

1 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

[MS-DPDX]:
DirectPlay DXDiag Usage Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Revision Summary

Date

Revision

History

Revision

Class Comments

07/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

09/28/2007 0.1.1 Editorial Revised and edited the technical content.

10/23/2007 0.2 Minor Updated the technical content.

11/30/2007 0.3 Minor Updated the technical content.

01/25/2008 1.0 Major Updated and revised the technical content.

03/14/2008 2.0 Major Updated and revised the technical content.

05/16/2008 2.0.1 Editorial Revised and edited the technical content.

06/20/2008 2.1 Minor Updated the technical content.

07/25/2008 2.2 Minor Updated the technical content.

08/29/2008 3.0 Major Updated and revised the technical content.

10/24/2008 4.0 Major Updated and revised the technical content.

12/05/2008 5.0 Major Updated and revised the technical content.

01/16/2009 6.0 Major Updated and revised the technical content.

02/27/2009 7.0 Major Updated and revised the technical content.

04/10/2009 8.0 Major Updated and revised the technical content.

05/22/2009 9.0 Major Updated and revised the technical content.

07/02/2009 10.0 Major Updated and revised the technical content.

08/14/2009 10.1 Minor Updated the technical content.

09/25/2009 11.0 Major Updated and revised the technical content.

11/06/2009 11.0.1 Editorial Revised and edited the technical content.

12/18/2009 11.0.2 Editorial Revised and edited the technical content.

01/29/2010 11.1 Minor Updated the technical content.

03/12/2010 11.1.1 Editorial Revised and edited the technical content.

04/23/2010 11.1.2 Editorial Revised and edited the technical content.

06/04/2010 11.2 Minor Updated the technical content.

07/16/2010 11.3 Minor Clarified the meaning of the technical content.

3 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Date

Revision

History

Revision

Class Comments

08/27/2010 11.4 Minor Clarified the meaning of the technical content.

10/08/2010 11.4 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 11.4 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 11.4 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 11.4 No change No changes to the meaning, language, or formatting of

the technical content.

03/25/2011 11.4 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 11.4 No change No changes to the meaning, language, or formatting of

the technical content.

06/17/2011 11.5 Minor Clarified the meaning of the technical content.

09/23/2011 11.5 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 11.5 No change No changes to the meaning, language, or formatting of

the technical content.

03/30/2012 11.5 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 11.5 No change No changes to the meaning, language, or formatting of

the technical content.

10/25/2012 11.5 No change No changes to the meaning, language, or formatting of

the technical content.

01/31/2013 11.5 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 11.5 No change No changes to the meaning, language, or formatting of

the technical content.

11/14/2013 11.5 No change No changes to the meaning, language, or formatting of

the technical content.

02/13/2014 11.5 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Contents

1 Introduction ... 7
1.1 Glossary ... 7
1.2 References .. 9

1.2.1 Normative References ... 9
1.2.2 Informative References ... 10

1.3 Overview .. 10
1.3.1 How DXDiag Uses DirectPlay .. 11

1.4 Relationship to Other Protocols .. 11
1.5 Prerequisites/Preconditions ... 12
1.6 Applicability Statement ... 12
1.7 Versioning and Capability Negotiation ... 12
1.8 Vendor-Extensible Fields ... 13
1.9 Standards Assignments .. 13

2 Messages.. 14
2.1 Transport .. 14
2.2 Message Syntax .. 14

2.2.1 DPNID .. 14
2.2.2 _MESSAGE_HEADER ... 14
2.2.3 DXDiag DirectPlay Packets ... 16
2.2.4 EnumQuery ... 18
2.2.5 EnumResponse .. 19
2.2.6 SESS_PATH_TEST .. 22
2.2.7 TRANS_COMMAND_CONNECT .. 23
2.2.8 TRANS_COMMAND_CONNECT_ACCEPT ... 24
2.2.9 TRANS_COMMAND_SACK .. 26
2.2.10 TRANS_USERDATA_ACK_SESSION_INFO .. 28
2.2.11 TRANS_USERDATA_ADD_PLAYER ... 28
2.2.12 TRANS_USERDATA_CONNECT_ATTEMPT_FAILED ... 31
2.2.13 TRANS_USERDATA_CONNECT_FAILED .. 31
2.2.14 TRANS_USERDATA_TERMINATE_SESSION... 32
2.2.15 TRANS_USERDATA_DESTROY_PLAYER .. 33
2.2.16 TRANS_USERDATA_END_OF_STREAM ... 34
2.2.17 TRANS_USERDATA_HEADER .. 35

2.2.17.1 Coalesced Payloads ... 37
2.2.18 TRANS_USERDATA_HOST_MIGRATE ... 38
2.2.19 TRANS_USERDATA_HOST_MIGRATE_COMPLETE .. 39
2.2.20 TRANS_USERDATA_INSTRUCT_CONNECT .. 39
2.2.21 TRANS_USERDATA_INSTRUCTED_CONNECT_FAILED .. 40
2.2.22 TRANS_USERDATA_KEEPALIVE .. 40
2.2.23 TRANS_USERDATA_NAMETABLE_VERSION .. 40
2.2.24 TRANS_USERDATA_REQ_NAMETABLE_OP ... 41
2.2.25 TRANS_USERDATA_ACK_NAMETABLE_OP ... 41
2.2.26 TRANS_USERDATA_PLAYER_CONNECT_INFO ... 43
2.2.27 TRANS_USERDATA_REQ_INTEGRITY_CHECK ... 46
2.2.28 TRANS_USERDATA_INTEGRITY_CHECK ... 46
2.2.29 TRANS_USERDATA_INTEGRITY_CHECK_RESPONSE .. 47
2.2.30 TRANS_USERDATA_RESYNC_VERSION.. 47
2.2.31 TRANS_USERDATA_SEND_MESSAGE .. 47
2.2.32 TRANS_USERDATA_SEND_PLAYER_DNID .. 48

5 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.33 TRANS_USERDATA_SEND_SESSION_INFO .. 49
2.2.33.1 DN_NAMETABLE_ENTRY_INFO .. 53
2.2.33.2 DN_NAMETABLE_MEMBERSHIP_INFO .. 55

2.2.34 DN_ADDRESSING_URL.. 55
2.2.35 DN_ALTERNATE_ADDRESS (IPv4) .. 57

2.2.35.1 IN_ADDR (IPv4) ... 58
2.2.36 DN_ALTERNATE_ADDRESS (IPv6) .. 58

2.2.36.1 IN6_ADDR (IPv6).. 59
2.2.37 DN_NAMETABLE ... 60
2.2.38 PATHTESTKEYDATA .. 60

3 Protocol Details .. 62
3.1 Common Details .. 62

3.1.1 Abstract Data Model ... 62
3.1.2 Timers .. 62

3.1.2.1 Connect Retry Timer ... 62
3.1.2.2 EnumQuery Retry Timer .. 62
3.1.2.3 Retry Timer ... 62
3.1.2.4 KeepAlive Retry Timer ... 63
3.1.2.5 Path Test Retry Timer ... 63
3.1.2.6 Delayed Acknowledgment Timer ... 63

3.1.3 Initialization .. 63
3.1.4 Higher-Layer Triggered Events ... 64

3.1.4.1 Sending a Chat Message .. 64
3.1.4.2 Disconnecting .. 64

3.1.5 Processing Events and Sequencing Rules ... 64
3.1.5.1 Client Joins a DirectPlay Session with No Other Clients 64
3.1.5.2 Client Joins a DirectPlay Session with Multiple Other Clients 66
3.1.5.3 Client Disconnects from Chat Session .. 68
3.1.5.4 Server Disconnects from Chat Session .. 68
3.1.5.5 Client Is Forcefully Removed from Session ... 69
3.1.5.6 Client Detects Loss of Connection to Other Client .. 69
3.1.5.7 Participant Receives Chat Message .. 70
3.1.5.8 Command Byte (bCommand) Validation and Processing 70
3.1.5.9 Control Byte (bControl) Validation and Processing... 70
3.1.5.10 Send Sequence ID (bSeq) Validation and Processing 71
3.1.5.11 Acknowledged Sequence ID (bNRcv) Processing ... 71
3.1.5.12 SACK Mask Processing ... 71
3.1.5.13 Send Mask Processing ... 72

3.1.6 Timer Events ... 72
3.1.6.1 Connect Retry Timer ... 72
3.1.6.2 EnumQuery Retry Timer .. 72
3.1.6.3 Retry Timer ... 72
3.1.6.4 KeepAlive Retry Timer ... 73
3.1.6.5 Path Test Retry Timer ... 73
3.1.6.6 Delayed Acknowledgment Timer ... 73

3.1.7 Other Local Events ... 73
3.2 Server Details ... 73

3.2.1 Abstract Data Model ... 73
3.2.2 Timers .. 73
3.2.3 Initialization .. 73
3.2.4 Higher-Layer Triggered Events ... 73
3.2.5 Processing Events and Sequencing Rules ... 73

6 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.2.6 Timer Events ... 74
3.2.7 Other Local Events ... 74

3.3 Client Details ... 74
3.3.1 Abstract Data Model ... 74
3.3.2 Timers .. 74
3.3.3 Initialization .. 74
3.3.4 Higher-Layer Triggered Events ... 74
3.3.5 Processing Events and Sequencing Rules ... 74
3.3.6 Timer Events ... 74
3.3.7 Other Local Events ... 75

4 Protocol Examples .. 76
4.1 User Joins a DXDiag Chat Session Example ... 76
4.2 Client Disconnects from a DXDiag Chat Session Example .. 76
4.3 New Client Joins a Game Session with an Existing Client Example 76

5 Security .. 79
5.1 Security Considerations for Implementers ... 79
5.2 Index of Security Parameters .. 79

6 Appendix A: Product Behavior .. 80

7 Change Tracking... 83

8 Index ... 84

7 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1 Introduction

This specification pertains to the DirectPlay Protocol and describes how DirectPlay messages are
used natively by the DXDiag application. This protocol is intended for peer-to-peer network video
gaming.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

acknowledgment (ACK)
big-endian
client

coalesced payload
cyclic redundancy check (CRC)
DirectPlay
DirectPlay 4
DirectPlay 8
DirectPlay 8 protocol

DirectPlay 8 server application
DirectPlay Host
DirectPlay Name Server (DPNSVR)
DirectPlay protocol
DirectX
DirectX Diagnostic (DXDiag)
DirectX runtime

DPNID
game
globally unique identifier (GUID)
host
host migration
HRESULT
Internet Protocol security (IPsec)

Internet Protocol version 4 (IPv4)
Internet Protocol version 6 (IPv6)
Internetwork Packet Exchange (IPX)
ISO/OSI reference model
little-endian
local area network (LAN)

name table
network address translation (NAT)

network byte order
partner
peer
peer-to-peer mode
player

round-trip time (RTT)
sequence ID

%5bMS-GLOS%5d.pdf

8 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

server (3)
session layer

tick count
Transmission Control Protocol (TCP)

transport layer
Unicode
User Datagram Protocol (UDP)

The following terms are specific to this document:

command frame (CFRAME): A special DirectPlay 8 control frame that does not carry
application payload data. For more information, see the DirectPlay 8 Protocol: Reliable
Specification ([MC-DPL8R] section 2.2.1). See Also, data frame.

CRC-16-IBM algorithm: The CRC-16-IBM algorithm polynomial is x^16 + x^15 + x^2 + 1.
Normal and reversed representations are "0x8005" or "0xA001".

data frame (DFRAME): A DirectPlay 8 frame that exists in the standard connection sequence

space and typically carries application payload data. The total size of the DFRAME header and
payload should be less than the Maximum Transmission Unit (MTU) of the underlying protocols
and network. For more information, see the DirectPlay 8 Protocol: Reliable Specification ([MC-

DPL8R] section 2.2.2). See Also, command frame.

DXDiag application: See DirectX Diagnostic (DXDiag).

game session: The metadata associated with the collection of computers participating in a
single instance of a computer game.

group: A collection of players within a game session. Typically, players are placed in a group
when they serve a common purpose.

Note Groups are not supported by the DirectPlay DXDiag Usage Protocol.

instance: A specific occurrence of a game running in a game session. A game application

process or module may be created more than one time on a single computer system, or on
separate computer systems. Each time a game application process or module is created, the
occurrence is considered to be a separate instance.

modem link (or modem transport): Running the DXDiag application over a modem-to-
modem link. See Also, serial link.

name table entry: The DN_NAMETABLE_MEMBERSHIP_INFO structure along with associated

strings and data buffers for an individual participant in the DXDiag session. These could be
considered players.

next receive: The next 8-bit packet sequence ID expected to be received, indicating
acknowledgment of all packets up to this ID. This is typically represented as a field named
bNRcv in packet structures. See Also, next send.

next send: The next 8-bit packet sequence ID that will be sent. This is represented as bNSeq

in the selective acknowledgment packet structure, which does not have a sequence ID of
its own. DirectPlay 8 protocol implementations also keep an internal counter so that IDs can
be assigned in order. See Also, Next Receive.

payload: The data that is transported to and from the application that is using either the
DirectPlay 4 protocol or DirectPlay 8 protocol.

%5bMS-GLOS%5d.pdf
%5bMC-DPL8R%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMC-DPL8R%5d.pdf
%5bMC-DPL8R%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

9 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

poll packet (POLL): A packet in which the sender has set the PACKET_COMMAND_POLL bit
in the packet header. POLL indicates that the receiver must immediately acknowledge receipt

of the packet when it arrives.

selective acknowledgment (SACK): A cumulative mechanism that indicates successful receipt

of packets beyond the next receive indicator. Next receive reports all packets prior to when
its sequence ID has been received, but subsequent packets may have arrived out of order or
with gaps in the sequence. SACK masks enable the receiver to acknowledge these packets so
that they do not have to be retried, in addition to the packets that were truly lost. See Also,
acknowledgment (ACK), next receive, and next send.

send mask: A bit-mask mechanism that indicates that previously sent packets may have been
dropped, were not marked as reliable, and will never be retried.

serial link (or serial transport): Running the DXDiag application over a null modem cable
connecting two computers. See Also, modem link.

session packet: A session packet is associated with client/server session management. A

session packet begins with a zero byte and is used for locating sessions and testing network
paths. See transport packet.

transport packet: A transport packet has a nonzero first byte and is further divided into

command, user data, and acknowledgment packet types. See session packet.

wide characters: Characters represented by a 2-byte value that are encoded using Unicode
UTF-16. Unless otherwise stated, no range restrictions apply.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
specified in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because

links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information.

[FIPS180] FIPS PUBS, "Secure Hash Standard", FIPS PUB 180-1, April 1995,

http://www.itl.nist.gov/fipspubs/fip180-1.htm

[IANAPORT] IANA, "Port Numbers", November 2006, http://www.iana.org/assignments/port-
numbers

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980,
http://www.ietf.org/rfc/rfc768.txt

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89867
http://go.microsoft.com/fwlink/?LinkId=89888
http://go.microsoft.com/fwlink/?LinkId=89888
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90490

10 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[IPX] Microsoft Corporation, "Internetwork Packet Exchange (IPX)", http://msdn.microsoft.com/en-
us/library/ms817906.aspx

[MC-DPL4CS] Microsoft Corporation, "DirectPlay 4 Protocol: Core and Service Providers".

[MC-DPL8CS] Microsoft Corporation, "DirectPlay 8 Protocol: Core and Service Providers".

[MC-DPL8R] Microsoft Corporation, "DirectPlay 8 Protocol: Reliable".

[MC-DPLHP] Microsoft Corporation, "DirectPlay 8 Protocol: Host and Port Enumeration".

[MC-DPLNAT] Microsoft Corporation, "DirectPlay 8 Protocol: NAT Locator".

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

1.3 Overview

The DirectPlay DXDiag Usage Protocol is designed to handle the following two basic types of network
messaging for networked gaming:

Reliable versus not reliable messaging: This determines whether or not messages are guaranteed

to be delivered to the target application in the event of packet loss.

Sequential versus non-sequential messaging: This determines whether or not messages are

received by the target application in the same order in which they are sent in the event of packet
loss or incorrect ordering.

Games use messaging for a variety of purposes, each with different demands. To support the range
of messaging requirements, the DirectPlay DXDiag Usage Protocol designates a message as

belonging to one of four categories, depending on whether the message is reliable and/or
sequential. The categories are specified by setting the PACKET_COMMAND_RELIABLE and
PACKET_COMMAND_SEQUENTIAL flags in the bCommand field of the
TRANS_USERDATA_HEADER packet header as follows:

Message category Flags set

Reliable and Sequential PACKET_COMMAND_RELIABLE and PACKET_COMMAND_SEQUENTIAL

Not reliable and Sequential PACKET_COMMAND_SEQUENTIAL

Reliable and Non-sequential PACKET_COMMAND_RELIABLE

Not reliable and Non-sequential None

The DirectPlay DXDiag Usage Protocol enables optimizing of messaging strategy by assigning

categories on a message-by-message basis.

Reliable packets are those that the upper layer considers important to retry when they are lost on
the network. Packets not marked as reliable are for temporary messages that are not critical to
operation and are not retried because they are replaced with subsequent messages. Sequential
packets are those that have to be delivered according to the upper layer and have to wait until the

http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=89914
http://go.microsoft.com/fwlink/?LinkId=89914
%5bMC-DPL4CS%5d.pdf
%5bMC-DPL8CS%5d.pdf
%5bMC-DPL8R%5d.pdf
%5bMC-DPLHP%5d.pdf
%5bMC-DPLNAT%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

11 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

gaps in the sequence due to packet loss are resolved. However, non-sequential packets can be
delivered to the upper layer as they arrive.

1.3.1 How DXDiag Uses DirectPlay

DirectPlay DXDiag Usage Protocol packets are transported by means of User Datagram Protocol
(UDP) (as specified in [RFC768]) and internetwork packet exchange [IPX]. To facilitate
transport over unreliable serial streams, such as those provided by direct connection serial and
modem links, a message format with signatures and checksums is defined in section 2.2.

Enumeration packets are used for lightweight discovery of available game sessions, typically on a
local area network (LAN). The computer hosting a DXDiag game session listens for incoming
enumeration queries from a remote computer and responds with enumeration replies. Upon

receiving the response, the remote computer initiates a stateful connection to the hosting computer
in order to participate in the game session.

In the DXDiag game session, an array of identifiers is contained in a name table. When a new
client joins a session, the client receives a name table that lists all of the clients currently in the

game session. When a client departs the game session, the identifier for that client is removed from
the name table. The name table itself is kept current through the use of a version number.

The DirectPlay DXDiag Usage Protocol is a sliding window protocol that requires the receiver to
acknowledge received UDP packets before more packets are transmitted. An acknowledgment
(ACK) can be conveyed in one of two ways: either bundled within back traffic sent from the
receiver, or, when no back traffic is flowing, sent from the receiver as a dataless selective
acknowledgment (SACK) packet.

When the ACK is bundled within back traffic, fields within the header are used to indicate the
sequence number of the next expected packet. This acknowledges that all packets with sequence

numbers less than the specified number have been received correctly. If an ACK is not received
within a specified amount of time, the original packet is resent with the same sequence number as
was previously assigned.

Note The specified amount of time is derived from the current round-trip time (RTT) measured
by previously acknowledged messages. An initial RTT measurement should also be taken from the
TRANS_COMMAND_CONNECT_ACCEPT response to the TRANS_COMMAND_CONNECT or
TRANS_COMMAND_CONNECT_ACCEPT packet sent during the initial handshake.

If the original sender specifies poll packet (POLL) (ACK now) in the packet header, the receiver
must immediately acknowledge the packet when it arrives.

1.4 Relationship to Other Protocols

The DirectPlay DXDiag Usage Protocol has a dependency on UDP, or other similar datagram-
oriented, connectionless protocol such as IPX, for the transport layer. As a native Windows protocol,

no other protocols depend on the DirectPlay DXDiag Usage Protocol.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90490
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89914
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

12 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Figure 1: DirectPlay DXDiag Usage Protocol relationship to other protocols

1.5 Prerequisites/Preconditions

All multiple-byte fields used by the DirectPlay DXDiag Usage Protocol are in little-endian byte
order, unless otherwise noted.

1.6 Applicability Statement

The DirectPlay DXDiag Usage Protocol was designed for multiplayer network gaming, but not for
other uses of peer-to-peer messaging. It is not recommended for file transfer or for applications
with robust security requirements that cannot provide them at other layers such as Internet Protocol
security IPsec.

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas:

Protocol versions: The DirectPlay protocol has the following version levels for features:

Any version level between 0x00010000 and 0x00010004 implements the base features. The

base features include all features described in this specification [MS-DPDX] except for signing
and coalescence.

A version level of 0x00010005 implements the base features and adds support for

coalescence.

A version level of 0x00010006 implements the base features, supports coalescence, and adds

support for signing.

In the DirectPlay DXDiag Usage Protocol, the version level value is specified in the
dwCurrentProtocolVersion field of the TRANS_COMMAND_CONNECT or
TRANS_COMMAND_CONNECT_ACCEPT message.

Note DirectPlay DXDiag Usage Protocol version numbers advertise the availability of coalescence

and signing, but they do not mandate the usage of these features. Even when the recipient
indicates support for coalescence or signing, the implementation can choose not to use these
features.<1>

Capability negotiation: The DirectPlay DXDiag Usage Protocol inspects the value of the

dwCurrentProtocolVersion field of the TRANS_COMMAND_CONNECT and
TRANS_COMMAND_CONNECT_ACCEPT messages to identify the features that are supported by

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

13 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

the sender and receiver. In this respect, capability negotiation is provided in a manner similar to
that available in the DirectPlay 8 Protocol, as described in [MC-DPL8R] section 1.7.

Note After the release of DirectPlay 4, earlier versions of DirectPlay were modified to resolve to
DirectPlay 4, as described in [MC-DPL4CS]. These versions include:<2>

DirectPlay (1)

DirectPlay 2

DirectPlay 2A

DirectPlay 3

DirectPlay 3A

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

The DirectPlay DXDiag Usage Protocol uses one well-known UDP port assignment.

Parameter Value Reference

UDP port for DirectPlay 6073/udp [IANAPORT]

For the purpose and use of this port assignment, see section 3.

%5bMC-DPL8R%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMC-DPL4CS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89888

14 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2 Messages

This protocol references commonly used data types as defined in [MS-DTYP].

2.1 Transport

The DirectPlay DXDiag Usage Protocol uses UDP, internetwork packet exchange (IPX), serial, or
modem as the transport. The DirectPlay DXDiag Usage Protocol can utilize either IPv4 or IPv6. The
wire protocol format is the same for UDP and IPX. When a serial or modem link is used, there is an
extra header, as specified in section 2.2.2.

2.2 Message Syntax

2.2.1 DPNID

The DPNID identifier describes the 32-bit DirectPlay network identifier for a player in a game
session.

This type is declared as follows:

typedef DWORD DPNID, *PDPNID;

The DPNID for each player in the game session MUST be unique. The DPNID for a player is

generated in several steps while adding the player to the game session.

1. The index of the entry in the name table that was used to create the player is stored in the
lowest 20 bits of the DPNID. For example, when the index of the entry within the name table is 5,
the index is stored as 0xNNN00005.

2. Along with the index, the version of the name table that existed when the entry was created is

also stored. For example, when the name table version is 10 (0x0A), the index is stored as
0x00A00005.

3. This value is then XOR'd with the first 32 bits of the game session instance GUID. For example,
if the instance GUID begins with 0xA1B2C3D4, the DPNID 0x00A00005 value would be XOR'd
with 0xA1B2C3D4 to yield 0xA112C3D1.

Note The DirectPlay host uses the DPNID of a player to determine the location for this DPNID

entry in the name table.

2.2.2 _MESSAGE_HEADER

When a serial or modem link is used, any of the packets listed in the table in section 2.2.3 are
modified by prefixing them with the _MESSAGE_HEADER header. Exceptions to this are the packets
EnumQuery (section 2.2.4) and EnumResponse (section 2.2.5), which use _MESSAGE_HEADER in

place of the first 32 bits of their payloads.

For example, the following figure illustrates the contents of the
TRANS_USERDATA_DESTROY_PLAYER packet when prefixed with the _MESSAGE_HEADER header.

%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

15 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Figure 2: TRANS_USERDATA_DESTROY_PLAYER packet prefixed with the
_MESSAGE_HEADER header

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Signature MessageType wMessageSize

wMessageCRC wHeaderCRC

Signature (1 byte): An 8-bit serial signature for the packet. This MUST be set to the value
0xCC.

MessageType (1 byte): An 8-bit token that indicates the message type. The high 4 bits MUST
be set to one of the following values.

Value Meaning

0x20 This message contains an enumeration response. See section 2.2.5.

0x40 This message contains a transport packet message following the header, and the low

two bits MUST be ignored.

0x60 This message contains an enumeration query. See section 2.2.4.

The low two bits of the MessageType value in an enumeration query MUST be echoed in

the low two bits of the enumeration response (a message with MessageType value of

"0x20"). The sender MAY use any identifier value for the enumeration query. However, the

16 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Value Meaning

sender SHOULD use this value to correlate queries with responses to calculate the round-

trip time (RTT).

wMessageSize (2 bytes): A 16-bit integer that specifies the size, in bytes, of the message.

wMessageCRC (2 bytes): A 16-bit integer that provides the CRC, in bytes, for the message

data, which is calculated using the standardized CRC-16-IBM algorithm.

wHeaderCRC (2 bytes): A 16-bit integer that provides the CRC, in bytes, for the message
header, which is calculated using the standardized CRC-16-IBM algorithm.

2.2.3 DXDiag DirectPlay Packets

DirectPlay DXDiag Usage Protocol packets beginning with a zero byte are used to locate game

sessions and to test network paths for peer connection attempts. Packets that have a nonzero first

byte are part of an actively managed connection and are further divided into command, user data,
and ACK packet types.

A packet's purpose is determined by a combination of its command values, extended operation code
values, or flag values within the packet header. For user data transport packets, the first byte that
follows the 4-byte header declares the type of information included in the packet.

The DirectPlay DXDiag Usage Protocol uses the following packets.

Packet Description

EnumQuery Enumerates hosting servers.

EnumResponse Responds to an enumeration request.

SESS_PATH_TEST Circumvents issues with network address

translation (NAT) devices.

TRANS_USERDATA_HEADER Transport packet header that contains command,

control, and acknowledgment information.

TRANS_USERDATA_PLAYER_CONNECT_INFO Sends client connection information to the host.

TRANS_USERDATA_SEND_SESSION_INFO Relays game session information from the server

to the client.

TRANS_USERDATA_ACK_SESSION_INFO Sent from the client to the server to acknowledge

the receipt of connection information.

TRANS_USERDATA_INSTRUCT_CONNECT Instructs a client to connect to a designated client.

TRANS_USERDATA_NAMETABLE_VERSION Specifies the version number of the name table.

TRANS_USERDATA_REQ_NAMETABLE_OP Instructs a client to send name table information

to the host.

TRANS_USERDATA_ACK_NAMETABLE_OP Transmits name table information from a client to

the host.

TRANS_USERDATA_RESYNC_VERSION Requests that the name table version number be

resynchronized to the current version number.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

17 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Packet Description

TRANS_USERDATA_SEND_PLAYER_DNID Sends a user identification number to another

client.

TRANS_USERDATA_KEEPALIVE Used by DXDiag to calculate an RTT.

TRANS_USERDATA_CONNECT_ATTEMPT_FAILED Indicates that a peer in the game session is unable

to connect to a new peer.

TRANS_USERDATA_CONNECT_FAILED Indicates that a connection attempt failed.

TRANS_USERDATA_TERMINATE_SESSION Instructs a client to disconnect from the game

session.

TRANS_USERDATA_INSTRUCTED_CONNECT_FAILED Indicates that a client was unable to carry out a

server's instruction to connect to a new client.

TRANS_USERDATA_HOST_MIGRATE Indicates that host migration is enabled and that

the host server is terminating.

TRANS_USERDATA_HOST_MIGRATE_COMPLETE Informs clients that the game session-hosting

responsibilities have successfully migrated from

the departing host.

TRANS_USERDATA_ADD_PLAYER Instructs clients to add the specified client to the

game session.

TRANS_USERDATA_DESTROY_PLAYER Instructs clients to remove the specified user from

the name table.

TRANS_USERDATA_END_OF_STREAM Signals the disconnection of a user.

TRANS_USERDATA_REQ_INTEGRITY_CHECK Requests that a host determine if a target client is

still in the game session.

TRANS_USERDATA_INTEGRITY_CHECK Requests that a client validate that it is still in the

game session.

TRANS_USERDATA_INTEGRITY_CHECK_RESPONSE Response from a client validating that it is still in

the game session.

TRANS_USERDATA_SEND_MESSAGE Transmits a chat message to all other users in the

game session.

TRANS_COMMAND_CONNECT Requests a connection.

TRANS_COMMAND_CONNECT_ACCEPT Accepts a connection request.

TRANS_COMMAND_SACK Acknowledges outstanding packets.

To reduce network traffic, several DirectPlay TRANS_USERDATA packets can be fused into a single

packet using a special coalesced payload, as defined in section 2.2.17.1. TRANS_USERDATA
packets that have the PACKET_COMMAND_USER1 or PACKET_COMMAND_USER2 flag set in the

bCommand field of the TRANS_USERDATA_HEADER packet header can be coalesced.

%5bMS-GLOS%5d.pdf

18 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.4 EnumQuery

The EnumQuery packet is used to enumerate hosting servers [MC-DPLHP]. The server replies with
an EnumResponse to the client, where one EnumResponse message is sent for each game session

that is running on the server. As a result, the client can receive multiple EnumResponse messages if
more than one game session is running. The manner in which multiple available game sessions are
handled, such as presenting a list to the user for selection, is left to the implementation.

Note When a serial or modem link is used, the _MESSAGE_HEADER (section 2.2.2) header replaces
the first 32 bits of the EnumQuery payload (the LeadByte, CommandByte, and EnumPayload
fields).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

LeadByte CommandByte EnumPayload

QueryType ApplicationGUID (optional)

...

...

...

... ApplicationPayload (variable)

...

LeadByte (1 byte): This field is 8 bits in length. It MUST be 0x00.

Note The first byte MUST be 0 for the message to be a valid EnumQuery message. When a
message is received and the first byte is nonzero, the entire message MUST be passed
through for processing as described in [MC-DPL8R].

CommandByte (1 byte): This field is 8 bits in length. It MUST be 0x02.

EnumPayload (2 bytes): This field is 16 bits in length. The EnumPayload is a value selected
by the sender of the EnumQuery message that MUST be echoed in the EnumResponse
message. It SHOULD be used to match EnumResponse messages to their corresponding
EnumQuery.

QueryType (1 byte): This field is 8 bits in length. The value MUST be set to one of the
following.

Value Meaning

0x01 Indicates that this query contains an ApplicationGUID field. Only DirectPlay 8 server

applications that are identified by the ApplicationGUID SHOULD respond to this

EnumQuery. For more information about the GUID type, see [MS-DTYP] section 2.3.4.

Applications SHOULD NOT respond to any EnumQuery messages where the QueryType

field is 0x01 and the ApplicationGUID field does not match the server application GUID.

%5bMC-DPLHP%5d.pdf
%5bMC-DPL8R%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf

19 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Value Meaning

Note For the DirectPlay DXDiag Usage Protocol, the value of QueryType SHOULD be set

to "0x01".

0x02 Indicates that this EnumQuery message contains no ApplicationGUID field. All DirectPlay

8 server applications that receive this EnumQuery SHOULD respond to it.

ApplicationGUID (16 bytes): The Application GUID. This field MUST be set to 61EF80DA-

691B-4247-9ADD-1C7BED2BC13E, which is the GUID for the DXDiag application.

ApplicationPayload (variable): The DirectPlay DXDiag Usage Protocol will never issue an
application payload.

2.2.5 EnumResponse

The EnumResponse packet is sent from the game session server to the client in response to the

EnumQuery packet that was sent from the client.

Note When a serial or modem link is used, the _MESSAGE_HEADER (section 2.2.2) header replaces
the first 32 bits of the EnumResponse payload (the LeadByte, CommandByte, and EnumPayload
fields).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

LeadByte CommandByte EnumPayload

ReplyOffset

ResponseSize

ApplicationDescSize

ApplicationDescFlags

MaxPlayers

CurrentPlayers

SessionNameOffset

SessionNameSize

PasswordOffset

PasswordSize

ReservedDataOffset

20 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

ReservedDataSize

ApplicationReservedDataOffset

ApplicationReservedDataSize

ApplicationInstanceGUID

...

...

...

ApplicationGUID

...

...

...

SessionName (variable)

...

Password (variable)

...

ReservedData (variable)

...

ApplicationReservedData (variable)

...

ApplicationData (variable)

...

LeadByte (1 byte): The leading zero byte for the packet. This field MUST be set to 0 to denote
that this is a session packet.

CommandByte (1 byte): An 8-bit integer that indicates the command code for the message.
This field MUST be set to 0x03 to denote that this is an EnumResponse message.

21 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

EnumPayload (2 bytes): A 16-bit integer value selected by the sender of the EnumQuery
message.

An EnumResponse message is generated for every EnumQuery message received. The
EnumPayload field in the EnumResponse message MUST match the EnumPayload field in

the corresponding EnumQuery message.

ReplyOffset (4 bytes): A 32-bit integer that provides the offset in bytes from the end of
EnumPayload to the start of the reply. If this field is 0, the packet does not contain a reply.

ResponseSize (4 bytes): A 32-bit integer that provides the size in bytes of the reply.

ApplicationDescSize (4 bytes): A 32-bit integer that provides the size of the application
description.

ApplicationDescFlags (4 bytes): A 32-bit integer that provides the characteristics of the

session specified as a combination of the following flags.<3>

Value Meaning

DPNSESSION_MIGRATE_HOST

0x00000004

Host migration is allowed.

DPNSESSION_NODPNSVR

0x00000040

Not using DirectPlay Name Server (DPNSVR) (game

session is not enumerable via well-known port 6073).

DPNSESSION_REQUIREPASSWORD

0x00000080

Password required to join game session.

DPNSESSION_NOENUMS

0x00000100

Enumerations are not allowed. This flag will never be set in

an EnumResponse message.

MaxPlayers (4 bytes): A 32-bit integer that specifies the maximum number of clients allowed
in the game session. A value of 0x00000000 denotes that an unlimited number of clients is

allowed.

CurrentPlayers (4 bytes): A 32-bit integer that specifies the current number of clients in the
game session.

SessionNameOffset (4 bytes): A 32-bit integer that specifies the offset in bytes from the end

of EnumPayload to the start of the game session name.

SessionNameSize (4 bytes): A 32-bit integer that specifies the size in bytes of the game
session name.

PasswordOffset (4 bytes): This field is 32 bits in length. A password is never used in the
EnumResponse message; therefore, the PasswordOffset field will always be 0.

PasswordSize (4 bytes): This field is 32 bits in length. Passwords are not used in
EnumResponse messages transmitted in the DirectPlay DxDiag Usage Protocol; therefore, the

PasswordSize field will always be 0.

ReservedDataOffset (4 bytes): A 32-bit field that specifies the offset, in bytes, from the end
of the EnumPayload field to the ReservedData field. Since the ReservedData field is never
used, ReservedDataOffset will always be 0.

%5bMS-GLOS%5d.pdf

22 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

ReservedDataSize (4 bytes): A 32-bit field that specifies the size, in bytes, of the
ReservedData field. Since the ReservedData field is never used, ReservedDataSize will

always be 0.

ApplicationReservedDataOffset (4 bytes): The ApplicationReservedData field is not used

by the DirectPlay DxDiag Usage Protocol, and therefore, the
ApplicationReservedDataOffset field will always have a value of 0.

ApplicationReservedDataSize (4 bytes): The ApplicationReservedData field is not used by
the DirectPlay DxDiag Usage Protocol, and therefore, the ApplicationReservedDataSize
field will always have a value of 0.

ApplicationInstanceGUID (16 bytes): The instance GUID that identifies the game session.

ApplicationGUID (16 bytes): The application GUID. This field MUST be set to 61EF80DA-

691B-4247-9ADD-1C7BED2BC13E, which is the GUID for the DXDiag application.

SessionName (variable): An array of Unicode characters that describes the game session

name with the size specified by SessionSize and the offset from the beginning of the packet
specified by SessionOffset.

Password (variable): The EnumResponse message will never contain a password as
passwords are not utilized in the DirectPlay DxDiag Usage Protocol; therefore, this field is

unused.

ReservedData (variable): This field was intended to be used for future extensions to the
DirectPlay 8 Protocol, but was never used.

ApplicationReservedData (variable): This field is not used by the DirectPlay DxDiag Usage
Protocol.

ApplicationData (variable): This field MUST be filled with zeroes on sending and MUST be
ignored upon receipt.

2.2.6 SESS_PATH_TEST

The SESS_PATH_TEST packet is used to circumvent issues with NAT devices. SESS_PATH_TEST
packets are sent only when IPv4 is the transport. Path test packets and NAT are described in [MC-
DPLNAT].

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

blZero bCommand wMsgID

Key

...

blZero (1 byte): The leading zero byte for the packet. This field MUST be set to 0 to denote
that this is a session packet.

bCommand (1 byte): An 8-bit integer that provides the command code for the message. This
field MUST be set to 0x05 to denote that this is a SESS_PATH_TEST message.

%5bMS-GLOS%5d.pdf
%5bMC-DPLHP%5d.pdf
%5bMC-DPLNAT%5d.pdf
%5bMC-DPLNAT%5d.pdf

23 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

wMsgID (2 bytes): A 16-bit integer value used to uniquely identify an individual
SESS_PATH_TEST message. This MAY be any value selected by the sender and SHOULD be

ignored by the receiver.<4>

Key (8 bytes): A 64-bit integer that provides the unique key associated with the

SESS_PATH_TEST message. For information about how this value is generated, see section
3.1.1.

2.2.7 TRANS_COMMAND_CONNECT

The TRANS_COMMAND_CONNECT packet is used to request a connection. The response is a
TRANS_COMMAND CONNECT_ACCEPT packet.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

bCommand bExtOpCode bMsgID bRspId

dwCurrentProtocolVersion

dwSessID

tTimestamp

bCommand (1 byte): An 8-bit integer that provides the command code for the message. This

field MUST be set to one of the following values.

Value Meaning

0x80 Indicates that this message utilizes a command frame (CFRAME).

0x88 Indicates that this message utilizes a CFRAME (0x80) and POLL (0x08) values, which

specify that the sender requests immediate acknowledgment (ACK) from the receiver

upon receipt of the message.

If any other value is specified for the bCommand field, the packet MUST be ignored.

bExtOpCode (1 byte): An 8-bit integer that provides the extended operation code for the

message. This field MUST be set to 0x01 to denote that this message requests a connection.

bMsgID (1 byte): An 8-bit integer message identifier used to correlate the responses. The
initial value SHOULD be 0 and SHOULD be incremented each time the connect packet is
retried. The recipient MUST echo the value in the bRspId field when responding with a
TRANS_COMMAND_CONNECT_ACCEPT message.

bRspId (1 byte): An 8-bit integer that MUST be set to 0 when sending and MUST be ignored on

receipt.

dwCurrentProtocolVersion (4 bytes): The version number of the requestor's DirectPlay
protocol, in little-endian byte order, where the upper 16 bits are considered a major version
number and the lower 16 bits are considered a minor version number. The major version
number MUST NOT be set to any value other than 0x0001. The minor version number

24 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

SHOULD<5> be set to 0x0000 to indicate support for the base features, but MAY be set to a
value between 0x00010000 and 0x00010004, inclusive.

The recipient SHOULD be prepared to support older message formats used by earlier minor
versions. The recipient MUST ignore this packet if it does not support older message formats.

The recipient SHOULD be prepared to receive minor version numbers higher than what it
implements and supplies in its own TRANS_COMMAND_CONNECT or TRANS_COMMAND
CONNECT_ACCEPT message, but both sides MUST only use message formats compatible with
the lower of their two version numbers.

Note While a receiver may indicate support for coalescence (version level of 0x00010005 or
higher) and a sender may choose to use this feature when it is available by the receiver, the
DirectPlay DXDiag Usage Protocol utilizes the coalescence feature on any TRANS_USERDATA

messages except TRANS_USERDATA_SEND_MESSAGE (section 2.2.31). In addition, the
signing feature (version level 0x00010006) will not be utilized by the DirectPlay DXDiag Usage
Protocol even when the receiver indicates support for the signing feature.

Value Meaning

0x00010000 —

0x00010004

Any protocol version number between 1.0 and 1.4 implements the base

features.

0x00010005 Protocol version number 1.5 implements the base features, and adds

support for coalescence.

Note The coalescence feature is not used by the base implementation of

the DirectPlay DXDiag Usage Protocol.

0x00010006 Protocol version number 1.6 implements the base features, supports

coalescence, and adds support for signing.

Note The signing feature is not used by the base implementation of the

DirectPlay DXDiag Usage Protocol.

dwSessID (4 bytes): A 32-bit integer session identifier that is used to correlate the responses.
The value is dependent upon the implementation and SHOULD be a random number that is
not predictable. The value of dwSessID MUST NOT be 0 unless dwCurrentProtocolVersion

indicates a minor version less than 0x0005; otherwise, the packet MUST be ignored. The value
for dwSessID MUST remain the same when retrying the TRANS_COMMAND_CONNECT
packet. The recipient MUST echo the value in dwSessID when responding; otherwise, the
packet MUST be ignored.

tTimestamp (4 bytes): A 32-bit integer that provides the sender's computer system tick
count. The value of the tTimestamp field SHOULD be ignored, but MAY be used to estimate
the differences in local tick counts between a sender and receiver.

2.2.8 TRANS_COMMAND_CONNECT_ACCEPT

The TRANS_COMMAND_CONNECT_ACCEPT packet is used to accept a connection request.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

bCommand bExtOpCode bMsgID bRspId

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

25 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

dwCurrentProtocolVersion

dwSessID

tTimestamp

bCommand (1 byte): An 8-bit integer that provides the command code for the message. This
field MUST be set to one of the following values.

Value Meaning

0x80 Indicates that this message utilizes a command frame (CFRAME).

0x88 Indicates that this message utilizes a CFRAME (0x80) and POLL (0x08) values, which

specify that the sender requests immediate acknowledgment (ACK) from the receiver

upon receipt of the message.

When the packet is used to accept a connection request, the CFRAME and POLL values MUST

be set. When the packet is used to complete the connection handshake, the POLL value MUST
NOT be set. If any other values are set the packet MUST be ignored.

bExtOpCode (1 byte): An 8-bit integer that provides the extended operation code for the
message. This field MUST be set to 0x02 to denote that this message accepts a connection.

bMsgID (1 byte): An 8-bit integer that provides the identifier for the
TRANS_COMMAND_CONNECT_ACCEPT message. The initial value SHOULD be 0 and SHOULD

be incremented if the packet is retried.

bRspId (1 byte): An 8-bit integer response identifier. This field MUST be set to the value of the
bMsgID field in the TRANS_COMMAND_CONNECT (section 2.2.7) or
TRANS_COMMAND_CONNECT_ACCEPT message to which this is a response.

dwCurrentProtocolVersion (4 bytes): The version number of the requestor's DirectPlay
protocol, in little-endian byte order, where the upper 16 bits are considered a major version
number and the lower 16 bits are considered a minor version number. The major version

number MUST NOT be set to any value other than 0x0001. The minor version number
SHOULD<6> be set to 0x0000 to indicate support for the base features, but MAY be set to a
value between 0x00010000 and 0x00010004, inclusive.

The recipient SHOULD be prepared to support older message formats used by earlier minor
versions. The recipient MUST ignore this packet if it does not support older message formats.

The recipient SHOULD be prepared to receive minor version numbers higher than what it
implements and supplies in its own TRANS_COMMAND_CONNECT or TRANS_COMMAND

CONNECT_ACCEPT message, but both sides MUST only use message formats compatible with
the lower of their two version numbers.

Note While a receiver may indicate support for coalescence (version level of 0x00010005 or
higher) and a sender may choose to use this feature when it is available by the receiver, the
DirectPlay DXDiag Usage Protocol utilizes the coalescence feature on any TRANS_USERDATA
messages except TRANS_USERDATA_SEND_MESSAGE (section 2.2.31). In addition, the

signing feature (version level 0x00010006) will not be utilized by the DirectPlay DXDiag Usage
Protocol, even when the receiver indicates support for the signing feature.

26 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Value Meaning

0x00010000 —

0x00010004

Any protocol version number between 1.0 and 1.4 implements the base

features.

0x00010005 Protocol version number 1.5 implements the base features, and adds

support for coalescence.

Note The coalescence feature is not used by the base implementation of

the DirectPlay DXDiag Usage Protocol.

0x00010006 Protocol version number 1.6 implements the base features, supports

coalescence, and adds support for signing.

Note The signing feature is not used by the base implementation of the

DirectPlay DXDiag Usage Protocol.

dwSessID (4 bytes): A 32-bit integer session identifier. The value MUST be set to the value of
dwSessID specified in the TRANS_COMMAND_CONNECT packet; otherwise, the packet

SHOULD be ignored.

tTimestamp (4 bytes): A 32-bit integer that provides the sender's computer system tick

count. The value of the tTimestamp field SHOULD be ignored, but MAY be used to estimate
the differences in local tick counts between a sender and receiver.

2.2.9 TRANS_COMMAND_SACK

The TRANS_COMMAND_SACK packet is used to acknowledge outstanding packets. Packet ACK is
typically bundled in all user data packets using the bSeq and bNRcv fields found in the
TRANS_USERDATA_HEADER. However, the TRANS_COMMAND_SACK packet is used in the following

scenarios:

A dedicated ACK is requested (that is, when the PACKET_COMMAND_POLL bit in the bCommand

header field is set).

No user data remains for further bundled acknowledgments.

The Delayed Acknowledgment Timer (section 3.1.2.6) elapses.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

bCommand bExtOpCode bFlags bRetry

bNSeq bNRcv wPadding

tTimestamp

dwSACKMask1 (optional)

dwSACKMask2 (optional)

dwSendMask1 (optional)

27 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

dwSendMask2 (optional)

bCommand (1 byte): An 8-bit integer that provides the command code for the message. This
field MUST be set to one of the following values.

Value Meaning

0x80 Indicates that this message utilizes a command frame (CFRAME).

0x88 Indicates that this message utilizes a CFRAME (0x80) and POLL (0x08) values, which

specify that the sender requests immediate acknowledgment (ACK) from the receiver

upon receipt of the message.

The CFRAME value MUST be set. The POLL value SHOULD NOT be set and SHOULD be

ignored. If any other values are specified, the packet MUST be ignored.

bExtOpCode (1 byte): An 8-bit integer that provides the extended operation code for the
message. This field MUST be set to 0x06 to denote that this message selectively
acknowledges (SACK) outstanding packets.

bFlags (1 byte): An 8-bit integer that provides the status flags for the message. This field
MUST be set to one or more of the following values.

Value Meaning

SACK_FLAGS_RESPONSE

0x01

The bRetry field is valid.

SACK_FLAGS_SACK_MASK1

0x02

The low 32 bits of the SACK mask are present in dwSACKMask1.

SACK_FLAGS_SACK_MASK2

0x04

The high 32 bits of the SACK mask are present in dwSACKMask2.

SACK_FLAGS_SEND_MASK1

0x08

The low 32 bits of the send mask are present in dwSendMask1.

SACK_FLAGS_SEND_MASK2

0x10

The high 32 bits of the send mask are present in dwSendMask2.

If any of the mask bits are set, and there is no corresponding Mask DWORD present in the
message, then this message SHOULD be ignored.

bRetry (1 byte): A Boolean that indicates if the last received packet was a retry. This value
MUST be ignored if SACK_FLAGS_RESPONSE is not set. Otherwise, the value SHOULD be 0
if the last received data frame (DFRAME) for the connection was not marked as a retry;
otherwise, it SHOULD be nonzero. Recipients MUST NOT require any particular bit (or bits) to
be set in the nonzero case, only that at least one bit is set.

bNSeq (1 byte): SACK packets do not have sequence numbers of their own. This 8-bit integer
represents the sequence number of the next DFRAME to send.

bNRcv (1 byte): An 8-bit integer that provides the expected sequence number of the next
packet received. If the SACK_FLAGS_SACK_MASK1 flag is set, the bNRcv field is

%5bMS-DTYP%5d.pdf

28 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

supplemented with an additional DWORD bitmask field that selectively acknowledges frames
with sequence numbers higher than bNRcv.

wPadding (2 bytes): A 16-bit integer field MUST be set to 0 when sending and ignored on
receipt.

tTimestamp (4 bytes): A 32-bit integer that provides the sender's computer system tick
count. The value of the tTimestamp field SHOULD be ignored, but MAY be used to estimate
the differences in local tick counts between a sender and receiver.

dwSACKMask1 (4 bytes): A 32-bit integer that provides the optional low 32 bits of the SACK
mask in little-endian byte order. The existence of this field in the packet is dependent on the
bFlags field having SACK_FLAGS_SACK_MASK1 set.

dwSACKMask2 (4 bytes): A 32-bit integer that provides the optional high 32 bits of the SACK

mask in little-endian byte order. The existence of this field in the packet is dependent on the
bFlags field having SACK_FLAGS_SACK_MASK2 set.

dwSendMask1 (4 bytes): A 32-bit integer that provides the optional low 32 bits of the send
mask in little-endian byte order. The existence of this field in the packet is dependent on the
bFlags field having SACK_FLAGS_SEND_MASK1 set.

dwSendMask2 (4 bytes): A 32-bit integer that provides the optional high 32 bits of the send

mask in little-endian byte order. The existence of this field in the packet is dependent on the
bFlags field having SACK_FLAGS_SEND_MASK2 set.

2.2.10 TRANS_USERDATA_ACK_SESSION_INFO

The TRANS_USERDATA_ACK_SESSION_INFO packet is sent from the client to the server to
acknowledge the receipt of connection information. This packet contains no user data beyond the
packet type field, and begins with a TRANS_USERDATA_HEADER.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dwPacketType (4 bytes): A 32-bit integer that indicates the packet type. This field MUST be
set to 0x000000C3 to denote that this message acknowledges the receipt of game session
connection information.

2.2.11 TRANS_USERDATA_ADD_PLAYER

The TRANS_USERDATA_ADD_PLAYER packet instructs clients to add a specified client to the game
session. This packet begins with a TRANS_USERDATA_HEADER.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dpnid

29 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

dpnidOwner

dwFlags

dwVersion

dwVersionNotUsed

dwDNETClientVersion

dwNameOffset

dwNameSize

dwDataOffset

dwDataSize

dwURLOffset

dwURLSize

url (variable)

...

data (variable)

...

name (variable)

...

dwPacketType (4 bytes): A 32-bit integer that indicates the packet type. This field MUST be
set to 0x000000D0 to denote that this message instructs clients to add the specified client to
the game session.

dpnid (4 bytes): A 32-bit integer that specifies the identifier of the client to add.

dpnidOwner (4 bytes): A 32-bit integer that specifies the identifier of the game session
owner.

dwFlags (4 bytes): A 32-bit integer that contains the player flags. Entries are OR'd
together.<7>

30 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Value Meaning

0x00000001 Player is the local player.

0x00000002 Player is the host.

0x00000100 Player is a client from a peer-to-peer game session.

0x00001000 Player is connecting.

0x00002000 Player is to make the member available for use.

0x00004000 Player to indicate disconnecting.

0x00010000 Player to indicate connection to an application.

0x00020000 Player to indicate that the application was given the created player.

0x00040000 Player to indicate that the game session owner needs to destroy a player.

0x00080000 Player to indicate that the player is in use.

dwVersion (4 bytes): A 32-bit integer that provides the current name table version number.

dwVersionNotUsed (4 bytes): This field MUST be set to 0 when sending and ignored on
receipt.

dwDNETClientVersion (4 bytes): A 32-bit integer that provides the DirectPlay version of the
client being added to the chat session. This field MUST be set to the appropriate DirectPlay
version for the client.<8>

dwNameOffset (4 bytes): A 32-bit integer that provides the offset, in bytes, from the end of

the dwPacketType field to the client name. If this field is 0, the packet does not include the
client name.

dwNameSize (4 bytes): A 32-bit integer that provides the size, in bytes, of the name.

dwDataOffset (4 bytes): A 32-bit integer that provides the offset, in bytes, from the end of
the dwPacketType field to the client data. If this field is 0, the packet does not include client
data.

dwDataSize (4 bytes): A 32-bit integer that provides the size, in bytes, of the client data.

dwURLOffset (4 bytes): A 32-bit integer that provides the offset, in bytes, from the end of the
dwPacketType field to the client URL. If this field is 0, the packet does not include the client
URL.

dwURLSize (4 bytes): A 32-bit integer that provides the size, in bytes, of the connecting
client's URL address.

url (variable): A variable length array of characters that contains the client URL, including the
terminating null character. For more information about the structure of the URL, see

DN_ADDRESSING_URL (section 2.2.34).

data (variable): A variable length array of characters that contains user data, including the
terminating null character.

31 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

name (variable): A variable length array of Unicode characters that contains the client name,
including the terminating null character.

2.2.12 TRANS_USERDATA_CONNECT_ATTEMPT_FAILED

The TRANS_USERDATA_CONNECT_ATTEMPT_FAILED packet is sent from the host to a connecting
peer to indicate that an existing peer in the game session was unable to carry out the instruction
from the host to connect to the new (connecting) peer. This packet begins with a
TRANS_USERDATA_HEADER.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dpnID

dwPacketType (4 bytes): A 32-bit field that contains the packet type. The dwPacketType
field MUST be set to 0x000000C8 (DN_MSG_INTERNAL_CONNECT_ATTEMPT_FAILED).

dpnID (4 bytes): A 32-bit field that contains the identifier for the existing peer in the game

session that was unable to connect to the new peer.

2.2.13 TRANS_USERDATA_CONNECT_FAILED

The TRANS_USERDATA_CONNECT_FAILED packet indicates that a connection attempt failed. This
packet begins with a TRANS_USERDATA_HEADER.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

hResultCode

dwReplyOffset

dwReplySize

reply (variable)

...

dwPacketType (4 bytes): A 32-bit integer that indicates the packet type. This field MUST be

set to 0x000000C5 to denote that this message indicates that a connection attempt failed.

hResultCode (4 bytes): A 32-bit integer that specifies the result code.

32 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Value Meaning

DPNERR_ALREADYCLOSING

0x80158050

Server/host is closing or host is migrating.

DPNERR_NOTHOST

0x80158530

Attempting to connect to an application that is not the

host/server.

DPNERR_INVALIDINTERFACE

0x80158390

Nonclient attempting to connect to a server. Nonpeer

attempting to connect to a host/peer.

DPNERR_INVALIDVERSION

0x80158460

Version passed in is not a valid DirectPlay version.

DPNERR_INVALIDINSTANCE

0x80158380

Instance GUID is not valid for this game session.

DPNERR_INVALIDAPPLICATION

0x80158300

Application GUID is not valid for this application.

DPNERR_INVALIDPASSWORD

0x80158410

Password passed in does not match what is expected.

DPNERR_HOSTREJECTEDCONNECTION

0x80158260

Application-specific failure for not allowing connection.

DPNERR_GENERIC

0x80004005

An undetermined error occurred inside a DirectX

subsystem. This includes uncommon errors that cannot

be generalized.

dwReplyOffset (4 bytes): A 32-bit integer that specifies the offset of the reply field from the
end of the dwPacketType field to the reply field.

dwReplySize (4 bytes): A 32-bit integer that specifies the size in bytes of the data in the

reply field.

reply (variable): A variable length array of characters that contains a reply message
identifying the connection failure, including the terminating null character.

2.2.14 TRANS_USERDATA_TERMINATE_SESSION

The TRANS_USERDATA_TERMINATE_SESSION packet instructs the client to disconnect from the
game session. This packet begins with a TRANS_USERDATA_HEADER (section 2.2.17).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dwTerminateDataOffset

dwTerminateDataSize

TerminateData (variable)

%5bMS-GLOS%5d.pdf

33 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

...

dwPacketType (4 bytes): A 32-bit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_TERMINATE_SESSION

0x000000DF

Instructs the client to close and disconnect itself

from the game session.

dwTerminateDataOffset (4 bytes): A 32-bit field that contains the offset from the end of
dwPacketType for the data passed from the server/host application that describes why the
client is being terminated.

dwTerminateDataSize (4 bytes): A 32-bit field that contains the size, in bytes, of the
terminate data. If dwTerminateDataOffset is 0, dwTerminateDataSize SHOULD also be 0.
If dwTerminateDataOffset is not 0, dwTerminateDataSize SHOULD also not be 0.

TerminateData (variable): A variable-length field that contains a byte array from the
application that describes why the client is being terminated from the game session.

2.2.15 TRANS_USERDATA_DESTROY_PLAYER

The TRANS_USERDATA_DESTROY_PLAYER packet instructs the client to remove a specified user
from the name table. This packet begins with a TRANS_USERDATA_HEADER.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dpnidLeaving

dwVersion

dwVersionNotUsed

dwDestroyReason

dwPacketType (4 bytes): A 32-bit integer that indicates the packet type. This field MUST be

set to 0x000000D1 to denote that this message instructs the client to remove a specified user
from the name table.

dpnidLeaving (4 bytes): A 32-bit integer that specifies the identifier of the client or server to
remove from the name table.

dwVersion (4 bytes): A 32-bit integer that specifies the current name table version number.

dwVersionNotUsed (4 bytes): This field MUST be set to 0 when sending and ignored on
receipt.

dwDestroyReason (4 bytes): A 32-bit integer that specifies the reason for terminating the
specified client or server. This field MUST be set to one of the following values.

34 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Value Meaning

DPNDESTROYPLAYERREASON_NORMAL

0x00000001

The client or server is leaving.

DPNDESTROYPLAYERREASON_HOSTDESTROYEDPLAYER

0x00000004

The server removed the client.

2.2.16 TRANS_USERDATA_END_OF_STREAM

The TRANS_USERDATA_END_OF_STREAM packet is used to signal the disconnection of a user. This
packet consists of only the TRANS_USERDATA_HEADER.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

bCommand bControl bSeq bNRcv

bCommand (1 byte): An 8-bit integer that specifies characteristics of the message. Two or
more of the following flags can be combined to form complex values.

Value Meaning

PACKET_COMMAND_DATA

0x01

The frame contains user data.

PACKET_COMMAND_RELIABLE

0x02

The frame SHOULD be delivered reliably and requires a packet

acknowledgment.

PACKET_COMMAND_SEQUENTIAL

0x04

The frame SHOULD be indicated sequentially.

PACKET_COMMAND_POLL

0x08

The partner SHOULD acknowledge immediately.

PACKET_COMMAND_NEW_MSG

0x10

The DFRAME is first in the message.

PACKET_COMMAND_END_MSG

0x20

The DFRAME is last in the message.

PACKET_COMMAND_USER_1

0x40

The first user-controlled flag. (Indicates that the payload is an

internal session management message.)

PACKET_COMMAND_USER_2

0x80

The second user-controlled flag. (Indicates that the payload is

an internal session management message.)

bControl (1 byte): An 8-bit integer that identifies the packet. This field MUST be set to

PACKET_CONTROL_END_STREAM (0x08) to specify that the packet is the last in the stream,
and to indicate to disconnect.

bSeq (1 byte): An 8-bit integer that provides the sequence number of the packet.

bNRcv (1 byte): An 8-bit integer that provides the expected sequence number of the next
packet received.

%5bMS-GLOS%5d.pdf

35 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.17 TRANS_USERDATA_HEADER

The TRANS_USERDATA_HEADER is a transport packet header that contains command, control, and
ACK information. It is included with all TRANS_USERDATA DirectPlay packets.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

bCommand bControl bSeq bNRcv

dwSACKMask1 (optional)

dwSACKMask2 (optional)

dwSendMask1 (optional)

dwSendMask2 (optional)

payload (variable)

...

bCommand (1 byte): An 8-bit integer that specifies characteristics of the message. Two or
more of the following flags can be combined to form complex values.

Note The PACKET_COMMAND_USER1 flag SHOULD be set on all TRANS_USERDATA

messages except the TRANS_USERDATA_END_OF_STREAM, TRANS_USERDATA_KEEPALIVE,
and TRANS_USERDATA_SEND_MESSAGE messages.

Value Meaning

PACKET_COMMAND_DATA

0x01

The frame contains user data.

PACKET_COMMAND_RELIABLE

0x02

The frame SHOULD be delivered reliably and requires a packet

acknowledgment.

PACKET_COMMAND_SEQUENTIAL

0x04

The frame SHOULD be indicated sequentially.

PACKET_COMMAND_POLL

0x08

The partner SHOULD acknowledge immediately.

PACKET_COMMAND_NEW_MSG

0x10

The DFRAME is first in the message.

PACKET_COMMAND_END_MSG

0x20

The DFRAME is last in the message.

PACKET_COMMAND_USER_1

0x40

The first user-controlled flag. (Indicates that the payload is an

internal session management message.)

PACKET_COMMAND_USER_2 The second user-controlled flag. (Indicates that the payload is

an internal session management message.) The

36 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Value Meaning

0x80 PACKET_COMMAND_USER_2 flag is not used in the DirectPlay

DXDiag Usage Protocol.

bControl (1 byte): An 8-bit integer that identifies the packet. Two or more of the following
flags can be combined to form complex values.

Value Meaning

PACKET_CONTROL_RETRY

0x01

Indicates if the frame is a retry for this

sequence number.

PACKET_CONTROL_KEEPALIVE_OR_CORRELATE

0x02

For versions 0x00010005 and higher, this flag

indicates that the frame is a keep-alive frame,

and applies only to DirectX version 9.0 and

later. When the version is lower than

0x00010005, this flag requests a dedicated

acknowledgment from the receiver, and applies

only to versions of DirectX prior to version 9.0.

For information about versions, see section 1.7.

PACKET_CONTROL_COALESCE

0x04

The packet contains multiple fused packets. This

flag is not supported by DirectPlay version 8.0.

PACKET_CONTROL_END_STREAM

0x08

This is the last packet in the stream; also

indicates to disconnect.

PACKET_CONTROL_SACK1

0x10

The low 32 bits of the SACK mask are present in

dwSACKMask1.

PACKET_CONTROL_SACK2

0x20

The high 32 bits of the SACK mask are present

in dwSACKMask2.

PACKET_CONTROL_SEND1

0x40

The low 32 bits of the cancel-send mask are

present in dwSendMask1.

PACKET_CONTROL_SEND2

0x80

The high 32 bits of the cancel-send mask are

present in dwSendMask2.

PACKET_CONTROL_VARIABLE_MASKS

0xF0

All four packet control mask bits are present.

bSeq (1 byte): An 8-bit integer that provides the sequence number of the packet.

bNRcv (1 byte): An 8-bit integer that provides the expected sequence number of the next

packet received.

dwSACKMask1 (4 bytes): The optional low 32 bits of the SACK mask in little-endian byte
order. The existence of this field in the packet is dependent on the bFlags field having

SACK_FLAGS_SACK_MASK1 set in the TRANS_COMMAND_HEADER packet.

dwSACKMask2 (4 bytes): The optional high 32 bits of the SACK mask in little-endian byte
order. The existence of this field in the packet is dependent on bFlags field having
SACK_FLAGS_SACK_MASK2 set in the TRANS_COMMAND_HEADER packet.

37 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

dwSendMask1 (4 bytes): The optional low 32 bits of the send mask in little-endian byte order.
The existence of this field in the packet is dependent on bFlags field having

SACK_FLAGS_SEND_MASK1 set in the TRANS_COMMAND_HEADER packet.

dwSendMask2 (4 bytes): The optional high 32 bits of the send mask in little-endian byte

order. The existence of this field in the packet is dependent on bFlags field having
SACK_FLAGS_SEND_MASK2 set in the TRANS_COMMAND_HEADER packet.

payload (variable): A variable length integer that contains the consumer payload data for the
packet. The payload size is the total UDP frame size minus the amount of data consumed by
DFRAME headers up to this point. If the PACKET_CONTROL_COALESCE flag is set, the
payload is not a single message or portion of a message, but is instead organized according to
the coalesced payload format, as specified in section 2.2.17.1.

2.2.17.1 Coalesced Payloads

Coalesced payloads are a special form of payload within standard DFRAMEs. When the
PACKET_CONTROL_COALESCE flag is set on the outer DFRAME header bControl field of the

TRANS_USERDATA_HEADER packet, the payload is interpreted using this format. Frames with
coalesced payloads MUST have the PACKET_COMMAND_NEW_MSG and

PACKET_COMMAND_END_MSG flags set on the outer DFRAME header bCommand field.

Between 1 and 32 two-byte headers are placed at the beginning of the buffer. The buffer MUST NOT
contain more than 32 coalesce headers. If there is an odd number of coalesce headers, two extra
bytes of zero padding MUST be added at the end to align the subsequent data on a 32-bit boundary.
The last non-padded coalesce header MUST have the PACKET_COMMAND_END_COALESCE flag
set in its bCommand field.

Following the headers are 1 to 32 payloads where the sizes of each are indicated in the

corresponding headers that were added in the same order. If the payload size is not a multiple of 32
bits, and it is not the last payload in the message, one to three bytes of zero padding MUST be
added to align the beginning of the next payload on a 32-bit boundary. The sizes indicated in the
coalesce headers MUST NOT include any padding so as to preserve the message size as originally

sent. The receiver MUST infer alignment padding when processing the payloads, and SHOULD
indicate the messages to the consumer using the unpadded size.

The following is an example of a standard DFRAME for a coalesced payload.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

bSize 1 bCommand 1 bSize 2

(optional)

bCommand 2

(optional)

bSize n-1 (optional) bCommand n-1

(optional)

bSize n

(optional)

bCommand n

(optional)

payload 1 (variable)

payload 2 (optional, variable)

38 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

payload n-1 (optional, variable)

payload n (optional, variable)

In the preceding example, the following field types are represented.

bSize 1 through bSize n: The least significant 8 bits of the size of the coalesced payload. The
value is combined with the optional PACKET_COMMAND_COALESCE_BIG_1,

PACKET_COMMAND_COALESCE_BIG_2, and PACKET_COMMAND_COALESCE_BIG_3
flags to determine the actual size of the payload. This MUST NOT be larger than what can fit in
a standard DFRAME, including any size already used to store previous coalesce headers and
payloads.

bCommand 1 through bCommand n: The command field for the coalesced message. The
PACKET_COMMAND_USER_1 flag MUST be set. All other flags are optional.

Value Meaning

0x01 PACKET_COMMAND_END_COALESCE (Indicates that this is the final coalesced payload

in the frame).

0x02 PACKET_COMMAND_RELIABLE (Specifies that the payload SHOULD be delivered

reliably).

0x04 PACKET_COMMAND_SEQUENTIAL (Specifies that the payload SHOULD be indicated

sequentially).

0x08 PACKET_COMMAND_COALESCE_BIG_1 (Represents bit 9 of the coalesced payload

size).

0x10 PACKET_COMMAND_COALESCE_BIG_2 (Represents bit 10 of the coalesced payload

size).

0x20 PACKET_COMMAND_COALESCE_BIG_3 (Represents bit 11 of the coalesced payload

size, which is the most significant bit).

0x40 PACKET_COMMAND_USER_1 (Indicates that the payload is an internal session

management message).

payload 1 through payload n: Contains the consumer payload data.

2.2.18 TRANS_USERDATA_HOST_MIGRATE

The TRANS_USERDATA_HOST_MIGRATE packet indicates that host migration is enabled, and the
host server is terminating. This packet begins with a TRANS_USERDATA_HEADER.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dpnidOldHost

39 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

dpnidNewHost

dwPacketType (4 bytes): A 32-bit integer that indicates the packet type. This field MUST be
set to 0x000000CD to denote that this message indicates that the host migration procedure
has started.

dpnidOldHost (4 bytes): A 32-bit integer that provides the identifier for the old host.

dpnidNewHost (4 bytes): A 32-bit integer that provides the identifier for the new host.

2.2.19 TRANS_USERDATA_HOST_MIGRATE_COMPLETE

The TRANS_USERDATA_HOST_MIGRATE_COMPLETE packet informs clients that the game session-
hosting responsibilities have successfully migrated from the departing old host. This packet begins
with a TRANS_USERDATA_HEADER and contains no user data.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dwPacketType (4 bytes): A 32-bit integer that indicates the packet type. This field MUST be
set to 0x000000CE to denote that this message informs clients that the game session-hosting
responsibilities have successfully migrated from the departing old host.

2.2.20 TRANS_USERDATA_INSTRUCT_CONNECT

The TRANS_USERDATA_INSTRUCT_CONNECT packet instructs a client to connect to a designated

client. This packet begins with a TRANS_USERDATA_HEADER.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dpnid

dwVersion

dwVersionNotUsed

dwPacketType (4 bytes): A 32-bit integer that indicates the packet type. This field MUST be
set to 0x000000C6 to denote that this message instructs a client to connect to a designated
client.

dpnid (4 bytes): A 32-bit integer that provides the identifier of the designated client to which
the connection is being made.

dwVersion (4 bytes): A 32-bit integer that specifies the current version of the name table.

40 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

dwVersionNotUsed (4 bytes): This field MUST be set to 0 when sending and ignored on
receipt.

2.2.21 TRANS_USERDATA_INSTRUCTED_CONNECT_FAILED

The TRANS_USERDATA_INSTRUCTED_CONNECT_FAILED packet indicates that a client was unable
to carry out a server instruction to connect to a new client. This packet begins with a
TRANS_USERDATA_HEADER.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dpnID

dwPacketType (4 bytes): A 32-bit integer that indicates the packet type. This field MUST be
set to 0x000000C7 to denote that this message indicates that a client was unable to carry out
a server instruction to connect to a new client.

dpnID (4 bytes): A 32-bit integer that provides the identifier for the client.

2.2.22 TRANS_USERDATA_KEEPALIVE

The TRANS_USERDATA_KEEPALIVE packet is used by DXDiag to calculate an RTT. This packet
begins with a TRANS_USERDATA_HEADER packet header.

In the packet header, the PACKET_COMMAND_RELIABLE, PACKET_COMMAND_SEQUENTIAL, and
PACKET_COMMAND_END_MSG flags MUST be set in the bCommand field. All other bCommand

flags are optional. The bControl field MUST be set to
PACKET_CONTROL_KEEPALIVE_OR_CORRELATE (0x02) to indicate that the frame is a keep-alive

frame (DirectX version 9.0 and later), or that the sender requests a dedicated acknowledgment from
the receiver (DirectX 8.0 and earlier). For information about DirectX versions, see section 1.7.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwSessID

dwSessID (4 bytes): A 32-bit integer present only in TRANS_USERDATA_KEEPALIVE messages
sent to version 0x00010006 recipients. This value MUST be set to the same dwSessID value
specified in the TRANS_COMMAND_CONNECT (section 2.2.7) message associated with the
connection; otherwise, the packet SHOULD be ignored.

2.2.23 TRANS_USERDATA_NAMETABLE_VERSION

The TRANS_USERDATA_NAMETABLE_VERSION packet specifies the version number of the name

table. This packet begins with a TRANS_USERDATA_HEADER.

41 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dwVersion

dwVersionNotUsed

dwPacketType (4 bytes): A 32-bit integer that indicates the packet type. This field MUST be
set to 0x000000C9 to denote that this message specifies the version number of the name
table.

dwVersion (4 bytes): A 32-bit integer that provides the current name table version number.
The value of this field MUST NOT be 0.

dwVersionNotUsed (4 bytes): This field MUST be set to 0 when sending and ignored on
receipt.

2.2.24 TRANS_USERDATA_REQ_NAMETABLE_OP

The TRANS_USERDATE_REQ_NAMETABLE_OP packet is sent from the new host to an existing peer
in the game session that has a newer name table than that of the host. The host sends this message
to request that the peer send back name table operations that have not yet been performed on the
host. If no newer name table exists, this message is not sent. This message begins with a
TRANS_USERDATA_HEADER packet header.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dwVersion

dwVersionNotUsed

dwPacketType (4 bytes): A 32-bit field that indicates the packet type. This field MUST be set
to 0x000000CB to denote that this message requests a name table from an existing peer in
the game session that has a newer name table than that of the host, if any such name table

exists.

dwVersion (4 bytes): A 32-bit field that contains the current name table version number of
the host.

dwVersionNotUsed (4 bytes): This field MUST be set to 0 when sending and ignored on

receipt.

2.2.25 TRANS_USERDATA_ACK_NAMETABLE_OP

The TRANS_USERDATE_ACK_NAMETABLE_OP packet is sent from the peer that is being queried for
name table information back to the new host. The message will include all entries missing from the

42 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

name table of the new host. This message begins with a TRANS_USERDATA_HEADER packet
header.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dwNumEntries

dwMsgId

dwOpOffset

dwOpSize

op (variable)

...

dwPacketType (4 bytes): A 32-bit field that indicates the packet type. This field MUST be set
to 0x000000CC to denote that this message is an acknowledgement of the new name table
information from the peer to the new host.

dwNumEntries (4 bytes): A 32-bit field that specifies the number of name table entries
included in the message. The dwMsgId, dwOpOffset, dwOpSize, and op fields are present

in a TRANS_USERDATE_ACK_NAMETABLE_OP message dwNumEntries times.

dwMsgId (4 bytes): A 32-bit field that contains the internal message for the given name table
entry. The internal message can be one of the following values.

Name Value

TRANS_USERDATA_INSTRUCT_CONNECT 0x000000C6

TRANS_USERDATA_ADD_PLAYER 0x000000D0

TRANS_USERDATA_DESTROY_PLAYER 0x000000D1

dwOpOffset (4 bytes): A 32-bit field that contains the offset from the end of the
dwPacketType field for the given name table operation buffer.

dwOpSize (4 bytes): A 32-bit field that contains the size for the given name table operation
buffer.

op (variable): A variable length field that contains the portion of the packet originally

associated with the name table operation, except for the dwPacketType field, as indicated by

the dwMsgId field. Each operation buffer is atomic to itself. For example, an op value
corresponding to a dwMsgId field value of 0x000000D1 would contain the dpnidLeaving,
dwVersion, dwVersionNotUsed, and dwDestroyReason field information from an original
TRANS_USERDATA_DESTROY_PLAYER packet.

43 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.26 TRANS_USERDATA_PLAYER_CONNECT_INFO

The TRANS_USERDATA_PLAYER_CONNECT_INFO packet is used to send client connection
information to the host. This packet begins with a TRANS_USERDATA_HEADER.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dwFlags

dwDNETVersion

dwNameOffset

dwNameSize

dwDataOffset

dwDataSize

dwPasswordOffset

dwPasswordSize

dwConnectDataOffset

dwConnectDataSize

dwURLOffset

dwURLSize

guidInstance

...

...

...

guidApplication

...

...

44 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

...

dwAlternateAddressDataOffset

dwAlternateAddressDataSize

alternateAddressData (variable)

...

url (variable)

...

connectData (variable)

...

Password (variable)

...

data (variable)

...

name (variable)

...

dwPacketType (4 bytes): A 32-bit integer that indicates the packet type. This field MUST be
set to 0x000000C1 to denote that this message sends client connection information to the
host server.

dwFlags (4 bytes): A 32-bit integer that specifies the connect flags. This field MUST be set to
0x00000004 to indicate that the connecting application is a peer.

dwDNETVersion (4 bytes): A 32-bit integer that provides the DirectPlay version. This field

MUST be set to the appropriate DirectPlay version.<9>

dwNameOffset (4 bytes): A 32-bit integer that provides the offset, in bytes, from the end of
dwPacketType to the connecting client's name field. This value MUST NOT be 0.

dwNameSize (4 bytes): A 32-bit integer that specifies the size, in bytes, of the data in the
name field. This value MUST NOT be 0.

dwDataOffset (4 bytes): A 32-bit integer that provides the offset, in bytes, from the end of
dwPacketType to the data field. If dwDataOffset is 0, the packet does not include client

data.

45 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

dwDataSize (4 bytes): A 32-bit integer that provides the size, in bytes, of the data field.

dwPasswordOffset (4 bytes): A 32-bit integer that provides the offset, in bytes, from the end
of the dwPacketType field to the start of the password. When the packet does not include a
password, this MUST be set to 0.

dwPasswordSize (4 bytes): A 32-bit integer that provides the size, in bytes, of the
password. When the packet does not include a password, this MUST be set to 0.

dwConnectDataOffset (4 bytes): A 32-bit integer that provides the offset, in bytes, from the
end of the dwPacketType field to the connectData field. If dwConnectDataOffset is 0, the
packet does not include connection data.

dwConnectDataSize (4 bytes): A 32-bit integer that provides the size, in bytes, of the
connectData field.

dwURLOffset (4 bytes): A 32-bit integer that provides the offset, in bytes, from the end of the
dwPacketType field to the url field. If dwURLOffset is 0, the packet does not include the

client URL.

dwURLSize (4 bytes): A 32-bit integer that provides the size, in bytes, of the url field.

guidInstance (16 bytes): The instance GUID of the game session. This MUST be the same
GUID received in the EnumResponse (section 2.2.5) message; otherwise, the recipient MUST

respond with a TRANS_USERDATA_CONNECT_FAILED (section 2.2.13) message.

guidApplication (16 bytes): The application GUID. This field MUST be set to 61EF80DA-691B-
4247-9ADD-1C7BED2BC13E, which is the GUID for the DXDiag application. Otherwise, the
recipient MUST respond with a TRANS_USERDATA_CONNECT_FAILED message.

dwAlternateAddressDataOffset (4 bytes): A 32-bit integer that provides the offset, in bytes,
from the end of the dwPacketType field to the alternateAddressData field. If
dwAlternateAddressDataOffset is 0, the packet does not include the alternate address

data. This field is used in DirectPlay version 9.

dwAlternateAddressDataSize (4 bytes): A 32-bit integer that provides the size, in bytes, of
the alternateAddressData field. This field is used in DirectPlay version 9.

alternateAddressData (variable): A variable length array that provides alternative address
data that is used to connect the client. This field's position is determined by
dwAlternateAddressDataOffset and the size stated in dwAlternateAddressDataSize.
This field is used in DirectPlay version 9. The address that is passed in is formatted via the

DN_ALTERNATE_ADDRESS structure format.

url (variable): A variable length, zero-terminated character array that contains the client URL.
This field's position is determined by dwURLOffset and the size stated in dwURLSize.

connectData (variable): A variable length field that contains a byte array that provides the
connection data. This field's position is determined by dwConnectDataOffset and the size
stated in dwConnectDataOffsetSize.

Password (variable): A variable length, zero-terminated wide character array that contains
the application password data. This field's position is determined by dwPasswordOffset and
the size stated in dwPasswordSize. This data is passed in clear text to the protocol layer.

data (variable): A variable length, zero-terminated character array that contains the client
data. This field's position is determined by dwDataOffset and the size stated in dwDataSize.

46 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

name (variable): A variable length, zero-terminated wide character array that contains the
client name. This field's position is determined by the dwNameOffset field and the size

stated in the dwNameSize field; both are fields in the DN_NAMETABLE_ENTRY_INFO
structure. The last character indicated by dwNameSize SHOULD be treated as the

terminating null character, even if the sender did not transmit it that way.

2.2.27 TRANS_USERDATA_REQ_INTEGRITY_CHECK

The TRANS_USERDATA_REQ_INTEGRITY_CHECK packet requests that a host determine if a target
client is still in the game session. This packet begins with a TRANS_USERDATA_HEADER.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dwReqContext

dpnidTarget

dwPacketType (4 bytes): A 32-bit integer that indicates the packet type. This field MUST be
set to 0x000000E2 to indicate that this is a request for the host to determine whether a target
client is still in the game session.

dwReqContext (4 bytes): A 32-bit field that contains the context for the request operation.
Values for the dwReqContext field are not used to convey information by the DirectPlay

DXDiag Usage Protocol [MS-DPDX], but other implementers MAY choose to include this field
in order to convey the context to the recipient.

dpnidTarget (4 bytes): A 32-bit integer that specifies the identifier of the selected target
client, which the host validates.

2.2.28 TRANS_USERDATA_INTEGRITY_CHECK

The TRANS_USERDATA_INTEGRITY_CHECK packet is a request from a host to a client inquiring

whether the client is still in the game session. This packet begins with a TRANS_USERDATA_HEADER
(section 2.2.17).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dpnidRequesting

dwPacketType (4 bytes): A 32-bit field that contains the packet type. This field MUST be set
to 0x000000E3 to indicate that the host is requesting a client to verify that it is still in the
game session.

dpnidRequesting (4 bytes): A 32-bit field that contains the identifier of the client requesting

this validation. For more information, see section 2.2.1.

47 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.29 TRANS_USERDATA_INTEGRITY_CHECK_RESPONSE

The TRANS_USERDATA_INTEGRITY_CHECK_RESPONSE packet is a response from a client to the
host confirming that it is still in the game session. This packet begins with a

TRANS_USERDATA_HEADER (section 2.2.17).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dpnidRequesting

dwPacketType (4 bytes): A 32-bit field that contains the packet type. This MUST be set to
0x000000E4 to indicate that the client is responding to the host to confirm that it is still in the
game session.

dpnidRequesting (4 bytes): A 32-bit field that contains the identifier of the client that
requested the validation. For more information, see section 2.2.1.

2.2.30 TRANS_USERDATA_RESYNC_VERSION

The TRANS_USERDATA_RESYNC_VERSION packet is used to request that the name table version
number be resynchronized to the current version number. This packet begins with a
TRANS_USERDATA_HEADER.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dwVersion

dwVersionNotUsed

dwPacketType (4 bytes): A 32-bit integer that indicates the packet type. This field MUST be
set to 0x000000CA to denote that this message requests that the protocol version number be
resynchronized to the current version number.

dwVersion (4 bytes): A 32-bit integer that provides the current name table version number.

dwVersionNotUsed (4 bytes): This field MUST be set to 0 when sending and ignored on
receipt.

2.2.31 TRANS_USERDATA_SEND_MESSAGE

The TRANS_USERDATA_SEND_MESSAGE packet transmits a chat message to all other users in a
chat session. This packet begins with a TRANS_USERDATA_HEADER and does not contain a
dwPacketType identification field.

48 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

nType strChatString

...

...

...

...

...

...

...

(strChatString cont'd for 92 rows)

...

nType (2 bytes): A 16-bit integer that identifies the type of chat message being transmitted.
This field MUST be set to GAME_MSGID_CHAT (1).

strChatString (400 bytes): A Unicode-format chat message string. The application SHOULD
send 200 Unicode characters. If the length of the actual chat string is less than 200 Unicode

characters, then the value specified in strChatString SHOULD be padded. If the length of the

chat string in the received packet is less than 200 Unicode characters, the receiver SHOULD
send an acknowledgment for the message, and the receiver SHOULD discard the message.

2.2.32 TRANS_USERDATA_SEND_PLAYER_DNID

The TRANS_USERDATA_SEND_PLAYER_DNID packet is used to send a user identification number to
another client. This packet begins with a TRANS_USERDATA_HEADER.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dpnID

dwPacketType (4 bytes): A 32-bit integer that indicates the packet type. This field MUST be
set to 0x000000C4 to denote that this message sends a user identification number to another
client.

dpnID (4 bytes): A 32-bit integer that provides the identifier of the client.

49 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.33 TRANS_USERDATA_SEND_SESSION_INFO

The TRANS_USERDATA_SEND_SESSION_INFO packet is used by the game session server to relay
game session information to the client. This packet begins with a TRANS_USERDATA_HEADER.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwPacketType

dwReplyOffset

dwReplySize

dwSize

dwFlags

dwMaxPlayers

dwCurrentPlayers

dwSessionNameOffset

dwSessionNameSize

dwPasswordOffset

dwPasswordSize

dwReservedDataOffset

dwReservedDataSize

dwApplicationReservedDataOffset

dwApplicationReservedDataSize

guidInstance

...

...

...

applicationGUID

50 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

...

...

...

dpnid

dwVersion

dwVersionNotUsed

dwEntryCount

dwMembershipCount

DN_NAMETABLE_ENTRY_INFO (variable)

...

DN_NAMETABLE_MEMBERSHIP_INFO (variable)

...

URL (variable)

...

Data (variable)

...

name (variable)

...

ApplicationReservedData (variable)

...

ReservedData (variable)

...

Password (variable)

51 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

...

SessionName (variable)

...

reply (variable)

...

dwPacketType (4 bytes): A 32-bit integer that indicates the packet type. This field MUST be
set to 0x000000C2 to denote that this message is used by the game session server to relay
game session information to the client.

dwReplyOffset (4 bytes): A 32-bit integer that provides the offset, in bytes, from the end of

the dwPacketType field to the reply field. If dwReplyOffset is 0, the packet does not
include a reply.

dwReplySize (4 bytes): A 32-bit integer that provides the size, in bytes, of the reply field.

dwSize (4 bytes): A 32-bit integer that provides the size, in bytes, of the application
description information.

dwFlags (4 bytes): A 32-bit integer that specifies the application flags. Entries are OR'd
together.<10>

Value Meaning

0x00000004 Host migration is allowed.

0x00000040 The DirectPlay enumeration server is not running.

0x00000080 Password is REQUIRED.

0x00000100 No enumerations are allowed from the game session.

dwMaxPlayers (4 bytes): A 32-bit integer that specifies the maximum number of clients
allowed in the game session.

dwCurrentPlayers (4 bytes): A 32-bit integer that specifies the current number of clients in
the game session.

dwSessionNameOffset (4 bytes): A 32-bit integer that provides the offset, in bytes, from the

end of the dwPacketType field to the sessionName field. If dwSessionNameOffset is 0,
the packet does not include a game session name.

dwSessionNameSize (4 bytes): A 32-bit integer that provides the size, in bytes, of the

sessionName field.

dwPasswordOffset (4 bytes): A 32-bit integer that provides the offset, in bytes, from the end
of the dwPacketType field to the start of the password. When the packet does not include a
password, this field MUST be set to 0.

52 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

dwPasswordSize (4 bytes): A 32-bit integer that provides the size, in bytes, of the password.
When the packet does not include a password, this field MUST be set to 0.

dwReservedDataOffset (4 bytes): A 32-bit integer that provides the offset, in bytes, from the
end of the dwPacketType field to the reservedData field. If dwReservedDataOffset is 0,

the packet does not include reserved data.

dwReservedDataSize (4 bytes): A 32-bit integer that provides the size, in bytes, of the
reservedData field.

dwApplicationReservedDataOffset (4 bytes): A 32-bit integer that provides the offset, in
bytes, from the end of the dwPacketType field to the applicationReservedData field. If
dwApplicationReservedDataOffset is 0, the packet does not include application reserved
data.

dwApplicationReservedDataSize (4 bytes): A 32-bit integer that provides the size, in bytes,
of the applicationReservedData field.

guidInstance (16 bytes): The instance GUID that identifies the game session. This field MUST
be set to the value specified in the ApplicationInstanceGUID field of the EnumResponse
message.

applicationGUID (16 bytes): The application GUID. This field MUST be set to 61EF80DA-

691B-4247-9ADD-1C7BED2BC13E, which is the GUID for the DXDiag application.

dpnid (4 bytes): A 32-bit integer that provides the identifier for the new client joining the
game session. This value MUST be calculated as described in section 2.2.1.

dwVersion (4 bytes): A 32-bit integer that specifies the current name table version.

dwVersionNotUsed (4 bytes): This field MUST be set to 0 when sending and ignored on
receipt.

dwEntryCount (4 bytes): A 32-bit integer that provides the number of entries in the name

table.

dwMembershipCount (4 bytes): A 32-bit integer that provides the number of memberships in
the name table.

DN_NAMETABLE_ENTRY_INFO (variable): A dwEntryCount size array of structures that
provides information on a name table entry, as specified in section 2.2.33.1.

DN_NAMETABLE_MEMBERSHIP_INFO (variable): A dwMembershipCount size array of
structures that provide information on a name table membership, as specified in section

2.2.33.2.

URL (variable): A variable-length zero-terminated character array that contains the URL of a
user in the chat session. This field's position is determined by dwURLOffset and the size
stated in dwURLSize; both are fields in the corresponding DN_NAMETABLE_ENTRY_INFO
structure. There can be multiple instances of the URL field, with an upper limit specified by

the dwURLSize field. For more information about the structure of the URL, see

DN_ADDRESSING_URL (section 2.2.34).

Data (variable): A variable-length zero-terminated character array that contains the user data.
This field's position is determined by dwDataOffset and the size stated in dwDataSize; both
are fields in the corresponding DN_NAMETABLE_ENTRY_INFO structure. There can be multiple
instances of the Data field with an upper limit specified by the dwEntryCount field.

53 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

name (variable): A variable-length zero-terminated wide character array that contains the
client name. This field's position is determined by the dwNameOffset field and the size

stated in the dwNameSize field; both are fields in the DN_NAMETABLE_ENTRY_INFO
structure. The last character indicated by dwNameSize SHOULD be treated as the

terminating null character, even if the sender did not transmit it that way.

Note There can be multiple instances of the name field with an upper limit specified by the
dwEntryCount field.

ApplicationReservedData (variable): A variable-length zero-terminated character array that
contains the application reserved data. This field's position is determined by
dwApplicationReservedDataOffset and the size stated in
dwApplicationReservedDataSize.

ReservedData (variable): A variable-length zero-terminated character array that contains the
reserved data. This field's position is determined by dwReservedDataOffset and the size
stated in dwReservedDataSize.

Password (variable): A variable length, zero-terminated wide character array that contains
the application password data. This field's position is determined by dwPasswordOffset and
the size stated in dwPasswordSize. This data is passed in clear text to the protocol layer.

SessionName (variable): A variable-length zero-terminated wide character array that contains
the game session name. This field's position is determined by the dwSessionNameOffset
field and the size stated in the dwSessionNameSize field. The last character indicated by
dwSessionNameSize SHOULD be treated as the terminating null character, even if the
sender did not transmit it that way. If dwSessionNameSize is not an even multiple of two,
the last odd byte SHOULD be ignored.

reply (variable): A variable-length zero-terminated character array that contains the reply.

This field's position is determined by dwReplyOffset and the size stated in dwReplySize.

2.2.33.1 DN_NAMETABLE_ENTRY_INFO

Information on a name table entry. The number of DN_NAMETABLE_ENTRY_INFO structures in this
packet is specified in the dwEntryCount field.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dpnid

dpnidOwner

dwFlags

dwVersion

dwVersionNotUsed

dwDNETVersion

54 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

dwNameOffset

dwNameSize

dwDataOffset

dwDataSize

dwURLOffset

dwURLSize

dpnid (4 bytes): A 32-bit integer that specifies the DirectPlay identifier. This value MUST be
calculated as described in section 2.2.1.

dpnidOwner (4 bytes): A 32-bit integer that provides the DirectPlay identifier for the owner.

dwFlags (4 bytes): A 32-bit integer that specifies the name table entry flags. Entries are OR'd
together.<11>

Value Meaning

0x00000001 The name table entry is the local player.

0x00000002 The name table entry is the host.

0x00000100 The name table entry is a peer. In peer-to-peer mode, the name table entry

representing the host of the game session is also marked as a peer.

0x00001000 The name table entry is connecting.

0x00002000 The name table entry is to make the member available for use.

0x00004000 The name table entry to indicate disconnecting.

0x00010000 The name table entry to indicate connection to the application.

0x00020000 The name table entry to indicate that the application was given a created player.

0x00040000 The name table entry to indicate the need to destroy the player.

0x00080000 The name table entry to indicate that the player is in use.

dwVersion (4 bytes): A 32-bit integer that specifies the version number of the name table.

dwVersionNotUsed (4 bytes): This field MUST be set to 0 when sending and ignored on
receipt.

dwDNETVersion (4 bytes): A 32-bit integer that provides the DirectPlay version. This field
MUST be set to the appropriate DirectPlay version.<12>

dwNameOffset (4 bytes): A 32-bit integer that provides the offset, in bytes, from the end of

the dwPacketType field to the name field. This value MUST NOT be 0.

55 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

dwNameSize (4 bytes): A 32-bit integer that provides the size, in bytes, of the name field.
This value MUST NOT be 0.

dwDataOffset (4 bytes): A 32-bit integer that provides the offset, in bytes, from the end of
the dwPacketType field to the data field.

dwDataSize (4 bytes): A 32-bit integer that provides the size, in bytes, of the data field.

dwURLOffset (4 bytes): A 32-bit integer that provides the offset, in bytes, from the end of the
dwPacketType field to the url field.

dwURLSize (4 bytes): A 32-bit integer that provides the size, in bytes, of the url field.

2.2.33.2 DN_NAMETABLE_MEMBERSHIP_INFO

Information on a name table membership. The number of DN_NAMETABLE_MEMBERSHIP_INFO

structures in this packet is specified in the dwMembershipCount field.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dpnidPlayer

dpnidGroup

dwVersion

dwVersionNotUsed

dpnidPlayer (4 bytes): A 32-bit integer that specifies the DirectPlay identifier for the user.

dpnidGroup (4 bytes): A 32-bit integer that provides the DirectPlay identifier for the group.
The dpnidGroup field is not used by the DirectPlay DXDiag Usage Protocol.

dwVersion (4 bytes): A 32-bit integer that specifies the name table version.

dwVersionNotUsed (4 bytes): This field MUST be set to 0 when sending and ignored on

receipt.

2.2.34 DN_ADDRESSING_URL

DirectPlay represents addresses for an application in the form of a URL. The structure of the URL is
as follows:

x-directplay:/key1=value1;key2=value2;key3=value3;...

All configuration information for a provider is specified using "key=value" pairs separated by

semicolons.

Note This is the opaque representation of a URL, where a single slash mark "/" is used as a scheme
terminator, not double slash mark "//".The responsibility of data interpretation is placed on the
consumer of the URL and nothing else can be assumed.

A DirectPlay URL has three components: the scheme, the scheme separator, and the URL data:

56 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Scheme: The scheme used for a DirectPlay URL is "x-directplay".

Scheme separator: The scheme separator is simply the string ":/" (a colon followed by a slash
mark), implying that the data that follows is "opaque" and does not conform to the Internet
standard. It MUST NOT be "://" (a colon followed by two slash marks) because the addition of the

second slash mark implies an Internet standard for the remaining data, and the DirectPlay data does
not conform to the Internet standard. If the second slash mark is detected, DirectPlay will flag the
URL as invalid.

URL data: The URL data is a combination of "key=value" strings, where each string is separated by
a semicolon.

There are no ordering requirements for the "key=value" pairs in the data, except for the "provider"
key that is expected to be first to speed up parsing. All "key" identifiers SHOULD be lower-case and

SHOULD NOT contain characters that are considered reserved, specifically: the semicolon (;), the
slash mark (/), the question mark (?), the colon (:), the at sign (@), the equals sign (=), the
ampersand (&), and the number sign (#). All "value" strings will be treated as case-sensitive to
cover future uses.

The following table identifies the current "keys" and their valid "values".

Key Value

applicationinstance Text representation of a GUID for an application instance.

baud Any valid baud rate (subject to potential validation). Used by modem and serial

links.

device Text representation of a device GUID.

flowcontrol "NONE", "XONXOFF", "RTS", "DTR", or "RTSDTR". Used by modem and serial links.

hostname Any valid hostname, used only for IP and Internetwork Packet Exchange (IPX).

parity "NONE", "EVEN", "ODD", "MARK", or "SPACE". Used by modem and serial links.

phonenumber Any valid telephone number. Used by modem links.

port Any valid port address, used for IP and IPX, up to the maximum port value of

65535.

program Text representation of the program GUID.

provider Text representation of the service provider GUID.

stopbits "1", "1.5", or "2". Used by modem and serial links.

Note Any unrecognized keys not identified in the previous table MUST be ignored. The number sign
(#) token is used to indicate "user data" appended to the end of a URL. All characters that follow

the number sign token in a URL MUST be ignored.

URL Examples

IP Address

x-directplay:/

 provider=%7BEBFE7BA0-628D-11D2-AE0F-006097B01411%7D;

57 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 device=%7BIP ADAPTER GUID%7D;port=0000230034#IPUserData

IPX Address

x-directplay:/

 provider=%7B53934290-628D-11D2-AE0F-006097B01411%7D;

 device=%7BIPX ADAPTER GUID%7D;port=00230#IPXUserData

Serial Address

x-directplay:/

 provider=%7B743B5D60-628D-11D2-AE0F-006097B01411%7D;

 device=%7BCOM PORT GUID%7D;baud=57600;stopbits=1;parity=NONE;

 flowcontrol=RTSDTR#SerialUserData

Modem Address

x-directplay:/

 provider=%7B6D4A3650-628D-11D2-AE0F-006097B01411%7D;

 device=%7BMODEM DEVICE GUID%7D;

 phonenumber=555-1212#ModemUserData

2.2.35 DN_ALTERNATE_ADDRESS (IPv4)

In DirectPlay 9, the DN_ALTERNATE_ADDRESS structure provides additional options for Internet
Protocol (IP) connectivity. The alternative addresses included in DN_ALTERNATE_ADDRESS are
supplemental to the primary address specified in the DN_ADDRESSING_URL structure.

In the DN_ALTERNATE_ADDRESS structure, the wPort field is derived from its conversion into a
2-byte binary value, and the dwAddrIn field is derived from its conversion into a 4-byte binary

value. Both of these fields are treated as single binary buffers, and, therefore, are not handled in

network byte order. For example, a port value of 2302 would be converted into its 2-byte binary
value of 00001000 11111110, and an IPv4 transport address of 192.168.239.061 would be
converted into its 4-byte binary IN_ADDR (IPv4) (section 2.2.35.1) value of 11000000 10101000
11101111 00111101.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

bSize bFamily wPort

dwAddrIn

bSize (1 byte): The size of this DN_ALTERNATE_ADDRESS (IPv4) structure excluding the

size of this bSize field.

bFamily (1 byte): The address family for this DN_ALTERNATE_ADDRESS (IPv4) structure,

which MUST be set to 0x02.

wPort (2 bytes): The port value for this DN_ALTERNATE_ADDRESS (IPv4) structure. This
field is treated as a single buffer and is not specified in network byte order.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

58 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

dwAddrIn (4 bytes): The address of the corresponding IN_ADDR (IPv4) structure for this
DN_ALTERNATE_ADDRESS (IPv4) structure, which includes the IPv4 transport address.

2.2.35.1 IN_ADDR (IPv4)

The IN_ADDR structure specifies a 4-byte IPv4 transport address. The IPv4 transport address
192.168.239.061, when converted into a 4-byte binary IN_ADDR structure, would have the value
11000000 10101000 11101111 00111101.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

b1 b2 b3 b4

b1 (1 byte): First octet of the IPv4 network address.

b2 (1 byte): Second octet of the IPv4 network address.

b3 (1 byte): Third octet of the IPv4 network address.

b4 (1 byte): Fourth octet of the IPv4 network address.

2.2.36 DN_ALTERNATE_ADDRESS (IPv6)

The DN_ALTERNATE_ADDRESS (IPv6) structure is described in detail under the

DN_ALTERNATE_ADDRESS (IPv4) (section 2.2.35) structure.

The following diagram represents the contents of the structure when it contains an IPv6 alternative
address. The DN_ALTERNATE_ADDRESS (IPv4) (section 2.2.35) structure demonstrates the
contents of the same structure when it contains an IPv4 alternative address.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

bSize bFamily wPort

dwAddrIn

...

...

...

bSize (1 byte): The size of this DN_ALTERNATE_ADDRESS (IPv6) structure excluding the

size of this bSize field.

bFamily (1 byte): The address family for this DN_ALTERNATE_ADDRESS (IPv6) structure,
which MUST be set to 0x17.

wPort (2 bytes): The port value for this DN_ALTERNATE_ADDRESS (IPv6) structure
specified in network byte order.

%5bMS-GLOS%5d.pdf

59 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

dwAddrIn (16 bytes): The address of the corresponding IN6_ADDR (IPv6) (section 2.2.36.1)
structure for this DN_ALTERNATE_ADDRESS (IPv6) structure, which includes the IPv6

transport address.

2.2.36.1 IN6_ADDR (IPv6)

The IN6_ADDR structure specifies an IPv6 transport address whose bytes are in network byte
order (big-endian). The IPv6 transport address 2001:0db8:85a3:0000:0000:8a2e:0370:7334,
when converted into a 16-byte binary IN6_ADDR structure, would have the value 00100000
00000001 00001101 10111000 10000101 10100011 00000000 00000000 00000000 00000000
10001010 00101110 00000011 01110000 01110011 00110100.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

b1 b2 b3 b4

b5 b6 b7 b8

b9 b10 b11 b12

b13 b14 b15 b16

b1 (1 byte): High byte of the first 4-digit hexadecimal portion of the IPv6 network address.

b2 (1 byte): Low byte of the first 4-digit hexadecimal portion of the IPv6 network address.

b3 (1 byte): High byte of the second 4-digit hexadecimal portion of the IPv6 network address.

b4 (1 byte): Low byte of the second 4-digit hexadecimal portion of the IPv6 network address.

b5 (1 byte): High byte of the third 4-digit hexadecimal portion of the IPv6 network address.

b6 (1 byte): Low byte of the third 4-digit hexadecimal portion of the IPv6 network address.

b7 (1 byte): High byte of the fourth 4-digit hexadecimal portion of the IPv6 network address.

b8 (1 byte): Low byte of the fourth 4-digit hexadecimal portion of the IPv6 network address.

b9 (1 byte): High byte of the fifth 4-digit hexadecimal portion of the IPv6 network address.

b10 (1 byte): Low byte of the fifth 4-digit hexadecimal portion of the IPv6 network address.

b11 (1 byte): High byte of the sixth 4-digit hexadecimal portion of the IPv6 network address.

b12 (1 byte): Low byte of the sixth 4-digit hexadecimal portion of the IPv6 network address.

b13 (1 byte): High byte of the seventh 4-digit hexadecimal portion of the IPv6 network

address.

b14 (1 byte): Low byte of the seventh 4-digit hexadecimal portion of the IPv6 network address.

b15 (1 byte): High byte of the eighth 4-digit hexadecimal portion of the IPv6 network address.

b16 (1 byte): Low byte of the eighth 4-digit hexadecimal portion of the IPv6 network address.

%5bMS-GLOS%5d.pdf

60 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.37 DN_NAMETABLE

The name table is a concept used by DirectPlay to keep all participants in a game session in sync
with the different actions that are being performed.

The name table is really a table of players and groups that are included in the game session. Each
change to the state of the table is a versioned name table operation. Any participant in the game
session who applies these operations will generate a view that is consistent with every other players'
name table.

The following table identifies the name table operations that can be performed.

Action Meaning

0x000000C6 TRANS_USERDATA_INSTRUCT_CONNECT (section 2.2.20)

0x000000D0 TRANS_USERDATA_ADD_PLAYER (section 2.2.11)

0x000000D1 TRANS_USERDATA_DESTROY_PLAYER (section 2.2.15)

The host/server is responsible for all name table operations, and all peers in the game session MUST
maintain their own name table copy for use in host migration. All participants MUST also preserve a
record of all operations that they have performed on the name table that have incremented the

version number used during host migration. Host migration is described in [MC-DPL8CS] section
1.3.6.

The first operation in the name table is set to a version number of 1 and each subsequent operation
increments the version by one. Every time the modulo 4 result of the new version number of the
name table is equal to 0, each non-host peer SHOULD send a
TRANS_USERDATA_NAMETABLE_VERSION message to the host reporting the current name table

version of the peer. The host SHOULD track the versions reported by all peers and determine the
oldest version number from all reports. When the oldest version number advances, the host
SHOULD send a TRANS_USERDATA_RESYNC_VERSION message to all participants indicating the

new oldest value. All participants SHOULD then release their records of all name table operations
with versions older than this value, as they will no longer be needed during host migration.

2.2.38 PATHTESTKEYDATA

PATHTESTKEYDATA is a pseudo-structure that is hashed to generate 64-bit key values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dpnidSender

dpnidTarget

guidApplication

...

...

%5bMC-DPL8CS%5d.pdf

61 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

...

guidInstance

...

...

...

dpnidSender (4 bytes): A 32-bit DPNID value that identifies the sending player in little-endian
byte order.

dpnidTarget (4 bytes): A 32-bit DPNID value that identifies the intended recipient player in
little-endian byte order.

guidApplication (16 bytes): The 128-bit application GUID MUST be set to 61EF80DA-691B-
4247-9ADD-1C7BED2BC13E, which is the GUID for the DXDiag application.

guidInstance (16 bytes): A 128-bit instance GUID for identifying a specific instance of a game
session.

62 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in the DirectPlay DXDiag Usage Protocol. The described organization is
provided to facilitate the explanation of how the protocol behaves. This specification does not

mandate that implementations adhere to this model as long as their external behavior is consistent
with what is described in this specification.

Name Table: The list of computer systems participating in a DXDiag game session used both for
local use and for transmission to enable peer-to-peer connectivity when additional participants join.
This could also be considered the player list. It has a version number that monotonically increases
with every operation that changes the name table content such as adding or removing a player.

Name Table Entry: The DN_NAMETABLE_ENTRY_INFO structure along with associated strings and

data buffers for an individual participant in the DXDiag game session. These could be considered
players.

Path Test Key: A digest of the PATHTESTKEYDATA (section 2.2.38) pseudo structure is created
using the SHA-1 algorithm [FIPS180] and is used in the SESS_PATH_TEST (section 2.2.6) message
sent during the peer connection process.

3.1.2 Timers

3.1.2.1 Connect Retry Timer

The Connect Retry Timer is used to retry TRANS_COMMAND_CONNECT and
TRANS_COMMAND_CONNECT_ACCEPT messages if no response is received. Implementations
MAY<13> retry as many times as necessary at any frequency. Recommended values are for the

first retry to be 200 ms, doubling every subsequent retry with a cap at 5 seconds and 14 retries.

3.1.2.2 EnumQuery Retry Timer

The EnumQuery Retry Timer is used to retry EnumQuery (section 2.2.4) messages until the
connection is fully established with all of the packets documented in section 3.1.5.1 for a single-
client scenario or in section 3.1.5.2 for a multiple-client scenario.

The recommended frequency for retrying EnumQuery messages is every 1500 milliseconds until the
connection is fully established with all of the packets documented in section 3.1.5.1 for a single-

client scenario or in section 3.1.5.2 for a multiple-client scenario. The frequency can be adjusted
according to application and network requirements.

3.1.2.3 Retry Timer

A packet is considered to be lost if one of the following occurs:

An acknowledgement (ACK) is not received within a specified time-out period that is derived from

the current round-trip time (RTT).

The receiver explicitly indicates, through the use of a SACK mask, that it encountered a gap in

the sequence where the packet would have been.

http://go.microsoft.com/fwlink/?LinkId=89867

63 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If a packet is lost, the implementation can resend the original packet with the same sequence
number, provided the packet was marked as reliable. Otherwise, the implementation updates future

packets to include a send mask to indicate that the data is never resent if a dropped packet is not
marked as reliable.

Retry Timer tracking starts when a message that is prefixed with a TRANS_USERDATA_HEADER
packet header is dropped and requires a message retry or when a send mask is sent.

For the first retry attempt, recommended values are 2.5 RTT + the delayed ACK time-out

(nominally 100 ms).

For the second and third retry attempts, it is recommended to have a linear backoff.

For the fourth through eighth retry attempts, it is recommended to have an exponential backoff.

In addition, it is also recommended to have an overall cap at 5 seconds and 10 retries.

3.1.2.4 KeepAlive Retry Timer

The KeepAlive Retry Timer sends a minimal reliable packet to keep the connection alive when no
traffic has been received from a peer for a specified time interval. The recommended time for

inactivity is 25 seconds, and the granularity on the timer is four seconds. The interval time can be
modified according to application and network requirements.

This timer SHOULD start immediately after the successful completion of a Keep Alive exchange as
documented in section 3.1.5.1 for a single-client scenario or in section 3.1.5.2 for a multiple-client
scenario.

When a particular peer is marked as disconnected, the timer SHOULD be stopped for that peer.

3.1.2.5 Path Test Retry Timer

The Path Test Retry Timer periodically resends SESS_PATH_TEST (section 2.2.6) messages to
compensate for potential packet loss. The recommended time interval to retry is 375 milliseconds

with a maximum of seven attempts. However, the attempts can be modified according to application
and network requirements.

3.1.2.6 Delayed Acknowledgment Timer

The Delayed Acknowledgment Timer reduces the frequency of dedicated acknowledgments
(SACKs).This timer is used to reduce the frequency of dedicated acknowledgments (ACKs) so that
they can be piggybacked onto return traffic or multiple receives.

The recommended value for the Delayed Acknowledgment Timer is 20 milliseconds when
acknowledging out-of-order or duplicate packets. This value can be modified according to application
and network requirements.

3.1.3 Initialization

To use the SESS_PATH_TEST (section 2.2.6) message, the new client and the existing client MUST
fill in a PATHTESTKEYDATA (section 2.2.38) pseudo-structure with the following:

The dpnidSender field MUST be set to the DPNID of the new peer in little-endian byte order.

The dpnidTarget field MUST be set to the DPNID of the existing peer in little-endian byte order.

%5bMS-GLOS%5d.pdf

64 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The guidApplication field MUST be set to the application GUID.

The guidInstance field MUST be set to the game session instance GUID.

Both the new and existing clients MUST generate an SHA-1 digest of the PATHTESTKEYDATA binary

data, as specified in [FIPS180], and use the first 64 bits of the output value as the Path Test key
value key. For an existing client, this value MUST remain associated with the connection attempt
that the client is performing until one of the following conditions is met:

The attempt fails.

A valid reply packet is received from the target address.

The client receives a valid SESS_PATH_TEST message.

At the same time, the existing client MUST prepare to accept SESS_PATH_TEST messages in
response to its instructed connection messages.

For a new client, this value MUST be used in the periodic transmission of SESS_PATH_TEST
messages. The Path Test Retry Timer (section 3.1.2.5) MUST be initialized.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Sending a Chat Message

To send a chat message, a participant SHOULD send a TRANS_USERDATA_SEND_MESSAGE to the
other participant. The TRANS_USERDATA_HEADER for the message SHOULD indicate that it is
sequential and not reliable, that is, it SHOULD have the PACKET_COMMAND_SEQUENTIAL flag
set, and SHOULD NOT have the PACKET_COMMAND_RELIABLE flag set in the bCommand field.

3.1.4.2 Disconnecting

When a participant requests to disconnect, the upper layer SHOULD initiate the sequence defined in

section 3.1.5.3.

3.1.5 Processing Events and Sequencing Rules

The DXDiag application allows a client and server to create a chat session. All TRANS_USERDATA
packets have their TRANS_USERDATA_HEADERs processed as specified in sections 3.1.5.8 and

3.1.5.9.

3.1.5.1 Client Joins a DirectPlay Session with No Other Clients

The client sends an EnumQuery (section 2.2.4) session packet in search of a chat session.

When processing an EnumQuery packet:

The server MUST validate the CommandByte field for a valid value as specified in section

2.2.4; otherwise, the packet SHOULD be ignored.

The server MUST validate the QueryType field for a valid value as specified in section 2.2.4;

otherwise the packet SHOULD be ignored.

The server SHOULD NOT respond to the EnumQuery messages when the QueryType field is

0x01 and the ApplicationGUID field does not match the server application GUID.

http://go.microsoft.com/fwlink/?LinkId=89867

65 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The server responds to the client with an EnumResponse session packet. These DirectPlay

session packets are identifiable by a leading zero-byte tag.

When processing an EnumResponse packet:

The client MUST validate the CommandByte field for a valid value as specified in section

2.2.5; otherwise, the packet SHOULD be ignored.

The client MUST match the value of the EnumPayload field of the EnumResponse packet with

the EnumPayload field values of EnumQuery messages that were previously sent. Otherwise,
the EnumQuery message SHOULD be retried by the client.

The client requests a connection using a TRANS_COMMAND_CONNECT packet.

When processing a TRANS_COMMAND_CONNECT packet:

If the source address corresponds to an existing, fully established connection it SHOULD be

ignored.

If the source address is from an earlier received inbound connection that has not completed

the connection handshake process and the value of the dwSessID field matches the
previously received TRANS_COMMAND_CONNECT, then a
TRANS_COMMAND_CONNECT_ACCEPT (section 2.2.8) message SHOULD be sent; otherwise,
the packet SHOULD be ignored.

If the source address is from a previously established outbound connection that has not

completed the connection handshake process, the packet SHOULD be ignored.

If the recipient is not allowing connections, the packet MUST be ignored.

If the source address does not correspond to any existing connection, it SHOULD be treated as

a new connection attempt and the bExtOpcode field MUST be validated as described in
section 2.2.7.

If the validation succeeds, a TRANS_COMMAND_CONNECT_ACCEPT packet SHOULD be

sent in response; otherwise, the packet MUST be ignored.

When processing a TRANS_COMMAND_CONNECT_ACCEPT packet:

The source address SHOULD be verified. If the address does not correspond to one with a

partially or fully established connection, it SHOULD be ignored.

If the source address matches that of a previously initiated outbound connection that has not

completed the connection handshake process, then validation checks SHOULD be performed

as described.

If the bExtOpcode field does not have a valid value, the packet MUST be ignored.

If the bCommand field is set to 0x80, then the TRANS_COMMAND_CONNECT_ACCEPT

acknowledge packet SHOULD NOT be sent.

The dwSessID field MUST match the one previously sent in the

TRANS_COMMAND_CONNECT packet and the bCommand field MUST have the POLL value
set.

The client issues a TRANS_COMMAND_CONNECT_ACCEPT packet to acknowledge the connection.

When processing a TRANS_COMMAND_CONNECT_ACCEPT acknowledge packet:

66 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The source address SHOULD be verified. If the address does not correspond to one with a

partially or fully established connection, it SHOULD be ignored.

If the source address matches that of a previously initiated outbound connection that has not

completed the connection handshake process, then validation checks SHOULD be performed
as described in the following steps.

If the bExtOpcode field does not have a valid value, the packet MUST be ignored.

If the bCommand field is set to 0x88, the Connect Retry Timer SHOULD be initiated as

described in section 3.1.2.1.

The dwSessID field MUST match that of the previously sent

TRANS_COMMAND_CONNECT_ACCEPT packet.

The bCommand field MUST NOT have the POLL value set.

The server and client exchange TRANS_USERDATA_KEEPALIVE request packets.

The client sends user information in a TRANS_USERDATA_PLAYER_CONNECT_INFO packet. The

client can send this packet either in between the keep-alive exchange or after the keep-alive
exchange has completed.

If the TRANS_USERDATA_PLAYER_CONNECT_INFO packet fails validation, the server sends a

TRANS_USERDATA_CONNECT_FAILED packet and the connection attempt is terminated with a
TRANS_USERDATA_END_OF_STREAM packet from the server.

The server sends session information in a TRANS_USERDATA_SEND_SESSION_INFO packet.

The client MUST send a TRANS_USERDATA_ACK_SESSION_INFO to the server.

The server sends a TRANS_USERDATA_INSTRUCT_CONNECT to the client to instruct it to form a

connection.

The client responds with a TRANS_USERDATA_NAMETABLE_VERSION packet.

The server sends a TRANS_USERDATA_RESYNC_VERSION packet.

The client acknowledges it by sending a TRANS_COMMAND_SACK packet.

When processing a TRANS_COMMAND_SACK packet:

The source address SHOULD be verified. If the address does not correspond to one with a fully

established connection, it MUST be ignored.

3.1.5.2 Client Joins a DirectPlay Session with Multiple Other Clients

The client sends an EnumQuery session packet in search of a chat session. The processing rules

for the EnumQuery packet are specified in section 3.1.5.1.

The server responds to the client with an EnumResponse session packet. These DirectPlay

session packets are identifiable by a leading zero-byte tag. The processing rules for the
EnumResponse packet are specified in section 3.1.5.1.

The client requests a connection using a TRANS_COMMAND_CONNECT packet. The processing

rules for the TRANS_COMMAND_CONNECT packet are specified in section 3.1.5.1.

67 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The server responds with a TRANS_COMMAND_CONNECT_ACCEPT packet. The processing rules

for the TRANS_COMMAND_CONNECT_ACCEPT packet are specified in section 3.1.5.1.

The client issues a TRANS_COMMAND_CONNECT_ACCEPT packet to acknowledge the connection.

The processing rules for the TRANS_COMMAND_CONNECT_ACCEPT acknowledge packet are
specified in section 3.1.5.1.

The server and client exchange TRANS_USERDATA_KEEPALIVE request packets.

The client sends user information in a TRANS_USERDATA_PLAYER_CONNECT_INFO packet.

If the TRANS_USERDATA_PLAYER_CONNECT_INFO packet fails validation, the server sends a

TRANS_USERDATA_CONNECT_FAILED packet and the connection attempt is terminated with a
TRANS_USERDATA_END_OF_STREAM packet from the server.

The server, after receiving the TRANS_USERDATA_PLAYER_CONNECT_INFO packet, alerts

existing clients to the existence of the new client by sending a TRANS_USERDATA_ADD_PLAYER
packet.

The server sends a TRANS_USERDATA_SEND_SESSION_INFO packet to the new client.

The new client tests the network path to the existing clients with SESS_PATH_TEST packets.

When processing a SESS_PATH_TEST packet:

The peer MUST search for outstanding TRANS_USERDATA_INSTRUCT_CONNECT and

TRANS_USERDATA_ADD_PLAYER messages that have a matching key value as specified in
section 3.1.3.

If a matching key is found and the connect attempt has not yet initiated to the intended target

source address and port, the connect target SHOULD be modified to use the source address
and port of the SESS_PATH_TEST packet.

If no connect attempt is associated with a matching key value, the existing peer MUST ignore

the SESS_PATH_TEST packet.

If the recipient is the new client or the host, and therefore not intending to make any

connection attempts, the SESS_PATH_TEST packet MUST be ignored.

The new client sends a TRANS_USERDATA_ACK_SESSION_INFO to acknowledge the game

session information previously received from the server.

The server sends a TRANS_USERDATA_INSTRUCT_CONNECT packet to all clients (both existing

and the new client) to instruct them to connect.

If an existing client cannot connect to the new client, the existing client responds with a

TRANS_USERDATA_INSTRUCTED_CONNECT_FAILED user data packet, and the connection
attempt to the new client is canceled.

The server sends a TRANS_USERDATA_CONNECT_ATTEMPT_FAILED packet to the new client.

The server then sends a TRANS_USERDATA_DESTROY_PLAYER packet to the existing client,

instructing the existing client to remove the new client from the name table.

Otherwise, each client initiates the connection with the new client using a

TRANS_COMMAND_CONNECT packet.

The new client responds with a TRANS_COMMAND_CONNECT_ACCEPT packet.

68 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Each existing client acknowledges the connection with a TRANS_COMMAND_CONNECT_ACCEPT

packet.

The new client and each existing client exchange TRANS_USERDATA_KEEPALIVE packets, and

the existing client transmits its user identifier in a TRANS_USERDATA_SEND_PLAYER_DNID
packet to the new client.

Finally, all clients acknowledge the game session server and each other using

TRANS_COMMAND_SACK packets. The processing rules for the TRANS_COMMAND_SACK packet
are specified in section 3.1.5.1.

3.1.5.3 Client Disconnects from Chat Session

When a client disconnects, the server makes an announcement to remaining clients, and then the
departing client disconnects.

The departing client issues a TRANS_USERDATA_END_OF_STREAM packet to the server and the

other existing clients in the chat session. A TRANS_USERDATA_END_OF_STREAM message

SHOULD be a separate packet without a payload; however, it MAY be the final queued data

packet. After sending the TRANS_USERDATA_END_OF_STREAM message, the departing client
MUST NOT send additional DFRAMEs other than retries. The client MUST be prepared to continue
receiving TRANS_COMMAND_SACK packets until it receives the
TRANS_USERDATA_END_OF_STREAM from the server and other existing clients in the DXDiag
chat session.

The server and each existing client respond with four TRANS_COMMAND_SACK packets and a

TRANS_USERDATA_END_OF_STREAM packet (in any order).

The departing client returns four TRANS_COMMAND_SACK packets to the server and each

existing client before disconnecting.

If other clients are present in the game session, the server sends each one a

TRANS_USERDATA_DESTROY_PLAYER packet to remove the departing client from their name
table. This can happen before the server receives the final TRANS_COMMAND_SACK packet from

the departing client.

Each remaining client sends the server a TRANS_USERDATA_REQ_INTEGRITY_CHECK and

TRANS_COMMAND_SACK packet to acknowledge the removal of the departed client.

3.1.5.4 Server Disconnects from Chat Session

A server can leave without destroying the chat session. The DirectPlay DXDiag Usage Protocol allows
hosting to migrate to another member currently in the game session.<14>

The hosting migration begins with the server sending a TRANS_USERDATA_END_OF_STREAM

packet to all clients in the game session.

Each client responds with four TRANS_COMMAND_SACK packets and a

TRANS_USERDATA_END_OF_STREAM packet (in any order).

The server sends four TRANS_COMMAND_SACK packets to each client, and disconnects.

If other clients are present in the game session, the client that has been in the game session the

longest becomes the new server and contacts each client with a
TRANS_USERDATA_HOST_MIGRATE user data packet.

69 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Each client sends a TRANS_USERDATA_NAMETABLE_VERSION user data packet to the new

server.

If the name table of any client is older than the name table of the new server, the new server

ends the migration sequence for that client with TRANS_USERDATA_HOST_MIGRATE_COMPLETE
and TRANS_USERDATA_DESTROY_PLAYER packets, in any order. The
TRANS_USERDATA_DESTROY_PLAYER packet identifies the previous host to remove from the
client game session list.

Otherwise, if the new server determines that there is a client with a newer name table, the new

server will request entries from the client with the newer name table that are not contained

within the name table of the host, using the TRANS_USERDATA_REQ_NAMETABLE_OP packet.

The client responds to the host with a TRANS_USERDATA_ACK_NAMETABLE_OP packet

containing the missing entries.

The new server sends a TRANS_USERDATA_RESYNC_VERSION packet to all clients to get every

participant in sync.

The server sends a TRANS_USERDATA_HOST_MIGRATE_COMPLETE packet to all connected

peers.

3.1.5.5 Client Is Forcefully Removed from Session

A server can purposefully remove a client from the game session.

The server issues a TRANS_USERDATA_TERMINATE_SESSION (section 2.2.14) packet to the

client being removed.

The client receiving the TRANS_USERDATA_TERMINATE_SESSION MUST disconnect all

connections and leave the game session.

The client responds with a TRANS_USERDATA_END_OF_STREAM (section 2.2.16) packet to the

server and any other clients that are present.

The server and other clients send four TRANS_COMMAND_SACK (section 2.2.9) packets and one

TRANS_USERDATA_END_OF_STREAM packet in any order to the client.

The departing client returns four TRANS_COMMAND_SACK packets to the server and any other

clients that are present.

The server issues a TRANS_USERDATA_DESTROY_PLAYER (section 2.2.15) packet to the

remaining connected clients indicating the removal of the disconnecting client.

3.1.5.6 Client Detects Loss of Connection to Other Client

A client may detect the loss of connection to another client (departing client) in the game session.

The client that detected the loss of connection sends a

TRANS_USERDATA_REQ_INTEGRITY_CHECK (section 2.2.27) packet to the server to request that

the server determine whether the departing client is still in the game session.

The server sends a TRANS_USERDATA_INTEGRITY_CHECK (section 2.2.28) packet to the

departing client containing the DPNID of the client that detected the loss of connection.

If the departing client does not respond in time to the TRANS_USERDATA_INTEGRITY_CHECK

packet, the server sends the TRANS_USERDATA_DESTROY_PLAYER (section 2.2.15) packet to

70 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

the client that detected the loss of connection, asking it to remove the departing client entry from
its name table.

If the departing client responds to the server with a

TRANS_USERDATA_INTEGRITY_CHECK_RESPONSE (section 2.2.29) packet, the server sends a
TRANS_USERDATA_TERMINATE_SESSION (section 2.2.14) packet to the client that detected the
loss of connection.

The client that detected the loss of connection removes itself from the session by sending a

TRANS_USERDATA_END_OF_STREAM (section 2.2.16) packet to the server.

The server sends four TRANS_COMMAND_SACK (section 2.2.9) packets and one

TRANS_USERDATA_END_OF_STREAM packet in any order to the client that detected the loss of
connection.

The client that detected the loss of connection replies with four TRANS_COMMAND_SACK

packets.

The server notifies the departing client of the removal of the client that detected the loss of

connection by sending TRANS_USERDATA_DESTROY_PLAYER to the departing client.

3.1.5.7 Participant Receives Chat Message

When a participant receives a chat message, it can display the chat message to the user. It SHOULD
send a TRANS_COMMAND_SACK message to acknowledge the packet sequence number in which the
chat message was delivered.

3.1.5.8 Command Byte (bCommand) Validation and Processing

Validation and processing of the bCommand field of the TRANS_USERDATA_HEADER (section
2.2.17) message is as follows:

If the User2 flag is set, the receiver SHOULD NOT process this message as a DirectPlay DXDiag

Usage Protocol session management message. The receiver MUST acknowledge this message.

If the User2 and DFRAME flags are not set, the receiver SHOULD NOT process the message as a

DirectPlay DXDiag Usage Protocol session management message. The message SHOULD be
ignored by the receiver.

If the User1 and User2 flags are not set and the DFRAME flag is set, the message will be

considered as valid and will not be processed as a DirectPlay DXDiag Usage Protocol session
management message. The recipient SHOULD acknowledge this message.

If the User1 and DFRAME flags are set and the User2 flag is not set, and if either or both the

NEW_MSG and END_MSG bits are not set, the packet will be considered as valid and message
processing SHOULD NOT be started for this packet. The recipient SHOULD acknowledge this
packet.

The POLL, SEQ, and REL bits SHOULD be set in session management messages.

3.1.5.9 Control Byte (bControl) Validation and Processing

Validation and processing of the bControl field of the TRANS_USERDATA_HEADER (section 2.2.17)
message is as follows:

71 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If the Keep Alive flag is set and if the same message contains a payload, the receiver SHOULD

ignore the payload and SHOULD process the packet as a Keep Alive message.

If the End Of Stream flag is set and if the same message contains a payload, the receiver

SHOULD ignore the End Of Stream flag and SHOULD process the payload.

If any of the SACK1, SACK2, SEND1, or SEND2 mask bits are set and if there is no corresponding

DWORD in the header, the receiver SHOULD ignore this message.

3.1.5.10 Send Sequence ID (bSeq) Validation and Processing

The TRANS_USERDATA_HEADER bSeq field MUST be either the next sequence ID expected or

within 63 packets beyond the ID expected by the receiver. If the sequence ID is not within this
range, the payload MUST be ignored. In addition, a SACK packet SHOULD be sent indicating the
expected sequence ID. If the PACKET_COMMAND_POLL flag is set in the bCommand field, this
packet SHOULD be sent immediately; otherwise, the Delayed Acknowledgment Timer SHOULD be
set using a short timeout, and a SACK packet SHOULD be sent when it expires. The recommended
short timeout is 20 milliseconds. This value can be modified according to application and network

requirements.

If the sequence ID is the next expected, the receiver SHOULD process the payload and advance the
expected sequence ID. If the sequence ID is out of order, but still within 63 packets, the receiver
SHOULD queue the payload until it receives either:

A delayed or retried transmission of the missing packet or packets, and can now process the

sequence in order.

A subsequent packet with a send mask indicating that the missing packet or packets did not use

PACKET_COMMAND_RELIABLE and will never be retried. Therefore, the receiver should
advance its sequence as if it had already received and processed the packets.

If an implementation has out-of-order packets beyond the current expected sequence ID queued, it
SHOULD indicate this to the sender using appropriate SACK masks on any outgoing
TRANS_COMMAND_SACK or TRANS_USERDATA_HEADER based messages. This feedback enables

the sender to avoid retrying packets that have already been successfully received.

3.1.5.11 Acknowledged Sequence ID (bNRcv) Processing

If the TRANS_USERDATA_HEADER bSeq sequence ID is valid, the bNRcv field SHOULD be
inspected. All previously sent TRANS_USERDATA_HEADER packets that are covered by the bNRcv
sequence ID, that is, those packets that had been sent with bSeq values less than bNRcv
(accounting for 8-bit counter wrapping) are acknowledged. These packets do not have to be
remembered any longer, and their retry timers can be canceled.

3.1.5.12 SACK Mask Processing

When one or both of the optional SACK mask 32-bit fields is present, and one or more bits are set in
the fields, the sender is indicating that it received a packet or packets out of order, presumably due
to packet loss. The two 32-bit, little-endian fields MUST be considered as one 64-bit field, where

dwSACKMask1 is the low 32 bits and dwSACKMask2 is the high 32 bits. If either 32-bit field is
not available, the entire contents of the 64-bit field MUST be considered as all 0.

The receiver of a SACK mask SHOULD loop through each bit of the combined 64-bit value in the
ascending order of significance. Each bit corresponds to a sequence ID after bNRcv. If the bit is set,
it indicates that the corresponding packet was received out of order

%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf

72 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The receiver of a SACK mask SHOULD shorten the retry timer for the first frame of the window to
speed recovery from the packet loss. The recommended duration is 10 milliseconds. This value can

be modified according to application and network requirements. The receiver MAY also choose to
remove the selectively acknowledged packets from its list to retry.

3.1.5.13 Send Mask Processing

When one or both of the optional send mask 32-bit fields is present, and one or more bits are set in
the fields, the sender is indicating that it sent a packet or packets that were not marked as reliable
and did not receive an acknowledgement yet. The two 32-bit, little-endian fields MUST be
considered as one 64-bit field, where dwSendMask1 is the low 32 bits and dwSendMask2 is the
high 32 bits. If either 32-bit field is not available, the entire contents of the 64-bit field MUST be

considered as all 0.

The receiver of a send mask SHOULD loop through each bit of the combined 64-bit value from the
least significant bit to the most significant in little-endian byte order. Each bit corresponds to a
sequence ID prior to bSeq, and if that is the bit that is set, it indicates that the corresponding

packet was not sent reliably and will not be retried. If the recipient of the send mask had not
received the packet and had not already processed a send mask that identified the sequence ID, it

SHOULD consider the packet as dropped and release its placeholder in the sequence. That is, any
sequential messages that could not be indicated because of the gap in the sequence where the
packet that was not marked as reliable had been SHOULD now be reported to the upper layer.

3.1.6 Timer Events

3.1.6.1 Connect Retry Timer

When the connect retry timer expires, a new TRANS_COMMAND_CONNECT or
TRANS_COMMAND_CONNECT_ACCEPT message SHOULD be sent, depending on the current state.
The connect retry timer SHOULD then be rescheduled for the next period. It is recommended that
the retry period start at 200 ms, doubling every time with a maximum of 5 seconds and 14 retries.

If the maximum number of retries has already been attempted when the timer expires, the

connection attempt SHOULD be considered as failed. If the connection was initiated from an inbound
TRANS_COMMAND_CONNECT packet arriving on a listening computer system, the listener MAY

choose to go back to listening if it did not allow additional connection attempts while the failed
attempt was in progress.

3.1.6.2 EnumQuery Retry Timer

When the EnumQuery Retry Timer expires, a new EnumQuery message SHOULD be sent. The
EnumQuery Retry Timer SHOULD be rescheduled for the next period.

3.1.6.3 Retry Timer

When the retry timer elapses without having been canceled, and the associated packet was marked
as reliable, the TRANS_USERDATA_HEADER prefixed message SHOULD be resent, and the retry
timer SHOULD then be scheduled for the next period. It is recommended that the retry period start

at 2.5 RTT + 100 ms and that there be linear backoff for the second and third retries, exponential
backoff for subsequent retries 4 through 8, and an overall cap at 5 seconds and 10 retries.

If the maximum number of retries has already been attempted when the timer expires, the

connection SHOULD be considered as lost. All other in-progress sends SHOULD be discarded, and
the upper layer SHOULD be informed of the disconnection.

73 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

When the retry timer elapses without having been canceled, and the associated packet was not
marked as reliable, the packet's sequence ID SHOULD be remembered as requiring a send mask to

be used in future transmissions.

3.1.6.4 KeepAlive Retry Timer

A successfully validated SACK packet SHOULD count as a valid receive and therefore, restart the
KeepAlive Retry Timer as described in section 3.1.2.4.

All successfully validated DFRAME packets SHOULD count as valid receives and therefore, restart the
KeepAlive Retry Timer as described in section 3.1.2.4.

3.1.6.5 Path Test Retry Timer

When the Path Test Retry Timer elapses, the new client MUST send a new SESS_PATH_TEST
message to the source address and port of the existing client for which it is expecting a connection.
This message MUST be sent from the same UDP port number on which it is expecting the

connection. If fewer than the maximum number of attempts have been made, the timer MUST then
be rescheduled so that it MAY elapse again. Otherwise, the retries have been exhausted and the
Path Test operation SHOULD be canceled.

3.1.6.6 Delayed Acknowledgment Timer

When the Delayed Acknowledgment (SACK) Timer expires without having been canceled, the
computer SHOULD send a dedicated SACK message that contains the current connection state
information.

3.1.7 Other Local Events

None.

3.2 Server Details

3.2.1 Abstract Data Model

None.

3.2.2 Timers

None.

3.2.3 Initialization

When a DXDiag-compatible application initializes as a host, it begins listening for enumeration
requests on port 6073. It also begins accepting connections on the user-specified port.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Processing Events and Sequencing Rules

When a server receives an EnumQuery request, the server SHOULD respond with an
EnumResponse.

74 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

When a server receives a TRANS_COMMAND_CONNECT packet from a new client, the server
SHOULD respond with a TRANS_COMMAND_CONNECT_ACCEPT packet and begin the sequence

specified in section 3.1.5.1 or 3.1.5.2.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

3.3 Client Details

3.3.1 Abstract Data Model

None.

3.3.2 Timers

None.

3.3.3 Initialization

When a DXDiag-compatible application initializes as a client, it begins enumerating for hosts on port
6073.

3.3.4 Higher-Layer Triggered Events

When a higher layer initiates game session discovery, the client SHOULD begin sending EnumQuery
messages to the address specified by the higher layer. This MAY be the broadcast address to

discover local area network (LAN) DXDiag game sessions.

A higher layer presents a list of discovered game sessions to the user for selection, or it MAY
automatically select a discovered game session. The higher layer will then initiate a connection
attempt to the specified game session. The client SHOULD initiate the sequence identified in section
3.1.5.1 or 3.1.5.2.

3.3.5 Processing Events and Sequencing Rules

When a client receives an EnumResponse to a previously sent query, the client SHOULD include the
responder in a list of available game sessions in the user interface.

When the server sends a TRANS_USERDATA_ADD_PLAYER message indicating that another client is
joining the game session, the client SHOULD install the new player's information in the name table.
Once the client receives the subsequent TRANS_USERDATA_INSTRUCT_CONNECT message, the
client SHOULD then begin connecting to the new participant using the previously specified

addressing information.

3.3.6 Timer Events

None.

75 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.3.7 Other Local Events

None.

76 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

4 Protocol Examples

4.1 User Joins a DXDiag Chat Session Example

The following example describes how clients connect to a DXDiag chat session.

In the DXDiag application, the user selects the DirectPlay test option on the Network tab.

The user selects the Network Provider, and then clicks Join Session.

The DXDiag application goes through the steps listed in section 3.1.5.1.

4.2 Client Disconnects from a DXDiag Chat Session Example

The following example describes how clients and servers disconnect from a DXDiag chat session.

User selects CLOSE on the Chat window. This is the same action regardless of whether the user

is the server or the client in the game session. However, the sequence of events that results
differs according to the current role of the participant, as specified in sections 3.1.5.3 and

3.1.5.4.

4.3 New Client Joins a Game Session with an Existing Client Example

The following example demonstrates the message sequence when a new client joins a DirectPlay
game session that has an existing client.

77 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Figure 3: Sequence diagram for a new client joining a game session with an existing client

Note In the diagram, different line styles are used to distinguish between message types, including

query/response, TRANS_COMMAND, TRANS_USERDATA, and SESS_PATH_TEST.

The steps in the message sequence are as follows:

1. A new client sends an EnumQuery message to search for a DirectPlay game session.

Note EnumQuery messages are unreliable, and therefore, are at risk of being lost. In addition, it

is possible to send multiple EnumQuery messages. In this example, it is assumed that the first
EnumQuery message is lost and the second EnumQuery message is successfully received by the

server.

2. In response to the EnumQuery message, the server sends an EnumResponse message and
echoes the EnumPayload field as part of the response.

78 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3. The connection handshake is started by the new client sending a TRANS_COMMAND_CONNECT
packet to the server. The bMsgId field is reflected in the bRspId field of the

TRANS_COMMAND_CONNECT_ACCEPT packet to correlate the response.

4. The server responds by sending a TRANS_COMMAND_CONNECT_ACCEPT packet to the new client

and echoes the bMsgID field of the TRANS_COMMAND_CONNECT packet in the bRspID field.

5. The new client sends a TRANS_COMMAND_CONNECT_ACCEPT packet to acknowledge the
connection. It echoes the bMsgId field of the TRANS_COMMAND_CONNECT_ACCEPT packet from
the server in the bRspId field of the acknowledged packet.

6. The new client and the server then exchange TRANS_USERDATA_KEEPALIVE packets to indicate
the successful connection handshake.

7. The new client sends its information to the server using the

TRANS_USERDATA_PLAYER_CONNECT_INFO packet.

8. The server sends the game session information to the new client using the

TRANS_USERDATA_SEND_SESSION_INFO packet, and informs the existing client about the
newly joining client using the TRANS_USERDATA_ADD_PLAYER packet.

9. The new client tests the presence of a network path to the existing client by sending the
SESS_PATH_TEST packet.

10.The new client acknowledges the game session information sent by the server by sending the
TRANS_USERDATA_ACK_SESSION_INFO packet.

11.The server instructs the existing client to connect to the new client by sending the
TRANS_USERDATA_INSTRUCT_CONNECT packet.

12.The server also sends the TRANS_USERDATA_INSTRUCT_CONNECT packet to the new client to
cause the new client to resynchronize its name table.

13.The existing client validates the DPNID of the new client that was sent in the

TRANS_USERDATA_INSTRUCT_CONNECT packet using the dpnid field sent in the
TRANS_USERDATA_ADD_PLAYER packet. After successful validation of the DPNID, the existing
client starts connecting to the new client by sending the TRANS_COMMAND CONNECT packet.

14.The new client accepts the connection request from the existing client by sending the
TRANS_COMMAND_CONNECT_ACCEPT packet.

15.The existing client acknowledges the connection to the new client by sending the
TRANS_COMMAND_CONNECT_ACCEPT packet.

16.The new client and the existing client exchange the TRANS_USERDATA_KEEPALIVE packet to
indicate successful connection handshake.

17.The existing client sends its DPNID value in a TRANS_USERDATA_SEND_PLAYER_DNID packet to
the new client.

18.The new client and the existing client acknowledge the connection by exchanging
TRANS_COMMAND_SACK packets between themselves and with the server.

79 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

5 Security

5.1 Security Considerations for Implementers

The DirectPlay DXDiag Usage Protocol is not intended for applications that require robust security,
which cannot be implemented using other layers such as IPsec.

5.2 Index of Security Parameters

None.

80 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows XP operating system

Windows Server 2003 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior

also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product

does not follow the prescription.

<1> Section 1.7: When a DirectPlay DXDiag Usage Protocol receiver indicates support for

coalescence (version level 0x00010005 or higher), a Windows sender can utilize the coalescence
feature to fuse any TRANS_USERDATA message except TRANS_USERDATA_END_OF_STREAM,
TRANS_USERDATA_KEEPALIVE, and TRANS_USERDATA_SEND_MESSAGE. Windows
implementations never utilize the signing feature (version level 0x00010006), even when the
receiver indicates support for signing.

<2> Section 1.7: After the release of DirectX 6.0, DirectPlay versions (1) through 3A were modified

to resolve to DirectPlay 4. However, DirectPlay versions (1) through 3A were last released in
Windows 98 Second Edition.

<3> Section 2.2.5: Only the DPNSESSION_MIGRATE_HOST (0x00000004) value is used in the
Windows implementation of the ApplicationDescFlags field.

<4> Section 2.2.6: The value of the dwMsgId field should change every time a SESS_PATH_TEST
message is retried.

<5> Section 2.2.7: Windows Server 2003 and Windows XP, without the DirectX 9 or later runtime

installed, report versions less than 0x00010005, and do not support signing or coalescence.

<6> Section 2.2.8: Windows XP and Windows Server 2003, without the DirectX 9 or later runtime
installed, report versions less than 0x00010005, and do not support signing or coalescence.

<7> Section 2.2.11: Only the 0x00000100 value is used in the Windows implementation of the
dwFlags field.

<8> Section 2.2.11: The dwDNETClientVersion field must be set to one of the following values.
Windows XP and Windows Server 2003 will send only 0x00000007 (DirectX 9.0) as the DirectX

version number. Downgrading the DirectX version is not supported.

Value Meaning

0x00000001 DirectX 8.0

0x00000002 DirectX 8.1

0x00000003 Pocket PC

%5bMS-GLOS%5d.pdf

81 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Value Meaning

0x00000004 Not used

0x00000005 Not used

0x00000006 DirectX 8.2

0x00000007 DirectX 9.0

<9> Section 2.2.26: The dwDNETVersion field must be set to one of the following values.

Windows XP and Windows Server 2003 will send only 0x00000007 (DirectX 9.0) as the DirectX
version number. Downgrading the DirectX version is not supported.

Value Meaning

0x00000001 DirectX 8.0

0x00000002 DirectX 8.1

0x00000003 Pocket PC

0x00000004 Not used

0x00000005 Not used

0x00000006 DirectX 8.2

0x00000007 DirectX 9.0

<10> Section 2.2.33: Only the 0x00000004 value is used in the Windows implementation of the

dwFlags field.

<11> Section 2.2.33.1: Only the 0x00000002 and 0x00000100 values are used in the Windows

implementation of the dwFlags field.

<12> Section 2.2.33.1: The dwDNETVersion field must be set to one of the following values.
Windows XP and Windows Server 2003 will send only 0x00000007 (DirectX 9.0) as the DirectX
version number. Downgrading the DirectX version is not supported.

Value Meaning

0x00000001 DirectX 8.0

0x00000002 DirectX 8.1

0x00000003 Pocket PC

0x00000004 Not used

0x00000005 Not used

0x00000006 DirectX 8.2

0x00000007 DirectX 9.0

82 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

<13> Section 3.1.2.1: The Windows implementation will retry as specified despite the prescriptive
indication of "MAY".

<14> Section 3.1.5.4: By default, the DXDiag application transfers the hosting to the client that has
been in the chat the longest.

83 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

84 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

8 Index

_MESSAGE_HEADER packet 14

A

Abstract data model
client (section 3.1.1 62, section 3.3.1 74)
common details 62
server (section 3.1.1 62, section 3.2.1 73)

Acknowledged Sequence ID (bNRcv) processing 71
Applicability 12

C

Capability negotiation 12
Change tracking 83
Chat messages

receiving 70
sending 64

Chat session
client disconnections 68
server disconnections 68

Client
abstract data model (section 3.1.1 62, section

3.3.1 74)
higher-layer triggered events (section 3.1.4 64,

section 3.3.4 74)
initialization (section 3.1.3 63, section 3.3.3 74)
local events (section 3.1.7 73, section 3.3.7 75)
message processing (section 3.1.5 64, section

3.3.5 74)
sequencing rules (section 3.1.5 64, section 3.3.5

74)
timer events (section 3.1.6 72, section 3.3.6 74)
timers (section 3.1.2 62, section 3.3.2 74)

Client Disconnects from a DXDiag chat session
example 76

Client joins game session with existing client

example 76
Command Byte (bCommand) - validation and

processing 70
Control Byte (bControl) - validation and processing

70

D

Data model - abstract
client (section 3.1.1 62, section 3.3.1 74)
common details 62
server (section 3.1.1 62, section 3.2.1 73)

DirectPlay session
with multiple other clients 66
with no other clients 64

Disconnecting 64
DN_ALTERNATE_ADDRESS_IPv4 packet 57
DN_ALTERNATE_ADDRESS_IPv6 packet 58
DN_NAMETABLE_ENTRY_INFO packet 53
DN_NAMETABLE_MEMBERSHIP_INFO packet 55
DXDiag chat session example

disconnecting 76

joining 76

E

EnumQuery packet 18
EnumResponse packet 19
Examples

Client Disconnects from a DXDiag chat session
example 76

Client joins game session with existing client
example 76

User Joins a DXDiag chat session example 76

F

Fields - vendor-extensible 13

G

Glossary 7

H

Higher-layer triggered events
client (section 3.1.4 64, section 3.3.4 74)
server (section 3.1.4 64, section 3.2.4 73)

I

Implementer - security considerations 79
IN_ADDR packet 58
IN6_ADDR packet 59
Index of security parameters 79
Informative references 10
Initialization

client (section 3.1.3 63, section 3.3.3 74)
server (section 3.1.3 63, section 3.2.3 73)

Introduction 7

L

Local events
client (section 3.1.7 73, section 3.3.7 75)
server (section 3.1.7 73, section 3.2.7 74)

M

Message processing
client (section 3.1.5 64, section 3.3.5 74)
server (section 3.1.5 64, section 3.2.5 73)

Messages
chat 64
syntax 14
transport 14

N

New client joins game session with existing client
example 76

85 / 85

[MS-DPDX] — v20140124
 DirectPlay DXDiag Usage Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Normative references 9

O

Overview (synopsis) 10

P

Parameters - security index 79
PATHTESTKEYDATA packet 60
Preconditions 12
Prerequisites 12
Product behavior 80

R

References
informative 10
normative 9

Relationship to other protocols 11

S

SACK mask processing 71
Security

implementer considerations 79
parameter index 79

Send mask processing 72
Send Sequence ID (bSeq) - validation and

processing 71
Sequencing rules

client (section 3.1.5 64, section 3.3.5 74)
server (section 3.1.5 64, section 3.2.5 73)

Server
abstract data model (section 3.1.1 62, section

3.2.1 73)
higher-layer triggered events (section 3.1.4 64,

section 3.2.4 73)
initialization (section 3.1.3 63, section 3.2.3 73)
local events (section 3.1.7 73, section 3.2.7 74)
message processing (section 3.1.5 64, section

3.2.5 73)
sequencing rules (section 3.1.5 64, section 3.2.5

73)
timer events (section 3.1.6 72, section 3.2.6 74)
timers (section 3.1.2 62, section 3.2.2 73)

SESS_PATH_TEST packet 22
Standards assignments 13
Syntax 14

T

Timer events
client (section 3.1.6 72, section 3.3.6 74)
server (section 3.1.6 72, section 3.2.6 74)

Timers
client (section 3.1.2 62, section 3.3.2 74)
connect retry (section 3.1.2.1 62, section 3.1.6.1

72)
delayed acknowledgment retry (section 3.1.2.6

63, section 3.1.6.6 73)

EnumQuery retry (section 3.1.2.2 62, section
3.1.6.2 72)

KeepAlive retry (section 3.1.2.4 63, section
3.1.6.4 73)

Path Test retry (section 3.1.2.5 63, section
3.1.6.5 73)

retry (section 3.1.2.3 62, section 3.1.6.3 72)
server (section 3.1.2 62, section 3.2.2 73)

Tracking changes 83
TRANS_COMMAND_CONNECT packet 23
TRANS_COMMAND_CONNECT_ACCEPT packet 24
TRANS_COMMAND_SACK packet 26
TRANS_USERDATA_ACK_NAMETABLE_OP packet 41
TRANS_USERDATA_ACK_SESSION_INFO packet 28
TRANS_USERDATA_ADD_PLAYER packet 28
TRANS_USERDATA_CONNECT_ATTEMPT_FAILED

packet 31
TRANS_USERDATA_CONNECT_FAILED packet 31
TRANS_USERDATA_DESTROY_PLAYER packet 33
TRANS_USERDATA_END_OF_STREAM packet 34
TRANS_USERDATA_HEADER packet 35
TRANS_USERDATA_HOST_MIGRATE packet 38
TRANS_USERDATA_HOST_MIGRATE_COMPLETE

packet 39
TRANS_USERDATA_INSTRUCT_CONNECT packet 39
TRANS_USERDATA_INSTRUCTED_CONNECT_FAILE

D packet 40
TRANS_USERDATA_INTEGRITY_CHECK packet 46
TRANS_USERDATA_INTEGRITY_CHECK_RESPONSE

packet 47
TRANS_USERDATA_KEEPALIVE packet 40
TRANS_USERDATA_NAMETABLE_VERSION packet

40
TRANS_USERDATA_PLAYER_CONNECT_INFO packet

43
TRANS_USERDATA_REQ_INTEGRITY_CHECK packet

46
TRANS_USERDATA_REQ_NAMETABLE_OP packet 41
TRANS_USERDATA_RESYNC_VERSION packet 47
TRANS_USERDATA_SEND_MESSAGE packet 47
TRANS_USERDATA_SEND_PLAYER_DNID packet 48
TRANS_USERDATA_SEND_SESSION_INFO packet

49
TRANS_USERDATA_TERMINATE_SESSION packet

32
Transport 14
Triggered events - higher-layer

client (section 3.1.4 64, section 3.3.4 74)
server (section 3.1.4 64, section 3.2.4 73)

U

User Joins a DXDiag chat session example 76

V

Vendor-extensible fields 13
Versioning 12

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 How DXDiag Uses DirectPlay

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 DPNID
	2.2.2 _MESSAGE_HEADER
	2.2.3 DXDiag DirectPlay Packets
	2.2.4 EnumQuery
	2.2.5 EnumResponse
	2.2.6 SESS_PATH_TEST
	2.2.7 TRANS_COMMAND_CONNECT
	2.2.8 TRANS_COMMAND_CONNECT_ACCEPT
	2.2.9 TRANS_COMMAND_SACK
	2.2.10 TRANS_USERDATA_ACK_SESSION_INFO
	2.2.11 TRANS_USERDATA_ADD_PLAYER
	2.2.12 TRANS_USERDATA_CONNECT_ATTEMPT_FAILED
	2.2.13 TRANS_USERDATA_CONNECT_FAILED
	2.2.14 TRANS_USERDATA_TERMINATE_SESSION
	2.2.15 TRANS_USERDATA_DESTROY_PLAYER
	2.2.16 TRANS_USERDATA_END_OF_STREAM
	2.2.17 TRANS_USERDATA_HEADER
	2.2.17.1 Coalesced Payloads

	2.2.18 TRANS_USERDATA_HOST_MIGRATE
	2.2.19 TRANS_USERDATA_HOST_MIGRATE_COMPLETE
	2.2.20 TRANS_USERDATA_INSTRUCT_CONNECT
	2.2.21 TRANS_USERDATA_INSTRUCTED_CONNECT_FAILED
	2.2.22 TRANS_USERDATA_KEEPALIVE
	2.2.23 TRANS_USERDATA_NAMETABLE_VERSION
	2.2.24 TRANS_USERDATA_REQ_NAMETABLE_OP
	2.2.25 TRANS_USERDATA_ACK_NAMETABLE_OP
	2.2.26 TRANS_USERDATA_PLAYER_CONNECT_INFO
	2.2.27 TRANS_USERDATA_REQ_INTEGRITY_CHECK
	2.2.28 TRANS_USERDATA_INTEGRITY_CHECK
	2.2.29 TRANS_USERDATA_INTEGRITY_CHECK_RESPONSE
	2.2.30 TRANS_USERDATA_RESYNC_VERSION
	2.2.31 TRANS_USERDATA_SEND_MESSAGE
	2.2.32 TRANS_USERDATA_SEND_PLAYER_DNID
	2.2.33 TRANS_USERDATA_SEND_SESSION_INFO
	2.2.33.1 DN_NAMETABLE_ENTRY_INFO
	2.2.33.2 DN_NAMETABLE_MEMBERSHIP_INFO

	2.2.34 DN_ADDRESSING_URL
	2.2.35 DN_ALTERNATE_ADDRESS (IPv4)
	2.2.35.1 IN_ADDR (IPv4)

	2.2.36 DN_ALTERNATE_ADDRESS (IPv6)
	2.2.36.1 IN6_ADDR (IPv6)

	2.2.37 DN_NAMETABLE
	2.2.38 PATHTESTKEYDATA

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.2.1 Connect Retry Timer
	3.1.2.2 EnumQuery Retry Timer
	3.1.2.3 Retry Timer
	3.1.2.4 KeepAlive Retry Timer
	3.1.2.5 Path Test Retry Timer
	3.1.2.6 Delayed Acknowledgment Timer

	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Sending a Chat Message
	3.1.4.2 Disconnecting

	3.1.5 Processing Events and Sequencing Rules
	3.1.5.1 Client Joins a DirectPlay Session with No Other Clients
	3.1.5.2 Client Joins a DirectPlay Session with Multiple Other Clients
	3.1.5.3 Client Disconnects from Chat Session
	3.1.5.4 Server Disconnects from Chat Session
	3.1.5.5 Client Is Forcefully Removed from Session
	3.1.5.6 Client Detects Loss of Connection to Other Client
	3.1.5.7 Participant Receives Chat Message
	3.1.5.8 Command Byte (bCommand) Validation and Processing
	3.1.5.9 Control Byte (bControl) Validation and Processing
	3.1.5.10 Send Sequence ID (bSeq) Validation and Processing
	3.1.5.11 Acknowledged Sequence ID (bNRcv) Processing
	3.1.5.12 SACK Mask Processing
	3.1.5.13 Send Mask Processing

	3.1.6 Timer Events
	3.1.6.1 Connect Retry Timer
	3.1.6.2 EnumQuery Retry Timer
	3.1.6.3 Retry Timer
	3.1.6.4 KeepAlive Retry Timer
	3.1.6.5 Path Test Retry Timer
	3.1.6.6 Delayed Acknowledgment Timer

	3.1.7 Other Local Events

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Processing Events and Sequencing Rules
	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Client Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.5 Processing Events and Sequencing Rules
	3.3.6 Timer Events
	3.3.7 Other Local Events

	4 Protocol Examples
	4.1 User Joins a DXDiag Chat Session Example
	4.2 Client Disconnects from a DXDiag Chat Session Example
	4.3 New Client Joins a Game Session with an Existing Client Example

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

