

1 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MS-DRMND-Diff]:

Windows Media Digital Rights Management (WMDRM):
Network Devices Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this

documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.

However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the

associated patents, visit the Patent Map.
▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
.www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

4/23/2010 0.1 Major First Release.

6/4/2010 0.1.1 Editorial Changed language and formatting in the technical content.

7/16/2010 1.0 Major Updated and revised the technical content.

8/27/2010 2.0 Major Updated and revised the technical content.

10/8/2010 3.0 Major Updated and revised the technical content.

11/19/2010 4.0 Major Updated and revised the technical content.

1/7/2011 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 4.1 Minor Clarified the meaning of the technical content.

9/23/2011 4.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 5.0 Major Updated and revised the technical content.

3/30/2012 5.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 5.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 5.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 6.0 Major Updated and revised the technical content.

8/8/2013 7.0 Major Updated and revised the technical content.

11/14/2013 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 8.0 Major Significantly changed the technical content.

10/16/2015 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 9.0 Major Significantly changed the technical content.

3 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Date
Revision
History

Revision
Class Comments

6/1/2017 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Table of Contents

1 Introduction .. 8
1.1 Glossary ... 8
1.2 References .. 13

1.2.1 Normative References ... 13
1.2.2 Informative References ... 15

1.3 Protocol Overview (Synopsis) .. 15
1.4 Relationship to Other Protocols .. 16
1.5 Prerequisites/Preconditions ... 16
1.6 Applicability Statement ... 16
1.7 Versioning and Capability Negotiation ... 16
1.8 Vendor-Extensible Fields ... 16
1.9 Standards Assignments ... 17

2 Messages ... 18
2.1 Transport .. 18

2.1.1 Protocol Mappings ... 18
2.1.1.1 UPnP Mapping .. 18

2.1.1.1.1 Authorization .. 18
2.1.1.1.1.1 Receivers .. 18
2.1.1.1.1.2 Transmitters ... 19

2.1.1.1.2 Registration .. 19
2.1.1.1.2.1 Receivers .. 19
2.1.1.1.2.2 Transmitters ... 19

2.1.1.1.3 Error Codes .. 20
2.1.1.2 HTTP Mappings ... 20

2.1.1.2.1 Framing Headers ... 20
2.1.1.2.2 License Retrieval ... 21

2.1.1.2.2.1 Receivers .. 21
2.1.1.2.2.2 Transmitters ... 21

2.1.1.2.3 License Update .. 22
2.1.1.2.3.1 Receivers .. 22
2.1.1.2.3.2 Transmitters ... 22

2.1.1.2.4 Revocation List Update ... 22
2.1.1.2.4.1 Receivers .. 23
2.1.1.2.4.2 Transmitters ... 23

2.1.1.2.5 Data Transfer .. 23
2.1.1.2.5.1 Common Data Transfer Rules .. 23
2.1.1.2.5.2 MPEG-2 Transport Streams ... 24
2.1.1.2.5.3 MPEG-2 Elementary Streams ... 24
2.1.1.2.5.4 Windows Media-based Content .. 24
2.1.1.2.5.5 File Contents ... 24
2.1.1.2.5.6 Other Content Types .. 24

2.1.1.2.6 Error Codes .. 25
2.1.1.3 RTSP Mappings ... 25

2.1.1.3.1 License Retrieval ... 25
2.1.1.3.1.1 Receivers .. 25
2.1.1.3.1.2 Transmitters ... 26

2.1.1.3.2 License Updates .. 26
2.1.1.3.2.1 Receivers .. 26
2.1.1.3.2.2 Transmitters ... 27

2.1.1.3.3 Revocation List Update ... 27
2.1.1.3.3.1 Receivers .. 27
2.1.1.3.3.2 Transmitters ... 27

2.1.1.3.4 Error Codes .. 28
2.1.1.3.5 Data Transfer .. 28

5 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.1.1.3.5.1 MPEG-2 Transport Streams ... 28
2.1.1.3.5.2 MPEG-2 Elementary Streams ... 28
2.1.1.3.5.3 Windows Media-based Content .. 28
2.1.1.3.5.4 Other Content Types .. 29

2.1.1.3.6 RTP Encapsulation of MPEG-2 Elementary Streams 30
2.1.1.3.7 Delivering encrypted MPEG-2 ES payloads .. 31
2.1.1.3.8 SDP Description .. 32

2.1.1.4 OpenCable Digital Receiver Interface Mappings ... 32
2.1.1.4.1 Registration .. 32
2.1.1.4.2 Proximity Detection ... 33
2.1.1.4.3 License Retrieval ... 33
2.1.1.4.4 License Update .. 33
2.1.1.4.5 Revocation ... 33

2.1.1.5 Media Transfer Protocol (MTP) over USB Mappings 33
2.1.1.5.1 Establishing a Connection ... 34
2.1.1.5.2 Registration .. 34
2.1.1.5.3 Proximity Detection ... 34
2.1.1.5.4 Establishing a Media Session and Retrieving a License 35
2.1.1.5.5 Retrieving Content Data Using a Media Session 35
2.1.1.5.6 Terminating a Session .. 35

2.1.1.6 PBDA Mappings... 36
2.1.1.6.1 Registration .. 36
2.1.1.6.2 Proximity Detection ... 36
2.1.1.6.3 Revocation ... 36
2.1.1.6.4 Authenticated Commands ... 36

2.2 Message Syntax ... 37
2.2.1 Registration ... 37

2.2.1.1 Registration Request Message .. 37
2.2.1.2 Registration Response Message .. 38

2.2.1.2.1 Transport Protocol: Transport-specific Metadata 40
2.2.1.3 Proximity Detection ... 40

2.2.1.3.1 The Proximity Start Message ... 41
2.2.1.3.2 The Proximity Challenge Message .. 41
2.2.1.3.3 The Proximity Response Message .. 42
2.2.1.3.4 The Proximity Result Message ... 43

2.2.1.4 License Retrieval ... 44
2.2.1.4.1 The License Request Message ... 44
2.2.1.4.2 The License Response Message ... 45
2.2.1.4.3 The License Update Message ... 46

2.2.1.5 Revocation Lists .. 47
2.2.1.5.1 Revocation Information Version Structure ... 47
2.2.1.5.2 Revocation List Version Information Record .. 49
2.2.1.5.3 Certificate Revocation Lists ... 49

2.2.1.6 Revocation List Update .. 51
2.2.1.6.1 The Revocation List Request Message .. 51
2.2.1.6.2 The Revocation List Response Message .. 52

2.2.1.7 Authenticated Commands .. 53
2.2.1.7.1 The Authenticated Command Message ... 53
2.2.1.7.2 The Authenticated Command Response Message 54

2.2.2 MTP Vendor Extension Identification Message ... 56
2.3 Protocol Error Codes ... 57
2.4 Common Requirements ... 58

2.4.1 Cryptographic Semantics ... 58
2.4.2 Cryptographic Requirements for Receivers ... 58
2.4.3 Cryptographic Requirements for Transmitters ... 59
2.4.4 Requirements for Receivers ... 59
2.4.5 Requirements for Transmitters ... 59

6 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Protocol Details ... 61
3.1 Common Details .. 61

3.1.1 Abstract Data Model .. 61
3.1.1.1 Overview ... 61
3.1.1.2 Authorization .. 62
3.1.1.3 Registration and Revalidation ... 62
3.1.1.4 Proximity Detection ... 64
3.1.1.5 License Retrieval ... 64
3.1.1.6 Data Transfer ... 66
3.1.1.7 License Management ... 66

3.1.2 Timers .. 67
3.1.3 Initialization ... 67
3.1.4 Higher-Layer Triggered Events ... 67
3.1.5 Message Processing Events and Sequencing Rules .. 68

3.1.5.1 Data Encoding and Decoding .. 68
3.1.5.2 Content Encryption.. 68

3.1.5.2.1 Content Encryption for AES in Counter Mode 68
3.1.5.2.2 Bulk AES Counter Mode .. 69
3.1.5.2.3 The Data Segment Descriptor ... 70
3.1.5.2.4 Transport Stream .. 71
3.1.5.2.5 Transmitter Bulk Mode AES Block usage ... 71
3.1.5.2.6 Streaming AES Counter Mode ... 71

3.1.5.2.6.1 AES Payloads .. 72
3.1.5.2.7 MPEG-2 Transport Stream Content .. 73
3.1.5.2.8 MPEG-2 Elementary Stream Content .. 78
3.1.5.2.9 ASF Sample Encryption Mode .. 79
3.1.5.2.10 ASF Header Parsing ... 79
3.1.5.2.11 Link Encryption Mode ... 80

3.2 Receiver Details ... 81
3.2.1 Abstract Data Model .. 81

3.2.1.1 Overview ... 81
3.2.2 Timers .. 82
3.2.3 Initialization ... 82
3.2.4 Higher-Layer Triggered Events ... 82
3.2.5 Message Processing Events and Sequencing Rules .. 82

3.2.5.1 Registration Details ... 82
3.2.5.2 Proximity Detection Details .. 82
3.2.5.3 License Retrieval Details .. 83
3.2.5.4 Data Transfer Details ... 84
3.2.5.5 License Management ... 84

3.2.5.5.1 Using License Chains ... 84
3.2.5.5.2 License Management using License Derivation Data 84

3.2.5.6 Revocation List Update Details .. 84
3.2.6 Timer Events .. 85
3.2.7 Other Local Events .. 85

3.3 Transmitter Details ... 85
3.3.1 Abstract Data Model .. 85

3.3.1.1 Overview ... 85
3.3.2 Timers .. 86
3.3.3 Initialization ... 86
3.3.4 Higher-Layer Triggered Events ... 86
3.3.5 Message Processing Events and Sequencing Rules .. 86

3.3.5.1 Registration Details ... 86
3.3.5.2 Proximity Detection ... 87
3.3.5.3 License Retrieval Details .. 87
3.3.5.4 Data Transfer Details ... 88
3.3.5.5 License Management ... 88

3.3.5.5.1 License Management using License Chains ... 88

7 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.3.5.5.2 License Management using License Derivation Data 89
3.3.5.5.3 License Management for Copy-Never Content 89

3.3.5.6 Revocation List Updates ... 89
3.3.6 Timer Events .. 89
3.3.7 Other Local Events .. 89

3.4 schemas-opencable-com:1 Service Model Details ... 89
3.4.1 Abstract Data Model .. 89

3.4.1.1 State Variables ... 89
3.4.2 Timers .. 90
3.4.3 Initialization ... 90
3.4.4 Message Processing Events and Sequencing Rules .. 90

3.4.4.1 Service Model Definitions ... 90
3.4.4.1.1 Service Type ... 90
3.4.4.1.2 State Variables .. 91

3.4.4.2 Actions .. 91
3.4.4.2.1 ProcessRegistrationChallenge .. 92
3.4.4.2.2 ProcessLicenseChallenge .. 92
3.4.4.2.3 AcknowledgeLicense .. 92
3.4.4.2.4 SetRevocationData .. 92

3.4.5 Timer Events .. 93
3.4.6 Other Local Events .. 93

3.4.6.1 Eventing and Moderation ... 93
3.4.6.2 Event Model ... 93
3.4.6.3 Actions .. 93

3.4.6.3.1 IsAuthorized ... 94
3.4.6.3.2 RegisterDevice .. 94
3.4.6.3.3 IsValidated ... 95

3.4.6.4 Common Error Codes .. 95

4 Protocol Examples ... 96
4.1 UPnP Authorization ... 96
4.2 Registration ... 96
4.3 HTTP License Retrieval .. 98
4.4 Retrieving ASF-Encapsulated Content ... 99
4.5 Using HTTP for a Revocation List Update ... 99
4.6 Retrieving a Root License ... 100
4.7 Using RTSP for a License Request.. 100
4.8 Using RTSP for a Revocation List Update .. 101
4.9 Processing an Error ... 101

5 Security ... 102
5.1 Security Considerations for Implementers .. 102
5.2 Index of Security Parameters ... 102

6 Appendix A: Full XML Service Descriptions .. 104
6.1 Schemas-Opencable-Com Service ... 104
6.2 X_MS_MediaReceiverRegistrar:1 Service .. 105

7 Appendix B: Product Behavior ... 107

8 Change Tracking .. 108

9 Index ... 110

8 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 Introduction

Windows Media Digital Rights Management (WMDRM): Network Devices Protocol enables consumers to
experience audio and/or video on multiple connected devices in the home, while protecting the rights
of the content owner.

WMDRM: Network Devices Protocol extends the reach of protected content to consumer electronic
devices on home networks. These devices include digital media receivers, referred to in this document

as receivers, which are connected to transmitting devices, referred to in this document as
transmitters. WMDRM: Network Devices Protocol enables the receivers to render protected content
while enforcing the rights specified by the content owner.

WMDRM: Network Devices Protocol enables protected content to be streamed between the transmitter
and the receiver. As a result, consumers can share digital media content (audio, video, and photos) on
multiple devices that are connected by IP networks in the home.

This document describes how to support WMDRM: Network Devices Protocol on receivers and

transmitters.

WMDRM: Network Devices Protocol includes procedures that are implemented using specific
algorithms and data structures. This specification defines these procedures and how they are mapped
onto network protocols, such as UPnP, HTTP, RTSP, and RTP.

WMDRM: Network Devices Protocol requires the use of the UPnP device architecture. Procedures that
map to UPnP have only a single mapping. Other procedures, such as the Data Transfer procedure,

have mappings to both HTTP and RTSP/RTP. Section 2.1.1 specifies how WMDRM: Network Devices
Protocol is mapped onto UPnP, HTTP, RTSP/RTP, and PBDA.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

Advanced Encryption Standard (AES): A block cipher that supersedes the Data Encryption
Standard (DES). AES can be used to protect electronic data. The AES algorithm can be used to
encrypt (encipher) and decrypt (decipher) information. Encryption converts data to an
unintelligible form called ciphertext; decrypting the ciphertext converts the data back into its

original form, called plaintext. AES is used in symmetric-key cryptography, meaning that the
same key is used for the encryption and decryption operations. It is also a block cipher,
meaning that it operates on fixed-size blocks of plaintext and ciphertext, and requires the size of
the plaintext as well as the ciphertext to be an exact multiple of this block size. AES is also
known as the Rijndael symmetric encryption algorithm [FIPS197].

Advanced Systems Format (ASF): An extensible file format that is designed to facilitate
streaming digital media data over a network. This file format is used by Windows Media.

American National Standards Institute (ANSI) character set: A character set defined by a

code page approved by the American National Standards Institute (ANSI). The term "ANSI" as
used to signify Windows code pages is a historical reference and a misnomer that persists in the
Windows community. The source of this misnomer stems from the fact that the Windows code
page 1252 was originally based on an ANSI draft, which became International Organization for
Standardization (ISO) Standard 8859-1 [ISO/IEC-8859-1]. In Windows, the ANSI character set
can be any of the following code pages: 1252, 1250, 1251, 1253, 1254, 1255, 1256, 1257,

1258, 874, 932, 936, 949, or 950. For example, "ANSI application" is usually a reference to a
non-Unicode or code-page-based application. Therefore, "ANSI character set" is often misused
to refer to one of the character sets defined by a Windows code page that can be used as an

9 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

active system code page; for example, character sets defined by code page 1252 or character
sets defined by code page 950. Windows is now based on Unicode, so the use of ANSI character

sets is strongly discouraged unless they are used to interoperate with legacy applications or
legacy data.

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-
encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8-bit
ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to
zero.

Augmented Backus-Naur Form (ABNF): A modified version of Backus-Naur Form (BNF),
commonly used by Internet specifications. ABNF notation balances compactness and simplicity

with reasonable representational power. ABNF differs from standard BNF in its definitions and
uses of naming rules, repetition, alternatives, order-independence, and value ranges. For more
information, see [RFC5234].

authenticated commands: A cryptographically signed command flowing from the WMDRM:

Network Devices Protocol Receiver to the WMDRM: Network Devices Protocol Transmitter.

base license: A reference Windows Media DRM policy from which a Windows Media DRM license is

derived.

binary large object (BLOB): A collection of binary data stored as a single entity in a database.

certificate chain: A sequence of certificates (1),, where each certificate in the sequence is signed
by the subsequent certificate. The last certificate in the chain is normally a self-signed
certificate.

certificate revocation list (CRL): A list of certificates (1) that have been revoked by the
certification authority (CA) that issued them (that have not yet expired of their own accord). The

list must be cryptographically signed by the CA that issues it. Typically, the certificates are
identified by serial number. In addition to the serial number for the revoked certificates, the CRL
contains the revocation reason for each certificate and the time the certificate was revoked. As

described in [RFC3280], two types of CRLs commonly exist in the industry. Base CRLs keep a
complete list of revoked certificates, while delta CRLs maintain only those certificates that have
been revoked since the last issuance of a base CRL. For more information, see [X509] section
7.3, [MSFT-CRL], and [RFC3280] section 5.

certification authority (CA): A third party that issues public key certificates (1).. Certificates
serve to bind public keys to a user identity. Each user and certification authority (CA) can decide
whether to trust another user or CA for a specific purpose, and whether this trust should be
transitive. For more information, see [RFC3280].

Certified Output Protection Protocol (COPP): A device driver system used to secure high
band-width digital communications channels between media applications and display devices.

challenge: A piece of data used to authenticate a user. Typically a challenge takes the form of a
nonce.

cipher: A cryptographic algorithm used to encrypt and decrypt files and messages.

content: Multimedia data. content is always in ASF, for example, a single ASF music file or a single
ASF video file. Data in general. A file that an application accesses. Examples of content include
web pages and documents stored on either web servers or SMB file servers.

content encryption key: A cryptographic key that is used to encrypt data. Content encryption

keys are used not only to encrypt content, but also to encrypt other secrets, such as the
proximity detection nonce.

10 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

content integrity key: A cryptographic key that is used to assert message integrity. Content
encryption keys are used to calculate the OMAC1 [OMAC] of various messages.

counter mode (CTR): A confidentiality mode that features the application of the forward cipher to
a set of input blocks, called counters, to produce a sequence of output blocks that are exclusive-

ORed (XOR) with the plaintext to produce either ciphertext during the encryption process or
plaintext during the decryption process.

datagram: A style of communication offered by a network transport protocol where each message
is contained within a single network packet. In this style, there is no requirement for
establishing a session prior to communication, as opposed to a connection-oriented style.

decryption: In cryptography, the process of transforming encrypted information to its original
clear text form.

device: Any peripheral or part of a computer system that can send or receive data.

device driver: The software that the system uses to communicate with a device such as a display,
printer, mouse, or communications adapter. An abstraction layer that restricts access of

applications to various hardware devices on a given computer system. It is often referred to
simply as a "driver".

digest: The fixed-length output string from a one-way hash function that takes a variable-length

input string and is probabilistically unique for every different input string. Also, a cryptographic
checksum of a data (octet) stream.

digital signature: A message authenticator that is typically derived from a cryptographic
operation by using an asymmetric algorithm and private key. When a symmetric algorithm is
used for this purpose, the authenticator is typically referred to as a Message Authentication
Code (MAC).

encryption: In cryptography, the process of obscuring information to make it unreadable without

special knowledge.

exchange: A pair of messages, consisting of a request and a response.

file: An entity of data in the file system that a user can access and manage. A file must have a
unique name in its directory. It consists of one or more streams of bytes that hold a set of
related data, plus a set of attributes (also called properties) that describe the file or the data
within the file. The creation time of a file is an example of a file attribute.

flags: A set of values used to configure or report options or settings.

flow: A TCP session or User Datagram Protocol (UDP) pseudo session, identified by a 5-tuple
(source and destination IP and ports, and protocol). By extension, a request/response Internet
Control Message Protocol (ICMP) exchange (for example, ICMP echo) is also a flow.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.

Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

hash function: A function that takes an arbitrary amount of data and produces a fixed-length
result (a "hash") that depends only on the input data. A hash function is sometimes called a
message digest or a digital fingerprint.

Hash-based Message Authentication Code (HMAC): A mechanism for message authentication

(2) using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash

11 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

function (for example, MD5 and SHA-1) in combination with a secret shared key. The
cryptographic strength of HMAC depends on the properties of the underlying hash function.

HRESULT: An integer value that indicates the result or status of an operation. A particular
HRESULT can have different meanings depending on the protocol using it. See [MS-ERREF]

section 2.1 and specific protocol documents for further details.

interface: A group of related function prototypes in a specific order, analogous to a C++ virtual
interface. Multiple objects, of different object class, may implement the same interface. A
derived interface may be created by adding methods after the end of an existing interface. In
the Distributed Component Object Model (DCOM), all interfaces initially derive from IUnknown.

leaf license: A license that specifies rules that augment or restrict the rules in a root license. A
leaf license can be more or less restrictive than a root license.

license: A data structure that contains, but is not limited to, policies and an encrypted content
key. WMDRM: Network Devices Protocol has four types of licenses: standard licenses, root
licenses, base licenses, and leaf licenses.

license retrieval: Every time a receiver requests content from a transmitter, the transmitter
delivers to the receiver a standard license, a root license when using license chains, or a base
license when using license derivation data. This procedure is referred to as license retrieval.

license update: Every time a receiver requests content and does not require a new root or base
license, this procedure is invoked. This is the procedure in which a transmitter delivers a leaf
license to the receiver to update a license restriction.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

near: An expression of the relationship between transmitters and receivers. A transmitter and
receiver are near one another if proximity detection can be executed between them.

network byte order: The order in which the bytes of a multiple-byte number are transmitted on a
network, most significant byte first (in big-endian storage). This may or may not match the

order in which numbers are normally stored in memory for a particular processor.

nonce: A number that is used only once. This is typically implemented as a random number large
enough that the probability of number reuse is extremely small. A nonce is used in
authentication protocols to prevent replay attacks. For more information, see [RFC2617].

OpenCable Unidirectional Receiver (OCUR): A WMDRM: Network Devices Protocol transmitter

that is manufactured in accordance with the specification for OpenCable Unidirectional Receiver
Host Device issued by CableLabs [OCDRIP] and is paired with a CableCARD.

packet identifier (PID): The encoding of the identity is dependent on the type of packet being
identified.

policy: (1) A set of rules that governs all interactions with an object such as a document or item.

(2) The set of rules that govern the interaction between a subject and an object or resource.

private key: One of a pair of keys used in public-key cryptography. The private key is kept secret
and is used to decrypt data that has been encrypted with the corresponding public key. For an
introduction to this concept, see [CRYPTO] section 1.8 and [IEEE1363] section 3.1.

Protected Broadcast Driver Architecture (PBDA): A worldwide platform for broadcast TV on
the PC. This platform enables the PC-TV hardware ecosystem to integrate virtually any free or
premium TV service into Windows Media Center, while satisfying the TV industry's requirements
for strong content protection for pay TV.

12 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

proximity detection: The procedure in which a transmitter determines if a receiver is near.

public key: One of a pair of keys used in public-key cryptography. The public key is distributed

freely and published as part of a digital certificate. For an introduction to this concept, see
[CRYPTO] section 1.8 and [IEEE1363] section 3.1.

Public Key Cryptography Standards (PKCS): A group of Public Key Cryptography Standards
published by RSA Laboratories.

Real-Time Streaming Protocol (RTSP): A protocol used for transferring real-time multimedia
data (for example, audio and video) between a server and a client, as specified in [RFC2326]. It
is a streaming protocol; this means that RTSP attempts to facilitate scenarios in which the
multimedia data is being simultaneously transferred and rendered (that is, video is displayed
and audio is played).

Real-Time Transport Protocol (RTP): A network transport protocol that provides end-to-end
transport functions that are suitable for applications that transmit real-time data, such as audio
and video, as described in [RFC3550].

receiver: A device that acquires licenses and content from transmitters (for example, a digital
media receiver).

registration: The procedure in which a transmitter is able to uniquely identify a receiver.

resource: Any component that a computer can access where data can be read, written, or
processed. This resource could be an internal component such as a disk drive, or another
computer on a network that is used to access a file.

revalidation: The procedure in which a receiver that has successfully completed the registration
process with a transmitter repeats the registration process with the same Transmitter.

revocation: The process of invalidating a certificate. For more details, see [RFC3280] section 3.3.

revocation information version (RIV): When a client application or device requests a license,

the license challenge includes the client's revocation information structure. This structure

contains an RIV and the revocation lists that the client supports. To determine whether the
client revocation information is current, the license server compares its RIV to the client RIV.

revocation list: The list of identifiers of software or hardware components to which protected
content cannot flow. Different content protection systems typically have different formats for
representing revocation lists.

revocation list update: The procedure in which a receiver requests an updated revocation list

from a transmitter.

root certificate: A self-signed certificate (1) that identifies the public key of a root certification
authority (CA) and has been trusted to terminate a certificate chain.

root license: A license whose rules can be further restricted or augmented by terms in a leaf
license. A root license can be more or less restrictive than a leaf license.

round-trip time (RTT): The time that it takes a packet to be sent to a remote partner and for

that partner's acknowledgment to arrive at the original sender. This is a measurement of latency
between partners.

secret key: A symmetric encryption key shared by two entities, such as between a user and the
domain controller (DC), with a long lifetime. A password is a common example of a secret key.
When used in a context that implies Kerberos only, a principal's secret key.

service: A process or agent that is available on the network, offering resources or services for
clients. Examples of services include file servers, web servers, and so on.

13 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

service or UPnP service: A set of rules that is required to be published by the device and
advertised when the device is turned on all the available control points.

Session Description Protocol (SDP): A protocol that is used for session announcement, session
invitation, and other forms of multimedia session initiation. For more information see [MS-SDP]

and [RFC3264].

Simple Mail Transfer Protocol (SMTP): A member of the TCP/IP suite of protocols that is used
to transport Internet messages, as described in [RFC5321].

Simple Service Discovery Protocol (SSDP): Used to detect UPnP devices on a network. SSDP is
maintained by the Internet Engineering Task Force (IETF).

standard license: A stand-alone, self-contained license. A standard license is not updated by a
leaf license.

symmetric key: A secret key used with a cryptographic symmetric algorithm. The key needs to be
known to all communicating parties. For an introduction to this concept, see [CRYPTO] section
1.5.

Time-To-Live (TTL): The time duration for which a Server Object is available.

topology: The structure of the connections between members.

transmitter: A device that issues policy and transfers content to a receiver. An example of a

transmitter is a digital media server.

Uniform Resource Locator (URL): A string of characters in a standardized format that identifies
a document or resource on the World Wide Web. The format is as specified in [RFC1738].

Universal Plug and Play (UPnP): A set of computer network protocols, published by the UPnP
Forum [UPnP], that allow devices to connect seamlessly and that simplify the implementation of
networks in home (data sharing, communications, and entertainment) and corporate
environments. UPnP achieves this by defining and publishing UPnP device control protocols built

upon open, Internet-based communication standards.

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to
the transport layer in the ISO/OSI reference model.

XML: The Extensible Markup Language, as described in [XML1.0].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

14 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[ASF] Microsoft Corporation, "Advanced Systems Format Specification", December 2004,
http://download.microsoft.com/download/7/9/0/790fecaa-f64a-4a5e-a430-

0bccdab3f1b4/ASF_Specification.doc

[CR-WMDRM] Microsoft Corporation, "Compliance and Robustness Rules for Windows Media DRM",
http://wmlicense.smdisp.net/wmdrmcompliance/

[FIPS180-2] National Institute of Standards and Technology, "Secure Hash Standard", FIPS PUB 180-

2, August 2002, http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[FIPS197] FIPS PUBS, "Advanced Encryption Standard (AES)", FIPS PUB 197, November 2001,
http://csrcnvlpubs.nist.gov/publications/fips/fips197/fips-nistpubs/FIPS/NIST.FIPS.197.pdf

[ISO/IEC-13818-1] International Organization for Standardization, "Information Technology -- Generic
Coding of Moving Pictures and Associated Audio Information: Systems", ISO/IEC 13818-1:2007,
http://www.iso.org/iso/catalogue_detail?csnumber=44169%20

Note There is a charge to download the specification.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MTP] Microsoft Corporation, "Media Transfer Protocol Enhanced", September 2006,
http://www.microsoft.com/downloads/details.aspx?FamilyID=fed98ca6-ca7f-4e60-b88c-
c5fce88f3eea&displaylang=en

[OCDRIP] Cable Television Laboratories, Inc., "OpenCable Digital Receiver Interface Protocol
Specification OC-SP-DRI-Pre-D02-051024", February 2006,
http://www.cablelabs.com/opencable/downloads/specs/OC-SP-DRI-I02-060210.pdf

[OMAC] Iwata, T., and Kurosawa, K., "OMAC: One-Key CBC MAC - Addendum", March 2003,
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/omac/omac-ad.pdf

[PKCS1] RSA Laboratories, "PKCS #1: RSA Cryptography Standard", PKCS #1, Version 2.1, June
2002, http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-

standard.htm

[RFC2045] Freed, N., and Borenstein, N., "Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies", RFC 2045, November 1996, http://www.rfc-
editor.org/rfc/rfc2045.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2234] Crocker, D. and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC 2234,

November 1997, http://www.ietf.org/rfc/rfc2234.txt

[RFC2250] Hoffman, D., Fernando, G., Goyal, V., and Civanlar, M., "RTP Payload Format for
MPEG1/MPEG2 Video", RFC 2250, January 1998, http://www.ietf.org/rfc/rfc2250.txt

[RFC2326] Schulzrinne, H., Rao, A., and Lanphier, R., "Real Time Streaming Protocol (RTSP)", RFC

2326, April 1998, http://www.ietf.org/rfc/rfc2326.txt

[RFC2327] Handley, M. and Jacobson, V., "SDP: Session Description Protocol", RFC 2327, April 1998,

http://www.ietf.org/rfc/rfc2327.txt

[RFC2397] Masinter, L., "The", data" 'data' URL Scheme", RFC 2397, August 1998, http://www.ietfrfc-
editor.org/rfc/rfc2397.txt

15 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, http://www.rfc-editor.org/rfc/rfc2616.txt

[RFC2732] Hinden, R., Carpenter, B., and Masinter, L., "Format for Literal IPv6 Addresses in URL's",
RFC 2732, December 1999, http://www.ietf.org/rfc/rfc2732.txt

[RFC2821] Klensin, J., "Simple Mail Transfer Protocol", RFC 2821, April 2001,
http://www.ietf.org/rfc/rfc2821.txt

[RFC3548] Josefsson, S., Ed., "The Base16, Base32, and Base64 Data Encodings", RFC 3548, July
2003, http://www.rfc-editor.org/rfc/rfc3548.txt

[RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V., "RTP: A Transport Protocol for
Real-Time Applications", STD 64, RFC 3550, July 2003, http://www.ietf.org/rfc/rfc3550.txt

[RFC3555] Casner, S., and Hoschka, P., "MIME Type Registration of RTP Payload Formats", RFC 3555,
July 2003, http://www.ietf.org/rfc/rfc3555.txt

[RFC4567] Arkko, J., Lindholm, F., Naslund, M., et al., "Key Management Extensions for Session
Description Protocol (SDP) and Real Time Streaming Protocol (RTSP)", RFC 4567, July 2006,
http://www.rfc-editor.org/rfc/rfc4567.txt

[RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, October
2006, http://www.rfc-editor.org/rfc/rfc4648.txt

[UPNPARCH1.1] UPnP Forum, "UPnP Device Architecture 1.1", October 2008,
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf

[UPNPCDS1] UPnP Forum, "ContentDirectory:1 Service Template Version 1.01", June 2002,
http://www.upnp.org/standardizeddcps/documents/ContentDirectory1.0.pdf

[UPNPCNMGR] UPnP Forum, "ConnectionManager:1 Service Template Versions 1.01", June 2002,

http://www.upnp.org/standardizeddcps/documents/ConnectionManager1.0.pdf

[WMRTP] Microsoft Corporation, "RTP Payload Format for Windows Media Audio and Video",
http://download.microsoft.com/download/5/5/a/55a7b886-b742-4613-8ea8-
d8b8b5c27bbc/RTPPayloadFormat_for_WMAandWMV_v1.doc

[XMR] Microsoft Corporation, "License Agreement for Import Specifications for Windows Media Format
11 Software Development Kit", http://download.microsoft.com/download/f/8/e/f8e42daa-1fd2-4be6-
869b-875c3f24e277/WMFSDK%20Import%20Specifications%20License%20_(SAMPLE).pdf

Note There is a charge to download the specification.

1.2.2 Informative References

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

1.3 Protocol Overview (Synopsis)

The WMDRM: Network Devices Protocol defines the following procedures:

Authorization: The procedure for granting a receiver access to content from a transmitter. This

procedure is required before a receiver can perform registration and access protected content.

Registration and Revalidation: Allows the transmitter to uniquely identify a receiver that is located
nearby. Revalidation is the procedure for automatically reregistering a receiver with the
transmitter after a certain amount of time has elapsed. Registration and revalidation are very

16 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

similar, so for the purposes of this document, they will be grouped together in one category.
Differences will be pointed out as necessary.

Proximity Detection: Measures the latency between the transmitter and a receiver. If the latency is
short enough, then the receiver is considered to be near the transmitter. The transmitter will not

send protected content to a receiver unless it is near.

License Retrieval: The procedure for sending a license to a registered receiver when it requests
content from a transmitter.

Data Transfer: Performed between a transmitter and receiver after a license has been sent by the
transmitter and enforced by the receiver. The content is encrypted and delivered using HTTP or
RTP.

License Management: For this procedure, the transmitter sends an updated license, to the receiver

to change the receiver's rights to a resource.

Revocation List Update: This procedure, which is only permitted once the registration procedure has
successfully completed, occurs when the receiver asks the transmitter for an updated revocation

list. This procedure can occur at any time.

Authorization is performed after a receiver is discovered by a transmitter, and registration/revalidation
is performed every 48 hours, but the license retrieval and data transfer procedures occur every time a

file is requested and played.

All of the procedures rely on messages, or sets of parameters, that are passed back and forth between
a transmitter and a receiver. Messages are mapped to the HTTP, Real-Time Streaming Protocol
(RTSP), and UPnP protocols, except during proximity detection, which uses User Datagram Protocol
(UDP). The following conceptual sections describe these procedures in further detail.

1.4 Relationship to Other Protocols

Relationship mappings to other protocols are called out in section 2.1.1.

1.5 Prerequisites/Preconditions

Common cryptographic requirements are expected to be implemented as specified in section 2.4.

1.6 Applicability Statement

None.

1.7 Versioning and Capability Negotiation

WMDRM: Network Devices Protocol does not perform version or capability negotiation. The client
submits requests to a server that understands the maximum protocol version used by the client.

1.8 Vendor-Extensible Fields

This protocol uses HRESULT values as defined in [MS-ERREF] section 2.1. Vendors can define their
own HRESULT values, provided they set the C bit (0x20000000) for each vendor-defined value,
indicating the value is a customer code.

This protocol uses Win32 error codes as defined in [MS-ERREF] section 2.2. Vendors SHOULD reuse
those values with their indicated meanings. Choosing any other value runs the risk of a collision in the
future.

17 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

This protocol uses NTSTATUS values as defined in [MS-ERREF] section 2.3. Vendors are free to choose
their own values for this field, as long as the C bit (0x20000000) is set, indicating it is a customer

code.

This protocol MAY be extended using the Media Transfer Protocol (MTP) Vendor Extension

Identification field as specified in section 2.2.2.

1.9 Standards Assignments

None.

18 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Messages

2.1 Transport

This protocol can be implemented on top of the following transport mechanisms:

▪ Hyptertext Transport Protocol (HTTP)

▪ Universal Plug-andPlay (UPnP)

▪ Real-time Streaming Protocol (RTSP) Real-time Transport Protocol (RTP)

▪ OpenCable Digital Receiver Interface Protocol (Open Cable DRI)

▪ Media Transport Protocol (MTP)

▪ Protected Broadcast Driver Architecture (PBDA)

Rules and recommendations for each transport are discussed in section 2.1.1.

2.1.1 Protocol Mappings

The procedures in the WMDRM: Network Devices Protocol can be mapped to various protocols. The
following sections describe which control protocols can be mapped to which procedures.

2.1.1.1 UPnP Mapping

The following sections specify how the authorization and registration procedures are mapped to the
UPnP protocol.

2.1.1.1.1 Authorization

When authorization is implemented using UPnP, the rules specified in section 3.1.1.2 MUST be
followed.

Authorization uses the X_MS_MediaReceiverRegistrar:1 UPnP service, which is defined in section 3.4.
An example of the UPnP Authorization procedure is detailed in section 4.1

Receivers MUST use Simple Service Discovery Protocol (SSDP) to announce their presence on the

network. This is done by transmitting ssdp:alive messages, as specified in the UPnP Device
Architecture specification [UPNPARCH1.1] section 1.2.2. These messages allow the transmitter to
discover a new Receiver.

Whenever a Receiver is authorized or unauthorized by a user, a state variable in the
X_MS_MediaReceiverRegistrar:1 UPnP service is set by the transmitter. A UPnP message is sent when
the state variable is changed. The message notifies all receivers that a receiver has either been
authorized or unauthorized. Each receiver MUST then check with the transmitter to determine if it is

the devices that has been authorized or unauthorized. A receiver uses the

X_MS_MediaReceiverRegistrar:1 UPnP service to check with the transmitter.

2.1.1.1.1.1 Receivers

Receivers MUST transmit ssdp:alive messages, according to the rules specified in the UPnP Device
Architecture specification [UPNPARCH1.1].

19 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Receivers MUST respond to the change in the AuthorizationGrantedUpdateID state variable in the
X_MS_MediaReceiverRegistrar:1 UPnP service (see section 3.4) by invoking the IsAuthorized action

to determine whether it is the receiver that was authorized.

The IsAuthorized action has two arguments: DeviceID and Result.

The DeviceID argument is sent to the transmitter for verification and the transmitter sends the Result
argument back to the receiver.

The Result argument is an integer. Its value is set to 1 if the device is currently authorized and to 0 if
the device is not authorized.

2.1.1.1.1.2 Transmitters

The transmitter MUST perform authorization through the following steps.

1. The transmitter MUST use SSDP to discover a receiver when it becomes available on the network.

2. When the transmitter discovers a receiver that supports WMDRM: Network Devices Protocol, the

transmitter MUST follow the rules defined in section 3.1.1.2, to determine whether it MUST prompt
the user to approve the receiver to access content and metadata.

3. UPnP devices can be removed from and restored to the network frequently. The transmitter
SHOULD NOT prompt the user to approve a device every time that device connects to the

network. The transmitter SHOULD maintain a record of currently connected UPnP devices and
check this record before prompting.

4. If the user approves the receiver, the transmitter MUST set the AuthorizationGrantedUpdateID
state variable. If the user does not approve the device, the transmitter MUST set the
AuthorizationDeniedUpdateID state variable.

5. For each IsAuthorized action invoked by each receiver, the transmitter MUST send back a
response notifying the receiver whether it is authorized or unauthorized, depending on which state

variable was set.

2.1.1.1.2 Registration

When registration and revalidation are implemented using UPnP, the rules specified in section 3.1.1.3
MUST be followed.

Registration and revalidation MUST use the X_MS_MediaReceiverRegistrar:1 UPnP service, which is
defined in section 6.2.

2.1.1.1.2.1 Receivers

The receiver MUST encode the binary registration request message to Base64 format [RFC3548]. The
Base64-encoded data block MUST then be sent to the transmitter through the UPnP RegisterDevice
action of the X_MS_MediaReceiverRegistrar:1 service.

After the receiver retrieves the Base64-encoded data block in the RegisterDevice response from the

transmitter, it MUST decode the data block from Base64 to binary [RFC3548]. The resulting Binary

large object (BLOB) is the registration response message.

The registration request and registration response messages are defined in sections 2.2.1.1 and
2.2.1.2, respectively.

2.1.1.1.2.2 Transmitters

When the RegisterDevice action of the transmitter's X_MS_MediaReceiverRegistrar:1 service is

invoked, it MUST decode the Base64-encoded data block sent by the receiver from Base64 to binary.

20 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The resulting BLOB is the registration request message, and it MUST be used as specified in section
2.1.1.1.2. For information on Base64 see [RFC3548]

The transmitter MUST encode the binary registration response message to Base64 format [RFC3548].
The Base64-encoded data block MUST then be sent to the receiver as the response to the

RegisterDevice action.

The registration request and registration response messages are defined in sections 2.2.1.1 and
2.2.1.2, respectively.

2.1.1.1.3 Error Codes

In UPnP, the WMDRM: Network Devices Protocol error codes MUST be mapped to the range of 850-
899, where WMDRM: Network Devices Protocol error code 100 maps to UPnP error code 850, 101

maps to 851, and so on. For example, WMDRM: Network Devices Protocol error code 107 (Must
Register) maps to UPnP error code 857.

2.1.1.2 HTTP Mappings

The following sections show how the license retrieval, data transfer, license update, and revocation list
update procedures are mapped to the HTTP protocol [RFC2616].

2.1.1.2.1 Framing Headers

This section defines a mechanism that allows the license update procedure and data transfer to use
the same HTTP connection. The mechanism is called Framing Headers and it allows the license
response messages (used by the license update procedure) to be interleaved with data blocks of

protected content.

The HTTP Framing Headers mechanism is used only when delivering content that is not encapsulated
in ASF.

When the Framing Headers mechanism is used for data transfer, the entity-body of the HTTP response

MUST consist of a series of frames. Each frame starts with a framing header and is followed by either
control data or content data.

The framing header is four bytes in length. The first byte MUST always be an ASCII dollar sign (0x24)

followed by a one-byte frame type identifier, and then followed by a 16-bit length field. The length
field specifies the number of bytes of data in the frame, not including the size of the framing header
itself. The length field MUST be represented in network byte order.

A control frame uses an ASCII "c" character (0x63) as its type identifier. This frame contains a
WMDRM: Network Devices Protocol message. Currently, the only message delivered in a control frame
is a license response message, which carries a leaf license.

A data frame uses an ASCII "d" character (0x64) as its type identifier. This frame contains data
belonging to the protected content being transferred. The transmitter can choose the size of data
frames arbitrarily, but the size of a data frame MUST NOT exceed 65535 bytes.

The HTTP response MUST include the "Content-Type" header, and the content type specified in that
header MUST be "application/vnd.ms-wmdrm-data-transfer". This indicates the use of the HTTP
Framing Header mechanism.

The "application/vnd.ms-wmdrm-data-transfer" content type has one mandatory parameter, called

media. The value of the media parameter MUST be set to the original content type for the content
being delivered, including all of the parameters of the original content type. The value of the media
parameter MUST be enclosed in double quotes.

21 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The following is an example of the "Content-Type" header when the original content type is
"video/mpeg":

 Content-Type: application/vnd.ms-wmdrm-data-transfer; media="video/mpeg"

2.1.1.2.2 License Retrieval

When license retrieval is implemented using HTTP, the rules that are specified in section 2.1.1.3.1
MUST be followed.

When transferring content that is encapsulated in ASF using HTTP, a standard license is delivered to

the receiver; however, for any other content type, a root license is sent to the receiver. The leaf
licenses that chain to the root license are delivered in control frames during the license update
procedure, as specified in section 2.1.1.2.1.

2.1.1.2.2.1 Receivers

The receiver MUST include the HTTP header "Supported: com.microsoft.wmdrm-nd" in the HTTP
request message to indicate to the transmitter that it supports WMDRM: Network Devices Protocol.

The receiver MUST begin the license retrieval procedure by sending a POST request to the Uniform
Resource Locator (URL) that the receiver intends to play. The entity-body of the POST request MUST
contain a license request message.

The POST request MUST include a "Content-Type: application/vnd.ms-wmdrm-license-request" header
to indicate that the body of the POST request contains a license request message.

Unlike the registration request and registration response messages, the license request and license
response messages MUST NOT be Base64 encoded or decoded [RFC3548].

When the receiver receives the response to the POST request, it MUST verify that the response
indicates that the request succeeded, and that the response includes the "Content-Type:
application/vnd.ms-wmdrm-license-response" header. This header indicates that the entity-body of

the response contains a license response message.

If the "WMDRM-ND" HTTP header is present in the response to the POST request, the receiver MUST
remember the value of the SessionId parameter in that header. The syntax of the "WMDRM-ND"

header is specified in section 2.2. The value of the SessionId parameter MUST be sent back by the
receiver when requesting data during the data transfer procedure (defined in section 2.1.1.2.5).

The value of the SessionId parameter used in the "WMDRM-ND" HTTP header is NOT related to the
Session ID parameter used in the registration or proximity detection procedures.

2.1.1.2.2.2 Transmitters

When the transmitter receives a POST request, it MUST verify that the request includes the header

"Content-Type: application/vnd.ms-wmdrm-license-request". The presence of this header indicates
that the entity-body of the POST request contains a license request message.

The transmitter MUST process the license request, complying with the rules in section 3.1.1.5. Unless
there is an error, the transmitter MUST include a license response message in the entity-body of the
response to the POST request.

The response to the POST request MUST include a "Content-Type: application/vnd.ms-wmdrm-license-
response" header to indicate that the body of the response contains a License Response message.

Unlike the registration request and registration response messages, the license request and license
response messages MUST NOT be Base64 encoded or decoded [RFC3548].

22 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The transmitter MUST include the HTTP header "Supported: com.microsoft.wmdrm-nd" in the HTTP
response message to indicate to the receiver that it supports WMDRM: Network Devices Protocol.

The transmitter MUST include a "WMDRM-ND" HTTP header in the response to the POST request,
unless the request failed. The syntax of the header is specified in Augmented Backus-Naur Form

(ABNF) syntax [RFC2234] as follows:

 "WMDRM-ND:" "SessionId=" <"> session-id <">
 session-id = 1*(ALPHA | DIGIT | safe)

The session-id parameter is an arbitrary string that MUST be echoed back by the receiver when
requesting data during the data transfer procedure.

2.1.1.2.3 License Update

When the license update procedure is implemented using HTTP, the rules specified in section 3.1.1.5

MUST be followed.

If the license obtained through the license retrieval procedure is a root license, the receiver MUST also
receive a leaf license before it can decrypt the content. Transmitters MUST use the license update
mechanism to deliver the leaf license. Transmitters MUST send a license response message with a leaf
license before they start delivering protected content in response to a GET request from the receiver.

The license response message for the license update MUST be delivered using the Framing Header
mechanism defined in section 2.1.1.2.1.

2.1.1.2.3.1 Receivers

When the receiver receives a control frame [$c] as defined in section 2.1.1.2.1. The receiver MUST
verify that the control frame contains a license response message. Other message types MAY be
ignored.

The receiver MUST process the license response, complying with the rules defined in section 3.2.5.5.

The license response message in a control frame MUST NOT be Base64 encoded [RFC3548].

2.1.1.2.3.2 Transmitters

The transmitter MUST begin the license update procedure by sending a control frame [$c], as defined
here to the receiver. The control frame MUST be sent in the entity-body of the response to the GET
request that the receiver sent to request data transfer. The control frame MUST contain a license
response message with a leaf license.

The license response message in a control frame MUST NOT be Base64 encoded [RFC3548].

When the Framing Header mechanism is used, the license delivered as part of the license retrieval
procedure MUST always be a root license. The transmitter MUST deliver a leaf license before it starts
delivering the content. As a consequence, if a data transfer request succeeded, the GET response
MUST be composed of the following frames:

1. Control frame [$c] carrying a license response message with a leaf license.

2. One or more data frames [$d].

3. If a key or a policy (1) change during the transmission of the content requires an additional
license update, then steps 1 and 2 are repeated with new data for each license update.

2.1.1.2.4 Revocation List Update

23 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

When revocation list update is implemented using HTTP, the rules specified here MUST be followed.

Revocation list updates can occur at any time and do not change the transmitter state.

2.1.1.2.4.1 Receivers

The receiver MUST begin the revocation list update procedure by sending a POST request to the URL
that the receiver intends to play or is currently playing. The entity-body of the POST request MUST
contain a revocation list request message.

The POST request MUST include a "Content-Type: application/vnd.ms-wmdrm-extended-operation-
request" header to indicate that the body of the POST request contains a revocation list request
message.

Unlike the registration request and registration response messages, the revocation list request and

revocation list response messages MUST NOT be encoded or decoded in Base64 [RFC3548].

When the receiver receives the response to the POST request, it MUST verify that the response

indicates that the request succeeded. The receiver MUST also verify that the response includes the
"Content-Type: application/vnd.ms-wmdrm-extended-operation-response" header. The presence of
this header indicates that the entity-body of the response contains a revocation list response
message.

2.1.1.2.4.2 Transmitters

When the transmitter receives a POST request, it MUST verify that the request includes the "Content-
Type: application/vnd.ms-wmdrm-extended-operation-request" header. The presence of this header
indicates that the entity body of the POST request contains a revocation list request message.

The transmitter MUST process the revocation list request, complying with the rules defined here.
Unless there is an error, the transmitter MUST include a revocation list response message in the

entity-body of the response to the POST request.

The response to the POST request MUST include a "Content-Type: application/vnd.ms-wmdrm-

extended-operation-response" header. This indicates that the body of the response contains a
revocation list response message.

Unlike the registration request and registration response messages, the revocation list request and
revocation list response messages MUST NOT be encoded or decoded in Base64 [RFC3548].

2.1.1.2.5 Data Transfer

When data transfer is implemented using HTTP, the rules that are specified in section 3.1.1.6 MUST be
followed.

2.1.1.2.5.1 Common Data Transfer Rules

The receiver MUST begin the data transfer procedure by sending a GET request to the URL that the
receiver intends to play.

If the transmitter's response to the license retrieval request contained the "WMDRM-ND" HTTP header,
the receiver MUST include this header in the GET request. The syntax of the "WMDRM-ND" HTTP
header is defined here.

The "WMDRM-ND" HTTP header can be used more than once to replay the content. In other words, if
a previous data transfer has been concluded and the receiver wants to issue a new GET request, it
can use the "WMDRM-ND" header that it used in the previous request. However, sessions typically

expire five minutes after the data transfer is concluded or interrupted. Therefore, receivers MUST

24 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

handle expired sessions by repeating the license retrieval procedure if the server responds with error
code 0x006E (Invalid Session).

Unless there is an error, the entity-body in the transmitter's response MUST contain the protected
content. If the protected content is encapsulated as Windows Media-based content, the rules in

section 2.1.1.2.5.4 MUST be followed.

For MPEG-2 transport stream content, the rules in section 2.1.1.2.5.2 MUST be followed. For other
content types (not MPEG-2 and not encapsulated in ASF) the rules in section 2.1.1.2.5.6 MUST be
followed.

The entity-body of the response to the GET request MUST use the frame header mechanism that is
defined in section 2.1.1.2.1 (except for content encapsulated in ASF). Also the transmitter MUST
deliver a leaf license through the license update procedure before the content is transferred.

2.1.1.2.5.2 MPEG-2 Transport Streams

Content that is encapsulated in MPEG-2 TS packets MUST be encrypted as specified here.

MPEG-2 TS packets are sent over HTTP using the Framing Headers mechanism as defined in section
2.1.1.2.1. The MPEG-2 TS packets MAY be split arbitrarily and do not need to be aligned with the
Framing Header of a data frame.

2.1.1.2.5.3 MPEG-2 Elementary Streams

MPEG-2 ES content cannot be delivered over HTTP.

2.1.1.2.5.4 Windows Media-based Content

The transmitter MUST encrypt Windows Media-based content in a specific way. The Windows Media file
MUST be decrypted by a receiver that implements the rules for decrypting ASF-encapsulated content

specified here. The samples MUST be encrypted with the content encryption key that was included in
the standard license sent to the receiver in the license retrieval procedure.

2.1.1.2.5.5 File Contents

The Content-Type header field with the value "video/x-ms-asf" indicates that the body of the
response contains data that is an ASF file. Other values, such as "video/x-ms-wmv" and "audio/x-ms-
wma" are also possible.

2.1.1.2.5.6 Other Content Types

Content that is not encapsulated in MPEG-2 TS packets, is not in MPEG-2 elementary streams, and is
not Windows Media-based, MUST be encrypted using the link encryption mode that is specified in
section 3.1.5.2.11.

The encrypted data segments MUST be sent over HTTP using the Framing Headers mechanism as
defined in section 2.1.1.2.1.

The link encryption procedure MUST use Advanced Encryption Standard (AES) [FIPS197] in counter
mode. The procedure also MUST be conducted as defined in section 3.1.5.2.1. The data segment
corresponds to the content data included within a single framing header.

A data segment descriptor MUST be included at the beginning of each frame. Both the key ID and the
AES128 initialization vector extensions that are defined in section 3.1.5.2.3 MUST be included in the
data segment descriptor. Transmitters MUST use a block ID of 0 for each frame. However, receivers
MUST be able to handle different block ID values for future extensibility.

25 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The data segment descriptor MUST be inserted immediately after the framing header, yet the data
segment descriptor itself MUST NOT be encrypted. Only the content data that follows it can be

encrypted.

Since a frame can only carry a maximum of 65535 bytes, the combined size of the data segment and

the data segment descriptor MUST NOT exceed this limit.

The data segment descriptor MUST be added to the beginning of each frame and is present regardless
of whether the content in a particular frame has been encrypted. Transmitters MUST encrypt all
content; however, receivers MUST be able to handle unencrypted content for future extensibility.

Because the entity-body of the response to the GET request uses the HTTP framing header mechanism
(section 2.1.1.2.1), control frames are interleaved with data frames, allowing the transmitter to
perform the license update procedure as needed.

2.1.1.2.6 Error Codes

Specific Windows Media DRM-ND error codes are indicated by the "WMDRM-ND-Status" HTTP header.

This header takes the form of a three-digit status code that is followed by a space character and an
error description string. The error description string MUST be enclosed in double quotes.

When a transmitter indicates an error code using the "WMDRM-ND-Status" HTTP header, the status

code in the HTTP response itself MUST also indicate that the HTTP request failed. The transmitter uses
the HTTP status code "500 Internal Server Error" in this case.

2.1.1.3 RTSP Mappings

When Windows Media DRM-ND is used with RTSP, the feature tag "com.microsoft.wmdrm-nd" is used

to identify support for Windows Media DRM-ND. This feature tag can be included on the RTSP
"Require" header in any RTSP request sent by the receiver or by the transmitter. It MUST be included
in the "Supported" header in RTSP requests and responses.

If the transmitter or Receiver receives an RTSP request that includes the "Require" header, it MUST

recognize "com.microsoft.wmdrm-nd" as one of the features that it supports.

The following sections specify how the license retrieval, data transfer, license update, and revocation
list update procedures are mapped to the RTSP protocol [RFC2326].

2.1.1.3.1 License Retrieval

When license retrieval is implemented using RTSP, the rules that are specified here MUST be followed.

The transmitter MUST send a root license to the receiver in response to a valid license request
message. The leaf license MUST be sent as part of a license update before content is transferred.

2.1.1.3.1.1 Receivers

The receiver MUST include the RTSP header Supported: "com.microsoft.wmdrm-nd" in its RTSP
request messages to indicate to the transmitter that it supports WMDRM: Network Devices Protocol .

The receiver MUST begin the license retrieval procedure by sending a DESCRIBE request to the URL
that the receiver intends to play. The entity-body of the DESCRIBE request MUST contain a license
request message.

The DESCRIBE request MUST include a "Content-Type: application/vnd.ms-wmdrm-license-request"

header to indicate that the body of the DESCRIBE request contains a license request message.

The DESCRIBE request SHOULD include a "Require: com.microsoft.wmdrm-nd" header to indicate that
the receiver expects the transmitter to be compliant with WMDRM: Network Devices Protocol .

26 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Unlike the registration request message, the license request message MUST NOT be Base64 encoded
[RFC3548].

When the receiver receives the response to the DESCRIBE request, it MUST verify that the response
indicates that the request succeeded and that the Session Description Protocol (SDP) [RFC2327]

description contained in the response includes the "a=key-mgmt:wmdrm-nd" attribute.

The receiver MUST verify that the "a=key-mgmt:wmdrm-nd" SDP attribute contains a URL using the
data URL scheme that is defined in RFC 2397 [RFC2397], and that the MIME type of the "data" URL is
"application/vnd.ms-wmdrm-license-response". This MIME type indicates that the data URL contains a
license response message.

Typically, the license response is encoded in Base64 format [RFC3548]. The data URL itself will
indicate if Base64 encoding has been used. In that case, the receiver MUST apply Base64 decoding

when extracting the license response message from the data URL [RFC3548].

2.1.1.3.1.2 Transmitters

When the transmitter receives a DESCRIBE request, it MUST verify that the request includes the
"Content-Type: application/vnd.ms-wmdrm-license-request" header. The presence of this header
indicates that the entity-body of the DESCRIBE request contains a license request message.

The transmitter MUST process the license request, complying with the rules defined in section
2.2.1.4.1. Unless there is an error, the transmitter MUST reply with a Session Description Protocol
(SDP) description that includes the license response message.

The SDP description returned by the transmitter MUST include the license response message encoded
in a "data" URL according to the data URL scheme that is defined in RFC 2397 [RFC2397]. The data
that is contained in the data URL MUST be Base64 encoded [RFC3548] and the MIME type of the data
URL MUST be set to "application/vnd.ms-wmdrm-license-response".

The data URL MUST be inserted at the SDP session level by using an "a=key-mgmt" attribute. The
attribute MUST comply with the following syntax:

 a=key-mgmt:wmdrm-nd url

The url parameter is the data URL described in the previous paragraphs.

The "a=key-mgmt" attribute is described in [RFC4567].

2.1.1.3.2 License Updates

When the license update procedure is implemented using RTSP, the following rules MUST be followed.

The license response message in the SDP description contains only a root license. Before the receiver
can decrypt the content, it MUST also receive a leaf license. As a result, transmitters MUST send an
ANNOUNCE request with a leaf license before they start delivering RTP packets in response to a PLAY

request from the receiver.

2.1.1.3.2.1 Receivers

When the receiver receives an ANNOUNCE request, it MUST verify that the request includes the
"Content-Type: application/vnd.ms-wmdrm-license-response" header. The presence of this header
indicates that the entity-body of the ANNOUNCE request contains a license response message.

The receiver MUST process the license response, complying with the following rules. Unless there is an

error, the receiver MUST reply to the ANNOUNCE request with RTSP status code 200.

27 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The license response message in an ANNOUNCE request MUST NOT be Base64 encoded [RFC3548].

Receivers MUST be prepared to handle the case when an ANNOUNCE request is received after the time

when the key ID in the leaf license is required, because network congestion or Transmitter overload
can delay the delivery of the ANNOUNCE request.

2.1.1.3.2.2 Transmitters

The transmitter MUST begin the license update procedure by sending an ANNOUNCE request to the
URL that the receiver intends to play, or is currently playing. The entity-body of the ANNOUNCE
request MUST contain a license response message with a leaf license.

The ANNOUNCE request MUST include a "Content-Type: application/vnd.ms-wmdrm-license-response"
header to indicate that the body of the ANNOUNCE request contains a license response message.

The license response message in an ANNOUNCE request MUST NOT be Base64 encoded [RFC3548].

2.1.1.3.3 Revocation List Update

When the revocation list update procedure is implemented using RTSP, the rules that are specified
here MUST be followed.

Revocation list updates can occur at any time and do not change the transmitter state.

2.1.1.3.3.1 Receivers

The receiver MUST begin the revocation list update procedure by sending a GET_PARAMETER
request to the URL that the receiver intends to play or is currently playing. The entity-body of the
GET_PARAMETER request MUST contain a revocation list request message.

The GET_PARAMETER request MUST include a "Content-Type: application/vnd.ms-wmdrm-
extended-operation-request" header to indicate that the body of the GET_PARAMETER request

contains a revocation list request message.

Unlike the registration request and registration response messages, the revocation list request and
revocation list response messages MUST NOT be encoded or decoded in Base64 [RFC3548].

When the receiver checks the response to the GET_PARAMETER request. The receiver MUST verify
that the response indicates that the request succeeded, and that the response includes the "Content-
Type: application/vnd.ms-wmdrm-extended-operation-response" header. The presence of this header
indicates that the entity-body of the response contains a revocation list response message.

2.1.1.3.3.2 Transmitters

When the transmitter receives a GET_PARAMETER request, it MUST verify that the request includes
the "Content-Type: application/vnd.ms-wmdrm-extended-operation-request" header. The presence of
this header indicates that the entity-body of the GET_PARAMETER request contains a revocation list
request message.

The only extended operation currently defined is the revocation list request.

The transmitter MUST process the revocation list request, complying with the rules here. Unless there
is an error, the transmitter MUST include a revocation list response message in the entity-body of the
response to the GET_PARAMETER request.

The response to the GET_PARAMETER request MUST include a "Content-Type: application/vnd.ms-
wmdrm-extended-operation-response" header to indicate that the body of the response contains a
revocation list response message.

28 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Unlike the registration request and registration response messages, the revocation list request and
revocation list response messages MUST NOT be encoded or decoded in Base64 [RFC3548].

2.1.1.3.4 Error Codes

Specific WMDRM: Network Devices Protocol error codes are indicated by the RTSP header "WMDRM-
ND-Status", which takes the form of a 3-digit status code, followed by a space character and an error
description string. The error description string MUST be enclosed in double-quotes.

When a transmitter or receiver indicates an error code using the "WMDRM-ND-Status" RTSP header,
the status code in the RTSP response itself MUST also indicate that the RTSP request failed. The
transmitter or receiver SHOULD use the RTSP status code "500 Internal Server Error" in this case.

2.1.1.3.5 Data Transfer

When data transfer is implemented using RTSP, the rules specified in section 3.1.1.6 MUST be
followed.

2.1.1.3.5.1 MPEG-2 Transport Streams

Content that is encapsulated in MPEG-2 TS packets MUST be encrypted as specified here.

MPEG-2 TS packets MUST be encapsulated in RTP using the MP2T RTP payload format, which is

defined in RFC 2250 [RFC2250].

2.1.1.3.5.2 MPEG-2 Elementary Streams

MPEG-2 ES content MUST be encrypted as specified here.

The RTP Payload Format for Windows Media Audio and Video [WMRTP] MUST be used to carry MPEG-2
ES content when protected by WMDRM: Network Devices Protocol. The mapping of MPEG-2 ES content

to RTP is defined in sections 2.1.1.3.6, 2.1.1.3.7, and 2.1.1.3.8.

2.1.1.3.5.3 Windows Media-based Content

The ASF Sample Encryption Mode defined here MUST be used with Windows Media-based content.
When operating in this mode, each media sample is encrypted separately prior to the generation of
each RTP packet.

When RTP is carrying content protected by WMDRM: Network Devices Protocol, the RTP Payload

Format for Windows Media Audio and Video [WMRTP] MUST be used, and the following values and
fields MUST be set in the RTP packet:

The Bit Field 2 Present bit (B2P) in the Packet Info section MUST be set to 1, to indicate that a Bit
Field 2 is present.

The Encryption bit (E) in the Bit Field 2 of the "MAU Properties" section MUST be set to 1.

The Extension Present bit (X) in the "MAU Timing" section MUST be set to 1, to indicate the

presence of Extension fields.

The "Encrypted Payload Boundary" extension MUST NOT be present.

A "WMDRM Initialization Vector" extension MUST be included.

The following values MUST be set:

▪ The Extension Type MUST be set to 2.

▪ The Extension Length MUST be set to 8 (meaning 8 bytes or 64 bits).

29 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

▪ The Extension Data MUST be set to the sample ID value obtained from the ASF payload
extension system as defined in section 3.1.5.2.9.

▪ This extension MUST be included for the first payload of every MAU. If the MAU is fragmented into
multiple payloads, this extension SHOULD be present only in the first payload.

A "WMDRM Key ID" extension MUST be included. The following values MUST be set:

▪ The Extension Type MUST be set to 3.

▪ The Extension Length MUST be set to 16 (meaning 16 bytes or 128 bits).

▪ The Extension Data MUST be set with the key ID value from the ASF Content Encryption object.

▪ This extension MUST be included for the first payload in each multiple-payload RTP packet to
ensure that the receiver always knows about the current key ID even if some RTP packets are lost.

2.1.1.3.5.4 Other Content Types

Content that is not encapsulated in MPEG-2 TS packets, is not MPEG-2 ES, and is not Windows Media-
based, MUST be encrypted using the link-encryption mode specified here.

The link-encryption procedure MUST use AES in counter mode and conducted according to the
procedure defined here. The data segment corresponds to the RTP packet, with the exception of the
RTP header.

A data segment descriptor MUST be included at the end of each RTP packet. Both the key ID and the
AES128 Initialization Vector extensions defined here MUST be included in the data segment descriptor.
Transmitters MUST use a block ID of 0 for each RTP packet; however, receivers MUST be able to
handle different block ID values for future extensibility.

The data segment descriptor MUST be added to the end of the RTP packet and is present regardless of
whether the content in a particular RTP packet has been encrypted. Transmitters MUST encrypt all
content; however, receivers MUST be able to handle unencrypted content for future extensibility.

The following is an example of an RTP packet that has been encrypted.

30 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 1: Encrypted RTP Packet

2.1.1.3.6 RTP Encapsulation of MPEG-2 Elementary Streams

This section defines how MPEG-2 ES content is encapsulated in the RTP Payload Format for Windows
Media Audio and Video [WMRTP] and how the encryption parameters are communicated using SDP.

General RTP encapsulation rules for MPEG-2 ES Content

Media Access Unit (MAU): A Media Access Unit (MAU) for encapsulation of MPEG-2 ES content with
the payload format for Windows Media Audio and Video [WMRTP] is defined as a single frame of

video or an audio frame.

When MPEG video headers are present, they MUST precede the subsequent frame. This
requirement is similar to the fragmentation rules outlined in Section 3.1 of [RFC2250].
Specifically:

Unlike [RFC2250], if a MAU containing video is fragmented, there is no requirement to perform the
fragmentation at a slice boundary.

MAU Fragmentation: MAUs can be fragmented across multiple Real-Time Transport Protocol (RTP)

packets for different reasons. The most common reasons are:

▪ RTP packet size restrictions.

▪ Differences in encryption parameters for specific portions of the MAU.

RTP Header Fields: The RTP Header fields MUST be interpreted according to section 3.5 of the
Payload Format for Windows Media Audio and Video [WMRTP]. The following clarifications apply:

▪ The Timestamp field in the RTP header MUST be set to the PTS of the sample with an accuracy

of 90 kHz.

31 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

▪ The Payload Type (PT) field MUST be set according to out-of-band negotiation mechanisms (for
example, using SDP).

Packet Specific Info section: The Packet Specific Info section MUST be interpreted according to
section 3.6.1 of the Payload Format for Windows Media Audio and Video [WMRTP].

The following clarifications apply:

▪ The presence of the Send Time field is optional.

▪ The presence of the Correspondence field is optional.

▪ The Bit Field 2 Present bit (B2P) MUST be set in case the payload contains a portion of a MAU
which is encrypted, or a fragment of a MAU which is encrypted.

MAU Properties section: The MAU Properties section MUST be interpreted according to section 3.6.2
of [WMRTP]. The following clarifications apply:

▪ The Sync Point bit (S) MUST be set when the MAU contains a video I-frame or an audio frame.

▪ The Discontinuity bit (D1) MUST be set when one or more MAUs are missing. For example, when
video frames were dropped by a frame dropping transmitter.

▪ The use of the Droppable bit (D2) is optional. Defining the cases in which it SHOULD be used is
outside of the scope of this specification.

▪ The Encryption bit (E) MUST be set in case the payload contains a portion of a MAU that is

encrypted or a fragment of a MAU that is encrypted.

MAU Timing section: The MAU Timing section MUST be interpreted according to section 3.6.3 of the
RTP Payload Format for Windows Media Audio and Video specification [WMRTP]. The following
clarifications apply:

▪ The Decode Time field is optional. If used, it MUST contain the DTS of the MAU.

▪ The Presentation Time field is optional.

▪ The NPT field is optional.

▪ The Extension Present bit (X) MUST be set in case the payload contains a portion of a MAU
which is encrypted, or a fragment of a MAU which is encrypted.

2.1.1.3.7 Delivering encrypted MPEG-2 ES payloads

The RTP Payload Format for Windows Media Audio and Video [WMRTP] allows for a single MAU to be
encrypted according to different encryption parameters. That includes the ability to have fragments of
a single MAU that are encrypted while others may be left in the clear.

In such cases, a single RTP packet can carry multiple payloads of the same MAU, each with different
encryption parameters. For details, please refer to sections 3.2 and 3.3 of the RTP Payload Format for
Windows Media Audio and Video specification [WMRTP].

An MAU or a fragment of an MAU that is encrypted MUST have the following values and fields set
according to the specification:

▪ The Bit Field 2 Present bit (B2P) in the Packet Info section MUST be set to 1, to indicate that a

Bit Field 2 is present.

▪ The Encryption bit (E) in the MAU Properties section MUST be set to 1, to indicate that the
payload is encrypted.

32 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

▪ The Extension Present bit (X) in the "MAU Timing" section MUST be set to 1, to indicate the
presence of Extension fields.

▪ The "Encrypted Payload Boundary" extension MUST NOT be present.

▪ A "WMDRM Initialization Vector" extension MUST be included.

The following values MUST be set:

▪ The Extension Type MUST be set to 2.

▪ The Extension Length MUST be set to 8 (meaning 64 bits) if the Extension Data field contains
only a data segment ID, or 16 (meaning 128 bits) if the Extension Data field contains both a
data segment ID and a block ID.

▪ The Extension Data MUST be set with the data segment ID value as defined in section 3.1.5.2.1
in case the initial block ID is zero. If the initial block ID is different from zero, then the Extension

Data MUST be set to the data segment ID followed by the initial block ID.

▪ This extension MUST be included for each encrypted payload of a MAU.

A "WMDRM Key ID" extension MUST be included. The following values MUST be set:

▪ The Extension Type MUST be set to 3.

▪ The Extension Length MUST be set to 16 (meaning 128 bits).

▪ The Extension Data MUST be set with the key ID value from the license that corresponds to this

MAU.

The "WMDRM Initialization Vector" and "WMDRM Key ID" extensions MUST be included for the first
payload of a new MAU in each multiple-payload RTP packet that contains multiple MAUs. This ensures
that the receiver always knows about the current key ID even if some RTP packets are lost.

2.1.1.3.8 SDP Description

The use of the RTP Payload Format for Windows Media Audio and Video [WMRTP] is indicated in the

SDP description by preceding the MIME subtypes for MPEG-2 audio and video elementary streams with
the "vnd.ms.wm-" prefix.

Thus, the MIME subtype for MPEG-2 audio elementary streams MUST be "vnd.ms.wm-MPA", and the
MIME subtype for MPEG-2 video elementary streams MUST be "vnd.ms.wm-MPV".

All other parameters MUST be set according to sections 4.1.17 and 4.2.8 of RFC 3555 [RFC3555] for
MPEG-2 audio and video elementary streams.

2.1.1.4 OpenCable Digital Receiver Interface Mappings

This section describes how the WMDRM: Network Devices Protocol is used with the OpenCable Digital
Receiver Interface (DRI) transport. The protocol procedures used via DRI are registration, proximity

detection, license retrieval, license update, and revocation.

2.1.1.4.1 Registration

Registration is accomplished by following the rules defined here. In addition to parsing the certificate
as specified here, the transmitter MUST make sure that the receiver has been properly individualized
by looking for the following string.

 <c:SecurityVersion> in <Keyfile><c:CertificateCollection><c:Certificate><c:Data>

33 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If the SecurityVersion ends in ".1", the cert is individualized.

Registration MUST fail if the receiver is not individualized, as indicated by SecurityVersion.

There are multiple certificates in the CertificateCollection. Verifying the SecurityVersion data on

the leaf certificate is sufficient.

The message format follows the rules documented in section 2.2.1.

See section 2.1.1.1 for Registration DRI UPnP mappings.

2.1.1.4.2 Proximity Detection

Proximity detection is accomplished by following the rules specified in section 2.1.1.5.3

2.1.1.4.3 License Retrieval

license retrieval is accomplished by following the rules here, and the message format following the
rules documented here. See this UPnP Mapping for license retrieval DRI UPnP mappings.

2.1.1.4.4 License Update

License updates are accomplished by following the guidelines in section 2.2.1.4.3 and the message

format guidance documented in section 2.2.1.4.3. License update messages are sent via TAG packets.

The transmitter initiates a license update for every event defined in [XMR] and for "License
Generation", of the OpenCable Digital Unidirectional Receiver Interface Specification [OCDRIP].

Messages are repeated when transferring encrypted content to a receiver. Every TAG packet carries a
license update message containing license derivation data.

2.1.1.4.5 Revocation

Prior to initiating registration, the receiver can send the transmitter device a revocation information
version (RIV) structure and the WMDRM: Network Devices Protocol CRL as defined in section 2.2.1.6.
These messages are sent over UPnP. See section 2.1.1.1 for revocation DRI UPnP mappings.

In addition, the transmitter MUST ensure that the Issue Time of the RIV is current as defined by [CR-
WMDRM].

2.1.1.5 Media Transfer Protocol (MTP) over USB Mappings

The MTP extension defined in this section provides a mapping of WMDRM: Network Devices Protocol
messages to the Media Transfer Protocol (MTP). The WMDRM: Network Devices Protocol extension to
MTP defines operations that enable DRM-protected content to be securely transmitted from the
transmitter to the receiver.

The WMDRM: Network Devices Protocol extension to MTP depends on the Microsoft Advanced
Audio/Video Transfer (AAVT) extension to MTP for media session management. As a result of this
dependence, the AAVT extension MUST also be implemented in both the transmitter and receiver to
take advantage of WMDRM: Network Devices Protocol. See the Media Transfer Protocol Specification
[MTP] for details concerning the AAVT extension to MTP.

The terms initiator and responder, used in the context of MTP, indicate the MTP initiator and MTP
responder. When comparing information with WMDRM: Network Devices Protocol documentation, an

34 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

initiator corresponds to a WMDRM: Network Devices Protocol receiver, and a responder corresponds to
a WMDRM: Network Devices Protocol transmitter.

The following sections give procedural information specific to MTP over USB in the context of WMDRM:
Network Devices Protocol.

2.1.1.5.1 Establishing a Connection

After a USB connection is established between the receiver and the transmitter, the transmitter is
identified as an MTP device [MTP]. Then the receiver is expected to retrieve the DeviceInfo dataset
from the transmitter using the GetDeviceInfo MTP operation. The DeviceInfo dataset includes a
string indicating the MTP extensions implemented by the transmitter and the set of all MTP operations
supported by the transmitter.

To verify compatibility with the Microsoft AAVT MTP extension, the receiver SHOULD check whether
the DeviceInfo dataset returned by the transmitter indicates that AAVT operations are supported.
The MTPExtensions field of the DeviceInfo dataset SHOULD contain the string
"microsoft.com/AAVT: 1.0; ". Additionally, the OperationsSupported field of the DeviceInfo dataset

that contains an array of operation codes supported by the transmitter SHOULD include operation
codes 0x9170 (OpenMediaSession), 0x9171 (CloseMediaSession), and 0x9172 (GetNextDataBlock).

The transmitter can optionally indicate support for operation code 0x9173 (SetCurrentTimePosition).

In the same way, if the transmitter supports the WMDRM: Network Devices Protocol extension to MTP,
it SHOULD advertise it in the DeviceInfo dataset. The MTPExtensions field of the DeviceInfo
dataset SHOULD contain the string "microsoft.com/WMDRMND: 1.0; ", and the
OperationsSupported array SHOULD contain each of the operation codes defined as part of the
WMDRM: Network Devices Protocol extension to MTP. These operations are defined by the operation
codes 0x9180 through 0x9185, and are specified in the Media Transfer Protocol Specification [MTP].

2.1.1.5.2 Registration

After the physical connection is established and the receiver has confirmed that the transmitter
supports the AAVT and WMDRM: Network Devices Protocol extensions, it SHOULD perform WMDRM:

Network Devices Protocol registration.

During WMDRM: Network Devices Protocol registration, the receiver supplies its certificate to the
transmitter for validation and for later exchanging content keys. Registration is performed using the

SendRegistrationRequest and GetRegistrationResponse MTP operations as described in the
Media Transfer Protocol Specification [MTP].

If SendRegistrationRequest and GetRegistrationResponse succeed, the receiver is considered to
be registered. The receiver's certificate will expire 48 hours after registration. The registration
procedure MUST be performed again. After the receiver is registered, it can perform WMDRM: Network
Devices Protocol proximity detection. Both registration and proximity detection are required before the

receiver can acquire a license for DRM-protected content to enable WMDRM: Network Devices Protocol
delivery. For more information on the registration, see section 2.2.1.

2.1.1.5.3 Proximity Detection

After the receiver has been registered with the transmitter, the proximity detection procedure is
performed. The proximity detection procedure is performed using the GetProximityChallenge and
SendProximityResponse MTP operations that are described in the Media Transfer Protocol

Specification [MTP].

During WMDRM: Network Devices Protocol proximity detection, the transmitter sends a 128-bit
random value to the receiver. This value, called the nonce, MUST be encrypted by the initiator using
the content encryption key issued during registration, and returned to the responder within a fixed
time period.

35 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

For more information on proximity detection, see section 3.1.1.4.

2.1.1.5.4 Establishing a Media Session and Retrieving a License

After successful proximity detection, the receiver can request a license to play DRM-protected content.

The operations used to request and receive licenses are SendWMDRMNDLicenseRequest and
GetWMDRMNDLicenseResponse; these methods are discussed in the Media Transfer Protocol
Specification [MTP].

Details concerning the license retrieval procedure are discussed here and the message format is
explained here. For additional information on content retrieval for circumstances where WMDRM:
Network Devices Protocol is not used, see the Media Transfer Protocol Specification [MTP].

2.1.1.5.5 Retrieving Content Data Using a Media Session

After the media session is opened and a license is acquired, the receiver can begin content data
retrieval. In the context of WMDRM: Network Devices Protocol, the data will have been encrypted with
the content encryption key obtained during license retrieval.

When retrieving content, the receiver requests blocks of content data using the GetNextDataBlock
operation defined by the AAVT extension to MTP. The receiver can repeat the GetNextDataBlock

operation request until the transmitter indicates that the end of the file has been reached.

The control capabilities returned during the OpenMediaSession operation will indicate whether time-
based seeking is supported. If it is supported, the initiator can use the AAVT extension
SetCurrentTimePosition to set the position of the next read operation at any time while the media
session is open.

2.1.1.5.6 Terminating a Session

When the receiver determines that it no longer requires an open media session for the current content
selection, it can terminate the session. During session termination, the receiver notifies the
transmitter that the content is no longer needed and that the transmitter SHOULD free any resources

associated with the media session. After a media session is closed, any further AAVT extension MTP
operation requests that use the SessionID corresponding to the closed session will return an error
within the range of errors defined for MTP operation responses in [MTP].

Session Termination (CloseMediaSession - operation 0x9171)

To terminate a session, the receiver issues a CloseMediaSession operation request (as defined by
the AAVT extension to MTP), passing the MediaSessionID returned during the OpenMediaSession
operation as the first parameter. The following diagram illustrates the sequence of operations for
terminating a session.

36 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 2: Terminating a Session Operation Sequence

When the transmitter receives the CloseMediaSession operation request, it can free any resources

allocated for the media session. The transmitter SHOULD then return the result of the operation in the
response message.

2.1.1.6 PBDA Mappings

This section describes how the WMDRM: Network Devices Protocol is used with Protected Broadcast

Driver Architecture (PBDA) tuners. The protocol procedures used with PBDA are registration, proximity
detection, authenticated commands, and revocation.

2.1.1.6.1 Registration

Registration is accomplished by following the rules here. In addition to parsing the certificate as

specified here the transmitter MUST make sure that the receiver has been properly individualized by
looking for <c:SecurityVersion> in <Keyfile><c:CertificateCollection><c:Certificate><c:Data>.

There are multiple certificates in the CertificateCollection. Verifying the SecurityVersion data on
the leaf certificate is sufficient.

The message format follows the rules in sections 2.2.1.1 and 2.2.1.2 respectively.

See section 2.1.1.1 for registration PBDA mappings.

2.1.1.6.2 Proximity Detection

Proximity detection is accomplished by following the rules documented in section 3.1.1.4

2.1.1.6.3 Revocation

Prior to initiating registration, the receiver MUST send the transmitter device a revocation information
version (RIV) structure and the WMDRM: Network Devices Protocol CRL as defined in section 2.2.1.6.
These messages are sent over UPnP. In addition to the policies specified in this document, the
transmitter MUST ensure that the Issue Time of the RIV is current as defined by the Compliance and

Robustness Rules for Windows Media DRM [CR-WMDRM].

2.1.1.6.4 Authenticated Commands

Use of authenticated commands is accomplished by following the rules described in section 2.2.1.7.

37 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2 Message Syntax

All integer values are unsigned and are represented in big-endian (network byte order) format unless
otherwise noted.

All GUID values are in packet format, as specified in [MS-DTYP] section 2.3.4.2.

2.2.1 Registration

The following sections describe the structures of messages used during the registration process.

2.2.1.1 Registration Request Message

The receiver sends a registration request message to start the registration procedure. A registration
request message contains three sections:

Header: Contains the protocol version supported by the receiver and the message type. The protocol

version MUST be 0x03. The message type for registration request messages is 0x01.

Serial number: Contains the serial number used to identify the receiver. Manufacturers MAY use the
same certificate for multiple devices as long as every device has a unique serial number.

If the certificate is unique, the serial number MUST be zero.

Certificate: Contains a 32-bit value indicating the length, in bytes, of the XML certificate and its
certificate chain, along with the byte array containing the XML certificate and certificate chain.

The certificate MUST NOT be null terminated.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolVersion MessageType SerialNumber (16 bytes)

...

...

... CertificateLength

... Certificate (variable)

...

ProtocolVersion (1 byte): Contains the protocol version. The protocol version MUST be set to 0x03.

MessageType (1 byte): Contains the message type. The message type MUST be set to 0x01, which

indicates a registration request message.

SerialNumber (16 bytes): Contains the serial number used to identify the receiver. Manufacturers
MAY use the same certificate for multiple devices as long as every device has a unique serial

number.

CertificateLength (4 bytes): Contains a 32-bit value. This value indicates the length, in bytes, of
the XML certificate and its certificate chain.

38 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Certificate (variable): Contains a byte array. This array, CertificateLength in size, contains the
XML certificate and certificate chain.

2.2.1.2 Registration Response Message

The registration response message is sent by the transmitter and provides the receiver with an
encrypted random value. The receiver MAY use it to compute the content encryption key and content
integrity key.

Receivers MUST silently disregard any additional data between the encrypted seed section and

signature section of the registration response message. In addition, the receiver MUST silently
disregard any additional data after the end of the registration response message.

The registration response message contains the following six sections:

Header: Contains the protocol version supported by the transmitter and the message type. The
protocol version MUST be 0x03. The message type for registration response messages is 0x02.

Signature offset: Contains the signature offset, which is a 16-bit value that indicates the number of
bytes from the beginning of the message to the location of the signature section. This allows for the

extension of the message in future revisions of the protocol while still providing a backward-
compatible mechanism for signing the complete message.

Serial number: Contains the 128-bit serial number of the receiver. The receiver MUST check the
serial number that is sent by the transmitter against its stored serial number. If there is a mismatch,
the receiver MUST quit the operation.

Session ID: Contains the session ID. The transmitter generates the session ID, which is then used by
the receiver during proximity detection.

Transmitter Identifier: Contains a 16-bit value indicating the length of an ANSI string , in bytes,
and the ANSI string itself. The string specifies the communication method for sending and receiving
proximity detection messages with the transmitter. The string contains the transport protocol as well
as any additional data such as IP Address and Port.

Encrypted seed: Contains the seed encryption type, encrypted seed length, and the encrypted seed
itself. The 8-bit type MUST be set to 0x01 to indicate RSA encryption. The 16-bit length is the length

of the encrypted seed, in bytes, which is determined by the length of the receiver's RSA key. For
example, because all receivers use 1024-bit public keys, the encrypted seed length is 128 bytes. The
seed itself is a 128-bit random value that is used to derive the content encryption key and content
integrity key. The seed is encrypted using the public key of the receiver. The private key of the
receiver is used to decrypt the seed.

The seed is encrypted using the RSAES-OAEP encryption scheme that is defined in the PKCS#1
(version 2.1) standard [PKCS1]. The hash algorithm is SHA-1 [FIPS180-2], which is defined in FIPS

180-2. The mask generation function is MGF1, which is defined in section B.2.1 of the PKCS#1
(version 2.1) standard [PKCS1]. The label parameter MUST be set to an empty string.

The content encryption key is computed by calculating the SHA-1 [FIPS180-2] hash of the seed
concatenated with a constant value. The constant MUST be the 128-bit representation of the number

1. The first 128 bits of the SHA-1 [FIPS180-2] hash constitute the content encryption key.

The content integrity key is computed by calculating the SHA-1 [FIPS180-2] hash of the seed
concatenated with a constant. The constant MUST be the 128-bit representation of the number 2. The

first 128 bits of the SHA-1 [FIPS180-2] hash constitute the content integrity key.

The authenticated commands key is computed by calculating the SHA-1 [FIPS180-2] hash of the seed
concatenated with a constant. The constant MUST be the 128-bit representation of the number 3. The
first 128 bits of the SHA-1 [FIPS180-2] hash constitute the authenticated command key.

39 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Signature: Contains the signature type and length, and the digital signature itself. The 8-bit type is
set to 0x01 to indicate that it is an AES OMAC1 [OMAC]. The length is a 16-bit value containing the

length of the digital signature, in bytes, and the digital signature is calculated over all prior sections of
the registration request message, including any additional data between the encrypted seed and

signature sections.

The OMAC [OMAC] MUST be computed using the content integrity key and a zero initialization vector.
Computing the content integrity key is described in the preceding section on encrypted seeds.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolVersion MessageType SignatureOffset

SerialNumber (16 bytes)

...

...

SessionID (16 bytes)

...

...

TransmitterIdentifierLength TransmitterIdentifier (variable)

...

EncryptedSeedType EncryptedSeed (16 bytes)

...

...

... SignatureType SignatureLength

Signature (variable)

...

ProtocolVersion (1 byte): Contains the protocol version. The protocol version MUST be 0x03.

MessageType (1 byte): Contains the message type for registration response messages. The

message type for registration response messages is 0x02.

SignatureOffset (2 bytes): A 16-bit integer value. Indicates the number of bytes from the beginning
of the message to the location of the signature section. This allows for the extension of the
message in future revisions of the protocol while still providing a backward-compatible mechanism
for signing the complete message.

40 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

SerialNumber (16 bytes): Contains the 128-bit serial number of the receiver. The receiver MUST
check the serial number that is sent by the transmitter against its stored serial number. If there is

a mismatch, the receiver MUST quit the operation.

SessionID (16 bytes): Contains the session ID. The transmitter generates the session ID, which is

then used by the receiver during proximity detection.

TransmitterIdentifierLength (2 bytes): Contains a 16-bit value indicating the length of an ANSI
string, in bytes.

TransmitterIdentifier (variable): Indicates the transport protocol. The string specifies the
communication method for sending and receiving proximity detection messages with the
transmitter. The string contains the transport protocol as well as any additional data such as IP
Address and Port. The format for the string is specified in section 2.2.1.2.1.

EncryptedSeedType (1 byte): An 8-bit integer. Contains an encrypted type. This field MUST be set
to 0x01 to indicate RSA encryption.

EncryptedSeed (16 bytes): Contains an encrypted key. The seed itself is a 128-bit random value

that is used to derive the content encryption key and content integrity key. The seed is encrypted
using the public key of the receiver. The private key of the receiver is used to decrypt the seed.

SignatureType (1 byte): Contains a signature type. The 8-bit type is set to 0x01 to indicate that it is

an AES OMAC1 [OMAC].

SignatureLength (2 bytes): Contains the length of the digital signature, in bytes.

Signature (variable): Contains the digital signature, which is calculated over all prior sections of the
registration request message, including any additional data between the encrypted seed and
signature sections.

2.2.1.2.1 Transport Protocol: Transport-specific Metadata

These are the values for the Transport Protocol parameter:

IP4: Denotes an IPv4 address in decimal dot notation.

IP6: Denotes an IPv6 address enclosed in square brackets according to the URL syntax for IPv6
addresses defined in [RFC2732].

TA: Denotes transport agnostic for use by receivers implemented with transport agnostic proximity
detection. Any remaining values in the string will be ignored.

The following are examples of how the string MAY appear. The first example illustrates the syntax for

IPv4 addresses, and the second example illustrates the syntax for IPv6 addresses. The third example
illustrates the syntax for transport agnostic proximity detection:

 IP4:192.168.254.2:877
 IP6:[FE80::2AA:FF:FE9A:4CA2]:877
 TA:

This string MUST NOT be null terminated.

2.2.1.3 Proximity Detection

The following sections describe the structure of the messages used during a proximity detection
session.

41 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.1.3.1 The Proximity Start Message

The proximity start message contains two sections:

Header: Contains the protocol version supported by the receiver and the message type. The protocol

version MUST be set to 0x03. The message type for proximity start messages is 0x03.

Session ID: Contains the session ID. The receiver MUST send the same 128-bit session ID that was
passed to it in the registration response message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolVersion MessageType SessionID (16 bytes)

...

...

...

ProtocolVersion (1 byte): Contains the protocol version supported by the receiver. MUST be set to
0x03.

MessageType (1 byte): Contains the message type for proximity start messages. The message type

for proximity start messages is 0x03.

SessionID (16 bytes): Contains the session ID. The receiver MUST send the same 128-bit session
ID that was passed to it in the registration response message.

2.2.1.3.2 The Proximity Challenge Message

A proximity challenge message contains four sections:

Header: Contains the protocol version supported by the transmitter and the message type. The
protocol version MUST be set to 0x03 and the message type for proximity challenge messages is
0x04.

Sequence number: This 8-bit sequential number. This value MUST be incremented by one every
time the proximity challenge message is sent to the receiver.

Session ID: Contains the session ID. The transmitter MUST send the same 128-bit session ID that it
sent to the receiver in the registration response message.

Challenge value (Nonce): A 128-bit, random challenge value selected by the transmitter.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolVersion MessageType SequenceNumber SessionID (16 bytes)

...

...

... Nonce (16 bytes)

42 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

...

...

...

ProtocolVersion (1 byte): Contains the protocol version supported by the transmitter. The protocol
version MUST be set to 0x03.

MessageType (1 byte): Contains the message type. The message type for proximity challenge

messages is 0x04.

SequenceNumber (1 byte): Contains the sequence number. This 8-bit sequential number MUST be
incremented by one every time the proximity challenge message is sent to the receiver.

SessionID (16 bytes): Contains the session ID. The transmitter MUST send the same 128-bit

session ID that it sent to the receiver in the registration response message.

Nonce (16 bytes): Contains the nonce. Must be set to a 128-bit random value selected by the

transmitter.

2.2.1.3.3 The Proximity Response Message

The proximity response message contains four sections:

Header: Contains the protocol version supported by the receiver and the message type. The protocol
version MUST be 0x03. The message type for proximity response messages is 0x05.

Sequence number: Contains the sequence number. The sequence number MUST be the same one

included in the proximity challenge message.

Session ID: Contains the session ID. The receiver MUST send the same 128-bit session ID that was

passed to it in the registration response message.

Encrypted challenge value (nonce): Contains the nonce. The nonce is the 128-bit random value in
the proximity challenge message, encrypted using the AES content encryption key in ECB mode.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolVersion MessageType SequenceNumber SessionID (16 bytes)

...

...

...
EncryptedNonce (16

bytes)

...

...

...

43 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ProtocolVersion (1 byte): Contains the protocol version supported by the receiver. The protocol
version MUST be 0x03.

MessageType (1 byte): Contains the message type. The message type for proximity challenge
messages is 0x05.

SequenceNumber (1 byte): Contains the sequence number. This 8-bit sequential number MUST be
incremented by one every time the proximity challenge message is sent to the transmitter.

SessionID (16 bytes): Contains the session ID. The receiver MUST send the same 128-bit session
ID that was passed to it in the registration response message.

EncryptedNonce (16 bytes): Contains the encrypted nonce. This is the 128-bit random value from
the proximity challenge message that was encrypted using the content encryption key using AES
in ECB mode.

2.2.1.3.4 The Proximity Result Message

The proximity result message contains three sections:

Header: Contains the protocol version supported by the transmitter and the message type. The
protocol version MUST be 0x03. The message type for proximity result messages is 0x06.

Session ID: Contains the session ID. The transmitter MUST send the same 128-bit session ID that it

sent to the receiver in the registration response message.

Result: A 16-bit integer. The Result field is a 16-bit integer and indicates the result of the proximity
detection. If the proximity detection procedure was a success, then the Result field MUST be set to
0x0000. If it was a failure, then the Result field MUST be set to error code 106 (Unable to Verify
Proximity). The complete list of error codes is defined in section 2.3.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolVersion MessageType SessionID (16 bytes)

...

...

... Result

ProtocolVersion (1 byte): Contains the protocol version supported by the transmitter. The protocol

version MUST be 3.

MessageType (1 byte): Contains the message type. The message type for proximity result
messages is 6.

SessionID (16 bytes): Contains the session ID. The receiver MUST send the same 128-bit session
ID that was passed to it in the registration response message.

Result (2 bytes): A 16-bit integer. Indicates the result of the proximity detection. If the proximity
detection procedure was a success, then the Result field MUST be set to 0x0000. If it was a

failure, then the Result field MUST be set to error code 0x06a (Unable to Verify Proximity). The
complete list of error codes is defined in section 2.3.

44 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.1.4 License Retrieval

The following section describes the messages sent and received to deliver a license to a receiver.

2.2.1.4.1 The License Request Message

The receiver sends a license request message when it requests content from the transmitter. The
message contains six parts:

Header: Contains the protocol version supported by the receiver and the message type. The protocol
version is 0x03 and the message type for license request messages is 0x07.

Rights ID: Contains the Rights ID, which is a random value generated by a cryptographically random
number generator that is in accordance with the Compliance Rules [CR-WMDRM] The Rights ID is

echoed back by the transmitter during the license response message.

CRL version number: Contains the 32-bit version number of the receiver's CRL. This value MUST be
zero if the receiver does not have transmitting capabilities.

Serial number: Contains the serial number that identifies the receiver. Manufacturers MAY use the
same certificate for multiple devices, as long as every device has a unique serial number.

Certificate: Contains a 32-bit value indicating the length (in bytes) of the XML certificate and its

certificate chain, along with the byte array containing the XML certificate and certificate chain.

The certificate MUST NOT be null terminated.

Intended action of the receiver: The action section starts with a 16-bit integer value that specifies
the length (in bytes) of the action string, followed by the action string. The action string is encoded in
the ANSI character set.

The receiver MUST send the action string to the transmitter indicating what it is trying to do with the
content. The only action string currently defined is "Play".

The action that is indicated by the receiver is used by the transmitter to locate the appropriate license

and does not guarantee that the license returned allows the requested action. The receiver MUST
respect the rights in the license. The action string is case sensitive and MUST NOT be null terminated.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolVersion MessageType RightsID (16 bytes)

...

...

... CRLVersionNumber

... SerialNumber (16 bytes)

...

...

... CertificateLength

45 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

... Certificate (variable)

...

ActionLength Action (variable)

...

ProtocolVersion (1 byte): Contains the protocol version. The protocol version MUST be set to 0x03.

MessageType (1 byte): Contains the message type. The message type for license request messages
is 0x07.

RightsID (16 bytes): Contains the rights ID. A random value generated by a cryptographically
random number generator that is in accordance with the Compliance and Robustness Rules for
Windows Media DRM [CR-WMDRM]. This value is echoed back by the transmitter during the

license response message.

CRLVersionNumber (4 bytes): Contains the 32-bit version number of the receiver's CRL. This value
MUST be zero if the receiver does not have transmitting capabilities.

SerialNumber (16 bytes): Contains the serial number that identifies the receiver. Manufacturers
MAY use the same certificate for multiple devices, as long as every device has a unique serial
number.

CertificateLength (4 bytes): Contains a 32-bit value. Indicates the length (in bytes) of the XML
certificate and its certificate chain.

Certificate (variable): Contains the XML certificate and certificate chain.

ActionLength (2 bytes): Contains a 16-bit value. Indicates the length (in bytes) of the ANSI action

string.

Action (variable): ANSI-encoded string containing the action the receiver will perform with the
content.

2.2.1.4.2 The License Response Message

After the transmitter handles the license request message, it sends a license response message to the
receiver.

Receivers MUST silently disregard any additional data after the end of the license response message.

The license response message contains three parts:

Header: Contains the protocol version supported by the transmitter and the message type. The
protocol version MUST be 0x03. The message type is set to 0x08 for license response messages.

CRL: A 32-bit value. Indicates the length of the variable-length CRL section, in bytes, followed by the
CRL section itself.

The CRL is sent when the transmitter has a higher CRL version number than the receiver, and the

receiver also has transmitting capabilities. The device certificate of the receiver specifies whether the
receiver has transmitting capabilities.

License: Contains a 32-bit value that specifies the length of the variable-length license, in bytes,
followed by the byte array of the license itself. The byte array is represented in XMR format [XMR]. In
addition to the usage rights of the license, the license contains but is not limited to the following parts.

46 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Content Encryption Key: The content encryption key is used to encrypt the media data using AES in
counter mode (CTR) during data transfer. Encrypted with the public key of the receiver.

Content Integrity Key: The content integrity key is used to generate MACs using AES-based OMAC1
[OMAC]. Encrypted with the public key of the receiver.

The content encryption key and content integrity key used in the license response message and during
data transfer are not related to any keys used for the registration or proximity detection procedures.

Rights ID: Contains the same 128-bit random value sent by the receiver in the license request
message. The transmitter MUST send this back to the receiver. The receiver MUST confirm that this is
the same Rights ID that it sent in the license request message.

CRL version number: A 32-bit integer. Contains the version number of the transmitter's CRL.

Serial number: The serial number is sent by the transmitter so it MAY be checked against the stored

serial number on the receiver. If there is a mismatch, the receiver MUST quit the operation.

For more information on licenses, see the XMR specification [XMR].

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolVersion MessageType CRLLength

CRL (variable)

...

LicenseLength License (variable)

...

ProtocolVersion (1 byte): Contains the protocol version supported by the transmitter. The protocol
version MUST be set to 0x03.

MessageType (1 byte): Contains the message type. MUST be set to 0x08 for license response

message.

CRLLength (2 bytes): Indicates the length of the variable-length CRL section, in bytes.

CRL (variable): This variable-length, optional field is sent when the transmitter has a higher CRL
version number than the receiver, and the receiver also has transmitting capabilities. The device
certificate of the receiver indicates whether the receiver has transmitting capabilities.

LicenseLength (2 bytes): Indicates the length of the variable-length license, in bytes.

License (variable): Contains the license itself, represented in XMR [XMR] format.

2.2.1.4.3 The License Update Message

Header: Contains the protocol version that is supported by the transmitter and the message type.
The protocol version MUST be set to 0x03. The message type for license update messages is 0x09.

License Update data: If you are performing license management with license chains, this section
contains the root/leaf license.

47 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolVersion MessageType UpdateType UpdateDataLength

... Updatedata (variable)

...

ProtocolVersion (1 byte): Contains the protocol version. The protocol version MUST be set to 0x03.

MessageType (1 byte): Contains the message type for license update messages. The message type
for license update messages is 0x09.

UpdateType (1 byte): Contains the update data type. If you are performing license management
with license update message, this section contains the update data type, the length of the update
data (in bytes) and the byte array that contains the license update data. The 8-bit type is set to

0x01 to indicate that the update data was generated by a version 1.0 Transmitter.

UpdateDataLength (4 bytes): Indicates the length, in bytes, of the Updatedata field.

Updatedata (variable): A byte array UpdateDataLength in size. Contains the update data.

When performing license management using license chains, the Updatedata contains the root/leaf
license. When performing license management using license derivation data, then Updatedata
contains the following:

▪ 8-bit license update data type.

▪ 32-bit license update data length.

▪ Variable-length license update data.

2.2.1.5 Revocation Lists

WMDRM: Network Devices Protocol supports distribution of its own revocation list and revocation lists
for related systems. The list of related systems currently includes the following three types of
revocation:

▪ Application Revocation. Application revocation is used to prevent access to Windows Media

DRM-protected content by certain compromised or noncompliant applications.

▪ Portable Device Revocation. Device revocation prevents DRM-protected content from being
copied or streamed to compromised or noncompliant portable devices.

▪ Certified Output Protection Protocol (COPP) Driver Revocation. COPP driver revocation is
used to deny playback of content on systems where the device driver responsible for enabling
output protection technologies is compromised or noncompliant.

The RIV structure is specified in section 3.1.5.1.

2.2.1.5.1 Revocation Information Version Structure

The revocation information version (RIV) structure contains versioning information about revocation
lists. Use of the RIV insures that a revocation list on the receiver is the most recent applicable RIV for
a license.

48 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ID

Length

FormatVersion Reserved

SequenceNumber

IssuedTime

...

EntryCount

RevocationListVersionInformationRecords (variable)

...

SignatureType Signature (128 bytes)

...

...

... CertificateChainLength

...

... CertificateChain (variable)

...

ID (4 bytes): Contains the ASCII characters 'R', 'L', 'V', and 'I'. Indicates this is a revocation list
version information structure.

Length (4 bytes): Contains the length, in bytes, of the signed area of this structure starting from the

beginning of the ID field up to, but not including, the SignatureType field.

FormatVersion (1 byte): Contains the format version. Data structure version MUST be 0x01.

Reserved (3 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

SequenceNumber (4 bytes): Contains the sequence number of the revocation list version
information. The revision is used to distinguish a new RIV from an older one.

IssuedTime (8 bytes): Contains the date and time at which the revocation list versions contained in

this structure were current. Represented as a 64-bit unsigned integer indicating the number of
100-nanosecond intervals since January 1, 1601 (UTC).

EntryCount (4 bytes): Contains the number of revocation list version information records.

49 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

RevocationListVersionInformationRecords (variable): As specified in section 2.2.1.5.1.

SignatureType (1 byte): Contains the signature type. A value of 0x01 means that a 1024-bit

RSASSA-PSS signature is used with the scheme defined in the PKCS#1 (version 2.1) standard
[PKCS1]. The signed section extends from the beginning of the ID field up to, but not including,

this field.

Signature (128 bytes): Contains the digital signature.

CertificateChainLength (8 bytes): Contains the length, in bytes, of the certificate chain field.

CertificateChain (variable): Contains the certificate chain. This certificate chain is the XML
Certificate Collection for the Microsoft CRL signing authority.

2.2.1.5.2 Revocation List Version Information Record

The revocation information version structure is limited to a maximum size of 10 kilobytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ListID (16 bytes)

...

...

Version

...

ListID (16 bytes): Contains the identifier for the revocation list. The valid GUIDs for the ListID field

are:

▪ {90A37313-0ECF-4CAA-A906-B188F6129300}: Windows Media DRM Application CRL. For this
list ID, the lower 32 bits of the version MUST be a 32-bit unsigned integer (little-endian).

▪ {3129E375-CEB0-47D5-9CCA-9DB74CFD4332}: Windows Media DRM for Portable Devices
CRL. For this list ID, the lower 32 bits of the version MUST be a 32-bit unsigned integer.

▪ {CD75E604-543D-4A9C-9F09-FE6D24E8BF90}: WMDRM: Network Devices Protocol or COPP
Driver CRL. For this list ID, the lower 32 bits of the version MUST be a 32-bit unsigned integer.

Additionally, a GUID is specified for representing the RIV itself. This GUID is used to represent the
RIV in revocation list request and response messages. This allows updated RIVs to be transferred
via the revocation list update procedure.

▪ {CCDE5A55-A688-4405-A88B-D13F90D5BA3E}: Identifies the RIV itself.

Version (8 bytes): Indicates the current version number.

The authenticity of the RIV MUST be verified prior to its usage. To verify the RIV signature, a device
MUST verify that the signing certificate, which is part of RIV, is directly signed by the Microsoft root
certificate and has the SignCRL element value set to the string "1". Optionally, devices can store the
well-known Microsoft CRL signing public key in secure, nonvolatile storage. For devices that choose
this approach, verifying the RIV involves only checking the signature on the RIV itself.

2.2.1.5.3 Certificate Revocation Lists

50 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

WMDRM: Network Devices Protocol certificate revocation lists (CRLs) contain digests of revoked
certificates and can be provided and signed only by Microsoft. They are typically distributed through

DRM licenses, and only transmitters or receivers with transmitting capabilities need to maintain CRLs.

CRLs can revoke any certificate in the device certificate's chain. If any certificate in the chain is

revoked, then that certificate and all of the certificates below it in the chain are also revoked.

When transmitters receive a CRL, they MUST make sure the CRL is valid. To verify that the CRL is
valid, transmitters MUST verify that the CRL certificate, which is part of the CRL, is directly signed by
the Microsoft Root Certificate and has the SignCRL element value set to the string "1". The signature
of the CRL MUST also be verified.

After the CRL is verified, transmitters can store it. The CRL version number MUST be checked before
storing so that the transmitter always stores the newest version.

Transmitters can also store the well-known Microsoft CRL signing public key in secure nonvolatile
storage. For devices that choose this approach, verifying the CRL involves only checking the signature
on the CRL itself.

A receiver that also has transmitting capabilities MUST compare its currently stored version of the CRL
to the transmitter's CRL. If the transmitter's CRL is newer, the transmitter MUST send its CRL the
receiver. If the transmitter's CRL is not newer, no CRL is sent to the receiver.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CRLVersion

NumberOfEntries

RevocationEntries (variable)

...

CertificateLength

Certificate (variable)

...

SignatureType SignatureLength Signature (variable)

...

CRLVersion (4 bytes): Contains the version of the CRL.

NumberOfEntries (4 bytes): Indicates the number of revocation entries.

RevocationEntries (variable): The array of revocation entries.

CertificateLength (4 bytes): Indicates the length, in bytes, of the XML certificate and its certificate
chain.

Certificate (variable): The XML certificate.

SignatureType (1 byte): Indicates the type of signature.

51 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

SignatureLength (2 bytes): Indicates the length of the signature, in bytes.

Signature (variable): Contains the signature of the CRL.

Header: Contains the version number of the CRL and the number of revocation entries in the
CRL. A CRL can contain zero or more entries.

Revocation entries: Contains the revocation entries. Each revocation entry is the 160-bit digest
of a revoked certificate. The transmitter compares this digest with the DigestValue element
within the certificate it is checking.

Certificate: A 32-bit integer value. Indicates the length, in bytes, of the XML certificate and its
certificate chain, along with the byte array containing the XML certificate of the certificate
authority (CA) and certificate chain that has Microsoft as the root. The certificate MUST be signed
by a CA that has the authority to issue CRLs.

Optionally, devices can store the well-known Microsoft CRL signing public key in secure,
nonvolatile storage. For devices that choose this approach, verifying the CRL involves only
checking the signature on the CRL itself.

This certificate MUST NOT be null terminated.

Signature: Contains the signature type and length, and the digital signature itself. The 8-bit type
is set to 0x02 to indicate that it uses SHA-1 [FIPS180-2] with 1024-bit RSA encryption. The length

is a 16-bit value containing the length of the digital signature, in bytes, and the digital signature is
calculated over all prior sections of the CRL.

The signature is calculated using the RSASSA-PSS digital signature scheme defined in (version
2.1) [PKCS1]. The hash function is SHA-1 [FIPS180-2], defined in FIPS 180-2—and the mask
generation function is MGF1, which is defined in section B.2.1 in PKCS#1 (version 2.1) [PKCS1].

2.2.1.6 Revocation List Update

This section describes the messages utilized to update the revocation lists on the receiver.

The receiver sends a revocation list request message when it is requesting an updated revocation list
from the transmitter. The message contains two parts:

Header: Contains the protocol version that is supported by the transmitter and the message type.

The protocol version MUST be set to 0x03. The message type for revocation list is 0x0a.

Revocation List Data: Contains a one-byte count of revocation list entries followed by the revocation
list.

2.2.1.6.1 The Revocation List Request Message

This section starts with an 8-bit field specifying the number of list IDs, followed by the array of list IDs
itself. A list ID is a globally unique identifier (GUID) used to identify which type of revocation list the

receiver is requesting. Possible list ID values are listed in Revocation Lists.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolVersion MessageType
CountOfRevocationListReq

uests
RevocationListRequests

(variable)

...

52 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ProtocolVersion (1 byte): Contains the protocol version. The protocol version MUST be set to 0x03.

MessageType (1 byte): Contains the message type for revocation list request messages. The

message type for revocation list messages MUST be set to 0x0a.

CountOfRevocationListRequests (1 byte): Indicates the number of entries.

RevocationListRequests (variable): A variable-length list of 128-bit GUIDs.

2.2.1.6.2 The Revocation List Response Message

The transmitter sends a revocation list response message to provide the requested revocation list to
the receiver. The message contains two parts:

Header: Contains the protocol version supported by the transmitter and the message type. The
protocol version MUST be set to 0x03. The message type for revocation list response messages is

0x0b.

Revocation Lists (optional): This field MAY be present. When present, this field contains one or

more revocation lists. Each revocation list MUST be placed in this section in the following format.

A 128-bit GUID list ID, followed by a 32-bit value that specifies the length of the variable-length
revocation list, followed by a byte array containing the variable-length revocation list itself.

In case the transmitter does not store a revocation list for the given list ID, an empty (zero length)

revocation list is sent to the receiver. Possible list ID values are included in section 2.2.1.6.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolVersion MessageType GUIDListID (16 bytes)

...

...

... RevocationListLength

... RevocationList (variable)

...

ProtocolVersion (1 byte): Contains the protocol version. The protocol version MUST be set to 0x03.

MessageType (1 byte): Contains the message type. The message type MUST be set to 0x0b for
revocation list response message.

GUIDListID (16 bytes): Contains a 16 byte value that identifies the revocation list type that follows.

RevocationListLength (4 bytes): Contains the length of revocation list, in bytes.

RevocationList (variable): Contains possible list ID values. In case the transmitter does not store a
revocation list for the given list ID, an empty (zero length) revocation list is sent to the receiver.
Possible list ID values are included in revocation list.

Multiple revocation lists MAY be included in this message by sequentially adding a GUIDListID,
RevocationListLength and RevocationList for each additional revocation list.

53 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.1.7 Authenticated Commands

This protocol supports sending cryptographically signed commands from the receiver to the
transmitter.

Figure 3: Sending Cryptographically Signed Commands from the Receiver to the Transmitter

The following table describes elements of the previous diagram.

Value Description

Session ID 128 bit session identifier generated in registration.

Counter Current value of the counter for sending authenticated messages. This value starts at zero (0).

Command Data The data structure holding the data for the command. See below for details.

OMAC OMAC1 [OMAC] of the message using the authenticated command key.

Result Error code for the operation.

0 means success

0x071 (113) means Bad request

0x072 (114) means Counter Mismatch

0x073 (115) means Invalid Signature

2.2.1.7.1 The Authenticated Command Message

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolVersion MessageType SessionID (16 bytes)

...

...

... Counter

54 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

... CommandType

... CommandLength

... CommandParameters (variable)

...

OMAC (16 bytes)

...

...

ProtocolVersion (1 byte): Contains the protocol version. The protocol version is 0x03.

MessageType (1 byte): Contains the authenticated command message type. The authenticated
command message type is 0x0c.

SessionID (16 bytes): Contains the 128-bit session ID. This value is sent by the transmitter in the
Registration Response message.

Counter (4 bytes): Contains a counter for Authenticated Commands. For each Authenticated
Command between the receiver and the transmitter, both the Receiver and transmitter
independently increment the counter. The counter MUST be in sync for the transmitter to carry out
the Authenticated Command. This mitigates a replay attack.

CommandType (4 bytes): Indicates the type of authenticated command.

CommandLength (4 bytes): Contains the length, in bytes, of the authenticated command.

CommandParameters (variable): Contains command parameters as dictated by Id and length.

OMAC (16 bytes): Contains the 128-bit AES-OMAC1 [OMAC] signature. The signature is generated
over the concatenation of the Counter field ORed with the Command Data field, including Id
and length.

2.2.1.7.2 The Authenticated Command Response Message

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolVersion MessageType ResultStatus

Counter

ResultDataLength

Resultdata (variable)

...

ProtocolVersion (1 byte): Contains the protocol version. The protocol version MUST be 3.

55 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

MessageType (1 byte): Contains the message type. The authenticated command response message
type is 0x0d.

ResultStatus (2 bytes): Contains a 16-bit status code indicating success or failure. A value of zero
indicates success; any other value is a failure code.

Counter (4 bytes): Contains the new counter value for the next command.

ResultDataLength (4 bytes): Contains the data length, in bytes, of the result. The result SHOULD
be zero for all commands currently defined.

Resultdata (variable): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

The SetStartCodeProfile authenticated command controls which start codes are detected, and
the number of payload bytes to leave in the clear for each detected start code. Any transport
packet that contains a Stream that is using Streaming AES Counter Mode is examined, before

encryption, for Start Codes.

A Start Code is a 4-byte sequence that contains 0x00, 0x00, 0x01, and 0xnn, where nn is the

start code.

Start Code detection includes the ability to detect Start Codes that span multiple transport stream
packets. This detection MAY be done by retaining the last 3 bytes of payload, for the AES
encrypted stream, and then using that information in conjunction with the first few bytes of the

next packet when it arrives.

If the transmitter is unable to comply with the SetStartCodeProfile request, the transmitter
MUST return an error and MUST continue streaming with the previously specified Start Code
Profiles. Failure to respect the commands MAY interfere or otherwise prohibit the receiver from
consuming the content and MAY lead to a broken user experience.

Command ID = 1:

Name of
the field

Size
in
bits Value Description

Start
Code
Enable

256 Varies A flag that indicates if the receiver requires detection of the corresponding
start code.

Start

Code
Cipher
Delay

256 *

8

Varies The number of bytes, starting with the fourth byte of the start code

sequence, which MUST be left in the clear, for the matching Contiguous
Stream, following the detection of this Start Code. Note that the
transmitter uses CipherDelay to skip encrypting whole transport stream
packets for which any byte appears that falls within the CipherDelay. A
value of 0 for this argument means that no payload bytes are required to
be left in the clear. If detection is enabled for such a start code, the
transmitter MUST insert a Stream Info Table indicating the presence of an
enable start code. By default, no start codes are enabled for detection. If a
start code is not enabled for detection, no action taken.

A non-zero value means that at least that many transport stream payload
bytes, starting with the fourth byte of the start code sequence header, will
at least be left in the clear. This will involve rounding out to full transport
stream packets. Note that adaptation field bytes MUST NOT be considered
payload bytes.

ClearStreamCipher: Contains the authenticated command, which allows the receiver to request that
data on a stream not be encrypted. The receiver MUST NOT use this method on any stream that
requires content protection. The purpose for this action is to allow the transmitter to stop

encrypting content when protection is not required.

56 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

An example of where this action is only applicable is when the transmitter is issuing leaf licenses
with Broadcast Screening Data objects.

Command ID = 2:

Name of the field Size in bits Value Description

Type 32 Varies Support values are Pid (0x1).

Value Varies Varies Size of the structure 16 bits when the type is Pid.

SetLinkTimer: Contains the authenticated command that sets the link timer, which is the maximum
time allowed before the receiver MUST call SetLinkTimer again. If the Time Limit has elapsed the
transmitter MUST revert all Streams that are in the clear to be encrypted.

The transmitter only needs to support this interface if it supports ClearStreamCipher.

Command ID = 3:

Name of the
field

Size in
bits Value Description

Time Limit 16 Varies The maximum number of seconds allowed between calls to
SetLinkTimer.

2.2.2 MTP Vendor Extension Identification Message

When an MTP responder is connected to an MTP initiator over USB, the initiator queries the
responder's DeviceInfo dataset. Included in this dataset are the MTP extensions supported by the
responder.

If an MTP responder supports the AAVT extension to MTP, the dataset returned by the DeviceInfo
MTP operation MUST contain the settings shown in the following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MTPVendorExtensionID

MTPVendorExtensionVersion MTPVendorExtensionDesc (variable)

...

OperationsSupported (variable)

...

MTPVendorExtensionID (4 bytes): A 32-bit unsigned integer. Indicates the vendor ID of the
extension to the Picture Transfer Protocol (PTP) used by the device. For MTP devices, this MUST
always be 0x00000006.

MTPVendorExtensionVersion (2 bytes): A 16-bit unsigned integer. Indicates the version, in

hundredths, of the extension to PTP used by the device. For devices that implement version 1.0 of
the MTP specification, this value MUST always be 0x0064 (100). This field is named MTPVersion
in the DeviceInfo dataset definition of the MTP specification.

57 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

MTPVendorExtensionDesc (variable): An MTP string that contains the name and version of each
MTP extension implemented by the device. This string MUST be in a specific format. The order of

extension descriptions in the string is not important. For devices that implement only the MTP
specification, the string is "microsoft.com: 1.0; ". For devices that implement AAVT, this string

includes "microsoft.com/AAVT: 1.0; " in addition to "microsoft.com: 1.0; ". This field is named
MTPExtensions in the DeviceInfo dataset definition of the MTP specification. For more
information about MTP string types, refer to section Strings in the MTP specification.

OperationsSupported (variable): An array of MTP operation codes that the device supports. This
array MUST include the operation codes for all supported extensions to MTP in addition to MTP and
PTP core operations. For devices that implement AAVT, this array includes the values 0x9170,
0x9171, and 0x9172. The value 0x9173 can optionally be included to indicate support for time-

based seeking. For more information about MTP array types, refer to section Arrays in the MTP
specification.

2.3 Protocol Error Codes

The following error codes are currently defined for WMDRM: Network Devices Protocol. These error
codes MAY be returned by the transmitter. Section 2.1.1.1.3 specifies how the error codes are mapped
to UPnPmessages, Section 2.1.1.2.6 specifies how they are mapped to HTTP, and section 2.1.1.3.4
specifies how they are mapped to RTSP.

Return value/code Description

0x0064

Invalid Certificate

The receiver's certificate is corrupted or its signature cannot be verified.

0x0065

Certificate Revoked

A hash of the receiver's certificate is listed in the transmitter's CRL.

0x0066

Must Approve

The receiver MUST be approved before it MAY execute the intended operation.

0x0067

License Unavailable

The transmitter does not hold a license for the requested action.

0x0068

Transmitter Failure

The transmitter encountered a generic failure.

0x0069

Device Limit Reached

The transmitter cannot execute the requested action because the number of devices in
use has already reached the maximum permitted.

0x006A

Unable to Verify
Proximity

The proximity detection procedure could not determine that the receiver is near the
transmitter.

0x006B

Must Register

The receiver MUST be registered before it MAY execute the intended operation.

0x006C

Must Revalidate

The receiver MUST be revalidated before it MAY execute the intended operation.

0x006D

Invalid Proximity
Response

The receiver has responded to the proximity challenge message incorrectly.

0x006E

Invalid Session

The session is no longer available.

58 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x006F

Unable to Open File

The transmitter cannot open the requested file.

0x0070

Unsupported Protocol
Version

The request received by the transmitter is based on an unsupported protocol version.

0x0071

Bad Request

The format of the request is not valid.

2.4 Common Requirements

This section specifies common cryptographic and protocol requirements for the WMDRM: Network

Devices Protocol.

2.4.1 Cryptographic Semantics

The following table describes the cryptographic notation that is used throughout this document.

Symbol Description

MAC Message authentication code.

OMAC Block cipher-based message authentication code

| Concatenation.

{text}M1 Text encrypted with M1's public key. Asymmetric key encryption.

[text]M1 Text signed with M1's private key. Asymmetric key signature.

K{text} Text encrypted with secret key K, using symmetric key encryption.

2.4.2 Cryptographic Requirements for Receivers

The following security requirements MUST be implemented by receivers:

▪ The block cipher is AES with 128-bit keys supporting Electronic Code Book (ECB) and CTR
[FIPS197].

▪ The public key cryptography is 1024-bit RSA [PKCS1]. All receivers are required to have a private

key and it MUST be stored in accordance with the rules detailed documented in [CR-WMDRM].

▪ The hashing algorithm is Secure Hashing Algorithm 1 (SHA-1) [FIPS180-2].

▪ The Hash-based Message Authentication Code (HMAC) is AES One-Key Cipher Block Chaining MAC
1 (OMAC1) [OMAC].

▪ The receiver certificate and its certificate chain MUST be stored in a manner consistent with the
rules called in [CR-WMDRM].The receiver playback and output control MUST comply with the rules
documented in [CR-WMDRM].

59 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.4.3 Cryptographic Requirements for Transmitters

The following security requirements MUST be implemented by transmitters:

▪ The block cipher is AES with 128-bit keys, supporting Electronic Code Book (ECB) and CTR

[FIPS197].

▪ The public key cryptography is 1024-bit RSA [PKCS1].

▪ The hashing algorithm is Secure Hashing Algorithm 1 (SHA-1) [FIPS180-2].

▪ The HMAC is AES One-Key Cipher Block Chaining MAC 1 (OMAC1) [OMAC].

▪ The Microsoft Root Public Key MUST be stored in a manner that is consistent with the [CR-
WMDRM] for transmitters.

▪ The certificate revocation list (CRL) MUST be stored in a manner that is consistent with the [CR-

WMDRM].

▪ The random number generator used to generate the encrypted seed MUST be cryptographically
random in a manner that is consistent with the [CR-WMDRM].

▪ A secure and accurate timer MUST be used for proximity detection. It MUST be accurate to the
millisecond.

2.4.4 Requirements for Receivers

Receivers MUST implement the protocol procedures described in section 3.2.

Receivers SHOULD also implement a UPnP control point for the UPnP Connection Manager service
(ConnectionManager:1) [UPNPCNMGR], and a UPnP control point for the UPnP Content Directory
service (ContentDirectory:1) [UPNPCDS1] so that they MAY retrieve content information from

transmitters.

The ConnectionManager:1 [UPNPCNMGR] and ContentDirectory:1 [UPNPCDS1] services are defined by
[UPNPCNMGR] and [UPNPCDS1], respectively. The X_MS_MediaReceiverRegistrar:1 service is defined
in section 3.4.

Receivers MUST implement the mapping of the registration and revalidation procedures to UPnP,
which is defined in section 2.1.1.1. Receivers are recommended to implement the mapping of the
authorization procedure to UPnP, which is defined in section 2.1.1.1.1.1.

If a receiver implements WMDRM: Network Devices Protocol for HTTP, the implementation MUST
follow the rules that are defined in section 2.1.1.2 for receivers.

If a receiver implements WMDRM: Network Devices Protocol for RTP [RFC2250] and RTSP [RFC2326],
the implementation MUST follow the rules that are defined in section 2.1.1.3 for receivers.

2.4.5 Requirements for Transmitters

Transmitters MUST implement the protocol procedures in section 3.3 and follow all rules in that
section that apply to transmitters.

Transmitters SHOULD also implement the UPnP Connection Manager service (ConnectionManager:1)
and UPnP Content Directory service (ContentDirectory:1) so that receivers MAY retrieve content
information from transmitters.

The ConnectionManager:1 and ContentDirectory:1 services are defined by [UPNPCNMGR] and
[UPNPCDS1], respectively. The X_MS_MediaReceiverRegistrar:1 service is defined in section 3.4

60 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Transmitters MUST implement the mapping of the registration and revalidation procedures to UPnP,
which are defined in section 2.1.1.1. Transmitters are recommended to implement the mapping of the

authorization procedure to UPnP, which is defined in section 2.1.1.1.1.2.

If a transmitter implements WMDRM: Network Devices Protocol for HTTP [RFC2616] the

implementation MUST follow the rules that are defined in section 2.1.1.2.

If a transmitter implements WMDRM: Network Devices Protocol for RTP [RFC3550] and RTSP
[RFC2326], the implementation MUST follow the rules that are defined in section 2.1.1.3.

61 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Protocol Details

The following components are an integral part of the WMDRM: Network Devices Protocol and are used
during the procedures described in the following sections.

3.1 Common Details

3.1.1 Abstract Data Model

3.1.1.1 Overview

The WMDRM: Network Devices Protocol defines the following procedures:

Authorization: The procedure for granting a Receiver access to content from a transmitter. This
procedure is required before a receiver can perform registration and access protected content.

Registration and Revalidation: Allows the transmitter to uniquely identify a receiver that is located

nearby. Revalidation is the procedure for automatically reregistering a receiver with the transmitter
after a certain amount of time has elapsed. Registration and revalidation are very similar, so for the
purposes of this document, they will be grouped together in one category. Differences will be pointed
out as necessary.

Proximity Detection: Measures the latency between the transmitter and a receiver. If the latency is
short enough (less than 7 milliseconds), then the receiver is considered to be near the transmitter.
The transmitter will not send protected content to a receiver unless it is near.

License Retrieval: The procedure for sending a license to a registered Receiver when it requests
content from a transmitter.

Data Transfer: Performed between a transmitter and a receiver after a license has been sent by the
transmitter and enforced by the receiver. The content is encrypted and delivered using HTTP
[RFC2616] or RTP [RFC3550].

License Management: For this procedure, the transmitter sends an updated license to the receiver

to change the receiver's rights to a resource.

Revocation List Update: This procedure is permitted only after the registration procedure has
successfully completed. The receiver asks the transmitter for an updated revocation list. This
procedure MAY be initiated at any time after the registration procedure has occurred.

Authorization is performed after a receiver is discovered by a transmitter. Registration/revalidation is
performed every 48 hours. The license retrieval and data transfer procedures occur every time a file is
requested and played.

All of the procedures rely on messages--or sets of parameters--that are passed back and forth
between a transmitter and a receiver. Messages are mapped to the HTTP,RTSP, and UPnP protocols.
The following conceptual sections describe these procedures in further detail.

Transmitters can enforce a minimum revocation list when transferring content to receivers. These
revocation lists can be for any protection system, including the following:

▪ Windows Media DRM for Network Devices CRLs

▪ Windows Media DRM for Portable Devices CRLs

▪ Certified Output Protection Protocol (COPP) driver CRLs

62 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If the receiver does not yet have the required version of the revocation list, it can request that the
transmitter send it. This occurs through the revocation list request and revocation list response

messages. These messages can be initiated at any time by the receiver; however, transmitters are not
required to support this.

3.1.1.2 Authorization

Authorization is the procedure by which a receiver is granted access to content from a transmitter.
This procedure is required before a receiver can perform registration and access protected content.

The transmitter MUST only start data transfer of content to receivers that have been authorized.

A transmitter SHOULD perform the authorization procedure when the transmitter discovers a new
receiver that supports WMDRM: Network Devices Protocol. For example, authorization can occur when
the transmitter detects a receiver sending SSDP messages (ssdp:alive); authorization can also occur
when an unknown new receiver attempts to perform the registration or license retrieval procedures. It
is recommended that transmitters maintain a record of authorized devices. A transmitter SHOULD NOT
attempt authorization with receivers that do not support WMDRM: Network Devices Protocol.

The authorization procedure is implementation-specific and not defined by this specification. For
example, the authorization procedure can be implemented by requiring explicit approval from the user
of the transmitter to grant each receiver access to content and metadata.

As another example, authorization can be defined by the registration and revalidation procedure in
conjunction with proximity detection.

The user MAY also de-authorize a receiver. This will remove the receiver's access to content and
metadata on the transmitter.

UPnP authorization specifies how the authorization procedure is mapped to UPnP. When WMDRM:
Network Devices Protocol is used over IP networks, transmitters and receivers SHOULD implement the
mapping of authorization to UPnP.

3.1.1.3 Registration and Revalidation

The registration and revalidation procedures are essential parts of WMDRM: Network Devices Protocol.
If a receiver successfully completes registration or revalidation, it is said to be registered.

Registration and revalidation are required before receivers can retrieve content from the transmitter.
Registration and revalidation allow the transmitter to identify a receiver through a unique combination
of an XML certificate and a 128-bit serial number. This combination can be unique in two ways: either
multiple receivers have different serial numbers but the same certificate, or multiple receivers have

the same serial number but different certificates. For example, a manufacturer might want all of its
receivers to have the same certificate. In this case, each Receiver would then need a unique serial
number so that the combination of serial number and certificate would uniquely identify it. And, if the
receiver uses a unique certificate, its serial number MUST be zero.

If a receiver's certificate has been revoked, it will not be allowed to register, revalidate, or start a data
transfer. For more information on certificates, see the Machine Certificate Specification [XMR]. For
more information on CRLs, see section 2.2.1.5.3.

Revalidation differs from registration in that the receiver is already registered with the transmitter.
During revalidation, the registration and proximity detection procedures are performed again, and the
last revalidation time is updated. The transmitter MUST enforce revalidation by ensuring it occurs at
least once every 48 hours.

If a receiver has not successfully revalidated itself in 48 hours and is receiving content when that limit
is reached, the transmitter MUST stop the data transfer to the receiver. Receivers SHOULD revalidate

themselves at least once every 48 hours to avoid a possible interruption during playback.

63 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The following diagram shows the registration procedure:

Figure 4: Registration Procedure Flow

The following table describes elements of the preceding diagram:

Value Description

SN 128-bit serial number.

CertReceiver Receiver's device certificate.

VerReceiver WMDRM-ND protocol version that is implemented by the receiver.

VerTrans WMDRM-ND protocol version that is implemented by the transmitter.

PReceiver Public key of the receiver.

{Seed}PReceiver 128-bit seed that is encrypted with the public key of the receiver. The seed is used to derive
the content encryption key, content integrity key, and authenticated commands key.

KCE 128-bit content encryption key that is derived from the encrypted seed. This key is different
from the one used in data transfer.

KCI 128-bit content integrity key that is derived from the encrypted seed. This key is different
from the one used in data transfer.

KAC 128-bit authenticated commands key that is derived from the encrypted seed. This key is
used to sign the authenticated commands message.

Address IP address of the transmitter's incoming and outgoing proximity packets socket.

Session ID 128-bit random session identifier.

OMAC OMAC1 [OMAC] of the message using the content integrity key.

The syntax of the registration messages is defined in section 2.1.1.

The mapping of registration to UPnP is specified in section 2.1.1.1.2.

64 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.4 Proximity Detection

In proximity detection, the transmitter and receiver exchange messages in an attempt to determine
the latency between them. If the latency is low enough (less than 7 milliseconds), the receiver is

considered near the transmitter. The transmitter transfers licenses only to receivers that are near.

The proximity detection procedure is considered a part of the overall registration procedure. It is
always performed after the registration response message is handled by the receiver. Proximity
detection MUST be initiated after the successful completion of the registration procedure and after
each revalidation procedure. The proximity detection procedure MUST have successfully completed
before license retrieval can occur.

The following diagram illustrates proximity detection, which is part of the registration procedure:

Figure 5: Proximity Detection Flow

The following table describes elements of the preceding diagram.

Value Description

Session ID 128-bit random session ID.

Seq 8-bit incremental sequence number.

Nonce 128-bit random value.

{Nonce}KCE Nonce encrypted using the content encryption key.

The format of the proximity detection messages is defined in section 2.1.1.4.2.

3.1.1.5 License Retrieval

After authorization and registration have been completed and before a receiver can begin receiving
data, the receiver MUST receive a license from the transmitter. This is called the license retrieval
procedure. The license retrieval procedure MUST occur every time a new session is initiated by the

65 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

receiver. The concept of a session in this context is specific to the control protocol for data transfer
(such as HTTP or RTSP).

To perform license retrieval, the receiver MUST send the transmitter a license request message. The
message notifies the transmitter that the receiver is trying to play the content.

A license response message from the transmitter MUST contain a license in XMR format [XMR], which
is defined in [XMR]. In most cases, this license will be either a root license or a base license. If the
license is for delivery of ASF files over HTTP, a standard license is used. Whenever a root license is
used, subsequent leaf licenses MUST be delivered to the receiver through the license update
procedure defined in section 2.2.1.4.3.

If the transmitter and receiver are using license chains, the transmitter will send a root license to the
receiver. Root licenses are not intended to impose restrictions, so at least one leaf license also MUST

be sent by the transmitter. The leaf license is sent as part of a license update during the data transfer
procedure. The root and leaf licenses form a license chain that contains the current set of rights and
restrictions. The receiver MUST adhere to the most restrictive policies contained in the chained
licenses, whether those policies come from the root license or the leaf license. For more information

on root and leaf licenses, see 3.2.5.5 and 3.2.5.5.

If the transmitter and receiver are performing license management using license derivation data, a

base license MUST be generated. A base license is a convenient, secure way to establish protected
content flow between the transmitter and receiver. A base license is an optimization that allows a
single license to be generated by the transmitter per registration or revalidation interval.

Base licenses are not used to encrypt or decrypt content. Instead, base licenses can be used only to
derive other licenses. Base licenses are not intended to impose restrictions, so at least one license
derivation data message MUST be sent by the transmitter as part of a license update prior to the data
transfer procedure.

A base license will be generated and transferred each time a DRM Pairing process takes place. This
means that a base license is generated at least every 48 hours during content flow.

After the receiver successfully completes the license retrieval procedure, it is ready to begin receiving

data from the transmitter.

Unlike the registration request and registration response messages, the license request and license
response messages MUST NOT be Base64 encoded or decoded [RFC3548].

The following diagram shows the license retrieval procedure:

Figure 6: License Retrieval Flow

66 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The following table describes elements of the preceding diagram.

Value Description

SN 128-bit serial number.

CertReceiver Receiver's device certificate.

VerReceiver WMDRM-ND protocol version implemented by the receiver.

Action The action requested by the receiver (i.e., Play).

VerTrans DRM protocol version implemented by the transmitter.

License (...) XMR license that contains policy (2) rights for the requested content.

{KCE,
KCI}PReceiver

128-bit content encryption and content integrity Keys encrypted with Receiver's public
key.

PReceiver Public key of the receiver.

TransCRL 32-bit CRL version number held by the transmitter.

RId 128-bit random Rights ID.

ReceiverCRL 32-bit CRL version number held by the receiver.

CRL The CRL of the transmitter.

The structure and flow of the license retrieval messages is defined in section 2.2.1.4.

The mappings of the license retrieval procedure to HTTP and RTSP are specified in sections 2.1.1.2.2
and 2.1.1.3.1 respectively.

The mappings of the license retrieval procedure to the OpenCable Digital Receiver Interface [OCDRIP]

are specified in section 2.1.1.4.3.

3.1.1.6 Data Transfer

After the receiver has completed the license retrieval procedure, it is ready to begin receiving content
from the transmitter. This is referred to as the data transfer procedure.

If the license obtained during the license retrieval procedure is a root license, the receiver MUST also
receive a leaf license before it can process the content. The leaf license is delivered at the start of the
data transfer procedure, through the license update mechanism described in section 2.2.1.4.3.

The transmitter MUST encrypt the content using AES in counter mode with the content encryption key
before it is delivered to the receiver using HTTP or RTP. Section 2.1.1 defines how various types of
content MUST be encrypted and delivered over HTTP and RTP.

The mappings of the data transfer procedure to HTTP and RTSP are specified in HTTP Data Transfer

and section 2.1.1.3.5.

3.1.1.7 License Management

If the transmitter and receiver are performing license management using license chains, the

transmitter will send the receiver a root license. If the transmitter sends the receiver a root license
during the license retrieval procedure, then it MUST send a leaf license to the receiver. The process of
delivering a leaf license to the receiver is called license management using license chains, because the
rights and restrictions are formed through the chained policy (1).

67 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The root and leaf licenses form a license chain that contains the current set of rights and restrictions.
The receiver MUST adhere to the most restrictive policies contained in the licenses, whether those

policies come from the root license or the leaf license.

Sections 3.2.5.5.1 and 3.3.5.5.1 specify rules and requirements for root and leaf licenses that MUST

be followed during license management using license chains.

If the transmitter and receiver are performing license management using license derivation data, a
base license MUST be created.

Sections 3.2.5.5.2 and 3.3.5.5.2 specify rules and requirements for base licenses that MUST be
followed during license management using license derivation data.

The transmitter MAY perform the license management procedure multiple times. This allows the
policies that are associated with the content to be updated dynamically.

If content is being transferred over HTTP and the content is not encapsulated in ASF [ASF], then the
transmitter MUST implement license management as specified in this section

When RTSP is used, license management is implemented by delivering the license update messages
using ANNOUNCE requests, as specified in section 2.1.1.3 RTSP License Management.

When MPEG TS is used, license management is implemented by delivering the license update message
using TAG packets.

Revocation List Update

A revocation list identifies software or hardware components to which protected content MUST no
longer flow . Different content protection systems have different formats for revocation lists. WMDRM:
Network Devices Protocol supports distributing revocation lists for different content protection systems
through the revocation list update procedure. The receiver MAY use this procedure to obtain the latest
version of the RIV structure. The receiver MAY use this procedure to obtain the latest revocation list
for different content protection systems.

Section 2.2.1.6 includes the various content protection systems for which revocation lists might be

available. The RIV GUIDS section specifies the GUID used to identify revocation lists for each system.
RIV Structure also defines a GUID for the RIV structure. The receiver MUST use that GUID when it
sends a revocation list request message to obtain the latest version of the RIV structure.

Revocation list update is not supported for transmitters acting as an OpenCable Unidirectional
Receiver (OCUR).

Authenticated Commands: The authenticated commands procedure allows sending

cryptographically signed commands from the receiver to the transmitter. The authenticated
commands are needed to control the PBDA hardware tuner.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

None.

68 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Data Encoding and Decoding

Base64 Encoding and Decoding: The standard base64 encoding algorithm (as specified in
[RFC4648]).

The characters used in base64 encoding do not include any of the special characters of the Simple Mail
Transfer Protocol (SMTP) [RFC2821], or the hyphen used with Multipurpose Internet Mail Exchange
(MIME) boundary strings, as specified in [RFC2045].

Base64 Mapping Table: The base-64 mapping table is defined as follows.

 0 A 17 R 34 i 51 z
 1 B 18 S 35 j 52 0
 2 C 19 T 36 k 53 1
 3 D 20 U 37 l 54 2
 4 E 21 V 38 m 55 3
 5 F 22 W 39 n 56 4
 6 G 23 X 40 o 57 5
 7 H 24 Y 41 p 58 6
 8 I 25 Z 42 q 59 7
 9 J 26 a 43 r 60 8
 10 K 27 b 44 s 61 9
 11 L 28 c 45 t 62 +
 12 M 29 d 46 u 63 /
 13 N 30 e 47 v
 14 O 31 f 48 w
 15 P 32 g 49 x
 16 Q 33 h 50 y

3.1.5.2 Content Encryption

This section describes how content is encrypted for various content types.

3.1.5.2.1 Content Encryption for AES in Counter Mode

The AES in counter mode [FIPS197] encryption is applied to separate segments of content data. The
definitions for data segment, data segment ID, and block ID MAY vary for different content types and

are further discussed in later sections.

Each data segment MUST be encrypted using AES in counter mode [FIPS197]. The following diagram
illustrates the procedure for encrypting a data segment using this technique.

69 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 7: Data Segment Encryption Using AES Counter Mode

AES in counter mode creates a stream of bytes that MUST be XOR'd with the clear text bytes of the
content to create the encrypted content. The key stream generator MUST use an AES round to
generate 16-byte blocks of key stream at a time. The inputs to the AES round MUST be the content
encryption key (KC) and the 128-bit concatenation of a data segment ID and the block ID within the
data segment.

The output of the key stream generator MUST be XOR'd byte by byte with the data from the
corresponding block (i) of the data segment. In case the data segment is not evenly divisible by 16
bytes, only the remaining bytes of the data segment from the last block MUST be XOR'd with the key
stream and retained for the encrypted data segment.

The data segment ID values MUST be unique for a given KC.

3.1.5.2.2 Bulk AES Counter Mode

Bulk AES counter node is a simple counter encryption of the payload that uses a stream global AES
counter. The transmitter MAY default to this mode on any given packet identifier (PID) if the receiver
has not specified a mode.

With bulk AES counter mode, transport stream packets are encrypted by encrypting the 184 bytes
after the first fixed 4 bytes of the transport stream header. If the transport stream packet has an

adaptation field, that information is encrypted as well. The 184 bytes will use 11.5 AES encryption

blocks. For bulk mode, the extra trailing 8 bytes of the AES counter mask that is not used in the XOR
combining operation is to be retained and used at the beginning of the next transport stream packet,
so that the processing of two contiguous packets will use 23 AES encryption blocks, as shown in the
figure below.

70 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 8: AES Encryption Block

Content encrypted using bulk AES counter mode is less efficient for PVR style usage. It requires that

the receiver decrypt the content and potentially re-encrypt it at capture time, in addition to decrypting
it at playback time. Streaming AES counter mode on audio/video PIDs saves the capture time decrypt
and re-encrypt, but it requires more resources within the tuner to support, as such encryption needs
to track per-PID state that is enabled for Streaming AES counter mode.

As such, bulk AES mode is used whenever Streaming AES counter mode is fully consumed, or for any
PID that requires significant decryption at capture time.

As a general rule the receiver SHOULD prioritize the use of Streaming AES counter mode to PIDs that
contain audio/video content. In addition, if the transmitter performs sufficient content screening it

MAY also make this decision and automatically put audio/video content into Streaming AES counter
mode.

In any case the transmitter is required to support at least 8 Stream AES counter mode PIDs.

3.1.5.2.3 The Data Segment Descriptor

The data segment descriptor is an auxiliary data structure that is used to represent encryption
parameters. Since it is not utilized with all content types, its usage will be noted in the appropriate
sections.

The following table describes the format of the data segment descriptor.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags ExtensionType ExtensionLength

Extension (variable)

...

Flags (1 byte): The Flags section indicates the attributes of the media data associated with the data
segment descriptor. The following values are currently defined:

0x01 (Encrypted Data): Indicates that the media data is encrypted.

0x00 (Unencrypted Data): Indicates that the media data is unencrypted.

ExtensionType (1 byte): The type of extension. There are two support extension types:

Key ID: The extension type MUST be set to 0x01. The length MUST be set to 16. This means the
length is 16 bytes, or 128 bits. The extension MUST contain the key ID value of the license for the
encrypted data that is delivered with the data segment descriptor. This extension MUST only be

used when the encrypted data flag is set.

AES128 Initialization Vector: The extension type MUST be set to 0x02. The length can be set
to 8 or 16. This means the length is 8 bytes or 16 bytes (64 bits or 128 bits, respectively).

71 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If the length is 64 bits, then the extension contains only the data segment ID value for the
encrypted data that is delivered with the data segment descriptor. In this case, the block ID value

is 0 and is not included in the extension.

If the length is 128 bits, then the extension contains both the data segment ID and the block ID

values, in this order.

This extension MUST only be used when the encrypted data flag is set.

The receiver MUST silently disregard and skip any extensions that it does not understand.

ExtensionLength (2 bytes): The total length of the extension, in bytes. This value does not include
the size of the content data associated with this extension.

Extension (variable): The extension data. The type of data is variable depending on the extension
type.

This extension section contains the number of extensions included in the data segment descriptor
followed by multiple extension sections with the following format for each extension: starting with

an 8-bit extension type, followed by a 16-bit extension length, and finally the variable-length
extension.

3.1.5.2.4 Transport Stream

The transmitter supplies the following transport stream headers bits as described below. The full
mpeg2 transport stream header is as defined in ISO/IEC 13818-1 [ISO/IEC-13818-1]. This section
clarifies the usage of certain bits in the context of PBDA.

The transport stream header is never encrypted (first four bytes).

The two transport_scrambling_control bits MUST be set in one of the following ways:

Value Meaning

0x00 The transport stream packet is not encrypted.

0x01 The trailing 184 bytes of the transport stream packet is encrypted using Bulk AES Counter Mode.

0x02 The Transport Stream Payload is byte encrypted with Streaming AES Counter Mode. The payload
bytes are the bytes in the transport stream packet after the adaptation field.

0x03 Reserved. MUST NOT be used.

3.1.5.2.5 Transmitter Bulk Mode AES Block usage

The transmitter MUST mark all transport stream packets encrypted this way with
transport_scrambling_control set to the value 0x1.

If the transmitter is protecting any PID using Bulk AES Counter Mode, the transmitter periodically

inserts a Stream Info Table that supplies the KeyId and the AES Counter Value synchronization. It
is recommended this be at least 1 re-synchronization per second.

3.1.5.2.6 Streaming AES Counter Mode

The transmitter is required to leave some transport stream packets in the clear on PIDs that are
protected via Streaming AES Counter Mode and for which contain either the 4th byte of an enabled
start code sequence or one or more bytes of a start code payload. The payload size is configured by a
CipherDelay count on each enabled start code. In addition, the transmitter is required to include a

72 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Stream Info Table in front on every packet containing one or more detected start codes that are
enabled.

The transmitter MUST ensure that no counter / offset is reused when streaming from any given
content key. To accommodate this, the transmitter MAY increment the AES counter with each

transition from unencrypted to encrypted content, and clear the lower 64 bits every time it puts a new
count into the upper 64 bits.

Figure 9: Streaming AES Counter Mode

Start Code Detection and Cipher Delay: The transmitter MUST mark all transport stream packets
encrypted using streaming AES counter mode with the transport_scrambling_control set to the
value 2.

The transmitter MUST use AES Counters that leaves bit 127, of the 128 bit counter, as zero.

3.1.5.2.6.1 AES Payloads

For PIDs that are configured to use Streaming AES Counter Mode encryption, the transmitter encrypts
only the payload bytes of transport stream packets. The payload bytes start after the adaptation field
if present; otherwise, after the transport stream header.

Figure 10: AES Payload Bytes

The transmitter MUST also preserve the partial AES mask such that for any 1 PID in Streaming AES
Counter Mode the payload bytes are sequentially byte encryption. The following diagram illustrates the
basic flow. First the transmitter sends an unencrypted Stream Info (TAG) Table that the receiver
uses to synchronize which key is being used and what the current counter value is. As following
transport stream packets arrive the payloads can be concatenated together into one buffer by the
receiver and decrypted via a normal AES Counter Mode decrypt operation. As transport stream

73 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

packets are not multiples of the AES key size, the transmitter preserves the unused parts of the cipher
mask between transport stream packets on a per PID basis.

Figure 11: Single PID Structure

3.1.5.2.7 MPEG-2 Transport Stream Content

Encryption of content that is encapsulated in MPEG-2 Transport Stream (TS) [WMRTP] packets is
achieved by encrypting the TS packet payloads with AES in counter mode, as defined in Counter
Encryption for AES in Counter Mode [FIPS197], and using TAG packets that are inserted in the MPEG-
2 TS.

A TAG packet is a single MPEG-2 TS packet with a Key Identifier (KID) that is inserted in front of each
protected PES unit. Only PES units can be protected. The TAG packet is necessary to retrieve the

matching DRM license when the content is delivered to the receiver.

The content protection layer consists of an AES 128-bit key in counter mode, where all the following
requirements apply:

▪ The 128-bit counter is divided in two 64-bit fields: The base_counter (MSB) and the
minor_counter (LSB).

▪ The base_counter and minor_counter are equivalent to the data segment ID and block ID, as
shown in the following diagram.

74 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 12: Base and Minor Counter Encoding

The transmitter MUST scramble the selected program PID according to the following flowchart:

75 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 13: PID Obfuscation Flow

The following list describes the parts of the previous flowchart in more detail.

scr: This variable is set to "yes" if the current TS packet needs to be scrambled, or to "no" otherwise.
The TS packet cannot be scrambled if any of the following conditions apply:

▪ The key_sync field is set to "yes".

▪ The TS packet includes whole or part of a PES header, which includes the 64 payload bytes that
follow the detection of each start code, from 0xBC through 0xFF.

▪ The TS packet includes all or part of one or more of the stream marks listed in the following table.

A stream mark is composed of an MPEG start code and its subsequent data payload.

76 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Stream mark Start code Byte sequence Maximum data payload length

Sequence header B3 00 00 01 B3 12 bytes

GOP header B8 00 00 01 B8 8 bytes

Picture header 00 00 00 01 00 6 bytes

Private data B2 00 00 01 B2 107 bytes

Note Each MPEG-2 TS packet can only be scrambled or in the clear, but not partially scrambled.

The last byte of the start code MUST also be in the clear.

key_sync: This variable is set to "yes" if the transmitter is renewing the AES key, or to "no"
otherwise.

base_counter: This 64-bit field is uniquely defined by the transmitter throughout the lifetime of the
transmitter, as shown in the following diagram.

Figure 14: PID Structure

PID (13-bit): The PID value of the selected elementary stream.

section_counter (51-bit): A cyclic counter that is incremented for each no-to-yes transition of the

scr state variable.

minor_counter: A 64-bit counter that is incremented for each block of 16 scrambled bytes.

i: A 4-bit counter that is incremented for each scrambled byte.

scramble16: AESKEY [base_counter | minor_counter].

The transmitter MUST insert a TAG packet in front of any TS packet left in the clear. Two possible
scenarios MAY occur, as detailed in the following diagram.

77 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 15: TAG Packet Scenarios

Case A: A TAG packet is inserted in front of a packet containing all or part of a PES header.

Case B: A TAG packet is inserted in front of a packet containing all or part of a stream mark.

A TAG packet has the following structure.

Figure 16: TAG Packet Structure

A TAG packet is a single MPEG-2 Transport Stream packet with a key identifier (KID) that is inserted
in front of each protected PES unit. Only PES units can be protected. The TAG packet is necessary to
retrieve the matching DRM license when the content is delivered to the receiver.

The adaptation_field_control bits (bits 27 and 28 in the TAG packet) are set to 10b; this indicates
that the rest of the entirety of the TAG packet is for the adaptation field only, and includes no
payload), so there is no requirement to increment the continuity counter.

▪ The AF Header consists of four bytes to be compliant with MPEG specification:

▪ 1st Byte = Adaptation Field length

▪ 2nd Byte = Adaptation Field presence flag (Private data = 0x02)

▪ 3rd Byte = Private data length (Length, in bytes, of the Private_DRM_parameters portion
of the packet. Values are variable based on the required length.)

▪ 4th Byte = Version number (currently 0x00)

▪ DrmGuid contains the GUID that MUST be set to {B0AA4966-3B39-400A-AC35-44F41B46C96B}.

78 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

▪ The base_counter resynchronizes the AES counter for the encrypted packet that follows.

▪ SM byte (stream mark) indicates that the following packet includes the beginning of a stream

mark, from which the first few bytes might be missing.

▪ SM = 0 -- Next packet carries the beginning of a PES header or an entire PES header.

▪ SM = 1 -- Next packet includes the beginning of a stream mark.

▪ SM = 2 -- Next packet includes the beginning of a stream mark, from which the first byte (00)
is missing.

▪ SM = 3 -- Next packet includes the beginning of a stream mark, from which the first two bytes
(00 00) are missing.

▪ SM = 4 -- Next packet includes the beginning of a stream mark, from which the first three
bytes (00 00 01) are missing.

▪ SM = other -- Reserved.

▪ The Private_DRM_parameters MUST contain a license derivation data segment descriptor. The
data segment descriptor MUST contain a Key ID extension set with the corresponding Key ID
value. The AES128 initialization vector extension MUST not be present, since the data segment ID
is already indicated in the base_counter section of the TAG packet.

▪ The remaining transport stream packet is padded with bytes with the value of 0xFF.

3.1.5.2.8 MPEG-2 Elementary Stream Content

The process of encrypting and decrypting MPEG-2 elementary stream (ES) content follows the
procedure that is defined here. The data segment corresponds to a single MPEG-2 ES media access
unit (MAU) as defined here.

Optionally, the transmitter MAY also leave portions of the data in the clear to facilitate the analysis of
the content by the receiver. For a portion to be left in the clear, it MUST contain one of the following

stream marks.

Stream mark Start code Byte sequence Maximum data payload length

Sequence header B3 00 00 01 B3 12 bytes

GOP header B8 00 00 01 B8 8 bytes

Picture header 00 00 00 01 00 6 bytes

Private data B2 00 00 01 B2 107 bytes

The amount of data to be left in the clear corresponds, in the table above, to the length of the stream
mark plus the maximum data payload length. Notice, however, that the clear section MAY start prior
to the stream mark and end after the combined length of the stream mark and maximum data
payload length. This MAY occur as long as the combined length does not exceed 368 bytes (equivalent

to the length of two consecutive MPEG-2 TS packet payloads).

For example, a transmitter MAY leave between 16 and 368 bytes in the clear for a stream mark that

denotes a sequence header (4 bytes for the stream mark plus 12 bytes for the maximum data payload
length).

It is also possible to have some amount of data from the previous MAU left in the clear, in case the
stream mark appears near the beginning of the current MAU. That is allowed, as long as the length of
the clear section does not exceed 368 bytes, as previously indicated.

79 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.5.2.9 ASF Sample Encryption Mode

This section specifies how receivers MUST decrypt content that is encapsulated in Advanced Systems
Format (ASF) and has been encrypted with ASF sample encryption mode. The information in this

section can also be used to implement a transmitter that creates such content. See [ASF] for details
on the concepts and objects referred to in this section and subsections.

3.1.5.2.10 ASF Header Parsing

Receivers MUST identify the WMDRM: Network Devices Protocol encryption when parsing and
examining the ASF header.

The Advanced Content Encryption object is used in the ASF header to communicate information about

the WMDRM: Network Devices Protocol encryption in the ASF file. A content encryption record (in the
Advanced Content Encryption Object) with a System ID of
ASF_ContentEncryptionSystem_WMDRM_ND_AES indicates the presence of WMDRM: Network Devices
Protocol encryption.

Receivers MUST perform the following steps to parse the ASF header:

1. Identify encrypted streams: A receiver SHOULD examine the stream properties objects present

in the ASF header. For each stream that is marked with the encrypted content flag (in the stream
properties object), the receiver will need to decrypt the stream. This document discusses only the
decryption available in WMDRM: Network Devices Protocol; implementations that have other
decryption available SHOULD be able to apply different mechanisms.

2. Identify WMDRM: Network Devices Protocol content encryption records: After the receiver
has identified one or more streams that need decryption, and located stream numbers (in the
stream properties objects), it MUST search for content encryption records in the advanced content

encryption object. Applicable content encryption objects will have the system ID set to
ASF_ContentEncryptionSystem_WMDRM_ND_AES = {7A079BB6-DAA4-4e12-A5CA-91D38DC11A8D}

and the system version set to 1. A different system ID indicates that a different type of encryption
is in place, and the content encryption record can be ignored. A higher system version indicates
that the receiver is not compatible with the WMDRM: Network Devices Protocol encryption in this

file, and MUST be treated as a failure case.

For each suitable content encryption record, the receiver SHOULD attempt to match the record
with the streams in the ASF file. Content encryption records contain encrypted object records,

which identify what is encrypted. An encrypted object record with encrypted object ID type set to
0x0001 indicates that a stream is encrypted; other encrypted object records SHOULD be ignored.
If the encrypted object ID type is 1, the encrypted object ID field contains either the special
value 0x0000, or an array of 2-byte stream numbers. The special value 0x0000 indicates that
every stream in the file is encrypted; otherwise the receiver SHOULD match the stream numbers
with the stream numbers from the stream properties objects.

3. Match streams and WMDRM: Network Devices Protocol records: The receiver SHOULD have

a match between content encryption records (in the Advanced Content Encryption object) and
streams (per the Stream Properties objects). If there are any encrypted streams that are not
matched, the receiver cannot decrypt this file and SHOULD take appropriate action. If a stream

cannot be decrypted, the receiver SHOULD provide an informative error indicating that the
receiver cannot access this content.

ASF Sample Parsing: After the ASF header has been parsed and a content key has been identified

for each encrypted stream, the ASF packets in the data object of the ASF file MAY be parsed. The
media object data in the ASF packets MUST be decrypted. All of the other ASF packet properties are
not encrypted and can be parsed as usual.

The receiver MUST perform the following steps to parse the ASF packets:

80 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1. Reassemble the media objects: With WMDRM: Network Devices Protocol, the complete media
objects are encrypted, not individual ASF payloads. Thus, for fragmented media objects, the

media objects MUST be reassembled into complete objects before applying the AES decryption.

2. Retrieve the sample ID: For each media object, the sample ID MUST be retrieved. The sample

ID is stored as an ASF payload extension system, ID
ASF_Payload_Extension_Encryption_SampleID = {6698B84E-0AFA-4330-AEB2-1C0A98D7A44D}.
If this payload extension does not exist on a WMDRM: Network Devices Protocol encrypted
stream, an error has occurred during authoring and the file SHOULD be treated as corrupted, and
an appropriate error SHOULD be generated.

The sample ID is an 8-byte value stored in network byte order. The sample ID MAY be stored as a
fixed-size extension (8-bytes), or a variable size extension.

Decrypt the sample (media object): Each sample (complete media object) MUST be decrypted
using AES in counter mode as defined here. Note that the decryption is applied per sample (referred
to as a media object in the ASF specification [ASF]), rather than per ASF payload.

The process of encrypting and decrypting ASF samples follows the procedure that is defined in section
3.1.5.2.9. The data segment corresponds to the sample and the data segment ID corresponds to the
sample ID from the ASF payload extension.

Figure 17: Encrypting and Decrypting ASF Samples

The pseudo-code is as follows:

 SET SizeOfBlock to 16
 SET SizeOfMediaSample to the number of bytes in the Media Sample
 SET NumberOfBlocks to the size of the SizeOfMediaSample DIVIDED by SizeOfBlock
 SET RemainderBlockSize = SizeOfMediaSample MODULO SizeOfBlock

 FOR EACH Block in NumberOfBlocks
 CALL DecryptBlock with Block and BlockSize RETURNING DecryptedBlock
 ENDFOR

 IF RemainderBlockSize NOT EQUAL to 0
 CALL DecryptBlock with Block and RemainderBlockSize RETURNING DecryptedBlock
 ENDIF

3.1.5.2.11 Link Encryption Mode

81 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Link encryption mode is a generic content encryption mode for any content that is not explicitly
described in this document. Link encryption mode is defined as a mode of operation which is

independent of the content type and specific to the data transport protocol (for example, HTTP or
RTP).

The link encryption mode makes use of the data segment descriptor (section 3.1.5.2.3), which is
attached to an encrypted or unencrypted data segment during data transfer. The data segment
descriptor contains flags and extensions that notify the receiver when the media data is encrypted.
The data segment descriptor contains ID values that are needed to decrypt the encrypted media data.
A data segment descriptor is associated with a portion of the transmitted content to which, if
encrypted, a single policy (1) and content encryption key applies. In other words, the content
encryption key and policies cannot be changed within a data segment.

The data segment descriptor can be associated with content that is encrypted or unencrypted. The
encrypted data flag in the descriptor indicates whether the content is encrypted.

3.2 Receiver Details

3.2.1 Abstract Data Model

3.2.1.1 Overview

Authorization: The procedure for granting a Receiver access to content from a transmitter. This
procedure is required before a receiver can perform registration and access protected content.

Registration and Revalidation: Allows the transmitter to uniquely identify a receiver that is located
nearby. Revalidation is the procedure for automatically reregistering a receiver with the transmitter
after a certain amount of time has elapsed. Registration and revalidation are very similar, so for the

purposes of this document, they will be grouped together in one category. Differences will be pointed
out as necessary.

Proximity Detection: Measures the latency between the transmitter and a receiver. If the latency is

short enough, then the receiver is considered to be near the transmitter. The transmitter will not send
protected content to a receiver unless it is near.

License Retrieval: The procedure for sending a license to a registered receiver when it requests
content from a transmitter.

Data Transfer: Performed between a transmitter and a receiver after a license has been sent by the
transmitter and enforced by the receiver. The content is encrypted and delivered using HTTP
[RFC2616] or RTP [RFC3550].

License Management: For this procedure, the transmitter sends an updated license to the receiver
to change the receiver's rights to a resource.

Revocation List Update: This procedure is permitted only after the registration procedure has
successfully completed. The receiver asks the transmitter for an updated revocation list. This

procedure MAY be initiated at any time after the registration procedure has occurred.

Authorization is performed after a receiver is discovered by a transmitter. Registration/revalidation is
performed every 48 hours. The license retrieval and data transfer procedures occur every time a file is
requested and played.

All of the procedures rely on messages--or sets of parameters--that are passed back and forth
between a transmitter and a receiver. Messages are mapped to the HTTP, RTSP, and UPnP protocols.

The following conceptual sections describe these procedures in further detail.

82 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Authenticated Commands: The Authenticated Commands procedure allows sending
cryptographically signed commands from the WMDRM: Network Devices Protocol receiver to the

WMDRM-ND transmitter. The Authenticated Commands are needed to control the PBDA hardware
tuner.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Registration Details

After the receiver has successfully completed the authorization procedure, it MUST perform the
registration procedure. This is not required if the receiver can determine that it successfully completed
the registration procedure less than 48 hours ago. The receiver MUST perform registration using the

following steps:

1. The receiver MUST send a registration request message to the transmitter. This message
contains: the WMDRM: Network Devices Protocol version number that is supported by the
receiver, its device certificate that MUST be signed by Microsoft (which includes a 1024-bit RSA
public key), and a serial number.

2. The receiver MUST receive the registration response message.

3. The receiver MUST verify that the serial number in the registration response message matches the

serial number assigned to the device. The receiver MUST also verify that the Windows Media DRM-
ND protocol version number of the transmitter is compatible with the one that is used by the
receiver. The receiver MUST decrypt the seed to generate the content encryption, content
integrity, and authenticated commands keys. If the transmitter is a PBDA tuner, the receiver
MUST maintain the authenticated commands key in order to utilize the authenticated commands
feature. Then, the receiver MUST validate the OMAC [OMAC] of the registration response

message.

4. If the protocol version numbers of the receiver and the transmitter are not the same, the receiver
and transmitter MUST use the lowest common protocol version in subsequent messages.

5. After the receiver has successfully parsed and validated the registration response message, the
receiver MUST initiate the proximity detection procedure.

3.2.5.2 Proximity Detection Details

The receiver MUST perform proximity detection using the following steps:

1. The receiver MUST send the transmitter a proximity start message that contains the session ID
that it received in the registration response message.

83 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2. After the receiver receives the proximity challenge message from the transmitter, it MUST verify
the session ID. Then the receiver MUST send a proximity response message containing the

following: the session ID, the sequence number, and the nonce encrypted using the content
encryption key that was computed from the registration response message.

3. Because of possible packet loss on the network, the receiver SHOULD react to all of the following:

▪ Every proximity challenge message it receives.

▪ Missing proximity challenge messages. The receiver MAY choose to send a new proximity start
message.

▪ Not receiving a proximity challenge message at all, which MAY be caused by a transient or
persistent problem. A transient problem can be a temporary failure in the transmitter, while a
persistent problem can be an invalid network topology (for example, the receiver is further

than two routers from the transmitter).

4. After receiving a proximity result message, the receiver MUST check whether the proximity
detection procedure was completed successfully. If proximity detection was a success, then the

result code is 0. If it was a failure, then result code is 106 (Unable to Verify Proximity). The error
codes are defined in section 2.3.

5. After the receiver successfully completes proximity detection, it is registered and can request a

license for any protected content that the user wants to play.

Because of possible packet loss on the network, the receiver SHOULD react to a missing proximity
result message. In this case, the receiver SHOULD send a new proximity start message, which can
result in the transmitter responding directly with a proximity result message, in case the proximity
detection had already succeeded.

If the round trip time is greater than 7 milliseconds (ms) or if the receiver sends a proximity response
message with a nonce that is not encrypted correctly, the transmitter MUST fail the proximity

detection procedure and report an error code in the proximity result message. If proximity detection
has failed, the receiver MAY repeat the proximity detection procedure until it confirms that the

proximity detection succeeded. It is recommended that receivers wait 30 to 50 ms between retries,
and the receiver MUST send the messages from the same IP address and port number as the original
proximity start message. The session ID that the transmitter provided in the registration response
message is valid for only a limited period of time--typically two minutes--so the receiver MAY need to
restart the registration procedure after that to obtain a new session ID.

3.2.5.3 License Retrieval Details

The receiver MUST perform license retrieval using the following steps:

1. The receiver MUST send a license request message to the transmitter that contains the receiver's

version number of the WMDRM: Network Devices Protocol, its device certificate, serial number, a
128-bit Rights ID value, the intended action of the receiver (such as "Play"), and its version of the
CRL, if it has a CRL.

2. If the receiver has transmitting capabilities, the license response message MAY include a WMDRM-

ND CRL. If a WMDRM-ND CRL is included in the response, it MUST be an updated version of the
WMDRM-ND CRL. In this case, the receiver MUST compare its own version of the CRL to the
version of the CRL that the transmitter included in the license response message. If the

transmitter's CRL version number is higher than the receiver's CRL and the transmitter's CRL is
valid, then the receiver MUST install the new CRL.

3. If the license contains a RIV object (defined in the XMR specification [XMR]), the receiver MUST
compare the RIV specified in the license against the version of its own RIV structure. If the
transmitter's RIV version number is higher than the receiver's RIV, or if the receiver does not have

84 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

a RIV structure, the receiver MUST successfully complete the revocation list update procedure
according to the rules in revocation list before it is allowed to request content from the

transmitter.

3.2.5.4 Data Transfer Details

A receiver MUST NOT request the content if it cannot enforce the restrictions specified in the license.
For example, if the license requires High-bandwidth Digital Content Protection (HDCP) for a digital
output, but the receiver does not support HDCP, it MUST NOT request the content.

3.2.5.5 License Management

3.2.5.5.1 Using License Chains

The receiver MUST be able to buffer two root licenses and two leaf licenses per logical stream. This is

required because the transmitter MUST deliver a subsequent root and or leaf license before they are
needed.

The receiver MUST process a license update as described in the following steps:

1. The receiver MUST ensure that the rights ID in the license response message matches the rights
ID in the license request message that the receiver sent during the license retrieval procedure.

2. If the receiver has transmitting capabilities, the license response message MAY include an updated
version of the WMDRM-ND CRL. In this case, the receiver MUST compare its own version of the

CRL to the version in the license response message. If the response message CRL version number
is higher than the receiver's CRL, and the transmitter's CRL is valid, then the receiver MUST install
the new CRL.

3.2.5.5.2 License Management using License Derivation Data

License derivation data contains information from which a receiver can derive a new set of content

restrictions. Upon receipt of license derivation data, the receiver generates a new license with updated

restrictions to the current base license.

3.2.5.6 Revocation List Update Details

When the receiver obtains a new license through the license retrieval procedure, the receiver MUST

determine whether the license contains a RIV object (defined in the XMR specification [XMR]). This
object specifies the minimum version of the RIV that the receiver MUST have.

If an RIV object is present in the license, then the receiver MUST compare the version of its RIV
structure, against the RIV version specified in the RIV object.

If the license specifies a version of the RIV structure that is more recent than the receiver has, then
the receiver MUST obtain the latest RIV structure. Also, if the receiver does not have a RIV structure,
and a RIV object is present in the license, then the receiver MUST obtain the latest RIV structure.

The RIV structure specifies the latest version of revocation lists for different protection systems. The
receiver MUST compare the version numbers of the revocation lists in the RIV structure against the
revocation lists that it has.

If the RIV structure indicates that a newer version of a revocation list is available, the receiver MUST
obtain the new revocation list for the protection system. The new revocation list MUST have a version
number that is equal to, or higher than the version number specified in the RIV structure.

The receiver MAY use the revocation list update procedure to obtain new revocation lists.

Alternatively, the receiver MAY also obtain revocation lists in an implementation-specific manner.

85 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The receiver initiates the revocation list update procedure by transmitting a revocation list request
message to the transmitter. The message MUST specify one or more content protection systems for

which the receiver wants a revocation list.

The revocation list for each content protection system is identified by a GUID. The RIV structure is

also identified by a GUID and is treated the same way as a content protection system in the
revocation list request message. To obtain the latest RIV structure, the receiver MUST specify the
GUID assigned to the RIV structure in the revocation list request message.

The receiver MAY perform a revocation list update at any time.

If the receiver MUST perform a revocation list update and it fails, then the receiver MUST NOT request
data transfer of content from the transmitter. Likewise, if the receiver MUST obtain a newer revocation
list for some content protection system and it fails to do so, the receiver MUST NOT request content

from the transmitter.

The format of the revocation list update messages is specified in section 2.2.1.6.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

3.3 Transmitter Details

3.3.1 Abstract Data Model

3.3.1.1 Overview

Authorization: The procedure for granting a receiver access to content from a transmitter. This
procedure is required before a receiver can perform registration and access protected content.

Registration and Revalidation: Allows the transmitter to uniquely identify a receiver that is located
nearby. Revalidation is the procedure for automatically reregistering a receiver with the transmitter
after a certain amount of time has elapsed. Registration and revalidation are very similar, so for the
purposes of this document, they will be grouped together in one category. Differences will be pointed
out as necessary.

Proximity Detection: Measures the latency between the transmitter and a receiver. If the latency is

short enough, then the receiver is considered to be near the transmitter. The transmitter will not send
protected content to a receiver unless it is near.

License Retrieval: The procedure for sending a license to a registered Receiver when it requests
content from a transmitter.

Data Transfer: Performed between a transmitter and a receiver after a license has been sent by the
transmitter and enforced by the receiver. The content is encrypted and delivered using HTTP
[RFC2616] or RTP [RFC3550].

License Management: For this procedure, the transmitter sends an updated license to the receiver
to change the receiver's rights to a resource.

86 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revocation List Update: This procedure is permitted only after the registration procedure has
successfully completed. The receiver asks the transmitter for an updated revocation list. This

procedure can be initiated at any time after the registration procedure has occurred.

Authorization is performed after a receiver is discovered by a transmitter. Registration/revalidation is

performed every 48 hours. The license retrieval and data transfer procedures occur every time a file is
requested and played.

All of the procedures rely on messages--or sets of parameters--that are passed back and forth
between a transmitter and a receiver. Messages are mapped to the HTTP, RTSP, and UPnP protocols.
The following conceptual sections describe these procedures in further detail.

Authenticated Commands: The authenticated commands procedure allows sending
cryptographically signed commands from the WMDRM: Network Devices Protocol receiver to the

WMDRM: Network Devices Protocol transmitter. The authenticated commands are needed to control
the PBDA hardware tuner.

3.3.2 Timers

None.

3.3.3 Initialization

None.

3.3.4 Higher-Layer Triggered Events

None.

3.3.5 Message Processing Events and Sequencing Rules

3.3.5.1 Registration Details

The transmitter MUST maintain a record of all registered receivers. This collection of records is

referred to as the device registration database. Any implementation-specific data storage can be used
to store this collection of records.

The transmitter performs registration through the following steps:

1. The transmitter MUST receive the registration request message that is sent by the receiver. The
registration request message contains the following: the WMDRM: Network Devices Protocol
version number that is supported by the receiver, its device certificate signed by Microsoft (which

includes a 1024-bit RSA public key), and a serial number.

2. The transmitter MUST parse the registration request message and validate the receiver's device
certificate. The certificate MUST be validated according to the rules specified in the Machine
Certificate Specification [XMR].

3. The transmitter MUST verify that the device certificate has not been revoked. The transmitter
checks each certificate in the chain against the CRL. If a receiver's certificate has been revoked, it
MUST NOT be allowed to register, revalidate, or start a data transfer. For more information on

CRLs, see section 2.2.1.5.3.

4. The transmitter MUST generate a seed and use it to generate three 128-bit numbers: the content
encryption key, the content integrity key, and the authenticated commands key.

87 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5. The transmitter MUST add the device to its device registration database. The transmitter MUST
NOT transfer content to more than 10 different receivers simultaneously.

6. The transmitter MUST send the registration response message to the receiver. The message
contains the following: a random session identifier, the seed (encrypted with the public key of the

receiver), the serial number of the receiver, the WMDRM: Network Devices Protocol version
number supported by the transmitter, the IP address and port number of the transmitter (for
proximity detection), and the OMAC [OMAC] of the message, which is computed using the content
integrity key. A new random session identifier MUST be generated for every registration response
message.

3.3.5.2 Proximity Detection

The transmitter MUST perform proximity detection using the following steps:

1. After the transmitter receives the proximity start message, it MUST generate a sequence number
and a nonce. (The nonce is a 128-bit random value that MUST be generated by a pseudo-random
number generator that is cryptographically random in a manner consistent with the compliance

rules [CR-WMDRM] for transmitter.)

2. Then the transmitter MUST send the receiver a proximity challenge message. The message MUST
contain the sequence number, the session ID, and the nonce. If IPv4 is used, the time-to-live
(TTL) field in the IPv4 header of the IP datagram carrying the proximity challenge message MUST
be set to 3. If IPv6 is used, the Hop Count field in the IPv6 header MUST be set to 3. The
sequence number is incremented by one for each proximity challenge message that is sent to the
receiver.

3. The transmitter MUST start a counter and measure the time it takes for the receiver to reply with
the proximity response message.

4. The transmitter MUST stop the counter when it receives the Proximity Response message. The
transmitter MUST then validate the encrypted Nonce. The transmitter determines, based on the
computed round-trip time (RTT), whether the receiver is in proximity. If the RTT is 7 milliseconds

or less, proximity detection succeeds. The proximity detection procedure MUST fail if the receiver

is not in proximity.

5. Finally, the transmitter MUST send a proximity result message to the receiver indicating whether
the proximity detection procedure was successful. An error code of 0 MUST be used in case of
success, while a failure is indicated via error code 106 (Unable to Verify Proximity). If IPv4 is
used, the TTL field in the IPv4 header of the IP datagram carrying the proximity result message
MUST be set to 3. If IPv6 is used, the Hop Count field in the IPv6 header MUST be set to 3.

If the proximity result message is lost by the network, the receiver can send a new proximity start

message. If the proximity detection procedure already succeeded, the transmitter MAY immediately
reply with a proximity result message after it receives the new proximity start message from the
receiver.

The transmitter MUST securely store the validation states of all receivers in its database, and the
transmitter MUST require proximity detection every 48 hours as part of the revalidation procedure. If

more than 48 hours has elapsed since a receiver performed a successful proximity detection
procedure, then the transmitter MUST NOT deliver content to that receiver until the receiver has been

revalidated.

3.3.5.3 License Retrieval Details

The transmitter MUST respond to a license request message through the following steps:

1. After the transmitter receives the license request message, it MUST verify that the device
certificate is valid and has not been revoked by following the certificate validation rules specified in

88 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

the Machine Certificate Specification [XMR]. The transmitter MUST also verify that the device
certificate has a security level equal to or greater than the license of the content being requested,

and that the EncryptKey element value in the device certificate is set to the string "1".

2. After that, the transmitter MUST verify that the receiver has revalidated itself within the last 48

hours and is currently registered in the transmitter's device registration database. If the device is
not in the database, the transmitter MUST return the error code 107 (MUST Register) to the
device. If the device has not been revalidated, the transmitter MUST return the error code 108
(MUST Revalidate) to the device.

3. The transmitter MUST verify that the action requested by the receiver is permissible for the
requested content. The only action currently supported is the "Play" action. The transmitter MUST
verify that the license for the requested content allows that action.

4. The transmitter MUST send a license response message back to the receiver that contains the
following: the version number of the WMDRM: Network Devices Protocol supported by the
transmitter, the CRL of the transmitter (sent only if the receiver has transmitting capabilities and
the transmitter has a copy of the CRL with a higher version number), and the license. The license

is XMR [XMR] based and contains the Rights ID, the serial number of the receiver, 128-bit content
encryption and content integrity keys used during content transfer, and an OMAC [OMAC] of the

message, which is computed using the content integrity key.

5. A transmitter MUST check whether a receiver has transmitting capabilities by checking whether
the WMDRM: Network Devices Protocol transmitter node is present in the receiver's device
certificate.

If the protocol version numbers of the receiver and the transmitter are not the same, the receiver and
transmitter MUST use the lowest common protocol version in subsequent messages.

3.3.5.4 Data Transfer Details

In accordance with the Compliance Rules [CR-WMDRM], the transmitter MUST protect any
unencrypted, compressed content during any transcription procedure.

If the content has limited usage, the transmitter MUST monitor any state associated with the content

and update it as needed before the content is sent to the receiver. For example, if the license only
allows the content to be played a certain number of times, the transmitter MUST monitor that usage
and deny data transfer to the receiver if the play count has exceeded the maximum allowed value.

3.3.5.5 License Management

3.3.5.5.1 License Management using License Chains

To perform a license update, the transmitter MUST send a license response message that contains a
leaf license to the receiver.

The transmitter will deliver a leaf license before it starts delivering content that depends on that leaf
license. However, the transmitter MUST NOT deliver more than one leaf license per logical stream in
advance. Receivers are not required to be able to buffer more than one new leaf license in addition to

the leaf license that is currently in use.

After a transmitter starts delivering content that depends on a new leaf license, it MUST NOT send
content that depends on a leaf license that was previously delivered, because receivers MAY no longer
have a copy of the previous leaf license.

The transmitter MUST NOT specify a higher version of the RIV in the leaf license than it specified in
the root license.

89 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.3.5.5.2 License Management using License Derivation Data

When a license update occurs, the transmitter sends the license derivation data to the receiver. This
data conveys the updated policy (1) for the content. Updating the license involves changing the keys

and policies. The receiver derives the new license from this data.

3.3.5.5.3 License Management for Copy-Never Content

In some cases, the desired policy (1) is that content be usable by a receiver only for a limited time. In
these cases, the transmitter MUST use a license that expires. Accordingly, access to the license will
expire at the expiration time. This has the same effect as a policy in which the content expires after it
is delivered to the receiver. For example, if a license is set to expire in 90 minutes, any content sent

30 minutes after the license has been sent will not be viewable for the full length of the content (90
minutes).

To address this issue, transmitters MUST create new licenses so that content being transmitted will
not prematurely expire due to license expiration. For example, if a transmitter sent 90 minutes of
Copy-Never broadcast content, it would issue a new license set to expire in 90 minutes to the

receiver. License derivation data messages with new base counters will then be sent to the receiver

every 9 minutes.

3.3.5.6 Revocation List Updates

The transmitter responds to the revocation list request message with a revocation list response
message. The response message MUST contain the latest revocation list that is available to the

transmitter. The response message MUST contain the latest revocation list available for each content
protection system that was specified in the revocation list request. If the transmitter does not have a
revocation list for a requested content protection system, the revocation list response MUST include a
zero-length revocation list for that system.

The receiver MAY perform a revocation list update at any time, and this procedure MUST NOT alter the
transmitter's state in any way.

The format of the revocation list update messages is specified in section 2.2.1.6.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

3.4 schemas-opencable-com:1 Service Model Details

The schemas-opencable-com:1 service model is a set of services, schemas, specifications, actions and
rules applicable to all entities pertinent to the functionality of a specific framework.

3.4.1 Abstract Data Model

3.4.1.1 State Variables

The following table lists the state variables used by the X_MS_MediaReceiverRegistrar:1 service.

90 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Variable Name
Required or
Optional

Data
Type Allowed Value

A_ARG_TYPE_Result Required boolean 0/1 (True/False)

AuthorizationGrantedUpdateID Required ui4 Any random integer

AuthorizationDeniedUpdateID Required ui4 Any random integer

A_ARG_TYPE_UpdateID Required ui4 Any random integer

A_ARG_TYPE_GenericData Required bin.base64 Generic Base64 data block containing
registration information

Values listed in this table are required. To specify standard optional values or to delegate assignment
of values to the vendor, you MUST reference a specific instance of an appropriate table below.

A_ARG_TYPE_Result: A_ARG_TYPE_Result is used to pass back the result of an action. The variable
is represented as a binary TRUE or FALSE value.

AuthorizationGrantedUpdateID: This variable changes whenever a device has been authorized by a
user. (Authorized implies the user has consented to using this device.) The actual value of
AuthorizationGrantedUpdateID is unspecified. However, the value MUST be of type ui4 and change
in some way when devices are authorized.

AuthorizationDeniedUpdateID: This variable changes whenever a device has been unauthorized by
a user. (Unauthorized implies that the user does not want to use this device.) The actual value of
AuthorizationDeniedUpdateID is unspecified. However, the value MUST be of type ui4 and change
in some fashion when devices are unauthorized.

A_ARG_TYPE_UpdateID: This variable is used in conjunction with any action that includes an
updated parameter. The value of parameter UpdateID will either be the
AuthorizationGrantedUpdateID or the AuthorizationDeniedUpdateID.

A_ARG_TYPE_GenericData: This variable is used whenever Base64-encoded data is required by an

action. The variable contains bin.base64 (Base64-encoded BLOB) encoded registration information.
For information on Base64, see [RFC3548].

3.4.2 Timers

None.

3.4.3 Initialization

None.

3.4.4 Message Processing Events and Sequencing Rules

This section provides applicable information about OpenCable services, rules and schemas

3.4.4.1 Service Model Definitions

3.4.4.1.1 Service Type

The following service type identifies a service that is compliant with this template.

 urn:schemas-opencable-com:service:Security:1

91 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.4.1.2 State Variables

The following table shows the state variables used by the schemas-opencable-com service.

Variable Name
Required or
Optional

Data
Type Allowed Value

A_ARG_TYPE_

LicenseChallenge

Required bin.base64 Generic Base64 data block that contains license
request information.

A_ARG_TYPE_

LicenseResponse

Required bin.base64 Generic Base64 data block that contains license
response information.

A_ARG_TYPE_

LicenseResponseAck

Required bin.base64 Generic Base64 data block that contains an
acknowledgement that a license response has
been received.

A_ARG_TYPE_

RegistrationChallenge

Required bin.base64 Generic Base64 data block that contains
registration request information.

A_ARG_TYPE_

RegistrationResponse

Required bin.base64 Generic Base64 data block that contains
registration response information.

A_ARG_TYPE_

RevocationInformationVersion

Required bin.base64 Generic Base64 data block that contains the
revocation information version and revocation list
information version records.

A_ARG_TYPE_

RevocationList

Required bin.base64 Generic Base64 data block that contains the
revocation list information version record.

A_ARG_TYPE_LicenseChallenge: This variable is a Base64-encoded BLOB that is used when
passing a license request message to a DRI. For more information on the license request message,
see section 2.2.1.4.1. For information on Base64, see [RFC3548].

A_ARG_TYPE_LicenseResponse: This variable is a Base64-encoded BLOB that is used when
passing a license response message to a home media server (HMS). For more information, see section
2.2.1.4.2.

A_ARG_TYPE_LicenseResponseAck: This variable is a Base64-encoded BLOB that is used when
passing an acknowledgement that a license response message has been received by an HMS.

A_ARG_TYPE_RegistrationChallenge: This variable is a Base64-encoded BLOB that is used when
passing a registration request message to a DRI. For more information, see section 2.2.1.1.

A_ARG_TYPE_RegistrationResponse: This variable is a Base64-encoded BLOB that is used when
passing a registration response message to an HMS. For more information, see section 2.2.1.2.

A_ARG_TYPE_RevocationInformationVersion: This variable is a Base64-encoded BLOB that is

used when passing the revocation information version to an HMS. For more information, see section
2.2.1.5.1.

A_ARG_TYPE_RevocationList: This variable is a Base64-encoded BLOB that corresponds to the
revocation list version information record for a particular type of revocation (application revocation,
device revocation, COPP driver revocation). For more information, see Revocation.

3.4.4.2 Actions

This section lists the actions supported by the schemas-opencable-com service. The focus of the
schemas-opencable-com service is on handling the data associated to WMDRM: Network Devices
operations.

92 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.4.2.1 ProcessRegistrationChallenge

This action accepts a registration challenge, checks the validity of the registration challenge, and
generates a registration response.

The following table shows the arguments for the ProcessRegistrationChallenge action.

Argument Direction relatedStateVariable

RegistrationChallenge IN A_ARG_TYPE_

RegistrationChallenge

RegistrationResponse OUT A_ARG_TYPE_

RegistrationResponse

3.4.4.2.2 ProcessLicenseChallenge

This action accepts a license request, checks the validity of the request, and returns the base license

in a license response.

The following table shows the arguments for the ProcessLicenseChallenge action.

Argument Direction relatedStateVariable

LicenseChallenge IN A_ARG_TYPE_

LicenseChallenge

LicenseResponse OUT A_ARG_TYPE_

LicenseResponse

3.4.4.2.3 AcknowledgeLicense

This action acknowledges that a license response has been received by an HMS.

The following table shows the arguments for the AcknowledgeLicense action.

Argument Direction relatedStateVariable

LicenseResponseAck IN A_ARG_TYPE_

LicenseResponseAck

3.4.4.2.4 SetRevocationData

This action accepts the revocation information version and the revocation list version information
record.

The following table shows the arguments for the SetRevocationData action.

Argument Direction relatedStateVariable

RevocationInformationVersion IN A_ARG_TYPE_

93 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Argument Direction relatedStateVariable

RevocationInformationVersion

RevocationList IN A_ARG_TYPE_

RevocationList

3.4.5 Timer Events

None.

3.4.6 Other Local Events

None.

3.4.6.1 Eventing and Moderation

The eventing and moderation variables for the X_MS_MediaReceiverRegistrar:1 service are described
in the following table.

Variable Name Evented
Moderated
Event

Max Event
Rate

Logical
Combination

Min Delta
per Event

AuthorizationGrantedUpdateID Yes No n/a n/a 1

AuthorizationDeniedUpdateID Yes No n/a n/a 1

Max Event Rate and the Min Delta per Event are determined by n, where the Max Event Rate =
(Event/n seconds) and the Min Delta per Event = n*(allowedValueRange Step).

3.4.6.2 Event Model

The two events listed in the previous table are not moderated. The events will be sent whenever a
device is authorized or unauthorized by a user. There is no device ID associated with these events and
each device MUST call the IsAuthorized action after an event to determine whether it is the device
that has been authorized or unauthorized. Devices that are already authorized or unauthorized do not

need to respond to an event that implies no change in state.

3.4.6.3 Actions

This section describes all actions associated with the X_MS_MediaReceiverRegistrar:1 service . The

focus of this service and its actions are to allow devices to register with a transmitter implementing
WMDRM: Network Devices Protocol.

Immediately following this table is detailed information about these actions, including short

descriptions of the actions, the effects of the actions on state variables, and error codes defined by the
actions.

Name Required or Optional

IsAuthorized Required

RegisterDevice Optional (Required for WMDRM-ND))

94 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Name Required or Optional

IsValidated Optional (Required for WMDRM-ND)

3.4.6.3.1 IsAuthorized

A receiver can use this action to check whether it is authorized. If a receiver is a UPnP media renderer,
it can pass a DeviceID to the transmitter. The transmitter returns a result of TRUE if the receiver has

been authorized and FALSE otherwise. The DeviceID SHOULD equal the unique device name (UDN).
For control points, an empty string SHOULD be passed in and the MAC address will be used for
determining authorization. If a receiver calls IsAuthorized for itself, the action will return with a
result of TRUE or FALSE. If a control point is requesting status for another receiver, the receiver MUST
be authorized to receive a result; otherwise the transmitter will return a UPnP 801 error (access
denied).

The DeviceID used in the IsAuthorized action and the serial number described in section 3.1.1.3 are
two separate concepts, although receivers can use the same value.

The following table shows the arguments for the IsAuthorized action.

Argument Direction relatedStateVariable

DeviceID IN A_ARG_TYPE_DeviceID

Result OUT A_ARG_TYPE_Result

Whenever a receiver is authorized or unauthorized by a user, an event triggered by a change in the
AuthorizationGrantedUpdateID variable or the AuthorizationDeniedUpdatedID variable is sent
by the transmitter to all receivers. Each Receiver MUST call the IsAuthorized action after the event is

received to determine whether that receiver is the device that has been authorized or unauthorized.

Dependency on State: This action SHOULD only be called when either the
AuthorizationGrantedUpdateID or AuthorizationDeniedUpdateID variable has been evented
and has changed from the last number the device knows.

Devices MAY also call this action on power-up.

3.4.6.3.2 RegisterDevice

The RegisterDevice action registers a device with the WMDRM: Network Devices Protocol service.
The action takes one input variable: a bin.base64-encoded registration request message as defined in
section 2.2.1.1. After the transmitter receives the RegisterDevice action, it will respond with a
bin.base64-encoded registration response message as defined in section 2.2.1.2. If invoked by a
device that is not authorized, RegisterDevice will return a UPnP 801 error (access denied).

The following table shows the arguments for the RegisterDevice action.

Argument Direction relatedStateVariable

Generic data block IN A_ARG_TYPE_GenericData

Generic data block OUT A_ARG_TYPE_GenericData

The Base64 encoding, which is used in the registration request messages and registration response
messages, is defined in [RFC4648].

Dependency on State: Devices SHOULD call this action on power-up.

95 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.4.6.3.3 IsValidated

The IsValidated action is used to determine whether a device is registered with the WMDRM:
Network Devices Protocol service. Like the IsAuthorized action, the IsValidated action takes a

DeviceID. For UPnP media renderers, the DeviceID SHOULD equal the UDN. For control points, the
DeviceID SHOULD equal an empty string. If a device calls IsValidated for itself, the action will
return with a result of TRUE or FALSE. If a control point is requesting status for another media
renderer, the renderer MUST be authorized to receive a result, otherwise the transmitter will return a
UPnP 801 error (access denied). The following table shows the arguments for the IsValidated action.

Argument Direction relatedStateVariable

DeviceID IN A_ARG_TYPE_DeviceID

Result OUT A_ARG_TYPE_Result

Dependency on State: Devices can call this action on power-up.

3.4.6.4 Common Error Codes

The following table lists error codes common to actions for this service type. If an action results in
multiple errors, the most specific error MUST be returned.

errorCode errorDescription Description

401 Invalid Action See section 3.2.2 of the UPnP Device Architecture specification
[UPNPARCH1.1].

402 Invalid Args See section 3.2.2 of the UPnP Device Architecture specification
[UPNPARCH1.1].

404 Invalid Var See section 3.2.2 of the UPnP Device Architecture specification
[UPNPARCH1.1].

501 Action Failed See section 3.2.2 of the UPnP Device Architecture specification
[UPNPARCH1.1].

600-699 TBD Common action errors defined by UPnP Forum Technical Committee.

700-799 TBD Common action errors defined by UPnP Forum working committees.

800-899 TBD Errors specified by UPnP vendors.

96 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4 Protocol Examples

4.1 UPnP Authorization

The following example shows the authorization procedure between a receiver and a transmitter.

Receiver to Transmitter

 POST /upnphost/udhisapi.dll?control=uuid:a7e63d3b-0a14-4143-b997-
3cd79e20766b+urn:microsoft.com:serviceId:X_MS_MediaReceiverRegistrar HTTP/1.1

 Content-Type: text/xml; charset="utf-8"
 SOAPAction: "urn:microsoft.com:service:X_MS_MediaReceiverRegistrar:1#IsAuthorized"
 User-Agent: Mozilla/4.0 (compatible; UPnP/1.0; Windows 9x)
 Host: 192.168.3.106:2869
 Content-Length: 401
 Connection: Keep-Alive
 Cache-Control: no-cache
 Pragma: no-cache

 <?xml version="1.0"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><SOAP-ENV:Body><m:IsAuthorized

xmlns:m="urn:microsoft.com:service:X_MS_MediaReceiverRegistrar:1"><DeviceID

xmlns:dt="urn:schemas-microsoft-com:datatypes"

dt:dt="string"></DeviceID></m:IsAuthorized></SOAP-ENV:Body></SOAP-ENV:Envelope>

The receiver sends its DeviceID to the transmitter and the transmitter responds to the receiver with a
1 if the receiver is currently authorized, or a 0 if the receiver is not authorized.

Transmitter to Receiver

 HTTP/1.1 200 OK
 Content-Length: 411
 Content-Type: text/xml; charset="utf-8"
 Server: Microsoft-Windows-NT/5.1 UPnP/1.0 UPnP-Device-Host/1.0 Microsoft-HTTPAPI/1.0
 Date: Wed, 07 Jul 2004 00:38:23 GMT

 <?xml version="1.0"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><SOAP-

ENV:Body><m:IsAuthorizedResponse

xmlns:m="urn:microsoft.com:service:X_MS_MediaReceiverRegistrar:1"><Result

xmlns:dt="urn:schemas-microsoft-com:datatypes"

dt:dt="int">1</Result></m:IsAuthorizedResponse></SOAP-ENV:Body></SOAP-ENV:Envelope>

For more information on IsAuthorized, see section 3.4.6.3.1.

4.2 Registration

The following example shows the receiver attempting to register itself with the transmitter by calling
the RegisterDevice action.

Receiver to Transmitter

 POST /upnphost/udhisapi.dll?control=uuid:a7e63d3b-0a14-4143-b997-
3cd79e20766b+urn:microsoft.com:serviceId:X_MS_MediaReceiverRegistrar HTTP/1.1

 Content-Type: text/xml; charset="utf-8"
 SOAPAction: "urn:microsoft.com:service:X_MS_MediaReceiverRegistrar:1#RegisterDevice"
 User-Agent: Mozilla/4.0 (compatible; UPnP/1.0; Windows 9x)
 Host: 192.168.3.106:2869

97 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Content-Length: 5903
 Connection: Keep-Alive
 Cache-Control: no-cache
 Pragma: no-cache

 HTTP/1.1 100 Continue

 <?xml version="1.0"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><SOAP-

ENV:Body><m:RegisterDevice

xmlns:m="urn:microsoft.com:service:X_MS_MediaReceiverRegistrar:1"><RegistrationReqMsg

xmlns:dt="urn:schemas-microsoft-com:datatypes" dt:dt="bin.Base64">Base64.Encoded Windows

Media DRM for Network Devices Registration Request

Message</RegistrationReqMsg></m:RegisterDevice></SOAP-ENV:Body></SOAP-ENV:Envelope>

The receiver sends a Base64-encoded data block [RFC3548] that contains the registration request

message to the transmitter. The transmitter then responds by sending a Base64-encoded registration
response message back to the receiver. The following example shows a registration response

message.

Transmitter to Receiver

 HTTP/1.1 200 OK
 Content-Length: 729
 Content-Type: text/xml; charset="utf-8"
 Server: Microsoft-Windows-NT/5.1 UPnP/1.0 UPnP-Device-Host/1.0 Microsoft-HTTPAPI/1.0
 Date: Wed, 07 Jul 2004 00:38:23 GMT

 <?xml version="1.0"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><SOAP-

ENV:Body><m:RegisterDeviceResponse

xmlns:m="urn:microsoft.com:service:X_MS_MediaReceiverRegistrar:1"><RegistrationRespMsg

xmlns:dt="urn:schemas-microsoft-com:datatypes" dt:dt="bin.Base64">Base64.Encoded Windows

Media DRM for Network Devices Registration Response Message

</RegistrationRespMsg></m:RegisterDeviceResponse></SOAP-ENV:Body></SOAP-ENV:Envelope>

A receiver can also call the IsValidated action to determine whether or not it is registered with the
transmitter. The following example shows a receiver checking its registration status.

Receiver to Transmitter

 POST /upnphost/udhisapi.dll?control=uuid:a7e63d3b-0a14-4143-b997-
3cd79e20766b+urn:microsoft.com:serviceId:X_MS_MediaReceiverRegistrar HTTP/1.1

 Content-Type: text/xml; charset="utf-8"
 SOAPAction: "urn:microsoft.com:service:X_MS_MediaReceiverRegistrar:1#IsValidated"
 User-Agent: Mozilla/4.0 (compatible; UPnP/1.0; Windows 9x)
 Host: 192.168.3.106:2869
 Content-Length: 401
 Connection: Keep-Alive
 Cache-Control: no-cache
 Pragma: no-cache

 <?xml version="1.0"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><SOAP-ENV:Body><m:IsValidated

xmlns:m="urn:microsoft.com:service:X_MS_MediaReceiverRegistrar:1"><DeviceID

xmlns:dt="urn:schemas-microsoft-com:datatypes"

dt:dt="string"></DeviceID></m:IsValidated></SOAP-ENV:Body></SOAP-ENV:Envelope>

The receiver sends its device ID to the transmitter, and the transmitter responds to the receiver with
either a 1 indicating that the receiver is currently registered or a 0 if the receiver is not registered.

98 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Transmitter to Receiver

 HTTP/1.1 200 OK
 Content-Length: 411
 Content-Type: text/xml; charset="utf-8"
 Server: Microsoft-Windows-NT/5.1 UPnP/1.0 UPnP-Device-Host/1.0 Microsoft-HTTPAPI/1.0
 Date: Wed, 07 Jul 2004 00:38:23 GMT

 <?xml version="1.0"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><SOAP-

ENV:Body><m:IsValidatedResponse

xmlns:m="urn:microsoft.com:service:X_MS_MediaReceiverRegistrar:1"><Result

xmlns:dt="urn:schemas-microsoft-com:datatypes"

dt:dt="int">1</Result></m:IsValidatedResponse></SOAP-ENV:Body></SOAP-ENV:Envelope>

For more information on the RegisterDevice and IsValidated actions and their arguments, see section
6.

4.3 HTTP License Retrieval

The following example illustrates how license retrieval is performed using HTTP.

Receiver to Transmitter

 POST /2cfa8.wmv HTTP/1.0
 Accept: */*
 Supported: com.microsoft.wmdrm-nd
 Content-Type: application/vnd.ms-wmdrm-license-request
 Content-Length: 1078

License Request message-Transmitter to Receiver

 HTTP/1.0 200 OK
 Supported: com.microsoft.wmdrm-nd
 WMDRM-ND: SessionId="E97625B8950CA0B658C98AEAD7DE7796"
 Content-Type: application/vnd.ms-wmdrm-license-response
 Content-Length: 924

License Response message- Receiver to Transmitter

The following example shows the error returned for a device certificate that has been revoked.

 POST /file.wmv HTTP/1.0
 Accept: */*
 Supported: com.microsoft.wmdrm-nd
 Content-Type: application/vnd.ms-wmdrm-license-request
 Content-Length: 1078

License Request message-Transmitter to Receiver

 HTTP/1.0 500 Internal Server Error
 WMDRM-ND-Status: 101 "Certificate Revoked"
 Supported: com.microsoft.wmdrm-nd

99 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4.4 Retrieving ASF-Encapsulated Content

Receiver to Transmitter

 GET /file.wmv HTTP/1.0
 Accept: */*
 Supported: com.microsoft.wmdrm-nd
 WMDRM-ND: SessionId="E97625B8950CA0B658C98AEAD7DE7796"

Transmitter to Receiver

 HTTP/1.0 200 OK
 Supported: com.microsoft.wmdrm-nd
 Content-Type: video/x-ms-asf
 Content-Length: 3908480

The following example shows how to retrieve content from the transmitter using link encryption mode.

Receiver to Transmitter

 GET /file.avi HTTP/1.0
 Accept: */*
 Supported: com.microsoft.wmdrm-nd
 X-WMDRM-ND: SessionId="E97625B8950CA0B658C98AEAD7DE7796"

Transmitter to Receiver

 HTTP/1.0 200 OK
 Supported: com.microsoft.wmdrm-nd
 Content-Type: application/vnd.ms-wmdrm-data-transfer; media="video/avi"

 CONTROL_AND_DATA_BLOCKS

4.5 Using HTTP for a Revocation List Update

The following example illustrates how to perform a revocation list update using HTTP.

Receiver to Transmitter

 POST /file.wmv HTTP/1.0
 Accept: */*
 Supported: com.microsoft.wmdrm-nd
 Content-Type: application/vnd.ms-wmdrm-extended-operation-request
 Content-Length: 68

Revocation List Request message-Transmitter to Receiver

 HTTP/1.0 200 OK
 Supported: com.microsoft.wmdrm-nd
 Content-Type: application/vnd.ms-wmdrm-extended-operation-response
 Content-Length: 364

Revocation List Response message

100 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4.6 Retrieving a Root License

The following example illustrates how to retrieve a root license using RTSP.

Receiver to Transmitter

 DESCRIBE rtsp://servername/file.wmv RTSP/1.0
 Accept: application/sdp
 CSeq: 1
 Supported: com.microsoft.wmdrm-nd, com.microsoft.wm.eosmsg, method.announce
 Require: com.microsoft.wmdrm-nd
 Content-Type: application/vnd.ms-wmdrm-license-request
 Content-Length: 1078

License Request message-Transmitter to Receiver

 RTSP/1.0 200 OK
 Content-Length: 1891
 Content-Type: application/sdp
 CSeq: 1
 Supported: com.microsoft.wmdrm-nd, com.microsoft.wm.eosmsg, method.announce

SDP Description

Example of data URL containing Base64-encoded License Response. For information on Base64 see
[RFC3548].

 data:application/vnd.ms-wmdrm-license-response;base64,
AggAAAAAAAABOFhNUgAAAAAB+TTbzXCRw1s+/jA4fQQY0wADAAEAAAEgAAMAAgAAADwAAQADAAAAEgBkAAAAAAAAAAAAA

QAMAAAAGKRuHVtxsJ1Lk7WPrQPe5X0AAQANAAAACgABAAMABAAAABoAAQAFAAAAEgBkAGQAZABkAGQAAwAJAAAApgABAA

oAAACeajiAiUBMGrAGUAOIqMGBggABAAEAgC7V1QF54EzuYbTYKPbgBEK6nDXGtbV+bJKF+Cn2yd/FUaC4vTIOxkF/eQL

x+FqvLCUMtxvRSw01dns9Ejt021se2T+IROiZA0t5pRuNl3gq7JK9JKs+ZX8hKsEJFW0V7cyp9wdaCMh2esJ97r9agH1S

xf0mAqcQ0j1Q5dtXlWx/AAEACwAAABwAAQAQZZaX5nGEUAV8w6p6BQr++Q==

4.7 Using RTSP for a License Request

This example describes a server requesting a license from a receiver by using RTSP.

Transmitter to Receiver

 ANNOUNCE rtsp://servername/file.wmv RTSP/1.0
 CSeq: 27
 Session: 8322364901836665746
 Supported: com.microsoft.wmdrm-ndmethod.announce
 Require: method.announce
 Content-Type: application/vnd.ms-wmdrm-license-response
 Content-Length: 924

License Response message- Receiver to Transmitter

 RTSP/1.0 200 OK
 CSeq: 27
 Session: 8322364901836665746
 Supported: com.microsoft.wmdrm-ndmethod.announce

101 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4.8 Using RTSP for a Revocation List Update

The following example illustrates how to perform a revocation list update using RTSP.

Receiver to Transmitter

 GET_PARAMETER rtsp://servername/file.wmv RTSP/1.0
 Cseq: 1
 Supported: com.microsoft.wmdrm-nd
 Content-Type: application/vnd.ms-wmdrm-extended-operation-request
 Content-Length: 68

Revocation List Request message-Transmitter to Receiver

 RTSP/1.0 200 OK
 Cseq: 1
 Supported: com.microsoft.wmdrm-nd
 Content-Type: application/vnd.ms-wmdrm-extended-operation-response
 Content-Length: 364

Revocation List Response message

4.9 Processing an Error

This section is an example of an error returned when there license request is made using a revoked
device certificate.

Receiver to Transmitter

 DESCRIBE rtsp://servername/file.wmv RTSP/1.0
 Accept: application/sdp
 CSeq: 1
 Supported: com.microsoft.wm.eosmsg, com.microsoft.wmdrm-nd
 Content-Type: application/vnd.ms-wmdrm-license-request
 Content-Length: 1078

License Request message-Transmitter to Receiver

 RTSP/1.0 500 Internal Server Error
 CSeq: 1
 WMDRM-ND-Status: 101 "Certificate Revoked"
 Supported: com.microsoft.wm.eosmsg, com.microsoft.wmdrm-nd

102 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5 Security

5.1 Security Considerations for Implementers

SHA-1 [FIPS180-2] Hashing has been shown to be theoretically vulnerable to collision, but is still

considered a secure form of one-way encoding of data.

5.2 Index of Security Parameters

Security parameter Section

AES Section 2.4.3 Cryptographic Requirements for Transmitters

Authentication Command key Section 2.2.1.2 Registration Response Message

AuthorizationDeniedUpdateID Section 3.4.1.1 State Variables

AuthorizationGrantedUpdateID Section 3.4.1.1 State Variables

Content Encryption key Section 2.2.1.2 Registration Response Message

Certificate - License Request Section 2.2.1.4.1 The License Request Message

Certificate - Registration Section 2.2.1.2 Registration Response Message

Challenge Value Nonce Section 2.2.1.3.2 The Proximity Challenge Message

Content Integrity key Section 2.2.1.2 Registration Response Message

CTR Section 2.4.3 Cryptographic Requirements for Transmitters

ECB Section 2.4.3 Cryptographic Requirements for Transmitters

Encrypted challenge value (nonce) Section 2.2.1.3.3 The Proximity Response Message

EncryptedNonce Section 2.2.1.3.4 The Proximity Result Message

Encrypted Seed Section 2.2.1.2 Registration Response Message

List ID field GUIDs Section 2.2.1.5.1 Revocation List Version Information

MAC Section 2.4.3 Cryptographic Requirements for Transmitters

Microsoft CTRCRL signing public key Section 2.2.1.5.1 Revocation List Version Information Record

Microsoft Root Public Key Section 2.4.3 Cryptographic Requirements for Transmitters

OMAC Section 2.2.1.2 Registration Response Message

Proximity Detection NONCE Section 2.2.1.3 Proximity Detection

Public Key - Receiver Section 2.4.2 Common Cryptographic Requirements for Receivers

Rights ID Section 2.2.1.4.1 The License Request Message

RNG - Random Number Generator Section 2.4.3 Cryptographic Requirements for Transmitters

Seed Encryption Type Section 2.2.1.2 Registration Response Message

Sequence number Section 2.2.1.3.2 The Proximity Challenge Message

Serial Number - Registration Response Section 2.2.1.2 Registration Response Message

103 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Security parameter Section

Serial Number - License Request Section 2.2.1.4.1 The License Request Message

Session ID - Proximity Challenge Section 2.2.1.3.2 The Proximity Challenge Message

Session ID - Proximity Detection Section 2.2.1.2 Registration Response Message

SHA-1 Section 2.4.3 Cryptographic Requirements for Transmitters

Session ID Section 3.1.1.3 Registration and Revalidation

Signature Section Section 2.2.1.2 Registration Response Message

Transmitter Identifier Section 2.2.1.2 Registration Response Message

104 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6 Appendix A: Full XML Service Descriptions

6.1 Schemas-Opencable-Com Service

The following code snippet contains the XML Web service description for the schemas-opencable-com

service:

 <?xml version="1.0" ?>
 <scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>IsAuthorized</name>
 <argumentList>
 <argument>
 <name>DeviceID</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_DeviceID</relatedStateVariable>
 </argument>
 <argument>
 <name>Result</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_Result</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>RegisterDevice</name>
 <argumentList>
 <argument>
 <name>RegistrationReqMsg</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_RegistrationReqMsg</relatedStateVariable>

 </argument>
 <argument>
 <name>RegistrationRespMsg</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_RegistrationRespMsg</relatedStateVariable>

 </argument>
 </argumentList>
 </action>
 <action>
 <name>IsValidated</name>
 <argumentList>
 <argument>
 <name>DeviceID</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_DeviceID</relatedStateVariable>
 </argument>
 <argument>
 <name>Result</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_Result</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_DeviceID</name>
 <dataType>string</dataType>

105 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Result</name>
 <dataType>int</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_RegistrationReqMsg</name>
 <dataType>bin.base64</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_RegistrationRespMsg</name>
 <dataType>bin.base64</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>AuthorizationGrantedUpdateID</name>
 <dataType>ui4</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>AuthorizationDeniedUpdateID</name>
 <dataType>ui4</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>ValidationSucceededUpdateID</name>
 <dataType>ui4</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>ValidationRevokedUpdateID</name>
 <dataType>ui4</dataType>
 </stateVariable>
 </serviceStateTable>
 </scpd>

6.2 X_MS_MediaReceiverRegistrar:1 Service

This section contains the XML service description for the X_MS_MediaReceiverRegistrar:1 service.

 <?xml version="1.0" ?>
 <scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>IsAuthorized</name>
 <argumentList>
 <argument>
 <name>DeviceID</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_DeviceID</relatedStateVariable>
 </argument>
 <argument>
 <name>Result</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_Result</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>RegisterDevice</name>
 <argumentList>
 <argument>
 <name>RegistrationReqMsg</name>
 <direction>in</direction>

<relatedStateVariable>A_ARG_TYPE_RegistrationReqMsg</relatedStateVariable>

 </argument>

106 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 <argument>
 <name>RegistrationRespMsg</name>
 <direction>out</direction>

<relatedStateVariable>A_ARG_TYPE_RegistrationRespMsg</relatedStateVariable>

 </argument>
 </argumentList>
 </action>
 <action>
 <name>IsValidated</name>
 <argumentList>
 <argument>
 <name>DeviceID</name>
 <direction>in</direction>
 <relatedStateVariable>A_ARG_TYPE_DeviceID</relatedStateVariable>
 </argument>
 <argument>
 <name>Result</name>
 <direction>out</direction>
 <relatedStateVariable>A_ARG_TYPE_Result</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_DeviceID</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Result</name>
 <dataType>int</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_RegistrationReqMsg</name>
 <dataType>bin.base64</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_RegistrationRespMsg</name>
 <dataType>bin.base64</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>AuthorizationGrantedUpdateID</name>
 <dataType>ui4</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>AuthorizationDeniedUpdateID</name>
 <dataType>ui4</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>ValidationSucceededUpdateID</name>
 <dataType>ui4</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>ValidationRevokedUpdateID</name>
 <dataType>ui4</dataType>
 </stateVariable>
 </serviceStateTable>
 </scpd>

107 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

▪ Windows 2000 operating system

▪ Windows XP operating system

▪ Windows Vista operating system

▪ Windows 7 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows 8 operating system

▪ Windows Server 2012 operating system

▪ Windows 8.1 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows 10 v1511 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

108 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

8 Change Tracking

This section identifies No table of changes that were made to thisis available. The document is either
new or has had no changes since theits last release. Changes are classified as New, Major, Minor,
Editorial, or No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.

Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements or functionality.

▪ The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed. Editorial
changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor editorial
and formatting changes may have been made, but the technical content of the document is identical
to the last released version.

Major and minor changes can be described further using the following change types:

▪ New content added.

▪ Content updated.

▪ Content removed.

▪ New product behavior note added.

▪ Product behavior note updated.

▪ Product behavior note removed.

▪ New protocol syntax added.

▪ Protocol syntax updated.

▪ Protocol syntax removed.

▪ New content added due to protocol revision.

▪ Content updated due to protocol revision.

▪ Content removed due to protocol revision.

▪ New protocol syntax added due to protocol revision.

▪ Protocol syntax updated due to protocol revision.

▪ Protocol syntax removed due to protocol revision.

▪ Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

109 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Some important terms used in the change type descriptions are defined as follows:

▪ Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

▪ Protocol revision refers to changes made to a protocol that affect the bits that are sent over the

wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section
Tracking number (if applicable) and
description

Major change (Y
or N)

Change type

7 Appendix B: Product
Behavior

Added Windows 10 v1511 to applicability
list.

Y
Content
update.

110 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

9 Index
A

Abstract data model
 receiver
 authorization 62
 data transfer 66
 license management 66
 license retrieval 64
 overview (section 3.1.1.1 61, section 3.2.1.1 81)
 proximity detection 64
 registration and revalidation 62
 schemas-opencable-com:1 service model 89
 transmitter
 authorization 62
 data transfer 66
 license management 66
 license retrieval 64
 overview (section 3.1.1.1 61, section 3.3.1.1 85)
 proximity detection 64
 registration and revalidation 62
Applicability 16

C

Capability negotiation 16
certificate_revocation_lists packet 49
Change tracking 108
Cryptographic
 receivers - requirements 58
 semantics 58
 transmitters - requirements 59

D

Data model - abstract
 receiver
 authorization 62
 data transfer 66
 license management 66
 license retrieval 64
 overview (section 3.1.1.1 61, section 3.2.1.1 81)
 proximity detection 64
 registration and revalidation 62
 schemas-opencable-com:1 service model 89
 transmitter
 authorization 62
 data transfer 66
 license management 66
 license retrieval 64
 overview (section 3.1.1.1 61, section 3.3.1.1 85)
 proximity detection 64
 registration and revalidation 62

E

Error codes 57
Examples
 HTTP license retrieval 98
 HTTP license retrieval 98
 processing an error 101
 registration 96

111 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 requesting a license 100
 retrieving a root license 100
 retrieving ASF-encapsulated content 99
 UPnP authorization 96
 using HTTP for a revocation list update 99
 using RTSP for a revocation list update 101

F

Fields - vendor-extensible 16
Full XML service descriptions
 Schemas-Opencable-Com service 104
 X_MS_MediaReceiverRegistrar:1 service 105

G

Glossary 8

H

Higher-layer triggered events
 receiver (section 3.1.4 67, section 3.2.4 82)
 transmitter (section 3.1.4 67, section 3.3.4 86)
HTTP license retrieval example 98
HTTP license retrieval example 98

I

Implementer - security considerations 102
Index of security parameters 102
Informative references 15
Initialization
 receiver (section 3.1.3 67, section 3.2.3 82)
 schemas-opencable-com:1 service model (section 3.1.3 67, section 3.4.3 90)
 transmitter (section 3.1.3 67, section 3.3.3 86)
Introduction 8

L

Local events
 receiver 85
 schemas-opencable-com:1 service model 93
 transmitter 89

M

Message processing
 receiver
 content encryption 68
 data encoding and decoding 68
 data transfer details 84
 license retrieval details 83
 proximity detection details 82
 registration details 82
 revocation list update details 84
 revocation lists 47
 schemas-opencable-com:1 service model
 actions 91
 overview 90
 transmitter
 content encryption 68
 data encoding and decoding 68
 data transfer details 88
 license retrieval details 87

112 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 proximity detection details 87
 registration details 86
 revocation list update details 89
 revocation lists 47
Messages
 cryptographic
 receivers - requirements 58
 semantics 58
 transmitters - requirements 59
 error codes 57
 MTP vendor extension identification 56
 MTP Vendor Extension Identification Message 56
 receivers - requirements 59
 Registration 37
 requirements 58
 transmitters - requirements 59
 transport 18
 HTTP mappings 20
 Media Transfer Protocol mappings 33
 OpenCable Digital Receiver Interface mappings 32
 overview 18
 PBDA mappings 36
 protocol mappings 18

 RTSP mappings 25
 UPnP mappings 18
MTP vendor extension identification message 56
MTP Vendor Extension Identification Message message 56
MTP_Vendor_Extension_Identification_Message packet 56

N

Normative references 13

O

Overview (synopsis) 15

P

Parameters - security index 102
Preconditions 16
Prerequisites 16
Processing an error example 101
Product behavior 107
Protocol Details
 overview 61

R

Receiver
 abstract data model
 authorization 62
 data transfer 66
 license management 66
 license retrieval 64
 overview (section 3.1.1.1 61, section 3.2.1.1 81)
 proximity detection 64
 registration and revalidation 62
 higher-layer triggered events (section 3.1.4 67, section 3.2.4 82)
 initialization (section 3.1.3 67, section 3.2.3 82)
 local events 85
 message processing
 content encryption 68
 data encoding and decoding 68
 data transfer details 84

113 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 license retrieval details 83
 proximity detection details 82
 registration details 82
 revocation list update details 84
 revocation lists 47
 sequencing rules
 content encryption 68
 data encoding and decoding 68
 data transfer details 84
 license retrieval details 83
 proximity detection details 82
 registration details 82
 revocation list update details 84
 revocation lists 47
 timer events 85
 timers (section 3.1.2 67, section 3.2.2 82)
Receivers - requirements 59
References 13
 informative 15
 normative 13
Registration - messages 37
Registration example 96
Registration message 37

Registration_Request_Message packet 37
Registration_Response_Message packet 38
Relationship to other protocols 16
Requesting a license example 100
Requirements - messages 58
Retrieving a root license example 100
Retrieving ASF-encapsulated content example 99
revocation_information_version_structure packet 47
Revocation_list_version_information_record packet 49

S

Schemas-Opencable-Com service - XML service descriptions 104
schemas-opencable-com:1 service model
 abstract data model 89
 initialization (section 3.1.3 67, section 3.4.3 90)
 local events 93
 message processing
 actions 91
 overview 90
 overview 89
 sequencing rules
 actions 91
 overview 90
 timer events (section 3.4.5 93, section 3.4.6 93)
 timers (section 3.1.2 67, section 3.4.2 90)
Security
 implementer considerations 102
 parameter index 102
Sequencing rules
 receiver
 content encryption 68
 data encoding and decoding 68
 data transfer details 84
 license retrieval details 83
 proximity detection details 82
 registration details 82
 revocation list update details 84
 revocation lists 47

 schemas-opencable-com:1 service model
 actions 91
 overview 90

114 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 transmitter
 content encryption 68
 data encoding and decoding 68
 data transfer details 88
 license retrieval details 87
 proximity detection details 87
 registration details 86
 revocation list update details 89
 revocation lists 47
Standards assignments 17

T

The_Authenticated_Command_Message packet 53
The_Authenticated_Command_Response_Message packet 54
The_data_segment_descriptor packet 70
The_License_Request_Message packet 44

The_License_Response_Message packet 45
The_License_Update_Message packet 46
The_Proximity_Challenge_Message packet 41
The_Proximity_Response_Message packet 42
The_Proximity_Result_Message packet 43
The_Proximity_Start_Message packet 41
The_Revocation_List_Request_Message packet 51
The_Revocation_List_Response_Message packet 52
Timer events
 receiver 85
 schemas-opencable-com:1 service model (section 3.4.5 93, section 3.4.6 93)
 transmitter 89
Timers
 receiver (section 3.1.2 67, section 3.2.2 82)
 schemas-opencable-com:1 service model (section 3.1.2 67, section 3.4.2 90)
 transmitter (section 3.1.2 67, section 3.3.2 86)
Tracking changes 108
Transmitter
 abstract data model
 authorization 62
 data transfer 66
 license management 66
 license retrieval 64
 overview (section 3.1.1.1 61, section 3.3.1.1 85)
 proximity detection 64
 registration and revalidation 62
 higher-layer triggered events (section 3.1.4 67, section 3.3.4 86)
 initialization (section 3.1.3 67, section 3.3.3 86)
 local events 89
 message processing
 content encryption 68
 data encoding and decoding 68
 data transfer details 88
 license retrieval details 87
 proximity detection details 87
 registration details 86
 revocation list update details 89
 revocation lists 47
 sequencing rules
 content encryption 68
 data encoding and decoding 68
 data transfer details 88
 license retrieval details 87
 proximity detection details 87
 registration details 86

 revocation list update details 89
 revocation lists 47
 timer events 89

115 / 115

[MS-DRMND-Diff] - v20170601
Windows Media Digital Rights Management (WMDRM): Network Devices Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 timers (section 3.1.2 67, section 3.3.2 86)
Transmitters - requirements 59
Transport 18
 HTTP mappings 20
 Media Transfer Protocol mappings 33
 OpenCable Digital Receiver Interface mappings 32
 overview 18
 PBDA mappings 36
 protocol mappings 18
 RTSP mappings 25
 UPnP mappings 18
Triggered events
 receiver (section 3.1.4 67, section 3.2.4 82)
 transmitter (section 3.1.4 67, section 3.3.4 86)

U

UPnP authorization example 96
Using HTTP for a revocation list update example 99
Using RTSP for a revocation list update example 101

V

Vendor-extensible fields 16
Versioning 16

X

X_MS_MediaReceiverRegistrar:1 service - XML service descriptions 105
XML service descriptions
 Schemas-Opencable-Com service 104
 X_MS_MediaReceiverRegistrar:1 service 105

