
1 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

[MS-DMRP]:

Disk Management Remote Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for protocols,
file formats, languages, standards as well as overviews of the interaction among each of these
technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the

technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL's, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming
environments in order for you to develop an implementation. If you have access to Microsoft
programming tools and environments you are free to take advantage of them. Certain Open
Specifications are intended for use in conjunction with publicly available standard specifications and
network programming art, and assumes that the reader either is familiar with the aforementioned

material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Revision Summary

Date
Revision
History

Revision
Class Comments

3/2/2007 1.0 Major Updated and revised the technical content.

4/3/2007 1.1 Minor Clarified the meaning of the technical content.

5/11/2007 2.0 Major New format; Updated technical content

6/1/2007 2.0.1 Editorial Changed language and formatting in the technical content.

7/3/2007 3.0 Major Updated and revised the technical content.

8/10/2007 4.0 Major Updated and revised the technical content.

9/28/2007 4.0.1 Editorial Changed language and formatting in the technical content.

10/23/2007 4.1 Minor Updated the IDL.

1/25/2008 4.1.1 Editorial Changed language and formatting in the technical content.

3/14/2008 5.0 Major Updated and revised the technical content.

6/20/2008 6.0 Major Updated and revised the technical content.

7/25/2008 7.0 Major Updated and revised the technical content.

8/29/2008 7.1 Minor Clarified the meaning of the technical content.

10/24/2008 7.2 Minor Clarified the meaning of the technical content.

12/5/2008 7.3 Minor Clarified the meaning of the technical content.

1/16/2009 7.4 Minor Clarified the meaning of the technical content.

2/27/2009 7.5 Minor Clarified the meaning of the technical content.

4/10/2009 7.5.1 Editorial Changed language and formatting in the technical content.

5/22/2009 7.5.2 Editorial Changed language and formatting in the technical content.

7/2/2009 7.5.3 Editorial Changed language and formatting in the technical content.

8/14/2009 7.5.4 Editorial Changed language and formatting in the technical content.

9/25/2009 7.6 Minor Clarified the meaning of the technical content.

11/6/2009 7.6.1 Editorial Changed language and formatting in the technical content.

12/18/2009 7.6.2 Editorial Changed language and formatting in the technical content.

1/29/2010 7.7 Minor Clarified the meaning of the technical content.

3/12/2010 7.7.1 Editorial Changed language and formatting in the technical content.

4/23/2010 7.7.2 Editorial Changed language and formatting in the technical content.

6/4/2010 7.7.3 Editorial Changed language and formatting in the technical content.

7/16/2010 7.7.3 None No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 8.0 Major Updated and revised the technical content.

3 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Date
Revision
History

Revision
Class Comments

10/8/2010 8.0 None No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 8.0 None No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 8.0 None No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 8.0 None No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 8.0 None No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 8.0 None No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 8.1 Minor Clarified the meaning of the technical content.

9/23/2011 8.1 None No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 8.1 None No changes to the meaning, language, or formatting of the
technical content.

3/30/2012 8.1 None No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 8.2 Minor Clarified the meaning of the technical content.

10/25/2012 8.2 None No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 8.2 None No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 8.2 None No changes to the meaning, language, or formatting of the

technical content.

11/14/2013 8.2 None No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 8.2 None No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 8.2 None No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 8.2 No Change No changes to the meaning, language, or formatting of the
technical content.

10/16/2015 8.2 No Change No changes to the meaning, language, or formatting of the
technical content.

4 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Table of Contents

1 Introduction .. 9
1.1 Glossary ... 9
1.2 References .. 15

1.2.1 Normative References ... 15
1.2.2 Informative References ... 15

1.3 Overview .. 16
1.4 Relationship to Other Protocols .. 16
1.5 Prerequisites/Preconditions ... 17
1.6 Applicability Statement ... 17
1.7 Versioning and Capability Negotiation ... 17
1.8 Vendor-Extensible Fields ... 17
1.9 Standards Assignments ... 17

2 Messages ... 18
2.1 Transport .. 18
2.2 Common Data Types .. 18

2.2.1 HRESULT Return Codes ... 18
2.2.2 MAX_FS_NAME_SIZE Constant ... 32
2.2.3 REGIONTYPE .. 32
2.2.4 VOLUMETYPE ... 32
2.2.5 VOLUMELAYOUT ... 33
2.2.6 REQSTATUS ... 33
2.2.7 REGIONSTATUS.. 34
2.2.8 VOLUMESTATUS ... 34
2.2.9 LdmObjectId .. 35
2.2.10 VOLUME_SPEC ... 35
2.2.11 VOLUME_INFO ... 36
2.2.12 DISK_SPEC .. 37
2.2.13 REGION_SPEC .. 37
2.2.14 DRIVE_LETTER_INFO .. 38
2.2.15 FILE_SYSTEM_INFO .. 39
2.2.16 IFILE_SYSTEM_INFO ... 40
2.2.17 TASK_INFO .. 43
2.2.18 DMPROGRESS_TYPE ... 43
2.2.19 COUNTED_STRING ... 44
2.2.20 MERGE_OBJECT_INFO ... 44

2.3 IVolumeClient Interface .. 45
2.3.1 IVolumeClient Data Types .. 45

2.3.1.1 PARTITION_OS2_BOOT Constant .. 45
2.3.1.2 DISK_INFO .. 45
2.3.1.3 REGION_INFO .. 48

2.4 IVolumeClient2 Interface .. 50
2.4.1 IVolumeClient2 Data Types .. 50

2.5 IVolumeClient3 Interface .. 50
2.5.1 IVolumeClient3 Data Types .. 50

2.5.1.1 PARTITIONSTYLE .. 50
2.5.1.2 DISK_INFO_EX ... 51
2.5.1.3 REGION_INFO_EX ... 55

2.6 IVolumeClient4 Interface .. 58
2.6.1 IVolumeClient4 Data Types .. 58

2.7 IDMRemoteServer Interface .. 58
2.7.1 IDMRemoteServer Data Types .. 58

2.8 IDMNotify Interface .. 58
2.8.1 IDMNotify Data Types ... 58

2.8.1.1 DMNOTIFY_INFO_TYPE .. 58

5 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

2.8.1.2 LDMACTION ... 59

3 Protocol Details ... 60
3.1 Client Role Details .. 60

3.1.1 Abstract Data Model .. 60
3.1.2 Timers .. 60
3.1.3 Initialization ... 60
3.1.4 Message Processing and Sequencing Rules .. 60

3.1.4.1 Higher-Layer Triggered Events ... 65
3.1.4.1.1 Common Details .. 65

3.1.4.1.1.1 Methods with Prerequisites .. 65
3.1.4.1.1.2 Parameters to IVolumeClient and IVolumeClient3 65
3.1.4.1.1.3 Relationships Between Storage Objects .. 66

3.1.4.1.2 Drive Letters ... 66
3.1.4.1.3 File Systems ... 67
3.1.4.1.4 Disks ... 67
3.1.4.1.5 Partitions .. 70
3.1.4.1.6 Volumes ... 70
3.1.4.1.7 Tasks ... 73
3.1.4.1.8 Loss of Connection .. 73

3.1.4.2 Processing Server Replies to Method Calls .. 73
3.1.4.3 Processing Notifications Sent from the Server to the Client......................... 73
3.1.4.4 Protocol Message Details .. 74

3.1.4.4.1 IDMNotify Methods .. 74
3.1.4.4.1.1 IDMNotify::ObjectsChanged (Opnum 3) .. 74

3.1.5 Timer Events .. 76
3.1.6 Other Local Events .. 76

3.2 Server Role Details ... 76
3.2.1 Abstract Data Model .. 76

3.2.1.1 List of Storage Objects Present in the System ... 76
3.2.1.2 List of Clients Connected to the Server .. 77
3.2.1.3 List of Tasks Currently Executed on the Server ... 78

3.2.2 Timers .. 78
3.2.3 Initialization ... 78

3.2.3.1 List of Storage Objects Present in the System ... 78
3.2.3.2 List of Clients Connected to the Server .. 78
3.2.3.3 List of Tasks Currently Executed on the Server ... 78

3.2.4 Message Processing and Sequencing Rules .. 78
3.2.4.1 Higher-Layer Triggered Events ... 79
3.2.4.2 Rules for Modifying the List of Storage Objects ... 79
3.2.4.3 Rules for Handling Synchronous and Asynchronous Tasks 79
3.2.4.4 Protocol Message Details .. 81

3.2.4.4.1 IVolumeClient Methods .. 81
3.2.4.4.1.1 IVolumeClient::EnumDisks (Opnum 3) ... 84
3.2.4.4.1.2 IVolumeClient::EnumDiskRegions (Opnum 4) 85
3.2.4.4.1.3 IVolumeClient::CreatePartition (Opnum 5) 86
3.2.4.4.1.4 IVolumeClient::CreatePartitionAssignAndFormat (Opnum 6) 87
3.2.4.4.1.5 IVolumeClient::CreatePartitionAssignAndFormatEx (Opnum 7) 89
3.2.4.4.1.6 IVolumeClient::DeletePartition (Opnum 8) 90
3.2.4.4.1.7 IVolumeClient::WriteSignature (Opnum 9) 92
3.2.4.4.1.8 IVolumeClient::MarkActivePartition (Opnum 10) 93
3.2.4.4.1.9 IVolumeClient::Eject (Opnum 11) .. 94
3.2.4.4.1.10 IVolumeClient::FTEnumVolumes (Opnum 13) 95
3.2.4.4.1.11 IVolumeClient::FTEnumLogicalDiskMembers (Opnum 14) 96
3.2.4.4.1.12 IVolumeClient::FTDeleteVolume (Opnum 15) 97
3.2.4.4.1.13 IVolumeClient::FTBreakMirror (Opnum 16) 98
3.2.4.4.1.14 IVolumeClient::FTResyncMirror (Opnum 17) 100
3.2.4.4.1.15 IVolumeClient::FTRegenerateParityStripe (Opnum 18) 101

6 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3.2.4.4.1.16 IVolumeClient::FTReplaceMirrorPartition (Opnum 19) 102
3.2.4.4.1.17 IVolumeClient::FTReplaceParityStripePartition (Opnum 20) 104
3.2.4.4.1.18 IVolumeClient::EnumDriveLetters (Opnum 21) 106
3.2.4.4.1.19 IVolumeClient::AssignDriveLetter (Opnum 22) 107
3.2.4.4.1.20 IVolumeClient::FreeDriveLetter (Opnum 23) 109
3.2.4.4.1.21 IVolumeClient::EnumLocalFileSystems (Opnum 24) 110
3.2.4.4.1.22 IVolumeClient::GetInstalledFileSystems (Opnum 25) 111
3.2.4.4.1.23 IVolumeClient::Format (Opnum 26) .. 112
3.2.4.4.1.24 IVolumeClient::EnumVolumes (Opnum 28) 114
3.2.4.4.1.25 IVolumeClient::EnumVolumeMembers (Opnum 29) 114
3.2.4.4.1.26 IVolumeClient::CreateVolume (Opnum 30) 115
3.2.4.4.1.27 IVolumeClient::CreateVolumeAssignAndFormat (Opnum 31) 117
3.2.4.4.1.28 IVolumeClient::CreateVolumeAssignAndFormatEx (Opnum 32) 119
3.2.4.4.1.29 IVolumeClient::GetVolumeMountName (Opnum 33) 120
3.2.4.4.1.30 IVolumeClient::GrowVolume (Opnum 34) 121
3.2.4.4.1.31 IVolumeClient::DeleteVolume (Opnum 35) 123
3.2.4.4.1.32 IVolumeClient::AddMirror (Opnum 36) .. 124
3.2.4.4.1.33 IVolumeClient::RemoveMirror (Opnum 37) 126
3.2.4.4.1.34 IVolumeClient::SplitMirror (Opnum 38) 128
3.2.4.4.1.35 IVolumeClient::InitializeDisk (Opnum 39) 129
3.2.4.4.1.36 IVolumeClient::UninitializeDisk (Opnum 40) 131
3.2.4.4.1.37 IVolumeClient::ReConnectDisk (Opnum 41) 132
3.2.4.4.1.38 IVolumeClient::ImportDiskGroup (Opnum 43) 133
3.2.4.4.1.39 IVolumeClient::DiskMergeQuery (Opnum 44) 135
3.2.4.4.1.40 IVolumeClient::DiskMerge (Opnum 45) 136
3.2.4.4.1.41 IVolumeClient::ReAttachDisk (Opnum 47) 138
3.2.4.4.1.42 IVolumeClient::ReplaceRaid5Column (Opnum 51) 139
3.2.4.4.1.43 IVolumeClient::RestartVolume (Opnum 52) 141
3.2.4.4.1.44 IVolumeClient::GetEncapsulateDiskInfo (Opnum 53) 142
3.2.4.4.1.45 IVolumeClient::EncapsulateDisk (Opnum 54) 146
3.2.4.4.1.46 IVolumeClient::QueryChangePartitionNumbers (Opnum 55) 149
3.2.4.4.1.47 IVolumeClient::DeletePartitionNumberInfoFromRegistry (Opnum 56)

 .. 150
3.2.4.4.1.48 IVolumeClient::SetDontShow (Opnum 57) 150
3.2.4.4.1.49 IVolumeClient::GetDontShow (Opnum 58) 151
3.2.4.4.1.50 IVolumeClient::EnumTasks (Opnum 67) 152
3.2.4.4.1.51 IVolumeClient::GetTaskDetail (Opnum 68) 152
3.2.4.4.1.52 IVolumeClient::AbortTask (Opnum 69) .. 153
3.2.4.4.1.53 IVolumeClient::HrGetErrorData (Opnum 70) 154
3.2.4.4.1.54 IVolumeClient::Initialize (Opnum 71) .. 155
3.2.4.4.1.55 IVolumeClient::Uninitialize (Opnum 72) 157
3.2.4.4.1.56 IVolumeClient::Refresh (Opnum 73) ... 157
3.2.4.4.1.57 IVolumeClient::RescanDisks (Opnum 74) 158
3.2.4.4.1.58 IVolumeClient::RefreshFileSys (Opnum 75).................................. 158
3.2.4.4.1.59 IVolumeClient::SecureSystemPartition (Opnum 76) 158
3.2.4.4.1.60 IVolumeClient::ShutDownSystem (Opnum 77) 159
3.2.4.4.1.61 IVolumeClient::EnumAccessPath (Opnum 78) 159
3.2.4.4.1.62 IVolumeClient::EnumAccessPathForVolume (Opnum 79) 160
3.2.4.4.1.63 IVolumeClient::AddAccessPath (Opnum 80) 161
3.2.4.4.1.64 IVolumeClient::DeleteAccessPath (Opnum 81) 161

3.2.4.4.2 IVolumeClient2 .. 162
3.2.4.4.2.1 IVolumeClient2::GetMaxAdjustedFreeSpace (Opnum 3) 163

3.2.4.4.3 IVolumeClient3 .. 163
3.2.4.4.3.1 IVolumeClient3::EnumDisksEx (Opnum 3) 166
3.2.4.4.3.2 IVolumeClient3::EnumDiskRegionsEx (Opnum 4) 167
3.2.4.4.3.3 IVolumeClient3::CreatePartition (Opnum 5) 168
3.2.4.4.3.4 IVolumeClient3::CreatePartitionAssignAndFormat (Opnum 6) 168
3.2.4.4.3.5 IVolumeClient3::CreatePartitionAssignAndFormatEx (Opnum 7) 169

7 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3.2.4.4.3.6 IVolumeClient3::DeletePartition (Opnum 8) 170
3.2.4.4.3.7 IVolumeClient3::InitializeDiskStyle (Opnum 9) 170
3.2.4.4.3.8 IVolumeClient3::MarkActivePartition (Opnum 10) 171
3.2.4.4.3.9 IVolumeClient3::Eject (Opnum 11) ... 172
3.2.4.4.3.10 IVolumeClient3::FTEnumVolumes (Opnum 13) 172
3.2.4.4.3.11 IVolumeClient3::FTEnumLogicalDiskMembers (Opnum 14) 173
3.2.4.4.3.12 IVolumeClient3::FTDeleteVolume (Opnum 15) 173
3.2.4.4.3.13 IVolumeClient3::FTBreakMirror (Opnum 16) 174
3.2.4.4.3.14 IVolumeClient3::FTResyncMirror (Opnum 17) 174
3.2.4.4.3.15 IVolumeClient3::FTRegenerateParityStripe (Opnum 18) 175
3.2.4.4.3.16 IVolumeClient3::FTReplaceMirrorPartition (Opnum 19) 175
3.2.4.4.3.17 IVolumeClient3::FTReplaceParityStripePartition (Opnum 20) 176
3.2.4.4.3.18 IVolumeClient3::EnumDriveLetters (Opnum 21) 177
3.2.4.4.3.19 IVolumeClient3::AssignDriveLetter (Opnum 22) 177
3.2.4.4.3.20 IVolumeClient3::FreeDriveLetter (Opnum 23) 178
3.2.4.4.3.21 IVolumeClient3::EnumLocalFileSystems (Opnum 24) 179
3.2.4.4.3.22 IVolumeClient3::GetInstalledFileSystems (Opnum 25) 179
3.2.4.4.3.23 IVolumeClient3::Format (Opnum 26) .. 180
3.2.4.4.3.24 IVolumeClient3::EnumVolumes (Opnum 27) 180
3.2.4.4.3.25 IVolumeClient3::EnumVolumeMembers (Opnum 28) 181
3.2.4.4.3.26 IVolumeClient3::CreateVolume (Opnum 29) 181
3.2.4.4.3.27 IVolumeClient3::CreateVolumeAssignAndFormat (Opnum 30) 182
3.2.4.4.3.28 IVolumeClient3::CreateVolumeAssignAndFormatEx (Opnum 31) 182
3.2.4.4.3.29 IVolumeClient3::GetVolumeMountName (Opnum 32) 184
3.2.4.4.3.30 IVolumeClient3::GrowVolume (Opnum 33) 184
3.2.4.4.3.31 IVolumeClient3::DeleteVolume (Opnum 34) 185
3.2.4.4.3.32 IVolumeClient3::CreatePartitionsForVolume (Opnum 35) 185
3.2.4.4.3.33 IVolumeClient3::DeletePartitionsForVolume (Opnum 36) 187
3.2.4.4.3.34 IVolumeClient3::GetMaxAdjustedFreeSpace (Opnum 37) 188
3.2.4.4.3.35 IVolumeClient3::AddMirror (Opnum 38) 189
3.2.4.4.3.36 IVolumeClient3::RemoveMirror (Opnum 39)................................. 189
3.2.4.4.3.37 IVolumeClient3::SplitMirror (Opnum 40) 190
3.2.4.4.3.38 IVolumeClient3::InitializeDiskEx (Opnum 41) 190
3.2.4.4.3.39 IVolumeClient3::UninitializeDisk (Opnum 42) 192
3.2.4.4.3.40 IVolumeClient3::ReConnectDisk (Opnum 43) 192
3.2.4.4.3.41 IVolumeClient3::ImportDiskGroup (Opnum 44) 192
3.2.4.4.3.42 IVolumeClient3::DiskMergeQuery (Opnum 45) 193
3.2.4.4.3.43 IVolumeClient3::DiskMerge (Opnum 46) 194
3.2.4.4.3.44 IVolumeClient3::ReAttachDisk (Opnum 47) 194
3.2.4.4.3.45 IVolumeClient3::ReplaceRaid5Column (Opnum 48) 195
3.2.4.4.3.46 IVolumeClient3::RestartVolume (Opnum 49) 195
3.2.4.4.3.47 IVolumeClient3::GetEncapsulateDiskInfoEx (Opnum 50) 196
3.2.4.4.3.48 IVolumeClient3::EncapsulateDiskEx (Opnum 51) 200
3.2.4.4.3.49 IVolumeClient3::QueryChangePartitionNumbers (Opnum 52) 202
3.2.4.4.3.50 IVolumeClient3::DeletePartitionNumberInfoFromRegistry (Opnum 53)

 .. 203
3.2.4.4.3.51 IVolumeClient3::SetDontShow (Opnum 54) 203
3.2.4.4.3.52 IVolumeClient3::GetDontShow (Opnum 55) 203
3.2.4.4.3.53 IVolumeClient3::EnumTasks (Opnum 64) 204
3.2.4.4.3.54 IVolumeClient3::GetTaskDetail (Opnum 65) 204
3.2.4.4.3.55 IVolumeClient3::AbortTask (Opnum 66) 205
3.2.4.4.3.56 IVolumeClient3::HrGetErrorData (Opnum 67) 205
3.2.4.4.3.57 IVolumeClient3::Initialize (Opnum 68) .. 206
3.2.4.4.3.58 IVolumeClient3::Uninitialize (Opnum 69) 207
3.2.4.4.3.59 IVolumeClient3::Refresh (Opnum 70) .. 207
3.2.4.4.3.60 IVolumeClient3::RescanDisks (Opnum 71) 207
3.2.4.4.3.61 IVolumeClient3::RefreshFileSys (Opnum 72) 208
3.2.4.4.3.62 IVolumeClient3::SecureSystemPartition (Opnum 73) 208

8 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3.2.4.4.3.63 IVolumeClient3::ShutDownSystem (Opnum 74) 208
3.2.4.4.3.64 IVolumeClient3::EnumAccessPath (Opnum 75) 208
3.2.4.4.3.65 IVolumeClient3::EnumAccessPathForVolume (Opnum 76) 209
3.2.4.4.3.66 IVolumeClient3::AddAccessPath (Opnum 77) 209
3.2.4.4.3.67 IVolumeClient3::DeleteAccessPath (Opnum 78) 210

3.2.4.4.4 IVolumeClient4 .. 210
3.2.4.4.4.1 IVolumeClient4::RefreshEx (Opnum 3) .. 210
3.2.4.4.4.2 IVolumeClient4::GetVolumeDeviceName (Opnum 4) 211

3.2.4.4.5 IDMRemoteServer .. 212
3.2.4.4.5.1 IDMRemoteServer::CreateRemoteObject (Opnum 3) 212

3.2.5 Timer Events ... 212
3.2.6 Other Local Events ... 212

3.2.6.1 Disk Arrival ... 213
3.2.6.2 Disk Removal .. 213
3.2.6.3 Disk Layout Change ... 213
3.2.6.4 File System Change .. 213
3.2.6.5 Drive Letter Arrival ... 213
3.2.6.6 Drive Letter Removal .. 214
3.2.6.7 Media Arrival ... 214
3.2.6.8 Media Removal .. 214

4 Protocol Examples ... 215
4.1 Starting a New Session on a Local or Remote Server ... 215
4.2 Starting a New Session on a Remote Server Using the IDMRemoteServer Interface . 216
4.3 Creating a Partition ... 217
4.4 Deleting a Partition .. 219
4.5 Creating a Volume... 221
4.6 Deleting a Volume ... 223

5 Security Considerations ... 226

6 Appendix A: Full IDL .. 227
6.1 Appendix A.1: dmintf.idl .. 227
6.2 Appendix A.2: dmintf3.idl ... 238

7 Appendix B: Product Behavior ... 247

8 Appendix C: IDMNotify::ObjectsChanged ... 260

9 Change Tracking .. 266

10 Index ... 267

9 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

1 Introduction

The Disk Management Remote Protocol is a set of Distributed Component Object Model (DCOM)
interfaces, as specified in [MS-DCOM], built for managing storage objects on a machine. The Disk
Management Remote Protocol relies on detailed, low-level operating system and storage concepts.
While the basic concepts are outlined in this specification, it is assumed that the reader has familiarity
with these technologies.

For background information on storage, disk, and volume concepts, see [MSDN-DISKMAN] and
[MSDN-VOLMAN]. For the IDL specification, see sections 6.1 and 6.2.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are specific to this document:

active partition: A partition on a master boot record (MBR) disk that becomes the system
partition at system startup if the basic input/output system (BIOS) is configured to select that

disk for startup. An MBR disk can have exactly one active partition. The active partition is
stored in the partition table on the disk. GUID partitioning table (GPT) disks do not have
active partitions. See also master boot record (MBR), system partition, and partition
table.

allocation unit size: The size (expressed in bytes) of the units used by the file system to
allocate space on a disk for the file system used by the volume. The size, in bytes, must be a
power of two and must be a multiple of the size of the sectors on the disk. Typical allocation

unit sizes of most file systems range from 512 bytes to 64 KB.

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-

encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8-bit
ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to
zero.

basic disk: A disk on which each volume can be composed of exclusively one partition.

basic volume: A partition on a basic disk.

boot file: A file that contains a list of paths to boot partitions. On some systems, the boot file
may be stored on other non-volatile media, such as NVRAM.

boot loader: An architecture-specific file that loads the operating system on the boot partition as
specified by the boot configuration file.

boot loader file: See boot loader.

boot partition: A partition containing the operating system.

boot volume: See boot partition.

boot.ini: The name of the boot loader file on Windows–based computers.

bus: Computer hardware to which peripheral devices may be connected. Messages are sent
between the CPU and the peripheral devices using the bus. Examples of bus types include
SCSI, USB, and 1394.

%5bMS-DCOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89992
http://go.microsoft.com/fwlink/?LinkId=90154
http://go.microsoft.com/fwlink/?LinkId=90317

10 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

bus type: A type of bus. Examples of bus types include SCSI, USB, and 1394.

Compact Disc File System (CDFS): A file system used for storing files on CD-ROMs.

Component Object Model (COM): An object-oriented programming model that defines how
objects interact within a single process or between processes. In COM, clients have access to an

object through interfaces implemented on the object. For more information, see [MS-DCOM].

crash dump file: A file that may be created by an operating system when an unrecoverable fault
occurs. This file contains the contents of memory at the time of the crash and may be used to
debug the problem.creator

cylinder: The set of disk tracks that appear in the same location on each platter of a disk.

disk: A persistent storage device that can include physical hard disks, removable disk units, optical
drive units, and logical unit numbers (LUNs) unmasked to the system.

disk adapter: Computer hardware that controls a disk.

disk encapsulation: The process of converting a basic disk to a dynamic disk. Encapsulating a
disk lays down disk metadata that is used for managing the disk dynamically.

disk extent: A contiguous set of one or more disk sectors. A disk extent can be used as a partition
or part of a volume, or it can be free, which indicates that it is not in use or that it may be
unusable for creating partitions or volumes.

disk group: In the context of dynamic disks, this term describes a logical grouping of disks.

disk group import: The act of merging a set of disks belonging to one disk group into another set
of disks belonging to a second disk group. The result is a single disk group that includes all disks
involved in the import.

disk regions: See disk extent.

disk signature: A unique identifier for a disk. For a master boot record (MBR)-formatted disk,

this identifier is a 4-byte value stored at the end of the MBR, which is located in sector 0 on the

disk. For a GUID partitioning table (GPT)-formatted disk, this value is a GUID stored in the
GPT disk header at the beginning of the disk.

disk type: A disk that is hardware-specific. A disk can only communicate with the CPU using a bus
of matching type. Examples of bus types include SCSI, USB, and 1394.

Distributed Component Object Model (DCOM): The Microsoft Component Object Model (COM)
specification that defines how components communicate over networks, as specified in [MS-
DCOM].

drive letter: One of the 26 alphabetical characters A-Z, in uppercase or lowercase, that is
assigned to a volume. Drive letters serve as a namespace through which data on the volume
can be accessed. A volume with a drive letter can be referred to with the drive letter followed by
a colon (for example, C:).

dynamic disk: A disk on which volumes may be composed of more than one partition on disks of
the same pack, as opposed to basic disks where a partition and a volume are equivalent.

dynamic volume: A volume on a dynamic disk.

extended partition: A construct that is used to partition a disk into logical units. A disk may have
up to four primary partitions or up to three primary partitions and one extended partition.
The extended partition may be further subdivided into multiple logical drives.

extent: A contiguous area of storage in a computer file system, reserved for a file.

%5bMS-DCOM%5d.pdf

11 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

FAT file system: A file system used by MS-DOS and other Windows operating systems to
organize and manage files. The file allocation table (FAT) is a data structure that the

operating system creates when a volume is formatted by using FAT or FAT32 file systems.
The operating system stores information about each file in the FAT so that it can retrieve the

file later.

FAT32 file system: A derivative of the file allocation table (FAT) file system. FAT32 supports
smaller cluster sizes and larger volumes than FAT, which results in more efficient space
allocation on FAT32 volumes. FAT32 uses 32-bit addressing.

fault-tolerant: The ability of computer hardware or software to ensure data integrity when
hardware failures occur. Fault-tolerant features appear in many server operating systems and
include mirrored volumes and RAID-5 volumes. A fault-tolerant volume maintains more than

one copy of the volume's data. In the event of disk failure, a copy of the data is still available.

fault-tolerant mirror set: A volume configuration such that more than one copy of the volume
data is maintained. Each copy of the data is placed on separate sets of disks. If a disk in one
disk set fails, the volume's data is still available on the second set of disks.

file allocation table (FAT): A data structure that the operating system creates when a volume is
formatted by using FAT or FAT32 file systems. The operating system stores information about

each file in the FAT so that it can retrieve the file later.

file allocation units: Units of a specific size that are used by the file system to allocate space on
a disk for the file system used by the volume.

file system: A system that enables applications to store and retrieve files on storage devices. Files
are placed in a hierarchical structure. The file system specifies naming conventions for files and
the format for specifying the path to a file in the tree structure. Each file system consists of one
or more drivers and DLLs that define the data formats and features of the file system. File

systems can exist on the following storage devices: diskettes, hard disks, jukeboxes, removable
optical disks, and tape backup units.

file system flags: A set of values used by a file system to configure and report file system

features and operations.

flags: A set of values used to configure or report options or settings.

foreign: A dynamic disk group that is not part of a machine's primary disk group. The term
foreign denotes "foreign to this machine". Foreign disk and foreign disk groups are not

online. This means that these disks may not be configured and no data input/output (I/O) to the
disks or the volumes on the disks is permitted.

format: To submit a command for a volume to write metadata to the disk, which is used by the
file system to organize the data on the disk. A volume is formatted with a specific file
system.

free space: Space on a disk not in use by any volumes, primary partitions, or logical drives.

full format: A format in which all data sectors for the volume are initialized at the time the file
system metadata is created.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique

identifier (UUID).

http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=89824

12 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

GUID partition table (GPT): A disk-partitioning scheme that is used by the Extensible Firmware
Interface (EFI). GPT offers more advantages than master boot record (MBR) partitioning

because it allows up to 128 partitions per disk, provides support for volumes up to 18
exabytes in size, allows primary and backup partition tables for redundancy, and supports

unique disk and partition IDs through the use of globally unique identifiers (GUIDs). Disks
with GPT schemes are referred to as GPT disks.

hard disk physical name: An implementation-specific path that can be used to refer to a specific
hard disk on a machine.

hibernation image: An image that contains metadata required to support a Windows operating
system feature known as hibernation. Hibernation allows a system's state to be preserved in
persistent storage while the system is shut down.

Integrated Drive Electronics (IDE) bus: A standard electronic interface used between a
computer motherboard's bus and the computer's disk storage devices.

locked partition: A partition that is inaccessible.

Logical Disk Manager (LDM): A subsystem of Windows that manages dynamic disks. Dynamic
disks contain a master boot record (MBR) at the beginning of the disk, one LDM partition, and
an LDM database at the end. The LDM database contains partitioning information used by the

LDM.

logical drive: A set of disk extents that compose a volume.

logical partition: See logical drive.

mass storage device: Any hardware device that provides persistent storage of data.

master boot record (MBR): Metadata such as the partition table, the disk signature, and the
executable code for initiating the operating system boot process that is located on the first
sector of a disk. Disks that have MBRs are referred to as MBR disks. GUID partitioning table

(GPT) disks, instead, have unused dummy data in the first sector where the MBR would
normally be.

Microsoft Interface Definition Language (MIDL): The Microsoft implementation and extension
of the OSF-DCE Interface Definition Language (IDL). MIDL can also mean the Interface
Definition Language (IDL) compiler provided by Microsoft. For more information, see [MS-RPCE].

mirrored volume: A fault-tolerant volume that maintains two or more copies of the volume's
data. In the event that a disk is lost, at least one copy of the volume's data remains and can be

accessed.

modification sequence number: An implementation-defined value for objects such as disks,
volumes, drive letters, partitions, and regions that increases monotonically each time a
configuration operation takes place on the object.

mount path: See mounted folder.

mount point: See mounted folder.

mounted folder: A file system directory that contains a linked path to a second volume. A user
may link a path on one volume to another. For example, given two volumes C: and D:, a user
can create a directory or folder C:\mountD and link that directory with volume D:. The path
C:\MountD can then be used to access the root folder of volume D:.

NT file system (NTFS): NT file system (NTFS) is a proprietary Microsoft File System. For more
information, see [MSFT-NTFS].

%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90200

13 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

object identifier (OID): In the context of an object server, a 64-bit number that uniquely
identifies an object.

online: An operational state applicable to volumes and disks. In the online state, the volume or
disk is available for data input/output (I/O) or configuration.

page file or paging file: A file that is used by operating systems for managing virtual memory.

partition: In the context of hard disks, a logical region of a hard disk. A hard disk may be
subdivided into one or more partitions.

partition table: An area of a disk that is used to store metadata information about the partitions
on the disk. See also, GUID partitioning table (GPT).

partition type: A value indicating the partition's intended use, or indicating the type of file
system on the partition. For example, partition type 0x07 indicates that the partition is

formatted with the NTFS file system. Original equipment manufacturers may designate a
partition type of 0x12 to indicate that manufacturer-specific data is stored on the partition.

path: When referring to a file path on a file system, a hierarchical sequence of folders. When
referring to a connection to a storage device, a connection through which a machine can
communicate with the storage device.

primary disk group: In the context of dynamic disk, it is the disk group whose disks are online,

which means they are accessible for input/output (I/O) and configuration. Each machine may
have only one primary disk group. Disks on the machine belonging to other disk groups are
referred to as "foreign disks" and their disk group is referred to as a "foreign disk group".

primary partition: A type of partition on a master boot record (MBR)-formatted disk.

quick format: A formatting that does not zero the data sectors on the volume at the time the file
system metadata is created.

RAID-5: A fault-tolerant volume that maintains the volume's data across multiple RAID columns.

Fault tolerance is provided by writing parity data for each stripe. In the event that one disk

encounters a fault, that disk's data may be reconstructed using the parity data located on the
other disks.

redundant arrays of independent disks (RAID): A set of disk-organization techniques that is
designed to achieve high-performance storage access and availability.

region: See disk extent.

region flags: A set of values that describes the region's state or use.

region's status: The status of the region, such as whether the region is performing properly or
encountering disk faults.

remote procedure call (RPC): A context-dependent term commonly overloaded with three
meanings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three definitions: (*) The

runtime environment providing remote procedure call facilities. The preferred usage for this

meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC
exchange". (*) A single message from an exchange as defined in the previous definition. The
preferred usage for this term is "RPC message". For more information about RPC, see [C706].

removable media: Any type of storage that is not permanently attached to the computer. A
persistent storage device stores its data on media. If the media can be removed from the
device, the media is considered removable. For example, a floppy disk drive uses removable

media.

14 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as

described in [C706] and [MS-RPCE].

SCSI logical unit number (LUN): See logical unit number (LUN).

SCSI port number: A number that uniquely identifies a port on a small computer system interface
(SCSI) disk controller. Each SCSI disk controller may support multiple SCSI bus attachments or
ports for connecting SCSI devices to a computer.

sector: The smallest addressable unit of a disk.

serial storage architecture (SSA) bus: Serial storage architecture (SSA) is a standard for high-
speed access to high-capacity disk storage. An SSA bus is implemented to the SSA standard.

simple volume: A volume whose data exists on a single partition.

small computer system interface (SCSI) bus: A standard for connecting peripheral devices to a
computer. A SCSI bus is an implementation of this standard.

system directory: A directory that contains system files comprising the operating system.

system partition: A partition that contains the boot loader needed to invoke the operating system
on the boot partition. A system partition must also be an active partition. It can be, but is not
required to be, the same partition as the boot partition.

track: Any of the concentric circles on a disk platter over which a magnetic head (used for reading
and writing data on the disk) passes while the head is stationary but the disk is spinning. A track
is subdivided into sectors, upon which data is read and written.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

unique identifier (UID): A pair consisting of a GUID and a version sequence number to identify
each resource uniquely. The UID is used to track the object for its entire lifetime through any
number of times that the object is modified or renamed.

Universal Disk Format (UDF): A type of file system for storing files on optical media.

universal serial bus (USB): An external bus that supports Plug and Play installation. It allows
devices to be connected and disconnected without shutting down or restarting the computer.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple

purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in
the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does
not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the

use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

user-defined function (UDF): A function that is coded in a Microsoft Visual Basic for Applications
(VBA) module, macro sheet, add-in, or Excel Linked Library (XLL). A UDF can be used in
formulas to return values to a worksheet, similar to built-in functions.

volume: A group of one or more partitions that forms a logical region of storage and the basis for
a file system. A volume is an area on a storage device that is managed by the file system as a

http://go.microsoft.com/fwlink/?LinkId=154659

15 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

discrete logical storage unit. A partition contains at least one volume, and a volume can exist
on one or more partitions.

volume data: Data stored on a volume.

volume label: See file system label.

volume manager: A system component that manages communication and data transfer between
applications and disks.

volume members: See RAID column.

volume plex: A member of a volume that represents a complete copy of data stored. For
instance, mirrored volumes have more than one plex.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-VDS] Microsoft Corporation, "Virtual Disk Service (VDS) Protocol".

[MSDN-AccPerms] Microsoft Corporation, "AccessPermission", http://msdn.microsoft.com/en-
us/library/ms688679.aspx

[MSDN-DefAccPerms] Microsoft Corporation, "DefaultAccessPermission",
http://msdn.microsoft.com/en-us/library/ms678417(VS.85).aspx

[MSDN-DISKMAN] Microsoft Corporation, "Disk Management", http://msdn.microsoft.com/en-
us/library/aa363978.aspx

http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DCOM%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-VDS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=117279
http://go.microsoft.com/fwlink/?LinkId=117279
http://go.microsoft.com/fwlink/?LinkId=117280
http://go.microsoft.com/fwlink/?LinkId=89992
http://go.microsoft.com/fwlink/?LinkId=89992

16 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

[MSDN-PARTITIONINFO] Microsoft Corporation, "PARTITION_INFORMATION_EX structure",
http://msdn.microsoft.com/en-us/library/aa365448.aspx

[MSDN-STC] Microsoft Corporation, "Storage Technologies Collection", March 2003,
http://technet2.microsoft.com/WindowsServer/en/Library/616e5e77-958b-42f0-a87f-
ba229ccd81721033.mspx

[MSDN-VOLMAN] Microsoft Corporation, "Volume Management", http://msdn.microsoft.com/en-

us/library/aa365728.aspx

1.3 Overview

The Disk Management Remote Protocol provides a set of DCOM interfaces for managing storage
objects, such as disks and volumes. The protocol also enables clients to obtain notifications of changes

to storage objects. The server end of the protocol implements supports that let the DCOM interface
handle requests for storage management services for a server system over the network. The client
end of the protocol is an application that invokes method calls on the interface to perform various disk
and volume configuration tasks.

This protocol includes the following six DCOM interfaces:

 IVolumeClient

 IVolumeClient2

 IVolumeClient3

 IVolumeClient4

 IDMRemoteServer

 IDMNotify

The IVolumeClient and IVolumeClient2 interfaces provide methods for managing storage objects, such

as disks and volumes.

IVolumeClient3 supersedes IVolumeClient and IVolumeClient2, and contains new functionality related
to the GUID partition table (GPT) disk-partitioning style. The IVolumeClient and IVolumeClient2
interfaces do not support the GPT disk-partitioning style and MUST not be used with GPT partitioned
disks.

IVolumeClient4 includes additional functionality to augment what is provided by IVolumeClient3;
IVolumeClient4 verifies that disk access and disk media record information is valid when the cache is
refreshed, and it queries the device path for a volume.

IDMRemoteServer includes functionality to create an instance of the Disk Management server on a
remote machine.

IDMNotify is the interface implemented by the client to receive notifications from the Disk
Management server.<1>

1.4 Relationship to Other Protocols

The Disk Management Remote Protocol relies on the Distributed Component Object Model (DCOM)
Remote Protocol (as specified in [MS-DCOM]), which uses remote procedure call (RPC) (as
specified in [MS-RPCE]) as its transport. The Disk Management Remote Protocol is not used by any
other protocols.<2>

http://go.microsoft.com/fwlink/?LinkId=90059
http://go.microsoft.com/fwlink/?LinkId=90139
http://go.microsoft.com/fwlink/?LinkId=90139
http://go.microsoft.com/fwlink/?LinkId=90154
http://go.microsoft.com/fwlink/?LinkId=90154
%5bMS-DCOM%5d.pdf
%5bMS-RPCE%5d.pdf

17 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

1.5 Prerequisites/Preconditions

This protocol is implemented over DCOM and RPC, and, as a result, has the prerequisites specified in
[MS-DCOM] and [MS-RPCE] as being common to DCOM and RPC interfaces.

The Disk Management Remote Protocol assumes that a client has obtained the name of a server that
supports this protocol suite before the protocol is invoked. The protocol also assumes that the client
has sufficient security privileges to configure disks and volumes on the server.

1.6 Applicability Statement

This protocol is applicable when an application needs to remotely configure disks and volumes.

The Virtual Disk Service (VDS) Remote Protocol can also be used to perform logical functions similar to
those performed by this protocol. For more information, see [MS-VDS].<3>

1.7 Versioning and Capability Negotiation

Supported Transports: This protocol uses the DCOM Remote Protocol (as specified in [MS-DCOM]),
which in turn uses RPC over TCP, as its only transport. For more information, see section 2.1.

Protocol Version: This protocol includes six DCOM interfaces, all of which MUST be version 0.0.

The client negotiates for a given set of server functionality by specifying the UUID that
corresponds to the wanted RPC interface when binding to the server.<4>

Security and Authentication Methods: As specified in [MS-DCOM], [MS-RPCE], and section 2.1.

1.8 Vendor-Extensible Fields

This protocol does not define any vendor-extensible fields.

1.9 Standards Assignments

Parameter Value Reference

RPC interface UUID for IVolumeClient D2D79DF5-3400-11d0-B40B-00AA005FF586 Section 2.1

RPC interface UUID for IVolumeClient2 4BDAFC52-FE6A-11d2-93F8-00105A11164A Section 2.1

RPC interface UUID for IVolumeClient3 135698D2-3A37-4d26-99DF-E2BB6AE3AC61 Section 2.1

RPC interface UUID for IVolumeClient4 DEB01010-3A37-4d26-99DF-E2BB6AE3AC61 Section 2.1

RPC interface UUID for IDMRemoteServer 3A410F21-553F-11d1-8E5E-00A0C92C9D5D Section 2.1

RPC interface UUID for IDMNotify D2D79DF7-3400-11d0-B40B-00AA005FF586 Section 2.1

%5bMS-DCOM%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-VDS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-RPCE%5d.pdf

18 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

2 Messages

The following sections specify how Disk Management Remote Protocol messages are transported and
common data types.

2.1 Transport

This protocol MUST use the DCOM Remote Protocol, as specified in [MS-DCOM], as its transport. On
its behalf, the DCOM Remote Protocol uses the following RPC protocol sequence: RPC over TCP, as
specified in [MS-RPCE].

An implementation of Disk Management MAY configure its DCOM implementation or underlying RPC
transport with authentication parameters to allow clients to connect. The details of this are

implementation-specific.<5>

The Disk Management interfaces make use of the underlying DCOM security framework, as specified in
[MS-DCOM], and rely upon it for access control. DCOM distinguishes between launch and access. An

implementation of Disk Management SHOULD differentiate between these two types and impose
different authorization requirements per interface. The IVolumeClient, IVolumeClient2,
IVolumeClient3, and IVolumeClient4 interfaces SHOULD be the most restrictive, requiring the invoker
to have access to the Disk Management system. The IDMRemoteServer interface SHOULD be less

restrictive, because it provides less access to the underlying system.<6>

2.2 Common Data Types

In addition to RPC base types and definitions (as specified in [C706] and [MS-RPCE]), the following
sections use the definitions of LONGLONG, DWORD, Boolean, BYTE, LONG, WCHAR, LPSTR, BOOL,

FILETIME, GUID, and ULONG, which are specified in [MS-DTYP].

This section defines a number of fields that contain flags that are combined by using a logical OR
operation. Except where otherwise specified, all undefined flags MUST be set to 0 and ignored on
receipt.

For all methods that have an array as an output parameter, memory for the array is allocated by the
server and freed by the client. Details about DCOM memory allocation mechanisms are as specified in

[MS-DCOM].

2.2.1 HRESULT Return Codes

The following HRESULT return codes are defined by the Disk Management Remote Protocol, and
together with the HRESULTs, as specified in [MS-ERREF] section 2.1, they MAY be returned by the

server to indicate additional information about the result of a method call or the reason a call failed. If
the result is an error rather than simple status information, the most significant bit of the HRESULT is
set (as specified in [MS-ERREF]).

Return value/code Description

0xC1000001

LDM_E_UNEXPECTED

An unexpected error has occurred. Check the system
event log for more information on the error. Close
the Disk Management console, then restart Disk
Management or restart the computer.

0xC1000004

LDM_E_LOST

INTERNAL Error — The commit status has been lost.

0xC100000A

LDM_E_BADMSG

INTERNAL Error — The request contains a message
format that is not valid.

%5bMS-DCOM%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-ERREF%5d.pdf

19 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return value/code Description

0xC100000C

LDM_E_NOMEM

There is not enough memory available to finish the
operation. Save the work, exit other programs, and
then try again.

0xC1000014

LDM_E_NOTRANS

INTERNAL Error — The operation requires a
transaction.

0xC1000016

LDM_E_RESTART

INTERNAL Error — The commit has been aborted,
transaction must be restarted.

0xC1000017

LDM_E_DB_RESTART

The dynamic disks present in the system cannot be
configured due to excessive disk input/output (I/O)
errors. Verify the status of storage devices, and then
restart the computer.

0xC1000018

LDM_E_VOLDERR

INTERNAL Error — An unexpected error occurred in
the configuration program.

0xC1000019

LDM_E_REPLAY

INTERNAL Error — An unexpected error occurred in
the kernel during a configuration update.

0xC100001B

LDM_E_LOGIO_FAIL

INTERNAL Error — Logical Disk Manager (LDM)
cannot start the logging thread.

0xC100001C

LDM_E_DG_DISABLED

The disk group has been disabled.

0xC1000029

LDM_E_DIAG_DBASE

One or more errors exist in the disk group
configuration copies.

0xC100002D

LDM_E_DIAG_DISABLED

INTERNAL Error — The configuration program is
currently disabled.

0xC1000030

LDM_E_DIAG_CYCLE

INTERNAL Error — No convergence between the disk
group and disk list.

0xC1000032

LDM_E_VB_NOENT

The expected LDM registry keys were not found.

0xC1000033

LDM_E_VB_SYS

A system error was encountered while reading or
setting an LDM registry key.

0xC1000034

LDM_E_VB_FORMAT

INTERNAL Error — String format errors were found in
LDM registry keys.

0xC100003C

LDM_E_INPROGRESS

INTERNAL Error — A transaction is already in
progress.

0xC100003D

LDM_E_DISABLED

INTERNAL Error — This feature is disabled or is not
implemented.

0xC100003E

LDM_E_NOSUPPORT

INTERNAL Error — The requested operation is not
supported.

0xC100003F

LDM_E_LOCK

INTERNAL Error — The requested lock could not be
obtained.

0xC1000040 INTERNAL Error — The required lock is not held in

20 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return value/code Description

LDM_E_NOLOCK the transaction.

0xC1000041

LDM_E_NO_DLOCK

INTERNAL Error — The required data lock is not held
in the transaction.

0xC1000042

LDM_E_EXIST

INTERNAL Error — An object with the specified name
already exists in the disk group.

0xC1000043

LDM_E_NOENT

The specified object no longer exists in the disk
group.

0xC1000044

LDM_E_CONFIG

INTERNAL Error — The disk group configuration has
changed.

0xC1000046

LDM_E_BUSY

The specified object is in active use; operation not
allowed.

0xC1000047

LDM_E_INVAL

The requested operation is not valid.

0xC1000049

LDM_E_NEG_SIZE

INTERNAL Error — Negative length, width, or offset
received as parameter of the request.

0xC100004B

LDM_E_BADNAME

INTERNAL Error — The record name is not valid.

0xC100004C

LDM_E_NOT_DIS

The operation requires a disabled volume.

0xC100004D

LDM_E_ENABLED

This mirror cannot be removed because the
mirrored volume is currently missing or
regenerating. Retry this operation when the mirror
state is healthy.

0xC100004E

LDM_E_NO_ASSOC

INTERNAL Error — The operation requires an
associated record.

0xC100004F

LDM_E_ASSOC

The operation is not allowed because the requested
object is in active use.

0xC1000052

LDM_E_HOLE

INTERNAL Error — The specified striped plex is not
compact.

0xC1000053

LDM_E_DIFF_SIZE

INTERNAL Error — The subdisks of the striped plex
have different sizes.

0xC1000054

LDM_E_NONE_ASSOC

INTERNAL Error — The striped plex has no associated
subdisks.

0xC1000055

LDM_E_FULL_ASSOC

INTERNAL Error — The record cannot have more
associations.

0xC1000056

LDM_E_INVAL_RTYPE

INTERNAL Error — The record type is not valid.

0xC1000057

LDM_E_NOT_SUBDISK

INTERNAL Error — The specified record is not a
subdisk.

21 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return value/code Description

0xC1000058

LDM_E_NOT_PLEX

INTERNAL Error — The specified record is not a plex.

0xC1000059

LDM_E_NOT_VOL

INTERNAL Error — The specified record is not a
volume.

0xC100005A

LDM_E_NOT_DM

INTERNAL Error — The specified record is not a disk
media.

0xC100005B

LDM_E_NOT_DG

INTERNAL Error — The specified record is not a disk
group.

0xC100005C

LDM_E_NOT_DA

INTERNAL Error — The specified record is not a disk
access.

0xC100005D

LDM_E_IS_DG

INTERNAL Error — The operation is not allowed on a

disk group.

0xC100005E

LDM_E_MAX_VOL

The volume limit has been reached; no additional
dynamic volumes can be created.

0xC100005F

LDM_E_MAX_PLEX

INTERNAL Error — Too many plexes exist.

0xC1000060

LDM_E_OVERLAP

INTERNAL Error — The subdisk overlaps with another
subdisk.

0xC1000061

LDM_E_TOO_SMALL

INTERNAL Error — A striped plex subdisk has the
length shorter than the stripe width.

0xC1000062

LDM_E_SD_WIDTH

INTERNAL Error — A striped plex subdisk has the
length not multiple of the stripe width.

0xC1000063

LDM_E_INVAL_FIELD

INTERNAL Error — The specified field is not valid.

0xC1000064

LDM_E_ST_WIDTH

INTERNAL Error — The plex stripe width is not valid.

0xC1000065

LDM_E_OVERFLOW

INTERNAL Error — The operation overflows the
maximum offsets.

0xC1000066

LDM_E_LOG_SD_SMALL

INTERNAL Error — The log subdisk is too small for
the volume.

0xC1000069

LDM_E_HAS_LOG

INTERNAL Error — The plex already has a log
subdisk.

0xC100006B

LDM_E_NO_DG

The specified disk group no longer exists.

0xC100006C

LDM_E_LDM_E_DG_MISMATCH

INTERNAL Error — The request crosses a disk group
boundary.

0xC100006D

LDM_E_NOT_ROOTDG

INTERNAL Error — The request is allowed only in the
root disk group.

22 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return value/code Description

0xC100006E

LDM_E_PUB_BOUNDS

INTERNAL Error — The subdisk is not within the
public region boundaries.

0xC100006F

LDM_E_BAD_DISK

The specified disk is not ready or usable.

0xC1000070

LDM_E_VOL_INVALID

INTERNAL Error — The specified volume is not
usable.

0xC1000071

LDM_E_PATH_STAT

The specified device path cannot be accessed.

0xC1000073

LDM_E_NOROOTDG

INTERNAL Error — The root disk group is not
enabled.

0xC1000074

LDM_E_NODATATYPE

INTERNAL Error — The disk access type is not

recognized.

0xC1000075

LDM_E_DAOFFLINE

The specified disk is offline.

0xC1000076

LDM_E_REC_TOOBIG

INTERNAL Error — The record store size is too large.

0xC1000077

LDM_E_SD_BAD

INTERNAL Error — The specified subdisk is not
enabled.

0xC1000078

LDM_E_PLEX_BAD

INTERNAL Error — The specified plex contains
disabled subdisks.

0xC1000079

LDM_E_NOT_EMPTY

The operation is not allowed because the specified
disk is not empty.

0xC100007A

LDM_E_DG_EXIST

INTERNAL Error — A disk group with the specified
name already exists.

0xC100007B

LDM_E_DGCREATED

INTERNAL Error — The operation is not allowed on a
created disk group.

0xC100007C

LDM_E_DG_LOG_FULL

INTERNAL Error — The configuration is too large for
the disk group log.

0xC100007D

LDM_E_DG_LOG_SMALL

INTERNAL Error — The disk log is too small for the
disk group configuration.

0xC100007E

LDM_E_DG_IMPORTED

INTERNAL Error — The disk group has already been
imported.

0xC100007F

LDM_E_DB_REC_ERROR

INTERNAL Error — An error exists in the
configuration record.

0xC1000080

LDM_E_DB_TOO_BIG

INTERNAL Error — The configuration is too large to
make configuration copies.

0xC1000081

LDM_E_DGNOTCREATED

INTERNAL Error — The disk group creation is not
finish.

23 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return value/code Description

0xC1000082

LDM_E_LOG_BAD

INTERNAL Error — There are no valid log copies in
the disk group.

0xC1000083

LDM_E_ROOTDG

INTERNAL Error — The operation is not allowed on
the root disk group.

0xC1000084

LDM_E_LAST_DISK

INTERNAL Error — LDM cannot remove the last disk
in the disk group.

0xC1000085

LDM_E_LAST_CONFIG

INTERNAL Error — LDM cannot remove the last disk
group configuration copy.

0xC1000086

LDM_E_LAST_LOG

INTERNAL Error — LDM cannot remove the last disk
group log copy.

0xC1000087

LDM_E_DB_FULL

The LDM configuration is full. No more objects can be

created.

0xC1000088

LDM_E_DB_NOENT

INTERNAL Error — The database file cannot be found.

0xC1000089

LDM_E_DB_SYS

INTERNAL Error — System error in configuration
copy.

0xC100008A

LDM_E_DB_FORMAT

INTERNAL Error — A format error was found in the
configuration copy.

0xC100008B

LDM_E_DB_VERSION

The configuration format version is not supported.

0xC100008C

LDM_E_DB_NOSPC

INTERNAL Error — The LDM configuration is full.

0xC100008D

LDM_E_DB_SHORT

INTERNAL Error — Unexpected end of the
configuration copy.

0xC100008E

LDM_E_DB_READ

The LDM could not read the disk configuration.

0xC100008F

LDM_E_DB_WRITE

The LDM could not write the disk configuration.

0xC1000090

LDM_E_DB_AS_BAD

INTERNAL Error — Association not resolved

0xC1000091

LDM_E_DB_ASCNT_BAD

INTERNAL Error — The association count is incorrect.

0xC1000094

LDM_E_DB_MAGIC

INTERNAL Error — Invalid magic number in the
configuration copy.

0xC1000095

LDM_E_DB_BLKNO

INTERNAL Error — Invalid block number in the
configuration copy.

0xC1000096

LDM_E_DB_NOMATCH

INTERNAL Error — No valid disk belonging to the disk
group was found.

24 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return value/code Description

0xC1000097

LDM_E_DB_DUPLICATE

INTERNAL Error — Duplicate records exist in the
configuration.

0xC1000098

LDM_E_DB_INCONSISTENT

INTERNAL Error — The configuration records are
inconsistent.

0xC1000099

LDM_E_DB_NO_DGREC

INTERNAL Error — No disk group record exists in the
configuration.

0xC100009A

LDM_E_DB_BAD_TEMP

INTERNAL Error — The temporary and permanent
configurations do not match.

0xC100009B

LDM_E_DB_CHANGED

INTERNAL Error — The on-disk configuration changed
during recovery.

0xC100009E

LDM_E_KERN_KNOENT

INTERNAL Error — A record that was expected was

not found in the kernel.

0xC100009F

LDM_E_KERN_DBNOENT

INTERNAL Error — A record that exists in the kernel
was not found in the configuration.

0xC10000A0

LDM_E_KERN_KDIFF

INTERNAL Error — The configuration record does not
match the kernel.

0xC10000A1

LDM_E_KERN_INCONSISTENT

INTERNAL Error — The kernel and on-disk
configurations do not match.

0xC10000A2

LDM_E_PUB_SIZE

INTERNAL Error — The public region of the disk is too
small.

0xC10000A3

LDM_E_PRIV_SIZE

INTERNAL Error — The private region of the disk is
too small.

0xC10000A4

LDM_E_PRIV_FULL

INTERNAL Error — The private region of the disk is
full.

0xC10000A5

LDM_E_PRIV_FORMAT

INTERNAL Error — A format error was found in the
private region of the disk.

0xC10000A6

LDM_E_PRIV_HEADMATCH

INTERNAL Error — The disk has inconsistent disk
headers.

0xC10000A7

LDM_E_PRIV_NOHEADER

INTERNAL Error — The disk header cannot be found.

0xC10000A8

LDM_E_PRIV_INVAL

INTERNAL Error — The disk private region contents
are not valid.

0xC10000A9

LDM_E_PRIV_VERSION

INTERNAL Error — The disk private region version is
not supported.

0xC10000AA

LDM_E_PRIV_INCONSISTENT

INTERNAL Error — The disks in the disk group are
inconsistent.

0xC10000AB

LDM_E_FIELD_NOREINIT

INTERNAL Error — The attribute cannot be changed
by reinitializing the disk.

25 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return value/code Description

0xC10000AC

LDM_E_DISK_INITED

INTERNAL Error — The disk has already been
initialized.

0xC10000AD

LDM_E_DISK_ALIASED

INTERNAL Error — The disk header indicates aliased
partitions.

0xC10000AE

LDM_E_DISK_SHARED

The disk is marked as shared. It cannot be used in
the base Logical Disk Management product.

0xC10000AF

LDM_E_DISK_WRONGHOST

The disk is marked as in use by another computer.

0xC10000B1

LDM_E_MISSING_PUB

INTERNAL Error — The disk has no public partition.

0xC10000B5

LDM_E_BAD_SCTR_SIZE

The disk sector size is not supported by the LDM.

0xC10000B6

LDM_E_NO_CONFIGS

INTERNAL Error — The disk group contains no valid
configuration copies.

0xC10000B7

LDM_E_DISK_NOT_FOUND

The specified disk cannot be located.

0xC10000B8

LDM_E_DISK_OTHER_DG

INTERNAL Error — The disk belongs to another disk
group.

0xC10000B9

LDM_E_BADCOLUMN

INTERNAL Error — The stripe column number is too
large for the plex.

0xC10000BA

LDM_E_NOTRAIDVOL

INTERNAL Error — The volume does not have
redundant arrays of independent disks (RAID)
read policy.

0xC10000BB

LDM_E_RAIDVOL

INTERNAL Error — The volume has RAID read policy.

0xC10000BC

LDM_E_TOOMANYRAID

INTERNAL Error — The volume already has one RAID
plex.

0xC10000BE

LDM_E_LIC

The license has expired or is not available for the
operation.

0xC10000C0

LDM_E_NOTSTORAGE

INTERNAL Error — The volume does not have the
storage attribute.

0xC10000C1

LDM_E_SUBVOLUME

INTERNAL Error — The subdisk is defined on a
volume.

0xC10000C3

LDM_E_VOLTOOSMALL

INTERNAL Error — The volume length is too small to
hold subdisks.

0xC10000C4

LDM_E_HASSUBVOLUME

INTERNAL Error — One or more subdisks are defined
on the volume.

0xC10000C5

LDM_E_BADRAIDCHANGE

The operation is not allowed because it would make
the RAID-5 volume unusable.

26 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return value/code Description

0xC10000C6

LDM_E_BADRAID

The operation is not allowed because the RAID-5
volume is currently unusable.

0xC10000C7

LDM_E_PLEX_DIS

INTERNAL Error — The plex is disabled.

0xC10000CC

LDM_E_MPTH_DISABLE

INTERNAL Error — The record is subsumed by a
multipath disk.

0xC10000D1

LDM_E_NT_IF_ERROR

The operation was unsuccessful because a system
error occurred.

0xC10000D2

LDM_E_TASK_ABORTED

The operation was canceled at the user's request.

0xC10000D3

LDM_E_TASK_IOERROR

The operation was canceled due to a disk I/O error.

0xC10000D4

LDM_E_TASK_DELETED

INTERNAL Error — The task has been deleted.

0xC10000D5

LDM_E_V_NOT_ENABLED

This operation requires a usable volume.

0xC10000D6

LDM_E_SPC_SETUP_FAIL

There is not enough free disk space to satisfy the
request.

0xC10000D7

LDM_E_VOL_SETUP_FAIL

INTERNAL Error — The volume creation setup failed.

0xC10000D8

LDM_E_MIR_SETUP_FAIL

INTERNAL Error — The mirrored volume creation
setup failed.

0xC10000DA

LDM_E_GRW_SETUP_FAIL

INTERNAL Error — The volume grow operation setup
failed.

0x410000DB

LDM_E_FOREIGN_DA

The operation is not allowed because the disk
contains foreign partitions.

0x410000DC

LDM_E_PRIMARY_EXISTS

INTERNAL Error — A primary disk group already
exists.

0x410000DD

LDM_E_CAPS_VIOLATION

The requested operation is not allowed in Windows
Professional.

0x410000DE

LDM_E_VOL_NO_ZEROING

INTERNAL Error — The operation is not allowed
because the volume is still initializing.

0x410000DF

LDM_E_DISK_IN_USE

The requested disk is already in use by this volume.

0x410000E0

LDM_E_SDNODETACH

INTERNAL Error — A subdisk of the column is not
detached.

0x410000E1

LDM_E_NOBADDISK

The operation is not needed because no mirrors or
RAID-5 members are currently disabled.

27 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return value/code Description

0x410000E2

LDM_E_DEGRADED

The operation is not needed because no RAID-5
members are currently disabled.

0x410000E3

LDM_E_NO_OPEN

LDM could not open a volume.

0x410000E5

LDM_E_NO_DISMOUNT

LDM could not dismount a volume.

0x410000E6

LDM_E_BAD_PARTITION

LDM could not determine a partition type.

0x410000E7

LDM_E_MNT_FAIL

LDM could not associate a drive letter.

0x410000E8

LDM_E_FT_QUERY_FAIL

LDM could not retrieve information about a legacy

basic volume.

0x410000E9

LDM_E_NO_FT

There is no legacy basic volume on the disk.

0x410000EA

LDM_E_INSUFFICIENT_SPACE

There is not enough space for the configuration
database on the disk.

0x410000EB

LDM_E_FT_UNHEALTHY

A legacy basic volume is unhealthy.

0x410000ED

LDM_E_NEEDS_REBOOT

The conversion will require restarting the computer.

0x410000EE

LDM_E_BAD_ACTIVEPARTITION

An active partition is not the current active
partition.

0x410000F0

LDM_E_TOO_MANY_PARTITIONS

The disk cannot be partitioned after it has been
converted.

0x410000F1

LDM_E_ENCAP_PENDING

A disk conversion is already pending.

0x410000F2

LDM_E_ENCAP_FAIL

The LDM could not convert the selected disks.

0x410000F3

LDM_E_WRONG_DISKSET_ID

The disk configuration was changed on another
system.

0x410000F4

LDM_REENCAP_ABORT

The LDM detected a previous conversion attempt
failure.

0x410000F5

LDM_ENCAP_DONE

The selected disk has already been converted.

0x410000F6

LDM_FT_INCONSISTENT

The recorded configuration of legacy basic volumes
before the conversion does not match the current
configuration.

0x410000F7

LDM_MIXED_PARTITIONS

A foreign partition has been detected between basic
partitions.

28 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return value/code Description

0xC10000F8

LDM_E_CARVE_PARTITION

The LDM could not create a partition for the specified
volume.

0xC10000F9

LDM_E_FT_PRESENT

The LDM does not support conversion to dynamic for
disks that contain legacy basic volumes.

0xC10003E8

LDM_E_NODGINFO

The LDM could not find the primary disk group.

0xC10003EA

LDM_E_INVALIDOBJID

The type of a cached object is not valid.

0xC10003EB

LDM_E_NORECORD

A cached object could not be found.

0xC10003ED

LDM_E_NOTVMDISK

The disk does not belong to a disk group.

0xC10003F2

LDM_E_VOLUME_IN_USE

The request cannot be finished because the volume is
open or in use.

0xC10003F3

LDM_E_FORMATINPROGRESS

The volume specified cannot be formatted because
the system is busy formatting another volume. Wait
until that format operation is finished before
continuing.

0xC10003F5

LDM_E_OBJECT_STALED

The disk and volume information in the Disk
Management snap-in is out of date. To refresh
thedisk and volume information, press F5, or click
Refresh on the Action menu.

0xC10003F6

LDM_E_BAD_FS

The operation did not finish because the file system
is not compatible.

0xC10003F7

LDM_E_BAD_MEDIA

The operation did not finish because the media is not
compatible.

0xC10003F8

LDM_E_NOACCESS

The operation did not finish because access is denied.
Check the access permissions.

0xC10003F9

LDM_E_WRITE_PROTECTED

The operation did not finish because the media is
write-protected.

0xC10003FA

LDM_E_BAD_LABEL

The operation did not finish because the label
supplied is not valid.

0xC10003FB

LDM_E_CANNOT_QUICK_FORMAT

The operation did not finish because a quick format
is not possible.

0xC10003FC

LDM_E_IO_ERROR

The operation did not finish because an I/O error
occurred. Check the System Event Log for more
information.

0xC10003FD

LDM_E_NO_DRIVE_LETTER

The operation requires that a drive letter be assigned
to the volume.

0xC10003FE

LDM_E_FILE_NOT_FOUND

The operation did not finish because the required file
is not present.

29 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return value/code Description

0xC10003FF

LDM_E_CANNOT_LOAD

The restore operation did not finish because either
the floppy disk does not contain the configuration
information or the information is corrupted.

0xC1000400

LDM_E_MOUNTPOINT_BUSY

The drive letter could not be assigned because it is
already in use.

0xC1000401

LDM_E_FORMAT_FAILED

The format did not finish successfully.

0xC1000402

LDM_E_SERVER_NOTREADY

The LDM Administrative Service is not yet ready to
accept connections.

0xC1000403

LDM_E_CANT_PROTECT_SYSTEM

The LDM cannot secure the system partition.

0xC1000404

LDM_E_CANT_UNPROTECT_SYSTEM

The LDM cannot unsecure the system partition.

0xC1000405

LDM_E_FAILED_SHUTDOWN

The LDM cannot shut down the system.

0xC1000406

LDM_E_VOL_TOO_BIG

The volume size is too big for the selected file
system.

0xC1000407

LDM_E_VOL_TOO_SMALL

The volume size is too small for the selected file
system.

0xC1000408

LDM_CLUSTER_SIZE_TOO_BIG

The cluster size is too big for the selected file system.

0xC1000409

LDM_CLUSTER_SIZE_TOO_SMALL

The cluster size is too small for the selected file
system.

0x8100040A

LDM_W_CANTOPENLOG

Debug log file "%1" could not be opened. Debug
tracing is not available.

0x8100040B

LDM_W_TIMEOUT

The request timed out and could not be finished.

0x8100040C

LDM_W_UNSUPPORTED

The requested operation is not supported.

0x0100040D

LDM_S_REBOOT_PENDING

The drive letter reassignment will not occur until the
computer is restarted.

0x8100040E

LDM_W_VOL_COMPRESS_FAILED

The format succeeded, but file and folder
compression are not enabled.

0xC1000411

LDM_E_VMCONFIG_LOAD_FAILED

Windows cannot load the following LDM configuration
library: "%1.dll". The LDM might not be correctly
installed, or the system folder might be corrupted.
Contact the system administrator for assistance.

0xC1000412

LDM_E_VOLUMEDISABLED

The requested operation is not supported on failed
volumes.

0xC1000413 The requested operation cannot be finished because

30 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return value/code Description

LDM_E_RDONLY the media is write-protected.

0xC1000414

LDM_E_NO_DYNAMIC

Dynamic disks are not supported on this system.

0xC1000415

LDM_E_INVALID_FS

The path provided is on a file system that does not
support drive paths.

0xC1000416

LDM_E_INVALID_PATH

The path cannot be used for creating a drive path
because the folder does not exist or is already a drive
path to some other volume.

0xC1000417

LDM_E_DIR_NOT_EMPTY

The path cannot be used for creating a drive path
because the folder is not empty.

0xC1000418

LDM_E_NOT_DRIVE_PATH

The LDM cannot delete the drive path.

0xC1000419

LDM_E_INVALID_NAME

The path is not valid and cannot be used for creating
a drive path.

0xC100041B

LDM_E_MEDIA_DOESNT_SUPPORT_MOUNT_POINTS

Drive paths are not supported for removable
media.

0xC100041C

LDM_E_DELETE_NOACCESS

The drive path cannot be deleted because access is
denied.

0xC100041D

LDM_E_VOLUME_DISABLED

The operation did not finish because the partition or
volume is not enabled. To enable the partition or
volume, restart the computer.

0xC100041E

LDM_CLUSTER_COUNT_TOO_HIGH

The format operation did not finish because the
cluster count is higher than expected.

0x8100041F

LDM_W_MARK_ACTIVE_FAILED_PRIMARY

The volume was repaired but the underlying partition
was not marked active because another partition on
the disk is already marked active. Mark the volume
active to mark its underlying partitions active.

0x81000420

LDM_W_MARK_ACITVE_FAILED_LOGICAL

The volume was repaired but the underlying partition
was not marked active because it is a logical drive.

0xC1000421

LDM_E_SERVICE_DISABLED

The LDM Administrative Service is disabled.

0xC1000422

LDM_E_BOOTFILE

The LDM could not update the boot file for any boot
partitions on the destination disk. Verify the ARC
path listings in file boot.ini or through the
bootcfg.exe tool.

0xC1000423

LDM_E_BAD_HARDWARE

The disk configuration operation did not finish. Check
the System Event Log for more information on the
error. Verify the status of the storage devices before
retrying. If that does not solve the problem, close the
Disk Management console, then restart Disk
Management or restart the computer.

0xC1000424

LDM_E_BIOS_OFF_OR_HOTPLUG

Arcpath information for the destination disk does not
exist. Either the disk was added after startup, or the
SCSI BIOS is disabled on the destination disk's

31 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return value/code Description

controller. Unable to update the boot file. Verify the
arcpath listings in file boot.ini or through the
bootcfg.exe tool.

0xC1000425

LDM_E_VOLUME_GROW_FAILED_FS

Failed to extend the file system for the volume.

0xC1000426

LDM_E_GPT_BOOT_MIRRORED_TO_MBR

The current boot volume has been mirrored to a
master boot record (MBR) disk. It will not be
possible to boot from the plex on the MBR disk.

0xC1000427

LDM_E_REGION_LATENCY_RETRY

The cache has not completely updated after adding
or removing partitions. Retry the operation.

0xC10007CA

LDM_E_GENERIC_ERROR

The operation did not finish. Check the System Event
Log for more information on the error.

0xC10007CB

LDM_E_GENERIC_RETRY

The operation did not finish. Check the System Event
Log for more information on the error. Retrying the
operation may fix the problem.

0xC10007CC

LDM_E_GENERIC_RESTART

The operation did not finish. Check the System Event
Log for more information on the error. Close the Disk
Management console, then restart Disk Management
before retrying the operation.

0xC10007CD

LDM_E_GENERIC_REBOOT

The operation did not finish. Check the System Event
Log for more information on the error. Restart the
computer before retrying the operation.

0xC10007CE

LDM_E_NO_VM

No dynamic disks are present.

0xC10007CF

LDM_E_INTERNALFAILURE

An internal error has occurred. Close the Disk
Management console, then restart Disk Management,
or restart the computer.

0xC10007D0

LDM_E_PAGEFILE_VOLUME

This volume contains a pagefile.

0xC10007D1

LDM_E_SYSTEM_VOLUME

This volume is marked as an active (system) volume.

0xC10007D2

LDM_E_CRASHDUMP_VOLUME

This volume is configured to hold a "crashdump" file.

0xC10007D3

LDM_E_CRASHDUMP_PAGEFILE_BOOT_SYSTEM_VOLUME

The request cannot be finished because the volume is
open or in use. It may be configured as a system,
boot, or pagefile volume, or configured to hold a
"crashdump" file.

2.2.2 MAX_FS_NAME_SIZE Constant

Constant/value Description

MAX_FS_NAME_SIZE

8

Used to define the IFILE_SYSTEM_INFO structure. It is the maximum size of a file system
name, in characters, including the terminating null character. It is defined as a DWORD.

32 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

2.2.3 REGIONTYPE

The REGIONTYPE enumeration defines values for region types.

 typedef enum _REGIONTYPE
 {
 REGION_UNKNOWN,
 REGION_FREE,
 REGION_EXTENDED_FREE,
 REGION_PRIMARY,
 REGION_LOGICAL,
 REGION_EXTENDED,
 REGION_SUBDISK,
 REGION_CDROM,
 REGION_REMOVABLE
 } REGIONTYPE;

REGION_UNKNOWN: Region type is unknown.

REGION_FREE: Region resides in free space.

REGION_EXTENDED_FREE: Region resides in the free space of an extended partition.

REGION_PRIMARY: Region resides in a primary partition.

REGION_LOGICAL: Region resides in a logical partition.

REGION_EXTENDED: Region resides in an extended partition.

REGION_SUBDISK: Region resides on a subdisk.

REGION_CDROM: Region resides on a CD-ROM device.

REGION_REMOVABLE: Region resides on a device with removable media.

2.2.4 VOLUMETYPE

The VOLUMETYPE enumeration defines values for types of volumes.

 typedef enum _VOLUMETYPE
 {
 VOLUMETYPE_UNKNOWN,
 VOLUMETYPE_PRIMARY_PARTITION,
 VOLUMETYPE_LOGICAL_DRIVE,
 VOLUMETYPE_FT,
 VOLUMETYPE_VM,
 VOLUMETYPE_CDROM,
 VOLUMETYPE_REMOVABLE
 } VOLUMETYPE;

VOLUMETYPE_UNKNOWN: Volume is of an unknown type.

VOLUMETYPE_PRIMARY_PARTITION: Volume is a primary partition.

VOLUMETYPE_LOGICAL_DRIVE: Volume is a logical drive.

VOLUMETYPE_FT: Volume is a Windows NT 4.0 operating system–style fault-tolerant volume.

33 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

VOLUMETYPE_VM: Volume is controlled by the volume manager.

VOLUMETYPE_CDROM: Volume resides on a CD-ROM device.

VOLUMETYPE_REMOVABLE: Volume resides on a device with removable media.

2.2.5 VOLUMELAYOUT

The VOLUMELAYOUT enumeration defines values for volume layouts.

 typedef enum _VOLUMELAYOUT
 {
 VOLUMELAYOUT_UNKNOWN,
 VOLUMELAYOUT_PARTITION,
 VOLUMELAYOUT_SIMPLE,
 VOLUMELAYOUT_SPANNED,
 VOLUMELAYOUT_MIRROR,
 VOLUMELAYOUT_STRIPE,
 VOLUMELAYOUT_RAID5
 } VOLUMELAYOUT;

VOLUMELAYOUT_UNKNOWN: Volume has an unknown layout.

VOLUMELAYOUT_PARTITION: Volume is a partition.

VOLUMELAYOUT_SIMPLE: Volume is a basic disk.

VOLUMELAYOUT_SPANNED: Volume spans multiple disks.

VOLUMELAYOUT_MIRROR: Volume is a mirror.

VOLUMELAYOUT_STRIPE: Volume is a striped set.

VOLUMELAYOUT_RAID5: Volume is a RAID-5 set.

2.2.6 REQSTATUS

The REQSTATUS enumeration defines values for the status of a request.

 typedef enum _REQSTATUS
 {
 REQ_UNKNOWN,
 REQ_STARTED,
 REQ_IN_PROGRESS,
 REQ_COMPLETED,
 REQ_ABORTED,
 REQ_FAILED
 } REQSTATUS;

REQ_UNKNOWN: Request state is unknown.

REQ_STARTED: Request has started.

REQ_IN_PROGRESS: Request is in progress.

REQ_COMPLETED: Request has finished.

REQ_ABORTED: Request has terminated.

REQ_FAILED: Request has failed.

34 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

2.2.7 REGIONSTATUS

The REGIONSTATUS enumeration defines values for a region's status.

 typedef enum _REGIONSTATUS
 {
 REGIONSTATUS_UNKNOWN,
 REGIONSTATUS_OK,
 REGIONSTATUS_FAILED,
 REGIONSTATUS_FAILING,
 REGIONSTATUS_REGENERATING,
 REGIONSTATUS_NEEDSRESYNC
 } REGIONSTATUS;

REGIONSTATUS_UNKNOWN: Region's status is unknown.

REGIONSTATUS_OK: Region is intact.

REGIONSTATUS_FAILED: Region failed.

REGIONSTATUS_FAILING: Region is in the process of failing.

REGIONSTATUS_REGENERATING: Region is regenerating data from the fault-tolerant check
information.

REGIONSTATUS_NEEDSRESYNC: Region needs resynchronization.

2.2.8 VOLUMESTATUS

The VOLUMESTATUS enumeration defines values for a volume's status. For more information about
redundant data and fault-tolerant volumes, see [MSDN-DISKMAN].

 typedef enum _VOLUMESTATUS
 {
 VOLUME_STATUS_UNKNOWN,
 VOLUME_STATUS_HEALTHY,
 VOLUME_STATUS_FAILED,
 VOLUME_STATUS_FAILED_REDUNDANCY,
 VOLUME_STATUS_FAILING,
 VOLUME_STATUS_FAILING_REDUNDANCY,
 VOLUME_STATUS_FAILED_REDUNDANCY_FAILING,
 VOLUME_STATUS_SYNCHING,
 VOLUME_STATUS_REGENERATING,
 VOLUME_STATUS_INITIALIZING,
 VOLUME_STATUS_FORMATTING
 } VOLUMESTATUS;

VOLUME_STATUS_UNKNOWN: Volume has an unknown status.

VOLUME_STATUS_HEALTHY: Volume is fully functional.

VOLUME_STATUS_FAILED: Volume is in a failed state.

VOLUME_STATUS_FAILED_REDUNDANCY: Volume's redundant data in a fault-tolerant volume
has failed.

VOLUME_STATUS_FAILING: Volume has encountered I/O errors.

VOLUME_STATUS_FAILING_REDUNDANCY: Volume is fault-tolerant, and it encountered I/O
errors.

http://go.microsoft.com/fwlink/?LinkId=89992

35 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

VOLUME_STATUS_FAILED_REDUNDANCY_FAILING: Redundant data in a fault-tolerant volume
has failed, and the volume encountered I/O errors in the last remaining copy of the data.

VOLUME_STATUS_SYNCHING: Volume is resynchronizing fault-tolerant data for a mirrored
volume.

VOLUME_STATUS_REGENERATING: Volume is regenerating fault-tolerant data for a RAID-5
volume.

VOLUME_STATUS_INITIALIZING: Volume is initializing to volume manager control.

VOLUME_STATUS_FORMATTING: Volume is currently being formatted.

2.2.9 LdmObjectId

This type is declared as follows:

 typedef LONGLONG LdmObjectId;

LdmObjectId defines a unique identifier (UID) for disk management objects such as regions, disks,

and volumes. Each LdmObjectId MUST contain a 64-bit integer, which is unique across all disk
management objects on the server.

2.2.10 VOLUME_SPEC

The VOLUME_SPEC structure specifies a new volume to create. VOLUME_SPEC is a typedef of this
structure.

 struct volumespec {
 VOLUMETYPE type;
 VOLUMELAYOUT layout;
 REGIONTYPE partitionType;
 LONGLONG length;
 LONGLONG lastKnownState;
 }
 typedef struct volumespec VOLUME_SPEC;

type: Specifies the volume type.

layout: Specifies the volume layout.

partitionType: Specifies the type of the underlying region, if this volume will be a partition.

length: Specifies the length of the volume in bytes. The volume length MUST always be a multiple of

the disk sector size.

lastKnownState: Specifies the volume's last known modification sequence number.

2.2.11 VOLUME_INFO

The VOLUME_INFO structure provides information about a volume.

 struct volumeinfo {
 LdmObjectId id;
 VOLUMETYPE type;
 VOLUMELAYOUT layout;
 LONGLONG length;
 LdmObjectId fsId;

36 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 unsigned long memberCount;
 VOLUMESTATUS status;
 LONGLONG lastKnownState;
 LdmObjectId taskId;
 unsigned long vflags;
 }
 typedef struct volumeinfo VOLUME_INFO

id: Specifies the object identifier (OID) for the volume.

type: Specifies the volume type.

layout: Specifies the volume layout.

length: Specifies the length of the volume in bytes.

fsId: Specifies the object identifier for the volume's file system, which defaults to 0 if no file system
is present on the volume.

memberCount: Specifies the number of regions that compose the volume.

status: Specifies the volume status.

lastKnownState: Specifies the volume's modification sequence number.

taskId: Specifies the task identifier of the associated user request. If no request is made, the value
is 0. For more information, see section 2.2.17.

vflags: Specifies the bitmap of volume flags. The value of this field is generated by combining zero or
more of the following applicable flags with a logical OR operation.

This field MUST be one of the following values.

Value Meaning

VOLUME_FORMAT_IN_PROGRESS

0x00000001

Volume is currently being formatted.

VOLUME_HAS_PAGEFILE

0x00000004

Volume contains the paging file.

VOLUME_IS_BOOT_VOLUME

0x00000100

Volume contains the boot partition.

VOLUME_IS_RESTARTABLE

0x00000400

The RestartVolume method can be successfully called on this volume.

VOLUME_IS_SYSTEM_VOLUME

0x00000800

Volume contains the system directory.

VOLUME_HAS_RETAIN_PARTITION

0x00001000

Volume has an underlying partition.

VOLUME_HAD_BOOT_INI

0x00002000

Volume contained the Boot.ini file used when the operating system was
last started.

VOLUME_CORRUPT

0x00004000

Volume is corrupt.

VOLUME_HAS_CRASHDUMP Volume contains a crash dump file.

37 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

0x00008000

VOLUME_IS_CURR_BOOT_VOLUME

0x00010000

Volume is the current boot volume.

VOLUME_HAS_HIBERNATION

0x00020000

Volume contains a hibernation image.

2.2.12 DISK_SPEC

The DISK_SPEC structure specifies a disk for a volume modification or a creation request.

 struct diskspec {
 LdmObjectId diskId;
 LONGLONG length;
 boolean needContiguous;
 LONGLONG lastKnownState;
 }
 typedef struct diskspec DISK_SPEC;

diskId: Specifies the OID for the disk.

length: Specifies the byte length to use.

needContiguous: Boolean value that specifies if contiguous space is needed on the disk.

Value Meaning

FALSE

0

Contiguous space is not needed on the disk.

TRUE

1

Contiguous space is needed on the disk.

lastKnownState: Last known modification sequence number of the disk.

2.2.13 REGION_SPEC

The REGION_SPEC structure specifies a region for partition creation and deletion.

 struct regionspec {
 LdmObjectId regionId;
 REGIONTYPE regionType;
 LdmObjectId diskId;
 LONGLONG start;
 LONGLONG length;

 LONGLONG lastKnownState;
 }
 typedef struct regionspec REGION_SPEC;

regionId: Specifies the OID for the region.

regionType: Specifies the region type.

38 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

diskId: Specifies the OID for the disk on which the region resides.

start: Specifies the byte offset of the region on disk.

length: Specifies the length of the region in bytes.

lastKnownState: Specifies the region's last known modification sequence number.

2.2.14 DRIVE_LETTER_INFO

The DRIVE_LETTER_INFO structure provides information about a drive letter. It is used for drive letter
assignment and free requests, for notification of drive letter changes, and for enumeration.

 struct driveletterinfo {
 wchar_t letter;
 LdmObjectId storageId;
 boolean isUsed;
 hyper lastKnownState;
 LdmObjectId taskId;
 unsigned long dlflags;
 }
 typedef struct driveletterinfo DRIVE_LETTER_INFO;

letter: Drive letter as a single case-insensitive alphabetical Unicode character.

storageId: Specifies the OID of the volume, partition, or logical drive to which the drive letter is
assigned, if any.

isUsed: Boolean value that specifies if the drive letter is in use.

Value Meaning

FALSE

0

Drive letter is free.

TRUE

1

Drive letter is in use.

lastKnownState: Modification sequence number of the drive letter.

taskId: Specifies the task identifier of the associated user request. If no request is made, the value
is 0. For more information about this task identifier, see section 2.2.17.

dlflags: Bitmap of drive letter flags. The value of this field is generated by combining zero or more of
the applicable flags defined as follows with a logical OR operation.

Value Meaning

DL_PENDING_REMOVAL

0x00000001

Drive letter has a removal operation pending.

2.2.15 FILE_SYSTEM_INFO

The FILE_SYSTEM_INFO structure provides information about a file system. This structure is used for

file system enumeration, file system operations, and notification of file system changes in the
configuration database. For more information about the parameters, see [MSDN-STC].

http://go.microsoft.com/fwlink/?LinkId=90139

39 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 struct filesysteminfo {
 LdmObjectId id;
 LdmObjectId storageId;
 LONGLONG totalAllocationUnits;
 LONGLONG availableAllocationUnits;
 unsigned long allocationUnitSize;
 unsigned long fsflags;
 hyper lastKnownState;
 LdmObjectId taskId;
 long fsType;
 int cchLabel;
 [size_is(cchLabel)] wchar_t* label;
 }
 typedef struct filesysteminfo FILE_SYSTEM_INFO;

id: Specifies the OID for the file system.

storageId: Specifies the OID for the volume, partition, or logical drive associated with the file

system.

totalAllocationUnits: Total number of file allocation units in the file system.

availableAllocationUnits: Number of available file allocation units in the file system.

allocationUnitSize: Size of a file allocation unit in bytes.

fsflags: Bitmap of file system flags. The value of this field is generated by combining zero or more
of the applicable flags with a logical OR operation.

Value Meaning

ENABLE_VOLUME_COMPRESSION

0x00000001

File system supports NT file system (NTFS) compression.

lastKnownState: File system's last known modification sequence number.

taskId: Specifies the task identifier of the associated user request. If no request is made, the value
is 0. For more information about this task identifier, see section 2.2.17.

fsType: Type of the file system.

Value Meaning

FSTYPE_UNKNOWN

0x00000000

File system type is unknown.

FSTYPE_NTFS

0x00000001

File system type is NTFS.

FSTYPE_FAT

0x00000002

File system type is file allocation table (FAT).

FSTYPE_FAT32

0x00000003

File system type is a FAT32 file system.

FSTYPE_CDFS

0x00000004

File system type is Compact Disc File System (CDFS).

FSTYPE_UDF File system type is Universal Disk Format (UDF).

40 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

0x00000005

FSTYPE_OTHER

0x80000000

File system type is not listed.

cchLabel: Length of the label of the file system, in Unicode characters, including the terminating null
character.

label: Null-terminated label of the file system. This is Unicode.

2.2.16 IFILE_SYSTEM_INFO

The IFILE_SYSTEM_INFO structure provides information about an installed file system. For more
information, see [MSDN-STC].

 struct ifilesysteminfo {
 long fsType;
 WCHAR fsName[MAX_FS_NAME_SIZE];
 unsigned long fsFlags;
 unsigned long fsCompressionFlags;
 int cchLabelLimit;
 int cchLabel;
 [size_is(cchLabel)] wchar_t* iLabelChSet;
 }
 typedef struct ifilesysteminfo IFILE_SYSTEM_INFO;

fsType: Type of the file system. This field contains one of the following values.

Value Meaning

FSTYPE_UNKNOWN

0x00000000

File system type is unknown.

FSTYPE_NTFS

0x00000001

File system type is NTFS.

FSTYPE_FAT

0x00000002

File system type is FAT.

FSTYPE_FAT32

0x00000003

File system type is FAT32 file system.

FSTYPE_CDFS

0x00000004

File system type is CDFS.

FSTYPE_UDF

0x00000005

File system type is UDF.

FSTYPE_OTHER

0x80000000

File system type is not listed.

fsName: Null-terminated Unicode file system name.

fsFlags: Bitmap of file system flags. The value of this field is a logical OR of zero or more of the
applicable flags.

http://go.microsoft.com/fwlink/?LinkId=90139

41 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

FSF_FMT_OPTION_COMPRESS

0x00000001

File system supports compression.

FSF_FMT_OPTION_LABEL

0x00000002

File system supports label specification.

FSF_MNT_POINT_SUPPORT

0x00000004

File system supports creation of mount points.

FSF_REMOVABLE_MEDIA_SUPPORT

0x00000008

File system supports creation of removable media.

FSF_FS_GROW_SUPPORT

0x00000010

File system supports the extend operation.

FSF_FS_QUICK_FORMAT_ENABLE

0x00000020

File system supports quick formatting.

FSF_FS_ALLOC_SZ_512

0x00000040

File system supports an allocation unit size of 512 bytes.

FSF_FS_ALLOC_SZ_1K

0x00000080

File system supports an allocation unit size of 1 kilobyte.

FSF_FS_ALLOC_SZ_2K

0x00000100

File system supports an allocation unit size of 2 kilobytes.

FSF_FS_ALLOC_SZ_4K

0x00000200

File system supports an allocation unit size of 4 kilobytes.

FSF_FS_ALLOC_SZ_8K

0x00000400

File system supports an allocation unit size of 8 kilobytes.

FSF_FS_ALLOC_SZ_16K

0x00000800

File system supports an allocation unit size of 16 kilobytes.

FSF_FS_ALLOC_SZ_32K

0x00001000

File system supports an allocation unit size of 32 kilobytes.

FSF_FS_ALLOC_SZ_64K

0x00002000

File system supports an allocation unit size of 64 kilobytes.

FSF_FS_ALLOC_SZ_128K

0x00004000

File system supports an allocation unit size of 128 kilobytes.

FSF_FS_ALLOC_SZ_256K

0x00008000

File system supports an allocation unit size of 256 kilobytes.

FSF_FS_ALLOC_SZ_OTHER

0x00010000

File system supports any allocation unit size that the user provides.

FSF_FS_FORMAT_SUPPORTED

0x00020000

File system supports formatting.

FSF_FS_VALID_BITS

0x0003FFFF

All other bits in the bitmap MUST be ignored. The server does a
bitwise AND operation with this value to clear upper-level bits that
may be present but are not supported.

42 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

fsCompressionFlags: Bitmap of allocation unit sizes that are valid for compression. The value of this
field is a logical 'OR' of zero or more of the applicable flags.

Value Meaning

FSF_FS_ALLOC_SZ_1K

0x00000080

File system supports an allocation unit size of 1 kilobyte.

FSF_FS_ALLOC_SZ_2K

0x00000100

File system supports an allocation unit size of 2 kilobytes.

FSF_FS_ALLOC_SZ_4K

0x00000200

File system supports an allocation unit size of 4 kilobytes.

FSF_FS_ALLOC_SZ_8K

0x00000400

File system supports an allocation unit size of 8 kilobytes.

FSF_FS_ALLOC_SZ_16K

0x00000800

File system supports an allocation unit size of 16 kilobytes.

FSF_FS_ALLOC_SZ_32K

0x00001000

File system supports an allocation unit size of 32 kilobytes.

FSF_FS_ALLOC_SZ_64K

0x00002000

File system supports an allocation unit size of 64 kilobytes.

FSF_FS_ALLOC_SZ_128K

0x00004000

File system supports an allocation unit size of 128 kilobytes.

FSF_FS_ALLOC_SZ_256K

0x00008000

File system supports an allocation unit size of 256 kilobytes.

FSF_FS_ALLOC_SZ_OTHER

0x00010000

File system supports any allocation unit size that the user provides.

cchLabelLimit: Maximum number of characters allowed in the file system's label.

cchLabel: Length of the iLabelChSet member in bytes.

iLabelChSet: Array of characters that are not allowed in the file system's label.

2.2.17 TASK_INFO

The TASK_INFO structure provides information about a task on the server.

 struct taskinfo {
 LdmObjectId id;
 LdmObjectId storageId;
 LONGLONG createTime;
 LdmObjectId clientID;
 unsigned long percentComplete;
 REQSTATUS status;
 DMPROGRESS_TYPE type;
 HRESULT error;
 unsigned long tflag;
 }
 typedef struct taskinfo TASK_INFO

id: Specifies the OID for the task.

43 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

storageId: Specifies the OID of the object associated with the task.

createTime: Unused. This field MUST be set to 0 by servers and ignored by clients.

clientID: Specifies the OID of the client that requested the task.

percentComplete: Percentage of the task that is complete. This field MUST be between 0 and 100,

inclusive.

status: Specifies the status of the request.

type: Specifies the kind of operation referred to by the percentComplete member. For more
information, see section 2.2.18.

error: The HRESULT error if the value of the status member is REQ_FAILED.

tflag: Unused. This field MUST be set to 0 by servers and ignored by clients.

A TASK_INFO structure is returned by all Disk Management methods that perform configuration

operations. The TASK_INFO structure provides information about the task that is being performed by
the server in response to the request. The id member of this structure identifies this task from all
other tasks being performed by the server. Notifications received by the client as a task progresses
can be associated with the original request by comparing the taskId member of the notification
structure with the id member of this structure.

2.2.18 DMPROGRESS_TYPE

The DMPROGRESS_TYPE enumeration is defined as follows:

 typedef enum _dmProgressType
 {
 PROGRESS_UNKNOWN,
 PROGRESS_FORMAT,
 PROGRESS_SYNCHING
 } DMPROGRESS_TYPE;

PROGRESS_UNKNOWN: Unknown type of operation is in progress.

PROGRESS_FORMAT: Format operation is in progress.

PROGRESS_SYNCHING: Synchronization operation is in progress.

2.2.19 COUNTED_STRING

The COUNTED_STRING structure provides information about a mounted folder.

 struct countedstring {
 LdmObjectId sourceId;
 LdmObjectId targetId;
 int cchString;
 [size_is(cchString)] wchar_t* sstring;
 }
 typedef struct countedstring COUNTED_STRING;

sourceId: Specifies the OID of the source volume. The source volume has a folder to which the
target volume will be mounted.

targetId: Specifies the OID of the target volume.

44 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

cchString: Specifies the length of the mount path, including the terminating null character.

sstring: Null-terminated Unicode string that contains the mount path of the source.

2.2.20 MERGE_OBJECT_INFO

The MERGE_OBJECT_INFO structure provides change information for a merge operation.

 struct mergeobjectinfo {
 DWORD type;
 DWORD flags;
 VOLUMELAYOUT layout;
 LONGLONG length;
 }
 typedef struct mergeobjectinfo MERGE_OBJECT_INFO;

type: This parameter MUST be set to 0x00000001.

flags: Bitmap of merge flags. The value of this field is generated by combining zero or more of the
applicable flags with a logical OR operation.

Value Meaning

DSKMERGE_DELETE

0x00000001

Volume will be deleted.

DSKMERGE_DELETE_REDUNDANCY

0x00000002

Redundant data in a fault-tolerant volume will be deleted.

DSKMERGE_STALE_DATA

0x00000004

Volume contents will be stale.

DSKMERGE_RELATED

0x00000008

Volume has subdisks on merged disks.

layout: Value from the VOLUMELAYOUT enumeration that indicates the volume's new layout.

length: Volume's new size in bytes.

2.3 IVolumeClient Interface

2.3.1 IVolumeClient Data Types

2.3.1.1 PARTITION_OS2_BOOT Constant

Constant/value Description

PARTITION_OS2_BOOT

0xa

This constant is a value for the mbr.partitionType member of the REGION_INFO_EX
structure. It is defined as an unsigned long.<7>

2.3.1.2 DISK_INFO

The DISK_INFO structure provides information about a disk.

45 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 struct diskinfo {
 LdmObjectId id;
 LONGLONG length;
 LONGLONG freeBytes;
 unsigned long bytesPerTrack;
 unsigned long bytesPerCylinder;
 unsigned long bytesPerSector;
 unsigned long regionCount;
 unsigned long dflags;
 unsigned long deviceType;
 unsigned long deviceState;
 unsigned long busType;
 unsigned long attributes;
 boolean isUpgradeable;
 int portNumber;
 int targetNumber;
 int lunNumber;
 LONGLONG lastKnownState;
 LdmObjectId taskId;
 int cchName;
 int cchVendor;
 int cchDgid;
 int cchAdapterName;
 int cchDgName;
 [size_is(cchName)] wchar_t* name;
 [size_is(cchVendor)] wchar_t* vendor;
 [size_is(cchDgid)] byte* dgid;
 [size_is(cchAdapterName)] wchar_t* adapterName;
 [size_is(cchDgName)] wchar_t* dgName;
 }
 typedef struct diskinfo DISK_INFO;

id: Specifies the OID of the disk.

length: Size of the disk, in bytes.

freeBytes: Number of unallocated bytes on the disk.

bytesPerTrack: Size of a disk track, in bytes.

bytesPerCylinder: Size of a disk cylinder, in bytes.

bytesPerSector: Size of a disk sector, in bytes.

regionCount: Total number of regions on the disk.

dflags: Disk type of the disk.

Value Meaning

DISK_AUDIO_CD

0x00000001

Disk is an audio CD.

DISK_NEC98

0x00000002

This value is obsolete and MUST NOT be used.

deviceType: Device type of the disk. This field contains one of the following values.

Value Meaning

DEVICETYPE_UNKNOWN

0x00000000

Device is of an unknown type.

46 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

DEVICETYPE_VM

0x00000001

Device is a dynamic disk.

DEVICETYPE_REMOVABLE

0x00000002

Device uses removable media.

DEVICETYPE_CDROM

0x00000003

Device is a CD-ROM.

DEVICETYPE_FDISK

0x00000004

Device is a basic disk.

DEVICETYPE_DVD

0x00000005

Device is a DVD.

deviceState: Device state of the disk. The value of this field is generated by combining zero or more

of the applicable flags with a logical OR operation. Valid combinations are device-type dependent.

Value Meaning

DEVICESTATE_UNKNOWN

0x00000000

Disk is in an unknown state.

DEVICESTATE_HEALTHY

0x00000001

Disk is fully functional.

DEVICESTATE_NO_MEDIA

0x00000002

Disk has no media.

DEVICESTATE_NOSIG

0x00000004

Disk has an invalid signature.

DEVICESTATE_BAD

0x00000008

Disk was deleted or experienced an install or hardware problem.

DEVICESTATE_NOT_READY

0x00000010

Disk is not ready yet.

DEVICESTATE_MISSING

0x00000020

Disk is no longer available.

DEVICESTATE_OFFLINE

0x00000040

Disk is offline.

DEVICESTATE_FAILING

0x00000080

Disk experienced a physical I/O error.

DEVICESTATE_IMPORT_FAILED

0x00000100

Disk belongs to a group whose import failed.

DEVICESTATE_UNCLAIMED

0x00000200

Disk belongs to a foreign disk group.

busType: Type of bus on which the disk resides. This field contains one of the following values.

47 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

BUSTYPE_UNKNOWN

0x00000000

Bus type is unknown.

BUSTYPE_IDE

0x00000001

Disk resides on an Integrated Drive Electronics (IDE) bus.

BUSTYPE_SCSI

0x00000002

Disk resides on a SCSI bus.

BUSTYPE_FIBRE

0x00000003

Disk resides on a fiber channel bus.

BUSTYPE_USB

0x00000004

Disk resides on a universal serial bus (USB).

BUSTYPE_SSA

0x00000005

Disk resides on a serial storage architecture (SSA) Bus.

BUSTYPE_1394

0x00000006

Disk resides on an Institute of Electronics and Electrical Engineers (IEEE)
1394 bus.

attributes: Bitmap of disk attributes. The value of this field is generated by combining zero or more
of the applicable flags defined in the following table with a logical OR operation.

Value Meaning

DEVICEATTR_NONE

0x00000000

Disk has no attributes.

DEVICEATTR_RDONLY

0x00000001

Disk is read-only.

DEVICEATTR_NTMS

0x00000002

This value is obsolete.

isUpgradeable: Boolean value that indicates whether the disk can be converted to a dynamic disk.
Will be true if the disk is basic, healthy, and has 512 byte sectors.

Value Meaning

FALSE

0

Disk cannot be converted to a dynamic disk.

TRUE

1

Disk can be encapsulated or converted to a dynamic disk.

portNumber: SCSI port number of the disk, if the bus reports this information.

targetNumber: SCSI target identifier of the disk, if the bus reports this information.

lunNumber: SCSI logical unit number (LUN) of the disk, if the bus reports this information.

lastKnownState: Modification sequence number of the disk.

taskId: The task identifier of the associated user request. If no request is made, the value is 0. For
more information about this task identifier, see section 2.2.17.

48 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

cchName: Length of the hard disk physical name, in Unicode characters, including the terminating
null character.

cchVendor: Length of the disk's vendor name, in Unicode characters, including the terminating null
character.

cchDgid: Length of the disk's group identification handle, in ASCII characters, including the
terminating null character.

cchAdapterName: Length of the disk's adapter name, in Unicode characters, including the
terminating null character.

cchDgName: Length of the disk's group name, in Unicode characters, including the terminating null
character.

name: Null-terminated physical device name of the hard disk, in the format '\device\Harddisk1'. This

is Unicode.

vendor: Null-terminated name of the hard disk vendor. This is the disk vendor's disk model name.

This is Unicode.

dgid: Specifies the object identifier of the disk's disk group. This is ASCII.

adapterName: Null-terminated name of the disk adapter as returned by the disk adapter firmware;
for example, 'Adaptec AHA-2940U2W - Ultra2 SCSI'. This is Unicode.

dgName: Null-terminated name for the disk's disk group, if the disk is dynamic. Only dynamic disks
have an associated disk group. Basic disks do not. This is Unicode.

2.3.1.3 REGION_INFO

The REGION_INFO structure provides information about a region.

 struct regioninfo {
 LdmObjectId id;
 LdmObjectId diskId;
 LdmObjectId volId;
 LdmObjectId fsId;
 LONGLONG start;
 LONGLONG length;
 REGIONTYPE regionType;
 unsigned long partitionType;

 boolean isActive;
 REGIONSTATUS status;
 hyper lastKnownState;
 LdmObjectId taskId;
 unsigned long rflags;
 unsigned long currentPartitionNumber;
 }
 typedef struct regioninfo REGION_INFO;

id: Specifies the region's OID.

diskId: Specifies the OID of the disk on which the region resides.

volId: Specifies the OID of the volume on the region, if any. The value of this field is nonzero if it is
valid.

fsId: Specifies the OID of the file system on the region, if any. The value of this field is nonzero if it

is valid.

49 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

start: Byte offset of the region on the disk.

length: Length of the region in bytes.

regionType: Value from the REGIONTYPE enumeration that indicates the region type.

partitionType: Type of the partition on the region. This field contains one of the following values.

Value Meaning

PARTITION_ENTRY_UNUSED

0x00

 An unused entry partition.

PARTITION_EXTENDED

0x05

 An extended partition.

PARTITION_FAT_12

0x01

 A FAT12 file system partition.

PARTITION_FAT_16

0x04

 A FAT16 file system partition.

PARTITION_FAT32

0x0B

 A FAT32 file system partition.

PARTITION_IFS

0x07

 An installable file system (IFS) partition.

PARTITION_LDM

0x42

 An LDM partition.

PARTITION_NTFT

0x80

 A Windows NT operating system fault-tolerant (FT) partition.

VALID_NTFT

0xC0

 A valid Windows NT FT partition.

 The high bit of a partition type code indicates that a partition is part of an
NT FT mirror or striped array.

isActive: Boolean value that indicates whether the region is an active partition.

Value Meaning

FALSE

0

Region is an inactive partition.

TRUE

1

Region is an active partition.

status: Value from the REGIONSTATUS enumeration that indicates the region's status.

lastKnownState: Modification sequence number of the region.

taskId: This LdmObjectId is the task identifier of the associated user request. If no request is made,
the value is 0. For more information about this task identifier, see section 2.2.17.

rflags: Bitmap of region flags. The value of this field is generated by combining zero or more of the
applicable flags with a logical OR operation.

50 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

REGION_FORMAT_IN_PROGRESS

0x00000001

Region is currently being formatted.

REGION_IS_SYSTEM_PARTITION

0x00000002

Region contains the system directory. The system directory has the
operating system installed to it. This is not necessarily the "active"
partition that contains the boot loader file.

REGION_HAS_PAGEFILE

0x00000004

Region contains the paging file.

REGION_HAD_BOOT_INI

0x00000040

Boot file was located in this region when the operating system was
last started. This is the "active" partition that contains the boot loader
file.

currentPartitionNumber: Number of the partition on the region, if any.

2.4 IVolumeClient2 Interface

2.4.1 IVolumeClient2 Data Types

No additional data types are defined by this interface.

2.5 IVolumeClient3 Interface

2.5.1 IVolumeClient3 Data Types

2.5.1.1 PARTITIONSTYLE

The PARTITIONSTYLE enumeration defines the style of a partition.

 typedef enum _PARTITIONSTYLE
 {
 PARTITIONSTYLE_UNKNOWN = 0,
 PARTITIONSTYLE_MBR = 1,
 PARTITIONSTYLE_GPT = 2
 } PARTITIONSTYLE;

PARTITIONSTYLE_UNKNOWN: Partition is of an unknown style.

PARTITIONSTYLE_MBR: Partition is of the MBR style.

PARTITIONSTYLE_GPT: Partition is of the GPT style.

2.5.1.2 DISK_INFO_EX

The DISK_INFO_EX structure provides information about a disk.

 struct diskinfoex {
 LdmObjectId id;
 LONGLONG length;
 LONGLONG freeBytes;
 unsigned long bytesPerTrack;
 unsigned long bytesPerCylinder;
 unsigned long bytesPerSector;

51 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 unsigned long regionCount;
 unsigned long dflags;
 unsigned long deviceType;
 unsigned long deviceState;
 unsigned long busType;
 unsigned long attributes;
 unsigned long maxPartitionCount;
 boolean isUpgradeable;
 boolean maySwitchStyle;
 PARTITIONSTYLE partitionStyle;
 [switch_is(partitionStyle)] union {
 [case(PARTITIONSTYLE_MBR)]
 struct {
 unsigned long signature;
 } mbr;
 [case(PARTITIONSTYLE_GPT)]
 struct {
 GUID diskId;
 } gpt;
 [default] ;
 };
 int portNumber;
 int targetNumber;
 int lunNumber;
 LONGLONG lastKnownState;
 LdmObjectId taskId;
 int cchName;
 int cchVendor;
 int cchDgid;
 int cchAdapterName;
 int cchDgName;
 int cchDevInstId;
 [size_is(cchName)] wchar_t* name;
 [size_is(cchVendor)] wchar_t* vendor;
 [size_is(cchDgid)] byte* dgid;
 [size_is(cchAdapterName)] wchar_t* adapterName;
 [size_is(cchDgName)] wchar_t* dgName;
 [size_is(cchDevInstId)] wchar_t* devInstId;
 }
 typedef struct diskinfoex DISK_INFO_EX;

id: Specifies the OID of the disk.

length: Size of the disk in bytes.

freeBytes: Number of unallocated bytes on the disk.

bytesPerTrack: Size of a disk track in bytes.

bytesPerCylinder: Size of a disk cylinder in bytes.

bytesPerSector: Size of a disk sector in bytes.

regionCount: Total number of regions on the disk.

dflags: Disk type of the disk. The value of this field is generated by combining zero or more of the
applicable flags with a logical OR operation.

Value Meaning

DISK_AUDIO_CD

0x00000001

Disk is an audio CD.

DISK_NEC98 This value is obsolete and MUST NOT be returned.

52 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

0x00000002

DISK_FORMATTABLE_DVD

0x00000004

Disk is a DVD that can be formatted.

DISK_MEMORY_STICK

0x00000008

Disk is a memory stick.

DISK_NTFS_NOT_SUPPORTED

0x000000010

Disk does not support being formatted as NTFS.

deviceType: Device type of the disk.

Value Meaning

DEVICETYPE_UNKNOWN

0x00000000

Device is of an unknown type.

DEVICETYPE_VM

0x00000001

Device is a dynamic disk.

DEVICETYPE_REMOVABLE

0x00000002

Device uses removable media.

DEVICETYPE_CDROM

0x00000003

Device is a CD-ROM.

DEVICETYPE_FDISK

0x00000004

Device is a basic disk.

DEVICETYPE_DVD

0x00000005

Device is a DVD.

deviceState: Device state of the disk.

Value Meaning

DEVICESTATE_UNKNOWN

0x00000000

Disk is in an unknown state.

DEVICESTATE_HEALTHY

0x00000001

Disk is fully functional.

DEVICESTATE_NO_MEDIA

0x00000002

Disk has no media.

DEVICESTATE_NOSIG

0x00000004

Disk has an invalid signature.

DEVICESTATE_BAD

0x00000008

Disk experienced a geometry failure.

DEVICESTATE_NOT_READY

0x00000010

Disk is not ready yet.

DEVICESTATE_MISSING Disk is no longer available.

53 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

0x00000020

DEVICESTATE_OFFLINE

0x00000040

Disk is offline.

DEVICESTATE_FAILING

0x00000080

Disk experienced a physical I/O error.

DEVICESTATE_IMPORT_FAILED

0x00000100

Disk belongs to a group whose import failed. See disk group
import.

DEVICESTATE_UNCLAIMED

0x00000200

Disk belongs to a foreign disk group.

busType: Type of bus on which the disk resides.

Value Meaning

BUSTYPE_UNKNOWN

0x00000000

Bus type is unknown.

BUSTYPE_IDE

0x00000001

Disk resides on an IDE bus.

BUSTYPE_SCSI

0x00000002

Disk resides on an SCSI bus.

BUSTYPE_FIBRE

0x00000003

Disk resides on a fiber channel bus.

BUSTYPE_USB

0x00000004

Disk resides on a USB.

BUSTYPE_SSA

0x00000005

Disk resides on an SSA bus.

BUSTYPE_1394

0x00000006

Disk resides on an IEEE 1394 bus.

attributes: Bitmap of disk attributes.

Value Meaning

DEVICEATTR_NONE

0x00000000

Disk has no attributes.

DEVICEATTR_RDONLY

0x00000001

Disk is read-only.

DEVICEATTR_NTMS

0x00000002

This value is obsolete.

maxPartitionCount: Maximum number of partitions on the disk.

isUpgradeable: Boolean value that indicates if the disk can be converted to a dynamic disk. True if
the disk is basic, healthy, and has 512-byte sectors.

54 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

FALSE

0

Disk cannot be encapsulated or converted to a dynamic disk.

TRUE

1

Disk can be encapsulated or converted to a dynamic disk.

maySwitchStyle: Boolean value that indicates if the disk's partition style can be changed from MBR
to GPT, or changed from GPT to MBR.

Value Meaning

FALSE

0

Partition style of the disk cannot be changed.

TRUE

1

Partition style of the disk can be changed between MBR and GPT.

partitionStyle: Value from the PARTITIONSTYLE enumeration that indicates the disk's partitioning
style.

(unnamed union): A union that contains either a signature or a diskId, depending on the value of
partitionStyle:

signature: Signature of the disk. The disk signature is not guaranteed to be unique across

machines.<8>

diskId: GUID, as specified in [MS-DTYP], section 2.3.4.1, of the disk.<9>

portNumber: SCSI port number of the disk.

targetNumber: SCSI target identifier of the disk.

lunNumber: SCSI LUN of the disk.

lastKnownState: Modification sequence number of the disk.

taskId: The task identifier of the associated user request. If no request is made, the value is 0.

cchName: Length of the hard disk's physical name, including the terminating null character.

cchVendor: Length of the disk's vendor name, including the terminating null character.

cchDgid: Length of the disk's group identification handle, including the terminating null character.

cchAdapterName: Length of the disk's adapter name, including the terminating null character.

cchDgName: Length of the disk's group name, including the terminating null character.

cchDevInstId: Length of the disk's device instance path, including the terminating null character.

name: Null-terminated physical name of the hard disk. For example: '\device\Harddisk1'.

vendor: Null-terminated name of the hard disk vendor. This is the disk vendor's disk model name.
For example: "SEAGATE ST34573N SCSI Disk Device".

dgid: Specifies the object identifier of the disk's disk group.

%5bMS-DTYP%5d.pdf

55 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

adapterName: Null-terminated name of the disk adapter. For example: "Adaptec AHA-2940U2W -
Ultra2 SCSI".

dgName: Null-terminated name for the disk's disk group, if the disk is dynamic.

devInstId: Null-terminated device instance path of the disk with the backslashes replaced by "#",

"\\?\" prepended to the beginning, and the Pnp disk class GUID, as specified in [MS-DTYP] section
2.3.4.3, appended to the end. For example: "\\?\ide#diskwdc_wd1600jd-
75hbb0_____________________08.02d08#5&15c8d966&0&0.0.0#{53f56307-b6bf-11d0-94f2-
00a0c91efb8b}".

2.5.1.3 REGION_INFO_EX

The REGION_INFO_EX structure provides information about a region.

 struct regioninfoex {
 LdmObjectId id;
 LdmObjectId diskId;
 LdmObjectId volId;
 LdmObjectId fsId;
 LONGLONG start;
 LONGLONG length;
 REGIONTYPE regionType;
 PARTITIONSTYLE partitionStyle;
 [switch_is(partitionStyle)] union {
 [case(PARTITIONSTYLE_MBR)]
 struct {
 unsigned long partitionType;
 boolean isActive;
 } mbr;
 [case(PARTITIONSTYLE_GPT)]
 struct {
 GUID partitionType;
 GUID partitionId;
 ULONGLONG attributes;
 } gpt;
 [default] ;
 };
 REGIONSTATUS status;
 hyper lastKnownState;
 LdmObjectId taskId;
 unsigned long rflags;
 unsigned long currentPartitionNumber;
 int cchName;
 [size_is(cchName)] wchar_t* name;
 }
 typedef struct regioninfoex REGION_INFO_EX;

id: Specifies the region's OID.

diskId: Specifies the OID of the disk on which the region resides.

volId: Specifies the OID of the volume on the region, if any.

fsId: Specifies the OID of the file system on the region, if any.

start: Byte offset of the region on the disk.

length: Length of the region in bytes.

regionType: Value from the REGIONTYPE enumeration that indicates the region type.

56 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

partitionStyle: Value from the PARTITIONSTYLE enumeration that indicates the region's partitioning
style.

(unnamed union): A union that contains either a partitionType of type ULONG and an isActive, or
a partitionType of type GUID, a partitionId, and an attributes, depending on the value of

partitionStyle:

partitionType: Windows NT 3.1 operating system, Windows NT 3.5 operating system, Windows NT
3.51 operating system, and Windows NT 4.0 partition style for the region. This field contains one
of the following values.

Value Meaning

PARTITION_ENTRY_UNUSED

0x00

 An unused entry partition.

PARTITION_EXTENDED

0x05

 An extended partition.

PARTITION_FAT_12

0x01

 A FAT12 file system partition.

PARTITION_FAT_16

0x04

 A FAT16 file system partition.

PARTITION_FAT32

0x0B

 A FAT32 file system partition.

PARTITION_IFS

0x07

 An IFS partition.

PARTITION_LDM

0x42

 An LDM partition.

PARTITION_NTFT

0x80

 A Windows NT fault-tolerant (FT) partition.

VALID_NTFT

0xC0

 A valid Windows NT FT partition.

 The high bit of a partition type code indicates that a partition is part of
an NTFT mirror or striped array.

isActive: Boolean value that indicates whether the partition is active. The partition MUST be marked
as active in order for the BIOS to start from the partition on x86 and x64 platforms.

Value Meaning

FALSE

0

Partition is not active.

TRUE

1

Partition is active.

partitionType: Windows NT partition style for the disk. This field contains one of the following
values.

Value Meaning

PARTITION_BASIC_DATA_GUID The data partition type that is created and recognized by

57 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

ebd0a0a2-b9e5-4433-87c0-68b6b72699c7 Windows.

PARTITION_ENTRY_UNUSED_GUID

00000000-0000-0000-0000-000000000000

 There is no partition.

PARTITION_SYSTEM_GUID

c12a7328-f81f-11d2-ba4b-00a0c93ec93b

 The partition is an Extensible Firmware Interface (EFI)
system partition.

PARTITION_MSFT_RESERVED_GUID

e3c9e316-0b5c-4db8-817d-f92df00215ae

 The partition is a Microsoft reserved partition.

PARTITION_LDM_METADATA_GUID

5808c8aa-7e8f-42e0-85d2-e1e90434cfb3

 The partition is an LDM metadata partition on a dynamic
disk.

PARTITION_LDM_DATA_GUID

af9b60a0-1431-4f62-bc68-3311714a69ad

 The partition is an LDM data partition on a dynamic disk.

PARTITION_MSFT_RECOVERY_GUID

de94bba4-06d1-4d40-a16a-bfd50179d6ac

 The partition is a Microsoft recovery partition.

partitionId: A GUID that uniquely identifies a partition on a disk.

attributes: Bitmap of partition flags.<10>

status: Value from the REGIONSTATUS enumeration that indicates the region's status.

lastKnownState: Modification sequence number of the region.

taskId: This LdmObjectId is the task identifier of the associated user request. If no request is made,
the value MUST be 0.

rflags: Bitmap of region flags. The value of this field is generated by combining zero or more of the

applicable flags with a logical OR operation.

Value Meaning

REGION_FORMAT_IN_PROGRESS

0x00000001

Region is currently being formatted.

REGION_IS_SYSTEM_PARTITION

0x00000002

Region contains the system directory. The system directory has the
operating system installed on it. This is not necessarily the "active"
partition that contains the boot loader file.

REGION_HAS_PAGEFILE

0x00000004

Region contains the paging file.

REGION_HAD_BOOT_INI

0x00000040

Boot.ini file was located in this region when the operating system was
last started. This is the "active" partition that contains the boot loader
file.

REGION_HIDDEN

0x00040000

This region is part of a volume that is not accessible through any

user-available path names.<11>

currentPartitionNumber: Number of the partition on the region, if any.

cchName: Length of the region's name, including the terminating null character.

name: Null-terminated name of the region.

58 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

2.6 IVolumeClient4 Interface

The IVolumeClient4 interface is implemented by servers to provide additional disk management
support on top of the IVolumeClient, IVolumeClient2, and IVolumeClient3 interfaces.

2.6.1 IVolumeClient4 Data Types

No additional data types are defined by this interface.

2.7 IDMRemoteServer Interface

The IDMRemoteServer interface is implemented by servers to support activation of servers on remote
machines.

This DCOM interface inherits the IUnknown interface. Method opnum field values start with 3; opnum
values 0–2 represent the IUnknown_QueryInterface, IUnknown_AddRef, and IUnknown_Release

methods, respectively, as specified in [MS-DCOM].

2.7.1 IDMRemoteServer Data Types

No additional data types are defined by this interface.

2.8 IDMNotify Interface

The IDMNotify interface is implemented by the client to receive change notifications from a remote
disk management server.

This DCOM interface inherits the IUnknown interface. Method opnum field values start with 3; opnum

values 0–2 represent the IUnknown_QueryInterface, IUnknown_AddRef, and IUnknown_Release
methods, respectively, as specified in [MS-DCOM].

2.8.1 IDMNotify Data Types

2.8.1.1 DMNOTIFY_INFO_TYPE

The DMNOTIFY_INFO_TYPE enumeration defines the type of object described by an ObjectsChanged
call.

 typedef enum _dmNotifyInfoType
 {

 DMNOTIFY_UNKNOWN_INFO,
 DMNOTIFY_DISK_INFO,
 DMNOTIFY_VOLUME_INFO,
 DMNOTIFY_REGION_INFO,
 DMNOTIFY_TASK_INFO,
 DMNOTIFY_DL_INFO,
 DMNOTIFY_FS_INFO,
 DMNOTIFY_SYSTEM_INFO
 } DMNOTIFY_INFO_TYPE;

DMNOTIFY_UNKNOWN_INFO: Object is of an unknown type.

DMNOTIFY_DISK_INFO: Object is a disk.

DMNOTIFY_VOLUME_INFO: Object is a volume.

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf

59 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

DMNOTIFY_REGION_INFO: Object is a region.

DMNOTIFY_TASK_INFO: Object is a task.

DMNOTIFY_DL_INFO: Object is a drive letter.

DMNOTIFY_FS_INFO: Object is a file system.

DMNOTIFY_SYSTEM_INFO: Object is the Disk Management system.

2.8.1.2 LDMACTION

The LDMACTION enumeration defines the type of action described by an ObjectsChanged call.

 typedef enum _LDMACTION
 {
 LDMACTION_UNKNOWN,
 LDMACTION_CREATED,
 LDMACTION_DELETED,
 LDMACTION_MODIFIED,
 LDMACTION_FAILED
 } LDMACTION;

LDMACTION_UNKNOWN: Object underwent an unknown type of change.

LDMACTION_CREATED: Object was created.

LDMACTION_DELETED: Object was deleted.

LDMACTION_MODIFIED: Object was modified.

LDMACTION_FAILED: Object failed.

60 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3 Protocol Details

The following sections specify details of the Disk Management Remote Protocol, including abstract data
models, interface method syntax, and message processing rules.

3.1 Client Role Details

3.1.1 Abstract Data Model

No abstract data model is required.

3.1.2 Timers

No timers are required.

3.1.3 Initialization

A client SHOULD choose to use one of the following sets of interfaces when communicating with a Disk
Management Remote Protocol server, grouped by the functionality that they offer.

 IDMNotify, IVolumeClient, IVolumeClient2

 IDMNotify, IVolumeClient3

 IDMNotify, IVolumeClient3, IVolumeClient4

The client negotiates for a given set of server functionality by specifying the UUID corresponding to
the wanted RPC interface when binding to the server, as specified in section 1.9.

The client MAY choose to use the IDMRemoteServer interface to create an instance of a Disk
Management Remote Protocol remote server.

A client initializes by creating an RPC binding handle to the IVolumeClient3 interface. If the
IVolumeClient3 interface is not advertised, or fails, the client MAY fall back to creating an RPC binding

handle to the IVolumeClient interface. A description of how to get a client-side RPC binding handle for
an IVolumeClient or IVolumeClient3 interface is as specified in [MS-DCOM] section 3.2.4.

When the client has obtained the IVolumeClient or IVolumeClient3 interface, the client MUST invoke
the Initialize method on the interface.

When the client has called IVolumeClient::Initialize or IVolumeClient3::Initialize, the client MAY begin
making calls against the server.

If the client has obtained binding to the IVolumeClient3 interface, it can also create an RPC binding

handle to the IVolumeClient4 interface to call its methods. If the client has obtained binding to the
IVolumeClient interface, it can create an RPC binding handle to the IVolumeClient2 interface to call its
methods.

3.1.4 Message Processing and Sequencing Rules

The Message Processing Events and Sequencing Rules interface defines the following methods, which
are listed in opnum order.

 Method Description

IVolumeClient::EnumDisks Opnum: 3

%5bMS-DCOM%5d.pdf

61 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 Method Description

IVolumeClient::EnumDiskRegions Opnum: 4

IVolumeClient::CreatePartition Opnum: 5

IVolumeClient::CreatePartitionAssignAndFormat Opnum: 6

IVolumeClient::CreatePartitionAssignAndFormatEx Opnum: 7

IVolumeClient::DeletePartition Opnum: 8

IVolumeClient::WriteSignature Opnum: 9

IVolumeClient::MarkActivePartition Opnum: 10

IVolumeClient::Eject Opnum: 11

IVolumeClient::FTEnumVolumes Opnum: 13

IVolumeClient::FTEnumLogicalDiskMembers Opnum: 14

IVolumeClient::FTDeleteVolume Opnum: 15

IVolumeClient::FTBreakMirror Opnum: 16

IVolumeClient::FTResyncMirror Opnum: 17

IVolumeClient::FTRegenerateParityStripe Opnum: 18

IVolumeClient::FTReplaceMirrorPartition Opnum: 19

IVolumeClient::FTReplaceParityStripePartition Opnum: 20

IVolumeClient::EnumDriveLetters Opnum: 21

IVolumeClient::AssignDriveLetter Opnum: 22

IVolumeClient::FreeDriveLetter Opnum: 23

IVolumeClient::EnumLocalFileSystems Opnum: 24

IVolumeClient::GetInstalledFileSystems Opnum: 25

IVolumeClient::Format Opnum: 26

IVolumeClient::EnumVolumes Opnum: 28

IVolumeClient::EnumVolumeMembers Opnum: 29

IVolumeClient::CreateVolume Opnum: 30

IVolumeClient::CreateVolumeAssignAndFormat Opnum: 31

IVolumeClient::CreateVolumeAssignAndFormatEx Opnum: 32

IVolumeClient::GetVolumeMountName Opnum: 33

IVolumeClient::GrowVolume Opnum: 34

IVolumeClient::DeleteVolume Opnum: 35

IVolumeClient::AddMirror Opnum: 36

IVolumeClient::RemoveMirror Opnum: 37

62 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 Method Description

IVolumeClient::SplitMirror Opnum: 38

IVolumeClient::InitializeDisk Opnum: 39

IVolumeClient::UninitializeDisk Opnum: 40

IVolumeClient::ReConnectDisk Opnum: 41

IVolumeClient::ImportDiskGroup Opnum: 43

IVolumeClient::DiskMergeQuery Opnum: 44

IVolumeClient::DiskMerge Opnum: 45

IVolumeClient::ReAttachDisk Opnum: 47

IVolumeClient::ReplaceRaid5Column Opnum: 51

IVolumeClient::RestartVolume Opnum: 52

IVolumeClient::GetEncapsulateDiskInfo Opnum: 53

IVolumeClient::EncapsulateDisk Opnum: 54

IVolumeClient::QueryChangePartitionNumbers Opnum: 55

IVolumeClient::DeletePartitionNumberInfoFromRegistry Opnum: 56

IVolumeClient::SetDontShow Opnum: 57

IVolumeClient::GetDontShow Opnum: 58

IVolumeClient::EnumTasks Opnum: 67

IVolumeClient::GetTaskDetail Opnum: 68

IVolumeClient::AbortTask Opnum: 69

IVolumeClient::HrGetErrorData Opnum: 70

IVolumeClient::Initialize Opnum: 71

IVolumeClient::Uninitialize Opnum: 72

IVolumeClient::Refresh Opnum: 73

IVolumeClient::RescanDisks Opnum: 74

IVolumeClient::RefreshFileSys Opnum: 75

IVolumeClient::SecureSystemPartition Opnum: 76

IVolumeClient::ShutDownSystem Opnum: 77

IVolumeClient::EnumAccessPath Opnum: 78

IVolumeClient::EnumAccessPathForVolume Opnum: 79

IVolumeClient::AddAccessPath Opnum: 80

IVolumeClient::DeleteAccessPath Opnum: 81

IVolumeClient2::GetMaxAdjustedFreeSpace Opnum: 3

63 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 Method Description

IVolumeClient3::EnumDisksEx Opnum: 3

IVolumeClient3::EnumDiskRegionsEx Opnum: 4

IVolumeClient3::CreatePartition Opnum: 5

IVolumeClient3::CreatePartitionAssignAndFormat Opnum: 6

IVolumeClient3::CreatePartitionAssignAndFormatEx Opnum: 7

IVolumeClient3::DeletePartition Opnum: 8

IVolumeClient3::InitializeDiskStyle Opnum: 9

IVolumeClient3::MarkActivePartition Opnum: 10

IVolumeClient3::Eject Opnum: 11

IVolumeClient3::FTEnumVolumes Opnum: 13

IVolumeClient3::FTEnumLogicalDiskMembers Opnum: 14

IVolumeClient3::FTDeleteVolume Opnum: 15

IVolumeClient3::FTBreakMirror Opnum: 16

IVolumeClient3::FTResyncMirror Opnum: 17

IVolumeClient3::FTRegenerateParityStripe Opnum: 18

IVolumeClient3::FTReplaceMirrorPartition Opnum: 19

IVolumeClient3::FTReplaceParityStripePartition Opnum: 20

IVolumeClient3::EnumDriveLetters Opnum: 21

IVolumeClient3::AssignDriveLetter Opnum: 22

IVolumeClient3::FreeDriveLetter Opnum: 23

IVolumeClient3::EnumLocalFileSystems Opnum: 24

IVolumeClient3::GetInstalledFileSystems Opnum: 25

IVolumeClient3::Format Opnum: 26

IVolumeClient3::EnumVolumes Opnum: 27

IVolumeClient3::EnumVolumeMembers Opnum:28

IVolumeClient3::CreateVolume Opnum: 29

IVolumeClient3::CreateVolumeAssignAndFormat Opnum: 30

IVolumeClient3::CreateVolumeAssignAndFormatEx Opnum: 31

IVolumeClient3::GetVolumeMountName Opnum: 32

IVolumeClient3::GrowVolume Opnum: 33

IVolumeClient3::DeleteVolume Opnum: 34

IVolumeClient3::CreatePartitionsForVolume Opnum: 35

64 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 Method Description

IVolumeClient3::DeletePartitionsForVolume Opnum: 36

IVolumeClient3::GetMaxAdjustedFreeSpace Opnum: 37

IVolumeClient3::AddMirror Opnum: 38

IVolumeClient3::RemoveMirror Opnum: 39

IVolumeClient3::SplitMirror Opnum: 40

IVolumeClient3::InitializeDiskEx Opnum: 41

IVolumeClient3::UninitializeDisk Opnum: 42

IVolumeClient3::ReConnectDisk Opnum: 43

IVolumeClient3::ImportDiskGroup Opnum: 44

IVolumeClient3::DiskMergeQuery Opnum: 45

IVolumeClient3::DiskMerge Opnum: 46

IVolumeClient3::ReAttachDisk Opnum: 47

IVolumeClient3::ReplaceRaid5Column Opnum: 48

IVolumeClient3::RestartVolume Opnum: 49

IVolumeClient3::GetEncapsulateDiskInfoEx Opnum: 50

IVolumeClient3::EncapsulateDiskEx Opnum: 51

IVolumeClient3::QueryChangePartitionNumbers Opnum: 52

IVolumeClient3::DeletePartitionNumberInfoFromRegistry Opnum: 53

IVolumeClient3::SetDontShow Opnum: 54

IVolumeClient3::GetDontShow Opnum: 55

IVolumeClient3::EnumTasks Opnum: 64

IVolumeClient3::GetTaskDetail Opnum: 65

IVolumeClient3::AbortTask Opnum: 66

IVolumeClient3::HrGetErrorData Opnum: 67

IVolumeClient3::Initialize Opnum: 68

IVolumeClient::Uninitialize Opnum: 69

IVolumeClient3::Refresh Opnum: 70

IVolumeClient3::RescanDisks Opnum: 71

IVolumeClient3::RefreshFileSys Opnum: 72

IVolumeClient3::SecureSystemPartition Opnum: 73

IVolumeClient3::ShutDownSystem Opnum: 74

IVolumeClient3::EnumAccessPath Opnum: 75

65 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 Method Description

IVolumeClient3::EnumAccessPathForVolume Opnum: 76

IVolumeClient3::AddAccessPath Opnum: 77

IVolumeClient3::DeleteAccessPath Opnum: 78

IVolumeClient4::RefreshEx Opnum: 3

IVolumeClient4::GetVolumeDeviceName Opnum: 4

IDMRemoteServer::CreateRemoteObject Opnum: 3

IDMNotify::ObjectsChanged Opnum: 3

The server MUST implement all of the preceding methods of the IVolumeClient and IVolumeClient2
interfaces.

The server SHOULD implement all of the preceding methods of the IVolumeClient3 and
IVolumeClient4 interfaces.

The server MAY implement all methods of the IDMRemoteServer interface.

The client SHOULD implement all methods of the IDMNotify interface.

Note Gaps in the opnum numbering sequence represent opnums that MUST NOT be used over the
wire. <12>

For all the preceding return results:

If the return code is not an error, the client SHOULD assume that all output parameters are present

and valid.

Exceptions Thrown: This protocol does not throw any exceptions beyond those thrown by the

underlying RPC protocol, as specified in [MS-RPCE], or the operating system.

3.1.4.1 Higher-Layer Triggered Events

All method invocations are triggered by higher-layer events, such as commands issued within
administrative and diagnostic applications. Details of method invocations are in the following sections.

3.1.4.1.1 Common Details

3.1.4.1.1.1 Methods with Prerequisites

Some method calls require no prerequisite calls against the server and simply query for information or

pass in parameters constructed by the client. This type of method is not discussed further in the client
section of this specification. For more information, see section 3.2.4.4.

Other calls are required to be made in sequence and are listed here. The prerequisite call is to an
object enumeration method that retrieves information about a specific set of storage objects, such as
volumes or disks. Information returned by the object enumeration method is then used to supply
input parameters for subsequent calls. Calls with such prerequisites are grouped by storage object
type in the following sections.

3.1.4.1.1.2 Parameters to IVolumeClient and IVolumeClient3

In the client processing outlined in the following sections, when calling methods in IVolumeClient3
rather than IVolumeClient, references to the DISK_INFO structure MUST be replaced with

%5bMS-RPCE%5d.pdf

66 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

DISK_INFO_EX; and references to the REGION_INFO structure MUST be replaced with
REGION_INFO_EX. Similarly, a call to EnumDisks MUST be replaced with a call to EnumDisksEx; and a

call to EnumDiskRegions MUST be replaced with a call to EnumDiskRegionsEx.

In the call order descriptions, if any prerequisite calls fail, the call order cannot proceed.

3.1.4.1.1.3 Relationships Between Storage Objects

Regions and Volumes: Given a REGION_INFO structure that describes a region, a client can map the
region to its volume by obtaining a list of VOLUME_INFO structures (as returned from a call to
EnumVolumes) and matching the REGION_INFO::volId member to the VOLUME_INFO::id
member of an entry in the list of volumes.

Regions and Disks: Given a REGION_INFO that describes a region, a client can map the region

to its disk by obtaining a list of DISK_INFO structures (as returned from a call to EnumDisks)
and matching the REGION_INFO::diskId member to the DISK_INFO::id member of an
entry in the list of disks.

Regions and File systems: Given a REGION_INFO that describes a region, a client can map the
region to its file system by obtaining a list of FILE_SYSTEM_INFO structures (as returned from a
call to EnumLocalFileSystems) and matching the REGION_INFO::fsId member to the

FILE_SYSTEM_INFO::id member of an entry in the list of file systems.

Volumes and File systems: Given a VOLUME_INFO structure that describes a volume, a client can
map the volume to a file system by obtaining a list of FILE_SYSTEM_INFO structures (as returned
from a call to EnumLocalFileSystems) and matching the VOLUME_INFO::fsId member to the
FILE_SYSTEM_INFO::id member of an entry in the list of file systems.

Volumes and Tasks: Given a TASK_INFO structure returned by a call to perform an operation on a
volume (such as Format or Grow Volume), the TASK_INFO::storageId member will map to the

VOLUME_INFO::id member of the volume. Conversely, the VOLUME_INFO::taskId member
maps to the TASK_INFO::id member.

Volumes and Drive Letters: Given a VOLUME_INFO structure that describes a volume, a client can

map the volume to its drive letter by obtaining a list of DRIVE_LETTER_INFO structures (as
returned from a call to EnumDriveLetters) and matching the VOLUME_INFO::id member to the
DRIVE_LETTER_INFO::storageId member of an entry in the list of file systems.

Volume Members and Regions: Given a list of LdmObjectIds that identify volume members (as

returned from a call to EnumVolumeMembers), a client can map the list of LdmObjectIds to the
REGION_INFO structures of volume members as follows:

 Obtain a list of DISK_INFO structures (as returned from a call to EnumDisks) for all disks.

 For each entry in the list of DISK_INFO structures, obtain a list of the REGION_INFO
structures (as returned from a call to EnumDiskRegions) for all regions on the disk.

 For each entry in the list of REGION_INFO structures, match the REGION_INFO::id member

structure to an entry in the list of LdmObjectId.

3.1.4.1.2 Drive Letters

AssignDriveLetter: Before invoking AssignDriveLetter, the client MUST invoke FTEnumVolumes,
EnumDiskRegions, or EnumVolumes to retrieve the volume ID and the volume's last known state.
The client MUST pass these returned values as the storageId and storageLastKnownState input
parameters to the AssignDriveLetter method. The EnumDiskRegions method returns these values

as the REGION_INFO::volId and REGION_INFO::lastKnownState structure members. For
volumes on basic disks, the region's lastKnownState is the same as the volume's

67 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

lastKnownState. FTEnumVolumes and EnumVolumes return these parameters as the
VOLUME_INFO::id and VOLUME_INFO::lastKnownState structure members.

Before invoking AssignDriveLetter, the client MUST also invoke EnumDriveLetters. The
EnumDriveLetters method returns the drive letter's last known state as

DRIVE_LETTER_INFO::lastKnownState. The client MUST pass this returned value as the
letterLastKnownState input parameter to the AssignDriveLetter method. The EnumDriveLetters
method also returns the status of the drive letter (in use or free) as the
DRIVE_LETTER_INFO::inUse structure member; and this value can be used to determine
whether the drive letter is already in use by some other volume.

FreeDriveLetter: The client MUST use the preceding call sequence description for AssignDriveLetter,
except that in the final step the client MUST use FreeDriveLetter, rather than AssignDriveLetter, to

free the drive letter.

3.1.4.1.3 File Systems

AddAccessPath: Before invoking AddAccessPath, the client MUST invoke FTEnumVolumes,

EnumDiskRegions, or EnumVolumes to retrieve the volume ID. The client MUST pass this returned
value as the targetId input parameter to the AddAccessPath. The EnumDiskRegions method

returns this value as the REGION_INFO::volId structure member. The FTEnumVolumes and
EnumVolumes methods return this parameter as the VOLUME_INFO::id structure members.

DeleteAccessPath: The client MUST use the preceding call sequence description above for
AddAccessPath, except that in the final step the client MUST use DeleteAccessPath rather than
AddAccessPath.

Format: Before invoking Format, the client MUST invoke FTEnumVolumes, EnumDiskRegions, or
EnumVolumes to retrieve the volume ID and the volume's last known state. The client MUST pass

these returned values as the storageId and storageLastKnownState input parameters to the
Format method. The EnumDiskRegions method returns these values as the
REGION_INFO::volId and REGION_INFO::lastKnownState structure members. For volumes
on basic disks, the region's lastKnownState is the same as the volume's lastKnownState. The
FTEnumVolumes and EnumVolumes methods return these parameters as the VOLUME_INFO::id

and VOLUME_INFO::lastKnownState structure members.

Before invoking Format, the client MUST also invoke GetInstalledFileSystems to retrieve the

available file system types. The requested file system type, as specified by the
FILE_SYSTEM_INFO::fsType input parameter for the call to Format, MUST be one of the types
returned by GetInstalledFileSystems. The GetInstalledFileSystems method returns this information
as the FILE_SYSTEM_INFO::fsType structure member.

When calling Format, the client MUST initialize the FILE_SYSTEM_INFO::fsType,
FILE_SYSTEM_INFO::label, FILE_SYSTEM_INFO::fsflags, and

FILE_SYSTEM_INFO::allocationUnitSize fields in the FILE_SYSTEM_INFO structure. The other
fields are not used for this call.

GetVolumeMountName: Before invoking GetVolumeMountName, the client MUST invoke
FTEnumVolumes, EnumDiskRegions, or EnumVolumes to retrieve the volume ID. The client MUST
pass this returned value as the volumeId input parameter to the GetVolumeMountName method.

The EnumDiskRegions method returns this value as the REGION_INFO::volId structure
member. The FTEnumVolumes and EnumVolumes methods return this parameter as the

VOLUME_INFO::id structure members.

EnumAccessPathForVolume: The client MUST use the preceding call sequence description for
GetVolumeMountName, except that in the final step it MUST use EnumAccessPathForVolume
rather than GetVolumeMountName.

3.1.4.1.4 Disks

68 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

DiskMerge: For call sequencing related to the dgid and cchDgid input parameters, see
ImportDiskGroup. For call sequencing related to the numDisks and diskList input parameters, see

ImportDiskGroup.

Before invoking DiskMerge, the client MUST invoke DiskMergeQuery to retrieve the disk group's

last known state, an array of disk IDs, and a count of the disks in the array. The client MUST pass
these returned values as the merge_config_tid, merge_dm_rids, and numRids input parameters to
the DiskMerge method. The DiskMergeQuery method returns these values as the
merge_config_tid, merge_dm_rids, and numRids output parameters.

DiskMergeQuery: Before invoking DiskMergeQuery, the client MUST invoke EnumDisks to retrieve
the disk group's ID and the disk group's count of characters in the disk group ID. The client MUST
pass these returned values as the dgid and cchDgid input parameters to the DiskMergeQuery

method. The EnumDisks method returns these values as the DISK_INFO::dgid and
DISK_INFO::cchDgid structure members.

Prior to invoking DiskMergeQuery, the client MUST invoke EnumDisks to retrieve the number of
disks and a list of the disk IDs. The client MUST pass these returned values as the numDisks and

diskList input parameters to the DiskMergeQuery method. The EnumDisks method returns an
array of DISK_INFO structures; and the client MUST construct the list of disk IDs and the count of

disks in the list, using this array of DISK_INFO structures.

Eject: Before invoking Eject, the client MUST invoke EnumDisks to retrieve the disk ID and the disk's
last known state. The client MUST pass these returned values as the diskId and
diskLastKnownState input parameters to the Eject method. The EnumDisks method returns these
values as the DISK_INFO::id and DISK_INFO::lastKnownState structure members.

EncapsulateDisk: Before invoking EncapsulateDisk, the client MUST invoke GetEncapsulateDiskInfo
to retrieve the lists of disks that will be converted to dynamic disks, as well as the lists of volumes

and regions on these disks. The GetEncapsulateDiskInfo method also returns the count of items in
each of these lists. The client MUST pass these returned values as the affectedDiskList,
affectedVolumeList, affectedRegionList, affectedDiskCount, affectedVolumeCount, and
affectedRegionCount in the input parameters to the EncapsulateDisk method. These values are
returned by GetEncapsulateDiskInfo as the affectedDiskList, affectedVolumeList,

affectedRegionList, affectedDiskCount, affectedVolumeCount, and affectedRegionCount output
parameters. If the affectedVolumeCount returned by GetEncapsulateDiskInfo is zero, the client

MUST allocate at least 1 byte for affectedVolumeList before passing it to EncapsulateDisk method.
If the affectedRegionCount returned by GetEncapsulateDiskInfo is zero, the client MUST allocate at
least 1 byte for affectedRegionList before passing it to the EncapsulateDisk method.

EncapsulateDiskEx: Before invoking EncapsulateDiskEx, the client MUST invoke
GetEncapsulateDiskInfoEx to retrieve the lists of disks that will be converted to dynamic, as well
as the lists of volumes and regions on these disks. The GetEncapsulateDiskInfoEx method also

returns the count of items in each of these lists. The client MUST pass these returned values as
the affectedDiskList, affectedVolumeList, affectedRegionList, affectedDiskCount,
affectedVolumeCount, and affectedRegionCount in the input parameters to the EncapsulateDiskEx
method. These values are returned by GetEncapsulateDiskInfoEx as the affectedDiskList,
affectedVolumeList, affectedRegionList, affectedDiskCount, affectedVolumeCount, and
affectedRegionCount output parameters. If the affectedVolumeCount returned by
GetEncapsulateDiskInfoEx is zero, the client MUST allocate at least 1 byte for affectedVolumeList

before passing it to EncapsulateDiskEx method. If the affectedRegionCount returned by
GetEncapsulateDiskInfoEx is zero, the client MUST allocate at least 1 byte for affectedRegionList
before passing it to the EncapsulateDiskEx method.

EnumDiskRegions: Before invoking EnumDiskRegions, the client MUST invoke EnumDisks to
retrieve the disk ID. The client MUST pass this returned value as the diskId input parameter to the
EnumDiskRegions method. The EnumDisks method returns this value as the DISK_INFO::id
structure member.

69 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

EnumDiskRegionsEx: Before invoking EnumDiskRegionsEx, the client MUST invoke EnumDisksEx to
retrieve the disk ID. The client MUST pass this returned value as the diskId input parameter to the

EnumDiskRegionsEx method. The EnumDisksEx method returns this value as the
DISK_INFO_EX::id structure member.

GetEncapsulateDiskInfo: Before invoking GetEncapsulateDiskInfo, the client MUST invoke
EnumDisks to retrieve the disk ID and the disk's last known state. The client MUST pass these
returned values as the DISK_SPEC structure's ID and lastKnownState members in the input
parameter to the GetEncapsulateDiskInfo method. These values are returned by EnumDisks as
DISK_INFO::id and DISK_INFO::lastKnownState.

GetEncapsulateDiskInfoEx: Before invoking GetEncapsulateDiskInfoEx, the client MUST invoke
EnumDisksEx to retrieve the disk ID and the disk's last known state. The client MUST pass these

returned values as the DISK_SPEC structure's ID and DISK_INFO::lastKnownState members in
the input parameter to the GetEncapsulateDiskInfoEx method. These values are returned by
EnumDisksEx as DISK_INFO_EX::id and DISK_INFO_EX::lastKnownState.

GetMaxAdjustedFreeSpace: The client MUST use the preceding call sequence description for

EnumDiskRegions, except that in the final step it MUST use GetMaxAdjustedFreeSpace rather than
EnumDiskRegions.

ImportDiskGroup: Before invoking ImportDiskGroup, the client MUST invoke EnumDisks to retrieve
the disk group's ID and the disk group's count of characters in the disk group ID. The client MUST
pass these returned values as the dgid and cchDgid input parameters to the ImportDiskGroup
method. The EnumDisks method returns these values as the DISK_INFO::dgid and
DISK_INFO::cchDgid structure members.

InitializeDisk: Before invoking InitializeDisk, the client MUST invoke EnumDisks to retrieve the disk
ID and the disk's last known state. The client MUST pass these returned values as the diskId and

diskLastKnownState input parameters to the InitializeDisk method. The EnumDisks method
returns these values as the DISK_INFO::id and DISK_INFO::lastKnownState structure
members.

InitializeDiskEx: The client MUST use the following call sequence description for InitializeDiskStyle,

except that in the final step the client MUST use InitializeDiskEx rather than InitializeDiskStyle.

InitializeDiskStyle: Prior to invoking InitializeDiskStyle, the client MUST invoke EnumDisksEx to
retrieve the disk ID, the disk's last known state, and the partition style. The client MUST pass

these returned values as the diskId, style, and diskLastKnownState input parameters to the
InitializeDiskStyle method. The EnumDisksEx method returns these values as the
DISK_INFO_EX::id, DISK_INFO_EX::lastKnownState, and DISK_INFO_EX::partitionStyle
structure members.

QueryChangePartitionNumbers: This call SHOULD be made after calling the EncapsulateDisk
method to determine whether the conversion of basic disks to dynamic disks has caused a boot

partition number to change.<13>

ReAttachDisk: The client MUST use the preceding call sequence description for WriteSignature,
except that in the final step it MUST use ReAttachDisk rather than WriteSignature.

ReConnectDisk: Before invoking ReConnectDisk, the client MUST invoke EnumDisks to retrieve the
disk ID. The client MUST pass this returned value as the diskId input parameter to the
ReConnectDisk method. EnumDisks returns this value as the DISK_INFO::id structure member.

UninitializeDisk: Before invoking UninitializeDisk, the client MUST invoke EnumDisks to retrieve the

disk id and the disk's last known state. The client MUST pass these returned values as the diskId
and diskLastKnownState input parameters to the UninitializeDisk method. The EnumDisks method
returns these values as the DISK_INFO::id and DISK_INFO::lastKnownState structure
members.

70 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

WriteSignature: Before invoking WriteSignature, the client MUST invoke EnumDisks to retrieve the
disk ID and the disk's last known state. The client MUST pass these returned values as the diskId

and diskLastKnownState input parameters to the WriteSignature method. The EnumDisks method
returns these values as the DISK_INFO::id and DISK_INFO::lastKnownState structure

members.

3.1.4.1.5 Partitions

CreatePartition: Before invoking CreatePartition, the client MUST invoke EnumDiskRegions to
retrieve the region ID, the disk ID, and the region's last known state. The client MUST pass these
returned values as the REGION_SPEC structure's regionId, diskId, and lastKnownState
members in the input parameter to the CreatePartition method. These values are returned by

EnumDiskRegions as REGION_INFO::id, REGION_INFO::diskId, and
REGION_INFO::lastKnownState.

CreatePartitionAssignAndFormat: For call sequencing related to the REGION_SPEC input
parameter, see section 3.2.4.4.1.3. For call sequencing related to the letterLastKnownState input
parameter, see section 3.2.4.4.1.19. For call sequencing related to the

FILE_SYSTEM_INFO::fsType input parameter, see section 3.2.4.4.1.23.

CreatePartitionAssignAndFormatEx: For call sequencing related to the REGION_SPEC input
parameter, see CreatePartition. For call sequencing related to the letterLastKnownState input
parameter, see section 3.2.4.4.1.19. For call sequencing related to the
FILE_SYSTEM_INFO::fsType input parameter, see section 3.2.4.4.1.23.

When calling CreatePartitionAssignAndFormatEx, the client MUST initialize the
FILE_SYSTEM_INFO::fsType, FILE_SYSTEM_INFO::label, FILE_SYSTEM_INFO::fsflags,
and FILE_SYSTEM_INFO::allocationUnitSize fields in the FILE_SYSTEM_INFO structure. The

other fields are not used for this call.

DeletePartition: The client MUST use the preceding call sequence description for CreatePartition,
except that in the final step the client MUST use DeletePartition rather than CreatePartition.

EnumVolumeMembers: The client MUST use the preceding call sequence description for

GetVolumeMountName, except that in the final step the client MUST use EnumVolumeMembers
rather than GetVolumeMountName.

MarkActivePartition: Before invoking MarkActivePartition, the client MUST invoke EnumDiskRegions

to retrieve the region id and the region's last known state. The client MUST pass these returned
values as the regionId and regionLastKnownState input parameters to the MarkActivePartition
method. The EnumDiskRegions method returns these values as the REGION_INFO::id and
REGION_INFO::lastKnownState structure members.

3.1.4.1.6 Volumes

AddMirror: The client MUST use the preceding call sequence description for DeleteVolume to retrieve
the volume ID and the volume's last known state input parameters, except that in the final step it
MUST NOT call DeleteVolume. The client MUST use the preceding call sequence description for
CreateVolume to retrieve the DISK_SPEC input parameter, except that in the final step the client

MUST NOT call CreateVolume. The client MUST pass these input parameters to the AddMirror
method.

The client MUST set the diskNumber input parameter to 0.

Checking whether a disk has enough free space to host the new copy of the volume data can be
done by examining the free regions returned by the EnumDiskRegions method.

71 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

CreatePartitionsForVolume: The client MUST use the preceding call sequence description for
DeleteVolume, except that in the final step it MUST use CreatePartitionsForVolume rather than

DeleteVolume.

CreateVolume: Before invoking CreateVolume, the client MUST invoke EnumDisks to retrieve the

disk ID and the disk's last known state. The client MUST pass these returned values as the
DISK_SPEC structure's ID and lastKnownState members in the input parameter to the
CreateVolume method. These values are returned by EnumDisks as DISK_INFO::id and
DISK_INFO::lastKnownState.

The client MUST call EnumDiskRegions method with the disk ID as input parameter and examine
the free regions returned to determine whether the disk had enough free space to host the new
volume. For the VOLUME_SPEC input parameter: The lastKnownState, type, and partitionType

members are ignored. These parameters MUST be set to 0.

CreateVolumeAssignAndFormat: The client MUST use the preceding call sequence description for
CreateVolume to retrieve the DISK_SPEC input parameter, except that in the final step the client
MUST NOT call CreateVolume. If the client does not want to assign a drive letter, the letter

parameter MUST be a 2-byte null character or unicode SPACE character. If the clients wants to
assign a drive letter, the client MUST use the preceding call sequence for AssignDriveLetter to

retrieve the letterLastKnownState input parameter, except that in the final step it MUST NOT call
AssignDriveLetter. The client MUST use the preceding call sequence for Format to retrieve the
FILE_SYSTEM_INFO::fsType input parameter, except that in the final step it MUST NOT call
Format. The client MUST pass these input parameters to the CreateVolumeAssignAndFormat
method.

CreateVolumeAssignAndFormatEx: The client MUST use the preceding call sequence description
for CreateVolume to retrieve the DISK_SPEC input parameter, except that in the final step it MUST

NOT call CreateVolume. If the client does not want to assign a drive letter, the letter parameter
MUST be a 2-byte null character or Unicode SPACE character. If the client wants to assign a drive
letter, the client MUST use the preceding call sequence for AssignDriveLetter to retrieve the
letterLastKnownState input parameter, except that in the final step the client MUST NOT call
AssignDriveLetter. The client MUST use the preceding call sequence for Format to retrieve the
FILE_SYSTEM_INFO:::fsType input parameter, except that in the final step the client MUST NOT

call Format. The client MUST pass these input parameters to the CreateVolumeAssignAndFormatEx

method.

DeletePartitionsForVolume: The client MUST use the preceding call sequence description for
DeleteVolume, except that in the final step the client MUST use DeletePartitionsForVolume rather
than DeleteVolume.

DeleteVolume: Before invoking DeleteVolume, the client MUST invoke EnumVolumes to retrieve the
volume ID and the volume's last known state. The client MUST pass these returned values as the

volumeId and volumeLastKnownState input parameters to the DeleteVolume method. The
EnumVolumes method returns these parameters as the VOLUME_INFO::id and
VOLUME_INFO::lastKnownState structure members.

FTBreakMirror: The client MUST use the preceding call sequence description for FTDeleteVolume,
except that in the final step the client MUST use FTBreakMirror rather than FTDeleteVolume.

FTDeleteVolume: Before invoking FTDeleteVolume, the client MUST invoke FTEnumVolumes to
retrieve the volume ID and the volume's last known state. The client MUST pass these returned

values as the volumeId and volumeLastKnownState input parameters to the FTDeleteVolume
method. The FTEnumVolumes method returns these parameters as the VOLUME_INFO::id and
VOLUME_INFO::lastKnownState structure members.

FTEnumLogicalDiskMembers: Before invoking FTEnumLogicalDiskMembers, the client MUST invoke
FTEnumVolumes or EnumDiskRegions to retrieve the volume ID. The client MUST pass this
returned value as the volumeId input parameter to the FTEnumLogicalDiskMembers method. The

72 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

EnumDiskRegions method returns this value as the REGION_INFO::volId structure member;
FTEnumVolumes returns this parameter as the VOLUME_INFO::id structure member.

FTRegenerateParityStripe: The client MUST use the preceding call sequence description for
FTDeleteVolume, except that in the final step the client MUST use FTRegenerateParityStripe rather

than FTDeleteVolume.

FTReplaceMirrorPartition: Before invoking FTReplaceMirrorPartition, the client MUST invoke
FTEnumVolumes to retrieve the volume ID and the volume's last known state. The client MUST
pass these returned values as the volumeId and volumeLastKnownState input parameters to the
FTReplaceMirrorPartition method. FTEnumVolumes returns these parameters as the
VOLUME_INFO::id and VOLUME_INFO::lastKnownState structure members.

Before invoking FTReplaceMirrorPartition, the client MUST also invoke EnumDiskRegions to

retrieve the region ID and the region's last known state. The client MUST pass these returned
values as the newRegionId and newRegionLastKnownState input parameters to the
FTReplaceMirrorPartition method. The EnumDiskRegions method returns these values as the
REGION_INFO::volId and REGION_INFO::lastKnownState structure members.

Note The client MUST pass 0 for the oldMemberId and oldMemberLastKnownState parameters
because they are not used or implemented.

FTReplaceParityStripePartition: The client MUST use the preceding call sequence description for
FTReplaceMirrorPartition, except that in the final step the client MUST use
FTReplaceParityStripePartition rather than FTReplaceMirrorPartition.

FTResyncMirror: The client MUST use the preceding call sequence description for FTDeleteVolume,
except that in the final step the client MUST use FTResyncMirror rather than FTDeleteVolume.

GetVolumeDeviceName: The client MUST use the preceding call sequence description for
GetVolumeMountName, except that in the final step it MUST use GetVolumeDeviceName rather

than GetVolumeMountName.

GrowVolume: The client MUST use the preceding call sequence description for GetVolumeMountName
to retrieve the volume ID input parameter, except that in the final step it MUST NOT call

GetVolumeMountName. The client MUST use the preceding call sequence description for
CreateVolume to retrieve the DISK_SPEC input parameter, except that in the final step it MUST
NOT call CreateVolume.

Before invoking GrowVolume, the client MUST invoke EnumVolumes to retrieve the volume layout

and the volume's last known state. The client MUST pass these returned values as the
VOLUME_SPEC structure's layout and lastKnownState members in the input parameter to the
GrowVolume method. These values are returned by EnumVolumes as VOLUME_INFO::layout
and VOLUME _INFO::lastKnownState.

RemoveMirror: The client MUST use the preceding call sequence description for DeleteVolume to
retrieve the volume ID and volume's last known state input parameters, except that in the final

step the client MUST NOT call DeleteVolume. The client MUST use the preceding call sequence
description for WriteSignature to retrieve the diskId and diskLastKnownState input parameters,
except that in the final step the client MUST NOT call WriteSignature. The client MUST pass these

input parameters to the RemoveMirror method.

ReplaceRaid5Column: The client MUST use the preceding call sequence description for
DeleteVolume, except that in the final step it MUST use ReplaceRaid5Column, instead of
DeleteVolume.

Before invoking ReplaceRaid5Column, the client MUST invoke EnumDisks to retrieve the
replacement disk id and the disk's last known state. The client MUST pass these returned values
as the newDiskId and diskLastKnownState input parameters to the ReplaceRaid5Column method.

73 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

The EnumDisks method returns these values as the DISK_INFO::id and
DISK_INFO::lastKnownState structure members.

RestartVolume: The RestartVolume MUST use the preceding call sequence description for
DeleteVolume, except that in the final step it MUST use RestartVolume rather than DeleteVolume.

SplitMirror: For call sequencing related to the volumeId and volumeLastKnownState input
parameters, see DeleteVolume. For call sequencing related to the diskId and diskLastKnownState
input parameters, see WriteSignature. For call sequencing related to the letterLastKnownState
input parameter, see AssignDriveLetter. The client MUST use the preceding call sequence
description for DeleteVolume to retrieve the volume ID and the volume's last known state input
parameters, except that in the final step the client MUST NOT call DeleteVolume. The client MUST
use the preceding call sequence description for WriteSignature to retrieve the diskId and

diskLastKnownState input parameters, except that in the final step the client MUST NOT call
WriteSignature. If the client does not want to assign a drive letter, the letter parameter MUST be a
2-byte null character or unicode SPACE character. If the clients wants to assign a drive letter, the
client MUST use the call sequence description for AssignDriveLetter to retrieve the
letterLastKnownState input parameter, except that in the final step the client MUST NOT call

AssignDriveLetter. To force the split, the client MUST set the TASK_INFO::error parameter to

LDM_E_VOLUME_IN_USE. The client MUST pass these input parameters to the SplitMirror method.

3.1.4.1.7 Tasks

GetTaskDetail: Before invoking GetTaskDetail, the client MUST invoke EnumTasks to retrieve the
task ID. The client MUST pass this returned value as the ID input parameters to the GetTaskDetail
method. The EnumTasks method returns this value as the TASK_INFO::id structure member.

AbortTask: For call sequencing related to the ID input parameter, see GetTaskDetail. The client MUST

use the preceding call sequence description for GetTaskDetail, except that in the final step it MUST
use AbortTask rather than GetTaskDetail.

3.1.4.1.8 Loss of Connection

In the event of loss of connection to the server, the client MUST NOT use any server state that was

returned in previous method invocations when the connection is reestablished, including LdmObjectId,
LastKnownState returned by the server, and MUST clean up all local resources that were allocated to

the connection.

3.1.4.2 Processing Server Replies to Method Calls

Upon receiving a reply from the server in response to a method call, the client MUST validate the

return code. Return codes from all method calls are HRESULTs ([MS-ERREF] section 2.1). If the
HRESULT indicates success, the client MAY assume that all output parameters are present and valid.

Certain calls are required to be performed in sequence. For example, where method A is a prerequisite
call for method B, the client MUST pass output parameters from method A as input parameters to
method B, as specified in section 3.1.4. The client MUST retain the output parameters from method A
until method B has been called.

3.1.4.3 Processing Notifications Sent from the Server to the Client

The client MAY choose to implement the IDMNotify interface to receive notification from the server of
changes to the storage objects on the server. Notifications are sent to the client for storage object
creation, deletion, and modification. The client MAY choose to take some other action based on these
notifications. The client MAY also choose to ignore notifications from the server.<14>

%5bMS-ERREF%5d.pdf

74 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Notifications related to storage object modification indicate a state change, such as the change of a
region's status from REGIONSTATUS_OK to REGIONSTATUS_FAILED, or a change in a volume's length

as the result of a call to GrowVolume.

Notifications containing a TASK_INFO structure indicate the status of a method call. Method calls that

operate on storage objects return a TASK_INFO structure. This structure contains a status field. The
status field of a TASK_INFO structure contains one of the following values: REQ_UNKNOWN,
REQ_STARTED, REQ_IN_PROGRESS, REQ_COMPLETED, REQ_ABORTED, or REQ_FAILED. When a
method call returns a success code as its HRESULT return code, the client MAY check the TASK_INFO
structure's status field to determine the state of the server processing associated with the method call.
Only if the TASK_INFO::status field is REQ_STARTED or REQ_IN_PROGRESS will the client receive
any further notifications regarding this operation.

If the value of the TASK_INFO::status field is REQ_UNKNOWN, the client MUST assume that the
server has encountered a catastrophic error. In this case, the client MUST assume that no further task
notifications will be received.

If the value of the TASK_INFO::status field is REQ_COMPLETED, REQ_ABORTED, or REQ_FAILED,

the client will not receive any further task notifications. If the value of the status field is
REQ_COMPLETED, this indicates that the server processing finished without errors. If the value of the

status field is REQ_ABORTED, this indicates that the server processing was interrupted and did not
finish successfully. If the value of the status field is REQ_FAILED, this indicates that the server
processing failed and did not finish successfully. In this case, the client inspects the
TASK_INFO::error field.

If the value of the TASK_INFO::status field is REQ_STARTED or REQ_IN_PROGRESS, the client
MUST assume that it will receive a TASK_INFO notification with the status field set to
REQ_COMPLETED, REQ_ ABORTED, or REQ_ FAILED when the server has finished its processing for

the operation. The client MUST NOT assume the server's processing is finished until a task notification
with one of these status values has been received.

If the network connection fails, it MUST be reestablished and all server states MUST be refreshed by
the client. In this case, in progress task information is lost to the client.

The client MAY receive one or more task notifications with the TASK_INFO::status value set to
REQ_IN_PROGRESS. Notifications with this task status value are sent to indicate server progress while
processing an operation request. If the client receives a notification with this TASK_INFO::status

value, the client MAY inspect the TASK_INFO::percentComplete field to determine task progress.

The client maps task notifications received to a given method call based on the TASK_INFO::id field.
This field is unique per method call.

For a full description of the IDMNotify interface and the ObjectsChanged method, see section
3.1.4.4.1.

3.1.4.4 Protocol Message Details

3.1.4.4.1 IDMNotify Methods

Methods in RPC Opnum Order

Method Description

IDMNotify::ObjectsChanged Opnum: 3

3.1.4.4.1.1 IDMNotify::ObjectsChanged (Opnum 3)

75 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

The ObjectsChanged method notifies the client of object changes.

 HRESULT ObjectsChanged(
 [in] DWORD ByteCount,
 [in, size_is(ByteCount)] byte* ByteStream
);

ByteCount: Length of ByteStream in bytes.

ByteStream: Array of bytes that compose any number of variable-length change notification

structures. Memory for the array is allocated and freed by the caller (that is, the server).

Any variable-length change notification structure in the array starts with a fixed header that
contains the fields shown in the following table.

Field name Data type Description

size ULONG The total size of the structure in bytes.

type DMNOTIFY_INFO_TYPE The type of object that changed.

action LDMACTION The type of change that the object underwent.

Depending on the value of type, the fixed header of the notification structure is followed by one of
the following items.

Type Structure following the fixed header

DMNOTIFY_VOLUME_INFO VOLUME_INFO

DMNOTIFY_TASK_INFO TASK_INFO

DMNOTIFY_DL_INFO DRIVE_LETTER_INFO

DMNOTIFY_FS_INFO FILE_SYSTEM_INFO

DMNOTIFY_SYSTEM_INFO ULONG

DMNOTIFY_DISK_INFO If client called Initialize on IVolumeClient interface, then DISK_INFO.

If client called Initialize on IVolumeClient3 interface, then DISK_INFO_EX.

DMNOTIFY_REGION_INFO If client called Initialize on IVolumeClient interface, then REGION_INFO.

If client called Initialize on IVolumeClient3 interface, then REGION_INFO_EX.

Note The structures that are transmitted within ByteStream are not marshaled in RPC Network
Data Representation (NDR) format. They are C structures, and the memory layout and field types
are those found on the Windows/Intel 32-bit and 64-bit architectures, and, Windows/AMD 64-bit
architecture. These structures are not packed, and padding bytes can exist between successive

structure fields to ensure that the field of a given data type begins at a byte offset that is an

integer multiple of the type's size with respect to the beginning of the structure. The structures
transmitted within ByteStream also appear in other interfaces as RPC-marshaled structures. In
these interfaces, the structure fields will be marshaled in NDR format.

The byte stream contains a sequence of one or more notification frames. Each frame is made up of
a sequence of the following fields: size, type, action, and a structure of the type specified in the
type field. Some of the structures contain character pointer fields. These fields contain pointers to

variable-length character strings, and the following technique is used at the server to load the
byte stream:

76 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

1. The structure is copied one byte at a time from memory into ByteStream beginning at first byte
after action field. If the structure contains character pointer fields, those fields are omitted.

2. The character strings of the character pointer fields are copied into ByteStream following the
structure in the order in which they appear in the structure. All strings are null-terminated. There

is no padding between the end of the structure and the first string, or between successive strings.

At the client, the following technique is used to parse the byte stream back into the appropriate
structures:

1. The notification size, type, and action are parsed from the byte stream.

2. The notification object structure, up through the first string field, is copied out of the byte stream
and into the appropriate structure. For the IVolumeClient interface, the disk and region structures
are DISK_INFO and REGION_INFO; for the IVolumeClient3 interface, the structures are

DISK_INFO_EX and REGION_INFO_EX. The client's ObjectsChanged implementation MUST switch
based on which version of the IVolumeClient interface is being used. The client MUST also
determine the type of processor architecture for both the server and client. If the architectures are

the same, the padding in the client-defined structures will match that used in the server's byte
stream. If the architectures are not the same, the client MUST use the proper method for parsing
the byte stream, taking into account padding that MAY have been added for alignment purposes

on either the client or on the server. For more information, see section 8.

Allocations are done on the client to hold the character strings of the character pointer fields.
These fields are copied from ByteStream to the client-allocated buffers, and appropriate structure
fields are set to point to the client-allocated buffers. All strings are null-terminated.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1).

3.1.5 Timer Events

No timers are used by the Disk Management Remote Protocol.

3.1.6 Other Local Events

No other local events require special processing on the client.

3.2 Server Role Details

3.2.1 Abstract Data Model

The following topics contain information that MUST be maintained by the server for use in responding
to client queries and commands.

3.2.1.1 List of Storage Objects Present in the System

The list contains the following storage objects:

 Disks

 Hard disks

 Removable disk units

 CD-ROM and DVD units

 Disk regions

%5bMS-ERREF%5d.pdf

77 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 Partitions

 FT volume members

 Dynamic volume members

 Free regions

 FT volumes

 Dynamic volumes

 Drive letters

 File system

For each storage object, the list MUST contain the following data elements.

id: Unique identifier (UID) of type LdmObjectId associated with the storage object for the entire

duration of the server session (defined as one instantiation of the server process from initialization

to shutdown). The identifier is assigned by the server and used by the client to refer to the object
in the methods of the protocol. The server MUST NOT change the identifier and MUST NOT assign
it to another object until the server shuts down. The identifier need not be persisted across server
sessions.<15>

type: Type of the storage object (for example, disk, disk region, FT volume, dynamic volume, drive
letter, and file system).

LastKnownState: Modification sequence number associated with the storage object. The last known
state is used by the protocol to make sure a client has the most up-to-date information about the
object before trying to modify the object through one of the protocol commands. The server MUST
increment the last known state value whenever the object is modified due to a client command or
a higher-level event. The server MUST also compare the last known state passed by the client with
its own last known state before allowing the client to modify the object. If they do not match, the
server MUST fail the operation.

taskId: Identifier of type LdmObjectId of the current task (if any) being executed by the server on
the object. This field is not used and can be set to 0.

The list is populated at server initialization time and destroyed at shutdown. Objects are added to,
or removed from, the list as a result of client requests or events triggered by the operating
system.

3.2.1.2 List of Clients Connected to the Server

For each client connected to the server, the list MUST contain the following data elements:

id: Unique identifier (UID) of type LdmObjectId associated with the client for the entire duration of
the client connection. The identifier is assigned by the server and used by the client to identify
tasks requested by it when enumerating tasks or receiving notifications related to the progress or

failure of tasks. The server MUST NOT change the identifier and MUST NOT assign it to another

client until the server shuts down. The identifier does not need to be persisted across separate
server sessions.

notifyInterface: Pointer to the IDMNotify interface implemented by the client to receive notifications
from the server. Clients interested in receiving notifications MUST pass such a pointer in the call to
IVolumeClient::Initialize or IVolumeClient3::Initialize. The server MUST retain it for use whenever
a notification is to be sent to the client.

78 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

The list is empty at server initialization time. Elements are added to, or removed from, the list as
a result of clients calling the Initialize and Uninitialize methods of either IVolumeClient or

IVolumeClient3.

3.2.1.3 List of Tasks Currently Executed on the Server

For each task that is pending on the server, the list MUST contain the following data elements:

taskId: Unique identifier (UID) of type LdmObjectId associated with the task for the entire lifetime of
the task. The identifier is assigned by the server and used by the client to map notifications

received from the server via IDMNotify to specific commands requested by it to follow the
progress of those commands. The server MUST NOT change the identifier and MUST NOT assign it
to another task until the server shuts down. The identifier does not need to be persisted across
separate server sessions.

info: Structure of type TASK_INFO containing details about the task, such as creation time, the
identifier of the client that requested the task, the storage object affected by the task, status, and
progress percentage.

The list is empty at server initialization time. Tasks are added to the list as a result of clients
requesting configuration operations via the protocol commands. Tasks are removed from the list
as they are completed.

3.2.2 Timers

No timers are required.

3.2.3 Initialization

At startup, the server initializes the lists of storage objects, clients, and tasks, as specified in the

following topics.

3.2.3.1 List of Storage Objects Present in the System

The server initializes an empty list, and then populates it with all disks, disk regions, FT volumes,
dynamic volumes, drive letters, and file systems found in the system. The server MUST assign each

object a unique identifier of type LdmObjectId. The LastKnownState field of each object MUST be
initialized with a value at the server's discretion.

3.2.3.2 List of Clients Connected to the Server

The server initializes an empty list.

3.2.3.3 List of Tasks Currently Executed on the Server

The server initializes an empty list.

3.2.4 Message Processing and Sequencing Rules

For all of the following methods, before processing the method, the server SHOULD obtain the identity
and authorization information about the client from the underlying DCOM or RPC runtime. All server
methods SHOULD impose an authorization policy decision based on the client's identity and
authorization information before performing the function.

The method SHOULD fail to complete if there is insufficient authorization.<16>

79 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

All of the parameters to IVolumeClient, IVolumeClient2, IVolumeClient3, IVolumeClient4, and
IDMRemoteServer methods that are not specified as being used MUST be ignored by the server.

3.2.4.1 Higher-Layer Triggered Events

No higher-layer events are processed.

3.2.4.2 Rules for Modifying the List of Storage Objects

A number of protocol message processing steps result in the server modifying its list of storage
objects. Possible actions are as follows:

 Add storage object—Done when a new storage object is created as a result of processing the
protocol message.

 Delete storage object—Done when a storage object is deleted as a result of processing the
protocol message.

 Modify storage object—Done when a storage object is modified as a result of processing the
protocol message.

The following subsections list the changes made by the server to the list of storage objects for each of
the protocol messages:

When making a change to the list of storage objects, the server MUST follow these rules:

 When adding a storage object, the server MUST generate a unique identifier of type LdmObjectId
for the object, and it MUST initialize the LastKnownState field of the object with a value at the

server's discretion.

 When updating a storage object, the server MUST increment the LastKnownState field of the
object.

Any change made to a storage object in the list MUST be accompanied by sending appropriate

notification messages to all clients that have registered with the server for receiving notifications via
the message IVolumeClient::Initialize or IVolumeClient3::Initialize.

The following rules MUST be followed with respect to sending notifications.

 When adding a storage object, the server MUST send an IDMNotify::ObjectsChanged notification
with action LDMACTION_CREATED for the given storage object.

 When deleting a storage object, the server MUST send an IDMNotify::ObjectsChanged notification
with action LDMACTION_DELETE for the given storage object.

 When modifying a storage object, the server MUST send an IDMNotify::ObjectsChanged
notification with action LDMACTION_MODIFIED for the given storage object.

Unless otherwise specified in the following sections, changing the list of storage objects, the
manipulation of the LastKnownState fields, and sending the notifications to clients MUST all be done

by the server before returning the response to the client.

3.2.4.3 Rules for Handling Synchronous and Asynchronous Tasks

A number of protocol messages require the server to execute configuration tasks on the storage
objects (for example, delete partition or create volume).

80 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Tasks can be either synchronous or asynchronous. For a synchronous task, the server MUST wait for
the task to complete with either success or failure before returning a response to the client. For an

asynchronous task, the server SHOULD return a response to the client before the task completes.

This is the list of methods that MAY be implemented asynchronously:<17>

 IVolumeClient::CreatePartitionAssignAndFormat

 IVolumeClient3::CreatePartitionAssignAndFormat

 IVolumeClient::CreatePartitionAssignAndFormatEx

 IVolumeClient3::CreatePartitionAssignAndFormatEx

 IVolumeClient::Format

 IVolumeClient3::Format

 IVolumeClient::CreateVolumeAssignAndFormat

 IVolumeClient3::CreateVolumeAssignAndFormat

 IVolumeClient::CreateVolumeAssignAndFormatEx

 IVolumeClient3::CreateVolumeAssignAndFormatEx

 IVolumeClient::ImportDiskGroup

 IVolumeClient3::ImportDiskGroup

 IVolumeClient::UninitializeDisk

 IVolumeClient3::UninitializeDisk

 IVolumeClient::ReConnectDisk

 IVolumeClient3::ReConnectDisk

All the other methods MUST be implemented synchronously.

For the asynchronous methods, the server MUST send periodic notifications to the client after
returning the initial response to inform the client about the status and progress of the task. The time
interval for these periodic notifications SHOULD be based on two objectives:

 Not flooding the client with unnecessary notifications.

 Providing pertinent information about the ongoing status of the task.<18>

The protocol messages that require the server to execute configuration tasks receive an output
parameter named tinfo of type TASK_INFO.

To process synchronous tasks, the server MUST follow these rules:

1. The server MUST fill the tinfo output parameter:

 Generate a unique identifier for the task and place it in tinfo.id.

 Set tinfo.status to the appropriate value of the enumeration REQSTATUS, denoting the success
or failure of the task.

 Set all other fields to 0, unless otherwise specified.

2. The server MUST return the tinfo structure in the response to the client.

81 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3. The server MUST NOT add a new task object to the list of tasks currently running on the server.

For all synchronous method calls that have a TASK_INFO structure as an output parameter, the server

MUST perform the following extra step (the only methods that do not have to carry out this step are
IVolumeClient::CreatePartition, IVolumeClient3::CreatePartition, IVolumeClient::DeletePartition,

IVolumeClient3::DeletePartition, IVolumeClient::WriteSignature, IVolumeClient3::InitializeDiskStyle,
IVolumeClient::MarkActivePartition, IVolumeClient3::MarkActivePartition, IVolumeClient::Eject
IVolumeClient3::Eject, IVolumeClient::FTDeleteVolume, IVolumeClient3::FTDeleteVolume,
IVolumeClient::FTBreakMirror, IVolumeClient3::FTBreakMirror, IVolumeClient::FTResyncMirror,
IVolumeClient3::FTResyncMirror, IVolumeClient::FTRegenerateParityStripe,
IVolumeClient3::FTRegenerateParityStripe, IVolumeClient::FTReplaceMirrorPartition,
IVolumeClient3::FTReplaceMirrorPartition, IVolumeClient::FTReplaceParityStripePartition,

IVolumeClient3::FTReplaceParityStripePartition, IVolumeClient::AssignDriveLetter,
IVolumeClient3::AssignDriveLetter, IVolumeClient::FreeDriveLetter, IVolumeClient3::FreeDriveLetter,
IVolumeClient::Format, IVolumeClient3::Format, IVolumeClient::GetEncapsulateDiskInfo,
IVolumeClient3::GetEncapsulateDiskInfoEx, IVolumeClient::EnumTasks, IVolumeClient3::EnumTasks,
IVolumeClient3::GetTaskDetail, and IVolumeClient::GetTaskDetail):

 Send a task completion notification to the client using the IDMNotify::ObjectsChanged message.

The notification MUST be of type DMNOTIFY_TASK_INFO and action LDMACTION_MODIFIED. The
status field of the TASK_INFO structure MUST be set to the appropriate value of the enumeration
REQSTATUS denoting the success or failure of the task.

Note Subsections found under Protocol Message Details (section 3.2.4.4) explicitly call out any
synchronous tasks that require sending task completion notifications.

To process asynchronous tasks, the server MUST follow these rules:

1. The server MUST fill the tinfo output parameter:

 Generate a unique identifier (UID) for the task and place it in tinfo.id.

 Set tinfo.status to REQ_STARTED.

 Set the rest of the fields to 0, unless otherwise specified.

2. The server MUST return the tinfo structure in the initial response to the client.

3. The server MUST add a new task object to the list of tasks currently running on the server.

4. Periodically, the server MUST send progress notifications to the clients by using the
IDMNotify::ObjectsChanged message. The notifications MUST be of type DMNOTIFY_TASK_INFO

and action LDMACTION_MODIFIED. The percentComplete field of the TASK_INFO structure
MUST be set to accurately provide information on the progress of the operation.

5. When the task finishes with either success or failure, the server MUST send a final notification to
the clients by using the IDMNotify::ObjectsChanged message. The notification MUST be of type
DMNOTIFY_TASK_INFO and action LDMACTION_MODIFIED. The status field of the TASK_INFO
structure MUST be set to the appropriate value of the enumeration REQSTATUS denoting the

success or failure of the task.

6. When the task is finished, the task object MUST be deleted from the list of tasks that are currently
running on the server.

3.2.4.4 Protocol Message Details

3.2.4.4.1 IVolumeClient Methods

82 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

This DCOM interface inherits the IUnknown interface. Method opnum field values start with 3; opnum
values 0–2 represent the IUnknown_QueryInterface, IUnknown_AddRef, and IUnknown_Release

methods, respectively, as specified in [MS-DCOM].

Methods with opnum field values 12, 27, 42, 46, 49, 50, and 59–66 are not invoked across the

network, and therefore are not included in this document.

Unless otherwise specified in the following table, all methods MUST return 0 or a nonerror HRESULT
(as specified in [MS-ERREF] section 2.1) on success, or an implementation-specific nonzero error code
on failure (for more information, see section 2.2.1 for HRESULT values predefined by the Disk
Management Remote Protocol).

Methods in RPC Opnum Order

Method Description

IVolumeClient::EnumDisks Opnum: 3

IVolumeClient::EnumDiskRegions Opnum: 4

IVolumeClient::CreatePartition Opnum: 5

IVolumeClient::CreatePartitionAssignAndFormat Opnum: 6

IVolumeClient::CreatePartitionAssignAndFormatEx Opnum: 7

IVolumeClient::DeletePartition Opnum: 8

IVolumeClient::WriteSignature Opnum: 9

IVolumeClient::MarkActivePartition Opnum: 10

IVolumeClient::Eject Opnum: 11

Reserved_Opnum12 Opnum: 12

IVolumeClient::FTEnumVolumes Opnum: 13

IVolumeClient::FTEnumLogicalDiskMembers Opnum: 14

IVolumeClient::FTDeleteVolume Opnum: 15

IVolumeClient::FTBreakMirror Opnum: 16

IVolumeClient::FTResyncMirror Opnum: 17

IVolumeClient::FTRegenerateParityStripe Opnum: 18

IVolumeClient::FTReplaceMirrorPartition Opnum: 19

IVolumeClient::FTReplaceParityStripePartition Opnum: 20

IVolumeClient::EnumDriveLetters Opnum: 21

IVolumeClient::AssignDriveLetter Opnum: 22

IVolumeClient::FreeDriveLetter Opnum: 23

IVolumeClient::EnumLocalFileSystems Opnum: 24

IVolumeClient::GetInstalledFileSystems Opnum: 25

IVolumeClient::Format Opnum: 26

%5bMS-DCOM%5d.pdf
%5bMS-ERREF%5d.pdf

83 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Method Description

Reserved27 Opnum: 27

IVolumeClient::EnumVolumes Opnum: 28

IVolumeClient::EnumVolumeMembers Opnum: 29

IVolumeClient::CreateVolume Opnum: 30

IVolumeClient::CreateVolumeAssignAndFormat Opnum: 31

IVolumeClient::CreateVolumeAssignAndFormatEx Opnum: 32

IVolumeClient::GetVolumeMountName Opnum: 33

IVolumeClient::GrowVolume Opnum: 34

IVolumeClient::DeleteVolume Opnum: 35

IVolumeClient::AddMirror Opnum: 36

IVolumeClient::RemoveMirror Opnum: 37

IVolumeClient::SplitMirror Opnum: 38

IVolumeClient::InitializeDisk Opnum: 39

IVolumeClient::UninitializeDisk Opnum: 40

IVolumeClient::ReConnectDisk Opnum: 41

Reserved_Opnum42 Opnum: 42

IVolumeClient::ImportDiskGroup Opnum: 43

IVolumeClient::DiskMergeQuery Opnum: 44

IVolumeClient::DiskMerge Opnum: 45

Reserved_Opnum46 Opnum: 46

IVolumeClient::ReAttachDisk Opnum: 47

Reserved_Opnum48 Opnum: 48

Reserved_Opnum49 Opnum: 49

Reserved_Opnum50 Opnum: 50

IVolumeClient::ReplaceRaid5Column Opnum: 51

IVolumeClient::RestartVolume Opnum: 52

IVolumeClient::GetEncapsulateDiskInfo Opnum: 53

IVolumeClient::EncapsulateDisk Opnum: 54

IVolumeClient::QueryChangePartitionNumbers Opnum: 55

IVolumeClient::DeletePartitionNumberInfoFromRegistry Opnum: 56

IVolumeClient::SetDontShow Opnum: 57

IVolumeClient::GetDontShow Opnum: 58

84 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Method Description

Reserved0 Opnum: 59

Reserved1 Opnum: 60

Reserved2 Opnum: 61

Reserved3 Opnum: 62

Reserved4 Opnum: 63

Reserved5 Opnum: 64

Reserved6 Opnum: 65

Reserved7 Opnum: 66

IVolumeClient::EnumTasks Opnum: 67

IVolumeClient::GetTaskDetail Opnum: 68

IVolumeClient::AbortTask Opnum: 69

IVolumeClient::HrGetErrorData Opnum: 70

IVolumeClient::Initialize Opnum: 71

IVolumeClient::Uninitialize Opnum: 72

IVolumeClient::Refresh Opnum: 73

IVolumeClient::RescanDisks Opnum: 74

IVolumeClient::RefreshFileSys Opnum: 75

IVolumeClient::SecureSystemPartition Opnum: 76

IVolumeClient::ShutDownSystem Opnum: 77

IVolumeClient::EnumAccessPath Opnum: 78

IVolumeClient::EnumAccessPathForVolume Opnum: 79

IVolumeClient::AddAccessPath Opnum: 80

IVolumeClient::DeleteAccessPath Opnum: 81

3.2.4.4.1.1 IVolumeClient::EnumDisks (Opnum 3)

The EnumDisks method enumerates the server's mass storage devices.

 HRESULT EnumDisks(
 [out] unsigned long* diskCount,
 [out, size_is(,*diskCount)] DISK_INFO** diskList
);

diskCount: Number of pointers in diskList.

diskList: Pointer to an array of DISK_INFO structures.

85 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see

also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

 Verify that diskCount and diskList are not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Enumerate all disk objects from the list of storage objects.

2. Allocate a buffer large enough to contain DISK_INFO structures that describe all enumerated
disks.

3. Populate each DISK_INFO structure in the buffer with information about the disk.

4. The buffer MUST be returned to the client in the output parameter diskList.

5. The number of DISK_INFO structures in the buffer MUST be returned in the output parameter
diskCount.

6. Return a response that contains the output parameters mentioned previously and the status of the
operation.

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.1.2 IVolumeClient::EnumDiskRegions (Opnum 4)

The EnumDiskRegions method enumerates all used and free regions of a specified disk.

 HRESULT EnumDiskRegions(
 [in] LdmObjectId diskId,
 [in, out] unsigned long* numRegions,
 [out, size_is(,*numRegions)] REGION_INFO** regionList
);

diskId: Specifies the OID of the disk for which regions are being enumerated.

numRegions: Pointer to the number of regions in regionList.

regionList: Pointer to an array of REGION_INFO structures.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see
also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

 Verify that the disk specified by diskId is in the list of storage objects.

 Verify that numRegions and regionList are not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

86 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

1. Enumerate all disk region objects residing on the specified disk.

2. Allocate a buffer large enough to contain REGION_INFO structures describing all regions residing

on the disk.

3. The buffer MUST be populated with regions in the ascending order of the byte offset of the region

relative to the beginning of the disk.

All fields MUST contain meaningful values. If no volume is associated, volId is 0. If there is no
associated task, taskId is zero.

4. Populate each REGION_INFO structure in the buffer with information about the region.

5. The buffer MUST be returned to the client in the output parameter regionList.

6. The number of REGION_INFO structures in the buffer MUST be returned in the output parameter
numRegions.

7. Return a response to the client that contains the output parameters mentioned previously and the

status of the operation.

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.1.3 IVolumeClient::CreatePartition (Opnum 5)

The CreatePartition method creates a partition.

 HRESULT CreatePartition(
 [in] REGION_SPEC partitionSpec,
 [out] TASK_INFO* tinfo
);

partitionSpec: A REGION_SPEC structure that defines the region type and length to create.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see
also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the disk specified by partitionSpec.diskId is in the list of storage objects.

2. Verify that the disk region specified by partitionSpec.regionId is in the list of storage objects, and
check whether partitionSpec.LastKnownState matches the LastKnownState field of the object.

3. Verify that the partitionSpec.regionId specified matches with the regionId field of one of the
regions in the disk specified by partitionSpec.diskId.

4. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate

error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Create a partition on the free disk region specified by partitionSpec.regionId of the disk specified
by partitionSpec.diskId. The starting offset of the partition is specified by partitionSpec.start and

%5bMS-ERREF%5d.pdf

87 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

the length of the partition is specified by partitionSpec.length. The type of the partition to be
created is specified by the partitionType.regionType parameter.<19>

2. Wait for the partition creation to either succeed or fail.

3. Fill in the tinfo output parameter. This is a synchronous task.

 Field tinfo.storageId MUST be set to the identifier of the disk region object that corresponds to
the new partition. Other tinfo values MUST be set as follows.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Required if the partition is created successfully.

TASK_INFO::createTime Not required.<20>

TASK_INFO::clientID Not required.<21>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<22>

4. Return a response to the client that contains tinfo and the status of the operation.

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

1. Modify the disk object where the new partition resides to account for the change in region

allocation.

2. Create a new disk region object that corresponds to the new partition.

3. Modify or delete the free disk region object where the partition was created to account for the
allocation of a new partition in that region.<23>

4. Create a new file system object that corresponds to the new partition.<24>

3.2.4.4.1.4 IVolumeClient::CreatePartitionAssignAndFormat (Opnum 6)

The CreatePartitionAssignAndFormat method creates a partition, formats it as a file system, and
assigns it a drive letter.

 HRESULT CreatePartitionAssignAndFormat(
 [in] REGION_SPEC partitionSpec,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [out] TASK_INFO* tinfo
);

partitionSpec: A REGION_SPEC structure that defines the type and length of the partition to create.

88 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

letter: Drive letter to assign to the new volume, specified as a single, case-insensitive Unicode
character.

letterLastKnownState: Drive letter's last known modification sequence number.

fsSpec: A FILE_SYSTEM_INFO structure that defines the file system to create.

quickFormat: Boolean value that determines whether the server will fully format or quickly format
the file system.

Value Meaning

FALSE

0

File system will be fully formatted. Full format requires verifying the accessibility of all sectors on
the volume.

TRUE

1

File system will be quickly formatted.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see

also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the disk specified by partitionSpec.diskId is in the list of storage objects.

2. Verify that the disk region specified by partitionSpec.regionId is in the list of storage objects, and
check if partitionSpec.LastKnownState matches the LastKnownState field of the object.

3. Verify that the partitionSpec.regionId specified matches the regionId field of one of the regions in

the disk specified by partitionSpec.diskId.

4. Verify that the drive letter object specified by letter is in the list of storage objects, and check
whether letterLastKnowState matches the LastKnownState field of the object.<25>

5. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Create a partition on the free disk region specified by partitionSpec.regionId of the disk specified
by partitionSpec.diskId. The starting offset of the partition is specified by partitionSpec.start and
the length of the partition is specified by partitionSpec.length. The type of the partition to be
created is specified by the partitionType.regionType partition.

2. Wait for the partition creation to either succeed or fail.

3. If successful, assign the drive letter specified by letter to the partition.

4. Wait for the drive letter assignment to either succeed or fail.

5. If successful, start formatting the partition with the file system specified by fsSpec, as specified by
the quickFormat parameter.

6. Fill in the tinfo output parameter. This is an asynchronous task.

%5bMS-ERREF%5d.pdf

89 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 The tinfo.storageId field MUST be set to the identifier of the disk region object corresponding
to the new partition.<26>

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Required.

TASK_INFO::createTime Not required.<27>

TASK_INFO::clientID Not required.<28>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<29>

7. Return a response to the client containing tinfo and the status of the operation.

Note The server MAY decide not to wait for the formatting to complete before returning the response
to the client.<30> This task is asynchronous and all rules for handling asynchronous tasks apply here.

If the creation of the partition is successful, the server MUST make the following changes to the list of

storage objects before returning the response:

1. Modify the disk object where the new partition resides to account for the change in region
allocation.

2. Create a new disk region object corresponding to the new partition.

3. Modify or delete the free disk region object where the partition was created to account for the
allocation of a new partition in that region.

If the drive letter assignment is successful, the server MUST make the following change to the list of
storage objects before returning the response:

 Modify the drive letter object to mark it as in use by the new partition.

If the format operation has been successfully started, the server MUST make the following change to
the list of storage objects before returning the response:

 Create a new file system object.

When the formatting is finished, the server MUST make the following change to the list of storage

objects.

 Modify the disk region object that corresponds to the partition to account for the change of status.

3.2.4.4.1.5 IVolumeClient::CreatePartitionAssignAndFormatEx (Opnum 7)

The CreatePartitionAssignAndFormatEx method creates a partition, formats it as a file system, and
assigns it a drive letter and a mount point.

 HRESULT CreatePartitionAssignAndFormatEx(
 [in] REGION_SPEC partitionSpec,
 [in] wchar_t letter,

90 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [in] hyper letterLastKnownState,
 [in] int cchAccessPath,
 [in, size_is(cchAccessPath)] wchar_t* AccessPath,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [in] DWORD dwFlags,
 [out] TASK_INFO* tinfo
);

partitionSpec: A REGION_SPEC structure that defines the type and length of the partition to create.

letter: Drive letter to assign to the new volume, specified as a single case-insensitive Unicode
character.

letterLastKnownState: Drive letter's last known modification sequence number.

cchAccessPath: Length of the AccessPath parameter, in characters, including the terminating null
character.

AccessPath: Null-terminated Unicode string that specifies the path in which the new file system is
being mounted. This parameter is used to supply a mounted folder path, for the case where the
new partition will be mounted to a directory on another volume.

fsSpec: A FILE_SYSTEM_INFO structure that defines the file system to create.

quickFormat: Value that indicates if the server will fully format or quickly format the file system.

Value Meaning

FALSE

0

File system will be quickly formatted.

TRUE

1

File system will be fully formatted. Full format requires verifying the accessibility of all sectors
on the volume.

dwFlags: Bitmap of partition creation flags. The value of this field is generated by combining zero or
more of the following applicable flags with a logical OR operation.

Value Meaning

CREATE_ASSIGN_ACCESS_PATH

0x00000001

Assign the mount point AccessPath to the new partition.

tinfo: Pointer to a TASK_INFO structure the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see
also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

The behavior of the server is identical to that described for
IVolumeClient::CreatePartitionAssignAndFormat, with the following difference: Before returning the
response to the client, the server MUST create a mount point for the volume under AccessPath if
instructed by the client to do so. This step MUST be taken after the drive letter assignment succeeds
and before the format operation is attempted.

3.2.4.4.1.6 IVolumeClient::DeletePartition (Opnum 8)

The DeletePartition method deletes a specified partition. This is a synchronous task.

%5bMS-ERREF%5d.pdf

91 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 HRESULT DeletePartition(
 [in] REGION_SPEC partitionSpec,
 [in] boolean force,
 [out] TASK_INFO* tinfo
);

partitionSpec: A REGION_SPEC structure that specifies the type and length of the partition to delete.

force: Value that determines whether deletion of the partition will be forced. If the force parameter is
not set, the call will fail if the volume cannot be locked.

Value Meaning

FALSE

0

Deletion will not be forced if the partition is in use.

TRUE

1

Deletion will be forced.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see
also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the disk specified by partitionSpec.diskId is in the list of storage objects.

2. Verify that the disk region specified by partitionSpec.regionId is in the list of storage objects, and
check whether partitionSpec.LastKnownState matches the LastKnownState field of the

object.<31>

3. Verify that the region type specified by partitionSpec.regionType matches the regionType field of
the object.

4. Verify that the start of the partition specified by partitionSpec.start matches the start field of the
object.

5. Verify that the length of the partition specified by partitionSpec.length is greater than or equal to
the length field of the object.

6. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Attempt to delete the partition specified by partitionSpec.regionId from the disk specified by

partitionSpec.diskId, as specified by the force parameter.

2. Wait for the partition deletion to either succeed or fail.

3. Fill in the tinfo output parameter. This is a synchronous task.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

%5bMS-ERREF%5d.pdf

92 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

TASK_INFO member Required for this operation

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<32>

TASK_INFO::clientID Not required.<33>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<34>

4. Return a response to the client that contains tinfo and the status of the operation.

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:<35>

1. Modify the disk object where the partition resided to account for the change in region allocation.

2. Delete the disk region object that corresponds to the partition.

3. Create a new free region object or modify an adjacent free region object to account for the free
space created by the deletion.

4. Modify the drive letter object associated with the partition to mark it as free.

5. Delete the file system object associated with the partition.

3.2.4.4.1.7 IVolumeClient::WriteSignature (Opnum 9)

The WriteSignature method writes a disk signature to a specified disk. This is a synchronous task.

 HRESULT WriteSignature(
 [in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO* tinfo
);

diskId: Specifies the object identifier of the target disk for the signature.

diskLastKnownState: Disk's last known modification sequence number.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see
also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the disk specified by diskId is in the list of storage objects, and check if
diskLastKnownState matches the LastKnownState field of the object.

2. Verify that tinfo is not NULL.

%5bMS-ERREF%5d.pdf

93 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Write an MBR signature, and initialize the partition table of the disk.

2. Wait for the signature writing to either succeed or fail.

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<36>

TASK_INFO::clientID Not required.<37>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<38>

4. Return a response to the client that contains tinfo and the status of the operation.

If the operation is successful, the server MUST make the following change to the list of storage objects
before returning the response:

 Modify the disk object to account for the change of status.

3.2.4.4.1.8 IVolumeClient::MarkActivePartition (Opnum 10)

The MarkActivePartition method marks a specified partition as the active partition of the disk. This is a

synchronous task.

 HRESULT MarkActivePartition(
 [in] LdmObjectId regionId,
 [in] hyper regionLastKnownState,
 [out] TASK_INFO* tinfo
);

regionId: Specifies the OID of the partition to activate.

regionLastKnownState: Partition's last known modification sequence number.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see

also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the disk region specified by regionId is in the list of storage objects, and check whether

regionLastKnownState matches the LastKnownState field of the object.

2. Verify that tinfo is not NULL.

%5bMS-ERREF%5d.pdf

94 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Mark the partition specified by regionId as active in the partition table of its disk.

2. If another partition was marked active on the disk, clear the active flag from it. Only one partition
can be active on a given disk at any given time.

3. Wait for the partition activation to either succeed or fail.

4. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<39>

TASK_INFO::clientID Not required.<40>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<41>

5. Return a response to the client that contains tinfo and the status of the operation.

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

1. Modify the disk region object that corresponds to the specified partition to account for the change

of the active flag.

2. Modify the disk region object that corresponds to the former active partition on the disk to account
for the change of the active flag.

3.2.4.4.1.9 IVolumeClient::Eject (Opnum 11)

The Eject method ejects a specified removable disk or CD-ROM from the drive enclosure. This is a
synchronous task.

 HRESULT Eject(
 [in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO* tinfo
);

diskId: Specifies the OID of the media to eject.

diskLastKnownState: The disk's last known modification sequence number.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

95 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see

also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the disk specified by diskId is in the list of storage objects, and check whether
diskLastKnownState matches the LastKnownState field of the object.

2. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Eject the media from the drive specified by diskId.

2. Wait for the eject to succeed or fail.

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<42>

TASK_INFO::clientID Not required.<43>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<44>

4. Return a response to the client that contains tinfo and the status of the operation.<45>

If the operation is successful, the server makes the following changes to the list of storage objects
before returning the response:

1. Modify the disk object to account for the change of status.

2. Delete the disk region object that resides on the disk.

3. Modify the drive letter object that corresponds to the disk region to point to the disk object instead

of the disk region object.

3.2.4.4.1.10 IVolumeClient::FTEnumVolumes (Opnum 13)

The FTEnumVolumes method enumerates the server's FT volumes on basic disks (rather than
dynamic disks). <46>

 HRESULT FTEnumVolumes(
 [in, out] unsigned long* volumeCount,
 [out, size_is(,*volumeCount)] VOLUME_INFO** ftVolumeList

%5bMS-ERREF%5d.pdf

96 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

);

volumeCount: Pointer to the number of elements in ftVolumeList.

ftVolumeList: Pointer to an array of VOLUME_INFO structures. The server allocates this memory and
the client frees it.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see
also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

 Verify that volumeCount and ftVolumeList are not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Enumerate all FT volume objects from the list of storage objects.

2. Allocate a buffer large enough to contain VOLUME_INFO structures that describe all enumerated
FT volumes.

3. Populate each VOLUME_INFO structure in the buffer with information about the FT volume.

4. The buffer MUST be returned to the client in the output parameter ftVolumeList.

5. The number of VOLUME_INFO structures in the buffer MUST be returned in the output parameter
volumeCount.

6. Return a response that contains the preceding output parameters and the status of the operation.

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.1.11 IVolumeClient::FTEnumLogicalDiskMembers (Opnum 14)

The FTEnumLogicalDiskMembers method enumerates the regions of a specified FT volume on basic
disks (rather than dynamic disks).<47>

 HRESULT FTEnumLogicalDiskMembers(
 [in] LdmObjectId volumeId,
 [in, out] unsigned long* memberCount,
 [out, size_is(,*memberCount)] LdmObjectId** memberList
);

volumeId: Specifies the OID of the volume for which regions are being enumerated.

memberCount: Pointer to the number of regions that the volume includes.

memberList: Pointer to an array of LdmObjectId objects that store member identification handles for
the regions in the volume.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see

also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

97 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 Verify that the FT volume specified by volumeId is in the list of storage objects.

 Verify that memberCount and memberList are not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Enumerate all disk region objects belonging to the FT volume specified by volumeId from the list
of storage objects.

2. Allocate a buffer large enough to contain all the identifiers of the enumerated disk region objects.

3. Populate the buffer with the identifiers of the disk region objects.

4. The buffer MUST be returned to the client in the output parameter memberList.

5. The number of disk region OIDs in the buffer MUST be returned in the output parameter

memberCount.

6. Return a response that contains the output parameters mentioned previously and the status of the
operation.

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.1.12 IVolumeClient::FTDeleteVolume (Opnum 15)

The FTDeleteVolume method deletes the FT volume specified by volumeId on basic disks (rather than
dynamic disks). This is a synchronous task.<48>

 HRESULT FTDeleteVolume(
 [in] LdmObjectId volumeId,
 [in] boolean force,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the volume to delete.

force: Boolean value that indicates whether deletion of a partition will be forced. The call to delete will
fail if the volume is locked by some other application and this flag is not set.

Value Meaning

FALSE

0

Deletion will not be forced if the partition is in use.

TRUE

1

Deletion of the partition will be forced.

volumeLastKnownState: Volume's last known modification sequence number.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see
also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

%5bMS-ERREF%5d.pdf

98 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 Verify that the FT volume specified by volumeId is in the list of storage objects, and check
whether volumeLastKnownState matches the LastKnownState field of the object.

 Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an error as its

response to the client.

Otherwise, the server MUST process the message as follows:

1. Attempt to delete the FT volume specified by volumeId, as specified by the force parameter.<49>

2. Wait for the volume deletion to either succeed or fail.

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<50>

TASK_INFO::clientID Not required.<51>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<52>

4. Return a response to the client that contains tinfo and the status of the operation.

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

1. Modify the disk objects where the FT volume resided to account for the change in region
allocation.

2. Delete the disk region objects used by the FT volume.

3. Create new free region objects or modify adjacent free region objects to account for the free space
created by the deletion.

4. Modify the drive letter object associated with the FT volume to mark it as free.

5. Delete the file system object associated with the FT volume.

3.2.4.4.1.13 IVolumeClient::FTBreakMirror (Opnum 16)

The FTBreakMirror method breaks a specified FT mirror set on basic disks into two independent
partitions. This is a synchronous task.<53>

 HRESULT FTBreakMirror(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] boolean bForce,

99 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the FT mirror set to break.

volumeLastKnownState: Last known modification sequence number of the FT mirror set.

bForce: Boolean value that indicates whether to force removal of the drive letter from the FT mirror
set.

Value Meaning

FALSE

0

The method fails if an error occurs while the drive letter is being removed from the FT mirror set.

TRUE

1

Removal of the drive letter from the FT mirror set is forced.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see
also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

 Verify that the FT volume specified by volumeId is in the list of storage objects, and check
whether volumeLastKnownState matches the LastKnownState field of the object. Verify that the
FT volume is an FT mirror set.

 Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate

error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Attempt to remove the drive letter from the FT volume specified by volumeId, as specified by the
bForce parameter.

2. If the removal is successful, or bForce is set to TRUE, break the FT volume into two independent
partitions.<54>

3. If the volume is successfully broken into two partitions, assign the original drive letter of the FT
volume to the volume represented by the input volumeId parameter.

4. Wait for this sequence of operations to either succeed or fail.

5. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<55>

TASK_INFO::clientID Not required.<56>

%5bMS-ERREF%5d.pdf

100 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

TASK_INFO member Required for this operation

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<57>

6. Return a response to the client containing tinfo and the status of the operation.

If the operation is successful, the server MUST make the following changes to the list of storage

objects before returning the response:

1. Modify the disks where the FT volume resided to account for the change of region allocation.

2. Modify the disk region objects used by the FT volume to account for their transformation from
members of an FT volume into partitions.

3. Modify the drive letter object associated with the FT volume to account for the migration from the
FT volume to one of the partitions that results from the breakup.

4. Delete the file system object associated with the FT volume.

5. Create the file system objects associated with the partitions that result from the call to break the
mirror.<58>

3.2.4.4.1.14 IVolumeClient::FTResyncMirror (Opnum 17)

The FTResyncMirror method restores the redundancy of an FT mirror set on basic disks by
resynchronizing the members of the mirror. This is a synchronous task.<59>

 HRESULT FTResyncMirror(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the FT mirror set that is being resynchronized.

volumeLastKnownState: Last known modification sequence number of the FT mirror set.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see
also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

 Verify that the FT volume specified by volumeId is in the list of storage objects, and check if
volumeLastKnownState matches the LastKnownState field of the object. Verify that the FT
volume is an FT mirror set.

 Verify that tinfo is not NULL.

%5bMS-ERREF%5d.pdf

101 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Start the resynchronization of the members of the FT volume specified by volumeId.

2. Wait for the resynchronization start to either succeed or fail.

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<60>

TASK_INFO::clientID Not required.<61>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<62>

4. Return a response to the client that contains tinfo and the status of the operation.

3.2.4.4.1.15 IVolumeClient::FTRegenerateParityStripe (Opnum 18)

The FTRegenerateParityStripe method restores the redundancy of an FT RAID-5 set on basic disks by

regenerating the parity of the volume. This is a synchronous task.<63>

 HRESULT FTRegenerateParityStripe(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the FT RAID-5 set for which the parity is being regenerated.

volumeLastKnownState: Last known modification sequence number of the FT RAID-5 set.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the FT volume specified by volumeId is in the list of storage objects, and check
whether volumeLastKnownState matches the LastKnownState field of the object. Verify that the
FT volume is an FT RAID-5 set.

2. Verify that tinfo is not NULL.

%5bMS-ERREF%5d.pdf

102 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Start the parity regeneration for the FT volume specified by volumeId.

2. Wait for the parity regeneration start to either succeed or fail.

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<64>

TASK_INFO::clientID Not required.<65>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<66>

4. Return a response to the client that contains tinfo and the status of the operation.

3.2.4.4.1.16 IVolumeClient::FTReplaceMirrorPartition (Opnum 19)

The FTReplaceMirrorPartition method repairs a FT mirror set on basic disks by replacing the failed

member of the set with another partition.<67>

 HRESULT FTReplaceMirrorPartition(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId oldMemberId,
 [in] hyper oldMemberLastKnownState,
 [in] LdmObjectId newRegionId,
 [in] hyper newRegionLastKnownState,
 [in] DWORD flags,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the FT mirror set to modify.

volumeLastKnownState: Last known modification sequence number of the FT mirror set.

oldMemberId: This parameter MUST be set to 0 and ignored by the server.

oldMemberLastKnownState: This parameter MUST be set to 0 and ignored by the server.

newRegionId: Specifies the OID of the replacement partition.

newRegionLastKnownState: Last known modification sequence number of the replacement
partition.

103 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

flags: Bitmap of flags for the replacement operation. The value of this field is one of the applicable
flags defined as follows.

Value Meaning

FTREPLACE_FORCE

0x00000001

Do not fail the operation if the replacement partition has been changed since
newRegionLastKnownState.

FTREPLACE_DELETE_ON_FAIL

0x00000002

Delete the replacement partition if the operation fails.

0x00000000 Fail the call if the input newRegionLastKnownState is zero, and do not delete
the replacement partition if the call fails

tinfo: Pointer to a TASK_INFO structure that the client uses to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see

also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the FT volume specified by volumeId is in the list of storage objects, and check
whether volumeLastKnownState matches the LastKnownState field of the object. Verify that the
FT volume is an FT mirror set.

2. Verify that the partition specified by newRegionId is in the list of storage objects, and check
whether newRegionLastKnownState matches the LastKnownState field of the object.

 Ignore newRegionLastKnownState if the flag FTREPLACE_FORCE is set in flags.

3. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate

error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Delete the failed member from the FT volume specified by volumeId.

2. Attempt to add the replacement partition specified by newRegionId to the FT volume.

3. Wait for the replacement to either succeed or fail:

 If the replacement failed and the flag FTREPLACE_DELETE_ON_FAIL is set in flags, delete the
replacement partition.

4. Fill in the tinfo output parameter. This is a synchronous task.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<68>

TASK_INFO::clientID Not required.<69>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

%5bMS-ERREF%5d.pdf

104 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

TASK_INFO member Required for this operation

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<70>

5. Return a response to the client that contains tinfo and the status of the operation.

If the deletion of the failed member is successful, the server MUST make the following changes to the
list of storage objects before returning the response:

1. Modify the FT volume object to account for the change in the list of members.

2. Modify the disk object of the deleted member to account for the change in region allocation.

3. Delete the disk region object that corresponds to the deleted member.

If the addition of the replacement partition is successful, the server MUST make the following change
to the list of storage objects before returning the response:

 Modify the disk region object that corresponds to the replacement partition to account for
transformation from the partition to a member of the FT volume.

If the addition of the replacement partition fails and the FTREPLACE_DELETE_ON_FAIL flag is set, the

server MUST make the following changes to the list of storage objects before returning the response:

1. Modify the disk object of the deleted replacement partition to account for the change in region
allocation.

2. Delete the disk region object that corresponds to the deleted replacement partition.

3. Create a new free region object or modify an adjacent free region object to account for the free
space created by the deletion.

3.2.4.4.1.17 IVolumeClient::FTReplaceParityStripePartition (Opnum 20)

The FTReplaceParityStripePartition method repairs an FT RAID-5 set on basic disks by replacing the
failed member of the set with another partition.<71>

 HRESULT FTReplaceParityStripePartition(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId oldMemberId,
 [in] hyper oldMemberLastKnownState,
 [in] LdmObjectId newRegionId,
 [in] hyper newRegionLastKnownState,
 [in] DWORD flags,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the FT RAID-5 set to modify.

volumeLastKnownState: Last known modification sequence number of the FT RAID-5 set.

oldMemberId: This member MUST be set to 0 and ignored by the server.

oldMemberLastKnownState: This member MUST be set to 0 and ignored by the server.

105 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

newRegionId: Specifies the OID of the replacement partition.

newRegionLastKnownState: Last known modification sequence number of the replacement

partition.

flags: Bitmap of flags for the replacement operation. The value of this field is a logical 'OR' of zero or

more of the following applicable flags.

Value Meaning

FTREPLACE_FORCE

0x00000001

Do not fail the operation if the replacement partition has been changed since
newRegionLastKnownState.

FTREPLACE_DELETE_ON_FAIL

0x00000002

Delete the replacement partition if the operation fails.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see
also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the FT volume specified by volumeId is in the list of storage objects, and check
whether volumeLastKnownState matches the LastKnownState field of the object. Verify that the
FT volume is an FT RAID-5 set.

2. Verify that the partition specified by newRegionId is in the list of storage objects, and check
whether newRegionLastKnownState matches the LastKnownState field of the object:

 Ignore newRegionLastKnownState if the flag FTREPLACE_FORCE is set in flags.

3. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Delete the failed member from the FT volume specified by volumeId.

2. Attempt to add the replacement partition specified by newRegionId to the FT volume.

3. Wait for the replacement to either succeed or fail.

 If the replacement failed and the flag FTREPLACE_DELETE_ON_FAIL is set in flags, delete the
replacement partition.

4. Fill in the tinfo output parameter. This is a synchronous task.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<72>

TASK_INFO::clientID Not required.<73>

%5bMS-ERREF%5d.pdf

106 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

TASK_INFO member Required for this operation

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<74>

5. Return a response to the client that contains tinfo and the status of the operation.

If the deletion of the failed member is successful, the server MUST make the following changes to the

list of storage objects before returning the response:

1. Modify the FT volume object to account for the change in the list of members.

2. Modify the disk object of the deleted member to account for the change in region allocation.

3. Delete the disk region object that corresponds to the deleted member.

If the addition of the replacement partition is successful, the server MUST make the following change
to the list of storage objects before returning the response:

 Modify the disk region object that corresponds to the replacement partition to account for

transformation from the partition to a member of the FT volume.

If the addition of the replacement partition fails and the FTREPLACE_DELETE_ON_FAIL flag is set, the
server MUST make the following changes to the list of storage objects before returning the response:

1. Modify the disk object of the deleted replacement partition to account for the change in region
allocation.

2. Delete the disk region object that corresponds to the deleted replacement partition.

3. Create a new free region object or modify an adjacent free region object to account for the free
space created by the deletion.

3.2.4.4.1.18 IVolumeClient::EnumDriveLetters (Opnum 21)

The EnumDriveLetters method enumerates the server's drive letters, both used and free. For drive
letters that are in use, the method returns the mapping between the drive letter and the volume,
partition, or logical drive that uses it.

 HRESULT EnumDriveLetters(
 [in, out] unsigned long* driveLetterCount,
 [out, size_is(,*driveLetterCount)]
 DRIVE_LETTER_INFO** driveLetterList
);

driveLetterCount: Pointer to the number of elements returned in driveLetterList. This parameter is
used only on output.

driveLetterList: Pointer to an array of DRIVE_LETTER_INFO structures. Memory for the array is

allocated by the server and freed by the client.

107 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see

also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that driveLetterCount and driveLetterList are not NULL.

 If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

 Otherwise, the server MUST process the message as follows:

1. Enumerate all drive letter objects from the list of storage objects.<75>

2. Allocate a buffer large enough to contain DRIVE_LETTER_INFO structures that describe all
enumerated drive letters.

3. Populate each DRIVE_LETTER_INFO structure in the buffer with information about the drive letter.

4. The buffer MUST be returned to the client in the output parameter driveLetterList.

5. The number of DRIVE_LETTER_INFO structures in the buffer MUST be returned in the output
parameter driveLetterCount.

6. Return a response that contains the preceding output parameters above and the status of the
operation.

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.1.19 IVolumeClient::AssignDriveLetter (Opnum 22)

The AssignDriveLetter method assigns the specified drive letter to a volume, partition, or logical drive.
This is a synchronous task.

 HRESULT AssignDriveLetter(
 [in] wchar_t letter,
 [in] unsigned long forceOption,
 [in] hyper letterLastKnownState,
 [in] LdmObjectId storageId,
 [in] hyper storageLastKnownState,
 [out] TASK_INFO* tinfo
);

letter: Drive letter to assign.

forceOption: Value that indicates if drive letter assignment is forced when it fails.

Value Meaning

NO_FORCE_OPERATION

0x00000000

If the volume, partition, or logical drive specified by storageId cannot be locked,
the operation fails with LDM_E_VOLUME_IN_USE.

FORCE_OPERATION

0x00000001

If the volume, partition, or logical drive specified by storageId cannot be locked,
the server will proceed with the operation.

letterLastKnownState: Drive letter's last known modification sequence number.

storageId: Specifies the object identifier of the volume, partition, or logical drive to which the drive
letter is being assigned.

%5bMS-ERREF%5d.pdf

108 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

storageLastKnownState: Last known modification sequence number of the volume, partition, or
logical drive to which the drive letter is being assigned.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see
also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the drive letter specified by the letter is in the list of storage objects, and check
whether letterLastKnownState matches the LastKnownState field of the object.

2. Verify that the volume, partition, or logical drive specified by storageId is in the list of storage
objects; and check whether storageLastKnownState matches the LastKnownState field of the

object.

3. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Convert the letter parameter to uppercase.

2. Attempt to lock the file system (if this is applicable). Locking the file system prevents any other
threads from accessing the volume.

3. If the attempt to lock the file system fails, and the NO_FORCE_OPERATION flag was input, the
server MUST fail the operation. If the attempt to lock the file system fails, and the
FORCE_OPERATION flag was input, ignore the lock failure and continue.

4. Delete any existing drive letter path name associated with the volume. If the existing drive letter

path name cannot be deleted, the server MUST fail the call.

5. Assign the drive letter to the storage object.

6. Wait for the drive letter assignment to either succeed or fail.

7. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<76>

TASK_INFO::clientID Not required.<77>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<78>

%5bMS-ERREF%5d.pdf

109 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

8. Return a response to the client that contains tinfo and the status of the operation.

If the operation is successful, the server MUST make the following changes to the list of storage

objects before returning the response:

 Modify the object that corresponds to the old drive letter to mark it as free.

 Modify the object that corresponds to the letter to mark it as associated with the storage object.

3.2.4.4.1.20 IVolumeClient::FreeDriveLetter (Opnum 23)

The FreeDriveLetter method unassigns a specified drive letter from a volume, partition, or logical drive
on the server. This is a synchronous task.

 HRESULT FreeDriveLetter(
 [in] wchar_t letter,
 [in] unsigned long forceOption,
 [in] hyper letterLastKnownState,
 [in] LdmObjectId storageId,
 [in] hyper storageLastKnownState,
 [out] TASK_INFO* tinfo
);

letter: Drive letter to free.

forceOption: Boolean value that indicates whether to force the freeing of a drive letter.

Value Meaning

NO_FORCE_OPERATION

0x00000000

If the specified drive letter is assigned to a volume, partition, or logical disk
that is in use, contains the paging file, or contains the system directory, the
operation fails and returns an error.

FORCE_OPERATION

0x00000001

The specified drive letter is always freed.

letterLastKnownState: Drive letter's last known modification sequence number.

storageId: Specifies the object identifier of the volume, partition, or logical drive to which the letter
is assigned.

storageLastKnownState: Last known modification sequence number of the volume, partition, or
logical drive to which the drive letter is assigned.

tinfo: Pointer to a TASK_INFO structure that the client uses to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF] section 2.1; see
also section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the drive letter specified by letter is in the list of storage objects, and check whether
letterLastKnownState matches the LastKnownState field of the object.

2. Verify that the volume, partition, or logical drive specified by storageId is in the list of storage
objects, and check whether storageLastKnownState matches the LastKnownState field of the
object.

%5bMS-ERREF%5d.pdf

110 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3. Verify that the drive letter specified by letter is associated with the volume, partition, or logical
drive specified by storageId.

4. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate

error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Attempt to remove the drive letter specified by letter from the storage object specified by
storageId.

2. The behavior of the drive letter removal for volumes, partitions, or logical drives that are in use,
contain the paging file, or contain the system directory is controlled by the parameter
forceOption:<79>

 If the parameter is set to NO_FORCE_OPERATION, the removal fails.

 If the parameter is set to FORCE_OPERATION, the removal succeeds.

3. Wait for the drive letter removal to either succeed or fail.

4. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<80>

TASK_INFO::clientID Not required.<81>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<82>

5. Return a response to the client that contains tinfo and the status of the operation.

If the operation is successful, the server MUST make the following change to the list of storage objects
before returning the response:

 Modify the object that corresponds to the drive letter to mark it as free.

3.2.4.4.1.21 IVolumeClient::EnumLocalFileSystems (Opnum 24)

The EnumLocalFileSystems method enumerates the file systems present on the server.<83>

 HRESULT EnumLocalFileSystems(
 [out] unsigned long* fileSystemCount,
 [out, size_is(,*fileSystemCount)]
 FILE_SYSTEM_INFO** fileSystemList
);

111 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

fileSystemCount: Pointer to the number of elements returned in fileSystemList.

fileSystemList: Pointer to an array of FILE_SYSTEM_INFO structures that represent the file systems

present on the server. Memory for the array is allocated by the server and freed by the client.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that fileSystemCount and fileSystemList are not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Enumerate all file system objects from the list of storage objects.

2. Allocate a buffer large enough to contain FILE_SYSTEM_INFO structures that describe all
enumerated file systems.

3. Populate each FILE_SYSTEM_INFO structure in the buffer with information about the file system.

4. The buffer MUST be returned to the client in the output parameter fileSystemList.

5. The number of FILE_SYSTEM_INFO structures in the buffer MUST be returned in the output

parameter fileSystemCount.

6. Return a response that contains the output parameters mentioned previously and the status of the
operation.

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.1.22 IVolumeClient::GetInstalledFileSystems (Opnum 25)

The GetInstalledFileSystems method enumerates the file system types (for example, FAT or NTFS)

that the server supports.

 HRESULT GetInstalledFileSystems(
 [out] unsigned long* fsCount,
 [out, size_is(,*fsCount)] IFILE_SYSTEM_INFO** fsList
);

fsCount: Pointer to the number of elements returned in fsList.

fsList: Pointer to an array of IFILE_SYSTEM_INFO structures. Memory for the array is allocated by the
server and freed by the client.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that fsCount and fsList are not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

112 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Otherwise, the server MUST compose a response to the client as follows:

1. Enumerate all file system types supported by the system.

2. Allocate a buffer large enough to contain IFILE_SYSTEM_INFO structures that describe all
enumerated file system types.

3. Populate each IFILE_SYSTEM_INFO structure in the buffer with information about the file system
type.

4. The buffer MUST be returned to the client in the output parameter fsList.

5. The number of IFILE_SYSTEM_INFO structures in the buffer MUST be returned in the output
parameter fsCount.

6. Return a response that contains the output parameters mentioned previously and the status of the
operation.

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.1.23 IVolumeClient::Format (Opnum 26)

The Format method formats the specified volume, partition, or logical drive with a file system.

 HRESULT Format(
 [in] LdmObjectId storageId,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [in] boolean force,
 [in] hyper storageLastKnownState,
 [out] TASK_INFO* tinfo
);

storageId: Specifies the object identifier of the volume, partition, or logical drive on which the new

file system is being created.

fsSpec: A FILE_SYSTEM_INFO structure that specifies details about the file system being
created.<84>

quickFormat: Boolean value that indicates whether the file system will be fully formatted.

Value Meaning

FALSE

0

File system will be fully formatted. Full format requires verifying the accessibility of all sectors on
the volume.

TRUE

1

File system will be quickly formatted.

force: Boolean value that indicates whether the file system will be formatted if the volume, partition,

or logical drive cannot be locked.

Value Meaning

FALSE

0

File system will not be formatted unless its underlying storage can be locked.

TRUE

1

File system will be formatted regardless of whether the underlying volume, partition, or logical drive
can be locked.

113 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

storageLastKnownState: Last known modification sequence number of the volume, partition, or
logical drive on which the file system is being created.

tinfo: Pointer to a TASK_INFO structure that the client uses to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the volume, partition, or logical drive specified by storageId is in the list of storage
objects; and check whether storageLastKnownState matches the LastKnownState field of the
object.

2. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Attempt to start formatting the partition with the file system specified by fsSpec, as specified by
the quickFormat parameter and the force parameter.<85>

2. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<86>

TASK_INFO::clientID Not required.<87>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<88>

3. Return a response to the client that contains tinfo and the status of the operation.

Note The server MAY decide not to wait for the formatting to complete before returning the response

to the client.<89> All rules for handling asynchronous tasks apply here.

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

1. Modify the storage object specified by storageId to account for the change of status.

2. Create a new file system object.

When the formatting is completed, the server MUST make the following change to the list of storage
objects.

%5bMS-ERREF%5d.pdf

114 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 Modify the storage object specified by storageId to account for the change of status.

3.2.4.4.1.24 IVolumeClient::EnumVolumes (Opnum 28)

The EnumVolumes method enumerates the dynamic volumes of the server.

 HRESULT EnumVolumes(
 [in, out] unsigned long* volumeCount,
 [out, size_is(,*volumeCount)] VOLUME_INFO** LdmVolumeList
);

volumeCount: Pointer to the number of elements returned in LdmVolumeList.

LdmVolumeList: Pointer to an array of VOLUME_INFO structures representing the dynamic volumes
of the server. Memory for the array is allocated by the server and freed by the client.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

 Verify that volumeCount and LdmVolumeList are not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Enumerate all dynamic volume objects from the list of storage objects.

2. Allocate a buffer large enough to contain VOLUME_INFO structures that describe all enumerated

dynamic volumes.

3. Populate each VOLUME_INFO structure in the buffer with information about the dynamic volume.

4. The buffer MUST be returned to the client in the output parameter LdmVolumeList.

5. The number of VOLUME_INFO structures in the buffer MUST be returned in the output parameter
volumeCount.

6. Return a response containing the output parameters mentioned previously and the status of the

operation.

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.1.25 IVolumeClient::EnumVolumeMembers (Opnum 29)

The EnumVolumeMembers method enumerates the regions of the specified dynamic volume.<90>

 HRESULT EnumVolumeMembers(
 [in] LdmObjectId volumeId,
 [in, out] unsigned long* memberCount,
 [out, size_is(,*memberCount)] LdmObjectId** memberList
);

volumeId: Specifies the OID of the volume for which regions are being enumerated.

memberCount: Pointer to the number of disk regions returned in memberList.

%5bMS-ERREF%5d.pdf

115 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

memberList: Array of LdmObjectId objects that store the identification handles of the regions.
Memory for the array is allocated by the server and freed by the client.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).<91>

Upon receiving this message, the server MUST validate parameters:

 Verify that the dynamic volume specified by volumeId is in the list of storage objects.

 Verify that memberCount and memberList are not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Enumerate all disk region objects belonging to the dynamic volume from the list of storage

objects.

2. Allocate a buffer large enough to contain the identifiers of all enumerated disk region objects.

3. Populate the buffer with the identifiers of all enumerated disk region objects.

4. The buffer MUST be returned to the client in the output parameter memberList.

5. The number of identifiers in the buffer MUST be returned in the output parameter memberCount.

6. Return a response that contains the output parameters mentioned previously and the status of the
operation.

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.1.26 IVolumeClient::CreateVolume (Opnum 30)

The CreateVolume method creates a dynamic volume on the specified list of disks. This is a
synchronous task.

 HRESULT CreateVolume(
 [in] VOLUME_SPEC volumeSpec,
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC* diskList,
 [out] TASK_INFO* tinfo
);

volumeSpec: A VOLUME_SPEC structure that defines the parameters of the volume to create.

diskCount: Number of elements passed in diskList.

diskList: Array of DISK_SPEC structures that specifies the disks to be used by the volume.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).<92>

Upon receiving this message, the server MUST validate parameters:

 Verify that diskCount is not 0 and diskList is not NULL.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

116 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 For each DISK_SPEC structure in diskList, verify that the disk specified by diskId is in the list of
storage objects; and check whether lastKnownState matches the LastKnownState field of the

object.

 Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Create the dynamic volume as follows:

 The layout, length, and number of members of the volume are determined by the field layout
and length of the volumeSpec parameter.

 The members of the volume are created on the disks passed in diskList.

 The approximate length of each member is determined by the field length of the

corresponding DISK_SPEC structure passed in diskList.

 If the field needContiguous is set to TRUE in a DISK_SPEC structure passed in diskList, the
server MUST allocate a contiguous disk region for the corresponding member. Otherwise, the
server MAY allocate several noncontiguous disk regions.<93>

2. Wait for the volume creation to either succeed or fail.

3. Fill in the tinfo output parameter:

 Field tinfo.storageId MUST be set to the identifier of the new dynamic volume object.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Required if the method succeeds.

TASK_INFO::createTime Not required.<94>

TASK_INFO::clientID Not required.<95>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<96>

4. Return a response to the client containing tinfo and the status of the operation.<97>

5. Send the task completion notification.

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

1. Create a new dynamic volume object.

2. Modify the disk objects where the new volume resides to account for the change in region
allocation.

117 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3. Create new disk region objects that correspond to the volume members.

4. Modify or delete the free disk region objects where the volume members were created to account

for the allocation of volume members in those regions.<98>

3.2.4.4.1.27 IVolumeClient::CreateVolumeAssignAndFormat (Opnum 31)

The CreateVolumeAssignAndFormat method creates a dynamic volume on the specified list of disks,
assigns a drive letter to it, and formats it with a file system.

 HRESULT CreateVolumeAssignAndFormat(
 [in] VOLUME_SPEC volumeSpec,
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC* diskList,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [out] TASK_INFO* tinfo
);

volumeSpec: A VOLUME_SPEC structure that defines the volume to create.

diskCount: Number of elements passed in diskList.

diskList: Array of DISK_SPEC structures that specifies the disks to be used by the volume. Memory
for the array is allocated and freed by the client.

letter: Drive letter to assign to the new volume. If no drive letter is needed for the volume, the value
of this field MUST be a 2-byte null character or the Unicode SPACE character.

letterLastKnownState: Drive letter's last known modification sequence number.

fsSpec: A FILE_SYSTEM_INFO structure that defines the file system to create.

quickFormat: Boolean value that indicates whether the server will fully format or quickly format the

file system.

Value Meaning

FALSE

0

File system will be fully formatted. Full format requires verifying the accessibility of all sectors on
the volume.

TRUE

1

File system will be quickly formatted.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that diskCount is not 0 and diskList is not NULL.

2. For each DISK_SPEC structure in diskList, verify that the disk specified by diskId is in the list of
storage objects; and check whether lastKnownState matches the LastKnownState field of the
object.

%5bMS-ERREF%5d.pdf

118 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3. Verify that the drive letter object, if specified by letter, is in the list of storage objects, and check
whether letterLastKnownState matches the LastKnownState field of the object. <99>

4. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate

error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Attempt to create the dynamic volume as follows:

 The layout, length, and number of members of the volume are determined by the field's
layout, length, and memberCount of parameter volumeSpec.

 The members of the volume MUST be created on the disks passed in diskList.

 The length of each member is determined by the field length of the corresponding DISK_SPEC

structure passed in diskList.

 If the field needContiguous is set to TRUE in a DISK_SPEC structure passed in diskList, the
server MUST allocate a contiguous disk region for the corresponding member. Otherwise, the
server MAY allocate several noncontiguous disk regions.

2. Wait for the volume creation to either succeed or fail.

3. If successful, assign the drive letter, if specified by letter, to the volume.

4. Wait for the drive letter assignment to either succeed or fail.

5. If successful, start formatting the volume with the file system specified by fsSpec, as specified by
the quickFormat parameter.

6. Fill in the tinfo output parameter:

 Field tinfo.storageId MUST be set to the identifier of the dynamic volume object.<100>

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Required.

TASK_INFO::createTime Not required.<101>

TASK_INFO::clientID Not required.<102>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<103>

7. Return a response to the client that contains tinfo and the status of the operation.

8. Send the task completion notification.

119 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Note The server MAY decide not to wait for the formatting to complete before returning the response
to the client.<104> All rules for handling asynchronous tasks apply here.

If the volume creation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

1. Create a new dynamic volume object.

2. Modify the disk objects where the new volume resides to account for the change in region
allocation.

3. Create new disk region objects that correspond to the volume members.

4. Modify or delete the free disk region objects where the volume members were created to account
for the allocation of volume members in those regions.

If the drive letter assignment is successful, the server MUST make the following change to the list of

storage objects before returning the response:

 Modify the drive letter object to mark it as in-use by the new volume.

If the format operation is successfully started, the server MUST make the following change to the list
of storage objects before returning the response:

 Create a new file system object.

When the formatting is finished, the server MUST make the following change to the list of storage

objects:

 Modify the dynamic volume object to account for the change of status.

3.2.4.4.1.28 IVolumeClient::CreateVolumeAssignAndFormatEx (Opnum 32)

The CreateVolumeAssignAndFormatEx method creates a dynamic volume on the specified list of disks,
assigns a drive letter and/or a mount point to it, and formats it with a file system.

 HRESULT CreateVolumeAssignAndFormatEx(
 [in] VOLUME_SPEC volumeSpec,
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC* diskList,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in] int cchAccessPath,
 [in, size_is(cchAccessPath)] wchar_t* AccessPath,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [in] DWORD dwFlags,
 [out] TASK_INFO* tinfo
);

volumeSpec: A VOLUME_SPEC structure that defines the volume to create.

diskCount: Number of elements passed in diskList.

diskList: Array of DISK_SPEC structures that specifies the disk to be used by the volume.

letter: Drive letter to assign to the new volume. If no drive letter is needed for the volume, the value
of this field MUST be a 2-byte null character or the Unicode SPACE character.

letterLastKnownState: Drive letter's last known modification sequence number.

120 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

cchAccessPath: Length of AccessPath, including the terminating null character.

AccessPath: Null-terminated path in which the new file system is being mounted. The server MUST

ignore this parameter if CREATE_ASSIGN_ACCESS_PATH is not set in dwFlags.

fsSpec: A FILE_SYSTEM_INFO structure that defines the file system to create. All fields MUST be filled

out unless otherwise specified in section 3.1.4.1.3.

quickFormat: Value that indicates whether the file system will be fully formatted or quickly
formatted.

Value Meaning

FALSE

0

File system will be fully formatted. Full format requires verifying the accessibility of all sectors on
the volume.

TRUE

1

File system will be quickly formatted.

dwFlags: Bitmap of volume creation flags. The value of this field is generated by combining zero or
more of the following applicable flags with a logical OR operation.

Value Meaning

CREATE_ASSIGN_ACCESS_PATH

0x00000001

Assign the mount point AccessPath to the new volume. If the flag is not
set, the parameter AccessPath is ignored.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

The behavior of the server is almost identical to the one described for
IVolumeClient::CreateVolumeAssignAndFormat. The only difference is that if the client specifies the
CREATE_ASSIGN_ACCESS_PATH flag after attempting to assign the drive letter, the server MUST

attempt to create a mount point for the volume under AccessPath, and wait for the mount point
assignment to succeed or fail.

3.2.4.4.1.29 IVolumeClient::GetVolumeMountName (Opnum 33)

The GetVolumeMountName method retrieves the mount name for a volume, partition, or logical drive.

 HRESULT GetVolumeMountName(
 [in] LdmObjectId volumeId,
 [out] unsigned long* cchMountName,
 [out, size_is(,*cchMountName)] WCHAR** mountName
);

volumeId: Specifies the OID of the volume for which the mount name is being retrieved.

cchMountName: Pointer to the length of mountName, including the terminating null character.

mountName: Pointer to the null-terminated mount name of the volume, in Unicode characters, in the
format \\?\Volume{guid}(note that the question mark is literal, not a wildcard). Memory for the

string is allocated by the server and freed by the client.

%5bMS-ERREF%5d.pdf

121 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the volume, partition, or logical drive specified by volumeId is in the list of storage
objects.

2. Verify that cchMountName and mountName are not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Retrieve the mount name of the volume, partition, or logical drive specified by volumeId in the

format "\\?\Volume{guid}"(note that the question mark is literal, not a wildcard).

2. Allocate a buffer large enough to contain the mount name, including the terminating null
character.

3. Populate the buffer with the mount name, including the terminating null character.

4. The buffer MUST be returned to the client in the output parameter mountName.

5. The number of characters in the buffer, including the terminating null character, MUST be returned

in the output parameter cchMountName.

6. Return the response that contains the preceding output parameters and the status of the
operation.

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.1.30 IVolumeClient::GrowVolume (Opnum 34)

The GrowVolume method increases the length of a specified dynamic volume by appending extents

from the specified disks to it. This is a synchronous task.

 HRESULT GrowVolume(
 [in] LdmObjectId volumeId,
 [in] VOLUME_SPEC volumeSpec,
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC* diskList,
 [in] boolean force,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the volume whose size is being changed.

volumeSpec: A VOLUME_SPEC structure that defines the parameters of the changed volume,

including its new expected length.

diskCount: Number of elements passed in diskList.

diskList: Array of DISK_SPEC structures that specifies the list of disk extents to be appended to the

volume. Memory for the array is allocated and freed by the client. All fields MUST be filled out.

force: Boolean value that determines whether the volume is extended or not in case it cannot be
locked.

%5bMS-ERREF%5d.pdf

122 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

FALSE

0

Volume is not extended unless it is locked.

TRUE

1

Volume is extended whether it is locked or unlocked.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).<105>

Upon receiving this message, the server MUST validate parameters:

1. Verify that the dynamic volume specified by volumeId is in the list of storage objects, and check
whether the field volumeSpec.lastKnownState matches the field LastKnownState of the

object.

2. Verify that diskCount is not 0 and diskList is not NULL.

3. For each DISK_SPEC structure in diskList, verify that the disk specified by diskId is in the list of
storage objects; and check whether lastKnownState matches the LastKnownState field of the
object.

4. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Attempt to grow the dynamic volume as follows:

 The new length of the volume is determined by the field length of parameter volumeSpec.

 New members of the volume MUST be created on the disks passed in diskList and
concatenated to the volume, as specified by the force parameter.

 The length of each member is determined by the field length of the corresponding DISK_SPEC
structure passed in diskList.

2. Wait for the volume growth to either succeed or fail.

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<106>

TASK_INFO::clientID Not required.<107>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

%5bMS-ERREF%5d.pdf

123 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

TASK_INFO member Required for this operation

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<108>

4. Return a response to the client containing tinfo and the status of the operation.

5. Send the task completion notification.

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

1. Modify the dynamic volume object to account for the change in size and number of members.

2. Modify the disk objects where the new volume members were created to account for the change in
region allocation.

3. Create new disk region objects that correspond to the new volume members.

4. Modify or delete the free disk region objects where the new volume members were created to
account for the allocation of volume members in those regions.<109>

3.2.4.4.1.31 IVolumeClient::DeleteVolume (Opnum 35)

The DeleteVolume method deletes the specified dynamic volume. This is a synchronous task.

 HRESULT DeleteVolume(
 [in] LdmObjectId volumeId,
 [in] boolean force,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the volume to delete.

force: A value that indicates whether deletion of the volume will be forced if the volume is in use by
another application. If this value is false, the call will fail if some other application has the volume
locked.

Value Meaning

FALSE

0

Deletion will not be forced if the volume is in use.

TRUE

1

Deletion will be forced.

volumeLastKnownState: Volume's last known modification sequence number.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

%5bMS-ERREF%5d.pdf

124 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

1. Verify that the dynamic volume specified by volumeId is in the list of storage objects, and check
whether volumeLastKnownState matches the LastKnownState field of the object.

2. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate

error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Attempt to delete the dynamic volume specified by volumeId, as specified by the force parameter.

2. Wait for the volume deletion to either succeed or fail.

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<110>

TASK_INFO::clientID Not required.<111>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<112>

4. Return a response to the client that contains tinfo and the status of the operation.

5. Send the task completion notification.

If the operation is successful, the server MUST make the following changes to the list of storage

objects before returning the response:

1. Delete the dynamic volume object.

2. Modify the disks where the volume resided to account for the change in region allocation.

3. Delete the disk region objects that correspond to the volume.

4. Create new free region objects, or modify adjacent free region objects, to account for the free
space created by the deletion.<113>

5. Modify the drive letter object associated with the volume to mark it as free.

6. Delete the file system object associated with the volume.<114>

3.2.4.4.1.32 IVolumeClient::AddMirror (Opnum 36)

The AddMirror method adds a mirror to the specified dynamic volume. This is a synchronous task.

 HRESULT AddMirror(
 [in] LdmObjectId volumeId,

125 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [in] hyper volumeLastKnownState,
 [in] DISK_SPEC diskSpec,
 [in, out] int* diskNumber,
 [out] int* partitionNumber,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the volume to which the mirror is being added.

volumeLastKnownState: Volume's last known modification sequence number.

diskSpec: A DISK_SPEC structure that defines the disk to add as the mirror.

diskNumber: Unused. This parameter MUST be set to 0 by the client and MUST be ignored by the
server.

partitionNumber: Pointer to the partition number of the newly added mirror.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the dynamic volume specified by volumeId is in the list of storage objects, and check
whether the field volumeLastKnownState matches the field LastKnownState of the object.

2. Verify that the disk specified by diskSpec.diskId is in the list of storage objects, and check
whether diskSpec.lastKnownState matches the LastKnownState field of the object.

3. Verify that partitionNumber is not NULL.

4. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Add a mirror to the dynamic volume as follows:

 A new member of the volume MUST be created on the disk specified by diskSpec.diskId and
added to the volume as a mirror.

 The length of the member is determined by the length of the volume field.

 If the field diskSpec.needContiguous is set to TRUE, the server MUST allocate a contiguous
disk region for the new member. Otherwise, the server MAY allocate several noncontiguous
disk regions.

2. Wait for the mirror addition to either succeed or fail.

3. Fill the partitionNumber output parameter as follows:

 If the dynamic volume is a boot volume, set partitionNumber to the partition number of the

new volume members.

 Otherwise, set partitionNumber to 0.

%5bMS-ERREF%5d.pdf

126 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

4. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required<115>.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<116>

TASK_INFO::clientID Not required.<117>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<118>

5. Return a response to the client containing tinfo, partitionNumber, and the status of the operation.

6. Send the task completion notification.<119>

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

1. Modify the dynamic volume object to account for the change in layout and number of members.

2. Modify the disk object where the new volume member was created to account for the change in
region allocation.

3. Create new disk region objects that correspond to the new volume member.

4. Modify or delete the free disk region objects where the new volume member was created to
account for the allocation of the volume member in those regions.

3.2.4.4.1.33 IVolumeClient::RemoveMirror (Opnum 37)

The RemoveMirror method removes a mirror from a dynamic volume. This is a synchronous task.

 HRESULT RemoveMirror(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the mirrored volume from which the disk is being removed.

volumeLastKnownState: Volume's last known modification sequence number.

diskId: Specifies the object identifier of the disk being removed from the volume.

diskLastKnownState: Last known modification sequence number of the disk being removed from the
volume.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

127 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the dynamic volume specified by volumeId is in the list of storage objects, and check
whether the field volumeLastKnownState matches the field LastKnownState of the object.
Verify that the dynamic volume is a mirrored one.

2. Verify that the disk specified by diskId is in the list of storage objects, and check whether
diskLastKnownState matches the LastKnownState field of the object. Verify that the disk
specified by diskId is in the mirror volume specified by volumeId.

3. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Delete the mirror of the volume specified by volumeId residing on the disk specified by diskId.

2. Wait for the mirror removal to either succeed or fail.

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<120>

TASK_INFO::clientID Not required.<121>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<122>

4. Return a response to the client containing tinfo and the status of the operation.

5. Send the task completion notification.

If the operation is successful, the server MUST make the following changes to the list of storage

objects before returning the response:

1. Modify the dynamic volume object to account for the change in layout and number of members.

2. Modify the disks where the deleted volume member resided to account for the change in region
allocation.

3. Delete the disk region objects that correspond to the deleted volume member.

%5bMS-ERREF%5d.pdf

128 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

4. Create new free region objects or modify adjacent free region objects to account for the free space
created by the deletion.

3.2.4.4.1.34 IVolumeClient::SplitMirror (Opnum 38)

The SplitMirror method splits a dynamic mirrored volume into two independent simple volumes, one
with the identifier and drive letter of the original volume and the other with a different identifier and
drive letter. This is a synchronous task.

 HRESULT SplitMirror(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in, out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the volume to split.

volumeLastKnownState: Volume's last known modification sequence number.

diskId: Specifies the object identifier of the disk to break away from the volume specified by
volumeId.

diskLastKnownState: Last known modification sequence number of the disk to split off.

letter: Drive letter to assign to the disk identified by diskId. If no drive letter is needed for the

volume, the value of this field MUST be either a 2-byte null character or the Unicode SPACE
character.

letterLastKnownState: Last known modification sequence number of the drive letter that is being
assigned to the disk to split.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the dynamic volume specified by volumeId is in the list of storage objects, and check
whether the field volumeLastKnownState matches the field LastKnownState of the object.

2. Verify that the disk specified by diskId is in the list of storage objects and check whether
diskLastKnownState matches the LastKnownState field of the object.

3. Verify that the drive letter, if specified by letter, is in the list of storage objects and check whether
letterLastKnownState matches the LastKnownState field of the object. <123>

4. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Attempt to remove the mirror of the volume specified by volumeId residing on the disk specified

by diskId. If the client sets the TASK_INFO::error parameter to LDM_DEVICE_IN_USE, the server

%5bMS-ERREF%5d.pdf

129 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

MUST remove the mirror of the volume, even if the volume is in use. If the client does not set the
TASK_INFO::error parameter to LDM_DEVICE_IN_USE and if the volume is in use, the server

MUST fail the operation immediately, returning the LDM_E_VOLUME_IN_USE error as its response
to the client.

2. Transform the removed member into a standalone dynamic volume.

3. If successful, assign the drive letter, if specified by letter, to the new volume.

4. Wait for the preceding sequence to either succeed or fail.

5. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<124>

TASK_INFO::clientID Not required.<125>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<126>

6. Return a response to the client containing tinfo and the status of the operation.

7. Send the task completion notification.

If the removal of the mirror is successful, the server MUST make the following changes to the list of
storage objects before returning the response:

1. Modify the old dynamic volume object to account for the change in layout and number of
members.

2. Create a new dynamic volume object for the new volume.

3. Modify the disk region objects split from the old volume to account for their migration to the new
volume.

If the drive letter assignment is successful, the server MUST make the following changes to the list of
storage objects before returning the response:

 Modify the drive letter object, if specified by letter, to mark it as in use by the new volume.

 Create a new file system object for the new volume.<127>

3.2.4.4.1.35 IVolumeClient::InitializeDisk (Opnum 39)

The InitializeDisk method converts an uninitialized disk into a dynamic disk. This is a synchronous
task.

 HRESULT InitializeDisk(
 [in] LdmObjectId diskId,

130 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [in] hyper diskLastKnownState,
 [out] TASK_INFO* tinfo
);

diskId: Specifies the OID of the disk to initialize.

diskLastKnownState: Disk's last known modification sequence number.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the disk specified by diskId is in the list of storage objects and check whether
diskLastKnownState matches the LastKnownState field of the object.

2. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Initialize the disk specified by diskId with an empty MBR partition table and write an MBR
signature to it.

2. If successful, convert the disk to a dynamic disk.

3. Wait for the conversion to either succeed or fail.

4. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<128>

TASK_INFO::clientID Not required.<129>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<130>

5. Return a response to the client containing tinfo and the status of the operation.

6. Send the task completion notification.

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

%5bMS-ERREF%5d.pdf

131 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

1. Modify the disk object to account for the change in type.

2. Delete disk region objects residing on the uninitialized disk.<131>

3. Create disk region objects residing on the dynamic disk.

3.2.4.4.1.36 IVolumeClient::UninitializeDisk (Opnum 40)

The UninitializeDisk method converts an empty dynamic disk back to a basic disk. This is an
asynchronous task.

 HRESULT UninitializeDisk(
 [in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO* tinfo
);

diskId: Specifies the OID of the disk to uninitialize.

diskLastKnownState: Disk's last known modification sequence number.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the disk specified by diskId is in the list of storage objects and check whether
diskLastKnownState matches the LastKnownState field of the object.

2. Verify that the disk specified by diskId is empty.<132>

3. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Convert the dynamic disk specified by diskId to a basic disk.

2. Wait for the conversion to either succeed or fail.

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<133>

TASK_INFO::clientID Not required.<134>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

%5bMS-ERREF%5d.pdf

132 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

TASK_INFO member Required for this operation

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<135>

4. Return a response to the client that contains tinfo and the status of the operation.

5. Send the task completion notification.

Note The server MAY decide not to wait for the disk conversion to complete before returning the
response to the client. This task is asynchronous and all rules for handling asynchronous tasks apply
here.<136>

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

1. Modify the disk object to account for the change in type.

2. Delete disk region objects that reside on the dynamic disk.<137>

3. Create disk region objects that reside on the basic disk.

3.2.4.4.1.37 IVolumeClient::ReConnectDisk (Opnum 41)

The ReConnectDisk method reactivates a failed dynamic disk, bringing the disk and the volumes

residing on it online. This is an asynchronous task.

 HRESULT ReConnectDisk(
 [in] LdmObjectId diskId,
 [out] TASK_INFO* tinfo
);

diskId: Specifies the OID of the disk to reactivate.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the dynamic disk specified by diskId is in the list of storage objects.

2. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate

error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Bring the failed dynamic disk specified by diskId online:

 Bring any dynamic volumes that reside on the dynamic disk online if possible.

 Start resynchronization for any mirrored and RAID-5 volumes that reside on the disk.

%5bMS-ERREF%5d.pdf

133 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

2. Wait for the operation to either succeed or fail.

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<138>

TASK_INFO::clientID Not required.<139>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<140>

4. Return a response to the client that contains tinfo and the status of the operation.

5. Send the task completion notification.

Note The server MAY decide not to wait for the disk reactivation operation to complete before
returning the response to the client. This task is asynchronous and all rules for handling asynchronous

tasks apply here.<141>

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

1. Modify the disk object to account for the change in status.

2. Modify the region objects that reside on the disk to account for the change in status.

3. Modify the volume objects that reside on the disk to account for the change in status.

4. Modify drive letter objects to mark them as in use by the volumes brought online.

5. Create file system objects for the volumes brought online.

3.2.4.4.1.38 IVolumeClient::ImportDiskGroup (Opnum 43)

The ImportDiskGroup method imports a foreign dynamic disk group as the primary disk group of the
server. This is an asynchronous task.

 HRESULT ImportDiskGroup(
 [in] int cchDgid,
 [in, size_is(cchDgid)] byte* dgid,
 [out] TASK_INFO* tinfo
);

cchDgid: Size of dgid in characters, including the terminating null character.

dgid: Null-terminated string that contains the UUID of the disk group to import. This parameter is
generated by converting a GUID to a null-terminated ASCII string, and then treating the resulting
string as a byte array.

134 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that dgid is a valid disk group ID that belongs to a foreign dynamic disk group.

2. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Make the foreign disk group specified by dgid the primary disk group of the system.

 Bring all dynamic disks and volumes that belong to the disk group online.

2. Wait for the operation to either succeed or fail.

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<142>

TASK_INFO::clientID Not required.<143>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<144>

4. Return a response to the client that contains tinfo and the status of the operation.

5. Send the task completion notification.

Note The server MAY decide not to wait for the disk import operation to complete before returning
the response to the client. This task is asynchronous and all rules for handling asynchronous tasks
apply here.<145>

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

1. Modify the disk objects of the disk group to account for the change in status.

2. Create new dynamic volume objects that correspond to the imported volumes.

3. Create new disk region objects that correspond to the imported volumes.

%5bMS-ERREF%5d.pdf

135 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

4. Modify drive letter objects to mark them as in use by the imported volumes (if the volumes have
drive letters).

5. Create file system objects for the imported volumes (if the volumes are formatted with file
systems).

3.2.4.4.1.39 IVolumeClient::DiskMergeQuery (Opnum 44)

The DiskMergeQuery method gathers disk and volume information needed to merge a foreign dynamic
disk group into the primary disk group of the server. This is a synchronous task.

 HRESULT DiskMergeQuery(
 [in] int cchDgid,
 [in, size_is(cchDgid)] byte* dgid,
 [in] int numDisks,
 [in, size_is(numDisks)] LdmObjectId* diskList,
 [out] hyper* merge_config_tid,
 [out] int* numRids,
 [out, size_is(,*numRids)] hyper** merge_dm_rids,
 [out] int* numObjects,
 [out, size_is(,*numObjects)] MERGE_OBJECT_INFO** mergeObjectInfo,
 [in, out] unsigned long* flags,
 [out] TASK_INFO* tinfo
);

cchDgid: Size of dgid in characters, including the terminating null character.

dgid: Null-terminated string containing the UUID of the disk group to be merged. This parameter is
generated by converting a GUID to a null-terminated ASCII string and then treating the resulting
string as a byte array.

numDisks: Number of disks passed in diskList.

diskList: Array of OIDs of type LdmObjectId that specify the disks of the dgid group to be merged.

merge_config_tid: Pointer to the modification sequence number of the disk group to be merged.

numRids: Pointer to the number of elements returned in merge_dm_rids.

merge_dm_rids: Pointer to an array of disk records representing the disks that will be merged.

numObjects: Number of elements returned in mergeObjectInfo.

mergeObjectInfo: Pointer to an array of MERGE_OBJECT_INFO structures that contain information

about the volumes that will be merged.

flags: Disk merge query flags. The value of this field is generated by combining zero or more of the
following applicable flags with a logical OR operation.

Value Meaning

DSKMERGE_IN_NO_UNRELATED

0x00000001

Do not retrieve merge information for volumes of the foreign disk
group that do not have extents on diskList . This is an input-only flag.

DSKMERGE_OUT_NO_PRIMARY_DG

0x00000001

The machine does not have a primary disk group. This is an output-
only flag.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.<146>

136 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that dgid is a valid disk group ID belonging to a foreign dynamic disk group.

2. Verify that the disk objects specified by diskList are in the list of storage objects and belong to the
disk group specified by dgid.

3. Verify that merge_config_tid is not NULL.

4. Verify that numRids and merge_dm_rids are not NULL.

5. Verify that numObjects and mergeObjectInfo are not NULL.

6. Verify that flags is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. The modification sequence number of the disk group specified by dgid MUST be returned in the
output parameter merge_config_tid.

2. Enumerate all dynamic disk records from the configuration of the disk group.

3. Allocate a buffer large enough to contain the identifiers of the enumerated dynamic disk records.

4. Populate the buffer with the identifiers of the enumerated dynamic disk records.

5. The buffer MUST be returned to the client in the output parameter merge_dm_rids.

6. The number of identifiers in the buffer MUST be returned in the output parameter numRids.

7. If DSKMERGE_IN_NO_UNRELATED flag is set, attempt to enumerate only the volumes that have
extent on diskList. If DSKMERGE_IN_NO_UNRELATED flag is not set, enumerate all volumes
belonging to the disk group that will be merged.

8. Allocate a second buffer large enough to contain MERGE_OBJECT_INFO structures that describe
the enumerated volumes.

9. Populate each MERGE_OBJECT_INFO structure in the second buffer with information about the
volume.

10. The second buffer MUST be returned to the client in the output parameter mergeObjectInfo.

11. The number of MERGE_OBJECT_INFO structures in the second buffer MUST be returned to the
client in the output parameter numObjects.

12. If the machine does not have a primary disk group, the server MUST set the
DSKMERGE_OUT_NO_PRIMARY_DG flag in the output parameter flags.

13. Return a response that contains the preceding output parameters and the status of the operation.

14. Send the task completion notification.

The server MUST NOT change the list of storage objects as part of processing this message.<147>

3.2.4.4.1.40 IVolumeClient::DiskMerge (Opnum 45)

%5bMS-ERREF%5d.pdf

137 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

The DiskMerge method merges a foreign disk group into the primary disk group of the server. This is a
synchronous task.

 HRESULT DiskMerge(
 [in] int cchDgid,
 [in, size_is(cchDgid)] byte* dgid,
 [in] int numDisks,
 [in, size_is(numDisks)] LdmObjectId* diskList,
 [in] hyper merge_config_tid,
 [in] int numRids,
 [in, size_is(numRids)] hyper* merge_dm_rids,
 [out] TASK_INFO* tinfo
);

cchDgid: Size of dgid in characters, including the terminating null character.

dgid: Null-terminated string that contains the UUID of the disk group to be merged.

numDisks: Number of disks passed in diskList.

diskList: Array of OIDs of type LdmObjectId that specifies the disks to be merged from the dgid
group.

merge_config_tid: Last known modification sequence number of the disk group to be merged.

numRids: Number of elements passed in merge_dm_rids.

merge_dm_rids: Array of disk records for the disks in diskList. Memory for the array is allocated and
freed by the client.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.<148>

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message the server MUST validate parameters:

1. Verify that dgid is a valid disk group ID that belongs to a foreign dynamic disk group.

2. Verify that the disk objects specified by diskList are in the list of storage objects and belong to the
disk group specified by dgid.

3. Verify that merge_config_tid matches the modification sequence number of the disk group
specified by dgid.

4. Verify that the disk records specified in merge_dm_rids exist in the configuration of the disk group

specified by dgid.

5. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate

error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Merge the foreign disk group specified by dgid into the primary disk group of the system:

 Bring all dynamic disks and volumes belonging to the foreign disk group online.

2. Wait for the merge to either succeed or fail.

%5bMS-ERREF%5d.pdf

138 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<149>

TASK_INFO::clientID Not required.<150>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<151>

4. Return a response to the client containing tinfo and the status of the operation.

5. Send the task completion notification.

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

1. Modify the disk objects of the foreign disk group to account for the change in status.

2. Create new dynamic volume objects that correspond to the imported volumes.

3. Create new disk region objects that correspond to the imported volumes.

4. Modify drive letter objects to mark them as in use by the imported volumes (if the volumes have

drive letters).

5. Create file system objects for the imported volumes (if the volumes are formatted with file
systems).

3.2.4.4.1.41 IVolumeClient::ReAttachDisk (Opnum 47)

The ReAttachDisk method reattaches the specified dynamic disk, bringing the volumes of the disk back
online after reconnecting the disk device to the server. This is a synchronous task.<152>

 HRESULT ReAttachDisk(
 [in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO* tinfo
);

diskId: Specifies the OID of the disk to reattach.

diskLastKnownState: Disk's last known modification sequence number.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

%5bMS-ERREF%5d.pdf

139 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Upon receiving this message, the server MUST validate parameters:

 Verify that the dynamic disk specified by diskId is in the list of storage objects, and check whether

diskLastKnownState matches the LastKnownState field of the object.

 Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Bring the dynamic disk specified by diskId online:

 Mark the disk as being present.

 Bring any dynamic volumes that reside on the disk online.

2. Wait for the operation to either succeed or fail.

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<153>

TASK_INFO::clientID Not required.<154>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<155>

4. Return a response to the client containing tinfo and the status of the operation.

5. Send the task completion notification.

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

1. Modify the disk object to account for the change in status.

2. Modify the volume objects that reside on the disk to account for the change in status.

3. Modify drive letter objects that correspond to the volumes brought online to mark them as free.

4. Create file system objects for the volumes brought online (if the volumes are formatted with file
systems).

3.2.4.4.1.42 IVolumeClient::ReplaceRaid5Column (Opnum 51)

The ReplaceRaid5Column method repairs a dynamic RAID-5 volume by replacing the failed member of
the volume with a specified disk. This is a synchronous task.

140 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 HRESULT ReplaceRaid5Column(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId newDiskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the volume in which to replace the member.

volumeLastKnownState: Last known modification sequence number of the RAID-5 volume.

newDiskId: Specifies the OID of the replacement disk.

diskLastKnownState: Replacement disk's last known modification sequence number.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the dynamic volume specified by volumeId is in the list of storage objects, and check
whether volumeLastKnownState matches the field LastKnownState of the object. Verify that the
volume is RAID-5.

2. Verify that the disk specified by newDiskId is in the list of storage objects, and check whether

diskLastKnownState matches the LastKnownState field of the object.

3. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Replace the failed member of the RAID-5 volume specified by volumeId:

1. Remove and delete the failed member of the volume.

2. Create a new member of the volume on the disk specified by newDiskId.

3. Start a task to regenerate the parity of the volume.

2. Wait for the member replacement to either succeed or fail.

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<156>

TASK_INFO::clientID Not required.<157>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

%5bMS-ERREF%5d.pdf

141 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

TASK_INFO member Required for this operation

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<158>

4. Return a response to the client containing tinfo and the status of the operation.

5. Send the task completion notification.

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

1. Modify the dynamic volume object to account for the change in status and list of members.

2. Modify the disk object where the new volume member was created to account for the change in
region allocation.

3. Create new disk region objects that correspond to the new volume member.

4. Modify or delete the free disk region objects where the new volume member was created to
account for the allocation of the volume member in those regions.

5. Modify the disk object that corresponds to the deleted member to account for the change in region

allocation.

6. Delete disk region objects that correspond to the deleted member.

7. Create new free region objects or modify adjacent free region objects to account for the free space
created by the deletion of the old member.

3.2.4.4.1.43 IVolumeClient::RestartVolume (Opnum 52)

The RestartVolume method attempts to bring a dynamic volume back online. This is a synchronous

task.

 HRESULT RestartVolume(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the volume to restart.

volumeLastKnownState: Volume's last known modification sequence number.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the dynamic volume specified by volumeId is in the list of storage objects, and check

whether volumeLastKnownState matches the field LastKnownState of the object.

%5bMS-ERREF%5d.pdf

142 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

2. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate

error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Bring the volume specified by volumeId online.

2. Wait for the operation to either succeed or fail.

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<159>

TASK_INFO::clientID Not required.<160>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<161>

4. Return a response to the client that contains tinfo and the status of the operation.<162>

5. Send the task completion notification.

If the operation is successful the server MUST make the following changes to the list of storage
objects before returning the response:

1. Modify the dynamic volume object to account for the change in status.

2. Modify the drive letter object to mark it as in use by the volume (if the volume has a drive letter).

3. Create a file system object for the volume (if the volume is formatted with a file system).

3.2.4.4.1.44 IVolumeClient::GetEncapsulateDiskInfo (Opnum 53)

The GetEncapsulateDiskInfo method gathers the information needed to convert the specified basic
disks to dynamic disks. This is a synchronous task.

 HRESULT GetEncapsulateDiskInfo(
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC* diskSpecList,
 [out] unsigned long* encapInfoFlags,
 [out] unsigned long* affectedDiskCount,
 [out, size_is(,*affectedDiskCount)]
 DISK_INFO** affectedDiskList,
 [out, size_is(,*affectedDiskCount)]
 unsigned long** affectedDiskFlags,
 [out] unsigned long* affectedVolumeCount,
 [out, size_is(,*affectedVolumeCount)]
 VOLUME_INFO** affectedVolumeList,

143 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [out] unsigned long* affectedRegionCount,
 [out, size_is(,*affectedRegionCount)]
 REGION_INFO** affectedRegionList,
 [out] TASK_INFO* tinfo
);

diskCount: Number of elements passed in the diskSpecList array.

diskSpecList: Array of DISK_SPEC structures that specifies the disks to be encapsulated.

encapInfoFlags: Bitmap of flags that returns information about encapsulating the disks specified in
diskSpecList. The value of this field is generated by combining zero or more of the applicable flags
defined as follows with a logical OR operation.

Value Meaning

ENCAP_INFO_CANT_PROCEED

0x00000001

Encapsulation for disk will not succeed. The other flags specify the
reason.

ENCAP_INFO_NO_FREE_SPACE

0x00000002

Volume manager could not find sufficient free space on the disk for
encapsulation.

ENCAP_INFO_BAD_ACTIVE

0x00000004

Disk contains an active partition from which the current operating system
was started.

ENCAP_INFO_UNKNOWN_PART

0x00000008

Volume manager was unable to determine the type of a partition on the
disk.

ENCAP_INFO_FT_UNHEALTHY

0x00000010

Disk contains an FT set volume that is not functioning properly.

ENCAP_INFO_FT_QUERY_FAILED

0x00000020

Volume manager was unable to obtain information about an FT set
volume on the disk.

ENCAP_INFO_FT_HAS_RAID5

0x00000040

Disk is part of an FT RAID-5 set, which this interface does not support for
encapsulation.

ENCAP_INFO_FT_ON_BOOT

0x00000080

Disk is both part of an FT set volume and bootable, which this interface
does not support for encapsulation.

ENCAP_INFO_REBOOT_REQD

0x00000100

Encapsulation of the disk requires a restart of the computer.

ENCAP_INFO_CONTAINS_FT

0x00000200

Disk is part of an FT set volume.

ENCAP_INFO_VOLUME_BUSY

0x00000400

Disk is currently in use.

ENCAP_INFO_PART_NR_CHANGE

0x00000800

Encapsulation of the disk requires modification of the boot configuration.

affectedDiskCount: Pointer to the number of disks that will be affected by the encapsulation.

affectedDiskList: Pointer to an array of new DISK_INFO structures that represents the disks that will
be affected by the encapsulation. Memory for the array is allocated by the server and freed by the
client.

144 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

affectedDiskFlags: Pointer to an array of bitmaps of flags that provides information about the disks
that will be affected by the encapsulation. Memory for the array is allocated by the server and

freed by the client. The value of this field is a logical 'OR' of 0 or more of the following applicable
flags.

Value Meaning

CONTAINS_FT

0x00000001

Disk contains an FT set volume.

CONTAINS_RAID5

0x00000002

Disk contains part of an FT RAID-5 set.

CONTAINS_REDISTRIBUTION

0x00000004

Disk contains an unknown volume type.

CONTAINS_BOOTABLE_PARTITION

0x00000008

Disk contains a bootable partition.

CONTAINS_LOCKED_PARTITION

0x00000010

Disk contains a locked partition.

CONTAINS_NO_FREE_SPACE

0x00000020

Disk is full.

CONTAINS_EXTENDED_PARTITION

0x00000040

Disk contains an empty partition.

PARTITION_NUMBER_CHANGE

0x00000080

A partition number on the disk has changed.

CONTAINS_BOOTINDICATOR

0x00000100

Disk contains the active partition.

CONTAINS_BOOTLOADER

0x00000200

Disk contains the boot loader.

CONTAINS_SYSTEMDIR

0x00000400

Partition contains the system directory.

CONTAINS_MIXED_PARTITIONS

0x00000800

Partition contains different types of partitions.

affectedVolumeCount: Pointer to the number of volumes that will be affected by the encapsulation.

affectedVolumeList: Pointer to an array of VOLUME_INFO structures that represents the volumes
that will be affected by the encapsulation. Memory for the array is allocated by the server and
freed by the client.

affectedRegionCount: Pointer to the number of regions that will be affected by the encapsulation.

affectedRegionList: Pointer to an array of REGION_INFO structures that represents the regions that

will be affected by the encapsulation. Memory for the array is allocated by the server and freed by
the client.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

145 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that diskCount is not 0 and diskSpecList is not NULL.

2. For each DISK_SPEC structure specified in diskSpecList, verify that the disk specified by diskId is
in the list of storage objects; and check whether lastKnownState matches the LastKnownState
field of the object.

3. Verify that encapInfoFlags is not NULL.

4. Verify that affectedDiskCount, affectedDiskList, and affectedDiskFlags are not NULL.

5. Verify that affectedVolumeCount and affectedVolumeList are not NULL.

6. Verify that affectedRegionCount and affectedRegionList are not NULL.

7. Verify that flags is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.<163>

Otherwise, the server MUST compose a response to the client as follows:

1. Identify other basic disks from the list of storage objects that need to be encapsulated together

with the basic disks specified by diskSpecList. If disks that have existing FT Disk volume sets are
being encapsulated, the server must get a list of volume extents for all volumes that have at
least one extent on the input disks. Then walk through the list of volume extents and add it for
each extent, if the disk on which the extent is located is not in the diskSpecList.

2. Allocate a buffer large enough to contain DISK_INFO structures that describe all basic disks that
need to be encapsulated together (including the disks specified by diskSpecList).

3. Populate each DISK_INFO structure in the buffer with information about the disk.

4. The buffer MUST be returned to the client in the output parameter affectedDiskList.

5. The number of DISK_INFO structures in the buffer MUST be returned to the client in the output
parameter affectedDiskCount.

6. Allocate a second buffer large enough to contain bitmaps of flags, one for each disk returned in
affectedDiskList, that describe disk conditions that are of interest to clients in the context of
encapsulation.

7. Populate the second buffer with the bitmaps of flags of the disks.

8. The second buffer MUST be returned to the client in the output parameter affectedDiskFlags. Note
that the number of elements in the buffer is the same as the count of disks, which is returned in
affectedDiskCount.

9. Enumerate all the FT volumes that reside on the disks returned in affectedDiskList from the list of
storage objects.

10. Allocate a third buffer large enough to contain VOLUME_INFO structures that describe the

enumerated FT volumes.

11. Populate each VOLUME_INFO structure in the third buffer with information about the FT volume.

12. The third buffer MUST be returned to the client in the output parameter affectedVolumeList.

%5bMS-ERREF%5d.pdf

146 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

13. The number of VOLUME_INFO structures in the third buffer MUST be returned to the client in the
output parameter affectedVolumeCount.

14. Enumerate all the disk regions that reside on the disks returned in affectedDiskList from the list of
storage objects, excluding free regions.

15. Allocate a fourth buffer large enough to contain REGION_INFO structures that describe the
enumerated disk regions.

16. Populate each REGION_INFO structure in the fourth buffer with information about the disk region.

17. The fourth buffer MUST be returned to the client in the output parameter affectedRegionList.

18. The number of REGION_INFO structures in the fourth buffer MUST be returned to the client in the
output parameter affectedRegionCount.

19. Populate a 32-bit-signed integer bitmap of flags describing conditions that will prevent the overall

encapsulation to proceed, or might be of interest to the client in the context of encapsulation. If
the encapsulation cannot proceed, the server MUST set the ENCAP_INFO_CANT_PROCEED flag,

and then set other flags as appropriate to account for the reasons why the encapsulation is not
possible.

20. The bitmap of flags MUST be returned to the client in the output parameter encapInfoFlags.

21. Return a response that contains the output parameters mentioned previously and the status of the

operation.

22. Fill in the tinfo output parameter. This is a synchronous task.

 The tinfo values MUST be set as follows.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<164>

TASK_INFO::clientID Not required.<165>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<166>

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.1.45 IVolumeClient::EncapsulateDisk (Opnum 54)

The EncapsulateDisk method converts the specified basic disks to dynamic disks. This is a
synchronous task.

 HRESULT EncapsulateDisk(
 [in] unsigned long affectedDiskCount,
 [in, size_is(affectedDiskCount)]
 DISK_INFO* affectedDiskList,

147 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [in] unsigned long affectedVolumeCount,
 [in, size_is(affectedVolumeCount)]
 VOLUME_INFO* affectedVolumeList,
 [in] unsigned long affectedRegionCount,
 [in, size_is(affectedRegionCount)]
 REGION_INFO* affectedRegionList,
 [out] unsigned long* encapInfoFlags,
 [out] TASK_INFO* tinfo
);

affectedDiskCount: The number of elements passed in the affectedDiskList array.

affectedDiskList: An array of DISK_INFO structures that specifies the disks to be encapsulated.

affectedVolumeCount: The number of elements passed in the affectedVolumeList array.

affectedVolumeList: An array of VOLUME_INFO structures that represents the volumes affected by
the encapsulation. If the number of affect volumes is zero, a pointer to a zero length array MUST

be passed. This pointer MUST NOT be input as NULL.

affectedRegionCount: The number of elements passed in the affectedRegionList array.

affectedRegionList: An array of REGION_INFO structures that represents the regions affected by the
encapsulation. If the number of affect regions is zero, a pointer to a zero length array MUST be
passed. This pointer MUST NOT be input as NULL.

encapInfoFlags: Bitmap of flags that provide information about the encapsulation. The value of this
field is a logical 'OR' of zero or more of the following applicable flags.

Value Meaning

ENCAP_INFO_CANT_PROCEED

0x00000001

Encapsulation for disk did not succeed. The other flags specify the
reason.

ENCAP_INFO_NO_FREE_SPACE

0x00000002

The volume manager could not find sufficient free space on the disk for
encapsulation.

ENCAP_INFO_BAD_ACTIVE

0x00000004

The disk contains an active partition from which the current operating
system was not started.

ENCAP_INFO_UNKNOWN_PART

0x00000008

The volume manager was unable to determine the type of a partition on
the disk.

ENCAP_INFO_FT_UNHEALTHY

0x00000010

The disk contains an unhealthy FT set volume.

ENCAP_INFO_FT_QUERY_FAILED

0x00000020

The volume manager was unable to obtain information about an FT set
volume on the disk.

ENCAP_INFO_FT_HAS_RAID5

0x00000040

The disk is part of an FT RAID-5 set, which this interface does not
support for encapsulation.

ENCAP_INFO_FT_ON_BOOT

0x00000080

The disk is part of an FT set volume and bootable, which this interface
does not support for encapsulation.

ENCAP_INFO_REBOOT_REQD

0x00000100

Encapsulation of the disk requires a restart of the computer.

ENCAP_INFO_CONTAINS_FT The disk is part of an FT set volume.

148 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

0x00000200

ENCAP_INFO_VOLUME_BUSY

0x00000400

The disk is currently in use.

ENCAP_INFO_PART_NR_CHANGE

0x00000800

Encapsulation of the disk requires modification of the boot configuration.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that affectedDiskList is not NULL and that affectedDiskCount is not 0.

2. For each DISK_INFO structure specified by affectedDiskList, verify that the disk specified by diskId
is in the list of storage objects and that lastKnownState matches the LastKnownState field of
the object.

3. For each DISK_INFO structure specified by affectedDiskList, verify that the disk specified by diskId
is not a GPT disk.

4. For each REGION_INFO structure specified by affectedRegionList, verify that the region's style
field does have the value PARTITIONSTYLE_GPT.

5. Verify that no other basic disks need to be encapsulated together with the disks specified by
affectedDiskList.

6. Verify that affectedVolumeList is not NULL. If affectedVolumeCount is zero, a valid pointer to a
zero-length array for the affectVolumeList MUST be passed in.

7. Verify that affectedRegionList is not NULL. If affectedRegionCount is zero, a valid pointer to a
zero-length array for the affectRegionList MUST be passed in.

8. Verify that the list of basic volumes specified by affectedVolumeList matches the set of basic

volumes that reside on the disks specified by affectedDiskList.

9. Verify that encapInfoFlags is not NULL.

10. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Convert the basic disks specified by affectedDiskList to dynamic:

 All partitions and logical drives that reside on the basic disk are converted to dynamic
volumes.

2. Wait for the conversion to either succeed or fail.

3. Fill in the encapInfoFlags output parameter.

4. Fill in the tinfo output parameter.

%5bMS-ERREF%5d.pdf

149 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<167>

TASK_INFO::clientID Not required.<168>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<169>

5. Return a response to the client containing tinfo and the status of the operation.

6. Send the task completion notification.<170>

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

1. Modify the converted disk objects to account for the change in type.

2. Create new dynamic volume objects that correspond to the new dynamic volumes.

3. Create new disk region objects for the new dynamic disks.

4. Delete disk region objects of the old basic disks.<171>

5. Modify drive letter objects to account for the change of volume owning them.

6. Modify file system objects to account for the change of volume owning them.

If the boot partition is among the disks being encapsulated and if the partition number of the boot
partition changes during the disk encapsulation, the server MUST store boot partition change

information on persistent storage (registry).

The information MUST contain the old (pre-encapsulation) and new (post-encapsulation) partition
number of the boot partition. The information is useful in case the client sends an
IVolumeClient::QueryChangePartitionNumbers message. The
IVolumeClient::QueryChangePartitionNumbers method will return the original partition number and
the new partition number. This information MAY be used to update boot settings if necessary.<172>

3.2.4.4.1.46 IVolumeClient::QueryChangePartitionNumbers (Opnum 55)

The QueryChangePartitionNumbers method retrieves information about the partition number change

that results when a boot partition is encapsulated.

 HRESULT QueryChangePartitionNumbers(
 [out] int* oldPartitionNumber,
 [out] int* newPartitionNumber
);

oldPartitionNumber: Pointer to the partition number of the boot volume before the encapsulation
operation.

150 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

newPartitionNumber: Pointer to the partition number of the boot volume after the encapsulation
operation.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by theDisk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that oldPartitionNumber and newPartitionNumber are not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Retrieve the boot partition change information from persistent storage (registry).

2. The old (pre-encapsulation) partition number of the boot partition MUST be returned in the output

parameter oldPartitionNumber. Return 0 if there is no boot partition change information to report.

3. The new (post-encapsulation) partition number of the boot partition MUST be returned in the
output parameter newPartitionNumber. Return 0 if there is no boot partition change information to
report.

4. Return a response containing the output parameters mentioned previously and the status of the

operation.

3.2.4.4.1.47 IVolumeClient::DeletePartitionNumberInfoFromRegistry (Opnum 56)

The DeletePartitionNumberInfoFromRegistry method deletes the boot partition number change history
from persistent storage.

 HRESULT DeletePartitionNumberInfoFromRegistry();

This method has no parameters.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

The server MUST process the message as follows:

1. Delete the boot partition change information from persistent storage (registry).<173>

2. Wait for the deletion to succeed or fail.

3. Return a response to the client that contains the status of the operation.

3.2.4.4.1.48 IVolumeClient::SetDontShow (Opnum 57)

The SetDontShow method sets a Boolean value that indicates whether to show a disk initialization
tool.<174>

 HRESULT SetDontShow(
 [in] boolean bSetNoShow
);

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

151 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

bSetNoShow: Boolean value that determines whether the New Disk Wizard is enabled or disabled.

Value Meaning

FALSE

0

Enables New Disk Wizard. This value is the default. It indicates that the user has not selected
the check box in the New Disk Wizard to request that the wizard not be displayed in the future.

TRUE

1

Disables New Disk Wizard. This value indicates that the user has selected the check box in the
New Disk Wizard to request that the wizard not be displayed in the future.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

The server MUST process the message as follows:

1. Save the bSetNoShow setting on persistent storage (registry). The value of the setting MUST be
returned to the client in subsequent calls to IVolumeClient::GetDontShow.

2. Wait for the operation to succeed or fail.

3. Return a response to the client that contains the status of the operation.

3.2.4.4.1.49 IVolumeClient::GetDontShow (Opnum 58)

The GetDontShow method retrieves a Boolean value that indicates whether to show a disk
initialization tool.<175>

 HRESULT GetDontShow(
 [out] boolean* bGetNoShow
);

bGetNoShow: Boolean value that indicates whether the New Disk Wizard is enabled or disabled.

Value Meaning

FALSE

0

New Disk Wizard is enabled. This value is the default. It indicates that the user has not selected
the check box in the New Disk Wizard to request that the wizard not be displayed in the future.

TRUE

1

New Disk Wizard is disabled. This value indicates that the user has selected the check box in
the New Disk Wizard to request that the wizard not be displayed in the future.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that bGetNoShow is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Retrieve the bGetNoShow setting saved on persistent storage (registry) during the most recent

call to IVolumeClient::SetDontShow.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

152 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

2. The setting MUST be returned to the client in the output parameter bGetNoShow.

3. Return a response that contains the output parameters mentioned previously and the status of the

operation.

3.2.4.4.1.50 IVolumeClient::EnumTasks (Opnum 67)

The EnumTasks method enumerates the tasks currently running on the server.

 HRESULT EnumTasks(
 [in, out] unsigned long* taskCount,
 [out, size_is(,*taskCount)] TASK_INFO** taskList
);

taskCount: Number of elements returned in the taskList array. The client SHOULD set the value of
this parameter as zero.

taskList: Array of TASK_INFO structures that describe the tasks running on the server. Memory for
the array is allocated by the server and freed by the client.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

 Verify that taskCount and taskList are not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Enumerate all task objects from the list of tasks currently running on the server.

2. Allocate a buffer large enough to contain TASK_INFO structures that describe all enumerated
tasks.

3. Populate each TASK_INFO structure in the buffer with information about the task.

4. The buffer MUST be returned to the client in the output parameter taskList.

5. The number of TASK_INFO structures in the buffer MUST be returned in the output parameter
taskCount.

6. Return a response containing the output parameters mentioned previously and the status of the
operation.

The server MUST NOT change the list of tasks currently running on the server as part of processing
this message.<176>

3.2.4.4.1.51 IVolumeClient::GetTaskDetail (Opnum 68)

The GetTaskDetail method retrieves information about a task running on the server.

 HRESULT GetTaskDetail(
 [in] LdmObjectId id,
 [in, out] TASK_INFO* tinfo
);

%5bMS-ERREF%5d.pdf

153 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

id: Specifies the OID of the task for which to retrieve information.

tinfo: A TASK_INFO structure that describes the operation currently being performed by id. The client

SHOULD set values of all members of TASK_INFO structure as zero.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the task specified by id is in the list of tasks currently running on the server.

2. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Fill a TASK_INFO structure with the status of the task.

2. The filled TASK_INFO structure MUST be returned in the output parameter tinfo.

3. Return a response that contains the output parameters mentioned previously and the status of the
operation.

The server MUST NOT change the list of tasks currently running on the server as part of processing

this message.

3.2.4.4.1.52 IVolumeClient::AbortTask (Opnum 69)

The AbortTask method aborts a task running on the server.

 HRESULT AbortTask(
 [in] LdmObjectId id
);

id: Specifies the OID of the task to be aborted.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

 Verify that the task specified by id is in the list of tasks currently running on the server.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Cancel the task specified by id. The server MUST attempt to stop all activity related to the task.

2. Wait for the cancellation to succeed or fail.

3. Return a response to the client containing the status of the operation.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

154 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

4. If successful, send task completion notification and delete the task object from the list of tasks
currently running on the server.

3.2.4.4.1.53 IVolumeClient::HrGetErrorData (Opnum 70)

The HrGetErrorData method retrieves user-readable error information associated with an HRESULT
error code.<177>

 HRESULT HrGetErrorData(
 [in] HRESULT hr,
 [in] DWORD dwFlags,
 [out] DWORD* pdwStoredFlags,
 [out] int* pcszw,
 [out, string, size_is(,*pcszw,)]
 wchar_t*** prgszw
);

hr: The HRESULT error code from which error information is retrieved.

dwFlags: Bitmap of retrieval flags. The value of this field is generated by combining zero or more of
the applicable flags, defined as follows, with a logical OR operation.

Value Meaning

ERRFLAG_NOREMOVE

0x00020000

Do not delete the error information.

ERRFLAG_IGNORETAG

0x00040000

Retrieve the error information even if it was not produced for this client.

pdwStoredFlags: Pointer to a bitmap of error flags. There are no flags defined.<178>

pcszw: Pointer to the number of strings returned in prgszw.

prgszw: Pointer to an array of strings that contain error information for the HRESULT. For example,
for error LDM_E_CRASHDUMP_PAGEFILE_BOOT_SYSTEM_VOLUME, the string is: "The request
cannot be completed because the volume is open or in use. It MAY be configured as a system,

boot, or page file volume, or to hold a crashdump file." Memory for the array is allocated by the
server and freed by the client.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that pdwStoredFlags is not NULL.

2. Verify that pcszw and prgszw are not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Enumerate user-readable error messages that can be used to better explain the error code
specified by hr to the end user:

%5bMS-ERREF%5d.pdf

155 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 Such error messages are produced by the server during failed client requests. Because the
server is not allowed to return error messages in the response to the protocol message that

failed, it MAY save such information in a store in preparation for returning it to the client in a
subsequent call to IVolumeClient::HrGetErrorData.

Note Servers are not mandated to support producing error messages. Servers that choose to
support producing error messages are free to decide which protocol messages produce error
messages and which do not.<179>

2. Unless the flag ERRFLAG_IGNORETAG is set in the input parameter dwFlags, the server MUST
filter out error messages produced as a result of failed requests initiated by other clients.

3. For each one of the enumerated error messages, allocate a buffer large enough to contain the
entire error message, including the terminating null character. Populate each buffer with the

corresponding error message.

4. Allocate an array large enough to contain pointers to each one of the error message buffers.

5. Populate the array with pointers to the error message buffers.

6. The array MUST be returned to the client in the output parameter prgszw.

7. The number of pointers to error messages in the array MUST be returned to the client in the
output parameter pcszw.

8. The output parameter pdwStoredFlags MUST be set to 0.

9. Unless the flag ERRFLAG_NOREMOVE is set in the input parameter dwFlags, the server MUST
delete the error messages for the error code specified by hr from its store.

10. Return a response that contains the output parameters mentioned previously and the status of the
operation.

3.2.4.4.1.54 IVolumeClient::Initialize (Opnum 71)

The Initialize method initializes the dialog between the client and the server.

 HRESULT Initialize(
 [in] IUnknown* notificationInterface,
 [out] unsigned long* ulIDLVersion,
 [out] DWORD* pdwFlags,
 [out] LdmObjectId* clientId,
 [in] unsigned long cRemote
);

notificationInterface: Pointer to the client's IUnknown interface from which the server can query the

IDMNotify interface used for sending notifications to the client.

ulIDLVersion: The value of LDM_IDL_VERSION found in the IDL file with which the server was
built.<180>

pdwFlags: Bitmap of information flags about the server. The value of this field is generated by
combining zero or more of the following applicable flags with a logical OR operation.

Value Meaning

SYSFLAG_SERVER

0x00000001

Server is running on Windows 2000 Server operating system and Windows
Server 2003 operating system.

156 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

SYSFLAG_ALPHA

0x00000002

Server is running on an Alpha processor.<181>

SYSFLAG_SYSPART_SECURE

0x00000004

System partition for the server is secure.<182>

SYSFLAG_NEC_98

0x00000008

Server is an NEC 98 computer, which supports assignment of drive letters A
and B to partitions or volumes.<183>

SYSFLAG_LAPTOP

0x00000010

Server is a laptop and does not support dynamic disks.

SYSFLAG_WOLFPACK

0x00000020

Server is running on a Microsoft Cluster Server (MSCS) cluster.

clientId: Pointer to the client's OID.

cRemote: If set to 0, indicates that the client is on the same machine as the server. If nonzero, the
client is on a different machine than the server.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

This is the first protocol message that a client sends to the server. Other protocol messages that are
sent prior to this one MAY be ignored by the server.<184>

After the server receives this message, it MUST validate the parameters:

1. Verify that notificationInterface is not NULL.

2. Verify that ulIDLVersion is not NULL.

3. Verify that pdwFlags is not NULL.

4. Verify that clientId is not NULL.

5. Verify that the client has not previously called the Initialize method.

If parameter validation fails, the server MUST immediately fail the operation, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Add the client object to the list of clients that are connected to the server:

 Generate a new unique identifier for the client and save it in the id field of the client object. If
the cRemote parameter is nonzero, the server MUST be ready to send notifications to the
remote client.

 Reference and save the pointer to the IDMNotify interface that is specified by
notificationInterface in the notifyInterface field of the client object.<185>

2. If successful, the identifier of the new client MUST be returned in the output parameter clientId.

3. If successful, the value of LDM_IDL_VERSION found in the IDL file with which the server was built
MUST be returned in the output parameter ulIDLVersion.

%5bMS-ERREF%5d.pdf

157 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

4. If successful, a bitmap of flags that contain information about the server MUST be returned in the
output parameter pdwFlags.

5. Return a response to the client that contains the output parameters previously mentioned and the
status of the operation.

After the client object is added to the list of clients that are connected to the server, the server MUST
be ready to receive and process any protocol messages from that client and send notifications to the
client.

3.2.4.4.1.55 IVolumeClient::Uninitialize (Opnum 72)

The Uninitialize method ends the dialog between the client and the server.

 HRESULT Uninitialize();

This method has no parameters.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

This is the last protocol message that a client MUST send to the server. Other protocol messages sent
after this one SHOULD be ignored by the server.<186>

Upon receiving this message, the server MUST validate the following:

 Verify that the client object is in the list of clients currently connected to the server.

If validation fails, the server MUST fail the operation immediately, returning an appropriate error as its
response to the client.

Otherwise, the server MUST process the message as follows:

1. Remove the client object from the list of clients currently connected to the server:

1. Dereference the pointer to the IDMNotify interface that is stored in the notifyInterface field
of the client object.

2. Return a response to the client that contains the status of the operation.

The server MUST also remove the client object from the list of clients currently connected to the
server if it detects that the connection to the client is lost.

3.2.4.4.1.56 IVolumeClient::Refresh (Opnum 73)

The Refresh method refreshes the server's cache of storage objects, including regions, removable
media, CD-ROM drive media, file systems, and drive letters.

 HRESULT Refresh();

This method has no parameters.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

The server MUST process the message as follows:

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

158 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

1. Re-enumerate disks, disk regions, volumes, drive letters, and file systems from the system.

2. If discrepancies between the enumerated objects and the list of storage objects stored by the

server are found, the server MUST make the appropriate changes to the list of storage objects and
send appropriate notifications to the clients.

3. Return a response to the client that contains the status of the operation.

3.2.4.4.1.57 IVolumeClient::RescanDisks (Opnum 74)

The RescanDisks method triggers detection of changes in the list of storage devices connected to the
server and refreshes the server's cache of storage objects, including regions, removable media and
CD-ROM drive media, file systems, drive letters, and disk drives.

 HRESULT RescanDisks();

This method has no parameters.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

The server MUST process the message as follows:

1. Ask the system to rescan all the storage buses to detect storage devices that have been
connected or disconnected to and from the system.

2. Re-enumerate disks, disk regions, volumes, drive letters, and file systems from the system.

3. If discrepancies between the enumerated objects and the list of storage objects stored by the
server are found, the server MUST make the appropriate changes to the list of storage objects and
send appropriate notifications to the clients.

4. Return a response to the client that contains the status of the operation.

3.2.4.4.1.58 IVolumeClient::RefreshFileSys (Opnum 75)

The RefreshFileSys method refreshes the server's cache of file systems.

 HRESULT RefreshFileSys();

This method has no parameters.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

The server MUST process the message as follows:

1. Re-enumerate the file systems from the system.

2. If discrepancies between the enumerated file systems and the file systems stored in the list of
storage objects are found, the server MUST make the appropriate changes to the list of storage
objects and send appropriate notifications to the clients.

3. Return a response to the client containing the status of the operation.

3.2.4.4.1.59 IVolumeClient::SecureSystemPartition (Opnum 76)

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

159 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

The SecureSystemPartition method toggles the secure state of the system partition. Securing the
system partition means preventing the system partition from being accessed once the system boot

sequence is over.<187>

 HRESULT SecureSystemPartition();

This method has no parameters.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

The server MUST process the message as follows:

1. Toggle the secure state of the system partition (if supported by the system).

2. Return a response to the client that contains the status of the operation.

3.2.4.4.1.60 IVolumeClient::ShutDownSystem (Opnum 77)

The ShutDownSystem method restarts the machine on which the server is running.

 HRESULT ShutDownSystem();

This method has no parameters.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

The server MUST process the message as follows:

1. Initiate system shutdown.

2. Return a response to the client that contains the status of the operation.

If successful, the server will also be terminated as part of the system shutdown.

3.2.4.4.1.61 IVolumeClient::EnumAccessPath (Opnum 78)

The EnumAccessPath method enumerates all mount points configured on the server.

 HRESULT EnumAccessPath(
 [in, out] int* lCount,
 [out, size_is(,*lCount)] COUNTED_STRING** paths
);

lCount: The address of an int that returns the number of elements returned in paths.

paths: Pointer to an array of COUNTED_STRING structures that describe all mount points configured
on the machine. Memory for the array is allocated by the server and freed by the client.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

160 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 Verify that lCount and paths are not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate

error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Enumerate all mount points configured in the system.

2. Allocate a buffer large enough to contain COUNTED_STRING structures that describe all
enumerated mount points.

3. Populate each COUNTED_STRING structure in the buffer with the mount point path.

4. The buffer MUST be returned to the client in the output parameter paths.

5. The number of COUNTED_STRING structures in the buffer MUST be returned in the output
parameter lCount.

6. Return a response that contains the output parameters mentioned previously and the status of the
operation.

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.1.62 IVolumeClient::EnumAccessPathForVolume (Opnum 79)

The EnumAccessPathForVolume method enumerates the mount points of a specified volume, partition,

or logical drive.

 HRESULT EnumAccessPathForVolume(
 [in] LdmObjectId VolumeId,
 [in, out] int* lCount,
 [out, size_is(,*lCount)] COUNTED_STRING** paths
);

volumeId: Specifies the OID of the volume, partition, or logical drive for which to enumerate mount
points.

lCount: The address of an int that returns the number of elements returned in paths.

paths: Pointer to an array of COUNTED_STRING structures that describe all mount points configured
on the machine.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the volume, partition, or logical drive specified by volumeId is in the list of storage

objects.

2. Verify that lCount and paths are not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Enumerate all mount points of the volume, partition, or logical drive specified by volumeId.

%5bMS-ERREF%5d.pdf

161 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

2. Allocate a buffer large enough to contain COUNTED_STRING structures describing all enumerated
mount points.

3. Populate each COUNTED_STRING structure in the buffer with the mount point path.

4. The buffer MUST be returned to the client in the output parameter paths.

5. The number of COUNTED_STRING structures in the buffer MUST be returned in the output
parameter lCount.

6. Return a response that contains the output parameters mentioned previously and the status of the
operation.

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.1.63 IVolumeClient::AddAccessPath (Opnum 80)

The AddAccessPath method adds the specified mount point to a volume, a partition, or a logical drive.

 HRESULT AddAccessPath(
 [in] int cch_path,
 [in, size_is(cch_path)] WCHAR* path,
 [in] LdmObjectId targetId
);

cch_path: Length of path in characters, including the terminating null character.

path: Null-terminated mount point path to assign to the volume targeted (see mounted folder). This
is Unicode.

targetId: Specifies the OID of the volume, partition, or logical drive to which the new mount point is
to be assigned.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the volume, partition, or logical drive specified by targetId is in the list of storage
objects.

2. Verify that path is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Assign the mount point specified by path to the volume, partition, or logical drive specified by

targetId.

2. Wait for the operation to succeed or fail.

3. Return a response to the client that contains the status of the operation.

3.2.4.4.1.64 IVolumeClient::DeleteAccessPath (Opnum 81)

The DeleteAccessPath method deletes a specified mount point from a volume, a partition, or a logical
drive.

%5bMS-ERREF%5d.pdf

162 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 HRESULT DeleteAccessPath(
 [in] LdmObjectId volumeId,
 [in] int cch_path,
 [in, size_is(cch_path)] WCHAR* path
);

volumeId: Specifies the object identifier of the volume, partition, or logical drive from which to delete
the mount point.

cch_path: Length of path in characters, including the terminating null character.

path: Null-terminated path of the mount point to delete.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the volume, partition, or logical drive specified by volumeId is in the list of storage
objects.

2. Verify that path is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Delete the mount point specified by path from the volume, partition, or logical drive specified by
volumeId.

2. Wait for the operation to succeed or fail.

3. Return a response to the client that contains the status of the operation.

3.2.4.4.2 IVolumeClient2

This DCOM interface inherits the IUnknown interface. Method opnum field values start with 3; opnum
values 0–2 represent the IUnknown_QueryInterface, IUnknown_AddRef, and IUnknown_Release
methods, respectively, as specified in [MS-DCOM].

Unless otherwise specified in the following sections, all methods MUST return 0 or a nonerror HRESULT
(as specified in [MS-ERREF]) on success, or an implementation-specific nonzero error code on failure
(see section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Unless otherwise specified in this specification, client implementations of the protocol MUST NOT take

any action on an error code, but rather simply return the error to the invoking application. If the
return code is not an error, the client SHOULD assume that all output parameters are present and
valid.

Methods in RPC Opnum Order

Method Description

IVolumeClient2::GetMaxAdjustedFreeSpace Opnum: 3

%5bMS-ERREF%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-ERREF%5d.pdf

163 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3.2.4.4.2.1 IVolumeClient2::GetMaxAdjustedFreeSpace (Opnum 3)

The GetMaxAdjustedFreeSpace method retrieves the maximum amount of free space on a disk, after
adjusting for partition boundaries.

 HRESULT GetMaxAdjustedFreeSpace(
 [in] LdmObjectId diskId,
 [out] LONGLONG* maxAdjustedFreeSpace
);

diskId: Specifies the OID of the disk to query.

maxAdjustedFreeSpace: Pointer to the maximum free space on the disk, adjusted for partition
boundaries.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the disk specified by diskId is in the list of storage objects.<188>

2. Verify that maxAdjustedFreeSpace is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Compute the maximum amount of free space in bytes that is available for allocation to new

partitions and volumes. The computation MUST take into account any partition alignment rules
enforced by the server.

2. The maximum amount of free space MUST be returned to the client in the output parameter
maxAdjustedFreeSpace.

3. Return a response that contains the output parameters mentioned previously and the status of
the operation.

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.3 IVolumeClient3

This DCOM interface inherits the IUnknown interface. Method opnum field values start with 3; opnum
values 0 through 2 represent the IUnknown_QueryInterface, IUnknown_AddRef, and
IUnknown_Release methods, respectively, as specified in [MS-DCOM].

Methods with opnum field values 12 and 56–63 are not invoked across the network, and therefore are

not included in this document.

Unless otherwise specified in the following sections, all methods MUST return 0 or a nonerror HRESULT
(as specified in [MS-ERREF]) on success, or an implementation-specific nonzero error code on failure
(see section 2.2.1 for HRESULT values pre-defined by the Disk Management Remote Protocol).

Unless otherwise specified in this specification, client implementations of the protocol MUST NOT take
any action on an error code, but rather simply return the error to the invoking application. If the
return code is not an error, the client SHOULD assume that all output parameters are present and

valid.<189>

%5bMS-ERREF%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-ERREF%5d.pdf

164 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Methods in RPC Opnum Order

Method Description

IVolumeClient3::EnumDisksEx Opnum: 3

IVolumeClient3::EnumDiskRegionsEx Opnum: 4

IVolumeClient3::CreatePartition Opnum: 5

IVolumeClient3::CreatePartitionAssignAndFormat Opnum: 6

IVolumeClient3::CreatePartitionAssignAndFormatEx Opnum: 7

IVolumeClient3::DeletePartition Opnum: 8

IVolumeClient3::InitializeDiskStyle Opnum: 9

IVolumeClient3::MarkActivePartition Opnum: 10

IVolumeClient3::Eject Opnum: 11

Reserved_Opnum12 Opnum: 12

IVolumeClient3::FTEnumVolumes Opnum: 13

IVolumeClient3::FTEnumLogicalDiskMembers Opnum: 14

IVolumeClient3::FTDeleteVolume Opnum: 15

IVolumeClient3::FTBreakMirror Opnum: 16

IVolumeClient3::FTResyncMirror Opnum: 17

IVolumeClient3::FTRegenerateParityStripe Opnum: 18

IVolumeClient3::FTReplaceMirrorPartition Opnum: 19

IVolumeClient3::FTReplaceParityStripePartition Opnum: 20

IVolumeClient3::EnumDriveLetters Opnum: 21

IVolumeClient3::AssignDriveLetter Opnum: 22

IVolumeClient3::FreeDriveLetter Opnum: 23

IVolumeClient3::EnumLocalFileSystems Opnum: 24

IVolumeClient3::GetInstalledFileSystems Opnum: 25

IVolumeClient3::Format Opnum: 26

IVolumeClient3::EnumVolumes Opnum: 27

IVolumeClient3::EnumVolumeMembers Opnum: 28

IVolumeClient3::CreateVolume Opnum: 29

IVolumeClient3::CreateVolumeAssignAndFormat Opnum: 30

IVolumeClient3::CreateVolumeAssignAndFormatEx Opnum: 31

IVolumeClient3::GetVolumeMountName Opnum: 32

IVolumeClient3::GrowVolume Opnum: 33

165 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Method Description

IVolumeClient3::DeleteVolume Opnum: 34

IVolumeClient3::CreatePartitionsForVolume Opnum: 35

IVolumeClient3::DeletePartitionsForVolume Opnum: 36

IVolumeClient3::GetMaxAdjustedFreeSpace Opnum: 37

IVolumeClient3::AddMirror Opnum: 38

IVolumeClient3::RemoveMirror Opnum: 39

IVolumeClient3::SplitMirror Opnum: 40

IVolumeClient3::InitializeDiskEx Opnum: 41

IVolumeClient3::UninitializeDisk Opnum: 42

IVolumeClient3::ReConnectDisk Opnum: 43

IVolumeClient3::ImportDiskGroup Opnum: 44

IVolumeClient3::DiskMergeQuery Opnum: 45

IVolumeClient3::DiskMerge Opnum: 46

IVolumeClient3::ReAttachDisk Opnum: 47

IVolumeClient3::ReplaceRaid5Column Opnum: 48

IVolumeClient3::RestartVolume Opnum: 49

IVolumeClient3::GetEncapsulateDiskInfoEx Opnum: 50

IVolumeClient3::EncapsulateDiskEx Opnum: 51

IVolumeClient3::QueryChangePartitionNumbers Opnum: 52

IVolumeClient3::DeletePartitionNumberInfoFromRegistry Opnum: 53

IVolumeClient3::SetDontShow Opnum: 54

IVolumeClient3::GetDontShow Opnum: 55

Reserved0 Opnum: 56

Reserved1 Opnum: 57

Reserved2 Opnum: 58

Reserved3 Opnum: 59

Reserved4 Opnum: 60

Reserved5 Opnum: 61

Reserved6 Opnum: 62

Reserved7 Opnum: 63

IVolumeClient3::EnumTasks Opnum: 64

IVolumeClient3::GetTaskDetail Opnum: 65

166 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Method Description

IVolumeClient3::AbortTask Opnum: 66

IVolumeClient3::HrGetErrorData Opnum: 67

IVolumeClient3::Initialize Opnum: 68

IVolumeClient3::Uninitialize Opnum: 69

IVolumeClient3::Refresh Opnum: 70

IVolumeClient3::RescanDisks Opnum: 71

IVolumeClient3::RefreshFileSys Opnum: 72

IVolumeClient3::SecureSystemPartition Opnum: 73

IVolumeClient3::ShutDownSystem Opnum: 74

IVolumeClient3::EnumAccessPath Opnum: 75

IVolumeClient3::EnumAccessPathForVolume Opnum: 76

IVolumeClient3::AddAccessPath Opnum: 77

IVolumeClient3::DeleteAccessPath Opnum: 78

3.2.4.4.3.1 IVolumeClient3::EnumDisksEx (Opnum 3)

The EnumDisksEx method enumerates the server's mass storage devices.

 HRESULT EnumDisksEx(
 [out] unsigned long* diskCount,
 [out, size_is(,*diskCount)] DISK_INFO_EX** diskList
);

diskCount: Pointer to the number of elements in diskList.

diskList: Pointer to an array of DISK_INFO_EX structures.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

 Verify that diskCount and diskList are not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Enumerate all disk objects from the list of storage objects.

2. Allocate a buffer large enough to contain DISK_INFO_EX structures that describe all enumerated

disks.

%5bMS-ERREF%5d.pdf

167 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3. Populate each DISK_INFO_EX structure in the buffer with information about the disk.

4. The buffer MUST be returned to the client in the output parameter diskList.

5. The number of DISK_INFO_EX structures in the buffer MUST be returned in the output parameter
diskCount.

6. Return a response containing the output parameters mentioned previously and the status of the
operation.

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.3.2 IVolumeClient3::EnumDiskRegionsEx (Opnum 4)

The EnumDiskRegionsEx method enumerates all used and free regions of a specified disk.

 HRESULT EnumDiskRegionsEx(
 [in] LdmObjectId diskId,
 [in, out] unsigned long* numRegions,
 [out, size_is(,*numRegions)] REGION_INFO_EX** regionList
);

diskId: Specifies the OID of the disk for which regions are being enumerated.

numRegions: Pointer to the number of regions in regionList.

regionList: Pointer to an array of REGION_INFO_EX structures.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that numRegions and regionList are not NULL.

2. Verify that the disk specified by diskId is in the list of storage objects.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate

error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Enumerate all disk region objects that reside on the specified disk.

2. Allocate a buffer large enough to contain REGION_INFO_EX structures that describes all regions
that reside on the disk.

3. The buffer MUST be populated with regions in the ascending order of the byte offset of the region
relative to the beginning of the disk.

4. Populate each REGION_INFO_EX structure in the buffer with information about the region.

5. The buffer MUST be returned to the client in the output parameter regionList.

6. The number of REGION_INFO_EX structures in the buffer MUST be returned in the output
parameter numRegions.

7. Return a response to the client containing the output parameters mentioned previously and the
status of the operation.

%5bMS-ERREF%5d.pdf

168 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.3.3 IVolumeClient3::CreatePartition (Opnum 5)

The CreatePartition method creates a partition.

 HRESULT CreatePartition(
 [in] REGION_SPEC partitionSpec,
 [out] TASK_INFO* tinfo
);

partitionSpec: A REGION_SPEC structure that defines the partition type and length to create.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::CreatePartition message, it MUST process that message,

as specified in 3.2.4.4.1.3.<190>

3.2.4.4.3.4 IVolumeClient3::CreatePartitionAssignAndFormat (Opnum 6)

The CreatePartitionAssignAndFormat method creates a partition, formats it as a file system, and
assigns it a drive letter.

 HRESULT CreatePartitionAssignAndFormat(
 [in] REGION_SPEC partitionSpec,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [out] TASK_INFO* tinfo
);

partitionSpec: A REGION_SPEC structure that defines the type and length of the partition to create.

letter: Drive letter to assign to the new volume.

letterLastKnownState: Drive letter's last known modification sequence number. This value is
returned from a call to EnumDriveLetters.

fsSpec: A FILE_SYSTEM_INFO structure that defines the file system to create.

quickFormat: Boolean value that determines whether the server will fully format or quickly format
the file system.

Value Meaning

FALSE

0

File system will be fully formatted. Full format requires verifying the accessibility of all sectors on
the volume.

TRUE

1

File system will be quickly formatted.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

%5bMS-ERREF%5d.pdf

169 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::CreatePartitionAssignAndFormat message, it MUST

process that message, as specified in
IVolumeClient::CreatePartitionAssignAndFormat (section 3.2.4.4.1.4).

3.2.4.4.3.5 IVolumeClient3::CreatePartitionAssignAndFormatEx (Opnum 7)

The CreatePartitionAssignAndFormatEx method creates a partition, formats it as a file system, and
assigns it a drive letter and a mount point.

 HRESULT CreatePartitionAssignAndFormatEx(
 [in] REGION_SPEC partitionSpec,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in] int cchAccessPath,
 [in, size_is(cchAccessPath)] wchar_t* AccessPath,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [in] DWORD dwFlags,
 [out] TASK_INFO* tinfo
);

partitionSpec: A REGION_SPEC structure that defines the type and length of the partition to create.

letter: Drive letter to assign to the new volume.

letterLastKnownState: Drive letter's last known modification sequence number.

cchAccessPath: Length of the AccessPath parameter, in Unicode characters, including the
terminating null character.

AccessPath: Null-terminated Unicode string that specifies the path in which the new file system is

being mounted. This parameter is used to supply a mounted folder path for the case where the
new partition will be mounted to a directory on another volume.

fsSpec: A FILE_SYSTEM_INFO structure that defines the file system to create. This parameter is

returned from a call to EnumLocalFileSystems().

quickFormat: Value that indicates whether the server will fully format or quickly format the file
system.

Value Meaning

FALSE

0

File system will be fully formatted. Full format requires verifying the accessibility of all sectors on
the volume.

TRUE

1

File system will be quickly formatted.

dwFlags: Bitmap of partition creation flags.

Value Meaning

CREATE_ASSIGN_ACCESS_PATH

0x00000001

Assign the mount point AccessPath to the new partition.

%5bMS-ERREF%5d.pdf

170 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::CreatePartitionAssignAndFormatEx message, it MUST
process that message, as specified in
IVolumeClient::CreatePartitionAssignAndFormatEx (section 3.2.4.4.1.5).

3.2.4.4.3.6 IVolumeClient3::DeletePartition (Opnum 8)

The DeletePartition method deletes a specified partition.

 HRESULT DeletePartition(
 [in] REGION_SPEC partitionSpec,
 [in] boolean force,
 [out] TASK_INFO* tinfo
);

partitionSpec: A REGION_SPEC structure that specifies the type and length of the partition to delete.

force: Value that determines if deletion of the partition will be forced. If the force parameter is not
set, the call will fail if the volume cannot be locked.

Value Meaning

FALSE

0

Deletion will not be forced if the partition is in use.

TRUE

1

Deletion will be forced.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::DeletePartition message, it MUST process that message,

as specified in IVolumeClient::DeletePartition (section 3.2.4.4.1.6).

3.2.4.4.3.7 IVolumeClient3::InitializeDiskStyle (Opnum 9)

The InitializeDiskStyle method sets the partition style and writes a signature to a disk. This is a
synchronous task.

 HRESULT InitializeDiskStyle(
 [in] LdmObjectId diskId,
 [in] PARTITIONSTYLE style,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO* tinfo
);

diskId: Specifies the OID of the target disk for the signature.

style: Value from the PARTITIONSTYLE enumeration that indicates the partition style to use.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

171 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

diskLastKnownState: Last known modification sequence number of the disk.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the disk specified by diskId is in the list of storage objects, and check whether
diskLastKnownState matches the LastKnownState field of the object.

2. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Initialize the disk specified by diskId with an empty partition table and write a signature to it.

 If style is PARTITIONSTYLE_MBR, the disk is initialized with an MBR partition table and
signature.

 If style is PARTITIONSTYLE_GPT, the disk is initialized with a GPT partition table and
signature.

2. Wait for the initialization to either succeed or fail.

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<191>

TASK_INFO::clientID Not required.<192>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<193>

4. Return a response to the client containing tinfo and the status of the operation.

If the operation is successful, the server MUST make the following change to the list of storage objects
before returning the response:

 Modify the disk object to account for the change of status.

3.2.4.4.3.8 IVolumeClient3::MarkActivePartition (Opnum 10)

The MarkActivePartition method marks a specified partition as the active partition of the disk.

%5bMS-ERREF%5d.pdf

172 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 HRESULT MarkActivePartition(
 [in] LdmObjectId regionId,
 [in] hyper regionLastKnownState,
 [out] TASK_INFO* tinfo
);

regionId: Specifies the OID of the partition to activate.

regionLastKnownState: Partition's last known modification sequence number.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::MarkActivePartition message, it MUST process that
message, as specified in IVolumeClient::MarkActivePartition (section 3.2.4.4.1.8).

3.2.4.4.3.9 IVolumeClient3::Eject (Opnum 11)

The Eject method ejects a specified removable disk or CD-ROM from the drive enclosure.

 HRESULT Eject(
 [in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO* tinfo
);

diskId: Specifies the OID of the media to eject.

diskLastKnownState: Disk's last known modification sequence number.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::Eject message, it MUST process that message, as
specified in IVolumeClient::Eject (section 3.2.4.4.1.9).

3.2.4.4.3.10 IVolumeClient3::FTEnumVolumes (Opnum 13)

The FTEnumVolumes method enumerates the server's FT volumes on basic disks (rather than dynamic
disks).<194>

 HRESULT FTEnumVolumes(
 [in, out] unsigned long* volumeCount,
 [out, size_is(,*volumeCount)] VOLUME_INFO** ftVolumeList
);

volumeCount: Pointer to the number of elements in ftVolumeList.

ftVolumeList: Pointer to an array of VOLUME_INFO structures.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

173 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::FTEnumVolumes message, it MUST process that

message, as specified in IVolumeClient::FTEnumVolumes (section 3.2.4.4.1.10).

3.2.4.4.3.11 IVolumeClient3::FTEnumLogicalDiskMembers (Opnum 14)

The FTEnumLogicalDiskMembers method enumerates the regions of a specified FT volume on basic
disks (rather than dynamic disks).<195>

 HRESULT FTEnumLogicalDiskMembers(
 [in] LdmObjectId volumeId,
 [in, out] unsigned long* memberCount,
 [out, size_is(,*memberCount)] LdmObjectId** memberList
);

volumeId: Specifies the OID of the volume for which the regions are being enumerated.

memberCount: Pointer to the number of regions that the volume includes. The client passes in the
address of an unsigned long.

memberList: Pointer to an array of LdmObjectId objects that store member identification handles for

the regions in the volume.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::FTEnumLogicalDiskMembers message, it MUST process
that message, as specified in IVolumeClient::FTEnumLogicalDiskMembers (section 3.2.4.4.1.11).

3.2.4.4.3.12 IVolumeClient3::FTDeleteVolume (Opnum 15)

The FTDeleteVolume method deletes the FT volume specified by volumeId on basic disks (rather than
dynamic disks).<196>

 HRESULT FTDeleteVolume(
 [in] LdmObjectId volumeId,
 [in] boolean force,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the volume to delete.

force: Boolean value that indicates if deletion of a partition will be forced. The call to delete will fail if
the volume is locked by some other application and this flag is not set.

Value Meaning

FALSE

0

Deletion will not be forced if the partition is in use.

TRUE

1

Deletion of the partition will be forced.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

174 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

volumeLastKnownState: Volume's last known modification sequence number.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::FTDeleteVolume message, it MUST process that
message, as specified in IVolumeClient::FTDeleteVolume (section 3.2.4.4.1.12).

3.2.4.4.3.13 IVolumeClient3::FTBreakMirror (Opnum 16)

The FTBreakMirror method breaks a specified FT mirror set on basic disks into two independent
partitions.<197>

 HRESULT FTBreakMirror(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] boolean bForce,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the FT mirror set to break.

volumeLastKnownState: Last known modification sequence number of the FT mirror set.

bForce: Boolean value that indicates whether to force removal of the drive letter from the FT mirror
set.

Value Meaning

FALSE

0

The method fails if an error occurs while the drive letter is being removed from the FT mirror set.

TRUE

1

Removal of the drive letter from the FT mirror set is forced.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::FTBreakMirror message, it MUST process that message,
as specified in IVolumeClient::FTBreakMirror (section 3.2.4.4.1.13).

3.2.4.4.3.14 IVolumeClient3::FTResyncMirror (Opnum 17)

The FTResyncMirror method restores the redundancy of an FT mirror set on basic disks by
resynchronizing the members of the mirror.<198>

 HRESULT FTResyncMirror(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO* tinfo
);

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

175 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

volumeId: Specifies the OID of the FT mirror set being resynchronized.

volumeLastKnownState: Last known modification sequence number of the FT mirror set.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::FTResyncMirror message, it MUST process that
message, as specified in IVolumeClient::FTResyncMirror (section 3.2.4.4.1.14).

3.2.4.4.3.15 IVolumeClient3::FTRegenerateParityStripe (Opnum 18)

The FTRegenerateParityStripe method restores the redundancy of an FT RAID-5 set on basic disks by

regenerating the parity of the volume.<199>

 HRESULT FTRegenerateParityStripe(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the object identifier of the FT RAID-5 set for which the parity is being

regenerated.

volumeLastKnownState: Last known modification sequence number of the FT RAID-5 set.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::FTRegenerateParityStripe message, it MUST process

that message, as specified in IVolumeClient::FTRegenerateParityStripe (section 3.2.4.4.1.15).

3.2.4.4.3.16 IVolumeClient3::FTReplaceMirrorPartition (Opnum 19)

The FTReplaceMirrorPartition method repairs an FT mirror set by replacing the failed member of the
set with another partition. This method operates on an FT volume on basic disks (rather than dynamic
disks). The partition MUST have the same type as the original, it MUST be MBR, and it MUST be at
least as big as the original partition.<200>

 HRESULT FTReplaceMirrorPartition(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId oldMemberId,
 [in] hyper oldMemberLastKnownState,
 [in] LdmObjectId newRegionId,
 [in] hyper newRegionLastKnownState,
 [in] DWORD flags,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the FT mirror set to modify.

volumeLastKnownState: Last known modification sequence number of the FT mirror set.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

176 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

oldMemberId: This parameter MUST be set to 0 by the client and ignored by the server.

oldMemberLastKnownState: This parameter MUST be set to 0 by the client and ignored by the

server.

newRegionId: Specifies the OID of the replacement partition. The partition MUST have the same

type as the original, it MUST be MBR, and it MUST be at least as big as the original partition.

newRegionLastKnownState: Last known modification sequence number of the replacement
partition.

flags: Bitmap of flags for the replacement operation. The value of this field is a logical 'OR' of zero or
more of the following applicable flags.

Value Meaning

FTREPLACE_FORCE

0x00000001

Do not fail the operation if the replacement partition has been changed since
newRegionLastKnownState.

FTREPLACE_DELETE_ON_FAIL

0x00000002

Delete the replacement partition if the operation fails.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::FTReplaceMirrorPartition message, it MUST process that
message, as specified in IVolumeClient::FTReplaceMirrorPartition (section 3.2.4.4.1.16).

3.2.4.4.3.17 IVolumeClient3::FTReplaceParityStripePartition (Opnum 20)

The FTReplaceParityStripePartition method repairs an FT RAID-5 set by replacing the failed member of

the set with another partition. The partition MUST have the same type as the original, it MUST be
MBR, and it MUST be at least as big as the original partition.

 HRESULT FTReplaceParityStripePartition(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId oldMemberId,
 [in] hyper oldMemberLastKnownState,
 [in] LdmObjectId newRegionId,
 [in] hyper newRegionLastKnownState,
 [in] DWORD flags,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the FT RAID-5 set to modify.

volumeLastKnownState: Last known modification sequence number of the FT RAID-5 set.

oldMemberId: This parameter MUST be set to 0 by the client and ignored by the server.

oldMemberLastKnownState: This parameter MUST be set to 0 by the client and ignored by the
server.

newRegionId: Specifies the OID of the replacement partition. The partition MUST have the same
type as the original, it MUST be MBR, and it MUST be at least as big as the original partition.

%5bMS-ERREF%5d.pdf

177 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

newRegionLastKnownState: Last known modification sequence number of the replacement
partition.

flags: Bitmap of flags for the replacement operation.

Value Meaning

FTREPLACE_FORCE

0x00000001

Do not fail the operation if the replacement partition has been changed since
newRegionLastKnownState.

FTREPLACE_DELETE_ON_FAIL

0x00000002

Delete the replacement partition if the operation fails.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::FTReplaceParityStripePartition message, it MUST
process that message as specified in

IVolumeClient::FTReplaceParityStripePartition (section 3.2.4.4.1.17).

3.2.4.4.3.18 IVolumeClient3::EnumDriveLetters (Opnum 21)

The EnumDriveLetters method enumerates the server's drive letters, both used and free. For drive
letters that are in use, the method returns the mapping between the drive letter and the volume,
partition, or logical drive using it.

 HRESULT EnumDriveLetters(
 [in, out] unsigned long* driveLetterCount,
 [out, size_is(,*driveLetterCount)]
 DRIVE_LETTER_INFO** driveLetterList
);

driveLetterCount: Pointer to the number of elements returned in driveLetterList.

driveLetterList: Pointer to an array of DRIVE_LETTER_INFO structures.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::EnumDriveLetters message, it MUST process that
message, as specified in IVolumeClient::EnumDriveLetters (section 3.2.4.4.1.18).

3.2.4.4.3.19 IVolumeClient3::AssignDriveLetter (Opnum 22)

The AssignDriveLetter method assigns the specified drive letter to a volume, partition, or logical drive.

 HRESULT AssignDriveLetter(
 [in] wchar_t letter,
 [in] unsigned long forceOption,
 [in] hyper letterLastKnownState,
 [in] LdmObjectId storageId,
 [in] hyper storageLastKnownState,
 [out] TASK_INFO* tinfo
);

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

178 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

letter: Drive letter to assign, specified as a single case-insensitive Unicode character.

forceOption: Value that indicates if drive letter assignment is forced when it fails. This method call

will fail if the force flag is not set and some other application has a lock on the volume.

Value Meaning

NO_FORCE_OPERATION

0x00000000

If the volume, partition, or logical drive specified by storageId already has a drive
letter assigned, and freeing it fails because the object is in use, assignment fails
and the old drive letter is retained.

FORCE_OPERATION

0x00000001

If the volume, partition, or logical drive specified by storageId already has a drive
letter assigned, and freeing it fails because the volume is in use, its removal is
forced and assignment of the new drive letter succeeds.

letterLastKnownState: Drive letter's last known modification sequence number.

storageId: Specifies the object identifier of the volume, partition, or logical drive to which the drive
letter is being assigned.

storageLastKnownState: Last known modification sequence number of the volume, partition, or
logical drive to which the drive letter is being assigned.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::AssignDriveLetter message, it MUST process that
message as specified in Section IVolumeClient::AssignDriveLetter (section 3.2.4.4.1.19).

3.2.4.4.3.20 IVolumeClient3::FreeDriveLetter (Opnum 23)

The FreeDriveLetter method unassigns a specified drive letter from a volume, partition, or logical drive

on the server.<201>

 HRESULT FreeDriveLetter(
 [in] wchar_t letter,
 [in] unsigned long forceOption,
 [in] hyper letterLastKnownState,
 [in] LdmObjectId storageId,
 [in] hyper storageLastKnownState,
 [out] TASK_INFO* tinfo
);

letter: Drive letter to free.

forceOption: Boolean value that indicates whether to force the freeing of a drive letter. This call will
fail if some other application has the volume locked.

Value Meaning

NO_FORCE_OPERATION

0

If the specified drive letter is assigned to a volume, partition, or logical disk
that is in use, contains the paging file, or contains the system directory, the
operation fails and returns an error.

FORCE_OPERATION

1

The specified drive letter is always freed.

%5bMS-ERREF%5d.pdf

179 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

letterLastKnownState: Drive letter's last known modification sequence number.

storageId: Specifies the object identifier of the volume, partition, or logical drive to which the letter

is assigned.

storageLastKnownState: Last known modification sequence number of the volume, partition, or

logical drive to which the drive letter is assigned.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::FreeDriveLetter message, it MUST process that
message, as specified in IVolumeClient::FreeDriveLetter (section 3.2.4.4.1.20).

3.2.4.4.3.21 IVolumeClient3::EnumLocalFileSystems (Opnum 24)

The EnumLocalFileSystems method enumerates the file systems present on the server.

 HRESULT EnumLocalFileSystems(
 [out] unsigned long* fileSystemCount,
 [out, size_is(,*fileSystemCount)]
 FILE_SYSTEM_INFO** fileSystemList
);

fileSystemCount: Pointer to the number of elements returned in fileSystemList. The client passes in
the address of an unsigned long.

fileSystemList: Pointer to an array of FILE_SYSTEM_INFO structures that represent the file systems
present on the server.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::EnumLocalFileSystems message, it MUST process that
message, as specified in IVolumeClient::EnumLocalFileSystems (section 3.2.4.4.1.21).

3.2.4.4.3.22 IVolumeClient3::GetInstalledFileSystems (Opnum 25)

The GetInstalledFileSystems method enumerates the file system types (for example, FAT or NTFS)
that the server supports.

 HRESULT GetInstalledFileSystems(
 [out] unsigned long* fsCount,
 [out, size_is(,*fsCount)] IFILE_SYSTEM_INFO** fsList
);

fsCount: Pointer to the number of elements returned in fsList.

fsList: Pointer to an array of IFILE_SYSTEM_INFO structures.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

180 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

When the server receives an IVolumeClient3::GetInstalledFileSystems message, it MUST process that
message, as specified in IVolumeClient::GetInstalledFileSystems (section 3.2.4.4.1.22).

3.2.4.4.3.23 IVolumeClient3::Format (Opnum 26)

The Format method formats the specified volume, partition, or logical drive with a file system.

 HRESULT Format(
 [in] LdmObjectId storageId,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [in] boolean force,
 [in] hyper storageLastKnownState,
 [out] TASK_INFO* tinfo
);

storageId: Specifies the object identifier of the volume, partition, or logical drive on which the new
file system is being created.

fsSpec: A FILE_SYSTEM_INFO structure that specifies details about the file system being created.

quickFormat: Boolean value that indicates if the file system will be fully formatted. This call will fail if
this flag is not set and some other application has the volume locked.

Value Meaning

FALSE

0

File system will be fully formatted. Full format requires verifying the accessibility of all sectors on
the volume.

TRUE

1

File system will be quickly formatted.

force: Boolean value that indicates if the file system will be formatted if the volume, partition, or

logical drive cannot be locked.

Value Meaning

FALSE

0

File system will not be formatted unless its underlying storage can be locked.

TRUE

1

File system will be formatted regardless of whether the underlying volume, partition, or logical drive
can be locked or not.

storageLastKnownState: Last known modification sequence number of the volume, partition, or

logical drive on which the file system is being created.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::Format message, it MUST process that message, as

specified in IVolumeClient::Format (section 3.2.4.4.1.23).

3.2.4.4.3.24 IVolumeClient3::EnumVolumes (Opnum 27)

The EnumVolumes method enumerates the dynamic volumes of the server.

%5bMS-ERREF%5d.pdf

181 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 HRESULT EnumVolumes(
 [in, out] unsigned long* volumeCount,
 [out, size_is(,*volumeCount)] VOLUME_INFO** LdmVolumeList
);

volumeCount: Pointer to the number of elements returned in LdmVolumeList.

LdmVolumeList: Pointer to an array of VOLUME_INFO structures representing the dynamic volumes
of the server.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::EnumVolumes message, it MUST process that message,
as specified in IVolumeClient::EnumVolumes (section 3.2.4.4.1.24).

3.2.4.4.3.25 IVolumeClient3::EnumVolumeMembers (Opnum 28)

The EnumVolumeMembers method enumerates the regions of the specified dynamic volume.

 HRESULT EnumVolumeMembers(
 [in] LdmObjectId volumeId,
 [in, out] unsigned long* memberCount,
 [out, size_is(,*memberCount)] LdmObjectId** memberList
);

volumeId: Specifies the OID of the volume for which the regions are being enumerated.

memberCount: Pointer to the number of disk regions returned in memberList.

memberList: Array of LdmObjectId objects that store the identification handles of the regions.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::EnumVolumeMembers message, it MUST process that
message, as specified in IVolumeClient::EnumVolumeMembers (section 3.2.4.4.1.25).

3.2.4.4.3.26 IVolumeClient3::CreateVolume (Opnum 29)

The CreateVolume method creates a dynamic volume on the specified list of disks.

 HRESULT CreateVolume(
 [in] VOLUME_SPEC volumeSpec,
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC* diskList,
 [out] TASK_INFO* tinfo
);

volumeSpec: A VOLUME_SPEC structure that defines the parameters of the volume to create.

diskCount: Number of elements passed in diskList.

diskList: Array of DISK_SPEC structures that specifies the disks to be used by the volume.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

182 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::CreateVolume message, it MUST process that message,

as specified in IVolumeClient::CreateVolume (section 3.2.4.4.1.26).

3.2.4.4.3.27 IVolumeClient3::CreateVolumeAssignAndFormat (Opnum 30)

The CreateVolumeAssignAndFormat method creates a dynamic volume on the specified list of disks,
assigns a drive letter to it, and formats it with a file system.

 HRESULT CreateVolumeAssignAndFormat(
 [in] VOLUME_SPEC volumeSpec,
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC* diskList,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [out] TASK_INFO* tinfo
);

volumeSpec: A VOLUME_SPEC structure that defines the volume to create.

diskCount: Number of elements passed in diskList.

diskList: Array of DISK_SPEC structures that specifies the disks to be used by the volume.

letter: Drive letter to assign to the new volume. If no drive letter is needed for the volume, the value
of this field MUST be a 2-byte null character or the Unicode SPACE character.

letterLastKnownState: Drive letter's last known modification sequence number.

fsSpec: A FILE_SYSTEM_INFO structure that defines the file system to create.

quickFormat: Value that indicates whether the server will fully format or quickly format the file
system.

Value Meaning

FALSE

0

File system will be fully formatted. Full format requires verifying the accessibility of all sectors on

the volume.

TRUE

1

File system will be quickly formatted.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::CreateVolumeAssignAndFormat message, it MUST
process that message, as specified in
IVolumeClient::CreateVolumeAssignAndFormat (section 3.2.4.4.1.27).

3.2.4.4.3.28 IVolumeClient3::CreateVolumeAssignAndFormatEx (Opnum 31)

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

183 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

The CreateVolumeAssignAndFormatEx method creates a dynamic volume on the specified list of disks,
assigns a drive letter and/or a mount point to it, and formats it with a file system.

 HRESULT CreateVolumeAssignAndFormatEx(
 [in] VOLUME_SPEC volumeSpec,
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC* diskList,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in] int cchAccessPath,
 [in, size_is(cchAccessPath)] wchar_t* AccessPath,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [in] DWORD dwFlags,
 [out] TASK_INFO* tinfo
);

volumeSpec: A VOLUME_SPEC structure that defines the volume to create.

diskCount: Number of elements passed in diskList.

diskList: Array of DISK_SPEC structures that specifies the disk to be used by the volume. Memory for

the array is allocated and freed by the client.

letter: Drive letter to assign to the new volume. Pass the zero value or the SPACE character if no
drive letter is needed.

letterLastKnownState: Drive letter's last known modification sequence number.

cchAccessPath: Length of AccessPath including the terminating null character.

AccessPath: Null-terminated path in which the new file system is being mounted. The server MUST
ignore this parameter if the CREATE_ASSIGN_ACCESS_PATH bit is not set in dwFlags.

fsSpec: A FILE_SYSTEM_INFO structure that defines the file system to create.

quickFormat: Value that indicates whether the server will fully format or quickly format the file
system.

Value Meaning

FALSE

0

File system will be fully formatted. Full format requires verifying the accessibility of all sectors on
the volume.

TRUE

1

File system will be quickly formatted.

dwFlags: Bitmap of volume creation flags. The value of this field is generated by combining zero or
more of the following applicable flags with a logical OR operation.

Value Meaning

CREATE_ASSIGN_ACCESS_PATH

0x00000001

Assign the mount point AccessPath to the new volume. If the flag is not
set, the parameter AccessPath is ignored.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

%5bMS-ERREF%5d.pdf

184 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

When the server receives an IVolumeClient3::CreateVolumeAssignAndFormatEx message, it MUST
process that message, as specified in

IVolumeClient::CreateVolumeAssignAndFormatEx (section 3.2.4.4.1.28).

3.2.4.4.3.29 IVolumeClient3::GetVolumeMountName (Opnum 32)

The GetVolumeMountName method retrieves the mount name for a volume, partition, or logical drive.

 HRESULT GetVolumeMountName(
 [in] LdmObjectId volumeId,
 [out] unsigned long* cchMountName,
 [out, size_is(,*cchMountName)] WCHAR** mountName
);

volumeId: Specifies the OID of the volume for which the mount name is being retrieved.

cchMountName: Pointer to the length of mountName, including the terminating null character.

mountName: Pointer to the null-terminated mount name of the volume in the format
\\?\Volume{guid}(note that the question mark is literal, not a wildcard).

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::GetVolumeMountName message, it MUST process that
message, as specified in IVolumeClient::GetVolumeMountName (section 3.2.4.4.1.29).

3.2.4.4.3.30 IVolumeClient3::GrowVolume (Opnum 33)

The GrowVolume method increases the length of a specified dynamic volume by appending extents
from the specified disks to it.

 HRESULT GrowVolume(
 [in] LdmObjectId volumeId,
 [in] VOLUME_SPEC volumeSpec,
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC* diskList,
 [in] boolean force,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the volume whose size is being changed.

volumeSpec: A VOLUME_SPEC structure that defines the parameters of the changed volume,
including its new expected length.

diskCount: Number of elements passed in diskList.

diskList: Array of DISK_SPEC structures that specifies the list of disk extents to be appended to the
volume.

force: Boolean value that determines whether the volume is extended or not, in case it cannot be

locked.

Value Meaning

FALSE Volume is not extended unless it is locked.

%5bMS-ERREF%5d.pdf

185 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

0

TRUE

1

Volume is extended whether it is locked or unlocked.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an VolumeClient3::GrowVolumeI message, it MUST process that message,
as specified in IVolumeClient::GrowVolume (section 3.2.4.4.1.30).

3.2.4.4.3.31 IVolumeClient3::DeleteVolume (Opnum 34)

The DeleteVolume method deletes the specified dynamic volume.

 HRESULT DeleteVolume(
 [in] LdmObjectId volumeId,
 [in] boolean force,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the volume to delete.

force: A value that indicates whether deletion of the volume will be forced if the volume is in use by
another application. If this value is false, the call will fail if some other application has the volume
locked.

Value Meaning

FALSE

0

Deletion will not be forced if the volume is in use.

TRUE

1

Deletion will be forced.

volumeLastKnownState: Volume's last known modification sequence number.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::DeleteVolume message, it MUST process that message,
as specified in IVolumeClient::DeleteVolume (section 3.2.4.4.1.31).

3.2.4.4.3.32 IVolumeClient3::CreatePartitionsForVolume (Opnum 35)

The CreatePartitionsForVolume method creates a partition underneath a volume. This is a synchronous
task.

 HRESULT CreatePartitionsForVolume(

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

186 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [in] LdmObjectId volumeId,
 [in] boolean active,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the volume under which to create a partition.

active: Boolean value that indicates whether the new partition is to be set to active, which would
make it an active partition. On x86, and possibly other BIOSes, this is needed by the BIOS to start
the machine from the volume.

Value Meaning

FALSE

0

New partition is not set to active.

TRUE

1

New partition is set to active.

volumeLastKnownState: Last known modification sequence number of the volume.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the dynamic volume specified by volumeId is in the list of storage objects, and check

whether the field volumeSpec.lastKnownState matches the field LastKnownState of the
object.

2. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Enumerate all disk regions that correspond to the dynamic volume specified by volumeId from the

list of storage objects.

2. For each disk region, create an entry in the partition table of its disk. The partition MUST have the
same offset and length as the disk region. If the active flag is set to TRUE, set the active bit in the
partition table to 1. If the active flag is set to FALSE, set the active bit in the partition table to 0.

3. Wait for the partition creations to succeed or fail.

4. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<202>

%5bMS-ERREF%5d.pdf

187 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

TASK_INFO member Required for this operation

TASK_INFO::clientID Not required.<203>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<204>

5. Return a response to the client containing tinfo and the status of the operation.

6. Send the task completion notification.<205>

If the operation is successful, the server MUST make the following changes to the list of storage

objects before returning the response:

 Modify the dynamic volume object to account for the change of status.

 Modify the disk objects where the partitions were created to account for the change in region

allocation.<206>

3.2.4.4.3.33 IVolumeClient3::DeletePartitionsForVolume (Opnum 36)

The DeletePartitionsForVolume method deletes the partitions underneath a dynamic disk volume. This
is a synchronous task.

 HRESULT DeletePartitionsForVolume(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the volume under which to delete partitions.

volumeLastKnownState: Last known modification sequence number of the volume.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the dynamic volume specified by volumeId is in the list of storage objects, and check

whether the field volumeSpec.lastKnownState matches the field LastKnownState of the
object.

2. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

%5bMS-ERREF%5d.pdf

188 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

1. Enumerate all disk regions that correspond to the dynamic volume specified by volumeId from the
list of storage objects.

2. For each disk region, delete the entry in the partition table of its disk that has the same offset and
length as the disk region.

3. Wait for the partition deletions to succeed or fail.

4. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<207>

TASK_INFO::clientID Not required.<208>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<209>

5. Return a response to the client containing volumeId and the status of the operation.

6. Send the task completion notification.<210>

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response:

 Modify the dynamic volume object to account for the change of status.

 Modify the disk objects where the partitions were deleted to account for the change in region

allocation.

3.2.4.4.3.34 IVolumeClient3::GetMaxAdjustedFreeSpace (Opnum 37)

The GetMaxAdjustedFreeSpace method retrieves the maximum amount of free space on a disk after
adjusting for partition boundaries.

 HRESULT GetMaxAdjustedFreeSpace(
 [in] LdmObjectId diskId,
 [out] LONGLONG* maxAdjustedFreeSpace
);

diskId: Specifies the OID of the disk to query.

maxAdjustedFreeSpace: Pointer to the maximum free space on the disk, adjusted for partition

boundaries.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

%5bMS-ERREF%5d.pdf

189 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

When the server receives an IVolumeClient3::GetMaxAdjustedFreeSpace message, it MUST process
that message, as specified in IVolumeClient2::GetMaxAdjustedFreeSpace (section 3.2.4.4.2.1).

3.2.4.4.3.35 IVolumeClient3::AddMirror (Opnum 38)

The AddMirror method adds a mirror to the specified dynamic volume.

 HRESULT AddMirror(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] DISK_SPEC diskSpec,
 [in, out] int* diskNumber,
 [out] int* partitionNumber,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the volume to which the mirror is being added.

volumeLastKnownState: Volume's last known modification sequence number.

diskSpec: A DISK_SPEC structure that defines the disk to add as a mirror.

diskNumber: This parameter MUST be set to 0 by the client and MUST be ignored by the server.

partitionNumber: If the volumeId parameter is the boot volume, this parameter returns a pointer to

the partition number of the newly added mirror. If the volume is not the boot volume, the server
MUST return partition number zero.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::AddMirror message, it MUST process that message, as
specified in IVolumeClient::AddMirror (section 3.2.4.4.1.32).

3.2.4.4.3.36 IVolumeClient3::RemoveMirror (Opnum 39)

The RemoveMirror method removes a mirror from a dynamic volume.

 HRESULT RemoveMirror(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the mirrored volume from which the disk is being removed.

volumeLastKnownState: Volume's last known modification sequence number.

diskId: Specifies the OID of the disk being removed from the volume.

diskLastKnownState: Last known modification sequence number of the disk being removed from the

volume.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

%5bMS-ERREF%5d.pdf

190 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::RemoveMirror message, it MUST process that message,

as specified in IVolumeClient::RemoveMirror (section 3.2.4.4.1.33).

3.2.4.4.3.37 IVolumeClient3::SplitMirror (Opnum 40)

The SplitMirror method splits a dynamic mirrored volume into two independent simple volumes. One
of the volumes keeps the identifier and drive letter of the original volume. The other volume is
assigned a different identity.

 HRESULT SplitMirror(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in, out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the volume to split.

volumeLastKnownState: Volume's last known modification sequence number.

diskId: Specifies the OID of the disk to split from the volume specified by volumeId.

diskLastKnownState: Last known modification sequence number of the disk to split off.

letter: Drive letter to assign to the disk identified by diskId. If no drive letter is needed for the
volume, the value of this field MUST be a 2-byte Unicode null character or the Unicode SPACE
character.

letterLastKnownState: Last known modification sequence number of the drive letter that is being
assigned to the disk to split.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::SplitMirror message, it MUST process that message, as
specified in IVolumeClient::SplitMirror (section 3.2.4.4.1.34).

3.2.4.4.3.38 IVolumeClient3::InitializeDiskEx (Opnum 41)

The InitializeDiskEx method initializes a disk for control by the volume manager. This is a synchronous

task.

 HRESULT InitializeDiskEx(
 [in] LdmObjectId diskId,
 [in] PARTITIONSTYLE style,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO* tinfo
);

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

191 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

diskId: Specifies the OID of the disk to initialize for volume manager control.

style: Value from the PARTITIONSTYLE enumeration, which indicates the partition style to use.

diskLastKnownState: Last known modification sequence number of the disk.

tinfo: Pointer to a TASK_INFO structure the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that the disk specified by diskId is in the list of storage objects, and check whether
diskLastKnownState matches the LastKnownState field of the object.

2. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Initialize the disk specified by diskId with an empty partition table and write a signature to it:

1. If style is PARTITIONSTYLE_MBR, the disk is initialized with an MBR partition table and
signature.

2. If style is PARTITIONSTYLE_GPT, the disk is initialized with a GPT partition table and
signature.

2. If successful, convert the disk to a dynamic disk.

3. Wait for the conversion to succeed or fail.

4. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<211>

TASK_INFO::clientID Not required.<212>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<213>

5. Return a response to the client containing tinfo and the status of the operation.

6. Send the task completion notification.

%5bMS-ERREF%5d.pdf

192 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response.

 Modify the disk object to account for the change in type.

 Delete disk region objects that reside on the uninitialized disk.<214>

 Create disk region objects that reside on the dynamic disk.

3.2.4.4.3.39 IVolumeClient3::UninitializeDisk (Opnum 42)

The UninitializeDisk method removes a disk from control by the volume manager.

 HRESULT UninitializeDisk(
 [in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO* tinfo
);

diskId: Specifies the OID of the disk to remove from volume manager control.

diskLastKnownState: Last known modification sequence number of the disk.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::UninitializeDisk message, it MUST process that
message, as specified in IVolumeClient::UninitializeDisk (section 3.2.4.4.1.36).

3.2.4.4.3.40 IVolumeClient3::ReConnectDisk (Opnum 43)

The ReConnectDisk method reactivates a failed dynamic disk, bringing the disk and the volumes that
reside on it online.

 HRESULT ReConnectDisk(
 [in] LdmObjectId diskId,
 [out] TASK_INFO* tinfo
);

diskId: Specifies the OID of the disk to reactivate.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::ReConnectDisk message, it MUST process that message,

as specified in IVolumeClient::ReConnectDisk (section 3.2.4.4.1.37).

3.2.4.4.3.41 IVolumeClient3::ImportDiskGroup (Opnum 44)

The ImportDiskGroup method imports a foreign dynamic disk group as the primary disk group of the
server.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

193 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 HRESULT ImportDiskGroup(
 [in] int cchDgid,
 [in, size_is(cchDgid)] byte* dgid,
 [out] TASK_INFO* tinfo
);

cchDgid: Size of dgid in characters, including the terminating null character.

dgid: Null-terminated ASCII string that contains the UUID of the disk group to import.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::ImportDiskGroup message, it MUST process that
message, as specified in IVolumeClient::ImportDiskGroup (section 3.2.4.4.1.38).

3.2.4.4.3.42 IVolumeClient3::DiskMergeQuery (Opnum 45)

The DiskMergeQuery method gathers disk and volume information needed to merge a foreign dynamic
disk group into the primary disk group of the server.

 HRESULT DiskMergeQuery(
 [in] int cchDgid,
 [in, size_is(cchDgid)] byte* dgid,
 [in] int numDisks,
 [in, size_is(numDisks)] LdmObjectId* diskList,
 [out] hyper* merge_config_tid,
 [out] int* numRids,
 [out, size_is(,*numRids)] hyper** merge_dm_rids,
 [out] int* numObjects,
 [out, size_is(,*numObjects)] MERGE_OBJECT_INFO** mergeObjectInfo,
 [in, out] unsigned long* flags,
 [out] TASK_INFO* tinfo
);

cchDgid: Size of dgid in characters, including the terminating null character.

dgid: Null-terminated ASCII string that contains the UUID of the disk group to be merged.

numDisks: Number of disks passed in diskList.

diskList: Array of OIDs of type LdmObjectId that specify the disks of the dgid group to be merged.

merge_config_tid: Pointer to the modification sequence number of the disk group to be merged.

numRids: Pointer to the number of elements returned in merge_dm_rids.

merge_dm_rids: Pointer to an array of disk records that represent the disks that will be merged.

Memory for the array is allocated by the server and freed by the client.

numObjects: Number of elements returned in mergeObjectInfo.

mergeObjectInfo: Pointer to an array of MERGE_OBJECT_INFO structures that contain information
about the volumes that will be merged.

flags: Disk merge query flags. The value of this field is a logical 'OR' of zero or more of the following
applicable flags.

%5bMS-ERREF%5d.pdf

194 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

DSKMERGE_IN_NO_UNRELATED

0x00000001

Do not retrieve merge information for volumes of the foreign disk
group that do not have extents on diskList. This is an input-only flag.

DSKMERGE_OUT_NO_PRIMARY_DG

0x00000001

The machine does not have a primary disk group. This is an output-
only flag.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::DiskMergeQuery message, it MUST process that
message, as specified in IVolumeClient::DiskMergeQuery (section 3.2.4.4.1.39).

3.2.4.4.3.43 IVolumeClient3::DiskMerge (Opnum 46)

The DiskMerge method merges a foreign disk group into the primary disk group of the server. The

foreign disks and their volumes are brought online.

 HRESULT DiskMerge(
 [in] int cchDgid,
 [in, size_is(cchDgid)] byte* dgid,
 [in] int numDisks,
 [in, size_is(numDisks)] LdmObjectId* diskList,
 [in] hyper merge_config_tid,
 [in] int numRids,
 [in, size_is(numRids)] hyper* merge_dm_rids,
 [out] TASK_INFO* tinfo
);

cchDgid: Size of dgid in characters, including the terminating null character.

dgid: Null-terminated ASCII string that contains the UUID of the disk group to be merged.

numDisks: Number of disks passed in diskList.

diskList: Array of object identifiers of type LdmObjectId that specify the disks to be merged from the

dgid group.

merge_config_tid: Last known modification sequence number of the disk group to be merged.

numRids: Number of elements passed in merge_dm_rids.

merge_dm_rids: Array of disk records for the disks in diskList.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::DiskMerge message, it MUST process that message, as
specified in IVolumeClient::DiskMerge (section 3.2.4.4.1.40).

3.2.4.4.3.44 IVolumeClient3::ReAttachDisk (Opnum 47)

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

195 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

The ReAttachDisk method reattaches the specified dynamic disk, bringing the volumes of the disk
online after reconnecting the disk device to the server.<215>

 HRESULT ReAttachDisk(
 [in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO* tinfo
);

diskId: Specifies the OID of the disk to reattach.

diskLastKnownState: The disk's last known modification sequence number.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::ReAttachDisk message, it MUST process that message,
as specified in IVolumeClient::ReAttachDisk (section 3.2.4.4.1.41).

3.2.4.4.3.45 IVolumeClient3::ReplaceRaid5Column (Opnum 48)

The ReplaceRaid5Column method repairs a dynamic RAID-5 volume by replacing the failed member of

the volume with a specified disk.

 HRESULT ReplaceRaid5Column(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId newDiskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the volume for which the member will be replaced.

volumeLastKnownState: Last known modification sequence number of the RAID-5 volume.

newDiskId: Specifies the OID of the replacement disk.

diskLastKnownState: Last known modification sequence number of the replacement disk.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the request's progress.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::ReplaceRaid5Column message, it MUST process that

message, as specified in IVolumeClient::ReplaceRaid5Column (section 3.2.4.4.1.42).

3.2.4.4.3.46 IVolumeClient3::RestartVolume (Opnum 49)

The RestartVolume method attempts to bring a dynamic volume back online.

 HRESULT RestartVolume(
 [in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

196 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [out] TASK_INFO* tinfo
);

volumeId: Specifies the OID of the volume to restart.

volumeLastKnownState: Last known modification sequence number of the volume.

tinfo: Pointer to a TASK_INFO structure that the client can use to track the progress of the request.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::RestartVolume message, it MUST process that message,
as specified in IVolumeClient::RestartVolume (section 3.2.4.4.1.43).

3.2.4.4.3.47 IVolumeClient3::GetEncapsulateDiskInfoEx (Opnum 50)

The GetEncapsulateDiskInfoEx method gathers the information needed to convert the specified basic
disks to dynamic disks.

 HRESULT GetEncapsulateDiskInfoEx(
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC* diskSpecList,
 [out] unsigned long* encapInfoFlags,
 [out] unsigned long* affectedDiskCount,
 [out, size_is(,*affectedDiskCount)]
 DISK_INFO_EX** affectedDiskList,
 [out, size_is(,*affectedDiskCount)]
 unsigned long** affectedDiskFlags,
 [out] unsigned long* affectedVolumeCount,
 [out, size_is(,*affectedVolumeCount)]
 VOLUME_INFO** affectedVolumeList,
 [out] unsigned long* affectedRegionCount,
 [out, size_is(,*affectedRegionCount)]
 REGION_INFO_EX** affectedRegionList,
 [out] TASK_INFO* tinfo
);

diskCount: Number of elements passed in the diskSpecList array.

diskSpecList: Array of DISK_SPEC structures that specify the disks to be encapsulated. Memory for
the array is allocated and freed by the client.

encapInfoFlags: Bitmap of flags that returns information about encapsulating the disks specified in
diskSpecList. The value of this field is generated by combining zero or more of the following
applicable flags with a logical OR operation.

Value Meaning

ENCAP_INFO_CANT_PROCEED

0x00000001

Encapsulation for the disk will not succeed. The other flags specify the
reason.

ENCAP_INFO_NO_FREE_SPACE

0x00000002

Volume manager could not find sufficient free space on the disk for
encapsulation.

ENCAP_INFO_BAD_ACTIVE

0x00000004

Disk contains an active partition from which the current operating
system was not started.

%5bMS-ERREF%5d.pdf

197 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

ENCAP_INFO_UNKNOWN_PART

0x00000008

Volume manager was unable to determine the type of a partition on the
disk because of corruption or other errors reading the disk. For
example, any error that prevents the partition information from being
read, or the partition is neither GPT nor MBR, or an OEM partition is
found that is not at the beginning of the disk.

ENCAP_INFO_FT_UNHEALTHY

0x00000010

Disk contains an FT set volume that is not functioning properly.

ENCAP_INFO_FT_QUERY_FAILED

0x00000020

Volume manager was unable to obtain information about an FT set
volume on the disk.

ENCAP_INFO_REBOOT_REQD

0x00000100

Encapsulation of the disk requires a restart of the computer.

ENCAP_INFO_CONTAINS_FT

0x00000200

Disk is part of an FT set volume.

ENCAP_INFO_VOLUME_BUSY

0x00000400

Disk is currently in use.

ENCAP_INFO_PART_NR_CHANGE

0x00000800

Encapsulation of the disk requires modification of the boot
configuration.

ENCAP_INFO_MIXED_PARTITIONS

0x00001000

Encapsulation of a GPT disk that contains basic partitions mixed with
nonbasic partitions is not supported.

ENCAP_INFO_OPEN_FAILED

0x00002000

Could not open a volume that resides on a disk in the set of disks
specified for encapsulation.

affectedDiskCount: Pointer to the number of disks that will be affected by the encapsulation.

affectedDiskList: Pointer to an array of new DISK_INFO_EX structures that represent the disks that
will be affected by the encapsulation.

affectedDiskFlags: Pointer to an array of bitmaps of flags that provides information about the disks

that will be affected by the encapsulation. The value of this field is generated by combining zero or
more of the following applicable flags with a logical OR operation.

Value Meaning

CONTAINS_FT

0x00000001

Disk contains an FT set volume.

CONTAINS_RAID5

0x00000002

Disk contains part of an FT RAID-5 set.

CONTAINS_REDISTRIBUTION

0x00000004

Not used.

CONTAINS_BOOTABLE_PARTITION

0x00000008

Disk contains a bootable partition.

CONTAINS_LOCKED_PARTITION

0x00000010

Disk contains a locked partition.

CONTAINS_NO_FREE_SPACE Disk is full.

198 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

0x00000020

CONTAINS_EXTENDED_PARTITION

0x00000040

Disk contains an extended partition.

PARTITION_NUMBER_CHANGE

0x00000080

A partition number on the disk has changed.

CONTAINS_BOOTINDICATOR

0x00000100

Disk contains the active partition.

CONTAINS_BOOTLOADER

0x00000200

Disk contains the boot loader.

CONTAINS_SYSTEMDIR

0x00000400

Partition contains the system directory.

CONTAINS_MIXED_PARTITIONS

0x00000800

Partition contains partitions that will not be converted to dynamic.

affectedVolumeCount: Pointer to the number of volumes that will be affected by the encapsulation.

affectedVolumeList: Pointer to an array of VOLUME_INFO structures that represent the volumes that
will be affected by the encapsulation.

affectedRegionCount: Pointer to the number of regions that will be affected by the encapsulation.

affectedRegionList: Pointer to an array of REGION_INFO_EX structures that represent the regions
that will be affected by the encapsulation.

tinfo: Pointer to a TASK_INFO structure the client can use to track the progress of the request.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that diskCount is not 0 and diskSpecList is not NULL.

2. For each DISK_SPEC structure specified in diskSpecList, verify that the disk specified by diskId is
in the list of storage objects; and check whether lastKnownState matches the LastKnownState
field of the object.

3. Verify that encapInfoFlags is not NULL.

4. Verify that affectedDiskCount, affectedDiskList, and affectedDiskFlags are not NULL.

5. Verify that affectedVolumeCount and affectedVolumeList are not NULL.

6. Verify that affectedRegionCount and affectedRegionList are not NULL.

7. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

%5bMS-ERREF%5d.pdf

199 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

1. Identify other basic disks from the list of storage objects that need to be encapsulated together
with the basic disks specified by diskSpecList.

2. Allocate a buffer large enough to contain DISK_INFO_EX structures that describe all basic disks
that need to be encapsulated together (including the disks specified by diskSpecList).

3. Populate each DISK_INFO_EX structure in the buffer with information about the disk.

4. The buffer MUST be returned to the client in the output parameter affectedDiskList.

5. The number of DISK_INFO_EX structures in the buffer MUST be returned to the client in the
output parameter affectedDiskCount.

6. Allocate a second buffer large enough to contain bitmaps of flags, one for each disk returned in
affectedDiskList, that describes disk conditions that are of interest to clients in the context of
encapsulation.

7. Populate the second buffer with the bitmaps of flags of the disks.

8. The second buffer MUST be returned to the client in the output parameter affectedDiskFlags. Note
that the number of elements in the buffer is the same as the count of disks, which is returned in
affectedDiskCount.

9. Enumerate all the FT volumes that reside on the disks returned in affectedDiskList from the list of
storage objects.

10. Allocate a third buffer large enough to contain VOLUME_INFO structures that describe the
enumerated FT volumes.

11. Populate each VOLUME_INFO structure in the third buffer with information about the FT volume.

12. The third buffer MUST be returned to the client in the output parameter affectedVolumeList.

13. The number of VOLUME_INFO structures in the third buffer MUST be returned to the client in the
output parameter affectedVolumeCount.

14. Enumerate all the disk regions that reside on the disks returned in affectedDiskList from the list of

storage objects.

15. Allocate a fourth buffer large enough to contain REGION_INFO_EX structures that describe the
enumerated disk regions.

16. Populate each REGION_INFO_EX structure in the fourth buffer with information about the disk
region.

17. The fourth buffer MUST be returned to the client in the output parameter affectedRegionList.

18. The number of REGION_INFO_EX structures in the fourth buffer MUST be returned to the client in

the output parameter affectedRegionCount.

19. Populate a 32-bit signed integer bitmap of flags that describes conditions that will prevent the
overall encapsulation to proceed, or might be of interest to the client in the context of

encapsulation. If the encapsulation cannot proceed, the server MUST set the
ENCAP_INFO_CANT_PROCEED flag, and then set other flags as appropriate to account for the
reasons why the encapsulation is not possible.

20. The bitmap of flags MUST be returned to the client in the output parameter encapInfoFlags.

21. Return a response that contains the output parameters mentioned previously and the status of the
operation.

200 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.3.48 IVolumeClient3::EncapsulateDiskEx (Opnum 51)

The EncapsulateDiskEx method converts the specified basic disks to dynamic disks. This is a

synchronous task.

 HRESULT EncapsulateDiskEx(
 [in] unsigned long affectedDiskCount,
 [in, size_is(affectedDiskCount)]
 DISK_INFO_EX* affectedDiskList,
 [in] unsigned long affectedVolumeCount,
 [in, size_is(affectedVolumeCount)]
 VOLUME_INFO* affectedVolumeList,
 [in] unsigned long affectedRegionCount,
 [in, size_is(affectedRegionCount)]
 REGION_INFO_EX* affectedRegionList,
 [out] unsigned long* encapInfoFlags,
 [out] TASK_INFO* tinfo
);

affectedDiskCount: The number of elements passed in the affectedDiskList array.

affectedDiskList: An array of DISK_INFO_EX structures that specifies the disks to be encapsulated.

affectedVolumeCount: The number of elements passed in the affectedVolumeList array.

affectedVolumeList: An array of VOLUME_INFO structures that represents the volumes affected by
the encapsulation. If the number of affect volumes is zero, a pointer to a zero-length array MUST
be passed. This pointer MUST NOT be input as NULL.

affectedRegionCount: The number of elements passed in the affectedRegionList array.

affectedRegionList: An array of REGION_INFO_EX structures that represents the regions affected by
the encapsulation. If the number of affect regions is zero, a pointer to a zero-length array MUST

be passed. This pointer MUST NOT be input as NULL.

encapInfoFlags: Bitmap of flags that provides information about the encapsulation. The value of this
field is generated by combining zero or more of the following applicable flags with a logical OR
operation.

Value Meaning

ENCAP_INFO_CANT_PROCEED

0x00000001

Encapsulation for disk did not succeed. Inspect the other values of
encapInfoFlags to determine the reason.

ENCAP_INFO_NO_FREE_SPACE

0x00000002

The volume manager could not find sufficient free space on the disk for
encapsulation.

ENCAP_INFO_BAD_ACTIVE

0x00000004

The disk contains an active partition from which the current operating
system was not started.

ENCAP_INFO_UNKNOWN_PART

0x00000008

The volume manager was unable to determine the type of a partition on
the disk.

ENCAP_INFO_FT_UNHEALTHY

0x00000010

The disk contains an unhealthy FT set volume.

ENCAP_INFO_FT_QUERY_FAILED

0x00000020

The volume manager was unable to obtain information about an FT set
volume on the disk.

201 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Value Meaning

ENCAP_INFO_REBOOT_REQD

0x00000100

Encapsulation of the disk will require a restart of the computer.

ENCAP_INFO_CONTAINS_FT

0x00000200

The disk is part of an FT set volume.

ENCAP_INFO_VOLUME_BUSY

0x00000400

The disk is currently in use.

ENCAP_INFO_PART_NR_CHANGE

0x00000800

Encapsulation of the disk requires modification of the boot
configuration.

ENCAP_INFO_MIXED_PARTITIONS

0x00001000

Encapsulation of a GPT disk that contains basic partitions mixed with
nonbasic partitions is not supported.

ENCAP_INFO_OPEN_FAILED

0x00002000

Could not open a volume that resides on a disk in the set of disks

specified for encapsulation.

tinfo: A pointer to a TASK_INFO structure that the client can use to track the progress of the request.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that affectedDiskList is not NULL and affectedDiskCount is not 0.

2. For each DISK_INFO_EX structure specified by affectedDiskList, verify that the disk specified by
diskId is in the list of storage objects and that lastKnownState matches the LastKnownState
field of the object.

3. Verify that no other basic disks need to be encapsulated together with the disks specified by
affectedDiskList.

4. Verify that affectedVolumeList is not NULL. If affectedVolumeCount is zero, a valid pointer to a

zero-length array for the affectVolumeList MUST be passed in.

5. Verify that affectedRegionList is not NULL. If affectedRegionCount is zero, a valid pointer to a
zero-length array for the affectRegionList MUST be passed in.

6. Verify that the list of basic volumes specified by affectedVolumeList matches the set of basic
volumes residing on the disks specified by affectedDiskList.

7. Verify that encapInfoFlags is not NULL.

8. Verify that tinfo is not NULL.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate
error as its response to the client.

Otherwise, the server MUST process the message as follows:

1. Convert the basic disks specified by affectedDiskList to dynamic:

 All partitions and logical drives that reside on the basic disk are converted to dynamic
volumes.

%5bMS-ERREF%5d.pdf

202 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

2. Wait for the conversion to succeed or fail.

3. Fill in the tinfo output parameter.

TASK_INFO member Required for this operation

TASK_INFO::id Required.

TASK_INFO::storageId Not required.

TASK_INFO::createTime Not required.<216>

TASK_INFO::clientID Not required.<217>

TASK_INFO::percentComplete Required for any task that returns REQ_IN_PROGRESS.

TASK_INFO::status Required.

TASK_INFO::type Required if PercentageComplete is being used.

TASK_INFO::error Required.

TASK_INFO::tflag Not required.<218>

4. Return a response to the client containing tinfo and the status of the operation.

5. Send the task completion notification.<219>

If the operation is successful, the server MUST make the following changes to the list of storage
objects before returning the response.

1. Modify the converted disk objects to account for the change in type.

2. Create new dynamic volume objects that correspond to the new dynamic volumes.

3. Create new disk region objects for the new dynamic disks.

4. Delete disk region objects of the old basic disks.<220>

5. Modify drive letter objects to account for the change of volume owning them.

6. Modify file system objects to account for the change of volume owning them.

If the boot partition is among the disks being encapsulated, the server MUST store boot partition
change information on persistent storage (registry). The information MUST contain the old (pre-
encapsulation) and new (post-encapsulation) partition number of the boot partition. The information is
useful in case the client sends an IVolumeClient3::QueryChangePartitionNumbers message.

3.2.4.4.3.49 IVolumeClient3::QueryChangePartitionNumbers (Opnum 52)

The QueryChangePartitionNumbers method retrieves information about the partition number change

that results when a boot partition is encapsulated.

 HRESULT QueryChangePartitionNumbers(
 [out] int* oldPartitionNumber,
 [out] int* newPartitionNumber
);

oldPartitionNumber: Pointer to the partition number of the boot volume before the encapsulation
operation.

203 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

newPartitionNumber: Pointer to the partition number of the boot volume after the encapsulation
operation.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::QueryChangePartitionNumbers message, it MUST
process that message, as specified in
IVolumeClient::QueryChangePartitionNumbers (section 3.2.4.4.1.46).

3.2.4.4.3.50 IVolumeClient3::DeletePartitionNumberInfoFromRegistry (Opnum 53)

The DeletePartitionNumberInfoFromRegistry method deletes the boot partition number change history

from persistent storage.

 HRESULT DeletePartitionNumberInfoFromRegistry();

This method has no parameters.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::DeletePartitionNumberInfoFromRegistry message, it
MUST process that message, as specified in
IVolumeClient::DeletePartitionNumberInfoFromRegistry (section 3.2.4.4.1.47).

3.2.4.4.3.51 IVolumeClient3::SetDontShow (Opnum 54)

The SetDontShow method sets a Boolean value that indicates whether to show a disk initialization
tool. <221>

 HRESULT SetDontShow(
 [in] boolean bSetNoShow
);

bSetNoShow: Boolean value that determines whether the New Disk Wizard is enabled.

Value Meaning

FALSE

0

Enables the New Disk Wizard. This is the default value. This value indicates that the user has
not selected the check box in the New Disk Wizard to request that the wizard not be displayed
in the future.

TRUE

1

Disables the New Disk Wizard. This value indicates that the user has selected the check box in
the New Disk Wizard to request that the wizard not be displayed in the future.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::SetDontShow message, it MUST process that message,

as specified in IVolumeClient::SetDontShow (section 3.2.4.4.1.48).

3.2.4.4.3.52 IVolumeClient3::GetDontShow (Opnum 55)

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

204 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

The GetDontShow method retrieves a value that indicates whether to show a disk initialization tool.
<222>

 HRESULT GetDontShow(
 [out] boolean* bGetNoShow
);

bGetNoShow: Boolean value that indicates whether the New Disk Wizard is enabled or disabled.

Value Meaning

FALSE

0

New Disk Wizard is enabled. This is the default value. This value indicates that the user has not
selected the check box in the New Disk Wizard to request that the wizard not be displayed in the
future.

TRUE

1

New Disk Wizard is disabled. Indicates that the user has selected the check box in the New Disk
Wizard to request that the wizard not be displayed in the future.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::GetDontShow message, it MUST process that message,
as specified in IVolumeClient::GetDontShow (section 3.2.4.4.1.49).

3.2.4.4.3.53 IVolumeClient3::EnumTasks (Opnum 64)

The EnumTasks method enumerates the tasks that are currently running on the server.

 HRESULT EnumTasks(
 [in, out] unsigned long* taskCount,
 [out, size_is(,*taskCount)] TASK_INFO** taskList
);

taskCount: Number of elements returned in the taskList array.

taskList: Array of TASK_INFO structures that describes the tasks running on the server.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::EnumTasks message, it MUST process that message, as
specified in IVolumeClient::EnumTasks (section 3.2.4.4.1.50).

3.2.4.4.3.54 IVolumeClient3::GetTaskDetail (Opnum 65)

The GetTaskDetail method retrieves information about a task that is running on the server.

 HRESULT GetTaskDetail(
 [in] LdmObjectId id,
 [in, out] TASK_INFO* tinfo
);

id: Specifies the OID of the task for which to retrieve information.

tinfo: A TASK_INFO structure that describes the operation currently being performed by id.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

205 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::GetTaskDetail message, it MUST process that message,

as specified in IVolumeClient::GetTaskDetail (section 3.2.4.4.1.51).

3.2.4.4.3.55 IVolumeClient3::AbortTask (Opnum 66)

The AbortTask method aborts a task running on the server.

 HRESULT AbortTask(
 [in] LdmObjectId id
);

id: Specifies the OID of the task to be aborted.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::AbortTask message, it MUST process that message, as
specified in IVolumeClient::AbortTask (section 3.2.4.4.1.52).

3.2.4.4.3.56 IVolumeClient3::HrGetErrorData (Opnum 67)

The HrGetErrorData method retrieves user-readable error information associated with an HRESULT
error code.

 HRESULT HrGetErrorData(
 [in] HRESULT hr,
 [in] DWORD dwFlags,
 [out] DWORD* pdwStoredFlags,
 [out] int* pcszw,
 [out, string, size_is(,*pcszw,)]
 wchar_t*** prgszw
);

hr: The HRESULT error code from which error information is retrieved.

dwFlags: Bitmap of retrieval flags. The value of this field is generated by combining zero or more of
the following applicable flags with a logical OR operation.

Value Meaning

ERRFLAG_NOREMOVE

0x00020000

Do not delete the error information from the list maintained by the server.

ERRFLAG_IGNORETAG

0x00040000

Retrieve the error information even if it was not produced for this client.

pdwStoredFlags: Pointer to a bitmap of error flags.<223>

pcszw: Pointer to the number of strings returned in prgszw.

prgszw: Pointer to an array of strings that contain error information for the HRESULT.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

206 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::HrGetErrorData message, it MUST process that

message, as specified in IVolumeClient::HrGetErrorData (section 3.2.4.4.1.53).

3.2.4.4.3.57 IVolumeClient3::Initialize (Opnum 68)

The Initialize method initializes the dialog between the client and the server. This method MUST be the
first call made by the client after connecting to the server.

 HRESULT Initialize(
 [in] IUnknown* notificationInterface,
 [out] unsigned long* ulIDLVersion,
 [out] DWORD* pdwFlags,
 [out] LdmObjectId* clientId,
 [in] unsigned long cRemote
);

notificationInterface: Pointer to the client's IUnknown interface from which the server can query the
IDMNotify interface that is used for sending notifications to the client.

ulIDLVersion: Revision of the Microsoft Interface Definition Language (MIDL) file with which
the server was built.

pdwFlags: Bitmap of information flags about the server. The value of this field is generated by
combining zero or more of the following applicable flags with a logical OR operation.

Value Meaning

SYSFLAG_SERVER

0x00000001

Server is running on Windows 2000 Server and Windows Server 2003.

SYSFLAG_ALPHA

0x00000002

Server is running on an Alpha processor.<224>

SYSFLAG_SYSPART_SECURE

0x00000004

System partition for the server is secure.<225>

SYSFLAG_NEC_98

0x00000008

Server is an NEC 98 computer, which supports assignment of drive letters A
and B to partitions or volumes.<226>

SYSFLAG_NO_DYNAMIC

0x00000010

Server is a laptop and does not support dynamic disks.

SYSFLAG_WOLFPACK

0x00000020

Server is running on an MCS cluster.

SYSFLAG_IA64

0x00000040

Server is running on an Intel Itanium-based processor.

SYSFLAG_UNINSTALL_VALID

0x00000080

Server has an available and valid backup for uninstallation.

SYSFLAG_DYNAMIC_1394

0x00000100

Server supports converting IEEE 1394 attached disks to dynamic disks.

clientId: Pointer to the client's OID.

%5bMS-ERREF%5d.pdf

207 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

cRemote: If set to 0, indicates that the client is on the same machine as the server. Otherwise, the
client is on a different machine than the server.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::Initialize message, it MUST process that message, as
specified in IVolumeClient::Initialize (section 3.2.4.4.1.54).

3.2.4.4.3.58 IVolumeClient3::Uninitialize (Opnum 69)

The Uninitialize method ends the dialog between the client and the server.

 HRESULT Uninitialize();

This method has no parameters.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::Uninitialize message, it MUST process that message, as
specified in IVolumeClient::Uninitialize (section 3.2.4.4.1.55).

3.2.4.4.3.59 IVolumeClient3::Refresh (Opnum 70)

The Refresh method refreshes the server's cache of storage objects, including regions, removable
media and CD-ROM drive media, file systems, and drive letters.

 HRESULT Refresh();

This method has no parameters.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::Refresh message, it MUST process that message, as
specified in IVolumeClient::Refresh (section 3.2.4.4.1.56).

3.2.4.4.3.60 IVolumeClient3::RescanDisks (Opnum 71)

The RescanDisks method triggers the detection of changes in the list of storage devices connected to
the server and refreshes the server's cache of storage objects, including regions, removable media
and CD-ROM drive media, file systems, drive letters, and disk drives.

 HRESULT RescanDisks();

This method has no parameters.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

208 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

When the server receives an IVolumeClient3::RescanDisks message, it MUST process that message,
as specified in IVolumeClient::RescanDisks (section 3.2.4.4.1.57).

3.2.4.4.3.61 IVolumeClient3::RefreshFileSys (Opnum 72)

The RefreshFileSys method refreshes the server's cache of file systems.

 HRESULT RefreshFileSys();

This method has no parameters.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::RefreshFileSys message, it MUST process that message,
as specified in IVolumeClient::RefreshFileSys (section 3.2.4.4.1.58).

3.2.4.4.3.62 IVolumeClient3::SecureSystemPartition (Opnum 73)

The SecureSystemPartition method toggles the secure state of the system partition. Securing the

system partition means preventing the system partition from being accessed once the system boot
sequence is over.

 HRESULT SecureSystemPartition();

This method has no parameters.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::SecureSystemPartition message, it MUST process that
message, as specified in IVolumeClient::SecureSystemPartition (section 3.2.4.4.1.59).

3.2.4.4.3.63 IVolumeClient3::ShutDownSystem (Opnum 74)

The ShutDownSystem method restarts the machine on which the server is running.

 HRESULT ShutDownSystem();

This method has no parameters.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an

implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::ShutDownSystem message, it MUST process that
message, as specified in IVolumeClient::ShutDownSystem (section 3.2.4.4.1.60).

3.2.4.4.3.64 IVolumeClient3::EnumAccessPath (Opnum 75)

The EnumAccessPath method enumerates all mount points configured on the machine.

 HRESULT EnumAccessPath(

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

209 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [in, out] int* lCount,
 [out, size_is(,*lCount)] COUNTED_STRING** paths
);

lCount: The address of an int that returns the number of elements returned in paths.

paths: Pointer to an array of COUNTED_STRING structures that describes all mount points configured
on the machine.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::EnumAccessPath message, it MUST process that

message, as specified in IVolumeClient::EnumAccessPath (section 3.2.4.4.1.61).

3.2.4.4.3.65 IVolumeClient3::EnumAccessPathForVolume (Opnum 76)

The EnumAccessPathForVolume method enumerates the mount points of a specified volume, partition,
or logical drive.

 HRESULT EnumAccessPathForVolume(
 [in] LdmObjectId VolumeId,
 [in, out] int* lCount,
 [out, size_is(,*lCount)] COUNTED_STRING** paths
);

volumeId: Specifies the OID of the volume, partition, or logical drive for which to enumerate mount
points.

lCount: The address of an int that returns the number of elements returned in paths.

paths: Pointer to an array of COUNTED_STRING structures that describe the volume's mount points.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::EnumAccessPathForVolume message, it MUST process
that message, as specified in IVolumeClient::EnumAccessPathForVolume (section 3.2.4.4.1.62).

3.2.4.4.3.66 IVolumeClient3::AddAccessPath (Opnum 77)

The AddAccessPath method adds the specified mount point to a volume, partition, or logical drive.

 HRESULT AddAccessPath(
 [in] int cch_path,
 [in, size_is(cch_path)] WCHAR* path,
 [in] LdmObjectId targetId
);

cch_path: Length of path in characters, including the terminating null character.

path: Null-terminated mount point path to assign to the volume targetId.

targetId: Specifies the OID of the volume, partition, or logical drive to which the new mount point is
to be assigned.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

210 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also

section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::AddAccessPath message, it MUST process that message,

as specified in IVolumeClient::AddAccessPath (section 3.2.4.4.1.63).

3.2.4.4.3.67 IVolumeClient3::DeleteAccessPath (Opnum 78)

The DeleteAccessPath method deletes a specified mount point from a volume, partition, or logical
drive.

 HRESULT DeleteAccessPath(
 [in] LdmObjectId volumeId,
 [in] int cch_path,
 [in, size_is(cch_path)] WCHAR* path
);

volumeId: Specifies the OID of the volume, partition, or logical drive from which to delete the mount
point.

cch_path: Length of path in characters, including the terminating null character.

path: Null-terminated path of the mount point to delete.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

When the server receives an IVolumeClient3::DeleteAccessPath message, it MUST process that
message, as specified in IVolumeClient::DeleteAccessPath (section 3.2.4.4.1.64).

3.2.4.4.4 IVolumeClient4

Unless otherwise specified in the following sections, all methods MUST return 0 or a nonerror HRESULT
(as specified [MS-ERREF]) on success, or an implementation-specific nonzero error code on failure
(see section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Unless otherwise specified in this specification, client implementations of the protocol MUST NOT take
any action on an error code, but rather simply return the error to the invoking application. If the
return code is not an error, the client SHOULD assume that all output parameters are present and
valid.<227>

Methods in RPC Opnum Order

Method Description

IVolumeClient4::RefreshEx Opnum: 3

IVolumeClient4::GetVolumeDeviceName Opnum: 4

3.2.4.4.4.1 IVolumeClient4::RefreshEx (Opnum 3)

The RefreshEx method refreshes the server's cache of storage objects, including regions, removable

media and CD-ROM drive media, file systems, and drive letters.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

211 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 HRESULT RefreshEx(void);

This method has no parameters.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

The handling of this message is identical to the handling of IVolumeClient::Refresh and
IVolumeClient3::Refresh except that the server MUST perform an extra low-level refresh of the list of
storage objects by looking for missing dynamic disks or dynamic disks that were missing and are now

present. This verification updates the status for missing disks, volumes that reside on missing disks,
or disk regions that reside on missing disks.<228>

In addition to the preceding actions, the server MUST check whether the lengths of the disks have
changed and make appropriate changes to the disk objects in the list of storage objects.

3.2.4.4.4.2 IVolumeClient4::GetVolumeDeviceName (Opnum 4)

The GetVolumeDeviceName method retrieves the Windows NT operating system device name of a

dynamic volume on the server.

 HRESULT GetVolumeDeviceName(
 [in] LdmObjectId _volumeId,
 [out] unsigned long* cchVolumeDevice,
 [out, size_is(,*cchVolumeDevice)]
 WCHAR** pwszVolumeDevice
);

_volumeId: Specifies the OID of the volume whose path name is being returned.

cchVolumeDevice: Number of characters returned in pwszVolumeDevice, including the terminating

null character.

pwszVolumeDevice: Pointer to a null-terminated array of characters that stores the Windows NT
device name of the volume specified by volumeId. The device name is in the format

\Device\DeviceName. Memory for the array is allocated by the server and freed by the client.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

Upon receiving this message, the server MUST validate parameters:

1. Verify that cchVolumeDevice and pwszVolumeDevice are not NULL.

2. Verify that the dynamic volume specified by volumeId is in the list of storage objects.

If parameter validation fails, the server MUST fail the operation immediately, returning an appropriate

error as its response to the client.

Otherwise, the server MUST compose a response to the client as follows:

1. Retrieve the device name of the dynamic volume specified by volumeId. The device name is an
OS-specific name that can be used to access the device from the kernel.

2. Allocate a buffer large enough to contain the device name, including the terminating null

character.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

212 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3. Populate the buffer with the device name, including the terminating null character.

4. The buffer MUST be returned to the client in the output parameter pwszVolumeDevice.

5. The number of characters in the buffer, including the terminating null character, MUST be returned
in the output parameter cchVolumeDevice.

6. Return a response that contains the preceding output parameters and the status of the operation.

The server MUST NOT change the list of storage objects as part of processing this message.

3.2.4.4.5 IDMRemoteServer

Methods in RPC Opnum Order

Method Description

IDMRemoteServer::CreateRemoteObject Opnum: 3

3.2.4.4.5.1 IDMRemoteServer::CreateRemoteObject (Opnum 3)

The CreateRemoteObject method creates a disk management server, on the remote machine specified
by RemoteComputerName, by invoking DCOM with the class GUID of Disk Management server and the
name of the remote machine, which starts the disk management server on the remote machine. The
method negotiates for the interface as described in section 3.1.3, and as illustrated in section 4. The
client holds a reference to the IDMRemoteServer interface binding on the server, until the client has
received an IVolumeClient, or IVolumeClient3 interface binding to the remote server. The client MAY

then release the IDMRemoteServer interface on the server.

 HRESULT CreateRemoteObject(
 [in] unsigned long cMax,
 [in, max_is(cMax)] wchar_t* RemoteComputerName
);

cMax: Length of RemoteComputerName (in Unicode characters), including the terminating null
character.

RemoteComputerName: Null-terminated Unicode string that specifies the name of the computer on
which the server is to be activated. All UNC names ("\\server" or "server") and DNS names
("domain.com", "example.microsoft.com", or "135.5.33.19") are allowed.

Return Values: The method MUST return 0 or a nonerror HRESULT on success, or an
implementation-specific nonzero error code on failure (as specified in [MS-ERREF]; see also
section 2.2.1 for HRESULT values predefined by the Disk Management Remote Protocol).

3.2.5 Timer Events

No timers are used by the Disk Management Remote Protocol.

3.2.6 Other Local Events

The server SHOULD register to receive notifications from the operating system related to changes in
the storage configuration of the system. Examples of causes of such changes include administrative

change of the hardware configuration, hardware failures, and administrative configuration of storage
objects using various tools.

%5bMS-ERREF%5d.pdf

213 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Note Failure to register for and handle storage change notifications impairs the capability of clients to
perform configuration operations in the situations enumerated above .<229>

3.2.6.1 Disk Arrival

When the operating system notifies the server of a new disk connected to the system, the server
MUST add a new object to the list of storage objects. A unique identifier MUST be associated with the
new object. The LastKnownState field of the object MUST be initialized with a value at the server's
discretion. The server MUST then send a notification of type DMNOTIFY_DISK_INFO with action

LDMACTION_CREATED to all clients currently registered for notifications.

Then the server MUST enumerate all the regions that reside on the disk, reevaluate the status of the
volumes that use those regions (together with their drive letters and file systems), make appropriate
changes to the list of storage objects, and send notifications to all clients currently registered for
notifications.

3.2.6.2 Disk Removal

When the operating system notifies the server that a disk has been disconnected from the system, the
server MUST remove the disk from the list of storage objects. Then the server MUST send a
notification of type DMNOTIFY_DISK_INFO with action LDMACTION_DELETED to all clients currently
registered for notifications.

Before taking the preceding steps, the server MUST enumerate the regions that reside on the disk,

reevaluate the status of the volumes that use those regions (together with their drive letters and file
systems), make appropriate changes to the list of storage objects, and send notifications to all clients
currently registered for notifications.

3.2.6.3 Disk Layout Change

When the operating system notifies the server that the partitioning layout of a disk was changed by an
entity other than the server, the server MUST reenumerate the regions that reside on the disk,

reevaluate the status of the volumes that use those regions (together with their drive letters and file
systems), make appropriate changes to the list of storage objects, and send notifications to all clients
currently registered for notifications.

3.2.6.4 File System Change

When the operating system notifies the server that one of the volumes has been formatted by an
entity other than the server, the server MUST add a new file system object to the list of storage
objects, and then send a notification of type DMNOTIFY_FS_INFO with action LDMACTION_CREATED
to all clients currently registered for notifications. The old file system (if any) MUST be removed from

the list of storage objects, and the appropriate notifications MUST be sent to all clients currently
registered for notifications.

When the operating system notifies the server that the attributes of a file system (for example, the
volume label) have been changed by an entity other than the server, the server MUST send a

notification of type DMNOTIFY_FS_INFO with action LDMACTION_MODIFIED to all clients currently
registered for notifications.

3.2.6.5 Drive Letter Arrival

When the operating system notifies the server that one of the volumes has been assigned a drive
letter by an entity other than the server, the server MUST send a notification of type
DMNOTIFY_DL_INFO with action LDMACTION_MODIFIED to all clients currently registered for

notifications.

214 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

3.2.6.6 Drive Letter Removal

When the operating system notifies the server that a drive letter has been removed by an entity other
than the server, the server MUST send a notification of type DMNOTIFY_DL_INFO with action

LDMACTION_MODIFIED to all clients currently registered for notifications.

3.2.6.7 Media Arrival

When the operating system notifies the server that media has been inserted by the user in a
removable, CD-ROM, or DVD unit, the server MUST send a notification of type DMNOTIFY_DISK_INFO

with action LDMACTION_MODIFIED to all clients currently registered for notifications.

Then the server MUST enumerate all the regions that reside on the disk (together with their drive
letters and file systems), make appropriate changes to the list of storage objects, and send
notifications to all clients currently registered for notifications.

3.2.6.8 Media Removal

When the operating system notifies the server that media has been removed by the user from a
removable disk, CD-ROM, or DVD unit, the server MUST send a notification of type
DMNOTIFY_DISK_INFO with action LDMACTION_MODIFIED to all clients currently registered for
notifications.

Before doing that, the server MUST enumerate all the regions that reside on the disk (together with

their drive letters and file systems), make appropriate changes to the list of storage objects, and send
notifications to all clients currently registered for notifications.

215 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

4 Protocol Examples

4.1 Starting a New Session on a Local or Remote Server

 The following diagram shows how the client would start a new session on a local or remote server.

Figure 1: Steps to start a new session on a local or remote server

1. The client starts a new session of the disk management server by invoking DCOM with the class
GUID of the disk management server and requests for IUnknown interface .

2. The server returns a reference to the IUnknown interface.

3. The client requests binding to the IVolumeClient3 interface.

216 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

4. The server returns a reference to the IVolumeClient3 interface.

5. The client calls the IVolumeClient3::Initialize() method passing it a reference to its notification

callback interface IDMNotify.

6. The server stores the notification callback interface, finishes the initialization, and returns success

to the client.

4.2 Starting a New Session on a Remote Server Using the IDMRemoteServer

Interface

The following diagram shows how the client would start a new session on a remote server by using the
IDMRemoteServer interface.

Figure 2: Steps to start a new session on a remote server using IDmRemoteServer interface

217 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

1. The client starts a new session of the local disk management server by invoking DCOM with the
class GUID of the disk management server and requests for the IUnknown interface.

2. The local server returns a reference to the IUnknown interface.

3. The client requests binding to the IDmRemoteServer interface.

4. The local server returns a reference to the IDmRemoteServer interface.

5. The client calls the IDMRemoteServer::CreateRemoteObject (Opnum 3) method passing it the
name of the remote server.

6. The local server does the following:

 Starts the disk management server on the remote server by invoking DCOM with the class
GUID of the disk management server and remote server name, and, requests the IUnknown
interface.

 Receives an IUnknown interface pointer to the remote server.

 Stores the reference to the IUnknown interface of the remote server.

7. The client requests binding to the IVolumeClient3 interface.

8. The local server in turn calls in to the remote server by using the stored IUnknown interface
pointer and requests binding to the IVolumeClient3 interface. The local server returns a reference
to the IVolumeClient3 interface on the remote server to the client.

9. The client may now release the IDmRemoteServer interface, because it now holds an interface
pointer to the remote server.

10. The client calls the IVolumeClient3::Initialize() method, passing it a reference to its notification
callback interface IDMNotify.

11. The remote server stores the client's IDMNotify notification callback, finishes the initialization, and

returns success to the client.

4.3 Creating a Partition

The following diagram shows how the IVolumeClient interfaces are used to create a partition on a disk.

218 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Figure 3: Steps to create a partition on a disk by using the IVolumeClient interfaces

1. The client calls IVolumeClient::Initialize and passes its implementation of the IDMNotify interface

to the server.

2. The client calls IVolumeClient::EnumDisks to get the list of disks from the remote machine.

3. For each disk, a DISK_INFO structure is returned. The server allocates the memory and returns
the array of DISK_INFO structures and HRESULT to the client.

4. The client verifies that the call was successful by looking at the returned HRESULT. If the call was
successful, the client finds the disk to be used to create the partition (for example, by looking at

the disk name field in the DISK_INFO structure). The client then calls
IVolumeClient::EnumDiskRegions to get an array that represents the regions on the disk. The
input parameter to EnumDiskRegions is the disk's LdmObjectId, which is the first member of the
DISK_INFO structure.

5. The server allocates an array of REGION_INFO structures and returns the array to the client.

219 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

6. The client verifies that the call was successful by looking at the returned HRESULT. If the call was
successful, the client parses the array to find a region with REGIONTYPE REGION_FREE. The client

looks at the size of the region to see what size partition can be created in this region. If this free
region is not large enough for the expected partition size, the client can continue to look for free

regions on that disk that are larger. Once the client finds the region to be used to create the new
volume, the client calls IVolumeClient::CreatePartition. The input parameter to the call is a
REGION_SPEC structure. The client fills in the LdmObjectId for the region; this information is
obtained from the REGION_INFO structure. The region type would be REGION_PRIMARY to create
a primary partition. The client fills in the disk ID and lastKnownState members of the
REGION_SPEC structure by using the values from the REGION_INFO structure. The client also fills
in the start and length fields of the REGION_SPEC. The length must be no greater than the

reported region length from the REGION_INFO structure. The start must be within the offsets that
represent the start and end of the region.

7. The server creates the partition and fills in the TASK_INFO structure. The call to
IVolumeClient::CreatePartition returns this TASK_INFO structure.

8. The client verifies that the partition was successfully created by looking at the HRESULT returned

from the call. The returned TASK_INFO structure will contain the new region's id in the storageId

field. The status field in the TASK_INFO structure will be REQ_COMPLETED.

9. The server calls back the client with a disk modified notification on the IDMNotify interface's
ObjectsChanged method.

10. The client code processes the disk modified notification. For example, the client may query for the
current disk information and all disk regions when it gets a disk modified notification, so that it
can update its cache or display.

11. The server calls back the client with a region created notification on the IDMNotify interface's

ObjectsChanged method.

12. The client code processes the region created notification. For example, the client may query for all
disk regions when it gets a region created notification, so that it can update its cache or display.

4.4 Deleting a Partition

The following diagram shows how the IVolumeClient interfaces are used to delete a partition on a disk.

220 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Figure 4: Steps to delete a partition on a disk by using the IVolumeClient interfaces

1. The client calls IVolumeClient::Initialize and passes its implementation of the IDMNotify interface
to the server.

2. The client calls IVolumeClient::EnumDisks to get the list of disks from the server.

3. For each disk, a DISK_INFO structure is returned. The server allocates the memory and returns

the array of DISK_INFO structures and HRESULT to the client.

4. The client verifies that the call was successful by looking at the returned HRESULT. If the call was

successful, the client finds the disks to be used to delete the partition (for example, by looking at
the disk name field in the DISK_INFO structure). The client then calls
IVolumeClient::EnumDiskRegions to get an array that represents the regions on the disk on that it
wants to delete the partition. The input parameter to EnumDiskRegions is the disk's LdmObjectId,
which is the first member of the DISK_INFO structure.

5. The server allocates an array of REGION_INFO structures and returns the array to the client.

221 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

6. The client verifies that the call was successful by looking at the returned HRESULT. If the call was
successful, the client parses the array to find a region that it wants to delete. Once the client finds

the region to be deleted, the client calls IVolumeClient::DeletePartition. The input parameter to
the call is a REGION_SPEC structure and bForce flag. The client fills in the LdmObjectId for the

region; this information is obtained from the REGION_INFO structure. The client fills in the region
type, disk ID and lastKnownState members of the REGION_SPEC structure by using the values
from the REGION_INFO structure. The client also fills in the start and length fields of the
REGION_SPEC. The client sets the force parameter to TRUE if it wants to force the deletion of the
partition; otherwise, it sets the force parameter to FALSE.

7. The server deletes the partition and fills in the TASK_INFO structure. The call to
IVolumeClient::DeletePartition returns this TASK_INFO structure.

8. The client verifies that the partition was successfully deleted by looking at the HRESULT returned
from the call. The returned TASK_INFO structure will contain the deleted region's id in the
storageId field. The status field in the TASK_INFO structure will be REQ_COMPLETED.

9. The server calls back the client with a disk modified notification on the IDMNotify Interface's

ObjectsChanged method.

10. The client code processes the disk modified notification. For example, the client may query for the

current disk information and all disk regions when it gets a disk modified notification, so that it
can update its cache or display.

11. The server calls back the client with a region deleted notification on the IDMNotify Interface's
ObjectsChanged method.

12. The client code processes the region deleted notification. For example, the client may query for all
disk regions when it gets a region deleted notification, so that it can update its cache or display.

4.5 Creating a Volume

The following diagram shows how the IVolumeClient interfaces are used to create a volume on a disk.

222 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Figure 5: Steps to create a volume on a disk by using the IVolumeClient interfaces

1. The client calls IVolumeClient::Initialize and passes its implementation of the IDMNotify interface

to the server.

2. The client calls IVolumeClient::EnumDisks to get the list of disks from the server.

3. For each disk, a DISK_INFO structure is returned. The server allocates the memory and returns
the array of DISK_INFO structures and HRESULT to the client.

4. The client verifies that the call was successful by looking at the returned HRESULT. If the call was
successful, the client finds the disks to be used to create the volume (for example, by looking at

the disk name field in the DISK_INFO structure). The client then calls
IVolumeClient::EnumDiskRegions to get an array that represents the regions on the disk. The
input parameter to EnumDiskRegions is the disk's LdmObjectId, which is the first member of the
DISK_INFO structure.

5. The server allocates an array of REGION_INFO structures and returns the array to the client.

223 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

6. The client verifies that the call was successful by looking at the returned HRESULT. If the call was
successful, the client parses the array to find a region with REGIONTYPE REGION_FREE. The client

looks at the size of the region to see what size volume can be created in this region. If this free
region is not large enough for the expected volume size, the client can continue to look for larger

free regions on that disk. The client can repeat the calls to IVolumeClient::EnumDiskRegions on all
the disks until it finds the set of disks with free space required to create the volume of expected
size. Once the client finds the region to be used to create the new volume, the client calls
IVolumeClient::CreateVolume. The input parameter to the call is an array of DISK_SPEC
structures and VOLUME_SPEC structures. The client fills in the disk id and lastKnownState
members of the DISK_SPEC structure by using the values from the DISK_INFO structure. The
client fills in the length field based on the size of the volume to be created on the particular disk.

The length must be no greater than the reported free region length from the REGION_INFO
structure. The client also fills in the needContiguous field based on the type of the volume. The
client fills in the VOLUME_SPEC structure based on the volume type and size of the volume to be
created.

7. The server creates the volume and fills in the TASK_INFO structure. The call to
IVolumeClient::CreateVolume returns this TASK_INFO structure.

8. The client verifies that the volume was successfully created by looking at the HRESULT returned
from the call. The returned TASK_INFO structure will contain the new volume's id in the
storageId field. The status field in the TASK_INFO structure will be REQ_COMPLETED.

9. The server calls back the client with a disk modified notification on the IDMNotify interface's
ObjectsChanged method.

10. The client code processes the disk modified notification. For example, the client may query for the
current disk information and all disk regions when it gets a disk modified notification, so that it

can update its cache or display.

11. The server calls back the client with a volume created notification on the IDMNotify interface's
ObjectsChanged method.

12. The client code processes the volume created notification. For example, the client may query for

all volumes when it gets a volume created notification, so that it can update its cache or display.

4.6 Deleting a Volume

The following diagram shows how the IVolumeClient interfaces are used to delete a volume.

224 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

Figure 6: Steps to delete a volume on a disk by using the IVolumeClient interfaces

1. The client calls IVolumeClient::Initialize and passes its implementation of the IDMNotify Interface
to the server.

2. The client calls IVolumeClient::EnumVolumes to get the list of volumes from the server.

3. For each volume, a VOLUME_INFO structure is returned. The server allocates the memory and

returns the array of VOLUME_INFO structures and HRESULT to the client.

4. The client verifies that the call was successful by looking at the returned HRESULT. If the call was

successful, the client finds the volume to be deleted (for example, by looking at the id field in the
VOLUME_INFO structure). Once the client finds the volume to be deleted, it calls
IVolumeClient::DeleteVolume to delete the volume. The input parameter to DeleteVolume is the
volume's LdmObjectId, which is the first member of the VOLUME_INFO structure. The client sets
the force parameter to TRUE if it wants to force the deletion of the partition; otherwise, it sets the

225 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

force parameter to FALSE. The client sets the volumeLastKnownState parameter from the
VOLUME_INFO structure.

5. The server deletes the volume and fills in the TASK_INFO structure. The call to
IVolumeClient::DeleteVolume returns this TASK_INFO structure.

6. The client verifies that the volume was successfully deleted by looking at the HRESULT returned
from the call. The returned TASK_INFO structure will contain the deleted volume's id in the
storageId field. The status field in the TASK_INFO structure will be REQ_COMPLETED.

7. The server calls back the client with a disk modified notification on the IDMNotify interface's
ObjectsChanged method.

8. The client code processes the disk modified notification. For example, the client may query for the
current disk information and all disk regions when it gets a disk modified notification, so that it

can update its cache or display.

9. The server calls back the client with a volume deleted notification on the IDMNotify interface's
ObjectsChanged method.

10. The client code processes the volume deleted notification. For example, the client may query for
all volumes when it gets a volume deleted notification, so that it can update its cache or display.

226 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

5 Security Considerations

This protocol introduces no security considerations beyond those applicable to DCOM interfaces, as
specified in [MS-DCOM] section 5.<230>

Note For IDMNotify implementations, the DMRP server calls back into the client to setup the callback
connection; in this instance the client implementing the IDMNotify interface acts like a server, and the
DMRP server acts like a client; therefore the normal security considerations for a client to connect to a

COM server must be followed in this case.

Note For restrictions on remote anonymous calls, refer to [MS-RPCE] section 3.1.1.5.4.

%5bMS-DCOM%5d.pdf
%5bMS-RPCE%5d.pdf

227 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

6 Appendix A: Full IDL

6.1 Appendix A.1: dmintf.idl

 import "ms-dtyp.idl";
 import "ms-dcom.idl";

 typedef LONGLONG LdmObjectId;

 typedef enum _REGIONTYPE { REGION_UNKNOWN,
 REGION_FREE,
 REGION_EXTENDED_FREE,
 REGION_PRIMARY,
 REGION_LOGICAL,
 REGION_EXTENDED,
 REGION_SUBDISK,
 REGION_CDROM,
 REGION_REMOVABLE
 } REGIONTYPE;

 typedef enum _VOLUMETYPE { VOLUMETYPE_UNKNOWN,
 VOLUMETYPE_PRIMARY_PARTITION,
 VOLUMETYPE_LOGICAL_DRIVE,
 VOLUMETYPE_FT,
 VOLUMETYPE_VM,
 VOLUMETYPE_CDROM,
 VOLUMETYPE_REMOVABLE
 } VOLUMETYPE;

 typedef enum _VOLUMELAYOUT { VOLUMELAYOUT_UNKNOWN,
 VOLUMELAYOUT_PARTITION,
 VOLUMELAYOUT_SIMPLE,
 VOLUMELAYOUT_SPANNED,
 VOLUMELAYOUT_MIRROR, VOLUMELAYOUT_STRIPE,
 VOLUMELAYOUT_RAID5
 } VOLUMELAYOUT;

 typedef enum _REQSTATUS { REQ_UNKNOWN,
 REQ_STARTED,
 REQ_IN_PROGRESS,
 REQ_COMPLETED,
 REQ_ABORTED,
 REQ_FAILED
 } REQSTATUS;

 typedef enum _REGIONSTATUS { REGIONSTATUS_UNKNOWN,
 REGIONSTATUS_OK,
 REGIONSTATUS_FAILED,
 REGIONSTATUS_FAILING,
 REGIONSTATUS_REGENERATING,
 REGIONSTATUS_NEEDSRESYNC
 } REGIONSTATUS;

 typedef enum _VOLUMESTATUS {
 VOLUME_STATUS_UNKNOWN,
 VOLUME_STATUS_HEALTHY,
 VOLUME_STATUS_FAILED,
 VOLUME_STATUS_FAILED_REDUNDANCY,
 VOLUME_STATUS_FAILING,
 VOLUME_STATUS_FAILING_REDUNDANCY,
 VOLUME_STATUS_FAILED_REDUNDANCY_FAILING,
 VOLUME_STATUS_SYNCHING,
 VOLUME_STATUS_REGENERATING,
 VOLUME_STATUS_INITIALIZING,
 VOLUME_STATUS_FORMATTING
 } VOLUMESTATUS;

228 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 typedef enum _LDMACTION { LDMACTION_UNKNOWN,
 LDMACTION_CREATED,
 LDMACTION_DELETED,
 LDMACTION_MODIFIED,
 LDMACTION_FAILED
 } LDMACTION;

 typedef enum _dmNotifyInfoType { DMNOTIFY_UNKNOWN_INFO,
 DMNOTIFY_DISK_INFO,
 DMNOTIFY_VOLUME_INFO,
 DMNOTIFY_REGION_INFO,
 DMNOTIFY_TASK_INFO,
 DMNOTIFY_DL_INFO,
 DMNOTIFY_FS_INFO,
 DMNOTIFY_SYSTEM_INFO } DMNOTIFY_INFO_TYPE;

 typedef enum _dmProgressType { PROGRESS_UNKNOWN,
 PROGRESS_FORMAT,
 PROGRESS_SYNCHING } DMPROGRESS_TYPE;

 const DWORD DISK_AUDIO_CD = 0x1;
 const DWORD DISK_NEC98 = 0x2;

 #define DEVICETYPE_UNKNOWN 0x00000000

 #define DEVICETYPE_VM 0x00000001

 #define DEVICETYPE_REMOVABLE 0x00000002

 #define DEVICETYPE_CDROM 0x00000003

 #define DEVICETYPE_FDISK 0x00000004

 #define DEVICETYPE_DVD 0x00000005

 #define DEVICESTATE_UNKNOWN 0x00000000

 #define DEVICESTATE_HEALTHY 0x00000001

 #define DEVICESTATE_NO_MEDIA 0x00000002

 #define DEVICESTATE_NOSIG 0x00000004

 #define DEVICESTATE_BAD 0x00000008

 #define DEVICESTATE_NOT_READY 0x00000010

 #define DEVICESTATE_MISSING 0x00000020

 #define DEVICESTATE_OFFLINE 0x00000040

 #define DEVICESTATE_FAILING 0x00000080

 #define DEVICESTATE_IMPORT_FAILED 0x00000100
 #define DEVICESTATE_UNCLAIMED 0x00000200

 #define BUSTYPE_UNKNOWN 0x00000000

 #define BUSTYPE_IDE 0x00000001

 #define BUSTYPE_SCSI 0x00000002

 #define BUSTYPE_FIBRE 0x00000003

 #define BUSTYPE_USB 0x00000004

 #define BUSTYPE_SSA 0x00000005

 #define BUSTYPE_1394 0x00000006

 #define DEVICEATTR_NONE 0x00000000

 #define DEVICEATTR_RDONLY 0x00000001
 #define DEVICEATTR_NTMS 0x00000002

 #define CONTAINS_FT 0x00000001

 #define CONTAINS_RAID5 0x00000002

 #define CONTAINS_REDISTRIBUTION 0x00000004

 #define CONTAINS_BOOTABLE_PARTITION 0x00000008

 #define CONTAINS_LOCKED_PARTITION 0x00000010
 #define CONTAINS_NO_FREE_SPACE 0x00000020

 #define CONTAINS_EXTENDED_PARTITION 0x00000040

 #define PARTITION_NUMBER_CHANGE 0x00000080

 #define CONTAINS_BOOTINDICATOR 0x00000100

 #define CONTAINS_BOOTLOADER 0x00000200

 #define CONTAINS_SYSTEMDIR 0x00000400

 #define CONTAINS_MIXED_PARTITIONS 0x00000800

229 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 const unsigned long PARTITION_OS2_BOOT = 0xa;
 const unsigned long PARTITION_EISA = 0x12;

 const unsigned long PARTITION_HIBERNATION= 0x84;
 const unsigned long PARTITION_DIAGNOSTIC = 0xA0;
 const unsigned long PARTITION_DELL = 0xDE;

 const unsigned long PARTITION_IBM = 0xFE;

 const DWORD REGION_FORMAT_IN_PROGRESS = 0x1;
 const DWORD VOLUME_FORMAT_IN_PROGRESS = 0x1;
 const DWORD REGION_IS_SYSTEM_PARTITION = 0x2;
 const DWORD REGION_HAS_PAGEFILE = 0x4;
 const DWORD VOLUME_HAS_PAGEFILE = 0x4;
 const DWORD REGION_HAD_BOOT_INI = 0x40;
 const DWORD VOLUME_IS_BOOT_VOLUME = 0x100;
 const DWORD VOLUME_IS_RESTARTABLE = 0x400;
 const DWORD VOLUME_IS_SYSTEM_VOLUME = 0x800;
 const DWORD VOLUME_HAS_RETAIN_PARTITION = 0x1000;
 const DWORD VOLUME_HAD_BOOT_INI = 0x2000;
 const DWORD VOLUME_CORRUPT = 0x4000;
 const DWORD VOLUME_HAS_CRASHDUMP = 0x8000;
 const DWORD VOLUME_IS_CURR_BOOT_VOLUME = 0x10000;
 const DWORD VOLUME_HAS_HIBERNATION = 0x20000;

 const DWORD NO_FORCE_OPERATION = 0;
 const DWORD FORCE_OPERATION = 1;

 const DWORD DL_PENDING_REMOVAL = 0x1;

 const DWORD SYSFLAG_SERVER = 0x1;
 const DWORD SYSFLAG_ALPHA = 0x2;
 const DWORD SYSFLAG_SYSPART_SECURE = 0x4;
 const DWORD SYSFLAG_NEC_98 = 0x8;
 const DWORD SYSFLAG_LAPTOP = 0x10;
 const DWORD SYSFLAG_WOLFPACK = 0x20;

 const DWORD DSKMERGE_DELETE = 0x1;
 const DWORD DSKMERGE_DELETE_REDUNDANCY = 0x2;
 const DWORD DSKMERGE_STALE_DATA = 0x4;
 const DWORD DSKMERGE_RELATED = 0x8;

 const DWORD DSKMERGE_IN_NO_UNRELATED = 1;
 const DWORD DSKMERGE_OUT_NO_PRIMARY_DG = 1;

 const DWORD FTREPLACE_FORCE = 0x1;
 const DWORD FTREPLACE_DELETE_ON_FAIL = 0x2;

 const DWORD CREATE_ASSIGN_ACCESS_PATH = 0x1;

 typedef struct volumespec {
 VOLUMETYPE type;
 VOLUMELAYOUT layout;
 REGIONTYPE partitionType;
 LONGLONG length;
 LONGLONG lastKnownState;
 }

 VOLUME_SPEC;

 typedef struct volumeinfo {
 LdmObjectId id;
 VOLUMETYPE type;
 VOLUMELAYOUT layout;
 LONGLONG length;
 LdmObjectId fsId;
 unsigned long memberCount;

230 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 VOLUMESTATUS status;
 LONGLONG lastKnownState;
 LdmObjectId taskId;
 unsigned long vflags;
 }
 VOLUME_INFO;

 struct diskspec
 {
 LdmObjectId diskId;
 LONGLONG length;
 boolean needContiguous;
 LONGLONG lastKnownState;
 };
 typedef struct diskspec DISK_SPEC;

 struct diskinfo {
 LdmObjectId id;
 LONGLONG length;
 LONGLONG freeBytes;
 unsigned long bytesPerTrack;
 unsigned long bytesPerCylinder;
 unsigned long bytesPerSector;
 unsigned long regionCount;
 unsigned long dflags;
 unsigned long deviceType;
 unsigned long deviceState;
 unsigned long busType;
 unsigned long attributes;
 boolean isUpgradeable;
 int portNumber;
 int targetNumber;
 int lunNumber;
 LONGLONG lastKnownState;
 LdmObjectId taskId;
 int cchName;
 int cchVendor;
 int cchDgid;
 int cchAdapterName;
 int cchDgName;
 [size_is(cchName)] wchar_t * name;
 [size_is(cchVendor)] wchar_t *vendor;
 [size_is(cchDgid)] byte *dgid;
 [size_is(cchAdapterName)] wchar_t *adapterName;
 [size_is(cchDgName)] wchar_t *dgName;
 };

 typedef struct diskinfo DISK_INFO;

 struct regionspec {
 LdmObjectId regionId;
 REGIONTYPE regionType;
 LdmObjectId diskId;
 LONGLONG start;
 LONGLONG length;
 LONGLONG lastKnownState;
 };
 typedef struct regionspec REGION_SPEC;

 struct regioninfo {
 LdmObjectId id;
 LdmObjectId diskId;
 LdmObjectId volId;
 LdmObjectId fsId;
 LONGLONG start;
 LONGLONG length;
 REGIONTYPE regionType;
 unsigned long partitionType;
 boolean isActive;

231 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 REGIONSTATUS status;
 hyper lastKnownState;
 LdmObjectId taskId;
 unsigned long rflags;
 unsigned long currentPartitionNumber;
 };
 typedef struct regioninfo REGION_INFO;

 struct driveletterinfo {
 wchar_t letter;
 LdmObjectId storageId;
 boolean isUsed;
 hyper lastKnownState;
 LdmObjectId taskId;
 unsigned long dlflags;
 };
 typedef struct driveletterinfo DRIVE_LETTER_INFO;

 struct filesysteminfo {
 LdmObjectId id;
 LdmObjectId storageId;
 LONGLONG totalAllocationUnits;
 LONGLONG availableAllocationUnits;
 unsigned long allocationUnitSize;
 unsigned long fsflags;
 hyper lastKnownState;
 LdmObjectId taskId;
 long fsType;
 int cchLabel;
 [size_is(cchLabel)] wchar_t * label;
 };
 typedef struct filesysteminfo FILE_SYSTEM_INFO;

 const DWORD ENABLE_VOLUME_COMPRESSION = 1;

 const DWORD MAX_FS_NAME_SIZE = 8;
 struct ifilesysteminfo {
 long fsType;
 WCHAR fsName[MAX_FS_NAME_SIZE];
 unsigned long fsFlags;
 unsigned long fsCompressionFlags;
 int cchLabelLimit;
 int cchLabel;
 [size_is(cchLabel)] wchar_t *iLabelChSet;
 };

 typedef struct ifilesysteminfo IFILE_SYSTEM_INFO;

 const unsigned long FSF_FMT_OPTION_COMPRESS = 0x00000001;
 const unsigned long FSF_FMT_OPTION_LABEL = 0x00000002;
 const unsigned long FSF_MNT_POINT_SUPPORT = 0x00000004;
 const unsigned long FSF_REMOVABLE_MEDIA_SUPPORT = 0x00000008;
 const unsigned long FSF_FS_GROW_SUPPORT = 0x00000010;
 const unsigned long FSF_FS_QUICK_FORMAT_ENABLE = 0x00000020;
 const unsigned long FSF_FS_ALLOC_SZ_512 = 0x00000040;
 const unsigned long FSF_FS_ALLOC_SZ_1K = 0x00000080;
 const unsigned long FSF_FS_ALLOC_SZ_2K = 0x00000100;
 const unsigned long FSF_FS_ALLOC_SZ_4K = 0x00000200;
 const unsigned long FSF_FS_ALLOC_SZ_8K = 0x00000400;
 const unsigned long FSF_FS_ALLOC_SZ_16K = 0x00000800;
 const unsigned long FSF_FS_ALLOC_SZ_32K = 0x00001000;
 const unsigned long FSF_FS_ALLOC_SZ_64K = 0x00002000;
 const unsigned long FSF_FS_ALLOC_SZ_128K = 0x00004000;
 const unsigned long FSF_FS_ALLOC_SZ_256K = 0x00008000;
 const unsigned long FSF_FS_ALLOC_SZ_OTHER = 0x00010000;
 const unsigned long FSF_FS_FORMAT_SUPPORTED = 0x00020000;
 const unsigned long FSF_FS_VALID_BITS = 0x0003FFFF;

 const long FSTYPE_UNKNOWN = 0x00000000;

232 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 const long FSTYPE_NTFS = 0x00000001;
 const long FSTYPE_FAT = 0x00000002;
 const long FSTYPE_FAT32 = 0x00000003;
 const long FSTYPE_CDFS = 0x00000004;
 const long FSTYPE_UDF = 0x00000005;
 const long FSTYPE_OTHER = 0x80000000;

 struct taskinfo {
 LdmObjectId id;
 LdmObjectId storageId;
 LONGLONG createTime;
 LdmObjectId clientID;
 unsigned long percentComplete;
 REQSTATUS status;
 DMPROGRESS_TYPE type;
 HRESULT error;
 unsigned long tflag;
 };
 typedef struct taskinfo TASK_INFO;

 struct countedstring {
 LdmObjectId sourceId;
 LdmObjectId targetId;
 int cchString;
 [size_is(cchString)] wchar_t *sstring;
 };

 typedef struct countedstring COUNTED_STRING;

 struct mergeobjectinfo
 {
 DWORD type;
 DWORD flags;
 VOLUMELAYOUT layout;
 LONGLONG length;
 };
 typedef struct mergeobjectinfo MERGE_OBJECT_INFO;

 const DWORD ENCAP_INFO_CANT_PROCEED = 0x1;
 const DWORD ENCAP_INFO_NO_FREE_SPACE = 0x2;
 const DWORD ENCAP_INFO_BAD_ACTIVE = 0x4;

 const DWORD ENCAP_INFO_UNKNOWN_PART = 0x8;
 const DWORD ENCAP_INFO_FT_UNHEALTHY = 0x10;
 const DWORD ENCAP_INFO_FT_QUERY_FAILED= 0x20;
 const DWORD ENCAP_INFO_FT_HAS_RAID5 = 0x40;
 const DWORD ENCAP_INFO_FT_ON_BOOT = 0x80;

 const DWORD ENCAP_INFO_REBOOT_REQD = 0x100;
 const DWORD ENCAP_INFO_CONTAINS_FT = 0x200;
 const DWORD ENCAP_INFO_VOLUME_BUSY = 0x400;
 const DWORD ENCAP_INFO_PART_NR_CHANGE = 0x800;

 [object, uuid(D2D79DF5-3400-11d0-B40B-00AA005FF586),
 pointer_default(unique)]
 interface IVolumeClient : IUnknown
 {

 HRESULT EnumDisks([out] unsigned long *diskCount,
 [out, size_is(,*diskCount)] DISK_INFO
 **diskList);

 HRESULT EnumDiskRegions([in] LdmObjectId diskId,
 [in, out] unsigned long *numRegions,
 [out, size_is(,*numRegions)] REGION_INFO
 **regionList);

 HRESULT CreatePartition([in] REGION_SPEC partitionSpec,

233 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [out] TASK_INFO *tinfo);

 HRESULT CreatePartitionAssignAndFormat([in] REGION_SPEC
 partitionSpec,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [out] TASK_INFO *tinfo);

 HRESULT CreatePartitionAssignAndFormatEx([in] REGION_SPEC
 partitionSpec,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in] int cchAccessPath,
 [in, size_is(cchAccessPath)] wchar_t
 *AccessPath,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [in] DWORD dwFlags,
 [out] TASK_INFO *tinfo);

 HRESULT DeletePartition([in] REGION_SPEC partitionSpec,
 [in] boolean force,
 [out] TASK_INFO *tinfo);

 HRESULT WriteSignature([in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT MarkActivePartition([in] LdmObjectId regionId,
 [in] hyper regionLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT Eject([in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT Reserved_Opnum12(void);

 HRESULT FTEnumVolumes([in, out] unsigned long *volumeCount,
 [out, size_is(,*volumeCount)] VOLUME_INFO **ftVolumeList);

 HRESULT FTEnumLogicalDiskMembers([in] LdmObjectId volumeId,
 [in, out] unsigned long *memberCount,
 [out, size_is(,*memberCount)] LdmObjectId **memberList);

 HRESULT FTDeleteVolume([in] LdmObjectId volumeId,
 [in] boolean force,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT FTBreakMirror([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] boolean bForce,
 [out] TASK_INFO *tinfo);

 HRESULT FTResyncMirror([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT FTRegenerateParityStripe([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT FTReplaceMirrorPartition([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId oldMemberId,
 [in] hyper oldMemberLastKnownState,

234 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [in] LdmObjectId newRegionId,
 [in] hyper newRegionLastKnownState,
 [in] DWORD flags,
 [out] TASK_INFO *tinfo);

 HRESULT FTReplaceParityStripePartition([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId oldMemberId,
 [in] hyper oldMemberLastKnownState,
 [in] LdmObjectId newRegionId,
 [in] hyper newRegionLastKnownState,
 [in] DWORD flags,
 [out] TASK_INFO *tinfo);

 HRESULT EnumDriveLetters([in, out] unsigned long *
 driveLetterCount,
 [out, size_is(,*driveLetterCount)] DRIVE_LETTER_INFO
 **driveLetterList);

 HRESULT AssignDriveLetter([in] wchar_t letter,
 [in] unsigned long forceOption,
 [in] hyper letterLastKnownState,
 [in] LdmObjectId storageId,
 [in] hyper storageLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT FreeDriveLetter([in] wchar_t letter,
 [in] unsigned long forceOption,
 [in] hyper letterLastKnownState,
 [in] LdmObjectId storageId,
 [in] hyper storageLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT EnumLocalFileSystems([out] unsigned long *
 fileSystemCount,
 [out, size_is(,*fileSystemCount)] FILE_SYSTEM_INFO
 **fileSystemList);

 HRESULT GetInstalledFileSystems([out] unsigned long *fsCount,
 [out, size_is(,*fsCount)] IFILE_SYSTEM_INFO **fsList);

 HRESULT Format([in] LdmObjectId storageId,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [in] boolean force,
 [in] hyper storageLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT Reserved27(
 void
);

 HRESULT EnumVolumes(
 [in, out] unsigned long *volumeCount,
 [out, size_is(,*volumeCount)] VOLUME_INFO **LdmVolumeList);

 HRESULT EnumVolumeMembers([in] LdmObjectId volumeId,
 [in, out] unsigned long * memberCount,
 [out, size_is(,*memberCount)] LdmObjectId ** memberList);

 HRESULT CreateVolume([in] VOLUME_SPEC volumeSpec,
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC *diskList,
 [out] TASK_INFO *tinfo);

 HRESULT CreateVolumeAssignAndFormat([in] VOLUME_SPEC volumeSpec,
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC *diskList,
 [in] wchar_t letter,

235 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [in] hyper letterLastKnownState,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [out] TASK_INFO *tinfo);

 HRESULT CreateVolumeAssignAndFormatEx([in] VOLUME_SPEC volumeSpec,
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC *diskList,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in] int cchAccessPath,
 [in, size_is(cchAccessPath)] wchar_t
 *AccessPath,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [in] DWORD dwFlags,
 [out] TASK_INFO *tinfo);

 HRESULT GetVolumeMountName([in] LdmObjectId volumeId,
 [out] unsigned long *cchMountName,
 [out, size_is(,*cchMountName)] WCHAR
 **mountName);

 HRESULT GrowVolume([in] LdmObjectId volumeId,
 [in] VOLUME_SPEC volumeSpec,
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC *diskList,
 [in] boolean force,
 [out] TASK_INFO *tinfo);

 HRESULT DeleteVolume([in] LdmObjectId volumeId,
 [in] boolean force,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT AddMirror([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] DISK_SPEC diskSpec,
 [in, out] int *diskNumber,
 [out] int *partitionNumber,
 [out] TASK_INFO *tinfo);

 HRESULT RemoveMirror([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT SplitMirror([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in, out] TASK_INFO *tinfo);

 HRESULT InitializeDisk([in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT UninitializeDisk([in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT ReConnectDisk([in] LdmObjectId diskId,
 [out] TASK_INFO *tinfo);

 HRESULT Reserved_Opnum42(void);

236 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 HRESULT ImportDiskGroup ([in] int cchDgid,
 [in, size_is(cchDgid)] byte *dgid,
 [out] TASK_INFO *tinfo);

 HRESULT DiskMergeQuery([in] int cchDgid,
 [in, size_is(cchDgid)] byte *dgid,
 [in] int numDisks,
 [in, size_is(numDisks)] LdmObjectId *diskList,
 [out] hyper *merge_config_tid,
 [out] int *numRids,
 [out, size_is(,*numRids)] hyper **merge_dm_rids,
 [out] int *numObjects,
 [out, size_is(,*numObjects)] MERGE_OBJECT_INFO
 **mergeObjectInfo,
 [in, out] unsigned long *flags,
 [out] TASK_INFO *tinfo);

 HRESULT DiskMerge([in] int cchDgid,
 [in, size_is(cchDgid)] byte *dgid,
 [in] int numDisks,
 [in, size_is(numDisks)] LdmObjectId *diskList,
 [in] hyper merge_config_tid,
 [in] int numRids,
 [in, size_is(numRids)] hyper *merge_dm_rids,
 [out] TASK_INFO *tinfo);

 HRESULT Reserved_Opnum46(void);

 HRESULT ReAttachDisk([in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT Reserved_Opnum48(void);

 HRESULT Reserved_Opnum49(void);

 HRESULT Reserved_Opnum50(void);

 HRESULT ReplaceRaid5Column([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId newDiskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT RestartVolume([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT GetEncapsulateDiskInfo([in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC *diskSpecList,
 [out] unsigned long *encapInfoFlags,
 [out] unsigned long *affectedDiskCount,
 [out, size_is(,*affectedDiskCount)] DISK_INFO
 **affectedDiskList,
 [out, size_is(,*affectedDiskCount)] unsigned long
 **affectedDiskFlags,
 [out] unsigned long *affectedVolumeCount,
 [out, size_is(,*affectedVolumeCount)] VOLUME_INFO
 **affectedVolumeList,
 [out] unsigned long *affectedRegionCount,
 [out, size_is(,*affectedRegionCount)] REGION_INFO
 **affectedRegionList,
 [out] TASK_INFO *tinfo);

 HRESULT EncapsulateDisk([in] unsigned long affectedDiskCount,
 [in, size_is(affectedDiskCount)] DISK_INFO
 *affectedDiskList,
 [in] unsigned long affectedVolumeCount,

237 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [in, size_is(affectedVolumeCount)] VOLUME_INFO
 *affectedVolumeList,
 [in] unsigned long affectedRegionCount,
 [in, size_is(affectedRegionCount)] REGION_INFO
 *affectedRegionList,
 [out] unsigned long *encapInfoFlags,
 [out] TASK_INFO *tinfo);

 HRESULT QueryChangePartitionNumbers([out] int *oldPartitionNumber,
 [out] int *newPartitionNumber);

 HRESULT DeletePartitionNumberInfoFromRegistry();

 HRESULT SetDontShow([in] boolean bSetNoShow);

 HRESULT GetDontShow([out] boolean *bGetNoShow);

 HRESULT Reserved0(
 void
);

 HRESULT Reserved1(
 void
);

 HRESULT Reserved2(
 void
);

 HRESULT Reserved3(
 void
);

 HRESULT Reserved4(
 void
);

 HRESULT Reserved5(
 void
);

 HRESULT Reserved6(
 void
);

 HRESULT Reserved7(
 void
);

 HRESULT EnumTasks([in, out] unsigned long *taskCount,
 [out, size_is(,*taskCount)] TASK_INFO
 **taskList);

 HRESULT GetTaskDetail([in] LdmObjectId id,
 [in, out] TASK_INFO *tinfo);

 HRESULT AbortTask([in] LdmObjectId id);

 HRESULT HrGetErrorData([in] HRESULT hr,
 [in] DWORD dwFlags,
 [out] DWORD *pdwStoredFlags,
 [out] int * pcszw,
 [out, string, size_is(,*pcszw,)] wchar_t
 *** prgszw);

 HRESULT Initialize([in] IUnknown *notificationInterface,
 [out] unsigned long *ulIDLVersion,
 [out] DWORD *pdwFlags,
 [out] LdmObjectId * clientId,

238 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [in] unsigned long cRemote);

 HRESULT Uninitialize();

 HRESULT Refresh();
 HRESULT RescanDisks();
 HRESULT RefreshFileSys();

 HRESULT SecureSystemPartition();
 HRESULT ShutDownSystem();

 HRESULT EnumAccessPath([in, out] int *lCount,
 [out, size_is(,*lCount)] COUNTED_STRING
 **paths);
 HRESULT EnumAccessPathForVolume([in] LdmObjectId VolumeId,
 [in, out] int *lCount,
 [out, size_is(,*lCount)]
 COUNTED_STRING **paths);
 HRESULT AddAccessPath([in] int cch_path,
 [in , size_is (cch_path)] WCHAR *path,
 [in] LdmObjectId targetId);
 HRESULT DeleteAccessPath([in] LdmObjectId volumeId,
 [in] int cch_path,
 [in , size_is (cch_path)] WCHAR *path);
 }

 [object, uuid(D2D79DF7-3400-11d0-B40B-00AA005FF586),
 pointer_default(unique)]
 interface IDMNotify : IUnknown
 {
 typedef [unique] IDMNotify *LPIDMNOTIFY;

 HRESULT ObjectsChanged([in] DWORD ByteCount,
 [in, size_is(ByteCount)] byte *ByteStream);

 }

 [object, uuid(3A410F21-553F-11d1-8E5E-00A0C92C9D5D),
 pointer_default(unique)]
 interface IDMRemoteServer : IUnknown
 {
 HRESULT CreateRemoteObject([in] unsigned long cMax,
 [in, max_is(cMax)] wchar_t
 *RemoteComputerName);
 }

 [object, uuid(4BDAFC52-FE6A-11d2-93F8-00105A11164A),
 pointer_default(unique)]
 interface IVolumeClient2 : IUnknown
 {
 HRESULT GetMaxAdjustedFreeSpace([in] LdmObjectId diskId,
 [out] LONGLONG* maxAdjustedFreeSpace);
 }

6.2 Appendix A.2: dmintf3.idl

 import "ms-dmrp_dmintf.idl";

 const DWORD SYSFLAG_NO_DYNAMIC = 0x10;
 const DWORD SYSFLAG_IA64 = 0x40;
 const DWORD SYSFLAG_UNINSTALL_VALID = 0x80;
 const DWORD SYSFLAG_DYNAMIC_1394 = 0x100;

 typedef enum _PARTITIONSTYLE {

239 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 PARTITIONSTYLE_UNKNOWN = 0,
 PARTITIONSTYLE_MBR = 1,
 PARTITIONSTYLE_GPT = 2
 } PARTITIONSTYLE;

 struct diskinfoex {
 LdmObjectId id;
 LONGLONG length;
 LONGLONG freeBytes;
 unsigned long bytesPerTrack;
 unsigned long bytesPerCylinder;
 unsigned long bytesPerSector;
 unsigned long regionCount;
 unsigned long dflags;
 unsigned long deviceType;
 unsigned long deviceState;
 unsigned long busType;
 unsigned long attributes;
 unsigned long maxPartitionCount;
 boolean isUpgradeable;
 boolean maySwitchStyle;
 PARTITIONSTYLE partitionStyle;
 [switch_is(partitionStyle)] union {
 [case(PARTITIONSTYLE_MBR)] struct {
 unsigned long signature;

 } mbr;
 [case(PARTITIONSTYLE_GPT)] struct {
 GUID diskId;
 } gpt;
 [default]
 ;
 };
 int portNumber;
 int targetNumber;
 int lunNumber;
 LONGLONG lastKnownState;
 LdmObjectId taskId;
 int cchName;
 int cchVendor;
 int cchDgid;
 int cchAdapterName;
 int cchDgName;
 int cchDevInstId;
 [size_is(cchName)] wchar_t * name;
 [size_is(cchVendor)] wchar_t *vendor;
 [size_is(cchDgid)] byte *dgid;
 [size_is(cchAdapterName)] wchar_t *adapterName;
 [size_is(cchDgName)] wchar_t *dgName;
 [size_is(cchDevInstId)] wchar_t *devInstId;
 };
 typedef struct diskinfoex DISK_INFO_EX;

 const DWORD DISK_FORMATTABLE_DVD = 0x4;
 const DWORD DISK_MEMORY_STICK = 0x8;
 const DWORD DISK_NTFS_NOT_SUPPORTED = 0x10;

 struct regioninfoex {
 LdmObjectId id;
 LdmObjectId diskId;
 LdmObjectId volId;
 LdmObjectId fsId;
 LONGLONG start;
 LONGLONG length;
 REGIONTYPE regionType;
 PARTITIONSTYLE partitionStyle;
 [switch_is(partitionStyle)] union {
 [case(PARTITIONSTYLE_MBR)] struct {
 unsigned long partitionType;

240 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 boolean isActive;
 } mbr;
 [case(PARTITIONSTYLE_GPT)] struct {
 GUID partitionType;
 GUID partitionId;
 ULONGLONG attributes;
 } gpt;
 [default]
 ;
 };
 REGIONSTATUS status;
 hyper lastKnownState;
 LdmObjectId taskId;
 unsigned long rflags;
 unsigned long currentPartitionNumber;
 int cchName;
 [size_is(cchName)] wchar_t *name;
 };
 typedef struct regioninfoex REGION_INFO_EX;

 const DWORD REGION_HIDDEN = 0x40000;

 const DWORD ENCAP_INFO_MIXED_PARTITIONS = 0x1000;
 const DWORD ENCAP_INFO_OPEN_FAILED = 0x2000;

 [object, uuid(135698D2-3A37-4d26-99DF-E2BB6AE3AC61),
 pointer_default(unique)]
 interface IVolumeClient3 : IUnknown
 {
 HRESULT EnumDisksEx([out] unsigned long *diskCount,
 [out, size_is(,*diskCount)] DISK_INFO_EX
 **diskList);

 HRESULT EnumDiskRegionsEx([in] LdmObjectId diskId,
 [in, out] unsigned long *numRegions,
 [out, size_is(,*numRegions)]
 REGION_INFO_EX **regionList);

 HRESULT CreatePartition([in] REGION_SPEC partitionSpec,
 [out] TASK_INFO *tinfo);

 HRESULT CreatePartitionAssignAndFormat([in] REGION_SPEC
 partitionSpec,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [out] TASK_INFO *tinfo);

 HRESULT CreatePartitionAssignAndFormatEx([in] REGION_SPEC
 partitionSpec,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in] int cchAccessPath,
 [in, size_is(cchAccessPath)] wchar_t
 *AccessPath,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [in] DWORD dwFlags,
 [out] TASK_INFO *tinfo);

 HRESULT DeletePartition([in] REGION_SPEC partitionSpec,
 [in] boolean force,
 [out] TASK_INFO *tinfo);

 HRESULT InitializeDiskStyle([in] LdmObjectId diskId,
 [in] PARTITIONSTYLE style,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO *tinfo);

241 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 HRESULT MarkActivePartition([in] LdmObjectId regionId,
 [in] hyper regionLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT Eject([in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT Reserved_Opnum12(void);

 HRESULT FTEnumVolumes([in, out] unsigned long *volumeCount,
 [out, size_is(,*volumeCount)] VOLUME_INFO **ftVolumeList);

 HRESULT FTEnumLogicalDiskMembers([in] LdmObjectId volumeId,
 [in, out] unsigned long *memberCount,
 [out, size_is(,*memberCount)] LdmObjectId **memberList);

 HRESULT FTDeleteVolume([in] LdmObjectId volumeId,
 [in] boolean force,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT FTBreakMirror([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] boolean bForce,
 [out] TASK_INFO *tinfo);

 HRESULT FTResyncMirror([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT FTRegenerateParityStripe([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT FTReplaceMirrorPartition([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId oldMemberId,
 [in] hyper oldMemberLastKnownState,
 [in] LdmObjectId newRegionId,
 [in] hyper newRegionLastKnownState,
 [in] DWORD flags,
 [out] TASK_INFO *tinfo);

 HRESULT FTReplaceParityStripePartition([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId oldMemberId,
 [in] hyper oldMemberLastKnownState,
 [in] LdmObjectId newRegionId,
 [in] hyper newRegionLastKnownState,
 [in] DWORD flags,
 [out] TASK_INFO *tinfo);

 HRESULT EnumDriveLetters([in, out] unsigned long *
 driveLetterCount,
 [out, size_is(,*driveLetterCount)] DRIVE_LETTER_INFO
 **driveLetterList);

 HRESULT AssignDriveLetter([in] wchar_t letter,
 [in] unsigned long forceOption,
 [in] hyper letterLastKnownState,
 [in] LdmObjectId storageId,
 [in] hyper storageLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT FreeDriveLetter([in] wchar_t letter,
 [in] unsigned long forceOption,
 [in] hyper letterLastKnownState,

242 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [in] LdmObjectId storageId,
 [in] hyper storageLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT EnumLocalFileSystems([out] unsigned long * fileSystemCount,
 [out, size_is(,*fileSystemCount)] FILE_SYSTEM_INFO
 **fileSystemList);

 HRESULT GetInstalledFileSystems([out] unsigned long *fsCount,
 [out, size_is(,*fsCount)] IFILE_SYSTEM_INFO **fsList);

 HRESULT Format([in] LdmObjectId storageId,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [in] boolean force,
 [in] hyper storageLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT EnumVolumes(
 [in, out] unsigned long *volumeCount,
 [out, size_is(,*volumeCount)] VOLUME_INFO **LdmVolumeList);

 HRESULT EnumVolumeMembers([in] LdmObjectId volumeId,
 [in, out] unsigned long * memberCount,
 [out, size_is(,*memberCount)] LdmObjectId ** memberList);

 HRESULT CreateVolume([in] VOLUME_SPEC volumeSpec,
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC *diskList,
 [out] TASK_INFO *tinfo);

 HRESULT CreateVolumeAssignAndFormat([in] VOLUME_SPEC volumeSpec,
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC *diskList,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [out] TASK_INFO *tinfo);

 HRESULT CreateVolumeAssignAndFormatEx([in] VOLUME_SPEC volumeSpec,
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC *diskList,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in] int cchAccessPath,
 [in, size_is(cchAccessPath)] wchar_t
 *AccessPath,
 [in] FILE_SYSTEM_INFO fsSpec,
 [in] boolean quickFormat,
 [in] DWORD dwFlags,
 [out] TASK_INFO *tinfo);

 HRESULT GetVolumeMountName([in] LdmObjectId volumeId,
 [out] unsigned long *cchMountName,
 [out, size_is(,*cchMountName)]
 WCHAR **mountName);

 HRESULT GrowVolume([in] LdmObjectId volumeId,
 [in] VOLUME_SPEC volumeSpec,
 [in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC *diskList,
 [in] boolean force,
 [out] TASK_INFO *tinfo);

 HRESULT DeleteVolume([in] LdmObjectId volumeId,
 [in] boolean force,
 [in] hyper volumeLastKnownState,

243 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [out] TASK_INFO *tinfo);

 HRESULT CreatePartitionsForVolume([in] LdmObjectId volumeId,
 [in] boolean active,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT DeletePartitionsForVolume([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT GetMaxAdjustedFreeSpace([in] LdmObjectId diskId,
 [out] LONGLONG* maxAdjustedFreeSpace);

 HRESULT AddMirror([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] DISK_SPEC diskSpec,
 [in, out] int *diskNumber,
 [out] int *partitionNumber,
 [out] TASK_INFO *tinfo);

 HRESULT RemoveMirror([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT SplitMirror([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [in] wchar_t letter,
 [in] hyper letterLastKnownState,
 [in, out] TASK_INFO *tinfo);

 HRESULT InitializeDiskEx([in] LdmObjectId diskId,
 [in] PARTITIONSTYLE style,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT UninitializeDisk([in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT ReConnectDisk([in] LdmObjectId diskId,
 [out] TASK_INFO *tinfo);

 HRESULT ImportDiskGroup ([in] int cchDgid,
 [in, size_is(cchDgid)] byte *dgid,
 [out] TASK_INFO *tinfo);

 HRESULT DiskMergeQuery([in] int cchDgid,
 [in, size_is(cchDgid)] byte *dgid,
 [in] int numDisks,
 [in, size_is(numDisks)] LdmObjectId *diskList,
 [out] hyper *merge_config_tid,
 [out] int *numRids,
 [out, size_is(,*numRids)] hyper **merge_dm_rids,
 [out] int *numObjects,
 [out, size_is(,*numObjects)] MERGE_OBJECT_INFO
 **mergeObjectInfo,
 [in, out] unsigned long *flags,
 [out] TASK_INFO *tinfo);

 HRESULT DiskMerge([in] int cchDgid,
 [in, size_is(cchDgid)] byte *dgid,
 [in] int numDisks,
 [in, size_is(numDisks)] LdmObjectId *diskList,
 [in] hyper merge_config_tid,

244 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 [in] int numRids,
 [in, size_is(numRids)] hyper *merge_dm_rids,
 [out] TASK_INFO *tinfo);

 HRESULT ReAttachDisk([in] LdmObjectId diskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT ReplaceRaid5Column([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [in] LdmObjectId newDiskId,
 [in] hyper diskLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT RestartVolume([in] LdmObjectId volumeId,
 [in] hyper volumeLastKnownState,
 [out] TASK_INFO *tinfo);

 HRESULT GetEncapsulateDiskInfoEx([in] unsigned long diskCount,
 [in, size_is(diskCount)] DISK_SPEC *diskSpecList,
 [out] unsigned long *encapInfoFlags,
 [out] unsigned long *affectedDiskCount,
 [out, size_is(,*affectedDiskCount)] DISK_INFO_EX
 **affectedDiskList,
 [out, size_is(,*affectedDiskCount)] unsigned long
 **affectedDiskFlags,
 [out] unsigned long *affectedVolumeCount,
 [out, size_is(,*affectedVolumeCount)] VOLUME_INFO
 **affectedVolumeList,
 [out] unsigned long *affectedRegionCount,
 [out, size_is(,*affectedRegionCount)]
 REGION_INFO_EX **affectedRegionList,
 [out] TASK_INFO *tinfo);

 HRESULT EncapsulateDiskEx([in] unsigned long affectedDiskCount,
 [in, size_is(affectedDiskCount)] DISK_INFO_EX
 *affectedDiskList,
 [in] unsigned long affectedVolumeCount,
 [in, size_is(affectedVolumeCount)] VOLUME_INFO
 *affectedVolumeList,
 [in] unsigned long affectedRegionCount,
 [in, size_is(affectedRegionCount)] REGION_INFO_EX
 *affectedRegionList,
 [out] unsigned long *encapInfoFlags,
 [out] TASK_INFO *tinfo);

 HRESULT QueryChangePartitionNumbers([out] int *oldPartitionNumber,
 [out] int *newPartitionNumber);

 HRESULT DeletePartitionNumberInfoFromRegistry();

 HRESULT SetDontShow([in] boolean bSetNoShow);

 HRESULT GetDontShow([out] boolean *bGetNoShow);

 HRESULT Reserved0(
 void
);

 HRESULT Reserved1(
 void
);

 HRESULT Reserved2(
 void
);

 HRESULT Reserved3(
 void

245 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

);

 HRESULT Reserved4(
 void
);

 HRESULT Reserved5(
 void
);

 HRESULT Reserved6(
 void
);

 HRESULT Reserved7(
 void
);

 HRESULT EnumTasks([in, out] unsigned long *taskCount,
 [out, size_is(,*taskCount)] TASK_INFO
 **taskList);

 HRESULT GetTaskDetail([in] LdmObjectId id,
 [in, out] TASK_INFO *tinfo);

 HRESULT AbortTask([in] LdmObjectId id);

 HRESULT HrGetErrorData([in] HRESULT hr,
 [in] DWORD dwFlags,
 [out] DWORD *pdwStoredFlags,
 [out] int * pcszw,
 [out, string, size_is(,*pcszw,)] wchar_t
 *** prgszw);

 HRESULT Initialize([in] IUnknown *notificationInterface,
 [out] unsigned long *ulIDLVersion,
 [out] DWORD *pdwFlags,
 [out] LdmObjectId * clientId,
 [in] unsigned long cRemote);

 HRESULT Uninitialize();

 HRESULT Refresh();
 HRESULT RescanDisks();
 HRESULT RefreshFileSys();

 HRESULT SecureSystemPartition();
 HRESULT ShutDownSystem();

 HRESULT EnumAccessPath([in, out] int *lCount,
 [out, size_is(,*lCount)] COUNTED_STRING
 **paths);
 HRESULT EnumAccessPathForVolume([in] LdmObjectId VolumeId,
 [in, out] int *lCount,
 [out, size_is(,*lCount)]
 COUNTED_STRING **paths);
 HRESULT AddAccessPath([in] int cch_path,
 [in , size_is (cch_path)] WCHAR *path,
 [in] LdmObjectId targetId);
 HRESULT DeleteAccessPath([in] LdmObjectId volumeId,
 [in] int cch_path,
 [in , size_is (cch_path)] WCHAR *path);
 }

 [object, uuid(DEB01010-3A37-4d26-99DF-E2BB6AE3AC61),
 pointer_default(unique)]
 interface IVolumeClient4 : IUnknown

246 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 {
 HRESULT RefreshEx(void);

 HRESULT GetVolumeDeviceName(
 [in] LdmObjectId _volumeId,
 [out] unsigned long

 *cchVolumeDevice,

 [out, size_is(,*cchVolumeDevice)] WCHAR

 **pwszVolumeDevice
);
 }

247 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows NT 3.1 operating system

 Windows NT 3.5 operating system

 Windows NT 3.51 operating system

 Windows NT 4.0 operating system

 Windows 2000 Server operating system

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears

with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 1.3: The server end of the Disk Management Remote Protocol is implemented by the
Windows DmAdmin service on any machine that exposes storage objects for management. On each
Windows machine, the client end of the Disk Management Remote Protocol is implemented by the
DmRemote COM server. The DmRemote COM server invokes method calls on the DCOM interface on

behalf of a number of components, including the Windows Logical Disk Manager (LDM) user interface
(UI) and the Diskpart.exe command-line tool.

<2> Section 1.4: The Disk Management Remote Protocol is used by the Windows LDM UI and the

Diskpart.exe command-line tool.

<3> Section 1.6: Windows 2000 Server, Windows XP, and Windows Server 2003 implement the Disk
Management Remote Protocol. The Windows Server 2003 operating system and Windows Vista
implement the VDS Remote Protocol, which is used for disk management for these operating systems.
The interfaces associated with the Disk Management Remote Protocol are not available on Windows
Vista. The Disk Management Remote Protocol is replaced in Windows Vista by the VDS Remote

Protocol.

<4> Section 1.7:

 The IDMNotify and IDMRemoteServer interfaces are available on Windows XP, Windows 2000

Server, and Windows Server 2003.

 The IVolumeClient and IVolumeClient2 interfaces are to be used for disk management for
Windows 2000 Server. These interfaces can be used for disk management for Windows Server
2003 and Windows XP.

 The IVolumeClient3 interface can be used with Windows XP and Windows Server 2003, but cannot
be used with Windows 2000 Server.

248 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 The IVolumeClient4 interface can be used with Windows Server 2003 but cannot be used with
Windows 2000 Server or Windows XP.

<5> Section 2.1: Windows configures the underlying RPC transport with the following flags, as
specified in [C706] and [MS-RPCE].

Interface Windows 2000 Server Windows XP (pre-SP2)
 Windows Server 2003 and
Windows XP SP2

IVolumeClient,
IVolumeClient
2,
IVolumeClient
3,
IVolumeClient
4

RPC_C_AUTHN_LEVEL_CONN
ECT

RPC_C__IMP_LEVEL_IDENTIF
Y

 EOAC_APPID

RPC_C_AUTHN_LEVEL_CONN
ECT

RPC_C__IMP_LEVEL_IMPERS
ONATE

 EOAC_NONE

RPC_C_AUTHN_LEVEL_PKT_P
RIVACY

RPC_C__IMP_LEVEL_IDENTIFY

EOAC_SECURE_REFS |
EOAC_DISABLE_AAA |
EOAC_NO_CUSTOM_MARSHAL

IDMRemoteSer
ver

RPC_C_AUTHN_LEVEL_NONE

RPC_C__IMP_LEVEL_IMPERS
ONATE

 EOAC_NONE

RPC_C_AUTHN_LEVEL_NONE

RPC_C__IMP_LEVEL_IMPERS
ONATE

 EOAC_NONE

 RPC_C_AUTHN_LEVEL_NONE

RPC_C__IMP_LEVEL_IDENTIFY

EOAC_NO_CUSTOM_MARSHAL
L

<6> Section 2.1: The authorization constraints in Windows vary by operating system release. The
following table explains the variations. The boxes of the matrix identify a Windows security group that

has the required level of access.

Interface
 Windows 2000
Server Windows XP

 Windows Server
2003

IVolumeClient, IVolumeClient2,
IVolumeClient3, IVolumeClient4 Launch

 Administrators Administrators,
backup operators

 Administrators,
backup operators

 Local_system

IVolumeClient, IVolumeClient2,
IVolumeClient3, IVolumeClient4 Access

 Administrators Administrators,
backup operators

 Administrators,
backup operators

 Local_system

IDMRemoteServer Launch Administrators Administrators Administrators

 Local_system

IDMRemoteServer Access No restrictions No restrictions No restrictions

<7> Section 2.3.1.1: Other OEM partition types recognized by Windows NT 3.1, Windows NT 3.5,

Windows NT 3.51, and Windows NT 4.0 are as follows.

 Partition type Value Description

PARTITION_EISA 0x12 Extended Industry Standard Architecture (EISA) partition

PARTITION_HIBERNATION 0x84 Hibernation partition for laptops

PARTITION_DIAGNOSTIC 0xA0 Diagnostic partition on some Hewlett-Packard (HP) notebook PCs

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

249 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 Partition type Value Description

PARTITION_DELL 0xDE Dell partition

PARTITION_IBM 0xFE IBM initial microprogram load (IML) partition

<8> Section 2.5.1.2: Disk signatures are guaranteed to be unique among disks on a single machine.

<9> Section 2.5.1.2: GUIDs generated are guaranteed to be globally unique.

<10> Section 2.5.1.3: Windows 2000 Server and Windows XP servers do not define any partition flags
and always initialize this field to 0.

<11> Section 2.5.1.3: Hidden volumes are not accessible by opening a handle to the file system on
the volume using the Win32 API. The volume may be accessed only by opening a handle to the
volume device.

<12> Section 3.1.4: Gaps in the opnum numbering sequence apply to Windows as shown in the

following table.

 Opnum Description

IVolumeClient Opnum 0 Default DCOM method QueryInterface

IVolumeClient Opnum 1 Default DCOM method AddRef

IVolumeClient Opnum 2 Default DCOM method Release

IVolumeClient Opnum 12 Used only locally by Windows, never remotely

IVolumeClient Opnum 27 Not implemented

IVolumeClient Opnum 42 Not implemented

IVolumeClient Opnum 49 Not implemented

IVolumeClient Opnum 50 Not implemented

IVolumeClient Opnum 60 Used only locally by Windows, never remotely

IVolumeClient Opnum 61 Used only locally by Windows, never remotely

IVolumeClient Opnum 62 Used only locally by Windows, never remotely

IVolumeClient Opnum 63 Used only locally by Windows, never remotely

IVolumeClient Opnum 64 Used only locally by Windows, never remotely

IVolumeClient Opnum 65 Used only locally by Windows, never remotely

IVolumeClient Opnum 66 Used only locally by Windows, never remotely

IVolumeClient2 Opnum 0 Default DCOM method QueryInterface

IVolumeClient2 Opnum 1 Default DCOM method AddRef

IVolumeClient2 Opnum 2 Default DCOM method Release

IVolumeClient3 Opnum 0 Default DCOM method QueryInterface

IVolumeClient3 Opnum 1 Default DCOM method AddRef

250 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 Opnum Description

IVolumeClient3 Opnum 2 Default DCOM method Release

IVolumeClient3 Opnum 12 Used only locally by Windows, never remotely

IVolumeClient3 Opnum 56 Used only locally by Windows, never remotely

IVolumeClient3 Opnum 57 Used only locally by Windows, never remotely

IVolumeClient3 Opnum 58 Used only locally by Windows, never remotely

IVolumeClient3 Opnum 59 Used only locally by Windows, never remotely

IVolumeClient3 Opnum 60 Used only locally by Windows, never remotely

IVolumeClient3 Opnum 61 Used only locally by Windows, never remotely.

IVolumeClient3 Opnum 62 Used only locally by Windows, never remotely

IVolumeClient3 Opnum 63 Used only locally by Windows, never remotely

IVolumeClient4 Opnum 0 Default DCOM method QueryInterface

IVolumeClient4 Opnum 1 Default DCOM method AddRef

IVolumeClient4 Opnum 2 Default DCOM method Release

IDMRemoteServer Opnum 0 Default DCOM method QueryInterface

IDMRemoteServer Opnum 1 Default DCOM method AddRef

IDMRemoteServer Opnum 2 Default DCOM method Release

IDMNotify Opnum 0 Default DCOM method QueryInterface

IDMNotify Opnum 1 Default DCOM method AddRef

IDMNotify Opnum 2 Default DCOM method Release

<13> Section 3.1.4.1.4: Call sequencing is determined by the invoking application; whether or not

this is done is application-specific.

<14> Section 3.1.4.3: The Disk Management UI client updates the graphical user interface (GUI)
display based on these notifications.

<15> Section 3.2.1.1: In Windows, the unique identifier (UID) of the disk object changes when it
is converted from basic disk to dynamic disk or from dynamic disk to basic disk.

<16> Section 3.2.4: Windows servers enforce authorization checks. For more information on the
authorization requirements for the various methods, see section 2.1.

<17> Section 3.2.4.3: In Windows, all the methods listed that can be implemented asynchronously
are implemented as asynchronous methods.

<18> Section 3.2.4.3: For example, in Windows, the call to the file system to format will call back to
the server with notifications based on the percentage of the format completed. In Windows, the server
sends notifications based on 10-percent increments; for example, notifications are sent at 0 percent
finished, 10 percent finished, or 20 percent finished.

251 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

<19> Section 3.2.4.4.1.3: A partition cannot be created at the offset zero if the disk is partitioned
with either MBR or GPT disk partitioning formats.

<20> Section 3.2.4.4.1.3: MUST be set to zero when sent and MUST be ignored on receipt.

<21> Section 3.2.4.4.1.3: MUST be set to zero when sent and MUST be ignored on receipt.

<22> Section 3.2.4.4.1.3: MUST be set to zero when sent and MUST be ignored on receipt.

<23> Section 3.2.4.4.1.3: A drive letter can be assigned to the partition automatically by the
Windows mount point manager depending on several factors, including whether or not NoAutoMount is
enabled, whether or not the partition type is recognized by Windows, or whether or not the
GPT_BASIC_DATA_ATTRIBUTE_NO_DRIVE_LETTER or GPT_BASIC_DATA_ATTRIBUTE_HIDDEN flags is
set.

<24> Section 3.2.4.4.1.3: Windows uses the PARTITION_INFORMATION_EX structure to create and

format partitions. For more information about this structure, see [MSDN-PARTITIONINFO].

<25> Section 3.2.4.4.1.4: In Windows, the server does not check the letterLastKnownState

parameter. Even if the specified drive letter is not present in the list of storage objects, the
CreatePartitionAssignAndFormat method creates the partition.

<26> Section 3.2.4.4.1.4: In Windows, if specifies that a drive letter be assigned, the field
tinfo.storageId is set to 0 even if the partition is created successfully.

<27> Section 3.2.4.4.1.4: MUST be set to zero when sent and MUST be ignored on receipt.

<28> Section 3.2.4.4.1.4: MUST be set to zero when sent and MUST be ignored on receipt.

<29> Section 3.2.4.4.1.4: MUST be set to zero when sent and MUST be ignored on receipt.

<30> Section 3.2.4.4.1.4: The formatting is handled as an asynchronous task.

<31> Section 3.2.4.4.1.6: In Windows, the server does not verify whether
partitionSpec.LastKnownState matches the LastKnownState field of the object.

<32> Section 3.2.4.4.1.6: MUST be set to zero when sent and MUST be ignored on receipt.

<33> Section 3.2.4.4.1.6: MUST be set to zero when sent and MUST be ignored on receipt.

<34> Section 3.2.4.4.1.6: MUST be set to zero when sent and MUST be ignored on receipt.

<35> Section 3.2.4.4.1.6: If the force parameter is not set, the call will fail with
LDM_E_VOLUME_IN_USE if the volume cannot be locked.

<36> Section 3.2.4.4.1.7: MUST be set to zero when sent and MUST be ignored on receipt.

<37> Section 3.2.4.4.1.7: MUST be set to zero when sent and MUST be ignored on receipt.

<38> Section 3.2.4.4.1.7: MUST be set to zero when sent and MUST be ignored on receipt.

<39> Section 3.2.4.4.1.8: MUST be set to zero when sent and MUST be ignored on receipt.

<40> Section 3.2.4.4.1.8: MUST be set to zero when sent and MUST be ignored on receipt.

<41> Section 3.2.4.4.1.8: MUST be set to zero when sent and MUST be ignored on receipt.

<42> Section 3.2.4.4.1.9: MUST be set to zero when sent and MUST be ignored on receipt.

<43> Section 3.2.4.4.1.9: MUST be set to zero when sent and MUST be ignored on receipt.

<44> Section 3.2.4.4.1.9: MUST be set to zero when sent and MUST be ignored on receipt.

http://go.microsoft.com/fwlink/?LinkId=90059

252 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

<45> Section 3.2.4.4.1.9: In a Windows implementation, the server always returns the status of the
operation as REQ_FAILED.

<46> Section 3.2.4.4.1.10: In Windows, FT volumes on basic disks can only be created in Windows
NT 4.0.

<47> Section 3.2.4.4.1.11: In Windows, FT volumes on basic disks can only be created in Windows
NT 4.0.

<48> Section 3.2.4.4.1.12: In Windows, FT volumes on basic disks can only be created in Windows
NT 4.0.

<49> Section 3.2.4.4.1.12: If the force parameter is not set, the call will fail with
LDM_E_VOLUME_IN_USE if the volume cannot be locked.

<50> Section 3.2.4.4.1.12: MUST be set to zero when sent and MUST be ignored on receipt.

<51> Section 3.2.4.4.1.12: MUST be set to zero when sent and MUST be ignored on receipt.

<52> Section 3.2.4.4.1.12: MUST be set to zero when sent and MUST be ignored on receipt.

<53> Section 3.2.4.4.1.13: In Windows, FT volumes on basic disks can only be created in Windows
NT 4.0.

<54> Section 3.2.4.4.1.13: If the bForce parameter is not set, the call will fail with
LDM_E_VOLUME_IN_USE if the volume cannot be locked when removing the drive letter associated

with the volume.

<55> Section 3.2.4.4.1.13: MUST be set to zero when sent and MUST be ignored on receipt.

<56> Section 3.2.4.4.1.13: MUST be set to zero when sent and MUST be ignored on receipt.

<57> Section 3.2.4.4.1.13: MUST be set to zero when sent and MUST be ignored on receipt.

<58> Section 3.2.4.4.1.13: Note that the new volume that results when breaking a single volume into

two separate partitions may automatically get a new drive letter assigned by the operating system.

<59> Section 3.2.4.4.1.14: In Windows, FT volumes on basic disks can only be created in Windows

NT 4.0.

<60> Section 3.2.4.4.1.14: MUST be set to zero when sent and MUST be ignored on receipt.

<61> Section 3.2.4.4.1.14: MUST be set to zero when sent and MUST be ignored on receipt.

<62> Section 3.2.4.4.1.14: MUST be set to zero when sent and MUST be ignored on receipt.

<63> Section 3.2.4.4.1.15: In Windows, FT volumes on basic disks can only be created in Windows
NT 4.0.

<64> Section 3.2.4.4.1.15: MUST be set to zero when sent and MUST be ignored on receipt.

<65> Section 3.2.4.4.1.15: MUST be set to zero when sent and MUST be ignored on receipt.

<66> Section 3.2.4.4.1.15: MUST be set to zero when sent and MUST be ignored on receipt.

<67> Section 3.2.4.4.1.16: In Windows, FT volumes on basic disks can only be created in Windows
NT 4.0.

<68> Section 3.2.4.4.1.16: MUST be set to zero when sent and MUST be ignored on receipt.

<69> Section 3.2.4.4.1.16: MUST be set to zero when sent and MUST be ignored on receipt.

253 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

<70> Section 3.2.4.4.1.16: MUST be set to zero when sent and MUST be ignored on receipt.

<71> Section 3.2.4.4.1.17: In Windows, FT volumes on basic disks can only be created in Windows

NT 4.0.

<72> Section 3.2.4.4.1.17: MUST be set to zero when sent and MUST be ignored on receipt.

<73> Section 3.2.4.4.1.17: MUST be set to zero when sent and MUST be ignored on receipt.

<74> Section 3.2.4.4.1.17: MUST be set to zero when sent and MUST be ignored on receipt.

<75> Section 3.2.4.4.1.18: In Windows, the enumeration of drive letter objects excludes the objects
with drive letters 'A' and 'B'.

<76> Section 3.2.4.4.1.19: MUST be set to zero when sent and MUST be ignored on receipt.

<77> Section 3.2.4.4.1.19: MUST be set to zero when sent and MUST be ignored on receipt.

<78> Section 3.2.4.4.1.19: MUST be set to zero when sent and MUST be ignored on receipt.

<79> Section 3.2.4.4.1.20: If the forceOption parameter is not set, the call will fail with
LDM_E_VOLUME_IN_USE if the volume cannot be locked.

<80> Section 3.2.4.4.1.20: MUST be set to zero when sent and MUST be ignored on receipt.

<81> Section 3.2.4.4.1.20: MUST be set to zero when sent and MUST be ignored on receipt.

<82> Section 3.2.4.4.1.20: MUST be set to zero when sent and MUST be ignored on receipt.

<83> Section 3.2.4.4.1.21: In Windows, the server returns file system structure without file system

information for partitions on a dynamic disk.

<84> Section 3.2.4.4.1.23: The FILE_SYSTEM_INFO::id parameter is not used in this case.

<85> Section 3.2.4.4.1.23: If the force parameter is not set, the call will fail with
LDM_E_VOLUME_IN_USE if the volume cannot be locked.

<86> Section 3.2.4.4.1.23: MUST be set to zero when sent and MUST be ignored on receipt.

<87> Section 3.2.4.4.1.23: MUST be set to zero when sent and MUST be ignored on receipt.

<88> Section 3.2.4.4.1.23: MUST be set to zero when sent and MUST be ignored on receipt.

<89> Section 3.2.4.4.1.23: The formatting is handled as an asynchronous task.

<90> Section 3.2.4.4.1.25: This method enumerates the volume extents, not the volume members. A
volume member is a volume plex for a mirrored volume, or a volume's column\member for a RAID-5
volume.

<91> Section 3.2.4.4.1.25: In Windows, the server returns S_FALSE if the method is successful.

<92> Section 3.2.4.4.1.26: In Windows, if the size of the volume requested is greater than the size of

the volume that can be created on the specified disks, the HRESULT returned is S_OK,

TASK_INFO::error is set to S_OK, and TASK_INFO::storageId is set to 0 to indicate that the volume
was not created.

<93> Section 3.2.4.4.1.26: Note that in Windows the bNeedContiguous field in the DISK_SPEC
structure is ignored if more than one DISK_SPEC structure is passed in.

<94> Section 3.2.4.4.1.26: MUST be set to zero when sent and MUST be ignored on receipt.

<95> Section 3.2.4.4.1.26: MUST be set to zero when sent and MUST be ignored on receipt.

254 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

<96> Section 3.2.4.4.1.26: MUST be set to zero when sent and MUST be ignored on receipt.

<97> Section 3.2.4.4.1.26: In Windows, the status returned is REQ_STARTED even if the operation

has finished successfully.

<98> Section 3.2.4.4.1.26: Windows sends the region-deleted and region-created notification when a

region is deleted and created during this operation in MBR disks. Windows does not send the region-
deleted and region-created notification when a region is deleted and created during this operation in
GPT disks.

<99> Section 3.2.4.4.1.27: In Windows, the server does not check the letterLastKnownState
parameter. Even if the specified drive letter is not present in the list of storage objects, the
CreateVolumeAssignAndFormat method creates the volume.

<100> Section 3.2.4.4.1.27: In a Windows implementation, the field tinfo.storageId is set to zero

even if the partition is created successfully.

<101> Section 3.2.4.4.1.27: MUST be set to zero when sent and MUST be ignored on receipt.

<102> Section 3.2.4.4.1.27: MUST be set to zero when sent and MUST be ignored on receipt.

<103> Section 3.2.4.4.1.27: MUST be set to zero when sent and MUST be ignored on receipt.

<104> Section 3.2.4.4.1.27: In Windows, the formatting is handled as an asynchronous task.

<105> Section 3.2.4.4.1.30: In Windows, the method returns 0 without growing the volume, if the

length specified in diskList.length is greater than the available free space on that disk.

<106> Section 3.2.4.4.1.30: MUST be set to zero when sent and MUST be ignored on receipt.

<107> Section 3.2.4.4.1.30: MUST be set to zero when sent and MUST be ignored on receipt.

<108> Section 3.2.4.4.1.30: MUST be set to zero when sent and MUST be ignored on receipt.

<109> Section 3.2.4.4.1.30: If the force parameter is not set, the call will fail with

LDM_E_VOLUME_IN_USE if the volume cannot be locked.

<110> Section 3.2.4.4.1.31: MUST be set to zero when sent and MUST be ignored on receipt.

<111> Section 3.2.4.4.1.31: MUST be set to zero when sent and MUST be ignored on receipt.

<112> Section 3.2.4.4.1.31: MUST be set to zero when sent and MUST be ignored on receipt.

<113> Section 3.2.4.4.1.31: Windows sends the region-deleted and OID-created notification when a
region is deleted and created during this operation on MBR disks. Windows does not send the region-
deleted and region-created notification when a region is deleted and created during this operation on
GPT disks.

<114> Section 3.2.4.4.1.31: If the force parameter is not set, the call will fail with

LDM_E_VOLUME_IN_USE if the volume cannot be locked.

<115> Section 3.2.4.4.1.32: In Windows, the status returned is REQ_STARTED even if the operation

has completed successfully.

<116> Section 3.2.4.4.1.32: MUST be set to zero when sent and MUST be ignored on receipt.

<117> Section 3.2.4.4.1.32: MUST be set to zero when sent and MUST be ignored on receipt.

<118> Section 3.2.4.4.1.32: MUST be set to zero when sent and MUST be ignored on receipt.

<119> Section 3.2.4.4.1.32: In Windows, the server sends a multiple-task completion notification if
the operation succeeds.

255 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

<120> Section 3.2.4.4.1.33: MUST be set to zero when sent and MUST be ignored on receipt.

<121> Section 3.2.4.4.1.33: MUST be set to zero when sent and MUST be ignored on receipt.

<122> Section 3.2.4.4.1.33: MUST be set to zero when sent and MUST be ignored on receipt.

<123> Section 3.2.4.4.1.34: In Windows, the server does not check the letterLastKnownState

parameter. Even if the specified drive letter is not present in the list of storage objects, the SplitMirror
method splits the volume.

<124> Section 3.2.4.4.1.34: MUST be set to zero when sent and MUST be ignored on receipt.

<125> Section 3.2.4.4.1.34: MUST be set to zero when sent and MUST be ignored on receipt.

<126> Section 3.2.4.4.1.34: MUST be set to zero when sent and MUST be ignored on receipt.

<127> Section 3.2.4.4.1.34: The call fails with LDM_E_VOLUME_IN_USE if the volume cannot be
locked.

<128> Section 3.2.4.4.1.35: MUST be set to zero when sent and MUST be ignored on receipt.

<129> Section 3.2.4.4.1.35: MUST be set to zero when sent and MUST be ignored on receipt.

<130> Section 3.2.4.4.1.35: MUST be set to zero when sent and MUST be ignored on receipt.

<131> Section 3.2.4.4.1.35: In Windows implementations, the server does not send the region
deletion notification.

<132> Section 3.2.4.4.1.36: In Windows, the server does not verify that the disk is empty when the

method is called. Instead, the method sends an asynchronous task notification indicating the task
failure if the disk specified is not empty.

<133> Section 3.2.4.4.1.36: MUST be set to zero when sent and MUST be ignored on receipt.

<134> Section 3.2.4.4.1.36: MUST be set to zero when sent and MUST be ignored on receipt.

<135> Section 3.2.4.4.1.36: MUST be set to zero when sent and MUST be ignored on receipt.

<136> Section 3.2.4.4.1.36: The disk conversion is handled as an asynchronous task.

<137> Section 3.2.4.4.1.36: In Windows implementations, the server does not send the region

deletion notification.

<138> Section 3.2.4.4.1.37: MUST be set to zero when sent and MUST be ignored on receipt.

<139> Section 3.2.4.4.1.37: MUST be set to zero when sent and MUST be ignored on receipt.

<140> Section 3.2.4.4.1.37: MUST be set to zero when sent and MUST be ignored on receipt.

<141> Section 3.2.4.4.1.37: The disk reactivation operation is handled as an asynchronous task.

<142> Section 3.2.4.4.1.38: MUST be set to zero when sent and MUST be ignored on receipt.

<143> Section 3.2.4.4.1.38: MUST be set to zero when sent and MUST be ignored on receipt.

<144> Section 3.2.4.4.1.38: MUST be set to zero when sent and MUST be ignored on receipt.

<145> Section 3.2.4.4.1.38: The disk import operation is handled as an asynchronous task.

<146> Section 3.2.4.4.1.39: In a Windows implementation, the field status is set to REQ_STARTED
even if the operation finished successfully.

256 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

<147> Section 3.2.4.4.1.39: Handling of the DSKMERGE_IN_NO_UNRELATED flag is not implemented
in Windows.

<148> Section 3.2.4.4.1.40: In a Windows implementation, the field status is set to REQ_STARTED
even if the operation finished successfully.

<149> Section 3.2.4.4.1.40: MUST be set to zero when sent and MUST be ignored on receipt.

<150> Section 3.2.4.4.1.40: MUST be set to zero when sent and MUST be ignored on receipt.

<151> Section 3.2.4.4.1.40: MUST be set to zero when sent and MUST be ignored on receipt.

<152> Section 3.2.4.4.1.41: Windows does not implement this method.

<153> Section 3.2.4.4.1.41: MUST be set to zero when sent and MUST be ignored on receipt.

<154> Section 3.2.4.4.1.41: MUST be set to zero when sent and MUST be ignored on receipt.

<155> Section 3.2.4.4.1.41: MUST be set to zero when sent and MUST be ignored on receipt.

<156> Section 3.2.4.4.1.42: MUST be set to zero when sent and MUST be ignored on receipt.

<157> Section 3.2.4.4.1.42: MUST be set to zero when sent and MUST be ignored on receipt.

<158> Section 3.2.4.4.1.42: MUST be set to zero when sent and MUST be ignored on receipt.

<159> Section 3.2.4.4.1.43: MUST be set to zero when sent and MUST be ignored on receipt.

<160> Section 3.2.4.4.1.43: MUST be set to zero when sent and MUST be ignored on receipt.

<161> Section 3.2.4.4.1.43: MUST be set to zero when sent and MUST be ignored on receipt.

<162> Section 3.2.4.4.1.43: In Windows, the status returned is REQ_STARTED even if the operation
has been finished successfully.

<163> Section 3.2.4.4.1.44: A notification that a task has been modified is sent for failure cases. A

task-modified notification is not usually sent when a task fails, but parameter-validation failure is an
exception.

<164> Section 3.2.4.4.1.44: MUST be set to zero when sent and MUST be ignored on receipt.

<165> Section 3.2.4.4.1.44: MUST be set to zero when sent and MUST be ignored on receipt.

<166> Section 3.2.4.4.1.44: MUST be set to zero when sent and MUST be ignored on receipt.

<167> Section 3.2.4.4.1.45: MUST be set to zero when sent and MUST be ignored on receipt.

<168> Section 3.2.4.4.1.45: MUST be set to zero when sent and MUST be ignored on receipt.

<169> Section 3.2.4.4.1.45: This tinfo::Status field is returned as REQ_STARTED rather than
REQ_COMPLETED.

<170> Section 3.2.4.4.1.45: In a Windows implementation, the server does not send task completion

notification.

<171> Section 3.2.4.4.1.45: In a Windows implementation, the server does not send notifications for
deletion of region objects of the old basic disks.

<172> Section 3.2.4.4.1.45: This information is used to update the boot.ini file's arcpath for the boot
volume. Windows stores these values in the registry under
"HKLM\SYSTEM\CurrentControlSet\Services\dmio\Partition Info" as DWORD values

257 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

"OldPartitionNumber" and "NewPartitionNumber." After the server has updated the boot settings as
necessary, it deletes the registry entries for "OldPartitionNumber" and "NewPartitionNumber".

<173> Section 3.2.4.4.1.47: Windows stores the boot partition change information in the registry
under "HKLM\SYSTEM\CurrentControlSet\Services\dmio\Partition Info" as DWORD values

"OldPartitionNumber" and "NewPartitionNumber."

<174> Section 3.2.4.4.1.48: The SetDontShow method sets a Boolean value that indicates whether
to show a disk initialization tool. For more information about this Boolean value, see GetDontShow.

<175> Section 3.2.4.4.1.49: The GetDontShow method retrieves a Boolean value that indicates
whether to show a disk initialization tool. The New Disk Wizard is part of the UI implementation for
Disk Management for Windows. If it is enabled, the wizard appears when the UI is started and
uninitialized or empty basic disks are available. Windows servers check a registry value and enable or

disable the New Disk Wizard accordingly. The SetDontShow method sets the current state of the
Boolean value in the registry.

<176> Section 3.2.4.4.1.50: In Windows, this method is not implemented and returns E_FAIL.

<177> Section 3.2.4.4.1.53: Windows always returns S_FALSE.

<178> Section 3.2.4.4.1.53: No flags are defined or returned.

<179> Section 3.2.4.4.1.53: Windows does not return this information from the server. Windows

clients on Windows 2000 operating system and Windows XP make this call but do not depend on it. If
the call is not implemented, these clients will print the error information based on the HRESULT, using
strings they retrieve from the binary.

<180> Section 3.2.4.4.1.54: In Windows, the LDM UI client checks the value of ulIDLVersion to be
equal to the version of the IDL file with which the client was built and will disconnect from the server if
the ulIDLVersion is not the same.

<181> Section 3.2.4.4.1.54: This flag is never set by the 32-bit version of Windows 2000 Server,

Windows Server 2003, or Windows XP. This flag is set by the 64-bit version of Windows XP and
Windows Server 2003.

<182> Section 3.2.4.4.1.54: This flag is never set by Windows 2000 Server, Windows Server 2003, or
Windows XP.

<183> Section 3.2.4.4.1.54: This flag is set only by Windows 2000 Server.

<184> Section 3.2.4.4.1.54: In Windows, the server responds to all client messages even if the
Initialize method has not been called by the client, with the limitation that the client cannot receive

any notifications from the server until the Initialize method has been called.

<185> Section 3.2.4.4.1.54: In Windows XP operating system Service Pack 2 (SP2) and Windows
Server 2003 operating system with Service Pack 1 (SP1), if cRemote parameter is nonzero, the server
uses server machine account authentication to make calls to the IDMNotify interface that is specified
by notificationInterface.

<186> Section 3.2.4.4.1.55: In Windows, the server responds to all client messages — even after the

Uninitialize method has been called by the client. However, after the Uninitialize method has been
called by the client, the client cannot receive any further notifications from the server.

<187> Section 3.2.4.4.1.59: There is no operating system support for this method, so it is not used
by Windows.

<188> Section 3.2.4.4.2.1: In Windows, if the diskId is not in the list of storage objects, the server
causes the method to succeed without setting the maxAdjustedFreeSpace parameter.

<189> Section 3.2.4.4.3: IVolumeClient3 methods are not implemented in Windows 2000 Server.

258 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

<190> Section 3.2.4.4.3.3: Windows uses the PARTITION_INFORMATION_EX structure to create and
format partitions. For more information about this structure, see [MSDN-PARTITIONINFO].

<191> Section 3.2.4.4.3.7: MUST be set to zero when sent and MUST be ignored on receipt.

<192> Section 3.2.4.4.3.7: MUST be set to zero when sent and MUST be ignored on receipt.

<193> Section 3.2.4.4.3.7: MUST be set to zero when sent and MUST be ignored on receipt.

<194> Section 3.2.4.4.3.10: In Windows, FT volumes on basic disks can only be created in Windows
NT 4.0.

<195> Section 3.2.4.4.3.11: In Windows, FT volumes on basic disks can only be created in Windows
NT 4.0.

<196> Section 3.2.4.4.3.12: In Windows, FT volumes on basic disks can only be created in Windows
NT 4.0.

<197> Section 3.2.4.4.3.13: In Windows, FT volumes on basic disks can only be created in Windows

NT 4.0.

<198> Section 3.2.4.4.3.14: In Windows, FT volumes on basic disks can only be created in Windows
NT 4.0.

<199> Section 3.2.4.4.3.15: In Windows, FT volumes on basic disks can only be created in Windows
NT 4.0.

<200> Section 3.2.4.4.3.16: In Windows, FT volumes on basic disks can only be created in Windows
NT 4.0.

<201> Section 3.2.4.4.3.20: In Windows, the server returns file system structure without file system
information for partitions on a dynamic disks.

<202> Section 3.2.4.4.3.32: MUST be set to zero when sent and MUST be ignored on receipt.

<203> Section 3.2.4.4.3.32: MUST be set to zero when sent and MUST be ignored on receipt.

<204> Section 3.2.4.4.3.32: MUST be set to zero when sent and MUST be ignored on receipt.

<205> Section 3.2.4.4.3.32: In a Windows implementation, the server does not send the task
completion notification.

<206> Section 3.2.4.4.3.32: In Windows, the lastKnownState of the disk object does not change,
even though the disk object is modified.

<207> Section 3.2.4.4.3.33: MUST be set to zero when sent and MUST be ignored on receipt.

<208> Section 3.2.4.4.3.33: MUST be set to zero when sent and MUST be ignored on receipt.

<209> Section 3.2.4.4.3.33: MUST be set to zero when sent and MUST be ignored on receipt.

<210> Section 3.2.4.4.3.33: In a Windows implementation, the server does not send the task

completion notification.

<211> Section 3.2.4.4.3.38: MUST be set to zero when sent and MUST be ignored on receipt.

<212> Section 3.2.4.4.3.38: MUST be set to zero when sent and MUST be ignored on receipt.

<213> Section 3.2.4.4.3.38: MUST be set to zero when sent and MUST be ignored on receipt.

<214> Section 3.2.4.4.3.38: In Windows implementations, the server does not send the region

deletion notification.

259 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

<215> Section 3.2.4.4.3.44: Windows does not implement this method.

<216> Section 3.2.4.4.3.48: MUST be set to zero when sent and MUST be ignored on receipt.

<217> Section 3.2.4.4.3.48: MUST be set to zero when sent and MUST be ignored on receipt.

<218> Section 3.2.4.4.3.48: MUST be set to zero when sent and MUST be ignored on receipt.

<219> Section 3.2.4.4.3.48: In a Windows implementation, the server does not send task completion
notification.

<220> Section 3.2.4.4.3.48: In a Windows implementation, the server does not send notifications for
deletion of region objects of the old basic disks.

<221> Section 3.2.4.4.3.51: The SetDontShow method sets a Boolean value that indicates whether or
not to show a disk initialization tool. For more information on this Boolean value, see
GetDontShow (section 3.2.4.4.3.52).

<222> Section 3.2.4.4.3.52: The GetDontShow method retrieves a value that indicates whether to

show a disk initialization tool. The New Disk Wizard is part of the UI implementation for Disk
Management for Windows. If enabled, the wizard appears when the UI is started and uninitialized or
empty basic disks are available. Windows servers check a registry value and enable or disable the New
Disk Wizard accordingly. The SetDontShow method sets the current state of the Boolean value in the
registry.

<223> Section 3.2.4.4.3.56: No flags are defined, and this parameter is always initialized to 0.

<224> Section 3.2.4.4.3.57: This flag is never set by the 32-bit version of Windows 2000 Server,
Windows Server 2003, or Windows XP. This flag is set by the 64-bit version of Windows XP and
Windows Server 2003.

<225> Section 3.2.4.4.3.57: This flag is never set by Windows 2000 Server, Windows Server 2003, or
Windows XP.

<226> Section 3.2.4.4.3.57: This flag is set only by Windows 2000 Server.

<227> Section 3.2.4.4.4: IVolumeClient4 methods are not implemented in Windows 2000 Server or
Windows XP.

<228> Section 3.2.4.4.4.1: The Windows volume manager keeps track of the dynamic disks present
on a system and displays disks that are no longer present as missing.

<229> Section 3.2.6: Windows servers do register for such notifications.

<230> Section 5: For Windows-specific default security configuration please see [MSDN-DefAccPerms]
and [MSDN-AccPerms].

http://go.microsoft.com/fwlink/?LinkId=117280
http://go.microsoft.com/fwlink/?LinkId=117279

260 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

8 Appendix C: IDMNotify::ObjectsChanged

 void CClientClass::ObjectsChanged(DWORD dwByteCount, BYTE *pByte)
 {
 DWORD dwNotifSize = 0;
 DWORD dwCopySize = 0;
 BYTE *pPos = pByte;
 BYTE *pNotifStart = NULL;

 DMNOTIFY_INFO_TYPE Type;
 LDMACTION Action;

 while (pPos - pByte < (long)dwByteCount)
 {
 pNotifStart = pPos;

 // Get the notification size.
 memcpy(&dwNotifSize, pPos, sizeof(DWORD));
 pPos = pPos + sizeof(DWORD);

 // Get the notification type.
 memcpy(&Type, pPos, sizeof(DMNOTIFY_INFO_TYPE));
 pPos = pPos + sizeof(DMNOTIFY_INFO_TYPE);

 // Get the notification action.
 memcpy(&Action, pPos, sizeof(LDMACTION));
 pPos = pPos + sizeof(LDMACTION);

 // dwCopySize is the number of bytes left to copy out
 // of the byte stream for this notification.
 dwCopySize = dwNotifSize
 - (sizeof(DWORD)
 + sizeof(DMNOTIFY_INFO_TYPE)
 + sizeof(LDMACTION));

 // Switch on the type of this notification.
 switch (Type) {

 case DMNOTIFY_DISK_INFO:

 // We need to treat IVolumeClient server and IVolumeClient3
 // server differently. IVolumeClient server uses DISK_INFO,
 // IVolumeClient3 uses DISK_INFO_EX. The code below will load
 // DISK_INFO into a DISK_INFO_EX structure for the case where
 // the server is Windows 2000 and the client is Windows XP or
 // Windows 2003.

 DISK_INFO_EX DiskInfoEx;

 memset(&DiskInfoEx,0,sizeof(DISK_INFO_EX));

 if (nIVolumeClientVersion == 3)
 {
 dwCopySize = offsetof(DISK_INFO_EX,name);

 memcpy(&DiskInfoEx,pPos,offsetof(DISK_INFO_EX,name));
 pPos = pPos + dwCopySize;
 }
 else // nIVolumeClientVersion == 1
 {

 //
 // Copy the first part of disk info structure.
 //

 DISK_INFO DiskInfo;

261 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 memset(&DiskInfo,0,sizeof(DISK_INFO));

 //
 // On a 64-bit client, 4 bytes of padding are added
 // after cchDgName, so we cannot set dwCopySize to
 // offsetof(DISK_INFO,name) - the byte stream passed
 // from the 32-bit server does not have these 4 bytes
 // of padding.
 //
 // However, if the client is 32 bit and the server is
 // 64 bit, the code below sets pPos to point to the
 // padding.
 //
 // dwCopySize = offsetof(DISK_INFO,cchDgName)
 // + sizeof(DiskInfo.cchDgName);
 // memcpy(&DiskInfo, pPos, dwCopySize);
 // pPos = pPos + dwCopySize;
 // pPos may now be incorrect.
 //
 // We have this problem below in the DMNOTIFY_FS_INFO
 // case.
 //
 // The workaround is to setup globals that store the
 // server and client architecture. For the client, call
 // the Win32 API GetSystemInfo().
 //
 // For the server, use the Disk Management interfaces
 // to look for an ESP partition on any of the client
 // disks. If one is found, assume a 64-bit
 // architecture. For this code, assume
 // g_ClientArchitecture and g_ServerArchitecture have
 // been setup.
 //

 if (g_ClientArchitecture == g_ServerArchitecture) {
 dwCopySize = offsetof(DISK_INFO, name)
 memcpy(&DiskInfo, pPos, dwCopySize);
 pPos = pPos + dwCopySize;
 }
 else if (g_ClientArchitecture == 32 bit) {
 dwCopySize = offsetof(DISK_INFO,name);
 memcpy(&DiskInfo, pPos, dwCopySize);
 pPos = pPos + dwCopySize;
 }
 else { // (g_ServerArchitecture == 32 bit)
 dwCopySize = offsetof(DISK_INFO,cchDgName)
 + sizeof(DiskInfo.cchDgName);
 memcpy(&DiskInfo, pPos, dwCopySize);
 pPos = pPos + dwCopySize;
 }

 //
 // Copy from DISK_INFO to DISK_INFO_EX
 //

 CopyToDiskInfoEx(&DiskInfo, &DiskInfoEx);
 }

 // Copy disk name.
 wchar_t *name;
 name = new wchar_t[DiskInfoEx.cchName * sizeof(wchar_t)];
 if (name)

 memcpy(name,

 pPos,
 sizeof(wchar_t) * DiskInfoEx.cchName);
 pPos = pPos + (sizeof(wchar_t) * DiskInfoEx.cchName);

 // Copy disk vendor.
 wchar_t *vendor;

262 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 vendor = new wchar_t[DiskInfoEx.cchVendor
 * sizeof(wchar_t)];
 if (vendor)

 memcpy(vendor,

 pPos,
 sizeof(wchar_t) * DiskInfoEx.cchVendor);
 pPos = pPos + (sizeof(wchar_t) * DiskInfoEx.cchVendor);

 // Copy disk group id.
 BYTE *dgid;
 dgid = new BYTE[DiskInfoEx.cchDgid * sizeof(BYTE)];
 if (dgid)

 memcpy(dgid,

 pPos,
 sizeof(BYTE) * DiskInfoEx.cchDgid);
 pPos = pPos + (sizeof(BYTE) * DiskInfoEx.cchDgid);

 // Copy disk adapter.
 wchar_t *adapterName;
 adapterName = new wchar_t[DiskInfoEx.cchAdapterName
 * sizeof(wchar_t)];
 if (adapterName)
 memcpy(adapterName,
 pPos,
 sizeof(wchar_t) * DiskInfoEx.cchAdapterName);
 pPos = pPos
 + (sizeof(wchar_t) * DiskInfoEx.cchAdapterName);

 // Copy disk group name.
 wchar_t *dgName;
 dgName = new wchar_t[DiskInfoEx.cchDgName
 * sizeof(wchar_t)];
 if (dgName)

 memcpy(dgName,

 pPos,
 sizeof(wchar_t) * DiskInfoEx.cchDgName);
 pPos = pPos + (sizeof(wchar_t) * DiskInfoEx.cchDgName);

 // Copy device instance id.
 wchar_t *devInstId;

 if (nIVolumeClientVersion == 3)
 {
 // Copy device instance id.
 if (DiskInfoEx.cchDevInstId)
 {
 devInstId = new wchar_t[DiskInfoEx.cchDevInstId *
 sizeof(wchar_t)];
 if (devInstId)
 memcpy(devInstId, pPos, sizeof(wchar_t) *
 DiskInfoEx.cchDevInstId);
 pPos = pPos + (sizeof(wchar_t) *
 DiskInfoEx.cchDevInstId);
 }
 else
 devInstId = NULL;
 }
 else // nIVolumeClientVersion == 1
 devInstId = NULL;

 //
 // Assign the rest of the DISK_INFO_EX members.
 //
 DiskInfoEx.name = name;
 DiskInfoEx.vendor = vendor;
 DiskInfoEx.dgid = dgid;
 DiskInfoEx.adapterName = adapterName;
 DiskInfoEx.dgName = dgName;
 DiskInfoEx.devInstId = devInstId;

263 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 break;

 case DMNOTIFY_VOLUME_INFO:

 VOLUME_INFO VolumeInfo;

 memset(&VolumeInfo, 0, sizeof(VOLUME_INFO));

 // Copy in volume info.

 memcpy(&VolumeInfo, pPos, dwCopySize);
 pPos = pPos + dwCopySize;

 break;

 case DMNOTIFY_REGION_INFO:

 REGION_INFO_EX RegInfoEx;

 memset(&RegInfoEx, 0, sizeof(REGION_INFO_EX));

 // We need to treat IVolumeClient server and IVolumeClient3
 // server differently. IVolumeClient server uses
 // REGION_INFO instead of REGION_INFO_EX. The code below
 // will load REGION_INFO into a REGION_INFO_EX structure
 // for the case where the server is Windows 2000 and the
 // client is Windows XP or Windows 2003

 if (nIVolumeClientVersion==3)
 {
 memcpy(&RegInfoEx,
 pPos,
 offsetof(REGION_INFO_EX,name));
 pPos += offsetof(REGION_INFO_EX,name);

 // Copy name.
 wchar_t *name;
 name = new wchar_t[RegInfoEx.cchName
 * sizeof(wchar_t)];
 if (name)
 memcpy(name,

 pPos,
 sizeof(wchar_t) * RegInfoEx.cchName);
 pPos = pPos + (sizeof(wchar_t) * RegInfoEx.cchName);

 RegInfoEx.name = name;
 }
 else // m_sIVolumeClientVersion == 1
 {
 REGION_INFO RegInfo;

 memset(&RegInfo, 0, sizeof(REGION_INFO));

 memcpy(&RegInfo, pPos, dwCopySize);
 pPos = pPos + dwCopySize;

 CopyToRegionInfoEx(&RegInfo, &RegInfoEx);
 }
 break;

 case DMNOTIFY_TASK_INFO:

 TASK_INFO TaskInfo;

 memset(&TaskInfo, 0, sizeof(TASK_INFO));

 // Copy in task info.

264 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 memcpy(&TaskInfo, pPos, dwCopySize);
 pPos = pPos + dwCopySize;

 break;

 case DMNOTIFY_DL_INFO:

 DRIVE_LETTER_INFO DLInfo;

 memset(&DLInfo, 0, sizeof(DRIVE_LETTER_INFO));

 // Copy in drive letter info.

 memcpy(&DLInfo, pPos, dwCopySize);
 pPos = pPos + dwCopySize;

 break;

 case DMNOTIFY_FS_INFO:

 FILE_SYSTEM_INFO FsInfo;

 memset(&FsInfo, 0, sizeof(FILE_SYSTEM_INFO));

 //
 // We have this problem here as above in the
 // DMNOTIFY_DISK_INFO case.
 //
 // On a 64-bit client, 4 bytes of padding are added after
 // cchLabel, so we cannot set dwCopySize to
 // offsetof(FILE_SYSTEM, label) - the byte stream passed
 // from the 32-bit server does not have these 4 bytes of
 // padding.
 //
 // However, if the client is 32 bit and the server is 64
 // bit, the code below sets pPos to point to the padding.
 //
 // dwCopySize = offsetof(FILE_SYSTEM_INFO, cchLabel)
 // + sizeof(FsInfo.cchLabel);
 // memcpy(&FsInfo, pPos, dwCopySize);
 // pPos = pPos + dwCopySize;
 // pPos may now be incorrect.
 //

 // Copy file system info.

 if (g_ClientArchitecture == g_ServerArchitecture) {
 dwCopySize = offsetof(FILE_SYSTEM_INFO, label)
 memcpy(&DiskInfo, pPos, dwCopySize);
 pPos = pPos + dwCopySize;
 }
 else if (g_ClientArchitecture == 32 bit) {
 dwCopySize = offsetof(FILE_SYSTEM_INFO,label);
 memcpy(&DiskInfo, pPos, dwCopySize);
 pPos = pPos + dwCopySize;
 }
 else { // (g_ServerArchitecture == 32 bit)
 dwCopySize = offsetof(FILE_SYSTEM_INFO,cchLabel)
 + sizeof(FsInfo.cchLabel);
 memcpy(&DiskInfo, pPos, dwCopySize);
 pPos = pPos + dwCopySize;
 }

 // Copy the label.
 wchar_t *label;
 label = new wchar_t[FsInfo.cchLabel * sizeof(wchar_t)];
 if (label)
 memcpy(label,

 pPos,

265 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 sizeof(wchar_t) * FsInfo.cchLabel);
 pPos = pPos + (sizeof(wchar_t) * FsInfo.cchLabel);
 FsInfo.label = label;

 break;

 case DMNOTIFY_SYSTEM_INFO:

 DWORD SysInfo;

 memset(&SysInfo, 0, sizeof(DWORD));

 // Copy in system info.

 memcpy(&SysInfo, pPos, dwCopySize);
 pPos = pPos + dwCopySize;

 break;

 } // switch

 pPos = pNotifStart + dwNotifSize;
 } // while

 }

266 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

9 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

267 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

10 Index

A

AbortTask method (section 3.2.4.4.1.52 153, section

3.2.4.4.3.55 205)
Abstract data model
 client 60
 server 76
AddAccessPath method (section 3.2.4.4.1.63 161,

section 3.2.4.4.3.66 209)
AddMirror method (section 3.2.4.4.1.32 124, section

3.2.4.4.3.35 189)
Applicability 17
AssignDriveLetter method (section 3.2.4.4.1.19 107,

section 3.2.4.4.3.19 177)

C

Capability negotiation 17

Change tracking 266
Client
 abstract data model 60
 higher-layer triggered events 65
 local events 76
 message processing 60
 sequencing rules 60
 timer events 76
 timers 60
Common data types 18
Connection loss 73
Connections (section 3.2.1.2 77, section 3.2.3.2 78)
COUNTED_STRING structure 44
CreatePartition method (section 3.2.4.4.1.3 86,

section 3.2.4.4.3.3 168)
CreatePartitionAssignAndFormat method (section

3.2.4.4.1.4 87, section 3.2.4.4.3.4 168)
CreatePartitionAssignAndFormatEx method (section

3.2.4.4.1.5 89, section 3.2.4.4.3.5 169)
CreatePartitionsForVolume method 185
CreateRemoteObject method 212
CreateVolume method (section 3.2.4.4.1.26 115,

section 3.2.4.4.3.26 181)
CreateVolumeAssignAndFormat method (section

3.2.4.4.1.27 117, section 3.2.4.4.3.27 182)
CreateVolumeAssignAndFormatEx method (section

3.2.4.4.1.28 119, section 3.2.4.4.3.28 182)
Creating a partition example 217
Creating a volume example 221

D

Data model - abstract
 client 60
 server 76
Data types
 common 18
 common - overview 18
 IDMNotify interface 58

 IDMRemoteServer interface 58
 IVolumeClient interface 45
 IVolumeClient2 interface 50
 IVolumeClient3 interface 50
 IVolumeClient4 interface 58

DeleteAccessPath method (section 3.2.4.4.1.64 161,
section 3.2.4.4.3.67 210)

DeletePartition method (section 3.2.4.4.1.6 90,
section 3.2.4.4.3.6 170)

DeletePartitionNumberInfoFromRegistry method
(section 3.2.4.4.1.47 150, section 3.2.4.4.3.50
203)

DeletePartitionsForVolume method 187
DeleteVolume method (section 3.2.4.4.1.31 123,

section 3.2.4.4.3.31 185)
Deleting a partition example 219
Deleting a volume example 223
Disk arrival 213
Disk layout change 213
Disk removal 213
DISK_INFO structure 45
DISK_INFO_EX structure 51
DISK_SPEC structure 37
DiskMerge method (section 3.2.4.4.1.40 136, section

3.2.4.4.3.43 194)
DiskMergeQuery method (section 3.2.4.4.1.39 135,

section 3.2.4.4.3.42 193)
Disks 67
dmintf.idl 227
dmintf3.idl 238
DMNotify::ObjectsChanged 260
DMNOTIFY_INFO_TYPE enumeration 58
dmProgressType enumeration 43
Drive letter arrival 213

Drive letter removal 214
Drive letters 66
DRIVE_LETTER_INFO structure 38

E

Eject method (section 3.2.4.4.1.9 94, section

3.2.4.4.3.9 172)
EncapsulateDisk method 146
EncapsulateDiskEx method 200
EnumAccessPath method (section 3.2.4.4.1.61 159,

section 3.2.4.4.3.64 208)
EnumAccessPathForVolume method (section

3.2.4.4.1.62 160, section 3.2.4.4.3.65 209)
EnumDiskRegions method 85
EnumDiskRegionsEx method 167
EnumDisks method 84
EnumDisksEx method 166
EnumDriveLetters method (section 3.2.4.4.1.18 106,

section 3.2.4.4.3.18 177)
EnumLocalFileSystems method (section 3.2.4.4.1.21

110, section 3.2.4.4.3.21 179)
EnumTasks method (section 3.2.4.4.1.50 152,

section 3.2.4.4.3.53 204)
EnumVolumeMembers method (section 3.2.4.4.1.25

114, section 3.2.4.4.3.25 181)
EnumVolumes method (section 3.2.4.4.1.24 114,

section 3.2.4.4.3.24 180)
Examples 215
 creating a partition 217
 creating a volume 221
 deleting a partition 219
 deleting a volume 223

268 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

 starting a new session on a local or remote server
215

 starting a new session on a remote server using
the idmremoteserver interface 216

F

Fields - vendor-extensible 17
File system change 213
File systems 67
FILE_SYSTEM_INFO structure 39
Format method (section 3.2.4.4.1.23 112, section

3.2.4.4.3.23 180)
FreeDriveLetter method (section 3.2.4.4.1.20 109,

section 3.2.4.4.3.20 178)
FTBreakMirror method (section 3.2.4.4.1.13 98,

section 3.2.4.4.3.13 174)

FTDeleteVolume method (section 3.2.4.4.1.12 97,
section 3.2.4.4.3.12 173)

FTEnumLogicalDiskMembers method (section
3.2.4.4.1.11 96, section 3.2.4.4.3.11 173)

FTEnumVolumes method (section 3.2.4.4.1.10 95,
section 3.2.4.4.3.10 172)

FTRegenerateParityStripe method (section
3.2.4.4.1.15 101, section 3.2.4.4.3.15 175)

FTReplaceMirrorPartition method (section
3.2.4.4.1.16 102, section 3.2.4.4.3.16 175)

FTReplaceParityStripePartition method (section
3.2.4.4.1.17 104, section 3.2.4.4.3.17 176)

FTResyncMirror method (section 3.2.4.4.1.14 100,
section 3.2.4.4.3.14 174)

Full IDL (section 6 227, section 6.1 227, section 6.2
238)

G

GetDontShow method (section 3.2.4.4.1.49 151,

section 3.2.4.4.3.52 203)
GetEncapsulateDiskInfo method 142
GetEncapsulateDiskInfoEx method 196
GetInstalledFileSystems method (section

3.2.4.4.1.22 111, section 3.2.4.4.3.22 179)
GetMaxAdjustedFreeSpace method (section

3.2.4.4.2.1 163, section 3.2.4.4.3.34 188)
GetTaskDetail method (section 3.2.4.4.1.51 152,

section 3.2.4.4.3.54 204)
GetVolumeDeviceName method 211
GetVolumeMountName method (section 3.2.4.4.1.29

120, section 3.2.4.4.3.29 184)
Glossary 9
GrowVolume method (section 3.2.4.4.1.30 121,

section 3.2.4.4.3.30 184)

H

Higher-layer triggered events
 client 65
 server 79
HrGetErrorData method (section 3.2.4.4.1.53 154,

section 3.2.4.4.3.56 205)

I

IDL (section 6 227, section 6.1 227, section 6.2 238)
IDMNotify interface

 data types 58
 overview 58
IDMNotify methods 74
IDMRemoteServer interface
 data types 58
 overview 58
IFILE_SYSTEM_INFO structure 40
Implementer - security considerations 226
ImportDiskGroup method (section 3.2.4.4.1.38 133,

section 3.2.4.4.3.41 192)
Informative references 15
Initialization
 client 60
 server 78
Initialize method (section 3.2.4.4.1.54 155, section

3.2.4.4.3.57 206)
InitializeDisk method 129
InitializeDiskEx method 190
InitializeDiskStyle method 170
Introduction 9
IVolumeClient interface 45
IVolumeClient2 interface 50
IVolumeClient3 interface (section 2.5 50, section

2.5.1 50)
IVolumeClient4 interface
 data types 58
 overview 58

L

LDMACTION enumeration 59
List of client connections (section 3.2.1.2 77, section

3.2.3.2 78)
List of current tasks (section 3.2.1.3 78, section

3.2.3.3 78)
List of storage objects (section 3.2.1.1 76, section

3.2.3.1 78)
Local events
 client 76
 server 212
Loss of connection 73

M

MarkActivePartition method (section 3.2.4.4.1.8 93,

section 3.2.4.4.3.8 171)
MAX_FS_NAME_SIZE 32
Media arrival 214
Media removal 214
MERGE_OBJECT_INFO structure 44
Message processing
 client 60
 server 78
Messages
 common data types 18
 data types 18
 details (section 3.1.4.4 74, section 3.2.4.4 81)

 overview 18
 transport 18
Methods with prerequisites 65

N

Normative references 15

269 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

O

ObjectsChanged method 74
Overview (synopsis) 16

P

Parameters to IVolumeClient and IVolumeClient3 65
PARTITION_OS2_BOOT 45
Partitions 70
PARTITIONSTYLE enumeration 50
Preconditions 17

Prerequisites 17
Processing notifications - server to client 73
Processing server replies to method calls 73
Product behavior 247
Protocol Details
 overview 60

Q

QueryChangePartitionNumbers method (section

3.2.4.4.1.46 149, section 3.2.4.4.3.49 202)

R

ReAttachDisk method (section 3.2.4.4.1.41 138,

section 3.2.4.4.3.44 194)
ReConnectDisk method (section 3.2.4.4.1.37 132,

section 3.2.4.4.3.40 192)
References 15
 informative 15
 normative 15
Refresh method (section 3.2.4.4.1.56 157, section

3.2.4.4.3.59 207)
RefreshEx method 210
RefreshFileSys method (section 3.2.4.4.1.58 158,

section 3.2.4.4.3.61 208)
REGION_INFO structure 48
REGION_INFO_EX structure 55
REGION_SPEC structure 37
REGIONSTATUS enumeration 34
REGIONTYPE enumeration 32
Relationship to other protocols 16
Relationships between storage objects 66

RemoveMirror method (section 3.2.4.4.1.33 126,
section 3.2.4.4.3.36 189)

ReplaceRaid5Column method (section 3.2.4.4.1.42
139, section 3.2.4.4.3.45 195)

REQSTATUS enumeration 33
RescanDisks method (section 3.2.4.4.1.57 158,

section 3.2.4.4.3.60 207)
RestartVolume method (section 3.2.4.4.1.43 141,

section 3.2.4.4.3.46 195)
Rules - asynchronous tasks 79
Rules - modify storage objects list 79
Rules - synchronous tasks 79

S

SecureSystemPartition method (section 3.2.4.4.1.59

158, section 3.2.4.4.3.62 208)
Security 226
Security - implementer considerations 226

Sequencing rules
 client 60
 server 78
Server
 abstract data model 76
 higher-layer triggered events 79
 initialization 78
 local events 212
 message processing 78
 sequencing rules 78
 timer events 212
 timers 78
SetDontShow method (section 3.2.4.4.1.48 150,

section 3.2.4.4.3.51 203)
ShutDownSystem method (section 3.2.4.4.1.60 159,

section 3.2.4.4.3.63 208)
SplitMirror method (section 3.2.4.4.1.34 128, section

3.2.4.4.3.37 190)
Standards assignments 17
Starting a new session on a local or remote server

example 215
Starting a new session on a remote server using the

idmremoteserver interface example 216

Storage objects (section 3.2.1.1 76, section 3.2.3.1
78)

T

TASK_INFO structure 43
Tasks 73
Tasks currently executed (section 3.2.1.3 78, section

3.2.3.3 78)
Timer events
 client 76
 server 212
Timers
 client 60
 server 78
Tracking changes 266
Transport 18
Triggered events - higher-layer
 client 65
 server 79

U

Uninitialize method (section 3.2.4.4.1.55 157,

section 3.2.4.4.3.58 207)
UninitializeDisk method (section 3.2.4.4.1.36 131,

section 3.2.4.4.3.39 192)

V

Vendor-extensible fields 17
Versioning 17
VOLUME_INFO structure 36
VOLUME_SPEC structure 35
VOLUMELAYOUT enumeration 33
Volumes 70
VOLUMESTATUS enumeration 34
VOLUMETYPE enumeration 32

W

WriteSignature method 92

270 / 270

[MS-DMRP] - v20151016
Disk Management Remote Protocol
Copyright © 2015 Microsoft Corporation
Release: October 16, 2015

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 HRESULT Return Codes
	2.2.2 MAX_FS_NAME_SIZE Constant
	2.2.3 REGIONTYPE
	2.2.4 VOLUMETYPE
	2.2.5 VOLUMELAYOUT
	2.2.6 REQSTATUS
	2.2.7 REGIONSTATUS
	2.2.8 VOLUMESTATUS
	2.2.9 LdmObjectId
	2.2.10 VOLUME_SPEC
	2.2.11 VOLUME_INFO
	2.2.12 DISK_SPEC
	2.2.13 REGION_SPEC
	2.2.14 DRIVE_LETTER_INFO
	2.2.15 FILE_SYSTEM_INFO
	2.2.16 IFILE_SYSTEM_INFO
	2.2.17 TASK_INFO
	2.2.18 DMPROGRESS_TYPE
	2.2.19 COUNTED_STRING
	2.2.20 MERGE_OBJECT_INFO

	2.3 IVolumeClient Interface
	2.3.1 IVolumeClient Data Types
	2.3.1.1 PARTITION_OS2_BOOT Constant
	2.3.1.2 DISK_INFO
	2.3.1.3 REGION_INFO

	2.4 IVolumeClient2 Interface
	2.4.1 IVolumeClient2 Data Types

	2.5 IVolumeClient3 Interface
	2.5.1 IVolumeClient3 Data Types
	2.5.1.1 PARTITIONSTYLE
	2.5.1.2 DISK_INFO_EX
	2.5.1.3 REGION_INFO_EX

	2.6 IVolumeClient4 Interface
	2.6.1 IVolumeClient4 Data Types

	2.7 IDMRemoteServer Interface
	2.7.1 IDMRemoteServer Data Types

	2.8 IDMNotify Interface
	2.8.1 IDMNotify Data Types
	2.8.1.1 DMNOTIFY_INFO_TYPE
	2.8.1.2 LDMACTION

	3 Protocol Details
	3.1 Client Role Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing and Sequencing Rules
	3.1.4.1 Higher-Layer Triggered Events
	3.1.4.1.1 Common Details
	3.1.4.1.1.1 Methods with Prerequisites
	3.1.4.1.1.2 Parameters to IVolumeClient and IVolumeClient3
	3.1.4.1.1.3 Relationships Between Storage Objects

	3.1.4.1.2 Drive Letters
	3.1.4.1.3 File Systems
	3.1.4.1.4 Disks
	3.1.4.1.5 Partitions
	3.1.4.1.6 Volumes
	3.1.4.1.7 Tasks
	3.1.4.1.8 Loss of Connection

	3.1.4.2 Processing Server Replies to Method Calls
	3.1.4.3 Processing Notifications Sent from the Server to the Client
	3.1.4.4 Protocol Message Details
	3.1.4.4.1 IDMNotify Methods
	3.1.4.4.1.1 IDMNotify::ObjectsChanged (Opnum 3)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Server Role Details
	3.2.1 Abstract Data Model
	3.2.1.1 List of Storage Objects Present in the System
	3.2.1.2 List of Clients Connected to the Server
	3.2.1.3 List of Tasks Currently Executed on the Server

	3.2.2 Timers
	3.2.3 Initialization
	3.2.3.1 List of Storage Objects Present in the System
	3.2.3.2 List of Clients Connected to the Server
	3.2.3.3 List of Tasks Currently Executed on the Server

	3.2.4 Message Processing and Sequencing Rules
	3.2.4.1 Higher-Layer Triggered Events
	3.2.4.2 Rules for Modifying the List of Storage Objects
	3.2.4.3 Rules for Handling Synchronous and Asynchronous Tasks
	3.2.4.4 Protocol Message Details
	3.2.4.4.1 IVolumeClient Methods
	3.2.4.4.1.1 IVolumeClient::EnumDisks (Opnum 3)
	3.2.4.4.1.2 IVolumeClient::EnumDiskRegions (Opnum 4)
	3.2.4.4.1.3 IVolumeClient::CreatePartition (Opnum 5)
	3.2.4.4.1.4 IVolumeClient::CreatePartitionAssignAndFormat (Opnum 6)
	3.2.4.4.1.5 IVolumeClient::CreatePartitionAssignAndFormatEx (Opnum 7)
	3.2.4.4.1.6 IVolumeClient::DeletePartition (Opnum 8)
	3.2.4.4.1.7 IVolumeClient::WriteSignature (Opnum 9)
	3.2.4.4.1.8 IVolumeClient::MarkActivePartition (Opnum 10)
	3.2.4.4.1.9 IVolumeClient::Eject (Opnum 11)
	3.2.4.4.1.10 IVolumeClient::FTEnumVolumes (Opnum 13)
	3.2.4.4.1.11 IVolumeClient::FTEnumLogicalDiskMembers (Opnum 14)
	3.2.4.4.1.12 IVolumeClient::FTDeleteVolume (Opnum 15)
	3.2.4.4.1.13 IVolumeClient::FTBreakMirror (Opnum 16)
	3.2.4.4.1.14 IVolumeClient::FTResyncMirror (Opnum 17)
	3.2.4.4.1.15 IVolumeClient::FTRegenerateParityStripe (Opnum 18)
	3.2.4.4.1.16 IVolumeClient::FTReplaceMirrorPartition (Opnum 19)
	3.2.4.4.1.17 IVolumeClient::FTReplaceParityStripePartition (Opnum 20)
	3.2.4.4.1.18 IVolumeClient::EnumDriveLetters (Opnum 21)
	3.2.4.4.1.19 IVolumeClient::AssignDriveLetter (Opnum 22)
	3.2.4.4.1.20 IVolumeClient::FreeDriveLetter (Opnum 23)
	3.2.4.4.1.21 IVolumeClient::EnumLocalFileSystems (Opnum 24)
	3.2.4.4.1.22 IVolumeClient::GetInstalledFileSystems (Opnum 25)
	3.2.4.4.1.23 IVolumeClient::Format (Opnum 26)
	3.2.4.4.1.24 IVolumeClient::EnumVolumes (Opnum 28)
	3.2.4.4.1.25 IVolumeClient::EnumVolumeMembers (Opnum 29)
	3.2.4.4.1.26 IVolumeClient::CreateVolume (Opnum 30)
	3.2.4.4.1.27 IVolumeClient::CreateVolumeAssignAndFormat (Opnum 31)
	3.2.4.4.1.28 IVolumeClient::CreateVolumeAssignAndFormatEx (Opnum 32)
	3.2.4.4.1.29 IVolumeClient::GetVolumeMountName (Opnum 33)
	3.2.4.4.1.30 IVolumeClient::GrowVolume (Opnum 34)
	3.2.4.4.1.31 IVolumeClient::DeleteVolume (Opnum 35)
	3.2.4.4.1.32 IVolumeClient::AddMirror (Opnum 36)
	3.2.4.4.1.33 IVolumeClient::RemoveMirror (Opnum 37)
	3.2.4.4.1.34 IVolumeClient::SplitMirror (Opnum 38)
	3.2.4.4.1.35 IVolumeClient::InitializeDisk (Opnum 39)
	3.2.4.4.1.36 IVolumeClient::UninitializeDisk (Opnum 40)
	3.2.4.4.1.37 IVolumeClient::ReConnectDisk (Opnum 41)
	3.2.4.4.1.38 IVolumeClient::ImportDiskGroup (Opnum 43)
	3.2.4.4.1.39 IVolumeClient::DiskMergeQuery (Opnum 44)
	3.2.4.4.1.40 IVolumeClient::DiskMerge (Opnum 45)
	3.2.4.4.1.41 IVolumeClient::ReAttachDisk (Opnum 47)
	3.2.4.4.1.42 IVolumeClient::ReplaceRaid5Column (Opnum 51)
	3.2.4.4.1.43 IVolumeClient::RestartVolume (Opnum 52)
	3.2.4.4.1.44 IVolumeClient::GetEncapsulateDiskInfo (Opnum 53)
	3.2.4.4.1.45 IVolumeClient::EncapsulateDisk (Opnum 54)
	3.2.4.4.1.46 IVolumeClient::QueryChangePartitionNumbers (Opnum 55)
	3.2.4.4.1.47 IVolumeClient::DeletePartitionNumberInfoFromRegistry (Opnum 56)
	3.2.4.4.1.48 IVolumeClient::SetDontShow (Opnum 57)
	3.2.4.4.1.49 IVolumeClient::GetDontShow (Opnum 58)
	3.2.4.4.1.50 IVolumeClient::EnumTasks (Opnum 67)
	3.2.4.4.1.51 IVolumeClient::GetTaskDetail (Opnum 68)
	3.2.4.4.1.52 IVolumeClient::AbortTask (Opnum 69)
	3.2.4.4.1.53 IVolumeClient::HrGetErrorData (Opnum 70)
	3.2.4.4.1.54 IVolumeClient::Initialize (Opnum 71)
	3.2.4.4.1.55 IVolumeClient::Uninitialize (Opnum 72)
	3.2.4.4.1.56 IVolumeClient::Refresh (Opnum 73)
	3.2.4.4.1.57 IVolumeClient::RescanDisks (Opnum 74)
	3.2.4.4.1.58 IVolumeClient::RefreshFileSys (Opnum 75)
	3.2.4.4.1.59 IVolumeClient::SecureSystemPartition (Opnum 76)
	3.2.4.4.1.60 IVolumeClient::ShutDownSystem (Opnum 77)
	3.2.4.4.1.61 IVolumeClient::EnumAccessPath (Opnum 78)
	3.2.4.4.1.62 IVolumeClient::EnumAccessPathForVolume (Opnum 79)
	3.2.4.4.1.63 IVolumeClient::AddAccessPath (Opnum 80)
	3.2.4.4.1.64 IVolumeClient::DeleteAccessPath (Opnum 81)

	3.2.4.4.2 IVolumeClient2
	3.2.4.4.2.1 IVolumeClient2::GetMaxAdjustedFreeSpace (Opnum 3)

	3.2.4.4.3 IVolumeClient3
	3.2.4.4.3.1 IVolumeClient3::EnumDisksEx (Opnum 3)
	3.2.4.4.3.2 IVolumeClient3::EnumDiskRegionsEx (Opnum 4)
	3.2.4.4.3.3 IVolumeClient3::CreatePartition (Opnum 5)
	3.2.4.4.3.4 IVolumeClient3::CreatePartitionAssignAndFormat (Opnum 6)
	3.2.4.4.3.5 IVolumeClient3::CreatePartitionAssignAndFormatEx (Opnum 7)
	3.2.4.4.3.6 IVolumeClient3::DeletePartition (Opnum 8)
	3.2.4.4.3.7 IVolumeClient3::InitializeDiskStyle (Opnum 9)
	3.2.4.4.3.8 IVolumeClient3::MarkActivePartition (Opnum 10)
	3.2.4.4.3.9 IVolumeClient3::Eject (Opnum 11)
	3.2.4.4.3.10 IVolumeClient3::FTEnumVolumes (Opnum 13)
	3.2.4.4.3.11 IVolumeClient3::FTEnumLogicalDiskMembers (Opnum 14)
	3.2.4.4.3.12 IVolumeClient3::FTDeleteVolume (Opnum 15)
	3.2.4.4.3.13 IVolumeClient3::FTBreakMirror (Opnum 16)
	3.2.4.4.3.14 IVolumeClient3::FTResyncMirror (Opnum 17)
	3.2.4.4.3.15 IVolumeClient3::FTRegenerateParityStripe (Opnum 18)
	3.2.4.4.3.16 IVolumeClient3::FTReplaceMirrorPartition (Opnum 19)
	3.2.4.4.3.17 IVolumeClient3::FTReplaceParityStripePartition (Opnum 20)
	3.2.4.4.3.18 IVolumeClient3::EnumDriveLetters (Opnum 21)
	3.2.4.4.3.19 IVolumeClient3::AssignDriveLetter (Opnum 22)
	3.2.4.4.3.20 IVolumeClient3::FreeDriveLetter (Opnum 23)
	3.2.4.4.3.21 IVolumeClient3::EnumLocalFileSystems (Opnum 24)
	3.2.4.4.3.22 IVolumeClient3::GetInstalledFileSystems (Opnum 25)
	3.2.4.4.3.23 IVolumeClient3::Format (Opnum 26)
	3.2.4.4.3.24 IVolumeClient3::EnumVolumes (Opnum 27)
	3.2.4.4.3.25 IVolumeClient3::EnumVolumeMembers (Opnum 28)
	3.2.4.4.3.26 IVolumeClient3::CreateVolume (Opnum 29)
	3.2.4.4.3.27 IVolumeClient3::CreateVolumeAssignAndFormat (Opnum 30)
	3.2.4.4.3.28 IVolumeClient3::CreateVolumeAssignAndFormatEx (Opnum 31)
	3.2.4.4.3.29 IVolumeClient3::GetVolumeMountName (Opnum 32)
	3.2.4.4.3.30 IVolumeClient3::GrowVolume (Opnum 33)
	3.2.4.4.3.31 IVolumeClient3::DeleteVolume (Opnum 34)
	3.2.4.4.3.32 IVolumeClient3::CreatePartitionsForVolume (Opnum 35)
	3.2.4.4.3.33 IVolumeClient3::DeletePartitionsForVolume (Opnum 36)
	3.2.4.4.3.34 IVolumeClient3::GetMaxAdjustedFreeSpace (Opnum 37)
	3.2.4.4.3.35 IVolumeClient3::AddMirror (Opnum 38)
	3.2.4.4.3.36 IVolumeClient3::RemoveMirror (Opnum 39)
	3.2.4.4.3.37 IVolumeClient3::SplitMirror (Opnum 40)
	3.2.4.4.3.38 IVolumeClient3::InitializeDiskEx (Opnum 41)
	3.2.4.4.3.39 IVolumeClient3::UninitializeDisk (Opnum 42)
	3.2.4.4.3.40 IVolumeClient3::ReConnectDisk (Opnum 43)
	3.2.4.4.3.41 IVolumeClient3::ImportDiskGroup (Opnum 44)
	3.2.4.4.3.42 IVolumeClient3::DiskMergeQuery (Opnum 45)
	3.2.4.4.3.43 IVolumeClient3::DiskMerge (Opnum 46)
	3.2.4.4.3.44 IVolumeClient3::ReAttachDisk (Opnum 47)
	3.2.4.4.3.45 IVolumeClient3::ReplaceRaid5Column (Opnum 48)
	3.2.4.4.3.46 IVolumeClient3::RestartVolume (Opnum 49)
	3.2.4.4.3.47 IVolumeClient3::GetEncapsulateDiskInfoEx (Opnum 50)
	3.2.4.4.3.48 IVolumeClient3::EncapsulateDiskEx (Opnum 51)
	3.2.4.4.3.49 IVolumeClient3::QueryChangePartitionNumbers (Opnum 52)
	3.2.4.4.3.50 IVolumeClient3::DeletePartitionNumberInfoFromRegistry (Opnum 53)
	3.2.4.4.3.51 IVolumeClient3::SetDontShow (Opnum 54)
	3.2.4.4.3.52 IVolumeClient3::GetDontShow (Opnum 55)
	3.2.4.4.3.53 IVolumeClient3::EnumTasks (Opnum 64)
	3.2.4.4.3.54 IVolumeClient3::GetTaskDetail (Opnum 65)
	3.2.4.4.3.55 IVolumeClient3::AbortTask (Opnum 66)
	3.2.4.4.3.56 IVolumeClient3::HrGetErrorData (Opnum 67)
	3.2.4.4.3.57 IVolumeClient3::Initialize (Opnum 68)
	3.2.4.4.3.58 IVolumeClient3::Uninitialize (Opnum 69)
	3.2.4.4.3.59 IVolumeClient3::Refresh (Opnum 70)
	3.2.4.4.3.60 IVolumeClient3::RescanDisks (Opnum 71)
	3.2.4.4.3.61 IVolumeClient3::RefreshFileSys (Opnum 72)
	3.2.4.4.3.62 IVolumeClient3::SecureSystemPartition (Opnum 73)
	3.2.4.4.3.63 IVolumeClient3::ShutDownSystem (Opnum 74)
	3.2.4.4.3.64 IVolumeClient3::EnumAccessPath (Opnum 75)
	3.2.4.4.3.65 IVolumeClient3::EnumAccessPathForVolume (Opnum 76)
	3.2.4.4.3.66 IVolumeClient3::AddAccessPath (Opnum 77)
	3.2.4.4.3.67 IVolumeClient3::DeleteAccessPath (Opnum 78)

	3.2.4.4.4 IVolumeClient4
	3.2.4.4.4.1 IVolumeClient4::RefreshEx (Opnum 3)
	3.2.4.4.4.2 IVolumeClient4::GetVolumeDeviceName (Opnum 4)

	3.2.4.4.5 IDMRemoteServer
	3.2.4.4.5.1 IDMRemoteServer::CreateRemoteObject (Opnum 3)

	3.2.5 Timer Events
	3.2.6 Other Local Events
	3.2.6.1 Disk Arrival
	3.2.6.2 Disk Removal
	3.2.6.3 Disk Layout Change
	3.2.6.4 File System Change
	3.2.6.5 Drive Letter Arrival
	3.2.6.6 Drive Letter Removal
	3.2.6.7 Media Arrival
	3.2.6.8 Media Removal

	4 Protocol Examples
	4.1 Starting a New Session on a Local or Remote Server
	4.2 Starting a New Session on a Remote Server Using the IDMRemoteServer Interface
	4.3 Creating a Partition
	4.4 Deleting a Partition
	4.5 Creating a Volume
	4.6 Deleting a Volume

	5 Security Considerations
	6 Appendix A: Full IDL
	6.1 Appendix A.1: dmintf.idl
	6.2 Appendix A.2: dmintf3.idl

	7 Appendix B: Product Behavior
	8 Appendix C: IDMNotify::ObjectsChanged
	9 Change Tracking
	10 Index

