

1 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-DLTM-Diff]:

Distributed Link Tracking: Central Manager Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
as well as overviews of the interaction among each of these technologiessupport. Additionally,

overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you maycan make copies of it in order to develop implementations of the

technologies that are described in the Open Specifications this documentation and maycan
distribute portions of it in your implementations usingthat use these technologies or in your
documentation as necessary to properly document the implementation. You maycan also distribute

in your implementation, with or without modification, any schema, IDL'sschemas, IDLs, or code
samples that are included in the documentation. This permission also applies to any documents
that are referenced in the Open Specifications. documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that maymight cover your implementations of the technologies
described in the Open Specifications. documentation. Neither this notice nor Microsoft's delivery of
thethis documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specification maySpecifications document might be covered by the
Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a

written license, or if the technologies described in the Open Specificationsthis documentation are
not covered by the Open Specifications Promise or Community Promise, as applicable, patent

licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation maymight
be covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mailemail
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications dodocumentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available
standardstandards specifications and network programming art, and assumes, as such, assume that
the reader either is familiar with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

3/2/2007 1.0 New Version 1.0 release

4/3/2007 1.1 Minor Version 1.1 release

5/11/2007 1.2 Minor Version 1.2 release

6/1/2007 1.2.1 Editorial Changed language and formatting in the technical content.

7/3/2007 2.0 Major Converted to unified format.

8/10/2007 3.0 Major Updated and revised the technical content.

9/28/2007 4.0 Major Updated and revised the technical content.

10/23/2007 4.1 Minor Updated the IDL.

1/25/2008 4.1.1 Editorial Changed language and formatting in the technical content.

3/14/2008 4.1.2 Editorial Changed language and formatting in the technical content.

6/20/2008 5.0 Major Updated and revised the technical content.

7/25/2008 5.0.1 Editorial Changed language and formatting in the technical content.

8/29/2008 6.0 Major Updated and revised the technical content.

10/24/2008 6.0.2 Editorial Changed language and formatting in the technical content.

12/5/2008 6.0.3 Editorial Changed language and formatting in the technical content.

1/16/2009 6.0.4 Editorial Changed language and formatting in the technical content.

2/27/2009 6.0.5 Editorial Changed language and formatting in the technical content.

4/10/2009 6.0.6 Editorial Changed language and formatting in the technical content.

5/22/2009 6.0.7 Editorial Changed language and formatting in the technical content.

7/2/2009 6.0.8 Editorial Changed language and formatting in the technical content.

8/14/2009 6.1 Minor Clarified the meaning of the technical content.

9/25/2009 7.0 Major Updated and revised the technical content.

11/6/2009 7.0.1 Editorial Changed language and formatting in the technical content.

12/18/2009 7.1 Minor Clarified the meaning of the technical content.

1/29/2010 7.1.1 Editorial Changed language and formatting in the technical content.

3/12/2010 7.1.2 Editorial Changed language and formatting in the technical content.

4/23/2010 7.1.3 Editorial Changed language and formatting in the technical content.

6/4/2010 7.1.4 Editorial Changed language and formatting in the technical content.

7/16/2010 8.0 Major Updated and revised the technical content.

8/27/2010 9.0 Major Updated and revised the technical content.

3 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

10/8/2010 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 9.1 Minor Clarified the meaning of the technical content.

9/23/2011 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

3/30/2012 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

11/14/2013 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 9.1
No
ChangeNone

No changes to the meaning, language, or formatting of the
technical content.

10/16/2015 9.1
No
ChangeNone

No changes to the meaning, language, or formatting of the
technical content.

4 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 9

1.2.1 Normative References ... 9
1.2.2 Informative References ... 9

1.3 Overview .. 10
1.4 Relationship to Other Protocols .. 12
1.5 Prerequisites/Preconditions ... 12
1.6 Applicability Statement ... 12
1.7 Versioning and Capability Negotiation ... 13
1.8 Vendor-Extensible Fields ... 13
1.9 Standards Assignments ... 13

2 Messages ... 14
2.1 Transport .. 14
2.2 Common Data Types .. 14

2.2.1 HRESULT ... 14
2.2.2 SequenceNumber ... 14
2.2.3 CMachineId .. 14
2.2.4 CDomainRelativeObjId .. 15
2.2.5 CVolumeId ... 15
2.2.6 CObjId .. 15
2.2.7 CVolumeSecret ... 15
2.2.8 TRK_FILE_TRACKING_INFORMATION .. 15
2.2.9 old_TRK_FILE_TRACKING_INFORMATION .. 16
2.2.10 TRKSVR_MESSAGE_PRIORITY .. 16
2.2.11 TRKSVR_MESSAGE_TYPE ... 17
2.2.12 TRKSVR_MESSAGE_UNION .. 17

2.2.12.1 TRKSVR_CALL_MOVE_NOTIFICATION .. 19
2.2.12.2 TRKSVR_CALL_REFRESH .. 20
2.2.12.3 TRKSVR_CALL_SYNC_VOLUMES ... 20
2.2.12.4 TRKSVR_CALL_DELETE .. 20
2.2.12.5 TRKSVR_STATISTICS .. 21
2.2.12.6 TRKSVR_CALL_SEARCH ... 22
2.2.12.7 old_TRKSVR_CALL_SEARCH ... 22
2.2.12.8 TRKWKS_CONFIG ... 22

2.2.13 TRKSVR_SYNC_TYPE ... 22
2.2.14 TRKSVR_SYNC_VOLUME .. 23

3 Protocol Details ... 25
3.1 DLT Central Manager Protocol Server Details ... 25

3.1.1 Abstract Data Model .. 25
3.1.2 Timers .. 26
3.1.3 Initialization ... 26
3.1.4 Message Processing Events and Sequencing Rules .. 27

3.1.4.1 LnkSvrMessage (Opnum 0) .. 27
3.1.4.2 Receiving a MOVE_NOTIFICATION Message .. 28
3.1.4.3 Receiving a REFRESH Message ... 30
3.1.4.4 Receiving a SYNC_VOLUMES Message ... 30

3.1.4.4.1 CLAIM_VOLUME .. 31
3.1.4.4.2 FIND_VOLUME .. 32
3.1.4.4.3 QUERY_VOLUME .. 32
3.1.4.4.4 CREATE_VOLUME .. 33

3.1.4.5 Receiving a DELETE_NOTIFY Message.. 34
3.1.4.6 Receiving a SEARCH Message ... 34

5 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5 Timer Events .. 35
3.1.6 Other Local Events .. 35

3.2 DLT Central Manager Protocol Client Details .. 35
3.2.1 Abstract Data Model .. 35
3.2.2 Timers .. 37
3.2.3 Initialization ... 39
3.2.4 Message Processing Events and Sequencing Rules .. 39

3.2.4.1 LnkSvrMessageCallback (Opnum 1) ... 39
3.2.4.2 Completion of a MOVE_NOTIFICATION Message 40
3.2.4.3 Completion of a REFRESH Message ... 42
3.2.4.4 Completion of a SYNC_VOLUMES Message ... 42

3.2.4.4.1 CLAIM_VOLUME .. 42
3.2.4.4.2 FIND_VOLUME .. 43
3.2.4.4.3 QUERY_VOLUME .. 43
3.2.4.4.4 CREATE_VOLUME .. 43

3.2.4.5 Completion of DELETE_NOTIFY Message .. 43
3.2.4.6 Completion of a SEARCH Message ... 44

3.2.5 Timer Events .. 44
3.2.5.1 VolumeInitializationTimer Expiration .. 44
3.2.5.2 RefreshTimer Expiration ... 44
3.2.5.3 FrequentMaintenanceTimer Expiration ... 45
3.2.5.4 InfrequentMaintenanceTimer Expiration ... 46
3.2.5.5 DeleteNotificationTimer Expiration... 46
3.2.5.6 MoveNotificationTimer Expiration .. 47

3.2.6 Other Local Events .. 48
3.2.6.1 A File Has Been Moved .. 48
3.2.6.2 A File Has Been Deleted ... 48
3.2.6.3 A File Cannot Be Found .. 48
3.2.6.4 A Volume Cannot Be Found .. 49
3.2.6.5 The Client Changes Domains .. 49
3.2.6.6 A New Volume is Discovered .. 49

4 Protocol Examples ... 51

5 Security ... 53
5.1 Security Considerations for Implementers ... 53
5.2 Index of Security Parameters .. 53

6 Appendix A: Full IDL .. 54

7 Appendix B: Product Behavior ... 59

8 Change Tracking .. 62

9 Index ... 63

6 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

This document specifies the Distributed Link Tracking: Central Manager Protocol.

Distributed Link Tracking (DLT) consists of two protocols that work together to discover the new
location of a file that has moved. DLT can determine whether the file has moved on a mass-storage
device, within a computer, or between computers in a network. In addition to the Distributed Link
Tracking: Central Manager Protocol, DLT includes the Distributed Link Tracking: Workstation Protocol,

as specified in [MS-DLTW], which is used to determine a file's current location. Both DLT protocols are
remote procedure call (RPC) interfaces.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative and can contain the terms MAY,
SHOULD, MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

TheThis document uses the following terms are specific to this document:

authenticated user: A built-in security group specified in [MS-WSO] whose members include all
users that can be authenticated by a computer.

ClientVolumeTable: This table has an entry for each of the volumes of the computer on which it
runs.

Distributed Link Tracking (DLT): A protocol that enables client applications to track sources that
have been sent to remote locations using remote procedure call (RPC) interfaces, and to
maintain links to files. It exposes methods that belong to two interfaces, one of which exists on
the server (trksvr) and the other on a workstation (trkwks).

DLT: See Distributed Link Tracking (DLT).

domain: A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)
and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain controller provides authentication (2) of members,
creating a unit of trust for its members. Each domain has an identifier that is shared among its
members. For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

domain controller (DC): The service, running on a server, that implements Active Directory, or
the server hosting this service. The service hosts the data store for objects and interoperates
with other DCs to ensure that a local change to an object replicates correctly across all DCs.
When Active Directory is operating as Active Directory Domain Services (AD DS), the DC
contains full NC replicas of the configuration naming context (config NC), schema naming
context (schema NC), and one of the domain NCs in its forest. If the AD DS DC is a global
catalog server (GC server), it contains partial NC replicas of the remaining domain NCs in its

forest. For more information, see [MS-AUTHSOD] section 1.1.1.5.2 and [MS-ADTS]. When
Active Directory is operating as Active Directory Lightweight Directory Services (AD LDS),

several AD LDS DCs can run on one server. When Active Directory is operating as AD DS, only
one AD DS DC can run on one server. However, several AD LDS DCs can coexist with one AD
DS DC on one server. The AD LDS DC contains full NC replicas of the config NC and the schema
NC in its forest. The domain controller is the server side of Authentication Protocol Domain
Support [MS-APDS].

domain controller locator: A function within a domain that provides for location of a domain
controller (DC) and the ability to determine certain properties of DCs. For more information,
see [MS-ADTS].

7 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dynamic endpoint: A network-specific server address that is requested and assigned at run time.
For more information, see [C706].

FileId: The FileLocation of a file at the time it was originally created. A file's FileId never changes.

FileInformation: Information that is maintained about a file, such as its FileId and/or ObjectID.

FileLinkInformation: Information about a file that is necessary to identify and locate that file,
including the file's last known Universal Naming Convention (UNC) name, the MachineID of
the computer on which the file was last known to be located, the last known FileLocation of the
file, and the file's permanent FileID.

FileLocation: A VolumeID with an appended ObjectID, which together represent the location of
a file at some point in time, though the file maymight no longer be there. FileLocation values
are stored in droid (CDomainRelativeObjId) data structures.

FileTable: A table (with rows uniquely identified by a FileLocation or FileID) that contains the
following fields: [PreviousFileLocation, FileLocation, FileID, RefreshTime]. For more information
[MS-DLTM] see section 3.1.1. Maps a FileLocation or FileID to a current FileLocation.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.

Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

MachineID: A unique identifier that represents the identity of a computer.

MoveNotificationCursor: A value that indicates the next entry in the MoveNotificationList that
is to be sent to the server in a MOVE_NOTIFICATION message. See section 3.2.1 for more

information.

MoveNotificationList: A list of records with information about files that have been moved from a
volume on this machine. See section 3.2.1 for more information.

MoveNotificationVolumeCursor: A value that indicates that a sequence of MOVE_NOTIFICATION
messages is in progress, and indicates the current volume (from the ClientVolumeTable) for

which notifications are being sent. See section 3.2.5.6 for more information.

ObjectID: A unique identifier that represents the identity of a file within a file system volume. For
more information, see [MS-DLTM].

PreviousFileLocation: The FileLocation of a file before it was moved.

principal name: The computer or user name that is maintained and authenticated by the Active
Directory directory service.

remote procedure call (RPC): A context-dependent term commonly overloaded with three
meanings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this
meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC
exchange". (*) A single message from an exchange as defined in the previous definition. The

preferred usage for this term is "RPC message". For more information about RPC, see [C706].

8 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

RequestMachine: The MachineID of the computer that is the client calling the LnkSvrMessage
method.

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as

described in [C706] and [MS-RPCE].

security provider: A pluggable security module that is specified by the protocol layer above the
remote procedure call (RPC) layer, and will cause the RPC layer to use this module to secure
messages in a communication session with the server. The security provider is sometimes
referred to as an authentication service. For more information, see [C706] and [MS-RPCE].

ServerVolumeTable: A table (with rows uniquely identified by a VolumeID) that contains the
following fields: [VolumeID, VolumeSequenceNumber, VolumeSecret, VolumeOwner,

RefreshTime]. For more information see section 3.1.1.

Subrequest: A request within a SYNC_VOLUMES request. For details on requests, see section
3.1.4.

Universal Naming Convention (UNC): A string format that specifies the location of a resource.
For more information, see [MS-DTYP] section 2.2.57.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple

purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in
the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does
not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]

must be used for generating the UUID.

user principal name (UPN): A user account name (sometimes referred to as the user logon
name) and a domain name that identifies the domain in which the user account is located. This

is the standard usage for logging on to a Windows domain. The format is:
someone@example.com (in the form of an email address). In Active Directory, the
userPrincipalName attribute (2) of the account object, as described in [MS-ADTS].

volume: A group of one or more partitions that forms a logical region of storage and the basis for

a file system. A volume is an area on a storage device that is managed by the file system as a
discrete logical storage unit. A partition contains at least one volume, and a volume can exist
on one or more partitions.

VolumeFileTable: A table that contains FileInformation entries, and is maintained for each
volume in the ClientVolumeTable. Like the ClientVolumeTable, this table MUST be stored
on the volume itself. The VolumeFileTable has an entry for each file on the volume that is to

be tracked with this protocol. Each entry has a CrossVolumeMoveFlag value, which MUST initially
be set to zero. For more information see section 3.2.1.

VolumeID: A unique identifier that represents the identity of a file system volume.

VolumeInformation: A table that maintains volume information for each volume in the
ClientVolumeTable.

VolumeOwner: A MachineID that is considered to be the owner of a VolumeID. A VolumeID can
only have one VolumeOwner. For more information, see [MS-DLTM].

VolumeSecret: A value that is used to establish a VolumeOwner. For more information, see [MS-
DLTM].

9 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

VolumeSequenceNumber: An integer value used to track the sequence of move notification
messages received by the protocol server. See [MS-DLTM] section 2.2.2 for more information.

workstation: A terminal or desktop computer in a network that is used to run applications and is
connected to a server from which it obtains data shared with other computers.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-DLTW] Microsoft Corporation, "Distributed Link Tracking: Workstation Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SAMR] Microsoft Corporation, "Security Account Manager (SAM) Remote Protocol (Client-to-
Server)".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MS-SPNG] Microsoft Corporation, "Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
Extension".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-FSCC] Microsoft Corporation, "File System Control Codes".

[MSDN-FNDFSTVOL] Microsoft Corporation, "FindFirstVolume function",

http://msdn.microsoft.com/en-us/library/aa364425.aspx

[MSDN-FNDNXTVOL] Microsoft Corporation, "FindNextVolume function",
http://msdn.microsoft.com/en-us/library/aa364431.aspx

[MSDN-GETDRIVETYPE] Microsoft Corporation, "GetDriveType function",
http://msdn.microsoft.com/en-us/library/aa364939.aspx

10 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MSDN-GETVOLINFO] Microsoft Corporation, "GetVolumeInformation function",
http://msdn.microsoft.com/en-us/library/Aa364993.aspx

[MSDN-SHELLLINKS] Microsoft Corporation, "Shell Links", http://msdn.microsoft.com/en-
us/library/bb776891.aspx

1.3 Overview

The Distributed Link Tracking: Central Manager Protocol is based on the Remote Procedure Call
Protocol Extensions, as specified in [MS-RPCE]. The primary purpose of this protocol is to allow clients
of the Distributed Link Tracking: Workstation Protocol to determine the correct server to contact when
searching for a file. To accomplish this, the Distributed Link Tracking (DLT) Central Manager server
accepts notifications of file and volume moves, in addition to other relevant information from
participating computers. This information can be queried by clients to get the file's current location in
UNC form.

The following is a scenario of this protocol working together with the Distributed Link Tracking:
Workstation Protocol:

 A file is created on computer M1. M1 assigns identifiers, specifically FileID and FileLocation, to
the file.

 Computer M0 makes note of the file, locally storing its identifiers.

 The file is moved from computer M1 to M2 and from there to M3. In conjunction with these
moves, the file maintains its FileID value, but a new FileLocation identifier is assigned.

 To find the file in its new location, M0 contacts a DLT Central Manager server to query the current
location of the file.

 The DLT Central Manager server queries its tables, and determines that the file is currently on
computer M3.

 M0 contacts the Distributed Link Tracking: Central Manager Protocol on M3, and learns the file's

new name and location.

The following diagram shows the machine configuration for this example. The list after the diagram
walks through the scenario, and describes in more detail how the Distributed Link Tracking: Central
Manager Protocol is used.

11 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 1: Distributed Link Tracking (DLT) process

 A file named F1.txt starts on a computer with MachineID M1, on a volume with VolumeID V1,
and with an ObjectID of O1.

 The file is first moved to a computer with MachineID M2. On M2, the file has a new name, F2.txt,
and a new ObjectID of O2. The volume on that computer has a VolumeID of V2.

 M1 sends a notification to the DLT Central Manager server indicating that the file with FileLocation
V1O1 and FileID V1O1 has been moved to M2, where it now has the FileLocation V2O2.

 The file is next moved to computer M3. On that computer, the file has the name F3.txt, and new

ObjectID O3. The volume on that computer has a VolumeID of V3.

 M2 sends a notification to the DLT Central Manager server indicating that the file with FileLocation
V2O2 and FileID V1O1 has been moved to M3, where it now has the FileLocation V3O3. Note that
this notification is sent to the same DLT Central Manager server instance as the notification from
M1.

12 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Before the file is moved, a user on computer M0 requests that information about the file be saved,
so that its location can be determined after it has been moved.<1> As a result, M0 stores the

UNC, the MachineID, the FileLocation, and the FileID.

 After the file has been moved both times, and after M0 attempts to open the file, the DLT

Workstation client on M0 sends a query to the DLT Workstation server on M1, requesting the
new UNC for the file with FileID V1O1.<2> That server responds that the file has been moved to
M2, with a new FileLocation of V2O2.

 Rather than contacting M2, M0 then sends a request to a DLT Central Manager server. Note that
this is the same server that received the move notifications from M1 and M2, or a server instance
that shares tables with the servers that received those notifications.

 The DLT Central Manager server returns the file's current information, according to its tables, that

the file is now on computer M3, with FileLocation V3O3.

 M0 then makes a request to the DLT Workstation server on M3, which indicates that the file now
has the UNC "\\M3\share\F3.txt".

 M0 updates its store of information for the file with these updated UNC and FileLocation
values.<3>

1.4 Relationship to Other Protocols

The Distributed Link Tracking: Central Manager Protocol is dependent upon RPC, as specified in [C706]
and [MS-RPCE], which is its transport protocol.

This protocol is designed to support clients of the Distributed Link Tracking: Workstation Protocol.
Clients of the Distributed Link Tracking: Workstation Protocol use the Distributed Link Tracking:

Central Manager Protocol to determine the correct computer on which to send a DLT Workstation
server request.

DLT Central Manager servers run only on domain controller (DC) computers.

1.5 Prerequisites/Preconditions

The Distributed Link Tracking: Central Manager Protocol is composed of RPC interfaces, and as a
result, has the prerequisites identified in [C706] as those common to RPC interfaces.

The security configuration for using RPC is specified further in section 2.1, section 3.1.3, and section
3.2.3.

1.6 Applicability Statement

The Distributed Link Tracking: Central Manager Protocol applies to computers in a domain that shares
files with the Server Message Block (SMB) Protocol, as specified in [MS-SMB], when each of the
following is true:

 The computers hold files.

 References are made to files.

 Files are moved between computers or within a computer, or the computer name changes.

 File references are meant to be found after the referent file has been moved in one of these ways,
either between computers or within a computer.

This protocol is not intended for use in situations where large numbers of files are to be tracked. In
such situations, limits in the protocol are reached. These limits are specified in section 3.1.4.4.4 for

13 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

the TRK_E_VOLUME_QUOTA_EXCEEDED return value, and in section 3.1.4.2 for the
TRK_S_NOTIFICATION_QUOTA_EXCEEDED return value.

1.7 Versioning and Capability Negotiation

This protocol contains no capability negotiation issues. This document covers versioning issues in the
following areas:

 Supported Transports: This protocol uses RPC over TCP/IP only, as specified in section 2.1.

 Protocol Versions: This protocol has only one interface version. The use of these methods is

specified in section 3.1.4.

 Security and Authentication Methods: This protocol uses Simple and Protected Negotiation
Mechanism (SPNEGO) and RPC packet authentication levels for security and authentication, as
specified in section 2.1 and 3.2.3.

 Localization: The protocol does not contain locale-dependent information.

1.8 Vendor-Extensible Fields

The Distributed Link Tracking: Central Manager Protocol does not define any vendor-extensible fields,
other than fields that contain GUIDs as specified in [MS-DTYP] section 2.3.4.2. The methods for
generating such values are specified in [C706] Appendix A.

This protocol uses HRESULTs as defined in [MS-ERREF] and discussed in HRESULT (section 2.2.1).
Vendors are free to choose their own values for this field, as long as the C bit (0x20000000) is set,

indicating that it is a customer code.

1.9 Standards Assignments

The Distributed Link Tracking: Central Manager Protocol has no standards assignments. It uses the

following UUID to identify its interfaces.

Parameter Value Reference

RPC interface UUID, as specified in [MS-DTYP] (section 2.3.4.1),
for the Distributed Link Tracking: Central Manager Protocol

4da1c422-943d-11d1-
acae-00c04fc2aa3f

[C706]; also see
section 2.1 of this
document.

14 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

2.1 Transport

The Distributed Link Tracking: Central Manager Protocol uses the RPC protocol sequence

ncacn_ip_tcp, specified in [MS-RPCE] section 2.1.1.1.

This protocol uses RPC dynamic endpoints, as specified in [C706] section 6.2.2.

This protocol MUST use the following parameters:

 UUID: The RPC interface UUID value defined in [MS-DLTW] section 1.9 MUST be used.

 Version number: 1.0.

 A SPNEGO security provider. For more information on SPNEGO, see [MS-SPNG].

 A server principal name (see [MS-RPCE], section 3.2.2.3.2), calculated as follows:

 ServerPrincipalName: DomainName + "\" + ServerMachineName + "$".

 DomainName: Name of the domain in which the machine is a member.

2.2 Common Data Types

In addition to RPC base types, the following sections use the definition of GUID.

2.2.1 HRESULT

HRESULT, which is defined in [MS-ERREF], is a 32-bit signed integer returned by RPC method calls.
Except where otherwise noted, a negative value indicates an error, and a non-negative value denotes

success.

For example, in the Distributed Link Tracking: Central Manager Protocol, HRESULT is returned by the
LnkSvrMessage method.

2.2.2 SequenceNumber

The SequenceNumber type stores a VolumeSequenceNumber value, which is used to track the
sequence of move notification messages that are received by the DLT Central Manager server.

This type is declared as follows:

 typedef signed long SequenceNumber;

When this value reaches its maximum positive value (2147483647), incrementing MUST result in its

most negative value (-2147483648). For details, see sections 3.1.4.2 and 3.2.4.1.

2.2.3 CMachineId

The CMachineId type stores a MachineID value.

This type is defined in [MS-DLTW] section 2.2.2.

15 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.4 CDomainRelativeObjId

The CDomainRelativeObjld type stores a FileID or FileLocation. When used as a FileLocation,
CDomainRelativeObjld represents a previous or current location of the file within the domain. When

used as a FileID, CDomainRelativeObjld represents the file's original FileLocation, as well as the unique
identifier for the file.

This type is composed of a CVolumeId type (representing the VolumeID) and a CObjId type (the
identifier of a file relative to volume indicated by the VolumeID).

This type is defined in [MS-DLTW] section 2.2.3.

2.2.5 CVolumeId

The CVolumeId type stores the VolumeID of a volume.

This type is defined in [MS-DLTW] section 2.2.4.

2.2.6 CObjId

The CObjld type stores the ObjectID for a file. This is the unique identifier of a file within a volume.

This type is defined in [MS-DLTW] section 2.2.5.

2.2.7 CVolumeSecret

The CVolumeSecret type stores a VolumeSecret value, which is used to authenticate a
VolumeOwner value. For an example, see section 3.1.4.4.1, which describes the processing of a
CLAIM_VOLUME message.

 typedef struct CVolumeSecret {
 byte _abSecret[8];
 } CVolumeSecret;

_abSecret: An 8-byte volume password. The content of these bytes is arbitrary and is generated by
the client. See section 3.2.5.3 for an example of where this value is used.

2.2.8 TRK_FILE_TRACKING_INFORMATION

The TRK_FILE_TRACKING_INFORMATION structure is used in a SEARCH message of a LnkSvrMessage
method call to search for the current location of a file. This structure contains information about a file
that is being tracked. See section 2.2.11 for more information about the SEARCH message. See
section 3.2.6.3 for an example of how the TRK_FILE_TRACKING_INFORMATION structure is used.

 typedef struct {
 CDomainRelativeObjId droidBirth;
 CDomainRelativeObjId droidLast;
 CMachineId mcidLast;
 HRESULT hr;
 } TRK_FILE_TRACKING_INFORMATION;

droidBirth: The FileID of the file for which the location is being requested. For details on this

structure, see [MS-DLTW] section 2.2.3.

droidLast: On input, the last FileLocation that the client knew of for the file. On output, this member
contains the file's current FileLocation.

16 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

mcidLast: On completion of the SEARCH request, this member is returned by the server to indicate
the MachineID of the VolumeOwner of the VolumeID component of the droidLast field. The

CMachineId type is specified in [MS-DLTW] section 2.2.2.

hr: Return value that indicates the success or failure of this message. The type of this field is an

HRESULT but, unlike the standard definition, only zero is a successful return value for this field.
Any nonzero value MUST be treated identically as a failure value.

2.2.9 old_TRK_FILE_TRACKING_INFORMATION

The old_TRK_FILE_TRACKING_INFORMATION structure is unused, but is included in this protocol
because it affects the definition of the TRKSVR_MESSAGE_UNION, as defined in section 2.2.13.

 typedef struct {
 WCHAR tszFilePath[257];
 CDomainRelativeObjId droidBirth;
 CDomainRelativeObjId droidLast;
 HRESULT hr;
 } old_TRK_FILE_TRACKING_INFORMATION;

2.2.10 TRKSVR_MESSAGE_PRIORITY

The TRKSVR_MESSAGE_PRIORITY enumeration contains constants that indicate the priority level of
messages that can be sent by the LnkSvrMessage method. It is used in the
TRKSVR_MESSAGE_UNION structure. See section 3.1.4.1 for more information on the LnkSvrMessage
method.

 typedef [v1_enum] enum
 {
 PRI_0 = 0,
 PRI_1 = 1,
 PRI_2 = 2,
 PRI_3 = 3,
 PRI_4 = 4,
 PRI_5 = 5,
 PRI_6 = 6,
 PRI_7 = 7,
 PRI_8 = 8,
 PRI_9 = 9
 } TRKSVR_MESSAGE_PRIORITY;

PRI_0: Priority 0, the highest priority.

PRI_1: Priority 1.

PRI_2: Priority 2.

PRI_3: Priority 3.

PRI_4: Priority 4.

PRI_5: Priority 5.

PRI_6: Priority 6.

PRI_7: Priority 7.

PRI_8: Priority 8.

PRI_9: Priority 9, the lowest priority.

17 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.11 TRKSVR_MESSAGE_TYPE

The TRKSVR_MESSAGE_TYPE enumeration defines the type of a message that is sent to the DLT
Central Manager server by the LnkSvrMessage method. That is, the LnkSvrMessage method is defined

such that the caller can send different messages in the form of different structures, and the
TRKSVR_MESSAGE_TYPE enumeration is used in the TRKSVR_MESSAGE_UNION parameter of the
LnkSvrMessage method to indicate which structure is being passed in a method call. See section
2.2.12 for information on TRKSVR_MESSAGE_UNION, and section 3.1.4.1 for more information on the
LnkSvrMessage method.

 typedef [v1_enum] enum
 {
 old_SEARCH,
 MOVE_NOTIFICATION = 1,
 REFRESH = 2,
 SYNC_VOLUMES = 3,
 DELETE_NOTIFY = 4,
 STATISTICS = 5,
 SEARCH = 6,
 WKS_CONFIG,
 WKS_VOLUME_REFRESH
 } TRKSVR_MESSAGE_TYPE;

old_SEARCH: Unused.

MOVE_NOTIFICATION: The message includes information about one or more files that have been
moved (see section 3.2.6.1). The message data in this method call is formatted in the
TRSVR_CALL_MOVE_NOTIFICATION structure (see section 2.2.12.1).

REFRESH: The message communicates the current status of the entries in the ClientVolumeTable,
so that the server can update its ServerVolumeTable (see section 3.2.5.2). The message data in
this method call is formatted in the TRKSVR_CALL_REFRESH structure (see section 2.2.12.2).

SYNC_VOLUMES: The message is used to synchronize a volume (see sections 3.2.5.3, 3.2.5.4, and

3.2.6.4). The message data in this method call is formatted in the TRKSVR_CALL_SYNC_VOLUMES
structure (see section 2.2.12.3).

DELETE_NOTIFY: The message includes information about one or more files that have been deleted
(see section 3.2.5.5). The message data in this method call is formatted in the
TRKSVR_CALL_DELETE structure (see section 2.2.12.4).

STATISTICS: The message is a request for usage statistics. This message type is not used in this
protocol, but is included in this specification because it affects the size of the
TRKSVR_MESSAGE_UNION structure as it is transmitted over the RPC Protocol. See section 2.2.12
for more information on the TRKSVR_MESSAGE_UNION.

SEARCH: The message is a request for information about a moved file’s updated location. (see
section 3.2.6.3). The message data in this method call is formatted in the
TRKSVRidl_struct_page_CALL_SEARCH structure (see section 2.2.12.6).

WKS_CONFIG: Unused.

WKS_VOLUME_REFRESH: Unused.

2.2.12 TRKSVR_MESSAGE_UNION

The TRKSVR_MESSAGE_UNION structure is used in LnkSvrMessage method calls to request services.

A single LnkSvrMessage method call can contain one type of message request, and the type-
dependent data for a message request is stored in the TRKSVR_MESSAGE_UNION structure. The type
of the message is indicated in the MessageType field, and the message data is stored in the

18 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

MessageUnion field. The format of the MessageUnion field depends on the MessageType field.
See section 2.2.11 for the definition of the TRKSVR_MESSAGE_TYPE enumeration used by the

MessageType field. See section 3.1.4.1 for more information on the LnkSvrMessage method.

 typedef struct {
 TRKSVR_MESSAGE_TYPE MessageType;
 TRKSVR_MESSAGE_PRIORITY Priority;
 [switch_is(MessageType)] union {
 [case(old_SEARCH)]
 old_TRKSVR_CALL_SEARCH old_SEARCHSearch;
 [case(MOVE_NOTIFICATION)]
 TRKSVR_CALL_MOVE_NOTIFICATION MoveNotification;
 [case(REFRESH)]
 TRKSVR_CALL_REFRESH Refresh;
 [case(SYNC_VOLUMES)]
 TRKSVR_CALL_SYNC_VOLUMES SyncVolumes;
 [case(DELETE_NOTIFY)]
 TRKSVR_CALL_DELETE Delete;
 [case(STATISTICS)]
 TRKSVR_STATISTICS Statistics;
 [case(SEARCH)]
 TRKSVR_CALL_SEARCH Search;
 [case(WKS_CONFIG)]
 TRKWKS_CONFIG WksConfig;
 [case(WKS_VOLUME_REFRESH)]
 unsigned long WksRefresh;
 };
 [string] WCHAR* ptszMachineID;
 } TRKSVR_MESSAGE_UNION;

MessageType: The type of message to be selected from the TRKSVR_MESSAGE_TYPE enumeration.

The value of this field indicates the format of the MessageUnion field.

Priority: The priority level of the operation. Valid values are defined in
TRKSVR_MESSAGE_PRIORITY. Section 3.2.5.2 and 3.2.5.3, and subsections of section 3.2.6
specify how this field is set for different events.

(unnamed union): The message data for this message request. The MessageType field indicates
which of these fields is used to format the data. (see section 2.2.11 for more information on the

TRKSVR_MESSAGE_TYPE enumeration used by the MessageType field). The fields are defined as
follows:

old_SEARCHSearch: Unused.

MoveNotification: If MessageType is MOVE_NOTIFICATION, this field contains message data for a
MOVE_NOTIFICATION message, with the data formatted in the
TRKSVR_CALL_MOVE_NOTIFICATION structure.

Refresh: If MessageType is REFRESH, this field contains message data for a REFRESH message,

with the data formatted in the TRKSVR_CALL_REFRESH structure.

SyncVolumes: If MessageType is SYNC_VOLUMES, this field contains message data for a

SYNC_VOLUMES message, with the data formatted in the TRKSVR_CALL_SYNC_VOLUMES
structure.

Delete: If MessageType is DELETE_NOTIFY, this field contains message data for a DELETE_NOTIFY
message, with the data formatted in the TRKSVR_CALL_DELETE structure.

Statistics: If MessageType is STATISTICS, this field contains message data for a STATISTICS

message, with the data formatted in a TRKSVR_STATISTICS structure. This message type is not
used in this protocol, but is included in this specification because it affects the size of the
TRKSVR_MESSAGE_UNION structure as it is transmitted over the RPC Protocol.

19 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Search: If MessageType is SEARCH, this field contains message data for a SEARCH message, with
the data formatted in a TRKSVR_CALL_SEARCH structure.

WksConfig: Unused.

WksRefresh: Unused.

ptszMachineID: Unused. MUST be set to 0 and ignored on receipt.

2.2.12.1 TRKSVR_CALL_MOVE_NOTIFICATION

The TRKSVR_CALL_MOVE_NOTIFICATION structure is used in LnkSvrMessage method calls that

specify a MOVE_NOTIFICATION message (see section 2.2.11), to indicate when one or more files have
been moved off a volume. See section 3.2.6.1 for an example of the client using this structure.

 typedef struct {
 unsigned long cNotifications;
 unsigned long cProcessed;
 SequenceNumber seq;
 long fForceSeqNumber;
 CVolumeId* pvolid;
 [size_is(cNotifications)] CObjId* rgobjidCurrent;
 [size_is(cNotifications)] CDomainRelativeObjId* rgdroidBirth;
 [size_is(cNotifications)] CDomainRelativeObjId* rgdroidNew;
 } TRKSVR_CALL_MOVE_NOTIFICATION;

cNotifications: This field MUST contain the number of move notifications that were received.

cProcessed: On return to the client, this field MUST indicate the number of notifications from the
request message that were actually processed.

seq: This field MUST be set by the client to the VolumeSequenceNumber for this VolumeID. This

value is used by the client and server to detect whether or not notifications have been lost. For
information about sequence numbering, see sections 3.1.4.2 and 3.2.4.2.

fForceSeqNumber: This field MUST be set by the client to indicate whether the seq value shouldis
to be ignored. If set, seq MUST be ignored. Sequence numbering is as specified in sections
3.1.4.2 and 3.2.4.2.

pvolid: This field MUST contain the VolumeID, which indicates the volume from which the files in this

notification were moved. CVolumeId is as specified in [MS-DLTW] section 2.2.4.

rgobjidCurrent: This field MUST contain an array of ObjectIDs with the ObjectID for each file that
was moved. CObjId is as specified in [MS-DLTW] section 2.2.5. Note that the previous FileLocation
of each of the moved files MUST be determined by composing the VolumeID from the pvolid value
with each of the entries in the rgobjidCurrent array.

rgdroidBirth: This field MUST contain an array of FileIDs with the FileID for each file that was moved
in this request. Each element in the rgdroidBirth array corresponds to the entry with the same

index in the rgobjidCurrent array. CDomainRelativeObjId is as specified in [MS-DLTW] section

2.2.3.

rgdroidNew: This field MUST contain an array of FileLocations, with the new FileLocation for each file
that was moved in this request. Each element in the rgdroidNew array corresponds to the entry
with the same index in the rgobjidCurrent and rgdroidBirth arrays.

20 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.12.2 TRKSVR_CALL_REFRESH

The TRKSVR_CALL_REFRESH structure is used in LnkSvrMessage method calls that specify a REFRESH
message (see section 2.2.11), to indicate to the server that a file or volume is still in use. The server

uses this to determine when an entry in its tables is no longer in use and can be deleted. See section
3.2.5.2 for an example of client use of this structure.

 typedef struct {
 unsigned long cSources;
 [size_is(cSources)] CDomainRelativeObjId* adroidBirth;
 unsigned long cVolumes;
 [size_is(cVolumes)] CVolumeId* avolid;
 } TRKSVR_CALL_REFRESH;

cSources: This field MUST contain the number of elements in the adroidBirth array.

adroidBirth: This field MUST contain an array of FileIDs, with the FileID for files on the client
computer for which the client is requesting a refresh. The type of this field, CDomainRelativeObjId,

is as specified in [MS-DLTW] section 2.2.3. If this array is empty, it indicates that there are no

FileIDs to be refreshed by this request.

cVolumes: This field MUST contain the number of elements in the avolid array. Note that this is
independent of the cSources value.

avolid: This field MUST contain an array of VolumeIDs for volumes on the client computer for which
the client requests a refresh. CVolumeId is as specified in [MS-DLTW] section 2.2.4. If this array is
empty, it indicates that there are no VolumeIDs to be refreshed by this request.

2.2.12.3 TRKSVR_CALL_SYNC_VOLUMES

The TRKSVR_CALL_SYNC_VOLUMES structure is used in LnkSvrMessage method calls that specify a
SYNC_VOLUMES message (see section 2.2.11), to synchronize volumes between the client and server.
For example, this structure is used by the client to request that the server create an entry in its

ServerVolumeTable.

This structure holds an array of independent requests. Each of those individual requests is termed a
subrequest in this protocol specification. See section 2.2.14 for more information about the individual
subrequest data structures. See sections 3.2.5.3 and 3.2.6.4 for examples of the client using this
structure.

 typedef struct {
 unsigned long cVolumes;
 [size_is(cVolumes)] TRKSVR_SYNC_VOLUME* pVolumes;
 } TRKSVR_CALL_SYNC_VOLUMES;

cVolumes: On input, the number of subrequests in this message. On return, this is the number of

subrequests that the server processed. The details of this usage are specified in sections 3.1.4.4
and 3.2.4.4.

pVolumes: An array of subrequests.

2.2.12.4 TRKSVR_CALL_DELETE

The TRKSVR_CALL_DELETE structure is used in LnkSvrMessage method calls that specify a
DELETE_NOTIFY message (see section 2.2.11), to indicate which files are to be removed from the
FileTable. See section 3.2.6.2 for an example of the client using this structure.

21 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef struct {
 unsigned long cdroidBirth;
 [size_is(cdroidBirth)] CDomainRelativeObjId* adroidBirth;
 unsigned long cVolumes;
 [size_is(cVolumes)] CVolumeId* pVolumes;
 } TRKSVR_CALL_DELETE;

cdroidBirth: This field MUST contain the number of entries in the adroidBirth array.

adroidBirth: This field MUST contain an array of FileIDs of files that have been deleted.
CDomainRelativeObjId is as specified in [MS-DLTW] section 2.2.3.

cVolumes: This field is unused and MUST be zero.

pVolumes: This field is unused and MUST be set to zero.

2.2.12.5 TRKSVR_STATISTICS

The TRKSVR_STATISTICS structure was originally defined for use in LnkSvrMessage method calls that

specify a STATISTICS message. The STATISTICS message type is not used in this protocol, but is
included in this specification because it affects the size of the TRKSVR_MESSAGE_UNION structure as
it is transmitted over the RPC Protocol.

 typedef struct {
 unsigned long cSyncVolumeRequests;
 unsigned long cSyncVolumeErrors;
 unsigned long cSyncVolumeThreads;
 unsigned long cCreateVolumeRequests;
 unsigned long cCreateVolumeErrors;
 unsigned long cClaimVolumeRequests;
 unsigned long cClaimVolumeErrors;
 unsigned long cQueryVolumeRequests;
 unsigned long cQueryVolumeErrors;
 unsigned long cFindVolumeRequests;
 unsigned long cFindVolumeErrors;
 unsigned long cTestVolumeRequests;
 unsigned long cTestVolumeErrors;
 unsigned long cSearchRequests;
 unsigned long cSearchErrors;
 unsigned long cSearchThreads;
 unsigned long cMoveNotifyRequests;
 unsigned long cMoveNotifyErrors;
 unsigned long cMoveNotifyThreads;
 unsigned long cRefreshRequests;
 unsigned long cRefreshErrors;
 unsigned long cRefreshThreads;
 unsigned long cDeleteNotifyRequests;
 unsigned long cDeleteNotifyErrors;
 unsigned long cDeleteNotifyThreads;
 unsigned long ulGCIterationPeriod;
 FILETIME ftLastSuccessfulRequest;
 HRESULT hrLastError;
 unsigned long dwMoveLimit;
 long lRefreshCounter;
 unsigned long dwCachedVolumeTableCount;
 unsigned long dwCachedMoveTableCount;
 FILETIME ftCachedLastUpdated;
 long fIsDesignatedDc;
 FILETIME ftNextGC;
 FILETIME ftServiceStart;
 unsigned long cMaxRPCThreads;
 unsigned long cAvailableRPCThreads;
 unsigned long cLowestAvailableRPCThreads;
 unsigned long cNumThreadPoolThreads;

22 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 unsigned long cMostThreadPoolThreads;
 short cEntriesToGC;
 short cEntriesGCed;
 short cMaxDsWriteEvents;
 short cCurrentFailedWrites;
 struct {
 unsigned long dwMajor;
 unsigned long dwMinor;
 unsigned long dwBuildNumber;
 } Version;
 } TRKSVR_STATISTICS;

2.2.12.6 TRKSVR_CALL_SEARCH

The TRKSVR_CALL_SEARCH structure is used in LnkSvrMessage method calls that specify a SEARCH
message (see section 2.2.11), to query the DLT Central Manager server for the location of a file. See
section 3.2.6.3 for an example of client use of this structure.

 typedef struct {
 unsigned long cSearch;
 [size_is(cSearch)] TRK_FILE_TRACKING_INFORMATION* pSearches;
 } TRKSVR_CALL_SEARCH;

cSearch: This value MUST be set to one.

pSearches: A pointer to a single search request. See
TRK_FILE_TRACKING_INFORMATION (section 2.2.8).

2.2.12.7 old_TRKSVR_CALL_SEARCH

The old_TRKSVR_CALL_SEARCH structure is unused but is included in this protocol because it affects
the definition of the TRKSVR_MESSAGE_UNION, as defined in section 2.2.13.

 typedef struct {
 unsigned long cSearch;
 [size_is(cSearch)] old_TRK_FILE_TRACKING_INFORMATION* pSearches;
 } old_TRKSVR_CALL_SEARCH;

2.2.12.8 TRKWKS_CONFIG

The TRKWKS_CONFIG structure is unused but is included in this protocol because it affects the
definition of the TRKSVR_MESSAGE_UNION, as defined in section 2.2.13.

 typedef struct {
 unsigned long dwParameter;
 unsigned long dwNewValue;
 } TRKWKS_CONFIG;

2.2.13 TRKSVR_SYNC_TYPE

The TRKSVR_SYNC_TYPE enumeration specifies operations that can be handled during volume
synchronization in a SYNC_VOLUMES message (see sections 2.2.11 and 2.2.12.3).

 typedef [v1_enum] enum
 {
 CREATE_VOLUME = 0,

23 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 QUERY_VOLUME = 1,
 CLAIM_VOLUME = 2,
 FIND_VOLUME = 3,
 TEST_VOLUME = 4,
 DELETE_VOLUME = 5
 } TRKSVR_SYNC_TYPE;

CREATE_VOLUME: Requests that the server maintain a mapping from a VolumeID to a
VolumeSecret and MachineID. See section 3.2.5.3 for an example of this subrequest.

QUERY_VOLUME: Requests information about a VolumeID so that the client and server can keep
their volume tables synchronized. See section 3.2.6.4 for an example of this subrequest.

CLAIM_VOLUME: Requests that a MachineID become recognized by the server as the VolumeOwner

for a VolumeID. See section 3.2.5.3 for an example of this subrequest.

FIND_VOLUME: Requests the MachineID for a VolumeID. See section 3.2.6.4 for an example of this
subrequest.

TEST_VOLUME: Reserved; MUST NOT be sent. Unused.

DELETE_VOLUME: Reserved; MUST NOT be sent. Unused.

2.2.14 TRKSVR_SYNC_VOLUME

The TRKSVR_SYNC_VOLUME structure is used as an array in calls to the LnkSvrMessage method that
specifies a SYNC_VOLUMES message (see section 2.2.11), which in turn synchronizes volume
information between the client and the server. Each TRKSVR_SYNC_VOLUME structure is termed a
subrequest in this protocol specification.

 typedef struct {
 HRESULT hr;
 TRKSVR_SYNC_TYPE SyncType;
 CVolumeId volume;
 CVolumeSecret secret;
 CVolumeSecret secretOld;
 SequenceNumber seq;
 FILETIME ftLastRefresh;
 CMachineId machine;
 } TRKSVR_SYNC_VOLUME;

hr: A return value that indicates the success or failure of this TRKSVR_SYNC_VOLUME subrequest.
The type of this field is an HRESULT, but unlike the standard definition, for this field, only zero is a
successful return value. Except where otherwise specified, this value MUST NOT be
TRK_E_VOLUME_QUOTA_EXCEEDED, which is defined in section 3.1.4.1. Any other nonzero value
MUST be treated identically as a failure value.

SyncType: This indicates the type of synchronization request. Valid values are specified in section

2.2.13.

volume: The VolumeID to be synchronized. Whether this field is used depends on the SyncType
value. For details, see sections 3.2.6.5 and 3.1.4.4. The CVolumeId type is as specified in [MS-
DLTW] section 2.2.4.

secret: The new VolumeSecret to be used for this VolumeID. Whether this field is used depends on
the SyncType value. For details, see sections 3.2.6.5 and 3.1.4.4.

secretOld: A VolumeSecret that is used to authenticate a VolumeOwner. Whether this field is used
depends on the SyncType value. For details, see sections 3.2.6.5 and 3.1.4.4.

24 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

seq: A VolumeSequenceNumber that is used for synchronization of move notifications, as specified in
section 3.1.4.2. Whether this field is used depends on the SyncType value. For details, see

sections 3.2.6.5 and 3.1.4.4.

ftLastRefresh: The last time the server received a REFRESH notification from a client. Whether this

field is used depends on the SyncType value. For details, see sections 3.2.6.5 and 3.1.4.4.

machine: A MachineID of a VolumeOwner. This VolumeOwner is the VolumeOwner for the VolumeID
specified in the volume field. Whether this field is used depends on the SyncType value. For
details, see sections 3.2.6.5 and 3.1.4.4; the CMachineId type is as specified in [MS-DLTW]
section 2.2.2.

25 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

This protocol is in the form of an RPC interface. The server of this interface responds to
LnkSvrMessage requests.

3.1 DLT Central Manager Protocol Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. This organization is described to explain how the protocol
behaves. This protocol specification does not mandate that implementations adhere to this model as
long as their external behavior is consistent with that specified in this document.

The DLT Central Manager server receives requests with updates to information of linked files, or
requests for information about linked files. The server maintains the following information:

CurrentRefreshTime: The current time, in units of days. This value MUST initially be zero the first
time a server is initialized in a new domain.

RecentTableUpdateCount: A count of the number of updates that have recently been made to the
ServerVolumeTable and FileTable, and a time stamp that indicates the last time this count was
reset. When the server starts, it MUST set this time stamp to the current time. The
RecentTableUpdateCount value MUST NOT exceed 1000. Every time in this protocol that the
server checks whether or not this field is at its maximum value (1000) — and if the field is indeed
at its maximum value—the server MUST do the following:

 Check if the current time is more than one hour past the last reset time.

 If the current time is more than one hour past the last reset time, then the server MUST
update the RecentTableUpdateCount field to zero.

 Otherwise, the server MUST leave the RecentTableUpdateCount field at 1000.

ServerVolumeTable: A table with rows uniquely identified by a VolumeID, which contains the
following fields:

 VolumeID: The VolumeID that is the key to this entry. The remaining fields provide

information about this volume. When this VolumeID type is transmitted between the client and
server as part of a request, the type is stored in a CVolumeId structure, as defined in section
2.2.5.

 VolumeSequenceNumber: Sequencing information that is used to coordinate notifications
between the client and the server. When this type is transmitted between the client and server
as part of a request, it is stored in a SequenceNumber structure, as defined in section 2.2.2.

 VolumeSecret: A value that is used to verify with the server that a particular volume is on a

client computer. When this type is transmitted between the client and server as part of a

request, it is stored in a CVolumeSecret structure, as defined in section 2.2.7.

 VolumeOwner: The MachineID that the server considers to be the owner of the VolumeID.
When this type is transmitted between the client and server as part of a request, it is stored in
a CMachineId structure, as defined in section 2.2.3.

 RefreshTime: A time stamp that indicates when this entry was last known to be correct. This
field represents a current or previous value from the CurrentRefreshTime field described

earlier in this section. When the RefreshTime type is transmitted between the client and server
as part of a request, it is stored in a FILETIME structure as defined in [MS-DTYP] section 2.3.3.

26 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

FileTable: A table (with rows that are uniquely identified by a FileLocation or FileID) that contains the
following fields:

 PreviousFileLocation: A FileLocation of the file prior to the FileLocation stored in the
following FileLocation field. If the following FileID field is not present, then this field also

represents the FileID. When this type is transmitted between the client and server as part of a
request, it is stored in a CDomainRelativeObjId structure, as defined in section 2.2.4.

 FileLocation: The FileLocation of the file represented by this entry at some point in time after
the value in the PreviousFileLocation. This is not necessarily the current FileLocation. When
this type is transmitted between the client and server as part of a request, the type is stored
in a CDomainRelativeObjId structure, as defined in section 2.2.4.

 FileID: The FileID of the file represented by this entry. This field maymight or maymight not

be present in a given entry, as noted in the description of PreviousFileLocation. When this
type is transmitted between the client and server as part of a request, the type is stored in a
CDomainRelativeObjId structure, as defined in section 2.2.4.

 RefreshTime: A time stamp indicating when this entry was last known to be correct. This
field represents a current or previous value from the CurrentRefreshTime field described
earlier in this section. When this type is transmitted between the client and server as part of a

request, the type is stored in a FILETIME structure as defined in [MS-DTYP] section 2.3.3.

The following is an example of the conceptual FileTable, where a file with FileID A moves to
FileLocation B, and then to FileLocation C. (Only three fields are shown in the example.) The
FileTable could have two entries at that point, such as the following.

PreviousFileLocation FileLocation FileID

A B (Unspecified)

B C A

Or the FileTable could have a single, equivalent entry, such as the following.

PreviousFileLocation FileLocation FileID

A C (Unspecified)

The DLT Central Manager protocol server also operates over a directory database of account

information. That database is defined in [MS-SAMR], particularly the user object described in section
3.1.1, and the UserAccountControl described in sections 2.2.7.1 and 2.2.1.13.

Note The preceding conceptual data can be implemented by using a variety of techniques. Any data
structure that stores the preceding conceptual data maycan be used in the implementation.

3.1.2 Timers

TableMaintenanceTimer: This timer is used for garbage collection of entries in the FileTable and

ServerVolumeTable. This timer MUST execute on a period of 1 day, and when it fires it must be
restarted. See section 3.1.5 for details on the processing that is performed when this timer
expires.

3.1.3 Initialization

Parameters necessary to initialize the RPC Protocol are specified in section 2.1.

27 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

There MUST only be one instance of the DLT Central Manager server running on a computer, and it
MUST run on all domain controllers of a domain.

3.1.4 Message Processing Events and Sequencing Rules

This section contains message processing events and sequencing rules.

Methods in RPC Opnum Order

Method Description

LnkSvrMessage Provides a way to send and receive messages to the DLT Central Manager server to
query or update information.

Opnum: 0

LnkSvrMessageCallback Called by the DLT Central Manager server during a call to LnkSvrMessage.

Opnum: 1

The methods MUST NOT throw an exception.

3.1.4.1 LnkSvrMessage (Opnum 0)

The LnkSvrMessage method provides a way to send and receive messages to the DLT Central Manager
server to query or update information.

 HRESULT LnkSvrMessage(
 [in] handle_t IDL_handle,
 [in, out] TRKSVR_MESSAGE_UNION* pMsg
);

IDL_handle: For information about the handle_t data type, see [MS-DTYP] section 2.1.3.

pMsg: Pointer to a message, in the format of a TRKSVR_MESSAGE_UNION structure. If this method
fails, as indicated by a failure return value, the client MUST ignore any changes made by the
server to this structure.

Return Values: See the following table and the explanation after it for more information on return
values.

Exceptions Thrown: None.

The following table contains failure and success return values that have special behavior in this
protocol. All failure values not listed in this table MUST be treated identically. Similarly, all success
values not listed in this table MUST be treated identically. Except where otherwise stated, a return
value MUST NOT be a value from this table. Except where otherwise specified, the server MUST return
a success value.

Constant/value Description

TRK_E_NOT_FOUND

0x8DEAD01B

A requested object was not found.

TRK_E_VOLUME_QUOTA_EXCEEDED

0x8DEAD01C

The server received a CREATE_VOLUME subrequest of a
SYNC_VOLUMES request, but the ServerVolumeTable size limit
for the RequestMachine value has already been reached.

TRK_E_SERVER_TOO_BUSY The server is busy, and the client shouldis to retry the request at a

28 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

0x8DEAD01E later time.

TRK_S_OUT_OF_SYNC

0x0DEAD100

The VolumeSequenceNumber of a MOVE_NOTIFICATION request
is incorrect. See section 3.1.4.2.

TRK_S_VOLUME_NOT_FOUND

0x0DEAD102

The VolumeID in a request was not found in the server's
ServerVolumeTable.

TRK_S_VOLUME_NOT_OWNED

0x0DEAD103

A notification was sent to the LnkSvrMessage method, but the
RequestMachine for the request was not the VolumeOwner for a
VolumeID in the request.

TRK_S_NOTIFICATION_QUOTA_EXCEEDED

0x0DEAD107

The server received a MOVE_NOTIFICATION request, but the
FileTable size limit has already been reached.

The LnkSvrMessage method has only a single parameter, a union of type TRKSVR_MESSAGE_UNION

(see section 2.2.12). But that union is defined to hold one of several types of requests, referred to in
this protocol specification as messages. The message type for a given request is specified in the
MessageType field of the TRKSVR_MESSAGE_UNION. The possible message types are defined in
section 2.2.11. The formats of the different messages are defined in the sub-sections of section
2.2.12. The responses by the server to those different messages are specified in the remaining
subsections of section 3.1.4, according to the MessageType field of the union.

Except where otherwise noted, the server that receives a request MUST ignore and leave unmodified

all fields in the TRKSVR_MESSAGE_UNION structure of the pMsg parameter, as well as the structures
referenced by the MessageUnion field of the TRKSVR_MESSAGE_UNION.

For security purposes, the server SHOULD restrict access to clients that are members of the
authenticated users built-in security group. The client's identity is determined as described in [MS-
RPCE], section 3.3.3.4.3.<4>

The TRKSVR_MESSAGE_UNION structure of the pMsg parameter contains a Priority field. The server

MAY use this value to decide to reject some requests with a TRK_E_SERVER_TOO_BUSY return value,
but it MUST NOT use this value to change the ordering of processing of messages from a caller.<5>

In this processing of this method call, the MachineID of the client that makes the request MUST be
used as the RequestMachine value.<6>

Note During the processing of a LnkSvrMessage call, the server can call back to the client by using
the LnkSvrMessageCallback method. See sections 3.1.4.4 and 3.2.4.1 for more information.

3.1.4.2 Receiving a MOVE_NOTIFICATION Message

The MOVE_NOTIFICATION message is received by the server as part of a LnkSvrMessage request, as
defined in section 3.1.4.1. The server uses the information in this message to update the FileTable
that is used to process SEARCH requests (see section 3.1.4.6) with information about the new
locations of files.

This message consists of a TRKSVR_CALL_MOVE_NOTIFICATION structure (described in section
2.2.12.1), which contains information for zero or more move notifications.

If the RequestMachine, as specified in section 3.1.4.1, is not the VolumeOwner of the VolumeID
indicated in the pvolid field of the request, then the request MUST return with a return value of
TRK_S_VOLUME_NOT_OWNED. If the VolumeID does not exist in the ServerVolumeTable, the request
MUST return with a value of TRK_S_VOLUME_NOT_FOUND.

29 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the seq field is not equal to the VolumeSequenceNumber for the VolumeID in the
ServerVolumeTable, then:

 The message MUST return with a value of TRK_S_OUT_OF_SYNC.

 The seq field of the message MUST be updated by the server to be the value of the

VolumeSequenceNumber field of the ServerVolumeTable for this volume.

 The server MUST NOT perform any of the following additional processing.

As stated earlier in this section, a single MOVE_NOTIFICATION message contains information for one
or more files that have been moved. The fields of the TRKSVR_CALL_MOVE_NOTIFICATION structure
for this message MUST be interpreted by the server as follows:

 The pvolid field MUST be interpreted as the VolumeID that identifies the volume from which all
files in this message were moved.

 Each entry in the rgobjidCurrent array MUST be interpreted as the ObjectID of a file before it
was moved. Therefore, as described in section 1.1, the file's PreviousFileLocation (the FileLocation

before the move) is a composition of the preceding VolumeID and this ObjectID.

 Each corresponding entry in the rgdroidBirth array MUST be interpreted as the moved file's FileID.

 Each corresponding entry in the rgdroidNew array MUST be interpreted as the moved file's new
FileLocation.

For example, if a MOVE_NOTIFICATION message contains two notifications, the information for the
second notification is represented by the pvolid field, and by the second entry in each of the
rgobjidCurrent, rgdroidBirth, and rgdroidNew arrays.

Each of these notifications MUST be processed by the server, in the order in which they appear in the
array, as follows:

 If the RecentTableUpdateCount has reached its maximum value, this notification and all
remaining notifications MUST NOT be processed, and the server MUST return a failure return value

to the client.

 If the FileTable already contains an entry that maps the FileID to a FileLocation, and that
FileLocation is the same value as the PreviousFileLocation specified in the notification, then the
entry MUST be updated such that its FileLocation is the FileLocation specified in the notification.
The RecentTableUpdateCount MUST also be incremented.

 Otherwise, if the FileTable has already reached its maximum size (defined in the following bulleted
list), this notification and all remaining notifications MUST NOT be processed.

 Otherwise, a new entry MUST be added to the FileTable, with the PreviousFileLocation that was
specified in the request stored in the PreviousFileLocation field, the new FileLocation from the
request stored in the FileLocation field, and the FileID from the request stored in the FileID field.
Also, the RecentTableUpdateCount MUST be incremented.

As stated earlier in this section, the FileTable has a maximum size. The maximum size of the FileTable

MUST be calculated as follows:

 For every entry in the ServerVolumeTable up to 5000 entries, add 200 times the number of
entries to the value for the FileTable size limit.

 For every entry in the ServerVolumeTable in addition to 5000 entries, add 100 times that number
to the value for the FileTable size limit.

30 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

For example, if the ServerVolumeTable has 10 entries, the maximum FileTable size is 10*200, or
2000. If the ServerVolumeTable has 5010 entries, the maximum FileTable size is 5000*200 + 10*100,

or 1,001,000.

If one or more notifications are not processed because the FileTable reaches its maximum size, the

server MUST return a value of TRK_S_NOTIFICATION_QUOTA_EXCEEDED from the LnkSvrMessage
request.

Note that this is a success code, so the server might still have processed some of the notifications in
this request.

The server MUST increment the VolumeSequenceNumber for the VolumeID in the ServerVolumeTable
once for each of the move notifications processed in this request. When the value of the
VolumeSequenceNumber reaches its maximum positive value (2147483647), incrementing MUST

result in its most negative value (2147483648). For example, if a MOVE_NOTIFICATION request has a
seq field value of 10, a cNotifications field value of 3, and returns with a cProcessed field value of
2, the next MOVE_NOTIFICATION request for this VolumeID has a seq field value of 12.

3.1.4.3 Receiving a REFRESH Message

This message is received by the server as part of a LnkSvrMessage request, as defined in section
3.1.4.1.

The server uses the FileID and VolumeID information in this request to mark entries in its
ServerVolumeTable and FileTable as active. Marking these entries as active prevents them from being
deleted as part of the TableMaintenanceTimer handling, as specified in section 3.1.5.

The message consists of a TRKSVR_CALL_REFRESH structure (defined in section 2.2.12.2), which

contains an array of zero or more FileIDs and an array of zero or more VolumeIDs.

The server MUST set the cSources and cVolumes fields to zero in the TRKSVR_CALL_REFRESH
structure to zero.

For each FileID in the adroidBirth array field, if there is an entry in the FileTable whose FileID field is

equivalent to that request FileID, and the RecentTableUpdateCount is less than its maximum value,
then:

 The server MUST update the RefreshTime field for that entry in the FileTable with the value of
the CurrentRefreshTime.

 The server MUST increment the RecentTableUpdateCount.

For each VolumeID in the avolid array field in this request, if there is an entry in the
ServerVolumeTable for this volume, the VolumeOwner field of that entry equals the RequestMachine,
and the RecentTableUpdateCount is less than its maximum value, then:

 The server MUST update the RefreshTime field with the value of the CurrentRefreshTime.

 The server MUST increment the RecentTableUpdateCount.

If the RecentTableUpdateCount is found to be at its maximum value above, the server MUST
discontinue processing of the message, and MUST return to the client with a failure return value.

3.1.4.4 Receiving a SYNC_VOLUMES Message

This message is received by the server as part of a LnkSvrMessage request, as defined in section
3.1.4.1.

31 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This request is used to synchronize volume information between the client and the server. This allows
the client to create, query, modify, find, or delete one or more entries in the ServerVolumeTable.

The message consists of a TRKSVR_CALL_SYNC_VOLUMES structure (defined in section 2.2.12.3).
This structure contains an array of TRKSVR_SYNC_VOLUME structures, each of which is termed a

subrequest in this protocol specification. The SyncType field in the TRKSVR_SYNC_VOLUME structure
identifies the specific subrequest. The remaining fields in this structure have different uses, depending
on the SyncType field value.

Generally, for each subrequest, the server reads some of the fields in the TRKSVR_SYNC_VOLUME
structure and sets other fields for return to the client, depending on the subrequest, as specified in the
remainder of this section (and its subsections).

Unless otherwise specified, the server MUST set the hr field of the TRKSVR_SYNC_VOLUME structure

in each subrequest to a failure value, and MUST ignore all other fields in this structure.

However, the server need not return the updated TRKSVR_SYNC_VOLUME structures to the client by
returning from the LnkSvrMessage request. Instead, the server MAY<7> send the updated structures

directly to the client, during the LnkSvrMessage call by calling the LnkSvrMessageCallback callback
method (defined in section 3.2.4.1) and passing the updated TRKSVR_SYNC_VOLUME structures via
the TRKSVR_MESSAGE_UNION field. In this case, the following MUST be followed:

 All subrequests MUST be processed by the server before calling the callback method.

 All of the TRKSVR_SYNC_VOLUME structures in the request MUST be sent to the client in the
callback method. That is, the server MUST NOT return some of the updated structures in the
callback and other of these structures in the return from the LnkSvrMessage request. Because of
this, regardless of the return value from the LnkSvrMessageCallback method, the cVolumes field of
the TRKSVR_CALL_SYNC_VOLUMES structure MUST be set to zero by the server before returning
from the LnkSvrMessage request.

 The server MUST use the return value of the LnkSvrMessageCallback method as the return value
for the LnkSvrMessage request.

In addition to the return value of the LnkSvrMessage method itself, there is an HRESULT type for each
subrequest, in the hr field of the TRKSVR_SYNC_VOLUME structure.

The type of the hr field is HRESULT, but as defined in section 2.2.14, only zero is defined to be a
successful return result. Unless otherwise specified in the following sections, the server MUST set the
hr field of every subrequest to a value indicating failure.

The following sections define the handling by the server for each subrequest type. The subrequests
MUST be processed in the order in which they appear in the TRKSVR_CALL_SYNC_VOLUMES structure.
Except where otherwise noted in these sections, the server MUST ignore all fields of each
TRKSVR_SYNC_VOLUME structure.

3.1.4.4.1 CLAIM_VOLUME

CLAIM_VOLUME is a subrequest of the SYNC_VOLUMES message request (see section 3.1.4.4). This
type requests that the DLT Central Manager server update either the VolumeOwner or the

VolumeSecret field of an entry in the ServerVolumeTable.

If RecentTableUpdateCount has reached its maximum value, the server MUST set the hr field of the
TRKSVR_SYNC_VOLUME structure to TRK_E_SERVER_TOO_BUSY, and MUST NOT perform further
processing of this subrequest.

For this subrequest, fields in the TRKSVR_SYNC_VOLUME structure have the following meaning:

 volume: Specifies the VolumeID of the volume for which an update is requested.

32 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 secret: Specifies the VolumeSecret value of that volume.

If no entry exists in the ServerVolumeTable such that the VolumeID of the entry matches the volume

field of the TRKSVR_SYNC_VOLUME structure, the server MUST set the hr field of that structure to a
value indicating failure.

Otherwise, if such an entry does exist, but the value specified by the secretOld field of the
TRKSVR_SYNC_VOLUME structure is not equal to the VolumeSecret field for that entry, and the
RequestMachine is not equal to the VolumeOwner field for this entry, the server MUST set the hr field
of the TRKSVR_SYNC_VOLUME structure to a value indicating failure.

Otherwise, the server MUST update the volume's entry in the ServerVolumeTable, and update the
TRKSVR_SYNC_VOLUME structure, as follows:

 The server MUST increment the RecentTableUpdateCount.

 The server MUST set the VolumeOwner field of the entry with the RequestMachine value.

 The server MUST set the VolumeSecret field of the entry with the value from the secret field of

the TRKSVR_SYNC_VOLUME structure.

 The server MUST set the seq field in the TRKSVR_SYNC_VOLUME structure with the value from
the VolumeSequenceNumber field of the entry.

 The server MUST set the ftLastRefresh field in the TRKSVR_SYNC_VOLUME structure with the

value of the RefreshTime field of the entry.

 The server MUST set the hr field of the TRKSVR_SYNC_VOLUME structure to zero.

3.1.4.4.2 FIND_VOLUME

FIND_VOLUME is a subrequest of the SYNC_VOLUMES message request (see section 3.1.4.4). This
type requests that the DLT Central Manager server provide the VolumeOwner for a given VolumeID.

For the FIND_VOLUME subrequest, fields in the TRKSVR_SYNC_VOLUME structure have the following

meaning:

 volume: Specifies the VolumeID for which the corresponding VolumeOwner is requested.

If the ServerVolumeTable contains no entry whose VolumeID is equal to the volume field from the
TRKSVR_SYNC_VOLUME structure, then the server MUST set the hr field of the
TRKSVR_SYNC_VOLUME structure to a value indicating failure.

Otherwise, the server MUST update the TRKSVR_SYNC_VOLUME structure as follows:

 The server MUST set the machine field to the value of the VolumeOwner field of the volume's

entry in the ServerVolumeTable.

 The server MUST set the hr field to zero.

3.1.4.4.3 QUERY_VOLUME

QUERY_VOLUME is a subrequest of the SYNC_VOLUMES message request (see section 3.1.4.4). This
type requests that the DLT Central Manager server provide the VolumeSequenceNumber for a given

VolumeID.

For the QUERY_VOLUME subrequest, fields in the TRKSVR_SYNC_VOLUME structure have the following
meaning:

 volume: Specifies the VolumeID for which the corresponding VolumeSequenceNumber is
requested.

33 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the ServerVolumeTable contains no entry whose VolumeID is equal to the volume field from the
TRKSVR_SYNC_VOLUME structure, then the server MUST set the hr field of the

TRKSVR_SYNC_VOLUME structure to a value indicating failure.

Otherwise, the server MUST update the TRKSVR_SYNC_VOLUME structure as follows:

 The server MUST set the seq field with the value of the VolumeSequenceNumber from the
volume's entry in the ServerVolumeTable.

 The server MUST set the hr field to zero.

 The server MAY set the ftLastRefresh field structure with the value of the RefreshTime from the
volume's entry in the ServerVolumeTable.<8>

3.1.4.4.4 CREATE_VOLUME

CREATE_VOLUME is a subrequest of the SYNC_VOLUMES message request (see section 3.1.4.4). This
type requests that the DLT Central Manager server create a new entry in its ServerVolumeTable.

If the RecentTableUpdateCount is at its maximum value, the server MUST set the hr field of the
TRKSVR_SYNC_VOLUME structure to TRK_E_SERVER_TOO_BUSY, and MUST NOT process this
subrequest any further.

For this subrequest, fields in the TRKSVR_SYNC_VOLUME structure have the following meaning:

 secret: The value that is to be used as the VolumeSecret field for the new entry in the
ServerVolumeTable.

If there are already 26 entries in the ServerVolumeTable whose VolumeOwner is the RequestMachine,
then the server MUST set the hr field of the TRKSVR_SYNC_VOLUME structure to
TRK_E_VOLUME_QUOTA_EXCEEDED, and MUST NOT process this subrequest any further.

The server MUST generate a new VolumeID value. As described later in this section, this value is used
as the VolumeID value for a new entry in the ServerVolumeTable. This value MUST be arbitrarily

generated as any valid value, as defined in section 1.1. That is, the VolumeID MUST be a 16-byte

binary value, the low-order bit of the first byte MUST be a zero, the value MUST NOT be all zeros, and
the value MUST be unique within the ServerVolumeTable. This value also MUST be unique within this
SYNC_VOLUMES message, for any other CREATE_VOLUME subrequest.

The fields of the TRKSVR_SYNC_VOLUME structure MUST be updated as follows:

 volume: MUST be set to the value of the VolumeID generated previously.

 hr: MUST be set to zero.

If the server does not use the LnkSvrMessageCallback method, the following steps MUST be followed.
(The LnkSvrMessageCallback is defined in section 3.2.4.1, and the use by the server of that callback is
defined in section 3.1.4.4.) If the server does use the LnkSvrMessageCallback method, the following
steps MUST be followed by the server after calling the LnkSvrMessageCallback method, if that method
returns from the client with a successful return value.

 The server MUST increment the RecentTableUpdateCount.

 The server MUST create a new entry in the ServerVolumeTable. The fields of this new entry MUST
be set as follows:

 VolumeID: This MUST be set to the VolumeID value created previously by the server.

 VolumeSequenceNumber: This MUST be set to zero.

34 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 VolumeSecret: This MUST be set to the value of the secret field of the
TRKSVR_SYNC_VOLUME structure from the subrequest.

 VolumeOwner: This MUST be set to the RequestMachine of the request.

 RefreshTime: This MUST be set to the current value of the CurrentRefreshTime.

3.1.4.5 Receiving a DELETE_NOTIFY Message

The DELETE_NOTIFY message is received by the server as part of a LnkSvrMessage request, as
defined in section 3.1.4.1.

The server uses the information in this message to update the FileTable used to process SEARCH
requests (see section 3.1.4.6).

This message consists of a TRKSVR_CALL_DELETE structure (defined in section 2.2.12.4). In this
structure, the adroidBirth array field represents an array of FileID values. In this message, the client
notifies the server that each of the files associated with this FileID has been deleted.

For each of the FileID values, if each of the following is true:

 The RecentTableUpdateCount has not reached its maximum value.

 There is an entry in the FileTable whose PreviousFileLocation value is the FileID specified in this
request.

 The VolumeID in the FileID matches the VolumeID of an entry in the ServerVolumeTable, and the
VolumeOwner for that entry is equal to the RequestMachine. (As defined in section 1.1, a FileID
has an embedded VolumeID value within it.)

then the entry found in the FileTable MUST be removed, and the RecentTableUpdateCount MUST be
incremented. If as previously described the RecentTableUpdateCount reaches its maximum value,

the server MUST NOT process any more FileID values, and MUST return to the client with a failure
return value.

If the previous step does not result in a failure—that is, the RecentTableUpdateCount does not
reach its maximum value—then the server MUST set the cdroidBirth field of the
TRKSVR_CALL_DELETE structure to zero.

3.1.4.6 Receiving a SEARCH Message

The SEARCH message is received by the server as part of a LnkSvrMessage request, as defined in
section 3.1.4.1.

The server responds to this message by calculating the current FileLocation and MachineID of the
requested file.

This message consists of a TRKSVR_CALL_SEARCH structure (defined in section 2.2.12.6), which
contains information about the file for which the client is searching. As defined in section 2.2.12.6, the
TRKSVR_CALL_SEARCH structure consists of exactly one TRK_FILE_TRACKING_INFORMATION

structure (defined in section 2.2.8).

The server MUST attempt to locate the primary entry in the FileTable for the FileLocation specified in
this message, as follows:

 Look for an entry in the FileTable whose PreviousFileLocation field is that of the droidLast field

of the TRK_FILE_TRACKING_INFORMATION structure in the message.

 If that entry is not found, look for an entry in the FileTable whose PreviousFileLocation field is
that of the droidBirth field of the TRK_FILE_TRACKING_INFORMATION structure in the message.

35 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If no entry in the FileTable can be found in this way, the server MUST set the hr field in the
TRK_FILE_TRACKING_INFORMATION structure to a failure value, and MUST NOT perform further

processing for this message.

Using the FileLocation for this entry, the server MUST check for an entry in the FileTable whose

PreviousFileLocation is equal to that FileLocation. If such an entry is found, the server MUST repeat
this step using that entry's FileLocation. This process MUST continue until no such subsequent entry is
found.

For example, if the first entry found indicates that the file was moved from PreviousFileLocation A to
FileLocation B, there might be another entry in the FileTable indicating that the file was moved from
PreviousFileLocation B to FileLocation C. The preceding steps result in the server finding the entry with
PreviousFileLocation of B, which represents the second move in this example.

Given this final FileLocation value (the FileLocation field of the last entry of C, found in the preceding
example), the server MUST search for the entry in the ServerVolumeTable whose VolumeID field is
equal to the VolumeID component of that FileLocation. (As defined in section 1.1, a FileLocation value
has an embedded VolumeID value.) If found:

 The server MUST set the value of the VolumeOwner field of that entry into the mcidLast field of
the TRK_FILE_TRACKING_INFORMATION request structure.

 The server MUST set the value of the final FileLocation into the droidLast field of the
TRK_FILE_TRACKING_INFORMATION request structure.

 The server MUST set the hr field of the TRK_FILE_TRACKING_INFORMATION request structure to
zero.

3.1.5 Timer Events

When the TableMaintenanceTimer expires, the server MAY<9> perform the following operations on
its tables:

 For each entry in the ServerVolumeTable, if the difference between the RefreshTime field and the

CurrentRefreshTime value is more than 90, then the entry MUST be deleted.

 Similarly, for each entry in the FileTable, if the difference between the RefreshTime field and the

CurrentRefreshTime value is more than 90, then the entry MUST be deleted.

 The CurrentRefreshTime value MUST be incremented.

3.1.6 Other Local Events

There are no additional local events.

3.2 DLT Central Manager Protocol Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in the Distributed Link Tracking: Central Manager Protocol. This organization
is described to explain how the protocol behaves. This document does not mandate that
implementations adhere to this model as long as their external behavior is consistent with that
specified in this document.

The DLT Central Manager client monitors the volumes of the computer on which it runs, and sends
information about volume and linked file updates to the DLT Central Manager server. The client also
requests information from the server, such as a file's current FileLocation and current MachineID.

36 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The DLT Central Manager client maintains the following information:

ClientVolumeTable: This table has an entry for each of the volumes of the computer on which it runs.

<10>

VolumeInformation: This table maintains the following volume information for each volume in the

ClientVolumeTable. This information MUST be stored on the volume itself. This allows the client to
get information from a volume, if a volume is moved between clients (see section 3.2.6.6 for more
information).

VolumeInformation contains the following fields:

 VolumeID: This value corresponds to an entry in the server's ServerVolumeTable. The client gets
this value from the server by using a CREATE_VOLUME subrequest; see section 3.2.5.3 for more
information.

 VolumeSequenceNumber: This is sequencing information that coordinates notifications between
the client and the server. For an example of this field being used, see section 3.2.4.4.3.

 VolumeSecret: This value is used to verify with the server that a particular volume is on a client
computer. For an example use of this field, see section 3.2.5.3 for details of the CLAIM_VOLUME
subrequest.

 VolumeOwner: This is the MachineID that was last known to be the VolumeOwner of this

volume, as defined by the VolumeOwner field of the ServerVolumeTable defined in section 3.1.1.
For information on setting the VolumeOwner field, see sections 3.2.4.4.1 and 3.2.4.4.4.

 VolumeTableQuotaExceeded: This flag, either True or False, and initially set to False, indicates
whether or not the client has recently received a return value from the server, which in turn
indicates that this computer cannot create any new VolumeID values. For further details, see
sections 3.2.4.4.4 and 3.2.5.4.

 VolumeState: This value indicates whether this volume is registered successfully in the server's

ServerVolumeTable, defined in section 3.1.1. This variable can have one of three values: Owned,
NotOwned, or NotCreated.

 EnterNotOwnedTime: This is a date and time value that indicates when the VolumeState value
changed to NotOwned. The EnterNotOwnedTime value MUST be set if the VolumeState is
NotOwned; otherwise, EnterNotOwnedTime MUST NOT be set.

MoveNotificationList: This is a list of records with information about files that have been moved
from a volume on this machine. There MUST be one MoveNotificationList value for each volume

in the ClientVolumeTable, and this table MUST in turn be stored on the volume itself. The entries
in MoveNotificationList list MUST be in the order in which the files were moved (as described in
section 3.2.6.1). Each entry MUST contain the ObjectID of the file, the FileID of the file, and the
FileLocation of the file after it was moved. The client MAY keep as many entries in this list as it
wants.<11>

Each entry in this list contains the following information (for information on the creation of an

entry, see section 3.2.6.1):

 MoveObjectID: The ObjectID of the file before it was moved.

 MoveFileID: The FileID of the file.

 MoveNewFileLocation: The FileLocation of the file after the move.

 MoveSequenceNumber: The value of the VolumeSequenceNumber when this move
notification was created.

37 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

MoveNotificationCursor: If this value exists, it indicates the next entry in the MoveNotificationList
that is to be sent to the server in a MOVE_NOTIFICATION message. If this value does not exist, it

indicates that all entries have been sent. See section 3.2.5.6 for more information.

MoveNotificationVolumeCursor: If this value exists, it indicates that a sequence of

MOVE_NOTIFICATION messages is in progress, and indicates the current volume (from the
ClientVolumeTable) for which notifications are being sent. See section 3.2.5.6 for more
information.

CrossVolumeMoveFlag: This is a value of either zero or one, associated with a file, that indicates
whether the file has been moved across volumes at any time in the past.

VolumeFileTable: This table contains FileInformation entries, and is maintained for each volume in
the ClientVolumeTable. Like the ClientVolumeTable, this table MUST be stored on the volume

itself. The VolumeFileTable has an entry for each file on the volume that is to be tracked with
this protocol. Each entry has a CrossVolumeMoveFlag value, which MUST initially be set to
zero.<12>

FileTableQuotaExceeded: This flag, either true or false, indicates whether or not the client has
recently received a return value from the server that indicated that its FileTable had reached its
maximum size. For further details, section 3.2.4.2 shows where this flag is set, section 3.2.5.4

shows where this flag is cleared, and section 3.2.6.1 shows where this flag is checked.

PendingDeleteNotificationList: This is a list of FileIDs for files that have been deleted from a
VolumeFileTable, where the deletion occurred at least 5 minutes in the past. See section 3.2.5.5
for details on how items are added to this list, and section 3.2.4.5 for details on how items are
removed from this list.

PrePendingDeleteNotificationList: This is a list of FileIDs for files that have been deleted from a
VolumeFileTable, where the deletion occurred within the last 5 minutes. See section 3.2.6.2 for

information on how items are added to this list, and section 3.2.4.5 on how items are removed
from this list.

The DLT Central Manager protocol client also operates over a directory database of account

information. That database is defined in [MS-SAMR], particularly the user object described in section
3.1.1, and the UserAccountControl bit field described in sections 2.2.7.1 and 2.2.1.13.

Note The preceding conceptual data can be implemented by using a variety of techniques. Any data
structure that stores this conceptual data maycan be used in the implementation.

3.2.2 Timers

In general, the timers defined in this section run until they expire. After they expire, expiration
processing is performed, as defined in section 3.2.5.

Some of these timers have features to randomly delay their expiration, to perform a retry behavior,
and to persist across instantiations of the client. These behaviors are defined as follows:

 Period:

Each timer described in this section has a period. A running timer MUST expire as soon as possible
after both the period and the optional random delay (described as follows) have passed. A timer's
period MUST NOT change.

 Random delay:

If a timer defines a random delay, then after the period has passed, the timer MUST NOT expire
until after the random delay. This is done so that if a server is servicing a large number of clients,
the risk is reduced that all the clients will synchronize and flood the server with simultaneous
requests. If a running timer has a delay, the delay MUST be randomly calculated after the timer's

38 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

period has passed. The means by which randomness is determined for the delay is arbitrary, but is
bounded in the timer descriptions later in this section.

 Persistence:

If a timer supports persistence, and the timer is running when the client is stopped, the timer's

remaining period MUST be preserved across client stops and starts. For example, if the client
starts a timer with a period of 60 minutes, and subsequently the client stops running for 40
minutes, then the timer period will expire 20 minutes after the client has been restarted. Note that
only the period is persisted, not the random delay.

 Retry Period:

If a timer supports retries, and a retry is required (as specified in section 3.2.5), it MUST be
restarted to a retry delay, rather than stopping or restarting to its normal period. When the timer

expires after this retry delay, the expiration steps of section 3.2.5 MUST again be followed. The
length of the retry delay is defined in the following individual timer definitions.

Unless otherwise stated in the following timer descriptions, the only feature in the preceding list that

timers MUST have is a period. Unless otherwise stated in the remainder of this section, timers MUST
NOT restart automatically when they expire:

VolumeInitializationTimer: This timer is used by the client to synchronize its ClientVolumeTable

with the server's ServerVolumeTable, and to synchronize its MoveNotificationList with the server's
FileTable. This timer MUST have a period of 1 minute. If a retry of this timer is required (as
specified in section 3.2.5.1), VolumeInitializationTimer MUST be restarted to a delay randomly
selected between 30 minutes and 2 hours, but limited such that the timer does not exceed 6 hours
past its original due time. Once this timer reaches 6 hours past its original due time, it MUST be
stopped. See section 3.2.5.1 for details on the client actions that are taken when this timer
expires.

RefreshTimer: This timer is used by the client to refresh the server state. This timer MUST have a
period of 30 days, a random delay of up to 6 hours, persist, and be restarted automatically when
it expires. If retries are required (as specified in section 3.2.4.3), this timer MUST be restarted to

a delay randomly selected between 1 and 24 hours. See sections 3.2.5.2 for details on the client
actions taken when this timer expires.

InfrequentMaintenanceTimer: This timer is used by the client to periodically validate/update
VolumeInformation fields. This timer MUST have a period of 30 days, a random delay of up to 6

hours, persist, and be restarted automatically when it expires. See section 3.2.5.4 for details on
the client actions taken when this timer expires.

FrequentMaintenanceTimer: This timer is used by the client to periodically validate and/or update
VolumeInformation fields. This timer MUST have a period of 1 day, a random delay of up to 2
hours, persist, and be restarted automatically when it expires. See section 3.2.5.3 for details on
the client actions taken when this timer expires.

DeleteNotificationTimer: This timer is used by the client to inform the server of files that have been
deleted from the client. This timer MUST have a period of 5 minutes. See section 3.2.5.5 for
details on the client actions taken when this timer expires.

MoveNotificationTimer: This timer is used by the client to inform the server of files that have been
moved from a volume on the client to another volume (possibly to another volume on the client,
or possibly to a volume on another computer). This timer MUST have a period of 30 seconds. If a
retry is necessary, as specified in section 3.2.4.2, the retry delay MUST be calculated as follows:

 On the first retry, the delay MUST be 30 seconds.

 If subsequent retries are necessary, the retry delay MUST be the minimum of: double the
previous retry delay; 4 hours; or a delay that would cause the sum of the retry delays to be

39 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

24 hours. Once this last condition is reached (that is, 24 hours and 30 seconds after the timer
is started), the timer MUST be stopped.

3.2.3 Initialization

The client creates an RPC connection to the server by using the details specified in section 2.1 and
with the following additional requirements:

 The client MUST establish a security context with an authentication level of Integrity (as defined in
[MS-SPNG] section 3.1.1) for all messages except the SYNC_VOLUMES message when a SyncType

type of CREATE_VOLUME or CLAIM_VOLUME is specified, as defined in section 3.2.5.3. In those
cases, the client MUST use an authentication level of Confidentiality, also defined in section 3.1.1
of [MS-SPNG].

 The client MUST call a server that is running on a DC, within the client's domain, by using the
domain controller locator specified in [MS-ADTS] section 6.3.

 The client MUST establish the RPC connection under a user account with a user principal name

(UPN) in which the user account name is composed of the computer's MachineID, appended with

a dollar sign ($). That user account must be a UF_SERVER_TRUST_ACCOUNT or a
UF_WORKSTATION_TRUST_ACCOUNT. For more information on the user object and
UserAccountControl bit field, see section 3.1.1.

When the client is started, it MUST create entries in the ClientVolumeTable for each volume that is to
be tracked.<13> Initialization of those entries in the ClientVolumeTable is defined in section 3.2.6.6.

3.2.4 Message Processing Events and Sequencing Rules

As defined in section 3.1.4.1, requests sent with the LnkSvrMessage method are sent via the pMsg
parameter, which is a TRKSVR_MESSAGE_UNION structure. In that structure is a MessageType field,
defined by the TRKSVR_MESSAGE_TYPE enumeration, which indicates the format of the message data
in the MessageUnion field.

Generally, requests are sent via fields on the TRKSVR_MESSAGE_UNION structure, and responses
from the server are returned to the client by updating fields in this same structure. The client
completion handling is covered in subsequent subsections for each type of message, according to the
MessageType field of the TRKSVR_MESSAGE_UNION structure.

Except where otherwise stated, the client MUST ignore all fields in the TRKSVR_MESSAGE_UNION
structure on completion of the LnkSvrMessage request.

3.2.4.1 LnkSvrMessageCallback (Opnum 1)

The LnkSvrMessageCallback method is an RPC callback method that provides a means for the DLT
Central Manager server to call back to the client during a LnkSvrMessage call. As defined in section
3.1.4, this callback only occurs for SYNC_VOLUMES messages (for an example of this message, see
section 3.2.5.3).

For more details on when this callback is used by the server, see section 3.1.4.4.

 [callback] HRESULT LnkSvrMessageCallback(
 [in, out] TRKSVR_MESSAGE_UNION* pMsg
);

pMsg: Pointer to a message, in the format of a TRKSVR_MESSAGE_UNION structure. The
MessageType field in this structure MUST be set to SYNC_VOLUMES.

40 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Return Values: The return value is typed as an HRESULT, but for this method, a value of zero
indicates success, and all other values indicate failure. Any nonzero value MUST be treated

identically as a failure value.

The client MUST respond to this request by executing the steps in section 3.2.4.4 on each of the

TRKSVR_SYNC_VOLUME structures in the TRKSVR_CALL_SYNC_VOLUMES structure within the pMsg
parameter. In this way, the client is responding as though it received the updated structure in the
completion of the LnkSvrMessage request.

If any subrequest indicates a failure—that is, if the hr field of any TRKSVR_SYNC_VOLUME structure is
not zero—the client MUST return to the server with a return value that indicates failure.

For example, in a typical case where this callback method is used, processing proceeds in the following
order:

 The client sends a SYNC_VOLUMES message to the server by calling LnkSvrMessage, as described,
for example, in section 3.2.5.3.

 The server processes the request, updates the TRKSVR_CALL_SYNC_VOLUMES array in the

request, and calls LnkSvrMessageCallback on the client.

 The client processes the subrequests in the updated TRKSVR_CALL_SYNC_VOLUMES array, as
defined in section 3.2.4.4.

 The client returns from the LnkSvrMessageCallback method to the server.

 The server sets the cProcessed field of the TRKSVR_CALL_SYNC_VOLUMES structure to zero, and
returns from the LnkSvrMessage method to the client.

 The client again performs the processing defined in section 3.2.4.4. But because the cProcessed
field has been set to zero, the client takes no additional action, as defined in that section.

3.2.4.2 Completion of a MOVE_NOTIFICATION Message

See section 3.2.5.6 for information on the initiation of this request. Note in that definition that this
MOVE_NOTIFICATION message is in reference to one volume, identified by the pvolid field of the
TRKSVR_CALL_MOVE_NOTIFICATION structure of the request.

The processing performed by the client upon completion of the MOVE_NOTIFICATION message

depends on the return value from the LnkSvrMessage call:

 Zero:

As explained in 3.2.5.6, the cNotifications field in the TRKSVR_CALL_MOVE_NOTIFICATION
structure of the request represents the number of notifications sent from the client to the server.
Also, the cProcessed field in that structure, upon completion of the request, represents the
number of notifications that were processed by the server (see section 3.1.4.2).

The client MUST increment the MoveNotificationCursor value for the volume's

MoveNotificationList by the number of entries indicated by cProcessed. If this increment moves

the MoveNotificationCursor past the end of the entries in the MoveNotificationList, it MUST be
cleared.

If the cProcessed field is equal to the cNotifications field, the client MUST take the following
steps:

 If entries remain in this MoveNotificationList of the volume identified by the
MoveNotificationVolumeCursor, then the client MUST initiate a new MOVE_NOTIFICATION

message, following the steps in section 3.2.6.1.

41 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise, if the MoveNotificationVolumeCursor does not already reference the last entry in
the ClientVolumeTable, then the client MUST advance the MoveNotificationVolumeCursor to

the next entry in the ClientVolumeTable, and go back to the previous step.

 If neither of the previous two items is true, the client MUST clear the

MoveNotificationVolumeCursor.

Note that, in the absence of failures, the preceding behavior can cause the client to send a series
of MOVE_NOTIFICATION messages, such that a MOVE_NOTIFICATION message is sent for each of
the entries of the MoveNotificationList of each of the volumes in the ClientVolumeTable.

If, however, the cProcessed field is less than the cNotifications field, then the client MUST
follow the steps defined in the "Any other return value" entry at the end of this section.

 TRK_S_OUT_OF_SYNC:

This return value indicates that the provided VolumeSequenceNumber did not match what the
server was expecting, and that none of the notifications was processed. In this case, the seq field
returned by the server in the TRKSVR_CALL_MOVE_NOTIFICATION structure of the request

indicates the expected value.

The client MUST respond as follows:

 If the MoveSequenceNumber field of the entry in the MoveNotificationList referenced by the

MoveNotificationCursor is less than the seq value returned by the server, then the client MUST
send a new MOVE_NOTIFICATION message to the server, as specified in section 3.2.5.6,
except that the client MUST set the fForceSeqNumber field in that MOVE_NOTIFICATION
message to 1.

 Otherwise, if there is an entry in the MoveNotificationList with a MoveSequenceNumber that
matches the seq field, then the client MUST update the MoveNotificationCursor to reference
that entry, and the client MUST send a new MOVE_NOTIFICATION message to the server, as

specified in section 3.2.5.6.

 If neither of the previous two items is true, the client MUST update the MoveNotificationCursor

to reference the oldest entry in the MoveNotificationList, and MUST send a new
MOVE_NOTIFICATION message to the server, as specified in section 3.2.5.6, except that the
client MUST set the fForceSeqNumber field in that MOVE_NOTIFICATION message to 1.

 TRK_S_VOLUME_NOT_OWNED or TRK_S_VOLUME_NOT_FOUND:

This return value indicates that the client computer is not the VolumeOwner of the VolumeID for

the volume indicated in the request. If the VolumeState value for this volume is the Owned value,
it MUST be set to NotOwned, and the EnterNotOwnedTime value MUST be set to the current date
and time.

 TRK_S_NOTIFICATION_QUOTA_EXCEEDED:

This return value indicates that the server's FileTable has reached its maximum size. The client
MUST set its FileTableQuotaExceeded flag to True, as specified in section 3.2.1.

The client also MUST increment the MoveNotificationCursor for the volume's MoveNotificationList
by the number of entries indicated by the cProcessed field.

 Any other return value:

If any other value is returned, and the MOVE_NOTIFICATION message was sent as part of the
VolumeInitializationTimer processing described in section 3.2.5.1, then the client MUST put the
VolumeInitializationTimer into its retry state, as described in section 3.2.2.

42 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.4.3 Completion of a REFRESH Message

If the LnkSvrMessage returns with a failure return value, the RefreshTimer MUST be restarted with a
retry delay. See section 3.2.2 for information on the retry behavior of the RefreshTimer and its retry

delay.

3.2.4.4 Completion of a SYNC_VOLUMES Message

The SYNC_VOLUMES message is composed of a TRKSVR_CALL_SYNC_VOLUMES structure, as
described in section 2.2.12.3. That structure is composed of an array of TRKSVR_SYNC_VOLUME

structures. Each TRKSVR_SYNC_VOLUME is termed a subrequest, and has a SyncType field that
indicates the type of synchronization that the client requested. For example, a SyncType field of
CREATE_VOLUME indicates that the client wants the server to create an entry in its
ServerVolumeTable, and return a new VolumeID.

The hr field of the TRKSVR_SYNC_VOLUME structure indicates success or failure of the subrequest, as
defined in section 2.2.14.

Unless otherwise specified, the client MUST ignore all fields of the TRKSVR_SYNC_VOLUME structure.

If the SYNC_VOLUMES message fails, or if the message succeeds but the hr field for a subrequest is
TRK_E_SERVER_TOO_BUSY, and the message was sent as part of the VolumeInitializationTimer
processing described in section 3.2.5.1, then the client MUST put the VolumeInitializationTimer into its
retry state, as described in section 3.2.2.

If the SYNC_VOLUMES message succeeds but the cProcessed field of the
TRKSVR_CALL_SYNC_VOLUMES structure is zero, the client MUST perform no further action.

If the SYNC_VOLUMES message succeeds, but the hr field for a subrequest does not succeed, then
the client MUST ignore the fields of that subrequest, unless otherwise specified.

If the SYNC_VOLUMES message succeeds, the completion of each individual subrequest MUST be
handled as specified in the following, corresponding sections.

3.2.4.4.1 CLAIM_VOLUME

If this subrequest fails, and the VolumeState field of the volume's VolumeInformation is set to

Owned, the VolumeState MUST be updated to NotOwned.

Otherwise, the client MUST update the volume's VolumeInformation as follows:

 The VolumeSecret field MUST be set to be that of the secret field that was originally specified by
the client in this request.

 The RefreshTime field MUST be set to that of the ftLastRefresh field of the
TRKSVR_SYNC_VOLUME structure returned by the server.

 The VolumeOwner field MUST be set to the current machine's MachineID.

 The VolumeState field MUST be set to Owned.

 The EnterNotOwnedTime field MUST be cleared.

Additionally, if this subrequest succeeds, the client MUST check the seq field of the
TRKSVR_SYNC_VOLUME subrequest returned by the server. If it differs from the
VolumeSequenceNumber in the VolumeInformation maintained by the client for this volume, then the
client MUST synchronize its VolumeSequenceNumber with the server (as specified in section 3.2.4.2)

for the TRK_S_OUT_OF_SYNC processing.

43 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.4.4.2 FIND_VOLUME

The upper layer that triggered this call might use the machine field in its next step to locate the file.
For example, the upper layer might initiate a LnkSearchMachine call on the Distributed Link Tracking:

Workstation Protocol to the specified computer.

3.2.4.4.3 QUERY_VOLUME

If this subrequest fails, and the VolumeState field in the VolumeInformation for the volume is
currently set to Owned, it MUST be updated to NotOwned, and the EnterNotOwnedTime MUST be set
to the current time.

If the subrequest succeeds, and the VolumeState in the VolumeInformation of the volume is not

currently set to Owned, then:

 The VolumeState field of the volume MUST be set to Owned.

 The VolumeFileTable field for the volume MUST be cleared.

 The EnterNotOwnedTime field MUST be cleared.

Additionally, if the subrequest succeeds and the seq field returned by the server does not match the
VolumeSequenceNumber in the VolumeInformation for the volume, it is an indication that the server's

FileTable is out of sync with the client's move notification records. The client MUST then synchronize
with the server, as specified in section 3.2.4.2, for the TRK_S_OUT_OF_SYNC processing, which is
also described in section 3.2.4.2.

3.2.4.4.4 CREATE_VOLUME

If this subrequest succeeds, the client MUST update the VolumeInformation for this volume as follows:

 Set the value in the volume field of the TRKSVR_SYNC_VOLUME structure into the VolumeID field

of the VolumeInformation.

 Set the value in the ftLastRefresh field of the TRKSVR_SYNC_VOLUME structure into the
RefreshTime field of the VolumeInformation.

 Set the VolumeSequenceNumber field to zero.

 Set the VolumeState field to Owned.

 Set the VolumeOwner field to the MachineID of the local machine.

 Clear the VolumeFileTable field.

If the subrequest fails with an error return value of TRK_E_VOLUME_QUOTA_EXCEEDED, the client
MUST set the VolumeTableQuotaExceeded flag to TRUE.

3.2.4.5 Completion of DELETE_NOTIFY Message

If this request succeeds:

 Each of the FileIDs in the original message MUST be removed from the
PendingDeleteNotificationList.

 If there are remaining entries in that list, the client MUST send another DELETE_NOTIFY message
to the server, as specified in section 3.2.5.5.

44 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If there are no remaining entries, but there are entries in the PrePendingDeleteNotificationList,
then all entries from the PrePendingDeleteNotificationList MUST be moved to the

PendingDeleteNotificationList, and the DeleteNotificationTimer MUST be restarted.

If the request fails:

 The client MUST restart the DeleteNotificationTimer.

 All entries remaining in the PrePendingDeleteNotificationList MUST be removed. If there are
entries in the PrePendingDeleteNotificationList, then all entries from the
PrePendingDeleteNotificationList MUST be moved to the PendingDeleteNotificationList, and the
DeleteNotificationTimer MUST be restarted.

3.2.4.6 Completion of a SEARCH Message

If this request succeeds, the client MUST return the resulting FileLocation and MachineID fields
returned by the server to the upper layers that triggered the call.

3.2.5 Timer Events

3.2.5.1 VolumeInitializationTimer Expiration

When the VolumeInitializationTimer expires, the client MUST perform the same actions as are

performed on expiration of the FrequentMaintenanceTimer, as defined in section 3.2.5.3. Whether or
not the LnkSvrMessage processing in that step succeeds, the server MUST also perform the same
actions as are performed on expiration of the MoveNotificationTimer, as defined in section 3.2.5.6.

3.2.5.2 RefreshTimer Expiration

When the RefreshTimer expires, the client MUST send zero or more REFRESH messages to make the
server aware of FileIDs for files on the client's computer, and aware of VolumeIDs for volumes on the
client's computer.

A REFRESH message is sent to the server by using a LnkSvrMessage request, as defined in section
3.1.4.1.

If the client's ClientVolumeTable and VolumeFileTable are both empty, the client MUST NOT send a

REFRESH request to the server. Otherwise, one or more messages MUST be sent. The format and
number of the messages sent are defined in the following paragraphs.

Each message is sent by specifying a MessageType in the TRKSVR_MESSAGE_UNION of REFRESH.
This specification requires that the message include the TRKSVR_CALL_REFRESH structure, as
described in section 2.2.12.2.

In each call, the client sets the Priority field of the TRKSVR_MESSAGE_UNION based on the timer's
period and on when the timer was started. If the current time is greater than or equal to the timer's

start time plus twice its period, then the Priority MUST be set to zero. Otherwise, the Priority MUST
be set to a value calculated as follows, where all times are measured in seconds, and where division

truncates any fractional part to return an integer result.

 9 - ((Current time - Timer start time + Timer period) * 10) / Timer period

The adroidBirth and avolid fields of the requests, and the number of requests, MUST be determined
as follows:

45 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The first message MUST have an entry in the avolid array field for each entry in its
ClientVolumeTable. The value of that entry in avolid MUST be that of the VolumeID from the

VolumeInformation for that entry in the ClientVolumeTable. If the ClientVolumeTable is empty,
the client MUST pass NULL for the value of the avolid field of the message (and zero for the

corresponding cVolumes field).

 The first message also MUST have an entry in the adroidBirth array for up to 128 of the entries in
its VolumeFileTable. The value of that entry in the adroidBirth field MUST be that of the FileID
from the FileInformation for that entry in the VolumeFileTable. If all of the VolumeFileTables are
empty, the client MUST pass NULL for the value of the adroidBirth field of the message (and zero
for the corresponding cSources field).

 If there are more than 128 entries in the VolumeFileTables, and the previous message is

successful (as defined in section 3.2.4.1), the client MUST repeat the previous step, followed by
this step. Note that by this definition, subsequent to the first message, the avoid field of each
message will be NULL (and the cVolumes field zero).

See section 3.1.4.3 for information on the server processing of the REFRESH message. See section

3.2.4.2 for information on the client's completion of that message.

3.2.5.3 FrequentMaintenanceTimer Expiration

When the FrequentMaintenanceTimer expires, the client takes the following actions.

If the VolumeState field of the VolumeInformation of any entry in the ClientVolumeTable is in the
NotOwned state, and if the EnterNotOwnedTime field for that volume is more than 7 days prior to
the current time, then the VolumeState field MUST be updated to a value of NotCreated, and the

EnterNotOwnedTime field MUST be cleared.

If the VolumeState field of the VolumeInformation of any of the entries in the ClientVolumeTable is
NotOwned or NotCreated and the VolumeTableQuotaExceeded field is not set, then the client MUST
attempt to synchronize the volume(s) with the server by sending a SYNC_VOLUMES message to the
server.

A SYNC_VOLUMES message is sent to the server by using a LnkSvrMessage request, as defined in

section 3.1.4.1. In this request, the following fields MUST be set in the TRKSVR_MESSAGE_UNION
parameter:

 The MessageType field MUST be set to SYNC_VOLUMES.

 The Priority field MUST be set to 6.

The TRKSVR_CALL_SYNC_VOLUMES structure of this request MUST have a TRKSVR_SYNC_VOLUME
entry for each volume that is in the NotCreated or NotOwned state, where the SyncType field is set
as follows:

 If the volume is in the NotCreated state, the SyncType field of the TRKSVR_SYNC_VOLUME
structure MUST be set to CREATE_VOLUME. This is termed a CREATE_VOLUME subrequest.

 If the volume is in the NotOwned state, the SyncType field MUST be set to CLAIM_VOLUME. This

is termed a CLAIM_VOLUME subrequest.

Unless otherwise specified, all fields of each TRKSVR_SYNC_VOLUME structure MUST be set to all
zeros.

For a CLAIM_VOLUME subrequest, the client MUST specify the fields of the TRKSVR_SYNC_VOLUME

structure as follows:

 volume: This field MUST be set to the value of the VolumeID from the volume's
VolumeInformation.

46 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 secretOld: This field MUST be set to the value of the VolumeSecret from the volume's
VolumeInformation.

 secret: This field MUST be set to a new VolumeSecret generated randomly by the client.

(See section 3.1.4.4.1 for information on the server processing of a CLAIM_VOLUME subrequest. See

section 3.2.4.4.1 for information on the client's completion of this subrequest.)

For a CREATE_VOLUME subrequest, the client MUST specify fields of the TRKSVR_SYNC_VOLUME
structure as follows:

 secret: This field MUST be set to a new VolumeSecret generated randomly by the client.

(See section 3.1.4.4.4 for information on the server processing of a CREATE_VOLUME subrequest. See
section 3.2.4.4.4 for information on the client's completion of this subrequest.)

3.2.5.4 InfrequentMaintenanceTimer Expiration

When the InfrequentMaintenanceTimer expires, the client MUST synchronize its ClientVolumeTable
with the server as follows:

The client MUST send a SYNC_VOLUMES message request to the server. This is sent by calling

LnkSvrMessage with a MessageType in the TRKSVR_MESSAGE_UNION (see section 2.2.12) of
SYNC_VOLUMES, and a Priority value of zero.

In this message, the TRKSVR_CALL_SYNC_VOLUMES array (described in section 2.2.12.3) MUST have
a TRKSVR_SYNC_VOLUME entry for each volume in the client's ClientVolumeTable. In each
TRKSVR_SYNC_VOLUME structure:

 The SyncType field MUST be set to QUERY_VOLUME.

 The volume field MUST be set to the VolumeID from the VolumeInformation for that volume.

 The seq field MUST be set to the VolumeSequenceNumber from the VolumeInformation for that

volume.

 All other fields MUST be set to all zeros.

See section 3.1.4.4.3 for the server processing of that subrequest. See section 3.2.4.4.3 for the
client's completion of that subrequest.

After the completion of this message, as defined in section 3.2.4.4.3, the client MUST also

subsequently do the following:

 Set the VolumeTableQuotaExceeded flag in the VolumeInformation for all entries of the
ClientVolumeTable to False, and set the FileTableQuotaExceeded flag to False.

 Carry out the same steps as the steps performed for the FrequentMaintenanceTimer.

If any of the client's MoveNotificationCursor values are set, the client MUST attempt to send one or
more MOVE_NOTIFICATION requests, as specified in section 3.2.6.1.

3.2.5.5 DeleteNotificationTimer Expiration

When the DeleteNotificationTimer expires, if there are entries in the PendingDeleteNotificationList, the
client MUST send the server notifications of those deleted files. See section 3.2.6.2 for more
information about the PendingDeleteNotificationList. This MUST be sent to the server in a
DELETE_NOTIFY message, which is part of a LnkSvrMessage request, as defined in section 3.1.4.1. In

this request, the MessageType of the TRKSVR_MESSAGE_UNION parameter (see section 2.2.12)
MUST be set to DELETE_NOTIFY, and the Priority field MUST be set to 5.

47 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If, at the time the client is to send the notification, it has multiple notifications to send, then the client
MUST send a batch of as many notifications as possible, up to 32 notifications, in a single message

(see section 2.2.12.4 for a description of the TRKSVR_CALL_DELETE structure). As described in
section 3.2.4.4, if there are more than 32 entries in the PendingDeleteNotificationList, the client

attempts to send repeated messages, so that a notification for each entry in the list is sent to the
server.

In each DELETE_NOTIFY message, the client MUST specify the fields in the TRKSVR_CALL_DELETE
structure used in this request as follows:

adroidBirth: A list of up to 32 FileIDs from the PendingDeleteNotificationList for files that have been
deleted.

pVolumes: Reserved; this value MUST be set to a NULL pointer.

See section 3.1.4.5 for information on the server processing of this message. See section 3.2.4.4 for
information on the client's completion of this message.

3.2.5.6 MoveNotificationTimer Expiration

When the timer expires, this expiration indicates to the client to check its tables to determine whether
it is necessary to send file move notifications to the server by using a MOVE_NOTIFICATION message.

However, if the FileTableQuotaExceeded flag is set, the client MUST NOT perform any further
processing defined in this section.

If the MoveNotificationVolumeCursor is not set, the client MUST set it to reference the first entry in the
ClientVolumeTable.

Starting with the volume indicated by the MoveNotificationVolumeCursor, the client MUST find the first

volume from the ClientVolumeTable that has a MoveNotificationList with a MoveNotificationCursor set,
and whose VolumeState is set to Owned. If there is no such volume, then the client MUST clear the
MoveNotificationVolumeCursor, and MUST NOT perform any further processing defined in this section.
If there is such a volume, the MoveNotificationVolumeCursor MUST be updated to reference that entry

in the ClientVolumeTable.

The client MUST send a MOVE_NOTIFICATION message to the server, using a LnkSvrMessage request,

as defined in section 3.2.4.2. In this request, the MessageType of the TRKSVR_MESSAGE_UNION
parameter (see section 2.2.12) MUST be set to MOVE_NOTIFICATION, and the Priority field MUST be
set to 0. The client MUST also specify the following fields in the TRKSVR_CALL_MOVE_NOTIFICATION
structure used in this request:

 seq: This field MUST be set to the value of the VolumeSequenceNumber from the
VolumeInformation for the volume identified by the MoveNotificationVolumeCursor.

 fForceSeqNumber: This field MUST be set to zero, unless otherwise specified in section 3.2.4.2.

 pvolid: The field MUST be set to VolumeID from the VolumeInformation for the volume identified
by the MoveNotificationVolumeCursor.

 rgobjidCurrent: This field MUST be set to a list of up to 32 ObjectIDs taken from the first entries
of the MoveNotificationList.

 rgdroidBirth: This field MUST be set to a list of up to 32 FileIDs, taken from the entries of the
MoveNotificationList that correspond to the values in the rgobjidCurrent field.

 rgdroidNew: This field MUST be set to a list of up to 32 FileLocations taken from the entries of

the MoveNotificationList that correspond to the values in the rgobjidCurrent and rgdroidBirth
fields.

48 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 cProcessed: This field MUST be set to zero.

See section 3.1.4.2 for information about the server processing of this message. See section 3.2.4.2

for information about the client's completion of this request.

3.2.6 Other Local Events

3.2.6.1 A File Has Been Moved

When a file in the client's VolumeFileTable is moved to the VolumeFileTable of the same client or of a
different client, the following steps MUST be performed:

 An entry MUST be created in the MoveNotificationList for the volume on which the file was located
before the move, as defined in section 3.2.1, and the following information about the moved file
MUST be put into that entry: the file's ObjectID before the move, the file's FileID, and the file's
FileLocation after the move.

 The MoveNotificationTimer for that client MUST be started (if it is not already running).

 An entry MUST be created in the VolumeFileTable for the volume to which the file was moved.

 The CrossVolumeMoveFlag MUST be set to 1 in that entry.

3.2.6.2 A File Has Been Deleted

If a file in a VolumeFileTable is deleted, the file's CrossVolumeMoveFlag value is set to 1, and the
PrePendingDeleteNotificationList has no more than 5000 entries in it, then the file's FileID MUST be
added to the PrePendingDeleteNotificationList. If the DeleteNotificationTimer is not already running, it
MUST be started.

3.2.6.3 A File Cannot Be Found

When a file has been moved, and the client wants to find it again, it MUST send a SEARCH message to
the server. This message is sent to the server by using a LnkSvrMessage request, as defined in
section 3.1.4.1, which specifies a MessageType in the TRKSVR_MESSAGE_UNION of SEARCH and a
Priority value of zero.

The client MUST also specify the following fields in the TRK_FILE_TRACKING_INFORMATION structure

used in this request:

 The droidBirth field MUST be set to the FileID of the file that is being sought.

 The droidLast field MUST be set to the last known FileLocation for the file.

 The mcidLast field MUST be set to zero.

 The hr field MUST be set to zero.

For example, these droidBirth and droidLast values could come from the FileLinkInformation
maintained by a client of the Distributed Link Tracking: Workstation Protocol, as specified in [MS-

DLTW] section 3.2.1.

See section 3.1.4.6 for information about the server processing of this message. See section 3.2.4.5
for the client's completion of this message.

49 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.6.4 A Volume Cannot Be Found

When a client needs to determine the MachineID for a given VolumeID, the client MUST use the
FIND_VOLUME message. This message MUST be sent to the server by using a LnkSvrMessage

request, as defined in 3.1.4.1. In that request, the client MUST specify a MessageType in the
TRKSVR_MESSAGE_UNION of SYNC_VOLUMES, set the Priority value to zero, and set the SyncType
field within the TRKSVR_CALL_SYNC_VOLUMES structure to FIND_VOLUME.

For example, this request might be sent if a client is searching for a file and received a
TRK_E_REFERRAL error from the LnkSearchMachine call to a DLT Workstation server (as specified in
[MS-DLTW]), and where a call to the DLT Central Manager returned TRK_E_NOT_FOUND. The client
might then use the VolumeID component of the fileLocationNext parameter of that request in a

FIND_VOLUME request as the volume field.

The client MUST also specify the following field in the TRKSVR_SYNC_VOLUME structure:

 The volume field MUST be set to the VolumeID whose MachineID is desired.

 All other fields of the TRKSVR_SYNC_VOLUME structure MUST be set to all zeros.

See section 3.1.4.4.2 for information about the server processing of this subrequest. See section
3.2.4.4.2 for information about the client's completion of this subrequest.

3.2.6.5 The Client Changes Domains

As defined in section 3.2.3, a client uses a server that is running on a DC in the client's domain. If the
client enters a new domain, it MUST restart the VolumeInitializationTimer if that timer is not already
running or if that timer is performing retry operations, as described in section 3.2.5.1. Also, for any of

the client's volumes for which the VolumeState field of the VolumeInformation is set to Owned, the
VolumeState MUST be changed to NotOwned.

3.2.6.6 A New Volume is Discovered

During initialization, as defined in section 3.2.3, the client discovers volumes to be added to the

ClientVolumeTable. The client MAY<14> also discover such volumes after initialization.

When a volume is added to the ClientVolumeTable, if there is no VolumeInformation associated with
the volume, the VolumeInformation MUST<15> be initialized. The VolumeInformation for that volume
MUST be initialized as follows:

 The VolumeID field MUST be set to a GUID that is a valid VolumeID value. That is, the
VolumeID field MUST be set to a value with a low statistical likelihood of being duplicated, as

defined in section 1.1, such that it is unique across the volumes on the current machine, does not
consist of all zeros, and has a low order bit of the first byte at zero.

 The VolumeSecret field MUST be initialized to all zeros.

 The VolumeSequenceNumber field MUST be initialized to zero.

 The VolumeOwner field MUST be set to the MachineID of the current machine.

 The VolumeTableQuotaExceeded field flag MUST be initialized to False.

 The VolumeState field MUST be initialized to NotCreated, and the EnterNotOwnedTime field

MUST be left unset.

Additionally, in this case, the client MUST clear the VolumeFileTable.

If, during initialization, the VolumeInformation associated with the volume does exist but the
VolumeOwner field is not the current machine's MachineID, then the VolumeInformation requires an

50 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

update. This situation can happen, for example, if a volume is physically moved between machines.
The client MUST do the following:

 The VolumeOwner field MUST be set to the current machine's MachineID.

 If the VolumeState field is set to Owned, it MUST be updated to NotOwned, and the

EnterNotOwnedTime field MUST be set to the current time.

51 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

This example shows a sample call, following the example specified in section 1.3, with IDs set as
follows:

 O1: 6479f083cfb245c29c713f586d6e038f

 V1: 9d7e9c15f59b4cf9952b03616aa51ebe

 O3: 20e435b512f64c848a1acd8737359b24

 V3: 61ac933f7d2546149715c9d928b23f5e

 M3: ef073687d9984f8c974b0d7e9a4bba48

The client sends a LnkSvrMessage message with a TRKSVR_CALL_SEARCH structure as follows.

 typedef struct {
 TRKSVR_MESSAGE_TYPE MessageType = SEARCH;
 TRKSVR_MESSAGE_PRIORITY Priority = PRI_9;

 [switch_is(MessageType)] union {
 ...
 [case (SEARCH)]
 TRKSVR_CALL_SEARCH Search = {see below};
 };

 [string] TCHAR *ptszMachineID = NULL;
 } TRKSVR_MESSAGE_UNION;

 typedef struct {
 [range(1,1)] unsigned long cSearch = 1;
 [size_is(cSearch)] TRK_FILE_TRACKING_INFORMATION *rgSearch =
 {see below};
 } TRKSVR_CALL_SEARCH;

 typedef struct {
 CDomainRelativeObjId droidBirth= {
 9d7e9c15f59b4cf9952b03616aa51ebe,
 6479f083cfb245c29c713f586d6e038f };
 CDomainRelativeObjId droidLast = {
 irrelevant, filled in by server};
 CMachineId mcidLast = {
 irrelevant, filled in by server};
 HRESULT hr = {
 irrelevant, filled in by server};
 } TRK_FILE_TRACKING_INFORMATION;

The server looks up the specified FileID, finds an entry in its database, returns zero from the
LnkSvrMessage method, with the TRKSVR_MESSAGE_UNION and TRKSVR_CALL_SEARCH wrapper left
unmodified and the embedded TRK_FILE_TRACKING_INFORMATION updated as follows.

 typedef struct {
 CDomainRelativeObjId droidBirth = {
 9d7e9c15f59b4cf9952b03616aa51ebe,
 6479f083cfb245c29c713f586d6e038f };
 CDomainRelativeObjId droidLast = {
 61ac933f7d2546149715c9d928b23f5e,
 20e435b512f64c848a1acd8737359b24 };
 CMachineId mcidLast = {
 ef073687d9984f8c974b0d7e9a4bba48 };
 HRESULT hr = 0;

52 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 } TRK_FILE_TRACKING_INFORMATION;

53 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

5.1 Security Considerations for Implementers

There are no special security considerations for implementers.

5.2 Index of Security Parameters

Security parameter Section

Authenticated users group 3.1.4.1

Authentication service parameters 3.1.3 and 3.2.3

54 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided as follows, where "ms-dtyp.idl" is the IDL found in
[MS-DTYP], Appendix A.

 import "ms-dtyp.idl";
 import "ms-dltw.idl";

 typedef signed long SequenceNumber;

 typedef struct CObjId {
 GUID _object;
 } CObjId;

 typedef struct CVolumeId {
 GUID _volume;
 } CVolumeId;

 typedef struct CMachineId {
 char _szMachine[16];
 } CMachineId;

 typedef struct CDomainRelativeObjId {
 CVolumeId _volume;
 CObjId _object;
 } CDomainRelativeObjId;

 typedef struct CVolumeSecret {
 byte _abSecret[8];
 } CVolumeSecret;

 typedef struct {
 WCHAR tszFilePath[257];
 CDomainRelativeObjId droidBirth;
 CDomainRelativeObjId droidLast;
 HRESULT hr;
 } old_TRK_FILE_TRACKING_INFORMATION; // Unused

 typedef struct {
 CDomainRelativeObjId droidBirth;
 CDomainRelativeObjId droidLast;
 CMachineId mcidLast;
 HRESULT hr;
 } TRK_FILE_TRACKING_INFORMATION;

 typedef struct {
 unsigned long cSearch;
 [size_is(cSearch)]
 old_TRK_FILE_TRACKING_INFORMATION *pSearches;
 } old_TRKSVR_CALL_SEARCH; // Unused

55 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef struct {
 unsigned long cSearch;
 [size_is(cSearch)]
 TRK_FILE_TRACKING_INFORMATION *pSearches;
 } TRKSVR_CALL_SEARCH;

 typedef struct {
 unsigned long cNotifications;
 unsigned long cProcessed;
 SequenceNumber seq;
 long fForceSeqNumber;
 CVolumeId *pvolid;
 [size_is(cNotifications)]
 CObjId *rgobjidCurrent;
 [size_is(cNotifications)]
 CDomainRelativeObjId *rgdroidBirth;
 [size_is(cNotifications)]
 CDomainRelativeObjId *rgdroidNew;
 } TRKSVR_CALL_MOVE_NOTIFICATION;

 typedef struct {
 unsigned long cSources;
 [size_is(cSources)]
 CDomainRelativeObjId *adroidBirth;
 unsigned long cVolumes;
 [size_is(cVolumes)]
 CVolumeId *avolid;
 } TRKSVR_CALL_REFRESH;

 typedef struct {
 unsigned long cdroidBirth;
 [size_is(cdroidBirth)]
 CDomainRelativeObjId * adroidBirth;
 unsigned long cVolumes;
 [size_is(cVolumes)]
 CVolumeId *pVolumes;
 } TRKSVR_CALL_DELETE;

 typedef [v1_enum] enum {
 CREATE_VOLUME = 0,
 QUERY_VOLUME = 1,
 CLAIM_VOLUME = 2,
 FIND_VOLUME = 3,
 TEST_VOLUME = 4, // Unused
 DELETE_VOLUME = 5 // Unused
 } TRKSVR_SYNC_TYPE;

 typedef struct {
 HRESULT hr;

 TRKSVR_SYNC_TYPE SyncType;
 CVolumeId volume;
 CVolumeSecret secret;
 CVolumeSecret secretOld;
 SequenceNumber seq;
 FILETIME ftLastRefresh;
 CMachineId machine;
 } TRKSVR_SYNC_VOLUME;

56 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef struct {
 unsigned long cVolumes;
 [size_is(cVolumes)]
 TRKSVR_SYNC_VOLUME * pVolumes;
 } TRKSVR_CALL_SYNC_VOLUMES;

 typedef struct {
 unsigned long cSyncVolumeRequests, ;
 unsigned long cSyncVolumeErrors;
 unsigned long cSyncVolumeThreads;
 unsigned long cCreateVolumeRequests, ;
 unsigned long cCreateVolumeErrors;
 unsigned long cClaimVolumeRequests, ;
 unsigned long cClaimVolumeErrors;
 unsigned long cQueryVolumeRequests, ;
 unsigned long cQueryVolumeErrors;
 unsigned long cFindVolumeRequests, ;
 unsigned long cFindVolumeErrors;
 unsigned long cTestVolumeRequests, ;
 unsigned long cTestVolumeErrors;
 unsigned long cSearchRequests, ;
 unsigned long cSearchErrors, ;
 unsigned long cSearchThreads;
 unsigned long cMoveNotifyRequests, ;
 unsigned long cMoveNotifyErrors;
 unsigned long cMoveNotifyThreads;
 unsigned long cRefreshRequests, ;
 unsigned long cRefreshErrors, ;
 unsigned long cRefreshThreads;
 unsigned long cDeleteNotifyRequests, ;
 unsigned long cDeleteNotifyErrors;
 unsigned long cDeleteNotifyThreads;
 unsigned long ulGCIterationPeriod;
 FILETIME ftLastSuccessfulRequest;
 HRESULT hrLastError;
 unsigned long dwMoveLimit;
 long lRefreshCounter;
 unsigned long dwCachedVolumeTableCount;
 unsigned long dwCachedMoveTableCount;
 FILETIME ftCacheLastUpdatedftCachedLastUpdated;
 long fIsDesignatedDc;
 FILETIME ftNextGC;
 FILETIME ftServiceStart;
 unsigned long cMaxRpcThreads, cAvailableRpcThreadscMaxRPCThreads;
 unsigned long cLowestAvailableRpcThreadscAvailableRPCThreads;
 unsigned long cLowestAvailableRPCThreads;
 unsigned long cNumThreadPoolThreads,;
 unsigned long cMostThreadPoolThreads;
 short cEntriesToGC;
 short cEntriesGCed;
 short cMaxDsWriteEvents;
 short cCurrentFailedWrites;
 struct {
 unsigned long dwMajor;
 unsigned long dwMinor;
 unsigned long dwBuildNumber;
 } Version;
 } TRKSVR_STATISTICS;

 typedef struct {
 unsigned long dwParameter;
 unsigned long dwNewValue;
 } TRKWKS_CONFIG;

57 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef [v1_enum] enum {
 old_SEARCH,
 MOVE_NOTIFICATION = 1,
 REFRESH = 2,
 SYNC_VOLUMES = 3,
 DELETE_NOTIFY = 4,
 STATISTICS = 5,
 SEARCH = 6,
 WKS_CONFIG, // Unused
 WKS_VOLUME_REFRESH // Unused
 } TRKSVR_MESSAGE_TYPE;

 typedef [v1_enum] enum {
 PRI_0=0,
 PRI_1=1,
 PRI_2=2,
 PRI_3=3,
 PRI_4=4,
 PRI_5=5,
 PRI_6=6,
 PRI_7=7,
 PRI_8=8,
 PRI_9=9
 } TRKSVR_MESSAGE_PRIORITY;

 typedef struct {
 TRKSVR_MESSAGE_TYPE MessageType;
 TRKSVR_MESSAGE_PRIORITY Priority;
 [switch_is(MessageType)] union {
 [case (old_SEARCH)]
 old_TRKSVR_CALL_SEARCH old_Search; // Unused
 [case (MOVE_NOTIFICATION)]
 TRKSVR_CALL_MOVE_NOTIFICATION MoveNotification;
 [case (REFRESH)]
 TRKSVR_CALL_REFRESH Refresh;
 [case (SYNC_VOLUMES)]
 TRKSVR_CALL_SYNC_VOLUMES SyncVolumes;
 [case (DELETE_NOTIFY)]
 TRKSVR_CALL_DELETE Delete;
 [case (STATISTICS)]
 TRKSVR_STATISTICS Statistics;
 [case (SEARCH)]
 TRKSVR_CALL_SEARCH Search;
 [case (WKS_CONFIG)]
 TRKWKS_CONFIG WksConfig; // Unused
 [case (WKS_VOLUME_REFRESH)]
 unsigned long WksRefresh; // Unused
 };
 [string] WCHAR *ptszMachineID; // Unused
 } TRKSVR_MESSAGE_UNION;

 [
 uuid(4da1c422-943d-11d1-acae-00c04fc2aa3f),
 version(1.0),
 pointer_default(unique)
]

 interface trksvr {
 HRESULT
 LnkSvrMessage (
 [in] handle_t IDL_handle,
 [in, out] TRKSVR_MESSAGE_UNION * pMsg
);

58 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [callback]
 HRESULT
 LnkSvrMessageCallback(
 [in, out] TRKSVR_MESSAGE_UNION * pMsg
);
 }

59 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows 2000 operating system

 Windows Server 2003 operating system

 Windows XP operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or

SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 1.3: All versions of Windows listed in the supported products list in Appendix B: Product
Behavior: The user on M0 indicates a desire to keep information about F1.txt by creating a Shell
shortcut. The Shell shortcut is a file stored on M0 that holds the UNC, MachineID, FileLocation, and
FileID for F1.txt.

<2> Section 1.3: All versions of Windows listed in the supported products list in Appendix B: Product

Behavior: The user initiates a request to open the file by activating the Shell shortcut that was created
to store information about the file, F1.txt.

<3> Section 1.3: All versions of Windows listed in the supported products list in Appendix B: Product
Behavior: After storing the new FileLocation and UNC in the Shell shortcut file, the Shell shortcut
implementation opens the file; for example, the shortcut implementation loads the file into the
Notepad program. None of this processing is visible to end users. End users simply activate the Shell

shortcut by double-clicking it, and then view the contents of the file in Notepad.

<4> Section 3.1.4.1: Windows Server 2003 implements this restriction.

<5> Section 3.1.4.1: All versions of Windows listed in the supported products list in Appendix B:
Product Behavior: When the server is busy processing several requests, it uses the priority field to
determine which requests to process and which requests to reject with a TRK_E_SERVER_TOO_BUSY
return value.

<6> Section 3.1.4.1: For example, in all versions of Windows listed in the supported products list in

Appendix B: Product Behavior, the RequestMachine is determined as follows:

 The client identity is obtained, as described in [MS-RPCE], section 3.3.3.4.3, and the client identity
is used to obtain the user principal name (UPN).

 That client identity is used to access the client's user object, described in section 3.1.1.

 If that user object has a UserAccountControl with neither UF_SERVER_TRUST_ACOUNT nor
UF_WORKSTATION_TRUST_ACCOUNT set, or if the user account name of the UPN does not end in
a dollar sign ($), the request fails. For more information on the user object and

UserAccountControl, see section 3.1.1.

 The post-fix dollar sign ($) is removed from the user account name of the UPN, and then the
name is used as the value of the RequestMachine.

60 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<7> Section 3.1.4.4: Windows 2000: The protocol uses the LnkSvrMessageCallback to return
information to the client if the SYNC_VOLUMES request includes a CREATE_VOLUME subrequest.

Windows Server 2003: The callback is not used; information is provided to the client on return from
the LnkSvrMessage request.

<8> Section 3.1.4.4.3: All versions of Windows listed in the supported products list in Appendix B:
Product Behavior: The server sets the ftLastRefresh field of the structure with the value of the
RefreshTime from the volume's entry in the ServerVolumeTable. But as specified in section
3.2.4.4.3, the client does not process this value.

<9> Section 3.1.5: All versions of Windows listed in the supported products list in Appendix B:
Product Behavior: This behavior is performed. If there are multiple instances of the server running,
because there are multiple DCs in the domain, this behavior is only performed by one instance.

<10> Section 3.2.1: All versions of Windows listed in the supported products list in Appendix B:
Product Behavior: All local, compatible volumes are initialized, up to 26 volumes. If there are more
than 26 compatible volumes, 26 are chosen arbitrarily (the first 26 compatible volumes returned by

FindFirstVolume as described in [MSDN-FNDFSTVOL] and FindNextVolume as described in[MSDN-
FNDNXTVOL]).

A volume is considered compatible if all of the following are true:

 The volume is formatted with the NTFS file system.

 The file system supports ObjectIDs.

This is determined by using the GetVolumeInformation request, and checking in the
lpFileSystemFlags parameter to GetVolumeInformation that the FILE_SUPPORTS_OBJECT_IDS flag
is set. For more information on the GetVolumeInformation request, see [MSDN-GETVOLINFO].

 The volume is nonremovable.

This is determined by using the GetDriveType request, and checking that the return value is

DRIVE_FIXED. For more information on the GetDriveType request, see [MSDN-GETDRIVETYPE].

<11> Section 3.2.1: All versions of Windows listed in the supported products list in Appendix B:
Product Behavior: The client maintains 10,000 entries in this list. When this list is its maximum size,
and a new entry is to be added, the entry is added such that it replaces the oldest entry in the list.

<12> Section 3.2.1: All versions of Windows listed in the supported products list in Appendix B:
Product Behavior: A file is considered to be part of the VolumeFileTable if it has an ObjectID. For
example, a file has an ObjectID if a FSCTL_CREATE_OR_GET_OBJECT_ID request ([MS-FSCC], section

2.3.1) is successfully processed for the file. This request is sent for a file if a Shell Link is created for
it. For more information on Shell Links, see [MSDN-SHELLLINKS].

<13> Section 3.2.3: All versions of Windows listed in the supported products list in Appendix B:
Product Behavior: All local, compatible volumes are initialized, up to 26 volumes. If there are more
than 26 compatible volumes, 26 are chosen arbitrarily (the first 26 compatible volumes returned by
FindFirstVolume as described in [MSDN-FNDFSTVOL] and FindNextVolume as described in[MSDN-

FNDNXTVOL]).

A volume is considered compatible if all of the following are true:

 The volume is formatted with the NTFS file system.

 The file system supports ObjectIDs.

This is determined using the GetVolumeInformation request, and checking in the
lpFileSystemFlags parameter to GetVolumeInformation that the FILE_SUPPORTS_OBJECT_IDS flag
is set. For more information on the GetVolumeInformation request, see [MSDN-GETVOLINFO].

61 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The volume is nonremovable.

This is determined using the GetDriveType request, and checking that the return value is

DRIVE_FIXED. For moreinformation on the GetDriveType request, see [MSDN-GETDRIVETYPE].

<14> Section 3.2.6.6: All versions of Windows listed in the supported products list in Appendix B:

Product Behavior: As new, compatible volumes become available on the local computer, they are
added to the ClientVolumeTable.

<15> Section 3.2.6.6: All versions of Windows listed in the supported products list in Appendix B:
Product Behavior: The VolumeInformation information is physically stored on the volume. So if a
volume is reformatted such that there is no data on the volume, there will be no VolumeInformation
table associated with that volume.

62 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

63 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

9 Index

A

Abstract data model
 client 35
 server 25
Applicability 12

C

Capability negotiation 13
Change tracking 62
CLAIM_VOLUME (section 3.1.4.4.1 31, section 3.2.4.4.1 42)
Client
 abstract data model 35
 DELETE_NOTIFY message 43
 deleted files 48
 DeleteNotificationTimer expiration 46
 FrequentMaintenanceTimer expiration 45

 InfrequentMaintenanceTimer expiration 46
 initialization 39
 local events 48
 message processing 39
 MOVE_NOTIFICATION message 40
 moved files 48
 MoveNotificationTimer expiration 47
 not found files 48
 not found volume 49
 REFRESH message 42
 RefreshTimer expiration 44
 SEARCH message 44
 sequencing rules 39
 SYNC_VOLUMES message 42
 timer events 44
 timers 37
 VolumeInitializationTimer expiration 44
CMachineId 14
CObjId 15
Common data types 14
CREATE_VOLUME (section 3.1.4.4.4 33, section 3.2.4.4.4 43)
CVolumeId 15
CVolumeSecret structure 15

D

Data model - abstract
 client 35
 server 25
Data types - common 14
DELETE_NOTIFY message (section 3.1.4.5 34, section 3.2.4.5 43)
DeleteNotificationTimer expiration - client 46

E

Examples 51

F

Fields - vendor-extensible 13
Files
 deleted 48
 moved 48
 not found 48

64 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

FIND_VOLUME (section 3.1.4.4.2 32, section 3.2.4.4.2 43)
FrequentMaintenanceTimer expiration - client 45
Full IDL 54

G

Glossary 6

I

IDL 54
Implementer - security considerations 53

Index of security parameters 53
Informative references 9
InfrequentMaintenanceTimer expiration - client 46
Initialization
 client 39
 server 26
Introduction 6

L

LnkSvrMessage method 27
LnkSvrMessageCallback method 39
Local events
 client 48
 deleted files 48
 moved files 48
 not found files 48
 not found volume 49
 server 35

M

Message processing
 client 39
 server 27
Messages
 data types 14
 DELETE_NOTIFY message (section 3.1.4.5 34, section 3.2.4.5 43)
 MOVE_NOTIFICATION message (section 3.1.4.2 28, section 3.2.4.2 40)
 REFRESH message (section 3.1.4.3 30, section 3.2.4.3 42)
 SEARCH message (section 3.1.4.6 34, section 3.2.4.6 44)
 SYNC_VOLUMES message (section 3.1.4.4 30, section 3.2.4.4 42)
 transport 14

MOVE_NOTIFICATION message (section 3.1.4.2 28, section 3.2.4.2 40)
MoveNotificationTimer - client 47

N

Normative references 9

O

old_TRK_FILE_TRACKING_INFORMATION structure 16
old_TRKSVR_CALL_SEARCH structure 22
Other local events
 server 35
Overview 10
Overview (synopsis) 10

P

Parameters - security index 53

65 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Preconditions 12
Prerequisites 12
Product behavior 59
Protocol Details
 overview 25

Q

QUERY_VOLUME (section 3.1.4.4.3 32, section 3.2.4.4.3 43)

R

References 9
 informative 9
 normative 9
REFRESH message (section 3.1.4.3 30, section 3.2.4.3 42)
RefreshTimer expiration - client 44
Relationship to other protocols 12

S

SEARCH message (section 3.1.4.6 34, section 3.2.4.6 44)
Security
 implementer considerations 53
 parameter index 53
Sequencing rules
 client 39
 server 27
Server
 abstract data model 25
 DELETE_NOTIFY message 34
 initialization 26
 local events 35
 message processing 27
 MOVE_NOTIFICATION message 28
 other local events 35
 REFRESH message 30
 SEARCH message 34
 sequencing rules 27
 SYNC_VOLUMES message 30
 timer events 35
 timers 26
Standards assignments 13
SYNC_VOLUMES message (section 3.1.4.4 30, section 3.2.4.4 42)

T

Timer events
 client 44
 server 35
Timers
 client 37
 server 26
Tracking changes 62
Transport 14
TRK_FILE_TRACKING_INFORMATION structure 15
TRKSVR_CALL_DELETE structure 20
TRKSVR_CALL_MOVE_NOTIFICATION structure 19
TRKSVR_CALL_REFRESH structure 20
TRKSVR_CALL_SEARCH structure 22
TRKSVR_CALL_SYNC_VOLUMES structure 20
TRKSVR_MESSAGE_PRIORITY enumeration 16
TRKSVR_MESSAGE_TYPE enumeration 17
TRKSVR_MESSAGE_UNION structure 17
TRKSVR_STATISTICS structure 21

66 / 66

[MS-DLTM-Diff] - v20160714
Distributed Link Tracking: Central Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

TRKSVR_SYNC_TYPE enumeration 22
TRKSVR_SYNC_VOLUME structure 23
TRKWKS_CONFIG structure 22

V

Vendor-extensible fields 13
Versioning 13
Volume - not found 49
VolumeInitializationTimer expiration - client 44

