

1 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MS-CSSP-Diff]:

Credential Security Support Provider (CredSSP) Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Revision Summary

Date
Revision
History

Revision
Class Comments

12/18/2006 0.1 New Version 0.1 release

3/2/2007 1.0 Major Version 1.0 release

4/3/2007 1.1 Minor Version 1.1 release

5/11/2007 1.2 Minor Version 1.2 release

6/1/2007 1.2.1 Editorial Changed language and formatting in the technical content.

7/3/2007 1.2.2 Editorial Changed language and formatting in the technical content.

7/20/2007 1.2.3 Editorial Changed language and formatting in the technical content.

8/10/2007 1.2.4 Editorial Changed language and formatting in the technical content.

9/28/2007 1.2.5 Editorial Changed language and formatting in the technical content.

10/23/2007 1.3 Minor Clarified the meaning of the technical content.

11/30/2007 1.3.1 Editorial Changed language and formatting in the technical content.

1/25/2008 1.3.2 Editorial Changed language and formatting in the technical content.

3/14/2008 1.3.3 Editorial Changed language and formatting in the technical content.

5/16/2008 1.3.4 Editorial Changed language and formatting in the technical content.

6/20/2008 1.3.5 Editorial Changed language and formatting in the technical content.

7/25/2008 1.3.6 Editorial Changed language and formatting in the technical content.

8/29/2008 1.3.7 Editorial Changed language and formatting in the technical content.

10/24/2008 1.3.8 Editorial Changed language and formatting in the technical content.

12/5/2008 2.0 Major Updated and revised the technical content.

1/16/2009 2.0.1 Editorial Changed language and formatting in the technical content.

2/27/2009 2.0.2 Editorial Changed language and formatting in the technical content.

4/10/2009 2.0.3 Editorial Changed language and formatting in the technical content.

5/22/2009 3.0 Major Updated and revised the technical content.

7/2/2009 3.0.1 Editorial Changed language and formatting in the technical content.

8/14/2009 3.0.2 Editorial Changed language and formatting in the technical content.

9/25/2009 3.1 Minor Clarified the meaning of the technical content.

11/6/2009 4.0 Major Updated and revised the technical content.

12/18/2009 4.0.1 Editorial Changed language and formatting in the technical content.

1/29/2010 5.0 Major Updated and revised the technical content.

3/12/2010 5.0.1 Editorial Changed language and formatting in the technical content.

3 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Date
Revision
History

Revision
Class Comments

4/23/2010 6.0 Major Updated and revised the technical content.

6/4/2010 6.0.1 Editorial Changed language and formatting in the technical content.

7/16/2010 6.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 6.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 6.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 6.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 6.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 6.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 6.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 6.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 6.1 Minor Clarified the meaning of the technical content.

9/23/2011 6.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 7.0 Major Updated and revised the technical content.

3/30/2012 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 8.0 Major Updated and revised the technical content.

8/8/2013 9.0 Major Updated and revised the technical content.

11/14/2013 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 10.0 Major Updated and revised the technical content.

5/15/2014 11.0 Major Updated and revised the technical content.

6/30/2015 12.0 Major Significantly changed the technical content.

10/16/2015 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 13.0 Major Significantly changed the technical content.

4 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Date
Revision
History

Revision
Class Comments

6/1/2017 14.0 Major Significantly changed the technical content.

9/15/2017 15.0 Major Significantly changed the technical content.

12/1/2017 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/16/2018 16.0 Major Significantly changed the technical content.

9/12/2018 17.0 Major Significantly changed the technical content.

10/1/2020 18.0 Major Significantly changed the technical content.

4/7/2021 19.0 Major Significantly changed the technical content.

6/25/2021 20.0 Major Significantly changed the technical content.

4/23/2024 21.0 Major Significantly changed the technical content.

5 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Table of Contents

1 Introduction .. 6
1.1 (Updated Section) Glossary ... 6
1.2 References .. 8

1.2.1 (Updated Section) Normative References ... 8
1.2.2 (Updated Section) Informative References ... 9

1.3 Overview .. 9
1.4 Relationship to Other Protocols .. 10
1.5 Prerequisites/Preconditions ... 10
1.6 Applicability Statement ... 10
1.7 Versioning and Capability Negotiation ... 10
1.8 Vendor-Extensible Fields ... 11
1.9 Standards Assignments ... 11

2 Messages ... 12
2.1 Transport .. 12
2.2 Message Syntax ... 12

2.2.1 TSRequest ... 12
2.2.1.1 NegoData ... 13
2.2.1.2 TSCredentials ... 13

2.2.1.2.1 TSPasswordCreds .. 13
2.2.1.2.2 TSSmartCardCreds .. 14

2.2.1.2.2.1 TSCspDataDetail .. 14
2.2.1.2.3 TSRemoteGuardCreds .. 14

2.2.1.2.3.1 TSRemoteGuardPackageCred .. 15

3 Protocol Details ... 16
3.1 Common Details .. 16

3.1.1 Abstract Data Model .. 16
3.1.2 Timers .. 16
3.1.3 Initialization ... 16
3.1.4 Higher-Layer Triggered Events ... 16
3.1.5 (Updated Section) Processing Events and Sequencing Rules 16
3.1.6 Timer Events .. 18
3.1.7 Other Local Events .. 18

4 Protocol Examples ... 19

5 Security ... 21
5.1 Security Considerations for Implementors ... 21
5.2 Index of Security Parameters .. 21

6 (Updated Section) Appendix A: Product Behavior.. 22

7 Change Tracking .. 26

8 Index ... 27

6 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1 Introduction

The Credential Security Support Provider (CredSSP) Protocol enables an application to securely
delegate a user's credentials from a client to a target server. This protocol first establishes an
encrypted channel between the client and the target server by using Transport Layer Security (TLS)
(as specified in [RFC2246]). The CredSSP Protocol uses TLS as an encrypted pipe; it does not rely on
the client/server authentication services that are available in TLS. The CredSSP Protocol then uses the
protocol extensions described in [MS-SPNG] to negotiate a Generic Security Services (GSS)
mechanism that performs mutual authentication and GSS confidentiality services to securely bind to

the TLS channel and encrypt the credentials for the target server. All GSS security tokens are sent
over the encrypted TLS channel.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 (Updated Section) Glossary

This document uses the following terms:

application protocol: A network protocol that operates in the application layer at the top of the
OSI model. It visibly accomplishes the task that the user or other agent wants to perform. This
is distinguished from all manner of support protocols: from Ethernet or IP at the bottom to
security and routing protocols. While necessary, these are not always visible to the user.

Application protocols include, for instance, HTTP and Server Message Block (SMB).

certification authority (CA): A third party that issues public key certificates. Certificates serve to
bind public keys to a user identity. Each user and certification authority (CA) can decide whether
to trust another user or CA for a specific purpose, and whether this trust shouldis to be
transitive. For more information, see [RFC3280].

credential: Previously established, authentication data that is used by a security principal to
establish its own identity. When used in reference to the Netlogon Protocol, it is the data that is

stored in the NETLOGON_CREDENTIAL structure.

CredSSP client: Any application that executes the role of the client to authenticate the identity of
a user at the network layer to the server by using the CredSSP Protocol.

CredSSP server: Any application that executes the role of the server to authenticate the identity
of a user at the network layer to the server by using the CredSSP Protocol.

domain: A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set musthas to act as a domain controller

(DC) and host a member list that identifies all members of the domain, as well as optionally
hosting the Active Directory service. The domain controller provides authentication of members,
creating a unit of trust for its members. Each domain has an identifier that is shared among its
members. For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

Generic Security Services (GSS): An Internet standard, as described in [RFC2743], for providing
security services to applications. It consists of an application programming interface (GSS-API)

set, as well as standards that describe the structure of the security data.

Kerberos: An authentication system that enables two parties to exchange private information
across an otherwise open network by assigning a unique key (called a ticket) to each user that
logs on to the network and then embedding these tickets into messages sent by the users. For
more information, see [MS-KILE].

man in the middle (MITM): An attack that deceives a server or client into accepting an
unauthorized upstream host as the actual legitimate host. Instead, the upstream host is an

attacker's host that is manipulating the network so that the attacker's host appears to be the

7 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

desired destination. This enables the attacker to decrypt and access all network traffic that
would go to the legitimate host. The attacker is able to read, insert, and modify at-will messages

between two hosts without either party knowing that the link between them is compromised.

mutual authentication: A mode in which each party verifies the identity of the other party, as

described in [RFC3748] section 7.2.1.

NT LAN Manager (NTLM) Authentication Protocol: A protocol using a challenge-response
mechanism for authentication in which clients are able to verify their identities without sending a
password to the server. It consists of three messages, commonly referred to as Type 1
(negotiation), Type 2 (challenge) and Type 3 (authentication).

NTOWF: In the context of an NTLM authentication, a NT LAN Manager (NT) one-way function
(OWF) used to create a hash based on the user's password to generate a principal's secret key.

The NTLM hash superseded the LAN Manager (LM) hash.

OCTET STRING: An ASN.1 variable-length sequence of 8-bit values to which a variety of data
types and formats can be encoded for transmission. The encoding rules follow Basic Encoding

Rules (BER), and optional Canonical Encoding Rules (CER) or Distinguished Encoding Rules
(DER) restrictions on BER. Values have 2 possible forms: binary or hexadecimal. The
representation in octets of values of identifiers, lengths, and contents of integers shown in

hexadecimal have two hexadecimal digits per octet. The values of the contents of character
strings shown in hexadecimal have one character per octet.

public key infrastructure (PKI): The laws, policies, standards, and software that regulate or
manipulate certificates and public and private keys. In practice, it is a system of digital
certificates, certificate authorities (CAs), and other registration authorities that verify and
authenticate the validity of each party involved in an electronic transaction. For more
information, see [X509] section 6.

security protocol: A protocol that performs authentication and possibly additional security
services on a network.

service principal name (SPN): The name a client uses to identify a service for mutual

authentication. (For more information, see [RFC1964] section 2.1.1.) An SPN consists of either
two parts or three parts, each separated by a forward slash ('/'). The first part is the service
class, the second part is the host name, and the third part (if present) is the service name. For
example, "ldap/dc-01.fabrikam.com/fabrikam.com" is a three-part SPN where "ldap" is the

service class name, "dc-01.fabrikam.com" is the host name, and "fabrikam.com" is the service
name. See [SPNNAMES] for more information about SPN format and composing a unique SPN.

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO): An authentication
mechanism that allows Generic Security Services (GSS) peers to determine whether their
credentials support a common set of GSS-API security mechanisms, to negotiate different
options within a given security mechanism or different options from several security

mechanisms, to select a service, and to establish a security context among themselves using
that service. SPNEGO is specified in [RFC4178].

Transport Layer Security (TLS): A security protocol that supports confidentiality and integrity of

messages in client and server applications communicating over open networks. TLS supports
server and, optionally, client authentication by using X.509 certificates (as specified in [X509]).
TLS is standardized in the IETF TLS working group.

trust: To accept another authority's statements for the purposes of authentication and

authorization, especially in the case of a relationship between two domains. If domain A trusts
domain B, domain A accepts domain B's authentication and authorization statements for
principals represented by security principal objects in domain B; for example, the list of groups
to which a particular user belongs. As a noun, a trust is the relationship between two domains
described in the previous sentence.

8 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Unicode string: A Unicode 8-bit string is an ordered sequence of 8-bit units, a Unicode 16-bit
string is an ordered sequence of 16-bit code units, and a Unicode 32-bit string is an ordered

sequence of 32-bit code units. In some cases, it could be acceptable not to terminate with a
terminating null character. Unless otherwise specified, all Unicode strings follow the UTF-16LE

encoding scheme with no Byte Order Mark (BOM).

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 (Updated Section) Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS-RDPEAR] Microsoft Corporation, "Remote Desktop Protocol Authentication Redirection Virtual
Channel".

[MS-SPNG] Microsoft Corporation, "Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)

Extension".

[RFC2078] Linn, J., "Generic Security Service Application Program Interface, Version 2", RFC 2078,
January 1997, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc2078.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, httphttps://www.rfc-editor.org/rfcinfo/rfc2119.txt

[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,
httphttps://www.rfc-editor.org/rfcinfo/rfc2246.txt

[RFC3280] Housley, R., Polk, W., Ford, W., and Solo, D., "Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile", RFC 3280, April 2002, http://www.ietfrfc-
editor.org/rfcinfo/rfc3280.txt

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network Authentication

Service (V5)", RFC 4120, July 2005, https://www.rfc-editor.org/rfc/rfc4120.txt

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic

Security Service Application Program Interface (GSS-API) Negotiation Mechanism", RFC 4178, October
2005, https://www.rfc-editor.org/rfcinfo/rfc4178.txt

[RFC793] Postel, J., Ed., "Transmission Control Protocol: DARPA Internet Program Protocol
Specification", RFC 793, September 1981, httphttps://www.rfc-editor.org/rfcinfo/rfc793.txt

9 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[X690] ITU-T, "Information Technology - ASN.1 Encoding Rules: Specification of Basic Encoding Rules
(BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)", Recommendation

X.690, July 2002, http://www.itu.int/rec/T-REC-X.690/en

1.2.2 (Updated Section) Informative References

[KERB-TICKET-LOGON] Microsoft Corporation, "KERB_TICKET_LOGON structure",
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378143(v=vs.85).aspx

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MSDOCS-UNICODE_STRING] Microsoft Corporation, "UNICODE_STRING structure",
https://docslearn.microsoft.com/en-us/windows/win32/api/ntdef/ns-ntdef-_unicode_string

[MSKB-4088776] Microsoft Corporation, "March 13, 2018 - KB4088776",
http://www.catalog.update.microsoft.com/Search.aspx?q=4088776

[RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography Specification Version 2.0", RFC 2898,

September 2000, https://www.rfc-editor.org/info/rfc2898

1.3 Overview

The Credential Security Support Provider (CredSSP) Protocol enables an application to securely

delegate a user's credentials from a client to a target server. For example, the Microsoft Terminal
Server uses the CredSSP Protocol to securely delegate the user's password or smart card PIN from the
client to the server to remotely log on the user and establish a terminal services session.

Policy settings control whether a client delegates the user's credentials in order to assure that the
user's credentials are not delegated to an unauthorized server (a computer under the administrative
control of an attacker). Although trust might exist to facilitate authentication between the client and
server, it does not mean that the target server is trusted with the user's credentials. For example,

trust might be based on the Kerberos Protocol [RFC4120] or NTLM [MS-NLMP].

The CredSSP Protocol is a composite protocol that relies on other standards-based security protocols.
It first uses the Transport Layer Security (TLS) Protocol to establish an encrypted channel between the
CredSSP client and the CredSSP server. (The client is anonymous at this point; the client and the
server might have no common trusted certification authority (CA) root.)

All subsequent messages are sent over this channel. The CredSSP Protocol then uses the Simple and
Protected Generic Security Service Application Program Interface Negotiation Mechanism (SPNEGO) to

authenticate the user and server in the encrypted TLS session. (SPNEGO is specified in [MS-SPNG].)

SPNEGO provides a framework for two parties that are engaged in authentication to select from a set
of possible authentication mechanisms. This framework provides selection in a manner that preserves
the opaque nature of the security protocols to the application protocol that uses SPNEGO. In this case,
the CredSSP Protocol is the application protocol that uses SPNEGO.

The CredSSP Protocol uses SPNEGO to mutually authenticate the CredSSP client and CredSSP server.

It then uses the encryption key that is established under SPNEGO to securely bind to the TLS session
(the process by which the server's public key that is used in the TLS handshake is authenticated). The
client encrypts a hash of the server's public key by using the encryption key that is established under
SPNEGO and sends it to the server. The server verifies that it is the same public key that was used in
the TLS handshake and sends an acknowledgment (also encrypted under the SPNEGO encryption key)
back to the client. (For more information about this step, see section 3.1.1.) Lastly, the client sends
the user's credentials, which are encrypted under the SPNEGO encryption key, to the server.

All subsequent data that is sent between the client and server application by using the CredSSP
Protocol is encrypted under TLS. The only new on-the-wire formats that are introduced by the

10 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

CredSSP Protocol are the encapsulation of the SPNEGO tokens sent over the TLS channel, the binding
between the TLS and SPNEGO protocols, and the format of the user credentials.

1.4 Relationship to Other Protocols

The CredSSP Protocol uses the TLS Protocol, as specified in [RFC2246], to encrypt all traffic between
the CredSSP client and the CredSSP server. The TLS Protocol requires a reliable transport, such as
TCP (as specified in [RFC793]), for all messages that are exchanged between the client and the
server.

The CredSSP Protocol typically uses SPNEGO [MS-SPNG] for mutual authentication between the
CredSSP client and CredSSP server and can use Kerberos [MS-KILE] and NTLM [MS-NLMP]. SPNEGO
requires that at least one other authentication protocol be present that is compatible with Generic
Security Services (GSS) [RFC2078] (in addition to SPNEGO itself); otherwise, SPNEGO will not work.
SPNEGO has no dependence on any specific GSS-compatible protocols; however, the Kerberos
Protocol [MS-KILE] is typically used.<1>

The Remote Desktop Protocol (RDP) uses the CredSSP Protocol to delegate credentials from the RDP

client to the RDP server and to encrypt all data that follows by using the TLS channel that is
established as part of the CredSSP Protocol.

1.5 Prerequisites/Preconditions

The CredSSP Protocol assumes the following:

 The CredSSP client has access to the user's credentials (the CredSSP Protocol delegates these
credentials to the CredSSP server).<2>

 A source of cryptographically useful random numbers MUST be available on the client and server
for generating a nonce that is used by the TLS Protocol as well as the client/server identity
validation.

 The CredSSP server has an X.509 certificate (as specified in [RFC3280]) for use in TLS. The

certificate can be self-signed or issued by a third-party certification authority. The CredSSP
Protocol does not assume a common certification authority root between the client and the server.

 The CredSSP Protocol uses the SPNEGO protocol for mutual client/server authentication; at least
one other GSS-compatible authentication protocol, in addition to the CredSSP Protocol, MUST be
present for it to work.<3>

1.6 Applicability Statement

The CredSSP protocol delegates the user's credentials from a client to a server over a mutually
authenticated encrypted channel. To avoid revealing the user credentials to unauthorized hosts, the
CredSSP client delegates only to trusted servers, as expressed through the security policy that
governs the client's computer. The CredSSP protocol was designed to enable the server to
impersonate the client across a number of different applications that require the user's long-lived

credentials (password).

1.7 Versioning and Capability Negotiation

Versioning and capability negotiation are supported in the CredSSP Protocol as follows:

 Protocol versions: The CredSSP Protocol supports versioning (the version field of the TSRequest
structure, section 2.2.1).

 Security and authentication methods: The CredSSP Protocol uses the SPNEGO protocol to
negotiate the underlying authentication mechanism. Similarly, the CredSSP Protocol relies on the

11 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

TLS Protocol to negotiate the cryptographic algorithms that are used for channel confidentiality
and integrity.

 Localization: The CredSSP Protocol is not localization dependent.

1.8 Vendor-Extensible Fields

The CredSSP Protocol does not have any vendor-extensible fields.

1.9 Standards Assignments

The CredSSP Protocol does not have any standards assignments. Standards assignments for the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO), Kerberos, NTLM, and TLS Protocols
are specified in [MS-SPNG] section 1.9, [MS-KILE] section 1.9, [MS-NLMP] section 1.9, and [RFC2246]
section G, respectively.

12 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2 Messages

2.1 Transport

Because the CredSSP Protocol uses TLS, all messages exchanged between the client and server
SHOULD<4> be transmitted over a reliable transport protocol, such as TCP (as specified in [RFC793]).

2.2 Message Syntax

The CredSSP Protocol introduces the TSRequest message, section 2.2.1. The client and server use
this message to encapsulate the SPNEGO tokens and TSCredentials message, section 2.2.1.2, that
the client SHOULD<5> use to delegate the user's credentials to the CredSSP server over a TLS

connection. These messages are encoded by using ASN.1 (as specified in [X690]) and Distinguished
Encoding Rules (DER).<6>

2.2.1 TSRequest

The TSRequest structure is the top-most structure used by the CredSSP client and CredSSP server. It

contains the SPNEGO tokens and MAY<7> contain Kerberos/NTLM messages that are passed between
the client and server, and either the public key authentication messages that are used to bind to the
TLS session or the client credentials that are delegated to the server. The TSRequest message is
always sent over the TLS-encrypted channel between the client and server in a CredSSP Protocol
exchange (see step 1 in section 3.1.5).<8><9>

 TSRequest ::= SEQUENCE {
 version [0] INTEGER,
 negoTokens [1] NegoData OPTIONAL,
 authInfo [2] OCTET STRING OPTIONAL,
 pubKeyAuth [3] OCTET STRING OPTIONAL,
 errorCode [4] INTEGER OPTIONAL,
 clientNonce [5] OCTET STRING OPTIONAL
 }

version: An unsigned integer encoded as an ASN.1 INTEGER that specifies the supported version of

the CredSSP Protocol. Valid values for this field are 2, 3, 4, 5, and 6.<10> If the version received
is greater than the implementation understands, treat the peer as one that is compatible with the
version of the CredSSP Protocol that the implementation understands.

negoTokens: A NegoData structure, as defined in section 2.2.1.1, that contains the SPNEGO tokens
or Kerberos/NTLM messages that are passed between the client and server.

authInfo: A TSCredentials structure, as defined in section 2.2.1.2, encoded as an ASN.1 OCTET

STRING that contains the user's credentials that are delegated to the server. The authInfo field
MUST be encrypted under the encryption key that is negotiated under the SPNEGO package. The
authInfo field carries the message signature and then the encrypted data.

pubKeyAuth: An encrypted public key encoded as an ASN.1 OCTET STRING. This field is used to

assure that the public key that is used by the server during the TLS handshake belongs to the
target server and not to a man-in-the-middle. This TLS session-binding is specified in section
3.1.5. After the client completes the SPNEGO phase of the CredSSP Protocol, it uses

GSS_WrapEx() for the negotiated protocol to encrypt the server's public key. With version 4 or
lower, the pubKeyAuth field carries the message signature and then the encrypted public key to
the server. In response, the server uses the pubKeyAuth field to transmit to the client a modified
version of the public key (as specified in section 3.1.5) that is encrypted under the encryption key
that is negotiated under SPNEGO. In version 5 or higher, this field stores a computed hash of the
public key.<11>

13 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

errorCode: A 32-bit value encoded as an ASN.1 INTEGER. If the negotiated protocol version is 3, 4,
or 6, and the SPNEGO exchange fails on the server, this field SHOULD<12> be used to send the

NTSTATUS failure code ([MS-ERREF] section 2.3) to the client so that it knows what failed and be
able to display a descriptive error to the user.

clientNonce: A 32-byte array of cryptographically random bytes encoded as an ASN.1 OCTET STRING
used to provide sufficient entropy during hash computation. This value is only used in version 5 or
higher of this protocol.

2.2.1.1 NegoData

The NegoData structure contains the SPNEGO tokens ([MS-SPNG] section 2), the Kerberos messages
([MS-KILE] section 2), or the NTLM messages ([MS-NLMP] section 2).<13>

 NegoData ::= SEQUENCE OF SEQUENCE {
 negoToken [0] OCTET STRING
 }

negoToken: An ASN.1 OCTET STRING that contains one or more SPNEGO tokens and all Kerberos or
NTLM messages, as negotiated by SPNEGO.

2.2.1.2 TSCredentials

The TSCredentials structure contains both the user's credentials that are delegated to the server and

their type.<14>

 TSCredentials ::= SEQUENCE {
 credType [0] INTEGER,
 credentials [1] OCTET STRING
 }

credType: An unsigned integer encoded as an ASN.1 INTEGER that defines the type of credentials
that are carried in the credentials field. The credType field MUST be one of the following values.

Value Meaning

1 credentials contains a TSPasswordCreds structure (section 2.2.1.2.1) that defines the user's
password credentials.

2 credentials contains a TSSmartCardCreds structure (section 2.2.1.2.2) that defines the user's
smart card credentials.

6 credentials contains a TSRemoteGuardCreds structure (section 2.2.1.2.3) that defines the
user's redirected credentials.

credentials: An ASN.1 OCTET STRING that contains the user's password, smart card credentials, or

Remote Credential Guard credentials in a TSPasswordCreds structure, a TSSmartCardCreds
structure, or a TSRemoteGuardCreds structure, respectively.

2.2.1.2.1 TSPasswordCreds

The TSPasswordCreds structure contains the user's password credentials that are delegated to the

server.<15>

 TSPasswordCreds ::= SEQUENCE {
 domainName [0] OCTET STRING,

14 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 userName [1] OCTET STRING,
 password [2] OCTET STRING
 }

domainName: An ASN.1 OCTET STRING that contains the name of the user's account domain.

userName: An ASN.1 OCTET STRING that contains the user's account name.

password: An ASN.1OCTET STRING that contains the user's account password.

2.2.1.2.2 TSSmartCardCreds

The TSSmartCardCreds structure contains the user's smart card credentials that are delegated to
the server.<16>

 TSSmartCardCreds ::= SEQUENCE {
 pin [0] OCTET STRING,
 cspData [1] TSCspDataDetail,
 userHint [2] OCTET STRING OPTIONAL,
 domainHint [3] OCTET STRING OPTIONAL
 }

pin: An ASN.1 OCTET STRING that contains the user's smart card PIN.

cspData: A TSCspDataDetail structure, section 2.2.1.2.2.1 that contains information about the
cryptographic service provider (CSP).

userHint: An ASN.1 OCTET STRING that contains the user's account hint.

domainHint: An ASN.1 OCTET STRING that contains the user's domain name to which the user's
account belongs. This name could be entered by the user when the user is first prompted for the

PIN.

2.2.1.2.2.1 TSCspDataDetail

The TSCspDataDetail structure contains CSP information used during smart card logon.<17>

 TSCspDataDetail ::= SEQUENCE {
 keySpec [0] INTEGER,
 cardName [1] OCTET STRING OPTIONAL,
 readerName [2] OCTET STRING OPTIONAL,
 containerName [3] OCTET STRING OPTIONAL,
 cspName [4] OCTET STRING OPTIONAL
 }

keySpec: An unsigned integer encoded as an ASN.1 INTEGER that defines the specification of the
user's smart card.

cardName: An ASN.1 OCTET STRING that specifies the name of the smart card.

readerName: An ASN.1 OCTET STRING that specifies the name of the smart card reader.

containerName: An ASN.1 OCTET STRING that specifies the name of the certificate container.

cspName: An ASN.1 OCTET STRING that specifies the name of the CSP.

2.2.1.2.3 TSRemoteGuardCreds

15 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The TSRemoteGuardCreds structure SHOULD<18> contain a logon credential and supplemental
credentials provided by security packages. The format of the individual credentials depends on the

package that provided them.<19> The logon credential is passed to the Negotiate package, which in
turn passes the credential to the default authentication package.

 TSRemoteGuardCreds ::= SEQUENCE{
 logonCred [0] TSRemoteGuardPackageCred,
 supplementalCreds [1] SEQUENCE OF TSRemoteGuardPackageCred OPTIONAL,
 }

logonCred: A TSRemoteGuardPackageCred structure, section 2.2.1.2.3.1, that contains a logon
credential for the user.

supplementalCreds: An ASN.1 SEQUENCE OF type that contains an array of
TSRemoteGuardPackageCred structures that contains supplemental credentials for other
security packages.

2.2.1.2.3.1 TSRemoteGuardPackageCred

The TSRemoteGuardPackageCred structure contains credentials for a specific security
package.<20>

 TSRemoteGuardPackageCred ::= SEQUENCE{
 packageName [0] OCTET STRING,
 credBuffer [1] OCTET STRING,
 }

packageName: An ASN.1 OCTET STRING that contains the name of the package for which these
credentials are intended.<21>

credBuffer: An ASN.1 OCTET STRING byte buffer that contains the credentials in a format that

SHOULD<22> be specified by the CredSSP server operating system for the package that provided

them.

16 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The CredSSP Protocol SHOULD<23> require the client to perform a policy check to verify that the
target server is trusted to receive the user's credentials.

3.1.2 Timers

None.

3.1.3 Initialization

There are no changes to the initialization of TLS, Kerberos, NTLM, and SPNEGO, as specified in
[RFC2246], [MS-KILE], [MS-NLMP], and [MS-SPNG], respectively.

3.1.4 Higher-Layer Triggered Events

The CredSSP Protocol is triggered by a higher-layer application protocol, such as RDP, for delegating
the user's credentials to the target server.

3.1.5 (Updated Section) Processing Events and Sequencing Rules

The CredSSP Protocol is carried out in the following sequence and is subject to the protocol rules that
are described in the following steps:

1. The CredSSP client and CredSSP server first complete the TLS handshake, as specified in
[RFC2246]. After the handshake is complete, all subsequent CredSSP Protocol messages are

encrypted by the TLS channel. The CredSSP Protocol does not extend the TLS wire protocol. TLS
session resumption is not supported. As part of the TLS handshake, the CredSSP server does not
request the client's X.509 certificate (thus far, the client is anonymous). Also, the CredSSP
Protocol does not require the client to have a commonly trusted certification authority root with
the CredSSP server. Thus, the CredSSP server SHOULD<24> use an X.509 certificate that is
either based on a commonly trusted certificate authority (CA) root or on a self-signed X.509
certificate.

2. Over the encrypted TLS channel, the SPNEGO, Kerberos, or NTLM handshake between the client

and server completes authentication and establishes an encryption key that is used by the
SPNEGO confidentiality services, as specified in [RFC4178]. All SPNEGO tokens or Kerberos/NTLM
messages as well as the underlying encryption algorithms are opaque to the calling application
(the CredSSP client and CredSSP server). The wire protocol for SPNEGO, Kerberos, and NTLM is
specified in [MS-SPNG], [MS-KILE], and [MS-NLMP], respectively.

The SPNEGO tokens or Kerberos/NTLM messages exchanged between the client and the server are
encapsulated in the negoTokens field of the TSRequest structure (section 2.2.1). Both the client
and the server use this structure as many times as necessary to complete the authentication
exchange. The Kerberos or NTLM authentication package is negotiated by SPNEGO. Therefore, the

17 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

encryption key that is established under SPNEGO is either a Kerberos subsession key or an NTLM
session key that is shared by both sides upon completion of the SPNEGO exchange.

Note During this phase of the protocol, the OPTIONAL authInfo field is omitted from the
TSRequest structure by the client and server; the OPTIONAL pubKeyAuth field is omitted by the

client unless the client is sending the last SPNEGO token or Kerberos/NTLM message. If the client
is sending the last SPNEGO token or Kerberos/NTLM message, the TSRequest structure MUST
have both the negoTokens and the pubKeyAuth fields filled in.

Note If the SPNEGO handshake fails on the server side and the client sent a version of 3 or
greater, the server SHOULD send a TSRequest structure back to the client for which the
errorCode field is populated with an unsuccessful NTSTATUS code ([MS-ERREF] section 2.3). The
NTSTATUS code indicates the reason for the failure to the client. If the client receives a TSRequest

message with the errorCode present, it mustMUST immediately fail with the provided status code
and cease all further processing.

3. This step is version-dependent as follows:

Version 5 or 6

The client SHOULD<25> generate a cryptographically random 32-byte value and set the nonce
field of the TSRequest structure to this value. It then computes a SHA256 hash of the ASN.1

encoded SubjectPublicKey concatenated with the bytes of the well-known string “CredSSP Client-
To-Server Binding Hash” and the generated nonce. The hash is then encrypted using the
confidentiality support of the authentication protocol.

The process is defined as:

 Set ClientServerHashMagic to "CredSSP Client-To-Server Binding Hash"
 Set ClientServerHash to SHA256(ClientServerHashMagic, Nonce, SubjectPublicKey)

 Set TSRequest.pubKeyAuth to Encrypt(ClientServerHash)

Note The hash MUST include the null terminator (\0) of the string.

Version 2, 3, 4:

The client encrypts the public key it received from the server (contained in the X.509 certificate) in
the TLS handshake from step 1, by using the confidentiality support of the authentication protocol.
The public key that is encrypted is the ASN.1-encoded SubjectPublicKey sub-field of
SubjectPublicKeyInfo from the X.509 certificate, as specified in [RFC3280] section 4.1.

All Versions:

The encrypted key is encapsulated in the pubKeyAuth field of the TSRequest structure and is
sent over the TLS channel to the server.

Note During this phase of the protocol, the OPTIONAL authInfo field is omitted from the
TSRequest structure; the client MUST send its last SPNEGO token or Kerberos/NTLM message to
the server in the negoTokens field (see step 2) along with the encrypted public key in the

pubKeyAuth field.

4. This step is version-dependent as follows:

Version 5 and 6

After the server receives the TSRequest structure from step 3, it verifies the hash by computing
the hash using the Nonce field from the request and the ASN.1-encoded public key used as part
of the TLS handshake in step 1. If the hash matches, the server generates its own SHA256 hash
of the SubjectPublicKey concatenated with the bytes of the well-known string "CredSSP Server-

18 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

To-Client Binding Hash" and the provided nonce, and encrypts the binary result using the
authentication protocol's encryption services.

The process is defined as:

 Set ServerClientHashMagic to "CredSSP Server-To-Client Binding Hash"
 Set ServerClientHash to SHA256(ServerClientHashMagic, Nonce, SubjectPublicKey)
 Set TSRequest.pubKeyAuth to Encrypt(ServerClientHash)

Note The hash MUST include the null terminator (\0) of the string.

Version 2, 3, and 4

After the server receives the public key in step 3, it first verifies that it has the same public key
that it used as part of the TLS handshake in step 1. The server then adds 1 to the first byte

representing the public key (the ASN.1 structure corresponding to the SubjectPublicKey field, as
described in step 3) and encrypts the binary result by using the authentication protocol's

encryption services. Due to the addition of 1 to the binary data, and encryption of the data as a
binary structure, the resulting value might not be valid ASN.1-encoded values. The addition of 1 to
the first byte of the public key is performed so that the client-generated pubKeyAuth message
cannot be replayed back to the client by an attacker.

All versions:

The encrypted binary data is encapsulated in the pubKeyAuth field of the TSRequest structure
and is sent over the encrypted TLS channel to the client.

Note The server SHOULD set the errorCode to STATUS_NOT_SUPPORTED if the server does
not support the requested version.

Note During this phase of the protocol, the OPTIONAL authInfo and negoTokens fields are
omitted from the TSRequest structure.

5. The client validates the server authenticity by generating and comparing the server hash if using
version 5, or higher. Otherwise, it performs a binary comparison of the data from step 4 to that of
the data representing the public key from the server's X.509 certificate (as specified in [RFC3280],
section 4.1). Once it successfully validates the server authenticity, it encrypts the user's
credentials (either password or smart card PIN) by using the authentication protocol's encryption
services. The resulting value is encapsulated in the authInfo field of the TSRequest structure and
sent over the encrypted TLS channel to the server.

The TSCredentials structure within the authInfo field of the TSRequest structure MUST NOT
contain more than one of the following structures: TSPasswordCreds, TSSmartCardCreds, or
TSRemoteGuardCreds structures.

Note During this phase of the protocol, the OPTIONAL pubKeyAuth and negoTokens fields are
omitted from the TSRequest structure.

Note If the credentials were of type TSRemoteGuardCreds, the TLS channel continues to be used

for redirected authentication requests, as specified in [MS-RDPEAR].

3.1.6 Timer Events

There are no timer events for the CredSSP Protocol.

3.1.7 Other Local Events

There are no other local events that impact the operation of this protocol.

19 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4 Protocol Examples

Figure 1: CredSSP negotiation sequence using SPNEGO

Steps 1 through 4: The CredSSP client and CredSSP server complete the TLS handshake. When the
handshake is complete, all subsequent CredSSP Protocol messages are encrypted by the TLS channel,
as specified in [RFC2246]. As part of the TLS handshake, the CredSSP server does not request the

client's X.509 certificate (thus far, the client is anonymous). Furthermore, the CredSSP Protocol does
not require the client to have a commonly trusted certification authority root with the CredSSP server.

Steps 5 and 6: Over the encrypted TLS channel, the SPNEGO handshake between the client and
server completes mutual authentication and establishes an encryption key.

Steps 7 and 8: The public key from the server's X.509 certificate in the TLS handshake is verified that
it belongs to the server (and not to a man-in-the-middle attacker).

Step 9: The client sends its credentials to the target server that is protected under SPNEGO and TLS
encryption. A sample of an unencrypted (ASN.1DER encoded) TSRequest.authInfo structure follows.
This is encrypted on the wire.

 30 82 01 0f a0 03 02 01-02 a1 82 01 06 04 82 01 0...............

 02 30 81 ff a0 1a 04 18-62 00 62 00 62 00 62 00 .0......b.b.b.b.

 62 00 62 00 62 00 62 00-62 00 62 00 62 00 62 00 b.b.b.b.b.b.b.b.

 a1 81 e0 30 81 dd a0 03-02 01 01 a2 2e 04 2c 4f ...0..........,O

 00 4d 00 4e 00 49 00 4b-00 45 00 59 00 20 00 43 .M.N.I.K.E.Y. .C

 00 61 00 72 00 64 00 4d-00 61 00 6e 00 20 00 33 .a.r.d.M.a.n. .3

 00 78 00 32 00 31 00 20-00 30 00 a3 50 04 4e 6c .x.2.1. .0..P.Nl

 00 65 00 2d 00 4d 00 53-00 53 00 6d 00 61 00 72 .e.-.M.S.S.m.a.r

 00 74 00 63 00 61 00 72-00 64 00 55 00 73 00 65 .t.c.a.r.d.U.s.e

 00 72 00 2d 00 38 00 62-00 64 00 61 00 30 00 31 .r.-.8.b.d.a.0.1

 00 39 00 66 00 2d 00 31-00 32 00 36 00 36 00 2d .9.f.-.1.2.6.6.-

20 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 00 2d 00 35 00 33 00 32-00 36 00 38 00 a4 54 04 .-.5.3.2.6.8..T.

 52 4d 00 69 00 63 00 72-00 6f 00 73 00 6f 00 66 RM.i.c.r.o.s.o.f

 00 74 00 20 00 42 00 61-00 73 00 65 00 20 00 53 .t. .B.a.s.e. .S

 00 6d 00 61 00 72 00 74-00 20 00 43 00 61 00 72 .m.a.r.t. .C.a.r

 00 64 00 20 00 43 00 72-00 79 00 70 00 74 00 6f .d. .C.r.y.p.t.o

 00 20 00 50 00 72 00 6f-00 76 00 69 00 64 00 65 . .P.r.o.v.i.d.e

 00 72 00

The transformed TSRequest.authinfo structure is as follows:

 Total Size: 275

 - - - - - - - - - - - TSCredentials - - - - - - - - - - - - - - -

 tscredentials_len: 0X10F=271

 credType: 0X2=2

 creds_len: 0X106=262

 - - - - - - - - - - - TSSmartCardCreds - - - - - - - - - - - - - - -

 pin: [bbbbbbbbbbbb]

 csp_len: 0XE0=224

 - - - - - - - - - - - TSCspDataDetail - - - - - - - - - - - - - - -

 keySpec: 0X1=1

 cardName not present

 readerName: [OMNIKEY CardMan 3x21 0]

 containerName: [le-MSSmartcardUser-8bda019f-1266--53268]

 cspName: [Microsoft Base Smart Card Crypto Provider]

 - - - - - - - - - - - TSSmartCardCreds ctd - - - - - - - - - - - - - - -

 userHint not present

 domainHint not present

 Bytes Remaining: 275-275=0

21 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

5 Security

5.1 Security Considerations for Implementors

The purpose of the CredSSP Protocol is to delegate a user's clear text password or pin from the
CredSSP client to a CredSSP server, and it is important to make certain that the server receiving the
credentials does not fall under an attacker's control. Although trust can be facilitated via public key

infrastructure (PKI), the Kerberos protocol, or NTLM, this does not mean that the target server is
trusted with the user's credentials, and additional policy settings should be considered.

Additional policy settings can include defining the servers that are trusted with the user's credentials,
the security strength of the authentication mechanisms allowed to be negotiated under SPNEGO [MS-
SPNG], and the allowed methods by which the CredSSP client can obtain the user's credentials.

A major revision has been applied to the protocol in version 5 for improved security. Implementors are
advised to support version 5 or higher only.

5.2 Index of Security Parameters

There are no security parameters in the CredSSP Protocol.

22 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

6 (Updated Section) Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

 Windows XP operating system Service Pack 3 (SP3)

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

 Windows Server operating system

 Windows Server 2019 operating system

 Windows Server 2022 operating system

 Windows 11 operating system

 Windows Server 2025 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1.4: By default, SPNEGO has the Kerberos Protocol and NTLM ([MS-NLMP]) available.
With the exception of Windows XP SP3, the interface for authentication protocols is open and
extensible.

<2> Section 1.5: In Windows, the CredSSP client first checks whether the user's credentials were
passed in by the calling application. If so, these credentials are used by the client. If no credentials

were passed in by the calling application, the CredSSP Protocol uses credentials that are stored locally
in the credentials manager that is associated with the target server. If no credentials are available for
the target server, the CredSSP client uses the user's default credentials, which are entered when the
user first logs on to the operating system.

23 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<3> Section 1.5: In Windows, the SPNEGO client negotiates Kerberos or NTLM. The Kerberos Protocol
is always preferred over NTLM. NTLM is negotiated only if one or both parties do not support the

Kerberos Protocol, as specified in [MS-NLMP] section 1.5 and in [MS-KILE].

<4> Section 2.1: The Windows component that implements the CredSSP Protocol is transport-

independent—it simply returns opaque CredSSP data back to the calling application. It is up to the
calling application to send this CredSSP Protocol data over a reliable transport to its CredSSP Protocol
peer.

<5> Section 2.2: The CredSSP server is not supported on Windows XP SP3.

<6> Section 2.2: Where data is a text string, Windows uses a Unicode string defined by a
UNICODE_STRING structure to encode to ASN.1 OCTET STRING format. For more information see
[MSDOCS-UNICODE_STRING]. For a description of Octet String see [MS-DTYP] and [X690].

<7> Section 2.2.1: Windows CredSSP clients never send Kerberos.

<8> Section 2.2.1: The CredSSP standard requires that a TLS encrypted message fragment contain

an entire ASN.1 message. CredSSP expects the entire first tag and length to fall in the initial block of
decrypted data and for the client to encrypt TSRequest messages as single blocks subject only to
fragmentation at TLS’s maximum message length. The CredSSP server expects a TLS encryption of an
entire TSRequest message without fragmentation. Otherwise, the server returns an error.

<9> Section 2.2.1: Where data is a text string, Windows uses a Unicode string defined by a
UNICODE_STRING structure to encode to ASN.1 OCTET STRING format. For more information see
[MSDOCS-UNICODE_STRING]. For a description of Octet String see [MS-DTYP] and [X690].

:<10> Section 2.2.1: In Windows XP SP3, Windows Vista, Windows Server 2008, Windows 7,
Windows Server 2008 R2, Windows 8, and Windows Server 2012, only version 2 of the CredSSP
Protocol is supported.

<11> Section 2.2.1: Windows Group Policy determines which minimum protocol version is accepted

by the client.

<12> Section 2.2.1: Windows XP SP3, Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, and Windows Server 2012 do not implement the errorCode field.

<13> Section 2.2.1.1: Where data is a text string, Windows uses a Unicode string defined by a
UNICODE_STRING structure to encode to ASN.1 OCTET STRING format. For more information see
[MSDOCS-UNICODE_STRING]. For a description of Octet String see [MS-DTYP] and [X690].

<14> Section 2.2.1.2: Where data is a text string, Windows uses a Unicode string defined by a

UNICODE_STRING structure to encode to ASN.1 OCTET STRING format. For more information see
[MSDOCS-UNICODE_STRING]. For a description of Octet String see [MS-DTYP] and [X690].

<15> Section 2.2.1.2.1: Where data is a text string, Windows uses a Unicode string defined by a
UNICODE_STRING structure to encode to ASN.1 OCTET STRING format. For more information see
[MSDOCS-UNICODE_STRING]. For a description of Octet String see [MS-DTYP] and [X690].

<16> Section 2.2.1.2.2: Where data is a text string, Windows uses a Unicode string defined by a

UNICODE_STRING structure to encode to ASN.1 OCTET STRING format. For more information see
[MSDOCS-UNICODE_STRING]. For a description of Octet String see [MS-DTYP] and [X690].

<17> Section 2.2.1.2.2.1: Where data is a text string, Windows uses a Unicode string defined by a
UNICODE_STRING structure to encode to ASN.1 OCTET STRING format. For more information see
[MSDOCS-UNICODE_STRING]. For a description of Octet String see [MS-DTYP] and [X690].

<18> Section 2.2.1.2.3: The TSRemoteGuardCreds structure is only supported on Windows 10
v1607 operating system client version and on Windows Server 2016 server version and later.

24 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<19> Section 2.2.1.2.3: Where data is a text string, Windows uses a Unicode string defined by a
UNICODE_STRING structure to encode to ASN.1 OCTET STRING format. For more information see

[MSDOCS-UNICODE_STRING]. For a description of Octet String see [MS-DTYP] and [X690].

<20> Section 2.2.1.2.3.1: Where data is a text string, Windows uses a Unicode string defined by a

UNICODE_STRING structure to encode to ASN.1 OCTET STRING format. For more information see
[MSDOCS-UNICODE_STRING]. For a description of Octet String see [MS-DTYP] and [X690].

<21> Section 2.2.1.2.3.1: Windows CredSSP servers use authentication packages provided by
Microsoft.

<22> Section 2.2.1.2.3.1: In Windows, the logon credentials that are in the logonCred field of
TSRemoteGuardCreds structure are required to be in a KERB_TICKET_LOGON structure ([KERB-
TICKET-LOGON]). The TicketGrantingTicket member within the KERB_TICKET_LOGON structure

is an ASN.1-encoded KRB_CRED message ([RFC4120], section 5.8.1). The EncryptionKey in
KrbCredInfo ([RFC4120], section 5.8.1) is required to be in a KERB_RPC_ENCRYPTION_KEY
structure ([MS-RDPEAR] section 2.2.1.2.8). The ServiceTicket member within the
KERB_TICKET_LOGON structure is a ticket to the computer account. Windows CredSSP clients willdo

not use Kerberos User to User tickets ([RFC4120], section 2.9.2) as the ServiceTicket, but can if
necessary; the server does not enforce this. The session key of the ServiceTicket is used to encrypt

the EncryptedData in the KRB_CRED message.

Supplemental credentials that are in the supplementalCreds field of TSRemoteGuardCreds
structure are required in the following structure:

 typedef struct _NTLM_REMOTE_SUPPLEMENTAL_CREDENTIAL {

 ULONG Version;

 ULONG Flags;

 MSV1_0_CREDENTIAL_KEY_TYPE reserved CredentialKey;

 MSV1_0_CREDENTIAL_KEY reserved_TYPE CredentialKeyType;

 ULONG reservedsize;

 [size_is(reservedSize)] UCHAR* reserved;

 } NTLM_REMOTE_SUPPLEMENTAL_CREDENTIAL;

Version: A 32-bit unsigned integer that defines the credential version. This field is 0xFFFF0002.

Flags: A 32-bit unsigned integer containing flags that define the credential options. At least one of the
following values is required.

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

0 0C 0 N L

Where the bits are defined as follows:.

Value Description

L Indicates that the LM OWF member is present and valid.

N Indicates that the NT OWF member is present and valid.

C Indicates that the reserved credential key is present and valid
([MS-RDPEAR] section 2.2.1.3.5).

All other bits are set to zero and ignored on receipt.

25 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

CredentialKey: An MSV1_0_CREDENTIAL_KEY structure, see reserved5 field in [MS-RDPEAR]
section 2.2.1.3.6. The credential key is a 20-byte length unsigned char (UCHAR [MS-DTYP] section

2.2.45) array and is calculated from the user’s password as follows:

 The NTOWF of the user is calculated from the password as described in [MS-NLMP] section 3.3.1.

 The previous NTOWF result is then used to obtain a 32-byte length intermediate key using the
PBKDF2 function ([RFC2898] section 5.2) with the NTOWF as the password, the SID of the user in
UNICODE_STRING format as the salt, SHA256 as the hash algorithm, and an iteration count of
10,000.

 The final 16-byte key is calculated by running one iteration of PBKDF2 with the intermediate key
as the password, the SID of the user in UNICODE_STRING format as the salt, and SHA256 as the
hash algorithm. The last four bytes MUST be zeroed.

CredentialKeyType: A 32-bit unsigned integer. This MUST be 2. The DomainUserCredKey value from
the MSV1_0_CREDENTIAL_KEY_TYPE enum, see reserved4 field in [MS-RDPEAR] section
2.2.1.3.6 MSV1_0_REMOTE_ENCRYPTED_SECRETS.

reservedsize: A ULONG that contains the size of the reserved field. See [MS-RDPEAR] section
2.2.1.3.6.

reserved: A pointer to a UCHAR, an array of characters that contains the credential. See reserved6

field in [MS-RDPEAR] section 2.2.1.3.6 MSV1_0_REMOTE_ENCRYPTED_SECRETS structure.

<23> Section 3.1.1: In Windows, the policy settings for the CredSSP client are expressed in terms of
service principal names (SPNs), which define the servers to which the client is allowed to send the
user's credentials.

<24> Section 3.1.5: With the exception of Windows XP SP3, the CredSSP server can be configured by
using any X.509 certificate that is trusted by the client based on a commonly trusted certificate
authority (CA) root or by using a self-signed certificate.

<25> Section 3.1.5: Version 5 of the protocol is available in Windows Server v1803 operating system

and later, and by downloading a version-specific update from [MSKB-4088776]. Group Policy
determines which minimum protocol version is accepted by the client.

26 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.
 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes

do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last
released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

2.2.1.2.3.1
TSRemoteGuardPackageCred

11168 : Adjusted supplemental credential code arrangement
and added C bit flag for the credential key being present.

Major

2.2.1.2.3.1
TSRemoteGuardPackageCred

11200 : Changed credBuffer: Windows CredSSP usage of
Kerberos User to User tickets.

Major

2.2.1.2.3.1
TSRemoteGuardPackageCred

11676 : In the credBuffer behavior note the
NTLM_REMOTE_SUPPLEMENTAL_CREDENTIAL structure,
defined last 4 fields: CredentialKey with processing,
CredentialKeyType, reservedsize, and reserved.

Major

6 Appendix A: Product
Behavior

Added Windows Server 2025 to the list of applicable
products.

Major

27 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

8 Index

A

Applicability 10

C

Capability negotiation 10
Change tracking 26

E

Examples - overview 19

F

Fields - vendor-extensible 11

G

Glossary 6

H

Higher-layer triggered events 16

I

Implementer - security considerations 21
Index of security parameters 21
Informative references 9
Initialization 16
Introduction 6

L

Local events 18

M

Message processing 16
Messages
 syntax 12
 transport 12
 TSRequest 12

N

NegoData 13
Normative references 8

O

Overview (synopsis) 9

P

Parameters - security index 21
Preconditions 10
Prerequisites 10
Product behavior 22
Protocol
 higher-layer triggered events 16

28 / 28

[MS-CSSP-Diff] - v20240423
Credential Security Support Provider (CredSSP) Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 initialization 16
 local events 18
 message processing 16
 sequencing rules 16
 timer events 18
 timers 16

R

References 8
 informative 9
 normative 8
Relationship to other protocols 10

S

Security
 implementer considerations 21
 parameter index 21
Sequencing rules 16
Standards assignments 11
Syntax 12

T

Timer events 18
Timers 16
Tracking changes 26
Transport 12
Triggered events - higher-layer 16
TSCredentials 13
TSCspDataDetail 14
TSPasswordCreds 13
TSRequest 12
TSRequest message 12
TSSmartCardCreds 14

V

Vendor-extensible fields 11
Versioning 10

	1 Introduction
	1.1 (Updated Section) Glossary
	1.2 References
	1.2.1 (Updated Section) Normative References
	1.2.2 (Updated Section) Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 TSRequest
	2.2.1.1 NegoData
	2.2.1.2 TSCredentials
	2.2.1.2.1 TSPasswordCreds
	2.2.1.2.2 TSSmartCardCreds
	2.2.1.2.2.1 TSCspDataDetail

	2.2.1.2.3 TSRemoteGuardCreds
	2.2.1.2.3.1 TSRemoteGuardPackageCred

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 (Updated Section) Processing Events and Sequencing Rules
	3.1.6 Timer Events
	3.1.7 Other Local Events

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementors
	5.2 Index of Security Parameters

	6 (Updated Section) Appendix A: Product Behavior
	7 Change Tracking
	8 Index

