

1 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

[MS-COMEV-Diff]:

Component Object Model Plus (COM+) Event System
Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this

documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.

However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the

associated patents, visit the Patent Map.
▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Revision Summary

Date
Revision
History

Revision
Class Comments

7/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

9/28/2007 0.2 Minor Clarified the meaning of the technical content.

10/23/2007 0.3 Minor Clarified the meaning of the technical content.

11/30/2007 0.3.1 Editorial Changed language and formatting in the technical content.

1/25/2008 0.3.2 Editorial Changed language and formatting in the technical content.

3/14/2008 0.3.3 Editorial Changed language and formatting in the technical content.

5/16/2008 0.3.4 Editorial Changed language and formatting in the technical content.

6/20/2008 0.4 Minor Clarified the meaning of the technical content.

7/25/2008 0.5 Minor Clarified the meaning of the technical content.

8/29/2008 0.6 Minor Clarified the meaning of the technical content.

10/24/2008 0.7 Minor Clarified the meaning of the technical content.

12/5/2008 0.8 Minor Clarified the meaning of the technical content.

1/16/2009 0.9 Minor Clarified the meaning of the technical content.

2/27/2009 1.0 Major Updated and revised the technical content.

4/10/2009 1.1 Minor Clarified the meaning of the technical content.

5/22/2009 1.2 Minor Clarified the meaning of the technical content.

7/2/2009 1.2.1 Editorial Changed language and formatting in the technical content.

8/14/2009 1.2.2 Editorial Changed language and formatting in the technical content.

9/25/2009 1.3 Minor Clarified the meaning of the technical content.

11/6/2009 1.3.1 Editorial Changed language and formatting in the technical content.

12/18/2009 1.3.2 Editorial Changed language and formatting in the technical content.

1/29/2010 1.4 Minor Clarified the meaning of the technical content.

3/12/2010 1.4.1 Editorial Changed language and formatting in the technical content.

4/23/2010 1.4.2 Editorial Changed language and formatting in the technical content.

6/4/2010 1.4.3 Editorial Changed language and formatting in the technical content.

7/16/2010 1.5 Minor Clarified the meaning of the technical content.

8/27/2010 1.5 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 1.5 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 1.5 None No changes to the meaning, language, or formatting of the

3 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Date
Revision
History

Revision
Class Comments

technical content.

1/7/2011 1.5 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 1.5 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 1.5 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 1.5 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 1.6 Minor Clarified the meaning of the technical content.

9/23/2011 1.7 Minor Clarified the meaning of the technical content.

12/16/2011 2.0 Major Updated and revised the technical content.

3/30/2012 2.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 2.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 2.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 2.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 2.1 Minor Clarified the meaning of the technical content.

11/14/2013 2.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 2.1 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 2.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 3.0 Major Significantly changed the technical content.

10/16/2015 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 4.0 Major Significantly changed the technical content.

9/12/2018 5.0 Major Significantly changed the technical content.

4 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Table of Contents

1 Introduction .. 7
1.1 (Updated Section) Glossary ... 7
1.2 References .. 9

1.2.1 Normative References ... 9
1.2.2 Informative References ... 9

1.3 Overview .. 10
1.3.1 Background ... 10
1.3.2 Component Object Model Plus (COM+) Event System Protocol 10

1.4 Relationship to Other Protocols .. 10
1.5 Prerequisites/Preconditions ... 10
1.6 Applicability Statement ... 10
1.7 Versioning and Capability Negotiation ... 11
1.8 Vendor-Extensible Fields ... 11
1.9 Standards Assignments ... 11

2 Messages ... 12
2.1 Transport .. 12
2.2 Common Data Types .. 12

2.2.1 Query Strings ... 12
2.2.2 Application-Specific Properties .. 13

2.2.2.1 Property Names .. 13
2.2.2.2 Property Value Types ... 13

2.2.3 Curly-Braced GUID Strings .. 13
2.2.4 Entity Name String ... 13
2.2.5 ImplementationSpecificPathProperty ... 13
2.2.6 EventClassCollectionIdentifier .. 13
2.2.7 SubscriptionCollectionIdentifier .. 14

3 Protocol Details ... 15
3.1 Server Details .. 15

3.1.1 Abstract Data Model .. 15
3.1.1.1 Event Classes ... 15
3.1.1.2 Subscriptions .. 16
3.1.1.3 Event System ... 17

3.1.2 Timers .. 17
3.1.3 Initialization ... 18
3.1.4 Message Processing Events and Sequencing Rules .. 18

3.1.4.1 IEventSystem ... 18
3.1.4.1.1 Query (Opnum 7) .. 18
3.1.4.1.2 Store (Opnum 8) ... 19
3.1.4.1.3 Remove (Opnum 9) ... 21
3.1.4.1.4 get_EventObjectChangeEventClassID (Opnum 10) 22
3.1.4.1.5 QueryS (Opnum 11) .. 23
3.1.4.1.6 RemoveS (Opnum 12) ... 23

3.1.4.2 IEventClass .. 25
3.1.4.2.1 get_EventClassID (Opnum 7) .. 26
3.1.4.2.2 put_EventClassID (Opnum 8).. 26
3.1.4.2.3 get_EventClassName (Opnum 9) ... 26
3.1.4.2.4 put_EventClassName (Opnum 10) ... 27
3.1.4.2.5 get_OwnerSID (Opnum 11) .. 27
3.1.4.2.6 put_OwnerSID (Opnum 12) .. 28
3.1.4.2.7 get_FiringInterfaceID (Opnum 13) ... 28
3.1.4.2.8 put_FiringInterfaceID (Opnum 14)... 28
3.1.4.2.9 get_Description (Opnum 15) ... 29
3.1.4.2.10 put_Description (Opnum 16) ... 29

5 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.4.2.11 get_TypeLib (Opnum 19) .. 29
3.1.4.2.12 put_TypeLib (Opnum 20) ... 30

3.1.4.3 IEventClass2 .. 30
3.1.4.3.1 get_PublisherID (Opnum 21) .. 31
3.1.4.3.2 put_PublisherID (Opnum 22) .. 31
3.1.4.3.3 get_MultiInterfacePublisherFilterCLSID (Opnum 23) 31
3.1.4.3.4 put_MultiInterfacePublisherFilterCLSID (Opnum 24) 32
3.1.4.3.5 get_AllowInprocActivation (Opnum 25) .. 32
3.1.4.3.6 put_AllowInprocActivation (Opnum 26) .. 33
3.1.4.3.7 get_FireInParallel (Opnum 27) .. 33
3.1.4.3.8 put_FireInParallel (Opnum 28) .. 33

3.1.4.4 IEventSubscription .. 34
3.1.4.4.1 get_SubscriptionID (Opnum 7) .. 36
3.1.4.4.2 put_SubscriptionID (Opnum 8) ... 36
3.1.4.4.3 get_SubscriptionName (Opnum 9) ... 36
3.1.4.4.4 put_SubscriptionName (Opnum 10) ... 37
3.1.4.4.5 get_PublisherID (Opnum 11) .. 37
3.1.4.4.6 put_PublisherID (Opnum 12) .. 38
3.1.4.4.7 get_EventClassID (Opnum 13) .. 38
3.1.4.4.8 put_EventClassID (Opnum 14) .. 38
3.1.4.4.9 get_MethodName (Opnum 15) .. 39
3.1.4.4.10 put_MethodName (Opnum 16) .. 39
3.1.4.4.11 get_SubscriberCLSID (Opnum 17) ... 39
3.1.4.4.12 put_SubscriberCLSID (Opnum 18) ... 40
3.1.4.4.13 get_SubscriberInterface (Opnum 19) ... 40
3.1.4.4.14 put_SubscriberInterface (Opnum 20) ... 40
3.1.4.4.15 get_PerUser (Opnum 21).. 41
3.1.4.4.16 put_PerUser (Opnum 22) ... 41
3.1.4.4.17 get_OwnerSID (Opnum 23) .. 41
3.1.4.4.18 put_OwnerSID (Opnum 24) .. 42
3.1.4.4.19 get_Enabled (Opnum 25) ... 42
3.1.4.4.20 put_Enabled (Opnum 26) ... 42
3.1.4.4.21 get_Description (Opnum 27) ... 43
3.1.4.4.22 put_Description (Opnum 28) ... 43
3.1.4.4.23 get_MachineName (Opnum 29) ... 43
3.1.4.4.24 put_MachineName (Opnum 30) ... 44
3.1.4.4.25 GetPublisherProperty (Opnum 31) ... 44
3.1.4.4.26 PutPublisherProperty (Opnum 32) ... 45
3.1.4.4.27 RemovePublisherProperty (Opnum 33) ... 45
3.1.4.4.28 GetPublisherPropertyCollection (Opnum 34) .. 45
3.1.4.4.29 GetSubscriberProperty (Opnum 35) ... 46
3.1.4.4.30 PutSubscriberProperty (Opnum 36) ... 46
3.1.4.4.31 RemoveSubscriberProperty (Opnum 37) ... 47
3.1.4.4.32 GetSubscriberPropertyCollection (Opnum 38) 47
3.1.4.4.33 get_InterfaceID (Opnum 39) .. 48
3.1.4.4.34 put_InterfaceID (Opnum 40) .. 48

3.1.4.5 IEnumEventObject .. 48
3.1.4.5.1 Clone (Opnum 3) ... 49
3.1.4.5.2 Next (Opnum 4) .. 49
3.1.4.5.3 Reset (Opnum 5) ... 50
3.1.4.5.4 Skip (Opnum 6) .. 50

3.1.4.6 IEventObjectCollection ... 51
3.1.4.6.1 get__NewEnum (Opnum 7) .. 51
3.1.4.6.2 get_Item (Opnum 8) ... 52
3.1.4.6.3 get_NewEnum (Opnum 9) .. 52
3.1.4.6.4 get_Count (Opnum 10) .. 53
3.1.4.6.5 Add (Opnum 11) ... 53
3.1.4.6.6 Remove (Opnum 12) ... 53

6 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.4.7 IEventClass3 .. 54
3.1.4.7.1 get_EventClassPartitionID (Opnum 29) .. 54
3.1.4.7.2 put_EventClassPartitionID (Opnum 30) .. 55
3.1.4.7.3 get_EventClassApplicationID (Opnum 31) ... 55
3.1.4.7.4 put_EventClassApplicationID (Opnum 32) .. 55

3.1.4.8 IEventSubscription2 .. 56
3.1.4.8.1 get_FilterCriteria (Opnum 41) ... 56
3.1.4.8.2 put_FilterCriteria (Opnum 42) ... 57
3.1.4.8.3 get_SubscriberMoniker (Opnum 43)... 57
3.1.4.8.4 put_SubscriberMoniker (Opnum 44) .. 57

3.1.4.9 IEventSubscription3 .. 58
3.1.4.9.1 get_EventClassPartitionID (Opnum 45) .. 58
3.1.4.9.2 put_EventClassPartitionID (Opnum 46) .. 59
3.1.4.9.3 get_EventClassApplicationID (Opnum 47) ... 59
3.1.4.9.4 put_EventClassApplicationID (Opnum 48) .. 60
3.1.4.9.5 get_SubscriberPartitionID (Opnum 49)... 60
3.1.4.9.6 put_SubscriberPartitionID (Opnum 50) .. 60
3.1.4.9.7 get_SubscriberApplicationID (Opnum 51) ... 61
3.1.4.9.8 put_SubscriberApplicationID (Opnum 52) ... 61

3.1.4.10 IEventSystem2 ... 61
3.1.4.10.1 GetVersion (Opnum 13) ... 62
3.1.4.10.2 VerifyTransientSubscribers (Opnum 14) ... 62

3.1.4.11 IEventSystemInitialize ... 63
3.1.4.11.1 SetCOMCatalogBehaviour (Opnum 3) ... 63

3.1.5 Timer Events .. 63
3.1.6 Other Local Events .. 63

4 Protocol Examples ... 64
4.1 Creating an Event Class .. 64
4.2 Creating a Subscription ... 66
4.3 Updating a Subscription .. 69
4.4 Removing a Subscription ... 71

5 Security ... 73
5.1 Security Considerations for Implementers ... 73
5.2 Index of Security Parameters .. 73

6 Appendix A: Full IDL .. 74

7 (Updated Section) Appendix B: Product Behavior .. 80

8 Change Tracking .. 82

9 Index ... 83

7 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1 Introduction

This document specifies the behavior of the Component Object Model Plus (COM+) Event System
Protocol.

The COM+ Event System Protocol is a protocol that exposes DCOM interfaces for storing and
managing configuration data for publishers of events and their respective subscribers on remote
computers. This protocol also specifies how to get specific information about a publisher and its

subscribers.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 (Updated Section) Glossary

This document uses the following terms:

activation: In the DCOM protocol, a mechanism by which a client provides the CLSID of an object
class and obtains an object, either from that object class or a class factory that is able to create
such objects. For more information, see [MS-DCOM].

class identifier (CLSID): A GUID that identifies a software component; for instance, a DCOM
object class or a COM class.

client: A computer on which the remote procedure call (RPC) client is executing.

computer name: The DNS or NetBIOS name.

conglomeration: A collection of event classes and subscriptions together with independent
configuration data that is conceptually shared by the both the event classes and subscriptions. A
conglomeration is identified by a conglomeration identifier.

event: A discrete unit of historical data that an application exposes that may be relevant to other

applications. An example of an event would be a particular user logging on to the computer.

event class: A collection of historical data grouped together using criteria specified by the
publishing application.

event interface: A collection of event methods. An event class contains one or more event
interfaces.

event method: A method called by the publisher-subscriber framework when the publisher
application generates an event.

filtering criteria: A set of rules specified by a subscriber as part of a subscription to define the
type of historical data it wants to receive.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of

these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique

identifier (UUID).

GUID_NULL: A GUID that has the value "{00000000-0000-0000-0000-000000000000}".

interface pointer: A pointer to an interface that is implemented by an [MS-DCOM] object.

8 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

object: In the DCOM protocol, a software entity that implements one or more object remote
protocol (ORPC) interfaces and which is uniquely identified, within the scope of an object

exporter, by an object identifier (OID). For more information, see [MS-DCOM].

object class: In the DCOM protocol, a category of objects identified by a CLSID, members of

which can be obtained through activation of the CLSID. An object class is typically associated
with a common set of interfaces that are implemented by all objects in the object class.

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS-RPCE].

partition: A container for a specific configuration of a COM+ object class.

partition identifier: A GUID that identifies a partition.

path: When referring to a file path on a file system, a hierarchical sequence of folders. When
referring to a connection to a storage device, a connection through which a machine can
communicate with the storage device.

persistent subscription: A subscription in which the subscriber supplies the data necessary to
obtain an object that will receive historical data.

publisher: An application that needs to publish historical data that may be of interest to other

applications.

publisher-subscriber framework: An application framework that allows applications to expose
historical data to other applications that might receive this data.

remote procedure call (RPC): A context-dependent communication protocol used primarily
between client and server. The term commonly overloaded withhas three meanings.
Notedefinitions that much of the industry literature concerning RPC technologies uses this
termare often used interchangeably for any of the three meanings. Following are the three

definitions: (*) The : a runtime environment providing remote procedure callfor communication
facilities. The preferred usage for this meaning is " between computers (the RPC runtime". (*)

The pattern); a set of request-and-response message exchanges between computers (the RPC
exchange between two parties (typically, a client and a server). The preferred usage for this
meaning is "RPC exchange". (*) A); and the single message from an RPC exchange as defined
in (the previous definition. The preferred usage for this term is "RPC message".). For more
information about RPC, see [C706].

security identifier (SID): An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a smaller integer representing an identity relative to the account authority, termed
the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a string
representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section 1.1.1.2.

security principal: A unique entity that is identifiable through cryptographic means by at least

one key. It frequently corresponds to a human user, but also can be a service that offers a
resource to other security principals. Also referred to as principal.

server: A computer on which the remote procedure call (RPC) server is executing.

subscriber: An application that needs to receive events that are published by another application.

subscription: A registration performed by a subscriber to specify a requirement to receive events,
future messages, or historical data.

transient subscription: A subscription in which the subscriber supplies the object that will receive

historical data.

9 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

type library: A type collection which defines an event class in terms of its event interfaces. A type
library is specified by using a type library file.

type library file: A path name that identifies a type library.

Universal Naming Convention (UNC): A string format that specifies the location of a resource.

For more information, see [MS-DTYP] section 2.2.57.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not

imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-OAUT] Microsoft Corporation, "OLE Automation Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN

Namespace", RFC 4122, July 2005, http://www.rfc-editor.org/rfc/rfc4122.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.rfc-editor.org/rfc/rfc4234.txt

1.2.2 Informative References

[MS-COMA] Microsoft Corporation, "Component Object Model Plus (COM+) Remote Administration

Protocol".

10 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

[MSDN-COM+Events] Microsoft Corporation, "COM+ Events", http://msdn.microsoft.com/en-
us/library/ms679237.aspx

[MSDN-COM+] Microsoft Corporation, "COM+ (Component Services)", http://msdn.microsoft.com/en-
us/library/ms685978.aspx

[MSDN-ITypeLib] Microsoft Corporation, "ITypeLib", http://msdn.microsoft.com/en-
us/library/ms890643.aspx

1.3 Overview

1.3.1 Background

A publisher-subscriber framework allows applications to publish historical information that might be of
interest to other applications. The applications publishing the information are called publishers, while
the applications subscribing to the information are called subscribers. A publisher specifies this
information in discrete sets called events. Similarly, a subscriber can subscribe to an event by creating

a subscription for it.

1.3.2 Component Object Model Plus (COM+) Event System Protocol

The COM+ Event System Protocol provides a way to manage events and their respective subscriptions
on a remote machine. The protocol is exposed as a set of DCOM [MS-DCOM] interfaces.

Using the protocol a publisher can publish, update, or delete an event on a remote machine. Similarly,

a subscriber can use the protocol to create a subscription for an event on a remote machine. It can
also modify, query, or delete subscriptions for an event on the remote machine.

A subscriber can specify that it wishes to receive a specific type of event or a collection of events. This
is defined by specifying filtering criteria.

1.4 Relationship to Other Protocols

 The COM+ Event System Protocol uses DCOM [MS-DCOM] to communicate over the wire and
authenticate all requests issued against the infrastructure. Along with DCOM, this protocol also uses
the OLE Automation Protocol [MS-OAUT] by using datatypes BSTR and VARIANT from the IDispatch
interface.

The protocol described in [MS-COMA] can be used to perform the registration of type libraries for

event classes and subscriber DCOM components used by the COM+ Event System Protocol. It can also
be used to discover subscriber DCOM components registered on the server to create subscriptions.

1.5 Prerequisites/Preconditions

This protocol assumes that the client is in possession of valid credentials recognized by the server

accepting the client requests.

1.6 Applicability Statement

The COM+ Event System Protocol is applicable to managing a store for publisher/subscriber events

and subscriptions for scenarios where scalability requirements are minimal. It is not intended for
scenarios where the type of events and their subscribers are more than 100. Also, the protocol is
intended for scenarios where access to the event store resulting from adding, reading, updating, and
deleting subscriptions and events are on the order of once every few minutes.

11 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

▪ Protocol Versions: This protocol has multiple interfaces, supported by different versions of the

server. The client of this protocol can determine the version of the server by calling GetVersion
method (section 3.1.4.10.1).

1.8 Vendor-Extensible Fields

This protocol uses HRESULTs as defined in [MS-ERREF]. Vendors are free to choose their own values

for this field, as long as the C bit (0x20000000) is set, indicating it is a customer code.

1.9 Standards Assignments

The following is a table of well-known GUIDs (generated using the mechanism specified in [C706]

section A.2.5) in this protocol.

Parameter Meaning Value

CLSID_EventSystem CLSID for EventSystem {4E14FBA2-2E22-11D1-9964-00C04FBBB345}

CLSID_EventClass CLSID for EventClass {cdbec9c0-7a68-11d1-88f9-0080c7d771bf}

CLSID_EventSubscription CLSID for Subscription {7542e960-79c7-11d1-88f9-0080c7d771bf}

GUID_DefaultAppPartition GUID for default partition {41E90F3E-56C1-4633-81C3-6E8BAC8BDD70}

12 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2 Messages

2.1 Transport

All the protocol messages MUST be transported using DCOM [MS-DCOM]. The protocol uses the

dynamic endpoints allocated and managed by the DCOM infrastructure.

2.2 Common Data Types

In addition to RPC base types and definitions specified in [C706] and [MS-DTYP], additional data types

are defined in the following sections.

2.2.1 Query Strings

The query string in the protocol is used for querying for subscriptions, querying for events, and
specifying filtering criteria. The following is the Augmented Backus-Naur Form (ABNF) [RFC4234]

syntax for the protocol query string.

 QUERY = "ALL" / (OREXPRESSION)
 OREXPRESSION = (ANDEXPRESSION OREXPRTAIL) / (ANDEXPRESSION)
 OREXPRTAIL = (OROPERATOR ANDEXPRESSION OREXPRTAIL) / (OROPERATOR ANDEXPRESSION)
 ANDEXPRESSION = (UNARYEXPRESSION ANDEXPRTAIL) / (UNARYEXPRESSION)
 ANDEXPRTAIL = (ANDOPERATOR UNARYEXPRESSION ANDEXPRTAIL) / (ANDOPERATOR UNARYEXPRESSION)
 ANDOPERATOR = "&" / "AND"
 OROPERATOR = "|" / "OR"
 UNARYEXPRESSION =(NOTOPERATOR UNARYEXPRESSION) / (COMPARISONEXPRESSION)
 NOTOPERATOR = "!" / "~" / "NOT"
 COMPARISONEXPRESSION = (COLUMNID COMPARISONOPERATOR COMPERAND) / ("("OREXPRESSION")")
 COMPARISONOPERATOR = "=" / "==" / "!=" / "~=" / "<>"
 COMPERAND = (CONSTANT) / (OPENPAREN CHOICE CLOSEPAREN)
 CHOICE = (CONSTANT MORECHOICES) / (CONSTANT)
 MORECHOICES = (ANDOROPERATOR CONSTANT MORECHOICES) / (ANDOROPERATOR CONSTANT)
 ANDOROPERATOR = (ANDOPERATOR) / (OROPERATOR)
 CONSTANT = (SINGLEQUOTE STRINGVALUE SINGLEQUOTE)/ (DQUOTE STRINGVALUE DQUOTE) /
 (OPENCURLY UUID CLOSECURLY) / (INTEGERVALUE) / "TRUE" / "FALSE" / "NULL"
 STRINGVALUE= 1*ALPHA
 INTEGERVALUE = ["-" / "+"] 1*DIGIT
 COLUMNID = KNOWNCOLUMNID / 1*ALPHA
 KNOWNCOLUMNID = "EVENTCLASSID" / "EVENTCLASSNAME" / "OWNERSID" /
 "FIRINGINTERFACEIID" / "CUSTOMCONFIGCLASSID" / "DESCRIPTION" / "TYPELIB" /
 "MULTIINTERFACEPUBLISHERFILTERCLSID" / "ALLOWINPROCACTIVATION" / "FIREINPARALLEL" /
 "EVENTCLASSPARTITIONID" / "EVENTCLASSAPPLICATIONID" / "SUBSCRIPTIONID" /
 "SUBSCRIPTIONNAME" / "PUBLISHERID" / "SUBSCRIBERCLSID" / "PERUSER" / "OWNERSID" /
 "ENABLED" / "MACHINENAME" / "INTERFACEID" / "FILTERCRITERIA" /
 "SUBSCRIBERMONIKER" / "SUBSCRIBERPARTITIONID" / SUBSCRIBERAPPLICATIONID"
 OPENPAREN = "("
 CLOSEPAREN = ")"
 SINGLEQUOTE = "'"
 OPENCURLY = "{"
 CLOSECURLY = "}"

DIGIT, DQUOTE, and ALPHA are as specified in [RFC4234] appendix B.

UUID represents the string form of a UUID as specified in [RFC4122] section 3.

Each KNOWNCOLUMNID maps to a property of an event class or a subscription property.<1> These
are specified in section 3.1.1.1 and section 3.1.1.2.

13 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.2 Application-Specific Properties

The protocol allows applications to associate custom properties with its objects. Each property is
identified by means of a unique name, and has a value.

2.2.2.1 Property Names

The following is the ABNF [RFC4234] syntax for these names.

 APPPROPERTYNAME = 1*255ALPHA

2.2.2.2 Property Value Types

These are of VARIANT type as specified in [MS-OAUT] section 2.2.29.2. The VARIANT type MUST be

one of the following: VT_BSTR, VT_I4, VT_I8, VT_I2, or VT_UNKNOWN as specified in [MS-OAUT]
section 2.2.7.

2.2.3 Curly-Braced GUID Strings

This type is a string representation of the GUID type, as specified in [MS-DTYP] section 2.3.4. The
following is the ABNF [RFC4234] syntax for this representation.

 CurlyBraceGuidString = "{" UUID "}"

UUID represents the string form of a UUID as specified in [RFC4122] section 3.

2.2.4 Entity Name String

The following is the ABNF [RFC4234] syntax for these names.

 APPPROPERTYNAME = 1*255ALPHA

2.2.5 ImplementationSpecificPathProperty

 The ImplementationSpecificPathProperty represents a path to a resource in a format that is specific to

a COMEV server implementation. For writes to properties of this type, a server SHOULD accept a path
in Universal Naming Convention (UNC) and MAY<2> accept additional formats (for example, a path in
a local namespace to a local resource).

 Properties of this type MUST be specified as a BSTR and MUST have a character length of at least 1
and at most 260.

2.2.6 EventClassCollectionIdentifier

The EventClassCollectionIdentifier is used to identify an event class in an event collection (see section
3.1.4.6.2). The format of the identifier depends on the protocol version that is implemented by the
server (see section 3.1.4.10.1).

The following is the ABNF syntax [RFC4234] for these identifiers on servers that implement protocol

version 1.

 EventClassCollectionIdentifier = EventClassID
 EventClassID = CurlyBraceGuidString

14 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The following is the ABNF syntax for these identifiers on servers that implement protocol version 2.

 EventClassCollectionIdentifier = EventClassID "-" PartitionID "-" ApplicationID
 EventClassID = CurlyBraceGuidString
 PartitionID = CurlyBraceGuidString
 ApplicationID = CurlyBraceGuidString

2.2.7 SubscriptionCollectionIdentifier

The SubscriptionCollectionIdentifier is used to identify a subscription in a subscription collection (see
section 3.1.4.6.2). The format of the identifier depends on the version of the protocol that is
implemented by the server (see section 3.1.4.10.1).

The following is the ABNF syntax [RFC4234] for these identifiers on servers that implement protocol
version 1.

 SubscriptionCollectionIdentifier = SubscriptionID
 SubscriptionID = CurlyBraceGuidString

The following is the ABNF syntax for these identifiers on servers that implement protocol version 2.

 SubscriptionCollectionIdentifier = SubscriptionID "-" PartitionID "-" ApplicationID
 SubscriptionID = CurlyBraceGuidString
 PartitionID = CurlyBraceGuidString
 ApplicationID = CurlyBraceGuidString

15 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3 Protocol Details

The client application initiates the conversation with the server by performing DCOM activation (as
specified in [MS-DCOM] section 3.2.4.1.1) of one of the class identifiers (CLSIDs) specified in section
1.9. After getting the interface pointer to the DCOM object as a result of the activation, the client
application works with the object by making calls on the DCOM interface it supports. Once done, the
client application releases the interface pointer.

3.1 Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

3.1.1.1 Event Classes

A collection of event interfaces is grouped into an event class. An event class manifests as a DCOM
object that supports each of the event interfaces that are part of the event class. This is known as the
event class object. The publisher application publishes events by activating the event class object and

calling event methods on it to publish events.

The server maintains a table of event classes. Each event class has the following properties:

EventClassName: An application-specific name for the event class. The KNOWNCOLUMNID for this
property is "EVENTCLASSNAME".

EventClassID: The DCOM CLSID for the event class object. The KNOWNCOLUMNID for this property
is "EVENTCLASSID".

OwnerSID: An application-specific identity of the security principal that owns the event class. The
KNOWNCOLUMNID for this property is "OWNERSID".

FiringInterfaceID: An application-specific UUID that identifies the event interface. The
KNOWNCOLUMNID for this property is "FIRINGINTERFACEID".

Description: An application-specific description for the event class. The KNOWNCOLUMNID for this
property is "DESCRIPTION".

Typelib: A type library file path as specified in ImplementationSpecificPathProperty for the type

library that contains the event class. The KNOWNCOLUMNID for this property is "TYPELIB".<3>

PublisherID: An application-specific UUID that uniquely identifies the publisher application. The
KNOWNCOLUMNID for this property is "PUBLISHERID".

MultiInterfacePublisherFilterCLSID: The publisher application can choose to filter subscribers for
the event class. The publisher application uses a DCOM component for this purpose. It uses this
property to specify the CLSID of this component. This DCOM component is given the opportunity
to filter on subscribers when an event gets fired. The KNOWNCOLUMNID for this property is

"MULTIINTERFACEPUBLISHERFILTERCLSID".<4>

AllowInprocActivation: An application-specific Boolean value for controlling the type of activation
for the subscriber application DCOM component. A value of TRUE indicates that the subscriber
application DCOM component wants to be activated in the publisher application. A value of FALSE

16 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

indicates that it wants to be activated in a separate process. The KNOWNCOLUMNID for this
property is "ALLOWINPROCACTIVATION".

FireInParallel: An application-specific Boolean value for controlling the way to fire the events for
delivery to the subscribers. A value of FALSE indicates that the publisher delivers the events to

each subscriber one at a time in any order. A value of TRUE indicates that each subscriber is
notified in parallel. The KNOWNCOLUMNID for this property is "FIREINPARALLEL".

EventClassPartitionID: The UUID of the partition of the event class object. This is used in addition
to EventClassID and EventClassApplicationID. The KNOWNCOLUMNID for this property is
"EVENTCLASSPARTITIONID".<5>

EventClassApplicationID: The UUID of the conglomeration of the event class object. This is used in
addition to EventClassID and EventClassPartitionID. The KNOWNCOLUMNID for this property is

"EVENTCLASSAPPLICATIONID". This property always has the value GUID_NULL.<6>

3.1.1.2 Subscriptions

The server also maintains a table of subscriptions. As with event classes, subscriptions have a set of

properties. Some of the properties can also be specified as part of the query (as specified in section
2.2.1). The following properties are specific to a subscription.

SubscriptionID: A UUID that uniquely identifies the subscription. The KNOWNCOLUMNID for this
property is "SUBSCRIPTIONID".

SubscriptionName: An application-specific name for the subscriber. The KNOWNCOLUMNID for this
property is "SUBSCRIPTIONNAME".

PublisherID: The UUID of the publisher for which the subscriber application is to receive events. The

publisher identity is defined on the event class by specifying its publisher identity property. The
KNOWNCOLUMNID for this property is "PUBLISHERID".

EventClassID: The CLSID of the event class for which the subscription is created. The
KNOWNCOLUMNID for this property is "EVENTCLASSID".

MethodName: The name of the event method for the specific event interface defined for the specific
event class for which the application is creating a subscription.

SubscriberCLSID: The CLSID for the subscriber application's DCOM object, which can be activated
and then called by the publisher application after the event occurs. This MUST be mutually
exclusive with the SubscriberInterface property. A subscription can have both SubscriberCLSID
and SubscriberMoniker properties. A subscription with this property is a persistent subscription.
The KNOWNCOLUMNID for this property is "SUBSCRIBERCLSID".

SubscriberInterface: The DCOM object interface pointer for the subscriber application that receives
the notification as a method call when the event occurs. This MUST be mutually exclusive with the

SubscriberCLSID and SubscriberMoniker properties. A subscription with this property is a transient
subscription.

PerUser: A Boolean that is set to "True" when the subscription is associated with a logon session;

otherwise, it is set to "False". The KNOWNCOLUMNID for this property is "PERUSER".

OwnerSID: The owner security identity for the subscription. The KNOWNCOLUMNID for this property
is "OWNERSID".

Enabled: A Boolean value that specifies whether the subscription is enabled or disabled. If a

subscription is enabled, the value of this property is TRUE and the subscribing application receives
a notification when the publisher fires an event. If the subscription is disabled, the value of this
property is FALSE and the subscribing application does not receive any notification when the
publisher application fires the event. The KNOWNCOLUMNID for this property is "ENABLED".

17 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Description: An application-specific description for the subscription. The KNOWNCOLUMNID for this
property is "DESCRIPTION".

MachineName: The computer name of the server machine where the subscriber application
component resides. The KNOWNCOLUMNID for this property is "MACHINENAME".

InterfaceID: The UUID that identifies the event interface for the event class for which the subscriber
is going to receive an event. The KNOWNCOLUMNID for this property is "INTERFACEID".

FilterCriteria: The filtering criteria for the subscription. The KNOWNCOLUMNID for this property is
"FILTERCRITERIA".<7>

SubscriberMoniker: A string that identifies the subscriber component. This MUST be mutually
exclusive with the SubscriberInterface property. A subscription can have both SubscriberCLSID
and SubscriberMoniker properties. A subscription with this property is a persistent subscription.

The KNOWNCOLUMNID for this property is "SUBSCRIBERMONIKER".

EventClassPartitionID: The UUID of the partition of the event class. The KNOWNCOLUMNID for this
property is "EVENTCLASSPARTITIONID".

EventClassApplicationID: The UUID of the conglomeration of the event class. The
KNOWNCOLUMNID for this property is "EVENTCLASSAPPLICATIONID". This property always has
the value GUID_NULL.

SubscriberPartitionID: The UUID of the partition of the subscriber. It is used in addition to the
SubscriberCLSID and SubscriberApplicationID properties to uniquely identify the subscriber
component. The KNOWNCOLUMNID for this property is "SUBSCRIBERPARTITIONID".

SubscriberApplicationID: The UUID of the conglomeration of the subscriber. It is used in addition to
the SubscriberCLSID and SubscriberPartitionID properties to uniquely identify the subscriber
component. The KNOWNCOLUMNID for this property is "SUBSCRIBERAPPLICATIONID".

PublisherProperties: A set of application-specific properties that are associated with the subscription

that pertains to the publisher, as specified in section 2.2.2.

SubscriberProperties: A set of application-specific properties that are associated with the
subscription that pertains to the subscriber, as specified in section 2.2.2.

3.1.1.3 Event System

The server has two state variables that affect the behavior of the Store, Remove, and RemoveS
methods of the IEventSystem interface. The sections describing each method provide more detail. To
control these variables, the SetCOMCatalogBehavior method of the IEventSystemInitialize interface is
used.

CatalogMode: When this Boolean variable is TRUE, the server is in catalog mode. In this mode, the
only objects that can be modified are transient subscriptions. By default, this variable is FALSE

and the server is in non-catalog mode.

RetainSubKeys: This Boolean variable can be TRUE only if the server is in catalog mode. This

variable affects the behavior of the Store method of the IEventSystem interface. If this variable is
TRUE, any properties within the PublisherProperties or SubscriberProperties of the existing object
are retained and are not deleted, even if they do not exist within the new object. When the
variable is FALSE, the PublisherProperties and SubscriberProperties of the new object replace the
PublisherProperties and SubscriberProperties of the existing object.

3.1.2 Timers

 None.

18 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.3 Initialization

When the Component Object Model Plus (COM+) Event System Protocol server starts up, the server
MUST begin listening for DCOM activation (as specified in [MS-DCOM] section 3.2.4.1.1) for the

CLSIDs specified in section 1.9.

3.1.4 Message Processing Events and Sequencing Rules

Interfaces described in this section are accessed through DCOM. Therefore, any method call can return
DCOM error codes, as specified in [MS-DCOM] and [MS-ERREF], in addition to the COM+ Event

method-specific codes described in this document.

3.1.4.1 IEventSystem

The IEventSystem interface provides methods to create, query, delete, and update event classes and

subscriptions. The interface inherits opnums 0 through 6 from IDispatch as specified in [MS-OAUT]
section 3.1.4. The version for this interface is 0.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
with the CLSID CLSID_EventSystem (see section 1.9) using the UUID {4E14FB9F-2E22-11D1-9964-
00C04FBBB345} for this interface.

The interface includes the following methods beyond those in IDispatch.

Methods in RPC Opnum Order

Method Description

Query Queries for a collection of event classes or subscriptions based on a query
string.

Opnum: 7

Store Stores an event class or subscription.

Opnum: 8

Remove Removes a collection of event classes or subscriptions based on a query.

Opnum: 9

get_EventObjectChangeEventClassID Returns the CLSID for the event class that notifies when a subscription or
an event class has changed.

Opnum: 10

QueryS Queries for a single event class or subscription based on a query string.

Opnum: 11

RemoveS Removes a single event class or subscription based on a query.

Opnum: 12

3.1.4.1.1 Query (Opnum 7)

The Query method is called by a client to query a collection for a collection of event classes or
subscriptions.

 [id(1), helpstring("method Query")] HRESULT Query(
 [in] BSTR progID,
 [in] BSTR queryCriteria,

19 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [out] int* errorIndex,
 [out, retval] IUnknown** ppInterface
);

progID: A string that identifies the type of collection. The value MUST be one of the following.

Value Meaning

"EventSystem.EventClassCollection" The store for event classes (as specified in section 3.1.1.1).

"EventSystem.EventSubscriptionCollection" The store for subscriptions (as specified in section 3.1.1.2).

queryCriteria: The actual query string. The syntax for this string MUST conform to section 2.2.1.

errorIndex: The zero-based character index in the queryCriteria parameter where an error has
occurred. This can occur if the syntax of the query string is incorrect, in which case errorIndex
specifies the index at which the problematic syntax is present in the queryCriteria parameter.

ppInterface: If the method returns a success HRESULT, this MUST contain an interface pointer that
represents the collection of the event classes or subscriptions based on the criteria specified in the

queryCriteria parameter.

Return Values: An HRESULT that specifies success or failure. All success codes MUST be treated the
same, and all failure codes other than EVENT_E_QUERYSYNTAX and EVENT_E_QUERYFIELD MUST
be treated the same.

Return value/code Description

0x80040203

EVENT_E_QUERYSYNTAX

A syntax error occurred while trying to evaluate a query string.

0x80040204

EVENT_E_QUERYFIELD

An invalid field name was used in a query string.

When this method is called, the server MUST use the progID parameter value to determine the store

against which the query needs to be executed and validate the query. If the specified collection is not
valid or if the specified query is not valid, the server MUST fail the call and return a failure HRESULT
back to the client. Otherwise, the server MUST attempt to use the queryCriteria parameter to retrieve
a collection of event classes or subscriptions based on the value of the progID parameter and fail the
call if it cannot. Each of the objects in the collection MUST be wrapped by a DCOM object that MUST
support the IEventClass and IEventClass2 interfaces and MAY<8> support the IEventClass3 interface
if the object is an event class. It MUST support IEventSubscription and IEventSubscription2, and

MAY<9> support IEventSubscription3 if it is a subscription object. These DCOM objects MUST be
encapsulated into a collection-based DCOM object that supports the IEventObjectCollection interface.
This object MUST be returned through the ppInterface parameter.

3.1.4.1.2 Store (Opnum 8)

The Store method is called by a client to store either an event class or a subscription.

 [id(2), helpstring("method Store")] HRESULT Store(
 [in] BSTR ProgID,
 [in] IUnknown* pInterface
);

ProgID: A string that uniquely identifies the kind of object that the client is trying to store. It MUST
be one of the following values.

20 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

"EventSystem.EventClass" The store for event classes, as specified in section 3.1.1.1.

"EventSystem.EventSubscription" The store for subscriptions, as specified in section 3.1.1.2.

pInterface: An interface pointer to a DCOM object that was created by performing DCOM activation
on the server by the client by using either the CLSID_EventClass (as specified in section 1.9),

which represents the CLSID for event class, or CLSID_Subscription (as specified in section 1.9),
which represents the subscriber.

Return Values: An HRESULT that specifies success or failure. All success codes MUST be treated the
same, and all failure codes other than EVENT_E_INVALID_PER_USER_SID MUST be treated the
same.

Return value/code Description

0x80040207

EVENT_E_INVALID_PER_USER_SID

The owner SID, as defined in [MS-DTYP] section 2.4.2, on a per-user
subscription does not exist.

When this method is called, the server MUST verify that all the required properties of the event class
or of the subscription (properties of the DCOM object that is passed in as part of the pInterface
parameter) are specified and are correct.

If this DCOM object is an event class, the server MUST set the EventClassID property to an internally
generated value if it has not already been set, it MUST verify that the EventClassName property is set,
and it MUST verify that either the Typelib or the FiringInterfaceID property is set. If these verifications
fail, the server MUST fail the call and return an HRESULT to the client.

If this DCOM object is a subscription, the server MUST set the SubscriptionID property to an internally
generated value if it has not already been set; it MUST verify that the SubscriptionName property is

set; it MUST verify that either the EventClassID, the PublisherID, or the InterfaceID property is set;
and it MUST verify that the subscription is either transient or persistent. A transient subscription has

the SubscriberInterface property set but neither the SubscriberCLSID nor the SubscriberMoniker
property set. A persistent subscription has one or both of the SubscriberCLSID and SubscriberMoniker
properties set, but the SubscriberInterface property is not set. If these verifications fail, the server
MUST fail the call and return an HRESULT to the client.

Otherwise, it MUST take the individual properties of the event class or the subscription, based on the

type of store requested, MUST attempt to store these properties in its internal store and MUST fail the
call if it cannot. If an entry already exists in the store for the particular object that is represented by
the DCOM object instance, the server MUST update its internal store entry with the new values of the
subscription or the event class, as specified in the DCOM object instance. If the RetainSubKeys state
variable is TRUE, any PublisherProperties or SubscriberProperties within the existing entry that do not
exist within the new object instance MUST NOT be deleted by the server. If the RetainSubKeys state
variable is FALSE, all PublisherProperties or SubscriberProperties in the existing entry MUST be deleted

and replaced by the values in the new object instance. The RetainSubKeys state variable MUST have
no effect on entries that do not already exist in the store.

Additional verifications might be required depending on the protocol version and the state of the
CatalogMode variable. See the individual cases below for details.

▪ Protocol version is 1; CatalogMode is TRUE

The DCOM object MUST be a transient subscription, meaning that it has the SubscriberInterface

property set and neither the SubscriberCLSID nor the SubscriberMoniker property set. If not,
the server MAY fail the call, returning a failure HRESULT to the client. If the server does not fail
the call, the server behavior is undefined.

21 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

▪ Protocol version is 1; CatalogMode is FALSE

No additional verification.

▪ Protocol version is 2; CatalogMode is TRUE

The DCOM object MUST be a transient subscription, meaning that it has the SubscriberInterface

property set and neither the SubscriberCLSID nor the SubscriberMoniker property set. If not,
the server MAY fail the call, returning a failure HRESULT to the client. If the server does not fail
the call, the server behavior is undefined.

If the PartitionID property of the object is equal to GUID_NULL or has not been set, the server
MUST treat the PartitionID property as if it were set to the default partition identifier value
{41E90F3E-56C1-4633-81C3-6E8BAC8BDD70}.

▪ Protocol version is 2; CatalogMode is FALSE

The DCOM object MUST have a PartitionID property equal to GUID_NULL. If not, the server
SHOULD fail the call, returning a failure HRESULT to the client.

3.1.4.1.3 Remove (Opnum 9)

The Remove method is called by a client to remove a collection of event classes or subscriptions by
criteria represented by a query string in the queryCriteria parameter.

 [id(3), helpstring("method Remove")] HRESULT Remove(
 [in] BSTR progID,
 [in] BSTR queryCriteria,
 [out] int* errorIndex
);

progID: A string that uniquely identifies the type of collection. The value MUST be one of the
following.

Value Meaning

"EventSystem.EventClassCollection" The store for event classes (as specified in section 3.1.1.1).

"EventSystem.EventSubscriptionCollection" The store for subscriptions (as specified in section 3.1.1.2).

queryCriteria: The actual query string. The syntax for this string MUST conform to section 2.2.1.

errorIndex: The zero-based character index in the queryCriteria parameter where an error has
occurred. This can occur if the syntax of the query string is incorrect, in which case the errorIndex
specifies the index at which the problematic syntax is present in the queryCriteria parameter.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes other than EVENT_E_QUERYSYNTAX, EVENT_E_QUERYFIELD, and

EVENT_E_NOT_ALL_REMOVED MUST be treated the same.

Return value/code Description

0x80040203

EVENT_E_QUERYSYNTAX

A syntax error occurred while trying to evaluate a query string.

0x80040204

EVENT_E_QUERYFIELD

An invalid field name was used in a query string.

0x8004020B Not all of the requested objects could be removed.

22 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

EVENT_E_NOT_ALL_REMOVED

When this method is called, the server MUST use the progID parameter value to determine the store
against which the query needs to be executed and validate the query. If the specified collection is not
valid or the specified query is not valid, the server MUST fail the call, returning a failure HRESULT to
the client.

Otherwise, if they are valid, the server MUST use the queryCriteria parameter to determine the event

classes or subscriptions that need to be removed. If none of the entries in the internal store matched
the query criteria, the server MUST fail the call.

Otherwise, the server will validate the entries in the query according to the following verification
cases:

▪ Protocol version is 1; CatalogMode is TRUE

If the query includes anything other than subscriptions with the SubscriberInterface property set

(transient subscriptions), the server MAY fail the call, returning a failure HRESULT to the client.
If the server does not fail the call, the server behavior is undefined.

▪ Protocol version is 1; CatalogMode is FALSE

No additional verification.

▪ Protocol version is 2; CatalogMode is TRUE

If the query includes anything other than subscriptions with the PartitionID property not equal to
GUID_NULL and with the SubscriberInterface property set (transient subscriptions), the server

MAY fail the call, returning a failure HRESULT to the client. If the server does not fail the call,
the server behavior is undefined.

▪ Protocol version is 2; CatalogMode is FALSE

If the query includes anything other than event classes and subscriptions with the PartitionID
property equal to GUID_NULL, the server SHOULD fail the call, returning a failure HRESULT to
the client.

If the verification succeeds, the server MUST attempt to remove the event classes or subscriptions

from its internal collection and fail the call if it cannot.

3.1.4.1.4 get_EventObjectChangeEventClassID (Opnum 10)

The get_EventObjectChangeEventClassID method extracts the server-specific EventClassID for server-
specific event class or subscription change notifications.

 [id(4), propget, helpstring("method get_EventObjectChangeEventClassID")]
HRESULT EventObjectChangeEventClassID(

 [out, retval] BSTR* pbstrEventClassID
);

pbstrEventClassID: If the method call returns a success HRESULT, this MUST contain the returned

unique identifier representing the EventClassID for the server specific EventClass/Subscription
change notifications. This MUST be a GUID specified as a string as specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

23 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

When this method is called, a server SHOULD return the EventClassID of an event class supporting
notifications of changes to the server’s event class store and subscriber store. The server MAY instead

fail the method call if it does not support such an event class.

3.1.4.1.5 QueryS (Opnum 11)

The QueryS method is called by the client to query a specific event class or subscription.

 [id(5), helpstring("method QueryS")] HRESULT QueryS(
 [in] BSTR progID,
 [in] BSTR queryCriteria,
 [out, retval] IUnknown** ppInterface
);

progID: A string that uniquely identifies the type of collection. The value MUST be one of the

following.

Value Meaning

"EventSystem.EventClassCollection" The store for event classes (as specified in section 3.1.1.1).

"EventSystem.EventSubscriptionCollection" The store for subscriptions (as specified in section 3.1.1.2).

queryCriteria: The actual query string. The syntax for this string MUST conform to section 2.2.1.

ppInterface: If the method returns success, this MUST contain an interface pointer that represents
the collection of the event classes or subscriptions based on the criteria specified in the
queryCriteria parameter.

Return Values: An HRESULT that specifies success or failure. All success codes MUST be treated the
same, and all failure codes other than EVENT_E_QUERYSYNTAX and EVENT_E_QUERYFIELD MUST
be treated the same.

Return value/code Description

0x80040203

EVENT_E_QUERYSYNTAX

A syntax error occurred while trying to evaluate a query string.

0x80040204

EVENT_E_QUERYFIELD

An invalid field name was used in a query string.

When this method is invoked, the server MUST use the progID parameter value to determine the store
against which the query needs to be executed and validate the query. If the specified collection is not

valid or the specified query is not valid, the server MUST fail the call and return a failure HRESULT
back to the client. Otherwise, the server MUST use the query criteria to attempt to return the first
object that matches the criteria, and fail the call if it cannot. The object MUST be a DCOM object that
MUST support the IEventClass and IEventClass2 interfaces and MAY<10> support the IEventClass3
interface if the object is an event class. It MUST support IEventSubscription and IEventSubscription2

and MAY<11> support IEventSubscription3 if it is a subscription object. This object MUST be stored in

a collection-based DCOM object supporting IEventObjectCollection which MUST be returned through
the ppInterface parameter.

3.1.4.1.6 RemoveS (Opnum 12)

The RemoveS method is called by the client to remove an event class or subscription.

 [id(6), helpstring("method RemoveS")] HRESULT RemoveS(

24 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [in] BSTR progID,
 [in] BSTR queryCriteria
);

progID: A string that uniquely identifies the type of collection. The value MUST be one of the
following.

Value Meaning

"EventSystem.EventClassCollection" The store for event classes (as specified in section 3.1.1.1).

"EventSystem.EventSubscriptionCollection" The store for subscriptions (as specified in section 3.1.1.2).

queryCriteria: The actual query string. The syntax for this string MUST conform to section 2.2.1.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes other than EVENT_E_QUERYSYNTAX, EVENT_E_QUERYFIELD, and
EVENT_E_NOT_ALL_REMOVED MUST be treated the same.

Return value/code Description

0x80040203

EVENT_E_QUERYSYNTAX

A syntax error occurred while trying to evaluate a query string.

0x80040204

EVENT_E_QUERYFIELD

An invalid field name was used in a query string.

0x8004020B

EVENT_E_NOT_ALL_REMOVED

Not all of the requested objects could be removed.

When this method is called, the server MUST use the progID parameter value to determine the store
against which the query needs to be executed, and validate the query. If the specified collection is not
valid or the specified query is not valid, the server MUST fail the call, returning a failure HRESULT to

the client.

If they are valid, the server MUST use the queryCriteria value to determine the event classes or
subscriptions that need to be removed. If none of the entries in the internal store matched the
queryCriteria, the server MUST fail the call.

Otherwise, the server will validate the entries in the query according to the following verification
cases:

▪ Protocol version is 1; CatalogMode is TRUE

If the query includes anything other than subscriptions with the SubscriberInterface property set
(transient subscriptions), the server MAY fail the call, returning a failure HRESULT to the client.
If the server does not fail the call, the server behavior is undefined.

▪ Protocol version is 1; CatalogMode is FALSE

No additional verification.

▪ Protocol version is 2; CatalogMode is TRUE

If the query includes anything other than subscriptions with the PartitionID property not equal to

GUID_NULL and with the SubscriberInterface property set (transient subscriptions), the server
MAY fail the call, returning a failure HRESULT to the client. If the server does not fail the call,
the server behavior is undefined.

25 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

▪ Protocol version is 2; CatalogMode is FALSE

If the query includes anything other than event classes and subscriptions with the PartitionID

property equal to GUID_NULL, the server SHOULD fail the call, returning a failure HRESULT to
the client.

If the verification succeeds, the server MUST attempt to remove the event classes or subscriptions
from its internal collection and fail the call if it cannot.

3.1.4.2 IEventClass

The IEventClass interface provides methods that are used by the client to manipulate an event class
on the server. The interface inherits Opnums 0 to 6 from IDispatch as specified in [MS-OAUT] section
3.1.4. The version for this interface is 0.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
with the class ID CLSID_EventClass (see section 1.9) using the UUID {fb2b72a0-7a68-11d1-88f9-
0080c7d771bf} for this interface.

The interface includes the following methods beyond those in IDispatch.

Methods in RPC Opnum Order

Method Description

EventClassID Gets the EventClassID property for the event class.

Opnum: 7

EventClassID Sets the EventClassID property for the event class.

Opnum: 8

EventClassName Gets the EventClassName property of the event class.

Opnum: 9

EventClassName Sets the EventClassName property of the event class.

Opnum: 10

OwnerSID Gets the OwnerSID property of the event class.

Opnum: 11

OwnerSID Sets the OwnerSID property of the event class.

Opnum: 12

FiringInterfaceID Gets the FiringInterfaceID property for the event class.

Opnum: 13

FiringInterfaceID Sets the FiringInterfaceID property for the event class.

Opnum: 14

Description Gets the Description property for the event class.

Opnum: 15

Description Sets the Description property for the event class.

Opnum: 16

Opnum17NotUsedOnWire Reserved for local use.

Opnum: 17

Opnum18NotUsedOnWire Reserved for local use.

26 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

Opnum: 18

TypeLib Gets the Typelib property of the event class.

Opnum: 19

TypeLib Sets the Typelib property of the event class.

Opnum: 20

In the preceding table, the term "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined<12> because it does not affect interoperability.

3.1.4.2.1 get_EventClassID (Opnum 7)

The get_EventClassID method is used to get the EventClassID property of the event class.

 [propget, id(1), helpstring("property EventClassID")] HRESULT EventClassID(
 [out, retval] BSTR* pbstrEventClassID
);

pbstrEventClassID: If the method returns a success HRESULT, it MUST contain the value of the
EventClassID property of the event class, as specified in section 3.1.1.1. The value MUST conform
to the format specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the

same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the EventClassID
property.

3.1.4.2.2 put_EventClassID (Opnum 8)

The put_EventClassID method sets the EventClassID property of the event class.

 [propput, id(1), helpstring("property EventClassID")] HRESULT EventClassID(
 [in] BSTR bstrEventClassID
);

bstrEventClassID: The EventClassID property of the event class, as specified in section 3.1.1.1. The
value MUST conform to the format specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the method call. Otherwise, the server MUST attempt to update
the state of the DCOM object servicing this method with the new value of the EventClassID property,
and fail the call, returning a failure HRESULT back to the client if it cannot. Otherwise, it MUST
override any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.2.3 get_EventClassName (Opnum 9)

The get_EventClassName method gets the EventClassName property of the event class.

27 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [propget, id(2), helpstring("property EventClassName")] HRESULT EventClassName(
 [out, retval] BSTR* pbstrEventClassName
);

pbstrEventClassName: If the method returns a success HRESULT, this MUST contain the value of
the EventClassName property of the event class, as specified in section 3.1.1.1. The value MUST
conform to the format specified in section 2.2.4.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure

HRESULT back to the client. Otherwise, the server MUST return the value of the EventClassName
property.

3.1.4.2.4 put_EventClassName (Opnum 10)

The put_EventClassName method sets the EventClassName property of the event class.

 [propput, id(2), helpstring("property EventClassName")] HRESULT EventClassName(
 [in] BSTR bstrEventClassName
);

bstrEventClassName: The EventClassName property of the event class, as specified in section
3.1.1.1. The value MUST conform to the format specified in section 2.2.4.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the method call. Otherwise, the server MUST attempt to update

the state of the DCOM object servicing this method with the new value of the EventClassName
property, and fail the call, returning a failure HRESULT back to the client if it cannot. Otherwise, it
MUST override any previous value that was set for this DCOM object instance servicing this method
call.

3.1.4.2.5 get_OwnerSID (Opnum 11)

The get_OwnerSID method gets the OwnerSID property of the event class.

 [propget, id(3), helpstring("property OwnerSID")] HRESULT OwnerSID(
 [out, retval] BSTR* pbstrOwnerSID
);

pbstrOwnerSID: If the method returns a success HRESULT, this MUST contain the OwnerSID

property of the event class, as specified in section 3.1.1.1. The value MUST be specified in the
Security Descriptor Description Language specified in [MS-DTYP] section 2.5.1.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the OwnerSID property.

28 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.4.2.6 put_OwnerSID (Opnum 12)

The put_OwnerSID method sets the OwnerSID property of the event class.

 [propput, id(3), helpstring("property OwnerSID")] HRESULT OwnerSID(
 [in] BSTR bstrOwnerSID
);

bstrOwnerSID: The OwnerSID property of the event class, as specified in section 3.1.1.1. The value
MUST be specified in the Security Descriptor Description Language specified in [MS-DTYP] section
2.5.1.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the

same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the method call. Otherwise, the server MUST attempt to update

the state of the DCOM object servicing this method with the new value of the OwnerSID property, and
fail the call, returning a failure HRESULT back to the client if it cannot. Otherwise, it MUST override
any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.2.7 get_FiringInterfaceID (Opnum 13)

The get_FiringInterfaceID method gets the FiringInterfaceID property of the event class.

 [propget, id(4), helpstring("property FiringInterfaceID")] HRESULT FiringInterfaceID(
 [out, retval] BSTR* pbstrFiringInterfaceID
);

pbstrFiringInterfaceID: If the method returns a success HRESULT, it MUST contain the

FiringInterfaceID property of the event class, as specified in section 3.1.1.1. The value MUST
conform to the format specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure

HRESULT back to the client. Otherwise, the server MUST return the value of the FiringInterfaceID
property.

3.1.4.2.8 put_FiringInterfaceID (Opnum 14)

The put_FiringInterfaceID method sets the FiringInterfaceID property of the event class.

 [propput, id(4), helpstring("property FiringInterfaceID")] HRESULT FiringInterfaceID(
 [in] BSTR bstrFiringInterfaceID
);

bstrFiringInterfaceID: The value of the FiringInterfaceID property of the event class, as specified in
section 3.1.1.1. The value MUST conform to the format specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

29 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the method call. Otherwise, the server MUST attempt to update

the state of the DCOM object servicing this method with the new value of the FiringInterfaceID
property, and fail the call, returning a failure HRESULT back to the client if it cannot. Otherwise, it

MUST override any previous value that was set for this DCOM object instance servicing this method
call.

3.1.4.2.9 get_Description (Opnum 15)

The get_Description method gets the Description property of the event class.

 [propget, id(5), helpstring("property Description")] HRESULT Description(
 [out, retval] BSTR* pbstrDescription
);

pbstrDescription: If the method returns a success HRESULT, this MUST contain the Description
property of the event class, as specified in section 3.1.1.1. The string value MUST be of length less

than or equal to 255.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the Description property.

3.1.4.2.10 put_Description (Opnum 16)

The put_Description method sets the Description property of the event class.

 [propput, id(5), helpstring("property Description")] HRESULT Description(
 [in] BSTR bstrDescription
);

bstrDescription: The Description property of the event class, as specified in section 3.1.1.1. The
string value MUST be of length less than or equal to 255.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the

same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the method call. Otherwise, the server MUST attempt to update
the state of the DCOM object servicing this method with the new value of the Description property,
and fail the call, returning a failure HRESULT back to the client if it cannot. Otherwise, it MUST
override any previous value that was set for this DCOM object instance servicing this method call

3.1.4.2.11 get_TypeLib (Opnum 19)

The get_TypeLib method gets the Typelib property of the event class.

 [propget, id(7), helpstring("property TypeLib")] HRESULT TypeLib(
 [out, retval] BSTR* pbstrTypeLib
);

30 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

pbstrTypeLib: If the method returns a success HRESULT, this MUST contain the Typelib property of
the event class, as specified in section 3.1.1.1. The value MUST conform to the format specified in

section 2.2.5.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the

same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the Typelib property.

3.1.4.2.12 put_TypeLib (Opnum 20)

The put_TypeLib method sets the Typelib property of the event class.

 [propput, id(7), helpstring("property TypeLib")] HRESULT TypeLib(
 [in] BSTR bstrTypeLib
);

bstrTypeLib: The Typelib property of the event class, as specified in section 3.1.1.1. The value MUST
conform to the format specified in section 2.2.5.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the

same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the method call. Otherwise, the server MUST attempt to update
the state of the DCOM object servicing this method with the new value of the Typelib property, and
fail the call, returning a failure HRESULT back to the client if it cannot. Otherwise, it MUST override
any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.3 IEventClass2

The IEventClass2 interface provides additional methods that are used by the client to manipulate
event class properties on the server. This interface inherits opnums 0 through 20 from IEventClass as
specified in section 3.1.4.2. The version for this interface is 0.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
with the class ID CLSID_EventClass (see section 1.9) using the UUID {fb2b72a1-7a68-11d1-88f9-
0080c7d771bf} for this interface.

This interface includes the following methods beyond those in IEventClass.

Methods in RPC Opnum Order

Method Description

get_PublisherID Gets the PublisherID property of the event class.

Opnum: 21

put_PublisherID Sets the PublisherID property of the event class.

Opnum: 22

get_MultiInterfacePublisherFilterCLSID Gets the MultiInterfacePublisherFilterCLSID property of the event class.

Opnum: 23

put_MultiInterfacePublisherFilterCLSID Sets the MultiInterfacePublisherFilterCLSID property of the event class.

Opnum: 24

31 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

get_AllowInprocActivation Gets the AllowInprocActivation property of the event class.

Opnum: 25

put_AllowInprocActivation Sets the AllowInprocActivation property of the event class.

Opnum: 26

get_FireInParallel Gets the FireInParallel property of the event class.

Opnum: 27

put_FireInParallel Sets the FireInParallel property of the event class.

Opnum: 28

3.1.4.3.1 get_PublisherID (Opnum 21)

The get_PublisherID method gets the PublisherID property of the event class.

 [id(8), propget, helpstring("property PublisherID")] HRESULT PublisherID(
 [out, retval] BSTR* pbstrPublisherID
);

pbstrPublisherID: If the method returns a success HRESULT, this MUST contain the PublisherID
property of the event class, as specified in section 3.1.1.1. The value MUST conform to the format
specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM

object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the PublisherID property.

3.1.4.3.2 put_PublisherID (Opnum 22)

The put_PublisherID method sets the PublisherID property of the event class.

 [id(8), propput, helpstring("property PublisherID")] HRESULT PublisherID(
 [in] BSTR bstrPublisherID
);

bstrPublisherID: The PublisherID property of the event class, as specified in section 3.1.1.1. The

value MUST conform to the format specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the

same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the method call. Otherwise, the server MUST attempt to update
the state of the DCOM object servicing this method with the new value of the PublisherID property,
and fail the call, returning a failure HRESULT back to the client if it cannot. Otherwise, it MUST

override any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.3.3 get_MultiInterfacePublisherFilterCLSID (Opnum 23)

32 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The get_MultiInterfacePublisherFilterCLSID method gets the MultiInterfacePublisherFilterCLSID
property of the event class.

 [id(9), propget, helpstring("property MultiInterfacePublisherFilterCLSID")]
HRESULT MultiInterfacePublisherFilterCLSID(

 [out, retval] BSTR* pbstrPubFilCLSID
);

pbstrPubFilCLSID: If the method returns a success HRESULT, this MUST contain the

MultiInterfacePublisherFilterCLSID property of the event class, as specified in section 3.1.1.1. The
value MUST conform to the format specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure

HRESULT back to the client. Otherwise, the server MUST return the value of the

MultiInterfacePublisherFilterCLSID property.

3.1.4.3.4 put_MultiInterfacePublisherFilterCLSID (Opnum 24)

The put_MultiInterfacePublisherFilterCLSID method sets the MultiInterfacePublisherFilterCLSID
property of the event class.

 [id(9), propput, helpstring("property MultiInterfacePublisherFilterCLSID")]
HRESULT MultiInterfacePublisherFilterCLSID(

 [in] BSTR bstrPubFilCLSID
);

bstrPubFilCLSID: The MultiInterfacePublisherFilterCLSID property of the event class, as specified in

section 3.1.1.1. The value MUST conform to the format specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the method call. Otherwise, the server MUST attempt to update
the state of the DCOM object servicing this method with the new value of the
MultiInterfacePublisherFilterCLSID property, and fail the call, returning a failure HRESULT back to the

client if it cannot. Otherwise, it MUST override any previous value that was set for this DCOM object
instance servicing this method call.

3.1.4.3.5 get_AllowInprocActivation (Opnum 25)

The get_AllowInprocActivation method gets the AllowInprocActivation property of the event class.

 [id(10), propget, helpstring("property AllowInprocActivation")]
HRESULT AllowInprocActivation(

 [out, retval] BOOL* pfAllowInprocActivation
);

pfAllowInprocActivation: If the method returns a success HRESULT, this MUST contain the

AllowInprocActivation property of the event class, as specified in section 3.1.1.1.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

33 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure

HRESULT back to the client. Otherwise, the server MUST return the value of the AllowInprocActivation
property.

3.1.4.3.6 put_AllowInprocActivation (Opnum 26)

The put_AllowInprocActivation method sets the AllowInprocActivation property of the event class.

 [id(10), propput, helpstring("property AllowInprocActivation")]
HRESULT AllowInprocActivation(

 [in] BOOL fAllowInprocActivation
);

fAllowInprocActivation: The value of the AllowInprocActivation property of the event class, as
specified in section 3.1.1.1.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the

same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the method call. Otherwise, the server MUST attempt to update
the state of the DCOM object servicing this method with the new value of the AllowInprocActivation
property, and fail the call, returning a failure HRESULT back to the client if it cannot. Otherwise, it
MUST override any previous value that was set for this DCOM object instance servicing this method
call.

3.1.4.3.7 get_FireInParallel (Opnum 27)

The get_FireInParallel method gets the FireInParallel property of the event class.

 [id(11), propget, helpstring("property FireInParallel")] HRESULT FireInParallel(
 [out, retval] BOOL* pfFireInParallel
);

pfFireInParallel: If the method returns a success HRESULT, this MUST contain the value of the
FireInParallel property of the event class, as specified in section 3.1.1.1.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the FireInParallel

property.

3.1.4.3.8 put_FireInParallel (Opnum 28)

The put_FireInParallel method sets the value of the FireInParallel property of the event class.

 [id(11), propput, helpstring("property FireInParallel")] HRESULT FireInParallel(
 [in] BOOL fFireInParallel
);

fFireInParallel: The value of the FireInParallel property of the event class, as specified in section
3.1.1.1.

34 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the method call. Otherwise, the server MUST attempt to update

the state of the DCOM object servicing this method with the new value of the FireInParallel property,
and fail the call, returning a failure HRESULT back to the client if it cannot. Otherwise, it MUST
override any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.4 IEventSubscription

The IEventSubscription interface provides methods to get and set the properties of a subscription. This
interface inherits opnums 0 through 6 from [MS-OAUT] IDispatch as specified in [MS-OAUT] section
3.1.4. The version for this interface is 0.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM [MS-DCOM]
object class with the class ID CLSID_Subscription (see section 1.9) using the UUID {4A6B0E15-2E38-
11D1-9965-00C04FBBB345} for this interface.

The interface includes the following methods beyond those in IDispatch.

Methods in RPC Opnum Order

Method Description

get_SubscriptionID Gets the SubscriptionID property of the subscription.

Opnum: 7

put_SubscriptionID Sets the SubscriptionID property of the subscription.

Opnum: 8

get_SubscriptionName Gets the SubscriptionName property of the subscription.

Opnum: 9

put_SubscriptionName Sets the SubscriptionName property of the subscription.

Opnum: 10

get_PublisherID Gets the PublisherID property of the subscription.

Opnum: 11

put_PublisherID Sets the PublisherID property of the subscription.

Opnum: 12

get_EventClassID Gets the EventClassID property of the subscription.

Opnum: 13

put_EventClassID Sets the EventClassID property of the subscription.

Opnum: 14

get_MethodName Gets the MethodName property of the subscription.

Opnum: 15

put_MethodName Sets the MethodName property of the subscription.

Opnum: 16

get_SubscriberCLSID Gets the SubscriberCLSID property of the subscription.

Opnum: 17

put_SubscriberCLSID Sets the SubscriberCLSID property of the subscription.

35 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

Opnum: 18

get_SubscriberInterface Gets the SubscriberInterface property of the subscription.

Opnum: 19

put_SubscriberInterface Sets the SubscriberInterface property of the subscription.

Opnum: 20

get_PerUser Gets the PerUser property of the subscription.

Opnum: 21

put_PerUser Sets the PerUser property of the subscription.

Opnum: 22

get_OwnerSID Gets the OwnerSID property of the subscription.

Opnum: 23

put_OwnerSID Sets the OwnerSID property of the subscription.

Opnum: 24

get_Enabled Gets the Enabled property of the subscription.

Opnum: 25

put_Enabled Sets the Enabled property of the subscription.

Opnum: 26

get_Description Gets the Description property of the subscription.

Opnum: 27

put_Description Sets the Description property of the subscription.

Opnum: 28

get_MachineName Gets the MachineName property of the subscription.

Opnum: 29

put_MachineName Sets the MachineName property of the subscription.

Opnum: 30

GetPublisherProperty Gets the application-specific publisher property for the subscription.

Opnum: 31

PutPublisherProperty Sets the application-specific publisher property for the subscription.

Opnum: 32

RemovePublisherProperty Removes an application-specific publisher property for the subscription.

Opnum: 33

GetPublisherPropertyCollection Gets an application-specific publisher properties collection for the subscription.

Opnum: 34

GetSubscriberProperty Gets an application-specific subscription property for the subscription.

Opnum: 35

PutSubscriberProperty Sets an application-specific subscription property for the subscription.

Opnum: 36

RemoveSubscriberProperty Removes an application-specific subscription property for the subscription.

36 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

Opnum: 37

GetSubscriberPropertyCollection Gets the application-specific subscription properties for the subscription as a
collection.

Opnum: 38

get_InterfaceID Gets the InterfaceID property for the subscription.

Opnum: 39

put_InterfaceID Sets the InterfaceID property for the subscription.

Opnum: 40

3.1.4.4.1 get_SubscriptionID (Opnum 7)

The get_SubscriptionID method gets the SubscriptionID property for the subscription.

 [propget, id(1), helpstring("property SubscriptionID")] HRESULT SubscriptionID(
 [out, retval] BSTR* pbstrSubscriptionID
);

pbstrSubscriptionID: If the method returns a success HRESULT, this MUST contain the
SubscriptionID property of the subscription, as specified in section 3.1.1.2. The value MUST
conform to the format as specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure

HRESULT back to the client. Otherwise, the server MUST return the value of the SubscriptionID
property.

3.1.4.4.2 put_SubscriptionID (Opnum 8)

The put_SubscriptionID method sets the SubscriptionID property of the subscription.

 [propput, id(1), helpstring("property SubscriptionID")] HRESULT SubscriptionID(
 [in] BSTR bstrSubscriptionID
);

bstrSubscriptionID: A UUID uniquely identifying the subscription, in the string format specified in
section 2.2.3. This MUST be a UUID generated by the client, as specified in [C706] section A.2.5.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the

same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the call, returning a failure HRESULT back to the client.
Otherwise, the server MUST attempt to update the state of the DCOM object servicing this method

with the new value of the SubscriptionID property, and fail the call if it cannot. Otherwise, it MUST
override any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.4.3 get_SubscriptionName (Opnum 9)

37 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The get_SubscriptionName method gets the SubscriptionName property of the subscription.

 [propget, id(2), helpstring("property SubscriptionName")] HRESULT SubscriptionName(
 [out, retval] BSTR* pbstrSubscriptionName
);

pbstrSubscriptionName: If the method returns a success HRESULT, this MUST contain the
SubscriptionName property of the subscription, as specified in section 3.1.1.2. The value MUST
conform to the format as specified in section 2.2.4.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM

object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the SubscriptionName
property.

3.1.4.4.4 put_SubscriptionName (Opnum 10)

The put_SubscriptionName method sets the SubscriptionName property of the subscription.

 [propput, id(2), helpstring("property SubscriptionName")] HRESULT SubscriptionName(
 [in] BSTR bstrSubscriptionName
);

bstrSubscriptionName: The SubscriptionName property of the subscription, as specified in section
3.1.1.2. The value MUST conform to the format as specified in section 2.2.4.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the

same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the call, returning a failure HRESULT back to the client.
Otherwise, the server MUST attempt to update the state of the DCOM object servicing this method
with the new value of the SubscriptionName property, and fail the call if it cannot. Otherwise, it MUST
override any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.4.5 get_PublisherID (Opnum 11)

The get_PublisherID method gets the PublisherID property of the subscription.

 [propget, id(3), helpstring("property PublisherID")] HRESULT PublisherID(
 [out, retval] BSTR* pbstrPublisherID
);

pbstrPublisherID: If the method returns a success HRESULT, this MUST contain the PublisherID

property of the subscription, as specified in section 3.1.1.2. The value MUST conform to the
format as specified in section 2.2.4.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the PublisherID property.

38 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.4.4.6 put_PublisherID (Opnum 12)

The put_PublisherID method sets the PublisherID property of the subscription.

 [propput, id(3), helpstring("property PublisherID")] HRESULT PublisherID(
 [in] BSTR bstrPublisherID
);

bstrPublisherID: The PublisherID property of the subscription, as specified in section 3.1.1.2. The
value MUST conform to the format as specified in section 2.2.4.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the call, returning a failure HRESULT back to the client.
Otherwise, the server MUST attempt to update the state of the DCOM object servicing this method

with the new value of the PublisherID property, and fail the call if it cannot. Otherwise, it MUST
override any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.4.7 get_EventClassID (Opnum 13)

The get_EventClassID method gets the EventClassID property of the subscription.

 [propget, id(4), helpstring("property EventClassID")] HRESULT EventClassID(
 [out, retval] BSTR* pbstrEventClassID
);

pbstrEventClassID: If the method returns a success HRESULT, this MUST contain the EventClassID
property of the subscription, as specified in section 3.1.1.2. The value MUST conform to the

format as specified in section 2.2.4.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the EventClassID

property.

3.1.4.4.8 put_EventClassID (Opnum 14)

The put_EventClassID method sets the EventClassID property of the subscription.

 [propput, id(4), helpstring("property EventClassID")] HRESULT EventClassID(
 [in] BSTR bstrEventClassID
);

bstrEventClassID: The EventClassID property of the subscription, as specified in section 3.1.1.2. The
value MUST conform to the format as specified in section 2.2.4.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the call, returning a failure HRESULT back to the client.

39 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Otherwise, the server MUST attempt to update the state of the DCOM object servicing this method
with the new value of the EventClassID property, and fail the call if it cannot. Otherwise, it MUST

override any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.4.9 get_MethodName (Opnum 15)

The get_MethodName method gets the MethodName property of the subscription.

 [propget, id(5), helpstring("property MethodName")] HRESULT MethodName(
 [out, retval] BSTR* pbstrMethodName
);

pbstrMethodName: If the method returns a success HRESULT, this MUST contain the MethodName

property of the subscription, as specified in section 3.1.1.2. The value MUST conform to the
format as specified in section 2.2.4.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the

same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the MethodName

property.

3.1.4.4.10 put_MethodName (Opnum 16)

The put_MethodName method sets the MethodName property of the subscription.

 [propput, id(5), helpstring("property MethodName")] HRESULT MethodName(
 [in] BSTR bstrMethodName
);

bstrMethodName: The MethodName property of the subscription, as specified in section 3.1.1.2. The
value MUST conform to the format as specified in section 2.2.4.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If

validation fails, the server MUST fail the call, returning a failure HRESULT back to the client.
Otherwise, the server MUST attempt to update the state of the DCOM object servicing this method
with the new value of the MethodName property, and fail the call if it cannot. Otherwise, it MUST
override any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.4.11 get_SubscriberCLSID (Opnum 17)

The get_SubscriberCLSID method gets the SubscriberCLSID property of the subscription.

 [propget, id(6), helpstring("property SubscriberCLSID")] HRESULT SubscriberCLSID(
 [out, retval] BSTR* pbstrSubscriberCLSID
);

pbstrSubscriberCLSID: If the method returns a success HRESULT, this MUST contain the
SubscriberCLSID property of the subscription, as specified in section 3.1.1.2. The value MUST
conform to the format as specified in section 2.2.3.

40 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure

HRESULT back to the client. Otherwise, the server MUST return the value of the SubscriberCLSID
property.

3.1.4.4.12 put_SubscriberCLSID (Opnum 18)

The put_SubscriberCLSID method sets the SubscriberCLSID property of the subscription.

 [propput, id(6), helpstring("property SubscriberCLSID")] HRESULT SubscriberCLSID(
 [in] BSTR bstrSubscriberCLSID
);

bstrSubscriberCLSID: The SubscriberCLSID property of the subscription, as specified in section

3.1.1.2. The value MUST conform to the format as specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If

validation fails, the server MUST fail the call, returning a failure HRESULT back to the client.
Otherwise, the server MUST attempt to update the state of the DCOM object servicing this method
with the new value of the SubscriberCLSID property, and fail the call if it cannot. Otherwise, it MUST
override any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.4.13 get_SubscriberInterface (Opnum 19)

The get_SubscriberInterface method gets the SubscriberInterface property of the subscription.

 [propget, id(7), helpstring("property SubscriberInterface")] HRESULT SubscriberInterface(
 [out, retval] IUnknown** ppSubscriberInterface
);

ppSubscriberInterface: If the method returns a success HRESULT, this MUST contain the
SubscriberInterface property of the subscription, as specified in section 3.1.1.2.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the SubscriberInterface
property.

3.1.4.4.14 put_SubscriberInterface (Opnum 20)

The put_SubscriberInterface method sets the SubscriberInterface property of the subscription.

 [propput, id(7), helpstring("property SubscriberInterface")] HRESULT SubscriberInterface(
 [in] IUnknown* pSubscriberInterface
);

41 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

pSubscriberInterface: The SubscriberInterface property of the subscription, as specified in section
3.1.1.2.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the method call. Otherwise, the server MUST attempt to update
the state of the DCOM object servicing this method with the new value of the SubscriberInterface
property, and fail the call if it cannot. Otherwise, it MUST override any previous value that was set for
this DCOM object instance servicing this method call.

3.1.4.4.15 get_PerUser (Opnum 21)

The get_PerUser method gets the PerUser property of the subscription.

 [propget, id(8), helpstring("property PerUser")] HRESULT PerUser(
 [out, retval] BOOL* pfPerUser
);

pfPerUser: If the method returns a success HRESULT, this MUST contain the value of the PerUser
property of the subscription, as specified in section 3.1.1.2.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the PerUser property.

3.1.4.4.16 put_PerUser (Opnum 22)

The put_PerUser method sets the PerUser property of the subscription.

 [propput, id(8), helpstring("property PerUser")] HRESULT PerUser(
 [in] BOOL fPerUser
);

fPerUser: This is the PerUser property of the subscription, as specified in section 3.1.1.2.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the call, returning a failure HRESULT back to the client.
Otherwise, the server MUST attempt to update the state of the DCOM object servicing this method
with the new value of the PerUser property, and fail the call if it cannot. Otherwise, it MUST override
any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.4.17 get_OwnerSID (Opnum 23)

The get_OwnerSID method gets the OwnerSID property of the subscription.

 [propget, id(9), helpstring("property OwnerSID")] HRESULT OwnerSID(
 [out, retval] BSTR* pbstrOwnerSID
);

42 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

pbstrOwnerSID: If the method returns a success HRESULT, this MUST contain the value of the
OwnerSID property of the subscription, as specified in section 3.1.1.2. The value MUST be

specified in the Security Descriptor Description Language specified in [MS-DTYP] section 2.5.1.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the

same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the OwnerSID property.

3.1.4.4.18 put_OwnerSID (Opnum 24)

The put_OwnerSID method sets the OwnerSID property of the subscription

 [propput, id(9), helpstring("property OwnerSID")] HRESULT OwnerSID(
 [in] BSTR bstrOwnerSID
);

bstrOwnerSID: The OwnerSID property of the subscription, as specified in section 3.1.1.2. The value
MUST be specified in the Security Descriptor Description Language specified in [MS-DTYP] section
2.5.1.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the call, returning a failure HRESULT back to the client.
Otherwise, the server MUST attempt to update the state of the DCOM object servicing this method
with the new value of the OwnerSID property, and fail the call if it cannot. Otherwise, it MUST override

any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.4.19 get_Enabled (Opnum 25)

The get_Enabled method gets the Enabled property of the subscription.

 [propget, id(10), helpstring("property Enabled")] HRESULT Enabled(
 [out, retval] BOOL* pfEnabled
);

pfEnabled: If the method returns a success HRESULT, this MUST contain the value of the Enabled
property of the subscription, as specified in section 3.1.1.2.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure

HRESULT back to the client. Otherwise, the server MUST return the value of the Enabled property.

3.1.4.4.20 put_Enabled (Opnum 26)

The put_Enabled method sets the Enabled property of the subscription.

 [propput, id(10), helpstring("property Enabled")] HRESULT Enabled(
 [in] BOOL fEnabled

43 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

);

fEnabled: The new value of the Enabled property of the subscription, as specified in section 3.1.1.2.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the call, returning a failure HRESULT back to the client.
Otherwise, the server MUST attempt to update the state of the DCOM object servicing this method
with the new value of the Enabled property, and fail the call if it cannot. Otherwise, it MUST override
any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.4.21 get_Description (Opnum 27)

The get_Description method gets the Description property of the subscription.

 [propget, id(11), helpstring("property Description")] HRESULT Description(
 [out, retval] BSTR* pbstrDescription
);

pbstrDescription: If the method returns a success HRESULT, this MUST contain the value of the

Description property of the subscription, as specified in section 3.1.1.2. This MUST be a string of
character length less than or equal to 255.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the Description property.

3.1.4.4.22 put_Description (Opnum 28)

The put_Description method sets the Description property of the subscription.

 [propput, id(11), helpstring("property Description")] HRESULT Description(
 [in] BSTR bstrDescription
);

bstrDescription: The Description property of the subscription, as specified in section 3.1.1.2. This
MUST be a string of character length less than or equal to 255.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If

validation fails, the server MUST fail the call, returning a failure HRESULT back to the client.
Otherwise, the server MUST attempt to update the state of the DCOM object servicing this method

with the new value of the Description property, and fail the call if it cannot. Otherwise, it MUST
override any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.4.23 get_MachineName (Opnum 29)

The get_MachineName method gets the MachineName property of the subscription.

44 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [propget, id(12), helpstring("property MachineName")] HRESULT MachineName(
 [out, retval] BSTR* pbstrMachineName
);

pbstrMachineName: If the method returns a success HRESULT, this MUST contain the value of the
MachineName property of the subscription, as specified in section 3.1.1.2. This MUST be a string
of character length less than or equal to 255.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure

HRESULT back to the client. Otherwise, the server MUST return the value of the MachineName
property.

3.1.4.4.24 put_MachineName (Opnum 30)

The put_MachineName method sets the MachineName property of the subscription.

 [propput, id(12), helpstring("property MachineName")] HRESULT MachineName(
 [in] BSTR bstrMachineName
);

bstrMachineName: The MachineName property of the subscription, as specified in section 3.1.1.2.
This MUST be a string of character length less than or equal to 255.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the call, returning a failure HRESULT back to the client.

Otherwise, the server MUST attempt to update the state of the DCOM object servicing this method
with the new value of the MachineName property, and fail the call if it cannot. Otherwise, it MUST
override any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.4.25 GetPublisherProperty (Opnum 31)

The GetPublisherProperty method gets the application-specific publisher property of the subscription.
See publisher properties in section 3.1.1.2.

 [id(13), helpstring("method GetPublisherProperty")] HRESULT GetPublisherProperty(
 [in] BSTR bstrPropertyName,
 [out, retval] VARIANT* propertyValue
);

bstrPropertyName: The application-specific name for publisher property. The format for the

publisher property name MUST adhere to the format specified in section 2.2.2.1.

propertyValue: If the function returns a success HRESULT, this MUST contain the application-specific
publisher property value which MUST be of the type specified in 2.2.2.2.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the bstrPropertyName parameter. If validation
fails, the server MUST fail the call, returning a failure HRESULT back to the client. The server MUST

45 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

then check to see if the value for this property is associated with the state of the instance of the
DCOM object servicing this call specific to publisher properties. The server MUST verify that the value

was previously set on this DCOM object instance servicing this method call. If not, the server MUST
fail the call. Otherwise, the server MUST return the value of the property.

3.1.4.4.26 PutPublisherProperty (Opnum 32)

The PutPublisherProperty method sets the application-specific publisher property of the subscription. If
the subscription does not already have a publisher property, this method will add it to the publisher
property collection. If the same name property exists, it would be overwritten by the new value
provided as part of this method. See publisher properties in section 3.1.1.2.

 [id(14), helpstring("method PutPublisherProperty")] HRESULT PutPublisherProperty(
 [in] BSTR bstrPropertyName,
 [in] VARIANT* propertyValue
);

bstrPropertyName: The application-specific name for publisher property. The format for the
publisher property name MUST adhere to the format specified in section 2.2.2.1.

propertyValue: The application-specific publisher property value which MUST be of the type specified
in 2.2.2.2.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate both the bstrPropertyName and propertyValue

parameter. If the validation fails, the server MUST fail the call, returning a failure HRESULT back to
the client. Otherwise, the server MUST attempt to store the value into the state of the DCOM object
instance servicing this call specific to publisher properties, and fail the call if it cannot. Otherwise, the
server MUST override any previously associated value with this property name.

3.1.4.4.27 RemovePublisherProperty (Opnum 33)

The RemovePublisherProperty method removes the specified application-specific publisher property for

the subscription. See publisher properties in section 3.1.1.2.

 [id(15), helpstring("method RemovePublisherProperty")] HRESULT RemovePublisherProperty(
 [in] BSTR bstrPropertyName
);

bstrPropertyName: The application-specific name for the publisher property. The format for the
publisher property name MUST adhere to the format specified in section 2.2.2.1.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the syntax for the bstrPropertyName

parameter. If validation fails, the server MUST fail the call, returning a failure HRESULT back to the
client. Otherwise, the server MUST verify that the value for the property name is associated with the
state of the DCOM object servicing this call specific to publisher properties. If not, the server MUST fail

the call. Otherwise, the server MUST remove any state specific to this property name associated with
the state of the DCOM object servicing this call specific to publisher properties.

3.1.4.4.28 GetPublisherPropertyCollection (Opnum 34)

46 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The GetPublisherPropertyCollection method gets all the application-specific publisher properties as a
collection of the subscription. See publisher properties in section 3.1.1.2.

 [id(16), helpstring("method GetPublisherPropertyCollection")]
HRESULT GetPublisherPropertyCollection(

 [out, retval] IEventObjectCollection** collection
);

collection: If the function returns a success HRESULT, this MUST return an instance of DCOM object

supporting the IEventObjectCollection which MUST contain a collection of application-specific
publisher properties. These properties MUST conform to the specification given in section 2.2.2.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST enumerate all publisher properties associated with the
instance of the DCOM object servicing this call. It MUST attempt to store these in a collection DCOM

object supporting IEventObjectCollection interface and fail the call, returning a failure HRESULT back

to the client if it cannot. It MUST then return this DCOM object instance through the collection
parameter.

3.1.4.4.29 GetSubscriberProperty (Opnum 35)

The GetSubscriberProperty method gets the value of an application-specific subscriber property of the
subscription, as specified in section 3.1.1.2.

 [id(17), helpstring("method GetSubscriberProperty")] HRESULT GetSubscriberProperty(
 [in] BSTR bstrPropertyName,
 [out, retval] VARIANT* propertyValue
);

bstrPropertyName: The application-specific name for the subscriber property. The format for the

subscriber property name MUST adhere to the format specified in section 2.2.2.1.

propertyValue: If the function returns a success HRESULT, this MUST contain the application-specific
subscriber property value which MUST be of the type specified in 2.2.2.2.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate both instances of bstrPropertyName. If

validation fails, the server MUST fail the call, returning a failure HRESULT back to the client. The
server MUST then check to see if the value for this property is associated with the state of the
instance of the DCOM object servicing this call specific to subscriber properties. The server MUST
verify that the value was previously set on this DCOM object instance servicing this method call. If
not, the server MUST fail the call. Otherwise, the server MUST return the value of the property.

3.1.4.4.30 PutSubscriberProperty (Opnum 36)

The PutSubscriberProperty method sets the value of an application-specific subscriber property of the
subscription, as specified in section 3.1.1.2.

 [id(18), helpstring("method PutSubscriberProperty")] HRESULT PutSubscriberProperty(
 [in] BSTR bstrPropertyName,
 [in] VARIANT* propertyValue
);

47 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

bstrPropertyName: The application-specific name for the subscriber property. The format for the
subscriber property name MUST adhere to the format specified in section 2.2.2.1.

propertyValue: The application-specific subscriber property value which MUST be of the type
specified in 2.2.2.2.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate both the bstrPropertyName and propertyValue
parameter. If the validation fails, the server MUST fail the call, returning a failure HRESULT back to
the client. Otherwise, the server MUST attempt to store the value into the state of the DCOM object
instance servicing this call specific to the subscriber properties, and fail the call if it cannot. The server
MUST override any previously associated value with this property name.

3.1.4.4.31 RemoveSubscriberProperty (Opnum 37)

The RemoveSubscriberProperty method removes the specified application-specific subscriber property

for the subscription, as specified in section 3.1.1.2.

 [id(19), helpstring("method RemoveSubscriberProperty")] HRESULT RemoveSubscriberProperty(
 [in] BSTR bstrPropertyName
);

bstrPropertyName: The application-specific name for the subscriber property. The format for the
subscriber property name MUST adhere to the format specified in section 2.2.2.1.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the syntax for the bstrPropertyName

parameter. If validation fails, the server MUST fail the call, returning a failure HRESULT back to the
client. Otherwise, the server MUST verify that the value for the property name is associated with the

state of the DCOM object servicing this call specific to the subscriber properties. If not, the server
MUST fail the call. Otherwise, the server MUST attempt to remove any state specific to this property
name associated with the state of the DCOM object servicing this call specific to subscriber properties,
and fail the call if it cannot.

3.1.4.4.32 GetSubscriberPropertyCollection (Opnum 38)

The GetSubscriberPropertyCollection method gets the collection of all the application-specific
subscriber properties for the subscription, as specified in section 3.1.1.2.

 [id(20), helpstring("method GetSubscriberPropertyCollection")]
HRESULT GetSubscriberPropertyCollection(

 [out, retval] IEventObjectCollection** collection
);

collection: If the function returns a success HRESULT, this MUST return an instance of a DCOM object
supporting the IEventObjectCollection which MUST contain a collection of application-specific
subscriber properties. These properties MUST conform to the specification given in section 2.2.2.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST enumerate all subscriber properties associated with the
instance of the DCOM object servicing this call. It MUST attempt to store these in a collection DCOM
object supporting IEventObjectCollection interface, and fail the call, returning a failure HRESULT back

48 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

to the client if it cannot. It MUST then return this DCOM object instance through the collection
parameter and fail the call if it cannot.

3.1.4.4.33 get_InterfaceID (Opnum 39)

The get_InterfaceID method gets the InterfaceID property for the subscription.

 [id(21), propget, helpstring("property InterfaceID")] HRESULT InterfaceID(
 [out, retval] BSTR* pbstrInterfaceID
);

pbstrInterfaceID: If the method returns a success HRESULT, this MUST contain the value of the
InterfaceID property of the subscription, as specified in section 3.1.1.2. The value MUST conform

to the format as specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the InterfaceID property.

3.1.4.4.34 put_InterfaceID (Opnum 40)

The put_InterfaceID method sets the InterfaceID property for the subscription.

 [id(21), propput, helpstring("property InterfaceID")] HRESULT InterfaceID(
 [in] BSTR bstrInterfaceID
);

bstrInterfaceID: This is the InterfaceID property of the subscription, as specified in section 3.1.1.2.

The value MUST conform to the format as specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the call, returning a failure HRESULT back to the client.
Otherwise, the server MUST attempt to update the state of the DCOM object servicing this method

with the new value of the InterfaceID property, and fail the call if it cannot. Otherwise, it MUST
override any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.5 IEnumEventObject

The IEnumEventObject interface provides methods that are used to enumerate a collection of event

classes or subscriptions. The version for this interface is 0.0.

A client gets this interface by means of the get_NewEnum (Opnum 9) (section 3.1.4.6.3) method of
the IEventObjectCollection. As this is a DCOM interface, opnums 0 through 2 are IUnknown methods,
which MUST be implemented by means of IRemUnknown, as specified in [MS-DCOM] section
3.1.1.5.6. The DCOM object implementing this interface MUST use the UUID {F4A07D63-2E25-11D1-
9964-00C04FBBB345}.

This interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

49 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

Clone Clones the collection into another IEnumEventObject-based DCOM object.

Opnum: 3

Next Returns the next elements and iterates over them.

Opnum: 4

Reset Resets the enumerating object back to the first element.

Opnum: 5

Skip Skips ahead in the collection.

Opnum: 6

3.1.4.5.1 Clone (Opnum 3)

The Clone method clones the underlying collection into another DCOM object implementing the

IEnumEventObject interface.

 [id(1), helpstring("method Clone")] HRESULT Clone(
 [out] IEnumEventObject** ppInterface
);

ppInterface: If the function returns a success HRESULT, this MUST contain the interface pointer of
the clone DCOM object supporting the IEnumEventObject interface.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST attempt to clone the underlying collection into another

DCOM object implementing the IEnumEventObject interface, and return the result.

3.1.4.5.2 Next (Opnum 4)

The Next method gets up to a specified number of items from the collection, if they are available,

starting at the current enumerator position.

 [id(3), helpstring("method Next")] HRESULT Next(
 [in] ULONG cReqElem,
 [out, size_is(cReqElem), length_is(*cRetElem)]
 IUnknown** ppInterface,
 [out] ULONG* cRetElem
);

cReqElem: The number of elements requested by the client to return from the collection.

ppInterface: If the function returns a success HRESULT, this MUST contain an array of interface
pointers of size cRetElem. Each element in the array MUST be either a DCOM object supporting
the IEventClass2 interface if the underlying collection is of EventClasses or the element MUST be a

DCOM object supporting IEventSubscription DCOM interface if the underlying collection is of
subscriptions.

cRetElem: If the function returns a success HRESULT, this MUST contain a number of items returned
in the array contained in ppInterface.

50 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return Values: An HRESULT specifying success or failure. All success codes other than S_FALSE
MUST be treated the same, and all failure codes MUST be treated the same.

Return value/code Description

0x00000001

S_FALSE

End of the collection.

When this method is invoked, the server MUST attempt to return items from the current position of
the enumerator on the collection, and move the enumerator ahead in the collection by the value of
cRetElem. If the number of elements in the collection is less than cReqElem, the function MUST return

S_FALSE for failure.

3.1.4.5.3 Reset (Opnum 5)

The Reset method resets the enumerator back to the first element in the collection.

 [id(4), helpstring("method Reset")] HRESULT Reset();

This method has no parameters.

Return Values: An HRESULT specifying success or failure. All success codes other than S_FALSE
MUST be treated the same, and all failure codes MUST be treated the same.

Return value/code Description

0x00000001

S_FALSE

The enumeration sequence was reset, but there are no items in the enumerator.

When this method is invoked, the server MUST attempt to reset the enumerator back to the first
element in the collection, and fail the call, returning a failure HRESULT back to the client if it cannot. If

there are no elements in this collection, the function MUST return a success.

3.1.4.5.4 Skip (Opnum 6)

The Skip method skips ahead in the collection by the number of elements specified.

 [id(5), helpstring("method Skip")] HRESULT Skip(
 [in] ULONG cSkipElem
);

cSkipElem: The number of elements to skip ahead in the collection.

Return Values: An HRESULT specifying success or failure. All success codes other than S_FALSE
MUST be treated the same, and all failure codes MUST be treated the same.

Return value/code Description

0x00000001

S_FALSE

The number of elements skipped was not the same as the number requested.

When this method is invoked, the server MUST attempt to skip ahead cSkipElem elements in the
enumerator from its current location, and fail the call, returning a failure HRESULT back to the client if
it cannot. If the number of elements in the enumerator from its current location is less than the count
specified in cSkipElem, the server MUST return S_FALSE as a success HRESULT.

51 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.4.6 IEventObjectCollection

The IEventObjectCollection interface provides methods that manage and enumerate over a collection
of objects. The interface inherits opnums 0 through 6 from IDispatch as specified in [MS-OAUT]

section 3.1.4. The version for this interface is 0.0.

The server returns a DCOM object implementing this interface with UUID {f89ac270-d4eb-11d1-b682-
00805fc79216} from the following methods:

1. Query (Opnum 7) (section 3.1.4.1.1)

2. GetPublisherPropertyCollection (Opnum 34) (section 3.1.4.4.28)

3. GetSubscriberPropertyCollection (Opnum 38) (section 3.1.4.4.32)

This interface includes the following methods beyond those of IDispatch.

Methods in RPC Opnum Order

Method Description

get__NewEnum Returns an enumerator DCOM object.

Opnum: 7

get_Item Gets the item in the collection based on an ID.

Opnum: 8

get_NewEnum Gets the IEnumEventObject supporting the DCOM based object instance for the underlying
collection.

Opnum: 9

get_Count Gets the number of items in the collection.

Opnum: 10

Add Adds an item to the collection.

Opnum: 11

Remove Removes an item from the collection.

Opnum: 12

3.1.4.6.1 get__NewEnum (Opnum 7)

The get__NewEnum method gets a DCOM object for enumerating the underlying collection.

 [id(DISPID_NEWENUM), propget, restricted, helpstring("Create new IEnumVARIANT")]
HRESULT _NewEnum(

 [out, retval] IUnknown** ppUnkEnum
);

ppUnkEnum: If the function returns a success HRESULT, this MUST contain a DCOM object which
implements the IEnumEventObject interface.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST attempt to create a collection-based DCOM object
which supports the IEnumEventObject interface, and fail the call, returning a failure HRESULT back to

52 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

the client if it cannot. The underlying collection MUST be the same collection that is being enumerated
by the DCOM object instance servicing this call. The created collection DCOM object MUST be returned

through the ppUnkEnum interface.

3.1.4.6.2 get_Item (Opnum 8)

The get_Item method gets the item in the collection with a specified ID.

 [id(DISPID_VALUE), propget] HRESULT Item(
 [in] BSTR objectID,
 [out, retval] VARIANT* pItem
);

objectID: The name of the object to get from the collection. If the underlying collection is of the
publisher or subscriber application-specific subscription properties, this name MUST conform to the
specification of application-specific property names, as specified in section 2.2.2.1. If the
underlying collection is event classes, this MUST conform to the specification of

EventClassCollectionIdentifier, as specified in section 2.2.6. If the underlying collection is
subscriptions, this MUST conform to the specification of SubscriptionCollectionIdentifier, as
specified in section 2.2.7.

pItem: If the function returns a successful HRESULT, this MUST contain an application-specific
publisher/subscriber property, as specified in section 2.2.2.2, if the underlying collection is of
publisher/subscriber application-specific subscriptions properties. If the underlying collection is
event classes, this MUST contain a VT_UNKNOWN for the DCOM object that supports the

IEventClass2 DCOM interface. If the underlying collection is subscriptions, this MUST contain a
VT_UNKNOWN for the DCOM object that supports the IEventSubscription DCOM interface.

Return Values: An HRESULT that specifies success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the objectID parameter for syntax. If the
validation fails, the server MUST fail the call and return a failure HRESULT back to the client.

Otherwise, the server MUST enumerate the collection and match the objectID to the individual objects
in the collection. If an object is found that has a matching objectID, it MUST be returned through the
pItem parameter. Otherwise, the server MUST fail the call.

3.1.4.6.3 get_NewEnum (Opnum 9)

The get_NewEnum method gets an IEnumEventObject-based object for enumerating the underlying
collection.

 [id(1), propget, helpstring("Create new IEnumEventObject")] HRESULT NewEnum(
 [out, retval] IEnumEventObject** ppEnum
);

ppEnum: If the function returns a success HRESULT, this MUST contain a DCOM object supporting the

IEnumEventObject interface. Note this method is supported only if the underlying collection is of
event classes or subscriptions.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST attempt to create a collection-based DCOM object
which supports the IEnumEventObject interface, and fail the call, returning a failure HRESULT back to
the client if it cannot. The underlying collection MUST be the same collection that is being enumerated

53 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

by the DCOM object instance servicing this call. The created collection DCOM object MUST be returned
through the ppEnum interface.

3.1.4.6.4 get_Count (Opnum 10)

The get_Count method gets the count of the number of items in the collection contained by the
enumerator.

 [id(2), propget, helpstring("Number of items in the collection")] HRESULT Count(
 [out, retval] long* pCount
);

pCount: If the function returns a success HRESULT, this MUST contain the number specifying the

number of elements in the underlying collection.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST attempt to return the count of the number of elements
in the collection. If the server is not able to return the count, it MUST fail the call, returning a failure
HRESULT back to the client.

3.1.4.6.5 Add (Opnum 11)

The Add method adds an item to the underlying collection of the enumerator; if the item is already
present in the collection, it is replaced by the one being passed to this method.

 [id(3), helpstring("Add an item to the collection")] HRESULT Add(
 [in] VARIANT* item,
 [in] BSTR objectID
);

item: If the underlying collection is of application-specific publisher/subscriber subscription properties,
this MUST conform to the application-specific property values as specified in section 2.2.2.2. If the
underlying collection is of event classes, the type of the VARIANT MUST be VT_UNKNOWN and

MUST contain a DCOM object supporting the IEventClass2 interface. If the underlying collection is
of subscriptions, the type of the VARIANT MUST be VT_UNKNOWN and MUST contain a DCOM
object supporting the IEventSubscription interface.

objectID: The identity of the object. If the underlying collection is of the application-specific
publisher/subscriber subscription properties, this MUST conform to the application-specific
property names as specified in 2.2.2.1. If the underlying collection is of event classes, this MUST
conform to the EventClassID property of the event class as specified in section 3.1.1.1. If the

underlying collection is of subscriptions, this MUST conform to the SubscriptionID property of the
subscription as specified in section 3.1.1.2.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the item and the objectID parameters. If the
validation fails, the server MUST fail the call, returning a failure HRESULT back to the client.

Otherwise, the server MUST attempt to add this item to the collection of the enumerator DCOM object
servicing this call, and fail the call if it cannot. If the object in the collection already has the objectID
specified in the call, the server MUST fail the call.

3.1.4.6.6 Remove (Opnum 12)

54 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The Remove method removes an item from the underlying collection of the enumerator.

 [id(4), helpstring("Remove an item from the collection")] HRESULT Remove(
 [in] BSTR objectID
);

objectID: The identity of the object. If the underlying collection is of the application-specific
publisher/subscriber subscription properties, this MUST conform to the application-specific
property names as specified in 2.2.2.1. If the underlying collection is of event classes, this MUST
conform to the EventClassID property of the event class as specified in section 3.1.1.1. If the
underlying collection is of subscriptions, this MUST conform to the SubscriptionID property of the
subscription as specified in section 3.1.1.2.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the syntax of the objectID. If the validation

fails, the server MUST fail the call, returning a failure HRESULT back to the client. Otherwise, the
server MUST enumerate through the collection and remove the object matching the given objectID. If
the object matching the objectID is not found in the collection, the server MUST fail the call.

3.1.4.7 IEventClass3

The IEventClass3 interface provides additional methods that are used by the client to manipulate an
event class on the server. This interface inherits opnums 0 through 28 from the IEventClass2
interface, as specified in section 3.1.4.3. The version for this interface is 0.0.

The server SHOULD support this interface.<13> To receive incoming remote calls for this interface,
the server MUST implement a DCOM object class with the class ID CLSID_EventClass (see section 1.9)
using the UUID {7FB7EA43-2D76-4ea8-8CD9-3DECC270295E} for this interface.

The interface contains the following methods beyond the ones that are defined for IEventClass2.

Methods in RPC Opnum Order

Method Description

get_EventClassPartitionID Gets the EventClassPartitionID property of the event class.

Opnum: 29

put_EventClassPartitionID Sets the EventClassPartitionID property of the event class.

Opnum: 30

get_EventClassApplicationID Gets the EventClassApplicationID property of the event class.

Opnum: 31

put_EventClassApplicationID Has no effect.

Opnum: 32

3.1.4.7.1 get_EventClassPartitionID (Opnum 29)

The get_EventClassPartitionID method gets the EventClassPartitionID property of the event class.

 [id(12), propget, helpstring("property EventClassPartitionID")]
HRESULT EventClassPartitionID(

55 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [out, retval] BSTR* pbstrEventClassPartitionID
);

pbstrEventClassPartitionID: If the function returns a success HRESULT, this MUST contain the
EventClassPartitionID property of the event class as specified in section 3.1.1.1. The value MUST
conform to the format as specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM

object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the EventClassPartitionID
property.

3.1.4.7.2 put_EventClassPartitionID (Opnum 30)

The put_EventClassPartitionID method sets the EventClassPartitionID property for the event class.

 [id(12), propput, helpstring("property EventClassPartitionID")]
HRESULT EventClassPartitionID(

 [in] BSTR bstrEventClassPartitionID
);

bstrEventClassPartitionID: The value of the EventClassPartitionID property of the event class as
specified in section 3.1.1.1. The value MUST conform to the format as specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the method call. Otherwise, the server MUST attempt to update
the state of the DCOM object servicing this method with the new value of the EventClassPartitionID

property, and fail the call, returning a failure HRESULT back to the client if it cannot. Otherwise, it
MUST override any previous value that was set for this DCOM object instance servicing this method
call.

3.1.4.7.3 get_EventClassApplicationID (Opnum 31)

The get_EventClassApplicationID method gets the EventClassApplicationID property of the event class.

 [id(13), propget, helpstring("property EventClassApplicationID")]
HRESULT EventClassApplicationID(

 [out, retval] BSTR* pbstrEventClassApplicationID
);

pbstrEventClassApplicationID: If the function returns a success HRESULT, this MUST contain the

EventClassApplicationID property of the event class as specified in section 3.1.1.1. The value
MUST conform to the format as specified in section 2.2.3.

Return Values: An HRESULT that specifies success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST return the value of the EventClassApplicationID
property. The value of this property is always GUID_NULL.

3.1.4.7.4 put_EventClassApplicationID (Opnum 32)

56 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The put_EventClassApplicationID method has no effect.

 [id(13), propput, helpstring("property EventClassApplicationID")]
HRESULT EventClassApplicationID(

 [in] BSTR bstrEventClassApplicationID
);

bstrEventClassApplicationID: Has no effect.

Return Values: An HRESULT that specifies success or failure. All success codes MUST be treated the

same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST do nothing, that is, this method has no effect.

3.1.4.8 IEventSubscription2

The IEventSubscription2 interface provides methods to get and set the properties of a subscription.

This interface inherits opnums 0 through 40 from IEventSubscription as specified in section 3.1.4.4.
The version for this interface is 0.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM [MS-DCOM]
object class with the class ID CLSID_Subscription (see section 1.9) using the UUID {4A6B0E16-2E38-
11D1-9965-00C04FBBB345} for this interface.

The interface contains the following methods beyond the ones for IEventSubscription.

Methods in RPC Opnum Order

Method Description

get_FilterCriteria Gets the FilterCriteria property of the subscription.

Opnum: 41

put_FilterCriteria Sets the FilterCriteria property of the subscription.

Opnum: 42

get_SubscriberMoniker Gets the SubscriberMoniker property of the subscription.

Opnum: 43

put_SubscriberMoniker Sets the SubscriberMoniker property of the subscription.

Opnum: 44

3.1.4.8.1 get_FilterCriteria (Opnum 41)

The get_FilterCriteria method gets the FilterCriteria property for the subscription.

 [propget, id(22), helpstring("property FilterCriteria")] HRESULT FilterCriteria(
 [out, retval] BSTR* pbstrFilterCriteria
);

pbstrFilterCriteria: If the method returns a success HRESULT, this MUST contain the value of the
FilterCriteria property of the subscription, as specified in section 3.1.1.2. The syntax for this string
is specified in section 2.2.1.

57 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure

HRESULT back to the client. Otherwise, the server MUST return the value of the FilterCriteria property.

3.1.4.8.2 put_FilterCriteria (Opnum 42)

The put_FilterCriteria method sets the value of the FilterCriteria property of the subscription.

 [propput, id(22), helpstring("property FilterCriteria")] HRESULT FilterCriteria(
 [in] BSTR bstrFilterCriteria
);

bstrFilterCriteria: The FilterCriteria property of the subscription, as specified in section 3.1.1.2. The
syntax for this string is specified in section 2.2.1.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the call, returning a failure HRESULT back to the client.

Otherwise, the server MUST attempt to update the state of the DCOM object servicing this method
with the new value of the FilterCriteria property, and fail the call if it cannot. Otherwise, it MUST
override any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.8.3 get_SubscriberMoniker (Opnum 43)

The get_SubscriberMoniker method gets the SubscriberMoniker property of the subscription.

 [propget, id(23), helpstring("property SubscriberMoniker")] HRESULT SubscriberMoniker(
 [out, retval] BSTR* pbstrMoniker
);

pbstrMoniker: If the method returns a success HRESULT, this MUST contain the value of the
SubscriberMoniker property of the subscription, as specified in section 3.1.1.2. This MUST be a
string of character length less than or equal to 255.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the SubscriberMoniker
property.

3.1.4.8.4 put_SubscriberMoniker (Opnum 44)

The put_SubscriberMoniker method sets the SubscriberMoniker property of the subscription.

 [propput, id(23), helpstring("property SubscriberMoniker")] HRESULT SubscriberMoniker(
 [in] BSTR bstrMoniker
);

58 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

bstrMoniker: The SubscriberMoniker property of the subscription, as specified in section 3.1.1.2. This
MUST be a string of character length less than or equal to 255.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the method call. Otherwise, the server MUST attempt to update
the state of the DCOM object servicing this method with the new value of the SubscriberMoniker
property, and fail the call if it cannot. Otherwise, it MUST override any previous value that was set for
this DCOM object instance servicing this method call.

3.1.4.9 IEventSubscription3

The IEventSubscription3 interface provides methods to get or set the properties of a
subscription.<14> This interface inherits opnums 0 through 44 from IEventSubscription2, as specified
in section 3.1.4.8. The version for this interface is 0.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM [MS-DCOM]

object class with the class ID CLSID_Subscription (see section 1.9) using the UUID {FBC1D17D-C498-
43a0-81AF-423DDD530AF6} for this interface.

The interface contains the following methods beyond those of IEventSubscription2.

Methods in RPC Opnum Order

Method Description

get_EventClassPartitionID Gets the EventClassPartitionID property of the subscription.

Opnum: 45

put_EventClassPartitionID Sets the EventClassPartitionID property of the subscription.

Opnum: 46

get_EventClassApplicationID Gets the EventClassApplicationID property of the subscription.

Opnum: 47

put_EventClassApplicationID Has no effect.

Opnum: 48

get_SubscriberPartitionID Gets the SubscriberPartitionID property of the subscription.

Opnum: 49

put_SubscriberPartitionID Sets the SubscriberPartitionID property of the subscription.

Opnum: 50

get_SubscriberApplicationID Gets the SubscriberApplicationID property of the subscription.

Opnum: 51

put_SubscriberApplicationID Sets the SubscriberApplicationID property of the subscription.

Opnum: 52

3.1.4.9.1 get_EventClassPartitionID (Opnum 45)

The get_EventClassPartitionID gets the EventClassPartitionID property for the subscription.

59 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [propget, id(24), helpstring("property EventClassPartitionID")]
HRESULT EventClassPartitionID(

 [out, retval] BSTR* pbstrEventClassPartitionID
);

pbstrEventClassPartitionID: If the method returns a success HRESULT, this MUST contain the
EventClassPartitionID property of the subscription, as specified in section 3.1.1.2. The value MUST
conform to the format as specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the EventClassPartitionID
property.

3.1.4.9.2 put_EventClassPartitionID (Opnum 46)

The put_EventClassPartitionID method sets the EventClassPartitionID property for the subscription.

 [propput, id(24), helpstring("property EventClassPartitionID")]
HRESULT EventClassPartitionID(

 [in] BSTR bstrEventClassPartitionID
);

bstrEventClassPartitionID: The EventClassPartitionID property of the subscription, as specified in
section 3.1.1.2. The value MUST conform to the format as specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails the server MUST fail the call, returning a failure HRESULT back to the client. Otherwise
the server MUST attempt to update the state of the DCOM object servicing this method with the new
value of the EventClassPartitionID property, and fail the call if it cannot. Otherwise, it MUST override
any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.9.3 get_EventClassApplicationID (Opnum 47)

The get_EventClassApplicationID method gets the EventClassApplicationID property for the
subscription.

 [propget, id(25), helpstring("property EventClassApplicationID")]
HRESULT EventClassApplicationID(

 [out, retval] BSTR* pbstrEventClassApplicationID
);

pbstrEventClassApplicationID: If the method returns a success HRESULT, this MUST contain the
EventClassApplicationID property of the subscription, as specified in section 3.1.1.2. The value
MUST conform to the format as specified in section 2.2.3.

Return Values: An HRESULT that specifies success or failure. All success codes MUST be treated the

same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST return the value of the EventClassApplicationID
property. The value of this property is always GUID_NULL.

60 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.4.9.4 put_EventClassApplicationID (Opnum 48)

The put_EventClassApplicationID method has no effect.

 [propput, id(25), helpstring("property EventClassApplicationID")]
HRESULT EventClassApplicationID(

 [in] BSTR bstrEventClassApplicationID
);

bstrEventClassApplicationID: Has no effect.

Return Values: An HRESULT that specifies success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST do nothing, that is, this method has no effect.

3.1.4.9.5 get_SubscriberPartitionID (Opnum 49)

The get_SubscriberPartitionID method gets the SubscriberPartitionID for the subscription.

 [propget, id(26), helpstring("property SubscriberPartitionID")]
HRESULT SubscriberPartitionID(

 [out, retval] BSTR* pbstrSubscriberPartitionID
);

pbstrSubscriberPartitionID: If the method returns a success HRESULT, this MUST contain the
SubscriberPartitionID property of the subscription, as specified in section 3.1.1.2. The value MUST
conform to the format as specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM

object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the SubscriberPartitionID
property.

3.1.4.9.6 put_SubscriberPartitionID (Opnum 50)

The put_SubscriberPartitionID method sets the SubscriberPartitionID property for the subscription.

 [propput, id(26), helpstring("property SubscriberPartitionID")]
HRESULT SubscriberPartitionID(

 [in] BSTR bstrSubscriberPartitionID
);

bstrSubscriberPartitionID: The SubscriberPartitionID property of the subscription, as specified in

section 3.1.1.2. The value MUST conform to the format as specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the method call. Otherwise, the server MUST attempt to update
the state of the DCOM object servicing this method with the new value of the SubscriberPartitionID

property, and fail the call, returning a failure HRESULT back to the client if it cannot. Otherwise, it

61 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

MUST override any previous value that was set for this DCOM object instance servicing this method
call.

3.1.4.9.7 get_SubscriberApplicationID (Opnum 51)

The get_SubscriberApplicationID method gets the SubscriberApplicationID property for the
subscription.

 [propget, id(27), helpstring("property SubscriberApplicationID")]
HRESULT SubscriberApplicationID(

 [out, retval] BSTR* pbstrSubscriberApplicationID
);

pbstrSubscriberApplicationID: If the method returns a success HRESULT, this MUST contain the
SubscriberApplicationID property of the subscription, as specified in section 3.1.1.2. The value
MUST conform to the format as specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the

same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST verify that this value was previously set on this DCOM
object instance servicing this method call. If not, the server MUST fail the call, returning a failure
HRESULT back to the client. Otherwise, the server MUST return the value of the
SubscriberApplicationID property.

3.1.4.9.8 put_SubscriberApplicationID (Opnum 52)

The put_SubscriberApplicationID method sets the SubscriberApplicationID property for the
subscription.

 [propput, id(27), helpstring("property SubscriberApplicationID")]
HRESULT SubscriberApplicationID(

 [in] BSTR bstrSubscriberApplicationID
);

bstrSubscriberApplicationID: The SubscriberApplicationID property of the subscription, as specified
in section 3.1.1.2. The value MUST conform to the format as specified in section 2.2.3.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST validate the new value of the property for syntax. If
validation fails, the server MUST fail the call, returning a failure HRESULT back to the client. Otherwise
the server MUST attempt to update the state of the DCOM object servicing this method with the new
value of the SubscriberApplicationID property, and fail the call if it cannot. Otherwise, it MUST
override any previous value that was set for this DCOM object instance servicing this method call.

3.1.4.10 IEventSystem2

This interface is used to perform version checking and transient subscription verifications on the
server by the client. IEventSystem2 inherits opnums 0 through 12 from the IEventSystem interface,
as specified in section 3.1.4.1. The version for this interface is 0.0.

The server SHOULD support this interface.<15> To receive incoming remote calls for this interface,

the server MUST implement a DCOM object class with the CLSID CLSID_EventSystem (see section
1.9) using the UUID {99CC098F-A48A-4e9c-8E58-965C0AFC19D5}for this interface.

62 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The interface contains the following methods beyond those of IEventSystem.

Methods in RPC Opnum Order

Method Description

GetVersion Gets the version of the event system implementation.

Opnum: 13

VerifyTransientSubscribers Verifies the state of the transient subscribers.

Opnum: 14

3.1.4.10.1 GetVersion (Opnum 13)

The GetVersion method retrieves the version of the server implementation of the protocol.

 [id(7), helpstring("method GetVersion")] HRESULT GetVersion(
 [out] int* pnVersion
);

pnVersion: If the function returns a success HRESULT, it MUST contain one of the following:

Value Meaning

0x00000001 The server does not support the IEventSubscription3 and IEventClass3 interfaces, nor does it
support the PartitionID and ApplicationID properties on the subscription (section 3.1.1.2) and

event class (section 3.1.1.1) objects.

0x00000002 The server supports the IEventSubscription3 and IEventClass3 interfaces. It also supports the
PartitionID and ApplicationID properties on the subscription (section 3.1.1.2) and event class
(section 3.1.1.1) objects.

Return Values: An HRESULT specifying success or failure. All success codes MUST be treated the
same, and all failure codes MUST be treated the same.

When this method is invoked, the server MUST attempt to return the pnVersion value corresponding

to the interfaces it supports, and fail the call, returning a failure HRESULT back to the client if it
cannot.

3.1.4.10.2 VerifyTransientSubscribers (Opnum 14)

The VerifyTransientSubscribers method verifies the state of the transient subscribers.

 [id(8), helpstring("method VerifyTransientSubscribers")]
HRESULT VerifyTransientSubscribers();

This method has no parameters.

Return Values: This function MUST return S_OK.

When this method is invoked, the server MUST verify that, for all transient subscribers, the server is
able to make a method call on them successfully. If any transient subscription fails this test, the
server MUST remove the subscription from its internal store for subscriptions.

63 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.4.11 IEventSystemInitialize

The IEventSystemInitialize interface is used to initialize the server implementing this protocol. As this
is a DCOM interface, Opnum 0 to Opnum 2 are IUnknown methods, which MUST be implemented by

means of IRemUnknown, as specified in [MS-DCOM] section 3.1.1.5.6. The version for this interface is
0.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
with the CLSID CLSID_EventSystem (see section 1.9) using the UUID {a0e8f27a-888c-11d1-b763-
00c04fb926af} for this interface .

The interface contains the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

Method Description

SetCOMCatalogBehaviour Initializes the server.

Opnum: 3

3.1.4.11.1 SetCOMCatalogBehaviour (Opnum 3)

The SetCOMCatalogBehaviour method controls the event system CatalogMode and RetainSubKeys
state variables.

 HRESULT SetCOMCatalogBehaviour(
 BOOL bRetainSubKeys
);

bRetainSubKeys: This value is copied to the RetainSubKeys state variable (see section 3.1.1.3) of

the event system.

Return Values: The server MUST return S_OK.

After this method is called, the event system CatalogMode state variable will be true (server in catalog
mode) and the RetainSubKeys variable will be set based on the bRetainSubKeys parameter. If the

client does not call this method, the server will be in non-catalog mode. The Store, Remove, and
RemoveS methods of IEventSystem will have different behavior when the server is in catalog mode.
See section 3.1.1.3 for more details.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

64 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4 Protocol Examples

 The following examples build on the examples given in [MS-DCOM] section 4.1.

4.1 Creating an Event Class

Figure 1: Creating an event class

65 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The previous figure shows the sequence for a client publisher application that is creating an event on
the server. It assumes that the client already knows that the type library ID for the EventClass is

3BFF4039-03C2-410f-B6A6-F4EBC250C2CC.

To set up an event class:

1. The client application starts by performing a DCOM activation for the event class object on the
server by using the class ID CLSID_EventClass.

2. The client application dynamically generates a UUID (in this example, DF01D194-D694-41e5-
BA79-8DEDE00ED0EA) according to [C706] section A.2.5. It converts the UUID to a string using
the format that is specified in section 2.2.3. Using the string, the client calls put_EventClassID on
the event class object to set the EventClassID property.

 HRESULT
 put_EventClassID(
 [in] BSTR bstrEventClassID ="{DF01D194-D694-41e5-BA79-8DEDE00ED0EA}"
);

3. The server stores the EventClassID and returns S_OK.

4. It then sets the Typelib property of the event class by calling the put_TypeLib method.

 HRESULT
 put_TypeLib(
 [in] BSTR bstrTypeLib ="TypelibFileName.tlb"
);

5. The server stores the TypeLib property and returns S_OK.

6. The client chooses a human-readable name for the event class (in this example,

"TestEventClass"). It then uses this name to set the EventClassName property by calling the
put_EventClassName method.

 HRESULT
 put_EventClassName(
 [in] BSTR bstrEventClassName = "TestEventClass");

7. The server stores the EventClassName and returns S_OK.

To store an event class:

1. The client activates the class ID CLSID_EventSystem to get the EventSystem DCOM object on the
server.

2. The client calls Store on the EventSystem DCOM object with the "EventSystem.EventClass".

 HRESULT
 Store([in] BSTR ProgID = "EventSystem.EventClass",
 [in] IUnknown* pInterface = {pointer to CLSID_EventClass
 interface created above}
);

66 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3. The server verifies the values that are specified in the event class object. In this example, it
verifies that the EventClassID is not already in its event class store. If it were, the server would

update the current entry with a new value for the properties and return S_OK. However, in this
example, it is not already in the store, and so the server creates an entry for the event class in its

store and returns S_OK.

4.2 Creating a Subscription

Figure 2: Creating a subscription

67 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The previous figure shows the sequence when a client application creates a subscription on the server
for the event class that has the UUID DF01D194-D694-41e5-BA79-8DEDE00ED0EA. It assumes that

the client application already knows the subscriber application DCOM object CLSID, which is
19D10A70-1B07-4b76-87B6-99F58DEE37E7.

To set up the subscription:

1. The client starts by performing a DCOM activation for the subscription DCOM object on the server
by using the class ID CLSID_EventSubscription.

2. The server returns an object reference to the subscription DCOM object.

3. The client generates a UUID (for example, B7E3D561-3BB1-46df-B47F-51DF3B307EC9) according
to [C706] section A.2.5. It converts the UUID to a string using the format specified in section
2.2.3. Using the string, the client calls put_SubscriptionID on the subscription DCOM object to set

the SubscriptionID property for the subscription.

 HRESULT
 put_SubscriptionID(
 [in] BSTR bstrSubscriptionID ="{B7E3D561-3BB1-46df-B47F-51DF3B307EC9}");

4. The server stores the SubscriptionID and returns S_OK.

5. The client then sets the EventClassID property, which identifies the event class for which it is
creating the subscription by calling put_EventClassID.

 HRESULT
 put_EventClassID(
 [in] BSTR bstrEventClassID ="{DF01D194-D694-41e5-BA79-8DEDE00ED0EA}");

6. The server stores the EventClassID and returns S_OK.

7. It then puts the SubscriberCLSID property by calling the put_SubscriberCLSID method.

 HRESULT
 put_SubscriberCLSID(
 BSTR bstrSubscriberCLSID ="{19D10A70-1B07-4b76-87B6-99F58DEE37E7}");

8. The server stores the SubscriberCLSID and returns S_OK.

The CLSID_Subscription object is just a place holder; no verification of the data is done at this point.

To store the subscription:

1. The client performs DCOM activation for CLSID_EventSystem on the server for the EventSystem

DCOM object.

2. The server returns an object reference to the EventSystem DCOM object.

3. The client calls Store on the EventSystem DCOM object with the string
"EventSystem.EventSubscription".

 HRESULT
 Store(
 [in] BSTR ProgID = "EventSystem.EventSubscription",

68 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [in] IUnknown* pInterface = {pointer to CLSID_Subscription
 interface created above}
);

4. The server now verifies the values that are specified in the subscription object. In this example it
verifies that the EventClassID is in its event class store. It then checks whether the SubscriberID
matches any existing subscription. Because it does not, the server creates a subscription and
returns S_OK.

69 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4.3 Updating a Subscription

Figure 3: Updating a subscription

The previous figure shows the sequence of a client application as it updates its subscription. From
before, the client knows that its SubscriptionID is B7E3D561-3BB1-46df-B47F-51DF3B307EC9 and its
SubscriberCLSID is 19D10A70-1B07-4b76-87B6-99F58DEE37E7.

1. The client activates the class ID CLSID_EventSystem to get the EventSystem DCOM object on the
server.

2. The client calls a Query with the subscriptions collection.

70 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 HRESULT
 HRESULT Query(
 [in] BSTR progID= "EventSystem.EventSubscriptionCollection",
 [in] BSTR queryCriteria = "SubscriberCLSID='{19D10A70-1B07-4b76-87B6-99F58DEE37E7}'",
 [out] int* errorIndex = {uninitialized},
 [out, retval] IUnknown** ppInterface = {uninitialized}
);

3. The server looks in its internal store of subscriptions for a subscription that has the
SubscriberCLSID property set to "{19D10A70-1B07-4b76-87B6-99F58DEE37E7}". After the server
finds the subscription that has the matching SubscriberCLSID property, it creates a DCOM object
for the subscription and populates its state with the subscription properties. The DCOM object is
then stored in a collection-based DCOM object that supports the IEventObjectCollection interface.
The server returns S_OK with ppInterface, which contains the collection DCOM object.

 HRESULT = S_OK
 Query(
 [in] BSTR progID = {unchanged},
 [in] BSTR queryCriteria = {unchanged},
 [out] int* errorIndex = 0,
 [out, retval] IUnknown** ppInterface = {DCOM object supporting
 IEventObjectCollection interface}
);

4. The client calls the get_Item method to get the particular subscription for its SubscriptionID. In
this example the format of the objectID is correct for a server that implements version 2 of the

protocol. Because the client did not explicitly set the PartitionID and ApplicationID properties when
it created the subscription, the example uses the default values for these properties.

 HRESULT
 Item(
 [in] BSTR objectID = "{B7E3D561-3BB1-46df-B47F-51DF3B307EC9}-{00000000-
 0000-0000-0000-000000000000}-{00000000-0000-0000-0000-000000000000}",
 [out,retval] VARIANT* pItem = {uninitialized)
);

5. The server looks in the underlying collection for the subscription DCOM object that has the
SubscriptionID property set to "{B7E3D561-3BB1-46df-B47F-51DF3B307EC9}". After the server
successfully finds the object, it embeds it in a VARIANT in the punk field, sets the VT_TYPE on the
VARIANT to VT_UNKNOWN, and returns S_OK.

 HRESULT = S_OK
 Item(
 [in] BSTR objectID = {unchanged},
 [out,retval] VARIANT* pItem = {vt = VT_UNKNOWN,punk = {DCOM object that supports
 IEventSubscrption interface}
);

6. The client calls put_Description to update the description of the item.

 HRESULT
 put_Description(
 [in] BSTR* pbstrDescription = "A custom subscription"

71 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

);

7. The server stores the description and returns S_OK.

8. The client calls Store on the EventSystem DCOM object with the "EventSystem.EventSubscription"
string.

 HRESULT
 Store(
 [in] BSTR ProgID = "EventSystem.EventSubscription",
 [in] IUnknown* pInterface = {interface pointer to subscription
 object updated above}
);

9. The server verifies that the description is 255 characters or less, updates the description of the

subscription in its local state, and returns S_OK.

Note that the same set of operations can be performed by the client to update an event class.

4.4 Removing a Subscription

Figure 4: Removing a subscription

The previous figure shows the sequence of a client application that submits a request to a server to
remove all subscriptions with its subscriber CLSID. From before, the client knows that its

SubscriberCLSID is 19D10A70-1B07-4b76-87B6-99F58DEE37E7.

1. The client activates the class ID CLSID_EventSystem to get the EventSystem DCOM object on the
server.

2. The client calls the Remove method with the appropriate collection name for subscriptions (that is,
"EventSystem.EventSubscriptionCollection"), along with the criteria for removing it.

72 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 HRESULT
 Remove(
 [in] BSTR progID = "EventSystem.EventSubscriptionCollection",
 [in] BSTR queryCriteria = "SubscriberCLSID='{19D10A70-1B07-4b76-87B6-99F58DEE37E7}'",
 [out] int* errorIndex = (uninitialized)
);

As a result of this method call, the server finds all the subscriptions with that subscriber CLSID,
removes them, and returns the following.

 HRESULT = S_OK
 Remove(
 [in] BSTR progID = {unchanged},
 [in] BSTR queryCriteria = {unchanged},
 [out] int* errorIndex = 0
);

Note that the same set of operations can be performed by the client application to remove an event
class.

73 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

5 Security

5.1 Security Considerations for Implementers

Implementers need to ensure that authorization checks exist on the event class and subscription

stores.

5.2 Index of Security Parameters

 None.

74 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

6 Appendix A: Full IDL

 For ease of implementation, the full IDL is provided below, where "ms-oaut.idl" is the IDL found in
[MS-OAUT] Appendix A.

 import "ms-oaut.idl";

 interface IEventObjectCollection;

 [
 object,

 uuid(4E14FB9F-2E22-11D1-9964-00C04FBBB345),

 dual,

 helpstring("IEventSystem Interface"),

 pointer_default(unique)

]
 interface IEventSystem : IDispatch
 {
 [id(1), helpstring("method Query")]

 HRESULT Query([in] BSTR progID,

 [in] BSTR queryCriteria,

 [out] int* errorIndex,

 [out,retval] IUnknown** ppInterface);

 [id(2), helpstring("method Store")]

 HRESULT Store([in] BSTR ProgID,

 [in] IUnknown* pInterface);

 [id(3), helpstring("method Remove")]

 HRESULT Remove([in] BSTR progID,

 [in] BSTR queryCriteria,

 [out] int* errorIndex);

 [id(4), propget, helpstring("method get_EventObjectChangeEventClassID")]

 HRESULT EventObjectChangeEventClassID([out,retval] BSTR* pbstrEventClassID);

 [id(5), helpstring("method QueryS")]

 HRESULT QueryS([in] BSTR progID,

 [in] BSTR queryCriteria,

 [out,retval] IUnknown** ppInterface);

 [id(6), helpstring("method RemoveS")]

 HRESULT RemoveS([in] BSTR progID,

 [in] BSTR queryCriteria);

 };

 [
 object,

 uuid(fb2b72a0-7a68-11d1-88f9-0080c7d771bf),

 dual,

 helpstring("IEventClass Interface"),

 pointer_default(unique)

]
 interface IEventClass : IDispatch
 {
 [propget, id(1), helpstring("property EventClassID")]

 HRESULT EventClassID([out,retval] BSTR* pbstrEventClassID);

 [propput, id(1), helpstring("property EventClassID")]

 HRESULT EventClassID([in] BSTR bstrEventClassID);

 [propget, id(2), helpstring("property EventClassName")]

 HRESULT EventClassName([out,retval] BSTR* pbstrEventClassName);

 [propput, id(2), helpstring("property EventClassName")]

 HRESULT EventClassName([in] BSTR bstrEventClassName);

75 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [propget, id(3), helpstring("property OwnerSID")]

 HRESULT OwnerSID([out,retval] BSTR* pbstrOwnerSID);

 [propput, id(3), helpstring("property OwnerSID")]

 HRESULT OwnerSID([in] BSTR bstrOwnerSID);

 [propget, id(4), helpstring("property FiringInterfaceID")]

 HRESULT FiringInterfaceID([out,retval] BSTR* pbstrFiringInterfaceID);

 [propput, id(4), helpstring("property FiringInterfaceID")]

 HRESULT FiringInterfaceID([in] BSTR bstrFiringInterfaceID);

 [propget, id(5), helpstring("property Description")]

 HRESULT Description([out,retval] BSTR* pbstrDescription);

 [propput, id(5), helpstring("property Description")]

 HRESULT Description([in] BSTR bstrDescription);

 // Local only

 HRESULT Opnum17NotUsedOnWire(void);

 // Local only

 HRESULT Opnum18NotUsedOnWire(void);

 [propget, id(7), helpstring("property TypeLib")]

 HRESULT TypeLib([out,retval] BSTR* pbstrTypeLib);

 [propput, id(7), helpstring("property TypeLib")]

 HRESULT TypeLib([in] BSTR bstrTypeLib);

 };

 [
 object,

 uuid(fb2b72a1-7a68-11d1-88f9-0080c7d771bf),

 dual,

 helpstring("IEventClass2 Interface"),

 pointer_default(unique)

]
 interface IEventClass2 : IEventClass
 {
 [id(8), propget, helpstring("property PublisherID")]

 HRESULT PublisherID([out,retval] BSTR* pbstrPublisherID);

 [id(8), propput, helpstring("property PublisherID")]

 HRESULT PublisherID([in] BSTR bstrPublisherID);

 [id(9), propget, helpstring("property MultiInterfacePublisherFilterCLSID")]

 HRESULT MultiInterfacePublisherFilterCLSID([out,retval] BSTR* pbstrPubFilCLSID);

 [id(9), propput, helpstring("property MultiInterfacePublisherFilterCLSID")]

 HRESULT MultiInterfacePublisherFilterCLSID([in] BSTR bstrPubFilCLSID);

 [id(10), propget, helpstring("property AllowInprocActivation")]

 HRESULT AllowInprocActivation([out,retval]BOOL* pfAllowInprocActivation);

 [id(10), propput, helpstring("property AllowInprocActivation")]

 HRESULT AllowInprocActivation([in]BOOL fAllowInprocActivation);

 [id(11), propget, helpstring("property FireInParallel")]

 HRESULT FireInParallel([out,retval]BOOL* pfFireInParallel);

 [id(11), propput, helpstring("property FireInParallel")]

 HRESULT FireInParallel([in]BOOL fFireInParallel);

 }

 [
 object,

 uuid(F4A07D63-2E25-11D1-9964-00C04FBBB345),

 helpstring("IEnumEventObject Interface"),

 pointer_default(unique)

]
 interface IEnumEventObject : IUnknown
 {
 [id(1), helpstring("method Clone")]

76 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 HRESULT Clone([out] IEnumEventObject** ppInterface);

 [id(3), helpstring("method Next")]

 HRESULT Next([in] ULONG cReqElem,

 [out,size_is(cReqElem), length_is(*cRetElem)] IUnknown** ppInterface,

 [out] ULONG* cRetElem);

 [id(4), helpstring("method Reset")]

 HRESULT Reset();

 [id(5), helpstring("method Skip")]

 HRESULT Skip([in] ULONG cSkipElem);

 };

 [
 object,

 uuid(f89ac270-d4eb-11d1-b682-00805fc79216),

 dual,

 helpstring("IEventObjectCollection Interface"),

 pointer_default(unique)

]
 interface IEventObjectCollection : IDispatch
 {
 [id(DISPID_NEWENUM), propget, restricted, helpstring("Create new IEnumVARIANT")]

 HRESULT _NewEnum([out,retval] IUnknown** ppUnkEnum);

 [id(DISPID_VALUE), propget]

 HRESULT Item([in] BSTR objectID, [out,retval] VARIANT* pItem);

 [id(1), propget, helpstring("Create new IEnumEventObject")]

 HRESULT NewEnum([out,retval] IEnumEventObject** ppEnum);

 [id(2), propget, helpstring("Number of items in the collection")]

 HRESULT Count([out,retval] long* pCount);

 [id(3), helpstring("Add an item to the collection")]

 HRESULT Add([in] VARIANT* item, [in] BSTR objectID);

 [id(4), helpstring("Remove an item from the collection")]

 HRESULT Remove([in] BSTR objectID);

 }

 [
 object,

 uuid(4A6B0E15-2E38-11D1-9965-00C04FBBB345),

 dual,

 helpstring("IEventSubscription Interface"),

 pointer_default(unique)

]
 interface IEventSubscription : IDispatch
 {
 [propget, id(1), helpstring("property SubscriptionID")]

 HRESULT SubscriptionID([out,retval] BSTR* pbstrSubscriptionID);

 [propput, id(1), helpstring("property SubscriptionID")]

 HRESULT SubscriptionID([in] BSTR bstrSubscriptionID);

 [propget, id(2), helpstring("property SubscriptionName")]

 HRESULT SubscriptionName([out,retval] BSTR* pbstrSubscriptionName);

 [propput, id(2), helpstring("property SubscriptionName")]

 HRESULT SubscriptionName([in] BSTR bstrSubscriptionName);

 [propget, id(3), helpstring("property PublisherID")]

 HRESULT PublisherID([out,retval] BSTR* pbstrPublisherID);

 [propput, id(3), helpstring("property PublisherID")]

 HRESULT PublisherID([in] BSTR bstrPublisherID);

 [propget, id(4), helpstring("property EventClassID")]

 HRESULT EventClassID([out,retval] BSTR* pbstrEventClassID);

77 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [propput, id(4), helpstring("property EventClassID")]

 HRESULT EventClassID([in] BSTR bstrEventClassID);

 [propget, id(5), helpstring("property MethodName")]

 HRESULT MethodName([out,retval] BSTR* pbstrMethodName);

 [propput, id(5), helpstring("property MethodName")]

 HRESULT MethodName([in] BSTR bstrMethodName);

 [propget, id(6), helpstring("property SubscriberCLSID")]

 HRESULT SubscriberCLSID([out,retval] BSTR* pbstrSubscriberCLSID);

 [propput, id(6), helpstring("property SubscriberCLSID")]

 HRESULT SubscriberCLSID([in] BSTR bstrSubscriberCLSID);

 [propget, id(7), helpstring("property SubscriberInterface")]

 HRESULT SubscriberInterface([out,retval] IUnknown** ppSubscriberInterface);

 [propput, id(7), helpstring("property SubscriberInterface")]

 HRESULT SubscriberInterface([in] IUnknown* pSubscriberInterface);

 [propget, id(8), helpstring("property PerUser")]

 HRESULT PerUser([out,retval] BOOL* pfPerUser);

 [propput, id(8), helpstring("property PerUser")]

 HRESULT PerUser([in] BOOL fPerUser);

 [propget, id(9), helpstring("property OwnerSID")]

 HRESULT OwnerSID([out,retval] BSTR* pbstrOwnerSID);

 [propput, id(9), helpstring("property OwnerSID")]

 HRESULT OwnerSID([in] BSTR bstrOwnerSID);

 [propget, id(10), helpstring("property Enabled")]

 HRESULT Enabled([out,retval] BOOL* pfEnabled);

 [propput, id(10), helpstring("property Enabled")]

 HRESULT Enabled([in] BOOL fEnabled);

 [propget, id(11), helpstring("property Description")]

 HRESULT Description([out,retval] BSTR* pbstrDescription);

 [propput, id(11), helpstring("property Description")]

 HRESULT Description([in] BSTR bstrDescription);

 [propget, id(12), helpstring("property MachineName")]

 HRESULT MachineName([out,retval] BSTR* pbstrMachineName);

 [propput, id(12), helpstring("property MachineName")]

 HRESULT MachineName([in] BSTR bstrMachineName);

 [id(13), helpstring("method GetPublisherProperty")]

 HRESULT GetPublisherProperty([in] BSTR bstrPropertyName,

 [out,retval] VARIANT* propertyValue);

 [id(14), helpstring("method PutPublisherProperty")]

 HRESULT PutPublisherProperty([in] BSTR bstrPropertyName,

 [in] VARIANT* propertyValue);

 [id(15), helpstring("method RemovePublisherProperty")]

 HRESULT RemovePublisherProperty([in] BSTR bstrPropertyName);

 [id(16), helpstring("method GetPublisherPropertyCollection")]

 HRESULT GetPublisherPropertyCollection([out,retval] IEventObjectCollection** collection);

 [id(17), helpstring("method GetSubscriberProperty")]

 HRESULT GetSubscriberProperty([in] BSTR bstrPropertyName,

 [out,retval] VARIANT* propertyValue);

 [id(18), helpstring("method PutSubscriberProperty")]

 HRESULT PutSubscriberProperty([in] BSTR bstrPropertyName,

 [in] VARIANT* propertyValue);

 [id(19), helpstring("method RemoveSubscriberProperty")]

 HRESULT RemoveSubscriberProperty([in] BSTR bstrPropertyName);

 [id(20), helpstring("method GetSubscriberPropertyCollection")]

 HRESULT GetSubscriberPropertyCollection([out,retval] IEventObjectCollection**

collection);

 [id(21), propget, helpstring("property InterfaceID")]

 HRESULT InterfaceID([out,retval] BSTR* pbstrInterfaceID);

 [id(21), propput, helpstring("property InterfaceID")]

 HRESULT InterfaceID([in] BSTR bstrInterfaceID);

78 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 };

 [
 object,

 uuid(4A6B0E16-2E38-11D1-9965-00C04FBBB345),

 dual,

 helpstring("IEventSubscription2 Interface"),

 pointer_default(unique)

]
 interface IEventSubscription2 : IEventSubscription
 {
 [propget, id(22), helpstring("property FilterCriteria")]

 HRESULT FilterCriteria([out,retval] BSTR* pbstrFilterCriteria);

 [propput, id(22), helpstring("property FilterCriteria")]

 HRESULT FilterCriteria([in] BSTR bstrFilterCriteria);

 [propget, id(23), helpstring("property SubscriberMoniker")]

 HRESULT SubscriberMoniker([out,retval] BSTR* pbstrMoniker);

 [propput, id(23), helpstring("property SubscriberMoniker")]

 HRESULT SubscriberMoniker([in] BSTR bstrMoniker);

 }

 [
 object,

 uuid(7FB7EA43-2D76-4ea8-8CD9-3DECC270295E),

 dual,

 helpstring("IEventClass3 Interface"),

 pointer_default(unique)

]
 interface IEventClass3 : IEventClass2
 {
 [id(12), propget, helpstring("property EventClassPartitionID")]

 HRESULT EventClassPartitionID([out,retval] BSTR* pbstrEventClassPartitionID);

 [id(12), propput, helpstring("property EventClassPartitionID")]

 HRESULT EventClassPartitionID([in] BSTR bstrEventClassPartitionID);

 [id(13), propget, helpstring("property EventClassApplicationID")]

 HRESULT EventClassApplicationID([out,retval] BSTR* pbstrEventClassApplicationID);

 [id(13), propput, helpstring("property EventClassApplicationID")]

 HRESULT EventClassApplicationID([in] BSTR bstrEventClassApplicationID);

 }

 [
 object,

 uuid(FBC1D17D-C498-43a0-81AF-423DDD530AF6),

 dual,

 helpstring("IEventSubscription3 Interface"),

 pointer_default(unique)

]
 interface IEventSubscription3 : IEventSubscription2
 {
 [propget, id(24), helpstring("property EventClassPartitionID")]

 HRESULT EventClassPartitionID([out,retval] BSTR* pbstrEventClassPartitionID);

 [propput, id(24), helpstring("property EventClassPartitionID")]

 HRESULT EventClassPartitionID([in] BSTR bstrEventClassPartitionID);

 [propget, id(25), helpstring("property EventClassApplicationID")]

 HRESULT EventClassApplicationID([out,retval] BSTR* pbstrEventClassApplicationID);

 [propput, id(25), helpstring("property EventClassApplicationID")]

 HRESULT EventClassApplicationID([in] BSTR bstrEventClassApplicationID);

 [propget, id(26), helpstring("property SubscriberPartitionID")]

 HRESULT SubscriberPartitionID([out,retval] BSTR* pbstrSubscriberPartitionID);

 [propput, id(26), helpstring("property SubscriberPartitionID")]

 HRESULT SubscriberPartitionID([in] BSTR bstrSubscriberPartitionID);

 [propget, id(27), helpstring("property SubscriberApplicationID")]

 HRESULT SubscriberApplicationID([out,retval] BSTR* pbstrSubscriberApplicationID);

79 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [propput, id(27), helpstring("property SubscriberApplicationID")]

 HRESULT SubscriberApplicationID([in] BSTR bstrSubscriberApplicationID);

 };

 [
 object,

 uuid(99CC098F-A48A-4e9c-8E58-965C0AFC19D5),

 dual,

 helpstring("IEventSystem2 Interface"),

 pointer_default(unique)

]
 interface IEventSystem2 : IEventSystem
 {
 [id(7), helpstring("method GetVersion")]

 HRESULT GetVersion([out] int* pnVersion);

 [id(8), helpstring("method VerifyTransientSubscribers")]

 HRESULT VerifyTransientSubscribers();

 }

 [
 uuid(a0e8f27a-888c-11d1-b763-00c04fb926af),

 pointer_default(unique)

]
 interface IEventSystemInitialize : IUnknown
 {
 HRESULT SetCOMCatalogBehaviour(BOOL bRetainSubKeys);

 };

80 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

7 (Updated Section) Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

Windows Releases

▪ Windows 2000 operating system

▪ Windows XP operating system

▪ Windows Server 2003 operating system

▪ Windows Vista operating system

▪ Windows Server 2008 operating system

▪ Windows 7 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows 8 operating system

▪ Windows Server 2012 operating system

▪ Windows 8.1 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows 10 operating system

▪ Windows Server 2016 operating system

▪ Windows Server operating system

▪ Windows Server 2019 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 2.2.1: Windows platforms do not use FIRINGINTERFACEIID or CUSTOMCONFIGCLASSID.

<2> Section 2.2.5: Windows platforms also accepts local paths.

<3> Section 3.1.1.1: On Windows platforms, TypeLibrary specifies a registered OLE automation type

library. For more information about type libraries, see [MSDN-ITypeLib].

<4> Section 3.1.1.1: On Windows platforms, see [MSDN-COM+Events] under "Event Filtering" for

more information about the MultiInterfacePublisherFilterCLSID property of event classes.

<5> Section 3.1.1.1: EventClassPartitionID specifies a COM+ partition. For more information about
COM+ partitions, see [MSDN-COM+]. This property is not available in Windows 2000.

81 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

<6> Section 3.1.1.1: EventClassApplicationID specifies a COM+ Application. For more information
about COM+ applications, see [MSDN-COM+]. This property is not available in Windows 2000.

<7> Section 3.1.1.2: On Windows platforms, see [MSDN-COM+Events] under "Event Filtering" for
more information about the FilterCriteria property of subscriptions.

<8> Section 3.1.4.1.1: IEventClass3 is not supported in Windows 2000.

<9> Section 3.1.4.1.1: IEventSubscription3 is not supported in Windows 2000.

<10> Section 3.1.4.1.5: IEventClass3 is not supported in Windows 2000.

<11> Section 3.1.4.1.5: IEventSubscription3 is not supported in Windows 2000.

<12> Section 3.1.4.2: Opnums that are reserved for local use apply to Windows, as shown in the
following table.

Opnum Description

17-18 Returns ERROR_NOT_IMPLEMENTED. It is never used.

<13> Section 3.1.4.7: IEventClass3 is not supported in Windows 2000.

<14> Section 3.1.4.9: IEventSubscription3 is not supported in Windows 2000.

<15> Section 3.1.4.10: IEventSystem2 is not supported on Windows 2000.

82 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

7 Appendix B: Product
Behavior

Added Windows Server 2019 to the list of applicable
products.

Major

83 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

9 Index
_

_NewEnum method 51

A

Abstract data model
 server 15
Abstract data model - server 15
Add method 53
AllowInprocActivation method (section 3.1.4.3.5 32, section 3.1.4.3.6 33)
Applicability 10
Application-specific properties 13

B

Background 10

C

Capability negotiation 11
Change tracking 82
Clone method 49
Common data types 12
Component Object Model Plus (COM+) Event System protocol 10
Count method 53
Creating a subscription example 66
Creating an event class example 64
Curly-braced GUID strings 13

D

Data model - abstract
 server 15
Data model - abstract - server 15
Data types 12
 common - overview 12
Description method (section 3.1.4.2.9 29, section 3.1.4.2.10 29, section 3.1.4.4.21 43, section 3.1.4.4.22 43)

E

Enabled method (section 3.1.4.4.19 42, section 3.1.4.4.20 42)
Entity Name string 13
Event class creation example 64
Event classes 15
EventClassApplicationID method (section 3.1.4.7.3 55, section 3.1.4.7.4 55, section 3.1.4.9.3 59, section 3.1.4.9.4

60)
EventClassID method (section 3.1.4.2.1 26, section 3.1.4.2.2 26, section 3.1.4.4.7 38, section 3.1.4.4.8 38)
EventClassName method (section 3.1.4.2.3 26, section 3.1.4.2.4 27)
EventClassPartitionID method (section 3.1.4.7.1 54, section 3.1.4.7.2 55, section 3.1.4.9.1 58, section 3.1.4.9.2

59)
EventObjectChangeEventClassID method 22
Events
 local - server 63
 timer - server 63
Examples
 creating a subscription 66
 creating an event class 64
 overview 64
 removing a subscription 71
 updating a subscription 69

84 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

F

Fields - vendor-extensible 11
FilterCriteria method (section 3.1.4.8.1 56, section 3.1.4.8.2 57)
FireInParallel method (section 3.1.4.3.7 33, section 3.1.4.3.8 33)
FiringInterfaceID method (section 3.1.4.2.7 28, section 3.1.4.2.8 28)
Full COMEV6 IDL 74
Full IDL 74

G

GetPublisherProperty method 44
GetPublisherPropertyCollection method 45
GetSubscriberProperty method 46
GetSubscriberPropertyCollection method 47
GetVersion method 62
Glossary 7

I

IDL 74
IDL - COMEV6 74
IEnumEventObject method 48
IEventClass method 25
IEventClass2 method 30
IEventClass3 method 54
IEventObjectCollection method 51
IEventSubscription method 34
IEventSubscription2 method 56
IEventSubscription3 method 58
IEventSystem method 18
IEventSystem2 method 61
IEventSystemInitialize method 63
Implementer - security considerations 73
Index of security parameters 73
Informative references 9
Initialization
 server 18
Initialization - server 18
InterfaceID method (section 3.1.4.4.33 48, section 3.1.4.4.34 48)
Introduction 7
Item method 52

L

Local events
 server 63
Local events - server 63

M

MachineName method (section 3.1.4.4.23 43, section 3.1.4.4.24 44)
Message processing
 server 18
Message processing - server 18
Messages
 common data types 12
 data types 12
 transport 12
MethodName method (section 3.1.4.4.9 39, section 3.1.4.4.10 39)
Methods
 IEnumEventObject 48
 IEventClass 25

85 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 IEventClass2 30
 IEventClass3 54
 IEventObjectCollection 51
 IEventSubscription 34
 IEventSubscription2 56
 IEventSubscription3 58
 IEventSystem 18
 IEventSystem2 61
 IEventSystemInitialize 63
MultiInterfacePublisherFilterCLSID method (section 3.1.4.3.3 31, section 3.1.4.3.4 32)

N

NewEnum method 52
Next method 49
Normative references 9

O

OwnerSID method (section 3.1.4.2.5 27, section 3.1.4.2.6 28, section 3.1.4.4.17 41, section 3.1.4.4.18 42)

P

Parameters - security index 73
PerUser method (section 3.1.4.4.15 41, section 3.1.4.4.16 41)
Preconditions 10
Prerequisites 10
Product behavior 80
Property names 13
Property Value types 13
Protocol Details
 overview 15
PublisherID method (section 3.1.4.3.1 31, section 3.1.4.3.2 31, section 3.1.4.4.5 37, section 3.1.4.4.6 38)
PutPublisherProperty method 45
PutSubscriberProperty method 46

Q

Query method 18
Query strings 12
QueryS method 23

R

References 9
 informative 9
 normative 9
Relationship to other protocols 10
Remove method (section 3.1.4.1.3 21, section 3.1.4.6.6 53)
RemovePublisherProperty method 45
RemoveS method 23
RemoveSubscriberProperty method 47
Removing a subscription example 71
Reset method 50

S

Security
 implementer considerations 73
 parameter index 73
Sequencing rules
 server 18
Sequencing rules - server 18
Server

86 / 86

[MS-COMEV-Diff] - v20180912
Component Object Model Plus (COM+) Event System Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 abstract data model 15
 IEnumEventObject method 48
 IEventClass method 25
 IEventClass2 method 30
 IEventClass3 method 54
 IEventObjectCollection method 51
 IEventSubscription method 34
 IEventSubscription2 method 56
 IEventSubscription3 method 58
 IEventSystem method 18
 IEventSystem2 method 61
 IEventSystemInitialize method 63
 initialization 18
 local events 63
 message processing 18
 sequencing rules 18
 timer events 63
 timers 17
SetCOMCatalogBehaviour method 63
Skip method 50
Standards assignments 11
Store method 19
SubscriberApplicationID method (section 3.1.4.9.7 61, section 3.1.4.9.8 61)

SubscriberCLSID method (section 3.1.4.4.11 39, section 3.1.4.4.12 40)
SubscriberInterface method (section 3.1.4.4.13 40, section 3.1.4.4.14 40)
SubscriberMoniker method (section 3.1.4.8.3 57, section 3.1.4.8.4 57)
SubscriberPartitionID method (section 3.1.4.9.5 60, section 3.1.4.9.6 60)
Subscription creation example 66
Subscription removal example 71
Subscription update example 69
SubscriptionID method (section 3.1.4.4.1 36, section 3.1.4.4.2 36)
SubscriptionName method (section 3.1.4.4.3 36, section 3.1.4.4.4 37)
Subscriptions 16

T

Timer events
 server 63
Timer events - server 63
Timers
 server 17
Timers - server 17
Tracking changes 82
Transport 12
TypeLib method (section 3.1.4.2.11 29, section 3.1.4.2.12 30)

U

Updating a subscription example 69

V

Vendor-extensible fields 11
VerifyTransientSubscribers method 62
Versioning 11

	1 Introduction
	1.1 (Updated Section) Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Background
	1.3.2 Component Object Model Plus (COM+) Event System Protocol

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Query Strings
	2.2.2 Application-Specific Properties
	2.2.2.1 Property Names
	2.2.2.2 Property Value Types

	2.2.3 Curly-Braced GUID Strings
	2.2.4 Entity Name String
	2.2.5 ImplementationSpecificPathProperty
	2.2.6 EventClassCollectionIdentifier
	2.2.7 SubscriptionCollectionIdentifier

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Event Classes
	3.1.1.2 Subscriptions
	3.1.1.3 Event System

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 IEventSystem
	3.1.4.1.1 Query (Opnum 7)
	3.1.4.1.2 Store (Opnum 8)
	3.1.4.1.3 Remove (Opnum 9)
	3.1.4.1.4 get_EventObjectChangeEventClassID (Opnum 10)
	3.1.4.1.5 QueryS (Opnum 11)
	3.1.4.1.6 RemoveS (Opnum 12)

	3.1.4.2 IEventClass
	3.1.4.2.1 get_EventClassID (Opnum 7)
	3.1.4.2.2 put_EventClassID (Opnum 8)
	3.1.4.2.3 get_EventClassName (Opnum 9)
	3.1.4.2.4 put_EventClassName (Opnum 10)
	3.1.4.2.5 get_OwnerSID (Opnum 11)
	3.1.4.2.6 put_OwnerSID (Opnum 12)
	3.1.4.2.7 get_FiringInterfaceID (Opnum 13)
	3.1.4.2.8 put_FiringInterfaceID (Opnum 14)
	3.1.4.2.9 get_Description (Opnum 15)
	3.1.4.2.10 put_Description (Opnum 16)
	3.1.4.2.11 get_TypeLib (Opnum 19)
	3.1.4.2.12 put_TypeLib (Opnum 20)

	3.1.4.3 IEventClass2
	3.1.4.3.1 get_PublisherID (Opnum 21)
	3.1.4.3.2 put_PublisherID (Opnum 22)
	3.1.4.3.3 get_MultiInterfacePublisherFilterCLSID (Opnum 23)
	3.1.4.3.4 put_MultiInterfacePublisherFilterCLSID (Opnum 24)
	3.1.4.3.5 get_AllowInprocActivation (Opnum 25)
	3.1.4.3.6 put_AllowInprocActivation (Opnum 26)
	3.1.4.3.7 get_FireInParallel (Opnum 27)
	3.1.4.3.8 put_FireInParallel (Opnum 28)

	3.1.4.4 IEventSubscription
	3.1.4.4.1 get_SubscriptionID (Opnum 7)
	3.1.4.4.2 put_SubscriptionID (Opnum 8)
	3.1.4.4.3 get_SubscriptionName (Opnum 9)
	3.1.4.4.4 put_SubscriptionName (Opnum 10)
	3.1.4.4.5 get_PublisherID (Opnum 11)
	3.1.4.4.6 put_PublisherID (Opnum 12)
	3.1.4.4.7 get_EventClassID (Opnum 13)
	3.1.4.4.8 put_EventClassID (Opnum 14)
	3.1.4.4.9 get_MethodName (Opnum 15)
	3.1.4.4.10 put_MethodName (Opnum 16)
	3.1.4.4.11 get_SubscriberCLSID (Opnum 17)
	3.1.4.4.12 put_SubscriberCLSID (Opnum 18)
	3.1.4.4.13 get_SubscriberInterface (Opnum 19)
	3.1.4.4.14 put_SubscriberInterface (Opnum 20)
	3.1.4.4.15 get_PerUser (Opnum 21)
	3.1.4.4.16 put_PerUser (Opnum 22)
	3.1.4.4.17 get_OwnerSID (Opnum 23)
	3.1.4.4.18 put_OwnerSID (Opnum 24)
	3.1.4.4.19 get_Enabled (Opnum 25)
	3.1.4.4.20 put_Enabled (Opnum 26)
	3.1.4.4.21 get_Description (Opnum 27)
	3.1.4.4.22 put_Description (Opnum 28)
	3.1.4.4.23 get_MachineName (Opnum 29)
	3.1.4.4.24 put_MachineName (Opnum 30)
	3.1.4.4.25 GetPublisherProperty (Opnum 31)
	3.1.4.4.26 PutPublisherProperty (Opnum 32)
	3.1.4.4.27 RemovePublisherProperty (Opnum 33)
	3.1.4.4.28 GetPublisherPropertyCollection (Opnum 34)
	3.1.4.4.29 GetSubscriberProperty (Opnum 35)
	3.1.4.4.30 PutSubscriberProperty (Opnum 36)
	3.1.4.4.31 RemoveSubscriberProperty (Opnum 37)
	3.1.4.4.32 GetSubscriberPropertyCollection (Opnum 38)
	3.1.4.4.33 get_InterfaceID (Opnum 39)
	3.1.4.4.34 put_InterfaceID (Opnum 40)

	3.1.4.5 IEnumEventObject
	3.1.4.5.1 Clone (Opnum 3)
	3.1.4.5.2 Next (Opnum 4)
	3.1.4.5.3 Reset (Opnum 5)
	3.1.4.5.4 Skip (Opnum 6)

	3.1.4.6 IEventObjectCollection
	3.1.4.6.1 get__NewEnum (Opnum 7)
	3.1.4.6.2 get_Item (Opnum 8)
	3.1.4.6.3 get_NewEnum (Opnum 9)
	3.1.4.6.4 get_Count (Opnum 10)
	3.1.4.6.5 Add (Opnum 11)
	3.1.4.6.6 Remove (Opnum 12)

	3.1.4.7 IEventClass3
	3.1.4.7.1 get_EventClassPartitionID (Opnum 29)
	3.1.4.7.2 put_EventClassPartitionID (Opnum 30)
	3.1.4.7.3 get_EventClassApplicationID (Opnum 31)
	3.1.4.7.4 put_EventClassApplicationID (Opnum 32)

	3.1.4.8 IEventSubscription2
	3.1.4.8.1 get_FilterCriteria (Opnum 41)
	3.1.4.8.2 put_FilterCriteria (Opnum 42)
	3.1.4.8.3 get_SubscriberMoniker (Opnum 43)
	3.1.4.8.4 put_SubscriberMoniker (Opnum 44)

	3.1.4.9 IEventSubscription3
	3.1.4.9.1 get_EventClassPartitionID (Opnum 45)
	3.1.4.9.2 put_EventClassPartitionID (Opnum 46)
	3.1.4.9.3 get_EventClassApplicationID (Opnum 47)
	3.1.4.9.4 put_EventClassApplicationID (Opnum 48)
	3.1.4.9.5 get_SubscriberPartitionID (Opnum 49)
	3.1.4.9.6 put_SubscriberPartitionID (Opnum 50)
	3.1.4.9.7 get_SubscriberApplicationID (Opnum 51)
	3.1.4.9.8 put_SubscriberApplicationID (Opnum 52)

	3.1.4.10 IEventSystem2
	3.1.4.10.1 GetVersion (Opnum 13)
	3.1.4.10.2 VerifyTransientSubscribers (Opnum 14)

	3.1.4.11 IEventSystemInitialize
	3.1.4.11.1 SetCOMCatalogBehaviour (Opnum 3)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	4 Protocol Examples
	4.1 Creating an Event Class
	4.2 Creating a Subscription
	4.3 Updating a Subscription
	4.4 Removing a Subscription

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 (Updated Section) Appendix B: Product Behavior
	8 Change Tracking
	9 Index

