

1 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-DRM-Diff]:

Digital Rights Management License Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
as well as overviews of the interaction among each of these technologiessupport. Additionally,

overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you maycan make copies of it in order to develop implementations of the

technologies that are described in the Open Specifications this documentation and maycan
distribute portions of it in your implementations usingthat use these technologies or in your
documentation as necessary to properly document the implementation. You maycan also distribute

in your implementation, with or without modification, any schema, IDL'sschemas, IDLs, or code
samples that are included in the documentation. This permission also applies to any documents
that are referenced in the Open Specifications. documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that maymight cover your implementations of the technologies
described in the Open Specifications. documentation. Neither this notice nor Microsoft's delivery of
thethis documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specification maySpecifications document might be covered by the
Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a

written license, or if the technologies described in the Open Specificationsthis documentation are
not covered by the Open Specifications Promise or Community Promise, as applicable, patent

licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation maymight
be covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mailemail
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications dodocumentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available
standardstandards specifications and network programming art, and assumes, as such, assume that
the reader either is familiar with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

5/11/2007 0.1 New Version 0.1 release

8/10/2007 1.0 Major Updated and revised the technical content.

9/28/2007 1.0.1 Editorial Changed language and formatting in the technical content.

10/23/2007 1.0.2 Editorial Changed language and formatting in the technical content.

11/30/2007 1.0.3 Editorial Changed language and formatting in the technical content.

1/25/2008 1.0.4 Editorial Changed language and formatting in the technical content.

3/14/2008 2.0 Major Updated and revised the technical content.

5/16/2008 2.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 2.0.2 Editorial Changed language and formatting in the technical content.

7/25/2008 2.0.3 Editorial Changed language and formatting in the technical content.

8/29/2008 2.0.4 Editorial Changed language and formatting in the technical content.

10/24/2008 2.1 Minor Clarified the meaning of the technical content.

12/5/2008 2.1.1 Editorial Editorial Update.

1/16/2009 2.1.2 Editorial Changed language and formatting in the technical content.

2/27/2009 2.2 Minor Clarified the meaning of the technical content.

4/10/2009 3.0 Major Updated and revised the technical content.

5/22/2009 4.0 Major Updated and revised the technical content.

7/2/2009 5.0 Major Updated and revised the technical content.

8/14/2009 5.0.1 Editorial Changed language and formatting in the technical content.

9/25/2009 5.1 Minor Clarified the meaning of the technical content.

11/6/2009 5.1.1 Editorial Changed language and formatting in the technical content.

12/18/2009 6.0 Major Updated and revised the technical content.

1/29/2010 6.1 Minor Clarified the meaning of the technical content.

3/12/2010 6.1.1 Editorial Changed language and formatting in the technical content.

4/23/2010 7.0 Major Updated and revised the technical content.

6/4/2010 8.0 Major Updated and revised the technical content.

7/16/2010 9.0 Major Updated and revised the technical content.

8/27/2010 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

11/19/2010 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 10.0 Major Updated and revised the technical content.

5/6/2011 11.0 Major Updated and revised the technical content.

6/17/2011 11.1 Minor Clarified the meaning of the technical content.

9/23/2011 11.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 12.0 Major Updated and revised the technical content.

3/30/2012 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 13.0 Major Updated and revised the technical content.

8/8/2013 14.0 Major Updated and revised the technical content.

11/14/2013 15.0 Major Updated and revised the technical content.

2/13/2014 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 16.0 Major Significantly changed the technical content.

10/16/2015 16.0
No
ChangeNone

No changes to the meaning, language, or formatting of the
technical content.

4 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 8
1.1 Glossary ... 8
1.2 References .. 9

1.2.1 Normative References ... 10
1.2.2 Informative References ... 10

1.3 Overview .. 11
1.3.1 Digital Rights Management Version 1 .. 12
1.3.2 Digital Rights Management Version 7 .. 12
1.3.3 Digital Rights Management Version 11 .. 13

1.4 Relationship to Other Protocols .. 14
1.5 Prerequisites/Preconditions ... 14
1.6 Applicability Statement ... 14
1.7 Versioning and Capability Negotiation ... 15
1.8 Vendor-Extensible Fields ... 15
1.9 Standards Assignments ... 15

2 Messages ... 16
2.1 Transport .. 16
2.2 Message Syntax ... 16

2.2.1 Common Data Types and Algorithms ... 16
2.2.1.1 Base64 Encoding .. 16

2.2.1.1.1 Base64 Mapping Table ... 16
2.2.1.1.2 Example: Base64 Encoding of 3 Bytes .. 17
2.2.1.1.3 Base64 and DRM ... 17

2.2.1.2 Cryptographic Parameters .. 17
2.2.1.3 Cryptographic Keys ... 18
2.2.1.4 PK ... 18
2.2.1.5 PKCERT ... 19
2.2.1.6 PUBKEY ... 19
2.2.1.7 LicenseToSend .. 19

2.2.2 DRM Version 1 Data Types ... 20
2.2.2.1 DRM Version 1 License Request .. 20
2.2.2.2 DRM Version 1 License Response .. 21
2.2.2.3 DRM Version 1 License Format .. 22

2.2.2.3.1 CERT ... 22
2.2.2.3.2 CERTDATA .. 23
2.2.2.3.3 CERTIFIED_LICENSE .. 23
2.2.2.3.4 LICENSE ... 23
2.2.2.3.5 LICENSEDATA ... 24

2.2.3 DRM Version 7 Data Types ... 25
2.2.3.1 DRM Version 7 License Request .. 25

2.2.3.1.1 Silent and Nonsilent Requests ... 25
2.2.3.1.1.1 Silent Requests .. 26
2.2.3.1.1.2 Nonsilent Requests .. 26

2.2.3.1.2 HTTP POST Headers ... 26
2.2.3.1.3 XML Schema for Version 7 License Request .. 26

2.2.3.1.3.1 ACTION .. 27
2.2.3.1.3.2 APPSECURITY .. 27
2.2.3.1.3.3 CLIENTID (Element) ... 28
2.2.3.1.3.4 CLIENTID (Structure) ... 28
2.2.3.1.3.5 CLIENTVERSION .. 28
2.2.3.1.3.6 DRMKVERSION .. 28
2.2.3.1.3.7 REVOCATIONINFO ... 28
2.2.3.1.3.8 SECURITYVERSION .. 28
2.2.3.1.3.9 SUBJECTID1 .. 29

5 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.3.1.3.10 SUBJECTID2 .. 29
2.2.3.1.3.11 V1CHALLENGE ... 29
2.2.3.1.3.12 WMRMHEADER .. 29

2.2.3.2 DRM Version 7 License Response .. 29
2.2.3.2.1 Silent Acquisition ... 29
2.2.3.2.2 Nonsilent Acquisition .. 29
2.2.3.2.3 Errors .. 29
2.2.3.2.4 XML Schema for Version 7 License Response 30

2.2.3.2.4.1 DRM Version 1 License Format Within a Version 7 License Response 31
2.2.3.2.4.2 DRM Version 7 License Format .. 31

2.2.3.2.5 ACTION .. 35
2.2.3.2.6 ANALOGVIDEO .. 35
2.2.3.2.7 CERTIFICATE .. 35
2.2.3.2.8 CERTIFICATECHAIN ... 35
2.2.3.2.9 COMPRESSEDDIGITALAUDIO .. 35
2.2.3.2.10 COMPRESSEDDIGITALVIDEO .. 36
2.2.3.2.11 CONDITION When Used Under the ONACTION, ONSELECT, and ONSTORE

Elements .. 36
2.2.3.2.12 CONDITION When Used Under the CONTENTREVOCATION/DATA Element36
2.2.3.2.13 CONTENTPUBKEY .. 36
2.2.3.2.14 CONTENTREVOCATION... 36
2.2.3.2.15 COPY ... 37
2.2.3.2.16 ENABLINGBITS ... 37
2.2.3.2.17 Events in DRM Licenses .. 37
2.2.3.2.18 Expressions in DRM Licenses ... 37

2.2.3.2.18.1 Identifier .. 38
2.2.3.2.18.2 Function Symbol .. 38
2.2.3.2.18.3 Constant ... 38
2.2.3.2.18.4 Variable .. 38
2.2.3.2.18.5 Final Value .. 38

2.2.3.2.19 Operators in DRM Expressions... 38
2.2.3.2.19.1 Operator Behavior .. 38
2.2.3.2.19.2 Operator Precedence .. 39

2.2.3.2.20 Data Types in DRM Expressions ... 40
2.2.3.2.20.1 DATETIME Data Type ... 40
2.2.3.2.20.2 LONG Data Type .. 40
2.2.3.2.20.3 STRING Data Type ... 40
2.2.3.2.20.4 Casting Data Types .. 40

2.2.3.2.21 ISSUEDATE .. 41
2.2.3.2.22 KID.. 41
2.2.3.2.23 LICENSESERVERPUBKEY .. 41
2.2.3.2.24 LICENSORINFO ... 41
2.2.3.2.25 LID .. 41
2.2.3.2.26 META ... 41
2.2.3.2.27 ONACTION ... 41
2.2.3.2.28 ONCLOCKROLLBACK .. 42
2.2.3.2.29 ONSELECT .. 42
2.2.3.2.30 ONSTORE ... 42
2.2.3.2.31 Predefined Functions in DRM Expressions ... 43
2.2.3.2.32 Predefined Variables in DRM Expressions .. 44
2.2.3.2.33 PRIORITY ... 45
2.2.3.2.34 PUBKEY .. 46
2.2.3.2.35 RESTRICTIONS ... 46
2.2.3.2.36 REV_INFO .. 46
2.2.3.2.37 REVOCATION .. 46
2.2.3.2.38 RevocationList ... 46
2.2.3.2.39 SEQUENCENUMBER ... 46

6 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.3.2.40 SIGNATURE When Used Under the CONTENTREVOCATION or
LICENSORINFO Element ... 47

2.2.3.2.41 SIGNATURE When Used Under the ENABLINGBITS Element 47
2.2.3.2.42 UNCOMPRESSEDDIGITALAUDIO .. 47
2.2.3.2.43 UNCOMPRESSEDDIGITALVIDEO .. 47
2.2.3.2.44 VALUE .. 47
2.2.3.2.45 WMDRMRLVICERTCHAIN .. 48
2.2.3.2.46 WMDRMRLVIHEAD ... 48
2.2.3.2.47 WMDRMRLVISIGNATURE .. 48
2.2.3.2.48 WMDRMRLVIVERSION .. 49

2.2.4 DRM Version 11 Data Types ... 49
2.2.4.1 DRM Version 11 License Request... 49

2.2.4.1.1 MACHINECERTIFICATE ... 50
2.2.4.1.2 REVINFO .. 53
2.2.4.1.3 ACTION .. 53

2.2.4.2 DRM Version 11 License Response .. 54

3 Protocol Details ... 55
3.1 Client Details ... 55

3.1.1 Abstract Data Model .. 55
3.1.2 Timers .. 55
3.1.3 Initialization ... 56
3.1.4 Higher-Layer Triggered Events ... 56
3.1.5 Message Processing Events and Sequencing Rules .. 56

3.1.5.1 DRM Version 1 Client Message Processing Events and Sequencing Rules 56
3.1.5.1.1 Request Behavior .. 56
3.1.5.1.2 Response Behavior .. 57

3.1.5.2 DRM Version 7 Client Message Processing Events and Sequencing Rules 57
3.1.5.2.1 Request Behavior .. 57
3.1.5.2.2 Response Behavior .. 59

3.1.5.2.2.1 LICENSERESPONSE.LICENSE nodes ... 59
3.1.5.2.2.2 LICENSERESPONSE.Revocation nodes .. 59

3.1.5.3 DRM Version 11 Client Message Processing Events and Sequencing Rules 59
3.1.5.3.1 Request Behavior .. 59
3.1.5.3.2 Response Behavior .. 60

3.1.6 Timer Events .. 60
3.1.7 Other Local Events .. 60

3.2 Server Details .. 60
3.2.1 Abstract Data Model .. 60

3.2.1.1 TransmitLicensesToClient ... 61
3.2.2 Timers .. 61
3.2.3 Initialization ... 61

3.2.3.1 Retrieving Revocation Data from the Enrollment Server 61
3.2.3.1.1 Client Certificate White List ... 62
3.2.3.1.2 Revocation Information List .. 62
3.2.3.1.3 Certificate Revocation List .. 62

3.2.4 Higher-Layer Triggered Events ... 62
3.2.5 Message Processing Events and Sequencing Rules .. 62

3.2.5.1 DRM Version 1 Server Message Processing Events and Sequencing Rules 62
3.2.5.2 DRM Version 7 Server Message Processing Events and Sequencing Rules 64
3.2.5.3 DRM Version 11 Server Message Processing Events and Sequencing Rules ... 67

3.2.6 Timer Events .. 69
3.2.7 Other Local Events .. 69

4 Protocol Examples ... 70
4.1 DRM Version 1 License Request Example .. 70
4.2 DRM Version 1 License Response Example .. 70
4.3 DRM Version 7 License Request Example .. 71
4.4 DRM Version 7 License Response Example .. 72

7 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.5 DRM Version 7 Nonsilent License Response Example .. 72
4.6 DRM Version 11 License Request Example ... 72
4.7 DRM Version 11 License Response Example ... 74

5 Security ... 75
5.1 Security Considerations for Implementers ... 75
5.2 Index of Security Parameters .. 75

6 Appendix A: Product Behavior ... 76

7 Change Tracking .. 78

8 Index ... 80

8 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

The Windows Media Digital Rights Management (WMDRM): License Protocol provides secure
distribution, promotion, and sale of digital media content. The protocol is used to acquire licenses for
Windows Media content protected using Digital Rights Management Version 1, Digital Rights
Management Version 7, or Digital Rights Management Version 11 technologies.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative and can contain the terms MAY,

SHOULD, MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

TheThis document uses the following terms are specific to this document:

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-

encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8-bit
ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to
zero.

base64 encoding: A binary-to-text encoding scheme whereby an arbitrary sequence of bytes is
converted to a sequence of printable ASCII characters, as described in [RFC4648].

certificate: A certificate is a collection of attributes (1) and extensions that can be stored
persistently. The set of attributes in a certificate can vary depending on the intended usage of
the certificate. A certificate securely binds a public key to the entity that holds the corresponding
private key. A certificate is commonly used for authentication (2) and secure exchange of
information on open networks, such as the Internet, extranets, and intranets. Certificates are

digitally signed by the issuing certification authority (CA) and can be issued for a user, a
computer, or a service. The most widely accepted format for certificates is defined by the ITU-T

X.509 version 3 international standards. For more information about attributes and extensions,
see [RFC3280] and [X509] sections 7 and 8.

certificate revocation: The process of invalidating a certificate. For more information, see
[RFC3280] section 3.3.

certificate revocation list (CRL): A list of certificates that have been revoked by the
certification authority (CA) that issued them (that have not yet expired of their own accord). The
list must be cryptographically signed by the CA that issues it. Typically, the certificates are
identified by serial number. In addition to the serial number for the revoked certificates, the CRL
contains the revocation reason for each certificate and the time the certificate was revoked. As
described in [RFC3280], two types of CRLs commonly exist in the industry. Base CRLs keep a
complete list of revoked certificates, while delta CRLs maintain only those certificates that have

been revoked since the last issuance of a base CRL. For more information, see [X509] section
7.3, [MSFT-CRL], and [RFC3280] section 5.

curly braced GUID string: The string representation of a 128-bit globally unique identifier
(GUID) using the form {XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}, where X denotes a
hexadecimal digit. The string representation between the enclosing braces is the standard
representation of a GUID as described in [RFC4122] section 3. Unlike a GUIDString, a curly
braced GUID string includes enclosing braces.

Digital Rights Management (DRM): A set of technologies that provides control over how a given
piece of protected content maycan be used.

9 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

elliptic curve cryptography (ECC): A public-key cryptosystem that is based on high-order elliptic
curves over finite fields. For more information, see [IEEE1363].

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of

these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

Hypertext Transfer Protocol (HTTP): An application-level protocol for distributed, collaborative,
hypermedia information systems (text, graphic images, sound, video, and other multimedia
files) on the World Wide Web.

Hypertext Transfer Protocol Secure (HTTPS): An extension of HTTP that securely encrypts and
decrypts web page requests. In some older protocols, “"Hypertext Transfer Protocol over Secure
Sockets Layer”" is still used (Secure Sockets Layer has been deprecated). For more information,
see [SSL3] and [RFC5246].

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

RC4: A variable key-length symmetric encryption algorithm. For more information, see
[SCHNEIER] section 17.1.

revocation: The process of invalidating a certificate. For more details, see [RFC3280] section 3.3.

Secure Digital Music Initiative (SDMI): An initiative to establish technology specifications that
would protect the playing, storing. and distributing of digital music. These specifications are
currently obsolete.

SHA-1 hash: A hashing algorithm as specified in [FIPS180-2] that was developed by the National

Institute of Standards and Technology (NIST) and the National Security Agency (NSA).

transport layer: The fourth layer in the Open Systems Interconnection (OSI) architectural model

as defined by the International Organization for Standardization (ISO). The transport layer
provides for transfer correctness, data recovery, and flow control. The transport layer responds
to service requests from the session layer and issues service requests to the network layer.

Uniform Resource Identifier (URI): A string that identifies a resource. The URI is an addressing
mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI):

Generic Syntax [RFC3986].

XML: The Extensible Markup Language, as described in [XML1.0].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

10 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[RC4-ENCRYPT] Schneier, B., "Applied Cryptography: Protocols, Algorithms, and Source Code in C",
2nd edition, Wiley, 1996, ISBN-10: 041117099 and ISBN-13: 978-0471117094.

[RFC2045] Freed, N., and Borenstein, N., "Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies", RFC 2045, November 1996, http://www.rfc-

editor.org/rfc/rfc2045.txt

[RFC2109] Kristol, D., and Montulli, L., "HTTP State Management Mechanism", RFC 2109, February

1997, http://www.rfc-editor.org/rfc/rfc2109.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC

2616, June 1999, http://www.rfc-editor.org/rfc/rfc2616.txt

[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000, http://www.rfc-
editor.org/rfc/rfc2818.txt

[RFC2821] Klensin, J., "Simple Mail Transfer Protocol", RFC 2821, April 2001,
http://www.ietf.org/rfc/rfc2821.txt

[RFC3275] Eastlake III, D., Reagle, J., and Solo, D., "(Extensible Markup Language) XML-Signature
Syntax and Processing", RFC 3275, March 2002, http://www.ietf.org/rfc/rfc3275.txt

[RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, October
2006, http://www.rfc-editor.org/rfc/rfc4648.txt

[RSAFAQ] RSA Laboratories, "Frequently Asked Questions About Today's Cryptography, Version 4.1",
May 2000, http://www.rsa.com/rsalabs/faq/files/rsalabs_faq41.pdf

[XMLSCHEMA1/2] Thompson, H., Beech, D., Maloney, M., and Mendelsohn, N., Eds., "XML Schema
Part 1: Structures Second Edition", W3C Recommendation, October 2004,
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

[XMLSCHEMA2/2] Biron, P., and Malhotra, A., Eds., "XML Schema Part 2: Datatypes Second Edition",
W3C Recommendation, October 2004, http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

[XML] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0 (Fourth Edition)", W3C
Recommendation 16 August 2006, edited in place 29 September 2006,

http://www.w3.org/TR/2006/REC-xml-20060816/

1.2.2 Informative References

[CAECCRYPT] Barbosa, M., Moss, A., and Page, D., "Compiler Assisted Elliptic Curve Cryptography",
http://eprint.iacr.org/2007/053.pdf

[ELLIPTICCURVE-DSA] Farkas, S., "Elliptic Curve DSA", January 2007,
http://blogs.msdn.com/shawnfa/archive/2007/01/18/elliptic-curve-dsa.aspx

11 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[ELLIPTICCURVE] RSA Laboratories, "Overview of Elliptic Curve Cryptosystems", June 1997,
http://www.rsa.com/rsalabs/node.asp?id=2013

[MSDN-WMRMHEADOBJ] Microsoft Corporation, "WMRMHeader Object",
http://msdn.microsoft.com/en-us/library/ms984909.aspx

[NSPCPW] Perlman, R., Speciner, M., and Kaufman, C., "Network Security: Private Communication in
a Public World", New York, 1980, ASIN: B000N7EJQQ.

[SCHNEIER] Schneier, B., "Applied Cryptography, Second Edition", John Wiley and Sons, 1996, ISBN:
0471117099., http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471117099.html

[X9.62] American National Standards Institute, "Public Key Cryptography for the Financial Services
Industry, The Elliptic Curve Digital Signature Algorithm (ECDSA)", ANSI X9.62:2005, 2005,
http://webstore.ansi.org/ansidocstore/product.asp?sku=ANSI+X9%2E62%3A2005

Note There is a charge to download the specification.

1.3 Overview

Digital Rights Management (DRM) version 1, version 7, and version 11 provide a means of
acquiring a license for Windows Media content.

When using Digital Rights Management Version 1, the client generates a license request and sends it

to a license server as an HTTP GET request. The server receives the GET request and returns the
license to the client embedded within an HTML page.

Digital Rights Management Version 7 uses a packet containing a license request in extensible markup
language (XML) format and is sent using an HTTP POST request. The server responds with an XML
packet containing any number and combination of version 1 and version 7 licenses.

Digital Rights Management Version 11 is functionally equivalent to the version 7 protocol, with the
addition of a few XML fields in the license request challenge body.

In all versions of the license protocol, the intent is to document the protocol for acquisition of licenses
in which the license details themselves are not technically relevant to the protocol. License formats
are described in detail for completeness, however.

The following table describes cryptographic and mathematical operators. For more information, see
[NSPCPW].

Operator Description

cryptographic operator "K{text}" Text encrypted with symmetric key K.

cryptographic operator "[text] K" Text signed with private portion of asymmetric key K, Kpriv.

cryptographic operator "{text}K" Text encrypted with public portion of asymmetric key K, Kpub.

mathematical operator "□" A bitwise exclusive OR.

mathematical operator "~" A bitwise negation.

mathematical operator "|" A concatenation.

12 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.3.1 Digital Rights Management Version 1

Digital Rights Management Version 1 provides the means of acquiring a license for Windows Media
content. Its packets include a client request for a license and a server response that contains the

license.

Figure 1: DRM version 1 license request and response

The Digital Rights Management client application generates a license request and sends it to a license
server. The request is a binary string that is partially encrypted using the Rivest Cipher 4 (RC4) (as
specified in [RC4-ENCRYPT]) and then encoded using the Base64 Encoding algorithm, as specified in
section 2.2.1.1.

The response is a single version 1 license, formatted as a binary string, and encoded with the base64
encoding algorithm, as specified in section 2.2.1.1. It is returned to the client embedded within an
HTML page.

A Digital Rights Management Version 1 license is represented as specified in section 2.2.2.3.

The structures that are used by version 1, version 7 and version 11 of the WMDRM: License Protocol
are specified in section 2.2.1.

This protocol uses the following packets.

Packet Description

DRM Version 1 License Request Contains the client's request for a license.

DRM Version 1 License Response Contains the server's response to the client's request for a license.

RC4 is a proprietary encryption algorithm available under license from RSA Security, as specified in
[RSAFAQ].

1.3.2 Digital Rights Management Version 7

Digital Rights Management Version 7 provides the means of acquiring a license for Windows Media
content. Its packets include a client request for a license and a server response that contains the
license.

13 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 2: DRM version 7 license request and response

The Digital Rights Management client generates a license request and sends it to a license server. The
request is in extensible markup language (XML) format, partially RC4-encrypted, and then encoded

using the base64 algorithm, as specified in section 2.2.1.1. It is sent to the server by means of an
HTTP POST request. For more information about RC4, see Remarks at the end of this topic.

The response is an RC4-encrypted XML packet. The first 80 bytes of the license response packet are
an ECC-encrypted RC4 key. The RC4 key is generated by the server using the EncRandNum member
of the CLIENTID structure, section 2.2.3.1.3.4, sent by the client within the license request. The
remainder of the packet (the license data itself) is encrypted with the generated RC4 key. The packet
is then encoded with the base64 algorithm, as specified in section 2.2.1.1. It can contain any number

and combination of version 1 and version 7 licenses. Each version 7 license is itself RC4-encrypted
using the mechanism described in this topic.

A WMDRM: License Protocol version 7 license is represented, as specified in section 2.2.3.2.4.2.

The structures that are used by both version 1 and version 7 of the WMDRM: License Protocol are
specified in section 2.2.1.

This protocol uses the following packets.

Packet Description

DRM Version 7 License Request Contains the client's request for a license.

DRM Version 7 License Response Contains the server's response to the client's request for a license.

DRM Version 7 License Format Contains an XML-formatted license.

RC4 is a proprietary encryption algorithm available under license from RSA Security, as specified in
[RSAFAQ].

1.3.3 Digital Rights Management Version 11

Digital Rights Management Version 11 is almost identical to the version 7 protocol, with the addition of
a few fields in the license request packet.

This protocol uses the following packets.

14 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Packet Description

DRM Version 11 License Request Contains the client's request for a license.

DRM Version 11 License Response Contains the server's response to the client's request for a license.

DRM Version 11 License Format Contains an XML-formatted license.

1.4 Relationship to Other Protocols

Protocol versions 1, 7, and 11 maycan be implemented over Hypertext Transfer Protocol (HTTP),
Hypertext Transfer Protocol over Secure Sockets Layer (HTTPS), or any other appropriate
transport protocol. Selection of a specific transport protocol is at the discretion of the content encoder

(the license acquisition URL is embedded within the content).

1.5 Prerequisites/Preconditions

The following data must beis licensed from Microsoft for the license acquisition server prior to

implementing any of these protocols:

 Private server cryptographic key (KSpriv).

 Server certificate chain (CS).

The following data is unique for every license server and must beis generated by the implementer of
the server side of the protocol:

 Server public/private key pair (KL).

The following data must beis licensed from Microsoft for the client application prior to implementing

the client portion of this protocol:

 Client application certificate (CA) (leaf certificate only).

 Client machine certificate (CM).

The following keys and certificates are used by the client application and referenced in this document:

 Private client cryptographic key (KCpriv).

 Public server cryptographic key (KSpub).

 Public key representing the root certificate authority key used to sign the root certificate in CS
(KIpub). KIpub is given by the following byte sequence:

0x4D, 0xBF, 0xD9, 0x0D, 0xD9, 0x6E, 0x8C, 0x9E,

0x32, 0x5F, 0x4F, 0x3D, 0xEC, 0xA9, 0x84, 0x59,

0x6B, 0x5E, 0x06, 0x86, 0xE7, 0xE2, 0xC2, 0x8B,

0xDE, 0x14, 0x4B, 0x29, 0x2C, 0xEC, 0x4D, 0x1D,

0x76, 0xFD, 0x5A, 0x14, 0x90, 0x3A, 0x10, 0x77

1.6 Applicability Statement

 None.

15 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.7 Versioning and Capability Negotiation

In the WMDRM: License Protocol, there is no facility for version or capability negotiation. The client
must submitsubmits requests to a server that understands the maximum protocol version used by the

client. In practice, content providers embed license acquisition specifics within the content file
headers. This information indicates to the client which license version and license acquisition protocol
will be used.<1>

This protocol can be implemented on top of the following:

 TCP

 HTTP

 HTTPS

1.8 Vendor-Extensible Fields

Within the version 7 and version 11 license response packet, vendors are free to add any well-formed
XML data to the <META> element. The contents of this element are not used by the Digital Rights

Management client application.

This protocol uses Win32 error codes. These values are taken from the Windows error number space
defined in [MS-ERREF] section 2.2. Vendors SHOULD reuse those values with their indicated meaning.
Choosing any other value runs the risk of a collision in the future.

1.9 Standards Assignments

None.

16 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

This protocol references commonly used data types as defined in [MS-DTYP] such as GUID--Curly
Braced String Representation (section 2.3.4.3).

2.1 Transport

The WMDRM: License Protocol uses HTTP (as specified in [RFC2616]) or HTTP over TLS (as specified in
[RFC2818]) as the transport layer.<2> The use of HTTP over TLS is triggered by the specification of
an "https" URL rather than an "http" URL within the WMRMHEADER (section 2.2.3.1.3.12). Messages
and data are sent via URI query strings, HTTP POST headers, and HTTP responses.

Some client applications maycan also use the HTTP cookie mechanism (as specified in [RFC2109]) as

a transport and state management mechanism outside the purview of license acquisition. The HTTP
cookie mechanism allows named data items to be sent from one party to another as part of an HTTP
message, stored by the receiving party, and returned automatically to the original party as part of all
subsequent HTTP messages to that party.

2.2 Message Syntax

2.2.1 Common Data Types and Algorithms

The following structures and algorithms are common to version 1, version 7, and version 11 of the
WMDRM: License Protocol.

Unless otherwise noted, all multi-octet integral values are stored in little-endian format.

Unless otherwise noted, all data structures are packed to 4-octet alignment.

For more information about encryption algorithms within this document, see [CAECCRYPT],
[ELLIPTICCURVE], [ELLIPTICCURVE-DSA], [SCHNEIER] section 19.6, and [X9.62].

This protocol uses the following types specified in [MS-DTYP].

Type Reference

BYTE [MS-DTYP] section 2.2.6

2.2.1.1 Base64 Encoding

The standard base64 encoding algorithm (as specified in [RFC4648]) is used to transmit binary data.
Base64 processes data as 24-bit groups, mapping it to four encoded characters of 6 bits each. It is
sometimes referred to as 3-to-4 encoding. Each 6-bit group in the 24-bit group is used as an index
into a mapping table (see section 2.2.1.1.1) to obtain a character for the encoded data. By

convention, line lengths in the encoded data are limited to 76 characters, but this is not strictly
enforced in this protocol.

Note The characters used in base64 encoding do not include any of the special characters of the
Simple Mail Transfer Protocol (SMTP) (as specified in [RFC2821]), or the hyphen used with
Multipurpose Internet Mail Exchange (MIME) boundary strings, as specified in [RFC2045].

2.2.1.1.1 Base64 Mapping Table

This is the base64 mapping table.

17 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 0 A 17 R 34 i 51 z
 1 B 18 S 35 j 52 0
 2 C 19 T 36 k 53 1
 3 D 20 U 37 l 54 2
 4 E 21 V 38 m 55 3
 5 F 22 W 39 n 56 4
 6 G 23 X 40 o 57 5
 7 H 24 Y 41 p 58 6
 8 I 25 Z 42 q 59 7
 9 J 26 a 43 r 60 8
 10 K 27 b 44 s 61 9
 11 L 28 c 45 t 62 +
 12 M 29 d 46 u 63 /
 13 N 30 e 47 v
 14 O 31 f 48 w
 15 P 32 g 49 x
 16 Q 33 h 50 y

2.2.1.1.2 Example: Base64 Encoding of 3 Bytes

This is an example of base64 encoding of 3 Bytes: "XYZ".

 Input data X Y Z
 Input bits 01011000-01011001-01011010
 Bit groups 010110-000101-100101-011010
 Mapping W F l a

2.2.1.1.3 Base64 and DRM

In the WMDRM: License Protocol, base64 encoding refers to a slightly modified version of the standard
base64 algorithm. Digital Rights Management base64 encoding is identical to standard base64
encoding, with the exception of the last two characters in the following mapping table.

 0 A 17 R 34 i 51 z
 1 B 18 S 35 j 52 0
 2 C 19 T 36 k 53 1
 3 D 20 U 37 l 54 2
 4 E 21 V 38 m 55 3
 5 F 22 W 39 n 56 4
 6 G 23 X 40 o 57 5
 7 H 24 Y 41 p 58 6
 8 I 25 Z 42 q 59 7
 9 J 26 a 43 r 60 8
 10 K 27 b 44 s 61 9
 11 L 28 c 45 t 62 !
 12 M 29 d 46 u 63 *
 13 N 30 e 47 v
 14 O 31 f 48 w
 15 P 32 g 49 x
 16 Q 33 h 50 y

2.2.1.2 Cryptographic Parameters

The following 160-bit elliptic curve cryptography (ECC) curve is used in this document.

ECC1

18 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Parameter Value

p(modulus) 0x89abcdef012345672718281831415926141424f7

a 0x37a5abccd277bce87632ff3d4780c009ebe41497

b 0x0dd8dabf725e2f3228e85f1ad78fdedf9328239e

generator x 0x8723947fd6a3a1e53510c07dba38daf0109fa120

generator y 0x445744911075522d8c3c5856d4ed7acda379936f

curve order 0x89abcdef012345672716b26eec14904428c2a675

Prior to encryption, the plaintext (length 1 – 16 bytes) is prepared with the following sequence of
operations:

1. Copy the plaintext into a buffer, "x", comprising five DWORDs.

2. The fifth DWORD of x is set to zero.

3. If there is a solution for y in the following equation, x|y is now ready for encryption.

 (y^2) mod p = (x^3 + ax + b) mod p

4. If there is no solution to this equation, increment the fifth DWORD of x and repeat the preceding

step.

2.2.1.3 Cryptographic Keys

The client and server use a set of cryptographic keys as follows:

KC: An ECC1 key that represents the client application. The client knows KCpriv and the server knows
KCpub.

KS: A well-known ECC1 key used to protect the privacy of packets sent between client and server. The
client knows KSpub and the server knows KSpriv.

KL: An ECC1 key that represents the license server. The server knows KLpub and KLpriv.

KM: An ECC1 key that represents a specific instance of a machine running the client application. The
key pair is either created by or issued to the DRM system during a one-time initialization process.

The details are implementation-specific.

KMpub is transmitted from the client to server during a license request.

2.2.1.4 PK

The PK structure contains the PUBKEY structure and its version information.

 typedef struct {
 PUBKEY pubkey;
 BYTE version[4];
 } PK;

pubkey: A PUBKEY structure that contains a public key.

19 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

version: A 4-byte buffer that contains version information for the public key. MUST be {0x00, 0x01,
0x00, 0x00}.

2.2.1.5 PKCERT

The PKCERT structure contains a signed PK structure.

 typedef struct {
 PK pk;
 BYTE sign[40];
 } PKCERT;

pk: A PK structure that contains a public key and its version information.

sign: A 40-byte buffer that contains the signature of the pk member. This signature is created using
ECDSA over curve ECC1. For more information about ECDSA, see [ELLIPTICCURVE-DSA].

[pk]K

where K is an ECC1 key.

2.2.1.6 PUBKEY

The PUBKEY structure contains a public key.

 typedef struct {
 BYTE y[40];
 } PUBKEY;

y: A 40-byte buffer that contains a public key. This is the public portion of a public/private key pair in
ECC1. The x-coordinate is stored in bytes 0 - 19; the y-coordinate in bytes 20 - 39. The two

coordinates are base 0x100000000 integers stored in little-endian order.

2.2.1.7 LicenseToSend

The LicenseToSend structure is a container for an arbitrary number of variable-length licenses. It is
passed to the Digital Rights Management License Protocol by the higher layer. This structure is used in

the TransmitLicensesToClient abstract interface (section 3.2.1.1).

 typedef struct _LicenseToSend {
 int LicenseVersion;
 int LicenseLength;
 byte License[];
 } LicenseToSend;

LicenseVersion: The version of the license included in this structure.

Value Meaning

1 License is constructed for DRM version 1.

7 License is constructed for DRM version 7.

LicenseLength: The length, in bytes, of the license included in this structure.

20 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

License: A byte array containing the license constructed by the higher layer. This field is
LicenseLength bytes in length. The format of the license is implementation-dependent.

2.2.2 DRM Version 1 Data Types

The following structures and algorithm are specific to version 1 of the WMDRM: License Protocol.

2.2.2.1 DRM Version 1 License Request

The DRM Version 1 License Request packet is used by the client to request a license for content. This
packet is transmitted to the server via a URI parameter "challenge" as a Digital Rights Management
(DRM) base64-encoded value. The URI parameter DRMVer is also sent to the server with this license
request and MUST appear after the "challenge" URI parameter. For a version 1 client, the value of
DRMVer MUST be 1.3. For a client that supports version 7 and higher, this value MUST be 1.4. This
value is ignored by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

EncRandNum (80 bytes)

...

...

pkcert (84 bytes)

...

...

KeyID (25 bytes)

...

...

... Rights

... AppSec

...

Version (4 bytes): The request version. MUST be {0x00, 0x01, 0x00, 0x01}.

EncRandNum (80 bytes): A one-time used, previously 20-byte random number that is encrypted
using ECC1 with the public server cryptographic key (KS). Before encryption, this buffer contains
the following byte values:

 bytes 0 – 6: Used as the initialization vector (IV) to create an RC4 key (KR)

21 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 bytes 7 – 19: Not used

pkcert (84 bytes): An RC4-encrypted PKCERT that contains a signed copy of KMpub.

KeyID (25 bytes): An RC4-encrypted content key identifier. The content key ID is generated by the
server and stored in the header of a protected content stream. Only the first 25 bytes of this field

are used. The KeyID can come from any source available to the client, but is typically extracted
from a content header.

Rights (4 bytes): An RC4-encrypted request for playback rights, which can be any combination of
the values in the following table. The values used in the challenge are typically provided by the
DRM-enabled application, but could be any combination implemented by the client.

Byte Array Meaning

RIGHT_PLAY_ON_PC

0x01000000

The right to play back content. This is also known as
RIGHT_PLAY_ON_PC.

RIGHT_COPY_TO_NONSDMI_DEVICE

0x02000000

The right to copy licensed content to a device that is not
compliant with the Secure Digital Music Initiative (SDMI).
This is also known as RIGHT_COPY_TO_NONSDMI_DEVICE.

RIGHT_BURN_TO_CD

0x08000000

The right to copy licensed content to a CD. This is also known as
RIGHT_BURN_TO_CD.

RIGHT_COPY_TO_SDMI_DEVICE

0x10000000

The right to copy licensed content to an SDMI device. This is also
known as RIGHT_COPY_TO_SDMI_DEVICE.

AppSec (4 bytes): An RC4-encrypted security level of the application that makes the request. The

security level MUST be equal to the security level in the client application certificate (CA).

Cryptographic sequence:

1. pkcert.pk = KMpub

2. pkcert.sign = [pkcert.pk]KC

3. {EncRandNum}KS

4. KR {pkcert}

5. KR {KeyID}

6. KR {Rights}

7. KR {AppSec}

2.2.2.2 DRM Version 1 License Response

The license response is returned to the client as an HTML page containing a base64-encoded

CERTIFIED_LICENSE structure. The response is formatted as follows. Both the text enclosed in
braces ("{{" and "}}") and the braces MUST be replaced or removed as appropriate.<3>

 <HTML><HEAD><TITLE>{{optional page title}}</TITLE>
 <Script Language="VBScript">Sub Window_OnLoad()
 DrmStore.StoreLicense("{{base64-encoded CERTIFIED_LICENSE}}")
 End Sub</Script></HEAD>
 <BODY>{{optional descriptive text}}
 <OBJECT classid=CLSID:760C4B83-E211-11D2-BF3E-00805FBE84A6 id=DrmStore>
 <EMBED MAYSCRIPT TYPE="application/x-drm" HIDDEN="true"
 LICENSE="{{base64-encoded CERTIFIED_LICENSE}}"></OBJECT>

22 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 {{optional descriptive text}}</BODY></HTML>

2.2.2.3 DRM Version 1 License Format

A Digital Rights Management (DRM) version 1 license response is a base64-encoded
CERTIFIED_LICENSE structure.

The CERTIFIED_LICENSE structure consists of two certificates and a license. The first certificate
represents the Microsoft signing certificate. The second certificate represents the signing certificate of
the server issuing the content license.

The Digital Rights Management version 1 license format contains the following top-level structures.

Structure Description

CERT Defines the certificate component of a DRM version 1 certified license.

CERTDATA Defines the data block of a certificate, including the public key, serial number, and
certificate issuer.

CERTIFIED_LICENSE Defines a version 1 certified license before it is encoded with base64 encoding.

LICENSE Defines the license portion of a version 1 certified license.

LICENSEDATA Defines the data portion of a version 1 license, including the rights and security
settings.

2.2.2.3.1 CERT

The CERT structure defines the certificate component of a Digital Rights Management (DRM) version 1
certified license. A CERT structure is obtained by a DRM version 1 license server through an

enrollment process that issues valid license server CERT structures. This certificate is not processed on
the server, but only included in the license response.

 typedef struct {
 BYTE certVersion[4];
 BYTE dataLen[4];
 BYTE sign[40];
 CERTDATA cd;
 } CERT;

certVersion: A 4-byte buffer that contains the certificate version. Valid values for certificate version
are {0x00, 0x01, 0x00, 0x00}.

dataLen: A 4-byte buffer that contains the size of the cd field, in bytes, as a sequence of four
hexadecimal values (this is a DWORD stored in little-endian order). For example, if cd is 300 bytes

(0x12c bytes), this field contains {0x2C, 0x01, 0x00, 0x00}.

sign: A 40-byte buffer that contains the signature of the cd member. This signature is created using

ECDSA over curve ECC1. The key used to sign this data is the private key of the certificate
authority that issued this certificate.

[cd]K

cd: A CERTDATA structure that contains the certificate data, including its public key, issuer, and
expiration date.

23 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.3.2 CERTDATA

The CERTDATA structure defines the data block of a certificate, including the public key, serial
number, and certificate issuer.

 typedef struct {
 BYTE pk[40];
 BYTE expiryDate[4];
 DWORD serialNumber;
 DWORD issuer;
 DWORD subject;
 } CERTDATA;

pk: A 40-byte buffer that contains a public key. This is the public portion of a public/private key pair
in ECC1. The x-coordinate is stored in bytes 0 – 19; the y-coordinate in bytes 20 – 39.

expiryDate: A 4-byte buffer that contains the date on which the certificate expires. All values are
encoded as hexadecimal. The first byte contains the value of the first two digits of the year, the

second contains the value of the latter two digits of the year, the third contains the value of the
month, and the fourth contains the value of the day. For example, the date 12/30/2002 is
represented as {0x14, 0x02, 0x0C, 0x1E}.

serialNumber: A serial number that identifies the certificate.

issuer: A certificate server identifier that is provided by Microsoft.

subject: A number that identifies the subject of the certificate. The subject is provided by Microsoft.

2.2.2.3.3 CERTIFIED_LICENSE

The CERTIFIED_LICENSE structure defines a version 1 certified license.

 typedef struct {
 LICENSE license;
 CERT cert1;
 CERT cert2;
 } CERTIFIED_LICENSE;

license: A LICENSE structure that contains the license component of a version 1 certified license.

cert1: A CERT structure that contains the Microsoft-signed certificate representing the license server.
This certificate is supplied in CS.

cert2: A CERT structure that contains the root certificate representing the Microsoft certificate
authority. This certificate is supplied in CS.

2.2.2.3.4 LICENSE

The LICENSE structure defines the license portion of a version 1 certified license.

 typedef struct {
 BYTE licVersion[4];
 BYTE dataLen[4];
 BYTE sign[40];
 LICENSEDATA ld;
 } LICENSE;

24 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

licVersion: A 4-byte buffer that contains the license version. This value MUST contain {0x00, 0x01,
0x00, 0x00}.

dataLen: A 4-byte buffer that contains the size of the ld field, in bytes, as a sequence of four
hexadecimal values (this is a DWORD that is stored in little-endian order). For example, if ld is

300 bytes (0x12c bytes), this field contains {0x2C, 0x01, 0x00, 0x00}.

sign: A 40-byte buffer that contains the signature of the ld member. This signature is created by
using ECDSA over curve ECC1. The key that is used to sign this data is the private key of cert1 in
the enclosing CERTIFIED_LICENSE structure (KL).

ld: A LICENSEDATA structure that contains the license data, including the digital rights and security
data.

Cryptographic Sequence:

sign = [ld]KL

2.2.2.3.5 LICENSEDATA

The LICENSEDATA structure defines the data portion of a version 1 license, including the rights and
security settings.

 typedef struct {
 char KID[25];
 BYTE key[80];
 BYTE rights[4];
 DWORD appSec;
 BYTE expiryDate[4];
 } LICENSEDATA;

KID: A 25-character array that contains the content key ID. The KID MUST be a value that uniquely
identifies content for which the license is issued. Use of a base64-encoded GUID is recommended.
This value is usually a copy of the KID value sent in the license challenge, but that is not

technically required.

key: An 80-byte buffer that contains the encrypted RC4 content key (Kcontent) and a copy of its bitwise
negation (Pcontent = ~Kcontent). This field is encrypted using ECC1 with KM. Prior to encryption and
after decryption, bytes 0 through 6 of the plaintext represent Kcontent and bytes 7 through 13 of the
plaintext represent Pcontent. These values maycan be compared to ensure that they were stored and
transmitted properly by calculating

~(Kcontent ⊕ Pcontent)

If this value is not 0, Kcontent and/or Pcontent are suspect and should notcannot be used.

The key is secret and known only to the service. How keys are stored and referenced is service
implementation-dependent and not relevant to the protocol.

rights: A 4-byte buffer that contains the client rights for the licensed content. These values are

logically combined in byte order. The value used for rights is entirely dependent on the service-
business-logic implementation.

Byte Array Meaning

{0x01,0x00,0x00,0x00}

0x01000000

The client is authorized to play back the content. This is known as
RIGHT_PLAY_ON_PC.

{0x02,0x00,0x00,0x00} The client is authorized to copy the licensed content to a device that is not
compliant with the Secure Digital Music Initiative (SDMI). This is known as

25 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Byte Array Meaning

0x02000000 RIGHT_COPY_TO_NONSDMI_DEVICE.

{0x04,0x00,0x00,0x00}

0x04000000

The client is not authorized to restore the license content. This is known as
RIGHT_NO_RESTORE.

{0x08,0x00,0x00,0x00}

0x08000000

The client is authorized to burn the licensed content to a CD. This is known
as RIGHT_BURN_TO_CD.

{0x10,0x00,0x00,0x00}

0x10000000

The client is authorized to copy the licensed content to an SDMI device. This
is known as RIGHT_COPY_TO_SDMI_DEVICE.

{0x20,0x00,0x00,0x00}

0x20000000

The client can perform any of the authorized actions one time. This is known
as RIGHT_ONE_TIME.

{0x00,0x00,0x01,0x00}

0x00000100

The client is authorized to handle SDMI-generated events. This is known as
RIGHT_SDMI_TRIGGER.

{0x00,0x00,0x02,0x00}

0x00000200

The client is not authorized to make any further SDMI copies of the licensed
content. This is known as RIGHT_SDMI_NOMORECOPIES.

appSec: The minimum application security level required to play content associated with this license.
The application security level is embedded within CA. Valid values range from 0 to 2000. The value
used for appSec is entirely dependent on the service-business-logic implementation.

expiryDate: A 4-byte buffer that contains the date on which the license expires. All values are
encoded as hexadecimal. The first byte contains the value of the first two digits of the year, the
second contains the value of the last two digits of the year, the third contains the value of the
month, and the fourth contains the value of the day. For example, the date 12/30/2002 is
represented as {0x14, 0x02, 0x0C, 0x1E}. A value of { 0xFF, 0xFF, 0xFF, 0xFF } indicates that
there is no expiration date for the license. The value used for expiryDate is entirely dependent on
the service-business-logic implementation.

Cryptographic Sequence:

key = { Kcontent | Pcontent }KM

When content is encrypted, the packager generates a content key identifier (KID) and a content key
as a pair. The key is used to encrypt the content, and the KID is placed in the content header of a
license request.

The Digital Rights Management (DRM) component on the client computer can use this key to decrypt

the content.

2.2.3 DRM Version 7 Data Types

The following structures and algorithm are specific to version 7 of the WMDRM: License Protocol.

2.2.3.1 DRM Version 7 License Request

The DRM Version 7 License Request packet is used by the client to request a license for Windows
Media content.

2.2.3.1.1 Silent and Nonsilent Requests

The DRM version 7 client can generate either a silent or a nonsilent license request. By contrast,
version 1 clients always generate a nonsilent license request.

26 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Silent license acquisition means that the client application SHOULD NOT display a license acquisition
user interface, which requires active user input, to the end user. A client application MAY display some

form of progress indicator.

Conversely, nonsilent license acquisition means that the client application MAY display a license

acquisition user interface, which requires active user input, to the end user.

2.2.3.1.1.1 Silent Requests

Silent acquisition is transparent to the user. The client prefixes the string "nonsilent=0&challenge=",
or alternatively, just "challenge=", to the head of the encoded data before obtaining the final POST
data. Digital Rights Management sends the request directly and receives the response directly. The
license is delivered and stored without any other action being required.

2.2.3.1.1.2 Nonsilent Requests

Nonsilent acquisition means that the request came from within a user-visible web browser, as opposed
to some other means that would be invisible to the user. This decision is made by the higher layer

based on implementation-specific application logic.

This decision can be made due to a variety of reasons not relevant to the protocol itself. For example,

a webpage is displayed in a browser application that requires the user to enter information. In this
case, the POST data is handed back to the higher layer, which prefixes the string
"nonsilent=1&challenge=" to the head of the encoded packet and then makes the HTTP POST request.
The server displays custom HTML responses because the request data indicates that the request is
coming from a user-visible browser.

2.2.3.1.2 HTTP POST Headers

nonsilent: Optional specification for silent versus nonsilent license acquisition. If not present, silent
license is assumed. Allowable values are "0" to indicate silent license acquisition and "1" to indicate
nonsilent license acquisition.

challenge: Required value containing the version 7 license request body.

2.2.3.1.3 XML Schema for Version 7 License Request

The following is an XML schema for the version 7 license request packet. Where required, elements,

attributes, and values are described in greater detail after the schema.

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="LICENSEREQUEST">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="V1CHALLENGE">
 <xs:simpleType>
 <xs:restriction base="xs:base64Binary" />
 </xs:simpleType>
 </xs:element>
 <xs:element name="ACTIONLIST" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ACTION" type="ActionNameType"
 minOccurs="1" maxOccurs="5" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="CLIENTINFO" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CLIENTID" type="xs:base64Binary" />

27 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <xs:element name="CLIENTVERSION" type="xs:string" />
 <xs:element name="SECURITYVERSION" type="xs:string" />
 <xs:element name="APPSECURITY" type="xs:string" />
 <xs:element name="SUBJECTID1" type="xs:integer" />
 <xs:element name="SUBJECTID2" type="xs:integer" />
 <!-- SUBJECTID2 tag must be present; content is optional. -->
 <xs:element name="DRMKVERSION" type="xs:string"
 minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="REVOCATIONINFO" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:base64Binary"/>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="WRMHEADER" minOccurs="0" >
 <xs:complexType>
 <xs:sequence>
 <!-- content varies, depending on media file header
 information. -->
 <xs:any />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="version" use="required" fixed="2.0.0.0" />
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="ActionNameType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Play" />
 <xs:enumeration value="Print.redbook" />
 <xs:enumeration value="CREATE_PM_LICENSE" />
 <xs:enumeration value="Backup" />
 <xs:enumeration value="Restore" />
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>

2.2.3.1.3.1 ACTION

The ACTION element contains the action rights that the client is requesting based on parameters the
client application has provided to the DRM implementation. The meaning of the element contents is
described in the following table. The <ACTION> element is filled with appropriate data based on the
action the client application will perform with the content for which the license is being requested.

Predefined string Meaning

Play Play content on the client computer.

Print.redbook Burn content to a CD.

CREATE_PM_LICENSE Transfer content to a portable device.

Backup Permit backup of the license.

Restore Allow the license to be restored from another location.

2.2.3.1.3.2 APPSECURITY

28 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The APPSECURITY element contains the security level of the application making the license request.
This value is not limited to a specific range and can be used by the service provider to limit license

distribution.

2.2.3.1.3.3 CLIENTID (Element)

The CLIENTID element contains base64-encoded CLIENTID structure.

2.2.3.1.3.4 CLIENTID (Structure)

The CLIENTID structure contains the Digital Rights Management version and security certificate of
the client computer. A conforming DRM client implementation has a valid CLIENTID obtained through
one of multiple means not relevant to license acquisition. The existence of a CLIENTID within the

DRM client is a requirement of a valid client. No processing is done with this element, as it is only
included in the payload of the protocol.

 typedef struct {
 BYTE Version[4];
 BYTE EncRandNum[80];
 PKCERT pkcert;
 } CLIENTID;

Version: The Digital Rights Management version. MUST be {0x02, 0x00, 0x00, 0x00}.

EncRandNum: One-time use random number encrypted using ECC1 with KS. The first 7 bytes
(unencrypted) of EncRandNum are used as the initialization vector (IV) to create an RC4 key (KR).

pkcert: A PKCERT structure that contains the machine certificate.

Cryptographic Sequence:

1. pkcert.pk = KMpub

2. pkcert.sign = [pkcert.pk]KC

3. {EncRandNum}KS

4. KR {pkcert}

2.2.3.1.3.5 CLIENTVERSION

The CLIENTVERSION element contains the version of the Digital Rights Management client making the
request. Generally, this will be of the form "2.a.0.b", where "a" is the minor version and "b" is the
client build number.

2.2.3.1.3.6 DRMKVERSION

The DRMKVERSION element contains the version of the kernel mode Digital Rights Management file
(Drmk.sys) on the client computer. Generally, this takes the form "a.b.c.d" where a, b, c, and d are

whole numbers.

2.2.3.1.3.7 REVOCATIONINFO

The <REVOCATIONINFO> element contains the base64-encoded REV_INFO known to the client
application. The REV_INFO is stored by the client in a local data store and retrieved from the store and
parsed to extract the value used for <REVOCATIONINFO>.

2.2.3.1.3.8 SECURITYVERSION

29 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The SECURITYVERSION element contains the security version of the Digital Rights Management root
of trust on the client computer.

Each license server has a list of client verification keys that enable it to ensure the validity of license
requests. Each verification key string is a base64-encoded PUBKEY structure. The list of possible

security versions and verification keys is a separate licensable piece of data.

2.2.3.1.3.9 SUBJECTID1

 The SUBJECTID1 element contains the certificate subject identifier of the component that is
communicating directly with the Digital Rights Management client component. The subject identifier is
taken from the certificates that are used to establish secure channels between components. It
uniquely identifies a component. For example, the version of an application or an SDK can be a

subject identifier.

2.2.3.1.3.10 SUBJECTID2

 The SUBJECTID2 element contains the certificate subject identifier of the component that is

communicating with another component, which is in turn communicating with the Digital Rights
Management client component. This element is used only if SUBJECTID1 is the subject identifier of an

SDK. The subject identifier is taken from the certificates that are used to establish secure channels
between components. It uniquely identifies a component. For example, the version of an application or
an SDK can be a subject identifier.

The SUBJECTID2 element MUST be present, even if empty.

2.2.3.1.3.11 V1CHALLENGE

The <V1CHALLENGE> element is a base64-encoded Digital Rights Management version 1 license

request with a KeyID field consisting of all zeros.

2.2.3.1.3.12 WMRMHEADER

The WMRMHEADER element contains data that is taken verbatim from the header of the content. The
content is dictated by the Windows Media Rights Manager (WMRM).

For more information about the WMRMHEADER and how it is generated, see [MSDN-WMRMHEADOBJ].

2.2.3.2 DRM Version 7 License Response

The DRM Version 7 License Response packet is used by the license server to send a license for
Windows Media content to a client. The format of the response, which is in XML, can include any
number and combination of WMDRM: License Protocol version 1 and version 7 licenses, encoded with
the base64 encoding algorithm.

2.2.3.2.1 Silent Acquisition

The license response is returned directly to the client as the body of the HTTP response.

2.2.3.2.2 Nonsilent Acquisition

The license response is returned to the client as an HTML page that uses a COM object to store a
base64-encoded LICENSERESPONSE XML blob in the local license store of the client. The

LICENSERESPONSE XML is embedded in a script section of the Web page.

2.2.3.2.3 Errors

30 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the license request is refused after a silent request, the server returns any HTTP error status code
that is returned to the higher layer. The higher layer may then attemptattempts nonsilent acquisition.

If the license request is refused after a nonsilent request, the license server responds with a user-
visible HTML page. It is suggested to display an explanation of what the error condition was and why it

was encountered.

There is no comprehensive set of errors. Protocol implementations shouldwill want to coordinate
custom client and custom server implementations to handle their own custom error codes.

2.2.3.2.4 XML Schema for Version 7 License Response

The following is an XML schema for the version 7 license response packet per [XML],
[XMLSCHEMA1/2], and [XMLSCHEMA2/2]. Where required, elements, attributes, and values are

described in greater detail after the schema. This is not a strictly correct XML schema because the
LICENSE element maycan be either a version 1 license or a version 7 license. The version attribute of
the LICENSE element differentiates the two. The license server MAY mark nodes with either license
version, or a combination of versions in different nodes. This allows the server to return licenses

usable to multiple WMDRM protocol implementations simultaneously. This decision is entirely server-
dependent on factors unrelated to the protocol.

If the version attribute indicates a version 7 license, then the first 80 bytes (called EncRandNum) of
the base64-decoded version 7 license are used to decrypt the remainder of the base64-decoded bytes
in the following manner.

Before encryption, EncRandNum contains the following byte values:

 byte 0: MUST be the value 0x07.

 byte 1: MUST be the value 0x01.

 bytes 2 – 8: Used as the initialization vector (IV) to create an RC4 key (KR).

 bytes 9 – 19: Not used.

Cryptographic sequence:

1. {EncRandNum}KM

2. KR {version 7 license}

The encrypted EncRandNum and version 7 license are concatenated and then base64-encoded.

 <?xml version="1.0" encoding="utf-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="LICENSERESPONSE">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="REVOCATION" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <!-- base64-encoded -->
 <xs:attribute name="type" use="required"
 type="RevocationType" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="LICENSE" minOccurs="1"
 maxOccurs="unbounded">
 <xs:complexType>

31 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <xs:simpleContent>
 <xs:extension base="xs:string">
 <!-- base64-encoded -->
 <xs:attribute name="version" use="required"
 type="LicenseVersion" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="RevocationType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="WMDRMNET" />
 <xs:enumeration value="DeviceRevocationList" />
 <xs:enumeration value="RevocationList" />
 <xs:enumeration
 value="{66DD5134-4E34-40ae-9D5D-13A112B7591F}" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="LicenseVersion">
 <xs:restriction base="xs:string">
 <xs:enumeration value="0.1.0.0" />
 <xs:enumeration value="2.0.0.0" />
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>

2.2.3.2.4.1 DRM Version 1 License Format Within a Version 7 License Response

If the version attribute of the LICENSE element is equal to "0.1.0.0", the LICENSE element contains
a base64-encoded version 1 CERTIFIED_LICENSE.

2.2.3.2.4.2 DRM Version 7 License Format

If the version attribute of the LICENSE element is equal to "2.0.0.0", the LICENSE element is a
version 7 license as described in the following.

A WMDRM: License Protocol version 7 license is represented in XML format. The schema for a version
7 license is as follows. This schema does not include the child elements of the META element because
they are specified by the content provider and are outside the scope of this document.

 <?xml version="1.0" encoding="utf-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="LICENSE">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="LICENSORINFO">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="DATA">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="LID" type="xs:string" />
 <xs:element name="KID" type="xs:string" />
 <xs:element name="ISSUEDATE" type="xs:string" />
 <xs:element name="PRIORITY" type="xs:integer" />
 <xs:element name="CONTENTPUBKEY" type="xs:string" />
 <xs:element name="RevocationList" type="xs:string" /> <!-- base64-encoded
-->

 <xs:element name="META" minOccurs="0">
 <xs:complexType>
 <xs:sequence>

32 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <xs:any />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="ONSTORE">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CONDITION" type="xs:string"
 minOccurs="0" />
 <xs:element name="ACTION" type="xs:string"
 minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ONSELECT">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CONDITION" type="xs:string" />
 <xs:element name="ACTION" type="xs:string"
 minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ONCLOCKROLLBACK" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ACTION" type="xs:string"
 minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ONACTION" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="RESTRICTIONS" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="6">
 <xs:element name="ANALOGVIDEO" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:attribute name="level" type="xs:integer" />
 </xs:complexType>
 </xs:element>
 <xs:element name="COMPRESSEDDIGITALAUDIO" minOccurs="0"
maxOccurs="1">

 <xs:complexType>
 <xs:attribute name="level" type="xs:integer" />
 </xs:complexType>
 </xs:element>
 <xs:element name="COMPRESSEDDIGITALVIDEO" minOccurs="0"
maxOccurs="1">

 <xs:complexType>
 <xs:attribute name="level" type="xs:integer" />
 </xs:complexType>
 </xs:element>
 <xs:element name="COPY" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:attribute name="level" type="xs:integer" />
 </xs:complexType>
 </xs:element>
 <xs:element name="UNCOMPRESSEDDIGITALAUDIO" minOccurs="0"
maxOccurs="1">

 <xs:complexType>
 <xs:attribute name="level" type="xs:integer" />
 </xs:complexType>
 </xs:element>
 <xs:element name="UNCOMPRESSEDDIGITALVIDEO" minOccurs="0"
maxOccurs="1">

 <xs:complexType>
 <xs:attribute name="level" type="xs:integer" />

33 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element name="CONDITION" type="xs:string" />
 <xs:element name="ACTION" type="xs:string"
 minOccurs="0" />
 </xs:sequence>
 <xs:attribute name="type" type="ActionNameType" />
 </xs:complexType>
 </xs:element>
 </xs:choice>
 <xs:element name="ENABLINGBITS">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ALGORITHM" minOccurs="0">
 <xs:complexType>
 <xs:sequence />
 <xs:attribute name="type" use="required"
 fixed="MSDRM" />
 </xs:complexType>
 </xs:element>
 <xs:element name="PUBKEY">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string"> <!-- base64-encoded -->
 <xs:attribute name="type" use="required"
 fixed="machine" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="VALUE" type="xs:string" /> <!-- base64-encoded --
>

 <xs:element name="SIGNATURE"
 type="xs: string" /> <!-- base64-encoded -->
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="CONTENTREVOCATION" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="DATA">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="SEQUENCENUMBER"
 type="xs:integer" />
 <xs:element name="CONTENTPUBKEY"
 type="xs:string" /> <!-- base64-encoded -->
 <xs:element name="LICENSESERVERPUBKEY"
 type="xs:string" /> <!-- base64-encoded -->
 <xs:element name="CONDITION"
 type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="SIGNATURE">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="HASHALGORITHM">
 <xs:complexType>
 <xs:sequence />
 <xs:attribute name="type" fixed="SHA"
 use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="SIGNALGORITHM" minOccurs="0">
 <xs:complexType>

34 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <xs:sequence />
 <xs:attribute name="type" fixed="MSDRM" />
 </xs:complexType>
 </xs:element>
 <xs:element name="VALUE" type="xs:string" /> <!-- base64-
encoded -->

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="REVOCATION" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="INDEX" type="xs:integer" />
 </xs:sequence>
 <xs:attribute name="type" type="RevocationType" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="SIGNATURE">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="HASHALGORITHM">
 <xs:complexType>
 <xs:sequence />
 <xs:attribute name="type" fixed="SHA"
 use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="SIGNALGORITHM" minOccurs="0">
 <xs:complexType>
 <xs:sequence />
 <xs:attribute name="type" fixed="MSDRM" />
 </xs:complexType>
 </xs:element>
 <xs:element name="VALUE" type="xs:string" /> <!-- base64-encoded -->
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="CERTIFICATECHAIN">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CERTIFICATE" type="xs:string"
 minOccurs="2" maxOccurs="unbounded" /> <!-- base64-encoded -->
 </xs:sequence>
 <xs:attribute name="type" fixed="MSDRM" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="version" use="required" fixed="2.0.0.0" />
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="ActionNameType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="CollaborativePlay" />
 <xs:enumeration value="Copy" />
 <xs:enumeration value="Play" />
 <xs:enumeration value="PlaylistBurn" />
 <xs:enumeration value="Print.redbook" />
 <xs:enumeration value="CREATE_PM_LICENSE" />
 <xs:enumeration value="Backup" />
 <xs:enumeration value="Restore" />
 </xs:restriction>

35 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 </xs:simpleType>
 <xs:simpleType name="RevocationType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="wmdrmnet" />
 <xs:enumeration value="device" />
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>

For a sample version 7 license, see DRM Version 7 License Example.

2.2.3.2.5 ACTION

The ACTION element contains a single expression that defines the action to take after an event is
raised.

The return value of the expression is ignored and maycan be of any type.

The action to take is contained in a CDATA block, as in the following example.

 <ACTION>
 <![CDATA[
 deletelicense()
 <]]>
 </ACTION>

2.2.3.2.6 ANALOGVIDEO

If the action is being taken on an analog video stream, the application MUST query the client DRM
system for this value and perform additional security checks at content consumption time that

conform to the WMDRM compliance rules.

2.2.3.2.7 CERTIFICATE

 The CERTIFICATE element contains a base64-encoded version 1 CERT structure. During response
parsing, the client will validate the format and signature using the definition of the CERT structure.

2.2.3.2.8 CERTIFICATECHAIN

The CERTIFICATECHAIN element specifies the certificate chain, which contains the credentials needed
to issue licenses. This element is used to inform the Digital Rights Management client that the license
server is authorized to issue licenses.

The first CERTIFICATE child element is the certificate issued by the root authority (CR). The second
CERTIFICATE child element is the license server certificate (CS). Subsequent CERTIFICATE child
elements comprise a certificate chain downward from CS. All valid version 7 and greater license
servers MUST have at least two certificates that are maintained and retrieved by the service protocol

implementation. These certificates are not processed on the server, but are included for reference by

the client to allow for signature validation of the license through a trusted certificate chain. The client
will process each CERTIFICATE element and the CERTIFICATECHAIN element in a license response.

2.2.3.2.9 COMPRESSEDDIGITALAUDIO

If the action is being taken on a compressed digital audio stream, the application MUST query the
client DRM system for value specified in the level attribute, and perform additional security checks at

content consumption time that conform to the WMDRM compliance rules.

36 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.3.2.10 COMPRESSEDDIGITALVIDEO

If the action is being taken on a compressed digital video stream, the application security level must
meet or exceed the value specified in the level attribute and perform additional security checks at

content consumption time that conform to the WMDRM compliance rules.

2.2.3.2.11 CONDITION When Used Under the ONACTION, ONSELECT, and ONSTORE

Elements

The <CONDITION> element is used under the <ONACTION>, <ONSELECT>, and <ONSTORE>
elements. The <CONDITION> element is an expression that is evaluated to determine if an event is

allowed. This evaluation is done before the event is performed.

A condition is an expression. The return value of the expression must be an integer (LONG).

A condition that evaluates to 0 is FALSE; one that evaluates to nonzero is TRUE. If the condition is
TRUE, the event is allowed; otherwise, it is not.

The condition is contained in a CDATA block, as in the following example:

 <CONDITION>
 <![CDATA[
 secstate.playcount > 0
]]>
 </CONDITION>

2.2.3.2.12 CONDITION When Used Under the CONTENTREVOCATION/DATA

Element

The <CONDITION> element is used within the <DATA> element when the <DATA> element is

contained directly by a CONTENTREVOCATION element. The <CONDITION> element contains an
expression that describes the condition under which the content owner selects licenses to be revoked.
The default <CONDITION> element that the server generates specifies that a particular license

shouldcan be deleted and that no other events shouldcan be allowed. No other conditions are
generated. This element MUST be included in a license if the custom server business logic is issuing a
license that performs content revocation.

The default <CONDITION> element is as follows:

 <CONDITION>
 <![CDATA[deletelicense();0]]>
 </CONDITION>

2.2.3.2.13 CONTENTPUBKEY

The CONTENTPUBKEY element contains the base64-encoded public key of the content packager (KL).
During content consumption, outside of the license acquisition protocol, this element is used to verify
the signature in the content header to detect tampering. These actions include performing an ECC

verification operation over the content header.

2.2.3.2.14 CONTENTREVOCATION

The CONTENTREVOCATION element enables a content owner to disable licenses issued by that owner.

During response parsing, a client that receives a license with a CONTENTREVOCATION element must
update an external data store of content revocation entries.

37 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

These entries are indexed with the CONTENTREVOCATION/CONTENTPUBKEY element value and are
replaceable by responses with the same CONTENTPUBKEY but greater values of SERIALNUMBER.

After processing the CONTENTREVOCATION element from the license after acquisition, the element is
no longer referenced.

2.2.3.2.15 COPY

If the action is being taken is a copy action, the application must query the client DRM system for the
value specified in the level attribute and perform additional security checks at content consumption
time that conform to the WMDRM compliance rules. Inclusion of this element is optional and entirely
third-party server implementation-dependent.

2.2.3.2.16 ENABLINGBITS

The ENABLINGBITS element contains the encrypted key and information needed to unlock the
content.

Cryptographic sequence:

1. <ENABLINGBITS> value = base64-encoded {length | key}KM

Where length is a single BYTE representing the length of key in BYTES.

2.2.3.2.17 Events in DRM Licenses

An event is an element of a license. The ONSTORE, ONSELECT, and ONACTION events can have a
<CONDITION> expression to be evaluated. All events can have an optional <ACTION> expression. A
condition that evaluates to 0 is false; one that evaluates to nonzero is true. If the condition is true, the
event is allowed and the action is taken.

A license can specify any of the following events.

Event Description

ONSTORE Raised when the license is stored.

ONSELECT Raised when the license is selected.

ONCLOCKROLLBACK Raised when the client detects a clock rollback.

ONACTION Raised when the application queries or consumes a requested right.

2.2.3.2.18 Expressions in DRM Licenses

An expression in a Digital Rights Management (DRM) license is a combination of operators and
identifiers that specifies a computation of a value or that designates a variable or a constant.

The <CONDITION> element (when used under the <ONACTION>, <ONSELECT>, and <ONSTORE>
elements) and the ACTION element of a license are expressions. An expression can consist of the

following items: Identifier (section 2.2.3.2.18.1), Function Symbol (section 2.2.3.2.18.2),
Constant (section 2.2.3.2.18.3), Variable (section 2.2.3.2.18.4), and Final

Value (section 2.2.3.2.18.5).

If more than one statement is used within an expression, each statement must be terminated with a
semicolon (;). The evaluation of the last statement in a semicolon-delimited list is treated as the result
for the evaluation of that list of expressions. For example, in the expression "1+2;4", the first
statement evaluates to the value of three and the second statement evaluates to the value of four.
The entire expression then evaluates to the value of four.

38 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.3.2.18.1 Identifier

An identifier is a sequence of characters that starts with an alphanumeric character and consists
entirely of any number and combination of alphabetical characters, digits, underscores ("_"), and the

dot (".") symbol. The characters are case-sensitive.

2.2.3.2.18.2 Function Symbol

An identifier is a function symbol if it is included in the list of predefined functions in DRM expressions.

2.2.3.2.18.3 Constant

A constant is an identifier of the DATETIME, LONG, or STRING data type, as specified in section

2.2.3.2.20.

2.2.3.2.18.4 Variable

An identifier is a variable if it is not a function symbol or a constant. Variables can be valid or invalid.

A valid variable starts with one of the predefined prefix categories, which are specified in section
2.2.3.2.32. It is followed by a dot symbol and an attribute (for example, machine.datetime or
app.count).

An invalid variable is one that is not in the list of prefixes. If a variable is not valid, the expression
evaluation terminates and the expression is treated as false.

The value of a variable is retrieved from a specific location, which depends on the variable's category.
For example, content.CID is retrieved from the content header, and license.LID is retrieved from the
license.

The existence of a variable can be checked with the exists function.

2.2.3.2.18.5 Final Value

The final value of an expression is one of the three data types allowed in expressions: DATETIME,
LONG, or STRING.

A <CONDITION> expression must result in a LONG. If the final value is 0, the condition is considered
false; if the final value is non-zero, the condition is considered true.

The result of an ACTION expression can be of any type because the final value is ignored.

2.2.3.2.19 Operators in DRM Expressions

A Digital Rights Management license expression can include some of the operators that are found in
the C programming language. All binary operators are used in infix notational form.

2.2.3.2.19.1 Operator Behavior

The behavior of operators in an expression depends on the types of the operands. The following table

lists the allowed operators and the results they produce with operands of various types.

Operator Operand1 Operand2 Result description

+ LONG Unary plus.

+ LONG LONG Binary addition.

+ STRING STRING Concatenation of strings.

39 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Operator Operand1 Operand2 Result description

- LONG Unary minus.

- LONG LONG Binary subtraction.

* LONG LONG Binary multiplication.

/ LONG LONG Integer division (for example, 7/3 = 2).

% LONG LONG Modulo operator (for example, 7 % 3 = 1).

++ LONG Unary post-increment or pre-increment operator. Variable should
supportsupports set operations.

-- LONG Unary post-decrement or pre-decrement operator. Variable should
supportsupports set operations.

= LONG LONG Simple assignment.

= STRING STRING Simple assignment.

= DATETIME DATETIME Simple assignment.

< <= > >=
== !=

LONG LONG Relational operator. Result is a LONG with a value of 0 or 1.

< <= > >=
== !=

STRING STRING Relational operator. Result is a LONG with a value of 0 or 1.

< <= > >=
== !=

DATETIME DATETIME Relational operator. Result is a LONG with a value of 0 or 1.

! LONG Unary Not. Result is a LONG with a value of 0 or 1.

&& LONG LONG Logical AND. Result is a LONG with a value of 0 or 1.

Shortcut evaluation is supported. For example, in the expression "a
&& b", if "a" is false, "b" is not evaluated.

|| LONG LONG Logical OR. Result is a LONG with a value of 0 or 1.

Shortcut evaluation is supported. For example, in the expression "a ||
b", if "a" is true, "b" is not evaluated.

() Allows precedence to be overridden.

?: Any Any Conditional expression; for example, "(a < b)?c:d". If condition "a <
b" is true, the value is "c", and "d" is not evaluated. If the condition
"a < b" is false, the value is "d", and "c" is not evaluated.

, Any Any Used to separate parameters in a function call or used in an
expression to allow multiple statements to be evaluated. For
example, "d = (a = b, c = e)" will assign the value of "e" to "d".

2.2.3.2.19.2 Operator Precedence

The following list shows the precedence of the operators in the table above, from highest to lowest.

 ()

 FunctionCall

40 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ! ++ -- +(unary) -(unary)

 * / %

 + -

 < > <= =>

 == !=

 &&

 ||

 ?:

 =

 ;

 ,

2.2.3.2.20 Data Types in DRM Expressions

A Digital Rights Management expression, and the constants used in it, can have one of three data
types: DATETIME (section 2.2.3.2.20.1), LONG (section 2.2.3.2.20.2), or
STRING (section 2.2.3.2.20.3). Special rules for casting between data types (section 2.2.3.2.20.4)
apply.

2.2.3.2.20.1 DATETIME Data Type

This data type is represented by a specific syntax, which takes one of the following formats:

#YYYYMMDDZ #

#YYYYMMDD HH:MM:SSZ#

The time is represented in Coordinated Universal Time (UTC) format. This portion is optional, and if it
is missing, it is assumed to be zero. The Z at the end of the line indicates that the time is in UTC and

is required even if the time portion is not present.

2.2.3.2.20.2 LONG Data Type

This data type is represented by an integer, which can be either decimal or hexadecimal. Hexadecimal
values must be prefixed by the string "0x". This type is also used to represent Boolean values, where
0 is false and nonzero is true.

2.2.3.2.20.3 STRING Data Type

This data type is represented by double quotation marks (""). A STRING can include any character

except the double quotation marks. However, a double quotation mark can be represented by using a
backslash ("\"). For example, the string "ab\"cd" is rendered as "ab"cd".

The backslash, also referred to as the escape character, can represent a newline character when it is
placed before the letter n, as in "\n". The escape character itself can be represented with two
backslashes ("\\"). If the escape character is followed by any character other than n, ", or \, the pair

of characters is replaced with the character that follows the backslash. For example, "\a" is equivalent
to "a".

2.2.3.2.20.4 Casting Data Types

41 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Implicit casting is not allowed. For example, the plus sign ("+") cannot be applied to DATETIME
operands. However, the DATETIME, LONG, and STRING types can be used as casting operators. The

following table lists the possible type conversions.

Conversion Allowed

DATETIME to LONG No

DATETIME to STRING Yes

LONG to DATETIME No

LONG to STRING Yes

STRING to LONG Yes

STRING to DATETIME Yes

2.2.3.2.21 ISSUEDATE

The format of the <ISSUEDATE> element is the same as for the DATETIME Data Type as specified in

section 2.2.3.2.20.1.

2.2.3.2.22 KID

The KID element contains the identifier of the key associated with a license.

The KID element MUST be a value that uniquely identifies content for which the license is issued. Use
of a base64-encoded globally unique identifier (GUID) is recommended.

2.2.3.2.23 LICENSESERVERPUBKEY

The LICENSESERVERPUBKEY element contains the public key of the license server (KLpub). The
LICENSESERVERPUBKEY element is populated with custom data that is third party implementation-

specific.

2.2.3.2.24 LICENSORINFO

The LICENSORINFO element contains a <DATA> element containing the license details, a

<SIGNATURE> element, and a <CERTIFICATECHAIN> element.

2.2.3.2.25 LID

The LID element is a unique license identifier that is automatically created by the license generator. It
must be a curly braced GUID string, as shown in the following example.

Example Code

 <LID>{00000507-0000-0010-8000-00AA006D2EA4}</LID>

2.2.3.2.26 META

The use of this element is dependent on the client application. The child elements of META are optional
and can contain metadata about the license. All child elements of the META element MUST be well-

formed XML. Digital Rights Management does not depend on specific fields.

2.2.3.2.27 ONACTION

42 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The ONACTION element is an event that is raised when the application consumes or queries a specific
action right. For each action the server wishes to grant to the client, an <ONACTION> element must

be created and inserted into the license. The contents of the <ONACTION> element, such as the
conditions and <ACTION> elements, are third-party implementation-dependent.

An ONACTION event is required for each right that the license allows. If the event is missing, the right
is not allowed.

The condition associated with this event is evaluated when the application consumes or queries the
requested right. If the condition is true, the action is allowed; if the condition is false, the action is not
allowed. If the condition is missing, it is assumed to be true.

If this event has an ACTION element, the action is taken after the right is consumed. If the application
queries only the right, the action is not taken. The action's final value is ignored.

2.2.3.2.28 ONCLOCKROLLBACK

The ONCLOCKROLLBACK element is an event that is raised when the Digital Rights Management

(DRM) client detects a clock rollback. It gives the license a means of reacting to the rollback.

This event has an action only; there are no conditions to evaluate.

When the DRM client detects a clock rollback, it gives every license that includes this event a chance

to react to it. The license must specify the action to take; DRM simply evaluates the expression in the
action.

For example, upon detecting clock rollback, a license maycan indicate that it must be deleted.

During license response creation, the server maycan include the <ONCLOCKROLLBACK> element in a
license if, based on third-party implementation details, the server wishes the client to enforce per
license clock rollback logic.

2.2.3.2.29 ONSELECT

The ONSELECT element is an event that is raised when the license is selected.

The condition for this event is evaluated when the license is selected. If the condition is true, the
license can be selected; if it is false, the license cannot be selected. If the condition is missing, it is
assumed to be true.

If this event has an ACTION element, the action is taken after the license is selected. The action's final
value is ignored.

If the license does not include this event, no conditions for license selection are present, and the
license is selected.

For more information about allowable conditions, see section 2.2.3.2.17.

During license response creation, the server must create an <ONSELECT> element and include it in
the license to be returned to the client. The contents of the <ONSELECT> element are dependent on

the third-party implementation details of each server.

2.2.3.2.30 ONSTORE

The ONSTORE element is an event that is raised when the license is stored.

The condition for this event is evaluated when the license is stored. If it is true, the license is stored; if
it is false, the license is not stored. If the condition is missing, it is assumed to be true.

If this event has an ACTION element, the action is taken after the license is stored.

43 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the license does not include this event, no conditions for license storage are present, and the license
is stored. The action's final value is ignored.

During license response creation, the server MUST create an <ONSTORE> element. The contents of
the <ONSTORE> element are variable, based on third-party implementation details.

2.2.3.2.31 Predefined Functions in DRM Expressions

An event is an element of a license. Events can contain predefined function calls. Functions are
evaluated as soon as the argument list is closed.

The following table lists and describes the supported functions.

Function Arg1 Arg2 Arg3 Description

min LONG LONG Returns the smaller of the two arguments. The result is
LONG.

max LONG LONG Returns the larger of the two arguments. The result is
LONG.

long STRING Converts STRING to LONG. STRING has the syntax
"[whitespace][sign][number]". The number attribute
should havehas at least one digit, which can be decimal
or hexadecimal. No white space is allowed after sign,
but trailing spaces are allowed.

long LONG Performs an identity operation.

string LONG Converts LONG to STRING.

string STRING Performs a string identity operation.

string DATETIME Converts DATE to STRING.

datetime STRING Converts STRING to DATE.

datetime DATETIME Performs an identity operation for DATE.

dateadd STRING LONG DATETIME Adds date elements. Arg1 can be "d" (days), "h"
(hours), "n" (minutes), or "s" (seconds). The
corresponding amount specified in Arg2 is added to the
given datetime to get the target date and time. The
result is a DATETIME.

datediff STRING DATETIME DATETIME Subtracts Arg2 from Arg3. The result is given in units,
as indicated in Arg1. Arg1 can be "d", "h", "n", or "s".
The result is a LONG.

datepart STRING DATETIME Returns an integer that represents the specified
datepart (Arg1) of Arg2. Arg1 can be "y", "m", "d", "h",
"n", or "s". The result is a LONG.

index STRING STRING Returns the index of Arg1 in Arg2 if it is found. The

first index is 0. If it is not found, return -1. The result is
a LONG.

length STRING Returns the length of Arg1. The result is a LONG.

deletelicense Deletes the current license, returning 1 if successful
and 0 otherwise.

exists variable Determines whether a variable exists. Returns TRUE if

44 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Function Arg1 Arg2 Arg3 Description

successful and FALSE otherwise.

versioncompare string string Compares two strings, treating them as versions. If
they are not versions, the result is undefined. A version
string has the form "<n>.<n>.<n>.<n>", where
"<n>" is a number. The result is a LONG value: -1 if
Arg1 is less than Arg2, 0 if Arg1 is equal to Arg2, and 1
if Arg1 is greater than Arg2.

2.2.3.2.32 Predefined Variables in DRM Expressions

Each license must create and access its own unique collection of attribute/value pairs. After being
created, they cannot be deleted. A license can access only the attribute/value pairs that it created.

The attributes must belong to one of the following categories:

 drm

 drmk

 license

 pmlicense

 content

 machine

 server

 app (application)

 secstate (secure state in the client)

The following table enumerates all possible attributes that a license can expose.

Variable Data type Description

drm.version STRING The Digital Rights Management (DRM) version. This variable does
not use the build number; it instead uses the hard-coded value in
the client.

drm.bb.msdrm.version STRING The current security version of the WMDRM client. This value will
be in the form "a.b.c.d". Because this information is not signed,
the value cannot be trusted by the client.

drmk.version STRING The version of the kernel mode DRM file (DRMK) on the client
computer. This variable does not exist on a computer without
DRMK. Use exists (drmk.version) to check for the presence of
DRMK.

drmk.parameter STRING A string to use to set up DRMK. The string should taketakes the
form "attr=value;attr=value;" and so on. Supported attributes
are spdif, certs, and mindrmdriverlevel. The default values for
all are true, false, and 1000. If certs is true, audio and/or video
output device drivers that are certified by Microsoft for use in the
client-side media playback pipeline are required. The
mindrmlevel attribute indicates the level of security that is
needed for the drivers; do not use this attribute if certs is false.

45 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Variable Data type Description

The spdif attribute allows the transfer of audio from one file to
another without conversion to and from an analog format. If true,
this type of transfer is allowed. If false, this type of transfer is
not allowed.

machine.datetime DATETIME The time, in Coordinated Universal Time (UTC) format, based on
the clock of the client computer.

app.count LONG The number of DRM certificates used currently by client.<4>

app.minseclevel LONG The minimum security level, which is computed from the supplied
application certificates.

app.appsubjid LONG The application subject ID, provided in the supplied application
certificates.

secstate.<attribute> Any The specified attribute value (for example,
"secstate.firstdateofuse"). If the attribute does not exist, an error
is returned. For assignments, the attribute is created if it does
not already exist. Its type is the same as the type of the value
assigned to it.

secstate.global.saveddatetime DATETIME The last saved clock time, as recorded by the DRM system. This
is particularly useful for the ONCLOCKROLLBACK event. It is a
read-only field for the license.

license.<attribute> STRING The value of the attribute in the license LICENSORINFO>/<DATA
section (for example, "license.LID" or "license.KID"). The
attribute is case-sensitive. It is possible that the value is an
extensible markup language (XML) string. For example,
license.META gives the entire XML string for the META section,
without the META tags.

content.<attribute> STRING The value of the attribute in the content header DATA section (for
example, "content.CID").

pmlicense.version (see note
below)

STRING The version of the Portable Media (PM) license being requested.
This field is read-only and can be used in the CONDITION section
of the rights that provide the PM license. Here CONDITION refers
to the <CONDITION> element when used under the
<ONACTION>, <ONSELECT>, or <ONSTORE> element.

pmlicense.rights (see note
below)

LONG The rights to use for generating the PM license if creating a
license is allowed. Otherwise, this value is ignored. The default
value is 0.

pmlicense.appseclevel (see
note below)

LONG The application security level to use for generating the PM license
if creating a license is allowed. Otherwise, this value is ignored.
The default value is 0.

pmlicense.expirydate (see
note below)

DATETIME The date to use for generating the PM license if creating one is
allowed. The default value is #19991231Z#.

Note A license server can issue a Portable Media license, which supports the moving of content to
devices other than a PC. A server can automatically include this right when issuing a license for a
request in which Play is the only requested right. The license is based on the DRM Version 1 License
Format. In the DRM Version 7 License Format, the last four variables in the preceding table are used
in the ONACTION element to provide the means of generating a PM license.

2.2.3.2.33 PRIORITY

46 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The PRIORITY element indicates the priority of the license, helping the client choose the appropriate
one when multiple licenses are available for the same content. A license with a higher priority is

consumed before one with a lower priority.

The value of this element is an integer from 0 to 2147483647. The license enumeration process on the

client selects licenses based on this priority.

2.2.3.2.34 PUBKEY

The PUBKEY element contains a base64-encoded public key to which the enabling bits are bound.

While not related to the acquisition protocol, the <PUBKEY> element is used to perform lookup of the
appropriate client private key needed to decrypt the enabling bits in the case that the client has
multiple keypairs available.

The server will populate the <PUBKEY> element with the public key of the client extracted from
license request "{CLIENTINFO/CLIENTID/PKCERT/PK}".

Example code:

 <PUBKEY type="machine">WEJKJKJKert==</PUBKEY>

2.2.3.2.35 RESTRICTIONS

The RESTRICTIONS element specifies additional restrictions that must be met before the enclosing
<ONACTION> element is allowed. RESTRICTIONS elements are not processed during license
acquisition, but rather during content consumption.

During license response creation, the server maycan include a <RESTRICTIONS> element in each
<ONACTION> element with custom restriction logic that is server implementation-dependent.

2.2.3.2.36 REV_INFO

The REV_INFO structure describes the <RevocationList> versions known to either the client or server.
The REV_INFO structure consists of the following data:

 One WMDRMRLVIHEAD (section 2.2.3.2.46) structure

 Zero or more WMDRMRLVIVERSION (section 2.2.3.2.48) structures

 One WMDRMLRVISIGNATURE structure

 One WMDRMRLVICERTCHAIN (section 2.2.3.2.45) structure

The number of WMDRMRLVIVERSION structures is given by the value of
WMDRMRLVIHEAD.dwRecordCount.

2.2.3.2.37 REVOCATION

The REVOCATION element indicates the version of a given CRL within the <INDEX> element.

2.2.3.2.38 RevocationList

The <RevocationList> element contains a base64-encoded REV_INFO element.

2.2.3.2.39 SEQUENCENUMBER

47 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The SEQUENCENUMBER element contains the sequence number of the content revocation. This
number, which must be an integer, is generated sequentially by the content owner. It is used to

determine whether the current content revocation should overrideoverrides an existing one. Content
revocation information with higher sequence numbers overrides content revocation information with

lower sequence numbers. The SEQUENCENUMBER element is populated with custom data that is third
party implementation-specific.

2.2.3.2.40 SIGNATURE When Used Under the CONTENTREVOCATION or

LICENSORINFO Element

The <SIGNATURE> element is used within the <CONTENTREVOCATION> (section 2.2.3.2.14) and

<LICENSORINFO> (section 2.2.3.2.24) elements. The <SIGNATURE> element contains a signature of
the <DATA> element when used within the <CONTENTREVOCATION> and <LICENSORINFO>
elements in the <VALUE> child element.

The content public key is signed by the license server. This signature is created using ECDSA over
curve ECC1. For more information about ECDSA, see [ELLIPTICCURVE-DSA]. This prevents messages
about the revoked license from being altered by an external agent.

Cryptographic sequence:

<VALUE> contents = ["<DATA>" | <DATA> element contents | "</DATA>"]KL

2.2.3.2.41 SIGNATURE When Used Under the ENABLINGBITS Element

The <SIGNATURE> element is used within the <ENABLINGBITS> (section 2.2.3.2.16) element. The
<SIGNATURE> element contains a signature of the <VALUE> (section 2.2.3.2.44) element contents
when the <VALUE> element is contained within the <ENABLINGBITS> element. The server MUST

generate a valid ECDSA signature during response creation.

This signature is created using ECDSA over curve ECC1. For more information about ECDSA, see
[ELLIPTICCURVE-DSA].

Cryptographic sequence:

1. signature = [content decryption key]KL

<SIGNATURE> contents = base64-encoded signature

2.2.3.2.42 UNCOMPRESSEDDIGITALAUDIO

If the action being taken is on an uncompressed digital audio stream, the client MUST use the value
parsed from the UNCOMPRESSEDDIGITALAUDIO element to perform additional security checks at
content consumption time that conform to the WMDRM compliance rules.

2.2.3.2.43 UNCOMPRESSEDDIGITALVIDEO

If the action is being taken on an uncompressed digital video stream, the client MUST use the value

parsed from the UNCOMPRESSEDDIGITALVIDEO element to perform additional security checks at

content consumption time that conform to the WMDRM compliance rules.

2.2.3.2.44 VALUE

The VALUE element is used within the ENABLINGBITS element. The <VALUE> element contains the
base64-encoded, encrypted content decryption key, although not processed during the license
acquisition protocol, but rather during content consumption.

The <VALUE> element is populated by the server using a key known to the server, but is third-party
implementation-defined.

48 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The key is encrypted with the computer's public key so that only the client that requested this license
can decrypt it.

Cryptographic sequence:

<VALUE> contents = {content decryption key}KM

2.2.3.2.45 WMDRMRLVICERTCHAIN

The WMDRMRLVICERTCHAIN structure describes the certificate chain used to sign the REV_INFO
structure.

 typedef struct {
 DWORD dwCount[];
 BYTE rgCertChain[];
 } WMDRMRLVICERTCHAIN;

dwCount: Length, in bytes, of the data in rgCertChain.

rgCertChain: Certificate chain representing the entity used to sign the REV_INFO structure.

2.2.3.2.46 WMDRMRLVIHEAD

The WMDRMRLVIHEAD structure contains the header for a REV_INFO structure

 typedef struct {
 BYTE dwId[4];
 DWORD dwLength[];
 BYTE bFormatVersion[];
 BYTE bReserved[3];
 DWORD dwRIV[];
 FILETIME ftIssuedTime[];
 DWORD dwRecordCount[];
 } WMDRMRLVIHEAD;

dwId: Signature value indicating the start of this structure. MUST be equal to the ASCII character
sequence { "R", "L", "V", "I" }.

dwLength: The length, in bytes of signed data within the REV_INFO structure, starting with the
beginning of this structure.

bFormatVersion: The version of this structure. It MUST be 0x01.

bReserved: Padding, not used.

dwRIV: Version of the enclosing REV_INFO structure.

ftIssuedTime: Date and time that the enclosing REV_INFO structure was generated.

dwRecordCount: The count of WMDRMRLVIVERSION structures following this structure. This
value MUST be greater than or equal to zero and MUST be less than or equal to 10.

2.2.3.2.47 WMDRMRLVISIGNATURE

The WMDRMRLVISIGNATURE structure describes the cryptographic signature associated with a

given REV_INFO structure.

 typedef struct {
 BYTE bSignatureType[];

49 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 BYTE bSignature[128];
 } WMDRMRLVISIGNATURE;

bSignatureType: MUST be 0x02.

bSignature: RSA/SHA1 signature value.

2.2.3.2.48 WMDRMRLVIVERSION

The WMDRMRLVIVERSION structure describes the version number associated with a given
revocation list.

 typedef struct {
 GUID RLVIGUID[];
 ULONGLONG RLVIVERSION[128];
 } WMDRMRLVIVERSION;

RLVIGUID: MUST be 0x02.

RLVIVERSION: Version number of the revocation list.

2.2.4 DRM Version 11 Data Types

The following structures and algorithm are specific to version 11 of the WMDRM: License Protocol.

2.2.4.1 DRM Version 11 License Request

The Digital Rights Management (DRM) version 11 license request is almost identical to the version 7
license request. In version 11 license request packets, the <CLIENTINFO> element has two additional

child elements, <MACHINECERTIFICATE> and <REVINFO>, described below.

The following is the XML schema for the version 11 license request packet. Where required, elements,

attributes, and values are described in greater detail after the schema.

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="LICENSEREQUEST">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="V1CHALLENGE">
 <xs:simpleType>
 <xs:restriction base="xs:base64Binary" />
 </xs:simpleType>
 </xs:element>
 <xs:element name="ACTIONLIST" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ACTION" type="ActionNameType"
 minOccurs="1" maxOccurs="10" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="CLIENTINFO" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CLIENTID" type="xs:base64Binary" />
 <xs:element name="MACHINECERTIFICATE"
 type="xs:base64Binary" />
 <xs:element name="REVINVO" type="xs:base64Binary" />
 <xs:element name="CLIENTVERSION" type="xs:string" />
 <xs:element name="SECURITYVERSION" type="xs:string" />
 <xs:element name="APPSECURITY" type="xs:string" />

50 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <xs:element name="SUBJECTID1" type="xs:integer" />
 <xs:element name="SUBJECTID2" type="xs:integer" />
 <!-- SUBJECTID2 tag must be present;
 content is optional. -->
 <xs:element name="DRMKVERSION" type="xs:string"
 minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="WRMHEADER">
 <xs:complexType>
 <xs:sequence>
 <!-- content varies, depending on media
 file header information. -->
 <xs:any />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="version" use="required" fixed="2.0.0.0" />
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="ActionNameType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Play" />
 <xs:enumeration value="Print.redbook" />
 <xs:enumeration value="CREATE_PM_LICENSE" />
 <xs:enumeration value="Backup" />
 <xs:enumeration value="Restore" />
 <xs:enumeration value="CollaborativePlay" />
 <xs:enumeration value="Copy" />
 <xs:enumeration value="Transfer.SDMI" />
 <xs:enumeration value="Transfer.NONSDMI" />
 <xs:enumeration value="PlaylistBurn" />
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>

2.2.4.1.1 MACHINECERTIFICATE

The MACHINECERTIFICATE element contains a base64-encoded copy of the machine certificate (CM).
CM is a certificate in XML format.

The following is the XML schema for the MACHINECERTIFICATE XML object. Note that this schema
defines several elements already defined in [RFC3275]. Specifically, this schema defines the
<KeyValue>, <SignedInfo>, <SignatureValue>, and <KeyInfo> elements and their respective child
elements. Their definition in this schema is intended only to assist in understanding the processing
rules in section 3.2.5.3. Within an instance of the MACHINECERTIFICATE XML object, these elements
shouldare not to be prefixed with a namespace qualifier. See the example following the schema.

 <?xml version="1.0" encoding="utf-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CertificateCollection">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Certificate" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Data">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="SecurityLevel" type="xs:string" />
 <xs:element name="PublicKey">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="KeyValue">

51 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <xs:complexType>
 <xs:sequence>
 <xs:element name="Modulus" type="xs:base64Binary" />
 <xs:element name="Exponent" type="xs:base64Binary"
fixed="AQAB" />

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Signature">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="SignedInfo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CanonicalizationMethod">
 <xs:complexType>
 <xs:attribute name="Algorithm" type="xs:string" use="required"
fixed="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />

 </xs:complexType>
 </xs:element>
 <xs:element name="SignatureMethod">
 <xs:complexType>
 <xs:attribute name="Algorithm" type="xs:string" use="required"
fixed="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

 </xs:complexType>
 </xs:element>
 <xs:element name="Reference">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Transforms">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Transform" minOccurs="2"
maxOccurs="2">

 <xs:complexType>
 <xs:attribute name="Algorithm" use="required"
type="TransformAlgorithm"/>

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="DigestMethod">
 <xs:complexType>
 <xs:attribute name="Algorithm" use="required"
fixed="http://www.w3.org/2000/09/xmldsig#sha1" />

 </xs:complexType>
 </xs:element>
 <xs:element name="DigestValue" type="xs:base64Binary" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="SignatureValue" type="xs:base64Binary" />
 <xs:element name="KeyInfo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="KeyValue">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="RSAKeyValue">
 <xs:complexType>

52 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <xs:sequence>
 <xs:element name="Modulus" type="xs:base64Binary" />
 <xs:element name="Exponent" type="xs:base64Binary"
fixed="AQAB" />

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ManufacturerData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ManufacturerName" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="Version" use="required" fixed="2.0" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="Version" use="required" fixed="2.0" />
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="TransformAlgorithm">
 <xs:restriction base="xs:string">
 <xs:enumeration value="http://www.microsoft.com/DRM/CERT/v2/Data" />
 <xs:enumeration value="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>

The following is an example of the MACHINECERTIFICATE XML object.

 <?xml version="1.0" encoding="UTF-8" ?>
 <c:CertificateCollection xmlns="http://www.w3.org/2000/09/xmldsig#"
 xmlns:c="http://schemas.microsoft.com/DRM/2004/02/cert"
 c:Version="2.0">
 <c:Certificate c:Version="2.0"
 xmlns:c="http://www.microsoft.com/DRM/2004/02/cert" >
 <c:Data xmlns:c="http://www.microsoft.com/DRM/2004/11/cert"
 xmlns:l="http://www.microsoft.com/DRM/2004/11/mslp"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <c:SecurityLevel>a.b.c.d</c:SecurityLevel>
 <c:PublicKey>
 <KeyValue>
 <RSAKeyValue>
 <Modulus> <!-- base64-encoded modulus value --> </Modulus>
 <Exponent>AQAB</Exponent>
 </RSAKeyValue>
 </KeyValue>
 </c:PublicKey>
 </c:Data>
 <c:Signature>
 <SignedInfo>
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
 <SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />
 <Reference>

53 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <Transforms>
 <Transform
 Algorithm="http://www.microsoft.com/DRM/CERT/v2/Data" />
 <Transform
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
 </Transforms>
 <DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <DigestValue> <!-- base64-encoded digest --> </DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue> <!-- base64-encoded signature -->
 </SignatureValue>
 <KeyInfo> <!-- key used to sign the SignedInfo data. -->
 <KeyValue>
 <RSAKeyValue>
 <Modulus> <!-- base64-encoded modulus value --> </Modulus>
 <Exponent>AQAB</Exponent>
 </RSAKeyValue>
 </KeyValue>
 </KeyInfo>
 </c:Signature>
 </c:Certificate>
 </c:CertificateCollection>

Certificates are listed in c:CertificateCollection from leafmost to rootmost certificate. The leafmost
certificate is signed by the certificate next closer to the rootmost certificate. The rootmost certificate is
signed by the Microsoft Root WMDRM Certificate, represented by the following public key:

 pjoeWLSTLDonQG8She6QhkYbYott9fPZ8tHdB128ZETcghn5KHoyin7HkJEcPJ0Eg4UdSva0KDIYDjA3EXd69R3CN2Wp/
QyOo0ZPYWYp3NXpJ700tKPgIplzo5wVd/69g7j+j8M66W7VNmDwaNs9mDc1p2+VVMsDhOsV/Au6E+E=

Follow these steps to evaluate the signature of a given certificate:

1. Accumulate a SHA-1 hash over <c:Data> including the <c:Data ... > and </c:Data> end tags.

2. Compare hash to <DigestValue>.

3. Verify signature over <SignedInfo> with the RSA public key using the RSA/SHA1 algorithm.

Note that the value for <Modulus> must be reversed after base64-decoding.

2.2.4.1.2 REVINFO

The <REVINFO> element contains a base64-encoded copy of the revocation list (REV_INFO) known to
the client application. This list is persisted in an application-specific manner and SHOULD be retrieved

and included in the challenge if it exists. If this revocation list is out of date, the license server can
provide an updated revocation list in the <REVOCATION> element.

2.2.4.1.3 ACTION

The <ACTION> element contains the action rights that the client is requesting. The meaning of the
element contents is described in the following table.

Predefined string Meaning

Play Play content on the client computer.

Print.redbook Burn content to a CD.

54 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Predefined string Meaning

CREATE_PM_LICENSE Transfer content to a portable device.

Backup Permit backup of the license.

Restore Allow the license to be restored from another location.

CollaborativePlay Play the file as part of a collaborative peer-to-peer networking scenario.

Copy Copy the file to a device.

Transfer.SDMI Copy file to an SDMI device.

Transfer.NONSDMI Copy file to a non-SDMI device.

PlaylistBurn Copy the file to Red Book audio CD as part of a playlist.

2.2.4.2 DRM Version 11 License Response

The version 11 license response is identical to the version 7 license response.

55 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

3.1 Client Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

Note The following variables are logical, abstract parameters that an implementation MUST maintain
and expose to provide to the higher layer. How these variables are maintained and exposed is up to
the client protocol implementation.

ClientCertificate: A PKCERT structure that contains client machine-specific cryptographic data.

RightsRequested: A list of action strings in ActionNameType; see section 2.2.3.1.3.

ClientAppSec: A 4 byte value as described in section 2.2.2.1 under AppSec.

KeyIdentifier: A base-64 encoded string related to the content as described in section 2.2.2.1.

ClientVersion: This string variable maps to the element in the protocol named clientversion and
described in section 2.2.3.1.3.5.

SecurityVersion: This string variable maps to the element in the protocol named securityversion and
described in section 2.2.3.1.3.8.

SubjectId1: This string variable maps to the element in the protocol named subjectid1 and described

in section 2.2.3.1.3.9.

SubjectId2: This string variable maps to the element in the protocol named subjectid2 and described
in section 2.2.3.1.3.10.

DrmKVersion: This string variable maps to the element in the protocol named drmkversion and
described in section 2.2.3.1.3.6.

RevocationInfo: This string variable maps to the element in the protocol named revocationinfo and

described in section 2.2.3.1.3.7.

WRMHeader: This variable string maps to the element in the protocol named wrmheader and
described in section 2.2.3.1.3.12.

RevInfo: This string variable maps to the element in the protocol named revinfo and described in
section 2.2.4.1.2.

MachineInfo: This string variable maps to the element in the protocol named MACHINEINFO and

described in section 2.2.4.1.1.

3.1.2 Timers

None.

56 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 DRM Version 1 Client Message Processing Events and Sequencing Rules

3.1.5.1.1 Request Behavior

The DRM Version 1 License Request packet is used by the client to request a license for protected
media content.

Figure 3: DRM Version 1 License Request packet process

57 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The client generates a license request and sends it to a license server. The request is a binary string
that is partially RC4-encrypted and then encoded by using the base64 encoding algorithm.

The higher layer MUST set appropriate values for ClientCertificate, RightsRequested,
ClientAppSec, and KeyIdentifier. The client generates a 16-byte random number as SessionKey

(internal state). The client populates a DRM Version 1 License Request packet with the following
mapping:

ClientCertificate ->pkcert

RightsRequested ->Mapping of the rights strings to a 4 byte array of Rights described in section
2.2.3.1.3

ClientAppSec ->AppSec

KeyIdentifier ->KeyID

SessionKey is encrypted with a global license server public key KS and placed in the packet as
EncRandNum.

SessionKey is used as the seed to RC4, and all packet elements after EncRandNum are encrypted
with the resulting RC4 stream cipher.

After encryption, the string is base64-encoded. The client application then appends the string
"&DRMVer=1.4". Note that the value for "DRMVer" maycan vary based on the client application.

Depending on the implementation, the client application can append "&embedded=true" if the player
is embedded in an HTML page; it can append "&embedded=false" if the player is not embedded in an
HTML page; or it can also append nothing. The resulting string is a uniform resource locator (URL)
that is sent to the license server as an HTTP GET request.

3.1.5.1.2 Response Behavior

The response from a server is an HTML document as described in DRM Version 1 License

Response (section 2.2.2.2). The client must extract the string value labeled "base64-encoded

CERTIFIED_LICENSE", base64 decode the CERTIFIED_LICENSE structure, and return that value to
the higher layer.

3.1.5.2 DRM Version 7 Client Message Processing Events and Sequencing Rules

3.1.5.2.1 Request Behavior

The Digital Rights Management (DRM) version 7 License Request packet is used by the client to
request a license for protected media content.

58 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 4: DRM version 7 request packet process

The higher layer MUST set appropriate values for ClientCertificate, RightsRequested,

ClientAppSec, ClientVersion, SecurityVersion, SubjectId1, SubjectId2, DrmKVersion,
RevocationInfo, and WRMHeader. The client generates a 16-byte random number as SessionKey.
The client populates a DRM Version 1 License Request packet with the following mapping:

ClientCertificate -> pkcert

RightsRequested ->A sequence of <ActionNameType> elements under the <ACTION> element

ClientAppSec ->AppSec

KeyID is set to all zeros

59 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The client populates a V7 license challenge request mapping the following state variables to the
appropriate XML elements:

ClientVersion -> <CLIENTVERSION>

SecurityVersions -> <SECURITYVERSION>

ClientAppSec -> <APPSECURITY>

SubjectId1 -> <SUBJECTID1>

SubjectId2 -> <SUBJECTID2>

DrmKVersion -> <DRMKVERSION>

WRMHeader -> <WRMHEADER>

A CLIENTID structure is populated by the client as described in section 2.2.3.1.3.4 using
ClientCertificate as CLIENTID.pkcert, and SessionKey is encrypted with KS and included as

CLIENTID.EncRandNum. The populated CLIENTID structure is base64 encoded and included in the
request packet as XML element CLIENTID.

The version 1 request packet is base64 encoded and included in the version 7 license request packet
as the XML element <V1CHALLENGE>.

The client-generated license request is sent to a license server by using an HTTP POST request.

3.1.5.2.2 Response Behavior

The license response returned from the server is described in section 2.2.3.1.3. The client MUST
parse the XML document and process the LICENSE and REVOCATION nodes as described in
LICENSERESPONSE.LICENSE nodes (section 3.1.5.2.2.1) and LICENSERESPONSE.Revocation
nodes (section 3.1.5.2.2.2).

3.1.5.2.2.1 LICENSERESPONSE.LICENSE nodes

For each LICENSE node found, the client MUST inspect the version attribute. The client MUST base64
decode the data in the LICENSE node and return the decoded data and the value in the version
attribute to the higher layer so that the higher layer is aware of the license version being returned.

The higher layer is responsible for any and all usages of the return license. Discussion of this higher-
layer responsibility is out of scope of this document.

3.1.5.2.2.2 LICENSERESPONSE.Revocation nodes

For each Revocation node found, the client must inspect the type attribute. The contents of the node
must be base64 decoded and returned with the value of the type attribute to the higher layer.

3.1.5.3 DRM Version 11 Client Message Processing Events and Sequencing Rules

3.1.5.3.1 Request Behavior

The Digital Rights Management (DRM) version 11 license request packet is used by the client to
request a license for protected media content.

The version 11 request processing sequence is identical to the version 7 sequence with the following
additions:

 The higher layer MUST additionally set appropriate values for MachineInfo and RevInfo.

60 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 In addition to the V7 XML population, the client performs the following state mappings into the
V11 request:

 MachineInfo -> MACHINEINFO

 RevInfo -> REVINFO

3.1.5.3.2 Response Behavior

The V11 response processing is identical to the V7 response processing.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 Server Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Note The following variables are logical, abstract parameters that an implementation MUST maintain
and expose to provide to the higher layer. How these variables are maintained and exposed is up to
the server protocol implementation.

ClientCertificate: A PKCERT structure that contains client machine-specific cryptographic data.

RightsRequested: A list of action strings in ActionNameType; see section 2.2.3.1.3.

ClientAppSec: A 4-byte value as described in section 2.2.2.1 under AppSec.

KeyIdentifier: A base-64 encoded string related to the content as described in section 2.2.2.1.

ClientVersion: This string variable maps to the element in the protocol named clientversion and
described in section 2.2.3.1.3.5.

SecurityVersion: This string variable maps to the element in the protocol named securityversion and
described in section 2.2.3.1.3.8.

SubjectId1: This string variable maps to the element in the protocol named subjectid1 and described

in section 2.2.3.1.3.9.

SubjectId2: This string variable maps to the element in the protocol named subjectid2 and described

in section 2.2.3.1.3.10.

DrmKVersion: This string variable maps to the element in the protocol named drmkversion and
described in section 2.2.3.1.3.6.

RevocationInfo: This string variable maps to the element in the protocol named revocationinfo and
described in section 2.2.3.1.3.7.

61 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

WRMHeader: This variable string maps to the element in the protocol named wrmheader and
described in section 2.2.3.1.3.12.

RevInfo: This string variable maps to the element in the protocol named revinfo and described in
section 2.2.4.1.2.

MachineInfo: This string variable maps to the element in the protocol named MACHINEINFO and
described in section 2.2.4.1.1.

3.2.1.1 TransmitLicensesToClient

The TransmitLicensesToClient abstract interface is provided by the protocol implementation for the
higher layer to call. The higher layer constructs the licenses and uses this abstract interface to have
the Digital Rights Management License Protocol send them to the client.

 TransmitLicensesToClient(LicenseToSend [] Licenses)

Licenses: An array of licenses that need to be transmitted to the client. The length of each license is

variable, and the number of licenses is variable. This parameter uses the LicenseToSend
structure defined in section 2.2.1.7.

3.2.2 Timers

 None.

3.2.3 Initialization

Certificate revocation within the Windows Media DRM ecosystem is handled by means of certificate
revocation lists (CRLs). CRLs flow from a public Microsoft server, the "enrollment server", to the

license server, and then to the client. Each CRL is identified by a GUID or text string and contains a
version number and a list of hashes of revoked certificates. A revocation version information list

(REV_INFO) contains a list of CRL versions and is itself versioned with a revocation information
version (RIV). Hence, each time a new CRL version is released, the current RIV is also increased.

The client application identity is given via CA. This is transmitted from the client to the server within
all license acquisition requests.

The client application maintains a list of CRLs known to it and the associated REV_INFO and RIV. If the
RIV reported by the client is lower than the RIV known to the license server, the license server MUST
transmit the latest REV_INFO and CRLs to the client within the license acquisition response.

To transmit the latest REV_INFO and CRLs to the client, it is not necessary to understand the entire
REV_INFO structure or the format of the CRL data. It is only necessary to understand the
REV_INFO.WMDRMRLVIHEAD.dwRIV and compare that to the RIV reported by the client.

Given the previous statements a server implementation must be initialized with the CRLs, REV_INFO

and client white list values from the aforementioned enrollment server, before it can successfully

validate and interact with a Windows Media DRM client implementation.

3.2.3.1 Retrieving Revocation Data from the Enrollment Server

The current client certificate white list, current REV_INFO data, and current CRLs are all available in

base64-encoded form within the body of the HTTP response to an HTTP GET of
http://licenseserver.windowsmedia.com/v2revocation.asp. The license server MUST retrieve this data
at least once every 30 days to ensure that the revocation data transmitted to the client is no older
than 30 days.

62 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.3.1.1 Client Certificate White List

The Client Certificate White List entries are in the following format within the response:

 enrollobj.StoreVerificationKey("client version", "pubkey");

client version: A numeric version string of the form "a.b.c.d". The value provided by the client in
CLIENTID.pkcert.pk.version should mapmaps to one of these values in the white list.

pubkey: A base64-encoded PUBKEY identifying the client certificate associated with the given client
version. The value provided by the client in CLIENTID.pkcert.pk.pubkey should matchmatches the

value associated with the given client version.

3.2.3.1.2 Revocation Information List

The REV_INFO data is in the following format within the response:

 enrollobj.StoreRevocationInformation("REV_INFO");

REV_INFO: A base64-encoded REV_INFO structure.

3.2.3.1.3 Certificate Revocation List

Multiple certificate revocation lists (CRLs) are present within the response and are in one of the
following formats:

 enrollobj.StoreRevocationList("CRL");
 enrollobj.StoreRevocationLists("GUID", "CRL");
 enrollobj.StoreNamedRevocations("name", "CRL");

CRL: A base64-encoded CRL.

GUID: The name of the CRL in string form. In this case, the CRL name is a GUID string.

name: The name of the CRL in string form.

3.2.4 Higher-Layer Triggered Events

 None.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 DRM Version 1 Server Message Processing Events and Sequencing Rules

The Digital Rights Management (DRM) Version 1 License Response packet is used by the license server

to send a license for content to a client.

63 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 5: DRM client/server response sequence

The server response to the client request is a single license that is encoded with the base64 encoding
algorithm embedded within an HTML page.

Request Validation

If the client request is longer than 201 bytes, the server MUST return the error "2007:Challenge
String does not have correct length."

If the Version field is not equal to { 0x00, 0x01, 0x00, 0x01 }, the server MUST return the error

"2008:License Request Version does not match the version supported."

If decryption of the client request fails, the server MUST return the error "2003:Unable to interpret the
challenge blob. Probably incompatible client."

If the AppSec field contains an application security level lower than that required for the desired
license, the server MUST return the error "2025:The requesting application security level is lower than
specified level."

64 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the pkcert.pk is not found within the white list of nonrevoked client certificates (see Client
Certificate White List (section 3.2.3.1.1)), the server MUST return the error "4004:Client version is not

supported. Probably missing client verification key."

If signature verification of pkcert.pk fails, the server MUST return the error "2009:Unauthorized client

request. Signature Verification Failure."

Response Generation

members

CERTIFIED_LICENSE.license.licVersion MUST contain the value { 0x00, 0x01, 0x00, 0x01 }.

CERTIFIED_LICENSE.license.datLen MUST contain the value { 0x75, 0x00, 0x00, 0x00 }.

CERTIFIED_LICENSE.license.sign contains the signature of CERTIFIED_LICENSE.license.ld as
described in LICENSE (section 2.2.2.3.4).

CERTIFIED_LICENSE.license.ld.KID contains the key ID for the issued license. This value MUST

match the value requested by the client in the KeyID field.

CERTIFIED_LICENSE.license.ld.key contains the encrypted RC4 content key as described in
LICENSEDATA (section 2.2.2.3.5).

CERTIFIED_LICENSE.license.ld.rights contains a bitmask of the rights granted in the license. This
MUST NOT include more rights than were requested by the client in the Rights field.

CERTIFIED_LICENSE.license.ld.appSec contains either the minimum application security level
required to use the license or the same value requested by the client in the AppSec field.

CERTIFIED_LICENSE.license.ld.expiryDate contains the license expiration date as described in
LICENSEDATA.

CERTIFIED_LICENSE.cert1 contains the Microsoft-signed certificate representing the license server.
This certificate is supplied in CS.

CERTIFIED_LICENSE.cert2 contains the root certificate representing the Microsoft certificate

authority. This certificate is supplied in CS.

3.2.5.2 DRM Version 7 Server Message Processing Events and Sequencing Rules

The Digital Rights Management (DRM) version 7 License Response packet is used by the license server

to send a license for protected media content to a client.

65 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 6: DRM client/server response sequence

If the client request was silent, the response is returned directly to the client. If the request was

nonsilent, the response is returned to the client embedded within an HTML page. The HTML page is
formatted as follows. The text enclosed in braces ("{{" and "}}") shouldcan be replaced as

appropriate.

 <HTML><HEAD><TITLE>{{optional page title}}</TITLE>
 <Script Language="JavaScript">function StoreV2License(hr)
 { netobj.StoreLicense("{{license response}}"); } </Script></HEAD>
 <BODY onLoad="StoreV2License()">{{optional descriptive text}}
 <OBJECT classid=clsid:A9FC132B-096D-460B-B7D5-1DB0FAE0C062
 height=0 id=netobj width=0 VIEWASTEXT>
 <EMBED MAYSCRIPT TYPE="application/x-drm-v2" HIDDEN="true"></OBJECT>
 {{optional descriptive text}}

66 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 </BODY></HTML>

The format of the response, which is in extensible markup language (XML), can include any number
and combination of DRM version 1 and version 7 licenses, encoded with the base64 encoding
algorithm.

Request Validation

Unless otherwise noted, most fields in the request are not strictly validated, because they are intended
to be used within the implementer's business logic for license issuance. However, the server should
expectexpects that the license request conforms to the schema.

c:/LICENSEREQUEST/V1CHALLENGE is validated according to the rules for validating a version 1
license request.

If c:/LICENSEREQUEST/CLIENTINFO/CLIENTID does not base64-decode to a 168-byte CLIENTID
structure, the server MUST return DRM_E_LIC_CLIENDID_DECODING_FAILURE (0x8004800FL) to the
client.

The server MUST validate CA against a white list of nonrevoked client certificates as described in Client
Certificate White List (section 3.2.3.1.1). If the CA is not found within the white list or if signature
validation of the client-signed data fails, the license server MUST return
DRM_E_LIC_UNAUTHORIZED_DRM_CLIENT (0x8004800EL) to the client.

The server SHOULD map the following XML elements to associated state variables so that they are
exposed to the higher layer for use:

c:/LICENSEREQUEST/CLIENTINFO/WRMHEADER -> WRMHeader

c:/LICENSEREQUEST/CLIENTINFO/SUBJECTID1 -> SubjectId1

c:/LICENSEREQUEST/CLIENTINFO/SUBJECTID2 -> SubjectId2

c:/LICENSEREQUEST/CLIENTINFO/DRMKVERSION -> DrmKVersion

c:/LICENSEREQUEST/CLIENTINFO/REVOCATIONINFO -> RevocationInfo

c:/LICENSEREQUEST/CLIENTINFO/SECURITYVERSION -> SecurityVersion

c:/LICENSEREQUEST/CLIENTINFO/CLIENTVERSION -> ClientVersion

c:/LICENSEREQUEST/CLIENTINFO/APPSEC -> ClientAppSec

After c:/LICENSEREQUEST/CLIENTINFO/CLIENTID is decoded, the result is mapped into a CLIENTID
structure. CLIENTID.EncRandNum MUST be decrypted with KS and stored as internal state
SessionKey. SessionKey is used to initialize an RC4 cipher, which is in turn used to decrypt

CLIENTID.pk and is stored and made available to the higher layer as ClientCertificate.

Response Generation

The XML response is generated according to the schema described in XML Schema for Version 7

License Response (section 2.2.3.2.4).

The server's determination of how many licenses are generated and the format of each license
generated is third-party server implementation-specific, although all state in the Abstract Data Model
is provided to the higher layer if it makes a determination to use values to make deterministic

decisions on the data used to populate licenses for the response.

After the higher layer has created all necessary licenses, it must call the TransmitLicensesToClient
abstract interface (section 3.2.1.1) with a properly populated array of LicenseToSend structures

67 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

(section 2.2.1.7). Each element in the array should beis assigned the correct value according to
license version (either 1 or 7) as well as the correct license size and license buffer.

The higher layer provides a variable number of already-generated licenses in either version 1 or
version 7 as well as indicating which version of license they are.

For each version 1 license, the server includes the license in the response as described in DRM Version
1 License Format Within a Version 7 License Response (section 2.2.3.2.4.1).

For each version 7 license, the server includes the license in the response as described in DRM Version
7 License Format (section 2.2.3.2.4.2).

If, within the license request, the client sends a CRL version or REV_INFO version lower than that
known to the server, then the server MUST send the latest known REV_INFO and CRL data to the
client within the license response. The REV_INFO.WMDRMRLVIHEAD.dwRIV field contains the

version of the REV_INFO data.

3.2.5.3 DRM Version 11 Server Message Processing Events and Sequencing Rules

The Digital Rights Management (DRM) Version 11 License Response packet is used by the license

server to send a license for protected media content to a client.

The version 11 processing sequence is identical to the version 7 license response processing
sequence.

Request Validation

A version 11 server MUST validate the request using the rules given for a version 7 server in DRM
Version 7 Server Message Processing Events and Sequencing Rules (section 3.2.5.2).

/c:LICENSEREQUEST/CLIENTINFO/MACHINECERTIFICATE MUST be validated according to the

following rules:

1. Validate /c:CertificateCollection

1. If the /c:CertificateCollection element is missing or does not have a "c:Version", "xmlns:c"
attribute, the server MUST return E_FAIL (0x80000008L).

2. If the "c:Version" attribute value is not "2.0", the server MUST return
DRM_E_INVALID_CERTCHAIN_VERSION (0xC0042945L).

3. If the "xmlns:c" attribute value is not http://schemas.microsoft.com/DRM/2004/02/cert, the
server MUST return DRM_E_INVALID_CERTCHAIN_NAMESPACE (0xC0042954L).

4. There MUST be at least one child c:Certificate element. If not, the server MUST return E_FAIL
(0x80000008L).

2. Validate /c:CertificateCollection/c:Certificate

1. If the inner text of this element does not contain either "<c:Data" or "</c:Data>", the server
MUST return DRM_E_MACHINE_CERT_DATATAG_MISSING (0xC0042961L).

3. Validate /c:CertificateCollection/c:Certificate/c:Data/c:PublicKey/KeyValue/RSAKeyValue/Exponent

1. If this element does not exist, the server MUST return E_FAIL (0x80000008L).

2. If the value of this element is not "AQAB", the server MUST return
DRM_E_INVALID_EXPONENT (0xC0042959L).

4. Validate /c:CertificateCollection/c:Certificate/c:Data/c:PublicKey/KeyValue/RSAKeyValue/Modulus

68 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1. If this element does not exist, the server MUST return E_FAIL (0x80000008L).

2. If the value of this element is blank, the server MUST return DRM_E_INVALID_MODULUS

(0xC0042953L).

5. Validate /c:CertificateCollection/c:Certificate/c:Data/c:SecurityLevel

1. If this element does not exist, the server MUST return E_FAIL (0x80000008L).

6. Validate /c:CertificateCollection/c:Certificate/Signature/SignedInfo/CanonicalizationMethod

1. If this element does not exist or does not have the attribute "Algorithm", the server MUST
return E_FAIL (0x80000008L).

7. Validate /c:CertificateCollection/c:Certificate/Signature/SignedInfo/SignatureMethod

1. If this element does not exist or does not have the attribute "Algorithm", the server MUST
return E_FAIL (0x80000008L).

2. If the value for the attribute "Algorithm" is not "http://www.w3.org/2000/09/xmldsig#rsa-
sha1", then the server MUST return DRM_E_INVALID_SIGNATURE_METHOD_ALG
(0xC0042949L).

8. Validate /c:CertificateCollection/c:Certificate/Signature/SignedInfo/Reference/DigestMethod

1. If this element does not exist or does not have the attribute "Algorithm", the server MUST
return E_FAIL (0x80000008L).

2. If the value for the attribute "Algorithm" is not "http://www.w3.org/2000/09/xmldsig#sha1",
then the server MUST return DRM_E_INVALID_DIGEST_ALG (0xC0042948L).

9. Validate
/c:CertificateCollection/c:Certificate/Signature/SignedInfo/Reference/Transforms/Transform

1. If there are not exactly two instances of this element, or if either instance does not have the

attribute "Algorithm", the server MUST return E_FAIL (0x80000008L).

2. If the value of the attribute "Algorithm" for the first instance is not

"http://www.microsoft.com/DRM/CERT/v2/Data", then the server MUST return
DRM_E_INVALID_TRANSFORM_ALG (0xC0042947L).

3. If the value of the attribute "Algorithm" for the second instance is not
"http://www.w3.org/TR/2001/REC-xml-c14n-20010315", then the server MUST return
DRM_E_INVALID_TRANSFORM_ALG (0xC0042947L).

10. Validate /c:CertificaetCollection/c:Certificate/Signature/SignedInfo/Reference/DigestValue

1. If this element does not exist, the server MUST return E_FAIL (0x80000008L).

2. If the value of this element does not match the computed digest as described in section
2.2.4.1.1 <MACHINECERTIFICATE>, the server MUST return DRM_E_INVALID_DIGEST

(0xC0042958L).

11. Validate /c:CertificateCollection/c:Certificate/Signature/SignatureValue

1. If this element does not exist, the server MUST return E_FAIL (0x80000008L).

2. If the value of this element does not match the computed signature as described in section

2.2.4.1.1 <MACHINECERTIFICATE>, the server MUST return E_FAIL (0x80000008L).

12. Validate /c:CertificateCollection/c:Certificate/Signature/SignedInfo

69 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1. If this element does not exist, the server MUST return E_FAIL (0x80000008L).

13. Validate /c:CertificateCollection/c:Certificate/c:Data/c:ManufacturerData

1. If this element is present, c:ManufacturerName must be present. If it is not present, the
server MUST return E_FAIL (0x80000008L).

Response Generation

The version 11 license response is generated in the same manner as the version 7 license response.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

70 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

4.1 DRM Version 1 License Request Example

The following example shows a version 1 license challenge.

 http://www.contoso.com/license.asp?challenge=AAEAAeAIkaw4fVjvbsmN3lmgKi
 ELAk040wTNFyAf65mzEKOwqNRPatHJByPumUTOy1g07toer!8agV0ux8qvBNnYQBOEgB1coMSZFHK7SRfOlV5
 dco3f!wxYIhPHZ*kyUJQgzis1B8JGM9eyG4OuOofxV!*TcJQoUsLYDI*0L7pPrpMs0Ol0u2dHYNvMsPrXSN
 mn5frVucfkOtIQPmHbTd1rP!i4GoGrYN*MmotuoOALTz!fXbyzkP7t&DRMVer=1.3

4.2 DRM Version 1 License Response Example

The following example shows a response webpage that contains an encoded license.

 <HTML>
 <HEAD>
 <TITLE>V1 Licensing</TITLE>
 <Script Language="VBScript">
 const LICENSE_EXPIRED = &H80041000
 const LICENSE_INCONSISTENT = &H80041001
 const LICENSE_INCORRECT_VERSION = &H80041003
 Sub Window_OnLoad()
 On Error Resume Next
 DrmStore.StoreLicense(
 "AAEAAHUAAAB3IFadTI8UJy3PzB9yilDoxgf5DRjqL4NXqFkns7*!
 Z4jFwCPX!oCDS1pPTHhMcmhaVStId0dMSlY4V3RhUT09AEeTvPQpG
 Nt!AJ5BE6tB4ZJ5tDQJo*bnTOnAxatFIYch72C8A04kdFz8ZK*!UT
 j52e4dIRkQkMBHXXnma4xe9KFZB3QypiOMM6LQFyPs0ViJGwAAAAA
 AAJYUBwMWAAEAADgAAADRQt0mNlnxj7as*ys3NSMJaaWViZC1Ppnl
 LxYqUdqCMm2iPIlzxu4zm5xxu39qj47qy33j5mXGbpviYTFldxMwN
 RRSckf6kyEdHDya3LyAc2NjDB8AAAAAAAAAAAAAAAAAAQAAOAAAAG
 N!793njE8kEVW*BhFk*W5xfYgP*ymWlfUQely7kQCMci!Q6wPkIhG
 9LfC2Z85Uf01UPGTZ7pNCns0OdMfy85CZ5ceKkC0KYaQK*OrdqAQN
 Y2MMHwAAAGMAAAABAAAAAQ==")
 if (err.number <> 0) then
 if (err.number = LICENSE_EXPIRED) then
 StoreLicenseResult.innerHTML = "You just received a
 license that is already expired. Maybe your
 clock is set wrong. Check and try again."
 elseif (err.number = LICENSE_INCONSISTENT) then
 StoreLicenseResult.innerHTML = "You just received a
 corrupt license. Check with the license
 server."
 else
 StoreLicenseResult.innerHTML = "Error:" &
 CStr(hex(err.number)) & ":" & err.Description
 end if
 end if
 End Sub
 </Script>
 </HEAD>
 <BODY>
 <p align="center">V1 License</p>
 <OBJECT classid=CLSID:760C4B83-E211-11D2-BF3E-00805FBE84A6 id=DrmStore>
 <EMBED MAYSCRIPT TYPE="application/x-drm" HIDDEN="true"
 LICENSE="AAEAAHUAAAB3IFadTI8UJy3PzB9yilDoxgf5DR
 jqL4NXqFkns7*!Z4jFwCPX!oCDS1pPTHhMcmhaVStId0dMS
 lY4V3RhUT09AEeTvPQpGNt!AJ5BE6tB4ZJ5tDQJo*bnTOnA
 xatFIYch72C8A04kdFz8ZK*!UTj52e4dIRkQkMBHXXnma4x
 e9KFZB3QypiOMM6LQFyPs0ViJGwAAAAAAAJYUBwMWAAEAAD
 gAAADRQt0mNlnxj7as*ys3NSMJaaWViZC1PpnlLxYqUdqCM
 m2iPIlzxu4zm5xxu39qj47qy33j5mXGbpviYTFldxMwNRRS

71 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ckf6kyEdHDya3LyAc2NjDB8AAAAAAAAAAAAAAAAAAQAAOAA
 AAGN!793njE8kEVW*BhFk*W5xfYgP*ymWlfUQely7kQCMci
 !Q6wPkIhG9LfC2Z85Uf01UPGTZ7pNCns0OdMfy85CZ5ceKk
 C0KYaQK*OrdqAQNY2MMHwAAAGMAAAABAAAAAQ==">
 </OBJECT>
 You have received a v1 license.
 </BODY>
 </HTML>

4.3 DRM Version 7 License Request Example

The following example shows a sample WMDRM: License Protocol version 7 license request that
contains all of the required elements. The fields might not contain complete data. For a complete
description of an element, see the respective element topic.

 <LICENSEREQUEST version="2.0.0.0">
 <V1CHALLENGE>

 <!-- DRMv1 challenge with empty KEYID string -->

 </V1CHALLENGE>
 <ACTIONLIST>

 <!-- Application is requesting the right to play the content. -->
 <!-- More than one right can be requested. -->

 <ACTION>Play</ACTION>
 </ACTIONLIST>

 <!-- Information about the client that is
 requesting the license. -->
 <CLIENTINFO>
 <CLIENTID>
 <!-- Client ID structure -->
 </CLIENTID>

 <!-- Version of the DRMv7 client -->
 <CLIENTVERSION>9.00.00.2778</CLIENTVERSION>

 <!-- Application security of client application -->
 <APPSECURITY>2000</APPSECURITY>

 <!-- Certificate subject ID of the component
 that is talking to DRM -->
 <SUBJECTID1>212</SUBJECTID1>

 <!-- Certificate subject ID of the component
 that is talking to the component-->
 <!-- talking to DRM. -->
 <SUBJECTID2>1107</SUBJECTID2>

 <!-- Version of Kernel Mode DRM on the client computer -->
 <DRMKVERSION>2.2.0.0</DRMKVERSION>
 </CLIENTINFO>

 <!-- WMRMHEADER section, verbatim from the header of the content -->

 <WMRMHEADER version="2.0.0.0">
 <DATA>

 </DATA>
 <SIGNATURE>

 </SIGNATURE>

72 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 </WMRMHEADER>

 </LICENSEREQUEST>

4.4 DRM Version 7 License Response Example

The following example shows a sample WMDRM: License Protocol version 7 license response that

contains all of the required elements. The fields might not contain complete data. For a complete
description of an element, see the respective element topic.

 <LICENSERESPONSE>
 <LICENSE version="2.0.0.0">
 <!-- encrypted and base64 encoded XML license -->
 </LICENSE>
 </LICENSERESPONSE>

4.5 DRM Version 7 Nonsilent License Response Example

The following example shows a response web page containing an encoded license.

 <HTML>
 <HEAD>
 <TITLE></TITLE>
 <Script Language="JavaScript">

 function StoreV2License(hr)
 {
 netobj.StoreLicense("AAEAAHUAAADnIFW4Ec2j0JXEId5cfdhQoXCZJSPIjaKE
 5L!FlSp0YM!7pSCayfFHVDBlTnRRS2tqa09GZENpcW54
 akhnZz09AMnjjoZs5X9ZjuZCvFGDfSymhnp29w!0v0u9
 t!NLeS5mw0I!iDNHqX0T5pZ0ie8HxJqQ23WRU1zOp*p8
 OreBn3L1NzR2qaqJwSIP97XtS04mEwAAAAAAAJYUBQYQ
 AAEAADgAAAAB2ZQI!btK6AOOJI68EEuHnnfVDsPjufRe
 9FseC8IsW14EnD1HgjkJQ3*VKD9zKJB3oJQ9ZnbtJ10u
 kgWxZtc5NwkIMU85AR8Aj6y0IcZpIxQFCBQAAG!JAAAA
 AgAAqLkAAQAAOAAAADmkObY2USONnrxHr140bmTk!T9n
 o7hB7EibVZl463LmVqQkywubKQ4l8RM!RwonN23ygvlh
 efHw0BG2IAyFJ0GFxaThS1yagLYrZnxWSkc6FAYDAQAA
 AAoAAAABAAAAAQ==");
 }

 </Script>
 </HEAD>
 <BODY onLoad="StoreV2License()">
 <OBJECT classid=clsid:A9FC132B-096D-460B-B7D5-1DB0FAE0C062
 height=0 id=netobj width=0 VIEWASTEXT>
 <EMBED MAYSCRIPT TYPE="application/x-drm-v2" HIDDEN="true">
 </OBJECT>

 </BODY>

 </HTML>

4.6 DRM Version 11 License Request Example

The following example shows a sample WMDRM: License Protocol version 11 license request that
contains all of the required elements. The fields might not contain complete data. For a complete
description of an element, see the respective element topic.

73 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <LICENSEREQUEST version="2.0.0.0">
 <V1CHALLENGE>

 <!-- DRMv1 challenge with empty KEYID string -->

 </V1CHALLENGE>
 <ACTIONLIST>

 <!-- Application is requesting the right to play the content. -->
 <!-- More than one right can be requested. -->

 <ACTION>Play</ACTION>
 </ACTIONLIST>

 <!-- Information about the client that is
 requesting the license. -->
 <CLIENTINFO>
 <MACHINECERTIFICATE>
 <!-- Base64 encoded XML certificate -->
 </MACHINECERTIFICATE>

 <REVINFO>
 <!-- Base64 encoded REV_INFO structure -->
 </REVINFO>

 <CLIENTID>
 <!-- Client ID structure -->
 </CLIENTID>

 <!-- Version of the DRMv11 client -->
 <CLIENTVERSION>11.0.6002.18005</CLIENTVERSION>

 <SECURITYVERSION>2.5.0.0</SECURITYVERSION>

 <!-- Application security of client application -->
 <APPSECURITY>2000</APPSECURITY>

 <!-- Certificate subject ID of the component
 that is talking to DRM -->
 <SUBJECTID1>212</SUBJECTID1>

 <!-- Certificate subject ID of the component
 that is talking to the component-->
 <!-- talking to DRM. -->
 <SUBJECTID2>1107</SUBJECTID2>

 </CLIENTINFO>

 <!-- WMRMHEADER section, verbatim from the header of the content -->

 <WMRMHEADER version="2.0.0.0">
 <DATA>

 </DATA>
 <SIGNATURE>

 </SIGNATURE>
 </WMRMHEADER>

 </LICENSEREQUEST>

74 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.7 DRM Version 11 License Response Example

The following example shows a sample WMDRM: License Protocol version 11 license response that
contains all of the required elements. The fields might not contain complete data. For a complete

description of an element, see the respective element topic.

 <LICENSERESPONSE>
 <REVOCATION type="WMDRMNET">
 <!-- base64 encoded revocation list -->
 </REVOCATION>
 <REVOCATION type="DeviceRevocationList">
 <!-- base64 encoded revocation list -->
 </REVOCATION>
 <LICENSE version="2.0.0.0">
 <!-- encrypted and base64 encoded XML license -->
 </LICENSE>
 </LICENSERESPONSE>

75 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

5.1 Security Considerations for Implementers

 None.

5.2 Index of Security Parameters

None.

76 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

Note: Some of the information in this section is subject to change because it applies to a preliminary
product version, and thus may differ from the final version of the software when released. All behavior
notes that pertain to the preliminary product version contain specific references to it as an aid to the

reader.

 Windows NT operating system

 Windows 2000 operating system

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 v1511 operating system

 Windows Server 2016 Technical Preview operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 1.7: Windows NT applies only to DRM version 1.

Windows 2000 and Windows Server 2003 apply only to DRM version 1 and version 7.

Windows XP, Windows Vista, and Windows 7 apply to DRM version 1, version 7, and version 11.

Windows Server 2008, Windows Server 2008 R2 operating system, Windows 8, Windows Server 2012,
Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 2016 Technical Preview10
v1511 apply to DRM version 1, version 7, and version 11, but only when acting as a client.

<2> Section 2.1: Transport mechanism is implemented in Windows 2000, Windows XP operating
system Service Pack 2 (SP2), Windows Server 2003, Windows Vista, and Windows Server 2008. The

77 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

WMDRM: License Protocol uses HTTP or HTTPS for data transfer, depending on the license acquisition
URL specified in the WMRMHEADER object. The TCP ports are configurable by the implementer.

<3> Section 2.2.2.2: The normal sequence of operations that the web page script takes in order to
store the license locally is as follows:

1. Create an IWMDRMProvider instance via WMDRMCreateProvider or
WMDRMCreateProtectedProvider.

2. Create an IWMDRMLicenseManagement instance by calling IWMDRMProvider::CreateInstance,
passing in the IID of IWMDRMLicenseManagement.

3. Call IWMDRMLicenseManagement::StoreLicense to store the license locally.

<4> Section 2.2.3.2.32: The value of the predefined script variable "app.count" is 2 if the client
application uses the Windows Media Digital Rights Management (WMDRM) SDK or 1 if an application

uses DRM directly.

78 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Change Tracking

No table of This section identifies changes is available. Thethat were made to this document is either
new or has had no changes since itsthe last release. Changes are classified as New, Major, Minor,
Editorial, or No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.

Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements or functionality.

 The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed. Editorial
changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor editorial
and formatting changes may have been made, but the technical content of the document is identical
to the last released version.

Major and minor changes can be described further using the following change types:

 New content added.

 Content updated.

 Content removed.

 New product behavior note added.

 Product behavior note updated.

 Product behavior note removed.

 New protocol syntax added.

 Protocol syntax updated.

 Protocol syntax removed.

 New content added due to protocol revision.

 Content updated due to protocol revision.

 Content removed due to protocol revision.

 New protocol syntax added due to protocol revision.

 Protocol syntax updated due to protocol revision.

 Protocol syntax removed due to protocol revision.

 Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

79 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Some important terms used in the change type descriptions are defined as follows:

 Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

 Protocol revision refers to changes made to a protocol that affect the bits that are sent over the

wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section
Tracking number (if applicable)
and description

Major change
(Y or N)

Change type

1.7 Versioning and
Capability Negotiation

Updated product behavior note for
Windows 10 v1511.

Y
Product behavior
note updated.

6 Appendix A: Product
Behavior

Added Windows 10 v1511 to
applicability list.

Y Content update.

80 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Index

A

Abstract data model
 client 55
 server 60
ACTION (section 2.2.3.1.3.1 27, section 2.2.3.2.5 35)
Applicability 14
APPSECURITY 27

B

Base64 encoding 16

C

Capability negotiation 15
CERT structure 22
CERTDATA structure 23
CERTIFICATE [Protocol] 35
CERTIFICATECHAIN 35
CERTIFIED_LICENSE structure 23
Change tracking 78
Client
 abstract data model 55
 higher-layer triggered events 56
 initialization 56
 message processing 56
 other local events 60
 sequencing rules 56
 timer events 60
 timers 55
CLIENTID (element) 28
CLIENTID structure 28
CLIENTVERSION 28
Common Data Types and Algorithms message 16
CONDITION (CONTENTREVOCATION/DATA) 36
CONDITION (ONACTION - ONSELECT - ONSTORE) 36
CONTENTPUBKEY 36
CONTENTREVOCATION 36
Cryptographic keys 18
Cryptographic parameters 17

D

Data model - abstract
 client 55
 server 60
Data types
 Digital Rights Management 40
 in DRM expressions 40
 version 1 (section 2.2.1 16, section 2.2.2 20)

 version 11 (section 2.2.1 16, section 2.2.4 49)
 version 7 (section 2.2.1 16, section 2.2.3 25)
Details 55
Digital Rights Management data types 40
DRM expressions data types 40
DRM Version 1 Data Types message 20
DRM Version 1 license format (section 2.2.2.3 22, section 2.2.3.2.4.1 31)
DRM Version 1 License Response [Protocol] 21
DRM Version 11 Data Types message 49
DRM Version 11 license response 54

81 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DRM Version 7 Data Types message 25
DRM Version 7 license format 31
DRM_Version_1_License_Request packet 20
DRMKVERSION 28

E

ENABLINGBITS 37
Events in DRM licenses 37
Examples 70
Expressions in DRM licenses 37

F

Fields - vendor-extensible 15

G

Glossary 8

H

Higher-layer triggered events
 client 56
 server 62

I

Implementer - security considerations 75
Implementers - security considerations 75
Index of security parameters 75
Informative references 10
Initialization
 client 56
 server 61
 overview 61
 revocation data - retrieving 61
Introduction 8

K

KID 41

L

LICENSE structure 23
LICENSEDATA structure 24
Licenses
 events in 37
 expressions in 37
 operators in 38
LICENSESERVERPUBKEY 41
LicenseToSend structure 19
LID 41
Local events
 other 60
 server 69

M

MACHINECERTIFICATE 50
Message processing
 client 56
 server 62

82 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Messages
 Common Data Types and Algorithms 16
 DRM Version 1 Data Types 20
 DRM Version 11 Data Types 49
 DRM Version 7 Data Types 25
 syntax 16
 transport 16
META 41

N

Normative references 10

O

ONACTION 41
ONCLOCKROLLBACK 42
ONSELECT 42
ONSTORE 42
Operators in DRM licenses 38
Other local events 60
 client 60
 server 69
Overview 11
Overview (synopsis) 11

P

Parameters - security index 75
PK structure 18
PKCERT structure 19
Preconditions 14
Predefined functions in DRM expressions 43
Predefined variables in DRM expressions 44
Prerequisites 14
PRIORITY 45
Product behavior 76
PUBKEY 46
PUBKEY structure 19

R

References 9
 informative 10
 normative 10

Relationship to other protocols 14
REVINFO 53
REVOCATION 46

S

Security 75
 implementer considerations 75
 parameter index 75
SECURITYVERSION 28
SEQUENCENUMBER 46
Sequencing rules
 client 56
 server 62
Server
 abstract data model 60
 higher-layer triggered events 62
 initialization 61
 overview 61

83 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 revocation data - retrieving 61
 local events 69
 message processing 62
 other local events 69
 sequencing rules 62
 timer events 69
 timers 61
SIGNATURE (CONTENTREVOCATION/LICENSORINFO) 47
SIGNATURE (ENABLINGBITS) 47
Standards assignments 15
SUBJECTID1 29
SUBJECTID2 29
Syntax - message 16

T

Timer events

 client 60
 server 69
Timers
 client 55
 server 61
Tracking changes 78
Transport 16
Transport - message 16
Triggered events - higher-layer
 client 56
 server 62

V

V1CHALLENGE 29
VALUE 47
Vendor-extensible fields 15
Version 1
 client message processing events 56
 client sequencing rules 56
 data types (section 2.2.1 16, section 2.2.2 20)
 license response example 70
 overview 12
 server message processing 62
 server sequencing rules 62
Version 11
 client message processing events 59
 client sequencing rules 59
 data types (section 2.2.1 16, section 2.2.4 49)
 license example 74
 overview 13
 server message processing 67
 server sequencing rules 67
Version 7
 client message processing events 57
 client sequencing rules 57
 data types (section 2.2.1 16, section 2.2.3 25)
 license example 72
 license request example 71
 nonsilent license response example 72

 overview 12
 server message processing 64
 server sequencing rules 64
Versioning 15

W

WMDRMRLVICERTCHAIN structure 48

84 / 84

[MS-DRM-Diff] - v20160714
Digital Rights Management License Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

WMDRMRLVIHEAD structure 48
WMDRMRLVISIGNATURE structure 48
WMDRMRLVIVERSION structure 49
WMRMHEADER 29

