

1 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[MS-DSLR]:
Device Services Lightweight Remoting Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Revision Summary

Date

Revision

History

Revision

Class Comments

11/06/2009 0.1 Major First Release.

12/18/2009 0.1.1 Editorial Revised and edited the technical content.

01/29/2010 0.2 Minor Updated the technical content.

03/12/2010 0.2.1 Editorial Revised and edited the technical content.

04/23/2010 0.2.2 Editorial Revised and edited the technical content.

06/04/2010 0.2.3 Editorial Revised and edited the technical content.

07/16/2010 0.2.3 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 0.2.3 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 0.2.3 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 0.2.3 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 0.2.3 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 0.2.3 No change No changes to the meaning, language, or formatting of

the technical content.

03/25/2011 0.2.3 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 0.2.3 No change No changes to the meaning, language, or formatting of

the technical content.

06/17/2011 0.3 Minor Clarified the meaning of the technical content.

09/23/2011 0.3 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 1.0 Major Significantly changed the technical content.

03/30/2012 1.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 1.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/25/2012 1.0 No change No changes to the meaning, language, or formatting of

the technical content.

3 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Date

Revision

History

Revision

Class Comments

01/31/2013 1.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 2.0 Major Significantly changed the technical content.

11/14/2013 3.0 Major Significantly changed the technical content.

02/13/2014 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

05/15/2014 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Contents

1 Introduction ... 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.3.1 DSLR OSI Layers .. 8

1.3.1.1 Dispenser (Application Layer) ... 9
1.3.1.2 Serializer/Deserializer (Presentation Layer) .. 9

1.3.1.2.1 Proxy Code (Remote) .. 10
1.3.1.2.2 Stub Code (Local) ... 10

1.3.1.3 Dispatcher (Session Layer) .. 10
1.3.1.4 Transport/Tags (Transport Layer) ... 11

1.3.2 DSLR Messages .. 11
1.3.2.1 CreateService .. 11
1.3.2.2 DeleteService ... 12
1.3.2.3 Dispatch Event (DSLR One-Way Request) .. 12
1.3.2.4 Dispatch Request (DSLR Two-Way Request) .. 12

1.4 Relationship to Other Protocols .. 12
1.5 Prerequisites/Preconditions ... 12
1.6 Applicability Statement ... 12
1.7 Versioning and Capability Negotiation ... 12
1.8 Vendor-Extensible Fields ... 13
1.9 Standards Assignments .. 13

2 Messages.. 14
2.1 Transport .. 14
2.2 Message Syntax .. 14

2.2.1 Tag Format .. 14
2.2.2 Messages .. 14

2.2.2.1 Dispatcher Request Tag Payload ... 15
2.2.2.2 Dispatcher Response Tag Payload ... 16
2.2.2.3 CreateService Message Payload .. 16
2.2.2.4 DeleteService Message Payload .. 18
2.2.2.5 Response Payload for CreateService and DeleteService Messages 18
2.2.2.6 Generic Service Request Payload .. 21
2.2.2.7 Generic Service Response Payload .. 23

3 Protocol Details .. 24
3.1 Client Details (Remote/Proxy Side of the DSLR Connection) 24

3.1.1 Abstract Data Model ... 25
3.1.2 Timers .. 25
3.1.3 Initialization .. 25
3.1.4 Higher-Layer Triggered Events ... 26
3.1.5 Processing Events and Sequencing Rules ... 26

3.1.5.1 CreateService .. 26
3.1.5.2 Service Requests .. 27

3.1.5.2.1 One-Way Events ... 28
3.1.5.2.2 Two-Way Requests .. 29

3.1.5.3 DeleteService ... 29

5 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.6 Timer Events ... 29
3.1.7 Other Local Events ... 29

3.1.7.1 OnConnected ... 29
3.1.7.2 OnDisconnected ... 29

3.2 Server Details (Local/Stub Side of DSLR Connection) ... 29
3.2.1 Abstract Data Model ... 30
3.2.2 Timers .. 31
3.2.3 Initialization .. 31
3.2.4 Higher-Layer Triggered Events ... 31
3.2.5 Processing Events and Sequencing Rules ... 31

3.2.5.1 CreateService .. 31
3.2.5.2 Service Requests .. 33

3.2.5.2.1 One-Way Events ... 34
3.2.5.2.2 Two-Way Requests .. 34

3.2.5.3 DeleteService ... 34
3.2.6 Timer Events ... 34
3.2.7 Other Local Events ... 34

3.2.7.1 OnConnected ... 34
3.2.7.2 OnDisconnected ... 34

4 Protocol Examples .. 35
4.1 Typical DSLR Session ... 35
4.2 Typical DSLR Message .. 36

5 Security .. 37
5.1 Security Considerations for Implementers ... 37
5.2 Index of Security Parameters .. 37

6 Appendix A: Product Behavior .. 38

7 Change Tracking... 39

8 Index ... 40

6 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1 Introduction

The Device Services Lightweight Remoting (DSLR) Protocol enables remoting of services (objects,
function calls, events, and so on) over a reliable point to point channel.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

big-endian

child object, children
Component Object Model (COM)
deserialize

globally unique identifier (GUID)
handle
HRESULT
interface
ISO/OSI reference model
network byte order

proxy
serialize

The following terms are specific to this document:

consumer: DSLR service implementer. The consumer defines the service functions, and
implements the proxy on the client and the stub on the server.

dispatcher: DSLR session layer. The dispatcher manages the set of transactions, or requests
made on the remote service.

dispatch event: A one-way event sent from the client to the server.

dispatch request: A two-way request made on the remote service. The service returns the
result and out parameters for a dispatch request in the form of a dispatch response.

dispatch response: The response (result and out parameters) for a two-way DSLR request
made on a remote service.

dispenser: DSLR application layer. The dispenser is a service that exposes locally implemented
services to the remote endpoint, and allows for remote services to be instantiated. Manages

the set of local services instantiated on the server.

payload: Tag-specific data sent as part of each DSLR message. Each DSLR tag contains one
payload. Examples include Dispatcher Request tag payload (data identifying the type of
request being made on the remote service), dispenser CreateService message payload (the
parameters for the CreateService function), service-specific function payloads (the parameters
for the service specific functions), and so on.

%5bMS-GLOS%5d.pdf

7 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

stub: Function on the server that directly calls local service functions when requests come in
from the client.

tag: The format of all DSLR messages includes the size of the payload, number of children, and
the tag payload itself.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

The following protocol abbreviations are used in this document:

DSLR: Device Services Lightweight Remoting Protocol

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other

documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-DMCT] Microsoft Corporation, "Device Media Control Protocol".

[MS-DSMN] Microsoft Corporation, "Device Session Monitoring Protocol".

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

1.3 Overview

The Device Services Lightweight Remoting (DSLR) Protocol enables an application to call functions

on and send events to a remote service over a reliable point to point connection. The service itself is
implemented on the local/stub side of the connection (the server), and the remote/proxy side (the
client) creates a proxy for that service. DSLR is direction agnostic; that is, each side of the
connection can act as both a proxy for a remote service and a stub that manages calls into a local
service. Both the stub and proxy are implemented by the DSLR consumer; each side has

knowledge of the functions/events exposed by the service, as well as the input/output parameters
for each. The following sections describe the DSLR architecture in more detail, as well as the

distinction between proxy and stub.

http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-DMCT%5d.pdf
%5bMS-DSMN%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

8 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1.3.1 DSLR OSI Layers

The following sections describe the OSI layers (from the ISO/OSI reference model) exposed by
DSLR.

DSLR exposes the following OSI layers:

Application: The DSLR dispenser, a service which exposes locally implemented services to the
remote endpoint, and allows for remote services to be instantiated; the dispenser is exposed
on both sides of the point-to-point connection; manages the set of local services instantiated
on the server side.

Presentation: A serializer/deserializer for the delivery of endian-agnostic data (both the
request/response tags and the service function-specific parameters); data is always passed

ByVal, with the exception of the DSLR dispenser (which returns proxy objects ByRef).

Session: A dispatcher for request/response tags and event (one-way) tags; manages the set of
requests to remote services on the client side.

Transport: A tagged hierarchical binary format (which can be described as "binary SOAP").

Figure 1: OSI layers and DSLR

%5bMS-GLOS%5d.pdf

9 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1.3.1.1 Dispenser (Application Layer)

The dispenser is exposed on both sides of the connection (both client and server). The dispenser is
itself a service with two exposed functions: CreateService (section 1.3.2.1) and DeleteService

(section 1.3.2.2). These calls provide the interface the application uses to instantiate and clean up
remote services. The dispenser manages a mapping between a given service GUID and its
corresponding proxy implementation (on the client side) and its stub function (on the server side).

The dispenser is in charge of keeping track of these services. It does so by allocating a service
handle for each unique service GUID provided by CreateService call. Note that service handles are
only required to be unique at a given time and only for a given direction (in other words they are
allocated on one side, and used on the other). This also applies to the dispatcher's transaction

handles.

Configuration information required by the dispenser on startup includes:

The transport configuration.

Mapping between service ID (GUID) and proxy creator function. All remote services that are

going to be used are required to have a proxy implementation and a proxy creator, and supply a

mapping between the proxy creator and the service GUID.

Mapping between service ID (GUID) and stub function. All local services that are going to be used

are required to have a stub implementation and supply a mapping between the stub and the
service GUID.

The service creator: all local services that are going to be used are required to have a service

creator function.

Optional: connect/disconnect callback (for notification on transport connect and disconnect).

At startup, the dispenser adds itself as the first service (with service handle = 0), and starts the
transport.

1.3.1.2 Serializer/Deserializer (Presentation Layer)

DSLR uses tags to encapsulate data from each protocol layer. Tags are the binary equivalent of an

XML element, although very much simplified.

DSLR uses a two-level hierarchy of tags:

+ Dispatcher tag

<payload>

Calling convention Id

Request handle

Service handle

Function handle

</payload>

+ Serializer tag

<payload>

Serialized argument #1

Serialized argument #2

…

</payload>

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

10 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The serializer owns the tag serializing the function call arguments. For a two-way calling convention,

the outbound tag contains the function's in arguments, and if the call was successful, the response

tag contains the HRESULT followed by the function's out arguments.

The proxy that runs on the client side serializes the input parameters, and deserializes the output

parameters (if any) and the return value. The stub that runs on the server side deserializes the
input parameters, and serializes the output parameters (if any) and the return value. Both client and
server use the interface exposed by the service, the function handles (unsigned integers) that map
to the exposed functions, and the in/out parameters for those functions.

1.3.1.2.1 Proxy Code (Remote)

For each of the remoted functions, the proxy implementation must request a tag and a request

handle from the dispatcher, serialize the in parameter into the tag, send it, and (in the case of a
two-way call) wait for the server to return the dispatcher response for that call. The returned tag is
then deserialized (including the returned HRESULT and the out parameters), and the function
returns.

1.3.1.2.2 Stub Code (Local)

The stub is not an object, but rather, an application used to deserialize and dispatch an incoming
tag to an object. Based on the function handle, the stub implementation must deserialize the [in]
parameters, call the real object (pointed to by the service argument), and (for a two-way call)
serialize the out parameters, starting with the HRESULT, which is followed by all other parameters if
the HRESULT was successful.

1.3.1.3 Dispatcher (Session Layer)

While the dispenser tracks services, the dispatcher tracks transactions. The DSLR client dispatcher
achieves this by allocating a transaction (request) handle for each roundtrip. Note that transaction
handles are only required to be unique at a given time and only for a given direction (in other words
they are allocated on one side, and used on the other). This remark also applies to the dispenser's
service handles.

The dispatcher defines the calling conventions available to the customer: a two-way
request/response calling convention that maps to a synchronous function call model, and a one-way

calling convention that maps to asynchronous events.

By convention, the request/response calling convention adheres to the following Component
Object Model (COM) rules:

The function must return an HRESULT.

All in parameters are serialized in the request tag.

The returned HRESULT is serialized in the response tag, followed if successful by the out

parameters.

The caller should expect the returned HRESULT to be either one of the values returned by the

function, or one of the DSLR failure values.

The caller must not evaluate any of the out parameters if the call returned a failure.

The one-way calling convention adheres to the following rules:

The function must return void.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

11 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The calls may not be processed in the order they were sent.

All in parameters are serialized in the outbound tag.

There may not be any out parameters.

1.3.1.4 Transport/Tags (Transport Layer)

Finally, the tag transport notifies the dispatcher when a new tag arrives and sends outgoing tags.
The actual sequencing of outgoing tags is controlled by the dispatcher.

DSLR uses a "buffered" delivery of tags; that is, the transport will wait for a tag and all of its
children to be received (as well as the tag objects created) before dispatching it.

1.3.2 DSLR Messages

The following messages are sent from the DSLR client to the DSLR server during the lifetime of a
given remote service:

Figure 2: Messages sent from DSLR client to server for a given remote service

1.3.2.1 CreateService

The CreateService message is called by the client to instantiate the remote service on the server.
The client allocates a service handle and sends it to the server. This service handle is then used by

both sides of the connection to uniquely identify the specific service.

This is a two-way request; the client waits for the server to send back a response (containing the
result of the call).

%5bMS-GLOS%5d.pdf

12 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1.3.2.2 DeleteService

The DeleteService message is called by the client when the client is shutting down, or simply no
longer needs to access the remote service. This is a two-way request; the client waits for the server

to send back a response (containing the result of the call).

1.3.2.3 Dispatch Event (DSLR One-Way Request)

The Dispatch Event message is called by the client to send an event to a remote service. This is a
one-way request; no response is sent back from the server. The event messages available are
defined by the specific service that has been instantiated.

1.3.2.4 Dispatch Request (DSLR Two-Way Request)

The Dispatch Request message is sent by the client to call a function on a remote service. This is a
two-way request; the client waits for the server to send back the dispatch response (containing
the result of the call as well as any out parameters returned by the specific function). The request

messages available are defined by the specific service that has been instantiated.

1.4 Relationship to Other Protocols

DSLR does not rely on any specific protocol, except for whichever protocol defines the transport
used for the point-to-point connection.

Device Session protocols (for example, Device Session Monitoring Protocol [MS-DSMN]) and Device
Media protocols (for example, Device Media Control Protocol [MS-DMCT]) may build on DSLR.

1.5 Prerequisites/Preconditions

For DSLR services to function properly, it is only necessary that a reliable point-to-point connection

has been established between the client and the server, and the DSLR dispenser service has been
started on both sides of the connection. There are no prerequisites required before DSLR itself can
be instantiated.

1.6 Applicability Statement

DSLR is applicable to environments that require the ability to make function calls on and send

events to remote services (objects) over a reliable point-to-point channel.

1.7 Versioning and Capability Negotiation

This protocol has no specific capability negotiation or versioning aspects, aside from the following
considerations:

Services are identified by a globally unique identifier (GUID); furthermore, services of the same

type may be differentiated by class ID (also a GUID).

Versioning is achieved by adding services (or support for new services) identified by new GUIDs

(similar to COM interface versioning).

DSLR extensibility is achieved by:

Adding services: CreateService message on either side of the DSLR connection through a

unique GUID is analogous to the COM QueryInterface call.

Adding functions: DSLR services are backwards compatible as long as old functions are kept.

%5bMS-DSMN%5d.pdf
%5bMS-DMCT%5d.pdf

13 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1.8 Vendor-Extensible Fields

This protocol uses GUIDs, as specified in [MS-DTYP], to represent services. Each DSLR service is
defined by two GUIDS: a class ID and a service ID. Vendors are free to choose their own values for

these fields to define new DSLR services.

This protocol uses HRESULT values as defined in [MS-ERREF] section 2.1, as well as those defined in
this document, in section 2.2.2.5. Vendors can define their own HRESULT values, provided they set
the C bit (0x20000000) for each vendor-defined value, indicating that the value is a customer code.

1.9 Standards Assignments

None.

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

14 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2 Messages

2.1 Transport

DSLR can be implemented on top of any stream-based or message-based reliable transport.

2.2 Message Syntax

The DSLR protocol defines a tag-based message format. Each tag contains the payload size, the
payload, the child count, and the children's payloads.

A typical DSLR message consists of one tag with one child; that is, the Dispatcher Request or
Response tag and payload followed one child (consisting of the tag and payload for the specific
service request) with no children. Details of these tags and payloads are in the sections that follow.
See section 4.2 for a typical message layout.

Note that the network byte order for all numeric data in all DSLR messages (both tags and

payloads) is big-endian. The high-order byte is the first to hit the wire.

2.2.1 Tag Format

The format for each DSLR tag is as follows:

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

PayloadSize

ChildCount Payload (variable)

...

Children (variable)

...

PayloadSize (4 bytes): An unsigned 32-bit integer. Length, in bytes, of the payload.

ChildCount (2 bytes): An unsigned 16-bit integer. Number of children payloads included in this
tag.

Payload (variable): Variable. The tag payload. Specific payload types and their contents are
described in the following sections.

Children (variable): Child tags (if applicable). Examples of DSLR child tags include the input
parameters for dispatcher request, and the result/out parameters for the dispatcher response.

These are also described in the following sections.

2.2.2 Messages

The following sections describe the tag payloads for each DSLR message.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

15 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.2.1 Dispatcher Request Tag Payload

The Dispatcher Request tag payload precedes all DSLR remote service request tags and payloads.
(DSLR service requests are children of the Dispatcher Request tag.) It includes all information

relevant to calling a remote function on a specific service: the type of request that is being made
(either a one-way event or two-way request), the service on which the request is being made, the
service-defined function to be called on the remote service, and a one-time unique request handle
to identify the specific request.

The format for the Dispatcher Request tag payload is as follows:

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

CallingConvention

RequestHandle

ServiceHandle

FunctionHandle

CallingConvention (4 bytes): An unsigned 32-bit integer that indicates the type of request
(either a two-way request or a one-way event). This field MUST be set to one of the following

values. (Note that for the dispenser service calls, CreateService and DeleteService, this value
MUST be dslrRequest. See sections 2.2.2.3 and 2.2.2.4 for more details about CreateService
and DeleteService.)

Value Meaning

dslrRequest

0x00000001

DSLR Two-Way Request

dslrOneWay

0x00000003

DSLR One-Way Event

RequestHandle (4 bytes): An unsigned 32-bit integer. A client allocated handle to uniquely
identify this specific request.

ServiceHandle (4 bytes): An unsigned 32-bit integer. The service handle that uniquely
identifies the service on which the request is being made. This service handle is allocated by
the client as part of the CreateService request. (Note that for the dispenser service calls,
CreateService, and DeleteService, this value MUST be 0x00000000, which is the service
handle for the dispenser service.

Value Meaning

DispenserHandle

0x00000000

Dispenser service handle. Used only for CreateService and

DeleteService messages exposed by the DSLR dispenser service.

GenericServiceHandle

0x00000001 —

0xFFFFFFFF

Generic DSLR service handle, generated by the DSLR client during the

CreateService message for a given service.

16 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

FunctionHandle (4 bytes): An unsigned 32-bit integer. Function handle for the specific
function being called on the remote service. This function handle is defined and exposed by

the remote service that corresponds to the specified ServiceHandle. (Note that for the
dispenser service calls, CreateService and DeleteService, these values MUST be 0x00000001

and 0x00000002 respectively.

Value Meaning

CreateService

0x00000001

Create remote service. Used by the DSLR dispenser service.

DeleteService

0x00000002

Delete remote service. Used by the DSLR dispenser service.

GenericFunctionHandle

0x0000000 —

0xFFFFFFFF

Function handle for the specific function, defined and exposed by the

DSLR service that corresponds to the specified ServiceHandle.

2.2.2.2 Dispatcher Response Tag Payload

The Dispatcher Response tag payload precedes all DSLR service response tags and payloads
returned from DSLR two-way service requests. (DSLR service responses are children of the
Dispatcher Response tag.) It includes all information relevant for receiving a response to a specific
service request: the type of request being that is made (in this case, the type of request is always a

response), and the one-time unique request handle that identifies the specific request to which the
response corresponds.

The format for the Dispatcher Response tag payload is as follows:

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

CallingConvention

RequestHandle

CallingConvention (4 bytes): An unsigned 32-bit integer. The type of request. This field MUST
be set to the following value.

Value Meaning

dslrResponse

0x00000002

DSLR Response

RequestHandle (4 bytes): An unsigned 32-bit integer. The request handle to which the
response corresponds. The request handle for each request is allocated by the client and

passed to the server in the Dispatcher Request tag payload.

2.2.2.3 CreateService Message Payload

The purpose of the CreateService message is to allow a client to instantiate a remote service, and

the message payload contains all information needed to that end: the class ID and service ID that

17 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

describe the service to be instantiated, and a client-generated service handle that will be used to
uniquely identify this service for the life of the DSLR session.

As the CreateService message is a function exposed by the DSLR built-in dispenser service, it
follows the same convention as would a call on an application-defined DSLR remote service call. The

message tag and payload is a child of the DSLR Dispatch Request tag defined in section 2.2.1, and
includes the input parameters for the CreateService function call.

CreateService MUST be called before invoking any remote function calls (dispatch requests) or

sending any events (dispatch events).

CreateService is a 2-way request message, so the CallingConvention parameter in the Dispatch

Request tag MUST be dslrRequest (0x00000001).

CreateService is a call on the dispenser service, so the ServiceHandle parameter in the Dispatch

Request tag MUST be DispenserHandle (0x00000000).

The FunctionHandle parameter in the Dispatch Request tag for CreateService MUST be

CreateService (0x00000001).

The format for the CreateService message payload (the CreateService function's input parameters)

is as follows:

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ClassID

...

...

...

ServiceID

...

...

...

ServiceHandle

ClassID (16 bytes): A GUID that represents the Class ID for the service being created. The

DSLR wire format for the GUID can be found in section 2.2.2.6.

ServiceID (16 bytes): A GUID that represents the Service ID for the service being created.

The DSLR wire format for the GUID can be found in section 2.2.2.6.

ServiceHandle (4 bytes): An unsigned 32-bit integer. The service handle that identifies the
service being created. The service handle is allocated by the client to uniquely identify the

18 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

service being created in this CreateService call, and is used in each subsequent request on the
newly created remote service.

See section 2.2.2.5 for the format of the Response payload for the CreateService message.

2.2.2.4 DeleteService Message Payload

The purpose of the DeleteService message is to allow a client to shut down a previously instantiated
remote service, and the message payload contains all information needed to that end: the service
handle (allocated by the CreateService message) that uniquely identifies the service to be shut
down.

As the DeleteService message is a function exposed by the DSLR built-in dispenser service, it
follows the same convention as would a call on an application-defined DSLR remote service call. The

message tag and payload is a child of the DSLR Dispatch Request tag defined in section 2.2.1, and
includes the input parameters for the DeleteService function call.

The client MUST NOT invoke any remote function calls (dispatch requests) after calling

DeleteService.

DeleteService is a two-way request message, so the CallingConvention parameter in the Dispatch

Request tag MUST be dslrRequest (0x00000001).

DeleteService is a call on the dispenser service, so the service handle parameter in the Dispatch

Request tag MUST be DispenserHandle (0x00000000).

The function handle parameter in the Dispatch Request tag for DeleteService MUST be

DeleteService (0x00000002).

The format for the DeleteService message payload (the DeleteService function's input parameters)

is as follows:

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ServiceHandle

ServiceHandle (4 bytes): An unsigned 32-bit integer. The unique service handle that identifies
the service to be shut down. This service handle is allocated by the client and passed to the

service through the CreateService call.

See the following section about the format of the Response payload for the DeleteService message.

2.2.2.5 Response Payload for CreateService and DeleteService Messages

The CreateService and DeleteService messages are both two-way DSLR requests, and as such,
follow the same convention as would any application-defined, DSLR two-way service request. The
message response tag and payload is a child of the DSLR dispatch response tag defined in section

2.2.2.2, and includes the result of the function call and any output parameters returned by the
function (neither CreateService nor DeleteService have any output parameters, so only the result is
returned).

The CallingConvention parameter in the dispatch response tag for CreateService and DeleteService
MUST be dslrResponse (0x00000002).

19 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The format for the CreateService and DeleteService Response payload (the return value from the
function call) is as follows:

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Result

Result (4 bytes): An unsigned 32-bit integer. HRESULT returned from function call.

The following error codes MAY be returned in the response payload for both the CreateService
and DeleteService messages, as well as by any application defined remote services (see
section 2.2.2.7, Generic Service Response Payload).

Facility:

Value Meaning

FACILITY_DSLR

0x8817

Facility for all DSLR HRESULT errors.

Generic Error Codes:

Value Meaning

DSLR_E_OUTOFMEMORY

0x8817000e

Ran out of memory.

DSLR_E_INVALIDARG

0x88170057

One or more arguments are invalid.

DSLR_E_POINTER

0x88174003

Invalid pointer.

DSLR_E_FAIL

0x88174005

Unspecified error.

DSLR_E_UNEXPECTED

0x8817ffff

Catastrophic failure.

Dispenser-Specific Error Codes:

Value Meaning

DSLR_E_PROXYNOTFOUND

0x88170100

Cannot find a proxy for this service.

DSLR_E_STUBNOTFOUND

0x88170101

Cannot find a stub for this service.

DSLR_E_INVALIDSETTINGS

0x88170102

Invalid DSLR settings.

Serializer/Deserializer-Specific Error Codes:

20 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

DSLR_E_CHILDCOUNT

0x88170103

Tag has too many children.

DSLR_E_INVALIDFUNCTION

0x88170104

Unknown function.

DSLR_E_TOOLONG

0x88170105

The tag's payload is too long.

Dispatcher-Specific Error Codes:

Value Meaning

DSLR_E_OUTOFHANDLES

0x88170106

No more request handles are available.

DSLR_E_SERVICERELEASED

0x88170107

The service was released.

DSLR_E_INVALIDCALLCONVENTION

0x88170108

Unsupported calling convention.

DSLR_E_INVALIDREQUESTHANDLE

0x88170109

Invalid request handle.

DSLR_E_INVALIDSTUBHANDLE

0x8817010a

Invalid stub handle.

DSLR_E_ABORT

0x8817010b

DSLR operation aborted.

Transport Specific Error Codes:

Value Meaning

DSLR_E_INVALIDOPERATION

0x8817010c

Invalid operation.

DSLR_E_INVALIDTAGOPERATION

0x8817010d

Invalid operation on this tag.

DSLR_E_TAGHASNOMORECHILDREN

0x8817010e

There are no more children to this tag.

DSLR_E_TAGSEEKERROR

0x8817010f

Tag operation is out of bounds.

DSLR_E_SENDBUFFERTOOSMALL

0x88170110

Buffer is too small for this tag.

DSLR_E_DISCONNECTED

0x88170111L

The transport was disconnected unexpectedly.

The CreateService and DeleteService messages have no additional out parameters.

21 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.2.6 Generic Service Request Payload

The purpose of the DSLR protocol is to allow DSLR consumers to define remote services and
requests (or function calls) on those services. To that end, all DSLR service requests follow the same

convention. The message tag and payload is a child of the DSLR Dispatch Request tag defined in
section 2.2.2.1, and includes the input parameters for the specific function being called.

The format for a generic service request message payload (the function's input parameters) is as
follows:

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SerializedArgument_1 (variable)

...

SerializedArgument_N (variable)

...

SerializedArgument_1 (variable): Input parameter for a specific function being called on the
remote service. This parameter is defined by the service.

SerializedArgument_N (variable): Additional input parameters for a specific function being

called on the remote service. These parameters are defined by the service.

Any of the following data types are valid input and output parameters for DSLR functions:

BYTE (1 byte): One byte of data.

0 1 2 3 4 5 6 7

BYTE

WORD (2 bytes): An unsigned 16-bit integer.

0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5

WORD

DWORD (4 bytes): An unsigned 32-bit integer.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

DWORD

DWORD64 (8 bytes): An unsigned 64-bit integer.

22 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

DWORD64

...

GUID (16 bytes): 16 byte GUID. Consists of DWORD (4 bytes, unsigned 32-bit integer), Data1
(Big-Endian byte order), WORD (2 bytes, unsigned 16-bit integer), Data2 (Big-Endian byte order),
WORD (2 bytes, unsigned 16-bit integer), Data3 (Big-Endian byte order), and Data4 =8 bytes
field.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Data1

Data2 Data3

Data4

...

Utf8Str (variable): Variable. Consists of a DWORD-length byte array of UTF-8 string data. The
number of bytes in the Data field is equal to the value of the Length field.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Length

Data (variable)

...

Blob (variable): Variable. Consists of DWORD length (Big-Endian byte order), byte array of

arbitrary data. The number of bytes in the Data field is equal to the value of the Length field.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Length

Data (variable)

...

23 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.2.7 Generic Service Response Payload

All DSLR two-way service requests follow the same convention for their responses. The message tag
and payload is a child of the DSLR dispatch response tag defined in section 2.2.2.2 and includes the

result of the function call and any output parameters returned by the function.

The format for a generic service response message payload (the function's return value and output
parameters, if any) is as follows:

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Result

SerializedArgument_1 (variable)

...

SerializedArgument_N (variable)

...

Result (4 bytes): An unsigned 32-bit integer containing the HRESULT returned from the
function call. This can be any of the pre-defined DSLR error codes (see section 2.2.2.5) or a
service-defined set of HRESULT codes.

SerializedArgument_1 (variable): An out argument (if any) if the call was successful. This
parameter is defined by the service. See section 2.2.2.6 about valid data types for out
parameters.

SerializedArgument_N (variable): Additional out arguments (if any) if the call was

successful. These parameters are defined by the service. See section 2.2.2.6 about valid data
types for out parameters.

24 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3 Protocol Details

As previously stated, DSLR is direction agnostic. In other words, a machine or a device can be either
a client (which implements a proxy that makes calls on a remote service) or a server (which
implements a remote service), depending on the specific service implementation. Either side of the
DSLR connection can act as a client, a server, or both.

3.1 Client Details (Remote/Proxy Side of the DSLR Connection)

The client (remote/proxy) side of the DSLR connection is responsible for calling CreateService to

create the remote service on the server; then for sending dispatcher requests and receiving
dispatcher responses (for two-way requests). When the service is no longer needed, the client calls
DeleteService to clean up the service on the remote side.

The DSLR client has the following states, as illustrated in the following figure:

Figure 3: DSLR client state diagram

Start state: The client is ready to create proxies for remote services. The following event is
processed in this state:

CreateService

Accepting Requests: The client has called CreateService to instantiate the service on the server,
and is ready to accept requests to send to that service. The following events are processed in this
state:

DSLR One-Way Event

DSLR Two-Way Request

DeleteService

Sending Request: The client is sending either a DSLR one-way event or two-way request to the
remote service. No events are processed in this state. The client either transitions from this state to

Accepting Requests or Receiving Response, depending on the request type.

25 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Receiving Response: The client is receiving a response for a two-way request that has been sent
to the server. The following event is processed in this state:

Response Received

Finish state: The client has called DeleteService to clean up the remote service. No events are
processed in this state.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

The DSLR client abstract data model includes the following data:

ProxyCreatorTable: The proxy creator function for a given service (identified by a service
GUID) is provided by the application at initialization. The client dispenser maintains a table
that maps each service GUID to its proxy creator function. When the application requests that
a remote service be instantiated, the DSLR client calls the appropriate proxy creator function

to create the proxy for the newly created remote service.

ConnectedEvent: This is an optional event provided by the application at initialization.
Whenever the transport is connected, it notifies its dispatcher, which in turn sets the connect
event maintained by the DSLR client dispenser, if specified at initialization.

DisconnectedEvent: This is an optional event provided by the application at initialization.
Whenever the transport is disconnected, it notifies its dispatcher, which in turn sets the
disconnect event maintained by the DSLR client dispenser, if specified at initialization.

ServiceHandle: The proxy created for a remote service maintains a service handle for the
specific service. This handle is allocated when the dispenser's CreateService function is called

to instantiate a remote service, and is thereafter used to issue requests on that service.

RequestTable: The DSLR client dispatcher maintains a table for each service request made by
the application. It maps the request handle allocated at the time of the request to the tag
(containing the Dispatcher Request tag and service function input parameters) that will be

sent to the service. When a response is received (for a two-way request), the DSLR client
dispatcher retrieves the out tag for the specific request, and returns it to the proxy.

3.1.2 Timers

None.

3.1.3 Initialization

On startup, DSLR performs the following initialization:

1. The transport, dispenser, and dispatcher are created.

2. The dispatcher is bound to the transport (it adds itself as a transport sink).

3. The dispenser is started, and adds itself as the first service, with two exposed functions:
CreateService and DeleteService.

26 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4. The transport has started.

In addition, the client initializes a mapping between the service GUID for each remote service it will
use, and the proxy creation method required to instantiate the proxy for each remote service.
Optionally, the client can register to receive notification when the transport for the services has

been either connected, disconnected, or both.

3.1.4 Higher-Layer Triggered Events

The DSLR client is driven by applications calling CreateService to create the service on the remote
side, and then by an application calling functions on that service. The application is also responsible
for calling DeleteService to clean up the remote service.

3.1.5 Processing Events and Sequencing Rules

The following sections describe the states and events outlined in 3.1.

3.1.5.1 CreateService

When initialization and startup is complete, the client sends the CreateService message to the
server to instantiate the service on the server, and also creates a proxy for that service (an object
that implements the proxied service's interfaces). As part of the CreateService request, the client

allocates a service handle that is sent to the server, and is subsequently used when calling functions
on the service.

If the CreateService event occurs while the client is in the Start state, the client moves into the
Accepting Requests state and returns S_OK (0x00000000). Otherwise, the client returns an
appropriate error code from the set of DSLR error codes defined in section 2.2.2.5.

The flow for CreateService is diagrammed in the following figure:

27 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 4: CreateService flow diagram

3.1.5.2 Service Requests

When the remote service has been instantiated, the client then calls functions on the service (one-
way events and two-way requests), and waits for responses for any two-way requests.

The flow for calling remote functions is diagrammed in the following figure:

28 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 5: Flow diagram for calling remote functions

3.1.5.2.1 One-Way Events

If this event occurs while the client is in the Accepting Requests state, the client moves into the
Sending Request state and sends the request to the server. Otherwise, the event is queued until the
client returns to the Accepting Requests state. (See figure in section 3.1.)

29 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

When the event has been sent to the server, the client returns to the Accepting Requests state. The
return value is from the server is S_OK (0x00000000), or an appropriate error code from the set of

DSLR error codes defined in section 2.2.2.5.

3.1.5.2.2 Two-Way Requests

If this event occurs while the client is in the Accepting Requests state, the client moves into the
Sending Request state and sends the request to the server. Otherwise, the event is queued until the
client returns to the Accepting Requests state. (See figure in section 3.1.)

When the event has been sent to the server, the client moves to the Receiving Response state. The
client returns to the Accepting Requests state when the response has been received. The return
value is the one received from the server, or an appropriate error code from the set of DSLR error

codes defined in section 2.2.2.5.

3.1.5.3 DeleteService

When the client no longer needs to make requests on the remote service, it sends the DeleteService
message to the server to clean up the remote service. Clean up on the server entails removing the
service handle from the set of currently instantiated remote services, and setting the Disconnect

event (if one is specified at initialization). The result is that no more requests can be made on the
remote service. (See figure in section 3.1.)

If this event occurs while the client is in the Accepting Requests state, the client MUST move to
Finish state and return S_OK(0x00000000). Otherwise, the client returns an appropriate error code
from the set of DSLR error codes defined in section 2.2.2.5.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

3.1.7.1 OnConnected

When the transport is connected, it notifies its dispatcher, which in turn calls the dispenser's connect
callback (if provided at initialization).

3.1.7.2 OnDisconnected

When the transport is disconnected it notifies its dispatcher, which in turn calls the dispenser's
disconnect callback (if provided at initialization).

3.2 Server Details (Local/Stub Side of DSLR Connection)

After CreateService has been called by a client, the server side of the DSLR is responsible for

receiving dispatcher requests, executing the function calls for those requests, and sending
dispatcher responses with the result of the function calls for that client. The server stops processing

its requests when a client has called DeleteService.

The DSLR server has the following states, as illustrated in the following figure:

30 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 6: DSLR server state diagram

Start state: The server is ready to instantiate services. The following message is processed in this
state:

CreateService

Accepting Messages: The server has received the CreateService message to instantiate the

service, and is ready to accept requests on that service. The following events are processed in this
state:

DSLR One-Way Event

DSLR Two-Way Request

DeleteService

Processing Message: The server is executing a one-way event or two-way request received from
the client, including sending the response for two-way requests. The following event is processed in
this state:

Message Processed

Finish state: The server has received the DeleteService message and cleaned up the remote
service. No events are processed in this state.

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

The DSLR server abstract data model includes the following data:

ServiceCreator: The service creator function is provided by the application at initialization. When
the CreateService message is received from the client, the DSLR service dispenser calls this function
(with the provided class ID and service ID) to create the service specified by these GUIDs.

31 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

StubTable: The stub function for a given service (identified by a service GUID) is provided by the
application at initialization. The service dispenser maintains a table mapping each service GUID to

its stub function. When the client application requests that a remote service be created through the
CreateService message, the DSLR server uses this table to determine the stub function for the

specified service.

ConnectedEvent: This is an optional event provided by the application upon initialization of each
service, including the dispenser service. Whenever the transport is connected it notifies its
dispatcher, which in turn sets the connect event for each registered service (including the
dispenser), if specified at initialization.

DisconnectedEvent: This is an optional event provided by the application upon initialization of
each service, including the dispenser service. Whenever the transport is disconnected it notifies its

dispatcher, which in turn sets the disconnect event for each registered service (including the
dispenser), if specified at initialization.

ServiceTable: The DSLR service dispatcher maintains a table for each service created through
CreateService. It maps the client provided service handle to the stub function specified at

initialization for a given service GUID.

3.2.2 Timers

None.

3.2.3 Initialization

On startup, DSLR performs the following initialization on the server:

1. The transport, dispenser, and dispatcher are created.

2. The dispatcher is bound to the transport by adding itself as a transport sink.

3. The dispenser is started, and adds itself as the first service, with two exposed functions:
CreateService and DeleteService.

4. The transport has started.

In addition, the server initializes a mapping between its service GUIDs and both of the service
creation methods required to instantiate the services, as well as the stubs responsible for processing
service requests. Optionally, the service can register to receive notification when the transport for
the services has been either connected or disconnected, or both.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Processing Events and Sequencing Rules

The following sections describe the states and events outlined in section 3.2.1.

3.2.5.1 CreateService

When initialization and startup are complete, the server waits for the client to call CreateService to
instantiate the service. When the CreateService message is received, the server calls the service
creator function to create the service, and adds the newly created service to the list of instantiated
local services. The provided service handle is then mapped to the stub function that was mapped to

32 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

the service GUID at initialization and startup. This new mapping is then used to call local service
functions in response to remote requests.

If the CreateService event occurs while the server is in the Start state, the server moves into the
Accepting Messages state, and the server returns S_OK (0x00000000). Otherwise, the server

returns an appropriate error code from the set of DSLR error codes defined in section 2.2.2.5.

The flow for CreateService is diagrammed in the following figure:

Figure 7: CreateService flow diagram

33 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.2.5.2 Service Requests

When the remote service has been instantiated, the server then waits for the client to issue service
requests on the service. When it receives such requests, the server executes the service requests

and sends responses for two-way requests.

The flow for processing function calls is diagrammed in the following figure:

Figure 8: Flow diagram for processing function calls

34 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.2.5.2.1 One-Way Events

If this event occurs while the server is in the Accepting Messages state, the server moves into the
Processing Message state and processes the one-way event. Otherwise, the event is queued until

the server returns to the Accepting Messages state. (See figure in section 3.1.)

Once the event message has been processed (the local function has been called), the client returns
to the Accepting Messages state. The return value is S_OK (0x00000000), or an appropriate error
code from the set of error codes defined in section 2.2.2.5.

3.2.5.2.2 Two-Way Requests

If this event occurs while the server is in the Accepting Messages state, the server moves into the

Accepting Messages state and processes the two-way request. Otherwise, the event is queued until
the server returns to the Accepting Messages state. (See figure in section 3.1.)

When the request message has been processed (the local function has been called, and the return
value and out parameters sent back to the client), the server returns to the Accepting Messages

state. The return value is the result of the function call, or an appropriate error code from the set of
error codes defined in section 2.2.2.5.

3.2.5.3 DeleteService

Once the server receives the DeleteService message from the client, it stops processing service
requests and cleans up the service. (See figure in section 3.1.)

If this event occurs while the server is in the Accepting Messages state, the client MUST move to
Finish state and return S_OK(0x00000000). Otherwise, the client returns an appropriate error code
from the set of error codes defined in section 2.2.2.5.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

3.2.7.1 OnConnected

When the transport is connected it notifies its dispatcher, which in turn sets the connect event for
each registered service (including the dispenser service), if specified at initialization.

3.2.7.2 OnDisconnected

When the transport is disconnected it notifies its dispatcher, which in turn sets the disconnect event
for each registered service (including the dispenser service), if specified at initialization.

35 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4 Protocol Examples

4.1 Typical DSLR Session

The following diagram shows a typical DSLR session for a given remote service:

Figure 9: Typical DSLR session

1. The client sends the CreateService message to the server. The server creates the remote service
specified by the class ID and service ID.

2. The server returns S_OK (0x00000000) if the service was created successfully; otherwise, it
returns an appropriate error code.

3. The client calls a one-way event on the remote service.

4. The client calls a two-way request on the remote service.

5. The service returns the result of the two-way request, and any out parameters for the specific
request.

6. The client sends the DeleteService message to the server. The server cleans up the remote
service specified service handle.

36 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

7. The server returns S_OK(0x00000000) if the service was deleted successfully; otherwise, it
returns an appropriate error code.

4.2 Typical DSLR Message

The following is a sample of a typical DSLR message: the Dispatcher Request tag and payload,
followed by one child, the CreateService tag and payload (the CreateService input parameters). A
DSLR service-defined function follows this same format, replacing ServiceHandle with the handle
that uniquely defines the service, FunctionHandle with the handle that uniquely defines the function,
and the CreateService payload/input parameters with the function-specific payload/input
parameters.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

PayloadSize = 0x00000010

ChildCount = 0x00000001 CallingConvention = dslrRequest (0x00000001)

... RequestHandle = (allocated by client)

... ServiceHandle = DispenserHandle (0x00000000)

... FunctionHandle = CreateService (0x00000001)

... Payload Size = 0x00000024

... ChildCount = 0x00000000

ClassID (defined by service)

...

...

...

ServiceID (defined by service)

...

...

...

ServiceHandle (allocated by client)

37 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

5 Security

5.1 Security Considerations for Implementers

The DSLR framework is security neutral. Security and privacy must be implemented and enforced in
the transport layer. Possible transport layers include, but are not limited to, TCP and RDP Virtual
Channels.

5.2 Index of Security Parameters

None.

38 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Extenders for Windows Media Center

Windows Vista operating system

Windows 7 operating system

Windows 8 operating system

Windows 8.1 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

39 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

40 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

8 Index

A

Abstract data model
client 25
server 30

Applicability 12

C

Capability negotiation 12
Change tracking 39
Client

abstract data model 25
higher-layer triggered events 26
initialization 25
local events

OnConnected 29
OnDisconnected 29

message processing 26
overview 24
sequencing rules 26
timer events 29
timers 25

CreateService event 31
CreateService_Message_Payload packet 16

D

Data model - abstract
client 25
server 30

DeleteService event 34

DeleteService Message Payload packet 18
Dispatcher_Request_Tag_Payload packet 15
Dispatcher_Response_Tag_Payload packet 16

E

Examples - overview 35

F

Fields - vendor-extensible 13

G

Generic_Service_Request packet 21
Generic_Service_Response_Payload packet 23
Glossary 6

H

Higher-layer triggered events
client 26
server 31

I

Implementer - security considerations 37

Index of security parameters 37
Informative references 7
Initialization

client 25
server 31

Introduction 6

L

Local events
client

OnConnected 29
OnDisconnected 29

proxy
OnConnected 34
OnDisconnected 34

M

Message processing
client 26
server 31

Messages
CreateService message 11
DeleteService message 12
Dispatch Event message 12
Dispatch Request message 12
overview 11
transport 14

N

Normative references 7

O

OSI layers
deserializer - presentation layer 9
dispatcher - session layer 10
dispenser - application layer 9
overview 8
proxy code - remote 10
serializer - presentation layer 9
stub code - local 10
tags - transport layer 11
transport - transport layer 11

Overview (synopsis) 7

P

Parameters - security index 37
Preconditions 12
Prerequisites 12
Product behavior 38
Proxy

local events
OnConnected 34
OnDisconnected 34

41 / 41

[MS-DSLR] — v20140502
 Device Services Lightweight Remoting Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

R

References
informative 7
normative 7

Relationship to other protocols 12
Response_Payload_for_CreateService_and_DeleteS

ervice_Messages packet 18

S

Security
implementer considerations 37
parameter index 37

Sequencing rules

client 26
server 31

Server
abstract data model 30
CreateService event 31
DeleteService event 34
higher-layer triggered events 31
initialization 31
message processing 31
one-way events 34
overview 29
sequencing rules 31
service requests 33
timer events 34
timers 31
two-way requests 34

Standards assignments 13

T

Tag_Format packet 14
Timer events

client 29
server 34

Timers
client 25
server 31

Tracking changes 39
Transport 14
Triggered events - higher-layer

client 26
server 31

V

Vendor-extensible fields 13
Versioning 12

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 DSLR OSI Layers
	1.3.1.1 Dispenser (Application Layer)
	1.3.1.2 Serializer/Deserializer (Presentation Layer)
	1.3.1.2.1 Proxy Code (Remote)
	1.3.1.2.2 Stub Code (Local)

	1.3.1.3 Dispatcher (Session Layer)
	1.3.1.4 Transport/Tags (Transport Layer)

	1.3.2 DSLR Messages
	1.3.2.1 CreateService
	1.3.2.2 DeleteService
	1.3.2.3 Dispatch Event (DSLR One-Way Request)
	1.3.2.4 Dispatch Request (DSLR Two-Way Request)

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Tag Format
	2.2.2 Messages
	2.2.2.1 Dispatcher Request Tag Payload
	2.2.2.2 Dispatcher Response Tag Payload
	2.2.2.3 CreateService Message Payload
	2.2.2.4 DeleteService Message Payload
	2.2.2.5 Response Payload for CreateService and DeleteService Messages
	2.2.2.6 Generic Service Request Payload
	2.2.2.7 Generic Service Response Payload

	3 Protocol Details
	3.1 Client Details (Remote/Proxy Side of the DSLR Connection)
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Processing Events and Sequencing Rules
	3.1.5.1 CreateService
	3.1.5.2 Service Requests
	3.1.5.2.1 One-Way Events
	3.1.5.2.2 Two-Way Requests

	3.1.5.3 DeleteService

	3.1.6 Timer Events
	3.1.7 Other Local Events
	3.1.7.1 OnConnected
	3.1.7.2 OnDisconnected

	3.2 Server Details (Local/Stub Side of DSLR Connection)
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Processing Events and Sequencing Rules
	3.2.5.1 CreateService
	3.2.5.2 Service Requests
	3.2.5.2.1 One-Way Events
	3.2.5.2.2 Two-Way Requests

	3.2.5.3 DeleteService

	3.2.6 Timer Events
	3.2.7 Other Local Events
	3.2.7.1 OnConnected
	3.2.7.2 OnDisconnected

	4 Protocol Examples
	4.1 Typical DSLR Session
	4.2 Typical DSLR Message

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

