:dt="urn:schemas-upnp-org:service-1-0" dt:dt="uil">
1
</Iteration>
<HostValidateNonce xmlns:dt="urn:schemas-upnp-org:service-1-0" dt:dt="string">
NOQ7xF1ppNMO7+mPVkyLGKEfZTIo=
</HostValidateNonce>
</m:Validate>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

4.1.6 Validate Response Message

If the Validate message is verified without error, the device returns a ValidateResponse SOAP
response message to the control point. The following example demonstrates a CommitResponse
message where the <DeviceValidateNonce> is encoded in a MIME base64 format:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:ValidateResponse xmlns:u="urn:schemas-microsoft-com:service:mstrustagreement:1">
<DeviceValidateNonce>
i1p7FF8J1i3spxKOKRITd9tTBRrk=
</DeviceValidateNonce>
</u:ValidateResponse>
</s:Body>
</s:Envelope>

Because the requested iterations are four at the previous Exchange action, as described in section
4.1.1, the Commit and Validate actions will be repeated four times.

4.1.7 Confirm Action Message

If the ValidateResponse message is verified without error, the control point sends a Confirm SOAP
request message to the device. The following example demonstrates a Confirm message where the
<HostConfirmNonce> element is encoded in a MIME base64 scheme:

39/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<?xml version="1.0"?2>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<S:Body>
<m:Confirm xmlns:m="urn:schemas-microsoft-com:service:mstrustagreement:1">
<HostID xmlns:dt="urn:schemas-upnp-org:service-1-0" dt:dt="string">
uuid:fe8a7384-68fe-40£d-8996-f£49e24d7e9d
</HostID>
<IterationsRequired xmlns:dt="urn:schemas-upnp-org:service-1-0" dt:dt="uil">
4
</IterationsRequired>
<HostConfirmNonce xmlns:dt="urn:schemas-upnp-org:service-1-0" dt:dt="string">
5GDSOp5h92XrLICMfvdEUfcWkAE=
</HostConfirmNonce>
</m:Confirm>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

4.1.8 Confirm Response Message

If the Confirm message is verified without error, the device returns a ConfirmResponse SOAP
response message to the control point. The following example demonstrates a ConfirmResponse
message where the <DeviceConfirmNonce> element is encoded in a MIME base64 scheme:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:ConfirmResponse xmlns:u="urn:schemas-microsoft-com:service:mstrustagreement:1">
<DeviceConfirmNonce>
rD5m4Fgi+ifVv9GS+611a03T9980=
</DeviceConfirmNonce>
</u:ConfirmResponse>
</s:Body>
</s:Envelope>

After the control point verifies the response message, and if there is no error, DTAG is completed and
a trust relationship is established between the control point and the device.

4.2 Error Message

If an error occurs while the device processes any request message, the device returns an error
message instead of the response message to the control point. The following example demonstrates
an error message on the Validate action, which indicates error code 803 (invalid nonce):

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<s:Fault>
<faultcode>s:Client</faultcode>
<faultstring>UPnPError</faultstring>
<detail>
<UPnPError xmlns="urn:schemas-upnp-org:control-1-0">
<errorCode>803</errorCode>
<errorDescription>Invalid Nonce</errorDescription>
</UPnPError>
</detail>
</s:Fault>
</s:Body>
</s:Envelope>

40/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5 Security

5.1 Security Considerations for Implementers

In general, DTAG provides protection at the strength of the one-time password (OTP), where the
OTP is required to be:

= Cryptographically random and difficult to guess.

= Transported to the endpoints in an out-of-band manner, such as through user interaction, the
details of which are not described in this specification. For this purpose, the OTP can be relatively
short enough for the user to remember.

= Generated anew each time DTAG is started or restarted.
= The number of OTP characters is required to be equal to or greater than the number of iterations.

The number of validate rounds (N) is required to be at least 2, with a minimum of 4 recommended.

5.2 Index of Security Parameters

Security parameter Section
One-time Password (OTP) | 3.1.4.1
N 3.1.1

41/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6 Appendix A: Full WSDL

This protocol does not contain a WSDL. For UPnP, the equivalent to WSDL are the UPnP device and
service descriptions. Please see the UPnP device description in section 7 and the full UPnP service
description in section 8.

42/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7 Appendix B: UPnP Device Description

The following is a sample service information of DTAG, which the device description has to include as
part of the service list for the device.

The default namespace, "urn:schemas-upnp-org:device-1-0", is specified in [UPNPARCH1] sections
2.1 and 2.6.

<?xml version='1.0'?>
<root xmlns="urn:schemas-upnp-org:device-1-0"
xmlns:pnpx="http://schemas.microsoft.com/windows/pnpx/2005/11" >
<specVersion>
<major>1</major>
<minor>0</minor>
</specVersion>
<device>
<pnpx:X deviceCategory>MediaDevices</pnpx:X deviceCategory>
<deviceType>urn:schemas-microsoft-com:device:MediaCenterExtenderMFD:1</deviceType>
<friendlyName>Xbox 360 Media Center Extender</friendlyName>
<manufacturer>Microsoft Corporation</manufacturer>
<manufacturerURL>http://www.xbox.com/</manufacturerURL>
<modelDescription>Xbox 360 Media Center Extender</modelDescription>
<modelName>Xbox 360</modelName>
<modelNumber></modelNumber>
<modelURL>http://go.microsoft.com/fwlink/?LinkID=53081</modelURL>
<serialNumber></serialNumber>
<UDN>uuid:10000000-0000-0000-0200-00125A702E78</UDN>
<UPC></UPC>
<iconList>
<icon>
<mimetype>image/jpeg</mimetype>
<width>48</width>
<height>48</height>
<depth>24</depth>
<url>/IconSM.jpg</url>
</icon>
<icon>
<mimetype>image/jpeg</mimetype>
<width>120</width>
<height>120</height>
<depth>24</depth>
<url>/IconLRG.jpg</url>
</icon>
<icon>
<mimetype>image/png</mimetype>
<width>48</width>
<height>48</height>
<depth>24</depth>
<url>/IconSM.png</url>
</icon>
<icon>
<mimetype>image/png</mimetype>
<width>120</width>
<height>120</height>
<depth>24</depth>
<url>/IconLRG.png</url>
</icon>
<icon>
<mimetype>image/png</mimetype>
<width>152</width>
<height>152</height>
<depth>24</depth>
<url>/IconMCE.png</url>
</icon>
</iconList>
<serviceList>
<service>

43/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

https://go.microsoft.com/fwlink/?LinkId=90554

<serviceType>urn:schemas-microsoft-com:service:NULL:1</serviceType>
<serviceld>urn:microsoft-com:serviceId:NULL</serviceId>
<SCPDURL>/XD/NULL. xm1</SCPDURL>
<controlURL>/UD/?0</controlURL>
<eventSubURL/>
</service>
</servicelist>
<deviceList>
<device xmlns:mcx="http://schemas.microsoft.com/windows/mcx/2007/06"
xmlns:nss="urn:schemas-microsoft-com:WMPNSS-1-0">
<pnpx:X compatibleId>MICROSOFT MCX 0001</pnpx:X compatibleId>
<pnpx:X deviceCategory>MediaDevices</pnpx:X deviceCategory>
<mcx:pakVersion>dv2.0.0</mcx:pakVersion>
<mcx:supportedHostVersions>pc2.0.0</mcx:supportedHostVersions>
<nss:X magicPacketSendSupported>1</nss:X magicPacketSendSupported>
<deviceType>urn:schemas-microsoft-com:device:MediaCenterExtender:1</deviceType>
<friendlyName>Xbox 360 Media Center Extender</friendlyName>
<manufacturer>Microsoft Corporation</manufacturer>
<manufacturerURL>http://www.microsoft.com/</manufacturerURL>
<modelDescription>Xbox 360 Media Center Extender</modelDescription>
<modelName>Xbox 360</modelName>
<modelNumber></modelNumber>
<modelURL>http://go.microsoft.com/fwlink/?LinkID=53081</modelURL>
<serialNumber></serialNumber>
<UDN>uuid:20000000-0000-0000-0200-00125A702E78</UDN>
<UPC></UPC>
<iconList>
<icon>
<mimetype>image/jpeg</mimetype>
<width>48</width>
<height>48</height>
<depth>24</depth>
<url>/IconSM.jpg</url>
</icon>
<icon>
<mimetype>image/jpeg</mimetype>
<width>120</width>
<height>120</height>
<depth>24</depth>
<url>/IconLRG.jpg</url>
</icon>
<icon>
<mimetype>image/png</mimetype>
<width>48</width>
<height>48</height>
<depth>24</depth>
<url>/IconSM.png</url>
</icon>
<icon>
<mimetype>image/png</mimetype>
<width>120</width>
<height>120</height>
<depth>24</depth>
<url>/IconLRG.png</url>
</icon>
<icon>
<mimetype>image/png</mimetype>
<width>152</width>
<height>152</height>
<depth>24</depth>
<url>/IconMCE.png</url>
</icon>
</iconList>
<serviceList>
<service>
<serviceType>urn:schemas-microsoft-com:service:mstrustagreement:1</serviceType>
<serviceId>urn:microsoft-com:serviceId:MSTA</serviceId>
<SCPDURL>/XD/mstrustagreement .xml</SCPDURL>
<controlURL>/UD/?1</controlURL>

44 /53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<eventSubURL />
</service>
</servicelist>
</device>
</deviceList>
</device>
</root>

45/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

8 Appendix C: Full UPnP Service Description

The following is a sample service description of DTAG, which the device has to publish as a

prerequisite before DTAG can take any action, as described in section 1.5.

The default namespace, "urn:schemas-upnp-org:service-1-0", is specified in [UPNPARCH1] sections

2.3 and 2.7.

<?xml version="1.0" ?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
<specVersion>
<major>1</major>
<minor>0</minor>
</specVersion>
<actionList>
<action>
<name>Exchange</name>
<argumentList>
<argument>
<name>HostID</name>
<direction>in</direction>
<relatedStateVariable>A ARG TYPE EndpointID</relatedStateVariable>
</argument>
<argument>
<name>HostCertificate</name>
<direction>in</direction>

<relatedStateVariable>A ARG TYPE Certificate</relatedStateVariable>

</argument>
<argument>
<name>IterationsRequired</name>
<direction>in</direction>
<relatedStateVariable>A ARG TYPE Rounds</relatedStateVariable>
</argument>
<argument>
<name>HostConfirmAuthenticator</name>
<direction>in</direction>

<relatedStateVariable>A ARG TYPE Authenticator</relatedStateVariable>

</argument>
<argument>
<name>DeviceID</name>
<direction>out</direction>

<relatedStateVariable>A ARG TYPE EndpointID</relatedStateVariable>

</argument>
<argument>
<name>DeviceCertificate</name>
<direction>out</direction>

<relatedStateVariable>A ARG TYPE Certificate</relatedStateVariable>

</argument>

<argument>
<name>DeviceConfirmAuthenticator</name>
<direction>out</direction>

<relatedStateVariable>A ARG TYPE Authenticator</relatedStateVariable>

</argument>
</argumentList>
</action>
<action>
<name>Commit</name>
<argumentList>
<argument>
<name>HostID</name>
<direction>in</direction>

<relatedStateVariable>A ARG TYPE EndpointID</relatedStateVariable>

</argument>

<argument>
<name>Iteration</name>
<direction>in</direction>

<relatedStateVariable>A ARG TYPE Iteration</relatedStateVariable>

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

46/ 53

https://go.microsoft.com/fwlink/?LinkId=90554

</argument>
<argument>

<name>HostValidateAuthenticator</name>

<direction>in</direction>

<relatedStateVariable>A ARG TYPE Authenticator</relatedStateVariable>

</argument>
<argument>

<name>DeviceValidateAuthenticator</name>

<direction>out</direction>

<relatedStateVariable>A ARG TYPE Authenticator</relatedStateVariable>

</argument>
</argumentList>
</action>
<action>
<name>Validate</name>
<argumentList>
<argument>
<name>HostID</name>
<direction>in</direction>

<relatedStateVariable>A ARG TYPE EndpointID</relatedStateVariable>

</argument>
<argument>
<name>Iteration</name>
<direction>in</direction>

<relatedStateVariable>A ARG TYPE Iteration</relatedStateVariable>

</argument>
<argument>

<name>HostValidateNonce</name>

<direction>in</direction>

<relatedStateVariable>A ARG TYPE Nonce</relatedStateVariable>

</argument>
<argument>

<name>DeviceValidateNonce</name>

<direction>out</direction>

<relatedStateVariable>A ARG TYPE Nonce</relatedStateVariable>

</argument>
</argumentList>
</action>
<action>
<name>Confirm</name>
<argumentList>
<argument>
<name>HostID</name>
<direction>in</direction>

<relatedStateVariable>A ARG TYPE EndpointID</relatedStateVariable>

</argument>
<argument>

<name>IterationsRequired</name>

<direction>in</direction>

<relatedStateVariable>A ARG TYPE Rounds</relatedStateVariable>

</argument>

<argument>
<name>HostConfirmNonce</name>
<direction>in</direction>

<relatedStateVariable>A ARG TYPE Nonce</relatedStateVariable>

</argument>
<argument>

<name>DeviceConfirmNonce</name>

<direction>out</direction>

<relatedStateVariable>A ARG TYPE Nonce</relatedStateVariable>

</argument>
</argumentList>
</action>
</actionList>
<serviceStateTable>
<stateVariable sendEvents="no">
<name>TrustState</name>
<dataType>uil</dataType>
<allowedValueRange>

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

47/ 53

<minimum>0</minimum>
<maximum>4</maximum>
</allowedValueRange>
</statevVariable>
<stateVariable sendEvents="no">
<name>A ARG TYPE Rounds</name>
<dataType>uil</dataType>
<allowedValueRange>
<minimum>2</minimum>
<maximum>20</maximum>
</allowedValueRange>
</statevVariable>
<stateVariable sendEvents="no">
<name>A ARG TYPE Iteration</name>
<dataType>uil</dataType>
<allowedValueRange>
<minimum>1</minimum>
<maximum>20</maximum>
</allowedValueRange>
</statevVariable>
<stateVariable sendEvents="no">
<name>A ARG TYPE EndpointID</name>
<dataType>string</dataType>
</stateVariable>
<stateVariable sendEvents="no">
<name>A ARG TYPE Authenticator</name>
<dataType>string</dataType>
</stateVariable>
<stateVariable sendEvents="no">
<name>A ARG TYPE Nonce</name>
<dataType>string</dataType>
</stateVariable>
<stateVariable sendEvents="no">
<name>A ARG TYPE Certificate</name>
<dataType>string</dataType>
</stateVariable>
</serviceStateTable>
</scpd>

48/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

9 Appendix D: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

= Windows Vista operating system
= Windows 7 operating system

= Windows 8 operating system

= Windows 8.1 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

49/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

10 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

50/ 53

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

11 Index
A

A ARG TYPE Authenticator simple type 17
A ARG TYPE Certificate simple type 17

A ARG TYPE EndpointID simple type 17

A ARG TYPE Iteration simple type 17
A
A
A

ARG _TYPE Nonce simple type 17
ARG TYPE Rounds simple type 16
bstract data model
control point (section 3.1.1 19, section 3.3.1 33)
device (section 3.1.1 19, section 3.2.1 23)
host (section 3.1.1 19, section 3.3.1 33)
Applicability 12

Attribute groups 18
Attributes 18

C

Capability negotiation 12
Change tracking 50
Commit
action 27
action message example 38
response 34
CommitResponse message example 38
Complex types 16
Confirm
action 31
action message example 39
response 35
ConfirmResponse message example 40
Control point
abstract data model (section 3.1.1 19, section
3.3.1 33)
Commit response 34

Confirm response 35
Exchange response 34

initialization (section 3.1.3 22, section 3.3.3 34)

local events - One-time Password (OTP) event
(section 3.1.4.1 23, section 3.3.4.5 36)

message processing (section 3.1.4 23, section
3.3.4 34)

overview (section 3 19, section 3.1 19, section 3.3

initialization (section 3.1.3 22, section 3.2.3 23)

local events 33

local events - One-time Password (OTP) event 23

message processing (section 3.1.4 23, section
3.2.4 23)

overview (section 3 19, section 3.1 19, section 3.2
23)

sequencing rules (section 3.1.4 23, section 3.2.4
23)

timer events (section 3.1.5 23, section 3.2.5 33)

timers (section 3.1.2 22, section 3.2.2 23)

Validate action 29

Device description - UPnP 43

Elements
HostID 15
Iteration 16
IterationsRequired 16
UPnPError 15

Error message example 40

33)
sequencing rules (section 3.1.4 23, section 3.3.4
34)
timer events (section 3.1.5 23, section 3.3.5 36)
timers (section 3.1.2 22, section 3.3.2 33)

Validate response 35

D

Data model - abstract
control point (section 3.1.1 19, section 3.3.1 33)
device (section 3.1.1 19, section 3.2.1 23)
host (section 3.1.1 19, section 3.3.1 33)
Device
abstract data model (section 3.1.1 19, section
3.2.1 23)
Commit action 27
Confirm action 31

Exchange action 24

Events
local
control point - One-time Password (OTP) event
(section 3.1.4.1 23, section 3.3.4.5 36)
device 33
device - One-time Password (OTP) event 23
host - One-time Password (OTP) event (section
3.1.4.1 23, section 3.3.4.5 36)
timer
control point (section 3.1.5 23, section 3.3.5 36)
device (section 3.1.5 23, section 3.2.5 33)
host (section 3.1.5 23, section 3.3.5 36)
Examples
Commit action message 38
CommitResponse message 38
Confirm action message 39
ConfirmResponse message 40
error message 40
Exchange action message 37
ExchangeResponse message 37
Trust Channel Establishment 37
Validate action message 39
ValidateResponse message 39
Exchange
action 24
action message example 37

response 34
ExchangeResponse message example 37

F

Fields - vendor-extensible 12
Full WSDL 42

G

Glossary 7
Groups 18

H

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

51/53

Host

abstract data model (section 3.1.1 19, section
3.3.1 33)

Commit response 34

Confirm response 35

Exchange response 34

initialization (section 3.1.3 22, section 3.3.3 34)

local events - One-time Password (OTP) event
(section 3.1.4.1 23, section 3.3.4.5 36)

message processing (section 3.1.4 23, section
3.3.4 34)

overview (section 3.1 19, section 3.3 33)

sequencing rules (section 3.1.4 23, section 3.3.4

34)
timer events (section 3.1.5 23, section 3.3.5 36)
timers (section 3.1.2 22, section 3.3.2 33)

Validate response 35
HostID element 15

I

Implementer - security considerations 41
Index of security parameters 41
Informative references 10
Initialization
control point (section 3.1.3 22, section 3.3.3 34)
device (section 3.1.3 22, section 3.2.3 23)
host (section 3.1.3 22, section 3.3.3 34)
Introduction 7
Iteration element 16
IterationsRequired element 16

L

Local events
control point - One-time Password (OTP) event
(section 3.1.4.1 23, section 3.3.4.5 36)
device 33
device - One-time Password (OTP) event 23
host - One-time Password (OTP) event (section
3.1.4.1 23, section 3.3.4.5 36)

Message processing
control point (section 3.1.4 23, section 3.3.4 34)
device (section 3.1.4 23, section 3.2.4 23)
host (section 3.1.4 23, section 3.3.4 34)
Messages
A ARG TYPE Authenticator simple type 17
A ARG TYPE Certificate simple type 17
A ARG TYPE EndpointID simple type 17
A ARG TYPE Iteration simple type 17
A ARG TYPE Nonce simple type 17
A ARG TYPE Rounds simple type 16
attribute groups 18
attributes 18
complex types 16
elements 15
enumerated 14
groups 18
HostID element 15
Iteration element 16
IterationsRequired element 16

namespaces 14
simple types 16
syntax 14
transport 14
UPnP Error 14

UPnP Error message 14
UPnPError element 15

Namespaces 14
Normative references 9

o

One-time Password (OTP) event (section 3.1.4.1 23,
section 3.3.4.5 36)
Overview (synopsis) 10

P

Parameters - security index 41
Preconditions 12
Prerequisites 12
Product behavior 49
Protocol Details
overview 19

R

References 9
informative 10
normative 9
Relationship to other protocols 11

S

Security
implementer considerations 41
parameter index 41
Sequencing rules
control point (section 3.1.4 23, section 3.3.4 34)
device (section 3.1.4 23, section 3.2.4 23)
host (section 3.1.4 23, section 3.3.4 34)
Service description - UPnP 46
Simple types 16
A ARG TYPE Authenticator 17
A ARG TYPE Certificate 17
A ARG TYPE EndpointID 17
A ARG TYPE Iteration 17
A ARG TYPE Nonce 17
A ARG TYPE Rounds 16
Standards assignments 13
Syntax
messages - overview 14
Syntax - messages - overview 14

T

Timer events
control point (section 3.1.5 23, section 3.3.5 36)
device (section 3.1.5 23, section 3.2.5 33)
host (section 3.1.5 23, section 3.3.5 36)

Timers

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

52 /53

control point (section 3.1.2 22, section 3.3.2 33)

device (section 3.1.2 22, section 3.2.2 23)

host (section 3.1.2 22, section 3.3.2 33)
Tracking changes 50

Transport 14
Trust Channel Establishment example 37

Types
complex 16
simple 16

U

UPnP
device description 43
error message 14
service description 46
UPnPError element 15

\'}

Validate
action 29
action message example 39
response 35
ValidateResponse message example 39
Vendor-extensible fields 12

Versioning 12

w

WSDL 42

[MS-DTAG] - v20170601

Device Trust Agreement Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

53 /53

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Message Syntax
	2.2.1 Namespaces
	2.2.2 Messages
	2.2.2.1 UPnP Error

	2.2.3 Elements
	2.2.3.1 UPnPError
	2.2.3.2 HostID
	2.2.3.3 Iteration
	2.2.3.4 IterationsRequired

	2.2.4 Complex Types
	2.2.5 Simple Types
	2.2.5.1 A_ARG_TYPE_Rounds
	2.2.5.2 A_ARG_TYPE_Iteration
	2.2.5.3 A_ARG_TYPE_EndpointID
	2.2.5.4 A_ARG_TYPE_Authenticator
	2.2.5.5 A_ARG_TYPE_Nonce
	2.2.5.6 A_ARG_TYPE_Certificate

	2.2.6 Attributes
	2.2.7 Groups
	2.2.8 Attribute Groups

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 One-time Password (OTP) Event

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Device Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Exchange Action
	3.2.4.1.1 Messages
	3.2.4.1.1.1 Exchange Message
	3.2.4.1.1.2 Exchange Response Message

	3.2.4.1.2 Elements
	3.2.4.1.2.1 DeviceID
	3.2.4.1.2.2 HostCertificate
	3.2.4.1.2.3 DeviceCertificate
	3.2.4.1.2.4 HostConfirmAuthenticator
	3.2.4.1.2.5 DeviceConfirmAuthenticator

	3.2.4.2 Commit Action
	3.2.4.2.1 Messages
	3.2.4.2.1.1 Commit Message
	3.2.4.2.1.2 Commit Response Message

	3.2.4.2.2 Elements
	3.2.4.2.2.1 HostValidateAuthenticator
	3.2.4.2.2.2 DeviceValidateAuthenticator

	3.2.4.3 Validate Action
	3.2.4.3.1 Messages
	3.2.4.3.1.1 Validate Message
	3.2.4.3.1.2 Validate Response Message

	3.2.4.3.2 Elements
	3.2.4.3.2.1 HostValidateNonce
	3.2.4.3.2.2 DeviceValidateNonce

	3.2.4.4 Confirm Action
	3.2.4.4.1 Messages
	3.2.4.4.1.1 Confirm Message
	3.2.4.4.1.2 Confirm Response Message

	3.2.4.4.2 Elements
	3.2.4.4.2.1 HostConfirmNonce
	3.2.4.4.2.2 DeviceConfirmNonce

	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 Control Point (Host) Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 Exchange Response
	3.3.4.2 Commit Response
	3.3.4.3 Validate Response
	3.3.4.4 Confirm Response
	3.3.4.5 One-time Password (OTP) Event

	3.3.5 Timer Events
	3.3.6 Other Local Events

	4 Protocol Examples
	4.1 Trust Channel Establishment
	4.1.1 Exchange Action Message
	4.1.2 Exchange Response Message
	4.1.3 Commit Action Message
	4.1.4 Commit Response Message
	4.1.5 Validate Action Message
	4.1.6 Validate Response Message
	4.1.7 Confirm Action Message
	4.1.8 Confirm Response Message

	4.2 Error Message

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full WSDL
	7 Appendix B: UPnP Device Description
	8 Appendix C: Full UPnP Service Description
	9 Appendix D: Product Behavior
	10 Change Tracking
	11 Index

