
 

1 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

[MS-CTA]:  

Claims Transformation Algorithm 

 

Intellectual Property Rights Notice for Open Specifications Documentation 

 Technical Documentation. Microsoft publishes Open Specifications documentation for protocols, 
file formats, languages, standards as well as overviews of the interaction among each of these 
technologies.  

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other 
terms that are contained in the terms of use for the Microsoft website that hosts this 
documentation, you may make copies of it in order to develop implementations of the 

technologies described in the Open Specifications and may distribute portions of it in your 
implementations using these technologies or your documentation as necessary to properly 

document the implementation. You may also distribute in your implementation, with or without 
modification, any schema, IDL's, or code samples that are included in the documentation. This 
permission also applies to any documents that are referenced in the Open Specifications.  

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.  

 Patents. Microsoft has patents that may cover your implementations of the technologies 
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the 
documentation grants any licenses under those or any other Microsoft patents. However, a given 
Open Specification may be covered by Microsoft Open Specification Promise or the Community 

Promise. If you would prefer a written license, or if the technologies described in the Open 
Specifications are not covered by the Open Specifications Promise or Community Promise, as 
applicable, patent licenses are available by contacting iplg@microsoft.com.  

 Trademarks. The names of companies and products contained in this documentation may be 
covered by trademarks or similar intellectual property rights. This notice does not grant any 

licenses under those rights. For a list of Microsoft trademarks, visit 
www.microsoft.com/trademarks.  

 Fictitious Names. The example companies, organizations, products, domain names, e-mail 
addresses, logos, people, places, and events depicted in this documentation are fictitious. No 
association with any real company, organization, product, domain name, email address, logo, 
person, place, or event is intended or should be inferred. 

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other 
than specifically described above, whether by implication, estoppel, or otherwise.  

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming 
environments in order for you to develop an implementation. If you have access to Microsoft 
programming tools and environments you are free to take advantage of them. Certain Open 
Specifications are intended for use in conjunction with publicly available standard specifications and 
network programming art, and assumes that the reader either is familiar with the aforementioned 

material or has immediate access to it. 

Preliminary Documentation. This Open Specification provides documentation for past and current 

releases and/or for the pre-release version of this technology. This Open Specification is final 
documentation for past or current releases as specifically noted in the document, as applicable; it is 
preliminary documentation for the pre-release versions. Microsoft will release final documentation in 
connection with the commercial release of the updated or new version of this technology. As the 
documentation may change between this preliminary version and the final version of this technology, 
there are risks in relying on preliminary documentation. To the extent that you incur additional 

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks


 

2 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

development obligations or any other costs as a result of relying on this preliminary documentation, 
you do so at your own risk. 



 

3 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

Revision Summary 

Date 
Revision 
History 

Revision 
Class Comments 

12/16/2011 1.0 New Released new document. 

3/30/2012 1.0 None No changes to the meaning, language, or formatting of the 
technical content. 

7/12/2012 1.0 None No changes to the meaning, language, or formatting of the 
technical content. 

10/25/2012 1.0 None No changes to the meaning, language, or formatting of the 
technical content. 

1/31/2013 2.0 Major Significantly changed the technical content. 

8/8/2013 3.0 Major Significantly changed the technical content. 

11/14/2013 3.0 None No changes to the meaning, language, or formatting of the 
technical content. 

2/13/2014 3.0 None No changes to the meaning, language, or formatting of the 
technical content. 

5/15/2014 3.0 None No changes to the meaning, language, or formatting of the 
technical content. 

6/30/2015 4.0 Major Significantly changed the technical content. 



 

4 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

Table of Contents 

1 Introduction ............................................................................................................ 5 
1.1 Glossary ........................................................................................................... 5 
1.2 References ........................................................................................................ 5 

1.2.1 Normative References ................................................................................... 6 
1.2.2 Informative References ................................................................................. 6 

1.3 Overview .......................................................................................................... 6 
1.4 Relationship to Protocols and Other Algorithms ...................................................... 6 
1.5 Applicability Statement ....................................................................................... 6 
1.6 Standards Assignments ....................................................................................... 6 

2 Algorithm Details..................................................................................................... 7 
2.1 Claims Transformation Algorithm Details ............................................................... 7 

2.1.1 Abstract Data Model ...................................................................................... 7 
2.1.2 Data Structures ............................................................................................ 8 
2.1.3 Initialization ................................................................................................. 8 
2.1.4 Processing Rules ........................................................................................... 9 

2.1.4.1 Claims Transformation Rules Language Syntax ........................................... 9 
2.1.4.1.1 Language Terminals ........................................................................... 9 
2.1.4.1.2 Language Syntax ............................................................................. 10 

2.1.4.2 Claims Transformation Rules Syntax Evaluation ........................................ 11 
2.1.4.3 Claims Transformation Rules Processing .................................................. 12 

2.1.4.3.1 Rule_set ......................................................................................... 13 
2.1.4.3.2 Rule ............................................................................................... 14 
2.1.4.3.3 Conditions ...................................................................................... 14 
2.1.4.3.4 Sel_condition .................................................................................. 14 
2.1.4.3.5 Opt_cond_list.................................................................................. 14 
2.1.4.3.6 Cond .............................................................................................. 15 
2.1.4.3.7 Rule_action .................................................................................... 16 
2.1.4.3.8 Claim_copy ..................................................................................... 16 
2.1.4.3.9 Claim_new ..................................................................................... 16 
2.1.4.3.10 Processing End ................................................................................ 16 

3 Algorithm Examples .............................................................................................. 17 
3.1 Processing "Allow All Claims" Rule ...................................................................... 17 
3.2 Processing "Deny Some Claims" Rule .................................................................. 17 
3.3 Processing "Issue always" Rule .......................................................................... 17 
3.4 Processing an Invalid Rule ................................................................................. 17 

4 Security ................................................................................................................. 18 
4.1 Security Considerations for Implementers ........................................................... 18 
4.2 Index of Security Parameters ............................................................................ 18 

5 Appendix A: Product Behavior ............................................................................... 19 

6 Change Tracking .................................................................................................... 20 

7 Index ..................................................................................................................... 22 

 



 

5 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

1 Introduction 

This document specifies the Claims Transformation Algorithm, which is an algorithm to transform 
claims based on rules written in the claims transformation rules language, which is defined in this 
document as well.  

Section 2 of this specification is normative and can contain the terms MAY, SHOULD, MUST, MUST 
NOT, and SHOULD NOT as defined in [RFC2119]. Section 1.6 is also normative but does not contain 

those terms. All other sections and examples in this specification are informative.  

1.1 Glossary 

The following terms are specific to this document: 

Augmented Backus-Naur Form (ABNF): A modified version of Backus-Naur Form (BNF), 
commonly used by Internet specifications. ABNF notation balances compactness and simplicity 
with reasonable representational power. ABNF differs from standard BNF in its definitions and 

uses of naming rules, repetition, alternatives, order-independence, and value ranges. For more 
information, see [RFC5234]. 

claims transformation: The process of converting one set of claims by analyzing and filtering the 
claims and by adding new claims in order to generate a new set of claims. 

claims transformation rules language syntax: The context-free grammar expressed in ABNF 
that specifies the language used to describe the rules used in the Claims Transformation 
Algorithm. 

input claims: The set of claims provided as input to the Claims Transformation Algorithm. 

production: An individual ABNF rule in the claims transformation rules language. 

production name: The name on the left side of the production. 

single-valued claim: See claim. 

tag: A production name or a terminal from the claims transformation rules language syntax that is 
used to identify a portion of the given transformation rules. 

transformation rules: A set of rules defined according to the claims transformation rules 
language syntax that specifies how claims are transformed when the Claims Transformation 
Algorithm is invoked. 

UTF-16: A standard for encoding Unicode characters, defined in the Unicode standard, in which the 

most commonly used characters are defined as double-byte characters. Unless specified 
otherwise, this term refers to the UTF-16 encoding form specified in [UNICODE5.0.0/2007] 
section 3.9. 

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined 
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT. 

1.2 References 

Links to a document in the Microsoft Open Specifications library point to the correct section in the 
most recently published version of the referenced document. However, because individual documents 
in the library are not updated at the same time, the section numbers in the documents may not 
match. You can confirm the correct section numbering by checking the Errata.   

http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=154659
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx


 

6 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

1.2.1 Normative References 

We conduct frequent surveys of the normative references to assure their continued availability. If you 
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will 

assist you in finding the relevant information.  

[ISO/IEC-9899] International Organization for Standardization, "Programming Languages - C", 
ISO/IEC 9899:TC2, May 2005, http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf 

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt 

1.2.2 Informative References 

None. 

1.3 Overview 

This document defines the Claims Transformation Algorithm, which enables parsing, filtering, issuance 
and transformation of a set of input claims based on the input transformation rules.  

The claims transformation rules language syntax specified in this document defines the syntax 
for transformation rules. 

The Claims Transformation Algorithm essentially is a programmable transformation of claims. 

This algorithm can be summarized at a high level as follows: Validate the transformation rules using 
the claims transformation rules language syntax and transform the input claims using the 
transformation rules based on the claims transformation processing rules. 

1.4 Relationship to Protocols and Other Algorithms 

This algorithm does not depend on any other protocols or algorithms. 

1.5 Applicability Statement 

This algorithm is applicable when programmable claims transformation needs to be performed on 
claims.  

1.6 Standards Assignments 

None. 

mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89921
http://go.microsoft.com/fwlink/?LinkId=90317


 

7 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

2 Algorithm Details 

2.1 Claims Transformation Algorithm Details 

The Claims Transformation Algorithm is illustrated in the following state machine diagram, which 

consists of the following states: 

 Initialization: Initializing the internal state (section 2.1.3). 

 Claims Transformation Rules Syntax Evaluation: Validating that the given transformation rules text 
conforms to the claims transformation rules language syntax and generating transformation rules 
(section 2.1.4.2). 

 Claims Transformation Rules Processing: Transforming input claims to output claims using 

transformation rules (section 2.1.4.3). 

 Collect Output: Collecting the output claims from the transformation process. 

 

Figure 1: Claims Transformation Algorithm state machine 

The Claims Transformation Algorithm depends only on the given input per invocation and does not use 

any other state for its functioning. It maintains state only on a per-invocation basis and only for the 
duration of the invocation and does not preserve state beyond that scope. 

See the following sections for more details on the various states of the state machine. 

2.1.1 Abstract Data Model 

None. 



 

8 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

2.1.2 Data Structures 

 The following data structure definitions are applicable to the current document: 

Claim: A claim is defined as the 3-tuple of following values: 

 TYPE: The type or identifier of the claim, represented as a UTF-16 string. 

 VALUE_TYPE: The value type of the claim VALUE, represented as a UTF-16 string. 

 VALUE: A single claim value; its type depends on the VALUE_TYPE. 

This Claim is a single-valued claim. 

VALUE_TYPE:  The VALUE_TYPE field in a claim MUST have one of the following UTF-16 values or 
a case variation thereof: 

 "uint64" 

 "int64" 

 "string" 

 "boolean" 

2.1.3 Initialization 

The Claims Transformation Algorithm MUST be invoked by passing in the following parameters: 

InputClaims: A set of zero or more claims (section 2.1.2) that need to be transformed.  

InputTransformationRulesText: A set of transformation rules in UTF-16 format that define the 
transformation based on the language defined in Claims Transformation Rules Language Syntax 
(section 2.1.4.1). 

The Claims Transformation Algorithm MUST generate the following output variables: 

OutputClaims: This is a list of zero or more claims (section 2.1.2) returned by the Claims 
Transformation Algorithm when it finishes processing the given input.  

ReturnValue: This variable holds the resulting value returned by this algorithm. The possible values 
are SUCCESS to indicate successful processing and FAILURE to indicate an error during the 
processing. 

The Claims Transformation Algorithm MUST maintain state during processing in the following 
variables: 

1. InternalTransformationRules: This is the representation of InputTransformationRulesText 
generated for Claims Transformation Rules Processing. This representation MUST contain the 
following: 

1. InputTransformationRulesText 

2. An ordered, hierarchical list of tags from the claims transformation rules language syntax that 
are arranged to match the given InputTransformationRulesText and the corresponding 

matching portion of InputTransformationRulesText for each tag. 

2. InternalEvaluationContext: A list of claims on which the claims transformation rules processing 
operates. 



 

9 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

3. InternalOutputContext: A list of claims that collects the output of claims transformation rules 
processing.  

The Claims Transformation Algorithm MUST be initialized as follows: 

1. InternalTransformationRules MUST be initialized by clearing it. 

2. InternalEvaluationContext MUST be initialized by clearing it and then adding all InputClaims 
to it. 

3. InternalOutputContext MUST be initialized by clearing it. 

4. OutputClaims MUST be initialized by clearing it. 

5. ReturnValue MUST be set to SUCCESS. 

2.1.4 Processing Rules 

 The Claims Transformation Algorithm is invoked by a caller by providing InputClaims and the 
InputTransformationRulesText as indicated in Initialization (section 2.1.3). This algorithm 
continues processing until an error occurs or until successful completion. 

The Claims Transformation Algorithm consists of the following processing steps.  

1. Parse InputTransformationRulesText to validate the syntax against the claims transformation 
rules language syntax and generate InternalTransformationRules (section 2.1.4.2).  

2. If evaluation in the previous step fails, set ReturnValue to FAILURE and OutputClaims to an 
empty list and exit this algorithm. 

3. Perform processing steps detailed in Claims Transformation Rules Processing (section 2.1.4.3) on 
InternalEvaluationContext using InternalTransformationRules. 

4. If an error occurs in the previous processing, set ReturnValue to FAILURE and OutputClaims to 

an empty list and exit this algorithm. 

5. Set ReturnValue to SUCCESS, copy all the claims from the InternalOutputContext to 
OutputClaims, and exit this algorithm. 

2.1.4.1 Claims Transformation Rules Language Syntax 

 The claims transformation rules language is a context-free language defined following, using 
tokens and ABNF.  

2.1.4.1.1 Language Terminals 

The following table lists the complete set of terminal strings and associated language terminals (1) 
used in the claims transformation rules language. These definitions MUST be treated as case 

insensitive. The terminal strings MUST be encoded in UTF-16. 

String Terminal 

"=>" IMPLY 

";" SEMICOLON 

":" COLON 

"," COMMA 



 

10 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

String Terminal 

"." DOT 

"[" O_SQ_BRACKET 

"]" C_SQ_BRACKET 

"(" O_BRACKET 

")" C_BRACKET 

"==" EQ 

"!=" NEQ 

"=~" REGEXP_MATCH 

"!~" REGEXP_NOT_MATCH 

"=" ASSIGN 

"&&" AND 

"issue" ISSUE 

"type" TYPE 

"value" VALUE 

"valuetype" VALUE_TYPE 

"claim" CLAIM 

 "[_A-Za-z][_A-Za-z0-9]*" IDENTIFIER 

"\"[^\"\n]*\"" STRING 

"uint64" UINT64_TYPE 

"int64" INT64_TYPE 

"string" STRING_TYPE 

"boolean" BOOLEAN_TYPE 

 NULL 

2.1.4.1.2 Language Syntax 

The claims transformation rules language is specified here in ABNF form. This definition uses the 
terminals (1) specified in the previous section as well as new ABNF productions defined here. The 
rules MUST be encoded in UTF-16. The string comparisons MUST be treated as case insensitive. 

 Rule_set               = NULL 
                          / Rules 
 Rules                  = Rule 
                          / Rule Rules 
 Rule                   = Rule_body 
 Rule_body              = (Conditions IMPLY Rule_action SEMICOLON) 
 Conditions             = NULL 
                          / Sel_condition_list 
 Sel_condition_list     = Sel_condition 



 

11 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

                          / (Sel_condition_list AND Sel_condition) 
 Sel_condition          = Sel_condition_body 
                          / (IDENTIFIER COLON Sel_condition_body) 
 Sel_condition_body     = O_SQ_BRACKET Opt_cond_list C_SQ_BRACKET 
 Opt_cond_list          = NULL 
                          / Cond_list 
 Cond_list              = Cond 
                          / (Cond_list COMMA Cond) 
 Cond                   = Value_cond 
                          / Type_cond 
 Type_cond              = TYPE Cond_oper Literal_expr 
 Value_cond             = (Val_cond COMMA Val_type_cond) 
                          /(Val_type_cond COMMA Val_cond) 
 Val_cond               = VALUE Cond_oper Literal_expr 
 Val_type_cond          = VALUE_TYPE Cond_oper Value_type_literal 
 Claim_prop             = TYPE 
                          / VALUE 
 Cond_oper              = EQ 
                          / NEQ 
                          / REGEXP_MATCH 
                          / REGEXP_NOT_MATCH 
 Literal_expr           = Literal 
                          / Value_type_literal 
  
 Expr                   = Literal 
                          / Value_type_expr 
                          / (IDENTIFIER DOT Claim_prop) 
 Value_type_expr        = Value_type_literal 
                          /(IDENTIFIER DOT VALUE_TYPE) 
 Value_type_literal     = INT64_TYPE 
                          / UINT64_TYPE 
                          / STRING_TYPE 
                          / BOOLEAN_TYPE 
 Literal                = STRING 
 Rule_action            = ISSUE O_BRACKET Issue_params C_BRACKET 
 Issue_params           = Claim_copy 
                          / Claim_new 
 Claim_copy             = CLAIM ASSIGN IDENTIFIER 
 Claim_new              = Claim_prop_assign_list 
 Claim_prop_assign_list = (Claim_value_assign COMMA Claim_type_assign) 
                          /(Claim_type_assign COMMA Claim_value_assign) 
 Claim_value_assign     = (Claim_val_assign COMMA Claim_val_type_assign) 
                          /(Claim_val_type_assign COMMA Claim_val_assign) 
 Claim_val_assign       = VALUE ASSIGN Expr 
 Claim_val_type_assign  = VALUE_TYPE ASSIGN Value_type_expr 
 Claim_type_assign      = TYPE ASSIGN Expr       

2.1.4.2 Claims Transformation Rules Syntax Evaluation 

Syntax evaluation MUST perform the following processing: 

1. InputTransformationRulesText MUST be validated against the ABNF syntax definition of the 
claims transformation rules language to ensure conformity. Any failure MUST be considered an 
error, ReturnValue MUST be set to FAILURE, and the algorithm MUST exit. 

2. The following validation MUST be performed on InputTransformationRulesText.   

1. Each Sel_condition in Sel_condition_list either MUST use an IDENTIFIER unique among all 
IDENTIFIERS in the Sel_condition_list or MUST use no IDENTIFIER.  

2. If Rule_action contains one or more IDENTIFIERs, then each of the IDENTIFIERs MUST have 
an identical matching IDENTIFIER in the Condition in the same Rule. 

3. If either of the preceding validation steps fails, it MUST be considered an error. ReturnValue 
MUST be set to FAILURE, and the algorithm MUST exit.  



 

12 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

3. The InternalTransformationRules variable MUST be populated with 
InputTransformationRulesText. 

4. The InternalTransformationRules variable MUST be populated in a depth-first fashion with tags 
(production names and terminals (1)) and the matching portion of 

InputTransformationRulesText. 

2.1.4.3 Claims Transformation Rules Processing 

Claims transformation rules processing requires the InternalTransformationRules variable to be 

populated using InputTransformationRulesText and requires all other variables to be initialized 
(see section 2.1.3 and section 2.1.4.2).  

Claims transformation rules processing uses an additional variable called 
InternalMatchingClaimsList to store temporary data during processing. Each 
InternalMatchingClaimsList is a list of claims that matches a Sel_condition (section 2.1.4.3.4). 
InternalMatchingClaimsLists are created dynamically on a per-Rule (section 2.1.4.3.2) basis.  

The following state diagram illustrates the logical processing flow, with error handling excluded. Any 

error encountered during the claims transformation rules processing MUST set ReturnValue to 
FAILURE, and the processing MUST immediately continue from the Processing End (section 2.1.4.3.10) 
state. 



 

13 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

 

Figure 2: Claims transformation state machine 

For the purposes of this section, processing is defined as InternalTransformationRules evaluation 

on the InternalEvaluationContext or InternalTransformationRules action taken using Matching 
Claims. 

The processing MUST begin at the first tag in InternalTransformationRules and MUST proceed 
depth-first in the order in which the tags are placed. 

The processing steps for the critical tags are specified in the following subsections. Those tags not 

listed MUST be treated as if they have no processing steps and MUST be ignored during processing. 

2.1.4.3.1 Rule_set 

1. Set ReturnValue to SUCCESS. 

2. If the Rule_set is NULL, go to Processing End (section 2.1.4.3.10). 

3. Process each Rule in the Rule_set. 



 

14 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

4. Go to Processing End (section 2.1.4.3.10). 

2.1.4.3.2 Rule 

1. Processing a Rule MUST perform the necessary operations using the InternalEvaluationContext 

variable. 

2. Create as many InternalMatchingClaimsList variables as there are Sel_conditions in this Rule, 
and initialize them by clearing them. 

3.  Process the Conditions tag in this Rule. 

4.  If the Conditions evaluates to TRUE, the Rule_action in this Rule MUST be processed using all the 
n-tuples of claims generated by the Conditions. 

2.1.4.3.3 Conditions 

1. This processing step MUST evaluate to TRUE or FALSE. 

2. When Conditions evaluates to TRUE, a list of zero or more matching n-tuples of claims, where n is 
the number of Sel_conditions in the Conditions, MUST be returned. 

3. If the Conditions is NULL, the processing of this production must stop and the evaluation result 
MUST be returned as TRUE with no entries in the matching n-tuples.  

4. The following processing applies when Conditions is not NULL: 

1. When all Sel_conditions in the Conditions evaluate to TRUE, the Conditions MUST evaluate to 
TRUE; else the Conditions MUST evaluate to FALSE. 

2. Each Sel_condition MUST evaluate to TRUE when at least one claim in the 
InternalEvaluationContext matches it. 

3. The process of matching each Sel_condition MUST determine all claims in the 
InternalEvaluationContext that match it. The resulting list of matching claims MUST be 

stored in the InternalMatchingClaimsList corresponding to that Sel_condition. 

4. If Conditions evaluates to TRUE, there MUST exist an n-tuple of claims from the 
InternalEvaluationContext that matches each of the constituent "n" Sel_conditions. The n-
tuple can contain duplicate claims; that is, one claim can match one or more Sel_conditions. 

5. Evaluation of Conditions MUST determine all possible unique n-tuples of claims from the 
InternalEvaluationContext that match each of the constituent "n" Sel_conditions. 

6. Return the list of n-tuples of claims. 

2.1.4.3.4 Sel_condition 

1. This processing step MUST fill one InternalMatchingClaimsList with zero or more claims from 
the InternalEvaluationContext. If an IDENTIFIER is used in the Sel_condition, the 

InternalMatchingClaimsList MUST be tagged by the string represented by the IDENTIFIER. 

2. InternalMatchingClaimsList is filled by evaluating Opt_cond_list.  

3. If the InternalMatchingClaimsList contains zero claims, the returned evaluation result MUST be 

FALSE; else it MUST be TRUE. 

2.1.4.3.5 Opt_cond_list 



 

15 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

1. If Opt_cond_list is NULL, the InternalMatchingClaimsList MUST be filled with all the claims in 
the InternalEvaluationContext. The processing of this production MUST stop, and 

InternalMatchingClaimsList must be returned as the evaluation result. 

2. The following processing rules apply when Opt_cond_list is not NULL: 

1. The following processing MUST start from the first claim in the InternalEvaluationContext, 
and all the claims MUST be processed. 

2. If all the Conds in this Opt_cond_list evaluate to TRUE for a claim in the 
InternalEvaluationContext, the claim MUST be added to the InternalMatchingClaimsList.  

Return the InternalMatchingClaimsList as the evaluation result. 

2.1.4.3.6 Cond 

1. This processing step MUST return TRUE if a given claim matches the current Cond, and FALSE 
otherwise. 

2. The TYPE, VALUE, and VALUE_TYPE in a Cond MUST be replaced by the current claim's TYPE, 
VALUE, and VALUE_TYPE, respectively (section 2.1.2). The current claim's TYPE and VALUE_TYPE 
MUST always be treated as STRING_TYPE. The current claim's VALUE MUST be interpreted based 
on its VALUE_TYPE. 

3. The right side of Cond_oper in the Cond MUST be convertible to the same type as the operand on 
the left side of the Cond_oper; otherwise, the Cond MUST return the evaluation result as FALSE. 
Converting STRING_TYPE variables to other types MUST be performed as specified in [ISO/IEC-
9899] section 7.20.1.4. 

4. The Cond_oper in the Cond MUST be interpreted based upon the type of the operand on the left 
side of the Cond_oper, as shown in the following table. 

 INT64_TYPE UINT64_TYPE BOOLEAN_TYPE STRING_TYPE 

EQ Signed integer 
equality 
comparison. 

Unsigned integer 
equality 
comparison. 

BOOLEAN equality 
comparison. 

Unsigned integers 
MUST be interpreted 
as BOOLEAN values 
as follows: 

0 == FALSE 

(!0) == TRUE 

Case-insensitive, NULL 
terminated Unicode-
string comparison, 
excluding terminating 
NULLs for equality. 

NEQ Negation of EQ 
comparison. 

Negation of EQ 
comparison. 

Negation of EQ 
comparison. 

Negation of EQ 
comparison. 

REGEXP_MATCH Not valid. Not valid. Not valid. Regular expression 
match of NULL 
terminated Unicode 
strings. 

REGEXP_NOT_MATCH Not valid. Not valid. Not valid. Negation of 
REGEXP_MATCH. 

5. If the current processing encounters a Cond_oper and the type combination is identified as "Not 
Valid" in the preceding table, the processing MUST return the result of the evaluation as FALSE. 

6. Return the result of the evaluation of Cond, comparing the operands based on interpretation of the 
Cond_oper from the preceding table. 

http://go.microsoft.com/fwlink/?LinkId=89921
http://go.microsoft.com/fwlink/?LinkId=89921


 

16 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

2.1.4.3.7 Rule_action 

1. Successful processing of this step MUST result in creation of one or more claims.  

2. Rule_action acts on each of the n-tuples generated by Conditions in the same Rule. 

3.  If this Rule_action contains a Claim_copy sub-tag, Claim_copy (section 2.1.4.3.8) MUST be 
processed using the matching n-tuples as input and the resulting claims collected as output. 

4.  If this Rule_action contains a Claim_new sub-tag, Claim_new (section 2.1.4.3.9) MUST be 
processed using the matching n-tuples as input and the resulting claims collected as output. 

The above processing MUST generate one or more claims. The generated claims MUST be appended to 
the InternalEvaluationContext and the InternalOutputContext. 

2.1.4.3.8 Claim_copy 

1. This processing step MUST create one claim per matching n-tuple. 

2. The new claim MUST be a copy of the claim in the matching n-tuple indicated by the IDENTIFIER 
reference. 

2.1.4.3.9 Claim_new 

1. Successful processing of this step MUST create one or more claims. 

2. If no matching n-tuples are presented to this processing step, the contained assignments MUST 
have only Literals and MUST NOT have any IDENTIFIER references. In this case, only one claim is 
generated.  

3. If matching n-tuples are presented, this processing step MUST create one claim per matching n-
tuple, using Literals and/or IDENTIFIER references to the matching n-tuple. 

4. Assignments to TYPE, VALUE, and VALUE_TYPE MUST be interpreted as assignments to TYPE, 

VALUE and VALUE_TYPE, respectively, of each of the newly created Claims; see section 2.1.2. 

5. If the Expr on the right side of the ASSIGN is a Literal, it MUST be interpreted based on the type 
on the left side of ASSIGN. When the left side of the Expr is not STRING_TYPE, the Literal MUST 
be converted in accordance with the rules specified in [ISO/IEC-9899] section 7.20.1.4. If the 
right side of the Assign is not a Literal, type conversion MUST NOT be performed. 

6. Each newly created claim MUST adhere to the definition in section 2.1.2; else it MUST be 
considered invalid. 

7. If any type mismatches or errors in type conversions are encountered by ASSIGN, or if an invalid 
claim is generated, processing MUST stop, and a processing error MUST be indicated. 

2.1.4.3.10 Processing End 

 If ReturnValue is set to SUCCESS, copy the claims in the InternalOutputContext to 

OutputClaims and exit the algorithm. 

 If ReturnValue is set to FAILURE, clear OutputClaims and exit the algorithm. 

http://go.microsoft.com/fwlink/?LinkId=89921


 

17 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

3 Algorithm Examples 

This section contains some examples of the Claims Transformation Algorithm.  

3.1 Processing "Allow All Claims" Rule 

 Input: 
  
 InputTransformationRulesText: C1:[]=> ISSUE(Claim=C1); 
 InputClaims:  {(TYPE = "type1", VALUE = 5, VALUE_TYPE = "int64"), 
                 (TYPE = "type2", VALUE = "example", VALUE_TYPE = "string") } 
 Output: 
 OutputClaims: {(TYPE = "type1", VALUE = 5, VALUE_TYPE = "int64"), 
                 (TYPE = "type2", VALUE = "example", VALUE_TYPE = "string") } 
 ReturnValue: SUCCESS. 

3.2 Processing "Deny Some Claims" Rule 

 Input: 
  
 InputTransformationRulesText: C1:[type != "Type1"] => ISSUE (Claim = C1); 
 InputClaims:  {(TYPE = "type1", VALUE = 5, VALUE_TYPE = "uint64"), 
                 (TYPE = "type2", VALUE = "example", VALUE_TYPE = "string"), 
                 (TYPE = "type3", VALUE = -33, VALUE_TYPE = "int64")} 
 Output: 
 OutputClaims: { (TYPE = "type2", VALUE = "example", VALUE_TYPE = "string"), 
                (TYPE = "type3", VALUE = -33, VALUE_TYPE = "int64")} 
 ReturnValue: SUCCESS. 

3.3 Processing "Issue always" Rule 

 Input: 
  
 InputTransformationRulesText: => ISSUE (type="type1", VALUE=false, VALUE_TYPE="boolean"); 
 InputClaims:  {} 
       
 Output: 
 OutputClaims: {(TYPE = "type1", VALUE = false, VALUE_TYPE = "boolean")} 
    
 ReturnValue: SUCCESS. 

3.4 Processing an Invalid Rule 

 Input: 
 InputTransformationRulesText: C1:[type] => ISSUE (Claim = C1); 
 InputClaims:  {(TYPE = "type1", VALUE = 5, VALUE_TYPE = "uint64"), 
                 (TYPE = "type2", VALUE = "example", VALUE_TYPE = "string")} 
       
 Output: 
 OutputClaims: {} 
 ReturnValue: FAILURE. 



 

18 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

4 Security 

4.1 Security Considerations for Implementers 

None. 

4.2 Index of Security Parameters 

None. 



 

19 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

5 Appendix A: Product Behavior 

The information in this specification is applicable to the following Microsoft products or supplemental 
software. References to product versions include released service packs. 

Note: Some of the information in this section is subject to change because it applies to a preliminary 
product version, and thus may differ from the final version of the software when released. All behavior 
notes that pertain to the preliminary product version contain specific references to it as an aid to the 

reader. 

 Windows Server 2012 operating system 

 Windows Server 2012 R2 operating system 

 Windows Server 2016 Technical Preview operating system 

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears 
with the product version, behavior changed in that service pack or QFE. The new behavior also applies 

to subsequent service packs of the product unless otherwise specified. If a product edition appears 
with the product version, behavior is different in that product edition. 

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed 
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or 
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not 
follow the prescription. 



 

20 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

6 Change Tracking 

This section identifies changes that were made to this document since the last release. Changes are 
classified as New, Major, Minor, Editorial, or No change.  

The revision class New means that a new document is being released. 

The revision class Major means that the technical content in the document was significantly revised. 
Major changes affect protocol interoperability or implementation. Examples of major changes are: 

 A document revision that incorporates changes to interoperability requirements or functionality. 

 The removal of a document from the documentation set. 

The revision class Minor means that the meaning of the technical content was clarified. Minor changes 
do not affect protocol interoperability or implementation. Examples of minor changes are updates to 
clarify ambiguity at the sentence, paragraph, or table level. 

The revision class Editorial means that the formatting in the technical content was changed. Editorial 

changes apply to grammatical, formatting, and style issues. 

The revision class No change means that no new technical changes were introduced. Minor editorial 
and formatting changes may have been made, but the technical content of the document is identical 
to the last released version. 

Major and minor changes can be described further using the following change types: 

 New content added. 

 Content updated. 

 Content removed. 

 New product behavior note added. 

 Product behavior note updated. 

 Product behavior note removed. 

 New protocol syntax added. 

 Protocol syntax updated. 

 Protocol syntax removed. 

 New content added due to protocol revision. 

 Content updated due to protocol revision. 

 Content removed due to protocol revision. 

 New protocol syntax added due to protocol revision. 

 Protocol syntax updated due to protocol revision. 

 Protocol syntax removed due to protocol revision. 

 Obsolete document removed. 

Editorial changes are always classified with the change type Editorially updated. 

Some important terms used in the change type descriptions are defined as follows: 



 

21 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

 Protocol syntax refers to data elements (such as packets, structures, enumerations, and 
methods) as well as interfaces. 

 Protocol revision refers to changes made to a protocol that affect the bits that are sent over the 
wire. 

The changes made to this document are listed in the following table. For more information, please 
contact dochelp@microsoft.com. 

Section 
Tracking number (if applicable) and 
description 

Major change 
(Y or N) 

Change 
type 

5 Appendix A: 
Product Behavior 

Updated the product applicability list to include 
Windows Server 2016 Technical Preview. 

Y 
Content 
update. 

mailto:dochelp@microsoft.com


 

22 / 22 

[MS-CTA] - v20150630 
Claims Transformation Algorithm 
Copyright © 2015 Microsoft Corporation 
Release: June 30, 2015 

7 Index

A 
 
Abstract data model 7 
Applicability 6 
 

C 
 
Change tracking 20 
Claims Transformation 
   overview 7 
 

D 
 
Data model - abstract 7 
Data structures 8 
 

E 
 
Examples 
   allow all claims rule 17 
   deny some claims rule 17 
   invalid rule 17 
   issue always rule 17 
   overview 17 
   Processing "Allow All Claims" Rule 17 
   Processing "Deny Some Claims" Rule 17 
   Processing "Issue always" Rule 17 
   Processing an Invalid Rule 17 
 

G 
 
Glossary 5 
 

I 
 
Implementer - security considerations 18 
Index of security parameters 18 
Informative references 6 
Initialization 8 
Introduction 5 

 

N 
 
Normative references 6 
 

O 
 
Overview (synopsis) 6 
 

P 
 
Parameters - security index 18 
Processing "Allow All Claims" Rule example 17 
Processing "Deny Some Claims" Rule example 17 
Processing "Issue always" Rule example 17 
Processing an Invalid Rule example 17 
Processing rules 9 
   allow all claims example 17 
   deny some claims example 17 
   invalid rule example 17 

   issue always example 17 
Product behavior 19 
 

R 
 
References 
   informative 6 
   normative 6 
Relationship to protocols and other algorithms 6 
 

S 
 
Security 
   implementer considerations 18 
   parameter index 18 
Standards assignments 6 
States 7 
Structures 8 

 

T 
 
Tracking changes 20 

 


	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Protocols and Other Algorithms
	1.5 Applicability Statement
	1.6 Standards Assignments

	2 Algorithm Details
	2.1 Claims Transformation Algorithm Details
	2.1.1 Abstract Data Model
	2.1.2 Data Structures
	2.1.3 Initialization
	2.1.4 Processing Rules
	2.1.4.1 Claims Transformation Rules Language Syntax
	2.1.4.1.1 Language Terminals
	2.1.4.1.2 Language Syntax

	2.1.4.2 Claims Transformation Rules Syntax Evaluation
	2.1.4.3 Claims Transformation Rules Processing
	2.1.4.3.1 Rule_set
	2.1.4.3.2 Rule
	2.1.4.3.3 Conditions
	2.1.4.3.4 Sel_condition
	2.1.4.3.5 Opt_cond_list
	2.1.4.3.6 Cond
	2.1.4.3.7 Rule_action
	2.1.4.3.8 Claim_copy
	2.1.4.3.9 Claim_new
	2.1.4.3.10 Processing End




	3 Algorithm Examples
	3.1 Processing "Allow All Claims" Rule
	3.2 Processing "Deny Some Claims" Rule
	3.3 Processing "Issue always" Rule
	3.4 Processing an Invalid Rule

	4 Security
	4.1 Security Considerations for Implementers
	4.2 Index of Security Parameters

	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

